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This paper tests the predictive per-
formance of machine learning meth-
ods in estimating the illiquidity of
US corporate bonds. Machine learn-
ing techniques outperform the his-
torical illiquidity-based approach, the
most commonly applied benchmark
in practice, from both a statistical
and an economic perspective.
Gradient-boosted regression trees
perform particularly well. Historical
illiquidity is the most important sin-
gle predictor variable, but several
fundamental and return- as well as
risk-based covariates also possess
predictive power. Capturing nonlin-
ear effects and interactions among
these predictors further enhances
forecasting performance. For practi-
tioners, the choice of the appropri-
ate machine learning model depends
on the specific application.
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growing strand of literature suggests that machine learning can

enhance quantitative investing by uncovering exploitable non-

linear and interactive effects between predictor variables that
tend to go unnoticed with simpler modeling approaches (see Blitz
et al. 2023, for an excellent review of machine learning applications
in asset management). The majority of these studies use machine
learning techniques to predict stock returns, applying a large set of
predictor variables. Most prominently, Gu, Kelly, and Xiu (2020) and
Freyberger, Neuhierl, and Weber (2020) show that machine learn-
ing-based approaches outperform linear counterparts and generate
remarkably high Sharpe ratios (of about 2 or even higher).! Bianchi,
Buchner, and Tamoni (2021) and Bali et al. (2022) confirm the effec-
tiveness of machine learning techniques in predicting government
and corporate bond returns, respectively. Nevertheless, compared to
the literature related to equities, machine learning applications in
fixed-income research have received much less attention. This gap in
the literature may be explained by the fact that our understanding of
the risk-return tradeoff is still less developed in bond markets than
in stock markets (Dickerson, Mueller, and Robotti 2023; Kelly,
Palhares, and Pruitt 2023). We contribute to this recent literature by
testing the predictive performance of machine learning methods in
estimating the expected illiquidity of US corporate bonds.

The authors thank Daniel Giamouridis (the journal's associate editor), two anony-
mous referees, Yakov Amihud, Maxime Bucher, Tristan Froidure, Patrick Houweling,
Harald Lohre, Robert Korajczyk, Daniel Seiler, Michael Weber, and the participants
of the Mannheim Finance faculty seminar for insightful suggestions and remarks.
This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited. The terms on which this article has been published allow the
posting of the Accepted Manuscript in a repository by the author(s) or with their
consent.
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In comparison to actively managed stock portfolios,
there is limited alpha upside in a classical bond port-
folio case, where individual bonds are bought as
cheaply as possible and then often held until maturity
(hoping that no default occurs). In this setup, every
basis point in transaction cost savings is crucial for
the success of such a strategy. Considering that cor-
porate bonds are an asset class that is inherently
plagued by illiquidity, the scarcity of work on predict-
ing corporate bond illiquidity is surprising. Although
the question of how to generate outperformance is
the most important one for every investor, any out-
performance potential depends on whether a seem-
ingly superior trading strategy can be efficiently
implemented in practice. Therefore, only a reliable
estimate of a bond’s future liquidity enables an inves-
tor to assess whether this bond is priced in line with
its fundamentals and to convert the return signals
into a profitable investment strategy after accounting
for transaction costs and other implementation fric-
tions. Moreover, under the so-called SEC Liquidity
Rule, accurate predictions of future bond liquidity are
essential from a regulator’s and financial market
supervision perspective to monitor bond funds'
liquidity risk management.

The objective of our paper is to capture the rich fac-
ets of illiquidity in corporate bond markets using
machine learning methods. Most studies that feature
elements of bond illiquidity predictions rely on
Amihud’s (2002) AR-1 approach (Bao, Pan, and Wang
2011; Friewald, Jankowitsch, and Subrahmanyam
2012; Dick-Nielsen, Feldhutter, and Lando 2012;
Bongaerts, de Jong, and Driessen 2017). However,
illiquidity, particularly in a complex market such as
the one for corporate bonds, is multifaceted and
incorporates a variety of market-specific factors and
peculiarities (Sarr and Lybek 2002). Therefore, in
addition to examining historical illiquidity, we con-
sider a comprehensive set of bond characteristics
and exploit their information content using machine
learning models. We apply both relatively simple lin-
ear models (with and without penalty terms for multi-
ple predictors) and more complex models that
capture patterns of nonlinear and interactive effects
in the relationship between predictor variables and
expected bond illiquidity (such as regression tress
and neural networks).2 Another limitation in earlier
work is that it considers mostly the bid-ask spread
even if, in many cases, it is not a good representation
of a bond trade’s realistic costs of execution. This is
because the tradability of a bond itself and the mar-
ket impact of the trade also have a substantial

effect on investment performance. In our analysis,
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we use a large universe of US corporate bonds,
three illiquidity measures that capture different
aspects of illiquidity, a broad set of machine learn-
ing-based illiquidity estimators, and a comprehensive
set of predictor variables based on historical illiquid-
ity, fundamental predictors, return-based predictors,
risk-based predictors, and macroeconomic indicators
to uncover exploitable nonlinear and interactive pat-
terns in the data.

Historical illiquidity is the most commonly used
benchmark for predicting future bond illiquidity in
the asset management industry. Examining level fore-
casts of illiquidity, our results confirm that machine
learning-based prediction models that incorporate
our comprehensive set of predictor variables outper-
form this popular benchmark. Tree-based models and
neural networks, which additionally allow for nonli-
nearity and interaction effects, perform particularly
well. For example, compared to the historical illiquid-
ity benchmark, the average mean squared error
(MSE) is more than 23% lower for neural networks.
In a statistical sense, based on the Diebold and
Mariano (1995) test, neural networks outperform the
benchmark in more than 87% of the sample months.
In addition, they are in the so-called model confi-
dence set (Hansen, Lunde, and Nason 2011), that is,
they are among the best-performing models that sig-
nificantly dominate all other forecast models, more
than six times as often. We attribute these improve-
ments in prediction quality to the inclusion of slow-
moving bond characteristics, such as age, size, and
rating of a bond, as predictors as well as the ability
of both tree-based models and neural networks to
incorporate patters of nonlinearity and interactions in
the relationship between expected illiquidity and
these predictor variables. Furthermore, forecast
errors of cross-sectional portfolio sorts indicate that
the higher MSEs for the historical illiquidity bench-
mark describe a general pattern and are not driven
by high forecast errors for only a few bonds with
extreme characteristics.

In addition to analyzing the differences in level fore-
casts of illiquidity, we assess the economic value of
illiquidity forecasts on the basis of a portfolio forma-
tion exercise, that is, by trading bonds sorted into
portfolios based on realized and expected illiquidity.
Compared to the historical illiquidity-based bench-
mark, machine learning forecast models are better at
disentangling more liquid from less liquid bonds.
Moreover, following Amihud and Mendelson (1986),
investors should require higher expected returns for
more illiquid bonds to compensate for higher trading
expenses. Confirming this notion, we find that



prediction models using machine learning techniques
generate a higher illiquidity premium in the cross-
section of bond returns than the historical illiquidity
benchmark model. We highlight the economic value
added in numerical examples and showcase that
even small improvements in illiquidity estimates can
result in large transaction cost savings, either directly
in terms of a lower average bid-ask spread or indi-
rectly in terms of a lower average price impact.

Furthermore, using relative variable importance met-
rics, we document that the historical illiquidity-based
predictor is most important. This is because realized
bond illiquidity is highly persistent and has long-
memory properties. Among the remaining variables,
fundamental and risk- as well as return-based covari-

ates are the most important predictors (in that order).

Macroeconomic indicators seem much less informa-
tive for future illiquidity. However, variable impor-
tance itself is also time-varying, and even predictors
that are unconditionally less informative play impor-
tant roles at times. Consequently, it is important to
apply prediction models that are able to accommo-
date the time-varying nature of illiquidity indicators.
By way of an example, we address this “black box”
characteristic and illustrate how machine learning
estimators for bond illiquidity generate value for
investors. In particular, we visualize the combined
effect of duration and rating on a bond’s illiquidity
estimate, which confirms that a large part of the pre-
diction outperformance of the more complex
machine learning models is due to their ability to
exploit nonlinear and interactive patterns.

Based on empirical evidence from predicting stock
returns, several other recent papers take a more
skeptical position on the use of machine learning in
asset management applications. For example,
Avramov, Cheng, and Metzker (2022) conclude that
machine learning signals extract a large part of their
profitability from difficult-to-arbitrage stocks (dis-
tressed stocks and microcaps) and during high limits-
to-arbitrage market states (high-market volatility
periods). Moreover, they document that machine
learning-based performance will be even lower
because of high turnover and trading costs. Similarly,
Leung et al. (2021) show that the extent to which
the statistical advantage of machine learning models
can be translated into economic gains depends on
the ability to take risk and implement trades
efficiently.

Our work contributes to this strand of more critical
work in the machine learning literature in two impor-
tant ways. First, the low signal-to-noise ratio in stock
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returns typically leads to the risk of overfitting
machine learning models. In contrast, bond liquidity,
our variable of interest, is highly persistent, that is,
past relations are more likely to continue to hold in
the future, resulting in a higher signal-to-noise ratio.
Therefore, machine learning methods should work at
least as well or maybe even better for predicting
future bond illiquidity than they do for predicting
future stock and bond returns. Second, from a trad-
ing and execution perspective, a better representa-
tion of the expected illiquidity dimension in bond
trading should provide economic value added for
investors. Given the speed and complexity of bond
trading, machine learning methods can help to exploit
alpha signals even after accounting for transaction
costs such that bond investors will embrace machine
learning methods as an essential part of their trading
practices in the future. Our results suggest that more
complex machine learning models tend to be more
powerful. However, because the implementation of
these methods requires significant resources and
skills, the choice of a specific type of prediction
model will depend on how practitioners use illiquidity
forecasts in their bond investment and trading
decisions.

Literature Review

Previous literature documents that a bond’s illiquidity
evolves throughout its lifetime (Warga 1992; Hong
and Warga 2000; Hotchkiss and Jostova 2017), sug-
gesting that dynamic estimation methods, such as the
machine learning models we use, may be promising
candidates for predicting bond illiquidity. Moreover,
time-varying bond characteristics, such as size (Bao,
Pan, and Wang 2011; Jankowitsch, Nashikkar, and
Subrahmanyam 2011) and risk (Mahanti et al. 2008;
Hotchkiss and Jostova 2017), impact expected bond
illiquidity. Therefore, applying machine learning tech-
niques, which adaptively incorporate these features
along with their nonlinearities and interactions,
should be valuable for predicting bond illiquidity.

Empirical evidence indicates that machine learning
methods are able to outperform established
approaches in various prediction tasks. Examples
include forecasting stock returns (Gu, Kelly, and Xiu
2020; Freyberger, Neuhierl, and Weber 2020), pre-
dicting bond risk premiums (Bianchi, Buchner, and
Tamoni 2021; Bali et al. 2022), and modeling stock
market betas (Drobetz et al. 2024). Realized bond illi-
quidity, however, is much less noisy than realized
stock and bond returns. Compared to return series
but similar to beta variation, illiquidity is highly
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persistent over time. Given a higher signal-to-noise
ratio, estimating future corporate bond illiquidity
should provide a sensible use case for the application
of machine learning techniques.

The study most closely related to our work is from
Reichenbacher, Schuster, and Uhrig-Homburg (2020).
They apply linear models to predict future corporate
bond bid-ask spreads, which they use as their proxy
for liquidity although it ignores the potentially large
market impact of a trade. While these authors also
use a large set of predictor variables and analyze
their importance, they do not explore patterns of
nonlinear and interactive effects in the relation
between predictor variables and bond illiquidity esti-
mates. In our own analysis, we extend their insightful
work in several directions. Most important, (1) we
compare the predictive performance of machine
learning estimators to that of the commonly used his-
torical illiquidity benchmark, (2) we analyze how
machine learning models outperform by assessing
forecast errors of cross-sectional portfolio sorts, (3)
we use a comprehensive set of liquidity measures
that also captures a bond trade’s market impact, (4)
we assess the economic value added of machine
learning-based estimators, and (5) we scrutinize the
importance of nonlinear and interactive effects in
establishing illiquidity predictions.

Our paper is related to recent studies that use
machine learning in various fixed-income applications.
For example, Fedenia, Nam, and Ronen (2021) show
that random forest algorithms can be used to
uncover a better trade signing model in the corporate
bond market, that is, to determine whether a trade is
buyer- or seller-initiated, which helps bond traders to
better understand market dynamics and price behav-
ior. Cherief et al. (2022) apply random forests and
gradient-boosted regression trees to capture nonli-
nearities and interactions between traditional risk
factors in the credit space. Their model outperforms
linear pricing models in forecasting credit excess
returns. Kaufmann, Messow, and Vogt (2021) use
gradient-boosted regression trees to model the
equity momentum factor (in addition to classical
bond market factors such as size and illiquidity) in
the corporate bond market.

Data

Following Bessembinder, Maxwell, and Venkataraman
(2006), who emphasize the importance of using
Trade Reporting and Compliance Engine (TRACE)
transaction data, our empirical analysis is based on
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intraday transaction records for the US corporate
bond market reported in the enhanced version of
TRACE for the sample period from July 2002 to
December 2020. The TRACE dataset comprises the
most comprehensive information on US corporate
bond transactions, with intraday observations on
price, transaction volume, and buy and sell
indicators.® In addition, bond characteristics (issue
information) such as bond type, offering and
maturity dates, coupon specifications, outstanding
amount, rating, and issuer information come from
Mergent FISD.*

To clean the TRACE dataset, we use Dick-Nielsen’s
(2009, 2014) procedure to remove duplicate, can-
celled, and corrected entries. Following Bali,
Subrahmanyam, and Wen (2021), we omit bonds
from the sample that (1) are not listed or traded in
the US public market; (2) are backed with a guaran-
tee or linked to an asset; (3) have special features
(perpetuals, convertible and puttable bonds, or float-
ing coupon rates); or (4) have less than one year to
maturity or are defaulted. For the intraday records,
we eliminate transactions that (5) are labeled as
when-issued or locked-in or have special sales condi-
tions; (6) have more than a three-day settlement; and
(7) have a volume less than $10,000 or a price less
than $5.

Based on the intraday bond transaction records, we
aggregate our database on a monthly basis and con-
struct three distinct illiquidity measures that capture
different aspects of illiquidity. All variables used in
our empirical analyses are described in Table 1. First,
we consider the transaction volume (t_volume;), which
is related to the capacity of actually trading the
respective bond:

Ni
t_volume; = Z Qu, (1)
)

where Qq is the dollar trading volume on day d, and
N is the number of trading days with positive-trading
volume in each month t. Second, following Hong and
Warga (2000) and Chakravarty and Sarkar (2003), we
compute the difference between the average cus-
tomer buy and the average customer sell price on
each day within a given month t (t_spread;) to quan-
tify transaction costs:

1N PBY _psel
t_spread; = N 2’ . d___d | 2)
= B
f 0.5 x (PB” + P)
where PS“V/Se" is the average price of customer buy/

sell trades on day d. Third, we use Amihud’s (2002)



Predicting Corporate Bond llliquidity via Machine Learning

Table 1. Variable Descriptions and Definitions

# Predictor Description Definition

Predictors based on historical illiquidity

la t_volume_hist Historical transaction volume Log historical transaction volume (computed as
the average over the last 12 months)

1b t_spread_hist Historical transaction cost Log historical transaction cost (computed as the
average over the last 12 months)

1c amihud_hist Historical price impact Log historical price impact (computed as the

average over the last 12 months)

Fundamental predictors

2 age Age Bond age since first issuance, measured in
number of years

3 size Size Log bond amount outstanding

4 rating Rating Numerical bond rating calculated as described
in Bali et al. (2020), measured from 1 (good)
to 22 (bad)

5 mat Maturity Time to maturity, measured in number of years

6 yield Yield Bond yield to maturity

7 dur Duration Bond price sensitivity to interest rate changes,

measured in number of years

Return-based predictors

8 rev Short-term reversal Excess return in the prior month

9 mom Momentum Excess return from month —12 to month -1

10 Itr Long-term reversal Excess return from month —36 to month —1

11 vol Volatility Standard deviation, estimated from monthly
returns over the last three years

12 skew Skewness Skewness, estimated from monthly returns
over the last three years

13 kurt Kurtosis Kurtosis, estimated from monthly returns over
the last three years

Risk-based predictors

14 varl0 Value at Risk Value at risk at the 10% level, measured as
fourth lowest monthly return observation
over the last three years

15 es10 Expected Shortfall Expected shortfall at the 10% level, measured
as average of the four lowest monthly return
observations over the last three years

16 beta Systematic risk Bond market beta, measured as regression
coefficient from the time-series ordinary
least squares regression of monthly bond
excess returns on market excess returns over
the last three years

17 idio Idiosyncratic risk Idiosyncratic bond risk, measured as mean

squared error of the residuals from the
time-series ordinary least squares regression of
monthly bond excess returns on market excess
returns over the last three years

Macroeconomic indicators

18 dfy

Default spread

Yield differential between Moody’s Baa- and
Aaa-rated corporate bonds

Notes: This table shows descriptions and definitions for each of the 18 bond illiquidity predictors used in the empirical analysis.
The baseline sample includes intraday transaction records for the US corporate bond market reported in the enhanced version

of TRACE for the sample period from July 2004 to November 2020.
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Table 2. Cross-Sectional and Time-Series Correlations between llliquidity Measures

Panel A: Cross-sectional

Panel B: Time-series

t_volume amihud t_spread t_volume amihud t_spread
t_volume 1.00 -0.63 -0.09 1.00 -0.41 0.06
amihud 1.00 0.42 1.00 0.25
t_spread 1.00 1.00

Notes: This table shows cross-sectional and time-series correlations among the three realized bond illiquidity measures, t_volume,
amihud, and t_spread. Panel A (cross-sectional) contains the time-series averages of monthly cross-sectional correlations, and Panel
B (time-series) the cross-sectional averages of time-series correlations. The baseline sample includes intraday transaction records
for the US corporate bond market reported in the enhanced version of TRACE for the sample period from July 2004 to

November 2020.

Table 3. Transition Probabilities

Decile
1 2 3 4 5 6 7 8 9 10
t_volume Prob (no transition), % 45.75 28.70 2226 19.16 17.39 17.00 17.62 20.70 29.22 62.47
t value 88.54 82.57 5991 5358 46.53 40.05 4896 5494 76.65 168.25
amihud  Prob (no transition), % 37.03 19.47 15.75 13.79 13.61 13.31 1385 14.86 17.65 25.06
t value 39.89 37.68 3576 2675 2813 2342 2585 3052 4471 5187
t_spread  Prob (no transition), % 27.54 2340 19.10 17.10 16.14 1590 16.86 18.88 2391 43.15
t value 60.37 59.54 5036 40.81 36.50 36.70 39.11 4252 63.83 78.33

Notes: Based on monthly sortings of bonds into illiquidity deciles, this table shows average transition probabilities (together with one-
sided t-statistics) for all three realized bond illiquidity measures (t_volume, amihud, and t_spread). Only the diagonal elements of the full
transition matrix are shown, that is, the average probabilities to remain in the same illiquidity decile in the subsequent month (“no-tran-
sition” probabilities). The baseline sample includes intraday transaction records for the US corporate bond market reported in the
enhanced version of Trade Reporting and Compliance Engine (TRACE) for the sample period from July 2004 to November 2020.

measure of illiquidity (amihud;), which captures the
aggregate price impact in each month t:

N¢

amihud; = lZM x 10°

, 3
Nt 4= Qu ©

P . .
where ry = P"t‘tl — 1 is a bond’s price return on day d.
i t—

Table 2 presents cross-sectional and time-series
correlations of these three realized bond illiquidity
measures. Panel A (cross-sectional) contains the
time-series averages of monthly cross-sectional cor-
relations, and Panel B (time-series) the cross-sectional
averages of time-series correlations. The correlations
(in absolute values) are far from perfect and range
widely between —0.63 and +0.25, confirming that
our three measures capture different aspects of
illiquidity.

Based on monthly sortings of bonds into illiquidity
deciles, Table 3 presents the average transition
probabilities (together with one-sided t-statistics)
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for the three bond illiquidity measures. To keep the
table tractable, we only show the diagonal elements
of the full transition matrix, that is, the average
probabilities to remain in the same illiquidity decile
in the subsequent month. These “no-transition”
probabilities all exceed 10%, confirming that bond
illiquidity is persistent (Chordia, Sarkar, and
Subrahmanyam, 2005; Acharya, Amihud, and
Bharath, 2013) and suggesting that lagged historical
illiquidity will be a particularly important predictor
variable for expected illiquidity.

In addition to a predictor based on realized illiquidity
over the past year that captures the time-series
dynamics in illiquidity, we select from Bali,
Subrahmanyam, and Wen (2021) a comprehensive
set of 18 forecasting variables, which are described
in Table 1. These variables capture basic return and
risk characteristics of bonds.® While these variables
describe the characteristics of bonds in general and
are somehow natural candidates for our forecasting
task, they need not even be the best predictors for



expected bond illiquidity. Our set of predictor varia-
bles includes six fundamental predictors based on the
characteristics of bonds (age, size, rating, maturity,
duration, and yield). In addition, it contains 10 techni-
cal indicators based on the historical bond return dis-
tribution, relating to return characteristics (short-term
reversal, momentum, long-term reversal, volatility,
skewness, and kurtosis) and risk characteristics
(value-at-risk, expected shortfall, systematic risk, and
idiosyncratic risk). Technical indicators are computed
based on monthly excess bond returns:

P+ AL +C
rie=Rit—rie = (M—O —rr, (4)

Pit-1 + Al 1

where P;; is the transaction price, Al; ; is the accrued
interest, and C; ; is the coupon payment, if any, of
bond i in month t. Based on the TRACE records, we
first calculate the daily clean price as the transaction
volume-weighted average of intraday prices to mini-
mize the effect of bid-ask spreads in prices, follow-
ing Bessembinder et al. (2009), and then convert the
bond prices from daily to monthly frequency by
keeping the price at the end of a given month t. rs
is the risk-free rate proxied by the US Treasury bill
rate. If necessary, the value-weighted portfolio of all
bonds serves as the proxy for the market portfolio.
Finally, our analysis includes the default spread as
the only macroeconomic covariate.

We only include a bond in our empirical analysis for
month t if the illiquidity measure under investigation
is available and the bond provides complete informa-
tion on all predictor variables, that is, there are no
missing values. In every month, we require at least
100 bonds to be included in the cross-section. This
limits our sample period to July 2004 through
November 2020. The average monthly cross-section
consists of 4,330 bonds for t_volume, 3,556 bonds
for t_spread, and 4,328 bonds for amihud.

As in Cosemans et al. (2016), we winsorize outliers in
both the illiquidity measures and all predictors
(except the default spread) to the 1st and 99th per-
centile values of their cross-sectional distributions.
Moreover, we correct for skewness in distributions
by logarithmically transforming the three illiquidity
measures and some of the predictor variables (see
Table 1). Some predictors are constructed similarly—
for example, value-at-risk and expected shortfall—or
incorporate similar information—for example, matu-
rity and duration—which leads to relatively high cor-
relations. However, according to Lewellen (2015),
multicollinearity is not a main concern in our setup
because we are mostly interested in the overall pre-
dictive power of machine learning-based models
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rather than the marginal effects of each single pre-
dictor. Machine learning methods are suitable for
solving the multicollinearity problem either by nature
(tree-based models) or by applying different types of
regularization, for example, a lasso-based penalization
of the weights (neural networks).

Forecast Models

General Approach. Our objective is to examine
whether machine learning methods outperform the
historical illiquidity benchmark model, that is, the
naive rolling-window approach, in terms of predictive
performance and, if yes, why. We are particularly
interested in examining whether (1) incorporating our
large set of bond characteristics as predictors and (2)
allowing for nonlinearity and interactions in the rela-
tionship between these predictors and future
(expected) illiquidity can add incremental predictive
power. We run a horse race between the benchmark
model that uses historical illiquidity (the average illi-
quidity over the last 12 months) and linear as well as
nonlinear machine learning-based prediction models
that exploit additional cross-sectional information,
comparing their performance from both a statistical
and an economic perspective. In addition, we analyze
the characteristics and functioning scheme of the
machine learning techniques that help explain their
superior predictive performance.

Following the approach used for estimating market
betas in Cosemans et al. (2016) and Drobetz et al.
(2024), the estimation setting in our empirical tests is
as follows: Out-of-sample illiquidity estimates are
obtained at the bond level and on a monthly basis,
following an iterative procedure. In the first iteration
step, we use data up to the end of month t and
obtain forecasts for each bond i's average monthly illi-
quidity during the out-of-sample forecast period
(from the beginning of month t + 1 to the end of

month t + k), denoted as ’ft+k\t (or abbreviated Ift).

We set k equal to 12, focusing on a one-year fore-
cast horizon.” In the next iteration step, we use data
up to the end of month t + 1 and obtain forecasts of
bond-level illiquidity during the subsequent out-of-
sample forecast period (from the beginning of month
t+1 + 1 to the end of month t + 1 + k). By iterating
through the entire sample, we obtain time-series of
overlapping annual out-of-sample illiquidity predic-
tions, which we compare to realized illiquidity.

Next, we introduce the different models used to pre-
dict future bond illiquidity. Online Supplemental
Appendix A provides details. While they differ in
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their overall approach and complexity, all models aim
to minimize the forecast error of level predictions,
defined as the MSE at the end of each month t:

Nt
MSEege = > (R —IF)? with k=12, (5)
i=1

where I}, is bond s realized average monthly illi-
quidity during the out-of-sample period (i.e., from the
beginning of month t + 1 to the end of month t + k),
and N; is the number of bonds at the end of

month t.

Benchmark Estimator. Most academic papers
that focus on the bond market use a bond’s
historical illiquidity as a naive prediction for future
illiquidity (Bao, Pan, and Wang 2011; Friewald,
Jankowitsch, and Subrahmanyam 2012; Dick-
Nielsen, Feldhutter, and Lando 2012; Bongaerts, de
Jong, and Driessen 2017). Given the high persis-
tence in realized bond illiquidity (see Table 2), we
implement this naive estimator in all our empirical
tests. Since we focus on a one-year forecast hori-
zon, we use the average monthly illiquidity over the
last 12 months (t_volume_hist, t_spread_hist, and
amihud_hist) as our benchmark, thereby increasing
the signal-to-noise ratio relative to the current-
month illiquidity.

Machine Learning Estimators. Rather than
simply averaging historical illiquidity measures,
machine learning techniques focus explicitly on the
objective of forecasting corporate bond illiquidity.
Realized illiquidity enters our regressive framework
as the dependent variable, while historical illiquidity,
a set of bond characteristics, and macroeconomic
indicators serve as predictors. We adapt the additive
prediction error model from Gu, Kelly, and Xiu (2020)
to describe a bond’s illiquidity:

’fwk = Et(’fwk) + &, t4ks (6)

where ’§t+k is bond i's realized illiquidity over the
one-year forecast horizon starting at the beginning of
month t + 1. Expected illiquidity is estimated as a
function of multiple predictor variables and described
by the “true” model g*(z;+), where z; ; represents the
P-dimensional set of predictors:

E (’ft+k) =g"(zit)- (7)

Although our machine learning-based forecast mod-
els belong to different families (linear regressions,
tree-based models, and neural networks), they are all
designed to approximate the true forecast model by
minimizing the out-of-sample MSE. Approximations
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of the conditional expectations g*(z; ;) are flexible
and family-specific. Approximation functions g(-) can
be linear or nonlinear. Moreover, they can be para-
metric, with g(z;+,0), where 0 is the set of true
parameters, or nonparametric, with 3(zit)-

A general problem is that machine learning methods
are prone to overfitting, which is why we must con-
trol for the degree of model complexity by tuning
the relevant hyperparameters. To avoid overfitting
and maximize out-of-sample predictive power, the
hyperparameters should not be preset, but rather
must be determined adaptively from the sample data.
We follow Gu, Kelly, and Xiu's (2020) time-series
cross-validation approach to fit the machine learn-
ing-based forecast models so that they produce reli-
able out-of-sample predictive performance. Online
Supplemental Appendix A provides details on how
we split the sample into three subsamples: a training
sample, a validation sample, and a test sample. We
obtain our first illiquidity estimates in June 2011,
using six years of data for training and validation
(2004:07-2009:06 and 2009:07-2010:06, respec-
tively), which we then compare to the bonds’ realized
illiquidity over the next year.® This approach ensures
that our test sample is truly out-of-sample, enabling
us to evaluate a model’s out-of-sample predictive
power. In total, we exploit eight years and six months
of data for testing (up to the end 2019:11).

As already explained, we consider a set of 18 predic-
tor variables (predictors based on historical illiquidity,
fundamental predictors, return-based predictors, risk-
based predictors, and macroeconomic indicators; see
Table 1 for more details) to fit the machine learning
techniques. We test three different forecast model
families, which differ in their overall approach and
complexity. Online Supplemental Appendix A pro-
vides more details on these techniques and how we
implement them.

The first model family consists of linear regressions,
for which we use the training sample to run pooled
ordinary least squares regressions of future realized
illiquidity lfHk on the set of 18 predictors. We either
use the ordinary least squares loss function (Im) or
modify it by incorporating a penalty term, that is, we
apply an elastic net penalization (elanet). The latter is
the most common machine learning technique to
overcome the overfitting problem in high-dimensional
regressions, for example, when the number of predic-
tors becomes large relative to the number of obser-
vations. If not explicitly included as predetermined
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terms, pooled regressions (simple or penalized mod-
els) cannot capture nonlinear or interactive effects.

The second model family consists of tree-based mod-
els, for which we use random forests (rf) and gradi-
ent-boosted regression trees (gbrt), the most
common models within this category. Finally, the
third model family comprises neural networks (hn_1-
nn_5), for which we consider specifications with up
to five hidden layers and 32 neurons.’ Both tree-
based models and neural networks incorporate
nonlinearities and multiway interactions inherently,
without the need to add new predictors to capture
these effects.

Empirical Results

Having introduced the benchmark and machine learn-
ing-based estimation approaches, we now apply
these models to forecast out-of-sample bond illiquid-
ity. We focus on the amihud measure in presenting
and discussing the empirical results going forward
because what matters most to investors is the actual
price impact their trades will have. The return pre-
mium associated with this illiquidity measure is gen-
erally considered an illiquidity risk premium that
compensates for price impact or transaction costs.
Our results are qualitatively similar for the alternative
t_volume and t_spread measures. Supplementary
Appendix C presents our main results using these
two bond illiquidity measures together with other
robustness tests.

We start with studying the models’ ability to predict
bond illiquidity from a statistical perspective. Our
focus is on the question whether machine learning-
based level forecasts of illiquidity outperform the his-
torical illiquidity benchmark. We assess the cross-
sectional and time-series properties of our models’
prediction performance, particularly comparing the
resulting forecast errors. We also investigate the
underlying causes of differences in predictive perfor-
mance by analyzing the forecast errors of cross-
sectional portfolio sorts. Moreover, we evaluate
whether differences in statistical predictive perfor-
mance translate into economic gains in a portfolio
formation exercise.

Cross-Sectional and Time-Series
Properties of llliquidity Estimates. To begin,
we investigate the properties of illiquidity predictions
obtained from the different forecast models.*° Panel
A in Table 4 focuses on the cross-sectional proper-
ties, presenting the time-series means of monthly (1)
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cross-sectional averages of expected illiquidity, (2)
cross-sectional standard deviations, and (3) cross-
sectional minimum, median, and maximum values.
Following Pastor and Stambaugh (1999), we report
the implied cross-sectional standard deviation of true

12
illiquidity, Std(IR) = [Var(lF) - Var,g} , which helps
to measure an illiquidity forecast’s precision. The

minuend Var(IF) is the time-series average of
monthly cross-sectional variances, and the subtra-

hend Varr denotes the cross-sectional average of
I

bonds’ sampling variance. Small gaps between
observed and implied standard deviations imply small
estimation errors, indicating measurement of true illi-
quidity with high precision. Panel B focuses on time-
series properties, presenting the cross-sectional
means of (1) time-series averages of estimated illi-
quidity; (2) time-series standard deviations; (3) time-
series minimum, median, and maximum values; and
(4) first-order autocorrelations.

The cross-sectional and time-series means for each
estimation approach are close to those for realized
illiquidity,'* while the cross-sectional and time-series
dispersions vary across the models. Standard devia-
tions (SDs) are greatest for the hist model, which
uses only time-series information based on a bond’s
historical illiquidity. This restriction leads to extreme
and highly volatile illiquidity estimates. In contrast,
incorporating cross-sectional information about a
bond’s characteristics, its return-risk profile, and mac-
roeconomic indicators reduces the cross-sectional
and time-series standard deviations in expected illi-
quidity notably. Since this reduction in volatility is
similar for all machine learning models, it seems to be
the inclusion of slow-moving bond characteristics as
predictors in the additive prediction error model
rather than the ability of the more complex models
to capture nonlinearity and interactions that results
in less extreme and less volatile estimates. In other
words, the time variation in bond characteristics is
able to pick up long-run movements in illiquidity.

The observed cross-sectional SD of illiquidity fore-
casts in Panel A is most informative for the assess-
ment of a model’s precision when comparing it to
the implied cross-sectional standard deviation of true
illiquidity (Impl. SD). This comparison reveals that
true illiquidity is measured with the lowest precision
(implying larger gaps between observed and implied
SDs) by the historical illiquidity-based benchmark
model and with the highest precision (implying
smaller gaps) by the machine learning-based models.

m
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Table 4. Cross-Sectional and Time-Series Properties of llliquidity Estimates

Panel A: Cross-sectional Panel B: Time-series

Mean SD Min  Median Max Impl.SD Mean SD Min  Median Max  Autocorr.
hist -477 059 -697 -4.67 -3.80 0.49 -4.79 029 -545 -477 -430 0.91
Im -478 043 -645 -472 -3.73 0.39 -480 0.18 -522 -479 -4.49 0.91
elanet -4.77 042 -639 -471 -3.77 0.38 -479 0.17 -517 -478 -4.49 0.91
rf -478 042 -6.72 -4.67 -4.09 0.39 -480 0.16 -516 -478 -4.54 0.90
gbrt -477 043 -684 -4.66 -3.93 0.39 -4.79 017 -519 -477 -4.50 0.88
nn_1 479 043 -6.84 —-469 -390 0.38 -480 0.18 -523 -478 -4.50 0.92

Notes: Properties of out-of-sample bond illiquidity estimates (the average monthly amihud measure) are obtained from the differ-
ent forecast models (hist, Im, elanet, rf, gbrt, and nn_1). Panel A focuses on cross-sectional properties, presenting time-series means
of (1) the value-weighted cross-sectional average of estimated bond liquidity, (2) the cross-sectional standard deviation, and (3)
the cross-sectional minimum, median, and maximum value. Following the procedure outlined in Paster and Stambough (1999), it
1/2

. Panel B

focuses on time-series properties, presenting value-weighted cross-sectional means of (1) the time-series average of bond illiquid-
ity’ (2) the time-series standard deviation; (3) the time-series minimum, median, and maximum value; and (4) the first-order auto-
correlation. Following Becker et al. (2021), firms with fewer than 50 bond illiquidity estimates are omitted for the summary
statistics in Panel B. The baseline sample includes intraday transaction records for the US corporate bond market reported in the
enhanced version of Trade Reporting and Compliance Engine (TRACE) for the sample period from July 2004 to November 2020.

also reports the implied cross-sectional standard deviation of true bond illiquidity, that is, @(IR) = {Var(lF) - Va\r,g

For example, the difference between SD and Impl.
SD is 0.1 for the hist model and only 0.05 for the
nn_1 model. Finally, although they incorporate slow-
moving bond characteristics as predictors, the aver-
age time-series autocorrelations of machine learning-
based models in Panel B are similar to that of the
historical illiquidity benchmark model (all

around 0.90).

Average Forecast Errors and Forecast
Errors over Time. Next, we examine the statisti-
cal predictive performance of the different forecast
models by comparing their forecast errors. Panel A of
Table 5 reports the time-series means of monthly
MSEs (based on a one-year forecast horizon), calcu-
lated as specified in Equation (5). Exploiting only
bond-level time-series information, the estimates
based on historical illiquidity generate sizable fore-
cast errors (0.192 in the hist model). Incorporating
cross-sectional information reduces the average MSE
noticeably. Linear regressions (both simple and penal-
ized, with MSEs of 0.160 and 0.157, respectively)
reduce the average forecast error relative to the hist
model by around 18%. Inspecting nonlinear machine
learning methods, we find that tree-based models
and neural networks reduce the average forecast
error relative to linear regressions even further (with
average MSEs of 0.145, 0.144, and 0.147 for the rf,
gbrt, and nn_1 model, respectively). Tree-based mod-
els and neural networks perform similarly well,
decreasing the average forecast error relative to the

n2

historical illiquidity-based benchmark by more than
23%. We conclude that these models’ ability to cap-
ture nonlinearity and interactions further enhances
the quality of illiquidity predictions by reducing the
forecast error of level predictions.

Since, by construction, these figures reflect a forecast
model’s average predictive performance, we next
investigate the forecast errors over time. Panel B of
Table 5 reports the fraction of months during the
out-of-sample period for which the column model (1)
is in the Hansen, Lunde, and Nason (2011) model
confidence set (MCS) and (2) is significantly better
than the row model in a pairwise comparison (accord-
ing to Diebold and Mariano (1995) test [DM test]
statistics). The MCS approach incorporates an adjust-
ment for multiple testing and is designed to include
the best forecast model(s) based on a certain confi-
dence level.'? The DM test of equal predictive ability
inspects pairwise differences in bond-level squared
forecast errors (SEs):

SEi vt = (R — i)’ with k=12 (8)

The DM test statistic in month t for comparing model
aij,t

%3

j with a competing model i is DM ; = , Where

ij,t

di+ = SE; tskt — SEj ¢4kt is the difference in SEs, djj s =
SN dj¢ is the cross-sectional average of these dif-
ferences, and &Hi,-,t denotes the heteroscedasticity-
and autocorrelation-consistent standard error of dj; ;.
We use the Newey and West’s (1987) estimator with
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Table 5. Forecast Errors

Forecast model

hist Im elanet rf ghbrt nn_1

Panel A: Average forecast errors

MSE 0.192 0.160 0.157 0.145 0.144 0.147
Panel B: Forecast errors over time

In MCS 0.00 2.94 7.84 51.96 74.51 50.98
vs. hist 92.16 98.04 94,12 99.02 94.12
vs. Im 1.96 40.20 88.24 86.27 87.25
vs. elanet 0.00 19.61 83.33 79.41 77.45
vs. rf 0.00 2.94 6.86 46.08 22.55
vs. ghrt 0.00 0.00 2.94 14.71 17.65
vs. nn_1 1.96 5.88 10.78 30.39 46.08
T 102 102 102 102 102 102

Notes: This table presents differences in forecast errors for the amihud illiquidity measure produced by the forecast models (hist,
Im, elanet, rf, gbrt and nn_1). Panel A reports the time-series means for monthly value-weighted mean-squared errors (MSEs), that

is, MSE¢ it = Z, wi (1 ,RHk IlFt+k|t) , with k = 12, where N; is the number of bonds in the sample at the end of month t. Panel B

reports the fraction of months during the out-of-sample period for which the column model is (1) in the Hansen, Lunde, and
Nason (2011) model confidence set (MCS) and (2) significantly better than the row model in a pairwise comparison (according to
Diebold and Mariano (1995) test [DM test] statistics). The DM tests of equal predictive ability inspect differences in stock-level

squared forecast errors (SEs), that is, SE; ¢ ,4: = (lfHk - IfHk‘t)z, with k = 12. The DM test statistic in month t for comparing the

model under investigation j with a competing model i is DM+ = ?j’"‘ , where dj;+ = SE; 1« — SEj t4x¢ is the difference in SEs, a,-,-,t =

du t

SN d; ¢ is the cross-sectional average of these differences, and ad is the Newey and West (1987) estimator with four lags to

account for possible heteroskedasticity and autocorrelation. Positive 5|gns of DM ; indicate superior predictive performance of model j
relative to model i in month t, that is, that model j yields, on average, lower forecast errors than model i. All statistical tests are based
on the 5% significance level. The baseline sample includes intraday transaction records for the US corporate bond market reported in
the enhanced version of Trade Reporting and Compliance Engine (TRACE) for the sample period from July 2004 to November 2020.

four lags to compute standard errors and follow the
convention that positive signs of DM;; ; indicate supe-
rior predictive performance of model j relative to
model i in month t, that is, that model j yields, on
average, lower forecast errors than model j1s

We observe that the historical illiquidity benchmark
model is in the MCS of the best forecast models in
none of the 102 months during our sample period. In
other words, for every single month, we can reject the
null hypothesis that the hist benchmark model gener-
ates the best illiquidity forecasts. The percentages of
months for which linear regressions (simple and penal-
ized, with 2.94% and 7.84%, respectively) are in the
MCS of the best models are very low as well.
Regression trees and neural networks are in the MCS
of the most accurate forecast models considerably
more often, ranging from 50.98% of the months for
the nn_1 model and 74.51% of the months for the gbrt
model. Put differently, we must reject the null hypothe-
sis that the nn_1 model and the gbrt model are among
the best forecast models in only about 41% and 25%
of months, respectively. Taken together, these findings
strongly suggest that the nonlinear machine learning
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methods, in a statistical sense, provide higher quality
level forecasts of bond illiquidity.

Supporting this finding, the results from the monthly
DM tests overwhelmingly show that all machine
learning methods dominate the historical illiquidity-
based model in pairwise comparisons, with fractions
ranging from 92.16% for the Im model to 99.02% for
the gbrt model of all sample months. This suggests
that machine learning models are superior to the
benchmark model in different states of the world,
that is, in both “normal” market phases as well as
phases of market turmoil.*#

In sharp contrast, the hist model rarely yields signifi-
cantly lower MSEs than the machine learning-based
approaches (as indicated by the low fractions of
months, ranging between 0.00% vs. the elanet, rf,
and gbrt models and 1.96% vs. the Im and nn_1 mod-
els). Moreover, tree-based models and neural net-
works dominate linear regressions (both linear and
penalized) in at least 77.45% of the months, while
their linear counterparts yield a significantly lower
MSE in only 10.78% of the months or even less.

n3
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Overall, the results indicate outperformance of non-
linear machine learning models over the historical illi-
quidity benchmark and linear regressions.*>
Comparing the machine learning techniques, with the
aim of generating low forecast errors, the gbrt model
performs the best. Gradient-boosted regression trees
exhibit the largest MCS fraction and surpass random
forests as well as neural networks in illiquidity predic-
tion significantly more often than they are dominated
by them. Moreover, the random forest model (rf), our
second tree-based model, also seems to be slightly
superior to the simplest neural network model
(hn_1).%¢

Forecast Errors of Cross-Sectional
Portfolio Sorts. In additional analysis, we exam-
ine cross-sectional differences in the performance of
machine learning models relative to the historical illi-
quidity benchmark. We attempt to identify types of
bonds, for example, larger vs. smaller bonds, for
which the differences in forecast errors across illi-
quidity estimators are most pronounced. We sort all
bonds into decile portfolios based on their character-
istics, that is, historical illiquidity (amihud_hist), size
(size), rating (rating), systematic risk (beta), and idio-
syncratic risk (idio) at the end of month t. In this
application, the forecast error is defined as the differ-
ence between expected and realized illiquidity over
the next year within each decile portfolio. For the
sake of brevity, we focus on comparisons of neural
networks (nn_1) with the historical illiquidity-based
approach (hist) and linear regressions (Im). Since the
nn_1 model produces slightly higher forecast errors
(on average and over time) compared to both random
forests and gradient-boosted regression trees (see
Table 5), this choice serves as a conservative lower
bound for the following analysis. Figure 1 plots time-
series averages of monthly forecast errors within all
decile portfolios for the nn_1 model (grey bars) and
the benchmark models (red bars). We also include
the percentage differences in average forecast

errors relative to a benchmark model (black unfilled
squares), calculated as one minus the average MSE
of the neural network divided by the average MSE of
the benchmark model.

For all forecast approaches, some of the extreme
portfolios yield the largest average forecast errors. In
particular, the expected illiquidity of bonds with (1) a
high and low historical illiquidity, (2) a large and small
amount outstanding, (3) a high rating, (4) a low expo-
sure to bond market (systematic) risk, and (5) high
idiosyncratic risk are more difficult to predict. The
graphs further suggest that neural networks reduce
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the forecast errors relative to the hist (lefthand col-
umn) and Im (righthand column) models for nearly all
decile portfolios. This is indicated by percentage dif-
ferences larger than zero (the squares above the
dashed line), implying that the nn_1 model delivers
more accurate illiquidity predictions. The figure fur-
ther emphasizes that the higher average MSEs for
the historical illiquidity-based approach and linear
regressions (see Panel A of Table 5) obey more gen-
eral patterns and are not driven by high forecast
errors for only a few bonds with specific characteris-
tics. Compared to the two benchmark models, the
reduction in forecast errors when using neural net-
works are strongest for extreme decile portfolios
(which are more difficult to predict), both in absolute
and relative terms. Because this pattern is apparent
for the comparison with both the historical illiquid-
ity-based approach and linear regressions, we attri-
bute the reduction in forecast errors to two effects:
(1) the inclusion of slow-moving bond characteristics
as predictors (in both the Im and the nn_1 model)
and (2) the nn_1 model’s ability to capture nonlinear-
ity and interactions.

Characteristics of Expected llliquidity-
Sorted Portfolios. In a next step, we examine
whether statistically more accurate forecasts trans-
late into economic gains in a portfolio formation exer-
cise.¥ In particular, we sort all bonds into decile
portfolios based on expected illiquidity at the end of
each month t. Separately for each model and decile
portfolio, we then calculate the equally weighted
mean of future realized illiquidity. Panel A of Table 6
presents the time-series averages of monthly portfo-
lio illiquidity (amihud measures). The last column adds
results for the hypothetical case in which the sorting
criterion is the bonds’ future realized illiquidity (real)
rather than a forecast model’s estimates, thus mim-
icking perfect foresight. Panel B replicates the proce-
dure outlined above for each model but selects
weights that differ from the equal weights to calcu-
late the average illiquidity within each decile portfo-
lio. In particular, the optimizer aims to minimize the
sum of squared deviations from the equal-weighting
scheme, while requiring the portfolio-level rating (rat-
ing), yield (yield), and duration (dur) for the machine
learning methods to be equal to those for the histori-
cal benchmark model. This framework ensures a
straightforward comparison between machine learn-
ing-based methods and the historical illiquidity
benchmark. It allows for more comparable decile
portfolios and helps to avoid differences in expected
illiquidity-sorted portfolios that are driven by differ-
ences in their exposure to rating, yield, and duration.
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Figure 1. Average Forecast Errors of Portfolio Sorts Based on Bond Characteristics
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Notes: This figure plots the time-series averages of monthly mean squared forecast errors for decile portfolios based on bond char-
acteristics, that is, historical illiquidity (amihud_hist), size (size), rating (rating), systematic risk (beta), and idiosyncratic risk (idio) at the
end of each month t. The forecast error is defined as the difference between illiquidity forecasts and realized illiquidities over the
next year within each portfolio. Neural networks (nn_1) are compared with the historical illiquidity-based approach (hist) and linear
regressions (Im). The bars depict the time-series averages of monthly forecast errors within each decile portfolio for the nn_1 model
(grey bars) and the respective benchmark model (red bars). In addition, the percentage differences in average forecast errors relative
to the respective benchmark model are marked as black unfilled squares, calculated as one minus the average MSE of the neural
networks divided by the average MSE of the respective benchmark model. The baseline sample includes intraday transaction
records for the US corporate bond market reported in the enhanced version of Trade Reporting and Compliance Engine (TRACE)
for the sample period from July 2004 to November 2020.
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Table 6. llliquidity of Decile Portfolio Sorts

Forecast model

Reference
hist Im elanet rf ghbrt nn_1 real
Panel A: Raw portfolio sorts
Low (L) 0.32 0.28 0.28 0.27 0.27 0.27 0.21
2 0.57 0.53 0.53 0.53 0.53 0.53 0.42
3 0.72 0.69 0.69 0.70 0.70 0.70 0.58
4 0.82 0.81 0.81 0.82 0.82 0.83 0.71
5 0.91 0.91 0.92 0.93 0.92 0.93 0.82
6 0.98 1.00 1.00 1.01 1.02 1.01 0.94
7 1.06 1.08 1.08 1.07 1.08 1.08 1.06
8 1.13 1.16 1.16 1.15 1.14 1.14 1.20
9 1.24 1.24 1.24 1.23 1.23 1.23 1.40
High (H) 144 146 147 147 147 1.46 1.83
H-L 1.12 1.18 1.19 1.20 1.20 1.19 1.62
t value - 7.01 12.16 11.37 10.11 5.83 -
Panel B: Portfolio sorts with controls for rating, yield, and duration

Low (L) 0.32 0.29 0.28 0.28 0.28 0.28 0.21
2 0.57 0.53 0.53 0.52 0.52 0.52 0.42
3 0.72 0.70 0.70 0.69 0.69 0.68 0.58
4 0.82 0.82 0.82 0.83 0.82 0.81 0.71
5 0.91 0.92 0.93 0.94 0.93 0.91 0.82
6 0.98 1.01 1.01 1.01 1.01 1.00 0.94
7 1.06 1.08 1.08 1.07 1.07 1.08 1.06
8 1.13 1.15 1.15 1.14 1.14 1.15 1.20
9 1.24 1.24 1.24 1.26 1.26 1.28 1.40
High (H) 144 145 147 148 1.50 1.53 1.83
H-L 1.12 1.17 1.19 1.20 1.22 1.24 1.62
t value - 3.69 7.29 6.72 10.18 10.63 -

Notes: This table examines differences in the predictive power of the different bond illiquidity forecast models (hist, Im, elanet, rf,
gbrt, and nn_1) from an economic perspective. Bonds are first sorted into decile portfolios based on illiquidity predictions (the
average monthly amihud measure) at the end of each month t. The equally weighted mean of future realized illiquidity is calculated
separately for each model and decile portfolio. Panel A presents the time-series averages of monthly figures. The last column adds
the corresponding results for the hypothetical case in which the sorting criterion is the bonds’ future realized illiquidity, that is,
assuming perfect foresight. Panel B replicates the procedure for each model but selects weights that slightly differ from the equal
weights to calculate the average illiquidity within each decile portfolio. The optimizer aims to minimize the sum of squared devia-
tions from the equal-weighting scheme, while requiring the portfolio-level rating (rating), yield (yield), and duration (dur) for the
machine learning methods to be equal to those for the hist model. H — L denotes the spread between the estimates in the high-
and low-illiquidity portfolios. A higher spread indicates that a given model is better at disentangling more liquid from less liquid
bonds, which suggests economic value added for investors in the form of transaction cost savings. The t values (using Newey-
West standard errors with 11 lags) are reported for the null hypothesis that the H — L illiquidity spread of a given column model
(Im, elanet, rf, gbrt, or nn_1) is not different from the H — L spread of the historical illiquidity benchmark (hist). The baseline sample
includes intraday transaction records for the US corporate bond market reported in the enhanced version of Trade Reporting and
Compliance Engine (TRACE) for the sample period from July 2004 to November 2020.

The results in Table 6 highlight that differences in
statistical predictive performance translate into dif-
ferences in economic profitability. While the bench-
mark model and all machine learning models capture
the cross-sectional variation in realized illiquidity,
their ability to disentangle more liquid from less lig-
uid bonds differs. Average realized illiquidity within
the decile portfolios obtained from expected illiquid-
ity line up monotonically with average realized illi-
quidity within the perfect-foresight decile portfolios,
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resulting in positive average H-L spreads that are
statistically significant (not reported) and economi-
cally large. Again, focusing on a comparison between
the historical illiquidity-based approach and the nn_1
model, we observe that for more liquid portfolios
(e.g., decile 1), the average realized illiquidity for neu-
ral networks (0.27%) is lower and comes closer to
the true value of 0.21% than that for the hist model
(0.32%). For less liquid portfolios (e.g., decile 10), the
average realized illiquidity for the nn_1 model



(1.46%) is slightly higher and also closer to the true
value of 1.83% than that for the historical illiquidity-
based approach (1.44%). This results in a 7 basis
points larger H-L spread (1.19% for nn_1 vs. 1.12%
for hist). The differences between machine learning
models and the benchmark model become more pro-
nounced after controlling for the decile portfolios’
exposures to rating, yield, and duration (especially for
less liquid portfolios), resulting in an almost 11%
larger H-L spread (1.24% for nn_1 vs. 1.12% for hist).

Overall, machine learning techniques are better at
disentangling more liquid from less liquid bonds than
the historical illiquidity benchmark, which suggests
economic value added to institutional investors.*®
Due to the large transaction volumes in the corpo-
rate bond market, even the smallest improvements in
illiquidity estimates will result in considerable transac-
tion cost savings either directly in terms of a lower
average bid-ask spread or indirectly in terms of a
lower average price impact. Reduced transaction
costs, in turn, have an immediate effect on improving
a portfolio’s risk-return profile.

A Simple Example. To illustrate the importance
of illiquidity predictions for the performance of fixed-
income funds by way of an example that exploits the
ranking performance of the different prediction mod-
els, take an average institutional investor with a bond
portfolio size of $1 billion and a portfolio turnover of
5% per month. Moreover, assume that the average
bond portfolio consists of 2,000 bonds and that the
portfolio’s annualized alpha is 1.0%. Ignoring other
transaction costs, without any price impact, this inves-
tor would be able to sell and buy bonds to rebalance
their portfolio for 5% x $1 billion = $50 million of
bonds traded each month ($600 million of bonds
traded per year). Assuming a 0.92% Amihud (2002)
price impact (the average across deciles 1-10 in the
right-most column labeled “Reference” in Panel B of
Table 6) results in a 0.92% x 5% = 4.6 bps reduction
in monthly alpha or 0.55% in annual alpha, wiping out
$5.5 million per year, that is, more than half of the
average annual gain of 1% x $1 billion = $10 million
(before any other transaction costs).

The Amihud (2002) illiquidity measure is highly vari-
able across our bond universe, for example, the least
liquid decile incurs a nearly nine times higher price
impact than the most liquid one (1.83% vs. 0.21% in
Table 6). Better illiquidity predictions help to control
average turnover costs by enabling investors to focus
on the most liquid decile portfolios (and sorting out
the least liquid decile portfolios) when rebalancing
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their exposure. Assuming perfect foresight, avoiding
the 50% least liquid part of the market hypothetically
reduces the average price impact by a factor of 2.3
(0.55% for deciles 1-5 vs. 1.29% for deciles 6-10
based on the averages in the column labelled
“Reference” in Panel B of Table 6), improving portfo-
lio turnover costs by 0.92% — 0.55% = 0.37% per
year. By allocating trading to the most liquid bonds
(and avoiding the least liquid ones), for example, by
allocating a weight of 50% on the 10% most liquid
bonds, 25% on the second-most liquid, and so on,
the investor can even maintain her market impact
costs below 50% x 0.21% + 25% x 0.42% + 12.5% x
0.58% + 6.25% x 0.71% + 6.25% x 0.82% = 0.38%
per year. Estimating the costs associated with specific
securities is crucial for generating excess returns in
classification strategies. Machine learning models are
effective in this regard, surpassing the historical illi-
quidity-based prediction model and reducing
expected market impact by 12.5% (0.28% for the nn_
1 model vs. 0.32% for the hist model) for the 10%
and about 4% (0.64% for the nn_1 model vs. 0.67%
for the hist model using the allocation weights) for
the 50% most liquid bonds.

Finally, assume that the hypothetical investor wants to
avoid the 50% least liquid bonds and concentrates
portfolio turnover on the most liquid bonds as outlined
above, but does not observe the real illiquidity distri-
bution before trading. Relying on the historical illiquid-
ity-based model would translate into 0.50% annual
cost (i.e., the average of deciles 1-5 in the column
labeled “hist” in Table 6, Panel B). Therefore, the cost
of being unable to observe the future realized market
impact ex ante is a 32% increase of the market impact
compared to the hypothetical perfect foresight sce-
nario of 0.38% (see above). The machine learning-
based models can mitigate this cost by providing more
accurate estimates of future illiquidity. For example,
the nn_1 model only leads to an increase of 21%
(0.46%) relative to the perfect-foresight case (0.38%),
that is, an 11 pps (32%—21%) reduction compared to
the benchmark based on historical illiquidity (0.50%).

Cross-Sectional Bond Returns. A natural
extension of our analysis is to measure cross-sec-
tional bond returns. In particular, we again sort bonds
into decile portfolios based on their historical illiquid-
ity or expected illiquidity at the end of each month t
(using the hist, Im, and nn_1 models). We then com-
pute the portfolio return in the next month t+ 1. The
results for the full sample and three subperiods are
shown in Table 7. As expected, bonds in decile 10
(more illiquid bonds) outperform bonds in decile 1
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Table 7. Returns of Decile Portfolio Sorts

2012-2020 2012-2014 2015-2017 2018-2020

hist Im nn_1 hist Im nn_1 hist Im nn_1 hist Im nn_1
Low (L) 0.38 0.37 0.36 0.55 0.53 0.48 0.27 0.29 0.30 0.34 0.32 0.31
2 0.38 0.38 0.39 0.50 0.54 0.55 0.29 0.30 0.31 0.36 0.34 0.32
3 0.40 0.38 0.40 0.53 0.50 0.52 0.32 0.31 0.35 0.36 0.33 0.36
4 0.41 0.40 0.40 0.51 0.47 0.48 0.36 0.38 0.37 0.38 0.35 0.36
5 0.45 0.40 0.42 0.53 0.50 0.52 0.47 0.37 0.39 0.37 0.35 0.35
6 0.46 0.44 0.42 0.51 0.54 0.51 0.48 0.44 0.39 0.40 0.35 0.39
7 0.43 0.46 0.47 0.50 0.50 0.52 0.42 0.48 0.46 0.39 0.41 0.44
8 0.49 0.48 0.47 0.52 0.51 0.47 0.52 0.50 0.48 0.42 0.43 0.44
9 0.49 0.53 0.51 0.54 0.57 0.56 0.53 0.54 0.53 0.41 0.48 0.44
High (H) 0.58 0.65 0.64 0.65 0.71 0.72 0.64 0.70 0.73 0.46 0.53 0.49
H-L 0.20 0.27 0.29 0.10 0.19 0.25 0.37 0.41 0.43 0.12 0.21 0.18

Notes: This table presents differences in the predictive power of the different bond illiquidity forecast models (hist, Im, and nn_1) for
cross-sectional bond returns. Bonds are first sorted into decile portfolios based on their historical illiquidity or expected illiquidity
(using the average monthly amihud measure) at the end of each month t. In a second step, the equally weighted return is calculated
for each prediction model and decile portfolio in the next month t + 1 (in % per month). H— L denotes the spread between the esti-
mates in the high- and low-illiquidity portfolios. A higher spread indicates that a given model generates a higher illiquidity premium
in the cross-section of bond returns. Returns are reported for the full test sample and three subperiods (2011-2013, 2014-2016,
2017-2019). The baseline sample includes intraday transaction records for the US corporate bond market reported in the enhanced

version of Trade Reporting and Compliance Engine (TRACE) for the sample period from July 2004 to November 2020.

(less illiquid bonds). Even more important from an
asset pricing perspective, the H — L spread is higher
for the machine learning-based prediction models (Im
and nn_1) compared to the historical illiquidity model
(hist). The same results continue to hold for bond
returns over the next 12 months (not reported).
Prediction models using machine learning techniques
generate a higher illiquidity premium in the cross-
section of bond returns than the benchmark model.
These results support Amihud and Mendelson’s
(1986) insight that investors require higher returns
for more illiquid bonds to compensate them for their
higher trading expenses.

Practical Implications. Comparing our findings
for the statistical assessment with the economic per-
formance of our different forecast methods reveals
another issue that seems particularly important from
a practitioner’s perspective. While the results in
Tables 4 and 5 suggest that nonlinear machine learn-
ing models (rf, gbrt, and nn_1) strongly outperform
both the historical benchmark (hist) and their linear
counterparts (Im and elanet) when it comes to level
predictions of illiquidity, as measured by a statistical
comparison of their forecast errors, the results are
more nuanced for the mere rank forecasts. In gen-
eral, machine learning methods perform better than
the historical illiquidity benchmark in sorting bonds
into expected illiquidity portfolios, but the difference
becomes less pronounced when comparing linear and
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nonlinear machine learning models with each other.
For example, in Panel A of Table 6, the difference in
the H-L spreads between the Im (1.18) and nn_1
(1.19) methods is negligible, but it becomes larger
when appropriately controlling for risk in Panel B
(1.17 for Im vs. 1.24 for nn_1). In Table 7, the Im
model even generates a slightly higher illiquidity pre-
mium than the nn_1 model during the last subperiod
(2018-2020). In all other subperiods, the nn_1 model
dominates the Im model marginally. These patterns
are important for the practical implementation in
portfolio management because neural networks in
particular are computationally extremely costly.

In light of these findings, whether the complexity and
resourcefulness of more sophisticated machine learn-
ing methods is justified in the asset management
practice most likely depends on the specific applica-
tion. If illiquidity predictions are merely used to rank
bonds and sort out the least liquid ones, as illustrated
in the example above, models that incorporate a set
of predictor variables (in addition to historical illiquid-
ity) in a linear way seem satisfactory and are straight-
forward to implement. However, in contrast to such
relatively simple ranking and/or sorting exercises,
there are many use cases that require the highest
possible accuracy of illiquidity level predictions. In
particular, practical applications that involve bond
portfolio optimization under the constraint to mini-
mize transaction costs should benefit from more



complex machine learning methods that account for
nonlinearity and multiway interactions. Furthermore,
the benefits from nonlinear models may be more
important at some times than at others. For example,
Drobetz et al. (2024) show that more complex mod-
els are required during turbulent times when predic-
tions become more difficult.

To provide a specific example, we note that accurate
forecasts of corporate bond illiquidity are highly
important from a regulatory perspective. The “SEC
Liquidity Rule” requires that 85% of a fund could be
liquidated in fewer than five days with a maximum
participation of 20% of daily dollar trading volumes
to be applied to a corporate bond portfolio. If the
fund mimics the performance of a corporate bond
index, as most exchange-traded funds attempt to do,
the portfolio construction process should be viewed
as a tracking error minimization under some liquidity
and capacity constraints. While capacity constraints
may be based on estimates of the bonds’ trading vol-
umes, controlling for turnover costs depends more
on price impact measures, such as the Amihud (2002)
illiquidity measure. Corporate bond ETFs are known
to achieve lower Sharpe ratios because such instru-
ments must pay for liquidity (Houweling 2011). As a
result, the ability to accurately forecast bond illiquid-
ity is crucial for improving capacity and turnover
costs of such replicating strategies and, based on our
statistical analysis of level forecast errors, more com-
plex machine learning-based models seem to be
most appropriate to accomplish this task. More gen-
erally, this argument is true for any mutual bond
fund that has achieved a certain size. Because regula-
tory liquidity requirements must be met at all times,
this can prove to be difficult as funds become large,
unless they are willing to pay or make their investors
pay for liquidity.

Characteristics and Functioning
Scheme of Machine Learning
Estimators

Recognizing that machine learning-based models
outperform the historical illiquidity benchmark and
that nonlinearity as well as interactions can further
help in accurately modeling expected bond illiquidity,
we now focus on determining how these techniques,
which are often referred to as “black boxes,” achieve
outperformance. This black box problem is addressed
by examining the characteristics and functioning
scheme of neural networks, focusing particularly on
the nn_1 model.'? We decompose predictions into
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the contributions of individual variables using relative
variable importance metrics and explore patterns of
nonlinear and interactive effects in the relationship
between predictor variables and illiquidity estimates.

Variable Importance. We begin with investigat-
ing which variables are, on average, most important
for the predictions obtained from linear regressions
(Im) and neural networks (nn_1). Given that we re-
estimate our models on an annual basis, it is also
instructive to inspect whether a predictor’s contribu-
tion to the overall forecast ability of a model changes
over time. Separately for each model and re-estimation
date, we compute the variable importance matrix using
a two-step approach: First, we compute the absolute
variable importance as the increase in MSE from
randomly permuting the values of a given predictor
variable in the training sample. Second, we normalize
the absolute variable importance measures to sum to
one, signaling the relative contribution of each variable
to the Im and nn_1 model.

Analyzing the relative variable importance metrics
over time, more volatile metrics indicate that all
covariates in the predictor set should be considered
important. In contrast, stable metrics mean we should
remove uninformative predictors permanently, as
they may decrease a model’s signal-to-noise ratio.
Figure 2 depicts the relative variable importance met-
rics over the sample period for linear regressions
(Panel A) and neural networks (Panel B). To allow for
better visual assessment, we omit the bars for the
historical illiquidity predictor. The relative variable
importance of amihud_hist can be inferred by sub-
tracting the aggregate relative importance of all other
predictors from one. On average, both models place
the largest weight on historical illiquidity; this predic-
tor accounts for more than 40% of the aggregate
average variable importance for the Im model but
only around 35% for the nn_1 model. On the one
hand, high weights are expected because realized illi-
quidity is persistent and has long-memory properties.
On the other hand, the lower weight placed on his-
torical illiquidity by neural networks relative to linear
regressions helps to explain why the nn_1 model out-
performs the Im model in terms of lower forecast
errors in general, but especially within extreme
decile portfolios sorted on historical illiquidity (see
Figure 1). Linear regressions miss out on extracting
valuable information from the nonlinear and interac-
tive patterns in the relationship between our set of
fundamental as well as macroeconomic predictor
variables and expected illiquidity.
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Figure 2. Variable Importance
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Notes: This figure shows the relative importance of the variables included as predictors in linear regressions (Panel A) and neural net-
works (Panel B) at each re-estimation date. For this purpose, the relative variable importance matrix is calculated based on a two-step
approach: First, the absolute variable importance is computed as the reduction in R? from setting all values of a given predictor to zero
within the training sample. Second, the absolute variable importance measures are normalized to sum to 1, signaling the relative contribu-
tion of each variable to a model. The baseline sample includes intraday transaction records for the US corporate bond market reported
in the enhanced version of Trade Reporting and Compliance Engine (TRACE) for the sample period from July 2004 to November 2020.
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Among the remaining variables, the two models iden-
tify slightly different predictors as most relevant for
estimating illiquidity. While the Im model considers
the default spread (dfy) highly informative, neural
networks predominantly extract information from
fundamental predictors. In particular, the bond-level
predictor duration (dur), size (size), and maturity (mat)
are most important for the nn_1 model, accounting
for roughly 18%, 18%, and 14% of the aggregate
average variable importance, respectively. In contrast,
the default spread (dfy) is much less informative for
neural network models. Accordingly, given the supe-
rior predictive performance of the nn_1 model, the
time variation in bond illiquidity is driven more by
changes in bond characteristics than by changes in
the underlying economic conditions. Moreover, while
most variables have some relevance based on their
average metrics, the analysis reveals that these met-
rics change notably over time. Because this time vari-
ation is apparent for all predictor variables, we
conclude that each variable is an important contribu-
tor in all models, albeit to varying degrees. Overall,
the variable importance results in Figure 2 do not
recommend that we should remove specific
predictors.2°

Nonlinearity and Interactions. Tree-based
models and neural networks are superior to the his-
torical illiquidity benchmark, and they also tend to
outperform linear regressions with the same set of
covariates. A large part of this outperformance must
be attributable to their ability to exploit nonlinear
and interactive patterns in the relationship between
predictors and expected bond illiquidity. Therefore, in
a final step, we analyze in more detail whether and
how neural networks (nn_1) capture nonlinearity and
interactions. For comparison, we contrast the results
with illiquidity estimates obtained from linear regres-
sions (Im).2*

We first examine the marginal association between a
single predictor variable and its illiquidity predictions
(’ft+k|t’ with k = 12). As an example, we select a
bond’s duration (dur), one of the most influential pre-
dictors in our analysis (see Figure 2). To visualize the
average effect of dur on lft+k|t, we set all predictors
to their uninformative median values within the train-
ing sample at each re-estimation date. We then vary
dur across the minimum and maximum values of its
historical distribution and compute the expected illi-
quidity. Finally, we average the illiquidity predictions
across all re-estimation dates.
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Panel A of Figure 3 illustrates the marginal associa-
tion between dur and IfHk‘t for linear regressions

(dashed line) and neural networks (solid line), respec-
tively. We add a histogram that depicts the historical
distribution of dur. This visualization allows us to
assess the empirical relevance of differences in pre-
dictions obtained from the Im and nn_1 models for
the overall forecast results. At the left end of the dis-
tribution, approximately within the (+1.8, + 6.3)
interval, the predictions obtained from linear regres-
sions and neural networks are similar. We identify an

increasing linear relationship between dur and IfHk‘t

for the Im model and a close-to-linear relationship for
the nn_1 model, suggesting that bonds with a shorter
duration are more liquid than their medium-duration
counterparts. However, outside this interval, the mar-
ginal association between duration and expected illi-
quidity delineated in the neural network model is
strongly negative, suggesting that bonds with a lon-
ger duration are also likely to be more liquid than
their medium-duration counterparts. Overall, this
leads to a nonsymmetrical inverted U-shaped rela-
tionship for the nn_1 model. In sharp contrast, the Im
model, by construction, must continue to follow the
increasing linear relationship over the entire range of
duration, resulting in illiquidity estimates from linear
regressions that diverge substantially from those
obtained using neural networks.

The nonsymmetrical inverted U-shaped relationship

between dur and lfHk‘t (compared to an increasing

linear relationship) is more consistent with (1) the
empirical patterns observed when plotting duration
and realized illiquidity during the out-of-sample
period simultaneously (not reported) and (2) anec-
dotal evidence. Anecdotal evidence is twofold. First,
the number of institutional investors with a natural
duration target (e.g., property and casualty vs. life
insurance companies) is higher for both ends of the
yield curve because they attempt to match their
short-term and long-term liabilities, respectively.
Therefore, these types of bonds, that is, with either
a lower or a higher duration, are issued more fre-
quently (consistent with the historical distribution of
dur depicted by the histogram). Importantly, they are
also traded more frequently, thereby increasing their
liquidity. Second, institutional investors are likely to
increase (decrease) their portfolio’s duration by buy-
ing high-duration (low-duration) bonds when they
expect interest rates to rise (fall). This behavior is
another reason for lower- and higher-duration bonds
to be traded more frequently, increasing their liquid-
ity further. Because a considerable share of our
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Figure 3. Nonlinear and Interactive Effects in Estimating Corporate Bond llliquidity

Panel A: Average effect of duration on illiquidity estimates
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Notes: This figure examines the models’ ability to capture nonlinear and interactive effects in estimating future bond illiquidity (the average
monthly amihud measure). Panel A illustrates the marginal association between bond duration (dur) and its illiquidity estimates (If tokltr with
k = 12) for linear regressions (dashed line) and neural networks (solid line), respectively. It also shows a histogram that depicts the histori-
cal distribution of dur. To visualize the average effect of dur on If Eokit: all predictors are set to their uninformative median values within
the training sample at each re-estimation date. In the next step, dur is varied over the minimum and maximum values of its historical distri-
bution, and the illiquidity estimates are computed. Finally, the average illiquidity estimates across all re-estimation dates are estimated and
presented in the panel. Panel B shows the interactive effect between dur and bond rating (rating) on If k- To this end, the procedure
outlined above is replicated, but this time the illiquidity estimates are computed for different levels of rating across its minimum and maxi-
mum values. Low and high levels for rating are marked with red and green lines; dashed and solid lines refer to linear regressions (Im) and
neural networks (nn_1), respectively. The baseline sample includes intraday transaction records for the US corporate bond market reported
in the enhanced version of Trade Reporting and Compliance Engine (TRACE) for the sample period from July 2004 to November 2020.
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observations lies within the lower and upper parts of
the historical distribution, the differences in predic-
tions are practically relevant. Our analysis highlights
the need to allow for nonlinear impacts of the pre-
dictor variables on expected illiquidity. We further
note that nonlinear relationships (both U- and S-
shaped) are similarly observable for other predictors
(not reported), for example, a bond’s historical illi-
quidity (amihud_hist), maturity (mat), size (size), and
age (age).

Next, we investigate between-predictor interactions
in estimating corporate bond illiquidity, referring
again to dur as our baseline covariate. In addition, we
select rating, another highly influential predictor (see
Figure 2), as our interactive counterpart and replicate
the procedure just described. In this case, we com-
pute expected illiquidity for different levels of rating
across its minimum and maximum values. The inter-
active effect between dur and rating on ’ftmt is illus-

trated in Panel B of Figure 3. Low and high levels for
rating are marked as red and green lines, respectively.
If there is no interaction, or if the model is unable to
capture interactions, computing expected illiquidity
for different levels of rating shifts the lines from
Panel A up- or downward in parallel. In this case, the
distance between the lines is identical for any given
value of dur. This pattern is apparent for linear
regressions (drawn as dotted lines), because no pre-
specified interaction term, for example, dur x rating
for the interaction between dur and rating, is included
as a predictor in the linear regression framework.
The dotted lines are shifted downward when rating
increases, indicating that an increase in rating that is

independent of the bond’s duration decreases ’ftmt-

For neural networks, the same pattern is only observ-
able for the right end of the dur distribution. In con-
trast, at the left end of the distribution, unlike the Im
model, the nn_1 model uncovers interactive effects
between dur and a bond’s rating in predicting illiquid-
ity.2? This interactive effect is so strong that it reverses
the isolated effects of duration and rating on expected
illiquidity, that is, bonds with a shorter duration and, at
the same time, a higher rating tend to be less liquid
than their lower-rating counterparts. This finding is
again consistent with anecdotal evidence. Liquidity of
high-yield bonds is concentrated at the short-term part
of the curve because these bonds tend to have shorter
durations. On average, however, bond liquidity
decreases with higher credit risk. The reverse is true
for the shorter-term part of the curve, which one
could perceive as counterintuitive. An explanation is
that our machine learning models have been fitted
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predominantly during a sample period with historically
low interest rates. In this “zero lower bound” environ-
ment, many institutional investors adapted to yield
scarcity by taking on more risk, that is, they shifted
their focus to lower-rated bonds to meet their need for
income. With respect to duration, they often chose
shorter-duration bonds with lower ratings, for example,
high-yield bonds, as opposed to their higher-rating
counterparts. This change in preferences has led to a
relative shift in demand, which may have contributed
to a decrease in the liquidity of bonds with a higher
rating.

Taken together, these visualizations provide an expla-
nation for our main finding that more complex
machine learning models, such as regression trees
and neural networks, are able to generate more accu-
rate bond illiquidity forecasts than their linear coun-
terparts. Linear regressions (both simple and
penalized), by construction, cannot capture nonlinear
and multiway interactive effects that seem to
describe real-world phenomena in a much better
way. In this light, our analysis helps to explain the
outperformance of regression trees and neural net-
works (which “learn” these complex patterns from
the training and validation data) over the historical
illiquidity benchmark and linear regression models in
terms of lower forecast errors.

Conclusion

Understanding a bond’s multi-faceted liquidity char-
acteristics and predicting bond illiquidity are relevant
topics from an asset pricing point of view, but they
are equally important from a regulatory and real-
word investor perspective. Our paper contributes to
a better understanding of the characteristics of cor-
porate bond illiquidity and of how to transform this
information into reliable illiquidity forecasts. In partic-
ular, we compare the predictive performance of
machine learning-based illiquidity estimators (linear
regressions, tree-based models, and neural networks)
to that of the historical illiquidity benchmark, which
is the most commonly used model. All machine learn-
ing models outperform the historical illiquidity-based
approach from both a statistical and an economic
perspective. The outperformance is attributable to
these models’ ability to exploit information from a
large set of bond characteristics that impact bond illi-
quidity. Tree-based models (random forests and gra-
dient-boosted regression trees) and neural networks
perform similarly and work remarkably well. These
more complex approaches outperform linear regres-
sions with the same set of covariates, particularly in
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terms of prediction level accuracy, because of their
ability to utilize nonlinear and interactive patterns.
From a practitioner’s perspective, our results suggest
that the choice of the appropriate machine learning
model depends on the specific application, such as
simple bond rankings and sortings based on expected
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illiquidity as opposed to bond portfolio optimizations
that require level forecasts of illiquidity. An obvious
open question is whether our findings can be trans-
ferred to corporate bonds for which historical illiquid-
ity data are not readily available. We leave this task
for future research.

Notes

1. Other papers in this research area that find evidence
for superior stock selection based on a large set of
predictors are Rasekhschaffe and Jones (2019), Chen,
Pelger, and Zhou (2022), and Bryzgalova, Pelger, and

Zhou (2023). Related studies document similar results for

international data (Tobek and Hronec 2021), European
data (Drobetz and Otto 2021), emerging markets data
(Hanauer and Kalsbach 2023), Chinese data (Leippold
et al., 2023), and crash prediction models (Dichtl,
Drobetz, and Otto 2023).

2. Reichenbacher, Schuster, and Uhrig-Homburg (2020) also
use a large set of predictors for expected bond liquidity,
but they work with the linearity assumption in their
estimation model.

3. We use the enhanced version of TRACE instead of the
standard version because it additionally contains
uncapped transaction volumes and information on
whether the trade is a buy, a sell, or an interdealer
transaction. This refinement enables us to construct
measures that capture different aspects of bond illiquidity
based on intraday bond transactions.

4. The detailed transaction data allow us to compute direct
liquidity measures as opposed to indirect measures based
on bond characteristics and/or end-of-day prices
(Houweling, Mentink, and Vorst 2005).

5. To control for return outliers not driven by illiquidity, we
omit observations with daily amihud measures exceeding 5%
on a given day. Our main results remain qualitatively similar
when using other cut-off thresholds, e.g., 1% or 10%.

6. Because no prior study has examined whether this set of
variables is helpful for predicting bond illiquidity, a potential
lookahead bias should not be an issue in our analysis.

7. Alternatively, one-month and five-year forecast horizons
are common in the literature (k = 1 and k = 60,
respectively). Both alternatives have shortcomings in our
setup, which is why we opt for a one-year forecast
horizon. First, one-month illiquidity measures are very
noisy, which hampers the evaluation of forecast errors.
Second, forecast horizons much longer than 12 months
are less common in the industry due to the underlying
nature of fiscal years.
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8. Because we apply on a one-year forecast horizon, there is
a one-year gap between the end of the sample that is
used for training and validation (2010:06) and the
estimation date (2011:06).

Neural network models are computationally intensive and
can be specified in innumerable different architectures. We
retreat from tuning parameters (e.g., the size of batches or
the number of epochs) and specify five different models,
assuming that our nn_1-nn_5 architectures are a conservative
lower bound for the predictive performance of neural
network models. Because the predictive performance of
neural network models deteriorates slightly in the number of
hidden layers in our application (not reported), we only
present the results for the nn_1 architecture.

10. Following Becker et al. (2021), we omit bonds with fewer
than 50 illiquidity estimates to allow for valid inference.

11. The cross-sectional and time-series means for realized
illiquidity are —4.75 and —4.78, respectively (not reported).

12. In most economic applications, when comparing different
models, a single model does not exist that significantly
dominates all competitors because the data are not
sufficiently informative to provide an unequivocal answer.
However, it is possible to reduce the set of models to a
smaller set of models—the so-called model confidence set
(MCS)—that contains the best model(s) with a given level
of confidence. Hansen, Lunde, and Nason’s (2011) MCS
determines the set of models that composes the best
model(s) from a collection of models, where “best” is
defined in terms of the MSE. Informative data will result
in a MCS that contains only the best model. Less
informative data make it difficult to distinguish between
models and result in a MCS that contains several models.
In our applications, we examine statistical significance at
the 5% level, translating into 95% model confidence sets.

13. According to Gu, Kelly, and Xiu (2020), DM test statistics are
asymptotically N(0, 1)-distributed and test the null hypothesis
that the divergence between two models is zero. They map
to p-values in the same way as regression t-statistics.

14. Due to limited data availability, the test sample in our
baseline setting does not contain the 2007-2008 global
financial crisis, during which the availability of credit
suddenly plummeted. In a robustness test (not reported),



we shorten the length of the sample used for training and
validation to three years in order to include the global
financial crisis in the test sample. Again, all machine
learning models dominate the historical illiquidity-based
model during this severe crisis.

15. Table C2 in Online Supplemental Appendix C confirms
that this conclusion remains robust for our two other
illiquidity measures: t_volume and t_spread. To check
robustness even further, this table also contains the results
for two additional illiquidity measures: First, we apply
Lesmond, Ogden, and Trzcinka's (1999) illiquidity measure
based on zero daily bond returns (p_zeros), where a larger
fraction of zero returns in a given sample month indicates
lower liquidity. Second, we use Roll's (1984) implicit measure
of the bid-ask spread based on the covariance of daily bond
returns and their lagged returns (Roll’s spread). To this end,
we calculate the negative autocorrelation of bond returns
within a given sample month, with higher numbers indicating
lower liquidity. The results are qualitatively similar, albeit the
performance advantage of machine learning models is less
pronounced for the p_zeros measure.

16. In a robustness test, we implement a Giacomini-White
(2006) test for conditional predictive performance. The DM
test is unconditional in the sense that it asks which forecast
was more accurate, on average, in the past; it may thus be
appropriate for making recommendations about which
forecast may be better for an unspecified future date. As
elaborated in Giacomini and White (2006), “the conditional
approach asks instead whether we can use available
information—above and beyond past average behavior—to
predict which forecast will be more accurate for a specific
future date” (p. 1547). To describe the specific future date,
we use the default spread at the end of the last month as
the conditioning variable that captures the prevailing state of
the economy. The results are presented in Table C3 in
Online Supplemental Appendix C. All test statistics indicate
statistical significance. Overall, the results support the DM
tests. Machine learning-based forecast methods outperform
the historical illiquidity benchmark not only in terms of their
unconditional predictive ability but also in terms of their
conditional predictive ability.

17. Online Supplemental Appendix B presents an alternative
test for classification performance based on confusion
matrices that contrasts predicted and realized classes,
together with accuracy and ranking loss as classification
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measures. Machine learning-based methods produce a
superior misclassification distribution, which may translate
into economic outperformance.

18. Table 6 also contains the t-statistics (using Newey-West
standard errors with 11 lags) for the null hypothesis that
the H-L illiquidity spread of a given column model (Im,
elanet, rf, gbrt, or nn_1) is not different from the H-L
spread of the historical illiquidity-based model (hist). All t-
statistics for pairwise differences in portfolio means
indicate statistical significance, i.e., the null hypothesis of
indifference can be rejected in all cases, thus confirming
that machine learning techniques are reliably better at
disentangling more liquid from less liquid bonds.

19. Similar to random forests and gradient-boosted regression
trees, neural networks exhibit low forecast errors (both
on average and over time; see Table 5), produce accurate
forecasts for bonds with extreme characteristics (see
Figure 1), and perform well in a portfolio formation
exercise (see Table 6).

20. To be on the conservative side, we compare the statistical
and economic predictive performance of the original nn_1
model with versions that only consider the top 5 or 10
predictors in terms of their relative variable importance. Out-
of-sample test results (not reported) suggest that no model
version exhibits superior outperformance in any of these
tests, so we choose not to remove unconditionally less
informative variables from the predictor set and instead
consider each predictor as informative (albeit to varying
degrees). Furthermore, we caution that the pre-estimation
variable selection based on relative importance metrics
derived from the entire sample period could lead to foresight
bias, undermining the credibility of out-of-sample tests.

21. The patterns and their implications are qualitatively similar
when comparing gradient-boosted regression trees (gbrt) and
neural networks (nn_1) to estimates obtained from penalized
linear regressions (elanet). This result confirms that the ability
to exploit nonlinear and interactive patterns leads to the
outperformance of tree-based models and neural networks
over linear regressions.

22. Despite being slightly less pronounced, the nn_1 model
also reveals interactive effects between other bond
characteristics in estimating future illiquidity, for example,
between a bond'’s historical illiquidity (amihud_hist) and
size (size).
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