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Abstract
Multinomial processing tree (MPT)models are prominent and frequently used tools to model andmeasure cognitive processes
underlying responses in many experimental paradigms. Although MPT models typically refer to cognitive processes within
single individuals, theyhaveoften been applied to groupdata aggregated across individuals.We investigate the conditions under
which MPT analyses of aggregate data make sense. After introducing the notions of structural and empirical aggregation
invariance of MPT models, we show that any MPT model that holds at the level of single individuals must also hold at
the aggregate level when it is both structurally and empirically aggregation invariant. Moreover, group-level parameters
of aggregation-invariant MPT models are equivalent to the expected values (i.e., means) of the corresponding individual
parameters. To investigate the robustness ofMPT results for aggregate datawhen one or both invariance conditions are violated,
we additionally performed a series of simulation studies, systematically manipulating (1) the sample sizes in different trees of
the model, (2) model parameterization, (3) means and variances of crucial model parameters, and (4) their correlations with
other parameters of the respective MPT model. Overall, our results show that MPT parameter estimates based on aggregate
data are trustworthy under rather general conditions, provided that a few preconditions are met.

Keywords Multinomial processing tree (MPT) modeling · Data aggregation · Aggregation invariance · Robustness

Introduction

Quantitative psychological laws typically refer to single indi-
viduals. However, empirical tests of these laws have often
used data aggregated across individuals. Not surprisingly,
there is a long-standing debate in experimental psychology
whether tests of universal laws based on aggregated data
make sense at all and, if so, under which conditions they
are meaningful. In mathematical learning psychology, this
debate dates back to the 1950s (see, e.g., Bakan, 1954; Estes,
1956; Hayes, 1953; Sidman, 1952). It soon became appar-
ent that many functions hypothesized to describe individual
learning processes across trials (or developmental growth
processes across time) are not aggregation invariant, that is,
the mean curve for a group of individuals and the curve that
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applies to single individuals are not of the same type. This
holds, for example, for exponential functions (e.g., Ander-
son and Tweney, 1981; Sidman, 1952; Murre, 2023; Murre
and Chessa, 2011) or for Gompertz functions (e.g., Tanner,
1970). Just as the mean of exponential functions with differ-
ent parameters is not an exponential function, the average of
several Gompertz functions is not of the Gompertz type. Lin-
ear functions, in contrast, are aggregation invariant:When all
individuals follow a linear law, then the data averaged across
individuals will also conform to a linear function, with inter-
cept and slope for the aggregate data obtained by taking the
expectation of the individual intercepts and slopes, respec-
tively. For example, Sternberg’s law of memory scanning is
aggregation invariant. According to this law, the response
time Tn of individual n required to identify a target in short-
term memory (STM) depends linearly on the set size M of
items currentlymaintained inSTM(Sternberg, 1966).Hence,
Tn = an + bn · M + Fn , where an and bn are, respectively,
the intercept and the slope of person n, while Fn denotes an
independent and identically distributed (i.i.d) random error
component with conditional expectation E(Fn|M) = 0 for
each individual and set size. Although an and bn may vary
between individuals and should thus be seen as realizations
of random variables A and B, respectively, testing the law
based on response time data aggregated across individuals is
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meaningful. According to elementary rules of expectations
(see, e.g., Appendix B in Hays, 1973), a linear law is implied
also for the aggregate means: E(T |M) = E(A)+ E(B) ·M .
Similar arguments can be made for some nonlinear func-
tions that can, however, be transformed into linear functions.
This applies, for example, to logarithmic or power laws
that become linear after transforming one or both variables
involved logarithmically.

Following the pioneering work of Sidman (1952), others
have continued to work out criteria for deciding whether spe-
cific quantitative laws are aggregation invariant or not, and
how to test quantitative laws in an efficient and valid way
when they fail to be aggregation invariant (e.g., Bakan, 1954;
Estes, 1956; Hayes, 1953; Murre, 2023; Murre and Chessa,
2011). Surprisingly, however, the issue of aggregation invari-
ance has largely been neglected in the cognitive modeling
literature that developed in the past five decades. Formal-
ized as parameterized statistical models, cognitive models
typically apply to single individuals, just as universal quan-
titative laws do. If we evaluate such models based on group
data, we encounter virtually the same methodological prob-
lem already discussed by Sidman: When a parameterized
statisticalmodel holds for single individuals, does it then also
hold for data aggregated across individuals? Or conversely:
When a model fits aggregate data quite nicely, is it possible
nevertheless that the same model does not apply to the data
of any single participant (e.g., Ashby et al., 1994)?

Of course, cognitive modelers have always been cog-
nizant of the fact that aggregation across individuals is
problematic and may foster biased results whenever indi-
viduals differ in their parameters (see, e.g., Chechile, 2009;
Cohen et al., 2008; Estes and Maddox, 2005; Riefer and
Batchelder, 1991; Rouder and Batchelder, 1998). However,
rather than scrutinizing analytically for which model types
and which model parameters between-participant hetero-
geneity may cause troubles and for which others it might be
harmless, researchers have typically engaged inMonte Carlo
simulations to identify model features for which a certain
degree of parameter heterogeneity can be considered as “still
tolerable”. The typical result of these studies is that aggre-
gation results are robust and quite valid for small degrees
of heterogeneity, at least when models are sufficiently sim-
ple (Chechile, 2009; Cohen et al., 2008; Estes & Maddox,
2005; Riefer & Batchelder, 1991; Rouder & Batchelder,
1998). In such cases, aggregate analyses can even be consid-
ered advantageous compared to single-participant analyses
because the latter are often plagued by unreliable and sys-
tematically biased parameter estimates as a consequence of
scarce data per participant. For larger degrees of parameter
heterogeneity, however, aggregate analyses may cause more
serious biases for some parameters at least, so that they can-
not be recommended for general use (Chechile, 2009; Cohen

et al., 2008; Estes & Maddox, 2005; Riefer & Batchelder,
1991; Rouder & Batchelder, 1998; Siegler, 1987).

In this paper, we address the issue of aggregation invari-
ance for a prominent and frequently used class of statistical
models in the cognitive modeling literature, namely, multi-
nomial processing tree (MPT) models (for an introduction
and tutorial, see Schmidt et al., 2023). MPT models have
been very influential in different subdisciplines of psychol-
ogy, particularly in various branches of cognitive psychology
and social cognition research (for reviews, see Batchelder
and Riefer, 1999; Erdfelder et al., 2009; Erdfelder et al.,
2020; Hütter and Klauer, 2016). By far the most applica-
tions ofMPTmodels so far made use ofmaximum likelihood
(ML) estimation for aggregated data, assuming homogene-
ity of parameters across participants and items or negligible
parameter variability that does not systematically bias the
results (Chechile, 2009; Riefer & Batchelder, 1991; Rouder
& Batchelder, 1998). Although extensions to hierarchical
MPT models have become available in the past 15 years
that allow for parameter heterogeneity between participants1

(Klauer, 2006, 2010; Lee et al., 2020; Nestler & Erdfelder,
2023; Smith & Batchelder, 2010), such models have often
been used as comparison standards only to show that their
group-level mean parameters produce results very similar to
those obtained with ML estimates for aggregated data.

In sum, in most MPT model applications, it is typically
taken for granted that MPT models are (approximately)
aggregation invariant. The goal of the present research is
to investigate this assumption critically and in detail, thereby
fostering deeper insights in the conditions under which MPT
models are indeed perfectly aggregation invariant and in
alternative conditions under which they are not. In addition,
we investigate whether there are simple ways to trans-
form MPT models that violate aggregation invariance into
psychologically meaningful MPT models that do not. We
also suggest experimental design techniques that attenuate
consequences of aggregation invariance violations. Finally,
using Monte Carlo simulations, we assess how serious the
consequences of such violations are under various context
conditions.

Importantly, by focusing on aggregation invariance prop-
erties of MPT models, we do not mean to imply that aggre-
gation across individuals is the default method that should
generally be preferred in MPT analyses. Quite to the con-
trary, hierarchical MPT models have important advantages
such as automatically accounting for parameter variability in
model tests. The latent-trait model (Klauer, 2010; Heck et al.,

1 In principle, this idea can be extended to hierarchical models with
crossed random effects that allow for variability between participants
and items (Matzke et al., 2015).
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2018; Nestler & Erdfelder, 2023), in particular, allows more
than just estimating group-level mean parameters, for exam-
ple, assessing correlations among parameters and explaining
variability in parameters as a function of covariates. Despite
these advantages, however, almost all MPT model applica-
tions until 2010 (cf., Erdfelder et al., 2009) and even most
applications thereafter were based on aggregated data (e.g.,
Hütter & Klauer, 2016). Moreover, when there are very few
responses (or just a single response) per participant (see
Klauer et al., 2007, for an example), there is no alterna-
tive to data aggregation (Schmidt et al., 2023). Because
researchers employing MPT models are typically interested
in group-level mean parameters in the first place, it is of
considerable interest to scrutinize (1) how well MPT param-
eters of aggregated data approximate mean parameters and
(2) which properties of the MPT model and the data affect
approximation accuracy. These questions motivate our cur-
rent research.

Our article is organized as follows: In the next section,
we introduce MPT models conceptually and then more for-
mally. We begin with a description of the pair-clustering
model (Batchelder & Riefer, 1980, 1986). This MPT model
serves as our running example throughout this article. It
is ideally suited not only to illustrate possible problems
with aggregation invariance but also to suggest solutions to
these problems. After introducing the pair-clustering model,
we will outline and explain a prerequisite for investigating
aggregation invariance, namely, the formal model equation
structure that applies to any MPT model. In Section 3, build-
ing on this general model equation structure, we define the
concepts of (1) structural aggregation invariance and (2)
empirical aggregation invariance and show analytically that
any MPT model that satisfies properties (1) and (2) must
necessarily be aggregation invariant, that is, it must apply
to aggregate data whenever it holds for any single partici-
pant. Based on this result, we will also suggest methods to
eliminate, or at least attenuate, problems caused by viola-
tions of structural aggregation invariance. This is followed
by an extensive Monte Carlo simulation experiment in Sec-
tion 4. In this section, based on the hypotheses that can
be derived from Section 3, we test predictions and assess
consequences of violations of structural and empirical aggre-
gation invariance under a variety of context conditions. In
the Appendix, we additionally analyze the consequences of
structural and empirical aggregation invariance for group-
level mean parameters of the major classes of hierarchical
MPT models proposed so far. Finally, in the Discussion
(Section 3), we outline implications of our analytical and
simulation results for empirical applications of MPT mod-
els, emphasizing the conditions under whichMPT parameter
estimation results based on aggregated data are trustworthy
in general versus potentially problematic.

MPTmodels

MPT models are models for categorical data that typically
originate from discrete responses of participants in cognitive
paradigms or judgment tasks.A simple examplewould be yes
or no responses in recognition or detection tests. Response
frequencies across the J possible response categories are
assumed to follow a binomial (if J = 2) or a multinomial
distribution (if J > 2) for each condition observed. If more
than one condition is observed (e.g., separate observations
for targets and lures in a recognition test), independence of
observations in different conditions is assumed in addition,
hence implying a joint multinomial distribution of response
counts across conditions in the general case.

Rather than just describing the frequency data, MPT
models aim at explaining the observed response distribu-
tion in terms of latent psychological processes underlying
different responses. Each relevant psychological process s,
s = 1, ..., S, is assumed to result in a specific cognitive or
affective statewith latent probability θs or 1−θs , respectively,
depending on whether this process is successful or not. In a
recognition task, for example, θ1 = D could represent the
probability that the recognition process is successful. Analo-
gously, (1−θ1) = (1−D)would denote the probability of an
unsuccessful recognition attempt so that an additional guess-
ing process is required to determine a response. Multinomial
processing treemodels describe the possible combinations of
such latent process outcomes that may give rise to different
responses by proposing a processing tree structure (hence the
name). Often, several process sequences in a processing tree
may result in the same response. To illustrate, a yes response
to a target item in the recognition test – a so-called hit – may
either result from recognizing the item with probability D or
from not recognizing the item followed by guessing that the
itemwas old with probability (1−D) ·g. Since both process-
ing routes are disjoint, the total probability of a hit is just the
sumof the two branch probabilities, p(hit) = D+(1−D)·g.
In this way, all response probabilities are reparameterized as
functions of S latent parameters θs , each of which is an ele-
ment of the interval admissible for probabilities, that is, the
unit interval [0, 1].

Empirical applications of MPT models aim at testing the
goodness-of-fit of a proposed model (or the selection among
several candidate models, cf. Heck et al., 2014) and to esti-
mate the parameters θs , s = 1, ..., S, given observed response
frequencies for the selected cognitive paradigm. Since the
parameters typically represent outcomes of cognitive pro-
cesses, we may conceiveMPTmodels as statistical tools that
enable “the measurement of cognitive processes” (Riefer &
Batchelder, 1988). A prominent and quite typical example of
the MPT model class is the pair-clustering model we intro-
duce next.
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Running example: The pair-clusteringmodel

The pair-clustering model was one of the first MPT mod-
els proposed in the psychological literature (Batchelder &
Riefer, 1980, 1986). It aims at explaining free recall of
semantically related word pairs and unrelated single items
in terms of three basic memory processes, namely, (1) stor-
age of a word pair as a cluster in memory, (2) retrieval of
a stored cluster from memory, and (3) single item storage
and retrieval. To estimate the outcome probabilities of these
three processes, Batchelder and Riefer proposed a free recall
paradigm in which participants learn a list of words com-
posed of m1 pairs of semantically related words (e.g., chair,
table) and m2 single unrelated words. Only one word is pre-
sented at a time, with a fixed lag between words belonging
to the same pair (to ensure similar cluster storage probabili-
ties for different word pairs) but otherwise in a randomized
sequence. Thus, there are 2 · m1 + m2 words in the to-be-
learned list in total, typically embedded in a primacy and a
recency buffer of about four words at the beginning and the
end of the list, respectively, to absorb primacy and recency
effects in free recall. All buffer items are excluded from data
analyses.

Following a retention interval, participants are asked to
recall all items they can remember in any order. Based on
the free recall protocol, word pairs are then assigned to
one of four possible response categories: both words are
recalled adjacently (C11), both words are recalled nonadja-
cently (C12), only one word of the pair is recalled (C13), and
neither word is recalled (C14). Singletons are just scored as
recalled (C21) versus not recalled (C22).

As outlined in the previous section, MPT models can be
illustrated as processing trees in which the root node repre-

sents the beginning of a processing sequence for each item
type or condition. Hence, there are two processing trees for
word pairs and singletons in the pair-clustering model. The
leaf nodes of each tree represent the observable response cat-
egories in which each processing sequence (i.e., each branch
in a tree) terminates. The intermediate nodes represent out-
comes of latent cognitive processes or mental states. Thus,
each branch in a tree describes a possible sequence of latent
cognitive processes leading to a specific observable response
in the task.

Figure 1 illustrates the latent processes proposed in the
pair-clustering MPT model. The model assumes three latent
states: With probability c, a word pair is stored as a clus-
ter. With probability r , a pair previously stored as a cluster
is successfully retrieved as a cluster. With probability u, a
single word is stored and retrieved. If a word pair was not
stored as a cluster, storage and retrieval of any of its sin-
gle components is assumed to be equivalent to storage and
retrieval of a singleton. Therefore, parameter u appears in
both trees. Note that the pair-clustering model makes sev-
eral simplifying assumptions, such as the all-or-none nature
of cluster retrieval and conditional independence of single
word storage and retrieval for unclustered words of a pair.

Based on the processing tree diagrams in Fig. 1, the
response probabilities p(Ckj ) for the two trees and the six
categories of the pair-clustering model can be rewritten as
functions of the latent process probabilities as outlined next.

General model equation structure of MPTmodels

As illustrated in the previous section, MPT models aim at
explaining probabilities of observable responses as a func-
tion of probabilities of latent states that represent outcomes of

Fig. 1 The pair-clustering multinomial processing tree (MPT) model.
C11 =Words of a pair recalled adjacently;C12 =Words of a pair recalled
nonadjacently; C13 = One word of pair recalled; C14 = None of the two
words recalled; C21 = Singleton recalled; C22 = Singleton not recalled;

c = probability that a word pair is stored as a cluster; r = probability that
a previously stored cluster is successfully retrieved; u = probability that
a single word is stored and retrieved (modified from Fig. 2 of Riefer &
Batchelder, 1988)
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underlying cognitive processes. In the pair-clustering model,
the relevant processes are cluster storage, cluster retrieval,
and single word storage plus retrieval, and the latent prob-
abilities represent success (c, r , and u, respectively) versus
failure of these three processes ((1− c), (1−r), and (1−u),
respectively). In general, MPTmodels include K trees with Jk
response categoriesCkj in tree k, k = 1, ..., K , j = 1, ..., Jk ,
and S ≤ ∑K

k=1(Jk − 1) parameters θs , s = 1, ..., S, each of
which is an element of [0, 1]. In the pair-clustering model,
for example, K = 2, J1 = 4, J2 = 2, and S = 3, and the
three parameters are θ1 = c, θ2 = r and θ3 = u, respec-
tively. The general structure of the MPT model equation2 that
describes how response probabilities p(Ckj ) depend on the
S parameters collected in the parameter vector θ is given by

p(Ckj |θ) =
Ik j∑

i=1

S∏

s=1

θ
ask ji
s (1 − θs)

bsk ji . (1)

Here, Ik j denotes the number of branches that terminate
in category Ckj , while ask ji and bsk ji are count variables
(i.e., integers) that indicate how often a process parameter θs
and its complement (1− θs), respectively, appear in the i-th
branch that terminates in categoryCkj (see Hu&Batchelder,
1994). For instance, there is only a single branch that termi-
nates in category C11 of the pair-clustering model (i.e., the
first branch in the first tree). This branch is characterized by
successful cluster storage with probability θ1 = c followed
by successful cluster retrieval with conditional probability
θ2 = r and has thus an overall probability of c · r . Hence,
a1111 = a2111 = 1, whereas all other as111 and bs111 counts
are zero for this branch. In contrast, in the single branch that
terminates in categoryC12 (third branch in Fig. 1), parameter
θ3 = u occurs twice next to (1−θ1) = (1−c) (i.e., the branch
probability is (1 − c) · u2). For this branch, b1121 = 1 and
a3121 = 2, whereas all other count variables are zero. The
ask ji and bsk ji counts for the other branches of both trees can
be derived accordingly.

The general notation introduced in Eq. 1 has a number
of advantages. It allows for a simple description of differ-
ent MPT models for the same response category system and
for an analysis of different models with the same general
software tool. In essence, for a given paradigm and cate-
gory system, differences between MPT models boil down to
different matrices of ask ji and bsk ji count variables. More

2 To simplify notation, we slightly deviated from Hu and Batchelder
(1994) and followed other authors (e.g., Klauer, 2010) by omitting ck ji
in the model equation. This factor absorbs multiplicative constants in
the i-th branch that terminates in category Ckj . If this factor is required
for a specific model, it is possible to compensate for this simplification,
for example, by fixing one of the model parameters to a constant or by
adding an additional branch to themodel as in case of the pair-clustering
model.

importantly in the present context, the general notation also
enables us to analyze consequences of aggregating data
across individuals when an MPT model holds for each indi-
vidual, but parameters may vary between individuals.

Aggregation invariance of MPTmodels

The general model equation structure shown in Eq. 1 refers
to a single participant with a participant-specific parameter
vector θ . When we assume that the same model (defined by
the ask ji and bsk ji count variables) holds for each sampled
individual, but participants may differ in their parameter val-
ues, the parameter vector θ becomes a randomvector�, with
θn being the realization of this random vector for participant
n, n = 1, ..., N . By implication, the response category prob-
abilities p(Ckj ) predicted by the model also become random
variables P(Ckj ) with the general structure

P(Ckj |�) =
Ik j∑

i=1

S∏

s=1

�
ask ji
s (1 − �s)

bsk ji . (2)

We can now analyze whether the expected frequencies
Nk ·E(P(Ckj |�)) in tree k, k = 1, ..., K , for data aggregated
across participants follow the same MPT model supposed to
hold for each participant.

Structural and empirical aggregation invariance

To facilitate our analysis, we first introduce two important
concepts, namely, (1) structural aggregation invariance and
(2) empirical aggregation invariance of MPT models.

Definition 1 (Structural aggregation invariance of MPT
models). We call MPT models structurally aggregation
invariant (SAI), when (1) all count variables ask ji and bsk ji
of this model are either 0 or 1 and, in addition, (2) (ask ji =
1) ⇒ (bsk ji = 0) as well as (bsk ji = 1) ⇒ (ask ji = 0) for
all s, k, j , and i .

Definition 1 entails that, in MPT models with the SAI
property, parameters or their complements never occur more
than once in a branch. Furthermore, a parameter and its com-
plement never co-occur in the same branch. Note that the
pair-clusteringmodel is not structurally aggregation invariant
because the last four branches for word pairs violate this def-
inition (see the upper tree in Fig. 1). Also note that the same
model can be easily transformed in a structurally aggregation
invariant model version by introducing a fourth parameter a
that applies to singleword storageplus retrieval. For example,
parameter a could represent successful storage and retrieval
of the second word of an unclustered pair in the first tree
and, in addition, successful storage and retrieval of a single-
ton in the second tree. Parameter u would remain for the first
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word of a pair so that no parameter occurs repeatedly in any
branch. In the current case, such a model extension leads to
a saturated model (with four parameters and four indepen-
dent model equations) which is still identified. In other MPT
models, analogous transformations may lead to overparam-
eterization such that the resulting SAI model is no longer
identifiable. Hence, it may not always be possible to trans-
form a model that violates structural aggregation invariance
in an identifiable SAI model.

Definition 2 (Empirical aggregation invariance of MPT
models). For all s, k, j , and i , we define xsk ji = 1 if
(ask ji + bsk ji ) > 0 and xsk ji = 0 otherwise. Also, for all
k, j , and i , let F�(kji) (θ(k j i)) denote the joint cumulative dis-
tribution function of the subset of random variables �s for
which xsk ji = 1 (i.e., only those parameters that co-occur
in the i-th branch terminating in category Ckj ). Correspond-
ingly, F�s (θs) denotes the cumulative distribution function
of the random variable �s . We call MPT models empiri-
cally aggregation invariant (EAI), when F�(kji) (θ(k j i)) =
∏S

s=1 F�s (θs)
xsk ji holds for all vectors of parameter values

θ(k j i) and all tree branches i that terminate in any response
category Ckj .

Definition 2 requires that, in MPT models with the EAI
property, all parameters and parameter complements that co-
occur in any tree branch are mutually independent. Whether
this is the case is ultimately an empirical question that
depends on the data at hand. Hence, a specific MPT model
can have the EAI property for one data set but not for another.
The SAI property, in contrast, is a fixed structural property
that either does or does not hold for anMPTmodel, irrespec-
tive of the data considered.

Observation 1 (Aggregation invariance of MPT models).
Consider a structurally aggregation invariant MPT model
that holds for each sampled individual with parameters that
may vary between individuals (cf., Eq. 2). Also assume that
parameters satisfy the conditions of empirical aggregation
invariance. Then the same model must hold for the response
frequencies aggregated across participants, and the S param-
eters of the aggregate model correspond to the expectation
of the parameter vector E(�).

Intuitively, Observation 1 describes what one would hope
to get from an analysis of aggregated data, namely, that such
an analysis reflects the samemodel which also holds for indi-
viduals, but with estimated parameters that correspond to the
group-level means of the individual parameters. Observation
1 states that this result must hold whenever the SAI and EAI
properties both hold. Interestingly, in this case the variances
of parameters across participants do not matter at all. Even if
individuals are extremely heterogeneous, aggregation invari-
ance will still hold. Also note that the distribution of � is
not constrained in any way. It can be any distribution on the
parameter space [0, 1]S , even a complexmixture distribution.

The proof of Observation 1 is straightforward (see pp.
230-233 in Erdfelder, 2000). Using well-known rules of
expectations (see, e.g., Appendix B in Hays, 1973, Rules
5–7), we see that the following must hold for the expected
frequencies of the aggregate data:

Nk · E(P(Ckj |�)) = Nk · E(

Ik j∑

i=1

S∏

s=1

�
ask ji
s (1 − �s)

bsk ji ) (3)

= Nk · (

Ik j∑

i=1

S∏

s=1

(E(�s))
ask ji (1 − E(�s))

bsk ji ). (4)

To derive (4) from (3), we make use of two standard rules
of expectations: First, the expectation of a sum of random
variables is always equal to the sum of their expected values.
Second, the expectation of a product of random variables
equals the product of their expected values if these random
variables are mutually independent (which they are because
of the EAI property). By combining these rules with the
fact that all exponents ask ji and bsk ji must be either 0 or
1 (because of the SAI property), (4) follows.

Although very useful when combined with the SAI prop-
erty according to Definition 1, the concept of EAI as
introduced in Definition 2 has the disadvantage that it is dif-
ficult to assess empirically. Fortunately, a weaker definition
exists that is easier to assess empirically (see the Appendix,
Corollary 2) and suffices to derive Observation 1 in most
practically relevant cases.

Definition 3 (Weak empirical aggregation invariance of
MPT models). We call MPT models weakly empirically
aggregation invariant (WEAI), when Cov(�s,�s′) = 0
holds for all parameter pairs �s and �s′ with (1) ask ji > 0
and as′k ji > 0, (2) ask ji > 0 and bs′k ji > 0, (3) bsk ji > 0
and as′k ji > 0, or (4) bsk ji > 0 and bs′k ji > 0 for at least one
branch i terminating in at least one response category Ckj .

Definition 3 entails that, in MPT models with the WEAI
property, parameters or their complements need to be uncor-
related if they co-occur in the same tree branch. Note that
WEAI is only a necessary but not a sufficient condition for
EAI according to Definition 2 and therefore does not guar-
antee aggregation invariance in general (see the Appendix,
Table 1, for an example of a three-parameter MPT model
that satisfies SAI and WEAI but violates EAI and is there-
fore inconsistent with Observation 1). This notwithstanding,
WEAI suffices to derive Observation 1 under either of two
conditions that cover many practically relevant applications.
First, when nomore than two parameters occur in any branch
of an MPT model – as is the case, for example, in the pair-
clustering model – aggregation invariance is implied for all
models that satisfy SAI and WEAI. Second, if we focus on
distributions of the MPT parameter vector � that exclude
higher-order dependencies and allow for bivariate depen-
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dencies (if any) only – for example, on multivariate normal
distributions of probit-transformed parameters as assumed
in the latent-trait model of Klauer (2010) – then WEAI
combined with SAI also suffices to derive Observation 1,
irrespective of the number of parameters that occur in the
same tree branch (see the Appendix for implications con-
cerning hierarchical MPT models).

To illustrate Definition 3, we return to our pair-clustering
examplewith three parameters c, r , and u.We see that param-
eters c and r co-occur in the first branch whereas c and u
appear in branches three to six of the first processing tree.
Hence, Cov(�1,�2) = Cov(�1,�3) = 0 must hold for the
pair-clustering model to be WEAI. In contrast, since param-
eters r und u never co-occur in any branch of any tree, the
covariance Cov(�2,�3) can be of any size. This will not
affect WEAI (or EAI) in any way. Note that we need not
consider covariances involving complements of parameters
separately because such covariances may only differ in sign
and not in absolute value from the covariances of the corre-
sponding parameters.

Importantly, violations of SAI would prevent the same
conclusion because in general E(�

ask ji
s ) �= (E(�s))

ask ji

when ask ji > 1. Similarly, violations of WEAI would lead
to discrepancies between Eq. (3) and Eq. (4). The degree of
such discrepancies (hence, the bias introduced by aggrega-
tion) will depend on the size of the parameter correlations
that conflict with WEAI. It will also depend on the variances
of model parameters, but only on those involved in viola-
tions of SAI or WEAI. If these variances approach zero (i.e.,
if variability between participants in crucial parameters is
small), then violations of SAI or WEAI may be negligible
and aggregation invariance will hold approximately. Con-
versely, the larger the variances of crucial parameters, the
larger the bias introduced by aggregation.

Factors that affect possible aggregation bias

Observation 1 along with Definitions 1 to 3 provides us with
a powerful framework to derive predictions concerning the
robustness of MPT analyses based on aggregated data. The
probably most important prediction refers to MPT models
and associated data preselected to be in line with the SAI and
EAI properties. For such model-data combinations, Obser-
vation 1 applies. Hence, the aggregate model must be valid
when the respectiveMPTmodel holds at the individual level,
and the aggregatemodel provides uswith parameters that rep-
resent the means of the corresponding individual parameters.

What happens if Observation 1 does not apply? Consider
the pair-clustering model as an example. Since no more than
two parameters occur in any branch of this model, only devi-
ations from SAI and WEAI need to be considered. Hence,
deviations from aggregation invariance depend on a subset
of variances and correlations of the random variables C , R,

and U that comprise the individual c, r , and u parameters,
respectively. Specifically, just as the variance ofU , Var(U ),
is crucial (i.e., the smaller this variance, the more the model
behaves like aSAImodel) so are the two correlations between
C and R as well as C and U (i.e., the smaller these two
correlations, the less violation ofWEAI). The standard three-
parameter pair-clustering model is completely aggregation
invariant model if and only if (1) U = u is a constant that
does not vary between participants and (2) the correlation
between C and R is zero, irrespective of all other parameter
variances and correlations.3

Another interesting prediction refers to MPT models
that violate SAI but can be transformed in SAI-conform
models by including additional parameters. Extending the
pair-clustering model to a model with four parameters c, r ,
a, and u as outlined above should essentially remedy aggre-
gation bias due to SAI violation. Similar remedies might
apply to other MPT models that violate SAI, provided they
have S <

∑K
k=1(Jk − 1) parameters so that the model does

not become overparametrized when including an additional
parameter.

A different remedy might apply when a parameter occurs
in different trees of anMPTmodel but producesSAIviolation
only in oneof these trees.Anexample is theu parameter in the
standard three-parameter pair-clustering model: It violates
SAI only for the word-pair tree but not for the singleton tree
(see Fig. 1). Clearly, the proportion of word pairs in the study
list should moderate the degree of possible aggregation bias:
The larger the proportion ofword pairs (hence, the smaller the
proportion of singletons), the stronger the overall impact of
SAI violation. By implication, the impact of SAI violation is
largest when only word pairs enter the estimation of c, r , and
u. In contrast, by including a large proportion of singletons
into the estimation of the same three parameters, aggregation
bias should diminish to some degree.

All predictions considered so far refer to the population
level, that is, to the true parameters underlying a sample of
data. If sample data are used to estimate these parameters
using asymptotically unbiased procedures such as ML esti-
mation, basically the same results should hold, provided the
number M of responses per participant and the number N of
participants in the sample is sufficiently large. Since many
estimators (including ML) are not necessarily unbiased for
small samples, results might look different if, say, N = 1
and M = 16 applies. For the pair-clustering model, this
corresponds to estimation for a single participant based on
m1 = 8 word pairs and m2 = 8 singletons presented in the
learning phase. As already shown by Riefer and Batchelder
(1991), the ML estimate of r tends to have a positive bias in
small samples. Hence, the mean estimate of r would over-

3 Note that the correlation between C andU must be zero when U is a
constant u.
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estimate the true r systematically in such cases. Notably,
this happens because of small-sample estimation bias, not
as a consequence of aggregation bias induced by parame-
ter heterogeneity. This instructive example shows that it is
in general not a good idea to avoid data aggregation across
participants and analyze single-participant data instead, fol-
lowed by averaging the individual parameter estimates across
participants. Because the individual estimates may suffer
from systematic estimation bias in the same direction if M
is small, this estimation bias will also compromise the esti-
mates averaged across participants. This holds even if N is
very large.

A final prediction concerns the behavior of the G2

goodness-of-fit test for aggregate data – the by far most
frequently used model test in past applications of MPTmod-
els (Erdfelder et al., 2009; Hu & Batchelder, 1994; Riefer
& Batchelder, 1988; Schmidt et al., 2023). For the pair-
clustering model, the null hypothesis of equal u parameters
for word pairs and singletons serves as the goodness-of-fit
criterion (Batchelder & Riefer, 1986; Riefer & Batchelder,
1988). The standard G2 test is based on multinomial sam-
pling theory and thus assumes homogeneity of parameters
across participants. Hence, it ignores parameter variance
between individuals as a source of variability in the data,
resulting in a systematic underestimation of standard errors
(see Appendix A in Klauer, 2006). Consequently, the G2

goodness-of-fit test based on aggregated data is biased
against H0 when U varies between individuals. This causes
model rejection rates exceeding the nominal α under H0, the
more so the larger the variance between individuals and the
larger the sample size. This prediction converges with results
of a previous simulation study for the pair-clustering model
(Riefer & Batchelder, 1991). However, we will replicate this
finding as part of our simulation study to assess possible
dependencies of the bias against H0 on specifics of the sim-
ulation setting. We will also compare the aggregate G2 test
with alternativeG2 sum tests that aremore reasonable in case
of parameter heterogeneity.

AMonte Carlo experiment

In the present section, we report a Monte Carlo experiment
primarily designed to assess the robustness of complete-
pooling Maximum Likelihood (ML) parameter estimates
when a model holds for each individual, but parameters vary
between individuals. In addition, we also consider the robust-
ness of the likelihood-ratio G2 test for aggregated data and
alternativeG2 sum tests for individual frequencydata.Weuse
the pair-clustering MPT model for the Monte Carlo exper-
iment because this model (1) is quite typical for the MPT
model family in general (in terms of number of trees, param-
eters, and branches), (2) is well established and has been used

since decades, (3) allows to investigate consequences of SAI
violations, EAI violations, and combinations thereof, and (4)
provides for the possibility to assess the effectiveness of two
methods to eliminate or at least attenuate aggregation bias
induced by SAI violations.

As outlined in the previous section, our robustness predic-
tions refer to asymptotic properties of parameter estimates
and should thus be most obvious in simulation results when
the number of simulated participants and responses is large.
However, to assess the trustworthiness of complete-pooling
estimates for different scenarios of practical relevance, we
consider not only the large sample case but also interesting
small sample cases for both the number M of responses per
participant (i.e., the number of word pairs and singletons)
and the number N of participants.

We use the latent-trait model as the data generating model
for our simulations (Klauer, 2010; Heck et al., 2018; Nestler
& Erdfelder, 2023). According to this hierarchical MPT
model, the probit-transformations of C , R, and U (plus A
in case of the four-parameter model version) follow a joint
multivariate normal distribution across individuals. Themain
advantage when using the latent-trait model is the flexibil-
ity in defining standard deviations and correlations in line
with requirements concerning the SAI and EAI properties of
the MPT model. Another advantage is that the group-level
means of the data generating model provide a natural frame
of reference for calculating estimation bias.

Design

The core dependent variable of our simulation experiment is
the bias (B) in theML parameter estimates for the aggregated
data, that is, B = (average ML estimate – true group-level
mean parameter). In addition, we investigated rejection rates
of model tests, that is, observed proportions ofG2 (aggregate
vs. sum) statistics significant at the 5% level under the null
hypothesis of the three-parameter pair-clustering model.

The independent variables of ourMonte Carlo experiment
comprise (1) the version of the pair-clustering model consid-
ered (the original version with three parameters that violates
SAI vs. the extended version with four parameters that does
not), (2) the proportion of word pairs in the study list (50%,
i.e., as many singletons as word pairs, vs. 100%, i.e., only
word pairs, no singletons), (3) the number of word pairs
per participant (m1 = 20 vs. m1 = 8 vs. m1 = 4), and
(4) the number of participants (N = 1000 vs. N = 10 vs.
N = 1). Note that the N = 1 simulations are relevant for
the no-pooling approach inMPTmodelingwhere parameters
are estimated separately for each participant. These single-
subject estimates are then typically entered in ANOVA,
correlation, or regression analyses in a separate second step.
Our simulations can reveal how no-pooling approaches com-
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pare to complete-pooling approaches in terms of reducing
estimation bias.

In addition, we manipulated group-level means of C and
R, standard deviations of C , R, and U , and correlations
between model parameters scale in three levels each. This
results in another six factors of our Monte Carlo experi-
ment, namely, (5) means of C (μC = .20, .50, .80), (6)
means of R (μR = .20, .50, .80), (7) standard deviation
of either parameter (σ = .00, .15, .30), (8 and 9) correla-
tions between parameters co-occurring within branches (i.e.,
ρCR = .00, .25, .50 and ρCU = .00, .25, .50, respectively),
and (10) correlations between parameters located in different
branches (ρUR = .00, .25, .50). While means and standard
deviations refer to the probability scale, correlation levels
hold exactly on the probit-scale and only approximately on
the probability scale. However, correlation approximation
accuracy is very high, especially when parameter means are
.50. Only when parameter distributions are shifted towards
the boundaries 0 or 1, minor deviations from the nominal
correlations are observable on the probability scale. Note
that we included even extreme cases of heterogeneity such
as σ = .30 (roughly corresponding to the standard deviation
of a uniform distribution on the unit interval [0, 1]) to make
sure that our Monte Carlo experiment explores the full range
of parameter variability that is conceivable in principle.

For the three-parameter pair-clustering model, cross clas-
sification of the independent variables (2) to (10) results
in 2 · 38 = 13, 122 simulation conditions. Of these, 4212
conditions are inadmissible because they combine nonzero
correlations between parameters with standard deviation
σ = 0, which is not possible. After exclusion of these con-
ditions, the final number of admissible parameter conditions
was 8910.

For the four-parameter model extension that includes
a fourth parameter A, only the model that includes both
word pairs and singletons is identifiable. Hence, we used
an equal number of word pairs and singletons. We focused
on E(C) = E(R) = 0.2 and E(C) = E(R) = 0.5 in these
simulations because an expectation of 0.8 produced virtually
the same results as an expectation of 0.2. Both the number
of pairs and singletons (m1 = m2 = 20 vs. m1 = m2 = 4)
and the number of participants (N = 1000 vs. N = 10) were
manipulated in two levels. While the standard deviations as
well as the correlationsρCR ,ρCU , andρUR were varied using
the same three levels as before, parameter A was always
uncorrelated with U (ρAU = 0) and had the same correla-
tions with other parameters as U had (i.e., ρCA = ρCU and
ρAR = ρUR).4 Overall, this results in another 23 · 34 = 648
simulation settings, 208 of which were again inadmissible

4 Note that a non-zero correlation between A and U would introduce
an additional violation of EAI so that results cannot be compared with
those obtained for the three-parameter model.

because they combine nonzero correlations between param-
eters with standard deviation σ = 0. Thus, the final number
of admissible simulation settings for the four-parameter pair-
clustering model was 440.

For all simulation scenarios, themean of parameterU (and
A, if considered)wasfixed at .50.A total of 1000MonteCarlo
samples was drawn from the data-generating model for each
simulation condition. The bias was computed for the average
ML estimate across the 1000 samples.

Implementation

The simulation was conducted in R, using TreeBUGS (Heck
et al., 2018) to generate samples from the latent-trait model
in line with the settings of the Monte Carlo study. MPT-
inR (Singmann & Kellen, 2013) was used to analyze the
aggregated data based on the corresponding version of the
pair-clustering model. Both the R code of the Monte Carlo
experiment and all simulation results are available on the
OSF (https://osf.io/agwhs).

Results

We first consider simulation results for the original three-
parameter version of the pair-clustering model (Batchelder
& Riefer, 1980, 1986). As expected, the correlation between
U and R – a correlation between parameters in different
branches that cannot affect aggregation bias – had no effect at
all on aggregate estimates and is therefore not considered in
the figures below. We mainly focus on simulation scenarios
with all parameter means located in the center of the param-
eter space (i.e., E(C) = E(R) = E(U ) = .50) and discuss
effects of means closer to the boundary of the parameter
space subsequently. Bias is classified as clearly noticeable
when the deviation of the average ML estimate from the true
parameter mean exceeds .10.

For this scenario, Fig. 2 illustrates large sample aggrega-
tion bias (i.e., N = 1000 and m1 = m2 = 20) for each
of the three parameters as a function of their standard devi-
ations on the probability scale. This case is most relevant
with respect to our predictions. The red lines (i.e., confi-
dence bands) marked with dots illustrate the results obtained
when singletons are included into the analysis. In line with
the prediction, aggregation bias is generally smaller than in
case of the blue lines marked with triangles that represent
analyses based on the m1 = 20 word pairs per participant
only (Fig. 2). This effect is most pronounced for the parame-
ter that determines singleton performance, that is, parameter
u.

The plot most relevant for assessing selective violations
of SAI is the one in the upper left field for each parameter
(i.e., the one with ρCU = ρCR = .00, indicating that WEAI
is met). The remaining eight plots per parameter reflect sce-
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Fig. 2 Bias for parameter estimates of c (top left), r (top right), and
u (bottom) in the three-parameter pair-clustering model as a function
of parameter variability σ , separately for models with (red) vs. with-
out (blue) inclusion of singletons and different parameter correlations.

σ = Standard deviations of C , R, and U across individuals; ρCU , ρCR
= Correlation between C and U , as well as C and R, respectively. The
widths of the red and blue lines indicate the upper and lower 2.5%
quantiles based on 1000 simulation runs, respectively

narios where WEAI is violated with respect to one or more
branches of the model. Since correlations are impossible if
σ = 0 holds for the variables involved, the respective point
is omitted for these eight plots.

As expected, while there is no bias when parameter
standard deviations are zero, bias generally increases when
variability increases. For parameter estimates of u, this bias
is positive and generally quite small, except for the case of a
very large standard deviation σ = .30 when only word pairs
are considered in the analysis. The primary source of bias
in estimating u appears to be the violation of SAI since cor-
relations between C and U or C and R barely affect the

bias, especially when word pairs and singletons are ana-
lyzed conjointly. For parameter estimates of c, the pattern
looks generally similar. However, for this parameter, less is
gained from including singletons into the analysis (compared
to analyzing word pairs in isolation). Interestingly, aggre-
gate estimates of parameter r show negative aggregation bias
that increases with parameter variability. This bias is slightly
more pronounced when singletons are excluded from anal-
ysis. Notably, bias for r is affected by EAI violation. More
precisely, the larger the correlation between C and R, the
less negative the estimation bias for r becomes. This partially
compensates for the negative bias evident when EAI holds.
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Fig. 3 Bias for parameter estimates of c (top left), r (top right), u
(bottom left), and a (bottom right) in the four-parameter pair-clustering
model as a function of parameter variability, separately for different
parameter correlations. σ = Standard deviations of C , R, U , and A;

ρCU , ρCR = Correlation between C andU , as well as C and R, respec-
tively. The widths of the red lines indicate the upper and lower 2.5%
quantiles based on 1000 simulation runs, respectively

Figure 3 illustrates the corresponding results for the four-
parameter version of the pair-clustering model. This model
requires both word pairs and singletons for analysis so that
all simulation results are printed in red color. As before, the
figure displays results for N = 1000 participants and 20
word pairs plus 20 singletons per participant. As implied by
the structural invariance property of this model, for all four
parameters, bias completely vanishes when ρCU = ρCR =
.00 holds (upper left plot for each parameter). Only when
empirical aggregation invariance is violated, estimation bias
may occur. In this case, aggregate estimates of parameter
u show a clear negative bias when ρCU = .50, but the

amount of bias is negligible if σU ≤ .15. While estimates
of a and c show no bias even if EAI is violated, parameter
r is more problematic. When a strong correlation between
C and R is combined with very large standard deviations of
both parameters, results show a clear positive bias. Again,
this bias diminishes when standard deviations do not exceed
.15.

For expected values E(C) and E(R) closer to the bound-
ary of the parameter space (i.e., .20 vs. .80), the results for the
three-parameter pair-clustering model resemble those shown
in Figs. 2. We thus refrain from including these results in
the current paper and provide the corresponding figures in
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the supplemental materials only (https://osf.io/agwhs; Sup-
plemental Material I). As is evident from Figures 1 to 5 in
Section 1 of our Supplemental Material I, the bias in u esti-
mates is not affected by E(C) and E(R). However, while the
negative bias for parameter r increases with the true E(R),
aggregation biases in both c and r tend to vanish for large
cluster storage probabilities (i.e., E(C) = .80). A compar-
ison with Figures 6 to 10 in the same section (that refer to
m1 = 8 rather than m1 = 20 word pairs) reveals that the
number of items per individual has a negligible effect on
aggregate estimates when the number of simulated individ-
uals is huge (i.e., N = 1000).

We replicated the analyses summarized in Fig. 2 and in
Section 1 of the Supplemental Material I for the smallest
possible sample size (N = 1) (i.e., single-subject analyses)
for large versus small item sets studied by each individual.
The results are summarized in Figures 11 to 15 (form1 = 20
word pairs) and Figures 16 to 20 (for m1 = 8 word pairs)
of Supplemental Material I. While the bias introduced by
parameter heterogeneity shows similar patterns as already
discussed for N = 1000, the new result in these simulations
is small-sample estimation bias in case of parameter homo-
geneity (σ = 0). In the pair-clustering model, as already
observed by Riefer and Batchelder (1991, p. 323), this latter
type of bias is most pronounced for parameter r and tends to
be positive when both E(C) and E(R) are small.

A full table of results for all 8910 conditions of the
MonteCarlo simulation for the three-parametermodel can be
obtained from Supplemental Material II and a corresponding
table of all 440 conditions for the four-parameter model from
Supplemental Material III (https://osf.io/agwhs).

To investigate the behavior of the G2 goodness-of-fit
test for the three-parameter pair-clustering model, our sim-
ulations employed the same parameter standard deviations
previously assessed by Riefer and Batchelder (1991), that is,
σ = .00, .10, and .20. These values are reasonable for typ-
ical practical applications and facilitate comparisons with
their results. In line with Riefer and Batchelder (1991, p.
331, Fig. 9), we observed that G2 tests for aggregated data
tend to reject H0 more often than specified by the nominal
α level if σU > 0, the more so the larger the heterogeneity
and the larger the number of data points. If σU ≤ .10 and
the product N · M is small or moderate (i.e., up to 400),
this bias appears negligible. However, for σU = .20 and
N · M ≥ 200 , the rejection rate may exceed the nominal α,
potentially reaching extreme rejection rates larger than 50%
(e.g., if N = 100, m1 = m2 = 20, and σU = .20; see
the red dots and confidence bands in Figures 21 to 23, pp.
23–26 in Section 2 of Supplemental Material I). The same
figures show that this bias may vanish when the G2 test is
conducted separately for each participant and the individual
G2 statistics are summed up across participants, resulting in
G2 sum statistics that are asymptotically χ2-distributed with

d f = N if the model holds. Categories with zero frequen-
cies may be a problem for individual G2 statistics but can be
addressed by adding a small positive constant (in our sim-
ulations: +0.10) to all category frequencies when zero cells
occur. However, because of scarce data per participant, this
asymptotic G2 sum test does not work perfectly and may
produce inflated α levels, most obviously in our simulations
for sum statistics referring to N ≥ 100 participants (see the
green triangles and confidence bands in Figures 21 to 23,
pp. 23–26, Supplemental Material I). As a remedy, one can
replace the asymptotic distribution by an empirical estimate
of the exact reference distribution using the parametric boot-
strap (with 500 bootstrap samples per estimated p value in
our simulations). This parametric bootstrap kept its nominal
significance level nicely (see the blue squares and confidence
bounds in Figures 21 to 23, Supplemental Material I), with
the single exception ofm1 = m2 = 4 observations (shown in
Figure 23). Obviously, such a small number of observations
is simply insufficient to allow reasonable model applications
at the level of individuals and must thus be avoided in prac-
tice.5

Discussion

Results of our Monte Carlo experiment confirmed the main
prediction that aggregation bias in MPT parameter estimates
increases with heterogeneity in those parameters that are
involved in violations of structural or empirical aggregation
invariance. Biases vanish completely when both structural
and empirical aggregation invariance holds. While biases
may occur when either of these conditions is not met, their
strength appears negligible in practical applications unless
standard deviations of parameters exceed .15.

Fortunately, there are several remedies for potential aggre-
gation biases. One remedy is the inclusion of trees into the
model that are SAI and thus provide unbiased parameters. An
example is the singleton tree in the pair-clustering model.
Hence, including more singletons into the data analyses at
least partly compensates for aggregation biases in the word-
pair condition. In the pair-clustering model, this pattern is
most pronounced for parameter u, as is evident from Fig. 2.

An evenmore effective remedy is the transformation of an
MPT model that violates SAI into a model that does not. An
example is the four-parameter version of the pair-clustering
model that replaces the second occurrence of the u parameter
in the word-pair branches by an independent a parameter.

5 Note that all these results necessarily refer to the three-parameter pair-
clustering model, because the four-parameter version of this model is
not testable (since d f = (4 − 1) + (2 − 1) − 4 = 0).
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Whenever possible,MPTmodelers of aggregated data should
use this technique to eliminate or at least mitigate some of
the problems that may otherwise result from aggregation.

However, both remedies focus on SAI only and do not
rule out problems caused by EAI violations in general and
WEAI violations in particular. Note that WEAI violations
essentially depend on within-branch covariances between
parameters, for example, cluster storage and cluster retrieval
in the pair-clustering model. Since Cov(C, R) = σC · σR ·
ρCR and techniques to enforce zero correlations between
parameters (such as ρCR = 0) do not exist, the only effec-
tive technique to minimize bias is to decrease the standard
deviations of the parameters involved. For MPT analyses of
aggregated data, participant samples should thus be as homo-
geneous as possible to reduce the risk of strongwithin-branch
covariances between parameters. If this recommendation is
combined with the use of structurally aggregation invari-
ant MPT models, results based on the complete-pooling
approach are generally trustworthy. This means that, given
sufficiently large samples, aggregate parameter estimates
provide close approximations to the true expected param-
eter values. What is more, these complete-pooling estimates
will in general outperform no-pooling estimates in which
data of participants are analyzed separately and individual
estimates are averaged subsequently. Especially if the num-
ber of responses per participant is small, the latter approach
involves the serious risk that small-sample estimation bias
distorts results systematically, even if parameters do not vary
across individuals.

A possible objection refers to the fact that our robust-
ness arguments are supported by simulation studies for one
MPT model only, the pair-clustering model. Is there reason
to expect that our robustness arguments generalize to other
MPT models as well? We argue that this is the case, at least
for models that fall in the two most frequently employed
hierarchical MPT model classes – beta-MPT models (Smith
& Batchelder, 2010) and latent-trait MPT models (Klauer,
2010; Heck et al., 2018; Nestler & Erdfelder, 2023). As
detailed in the Appendix, the group-level mean parameters
of any of these hierarchical models can be approximated very
well by MPT parameters based on aggregated data, provided
that the respective MPT model is structurally aggregation
invariant. First, if a beta-MPT model holds, the aggregate
parameters of structurally aggregation invariant MPT mod-
els must match the group-level mean parameters, because
this model family assumes mutual independence of beta-
distributed model parameters (see Appendix, Corollary 1).
The same applies to the latent-trait model, but only when
model parameters (or parameter complements) that co-occur
in the same branches are uncorrelated (see Appendix, Corol-
lary 2). Second, when the latent-trait model holds but at least
two same-branch parameters are correlated, then aggregate
parameters will not match the group-level mean parameters

exactly but still approximate them quite well. To see this,
consider a tree branch with two parameters �s and �s′ . We
assume that these two parameters have a correlation of ρ

and the same standard deviation σ across individuals. Then
the definition of the covariance (Appendix, Eq. 5) implies
Cov(�s,�s′) = E(�s ·�s′)− E(�s) · E(�s′) = ρ ·σ 2. In
other words, the bias in the expected branch probability (i.e.,
the deviation of the expected branch probability E(�s ·�s′)
from the corresponding branch probability E(�s) · E(�s′)
given uncorrelated parameters) is just the product of the cor-
relation and the variance of the parameters.When ρ and σ do
not exceed 0.5 and 0.3, respectively, this bias cannot exceed
0.5 · 0.32 = 0.045 (or −0.045 if ρ = −0.5 holds). Given
that even a completely flat uniform distribution on the unit
interval [0, 1] has a standard deviation slightly less than 0.3, a
maximum σ = .15 appears more realistic.With this assump-
tion, the maximum bias in the expected branch probability
reduces to 0.01125 if ρ = 0.5 (or to−0.01125 if ρ = −0.5).
This small bias will have a rather mild effect on parameters.
This is in line with our simulation results observed for the
pair-clustering model. However, the argument is not limited
to this specific model but generalizes to all latent-trait MPT
models.

Our theoretical results convergewith empirical results of a
recent multiverse meta-analysis of 164 published MPT data
sets for nine different MPT models, including 13,956 par-
ticipants in total (Singmann et al., 2024). This multiverse
analysis compared group-level mean parameter estimation
results for frequentist and Bayesian methods based on no
pooling (single subjects), partial pooling (hierarchical mod-
eling), and complete pooling (aggregated data). Notably,
absolute divergences between estimates based on different
methods were generally small on average (less than .04).
This was especially true for structurally aggregation invari-
ant MPT models applied to large samples (providing small
standard errors; see Singmann et al., 2024, Figure 5). If larger
deviations occurred, they were typically associated with vio-
lations of structural aggregation invariance or with smaller
samples (i.e., larger standard errors). Overall, the results of
this multiverse meta-analysis confirm our robustness argu-
ment for structurally aggregation invariantMPTmodels quite
nicely.

WhileML parameter estimation based on aggregated data
is relatively robust for realistic standard deviations, estimates
of standard errors and confidence intervals aremore problem-
atic when individual variability is ignored (cf., Klauer, 2006,
Appendix A). The same applies to standard G2 goodness-
of-fit tests of MPT models (Riefer & Batchelder, 1991).
Even if heterogeneity betweenparticipants is relatively small,
rejection rates of valid MPT models may exceed the nomi-
nal α-level substantially when the number of data points is
large, as revealed by our simulation of the G2 test for aggre-
gated data. Hence, aggregated data should not be used for
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interval estimates or model tests unless variability between
individuals can be shown to be small (e.g., by means of the
heterogeneity test proposed by Smith & Batchelder, 2008).

In practical applications of MPT model tests, this bias
against H0 is unproblematic if the model test turns out to be
insignificant. If a model test becomes significant, however,
this may mean that the model itself holds for each partic-
ipant and is rejected because of parameter heterogeneity
only. We recommend additional model assessment methods
in these cases, such as descriptive (e.g., graphical) compar-
isons of observed and expected frequencies across response
categories in different trees. If a formal significance test is
deemed to be necessary, the G2 goodness-of-fit test can be
performed for each participant separately. By adding up the
resulting goodness-of-fit statistics across N participants, one
obtains an overall G2 sum statistic that asymptotically fol-
lows a central χ2 distribution with N ·d f degrees of freedom
if the respective MPT model holds for each participant (note
that this method is implemented inMPTinR, see Singmann &
Kellen, 2013). Here, d f denotes the degrees of freedom for
each individual test. As shown in our simulation study of the
G2 sum statistic for the pair-clustering model, this modified
model test is not without problems either, simply because it
is an asymptotic test that requires more responses per partic-
ipant than usually obtained in MPT applications. However,
as also shown in our simulation study, when replacing the
asymptotic χ2 distribution of the G2 sum statistic with an
empirical estimate of the exact distribution obtained via the
parametric bootstrap, the bootstrap-estimated p value con-
forms to the nominalα level quitewell. Theonly precondition
is that the number of responses per participant is not too small
(i.e., at leastm1 = m2 = 8 for the pair-clusteringmodel). For
smaller response frequencies, model tests on the individual
level are not sensible.

Alternatively, one can of course switch to one of the
hierarchical MPT model frameworks (e.g., the latent-trait
model, cf. Klauer, 2010; Heck et al., 2018; Matzke et al.,
2015; Nestler and Erdfelder, 2023) and assess the goodness
of fit accordingly. This is certainly the simplest and most
direct method to address individual variability in MPT data.
If the heterogeneity test proposed by Smith and Batchelder
(2008) indicates significant variability between individuals,
resorting to the latent-trait model can be considered a rea-
sonable default option for MPT modeling that has several
advantages compared to analyses of aggregated data. This
especially holds with respect to standard errors, confidence
intervals, andmodel tests. Yet, even in this caseML estimates
based on aggregated datamay be useful because they provide
reasonable start values for the group-level mean parameters
in iterative estimation procedures. This procedure is imple-
mented, for example, in the mptmem R package provided
by Nestler and Erdfelder (2023).

To reiterate, our analyses of MPT aggregation invariance
properties assume that the respective model holds for each
participant in the sample. Note that this assumption is shared
by all MPT methods proposed in the literature, irrespective
of whether these methods use no-pooling, partial-pooling
or complete-pooling approaches. Without this assumption,
there is no basis for expecting that methods will converge
in their results with respect to group-level means of MPT
parameters. Yet, a recent MPT-multiverse analysis of 164
MPT data sets by Singmann et al. (2024) shows strong
convergence in estimation results if (1) an MPT model is
structurally aggregation invariant and (2) standard errors of
estimates converge to zero (or equivalently, when the number
of participants and the number of items becomes very large).
According to Singmann et al. (2024), this is in line with the
assumption that theMPTmodels included in their multiverse
analyses indeed hold for each participant, at least for the data
sets at hand. We agree with this assessment.

Clearly, if a model is violated for a subset of participants,
then it is not reasonable to aggregate results across all partic-
ipants. This means that whenever there is a suspicion that an
MPT model might not hold for a subset of participants, then
a no-pooling approach is mandatory as a first step, that is, a
model test for each of the critical participants. If individual
goodness-of-fit tests (adjusted for α inflation) suggest model
violation, then the respective participants should be removed
from the data pool prior to possible aggregation. Otherwise,
the results presented and discussed in the current research do
not apply.

In sum, MPT parameters based on aggregated data tend
to converge with group-level mean parameters, especially if
these models are structurally aggregation invariant. This is
mirrored in the corresponding parameter estimates, the more
so the larger the samples (Singmann et al., 2024). Although
not all MPT models are structurally aggregation invariant
and violations of empirical aggregation invariance cannot be
ruled out in general, countermeasures exist that help increase
the robustness of MPT analyses for aggregate data. For
realistic assumptions about possible parameter correlations
and standard deviations across individuals, approximation
accuracy is still satisfactory, even if empirical aggregation
invariance is violated to some degree. Thus, ML parameter
estimates resulting from aggregate analyses are trustworthy
in general, provided that the caveats outlined in this paper
are considered. This notwithstanding, especially if sample
sizes are small and large within-branch correlations coex-
ist with large standard deviations of parameters, estimation
results more strongly depend on the estimation method used
(Singmann et al., 2024). Hence, in future research, MPT
analyses of aggregated data should be complemented by a
multiverse approach that includes hierarchical modeling of
the same data whenever feasible.
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Appendix

Implications for hierarchical MPTmodels

The statistical theory outlined in the section on aggrega-
tion invariance of MPT models has strong implications for
group-level mean parameters of hierarchical MPT models.
Recall that all hierarchical MPT models share the assump-
tion that a specific MPT model holds for each participant
(i.e., the so-called level 1 model), but parameters may vary
between participants. So far, three classes of hierarchical
MPT models with individual variability in parameters have
been proposed (for an overview, see Schmidt et al., 2023):
the beta-MPT model, the latent-trait MPT model, and the
latent-class MPT model. In a nutshell, the beta-MPT model
(Smith & Batchelder, 2010; Heck et al., 2018) assumes
that (1) each of the S model parameters �s is beta(as ,bs)-
distributed across participants with mean μs = as/(as + bs)
and variance σs

2 = as · bs/((as + bs + 1) · (as + bs)2)
and that (2) all S parameters are mutually independent. In
contrast, the latent-trait model (Klauer, 2010; Heck et al.,
2018; Nestler & Erdfelder, 2023) is based on the assump-
tion that probit-transformations of the S parameters follow a
joint multivariate normal distribution with mean vector μ p

and covariance matrix� p on the probit scale. While both the
beta- and the latent-trait MPT model share the assumption
that parameters are continuously distributed, the latent-class
MPT model (Klauer, 2006; Stahl & Klauer, 2007) assumes
a discrete distribution. According to this model, parameter
values may differ between but not within C latent classes of
participants (i.e., all participants within the same class share
their parameter values). In general, 1 < C ≤ N , but C is
typically assumed to be small (i.e., 2, 3, or 4).

With respect to beta-MPT and latent-trait models, Obser-
vation 1 has immediate implications, as outlined in the
following two corollaries.

Corollary 1 (Equivalence of beta-MPT group-level mean
parameters and MPT parameters for aggregated data).
Assume that a beta-MPT model holds in a specific appli-
cation. Also assume that the corresponding level 1 MPT
model is SAI according toDefinition 1. Then thisMPTmodel
must also hold for aggregated data, and the group-level mean
parameter vectorE(�) = μ of the beta-MPTmodel is identi-
cal to the parameter vector θ of theMPTmodel when applied
to aggregated data.

Corollary 2 (Equivalence of latent-trait group-level mean
parameters and MPT parameters for aggregated data).
Assume that a latent-trait MPT model holds in a specific
application. Also assume that this model is SAI according
to Definition 1 and WEAI according to Definition 3. Then
this MPT model must also hold for the aggregated data, and
the group-level mean parameter vector E(�) = μ on the

probability scale matches the parameter vector θ of the MPT
model applied to aggregated data.

Both corollaries follow directly from Observation 1
because (1) the validity of either of the two hierarchical
models entails the validity of the MPT model for all indi-
viduals and (2) independence of parameters co-occurring
within branches. In case of the latent-trait model, this of
course only holds conditional on zero covariances of param-
eters co-occurring within branches, as stated in Corollary
2. Combined with the SAI property of the respective MPT
model, aggregation invariance follows. Note that due to the
nonlinear nature of the probit-transformation, WEAI for the
latent-trait model cannot be assessed directly but only indi-
rectly via the non-diagonal elements of the covariancematrix
� p,which refers to probit-transformedparameters.However,
for parameter values not too close to the boundaries of the
parameter space, the probit-transformation is approximately
linear so that WEAI can be assessed by testing whether the
corresponding non-diagonal elements of � p are zero. Sim-
ilarly, because the distribution of latent-trait parameters is
symmetrical on the probit scale but in general asymmetrical
on the probability scale, the mean parameter vector μ on the
probability scale does in general notmatch the inverse probit-
transformation �(μ p) of the mean vector on the probit scale
(here, �(.) denotes the cumulative distribution function of
the standard normal distribution). While �(μ p) represents
the median and the mode of the parameter distribution on the
probability scale, it may deviate somewhat from μ.

The situation is more complex for latent-class MPT mod-
els. When no more than two parameters per branch occur
in such a model, or when stochastic dependencies between
parameters are limited to bivariate dependencies (i.e., higher-
order dependencies are excluded if there are 3 or more
parameters per branch), then aggregation invariance must
hold for latent-class MPT models satisfying SAI andWEAI,
too. The reason is that expectations of products of two ran-
dom variables only depend on their covariances in addition
to their means (see, e.g., Appendix B in Hays, 1973):

E(�s · �s′) = E(�s) · E(�s′) + Cov(�s,�s′). (5)

In such cases, the requirement Cov(�s,�s′) = 0 for
all parameter pairs co-occurring within branches suffices to
guarantee aggregation invariance. If higher order dependen-
cies occur among the parameters of the latent-class model,
however, this is not anymore the case.

Consider the HB13 hindsight bias model as an example
(e.g., Bayen et al., 2006; Coolin et al., 2015; Coolin et al.,
2016; Dehn & Erdfelder, 1998; Erdfelder et al., 2007; Groß
& Pachur, 2020). In one of the tree branches of the HB13
model for experimental items (i.e., items receiving feedback
following the original judgment (OJ)), three core parame-
ters θ1 = (1 − r) (probability of OJ recollection failure
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Table 1 Hypothetical values of three parameters θ1, θ2, and θ3 and
their products within four latent classes, including the implied expected
parameter values across classes

Class size θ1 θ2 θ3 θ1 · θ2 θ1 · θ3 θ2 · θ3 θ1 · θ2 · θ3

1 .25 .20 .20 .20 .04 .04 .04 .008

2 .25 .20 .80 .80 .16 .16 .64 .128

3 .25 .80 .20 .80 .16 .64 .16 .128

4 .25 .80 .80 .20 .64 .16 .16 .128

E(.) .50 .50 .50 .25 .25 .25 .098

Note. E(.) = Expected value (i.e., mean) of the parameter (or parameter
product) across latent classes

in hindsight), θ2 = b (probability of reconstruction bias in
hindsight), and θ3 = c (probability of source confusion) co-
occur in the same branch, resulting in a source confusion
error (i.e., the participant recalls the feedback information
as his/her own previous OJ). This single branch suffices to
illustrate the problem. To see this, let us assume that a hier-
archical HB13 model with C = 4 latent classes holds, with
parameter values θ1, θ2, and θ3 within latent classes as spec-
ified in the left part of Table 1 (columns 3–5). The right part
of the table (columns 6–9) provides pairwise and triplewise
parameter products, and the last row the expected (i.e., mean)
parameters or parameter products across all four classes.

It is easily verified that all three parameters are pairwise
uncorrelated: For any two parameters, the product of their
expectations is identical to the expectation of their prod-
ucts (e.g., E(θ1)· E(θ2) = E(θ1 · θ2) = .25). However,
althoughWEAI obviously holds for this branch of the HB13
model, EAI does not hold, since E(θ1)· E(θ2)· E(θ3) = .125
whereas E(θ1 · θ2 · θ3) = .098 (see the rightmost column
in Table 1). Hence, this hierarchical version of the HB13
model is not empirically aggregation invariant because aggre-
gation across participants predicts the expected frequency for
at least one branch of the model incorrectly. Note that this
might not only lead to biased parameter estimateswhen using
aggregated data. Since both the beta-MPT and the latent-
trait model cannot accommodate higher-order dependencies
between parameters, they are both misspecified for this sce-
nario andmay also produce biased parameter estimates. Only
the latent-class HB13 model with at least four latent classes
or no-pooling approaches can capture this scenario properly,
the latter of course only when the number of responses per
participant is sufficiently large.
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