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Summary
To represent complex psychological constructs such as multifaceted personality traits,
general intelligence, or mental disorders, the bi-factor model is frequently used. Its
main advantage over competing models is its clear and often insightful distinction
between different parts of multidimensional constructs. It defines a general trait
across all observed variables and specific traits representing the various facets of the
construct.

The unique characteristics of the bi-factor model’s structure come with several
challenges that currently need more attention. In this thesis, I tackle three of these
issues in three articles. The first article investigates the frequent occurrence of weak
specific factors in bi-factor model applications. It explains why the characteristics of
the bi-factor model in combination with typical measurement design in psychology
should be expected to produce weak specific factors. The meta-analysis shows the
pattern of problematic parameter estimates. Using simulations, the article analyses the
statistical power and the parameter recovery under realistic conditions and provides
guidelines for applied research. The second article investigates the flexibility of bi-factor
model variants and their relationships to one another. Whereas previous research has
noted the excessive flexibility of the bi-factor model compared to other models, the
current work shows in simulations that its different variants can flexibly imitate each
other. The most important consequence is that even some of the most basic claims
derived from the model need to be questioned, because they may entirely depend on
the choice between two equally well-fitting representations of the data. It is discussed
that this issue cannot be resolved from a statistical perspective alone and a detailed
account of the influence on parameter and trait estimates is provided. The third
article proposes an alternative modeling approach for cases in which the underlying
assumptions of a full, symmetrical bi-factor structure are violated. On a large example
dataset, a set of replications and a multiverse analysis highlight the key strengths and
limitations of this proposed approach.

The current work aims to expand the statistical bi-factor model toolbox and to
guide the application and interpretation of previously suggested models. For this
purpose, I combine statistical insights with a meta-scientific perspective on the bi-factor
model’s application. In this way, it became clear that an improved understanding of
the discussed problems is key to their solution.
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1 Psychological measurement: Measureing the un-
observable

Measurement in psychology faces theories including constructs that cannot be directly
observed, such as well-being, personality traits, or mental disorders. They include
thoughts, emotions, and attitudes, which can only be (fully) accessed by the per-
sons themselves. Therefore, these constructs cannot be measured by an objective
measurement device alone. To make the unobservable measurable, researchers opera-
tionalize psychological constructs by selecting observable variables that are assumed
to reflect variations on the unobservable target construct. Psychological theories
can be researched empirically if they imply testable statistical hypotheses on these
observed variables. Commonly, responses to self-report questionnaire items are used
as observable variables, especially in research on interindividual differences.

Beyond being only indirectly observable, many psychological constructs are complex.
They comprise several qualitatively different facets or abilities. Constructs measured
by self- or other-rating, such as most personality traits, often include both attitudes
and behaviors and comprise both emotion and cognition. Moreover, personality traits
are complex by combining several content sub-dimensions. For example, the massively
popular Big Five and HEXACO personality traits are commonly assumed to be
meaningful dimensions in themselves and to comprise various, clearly distinguishable
facets (Lee & Ashton, 2004; Paunonen & Ashton, 2001). Constructs measured by
task performance on the other hand often comprise multiple tasks or task types.
For example, general intelligence is understood as a single dimension underlying
the performance on a large variety of different (types of) cognitive tasks on which
performance systematically varies with more specific abilities, too (Carroll, 2003; e.g.,
Canivez et al., 2021). This complexity gave rise to two different conceptualizations.
First, psychological constructs can be understood as a set of correlated dimensions.
In this perspective, each facet of a personality trait, or each task type of a proficiency
test, is one dimension of the construct. A construct’s unifying characteristic is then
the common definition that usually implies substantial correlations between these
dimensions. Second, psychological constructs can be understood to be defined by
a common core dimension that is measured by all observed variables. Beyond this
unifying core dimension, each facet (task type, . . . ) provides an additional source of
variation that may either be an integral part of the definition of the construct or a
consequence of the decisions made regarding the operationalization.
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Because the relationships between the different parts of a construct and other
constructs can differ in important ways (e.g., Gäde et al., 2017), the question of how
to distinguish them is paramount to the testing of psychological theories. In this way,
the development of statistical measurement models is parallel to the development of
psychological theories and construct definitions. The current work addresses three
challenges concerning the bi-factor model (Holzinger & Swineford, 1937; Reise, 2012),
which is a key model for disentangling complex psychological constructs into a core
dimension and several specific facets.

2 Measurement models of psychological constructs
From definitions of psychological constructs, statistical models can be derived that are
hypothesized to account for the covariation of the observed variables.1 For example, if
people truly vary on an agreeableness trait, they should systematically vary in their
reports of agreeable behaviors and attitudes. Moreover, if the agreeableness trait is a
meaningful dimension that describes interindividual differences within a population,
self-reports on multiple agreeableness questionnaire items should correlate positively.
Therefore, a common empirical approach is to define and estimate a statistical model
of the covariance matrix of the observed variables (Σ), in the framework of structural
equation modeling (SEM, see e.g., Kline, 2023). Two important frameworks with
similar purposes have close similarities to this approach. First, item response theory
(IRT, see e.g., Embretson & Reise, 2013; Reckase, 2009) also explains the statistical
relationships between the observed variables by relating them to a set of latent
variables via a design matrix (=loading matrix). Therefore, many structural features
of SEM models can be translated into IRT models and vice versa. Second, network
psychometrics (Epskamp et al., 2018) focuses more directly on the pattern of pairwise
statistical relationships between the observed variables by modeling them as a network
without specifying any latent variables. Therefore, network psychometrics implies a
fundamentally different understanding of how psychological constructs are structured
and is a major alternative framework to explain observed variable covariances.

When specifying a statistical model of a psychological measure, two potentially
conflicting goals need to be considered. On the one hand, the variables in the model

1Although this is a guiding principle of empirical research, it is difficult to do in practice. The
insufficient formalization of psychological theories and concepts is the subject of an old and ongoing
debate (Eronen & Romeijn, 2020; McGuigan, 1953; Scheel, 2022).
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should be meaningful. They should closely reflect the theoretical construct of interest.
For this purpose, latent variables (also called latent traits) are specified to represent
the unobservable construct(s) as common causes2 of the observed responses in both
SEM and IRT. The idea of this reflective measurement approach is that Σ can be
accurately modeled by accounting for the influence of one or more constructs of
interest. Confirmatory approaches, such as confirmatory factor analysis (CFA) are
employed to test a priori assumptions about the relationships between observed and
latent variables. CFA allows testing hypotheses in the form of model restrictions. On
the other hand, the model should represent the empirical data accurately. If this is
the case, all relevant influences in the data are accounted for and biases are limited.
To achieve this, some level of exploratory data analysis is usually necessary.

The different perspectives on the structure of psychological constructs are mani-
fested in the statistical models used to represent them (Figure 1). Whereas in the
past, the group-factor model was favored in most applications, the bi-factor model
(Holzinger & Swineford, 1937) has seen a surge in popularity recently (Figure 2,
see also Reise, 2012; B. Zhang et al., 2021). The group-factor model distinguishes
facets of a construct by assigning a factor to each of them. The notion of a unified
construct is mostly absent in this model: it is only reflected in the latent correlations
between the factors. The bi-factor model’s popularity can be partially explained
by resolving that. It distinguishes a general trait that represents the core construct
from several facet-specific traits (Chen et al., 2012). The orthogonality of (all of) its
factors further helps to separate the different parts of a construct, especially because
their relationships with other variables are independent of one another. The bi-factor
model’s structure reflects a dual-perspective understanding of psychological constructs.
They are a singular entity in the sense of having one meaningful underlying core
dimension. At the same time, they are more than a single unobservable variable – they
are multifaceted and therefore multidimensional. Conceptually, the orthogonality of
the general and specific factors allows researchers to see the construct as the sum of its
parts, or exclusively focus on its common core. It also allows researchers to separately
account for some forms of systematic variance that are merely a consequence of the
measurement design (e.g., testlets, Rijmen, 2010). The bi-factor structure is not
specific to the literature of CFA measurement models: exploratory factor analysis
(EFA, Jennrich & Bentler, 2011, 2012), and IRT (Cai et al., 2011) both use it as well.

2For a discussion of the meaning of causality and its direction in this context, see e.g., Bagozzi
(2007)
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Figure 1

Path diagrams of confirmatory factor models.
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Figure 2

Articles in PsycINFO that mention "bifactor" or "bi-factor" in their titles or abstracts.

0

100

200

300

0e+00

1e+05

2e+05

2000 2010 2020 2023
year

bi
−

fa
ct

or
 s

ea
rc

h 
re

su
lts

total corpus

Note. The gray background area and the right axis refer to the total corpus size. Values for 2023
(dots) are preliminary (Nov 27).

The bi-factor model enables new insights but also brings new challenges. Due to
the relative recency of its rise to popularity, research on the (CFA) bi-factor model
itself is still relatively scarce (Bader & Moshagen, 2022; Bornovalova et al., 2020;
DeMars, 2013; Eid et al., 2017; Markon, 2019; Reise, 2012; Rodriguez et al., 2016; B.
Zhang et al., 2021). The current work addresses three major open challenges: weak
specific factors, excessive model flexibility, and inflexible application. First, specific
factors are often found to have small factor loadings and little variance (Eid et al.,
2017). The first article in this dissertation discusses the likely origin of this problem
and analyzes the role of effect size and statistical power to derive guidelines for applied
research (Petras & Meiser, 2024). Second, the bi-factor model is well-known to be
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extremely flexible (Bader & Moshagen, 2022; Bonifay & Cai, 2017), which raises the
question if the different model variants (Eid et al., 2017) can be clearly distinguished.
The second article in this dissertation clarifies the relationship between the bi-factor
model’s variants (Petras, 2024a). Third, most applications of the bi-factor model use
the basic scheme of the full bi-factor structure (all observed variables relate to one
specific factor), even if this is highly questionable. The third article in this dissertation
provides a principled model-specification workflow that optimizes the representation
of specific content beyond the general trait more flexibly (Petras, 2024b).

It follows a detailed introduction of the discussed models, a summary and synopsis
of the work within the three articles, and a discussion within the larger context of
psychological measurement. After the conclusion, the full texts of the three articles of
this dissertation are appended.

2.1 Confirmatory factor models
Confirmatory factor analysis (CFA) models assume that there is an underlying set of
latent variables (factors, η), which relate to the observed variables (Y) via the matrix
of factor loadings (Λ). In the j’th column of Λ, the strength of the influence of the
j’th latent variable on the i’th observed variable is indicated in the i’th row. Equation
1 shows the computation of the model-implied covariance matrix Σθ.

Σθ = ΛΦΛ′ + Θe (1)

Σθ depends on the estimates of the free parameters in Λ and in the covariance
matrix of the latent variables (Φ). These are estimated to optimize a criterion
regarding Σθ, such as maximizing the likelihood of obtaining the observed Σ assuming
that the model-implied Σθ was true in the population (maximum likelihood estimator).
Equation 2 shows how this CFA model predicts the observed responses of person p.

Yp = Ληp + ϵ (2)

The measurement error (ϵ) is usually assumed to follow a multivariate normal
distribution in the population. A common assumption is the independence of errors,
making its covariance matrix Θe a diagonal matrix.

CFA models restrict the pattern of relationships between observed and latent
variables in the matrix of factor loadings (Λ) based on prior assumptions to identify
the model for estimation and to test hypotheses. CFA is primarily used to compare
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and select models defined by certain restrictions and to examine parameter values
within selected models. That means if there are multiple latent variables, many entries
in Λ are fixed to 0. CFA models usually assume a metric scale of the observed variables
with linear relationships between latent and observed variables. Nevertheless, the
structure of CFA models (i.e. Λ and Φ) can generally be translated into an IRT
model, which assumes a nonlinear relationship between response categories and latent
variables. Importantly, the bi-factor CFA model has been translated into an item
bi-factor model (Cai et al., 2011), meaning that the implications of the current work
on the bi-factor model are not necessarily specific to the SEM framework.

Figure 1 shows different CFA models that represent psychological constructs.
group-factor models are common models derived from exploratory factor analysis
(EFA) or hypothesized in CFA models. group-factor models define one or more
correlated factors (first diagram in Figure 1). Despite the split of the target construct
into multiple dimensions, this modeling approach has been most popular for decades.
More recently, hierarchically structured models were popularized: the higher-order
factor model and the bi-factor model. The higher-order factor model provides a factor
structure at the second level: it estimates one or more higher-order factors from
the first-order factors (second diagram in Figure 1). The factors at the second level
account for the correlations between the factors at the first level. The bi-factor model
instead relates the observed variables directly to the general factor, as well as specific
factors representing the facets of the target construct (third diagram in Figure 1).



8

2.2 The bi-factor model
The idea of the bi-factor model is to represent a common target trait of all observed
variables, as well as specific influences that are reflected by subgroups of observed
variables. It decomposes the systematic variance in the observed variables into general
and (domain-)specific variance. Therefore, it is characterized by a Λ-matrix with two
nonzero entries per row: one for the general factor and one for the respective specific
factor. Equation 3 shows an example with twelve observed variables and four specific
factors (equal to the third path diagram in Figure 1).

Λ =




λ1,g λ1,1 0 0 0
λ2,g λ2,1 0 0 0
λ3,g λ3,1 0 0 0
λ4,g 0 λ4,2 0 0
λ5,g 0 λ5,2 0 0
λ6,g 0 λ6,2 0 0
λ7,g 0 0 λ7,3 0
λ8,g 0 0 λ8,3 0
λ9,g 0 0 λ9,3 0
λ10,g 0 0 0 λ10,4

λ11,g 0 0 0 λ11,4

λ12,g 0 0 0 λ12,4




(3)

The corresponding factor covariance matrix (Φ) is diagonal, meaning that the
factors are orthogonal to each other. This ensures that the model is estimable and
the specific factors can be interpreted as unique influences beyond the general factor.

This model is particularly well suited to represent psychological constructs that
consist of multiple facets but still represent one overarching trait. For example, a
comprehensive definition of agreeableness might comprise compassion, respectfulness,
and trust as subordinate facets of agreeableness without rejecting agreeableness as
a singular target dimension (Soto & John, 2017). In that case, the general factor of
the bi-factor model would be interpreted to represent the core of agreeableness. The
specific factors of the facets would be interpreted to represent the unique characteristics
of the facets above and beyond this core. For example, the specific compassion factor
would be interpreted to represent what is unique to compassion – beyond the general
notion of agreeableness and the other facets. A person with a high score on this factor
would show a higher level of compassion than is typical for persons with the same
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level of core agreeableness (cf. DeMars, 2013). In that sense, the specific factors are
residuals relative to the general agreeableness trait. This stands in marked contrast
to the group-factor model, in which a high compassion factor score simply indicates a
high level of compassion of the person. All factors in the model – the agreeableness
factor and the three facet-specific factors – can be interpreted as relevant dimensions
under a comprehensive definition of agreeableness.

2.2.1 Variants of the bi-factor model

Several variants of the bi-factor model have been introduced by Eid et al. (2017) to
improve interpretability in cases with specifically selected domains (e.g., facets of a
trait, subscales of a questionnaire), as opposed to randomly sampled domains (e.g.,
randomly sampled raters). The core idea of the proposed S-1 and S*I-1 models is to
select a reference domain (or item) that defines the meaning of the general factor. The
fourth path diagram in Figure 1 shows an S-1 bi-factor model, in which the first specific
factor is omitted compared to the full symmetrical bi-factor model (S-model, third
path diagram above). In the terminology of classical test theory, the meaning of the
general factor is then based on the true score of the reference domain for which there
is no specific factor. This true score comprises the shared general true score and the
true score specific to the reference domain (Eid et al., 2017). This model adaptation
is similar to the CTC(M − 1) variant of the CTCM multitrait-multimethod model,
in which the reference refers to the reference method of measurement, such as a gold
standard measure (Eid et al., 2003, 2022). The selection of a reference is different if
the specific factors refer to content domains: the reference should then most closely
resemble the general trait of interest, to obtain the most meaningful interpretation
of the factors (Eid et al., 2017). A variation of the S-1 bi-factor model is shown in
the fifth path diagram of Figure 1: in the S-1c bi-factor model, the remaining specific
factors have their correlations estimated freely. Finally, the S*I-1 variant uses a single
item as the reference, instead of a whole domain. Eid et al. (2017) suggest interpreting
the specific factors in all these variants as follows3:

For each domain (with exception of the reference domain) a specific factor
is defined as a residual factor. Such a specific factor represents that part of

3This interpretation is challenged by the observation that factor scores of the specific factors in the
S-1 and S-1c model systematically correlate with those of the specific factor of the reference domain
from the S bi-factor model of the same data (Petras, 2024a). This means that, at least when an S-1
or S-1c model is estimated in practice, the further specific factors are related to the specific true
score variance of the reference domain, contradicting the interpretation given by Eid et al. (2017).
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a domain that is not shared with the reference domain. (Eid et al., 2017,
p. 550)

These model variants do not only come with theoretical reasons to select them but
also have an interesting statistical relationship to one another.

2.2.2 Nesting structure

The relationship between the model variants needs to be understood to interpret the
variants and the differences in their model fit to a given dataset. Figure 3 (Petras,
2024a, fig. 2) shows the nesting structure of the bi-factor model variants and the
related higher-order and group-factor models.

Figure 3

Nesting structure of confirmatory factor models.
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Most of these nesting relationships have been established previously in the literature.
Trivially, the higher-order factor model imposes a structure on the correlations between
the first-order factors, thereby restricting the group-factor model in cases with four
or more first-order factors. Similarly, the S bi-factor model can be restricted to be
equivalent to the higher-order factor model by imposing a proportionality constraint
on the factor loadings (Yung et al., 1999). The S-1 bi-factor model is nested trivially in
both the S and the S-1c bi-factor model since it is defined by restrictions of individual
parameters relative to the other two variants. The relationship between the S-1c model
and the higher-order model is less trivial and has not been described previously. Petras
(2024a) shows how an S-1c parameterization can be computed for every higher-order
factor model, meaning that the higher-order factor model is nested in the S-1c bi-factor
model variant. The exact restrictions that need to be imposed on the S-1c model to
be equivalent to the higher-order model are non-trivial, though. The more complex
relationship between the S and S-1c variants is further explored in Petras (2024a).

3 Challenges in bi-factor model research

3.1 Weak specific factors and loadings
Petras, N., & Meiser, T. (2024) Problems of domain factors with small factor loadings

in bi-factor models, Multivariate Behavioral Research, 59 (1), 123-147. https:
//doi.org/10.1080/00273171.2023.2228757

In the first article of this dissertation, I tackle the previously reported problem of
weak specific factors and loadings in bi-factor model applications (Eid et al., 2017).
The original work by Eid et al. (2017) suggests the model’s improper account of
the sampling structure (specific domains selected and not randomly sampled) was
responsible for this problem but does not systematically consider other reasons for
estimates of factor variances and factor loadings to be surprisingly small (or even
negative). In their analysis of the prevalence and role of non-significant estimates,
they do not consider the statistical power underlying the significance tests or the true
strength of the factors in the population. In this context, it is important to realize
that bi-factor model applications for many measures analyzed with a bi-factor model
were developed using a different model, such as a group-factor model derived from
exploratory factor analysis. Therefore, the expectation that the bi-factor model should
yield substantial estimates of specific factor loadings should be questioned in those

https://doi.org/10.1080/00273171.2023.2228757
https://doi.org/10.1080/00273171.2023.2228757
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cases. The current work brings these two observations together. The meta-analysis
of factor loading estimates shows that non-significant and negative specific factor
loadings are part of a larger pattern that can be explained by the way questionnaire
items were most likely selected. As a meaningful general metric of the strength of a
factor, I propose to use the sum of squared standardized loadings. The simulation
study shows that the statistical power to detect a specific factor is usually sufficient,
even if the factor is rather weak. This is especially true when using the most relevant
but rarely computed likelihood ratio test that compares the model with the factor
in question to the model without it. The simulation study shows that it is relevant
to consider simulation results even if analytical power estimates (Moshagen, 2021;
Moshagen & Bader, 2023) are available. The frequent occurrence of non-convergence
can lower the effective statistical power substantially below the analytically computed
value, especially if cases of non-convergence are counted as failures in combination
with the errors (β). Another previously undiscussed issue regarding weak factors
is the reliability of estimates: it is often not enough to show that a parameter is
non-zero since researchers also want to interpret the estimated values of factor loadings,
factor variances, and factor scores. The simulation shows that the factor scores of
weak specific factors are relatively unreliable regardless of sample size, and that weak
factors in the population can lead to a much higher frequency of anomalous results,
such as non-convergence and negative variance estimates. For loadings, however,
low reliability cannot explain small estimates as random variations from supposedly
substantial population parameters, corroborating the meta-analysis finding of many
near-zero factor loadings. The S-1 and S-1c model variants, which were suggested to
fix the problem of irregular estimates and non-significant estimates, showed almost
no difference on any metric compared to the standard S variant. The only major
difference is that defining a superfluous specific factor, which is more likely to happen
in the S variant than in the other variants, produces more convergence problems
than defining one factor too few. The main conclusion from this work is that the
crucial step to obtain a useful bi-factor model with substantial parameter estimates
is to provide adequate data from measures that are designed for the use of the
bi-factor model. This issue would be less subtle if measures were developed with
strict adherence to formalized theories that include a precise understanding of the
constructs’ dimensionality. Moreover, several guidelines for planning, troubleshooting,
and interpreting bi-factor models are derived for applied research. This work does not
invalidate the suggested S-1 or S-1c models, since they still offer a more straightforward
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interpretation whenever domains are specifically selected (i.e. not at random).

3.2 Extreme flexibility
Petras, N. (2024a). When factor variance and factor correlations are interchangeable:

The relationship between the bi-factor model variants [manuscript submitted for
publication]. Department of Psychology, University of Mannheim.

In the second article, I examine the high flexibility of the bi-factor model. A preference
for the bi-factor model has previously been reported in studies on the selection between
the bi-factor model and competing models (Bonifay & Cai, 2017; Greene et al., 2019).
Bader and Moshagen (2022) clarified that fit indices are not biased in favor of the
standard bi-factor model, but the bi-factor model is flexible to imitate other models.
It is thereby an equally valid account of the data. The second article investigates
how well the different bi-factor model variants can be distinguished and how their
estimates behave when they attempt to imitate each other.

The current work adds to the understanding of the nesting structure (Figure
3, Petras, 2024a) by proving that the higher-order model is nested within the S-1c
bi-factor model. Therefore, the crucial remaining comparison involves the non-nested
S and S-1c models. These add to the more restricted S-1 and higher-order models in
two different ways. Compared to the S-1 variant, the S variant adds a specific factor,
whereas the S-1c variant adds freely estimated correlations between the specific factors.
This can be equivalent in the special case of the higher-order model. Therefore, the
corresponding model parameters in the different models change their values – and
thereby their interpretation – when swapping between the parameterizations. For
example, reparameterizing a higher-order model as an S-1c bi-factor model produces
positive correlations between the domain-specific factors. These correlations are all
zero in the equivalent parameterization as an S model. On the other hand, the
restricted S-parameterization defines a whole factor that completely disappears in the
equivalent S-1c-parameterization.

The reported simulation study examines the relationship between the S and S-
1c variants beyond cases in which the different variants provide strictly equivalent
solutions. This simulation shows that fit indices are very limited in distinguishing the
S and S-1c models because the variants can imitate each other well. It indicates that
the S-1c variant is even more flexible than the S variant. The simulation highlights the
importance of the analytical results on the nesting structure: the parameter estimates
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when swapping from S to S-1c generally change in the same direction as in the special
case of the higher-order factor model. When swapping from S-1c to S, the simulation
shows that a “ghost” factor for the reference domain is created and that its meaning
depends on the correlations between the specific factors of the initial S-1c model.

In sum, the mutual imitation of bi-factor model variants can produce several
variations in the estimates of corresponding parameters. There is a highly misleading
switch between either obtaining substantial estimates of the specific factor of the
reference domain or obtaining substantial (positive) estimates of the correlations
between the specific factors of the further domains. In some sense, this makes bi-factor
model parameter interpretation almost impossible: the statement that there is a
positive relationship between the specific factors is not generally true if a model that
fixes them to zero can explain the data just as well. Similarly, the statement that
there is shared specific variance on any particular domain is not generally true, if a
model that omits the specific factor of this domain can explain the data just as well.
This is an excellent reminder that being able to define a latent variable with a positive
variance does not prove the existence of anything in particular.

Whereas the article clearly maps the problem of excessive model flexibility, it is
hard to come up with guidelines for model selection and parameter interpretation in
applied research. From a statistical point of view, there is no clear preference for one
of the models if they fit the data equally well and make almost identical predictions.
Researchers can either make no model selection decision and report estimates in both
variants, or use other selection criteria. Eid et al. (2017) recommend to use S-1, S-1c,
or S*I-1 models to obtain a better interpretable general factor whenever the specific
domains are not randomly sampled. This recommendation serves to clearly define
the involved variables as random veriables on an explicated set of outcomes (Eid et
al., 2017), but it does not provide a clear interpretation of all its parameters. The
current work uncovers that the meaning of parameters in such a flexible model is
fundamentally fuzzy, because patterns in the data can be mapped on different parts
of the model. To understand the consequences of model selection on the parameter
estimates, the article provides a detailed analysis of the relationships between the
parameters of the two variants and shows that all parameters of the model change in
value systematically when swapping between variants.

This work has an important connection to the weak factor problem discussed
in the first article of this dissertation. Because the size of the parameter estimates
varies substantially depending on the choice of model variant, there can be relevant
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differences in statistical power of the respective hypothesis tests. This is especially
problematic if the true population value of the parameter is small. Therefore, one
of the variants can be superior to the others in generating a full set of significant
specific factor loading estimates. As noted in this second article, this explains such
a finding in the simulation study by Geiser et al. (2015), which has previously been
attributed to the model’s supposedly inferior representation of the sampling process.
However, the simulation from the first article could not show a general superiority
of one of the variants across a large variety of cases. In addition, the way the S and
S-1c model mutually imitate each other offers an alternative interpretation of weak
domain factors: potentially, they are methodological artifacts of the choice against
correlations between the further specific factors.

3.3 Schematic restrictions
Petras, N. (2024b). Building hierarchically structured factor models with systematically

selected residual correlations [manuscript submitted for publication]. Department
of Psychology, University of Mannheim.

Bi-factor models are usually used schematically, starting with one of the model variants.
Yet, there is no statistical or empirical necessity to only consider models in which all
observed variables load on a specific factor or belong to a specifically chosen reference
domain. Only if the measure is designed to generate this data structure this default
makes sense. The highly attractive hierarchically structured modeling approach of
the bi-factor model does not need to be limited in this way. In the third article, I
propose an alternative four-step approach: (1) choose a baseline model, (2) establish
a hierarchy of relevance among potential residual correlations, (3) choose a number of
residual correlations, and (4) estimate the final model on a new sample. The suggested
approach systematically solves several problems that plague previous research. In the
first step, the default baseline model is a single-factor model, and only those specific
factors that are clearly and demonstrably relevant, are added. These factors should be
specified based on prior knowledge or key assumptions of the study design to provide
a clear interpretation. They should be tested to not only improve the overall model
fit when included but also to produce substantial and interpretable factor loading
estimates. This avoids specifying factors merely for the sake of the completeness of
the model structure. In the second step, the hierarchy of relevance among residual
correlations is obtained using Bayesian lasso regularization (Pan et al., 2017; see
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also Park & Casella, 2008), which is free of several problems of alternative methods,
such as the iterative nature of modification indices. The genius of the Bayesian lasso
regularization for residual correlations as introduced by Pan et al. (2017) lies in the
possibility of estimating all of them at the same time, which is strictly impossible
in the frequentist framework, because a model with that many parameters is not
identified there. In the third step, the parsimony of the final model is optimized by
selecting only the relevant residual correlations (cf. Pan et al., 2017; L. Zhang, Pan,
& Ip, 2021). The third article examines the reproducibility of this procedure in a
multiverse analysis, showing that it generally yields statistically meaningful results.
In the fourth step, the final model is then estimated on a new (sub-)sample, which
combines the advantages of confirmatory and exploratory analysis. Other than specific
factors in the standard bi-factor model, item pairs with correlated residuals can be
overlapping (similar to cross-loadings), which may better represent the complexity of
typical questionnaire items. The application example presented in the third article
shows that this flexibility offers not only a more plausible model of the data but
can also outperform the standard bi-factor approach in both parsimony and model
fit simultaneously. The general factor of the final model can be interpreted in the
same way that a general factor of a bi-factor model is interpreted: as a measure of
the target construct that is clear of domain-specific or item-specific influences. The
resulting model has a hierarchical structure, in which the residual correlations can be
interpreted as specific variance portions – similar to specific factors in the bi-factor
model.

This approach is an important alternative to the inclusion of weak specific factors,
as discussed in the first article. It discourages researchers from specifying factors for
the sake of completeness and encourages them to come up with the interpretation of
potential specific factors before specifying any. In addition, the systematic selection of
residual correlations can easily replace weak specific factors that are merely glorified
residual correlations with very small factor loadings on all but two of their items. The
approach also offers a new, flexible twist on the selection of bi-factor model variants.
Especially for applications that aim to optimize the statistical representation of a
given measure (instead of optimizing the measure), the suggested procedure provides
a pathway to find and test a well-fitting, parsimonious model with a well-interpretable
structure.
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4 Improving bi-factor model applications
The bi-factor model is a promising approach to psychological measurement and theory
testing because it neatly distinguishes the important parts of psychological constructs.
The current work highlights three key challenges regarding the bi-factor model that
are likely to impede theory testing if the bi-factor model is applied without considering
them.

4.1 Recommendations
Researchers can improve the measurement of psychological constructs by considering
the expected strength of specific factors a priori, with a sum of squared (standardized)
loadings greater than one as a good benchmark for usable specific factors (Petras
& Meiser, 2024). Compared to current practice, this means that a lot of measures
need to be extended or revised if researchers want to test theories regarding specific
factors, such as content domains in personality scales. In Petras and Meiser (2024), it
was also shown that a switch to the S-1 model does little to nothing to address the
problem of specific factors being weak and should only be considered for reasons of
interpretability. The frequent occurrence of weak specific factors can not only be seen
as a limitation of current measures. It also is a hint that theories including them may
need to be questioned. This adds another concern resulting from the lack of formalized
definitions. Measures of the same construct frequently define different subdomains
and sample different item content (e.g., Fried, 2017), a symptom of inconsistent theory
and terminology (“jingle-fallacy,” Flake & Fried, 2020). This problem is especially
visible on the subscale level: measures of (supposedly) the same construct define a
jungle of facets (e.g. of the Big Five personality traits) with inconsistent terminology
and coverage across measures. Therefore, additional theoretical work may improve
the statistical properties of psychological measures by weeding out inconsistent facets.

Researchers can improve the measurement of psychological constructs by providing
theoretical arguments for the use of a particular bi-factor model variant (as in Eid
et al., 2017). When in doubt, it is prudent to estimate multiple variants to check
the sensitivity of conclusions to variations in the modeling approach. These two
points are relevant, as the S and S-1c variants of the bi-factor model can imitate each
other exceptionally well and the flexibility of the bi-factor model means that its fit
is a bad indicator of the model structure reflecting the data-generating process in
the population (Petras, 2024a). All seemingly equivalent parameters systematically
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change their values when switching between the model variants, which means that all
hypothesis tests are potentially sensitive to the choice of variant.

Researchers can improve the measurement of psychological constructs by carefully
considering the structure of the construct (and measure) at the specific level of
a hierarchically structured factor model. Petras (2024b) offers a comprehensive
new approach to model specification that flexibly builds on the schematic bi-factor
model variants. This approach avoids nonsensical “hypothesis” tests regarding factors
that were specified merely for completeness’ sake and whose meaning is unclear.
Furthermore, it offers a data-driven approach to identify relevant pairwise relationships
between observed variables. To select a fitting modeling approach, researchers need
to realize what their main goal is: to obtain a model (or measure) that closely
resembles a theorized structure, or to provide a well-fitting account of the data. The
proposed approach strikes a balance by explicitly accommodating both. It meaningfully
represents the construct by exclusively extracting theoretically relevant factors in a
rigid a priori model structure (baseline model). It also assures that the final model
fits the data closely (yet parsimoniously), using a flexible, data-driven selection of
residual correlations. In the empirical example, the proposed approach yielded a final
model that fitted the data better than the respective full bi-factor model and at the
same time was more parsimonious. This shows the potential for improvement when
modeling the domain-specific level of psychological constructs with this approach.
Alternatively, this finding can be understood to show the potential to improve the
measure towards a more meaningful subscale structure.

The proposed new approach can be useful in the test of theories on the general
trait, even if the loading pattern on the general factor may not change compared to the
standard bi-factor model. Accurately modeling the specific relationships between the
observed variables makes it possible to judge the importance and meaning of otherwise
unexplored influences that lead to an unexplained bad fit in simpler accounts of the
data and contribute to ill-defined specific factors in the standard bi-factor model.
Ideally, only a few easily interpretable residual correlations are found so that the
general trait can be interpreted with confidence. Exploratory Structural Equation
Modeling (ESEM, Asparouhov & Muthén, 2009; Marsh et al., 2010, 2014) offers some
of the same advantages. In comparison, the suggested approach in Petras (2024b)
leads to a much more parsimonious model by drawing a line between meaningfully
strong relationships that should be included as parameters in the structure of the
model, and parameters that would only catch noise and are therefore excluded.
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For the selection of models, the previous bi-factor literature lists several schematic
variants of the model as options (S, S-1, S-1c, higher-order model) and suggests that
the interpretation resulting from the sampling structure (randomly selected versus
picked domains) is the major reason for selecting between variants (Eid et al., 2017).
The current work takes a different perspective: it focuses on an accurate and sparse
description of a measure’s content beyond the general trait. An important first step is
to abandon the exclusive use of complete bi-factor models in cases where the inclusion
of some of the specific factors (or the allocation of some of the observed variables
to the factors) is highly questionable (Petras & Meiser, 2024). Secondly, a sparse
selection of residual correlations can be used instead of – or in combination with –
specific factors to represent specific variance efficiently and flexibly (Petras, 2024b).
If the design of the measure and the data merit the use of a schematic variant of
the bi-factor model, researchers should be aware of the consequences of their choice.
Whereas the S-1 and S-1c models do offer a straightforward interpretation (Eid et al.,
2017), their statistical relationship to the S model is complex (Petras, 2024a).

Beyond model fit indices, the judgment of the fit of a bi-factor model (or hierar-
chically structured factor model) to the data should include an interpretation of the
parameter estimates. A good model fit is only as informative as the restrictions of
the model. Due to the flexible, relatively unrestricted nature of the bi-factor model,
drawing conclusions about the true data-generating process is very limited (Petras,
2024a), especially when traditional cut-offs for a “good” model fit (Hu & Bentler, 1999)
are used. It is important to keep in mind that the more flexible a model is, the less
informative its fit to the data is about the data-generating process in the population
(Roberts & Pashler, 2000). An excessively flexible model can imitate almost any
data-generating process. Specifically, the S-1c and S bifactor models imitate each
other almost perfectly (Petras, 2024a), despite leading to different conclusions about
the existence and interrelationships of specific factors. Even less informative is model
fit in a Bayesian lasso-informed model as proposed in (Petras, 2024b). The process
that leads to the selection of the final model almost guarantees its good fit to the
data. To understand if there is a misfit between the structure of the model and the
data-generating process, it is then more relevant to examine the estimates themselves.
An extreme example of that would be a bi-factor model that fits the data well but
produces near-zero estimates on the general factor loadings for one or more subscales
(Bornovalova et al., 2020, fig. 1B). The model fit may tempt researchers to accept that
the bi-factor structure represents the population well, but the estimates indicate that
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one or more subscales do not measure the target construct’s common core at all, which
is usually an uninterpretable result regarding the to-be-tested theory. Similarly, model
fit indices do not indicate if specific content (such as a pair of correlated residuals) is
desired to be in the measure. it merely indicates how well the model fits the data if the
specific content is accounted for. To summarize, the inherent flexibility of the proposed
bi-factor approaches can result in a close fit of the model to a very badly designed
measure. Therefore, in all the discussed models, researchers should closely inspect
the model parameter estimates to judge if the model structure represents the data
well (see also Watts et al., 2019). The proposed approach in Petras (2024b) avoids at
least some misleading conclusions based on model fit by avoiding the specification of
superfluous specific factors or residual correlations.

4.2 Limitations and outlook
The current work leaves some open questions and sparks new ones. Although Petras
(2024a) provides a better understanding of the relationship between the bi-factor
model variants, documenting their inherent flexibility to imitate each other doesn’t
fully resolve the issue. In light of the growing popularity of the bi-factor model
and even more flexible approaches, such as exploratory structural equation modeling
(ESEM, Asparouhov & Muthén, 2009; Marsh et al., 2010, 2014), it seems relevant
to reconsider and build on the work by Roberts and Pashler (2000). Roberts and
Pashler (2000) raise the concern that the structure of very flexible models may not
be as meaningful as researchers think – at least not due to their excellent model fit,
because it is known a priori that such flexible models will fit the data well. A key focus
of future research may be the identification of relevant model restrictions within the
discussed models that can be empirically tested to establish a better understanding
of the construct and to improve measures. Furthermore, Petras and Meiser (2024)
and Petras (2024a) exclusively focussed on idealized simulated data with continuously
(normally) distributed traits and errors. It remains open, how well the conclusions
generalize to other cases, such as item bi-factor models of categorical data.

The current work identified several underlying, difficult, and unresolved statistical
problems. The work on the reliability and bias in bi-factor scores (Petras, 2024a;
Petras & Meiser, 2024) has uncovered that scores are systematically biased relative
to one another. It remains unclear if this generalizes to alternatives of the computed
regression factor scores, such as plausible values (Wu, 2005). This finding adds to the
list of easily overlooked challenges regarding factor scores (for an overview, see Lechner



4 Improving bi-factor model applications 21

et al., 2021). Furthermore, the problem of setting an inclusion criterion for residual
correlations using the Bayesian lasso has previously been tackled using simulation
studies with idealized data (L. Zhang, Pan, & Ip, 2021). The replication attempts
in the current work show that any cut-off will likely produce limited replicability
of inclusions. The study highlights the need for a principled criterion instead of
a conventional rule of thumb (Petras, 2024b). Finally, the usefulness of fit indices
that account for parsimony was very limited and riddled with contradictions when
comparing a large number of models with different numbers of residual correlations
Petras (2024b). This showcases that the current practice of using multiple indices in
parallel is an insufficient band-aid fix in the unsolved problem of balancing fit and
parsimony. This issue complicates not only the proposed modeling approach.

Given the discussed issues with bi-factor models, researchers need to report their
studies in appropriate detail. It is important to provide at least the covariance matrix
of the observed variables, or better, the full raw data. This is not only necessary for
meta-research like the meta-analysis in Petras and Meiser (2024). Every study that
does not report the covariance matrix or the data forces researchers to collect new data
for every new statistical method or robustness check, slowing down applied research,
research on scale validation, and meta-research massively. There have been several
massive shifts in the statistical approach in the past (e.g. from a strong preference for
group-factor models towards bi-factor models), but the closed-data research culture
has prevented researchers from retroactively applying new state-of-the-art methods to
many publications. Furthermore, researchers should report the model estimates of
bi-factor models clearly in the main article and discuss the size of factor loadings and
strength of factors when discussing the measurement model. As discussed above, the
interpretability of bi-factor models hinges as much on the pattern of estimates as on
the model’s fit. When choosing a model variant and allocating variables to factors at
the specific level, researchers need to reflect and report their rationale. The current
work has shown that it is often problematic to merely adopt the allocation of variables
to factors from a group-factor model to a bi-factor model (Petras & Meiser, 2024).
Petras (2024b) provides an alternative approach to the use of the classic bi-factor
model by allowing a more informed specification at the specific level. In any of these
cases, it is crucial to clearly state why the specific level of a hierarchically structured
model is defined in a particular way and how the meaning of specific factors is derived.

It is just as important to focus on improving measures as on improving statistical
models. Besides fine-tuning the model to a particular version of the measure, the
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measure can also be fine-tuned itself. Especially if researchers aim to measure domain-
specific traits reliably, for example, to test more precise theories about relationships
between psychological constructs, improvements and extensions of existing measures
are necessary (Petras & Meiser, 2024). The possibility to model almost anything with
flexible approaches, such as the approach proposed in (Petras, 2024b), may tempt
researchers to prioritize details in existing measures over the more important goal of
developing good theories and measures. For this purpose, the hierarchical structure
in the bi-factor model and related models is particularly useful, because it allows
researchers to identify and isolate wanted and unwanted specific content beyond the
core of the target construct. Such specific content may either be purposefully selected
for or may be eliminated from a measure during item selection. Therefore, it may
be very fruitful to thoroughly consider the potential structure of a measure at the
specific level already during the writing of items and use bi-factor models to select
items with the desired content.

Future research may consider the question of how strong and reliable a specific
factor needs to be to be useful for the structural part of a structural equation model.
One major application of the bi-factor model is to disentangle the relationships of the
parts of a psychological construct with other variables, capitalizing on its orthogonally
defined factors to test differentiated theories of the measured construct. The specific
factors’ usefulness in such a scenario would be a good indicator to judge how measures
need to be designed. Petras and Meiser (2024) shows clearly that this is a concern:
bi-factor model applications frequently feature specific factors that are too weak (or
too weakly related to some of their items) to be properly interpreted.

Finally, the development and integration of software need more attention. The
proposed approach in Petras (2024b) is implemented as a modified version of the
custom-code Gibbs-sampler by Pan et al. (2017), which has been further developed
independently by others with a focus on generating software-specific MPlus syntax (L.
Zhang, Pan, Dubé, et al., 2021). Neither code is integrated with other software, yet,
such as the massively popular lavaan package (Rosseel, 2012) for SEM in R. lavaan
automatically computes modification indices for residual correlation selection and is
not yet linked to the arguably much superior Bayesian lasso approach by Pan et al.
(2017). Similarly, the use of the Wald-test is much simpler for users of lavaan, than
the use of the LRT. This may contribute to its widespread use: in the meta-analysis
reported in Petras and Meiser (2024), there was not a single application example
in which the superior (conceptually and performance-wise) LRT was performed, but
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many papers reported results of the Wald-test of factor variances. Updating software
to provide easy access to the discussed and proposed advanced statistical methods to
a broad user base is a necessary next step after sharing these ideas conceptually in
journal publications.

5 Conclusion
The bi-factor model is popular in psychological measurement for good reasons. It
provides a compelling representation of psychological constructs. Its distinction
between general and specific variance enables researchers to answer nuanced research
questions. On the other hand, the current work identifies three major concerns
regarding the bi-factor model and its routine application. In sum, the work shows that
a successful test of nuanced theories via hierarchically structured factor models, such as
the bi-factor model, requires a more advanced understanding of the statistical oddities
of the bi-factor model, as provided in the first two articles (Petras, 2024a; Petras
& Meiser, 2024). Furthermore, it became clear that there are practical challenges
beyond the purely statistical discussion of the model variants. The current work
extends the statistical toolkit and provides a go-to approach (Petras, 2024b) but also
highlights that research on the preconditions of meaningful hypothesis tests is necessary.
Activities, such as the extension and revision of measures and the development of
theoretical arguments that can decide between competing model specifications, are
necessary to test meaningful hypotheses about complex, unobservable psychological
constructs.
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Problems of Domain Factors with Small Factor Loadings in Bi-Factor Models

Nils Petras and Thorsten Meiser

University of Mannheim

ABSTRACT
Many measurement designs produce domain factors with small variances and factor load-
ings. The current study investigates the cause, prevalence, and problematic consequences of
such domain factors. We collected a meta-analytic sample of empirical applications, con-
ducted a simulation study on statistical power and estimation precision, and provide a
reanalysis of an empirical example. The meta-analysis shows that about a quarter of all
standardized domain factor loadings is in the range of �:2 < k < :2 and about a third of all
domains is measured by five or fewer indicators, resulting in small factor variances. The
simulation study examines the associated difficulties concerning statistical power, trait recov-
ery, irregular estimates, and estimation precision for a range of such realistic cases. The
empirical example illustrates the challenge to develop measures that produce clearly inter-
pretable domain factors. Study planning and interpretation need to take the (expected) sum
of squared factor loadings per domain factor into account. This is relevant even if influences
of domain factors are desired to be small, and equally applies to different model variants.
We propose several strategies for how researchers may better unlock the bifactor model’s
full potential and clarify its interpretation.

KEYWORDS
bi-factor model; statistical
power; specific factors; bi-
factor(S-1) model

Introduction

Bi-factor models (Holzinger & Swineford, 1937) have
become increasingly popular in psychological research
over the past years (Reise, 2012; Zhang et al., 2021).
One major reason is their ability to distinguish
domain-specific variation in item responses from a
general trait. Other than traditional models with a set
of correlated factors, bi-factor models include an over-
all trait across different content domains, raters, tasks,
or otherwise grouped indicators. This trait is of focal
interest in many studies, for example as a general
measure of quality of life (Chen et al., 2006), intelli-
gence (Beaujean, 2015; Gignac & Watkins, 2013; Keith
& Reynolds, 2018), or psychopathology (“p-factor,”
Caspi et al., 2014; Lahey et al., 2012; Patalay et al.,
2015; Watts et al., 2019).

Domain factors capture additional, domain-specific
variation. Critically, many common study designs
entail weak domain factors (small factor variance). In
the following, we consider domain factors to be
“weak” to the degree that appropriate statistical tests
for their detection have low power, they provide unre-
liable trait estimates, or their related estimates are

small and therefore difficult to interpret. Weak
domain factors are abundant in the literature. A
review of articles from 2013 and 2014 found non-
significant factor loadings or non-significant domain
factor variances (“collapsing factors”) in 47 of 82
articles (57%, Eid et al., 2017).

Whereas some studies merely account for domain-
specific variation to obtain a “clean” measure of the
general trait, others are concerned with the domain
factors themselves. In validation studies, the presence
of certain domain factors indicates a valid measure-
ment design. Domain factor loadings indicate if indi-
cators are valid exemplars of their assigned domain.
In substantive research, the unique association of the
general factor and the domain factors with third varia-
bles can be independently studied. In this way, struc-
tural equation models (SEM) can test increasingly
differentiated theories within complex nomological
nets (Eid et al., 2018; Zhang et al., 2021). Finally,
practitioners may be interested in domain-specific
individual scores (DeMars, 2013; Reise et al., 2013).
The distinction between a general factor and domain
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factors offers a whole new perspective on psycho-
logical constructs and their relationships.

In the following section, we introduce the bi-factor
model and its notation. After that follows an investi-
gation of the causes, prevalence, and consequences of
weak domain factors. The role of statistical power and
the strength of domain factors in confirmatory bi-fac-
tor models has not yet been addressed in the litera-
ture. Although there are results on the recovery of
loading matrixes in exploratory bi-factor analysis
(Giordano & Waller, 2020), to our knowledge, the
problem of weak domain factors has not been target-
edly researched in the bi-factor EFA literature, either.
Therefore, this study aims to assess which conditions
are necessary to reliably detect and estimate domain
factors and their loadings and compare these to real
studies. It will be discussed how awareness of poten-
tially weak domain factors when designing, choosing,
or interpreting measures can drastically improve the
utility of bi-factor model applications.

Bi-factor models

Bi-factor models use a general factor across all indica-
tors and a set of domain factors for sets of related
indicators (Figure 1). In the symmetrical model vari-
ant (S), every indicator loads on both a general factor
gg and one domain factor gs.

The S bi-factor model of the response vector Yi of
case i is shown in Equation (1). K is the matrix of fac-
tor loadings and gi the vector of latent trait values of
case i. The error values in the vector ei are assumed
to be independently and normally distributed for each
indicator variable Y.

Yi ¼ Kgi þ ei (1)

Equation (2) shows the characteristic loading pat-
tern of bi-factor models: all indicators load on the
general factor gg (first column of K) and on one of
the k domain factors (further columns). So ksjs is the
loading of the j’th item of domain s on the domain
factor gs and ksjg its loading on the general factor gg.

Yi ¼

k11g k111 0 � � � 0
k12g k121 0 � � � 0
k13g k131 0 � � � 0

� � � � � � � � � . .
. � � �

k21g 0 k212 � � � 0
k22g 0 k222 � � � 0
k23g 0 k232 � � � 0

� � � � � � � � � . .
. � � �

kkmg 0 0 � � � kkmk

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

gig
gi1
gi2
� � �
gik

0
BBBB@

1
CCCCA

þ ei

(2)

Since all factors of the model are orthogonal in the
S variant, the variance-covariance matrix U of its fac-
tors is a diagonal matrix. In the S-1 bi-factor model
variant proposed by Eid et al. (2017), one domain fac-
tor is omitted (cf. Figure 1). The presence of the refer-
ence domain, whose indicators exclusively load on gg,
enables a proper variant of the bi-factor model in
which the remaining domain factors may correlate
freely (S-1c).1 In the S-1 and S-1c models, gg is

Figure 1. Bi-factor model path diagram with a general trait gg and four domain traits (g1�4, S model); only if some items exclu-
sively load on the general factor (e.g. omitted dashed g1, S-1 model), freely estimating correlations between domains is a reason-
able option (dotted double-headed arrows, S-1c model).

1For a discussion of problems regarding the estimation of correlated
domain factors in the S model see Markon (2019). Conceptually, a full set
of positively correlated domain factors (¼ correlations between all
indicators) and the general factor are to some degree redundant, leading
to problems in both estimation and interpretation.
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interpreted as the common trait as assessed with the
reference domain. In the terminology of classical test
theory (CTT, Novick, 1966), in S-1 models the general
trait combines the common true score of all domains
and the true score specific to the reference domain
(Eid et al., 2017). Compared to the S model, the S-1
and S-1c models therefore provide improved clarity in
the interpretation of gg if domains are not randomly
sampled. If the domains are a meaningful selection, as
in most multifaceted psychological measures,
“defining the latent variables of the [S bi-factor and
second-order] models [… ] as random variables on a
well explicated set of possible outcomes” (Eid et al.,
2017, p. 548) could not be achieved.

To examine problems with weak domain factors, a
measure of their strength is needed. In the following,
we use the sum of squared loadings SSk in the fully
standardized bi-factor model with indicator and trait
variances equal to one (Equation (3)).

SSkðgsÞ ¼
Xm
j¼1

k2sjs (3)

This quantity measures the total share of indicator
variance of the factor. SSk ¼ 1 means that the factor
explains a total indicator variance equal to the vari-
ance of one indicator.2

To better understand the influence of each factor,
the variance of each indicator Ysj can be decomposed
into three components: consistency, specificity, and
error. Note that the simplified Equation (4) assumes a
fully standardized model. The first term k2sjg is the con-
sistency of the indicator: the proportion of variance
due to the general trait gg. The second term k2sjs is the
specificity of the indicator: the proportion of variance
due to the domain-specific trait gs. The remaining error
is assumed to be independently, randomly, and nor-
mally distributed with a variance of r2esj : The reliability
(Rel) of an indicator is the proportion of its variance
that is explained by the latent variables.

RelðYsjÞ ¼ k2sjg þ k2sjs ¼ 1� r2esj (4)

Weak and “anomalous” domain factors

Weak and anomalous domain factors are a conse-
quence of the structure of bi-factor models and the

typical construction process of psychological measures.
There are several reasons why weak domain factors—
desired or not—should be expected in practical
applications:

First, the measurement of domain factors and the
general factor compete for each indicator; indicator
reliability is split into consistency and specificity
(Equation (4)). Standardized factor loadings for both
are typically lower compared to models with indica-
tors relating to only one factor each. In indicators
with high consistency, the ratio of domain factor vari-
ance to error variance can be small, even though the
reliability is high. It is a frequent intention to use reli-
able total scores as the main criterion when applying
measures in practice (e.g., conscientiousness and gen-
eral intelligence—rather than their facets—in person-
nel selection). Even if another purpose of a measure is
to discern different parts of a construct (e.g., different
facets of a personality trait or different aspects of
intelligence), a likely concern is that the indicator still
measures the overall construct (e.g., the personality
trait or general intelligence). A key challenge is that
factor loadings in correlated-factor models confound
the relationship of indicators to general variance
(shared among all domains) and domain-specific vari-
ance. Therefore, indicators without domain-specific
variance are not automatically disqualified. The goal
conflict between measuring a general trait and
domain-specific variance may be more or less likely to
occur and more or less easy to solve depending on
the nature of the construct and the other desired
properties of the measure.

Second, each domain consists of a fraction of the
indicators of the overall measure. Measures based on
a correlated-factor model had their number of indica-
tors chosen based on stronger factors, which include a
substantial portion of the general trait from the bi-
factor model. Factors in the correlated-factor model
contribute to the general factor in the bi-factor model
to the extent of their intercorrelation. The leftover
domain-specific variance can be tiny. Especially prob-
lematic are short measures which were reduced to a
barely acceptable length. They may measure a general
trait or a set of correlated factors efficiently (shortened
as much as possible without their reliability falling
below a target value) but fail to produce reliable
domain-specific factors in bi-factor models. As we will
show in more detail below, if researchers choose the
desired length of a measure without explicitly consid-
ering the consequences for domain factor measure-
ment, they are in danger of choosing too few
indicators to properly recover them.

2In Exploratory Factor Analysis (EFA) and Principal Component Analysis
(PCA), the eigenvalues of the covariance matrix are used as a decision
criterion for the number of factors to include. In PCA, these are the SSk
values of the unrotated components and in EFA this relationship holds
approximately. Therefore, the effective inclusion criterion is usually
near SSk ¼ 1:
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For these reasons, one should expect a substantial
portion of domain factors to have few and small
factor loadings (ks < :2) and therefore little variance—
even before considering the substantive research context.
Given that the surge in popularity of the bi-factor
model (Reise, 2012; Zhang et al., 2021) is in large parts
based on reanalyzes of older measures, this disconnect
of the listed particularities of the bi-factor model from
the development process of the measures should be
expected to lead to weak domain factors and small
domain-factor loadings. Whereas some research areas
may welcome such outcomes—potentially, because they
adequately reflect the trait of interest—we argue that
obtaining weak domain factors should not be an acci-
dent. Researchers should be aware of this issue before
conducting their research.

Indeed, Eid et al. (2017) showed an abundance of
problematic empirical examples. Not only were there
many domain factor loadings that did not significantly
differ from zero. Multiple domain factors “collapsed”
entirely, showing non-significant variance estimates or
a set of non-significant factor loadings. Some extreme
cases had negative factor variance estimates.3 This led
many researchers to question or modify their applica-
tion of the bi-factor model (see also Watts et al.,
2019) and Eid et al. (2017) to speak of “anomalous
results”. The prevalence of studies with at least one
anomaly was 61% in their sample of articles that used
a bi-factor model and were published in 2013 or 2014.
This number might have been even higher if there
were unpublished studies or researchers quietly
switched to another model.

Problematic results were one reason why Eid et al.
(2017) questioned the use of the symmetrical bi-factor
model (S). They criticized its use in cases where
domains are specifically selected (single-level sampling
structure) as opposed to randomly sampled (two-level
sampling structure). They base their argument on
Stochastic Measurement Theory (SMT, Steyer, 1989):

From the perspective of SMT, the latent variables in
traditional bifactor and related G-factor models
cannot be defined as random variables on a well
explicated random experiment when only a single-
level sampling design is considered. [… ] From the
scope of SMT many of the anomalous results
encountered in empirical applications in fact have to
be expected when domains are not randomly selected
or when they cannot be considered interchangeable.
(Eid et al., 2017, p. 555)

They consequently introduced the S-1 and S-1c
variants4 as sound alternatives from the perspective of
SMT (Eid et al., 2017, p. 550ff). They did not discuss
the effect of small domain strength, insufficient statis-
tical power, or the rate at which anomalous results
occur in S-1 models. Because they classified all non-
significant estimates of factor loadings and factor var-
iances as “anomalous” results due to badly specified
models, we consider the current work a crucial exten-
sion to their work, because it inquires into alternative
explanations. If “anomalous” results are equally fre-
quent in S and S-1 models, the consideration of the
sampling structure would be irrelevant to problems
with weak domain factors.

Statistical power, effect size, and estimation
precision

In the context of our simulation study, we consider
domain factors to be weak if they cause a problem: a)
if their associated null hypothesis cannot be rejected
(the model without the domain factor fits the data
equally well, given a finite, reasonable sample size) or
b) if they produce (comparatively) unreliable trait esti-
mates, meaning that the trait recovery (R2) is half as
good as for the general factor (or worse). One purpose
of the simulation study is to provide a range of
benchmark values for applied researchers to compare
empirical results to. To understand the surprisingly
high prevalence of null results in the literature, statis-
tical power needs to be taken into account. For power
analysis, the size of the effect needs to be known: how
large are estimates of domain factor loadings and
domain factor strengths in empirical applications?
Moreover, for many applications, it is not enough to
show that certain parameters in the model differ sig-
nificantly from 0. Sufficient model parameter estima-
tion precision and trait recovery precision are crucial
for interpretation. Especially studies that use domain
factors to predict other variables or use domain-spe-
cific scores rely on unbiased trait estimates and suffi-
cient precision.

The presence of domain-specific variance may be a
mere nuisance to the measure of the general factor for
some purposes or areas of research. In that sense,
weak or completely absent domain factors are desir-
able, as long as they do not produce irregular esti-
mates. The corresponding ideal case is a model with a
single general factor explaining all systematic variance
of the indicators. This is especially true for3Setting the factor variance instead of the first loading to 1 for model

identification would prevent that, but most likely shift the problem to
other parameters. Therefore, we considered this to be a problematic
phenomenon. 4The S�I-1 variant is not discussed here.
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applications that assign specific factors to different
raters or alternative methods of measurement (e.g.,
Frey et al., 2017; Scholz et al., 2022). These factors do
not necessarily have a useful substantive meaning.
Instead, they are influences that should be controlled
for. In such scenarios, researchers may want to avoid
strong domain factors. Nevertheless, judging their
strength and impact may be the focal point of a study.
A research question could be if two measures (or two
types of raters) can be treated as interchangeable or if
biases are introduced by choosing one over the other.
For this purpose the ability to judge the statistical
power to detect undesired domain-specific influences
and the precision with which they are captured by the
model is relevant.

The current study

To identify the necessary conditions to reliably detect
and properly estimate domain factors and their load-
ings, we conducted a simulation study. We compare
its results to the conditions in a meta-analytic sample
of empirical applications. The meta-analysis uses the
reported factor loading matrixes of the studies listed
by Eid et al. (2017). It tests our arguments on why
weak domain factors should be expected in practice:
How large are domain factor loadings and general fac-
tor loadings typically? How many indicators per
domain are used? How prevalent are reliable indica-
tors with low specificity (kg > :5 and ks < :2)? Do
null results happen in small samples (n � 300) only?

In the simulation study, the measurement design
was varied to answer the following questions: What is
the strength of a detectable domain factor under real-
istic conditions? Which measurement designs provide
a relatively adequate recovery of domain trait scores?
What are the core influences on the precision of
domain factor loading estimates? Under which
conditions occur unacceptable “anomalous” results
(negative domain factor variance estimates, non-
convergence)? Can the newly proposed model variants
(S-1 or S-1c) reduce the number of irregular results or
null results?

After presenting the meta-analysis and the simula-
tion study, we finally reuse open data to provide an
empirical example to facilitate the discussion. The fol-
lowing discussion combines the meta-analysis results
and simulation results to examine the origins and
consequences of the outlined practical challenges. We
propose several steps to maximize the utility of bi-fac-
tor applications and outline limitations.

Meta-analysis

Methods

For the analysis of factor loadings and SSk of domain
factors in the literature, we chose to adopt the list of
empirical examples in Eid et al. (2017) to enable com-
parison with their work. These studies were originally
sampled from PsycInfo using the terms “bifactor” and
“bi-factor” (all fields), and include publications from
2013 or 2014. They were coded to contain either a
non-significant domain factor variance estimate (Eid
et al., 2017, Table 1) or a non-significant domain fac-
tor loading estimate (Eid et al., 2017, Table 2). We
searched the 47 articles for S bi-factor loading
matrixes (K). Only one set of estimates per sample
was included to not bias the overall result by repeti-
tion. Two articles reported two bi-factor studies on
unique samples, which were both included. 21 articles
were excluded from subsequent analysis: incomplete
report of estimates (1), IRT model (1), exploratory
model (1), free estimation of domain factor correlations
(5), no consideration of S model variant (4), exclusive
report of adapted models (7), outlier5 (1). We recon-
structed one unreported S bi-factor model based on the
reported correlation matrix.6 Reversely keyed indicators
and domain factors were recoded for the current ana-
lysis so that all factor loadings are expected to be posi-
tive. An indicator or domain was considered reversely
keyed if the factor loadings were expected to be nega-
tive based on the study design and theory.

28 models from 26 articles were included in the
final sample (a reference list can be found in the
Appendix). Two were coded by Eid et al. (2017) as
including a non-significant domain factor variance
estimate. The other 26 were coded as including (at
least one) non-significant domain factor loading esti-
mate. The sample of models includes 3 ability tests,
21 self-report scales, and 4 other-report scales. Table 1
shows the large variety of constructs encountered in
the sampled articles (see also Eid et al., 2017 Tables 1
þ 2). We sorted the constructs into three broad cate-
gories: Clinical/health constructs include mental and
physical health related outcomes and behaviors.
Personality constructs include non-clinical, relatively
stable interindividual differences. Education constructs
are specific to the education context. Of the 28 models
in our analysis, 18 dealt with clinical/health constructs,

58 of 15 indicator reliabilities exceeded 0.948, model fit was almost
perfect (TLI ¼ 1.00, CFI ¼ 1.00, RMSEA ¼ 0.010), despite the diverse
indicator content (Blanco et al., 2014), Table 3).
6Another one had to be omitted due to irregular estimates. The error
variance of an indicator variable was estimated to be impossibly large
and negative, leading to uninterpretable results.
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6 with personality constructs, and 4 with education
constructs. A full table linking articles to constructs
can be found on the osf page of this article.

Results

Figure 2 shows the combined distribution of factor
loadings on the general factor (kg) and the domain
factor (ks) for each indicator variable.7 Indicator reli-
abilities (Rel ¼ k2g þ k2s ¼ 1� r2e ) show a large vari-
ability (M¼ 0.54, SD ¼ 0.19). This may reflect
differences in the breadth of constructs as well as dif-
ferences in the quality of the selected indicators. The

sizes of ks and kg are limited by each other: ks �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2g

q
and kg �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2s

q
: But the impact of this

negative dependency is counteracted by variation in
the indicator reliability: Low values of ks and kg coin-
cide in indicators with a large variance of the meas-
urement error. The resulting correlation between the
factor loadings is rkgks ¼ �0.35 (t ¼ �9.02, p< 0.001,

95% CI [-0.42, �0.28]). This suggests competition in
the measurement of the traits. For each indicator with
ks > kg , there are 4.30 indicators with ks < kg :
24.79% of all indicators have a very small domain fac-
tor loading (�:2 < ks < :2), but also a reasonably
high factor loading on the general factor (kg > :5).
This likely reflects indicator selection procedures that
focus on the measurement of the general trait or
maximize the internal consistency of the whole

measure. 17 of 28 models include at least one negative
factor loading estimate. Note that negatively keyed
factors and indicators were recoded before plotting, so
these are unexpected results. Figure 3 shows the num-
ber of indicators per domain. 31.25% of all domains
were measured by 5 or less indicators.

What is the resulting strength of the domain factors?
Figure 4 shows the combined distribution of domain

Table 1. Constructs in the meta-analysis sample.
area construct

clinical / health cognitive abilities (a), depression, ADHD / ODD (2, o), anxiety disorder, risk of developing a mental disorder (o), depression /
anxiety / stress, ADHD, loneliness, emotional distress, anxiety / depression, burnout, sun protection behavior, fatigue,
medically unexplained symptoms, seasonal depression, health

personality anxiety (2), callous-unemotional traits, dark triad, susceptibility to emotional contagion, disgust sensitivity, ethnic identity
education EFL listening proficiency (a), responsive teaching (o), academic skills (a), teacher self-efficacy in inclusive classrooms

Note. Numbers indicate frequencies; other codes: (o) ¼ other-report; (a) ¼ ability test; unmarked¼ self-report;” /” indicates the combination of multiple
constructs in the same model without a superordinate term; ADHD¼ attention deficit hyperactivity disorder; ODD¼ oppositional defiant disorder;
EFL¼ english as a foreign language.

Table 2. Simulation design.
parameter values

n 200, 300, 500, 1000, 2000
kg .5, .7
ks .2, .3, .4, .5, .6
m 3, 6
model variant S, S-1, S-1c

Note. Fully crossed design with 5� 2� 5� 2� 3 ¼ 300 conditions. n ¼
sample size, m ¼ number of indicators per domain.

Figure 2. Fully standardized factor loadings of individual indi-
cator variables from 28 S bi-factor models; dashed lines indi-
cate simulation conditions.

Figure 3. m¼ number of indicators per domain from 28 S bi-
factor models; filled bars mark simulation conditions; for some
indicators it was unclear if their loadings were fixed or esti-
mated at 0.00.

7One indicator was excluded from analysis due to an impossible
combination of reported standardized factor loadings (ks ¼ 0.98,
kg ¼ 0.59).
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factor SSk and sample sizes. 52.50% of factors have
SSk < 1, and 16.25% have SSk < 0:5: 26 of 28 models
were included because of a non-significant domain factor
loading, but most of them show at least one whole weak
domain factor (if judged by SSk < 1, more detailed dis-
cussion below). Weak domain factors could be the prod-
uct of noise in small samples even if the true underlying
factor is strong in the population. Figure 4 shows that a
lack of power due to insufficient sample size alone can-
not explain weak domain factors: they occur across all
sample sizes. In conclusion, the presence of at least one
weak domain factor (SSk < 1) is the norm in the
sampled bi-factor models, not the exception.

Simulation study

Methods

In the simulation study, random data for bi-factor
models of the three model variants were generated. In
S-1 and S-1c models, the first of four domain factors
was omitted. For S-1c data generation the correlation
between the second and the third domain was set to
r23 ¼ :5 and all other correlations were set to zero.
Conditions relevant to statistical power and estimation
precision were systematically varied (Table 2).8

To vary the strength of the domain factors, the factor
loading size ks and the number of indicators per
domain were varied. Factor loadings were held con-
stant across all indicators and invariant during data
generation, which greatly simplifies interpretation. We
only included domain factor loadings that are positive
and at least ks ¼ :2, so it can be checked if sampling
variation of truly admissible values explains the occur-
ence of negative or zero factor loadings in practice
(Figure 2). For both the sample size and ks, realistic
values and values in a problematic range were
included (down to n¼ 200 and ks ¼ 0.2). The domain
factor loadings lie in a range that was frequently
observed in the reviewed empirical example studies
(:2 � ks � :6, dashed lines in Figure 2). Given these
fixed values for ks, the reliability of the indicators was
varied using two different values for kg. This design
produces reliabilities between 0.29 and 0.85 across
conditions. All factor loadings are fully standardized
because random error variance was added to all indi-
cators to reach r2Y ¼ 1 and traits were sampled with a
variance of one. Since S-1 and S-1c models have no
variance attributed to the first domain factor, and kg
was held constant, they have a higher proportion of
error variance on indicators of the first domain. Only
continuous data with multivariately normally distrib-
uted trait values and error terms were considered.
Although contamination with other types of errors is
frequent in practice (Micceri, 1989), and the true dis-
tribution of latent traits is debatable, normally distrib-
uted traits and errors are prototypical for this model
class and frequently assumed in practice. The fully
crossed design resulted in 300 simulation conditions
with 1008 replications per condition.

Figure 4. Sum of squared loadings and sample sizes of domain factors from 28 S bi-factor models; domain factors of the same
model are connected by a line.

8The correlation between domain factors in the S-1c model also affects
the statistical power and estimation precision (Yuan et al., 2010), but was
not varied beyond the distinction between S-1 and S-1c models. Higher
correlations were shown to lead to both increases and decreases in
standard errors for both loadings and factor variances in correlated-factor
models depending on the other model parameters (Yuan et al., 2010,
Table 3). It is unclear if such differences are substantial in bi-factor
models and how they would proliferate to other factors in the model. As
seen below, the difference in statistical power between the S-1 and S-1c
model, which is essentially a large variation of a domain factor correlation
(0 vs. 0.5), proved to be relatively inconsistent and unimportant in
comparison to other factors.
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The simulation study was conducted using the soft-
ware R (Version 4.0.2 and 4.0.3, R Core Team, 2020)
and the package SimDesign (Version 2.0.1,
Chalmers & Adkins, 2020). mvtnorm (Version 1.1-1,
Genz et al., 2020) was used to randomly sample trait
and error values from a multivariate normal distribu-
tion. Models were estimated using lavaan (Version
0.6-7, Rosseel, 2012).

For each sample dataset, all model variants were
estimated using maximum likelihood (ML) estimation
with the default settings of lavaan (Version 0.6-7,
Rosseel, 2012). The fixation of the first factor loading
to one for identification made negative estimates of
the domain factor variance possible. In S-1c models,
all correlations between domain factors were freely
estimated. This results in a fully crossed design
regarding data-generating model variant and estima-
tion model variant. To analyze anomalous results,
improper solutions (e.g. negative variance estimate)
were retained. In the following, converged solutions
are those, for which lavaan indicated convergence
and standard errors of estimates were obtained. If
not specified otherwise, the presented results refer to
correctly specified models only, meaning the data-
generating model and the estimated model variant are
the same. Results on domains are presented as a sum-
mary (mean) for domains two, three, and four, even
for the S-1c models. The distinction between the
uncorrelated fourth domain and the other domains
in the S-1c model did not prove relevant in any of the
analyses.

The statistical power to detect domain factors was
measured in three different ways. First, the proportion
of significant variance estimates of the domain factor
was calculated based on the Wald-Test against zero
with a ¼ :05: This test corresponds to the “anomalous
results” in Eid et al. (2017) (non-significant domain
factor variance estimates). Results for this test are part
of the default summary output of lavaan. Note, that
this is a test against the boundary of the parameter
space (H0 : VarðgsÞ ¼ 0). For this reason, the distribu-
tional assumption is violated and results are conserva-
tively biased (Molenberghs & Verbeke, 2007; Stoel
et al., 2006). The uncorrected version is used to repre-
sent what plausibly was the general practice in the
sample of studies above. Second, the proportion of
significant likelihood-ratio-tests (LRT) comparing the
model with and the model without the first domain
factor was calculated. The LRT tests the difference in
model misfit Dv2 � v2ðdfModH0 � dfModH1Þ between the
correctly specified model H1 (which includes the
domain factor’s variance and its loadings) and

the incorrectly specified model H0 (which by omitting
the domain factor essentially fixes the latent variances
and all related factor loadings at 0 and is therefore
nested within the first model) against 0. This is a
more adequate test to decide if the domain in ques-
tion should be part of the model. The LRT is based
on all estimated parameters related to the domain in
question, whereas the Wald-Test is based solely on
the variance estimate. Therefore, differences in the
results can be expected. Note that non-converged
models were counted as false negatives, so the
reported values for statistical power can never exceed
the convergence rate. Omitting non-converged cases
would be biased in conditions with a low convergence
rate. Furthermore, researchers planning a study are
likely most interested in the probability of a successful
study than in the conditional probability given con-
vergence. Third, the theoretical power of this LRT was
computed for all simulation conditions, testing the
correctly specified model variant against the same
model without the domain factor in question. The
model without the domain factor was fit to the theor-
etical variance-covariance matrix under the true
model with the domain factor present. The misfit
between the resulting model implied variance-covari-
ance matrix and the true variance-covariance matrix
was then used to compute the statistical power of the
LRT using the semPower R package (Moshagen
(2021)).

For individual indicators, the average number of
significant indicators per domain was calculated under
each condition. Significance was judged based on the
Wald-Test of the factor loadings with a ¼ :05:

To assess the quality of estimated trait values the
squared correlations between the true and the esti-
mated trait values (R2) were calculated. This is the
proportion of variance of the estimated trait values
that is determined by the true trait. Trait values were
estimated using regression factor scores (DiStefano
et al., 2009), as implemented in lavaan (Version 0.6-7,
Rosseel, 2012). To assess the precision of factor load-
ing estimates, root mean square errors (RMSEs) were
calculated for each repetition. They were computed
based on the differences between the estimates and
the true factor loadings in the population, given by
the simulation condition.

To complete the list of potential “anomalous”
results discussed by Eid et al. (2017), the proportion
of cases with at least one negative domain factor vari-
ance estimate was computed. The simulation did not
replace (or tweak the estimation of) cases that
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did not converge. Instead, convergence rates are ana-
lyzed below.

To assess the importance of the simulation condi-
tions (Table 2) for each outcome, we estimate general
linear9 models. Because these models merely serve to
indicate the relevance of the conditions, we use a sim-
ple baseline model without interactions. For the
parameters with multiple conditions on a metric scale
(n and ks), we also include a quadratic term to allow
for non-linear effects. To assess the importance of a
given parameter, we compare this baseline model
(Equation (5)) to the model without the term(s) relat-
ing to this parameter. In Equation (5), outcome refers
to all the individually analyzed outcomes (statistical
power, estimation precision, … ) and variant is is a
dummy-coded factor with three levels. For brevity, we
only report the p-value of the F-Test for model com-
parison, as well as the difference in adjusted R2. We
describe any predictor with a DR2 < :01 (equivalent to
r< 0.1) as irrelevant, regardless of its statistical signifi-
cance.

Outcome ¼ variant þ nþ n2 þmþ kg þ ks þ k2s þ e

(5)

Results

Domain factor detection

In general, the power of the LRT tends to exceed that
of the Wald-test (McCulloch & Searle, 2004, p. 150).
In the current simulation results, the LRT for model
comparison consistently shows superior statistical
power to the Wald-Test of the factor variance. There
is no condition with a meaningful advantage of the
Wald-test. A substantial advantage of the LRT shows
under many conditions: Under conditions where at
least one test has a power estimate below 1 (not all
replications significant) the mean difference in statis-
tical power is 0.26 in favor of the LRT (additional fig-
ure in supplementary materials).

Figure 5 presents an overview of the power of the
LRT depending on SSk and sample size. The simulated
values (including non-converged cases as false nega-
tives) are connected via vertical lines with the theoret-
ical values. The model variant is irrelevant to the
statistical power of the LRT to detect domain factors

(p¼ 0.62, DR2 ¼ 0:00). Sample size (p¼ 0.00,
DR2 ¼ 0:10), number of indicators per domain
(p¼ 0.00, DR2 ¼ 0:05), loading on the general factor
(p¼ 0.00, DR2 ¼ 0:02), and the size of the domain
factor loadings (p¼ 0.00, DR2 ¼ 0:52), all contribute
uniquely to the prediction of statistical power.
Consider a domain factor with SSk ¼ 0:75, based on
three standardized domain factor loadings of 0.5: The
LRT easily detects the presence of the domain, even
in samples of n¼ 200 (1� b ¼ 0:98). For smaller
effects, there is a steep drop in statistical power.
Judging by the relationship between SSk and the stat-
istical power (Figure 5), adding a single indicator with
ks � :4 (DSSk � 0:16) can improve power drastically.
Realistic variations in the reliability of indicators
beyond their loading on the domain factor (kg ¼ :5
(circles) vs. kg ¼ :7 (triangles)) result in large differen-
ces in statistical power (up to D1�b ¼ 0:46). The
blindness of the theoretical analysis to non-conver-
gence is a major cause for the difference between the
theoretical and simulated power under challenging
conditions. Table 3 compares the cumulative results of
the LRT by model variant for correctly specified mod-
els. Across conditions, the model variant barely influ-
ences convergence or power, S-1 models converge
slightly more often. This explains a slight increase in
the proportion of non-significant results because con-
vergence is most often an issue in low power condi-
tions. In case of misspecification there are much
larger differences (see section on convergence).

Figure 6 presents an overview of the statistical
power of the test of domain factor loadings. The
model variant is irrelevant to the statistical power of
the test of domain factor loadings (p¼ 0.41,
DR2 ¼ 0:00). Sample size (p¼ 0.00, DR2 ¼ 0:08),
number of indicators per domain (p¼ 0.00,
DR2 ¼ 0:04), loading on the general factor (p¼ 0.00,
DR2 ¼ 0:02), and the size of the domain factor load-
ings themselves (p¼ 0.00, DR2 ¼ 0:56), all contribute
uniquely to the prediction of statistical power. The
more indicators a domain factor has, and the less
error variance its indicators have (higher kg), the
more precisely its loadings are estimated (for an ana-
lytical approach, see Yuan et al. (2010)). Under favor-
able circumstances (kg ¼ :7, m¼ 6) a sample size of
n¼ 300 is more than sufficient for ks ¼ :3 (in the
population) to be detected with high power
(1� b ¼ 0:99). The power is much higher compared
to realistic, but much less favorable conditions
(kg ¼ :5, m¼ 3, 1� b ¼ 0:51). To compensate for
this, the sample size would have to be increased to
n> 1000 (1� b > 0:95).

9For outcomes on a scale of 0 to 1, we considered linear models to be
sufficient, because they detect the presence of monotonous effects, and
their easily interpretable determination coefficient is able to roughly order
them by importance. Binomial regression would not have offered an easy
to interpret determination coefficient and a logit transform would have
led to many infinity values due to observed relative frequencies of
exactly 1.

MULTIVARIATE BEHAVIORAL RESEARCH 9



Parameter recovery

The distribution of the RMSE of domain factor load-
ing estimates is heavily skewed and includes outliers
from irregular estimates. Therefore, Figure 7 shows
the median of the RMSE distribution across replica-
tions. Note, that for a small proportion of replications,
the RMSE was substantially higher.10 The model vari-
ant is irrelevant to median estimation precision of
domain factor loadings (p¼ 0.38, DR2 ¼ 0:00). Sample
size (p¼ 0.00, DR2 ¼ 0:16), number of indicators per
domain (p¼ 0.00, DR2 ¼ 0:05), loading on the general
factor (p¼ 0.00, DR2 ¼ 0:05), and the size of the
domain factor loading itself (p¼ 0.00, DR2 ¼ 0:34), all
contribute uniquely to the prediction of the estimation
precision. Domain factor loadings that are relatively

small in the population are estimated with less preci-
sion than larger ones.11 Higher overall indicator reli-
ability (higher kg) and more indicators per domain
increase precision. The problem case that a domain
factor loading is truly substantial but estimated near
zero can only be expected under a combination of
multiple adverse conditions. For example: Assuming a
normal distribution of estimates and RMSE¼ 0.05
(dashed line), only 2.28% of ks ¼ :3 are estimated at
0.2 or lower. Only very few near-zero loadings can be
explained by estimation uncertainty (cf. Figure 2).
This could also be understood from the estimated
standard errors and confidence intervals of the load-
ing estimates in empirical studies reporting negative
or near-zero estimates.

Figure 8 shows that domain trait recovery barely
improves with increased sample size and improves
much slower with increased effect size than statistical
power. The model variant (p¼ 0.00, DR2 ¼ 0:00) and
sample size (p¼ 0.00, DR2 ¼ 0:01), are irrelevant to
domain trait recovery. The number of indicators per
domain (p¼ 0.00, DR2 ¼ 0:07), loading on the general
factor (p¼ 0.00, DR2 ¼ 0:04), and the size of the

Figure 5. Power to detect domain factors by Likelihood-Ratio-Test. Only correctly specified models are shown. Each symbol repre-
sents one simulation condition. Vertical lines show the discrepancy between simulated power (symbol) and theoretical power
(arrow tail; small horizontal offset for readability).

Table 3. Likelihood Ratio Test outcomes (percent) by model
variant.

significant not significant not converged

S-1 87.76 4.30 7.93
S-1c 85.72 4.05 10.23
S 86.13 4.04 9.83

Note. Correctly specified models only.

10The same plot, but with 0.95 quantiles (instead of medians) of the
RMSE distributions is included in the supplementary materials.

11The same absolute difference on the scale of ks is larger on the scale of
k2s (indicator variance) for larger values of ks. The truth of this claim,
therefore, depends on the scale.
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domain factor loadings (p¼ 0.00, DR2 ¼ 0:88), all
contribute uniquely to the prediction of trait recovery.
At SSk ¼ 1, even in large samples only about 50-70%
of the variance of the factor score is determined by
the true trait. Below SSk ¼ 1, this value quickly

declines even further, falling below half the typical
value of the general trait (	 :7 to 0.95, see below).

Figure 9 shows the influence of the domain traits
on the recovery of gg. The sample size (p¼ 0.00,
DR2 ¼ 0:00), is irrelevant to general trait recovery.

Figure 7. Estimation Precision of domain factor loadings. Each symbol represents one simulation condition. The logarithmic y-axis
scale is cut at 0.0001. Only correctly specified models are displayed. m¼ number of indicators.

Figure 6. Power to detect domain factor loadings by Wald-Test. Each symbol represents one simulation condition. m¼ number of
indicators.
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The model variant (p¼ 0.00, DR2 ¼ 0:03), the number
of indicators per domain (p¼ 0.00, DR2 ¼ 0:12), the
loading on the general factor (p¼ 0.00, DR2 ¼ 0:67),
and the size of the domain factor loadings (p¼ 0.00,
DR2 ¼ 0:15), all contribute uniquely to the prediction
of general trait recovery. Importantly, the recovery of
gg gets worse the higher the domain factor loadings

are (for constant general factor loadings). This may be
counter-intuitive because it means that less reliable
indicators (lower k2s and higher r2e ) produce more
reliable factor scores of gg. That this effect seems stron-
gest for the S model is probably a consequence of the
additional domain factor. The model variant in Figure 9
refers to both data generation and estimation. If instead

Figure 8. Average squared correlation between true domain trait values and estimated factor scores. Each symbol represents one
simulation condition.

Figure 9. Average squared correlation between true general trait values and estimated factor scores. Each symbol represents one
simulation condition. The variation between identical symbols is due to sample size (200 to 2000).
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the S-1 or S-1c model is estimated on S data, the recov-
ery of gg is worse

12 (additional figure in supplementary
materials).

Anomalous results

The main contributors to convergence problems of
correctly specified models (Figure 10) are weak
domain factors. The model variant (p¼ 0.49,
DR2 ¼ 0:00) is irrelevant for the rate of convergence.
The sample size (p¼ 0.00, DR2 ¼ 0:10), the number of
indicators per domain (p¼ 0.00, DR2 ¼ 0:03), the
loading on the general factor (p¼ 0.00, DR2 ¼ 0:02),
and the size of the domain factor loadings (p¼ 0.00,
DR2 ¼ 0:49), all contribute uniquely to the prediction
of convergence rates. Selective non-convergence in the
presence of small factor loadings has also been
observed in several other studies (for a discussion of
those results, see Yuan & Bentler, 2017). Beyond that,
small sample sizes and weaker loadings on gg increase
the risk of convergence problems. For model variants,
the picture is less clear. The S variant tends to per-
form worst under otherwise problematic conditions,

which may be related to the additional weak domain.
In cases with misspecification (not shown), the com-
bination of S-1 data and the estimation of the S model
produces particularly bad results: the S model has
convergence rates below 0.7 under all conditions. This
problem is less frequent if the data-generating model is
S-1c instead of S-1. According to the present simula-
tion results, convergence problems originate from spec-
ifying factors for domains with no specific variance,
not from the S model variant per s�e: S model estima-
tion works fine if the reference domain has a specific
variance. Negative domain factor variance estimates are
most prevalent if the true variance is small (SSk � :27,
figure in supplementary materials). Without misspecifi-
cation, there is no principled advantage of S-1 models
over S models regarding anomalies.

Empirical example

To illustrate the potential for difficulties with weak
domain factors in practice, we reanalyzed the open
data shared by Dueber and Toland (2023) (https://doi.
org/10.17605/OSF.IO/3QT5S). The Scoliosis Quality of
Life Index (SQLI) questionnaire features 2013 indica-
tors measuring four subdomains with five indicators
each: self-esteem (SE, indicators 1-5), back pain (BP,

Figure 10. Convergence rate. Each symbol represents one simulation condition. Only correctly specified models are shown.

12Given that the S-1 model was proposed along with a change in the
interpretation of gg, one could also understand this as the consequence
of a change in the meaning of gg. The current work can only
demonstrate the recovery of the original data-generating trait gg, not the
interpretability or reliability of the resulting factor score if the S-1 model
is estimated.

13The dataset provided by Dueber and Toland (2023) omits two indicators
refering to satisfaction with management.
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indicators 6-10), physical activity (PA, indicators 11-
15), and moods and feelings (MF, indicators 16-20).
The data comprise n¼ 2322 cases of adolescent idio-
pathic scoliosis patients.

As stated in the introduction, the approach to indi-
cator selection plays a key role in the emergence of
weak domain factors. The SQLI was developed as an
adaptation of an existing questionnaire (Asher et al.,
2000; Haher et al., 1999) without a repeated analysis of
its covariance structure (Feise et al., 2005). The original
indicator selection of the original questionnaire
included an exploratory factor analysis (EFA) with vari-
max rotation. In a major overhaul of this original
instrument, many indicators were exchanged or
changed, effectively reducing the number of dimensions
from seven to five (Asher et al., 2000). None of the
authors report an effort to prioritize or balance general-
ity (measuring quality of life) and discrimination of
subdomains (covering distinct features of the chosen
dimensions). Assumably, the resulting domain factor
variance is largely a by-product of other design choices
(desired total length of the scale, conceptualization and
choice of domains, subscale reliability standards).

To understand the structure of the SQLI, the dis-
section of the indicator variances into general factor
variance, domain factor variance (including the 95%
confidence interval of the estimates), and unique indi-
cator variance in a S bi-factor model14 (CFI¼ 0.95,
RMSEA¼ 0.056, srmr¼ 0.051) is displayed in
Figure 11. All but one factor loading reach signifi-
cance and one domain factor loading is estimated to
be significantly negative (k̂SQLI 10,BP ¼ �:13). Plotting
variance proportions makes it immediately obvious
that there are several indicators which barely contrib-
ute to their domain factors. This may be surprising to
researchers, even if they knew the correlated-factor
model of the same data (CFI¼ 0.91, RMSEA¼ 0.067,
srmr¼ 0.065), in which all indicators load substan-
tially on their respective factors (k̂ � :35, for example
k̂SQLI 12,PA ¼ 0:55, 95% CI ½0:52, 0:58
). Because confi-
dence intervals are depicted in Figure 11, it is clearly
visible that the near-zero estimates of some domain
factor loadings in the bi-factor model are hard to
explain as random underestimations. Some indicators
just contribute less to the estimation of factors overall
(such as SQLI_5), but importantly, there are meaning-
ful differences in the specificity of equally reliable
indicators (such as SQLI_2 and SQLI_8). The

presence of near-zero domain factor loadings results
in two domain factors with SSk < 1: SSBPk ¼
0:71, SSMF

k ¼ 1:30, SSPAk ¼ 0:77, SSSEk ¼ 1:51: For this
reason, researchers might expect the domain factor
scores of these factors to be substantially less reliable
than those of the others (cf. Figure 8). But in
turn, the domains with a higher SSk have smaller
average factor loadings on the general SQLI factor
(Mðk̂BPÞ ¼ 0:64, Mðk̂MFÞ ¼ 0:46,Mðk̂PAÞ ¼ 0:65,Mðk̂SEÞ ¼ 0:39),
which also limits the precision of their factor scores.
When comparing to the most favorable conditions in
Figure 7, it becomes clear that domain trait recovery
could be slightly increased if the indicator selection
would be optimized for the measurement of the
domain traits by selecting for high ks (which may or
may not be a relevant goal). At the same time, the
domain factor detection is trivial in a sample of
n>2000 cases (Figure 5). All p-values of the LRTs
comparing the full bi-factor model to models exclud-
ing individual domain factors were below p< 10�102

(Wald-tests of domain factor variances: all p< 10�8).
This example shows how easily small factor load-

ings can appear when using a bi-factor model on a
measure developed with a correlated-factor model. In
this case the main problem is the limited interpretabil-
ity of domains due to some of the domain factor load-
ings unexpectedly being close to zero.

Discussion

The aim of the meta-analysis and simulation was to
identify the necessary conditions to reliably detect and
estimate domain factors and their loadings, and com-
pare these to real studies. The meta-analysis shows
that many domain factor loadings are small (ks < :2)
in practice (Figure 2) and mostly smaller than the
loadings on the general factor. There is an abundance
of indicators that contribute barely anything to their
domain factor (jksj < :2) but have reasonable loadings
(kg > :5) on the general factor. On the one hand, this
may be desired because it provides a relatively pure
general factor. On the other hand, given that many
domains are measured by six or less indicators (Figure
3), this results in low domain strengths (SSk; Figure 4).
The diverse nature of the sampled constructs (Table 1),
in combination with the extremely high prevalence of
models having at least one domain factor for which
SSk < 1 (Figure 4) shows that weak domain factors can
be found in many research contexts.

The simulation, which covers a realistic range of
factor loading values, provides an overview of the
consequences of small domain factor variances

14There are notable differences in the factor loading estimates between
this model and the values reported by the original authors (Dueber &
Toland, 2023, Figure 6) because they estimated a model for categorical
data, as can be seen in their open code.
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(especially in the range of SSk < 1). The presence of
domain factors is best detected by a likelihood-ratio-
test (LRT) that compares the model with to the model
without the domain factor. This way, domain factors
with SSk � 1 will almost always be detected. In large

samples and with high overall indicator reliability,
much smaller effects are reliably detectable (Figure 5).
Larger samples however do not meaningfully improve
the precision of the estimation of domain factor
scores (Figure 8) or general factor scores (Figure 9).

Figure 11. Variance proportions of the Scoliosis Quality of Life Index (SQLI) questionnaire explained by general and specific factors;
open data by Dueber and Toland (2023); bars are non-overlapping; specific¼ squared lower limit of domain factor loading esti-
mate, variance attributable to the domain factor with relative certainty; specific ci¼ complete 95% confidence interval of the
squared estimate of the domain factor loading (lower limit to upper limit), variance potentially attributable to the domain factor;
gray areas indicate leftover (error) variance if the upper limit of the specific ci were true; thick horizontal lines separate domains;
the factor loadings of the indicators SQLI_10 and SQLI_12 on the respective domain factors were estimated to be negative.

MULTIVARIATE BEHAVIORAL RESEARCH 15



There was almost no difference between model var-
iants for any of the results, meaning that “anomalous”
results and the occurence of weak domain factors are
not avoided by using the S-1 or S-1c variant. Judging
the degree to which the prediction of other variables
is affected by domain size is beyond the current simu-
lation study (for a discussion of such models, see
Zhang et al. (2021)).

How to avoid problems with weak domain
factors?

Before conducting a bi-factor study, it is important to
specify its goal: Should domain factors or their scores
be used? Is the only consideration to obtain the best
possible measure of gg? Are all domains equally rele-
vant? If those questions are answered at the time of
the design of the study (or ideally: the measure),
appropriate decisions can be made.

Expected SSk of domain factors

We recommend aiming for domain factor strengths of
SSk > 1 regardless of sample size if domains should
be measured. Null results of the LRT and non-conver-
gence are unlikely for domain factors of strength
SSk > :75: But researchers may overestimate the preci-
sion with which such domain factors are measured.
About half of the domain factors from the meta-
analysis are so small (SSk < 1) that their scores can be
expected to contain �60% true trait variance (see
Figure 8). This makes the use of subscale scores highly
questionable (see also Reise et al., 2013). Domain fac-
tor variance estimates below zero occur almost exclu-
sively if the true effect size of the domain is tiny
(SSk � :27). From a theoretical standpoint, factors
with SSk > 1 are more meaningful because they repre-
sent more variance than any single indicator. In
exploratory factor analysis, factors with SSk � 1 are
almost always omitted, because they cannot be distin-
guished from random noise (parallel analysis, e.g.
Hayton et al., 2004). If a study is merely concerned
with measuring gg, SSk < 1 can easily be tolerated (see
below). If the measure’s design goal is to provide valid
and reliable scores of a specific domain, selecting a set
of indicators with SSk < 1 is suboptimal, so more or
better (higher ks) indicators need to be selected.

Number of indicators per domain

The desirable number of indicators depends on their
specificity, but three to four indicators per domain are

too few under most conditions. Few indicators result
in small domain factor variances (SSk < 1). Randomly
sampling six indicators from those observed in prac-
tice (Figure 2) results in SSk < 1 in 61.12% of cases.
Adding indicators or selecting a longer measure
improves the estimation precision of each individual
factor loading. If domains contain very few indicators
(or very few indicators with substantial loadings),
including correlated error terms may be more appro-
priate than specifying a domain factor. The impor-
tance of increasing the number of indicators per
factor to improve the recovery of the factor structure
has previously been noted for EFA (Mundfrom et al.,
2005; Preacher & MacCallum, 2002). For confirmatory
bi-factor models, it is especially important to consider
that the same number of indicators usually represents
smaller SSk compared to other models, meaning that
more indicators are needed to reliably measure
domain factors compared to factors of other models
(e.g., correlated-factor models).

Indicator specificity

Selecting indicators based on their specificity implies
that measures are developed or revised using bi-factor
models because other models do not assess indicator
specificity.15 In many cases that is not feasible for the
purpose of a specific application. But it is feasible to
consider the specificity of the indicators to choose
realistic study goals. Low specificity is a major con-
tributor to weak domain factors, as showcased in the
empirical example (Figure 11). On the other hand,
low specificity is desirable for the estimation of gg
scores. Factor loadings can themselves be of interest,
for example in validation studies. Null results for
domain factor loadings occur frequently for true fac-
tor loadings of 0.2 and in relatively small samples
(n � 500) for loadings of 0.3 (Figure 6). In addition,
small factor loadings are estimated much less precisely
than larger ones (Figure 7). For the abundance of esti-
mated loadings smaller than 0.3 in the literature
(Figure 2) it is therefore difficult to judge if they are
truly reflecting the domain. Indicators with low speci-
ficity are somewhat less problematic if their reliability
is good (high kg). In the empirical example, there
seemed to be a strong tradeoff between kg and ks,
which we also observed more generally in the meta-
analysis (rkgks ¼ �0.35 (t ¼ �9.02, p< 0.001, 95% CI
[-0.42, �0.28]). This tradeoff does not exist for other
models. Whereas the literature on factor structure

15The unique proportion of lower-order factor variance (disturbance) in
higher-order factor models is not indicator-specific.
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recovery in EFA considers the number and commu-
nality (i.e. reliability) of indicators (Mundfrom et al.,
2005), we suggest to use SSk for orientation in con-
firmatory bi-factor analysis instead. From the results
of our simulation it is clear that the size of domain
factors—not the reliability of indicators—is the most
important influence on statistical power and trait
recovery regarding domain factors.

A priori power analysis and estimation of
domain trait recovery

To estimate the statistical power to detect a domain
factor, the results of this study can be used as a guide-
line. Alternatively, the semPower R package
(Moshagen, 2021) can be used to compute the theor-
etical power. A simple example script is provided in
the supplementary materials and can be adapted to
the application at hand. The script first shows how to
specify the population model and estimation model
syntax to obtain the true and the model-implied vari-
ance-covariance matrixes. In the next step, the degrees
of freedom for power analysis via semPower are set to
the difference in the degrees of freedom of the two
models. This is different from a standard power ana-
lysis for model misspecification. Here, the correctly
specified model is the alternative option during model
selection, instead of being treated as the unknown
truth. The script further demonstrates how to obtain
an estimate of the trait recovery for the hypothesized
model. Its code is based solely on the expected
standardized factor loadings (and domain factor
correlations for S-1c models). It needs minimal com-
putational resources (no simulations). If the a priori
expectation for the model parameters is very uncer-
tain, a conservative case with relatively low factor
loadings should be checked. The distribution from the
current meta-analysis (Figure 2) may serve as a refer-
ence. It is important to realize that theoretical power
does not consider the issue of non-convergence and
can therefore vastly overestimate the chance to obtain
a significant result (Figure 5).

Measurement of the general factor

The most efficient way to improve the measurement of
gg is to use more indicators with higher factor loadings
on gg (Figure 9). Non-convergence becomes an issue in
cases with weak domains (SSk � :27 Figure 10) or
when trying to estimate non-existent domains.
However, in cases that do converge, strong domain fac-
tor loadings (ks � :5, see Figure 9) are an issue. For

the estimation of gg factor scores, indicators preferably
contain random error instead of domain-specific vari-
ance—even if the domain factors are included in the
model. The measurement of gg does improve with sam-
ple size, but extremely inefficiently (DR2 < :01). Even a
tenfold increase in sample size rarely compensates for
an otherwise suboptimal design.

Omission of domain factors or domain factor
loadings

It is prudent to consider a set of plausible models for
model selection and robustness checks. The popularity
of the S bi-factor model may suggest that all indica-
tors should be allocated to a domain, but this serves
no statistical purpose. Indicators that do not belong to
a domain do not invalidate the model. The current
meta-analysis found a large proportion of indicators
with low specificity—likely due to indicator selection
based on other models. In the empirical example, the
bi-factor model of the SQLI included several indica-
tors with little to no contribution to their domain fac-
tor, which could have easily gone unnoticed during
the development of the measure, even if a correlated-
factor model would have been considered. Indicator
allocation to domains should be reconsidered in these
cases. For this purpose, exploratory bi-factor analysis
techniques (Jennrich & Bentler, 2011, 2012) and bi-
factor exploratory structural equation models (Morin
et al., 2016) were developed. Instead, what does lead
to all kinds of problems are domain factors without
specific variance in the population. Such null results
for domain factors can be perfectly acceptable, for
example, if domains represent converging measure-
ment methods. But importantly, the respective factors
then have to be omitted from the model.

Troubleshooting non-convergence

If a bi-factor model does not converge, one should try
to omit the domain factor that is expected to be the
weakest. Non-convergence is not an issue given a cor-
rectly specified model and reasonably large domain
factors (Figure 10). In practice, however, “all models
are wrong” (Box, 1976, p. 792). So with inevitable
misspecification, non-convergence may occur more
frequently—possibly most frequently for the S model
variant. Convergence is worst for the S model on S-1
data, or if domain factors (SSk � :27) and sample sizes
are small (See Figure 10). The main problem seems to
be the specification of superfluous or very weak
domain factors, which should be avoided. For a
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detailed analysis of convergence problems in structural
equation modeling and some other potential solutions,
see Yuan and Bentler (2017).

How to interpret weak domain factors and weak
domain factor loadings?

In the interpretation of bi-factor models, statistical
power and the precision of estimates needs to be
taken into account more thoroughly. For this, it is
useful to compute the SSk of domain factors. Our
simulation provides a general reference for statistical
power and parameter recovery16 given a range of
realistic cases. The example script (supplementary
materials) can be used to examine a specific case.
Domain factors can include a surprisingly small
amount of systematic variance (Figure 8, see also
Reise et al., 2013) and may have multiple indicators
whose attribution to them is unclear (Figures 2 and
11). If domains are used to predict third variables,
this may explain their failure to do so. They could be
just as weak as domains that result from random allo-
cation of indicators to domains: Bi-factor models tend
to fit almost any pattern in the data (Bonifay &
Cai, 2017).

Taking a closer look at the factor loadings is often
crucial. The large variation in loadings on the domain
factor (Figures 2 and 11) means there is a very uneven
mixture of the contribution of indicators to domains
(e.g. Watts et al., 2019). To communicate factor com-
position clearly, figures of factor loadings (e.g. bar
charts, such as Figure 11) can be useful. In addition
to the variation in the factor loading estimates, there
is substantial variation in their estimation precision
(Figure 7). They should be interpreted more carefully
when they are small (ks � :3), overall indicator reli-
ability is far from perfect (Rel< 0.5), or the sample
size is small (n � 300). Point estimates are most mis-
leading for the most relevant loadings: small loadings
that are often hard to interpret. It would be useful to
always report (and interpret) standard errors and con-
fidence intervals of factor loadings to make this vis-
ible, as we did in Figure 11. However, the fact that
many domain factor loadings are estimated near or
below zero (Figure 2) cannot be explained by sam-
pling variation alone (Figure 7), certainly not in the
empirical example.

Are S-1 models and models with a null result on a
domain factor the same?

Models with omitted domain factors should not all be
interpreted the same. If a domain factor is omitted
because it is too weak, the resulting model is structur-
ally equivalent to an S-1 model. However, the domain
in question may not necessarily be interpreted as a
natural reference domain, especially if it has small
loadings on the general factor. For the interpretation
of the remaining estimates, it does not matter if the
absence of the domain was defined or estimated, so
the interpretation of gg does not need to change. A
priori S-1 models on the other hand were proposed
irrespective of the size of the unique variance of the
reference domain and should therefore be interpreted
differently (see Eid et al., 2017). Their reference
domain clarifies the meaning of gg, which is especially
relevant if the reference domain has a unique variance
that could be attributed to it.

Are small domain factor loadings an empirical
fact or a technical artifact?

Looking at the distribution of factor loadings in
Figure 2, researchers may come to the conclusion that
the many small domain-factor loadings (ks < :2) are a
valid empirical finding, rather than indicating a statis-
tical or measurement issue. If they reflect the nature
of the construct accurately, it would be undesirable to
try to find indicators with higher domain-factor load-
ings. Such an effort could even challenge the validity
of the measure. For this reason, it is important to
consider the multiple ways in which these factor load-
ings are influenced. Firstly, indicators may be selected
based on their factor loadings—irrespective of their
content—usually prefering those with higher reliabil-
ities. This strategy is based on the idea that there are
better and worse constructed, and more or less rele-
vant indicators, and the better, more relevant ones
should be chosen. Secondly, indicators may be
selected for reflecting a certain domain based on their
content, in a try to best capture the essence of the
domain (e.g., extraversion indicators that most clearly
describe prototypical social boldness behaviors). In
both cases, near-zero domain-factor loadings would
indicate a failure to construct or select appropriate
indicators. Thirdly, indicators may be selected,
because they are considered to measure an important,
irreplacable part of the target construct, irrespective of
dimensionality (e.g., symptoms in clinical assessment
or criterion-relevant tasks in a performance test). To
the degree that these indicators are properly designed,

16An alternative is the index H for construct reliability (Hancock, 2001; see
also Rodriguez et al., 2016) which is more straightforward but does not
take the impact of gg into account (cf. Figure 8).

18 N. PETRAS AND T. MEISER



small factor loadings or SSk values of domain factors
are then a relevant empirical finding. In these cases,
researchers need to deal with the resulting domain
factor and accept interpretational difficulties. Overall,
we consider the results of our meta-analysis to be a
mixture of these different scenarios. The current study
should help researchers to avoid obtainining such
results by accident, that is without having strong argu-
ments to interpret small factor loadings as a relevant
empirical finding.

Limitations and future directions

High estimation precision does not guarantee inter-
pretability. We agree with Eid et al. (2017) that the
interpretability of bi-factor models needs more careful
attention and should guide model selection. S-1 mod-
els were introduced to improve interpretability in
cases with a fixed set of domains (in which domains
are not randomly sampled). Eid et al. (2017) demon-
strated a straightforward interpretation of S-1 models
for this common case. They warned that S models
lack a clear interpretation of the general factor in
cases with a fixed set of domains. Although the cur-
rent simulation showed that anomalous results occur
in all model variants, this does not mean that S and
S-1 models are equally interpretable. On top of that,
the S variant is prone to identification problems when
used as a measurement model in SEM (Zhang et al.,
2021).

In the current simulation, factor loadings were
fixed to be equal and constant within and across
domains. This very selective set of scenarios greatly
simplified the design and interpretation of the simula-
tion. Most probably, problems with the estimation of
a particular domain factor or domain factor loading
are less severe if the rest of the model consists of
more reliable indicators. Vice versa, the estimation of
one part of the model may become more problematic
if the rest of the model consists of less reliable indica-
tors. For this reason, we suggest interpreting the
results of the simulation with the whole model in
mind. When in doubt one should check the specific
case. Furthermore, we omitted imperfections (cross
loadings, correlated errors) in the simulated data,
which are frequently encounterd in practice (Morin
et al., 2016). Such added complexity could both ham-
per efforts to detect and estimate domain factors and
produce spurious or inflated factors.

The current simulation assumes continuous, nor-
mally distributed error terms (and latent traits). In
practice, this assumption is usually violated (Micceri,

1989) and robust methods should be considered (see
e.g., Yuan & Bentler, 2007). Furthermore, data ana-
lyzed in Confirmatory Factor Analysis (CFA) are fre-
quently categorical (i.e., measured on Likert-scales). In
principle, categorical data are better analyzed using
Item Response Theory (IRT) models. The estimation
of parameters, v2 values, and fit indexes in CFA can
be—but is not necessarily—biased by the categorization
of data (DiStefano, 2002; Finney & DiStefano, 2006).
Despite these issues, many researchers make use of
CFA models on categorical data. If bi-factor CFA mod-
els are used to analyze categorical or decidedly non-
normal data, it is especially important to consider the
current results to be an optimistic upper limit of the
to-be-expected statistical power, trait recovery, and par-
ameter estimation precision. Future research may show
if bi-factor IRT models also tend to produce weak
domain traits on typical data.

The current study did not examine how weak
domain factors affect estimates in the structural part
of SEMs. This topic is only partly touched by the
simulation data of Zhang et al. (2021) who demon-
strated a strong influence of the model variant on
SEM estimates. Further research is needed to explore
the influence of domain strength on relationships with
other variables. Domain factors with SSk < 1 might
show estimates of latent relationships that are impre-
cise and biased toward zero, because they are meas-
ured with less precision. To corroborate the empirical
result of our meta-analysis that many measures do
not produce a full set of interpretable domain-specific
factors, assessing the prevalence of weak or vanishing
domain factors using exploratory models (Jennrich &
Bentler, 2011, 2012; Morin et al., 2016) on a represen-
tative sample of studies would be useful. This is espe-
cially relevant, because results of bi-factor CFA might
be biased in cases with substantial cross-loadings,
which can realistically be expected in many applica-
tions (Morin et al., 2016). Finally, several models are
structurally similar to the bi-factor model (multitrait-
multimethod models, longitudinal models, latent
state-trait models, e.g. Koch et al., 2018). Future
research may show to what degree these involve simi-
lar challenges.

Conclusion

The role and prevalence of study designs that produce
small domain factor strengths—which lead to null
results or uninterpretable results—are underappreci-
ated in the literature. Study planning and interpret-
ation need to take the (expected) strength of domain
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factors and domain factor loadings into account. The
outlined strategies aim to enable researchers to fully
unlock the model’s potential. The bi-factor model
does not generally produce problematic results, but it
needs appropriate data. The crucial step is to select or
design measures for the use of bi-factor models. If
that is not possible, the results have to be interpreted
with caution and alternative models should be consid-
ered. Moreover, the current study provides further
explanations for the results that Eid et al. (2017)
termed “anomalous”. It shows that they occur in the
S-1 and S-1c variants with roughly the same frequency
if there is no misspecification involved.

Many of the above suggestions imply that existing
measures need to be revised or new measures need to
be developed to meet common study goals. This is
both a challenge and a chance. There are many rea-
sons why current measurement practices are consid-
ered suboptimal (Flake & Fried, 2020). Bi-factor
models offer new opportunities to create improved
measures, especially if the underlying construct is
multifaceted by definition. The measurement of
domain traits may be a practical challenge, but with it
comes an opportunity to refine psychological research.
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Abstract19

Despite the bi-factor model’s recent rise in popularity, the mathematical relationship20

between its variants is not yet understood. The additions of free parameters that21

characterize the variants can be – but are not necessarily – mere reparameterizations. The22

current work demonstrates this analytically and through simulations. It is newly established23

that the higher-order factor model is nested in one of the novel bi-factor model variants, not24

only the symmetric one. More generally, the simulations show how the bi-factor model25

variants not nested within each other can closely fit the other variants’ data. The mutual26

imitation between model variants leads to a complex pattern of differences in parameter27

estimates and factor score estimates, so the validity of many claims is conditional on the28

model variant. For instance, it is possible that the omission of a specific factor can be29

perfectly compensated by the addition of freely estimated correlations between the remaining30

specific factors. These equivalent models suggest very different interpretations. Moreover,31

swapping between model variants affects all parameter estimates systematically. The current32

study uncovers these patterns. The potential for similar patterns in multi-trait multimethod33

model variants is discussed.34

Keywords: bi-factor model, confirmatory factor analysis, S-1 bi-factor model,35

higher-order factor model36

Word count: 625737
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When Factor Variance and Factor Correlations are Interchangeable: The38

Relationship Between the Bi-Factor Model Variants39

Introduction40

Bi-factor models (Holzinger & Swineford, 1937) have become increasingly popular in41

psychological research over the past years (Reise, 2012; Zhang et al., 2020). They account for42

linear relations among a set of indicators (observed variables, items) by defining a general43

factor and several specific domain factors across different content domains, raters, tasks, or44

otherwise grouped indicators. For decades, the standard variant of this model was fully45

symmetrical, meaning that every indicator variable loads on the general and one specific46

factor. More recently, several variants of the model were proposed (Eid et al., 2017), but47

their mathematical relationship is not yet understood.48

All variants introduce at least one indicator that exclusively loads on the general49

factor. One of the variants includes a reduced set of correlated (instead of orthogonal)50

domain factors. Critically, bi-factor models can either include a full set of domain factors51

(Holzinger & Swineford, 1937) or freely estimate correlations between domain factors (Eid et52

al., 2017) – but not both (Markon, 2019). This means there is no proper superordinate model53

for comparison, in which parameters are freely estimated. For this reason, the relationship54

between the variants that are not nested within each other needs to be examined directly.55

This article analyzes the relationship between the bi-factor model variants regarding56

two major open questions. 1) How well can the different variants imitate each other? The57

standard bi-factor model is known to be very flexible (Bonifay & Cai, 2017). Past work has58

shown that the bi-factor model can account for data from other models much better than59

vice versa (Bader & Moshagen, 2022; Greene et al., 2019). So far, this has only been shown60

for the comparison between the bi-factor model and other models. Here, the different61

variants of the model are compared. 2) How are the parameters of the model variants related62

to each other? This question is relevant for multiple reasons: a) meaningfully estimating all63
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parameters freely at the same time is not possible, b) the variants can be reparameterizations64

of each other, c) even if not, the variants often fit the same data almost equally well, and d)65

the variants share a lot of parameters whose meaning subtly changes with the variant.66

To answer these two questions, it is first shown analytically that the higher-order67

factor model is a special case of multiple variants, meaning that these variants can be mere68

reparameterizations of each other. For those cases in which they are not, the relationship69

between the parameters of the variants is analyzed in a simulation study. In the simulation,70

all bi-factor model variants are estimated on data generated by all the variants. Regarding71

the question of mutual imitation, the model fit is analyzed. Regarding the relationships72

between parameters, both the model parameter estimates and the estimated trait values are73

compared between the variants. Implications for the validity of claims based on bi-factor74

models will be discussed at the end, as well as the limitations of the current study. It first75

follows the introduction of the notation.76

Bi-factor model variants77

In the original, symmetric variant of the bi-factor model (S, Figure 1), every indicator78

Y loads on both a general factor ηg and one domain factor ηs. The response matrix Y79

(Equation (1)) is the sum of the product of the matrix of factor loadings (Λ) and the matrix80

of latent trait values (η), and the matrix of error values ε, which are independently and81

normally distributed for each indicator. Characteristic of a bi-factor model with z domain82

factors is a loading matrix Λ with z + 1 columns, in which there are two non-zero entries per83

row: one in the first column, pertaining to ηg, and one in one of the further z columns,84

pertaining to some ηs.85

Y = Λη + ε (1)

In the S variant, all factors are orthogonal, so their covariance matrix Φ is a diagonal86



BI-FACTOR VARIANTS 6

matrix. In the S-1 variant (Eid et al., 2017), one domain factor is omitted (Figure 1).1 The87

domain without a specific factor then becomes the reference domain, which defines the88

meaning of the general factor. In the S-1c variant, the correlations of the remaining domain89

factors are estimated freely. It is inadvisable to both include domain factors for all indicators90

and freely estimate domain factor correlations. A full set of positively correlated domain91

factors would be partially redundant with the general factor, causing problems in estimation92

and interpretation (Markon, 2019).93

The S-1 variant is nested in both the S and the S-1c variant. Either the S or the S-1c94

variant can be more parsimonious, depending on the number of domains (z) and indicators95

of the reference domain (m). The difference in the degrees of freedom is shown in Equation96

(2). For example, in a model with 5 domains and 6 indicators of the reference domain, the97

degrees of freedom of the S and S-1c variants are equal.98

dfS − dfS−1c = (z − 1)(z − 2)
2 − m (2)

According to Eid et al. (2017), when the domains are not randomly sampled, the99

interpretation of the S-1 and S-1c variants is more straightforward than that of the S variant.100

They suggest that the reference domain (or item) without a specific factor defines the101

meaning of the general factor. For the S variant, there is no clear interpretation based on102

stochastic measurement theory (Steyer, 1989) without assuming randomly sampled domains103

(Eid et al., 2017). The selection of a specific set of domains is typical for measures with104

subdomains (= facets), such as personality inventories or intelligence tests. Eid et al. (2017)105

advise researchers to prefer the S-1 or S-1c variant a priori in these cases, irrespective of106

model fit. It remains unclear what exactly that means for the interpretation of trait and107

1 Eid et al. (2017) also introduced a S*I-1 variant, in which the reference consists of a single indicator. For

simplicity, I omit this special case here.



BI-FACTOR VARIANTS 7

parameter estimates, because estimated S-1c and S models can be – but are not necessarily –108

reparameterizations of each other.109

Nesting structure110

Figure 2 shows the nesting structure of the bi-factor model variants and the related111

group-factor and higher-order factor models2. A model is nested within another model if it is112

a restricted version of that model. Although there are several nesting relationships, the113

hierarchy is incomplete.114

Among the different variants of the bifactor model, S-1 is a restricted version of both115

S and S-1c because it is defined by restricting some of their parameters to 0. The116

relationship between the higher-order model and the bi-factor model variants is more117

complicated. Higher-order factor models can be reparameterized as S bi-factor models118

(Schmid & Leiman, 1957; Yung et al., 1999) by restricting the domain-specific loadings of the119

indicators to be proportional to their general factor loadings. Moreover, the higher-order120

factor model is a special case of the S-1c bi-factor model, as shown below. Lastly, the121

higher-order model is a special case of the group-factor model, if there are at least four122

first-order factors. This leaves the more complex comparison between the S and S-1c123

bi-factor model variants, which are not nested and have free parameters in different parts of124

the model. The S-1c and S variants can each provide unique solutions that cannot be125

reparameterized as solutions of the respective other model variant.126

The higher-order factor model is nested within the S-1c bi-factor model127

Be S∗ a restricted S bi-factor model, with a constant kx for each domain x, so that128

λxis = kxλxig for all indicators i of the domain.3 Be ∀x ∈ X : kx > 0 by inversion of domain129

2 Here, the term “higher-order factor model” refers exclusively to models with one second-order factor.

Higher-order factor models in other contexts may include multiple second-order factors and more than two

levels of factors but these extensions are rarely seen in applied studies and not relevant here.

3 k2 was termed “explained common variance of the specific factor” (ECVSS , Dueber & Toland, 2021) when

referring to a complete domain instead of individual indicators.
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factors with loadings contrary to the general factor. Be ∀i ∈ I : λxig > 0, so that all factor130

loadings are nonzero and positive. The loading matrix Λ of such a model (with four domains131

and three indicators per domain) is shown in Equation (3), including a numerical example132

with k1 = 1/2, k2 = 2/3, k3 = 1/4, and k4 = 5/4.133

Λ∗ =




λ11g k1λ11g 0 0 0

λ12g k1λ12g 0 0 0

λ13g k1λ13g 0 0 0

λ21g 0 k2λ21g 0 0

λ22g 0 k2λ22g 0 0

λ23g 0 k2λ23g 0 0

λ31g 0 0 k3λ31g 0

λ32g 0 0 k3λ32g 0

λ33g 0 0 k3λ33g 0

λ41g 0 0 0 k4λ41g

λ42g 0 0 0 k4λ42g

λ43g 0 0 0 k4λ43g




; e.g.Λ∗ =




.6 .3 0 0 0

.8 .4 0 0 0

.4 .2 0 0 0

.6 0 .4 0 0

.4 0 .267 0 0

.6 0 .4 0 0

.8 0 0 .2 0

.6 0 0 .15 0

.8 0 0 .2 0

.4 0 0 0 .5

.4 0 0 0 .5

.5 0 0 0 .625




(3)

In the following, parameters of the S-1c reparameterization are marked with a check134

(“ˇ”). The derivation that for all S∗ with implied covariance matrix Σ, there exists a model135

S-1c for which Σ = Σ̌ shows that the S∗ model is nested within the S-1c model. Without136

loss of generality, Σ is first standardized to be a correlation matrix to simplify equations. Be137

r11 any correlation between two indicators of the reference domain (“1”), rxx any correlation138

between two indicators of an arbitrary other domain x, r1x any correlation between an139

indicator of the reference domain and an indicator of an arbitrary other domain x, and rxy140

any correlation between indicators of two arbitrary other domains x ̸= y. The respective141

values for k are labeled k1, kx, and ky. The respective general factor loadings are labeled142
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λ1ig, λxig, and λyig for the i’th (or j’th) indicator of the respective domain. The off-diagonal143

entries of Σ = Σ̌ are related to Λ and Λ̌ as follows:144

r1i1j
= λ1igλ1jg + k2

1λ1igλ1jg = λ̌1igλ̌1jg; i ̸= j (4)

r1ixj
= λ1igλxjg = λ̌1igλ̌xjg (5)

rxixj
= λxigλxjg + k2

xλxigλxjg = λ̌xigλ̌xjg + λ̌xisλ̌xjs; i ̸= j (6)

rxiyj
= λxigλyjg = λ̌xigλ̌yjg + řηxηy λ̌xisλ̌yjs (7)

Solving Equations (4)-(7) for the parameters of the S-1c variant (details see Appendix145

A) results in Equations (8)-(11), which provide the transformed parameter values of the S-1c146

variant as functions of the parameter values of the S∗ model with the same implied147

correlation matrix:148

λ̌1ig = λ1ig

√
1 + k2

1 > λ1ig (8)

λ̌xig = λxig√
1 + k2

1

< λxig (9)

λ̌xis = λxig

√
k2

x + 1 − 1
1 + k2

1
> λxis (10)
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řηxηy =
1 − 1

1+k2
1√

k2
x + 1 − 1

1+k2
1

√
k2

y + 1 − 1
1+k2

1

> 0 (11)

Because k1, kx, ky > 0, all parameters of the S-1c model are uniquely identified by this149

transformation, meaning that for each S∗ there exists an S-1c parametrization. Therefore, S∗150

(the higher-order factor model) is nested in S-1c. This adds to the well-known fact that the151

higher-order factor model is nested in the S variant by proving the same relationship to the152

S-1c variant. It also implies a special relationship between the parameters of the S and S-1c153

variants. This may not only be relevant in exact special cases but more generally to the154

degree that data resemble the S∗ case.155

Understanding the relationship between the model variants is crucial for the156

interpretation of bifactor models because the two different parametrizations of the same S∗157

model lead to different conclusions about the existence, relationship between, and meaning of158

domain factors. The S-1c and S parametrization provide different estimates of the same159

parameters in equivalent solutions, as indicated by the inequalities at the end of Equations160

(8)-(11). Furthermore, the variants provide different estimates of the general trait. The161

extent to which the S∗ proportionality constraint is violated may be of limited practical162

importance (Raykov et al., 2022) in many applications. It is unclear how well the S-1c and S163

variants can generally compensate for their relative restrictions with the additional free164

parameters in other parts of the model (cf. Figure 1). Therefore, the following simulation165

study on a general set of cases (beyond S-1 and S∗) 1) checks how well the S and S-1c166

variants can be distinguished by common fit-indices, and 2) examines the differences in trait167

and parameter estimates between the S and S-1c variants estimated on the same data.168
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Simulation169

Methods170

Using R (R Core Team, 2020) and SimDesign (Version 2.0.1, Chalmers & Adkins,171

2020), I generated data from each bi-factor model variant (Figure 1).4 Each dataset contains172

four domains (as in Figure 1). The trait values were drawn from a multivariate standard173

normal distribution (using mvtnorm Version 1.1-1, Genz et al., 2020). Random error was174

added to reach σ2
Y = 1 for each indicator. Therefore, all parameters are fully standardized.175

In the S-1 and S-1c variants, the first domain trait was omitted and its variance was replaced176

by additional random error. In the S-1c variant, domain factor correlations were either177

sampled or set to a specific value (see below). Sample size, factor loadings, and the number178

of indicators per domain were varied in a range typically observed in psychological179

measurement (Petras & Meiser, 2023).180

Simulation A181

In the main simulation, the reliabilities of individual indicators (Rel(Y )), the specific182

proportion of their reliable variance (λ2
s/Rel(Y )), and the domain factor correlations in the183

S-1c variant were drawn from (independent) beta-distributions.5 The parameters were184

chosen to cover a realistic range of possible scenarios (Table 1).6 The distribution of the185

absolute values of the domain factor correlations had a mean of .3 and a standard deviation186

of .12 (r ∼ Beta(163
40 , 1141

120 )). The sign of each domain factor correlation was randomized with187

a 50% chance of being negative. This results in a total of 192 conditions (Table 1) with 1008188

4 The simulation code, results, and the reproducible manuscript are available in the osf.io repository:

https://osf.io/e9c6f/?view_only=7e61e52c2a664a32826967045e5cbf34 (this is an anonymized peer review

link)

5 λ2
s/Rel(Y ) = k2 is true for the S∗ model, but in the simulation this proportion is varied across indicators

with a standard deviation of σ(λ2
s/Rel(Y )).

6 An overview of the parameters of the beta distributions, a figure of their density functions, and the

resulting factor loadings are in the online supplement
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iterations per condition.189

(Table 1)190

Simulation B191

To further examine changes in parameter and trait estimates when switching between192

bi-factor model variants, in an additional simulation, model parameters were set to specific193

values instead of drawn from distributions. To distinguish the roles of correlated and194

uncorrelated domains within the same dataset, in the S-1c variant, the correlation between195

two domain factors was non-zero, while the fourth domain was uncorrelated with the others.196

There were a total of 120 simulation conditions (Table 1). Within the S-1c variant197

conditions, the correlation between the second and third domain factors was varied in three198

steps (.2, .5, .8). This resulted in 1008 iterations for each condition of the S-1c variant and199

3024 iterations for the other conditions. Because all indicators share the same factor loading200

values, there is a constant k so that λs = kλg across the whole model. Therefore, the201

data-generating S model in Simulation B is the S∗ model (with k1 = k2 = k3 = k4) and thus202

nested in the S-1c model.203

Analysis204

Each model variant was fitted on each generated dataset using lavaan (Version 0.6-7,205

Rosseel, 2012) for Maximum Likelihood (ML) estimation. For model identification, the first206

loading on each factor was set to one. In the S-1c variant, all domain factor correlations were207

freely estimated.208

For each estimated model, the following fit indices were computed to examine model209

selection7: The Standardized Root Mean Square Residual (SRMR, all fit index definitions in210

online supplement) statistic measures raw misfit of the model implied correlation matrix211

independently of sample size or model parsimony. In contrast, the Root Mean Squared Error212

7 These similar indices are computed but not analyzed here to avoid redundancy: model chi-square (χ2
M ),

comparative fit index (CFI), Tucker-Lewis index (TLI), normed fit index (NFI)
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of Approximation (RMSEA) accounts for parsimony. The Akaike and Bayesian Information213

Criteria (AIC and BIC) use the likelihood of the data given the estimated model and214

account for parsimony in slightly different ways.215

Based on these fit indices, model selection rates between the three alternative model216

variants are analyzed below. Since all indices measure misfit, the model with the lowest217

value is coded as selected. On some iterations, no model is selected, because all models failed218

to converge8. To safeguard against large absolute misfit, the proportion of selected models219

with SRMR > .08 or RMSEA > .06 (Hu & Bentler, 1999) was computed.220

To examine the consequences of misspecifying the model variant, the mean bias of221

factor loadings per domain was computed. To judge the recovery of the original traits, the222

correlation between the data-generating trait and the corresponding trait estimates223

(Regression factor scores, default in lavaan, DiStefano et al., 2009; Rosseel, 2012) was224

computed. To analyze the composition of estimated factor scores, especially when estimating225

one model variant on data generated from another, the correlations between all226

data-generating traits and all estimated factor scores were computed. Even without227

misspecification, factor scores are contaminated with other traits. Therefore, the results for228

the true model are presented as a benchmark.229

Results230

Model fit231

A non-converged model can not fit the data, so convergence rates are considered first232

(Figure 3). When estimating the S variant on data from the S-1 or S-1c variants, convergence233

was imperfect under all simulation conditions. The average convergence rate of S models was234

8 A model is counted as converged if the lavaan package indicated convergence and at least one model

parameter significance test was successfully computed. Warnings indicated that some “converged” solutions

may not be properly interpretable, which could not be checked, given the ≈ 600, 000 estimated models in

total.
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56.39% on S-1 data and 69.54% on S-1c data. Vice versa, S-1 models converged in 95.94%235

and S-1c models in 97.78% of cases on S data. That estimating too many factors is more236

problematic than estimating too few introduces a bias: obtaining only S-1 or S-1c estimates237

on data from an S population is more likely than vice versa.238

For all fit indices, it is much more likely that the S-1c variant fits the data generated239

by the S variant better than the true (S) model, than vice versa (Simulation A, Table 2).240

This discrepancy in model flexibility can be observed for both small (n = 200) and large241

(n = 2000) samples, although fewer errors were made on large samples in general. Rewarding242

parsimony more strongly (AIC vs. BIC) increases this effect. The RMSEA produces the243

fewest errors, due to ties at RMSEA = 0 on the relatively clean simulated data.9 The best244

fitting model had a bad fit (SRMR > .08 or RMSEA > .06) in 0% of the cases.245

The error rate when deciding for the model that fits the data best varies across246

conditions (Figure 4). Whereas 64.06% of conditions with S data had a modest error rate of247

less than 5%, this rate was 87.30% in the worst condition. Accounting for parsimony248

explains some of that: In the condition with six indicators per domain, the S-1c variant uses249

three parameters less than the S variant and therefore is more often preferred by fit indices250

(top right of Figure 4, compared to bottom left).251

A bias exists independent of parsimony. To judge the importance of the conditions,252

the SRMR10 advantage of the data-generating model (∆SRMR) is regressed on the253

simulation parameters (linear, no interactions). The importance of a predictor is judged by254

the difference in R2 between the model including all predictors and the model leaving out255

the predictor of interest. For claims exclusively concerning S or S-1c data, the models were256

restricted to the respective subset of data. All reported effects are significant with p < .001.257

9 Across all conditions, 13.81% of cases were ties at RMSEA = 0. These ties occur because of the max(..., 0)

rule (equation in online supplement).

10 Decisions based on χ2
M are similarly biased.
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Figure 5 shows the distribution of ∆SRMR across individual repetitions. Gray areas258

indicate a worse fit of the data-generating variant. For the S-1c variant (red), the advantage259

in model fit is generally larger (MS = .0048, MS−1c = .014, ∆R2 = .137) (and more likely260

positive, cf. Table 2). This indicates an overall greater flexibility of the S-1c variant.261

Differences in the areas under the curves are caused by varying rates of non-convergence,262

especially of the S model on S-1c data (see Figure 3).263

The less similar S data (black) are to the special case S∗, the better the variants can264

be discriminated. The defining feature of S∗ is the zero variance in the size of the specific265

variance proportion within each domain. The higher this variance is, the larger the model fit266

advantage of the S variant (M.06 = .0025 (black lines in rows 1 and 3), M.12 = .0072 (black267

lines in rows 2 and 4), ∆R2 = .133).268

Furthermore, increasing the sample size (top vs. bottom half, ∆R2 = .053), the269

specific proportion of reliable variance (left vs. right half, ∆R2 = .097), and the reliability of270

the indicators (columns 1 and 3 vs. 2 and 4, ∆R2 = .157) increases discriminability. The271

increase in the variance of the specific factors amplifies the difference between the variants.272

The effect of the number of indicators is specific to S data, in which more indicators increase273

discriminability (∆R2
S = .057, ∆R2

S−1c = .001). There was no effect of the variance in274

indicator reliability (p = .58).275

In sum, fit indices show that the S and S-1c variants can closely imitate each other,276

with the S-1c variant being more flexible. Both the fit indices that are sensitive to parsimony277

and those that are insensitive to parsimony show a bias towards the S-1c variant. Depending278

on several of the data-generating model parameters, the chance that the data-generating279

variant fits worse than the other can be quite high and even surpass 50%. The closer the280

data-generating model parameters are to the special case of the higher order model (S∗), the281

less distinguishable the S and S-1c variants are on model fit indices.282
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Differences in estimates of the S and S-1c variants283

Model parameters. The S and S-1c bi-factor model variants share many284

comparable, freely estimated parameters (Figure 1). When estimating the S-1c model on S285

data (Figure 6), the average factor loading estimates consistently change in the same286

direction as in the special case S∗ (Equations (8) to (11)). The loadings on the reference287

domain factor are set to zero and therefore decrease. To compensate, the loadings of the288

reference domain indicators on the general factor increase. On the further domains, the289

loadings on the domain-specific factors increase, whereas the loadings on the general factor290

decrease. The domain factor correlations of the S-1c model on S data are consistently and291

substantially positive (Figure 7).292

Figure 8 shows the differences in factor loadings when estimating the S model on S-1c293

data in Simulation B. On the aggregate level of Simulation A, the average loading on the294

added reference domain factor is substantially above zero, but the other loadings do not295

change. Simulation B clarifies that the correlations between domain traits of the296

data-generating S-1c model systematically affect the estimates of the S variant. In the297

data-generating S-1c model, only two domain traits (η2 and η3) are correlated. Whereas the298

loadings of the positively correlated domains decrease on their specific factors and increase299

on the general factor, the opposite can be observed for the orthogonal domain. This300

confounds the general trait with those domain traits that are correlated in the301

data-generating model and leads to an underestimation of the variance of these correlated302

domain traits. The higher the correlation (color-coded in Figure 8) and the higher the303

domain-factor loadings, the more pronounced this effect is.304

Factor scores. Differences in the model parameters inevitably result in differences305

in estimated factor scores. The baseline pattern in the S model variant shows that the factor306

score computation cannot disentangle traits in bi-factor models completely (Simulation A,307

Table 3, top left). The averaged correlations off the main diagonal are consistently and308

substantially non-zero.309
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The top right section of Table 3 shows the correlations between the same true S traits310

and the estimated S-1c factor scores. The unique variance of the reference domain (s1 row),311

which is set to zero in the S-1c model, affects all factor scores substantially. Nevertheless,312

interpreting the general factor score (g column) as the true score of the reference domain’s313

indicators is supported by the simulation results: The estimated general factor scores are314

almost independent of the remaining domain traits η2−4. In addition, some variance of the315

data-generating general trait is captured by the remaining domain factor scores (first row)316

instead. This pattern may not be obvious from the model’s definition but follows directly317

from the differences in factor loadings (Figure 6, see also Equations (9) and (10)). The trait318

composition of the S-1 variant on S data only shows minor quantitative differences from that319

of the S-1c variant.320

The S-1c variant also produces biased factor scores at baseline already (Simulation B,321

Table 3, bottom right). Compared to the orthogonal domain factor four, the correlation322

between the domain traits two and three in the population markedly increases the bias in323

their factor score estimates. The S variant compensates for the unmodeled pattern of324

correlations between the true domain traits in various ways (Table 3 bottom left): An325

additional “ghost” domain s1, which does not exist in the data-generating model,326

systematically draws from the true general trait and the true domain traits. Specifically, it is327

more strongly related to the correlated true domain traits (s2 and s3) than to the domain328

trait that is orthogonal to the others (s4). The general factor scores are similarly biased329

towards the correlated domain traits. In Simulation A, this pattern is canceled out in the330

averaged results due to averaging across the symmetrical distribution (with mean zero) of331

the domain trait correlations.332

Discussion333

The relationship between the bi-factor model variants is only incompletely described334

by the nesting structure. The S-1 variant and the higher-order model (here: S∗) are both335
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nested in the S and S-1c variants (Figure 2). The relationship between the S and S-1c336

variants was further analyzed in the simulation study. The S and S-1c variants of the337

bi-factor model are characterized by free parameters in different parts of the model. Whereas338

the older S variant includes a domain-specific factor of the reference domain, the S-1c variant339

estimates correlations between the other domain factors freely (Figure 1). These additions in340

different parts of the model are equivalent if the ratio between general and specific loadings341

is constant within domains. This special case S∗ is a reparameterization of the higher-order342

factor model (Yung et al., 1999), meaning that it is nested in both the S and S-1c variants of343

the bi-factor model. Critically, these different parameterizations superficially suggest a very344

different structure of the data. Beyond the special case S∗, the S and S-1c variants can345

compensate for unmodeled complexity from the part of the model that is specific to the346

other variant. This can be seen in the simulation results on the discriminability using fit347

indices and the differences in parameter estimates.348

Comparing the model fit of the S and S-1c variants uncovers their ability of mutual349

imitation. Depending on the population parameters, deciding if the S and S-1c model350

variants underlie the population using common fit indices is uncertain or even impossible351

(Table 2, Figure 5). In addition, both convergence rates (Figure 3) and standard model fit352

indices (Table 2) systematically favor the S-1c variant. This suggests that it is more flexible353

to fit any data – including random sampling variation. Given that bi-factor models already354

show high flexibility compared to competing models (Bader & Moshagen, 2022), meaning355

they excel in fitting any data (Bonifay & Cai, 2017), fit-based decisions on the S-1c bi-factor356

model should be interpreted with caution (Roberts & Pashler, 2000). An excellent fit of the357

bi-factor model does not exclude the possibility that another model (variant) is true in the358

population, but the bi-factor model can imitate it. This applies to fit indices accounting for359

parsimony (AIC, BIC, RMSEA), and measures of absolute misfit (SRMR, χ2
M).360

The relationship between the S and S-1c variants can be seen from two different361
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perspectives. To the degree that the S model estimates conform to the S∗ (or S-1)362

restriction, the S and S-1c variants are interchangeable reparametrizations: none is closer to363

the truth than the other. To the degree that the S and S-1c variants differ in their364

model-implied covariance matrix, they can be more true or false. Therefore, differences in365

parameter values when switching between model variants can be seen either as a shift in366

perspective or as bias (= error). This is especially important when interpreting the unique367

parts of the model variants, but affects all parameters (Figures 6 to 8).368

Does a domain have unique variance (i.e. there exists a domain-specific trait)? Are369

the domain factors correlated? These questions can not be answered generally or370

independently. The answer can depend entirely on the parameterization. The S∗ case shows371

that these questions can be identical: the covariance matrix contains information that can be372

perfectly represented by allowing either the domain factor correlations or the parameters373

pertaining to a specific factor of the reference domain to be freely estimated. Strong374

compensatory changes in parameter estimates when switching between model variants are375

common on a larger variety of data beyond the S∗ special case (e.g., Figure 7). Many claims376

on these estimates in the literature may therefore reflect implicit choices on which model377

variants to consider instead of the phenomenon of interest.378

Researchers before 2017 decided in favor of the S variant by default. A researcher379

claiming that there exists a specific trait may then miss that a model without that trait, but380

including correlated further domain factors, would make the exact same predictions. If381

researchers decide on principle in favor of the S-1c variant, because the domains are not382

randomly sampled (Eid et al., 2017), they should be aware of the consequences. For example,383

a researcher claiming that two domain traits are better understood as being correlated384

because the S-1c model fits much better than the S-1 model may miss that a third model385

with orthogonal domain factors (S) would make the exact same predictions. An easily386

overlooked detail is that any unique variance of the reference domain in the population387
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affects all S-1 and S-1c parameter estimates, including the scores on the remaining domain388

factors (Table 3, second row). This seems to contradict the interpretation given by (Eid et389

al., 2017, p. 550): “Such a specific factor represents that part of a domain that is not shared390

with the reference domain.”391

In the multitrait-multimethod (MTMM) literature, models that leave out one specific392

factor have been proposed first (Eid, 2000; Eid et al., 2003, 2008). MTMM models typically393

comprise multiple traits, but the simplified version with a single trait can be identical to the394

bi-factor model. Similarly to the current study, Geiser et al. (2015) analyzed the relationship395

between such models and models with a full set of method factors in a simulation. The396

UM(unconstrained) and C(M-1) models of that study are identical to S and S-1c bi-factor397

variants (Geiser et al., 2015, fig. 3). Mathematically, what MTMM analysis calls method398

factors then are domain-specific factors in bi-factor models, and their single trait is the same399

as the general factor of a bi-factor model. Geiser et al. (2015) found a tendency of the S400

variant on S-1c data to produce non-significant method factor loadings. The prevalence of401

these null results increased with the correlation between the data-generating method factors402

(Geiser et al., 2015, fig. 5). This perfectly matches the finding of decreased specific factor403

loadings in S models estimated on S-1c data (Figure 8). Geiser et al. (2015) attributed this404

finding to the badly modeled interchangeability (= random sampling) of the methods (p. 13).405

However, their C(M-1) that generated the data and the UM(unconstrained) model that was406

estimated were both specified for non-interchangeable methods (which in that case meant407

that different factor loading patterns were allowed across methods). Furthermore, in the408

current simulation, the issue of decreasing specific factor loadings when estimating the S409

model variant applies to the correlated specific factors of the data-generating S-1c model,410

but not its orthogonal factors (Figure 8). Therefore, I argue that the described problem of411

“collapsing” factors with non-significant loadings appears more frequently if there are more412

strongly correlated specific traits in the data-generating population. When the S model is413

estimated on such data, the model compensates for fixing the strong correlation to zero by414
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decreasing the factor loadings of (only) the affected domains, among other changes. In415

consequence, the general trait is confounded with the specific variance of the correlated416

methods (or domains). This can be partly understood as a perspective shift and does not417

necessarily indicate an error by the researcher. Due to connections like these, it would be418

fruitful for future research to link the literature on MTMM models and bi-factor models419

more closely. This link becomes clearer when understanding the proposal of S-1 bi-factor420

models (Eid et al., 2017) as a special case of the method-1 approach to MTMM analysis (Eid421

et al., 2008).422

The current simulation did not consider the relationship between latent variables423

directly. If the interpretation of the factors in the structural part of a structural equation424

model follows exactly the pattern of results on factor scores is therefore uncertain.425

Nevertheless, it seems plausible that the pattern of differences between variants is consistent426

because the factor scores differ due to systematic differences in the factor loadings.427

Examining the interpretation of different bi-factor model variants within structural equation428

models would be relevant to future research because the S-1(c) variants show promising429

characteristics when the bi-factor model is in the predictive part of a structural equation430

model (Eid et al., 2018; Zhang et al., 2020).431

Conclusion432

The relationship between the bi-factor model variants is complex and can be433

misleading. The variants of the bi-factor model exemplify how parameters in one part of a434

statistical model can partly – or even fully – account for unmodeled complexity in other435

parts of the model. The higher-order factor model (S∗) was identified as a special case,436

which is nested in both the S and S-1c bifactor model variants. On data generated from a S∗437

population, the additions of another domain-specific factor and the addition of correlations438

among the other domain-specific factors are interchangeable reparameterizations of the same439

model. This relationship is retained to varying degrees in all data generated by bi-factor440
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population models. Therefore, the validity of many claims is conditional on the model441

variant in a subtle way and data-based model selection between variants is severely limited.442

Beyond providing a more comprehensive basic understanding of the bi-factor model variants,443

the current work offers a reference on how parameter estimates behave based on the choice of444

model variant.445
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Table 1

Simulation design (top: A, bottom: B)

parameter values description

n 200, 2000 sample size

E[Rel(Y )] .4, .7 average indicator reliability

σ(Rel(Y )) .06, .12 indicator reliability standard deviation

E[λ2
s/Rel(Y )] .2, .5 average proportion of domain-specific reliable indi-

cator variance

σ(λ2
s/Rel(Y )) .06, .12 standard deviation of domain-specific reliable indi-

cator variance

m 3, 6 indicators per domain

model variant S, S-1, S-1c

n 200, 2000 sample size

λg .5, .7 general factor loading

λs .2, .4, .6 domain factor loading

m 3, 6 indicators per domain

model variant S, S-1, S-1c

rη2η3 .2, .5, .8 correlation between domain traits 2 and 3 in S-1c

variant

Note. Simulation A: Total of 192 conditions (2 × 2 × 2 × 2 × 2 × 2 × 3). Data was

generated by drawing from beta distributions defined by the parameters. Simulation B:

Total of 120 conditions (2 × 2 × 3 × 2 × (2 + 1 × 3)).
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Table 2

Simulation A: Erroneous decisions between the S

and S-1c variants. Numbers indicate the

percentage of all cases in which the true model

(column) had the higher fit index (= more

misfit). These values can not exceed the

percentage of cases in which both variants

converged (bottom row).

n = 200 n = 2000

S S-1c S S-1c

BIC 34.55 2.37 9.33 0.77

AIC 21.39 4.44 4.38 0.93

SRMR 22.02 4.13 4.87 0.91

RMSEA 11.92 4.19 2.49 0.62

both converged 85.15 55.68 99.11 81.05
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Table 3

Average correlations between true trait values (rows) and estimated factor scores (columns);

for Simulation B (lower part), only the data with a medium true correlation of .5 between

η2 and η3 is included for simplicity

S S-1c

g s1 s2 s3 s4 g s2 s3 s4

Simulation A: S data

ηg .901 .181 .181 .181 .181 .81 .376 .376 .376

η1 .147 .677 -.145 -.145 -.145 .419 -.324 -.324 -.324

η2 .147 -.145 .678 -.145 -.145 .044 .607 .02 .02

η3 .147 -.145 -.145 .678 -.145 .044 .02 .608 .02

η4 .147 -.145 -.145 -.145 .678 .044 .02 .02 .607

Simulation B: S-1c data

ηg .891 .219 .098 .098 .202 .91 .179 .179 .156

η2 .256 -.236 .538 .092 -.231 .152 .586 .302 -.156

η3 .256 -.236 .091 .539 -.231 .152 .301 .586 -.156

η4 .095 -.085 -.129 -.129 .614 .13 -.155 -.155 .599
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Figure 1

Bi-factor model path diagrams of the S, S-1, and S-1c variants. There are one general factor

ηg and – in this example – up to four domain factors (η1−4).
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S-1 bifactorS bifactor S-1c bifactor
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Figure 2

Nesting structure of bi-factor model variants and related models.
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Figure 3

Simulation A: Convergence rate of each simulation condition by model variant combination.

Stacked bars indicate the number of simulation conditions with a certain convergence rate

(x-axis). Correctly specified models are on the main diagonal, estimates with a mismatch

between the data-generating variant and the estimated variant are off the main diagonal.
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Figure 4

Simulation A: Selection by best model fit (BIC) and model variant combination. Stacked bars

indicate the number of simulation conditions with the given selection rate for the estimated

model. The estimated variant matches the data-generating variant on the main diagonal.

(The S-1 variant is omitted for brevity but considered in the analysis - so that selection rates

in the figure do not add up to convergence rates.)
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Figure 6

Simulation A: Difference in general (λg) and specific (λs) factor loading estimates when

estimating the S-1c model on S data. Values are averaged across indicators within each

domain s1-s4 and compared to the true S population values. s1 is the reference domain.

E[λ2
s/Rel(Y )] is the average specific proportion of the reliable variance of all indicators (see

Table 1).
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Figure 7

Simulation A: Difference in domain factor correlation estimates when estimating the S-1c

model on S data. Since all domain correlations are 0 in the true population model, this

difference is equal to the S-1c domain factor correlation estimates r̄ηsηs′ . E[λ2
s/Rel(Y )] is the

average specific proportion of the reliable variance of all indicators (see Table 1).



BI-FACTOR VARIANTS 36

λg λs
s

1
s

2
s

3
s

4

−0.25 0.00 0.25 −0.25 0.00 0.25

0
200
400
600

0
200
400
600

0
200
400
600

0
200
400
600

λS − λS−1ctrue

re
pe

tit
io

ns

rη2η3 0.2 0.5 0.8

Figure 8

Simulation B: Difference in general (λg) and specific (λs) factor loading estimates when

estimating the S model on S-1c data. Values are averaged across indicators within each

domain s1-s4 and compared to the true S-1c population values. s1 is the reference domain.

The domain specific trait η4 of s4 is orthogonal to the others in the population and rη2η3 is the

correlation between the other domain traits.
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Appendix

Derivation of Equations (8) to (11)

First, Equation (4) on the correlations within the reference domain is used to obtain the527

general factor loadings of the reference domain in the transformed S-1c model. Restructure528

Equation (4):529

r1i1j
= λ1igλ1jg + k2

1λ1igλ1jg = λ̌1igλ̌1jg; i ̸= j (A1)

λ̌1igλ̌1jg = λ1igλ1jg(1 + k2
1) = λ1igλ1jg(1 + k2

1) (A2)

Solve for the individual parameters (see also Equation (8)):530

λ̌1ig = λ1ig

√
1 + k2

1

λ̌1jg = λ1jg

√
1 + k2

1

(A3)

Next, the general factor loadings in the non-reference domains in the S-1c model are531

calculated by inserting Equation (A3) into Equation (5), which describes the correlations of532

the indicators of the reference domain with the other indicators.533

Insert Equation (A3) into Equation (5):534

r1ixj
= λ1igλxjg = λ̌1igλ̌xjg (A4)

λ̌1igλ̌xjg = λ1ig

√
1 + k2

1λ̌xjg = λ1igλxjg (A5)

Solve for λ̌xjg (see also Equation (9)):535
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λ̌xjg =
λxjg√
1 + k2

1

(A6)

To obtain the specific factor loadings in the S-1c model, Equation (A6) is inserted536

into Equation (6), which describes the correlations between indicators within non-reference537

domains.538

Insert Equation (A6) into Equation (6):539

rxixj
= λxigλxjg + k2

xλxigλxjg = λ̌xigλ̌xjg + λ̌xisλ̌xjs; i ̸= j (A7)

λxigλxjg(1 + k2
x) =

λxigλxjg

1 + k2
1

+ λ̌xisλ̌xjs (A8)

Solve for λ̌xisλ̌xjs:540

λ̌xisλ̌xjs = λxigλxjg(1 + k2
x − 1

1 + k2
1
) (A9)

Similar to Equation (A2), Equation (A9) can be solved for the individual parameters541

like this:542

λ̌xis = λxig

√
1 + k2

x − 1
1 + k2

1

λ̌xjs = λxjg

√
1 + k2

x − 1
1 + k2

1

(A10)

To obtain the domain factor correlations in the S-1c model, Equations (A6) and543

(A10) are inserted into Equation (7), which describes the correlations between indicators of544

different non-reference domains.545
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Insert Equations (A6) and (A10) into Equation (7):546

rxiyj
= λxigλyjg = λ̌xigλ̌yjg + řηxηy λ̌xisλ̌yjs (A11)

λxigλyjg =
λxigλyjg

1 + k2
1

+ řxyλxig

√
1 + k2

x − 1
1 + k2

1
λyjg

√
1 + k2

y − 1
1 + k2

1
(A12)

In solving for řxy, the absolute factor loadings are canceled out:547

řηxηy =
1 − 1

1+k2
1√

k2
x + 1 − 1

1+k2
1

√
k2

y + 1 − 1
1+k2

1

> 0 (A13)
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Abstract25

Many latent constructs are inherently multidimensional, but their measures do not26

necessarily follow a perfect subdomain structure. For example, many applications of the27

bi-factor model can not establish a full set of well-interpretable specific factors. The current28

work proposes a more flexible approach to the specification of hierarchically structured factor29

models. It uses a sparse set of relevant residual correlations to represent specific relationships30

beyond the target trait, selected using Bayesian lasso regularization. The four-step31

procedure, including cross-validation, combines the benefits of exploratory and confirmatory32

analysis, the compelling hierarchical structure of bi-factor models, and the principled33

Bayesian lasso selection procedure. The approach is introduced and discussed using a large34

open data example. In a multiverse analysis and multiple replications, consequences of35

several modeling choices are examined. In the example, the final model outperforms the36

traditional bi-factor model in both model fit and parsimony simultaneously. Furthermore, its37

flexibility in representing specific content matches a more realistic theoretical view of the38

complexity of typical questionnaire items. It is discussed how this new approach compares to39

the existing toolkit of factor modeling techniques.40

Keywords: Bayesian lasso, confirmatory factor analysis, bi-factor models, residual41

correlations42

Word count: 721143
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Building hierarchically structured factor models with systematically selected44

residual correlations45

Introduction46

Multi-item psychological measures are routinely modelled using confirmatory factor47

analysis (CFA) models in the Structural Equation Modelling (SEM) framework. Often,48

simple structure models are used, in which the relationships between the items are fully49

explained by each reflecting a single latent variable from a (potentially correlated) set of50

latent variables. Because such simple structure models are unrealistically restrictive, the51

current work outlines a new approach to systematically lift two of their key assumptions to52

build a sparse, hierarchically structured factor model around a target trait.53

Consider a covariance structure model of k items and p latent variables (Equation54

(1)).55

Y = Λη + ε (1)

Y is the k × 1 response vector, Λ is the k × p factor loading matrix, η is the p× 156

latent trait vector, and ε the k × 1 vector of errors. Here, I call a factor model a simple57

structure model if it fulfills the following two conditions: Λ has only one nonzero entry per58

row (no cross-loadings) and the k × k covariance matrix of errors Ψ is a diagonal matrix59

(independently distributed residuals). The off-diagonal elements of Ψ are the residual60

covariances (ψ). The residual correlations are obtained by standardizing Ψ to be a61

correlation matrix, implying that all residual variances equal one.62

Because items in psychological measures are complex, this assumption is rather63

restrictive. The meaning of questionnaire items is multifaceted, even if they are64

well-formulated and well-selected. They often reflect a large number of influences, both65
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regarding the target construct and (unavoidable) nuisance. For example, item 161 of the66

well-established MACH IV machiavellianism questionnaire (Christie & Geis, 1970) seems67

simple at first glance: “It is possible to be good in all respects.” Yet, it has been argued that68

(reversely scored) it reflects four specific content areas of machiavellianism: immorality,69

duplicity/dishonesty, misanthropy, and cynicism (Rauthmann, 2013). When considering this70

item by itself, it seems naively optimistic to assume that nothing beyond machiavellianism71

meaningfully influences the responses. For the example of machiavellianism, Rauthmann and72

Will (2011) identified no less than 46 machiavellianism content areas that potentially result73

in specific common variance among subsets of items. Even if most of them had a negligible74

specific influence on the data in practice, excluding all would be very restrictive.75

Expectably, the assumptions of simple structure models are frequently violated in76

practice. For example, simple structure models of the Big Five usually have an unacceptable77

degree of model misfit (Marsh et al., 2010; Vassend & Skrondal, 1997). Most prominently,78

the often desired single factor model of the target construct (e.g., one factor per Big Five79

trait) rarely fits empirical data well by common standards of model fit index cut-offs (Hu &80

Bentler, 1999). A prominent example of that is the Rosenberg Self-Esteem Scale (RSES,81

Rosenberg, 1965). This short, straightforward, and supposedly unidimensional measure has82

produced a large amount of literature on its factor structure (e.g., Alessandri et al., 2015;83

Gnambs et al., 2018; Schmitt & Allik, 2005). The misfit of this simplest of all models leads84

many researchers to split their target construct into a correlated set of latent factors. For85

example, Corral and Calvete (2000) considered models with one to four (correlated) factors86

to represent the MACH-IV machiavellianism scale, which is discussed in the empirical87

example below. This prevents the assessment of the target construct as a whole and mixes88

the variance shared by all items with that of specific content domains (F. F. Chen et al.,89

1 The item enumeration may vary across publications. Here, it consistently matches the example dataset

discussed below.
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2012).90

The current work outlines an approach to lift model restrictions just enough to91

account for the multitude of influences on item responses. It does so systematically and92

parsimoniously, and preserves the target trait as a core latent variable. Before describing the93

overall approach, two core building blocks are briefly reviewed: the bi-factor model and a94

state-of-the-art method to identify relevant ψs. After outlining the general approach, the95

chosen ψ selection method is described in more detail. After this introduction, an empirical96

example study is reported and used to inform the subsequent discussion of the proposed97

approach.98

Building Blocks: Complexity beyond a single trait in latent variable models99

The bi-factor model (Bornovalova et al., 2020; Holzinger & Swineford, 1937; Reise,100

2012; see also Bader & Moshagen, 2022; and Petras & Meiser, 2024) is a currently popular101

approach to account for complexity beyond a singular target trait. In the bi-factor model, all102

items load on one general factor. A set of specific factors, which are orthogonal to the general103

factor and each other, represents the common variance of subsets of items. More formally,104

the loading matrix Λ (cf. Equation (1)) of a bi-factor model includes two non-zero entries per105

row: one in the column of the general factor and one in the column of the assigned specific106

factor. Traditionally, all items are assigned to a specific factor (Holzinger & Swineford, 1937),107

and recent variations assign all but some items to a specific factor by default (Eid et al.,108

2017). Specifying such a “full” bi-factor model is not strictly necessary, it is a modelling109

choice. Problematically, such bi-factor models often produce weak specific factors that are110

hard to interpret (Eid et al., 2017; Petras & Meiser, 2024). The schematic approach to only111

specify full bi-factor models ignores potentially more parsimonious models. For example,112

specific factors may capture a strong ψ between two of their items and show near zero113

loadings on all other items. In extreme cases, a specific factor has near zero loadings on all114

items or its inclusion in the model triggers convergence problems. The expectation that the115
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data are best represented by a model with a symmetrical factor structure in which each item116

has two substantial factor loadings is restrictive and should be questioned.117

The key feature of the bi-factor model is its inclusion of two independent levels: that118

of the general factor and that of the specific factors. An alternative approach to account for119

complexity beyond a singular to-be-measured trait is to allow for a sparse set of ψs. This can120

be done in a systematic way, using Bayesian lasso regularization to circumvent the problem121

of non-identification due to the large number of parameters (Pan et al., 2017; Zhang, Pan,122

Dubé, et al., 2021). The Bayesian lasso approach was originally suggested as a principled123

alternative to modification indices. Modification indices can be used to add ψs until the124

model fit reaches a “publishable” level. This ad-hoc modification strategy is typically seen125

very critically, because it involves multiple questionable statistical steps and is prone to126

capitalize on chance, inspiring questionable post-hoc rationalization (for a more detailed127

argument, see Pan et al., 2017). The well-founded hesitancy to use modification indices may128

have led to a hesitancy to include ψs in general. The more principled approach by Pan et al.129

(2017) estimates all ψs at the same time, using a restrictive double-exponential prior on the130

off-diagonal elements of Ψ−1. Importantly, the result can not only be used as a final model131

itself, but also to select a sparse set of ψs to keep for a final model, based on a reasonable132

cut-off (Zhang, Pan, & Ip, 2021; Zhang, Pan, Dubé, et al., 2021). The resulting model also133

has two independent hierarchical levels: factor(s) and the residual distribution with a sparse134

set of ψs.135

Alternative modelling strategy136

The current work examines the following suggested modeling strategy, using a137

detailed empirical example (below):138

1) Select a baseline model including the target trait(s). Test for potentially relevant139

specific factors. Several potential baseline models may be compared on an exploratory140

sample.141
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2) Estimate a hierarchy of relevance among all possible ψs on the exploratory sample. For142

this step, Bayesian lasso regularization is principled and seems optimal.143

3) Use a predefined inclusion criterion (or procedure) to decide how many ψs to add to144

the baseline model. For this, a cut-off of on the posterior means of the Bayesian lasso145

model estimates has been proposed to be a good rule of thumb (Zhang, Pan, & Ip,146

2021).147

4) Use a second, confirmatory sample to estimate the final model. Interpret only the148

estimates and model fit of this model.149

The final model, through a combination of the bi-factor approach and the systematic150

inclusion of ψs, has three orthogonal hierarchical levels: The level of the general factor151

represents the target construct. The (optional) level of specific factors captures more specific152

common variance of a subset of items. The sparse set of covariances in the error distribution153

captures any further relationships between pairs of items.154

Ultimately, the goal is to strike an optimal balance between the model’s fit to the155

data and its parsimony. On the one hand, a sparse, well-structured model can more closely156

represent, and thereby deductively test, scientific theory. To that end, the resulting extreme157

restrictions of simple structure models have failed to accurately describe most empirical data.158

This introduces a danger of misinterpretation due to missed patterns in the data. On the159

other hand, a well-fitting model implies that no major structures in the data have been160

missed. To that end, the exploratory nature of approaches such as Exploratory Factor161

Analysis (EFA) or Exploratory Structural Equation Modeling (ESEM, Asparouhov &162

Muthén, 2009) involve an excessive amount of free parameters. This makes models so flexible163

that a good model fit no longer indicates a close fit to the theory and a large number of164

nuisance parameters (such as the full set of all potential cross-loadings) has to be included in165

the interpretation. In this case, researchers do no longer test the restrictions of the model,166

but rather interpret the match between parameter estimates and a desired or anticipated167
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pattern. The suggested modelling strategy strikes a balance between these extremes.168

Residual correlation selection using bayesian lasso regularization169

Regularization methods reduce the number of model parameters (e.g. the number of170

included predictors in a multiple regression model) to those who efficiently describe the data171

(e.g. predict the criterion). Such a sparse model has a low likelihood of including mere172

random noise in its structure. The “Least absolute shrinkage and selection operator” (Lasso)173

adds a punishment in the estimation process that increases with the absolute values of174

parameter estimates. Thereby, solutions with small parameter estimates are prefered175

(Tibshirani, 1996). In this way, some parameter estimates are reduced to (almost) zero and176

can subsequently be fixed (or excluded from the model altogether). The Bayesian Lasso177

achieves this using a double-exponential (Laplace) prior (Park & Casella, 2008).178

In SEMs, the value off the main diagonal of Ψ−1 can be interpreted as the conditional179

relationship of the two variables after accounting for all other variables (Pan et al., 2017).180

The double-exponential prior to regularize ψs is best applied to the off-diagonal entries of181

Ψ−1, not Ψ (Dempster, 1972; Pan et al., 2017). In this way, the posterior density is reduced182

for parameter combinations with a higher sum of absolute values off the main diagonal of183

Ψ−1. The strength of punishment for a lack of parsimony depends on the rate λ of the184

double-exponential prior. To reduce the subjectivity of this choice, a gamma hyperprior for185

the common rate of this prior and the exponential prior of the residual variances is used.186

The current work also adopts the further choice of priors by Pan et al. (2017) (see Appendix187

A). This approach estimates all ψs at the same time and alongside the other parameters, by188

using a block Gibbs sampler for MCMC sampling from the posterior distribution. This is the189

crucial advantage of the Bayesian lasso compared to other estimation procedures: They190

would fail from a lack of degrees of freedom given the excessive number of model parameters191

in this full model.192

From the resulting posterior mean estimates of Ψ, the residual correlations can be193
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computed and ordered by absolute value, to complete step 2) of the proposed approach.194

Selecting those exceeding |r̂| ≥ .1 for inclusion in the model completes step 3). This cut-off195

was shown to be superior to alternative values and methods in a simulation study (Zhang,196

Pan, & Ip, 2021). As an alternative to the suggested cut-off by Zhang, Pan, and Ip (2021), I197

suggest that the ψs of the fully standardized model can be used directly. Since the fully198

standardized model (with item and factor variances equal to one) is the most commonly199

interpreted one, this seems to match common analysis best. This standardization sets item200

variances to be equal, instead of setting residual variances equal. If there is variation in the201

reliability of items, this common standardization can lead to different rank orders of the202

values in Ψ compared to the residual correlation matrix. It seems intuitive that including a203

residual correlation of the same value should have more impact on model estimates and204

model fit if the factors explain a smaller proportion of the item variances. For this reason,205

the ranking of standardized residual covariances can be seen as a more informative inclusion206

criterion than the ranking of residual correlations. Notably, the same cut-off value is more207

conservative on ψs than residual correlations, since the residual variances underlying ψs in208

fully standardized models (main diagonal of Ψ) are all smaller than or equal to one.209

Therefore, a different cutoff value than 0.1 may be optimal when using ψ.210

After selecting which ψs to estimate freely, the resulting model can then be estimated211

on a new, confirmatory sample (step 4). This avoids capitalizing on chance: if uncorrected212

hypothesis tests were conducted on estimates from the same sample, the alpha errors would213

be inflated due to the preselection of the most promising candidates. I suggest that the a214

posteriori model derived from the exploratory data should become the a priori model to be215

confirmed on a new dataset, resulting in valid hypothesis tests on the new sample.216
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Methods217

Dataset218

The example data are open data made available by openpsychometrics.org, a website219

that collects large amounts of questionnaire data online220

(http://openpsychometrics.org/_rawdata/MACH_data.zip, downloaded 18 July 2023).221

Data of 73489 participants on the MACH IV machiavellianism scale (Christie & Geis, 1970)222

and two other questionnaires are included in the dataset. The data was collected online223

between July 2017 and March 2019. Demographic statistics and a Figure showing the224

distributions of item responses can be found in the online supplement.225

For the purpose of this study, only the MACH IV scale and the demographic data are226

used. The sample is reduced to two subsamples of a more typical sample size for227

psychological studies (n = 1000), by taking the first one thousand and the second one228

thousand cases. The first subsample is used as the exploratory subsample and the second is229

used as the confirmatory subsample. Eight further chunks of n = 1000 cases are used for230

replicability checks.231

To understand the practical limitations of schematic modelling approaches, it is232

worthwhile to take a closer look at the structure of the application example. The analysis of233

a measure’s data structure should be complemented by a theoretical structure from which234

expectations about the data structure can be derived and which explains patterns in the235

data. The MACH IV scale (Christie & Geis, 1970) comprises 20 items measuring236

machiavellianism. The construct of machiavellianism is named after Niccolo Machiavelli’s237

(1469-1527) writings on manipulative social strategies. The scale’s authors write that238

“Traditionally, the ‘Machiavellian’ is someone who views and manipulates others for his own239

purposes.” (Christie & Geis, 1970, p. 1). Although the scale was designed to measure one240

target construct (machiavellianism), several different factor structures with multiple factors241

were proposed on various translations (Corral & Calvete, 2000; Hunter et al., 1982; O’Hair &242
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Cody, 1987; P. Monteiro et al., 2022; Williams et al., 1975). Rauthmann (2013) provide an243

analysis of the content of the MACH-IV items (Rauthmann, 2013, Table 1). They did not244

consider alterations to their unidimensional IRT model, but instead focussed on further item245

selection. In their analysis of item content, Rauthmann (2013) conclude that the items mix246

many different aspects of machiavellianism in various combinations, and these aspects are247

represented by varying numbers of items. Their analysis implies that no simple structure248

model (or bi-factor model) should be able to describe the data properly. Such models would249

not allow for the content areas to be fully or partly represented. There is only one clear250

content-based feature of the MACH IV scale that can easily be translated to a standard251

statistical model: it contains 50% reversely scored items.252

Statistical models253

Two possible baseline models are considered: a) a single factor model with one factor254

across all items and b) a model with one general factor across all items and one specific255

factor across all negatively keyed items2. In model b) the factor covariances were set to zero256

for the general and specific factor to be orthogonal. In all analyses, the observed and latent257

variables are standardized (µ = 0, σ = 1). Using Maximum Likelihood (ML) estimation, it is258

decided which of these models is preferable, using a Likelihood Ratio Test (LRT) for model259

comparison to test if the inclusion of the method factor is worthwhile. Next, relevant ψs are260

selected using Bayesian lasso regularization (Pan et al., 2017) on the exploratory subsample.261

The analysis is repeated with two different cut-offs: |ψ̂| ≥ .13 and |r̂| ≥ .1. For each cut-off,262

2 The model with one specific factor for only the positively keyed items fits worse and is therefore discarded,

see supplementary code. A replication of the four factor model by Corral and Calvete (2000) showed several

flaws, despite a good fit to the data: items 17 and 19 show factor loadings with signs opposite to the reported

direction and two of the factors correlate almost perfectly (r = .99). For this reason, and because their data

are based on a translation, this model – and similar correlated factor models – are not explored further.

3 To obtain a similarly strict cut-off to the proposed |r̂| ≥ .1 by Zhang, Pan, and Ip (2021), this value would

need to be lowered. Without any clear strategy to do so, the current work just uses the same value. As this

turned out to work just fine and arguably even better than the more liberal cut-off proposed by Zhang, Pan,
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one final model with the selected ψs is specified. For brevity, the final model based on263

|r̂| ≥ .1 is not discussed in detail. These final models are estimated on the confirmatory264

subsample. The replicability of the selection of residual correlations is explored on a total of265

ten subsamples of n = 1000 participants. A full bi-factor model is estimated for comparison,266

in which both negatively keyed and positively keyed items are each related to a specific267

factor. To examine the trade-off between model fit and parsimony, a multiverse analysis268

across models selecting between zero and 75 ψs is presented.269

Bayesian lasso regularization was used to 1) create a hierarchy of relevance among all270

potential ψs and 2) check against the cut-off of |r̂| ≥ .1 (Zhang, Pan, & Ip, 2021) and271

|ψ̂| ≥ .1. 10000 MCMC samples were drawn using Gibbs sampling, of which 3000 were272

discarded as burn-in. The replicability of the Bayesian lasso based selection is examined by273

repeating it on nine further subsamples of n = 1000 cases. The replicability is judged by a)274

the number of times a ψ is selected by the cut-off rule, b) the average of the posterior means275

in the nine subsamples beyond the exploratory subsample, and c) the retest reliability of the276

relevance measure (correlation between the posterior means (of ψs) across replications).277

What if a larger or smaller number of ψs was selected? The descriptive multiverse278

analysis compares models with a range of 0-75 included ψs, adding ψs in order of their279

absolute posterior mean in the Bayesian lasso regularization results. For comparison, both280

the selection based on residual correlations and the analysis based on the alternative baseline281

model are included. The unreasonably high number of 75 ψs is used to map the overall282

development of the model statistics. It is not suggested to be a reasonable candidate for283

model selection. Although the cut-off proposed by Zhang, Pan, and Ip (2021) (|r̂| ≥ .1) was284

shown to be a good one-size-fits-all compromise across studies, a different number of selected285

ψs may be optimal in individual studies. To explore where an optimal balance on the286

trade-off between model fit and parsimony could be, several fit indices (AIC, BIC, χ2, CFI,287

and Ip (2021), strategies to arrive at an optimal cut-off might need to be reconsidered anyways.
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RMSEA, SRMR) are computed for all models. Adding any ψ to the model can only improve288

the model fit – at least when ignoring parsimony. Therefore, a bootstrapping sample of 100289

random orders was drawn to compare the performance of the Bayesian lasso selection to290

random selection.291

To consider the effect on the estimated factors, the sum of the squared factor loadings292

per factor was computed. It could be expected that adding more and more ψs gradually293

chips away at the factors, lowering their factor loadings and affecting their usefulness and294

interpretability. To compare the effect of including the method factor with the effect of295

selecting ψs, the same analysis was repeated with both potential baseline models.296

All analyses were performed in R version 4.3.1 (R Core Team, 2020) running under297

Windows 11. Maximum likelihood estimation was performed using the lavaan package298

(version 0.6-16, Rosseel, 2012). For the Bayesian lasso analysis, the code supplement by Pan299

et al. (2017) was used and extended.4 The code underlying the analysis and the current300

manuscript can be found in the OSF supplement (https://osf.io/8s3ez/). The manuscript is301

rendered using the papaja R package for reproducible manuscripts (version 0.1.2, Aust &302

Barth, 2020).303

Results304

Step 1: Baseline model305

The baseline model including the item wording method factor fits the confirmatory306

data subset well (CFI = .919, RMSEA = .055, SRMR = .043, χ2(160) = 644.43) and307

much better (χ2
diff (10) = 434.98, p < .001) than the simpler, single-factor model308

(CFI = .848, RMSEA = .073, SRMR = .055, χ2(170) = 1, 079.41). In the baseline model,309

the absolute values of the factor loadings on the general Machiavellianism factor range from310

0.21 to 0.73 (M = 0.50) and their sign was consistently in the expected direction. The factor311

4 The R package blcfa performs similar tasks (Zhang, Pan, Dubé, et al., 2021) to produce MPlus code of

modified models. The current analysis is done entirely in the free and open source software R.
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loadings on the method factor of this model are all positive and range from 0.17 to 0.55312

(M = 0.34). A look at the distribution of factor loadings reveals that this factor is more than313

a glorified residual correlation between two of its items.314

Step 2 + 3: Residual correlation hierarchy and selection315

There are 5 ψs whose estimates exceed the cut-off value |ψ̂| ≥ .1 in the Bayesian lasso316

regularization model (Table 1). Repeating this analysis on nine further subsamples shows a317

massive variation in the number of samples in which a given ψ exceeds the cut-off. This318

should not be too surprising: for a true value exactly at the cut-off, one can expect a319

replicability of the selection decision of exactly 50%. Here, all posterior means of the selected320

ψs are close to the cut-off value. At least two of the ψs (ψ14,4 and ψ7,6) were selected from321

the set of 190 potential ψs in 80% or more of the repetitions. The retest reliability (pairwise322

correlations between replications) of the relevance measure ranges from 0.67 to 0.82323

(M = 0.74).324

A total of 15 estimates exceed the cut-uff of |r̂| ≥ .1 that was proposed by Zhang,325

Pan, and Ip (2021). Table 2 shows that many of these are selected in fewer than 50% of326

replications, with one notable exception (r̂15,2) that is selected in all replications. The327

average posterior mean in the replications of these additional selections is consistently lower328

than |r̂| ≤ .1 for all but r̂15,2. Taking a closer look at the estimates in the final model reveals329

that some of them are inconsistent with the posterior means (especially r̂6,3). All in all, it330

seems that this cut-off is too liberal in the current analysis, although it further includes one331

very consistent residual correlation compared to |ψ̂| ≥ .1.332

Step 4: Final model333

The addition of the ψs to the final model reduces the model misfit substantially334

(Table 3). A key finding is that the lasso-based model (“lasso-informed (cov)”) shows a335

superior model fit compared to the symmetrical bi-factor model that combines all remaining336

(positively keyed) items in a second specific factor. Its absolute fit is superior, even though it337



BUILDING FACTOR MODELS 16

adds only five parameters to the baseline model, compared to the bi-factor model’s ten. The338

ψs are more relevant to describe the data than the factor completing the bi-factor model,339

even though their ML-estimates are all in the range of −.2 < ψ̂ < .2 (Table 1, −.3 < r̂ < .3340

Table 2). The option to model several distinct relationships of one item with other items341

pays off in this application: All five ψs estimated at |ψ̂| ≥ .1 involve at least one negatively342

keyed item that is already assigned to the method factor. A full bi-factor model without ψs343

could not have represented these relationships properly. Nevertheless, the inclusion of344

specific factors can be of great importance, as the difference in model fit of the baseline345

models, both on the exploratory sample (see above) and on the confirmatory sample (Table346

3) indicates. The alternative lasso-based model using |r̂| ≥ .1 (“lasso-based (cor)”) shows a347

further improvement in model-fit, although the BIC indicates that this might not outweigh348

the loss of parsimony. For an overview of the estimates of the factor loadings in the349

lasso-informed model on the confirmatory sample and a visual display of these factor loading350

estimates, see the Appendix B.351

Multiverse analysis352

Figure 1 shows the results of the multiverse analysis. All models shown are estimated353

on the confirmatory subsample but developed on the exploratory subsample. The x-axis354

always shows the degrees of freedom with more parsimonious models to the right and models355

with up to 75 added ψs to the left. The upper six panels show fit index values on the y-axes.356

Higher values of the CFI indicate a better model fit. For all other fit indexes, lower values357

indicate a better fit of the model.358

The main analysis based on the baseline model including the method factor and the359

cut-off of |ψ̂| ≥ .1 for ψ selection is shown in red. The red dot represents the final360

lasso-informed model. It lies on a red trace indicating all the possible models when selecting361

0-75 ψs in order of their absolute posterior mean in the Bayesian lasso model. The black dot362

at the right end of the red trace represents the baseline model without ψs. All fit indices but363
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the BIC indicate that adding more ψs improves the model, even though the RMSEA and the364

AIC penalize increasing the number of model parameters. The BIC indicates an optimal365

number of ψs near the chosen value of the final model.366

The alternative selection strategy based on |r̂| ≥ .1 is shown in blue. It barely differs367

from the main analysis in the trace, because the hierarchy barely changes during the368

standardization of covariances to correlations. A major difference lies in the cut-off: the369

more liberal cut-off includes many more ψs. Judging by the only fit index that seems to370

strike a meaningful balance between parsimony and model fit, the BIC, the two alternatives371

surround the range of flat lines in which adding a ψ is barely worth its “cost” in parsimony372

loss. Given the results of the replicability analysis and the added difficulty of interpreting 15373

instead of 5 ψs, this cut-off might still be seen as too lenient.374

The cloud of transparent and overlapping gray background dots indicate models with375

a random selection of ψs added to the baseline model. This bootstrap analysis is based on376

100 repetitions of random rank orders of ψs, from which the top 1-75 are selected, resulting377

in 100 × 75 = 7500 total models. The lasso-based selection is meaningful: On all fit indices378

and all numbers of added ψs, all (in rare exceptions: almost all) of the random bootstrap379

repetitions show a worse model fit than the lasso-informed models. This is an important380

finding, because the Bayesian lasso selection was performed on a different (exploratory)381

dataset and does not use model fit as a selection criterion.382

To compare the relevance of added ψs based on the Bayesian lasso and substantial383

specific factors, the green dots represent lasso-informed models without the method factor384

for negatively keyed items. Using specific factors can be highly efficient: Up until about 50385

added ψs, the addition of the method factor or a mix of the method factor and ψs (red and386

blue traces) is much more efficient than the addition of the same number of parameters all as387

ψs (green trace).388
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The lower two panels of Figure 1 show the sum of squared loadings of the general389

factor and the method factor for negatively keyed items. The “loss” of factor variance when390

adding ψs is insubstantial in size, as indicated by the rather flat traces. The only major loss391

of general factor variance is caused by the addition of the method factor (green trace versus392

red and blue traces). It reduces the sum of squared loadings of the general MACH factor by393

approximately 0.5 (comparing the baseline models), and itself has a sum of squared loadings394

of approximately 1.2 in the final model.395

Discussion396

The current study introduces a new and systematic approach to the specification of397

confirmatory factor analysis (CFA) models. In four steps, 1) a baseline model is selected, 2)398

a hierarchy of relevance among residual covariances (ψs) is established, 3) a number of ψs is399

selected, and 4) the resulting model is estimated on new data. This approach accounts for400

both the theoretical understanding of questionnaire items as complex and the practical401

difficulties in achieving well-fitting models – while still yielding sparse models. The use of402

two distinct (sub-)samples combines the advantages of data exploration (not missing403

patterns in the data) and cross-validation (confirmatory hypothesis testing, not capitalizing404

on chance). The reanalysis of open data in a multiverse analysis further demonstrates the405

importance of both specific factors and ψs in CFA models, which the suggested approach406

selects systematically. In these ways, the current approach strikes a balance between407

extremely flexible exploratory models (EFA, ESEM, Asparouhov & Muthén, 2009) and the408

often overly restrictive, simple structure confirmatory models. Importantly, it does so409

without engaging in post-hoc modification, compared to the similar approach of using410

modification indices after obtaining a bad model fit. Inspired by the logic of bi-factor models,411

the resulting models have a hierarchical factor structure with orthogonal levels. One level412

comprises the general target trait and one (or two, in case of specific factors) further levels413

comprise separate, specific relationships between items.414
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Several findings in the empirical example validate the outlined four-step approach and415

demonstrate its relevance. First, the lasso-informed model obtained in this way fits the data416

better than a full bi-factor model, on top of being more parsimonious. This is partly because417

of its flexibility to involve items in multiple specific relationships with other items.418

Furthermore, it only includes relevant specific factors instead of defining a schematic419

bi-factor structure. The resulting model includes a minimal set of parameters in an efficient420

way: the ψs are added where the exploratory analysis on another (sub-)sample indicates that421

there is a relevant pattern in the data.422

Second, the clear importance of the method factor (Table 3, Figure 1) shows the423

importance of searching a good baseline model in step 1. Specific factors are able to424

represent the common variance of a set of items (in this case, 10) much more parsimoniously425

than the pairwise ψs. In combination with the first finding, it is clear that both the addition426

of ψs and the addition of specific factors have the potential to best improve the model. In427

this case, the added factor could have several different interpretations, although I termed it428

“method factor” for its relationship to the item keying. It could be a methodological artifact429

from the measure design, a result of response processes, or a relevant content domain. It is430

important to seriously consider the substantive meaning of this factor, since the items are431

not mere negations: They differ in the content they cover. For ψs it is equally important to432

consider substantive and methodological explanations. Both substantive and433

method-induced variance can be relevant to model as a factor or as a residual correlation.434

Third, the replicability of the selection of ψ is mixed in the empirical example (Table435

1) and proved questionable if a cut-off of |r̂| ≥ .1 (Zhang, Pan, & Ip, 2021) is used (Table 2).436

On the one hand, there are well-replicated selections (Table 1) and the lasso-informed437

selection is clearly superior over random selection (Figure 1). The retest-reliability438

(correlation between individual repetitions) of the relevance measure for the residual439

correlations (posterior mean of Bayesian lasso estimation) is consistently close to its mean of440
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M = 0.74 and the average posterior mean of the replications is mostly consistent with the441

selection decision (Table 1). This shows that the suggested procedure generally selects the442

most relevant ψs with some reliability. On the other hand, the observed uncertainty shows443

the importance of using a confirmatory (sub-)sample to estimate the final model. There is a444

real danger to capitalize on chance when selecting ψs post-hoc. One of the selected ψs would445

not have been selected in any of the nine replication attempts (Table 1). In the two-sample446

approach, the interpreted final estimate on the confirmatory model is independent of the447

(presumed) random variation that lifted the ψ over the cut-off in the selection procedure. In448

this way, the hypothesis tests on the final estimates are valid and unbiased. The current449

application therefore provides a promising proof of concept of the suggested approach.450

The substantial uncertainty in the ψ selection can be explained easily: selection451

problems like this are only partly solvable. Given an essentially continuous distribution of452

the true relevance of ψs on a metric scale, any inclusion rule will produce severe uncertainty453

regarding the ψs close to the selection criterion (i.e. cut-off). For this reason, a guiding454

principle for selection would be crucial, but is currently lacking. The proposed cut-off at455

|r̂| = .1 does not represent a universal principle but rather a practical convention informed456

by simulation studies and the literature on other kinds of parameters in various models457

(Zhang, Pan, & Ip, 2021). One important innovation by Zhang, Pan, and Ip (2021) is to use458

an absolute cut-off instead of significance testing or posterior density intervals ensures that459

sample size does not systematically influence the number of selected ψs. If the selection is460

made based on r̂ or ψ̂ might be of little relevance in practice, but could be discussed for461

principled reasons. The choice of a cut-off (or a procedure to find a data-informed cut-off)462

seems most important. The current multiverse analysis hints to the possibility that many463

potential choices might be almost equally optimal.464
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Comparison to existing approaches465

The suggested approach aims to build a model of a target trait whilst simultaneously466

acknowledging the complexity of the data and the (potential) multidimensionality of the467

target construct. How does this compare to alternative approaches?468

One alternative is to consider a model that directly reflects an abstract theory, such469

as a straightforward CFA model without any hierarchical factor structure, cross-loadings, or470

ψs. The suggested approach allows a more realistic representation of nuisance influences,471

without substantially reducing factor variance, even if many ψs are added (Figure 1). It also472

carries over all the advantages of bi-factor models. If the target construct strongly violates473

the assumption of unidimensionality, this can be accounted for and the suggested approach474

still provides a latent variable representing the overall target trait. With domain-specific475

variance represented explicitly in the model, researchers can better decide how meaningful476

the obtained target trait is, and if its measurement needs to be improved. Finally, the477

suggested approach provides more security to not miss an important pattern in the data than478

the use of fit indices alone: it systematically uncovers all the ψs for which fixing them to zero479

causes substantial misfit. On the flipside, it has the potential to include chance findings in480

the model, for which there need to be precautions (such as the two-sample approach).481

The suggested approach seems more principled than the standard bi-factor model in482

the modeling of specific variance based on content-domains or item-content based nuisance.483

It is much more flexible, yet at the same time optimizes parsimony (see Table 3), because it484

allows researchers to systematically replace weak specific factors of a bi-factor model (Eid et485

al., 2017; Petras & Meiser, 2024) by a sparse set of ψs. It can sparsely represent a theory486

that implies specific relationships between pairs or sets of items more flexibly than a487

bi-factor model. Although, it has to be acknowledged that in the empirical example, the488

match between the data analysis and the content analysis by Rauthmann (2013) is minimal.489

The proposed approach allows each item to be involved in multiple specific relationships with490
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other items. Lastly, its exploratory first steps make it more robust against a potential491

misrepresentation of the data: instead of proposing a schematic bi-factor structure, Step 1 of492

the current approach encourages testing multiple candidate models with or without certain493

specific factors. In cases where specific variance reflects the influence of different raters,494

testlets, or other rather systematically structured method effects, the suggested approach495

might not be sensible and the bi-factor model may be much preferable.496

Compared to more flexible models, such as exploratory factor analysis (EFA) and497

exploratory structural equation modeling (ESEM, Asparouhov & Muthén, 2009), the498

suggested approach produces much more sparse models. This simplifies the interpretation499

and makes model fit indices meaningful. The suggested approach explicitly avoids using the500

Bayesian lasso model as the final model. It only selects the few relevant ψs for inclusion in501

the final model. This greatly simplifies the model by removing the information that is502

indistinguishable from random noise. A similar selection procedure has been proposed for503

cross-loadings (J. Chen et al., 2021; Zhang, Pan, Dubé, et al., 2021).504

Limitations and future directions505

Bayesian-lasso regularization is not the only approach to create a rank order of506

importance of ψs. In many applications, its results may not differ much from less507

sophisticated approaches, such as subtracting the model-implied Σ̂ from the observed Σ and508

selecting by the order of absolute difference values. Yet, the current approach seems optimal509

for two reasons: First, it is a systematic approach that can be easily planned a priori. It510

produces a fully confirmatory final model without any post-hoc modifications. Second, it511

estimates all ψs and all other model parameters simultaneously. This avoids any problems512

with ripple effects in stepwise approaches. For example when using modification indices, the513

model has to be estimated again after adding a ψ, because the evaluation of all other ψs may514

change when one is added. Using the differences between the observed Σ and model-implied515

Σ̂ (of the baseline model) runs into the same problem, because the inclusion of one ψ in the516
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model might change the whole pattern of the differences between the matrices. The Bayesian517

lasso instead considers the value of ψ when all other ψs are included in the model. In other518

words, it allows all estimates of the model to adapt to one another, before ψs are ranked by519

relevance. Nevertheless, a crude selection based on a crude criterion might frequently result520

in the exact same selection as the Bayesian lasso and be more practical regarding521

computation time.522

There are alternatives to the Bayesian lasso in regularization. For the case of523

selecting regression coefficients, Park and Casella (2008) showed that the Bayesian Lasso524

shrank small estimates towards zero quicker than the alternative Ridge regression. To my525

best knowledge, this advantage has not yet been confirmed for the use on ψs. Therefore,526

ridge regression priors (or spike and slab priors), as used for cross-loadings in Bayesian527

Structural Equation Modeling (Muthén & Asparouhov, 2012), are potential alternatives that528

future research could explore.529

Systematically adding ψs should not lower the standard for the acceptability of530

measures. In the example, there are multiple items with rather small factor loadings (Table531

B1), especially item 19 (“People suffering from incurable diseases should have the choice of532

being put painlessly to death.”) which has a questionable relation to the target construct533

Machiavellianism. This item also happens to be involved in two5 negative ψs in the final534

model (Table 1). Both of these are are small, not well replicated, and hard to interpret. The535

overlap of assigned content areas of these item pairs is minimal (Rauthmann, 2013). The536

ability to account for such imperfections with flexible statistical models – and achieving a537

good model fit – should not be used as an excuse to forego the improvement of measures. To538

the contrary, it should be used to inform the improvement of measures.539

5 Item 6: “Honesty is the best policy in all cases.”, item 7: “There is no excuse for lying to someone else.”
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Conclusion540

The current work proposes and demonstrates a four-step approach to the specification541

of sparse, yet flexible factor models with a hierarchical structure. It combines solutions to542

several existing problems in measurement models: It replaces schematic modelling543

approaches by a systematic procedure to obtain sparse models. It represents the overall544

target trait while also accounting for the inherent multidimensionality of psychological545

constructs and the inherent complexity of items in psychological measurement. It strikes a546

balance between arbitrarily flexible exploratory approaches (EFA, ESEM) and overly strict547

assumptions in basic confirmatory models. It encorporates the systematic selection of ψs by548

the Bayesian lasso (Pan et al., 2017; Zhang, Pan, & Ip, 2021; Zhang, Pan, Dubé, et al.,549

2021), which elegantly solves most problems underlying modification indices. Its systematic550

data exploration finally results in a fully confirmatory model on a new (sub-)sample.551
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Table 1

Residual covariances selected via Bayesian lasso regularization

and a cut-off of 0.1 on the posterior mean in the exploratory

subsample

Items post mean selections avg rep estimate

14, 4 .14 8 .12 .185 (.123, .247)

7, 6 .15 10 .14 .169 (.09, .248)

19, 6 -.11 1 -.05 -.087 (-.154, -.019)

19, 7 -.14 6 -.10 -.186 (-.251, -.12)

14, 11 .11 4 .09 .124 (.061, .186)

Note. all values are standardized covariances; post mean =

posterior mean in the exploratory subsample, selections =

number of selections out of ten total repetitions; avg rep =

average posterior mean across the nine replications, estimate =

ML estimate of residual covariance in final, standardized model

on confirmatory subsample with 95% confidence interval in

brackets
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Table 2

Residual correlations selected via Bayesian lasso regularization and

a cut-off of 0.1 on the posterior mean in the exploratory subsample

Items post mean selections avg rep estimate

19, 1 -0.103 3 -0.072 -.136 (-.24, -.032)

7, 2 -0.12 1 -0.058 -.123 (-.232, -.015)

15, 2 0.157 10 0.147 .204 (.11, .298)

6, 3 0.123 1 0.056 -.283 (-.499, -.066)

11, 4 0.103 5 0.084 .188 (.102, .275)

14, 4 0.202 10 0.173 .288 (.201, .375)

7, 5 0.114 4 0.074 .092 (-.015, .198)

7, 6 0.265 10 0.244 .23 (.045, .415)

9, 6 0.14 3 0.077 -.03 (-.244, .185)

19, 6 -0.164 3 -0.078 -.148 (-.255, -.041)

10, 7 0.109 3 0.076 .022 (-.109, .152)

19, 7 -0.177 9 -0.134 -.237 (-.324, -.151)

15, 10 -0.142 3 -0.067 -.077 (-.178, .025)

14, 11 0.143 7 0.123 .2 (.12, .281)

18, 11 -0.122 2 -0.054 -.111 (-.193, -.03)

Note. all values are correlations; post mean = posterior mean in the

exploratory subsample, selections = number of selections out of ten

total repetitions; avg rep = average posterior mean across the nine

replications, estimate = ML estimate of residual correlation in final

model on confirmatory subsample (95% confidence interval); bold

entries are also selected using the covariance cut-off
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Table 3

Model fit on confirmatory subsample, n = 1000

chisq df cfi bic aic rmsea srmr

simple baseline 888.3 170 0.871 64,311 64,115 0.065 0.051

baseline 541.6 160 0.932 64,033 63,788 0.049 0.040

lasso-informed (cov) 447.3 155 0.948 63,973 63,703 0.043 0.036

lasso-informed (cor) 378.6 145 0.958 63,974 63,655 0.040 0.033

bifactor 458.7 150 0.945 64,019 63,725 0.045 0.035
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Figure 1

Multiverse analysis of model fit and sum of squared loadings of models including between 0

and 75 residual correlations. Black dots represent baseline models. The red trace represents all

potential cut-offs for the inclusion of 0-75 residual covariances added to the selected baseline

model. The red dot shows the model selected based on a lasso posterior mean cut-off of 0.1.

The blue trace shows the same analysis with a selection based on residual correlations, not

covariances, and the blue dot represents a cut-off of 0.1. The dotcloud in the background

shows a bootstrap sample of 100 random traces for comparison. The green trace uses the

rejected single-factor baseline model.
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Appendix A

Priors

For the residual covariance matrix Ψ, priors are assigned to its inverse Ψ−1. The main651

diagonal (variance) and off-diagonal (covariance) priors are exponential and652

double-exponential priors with a common rate of the form653

σxx ∼ λ

2 e
− λ

2 σxx (A1)

σxy ∼ λ

2 e
−λ|σxy |;x ̸= y (A2)

with a Gamma-hyperprior of λ ∼ Γ(1, 0.01). The factor covariance matrix Φ is fixed654

to be a diagonal matrix with ones on the main diagonal, to ensure orthogonal, standardized655

latent variables. The factor loading matrix Λ has a predefined factor structure. Therefore,656

its elements are either zero or have a normal prior of the form657

Λk ∼





N(Λ0k,H0k)

0
(A3)

with uninformative mean and variance parameters.658
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Appendix B

Lasso-informed model factor loadings
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Figure B1

Variance decomposition of MACH IV items in the final model; specific = variance specific to

the method factor; general = variance of the general MACH factor; the length of the stacked

bars is determined by the respective squared factor loadings
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[tbp]

Table B1

Standardized factor loadings of the final model

MACH method

Q1A .733 (.698, .768) 0

Q2A .623 (.579, .666) 0

Q3A -.49 (-.543, -.437) .432 (.365, .5)

Q4A -.537 (-.587, -.487) .219 (.148, .29)

Q5A .585 (.539, .631) 0

Q6A -.543 (-.593, -.494) .44 (.372, .509)

Q7A -.414 (-.471, -.357) .477 (.406, .549)

Q8A .54 (.491, .589) 0

Q9A -.617 (-.662, -.573) .392 (.329, .455)

Q10A -.595 (-.641, -.549) .33 (.265, .396)

Q11A -.371 (-.43, -.311) .273 (.198, .348)

Q12A .58 (.533, .626) 0

Q13A .634 (.591, .676) 0

Q14A -.447 (-.502, -.391) .224 (.149, .299)

Q15A .503 (.451, .554) 0

Q16A -.34 (-.4, -.279) .36 (.286, .433)

Q17A -.237 (-.301, -.173) .168 (.087, .248)

Q18A .514 (.464, .565) 0

Q19A .207 (.143, .271) 0

Q20A .454 (.4, .508) 0

Note. Values in brackets indicate the

boundaries of the 95% confidence interval.
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