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Abstract

In the rapidly evolving landscape of eCommerce, dynamic pricing using Artificial
Intelligence (AI) has become increasingly prevalent. Pricing Als, particularly those
utilizing (deep) Reinforcement Learning, continuously adjust to dynamic market
conditions, raising concerns about potential market collusion. This thesis addresses
this issue through several approaches.

Firstly, we investigate a modified prisoner’s dilemma scenario where three
agents play rock-paper-scissors. Results indicate potentially collaborative behav-
ior characterized by an action selection dissectable into specific stages, establishing
the possibility of developing collusion prevention systems that can recognize situ-
ations that might lead to collusion between competitors. We provide evidence that
agents can perform tacit cooperation strategies without being explicitly trained to
do so.

Second, this research employs an experimental oligopoly model of repeated
price competition, systematically varying the environment to cover scenarios from
basic economic theory to subjective consumer demand preferences. We explore
strategies and emerging pricing patterns leading to collusion, including scenarios
where agents cannot observe competitors’ prices. Comprehensive legal analysis is
provided across all scenarios.

Third, we examine the agents’ ability to use pricing information to predict their
competitors’ behavior. Thus, predictive statistical techniques and time series anal-
ysis methodologies are employed to anticipate collusive outcomes. Findings indi-
cate that self-learning pricing algorithms’ convergence towards a collusive market
outcome can be accurately anticipated using machine learning methodologies.

Finally, we develop a method to mitigate predictive and supracompetitive pric-
ing using a combination of various training strategies. By implementing a super-
vision algorithm penalizing collusion and incentivizing competitiveness we effec-
tively incentivize the agents to act competitively rather than collaboratively. The
results demonstrate that the convergence of self-learning pricing algorithms to-
wards collusive outcomes can be accurately predicted and mitigated in real time.



Zusammenfassung

Dynamische Preisgestaltung mit Hilfe kiinstlicher Intelligenz verdndert die E-Com-
merce Landschaft in einer rasanten Geschwindigkeit. Preisalgorithmen, auf Basis
von (Deep) Reinforcement Learning, passen sich kontinuierlich an dynamische
Marktbedingungen an, was Bedenken hinsichtlich potenzieller Marktabsprachen
weckt.

Zur Untersuchung dessen wird zu Beginn dieser Dissertation ein Szenario en-
twickelt, in dem drei Agenten Stein-Papier-Schere spielen. Die Ergebnisse zeigen,
dass die Aktionsauswahl der Agenten in spezifische Phasen aufgeteilt werden kann.
Dariiber hinaus zeigen die Ergebnisse, dass Agenten in der Lage sind, stillschwei-
gende Kooperationsstrategien zu etablieren, ohne dies explizit gelernt zu haben.

Daraufhin wird ein experimentelles Oligopolmodell erarbeitet, welches sys-
tematisch variiert wird, um Szenarien der grundlegenden Wirtschaftstheorie bis
hin zu subjektiven Nachfragepriferenzen der Verbraucher abzudecken. Zusitzlich
untersucht diese Studie Szenarien, in welchen Marktteilnehmer die Preise ihrer
Konkurrenz nicht einsehen konnen. Auch hier konnten trotz der Einschriankung
Absprachestrategien entwickelt und kollusive Preismuster aufgezeigt werden. Die
Datenwissenschaftliche Analyse wird mithilfe juristischer Einblicke ergénzt.

Drittens wird untersucht, inwiefern die Agenten Preisinformationen nutzen
konnen, um das Verhalten ihrer Konkurrenten vorherzusagen. Dazu werden Meth-
oden der pradiktiven Statistik, sowie der Analyse von Zeitreihen verwendet. Die
Ergebnisse zeigen, dass die Konvergenz selbstlernender Preisalgorithmen in Rich-
tung eines kollusiven Marktergebnisses prizise vorhergesagt werden kann.

SchlieBlich wird eine Methode entwickelt, um kollusive und suprakompeti-
tive Preisbildung durch eine Kombination verschiedener Trainingsstrategien zu
lindern. Dieser Ansatz schafft einen wettbewerbsfahigen Markt und implemen-
tiert einen Kontrollalgorithmus, der gesetzeswidrige Absprachen bestraft und An-
reize fiir Wettbewerb schafft. Die Ergebnisse zeigen, dass die Konvergenz selb-
stlernender Preisbildungsalgorithmen zu kollusiven Ergebnissen mithilfe gewisser
Methodiken vorhergesagt und somit verhindert werden kann.
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Chapter 1

Introduction

Artificial Intelligence (Al) has seamlessly integrated into various facets of our daily
lives, from personal assistants to autonomous vehicles. A significant yet less vis-
ible application of Al is in the realm of E-commerce, where companies leverage
Al to optimize pricing strategies and maximize profits. The transition from static
heuristics to dynamic, Al-driven pricing algorithms has revolutionized the industry,
yielding substantial improvements in average daily profits [83, 107].

Pricing algorithms automatically adjust prices based on numerous factors such
as demand, competition, and inventory levels. These algorithms, increasingly pow-
ered by Deep Reinforcement Learning (DRL), learn optimal pricing strategies
through trial and error, adapting to market conditions in real-time. Studies have
already shown that in certain markets it is unreasonable to conduct business at a
profitable level lacking this technology, as algorithmic price setting frequencies
create a significant competitive edge [12].

However, the rapid adoption of Al-driven pricing algorithms has raised con-
cerns about their impact on market competition and consumer welfare. One signif-
icant issue is the potential for these algorithms to engage in tacit collusion, leading
to higher prices and reduced competition. Unlike traditional collusion, which in-
volves explicit agreements between competitors, algorithmic collusion can occur
without direct human intervention, making it challenging to detect and regulate.
From a doctrinal perspective, the challenge lies in the difficulty of attributing legal
responsibility directly to a market outcome [31].

The emergence of collusive market outcomes through Al-based pricing algo-
rithms poses substantial legal and ethical questions. If such outcomes result from
coordinated actions, they could violate antitrust laws, specifically Article 101 of
the Treaty on the Functioning of the European Union (TFEU). This thesis aims
to explore the factors contributing to the collusive tendencies of DRL agents and
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assess the associated risks and vulnerabilities in their deployment. By examining
the underlying mechanisms, we seek to enhance the transparency and comprehen-
sibility of Al-driven pricing strategies.

In summary, while DRL-based pricing algorithms offer significant benefits in
profitability and market efficiency, their potential to harm competition and con-
sumer welfare cannot be ignored. This dissertation sheds light on these critical
issues, contributing to a more comprehensive understanding of the legal and eco-
nomic implications of Al-driven pricing strategies.

1.1 Research Questions

The main goal of this thesis is to investigate the factors that lead to algorithmic
collusion and to develop methods for its prevention. This section outlines the key
research questions that guide this investigation, aiming to uncover the underlying
mechanisms of algorithmic collusion and explore the legal and regulatory frame-
works needed to address this emerging challenge.

* RQ1 How can DRL agents learn to collaborate and establish collusive states
in competitive scenarios, and what tools can be used to measure and predict
such behaviors? This consolidated research question explores the mech-
anisms through which DRL agents might achieve cooperation in competi-
tive environments, the established strategies necessary to result in collusive
states, and the development and application of analytical tools to quantify
and predict algorithmic collusion. The detailed analysis of these aspects is
addressed throughout Parts I and II of this thesis.

* RQ2 Can DRL agents learn to collude without explicitly communicating?
The ability of DRL agents to collude implicitly, without direct communica-
tion, is a critical area of study. This question examines the subtle interac-
tions and patterns that might lead to such behavior, with insights provided in
Chapter 4.

* RQ3 How can we mitigate algorithmic collusion and supracompetitive pric-
ing? If DRL agents gain the ability to establish equilibria within collusive
states, we need to investigate methods to mitigate and possibly prevent these
circumstances. This question is addressed through various approaches de-
tailed in Part II, with comprehensive strategies highlighted in Chapter 6.
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1.2 Contributions

This thesis presents a variety of contributions across several areas of Multi-Agent
DRL, pricing algorithms, collusion detection, and prevention. Specifically, the key
contributions are:

* We highlight emerging pricing patterns that agents seem to follow to
achieve a collusive outcome. Understanding these patterns is crucial for
developing strategies to prevent algorithmic collusion. This contribution is
thoroughly explored in Chapters 4 and 5.

* We investigate a scenario where agents achieve a collusive outcome with-
out the ability to observe their competitors’ prices. This scenario exam-
ines how limited information affects agent behavior and collusion, providing
valuable insights in Chapter 4.

* We provide a legal perspective and analysis specific to the establishment
of collusive outcomes in DRL pricing agents’ based economies. This
analysis addresses the legal implications and regulatory challenges associ-
ated with DRL-induced collusion, detailed in Chapter 5.

* We propose a novel demand framework that enables the implementa-
tion of various demand models, allowing for a weighted blending of dif-
ferent models. This framework offers flexibility and accuracy in modeling
demand, which is essential for dynamic pricing strategies. This environ-
ment furthermore allows for extensive testing and analysis of DRL agents in
various market scenarios, enhancing the robustness and applicability of the
research findings. The foundation of the framework is established in Chapter
4 and subsequently utilized throughout Parts II and III.

* We extend the pricing agents’ research analysis by examining deep learn-
ing algorithms, i.e., PPO and DQN. Most of the current research within this
realm primarily focused on basic Q-learning. By incorporating advanced
deep learning algorithms, this research extends the current understanding
and application of DRL in pricing strategies, as detailed throughout Parts I
and II.

* We examine the impact of varying market entry timings on collusion.
By analyzing how the timing of market entry affects collusive behavior, we
provide deeper insights into the dynamics of DRL-based pricing strategies,
as detailed in Appendix Chapter B.
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* We analyze the influence of different neural network structures on DRL
performance. This contribution explores how variations in neural network
architectures, specifically the number of neurons and layers of the NN, can
impact the effectiveness and efficiency of DRL agents, with findings pre-
sented in Appendix Chapter B.

* We create a factor to measure collusiveness and predict the upcoming
behavior of DRL-based pricing agents. This contribution involves de-
veloping methods to measure and forecast collusive behavior among DRL
agents, with extensive methodologies and results presented in Chapter 5.

* We prevent collusion using sparse rewards. Drawing from safe explo-
ration DRL literature, we investigate and test multiple approaches to prevent
collusive outcomes. Furthermore, we provide a solution to create new op-
tima and thus prevent agents from quickly settling on a global, collusive
optimum. The prevention strategies are outlined in Chapter 6.

In addition to the contributions mentioned above, the codebase of the simula-
tion environment, along with all its extensions, is provided in the form of a GitHub
repository’.

1.3 Thesis Outline

In the following, we specify the structure of the thesis.

Part I: Motivation and Fundamentals

This part introduces the research context, underlying theories, and essential con-
cepts required for understanding the subsequent chapters. It lays the groundwork
by discussing Reinforcement Learning (RL), dynamic pricing, antitrust law, and
economics.

Chapter 1: Introduction

This chapter introduces the context and significance of the research. It out-
lines the key research questions and contributions of the thesis, providing an
overview of the structure and objectives of the dissertation.

Chapter 2: Fundamentals
This chapter provides the necessary background information on RL, dy-
namic pricing, antitrust law, and economics. It covers the basics of RL,

"https://github.com/mschlechtinger/PriceOfAlgorithmicPricing/
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including key algorithms, and delves into dynamic pricing strategies in e-
commerce, relevant legal frameworks, and economic principles.

Chapter 3: Investigating Collusion in a Toy Problem

This chapter explores collusion in a simplified environment. It discusses
related work on trustworthy Al, the cartel prohibition, and multi-agent rein-
forcement learning. The methodology and implementation of the toy prob-
lem are presented, followed by results and discussions on collusive behavior.

Part II: Investigate, Predict, and Prevent Collusion in a Market Simulation
This part extends the insights from Part I to a more complex market simulation.
It focuses on investigating, predicting, and preventing collusive behavior among
DRL agents in a competitive market environment.

Chapter 4: Collusion in a Market Simulation

This chapter examines collusive behavior in a market simulation. It intro-
duces the experimental framework, which is vital to each of the following
analyses. It thus establishes the Markov Decision Process and analyzes the
pricing algorithms’ behavior in multiple scenarios. Results from different
scenarios are analyzed to understand how agents might achieve collusion.

Chapter 5: Predicting and Quantifying Collusion

This chapter focuses on developing models to predict and quantify collusion
among DRL agents. It presents classification, regression, and time series
analysis techniques to measure collusive behavior and evaluates their effec-
tiveness through extensive experiments.

Chapter 6: Preventing Collusion

This chapter uses the analysis toolkit provided in Chapter 5 to address meth-
ods to prevent collusion among DRL agents. It thus proposes approaches
such as price manipulation and supervision reward factors, presenting ex-
perimental results and discussions on the effectiveness of these methods in
mitigating collusive outcomes.

Part III: Conclusion and Outlook
This part summarizes the findings of the research, discusses the implications, and
provides directions for future work.

Chapter 7: Conclusion and Outlook
This chapter summarizes the key findings of the research and discusses the
implications of the results. It also provides an outlook on future research
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directions, including potential advancements in empirical data analysis, in-
vestigation of confounding factors, and the development of transparent and
explainable DRL models.

Appendix
The appendix includes additional experimental results, ablation studies, and
detailed settings for the algorithms used in the research.

1.3.1 Publications

The following peer-reviewed papers contribute to this thesis:

* Winning at Any Cost - Infringing the Cartel Prohibition With Rein-
forcement Learning

Schlechtinger, Michael, Damaris Kosack, Heiko Paulheim, and Thomas Fet-
zer. In Advances in Practical Applications of Agents, Multi-Agent Systems,
and Social Good. The PAAMS Collection. Salamanca, Spain: Springer
Cham, 2021. [114]

* How Algorithms Work and Play Together

Schlechtinger, Michael, Damaris Kosack, Heiko Paulheim, and Thomas Fet-
zer. Concurrences: Revue Des Droits de La Concurrence 2021, no. 3, Article
102088 (2021): 19-23. [113]

* The Price of Algorithmic Pricing: Investigating Collusion in a Market
Simulation with AT Agents

Schlechtinger, Michael, Damaris Kosack, Heiko Paulheim, Thomas Fetzer,
and Franz Krause. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems, 2748-50. AAMAS ’23. Rich-
land, SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2023. [115]

* By Fair Means or Foul: Quantifying Collusion in a Market Simulation
with Deep Reinforcement Learning

Schlechtinger, Michael, Damaris Kosack, Franz Krause, and Heiko Paul-
heim. arXiv, 4 June 2024. Forthcoming in the Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Jeju, South Korea,
August 3-9, 2024. [112]
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Fundamentals

2.1 Reinforcement Learning

Reinforcement Learning is the study of agents and how they learn by
trial and error [3].

The fact that we learn through interacting with our environment is a fundamen-
tal concept in understanding knowledge acquisition and intelligence [81]. This
behavior can commonly be observed in infants, especially evident when they start
to crawl. The exploration process serves a crucial role in their understanding of
objects and spatial awareness. As they move and interact with their environment,
they gather valuable insights about both objects and the space they inhabit [25]".

RL emulates this learning behavior by defining the following key components
(cf. Figure 2.1):

* Agent and Environment: The agent is the decision-maker, and the environ-
ment includes everything the agent interacts with.

» Action spaces: Choices the agent can make.

* States and Observations: The current situation of the agent within the envi-
ronment.

* Rewards: Feedback from the environment following an action. The goal is
to maximize cumulative rewards.

* Policies: Strategies for choosing actions.

'For an in-depth introduction into RL, please refer to [129]
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Agent

State S, Reward R; Action A,

Environment |¢

Figure 2.1: Key concepts in Reinforcement Learning.

* value functions: Estimations of expected rewards.

* Trajectories: Sequences of states and actions.

However, instead of speculating on how learning occurs in humans or animals,
RL focuses on simulated learning scenarios to test different learning methods. The
methodology deviates from traditional machine learning approaches with a focus
on goal-directed learning from interaction. RL evaluates various learning methods
within idealized scenarios, emphasizing designs for machines that solve scientific
or economic learning problems through mathematical analysis or computational
experiments [129].

2.1.1 Markov Decision Process

Building on the foundational understanding of RL, where agents learn through
interaction with their environments to achieve goal-directed behavior, we delve
deeper into the mathematical underpinnings that facilitate this learning process.
Markov Decision Processes (MDPs) serve as a critical framework in this context,
offering a formalized approach to modeling the decision-making environment of
agents. MDPs encapsulate the dynamics of RL’s key components within a struc-
tured mathematical model that emphasizes the probabilistic nature of transitioning
between states and the optimization of cumulative rewards over time [129, 141].
An MDP is defined by:

* A set of states S,

* A set of actions A,
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* A transition function 7'(s, a, s’) which defines the probability of transition-
ing from state s to state s after taking action a,

* A reward function R(s, a, s") which defines the immediate reward received
after transitioning from state s to state s’ by taking action a,

* A discount factor v which represents the importance of future rewards.

In the context of pricing agents, states can represent different snapshots of the
market prices, actions can be different pricing strategies, and rewards can reflect
the profit or market share captured as a result of these strategies. The transition
function models the dynamics of the market, including how competitors’ actions
(and external factors) influence the market state. Properly defining this MDP is
pivotal to exploring strategies that agents might employ to maximize their cumula-
tive rewards, which in turn may lead to coordinated pricing strategies that resemble
collusion or cartel behavior.

Extensions and Variations of MDPs

In many practical applications, the state and action spaces are continuous rather
than discrete. Continuous MDPs (CMDPs) extend the traditional MDP framework
by allowing state and action spaces to be represented as continuous variables. This
extension is crucial for applications such as robotic control and financial modeling,
where the granularity of state and action spaces can significantly impact perfor-
mance [16].

Multi-agent systems (MAS) involve multiple decision-making agents interact-
ing within the same environment. This extension introduces additional complexity,
as the state transition dynamics now depend on the actions taken by all agents in
the system. These interactions can be modeled using Stochastic Games or Multi-
Agent MDPs (MMDPs) [123]. Understanding how agents coordinate or compete
within these frameworks is essential for applications such as market simulations
and autonomous vehicle coordination.

While MDPs provide a robust framework for decision-making under uncer-
tainty, they assume that the agent has complete knowledge of the current state. In
a market scenario, this assumption does not necessarily hold, as agents often have
limited or noisy observations of the true state. A partially Observable Markov De-
cision Process (POMDP) addresses these limitations by introducing a new set of
components:

* A set of observations O, which the agent can perceive from the environment,

* An observation function O(o|s, a) which defines the probability of observing
o given that the agent took action a and the environment is in state s.
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2.1.2 Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) extends the fundamental compo-
nents of RL agents, environments, states, actions, rewards, policies, and value
functions to accommodate multiple agents. Each agent aims to maximize its own
cumulative reward while adapting to the behaviors of other agents. The interac-
tions among agents introduce additional layers of complexity and strategic depth,
as each agent’s optimal strategy may depend on the strategies of others. Key con-
cepts in MARL include:

* Joint Action Spaces: The combined set of all possible actions that can be
taken by all agents in the environment.

* Joint States: The combined states resulting from the interactions of all
agents with the environment.

* Reward Sharing: Mechanisms for distributing rewards among agents based
on their individual and collective actions.

* Coordination and Competition: The dual aspects of MARL where agents
may need to cooperate to achieve common goals or compete to maximize
individual rewards.

MARL presents several unique challenges compared to single-agent RL. The
learning environment becomes non-stationary from the perspective of any single
agent due to the evolving policies of other agents, complicating the learning pro-
cess. Additionally, the state and action spaces can grow exponentially with the
number of agents, making scalability a significant issue. Ensuring effective com-
munication and coordination among agents is challenging, especially in coopera-
tive tasks where they need to work together to achieve common goals. Further-
more, balancing the exploration of new strategies with the exploitation of known
effective strategies becomes more complex, as the actions of one agent can influ-
ence the rewards and outcomes of others, creating a highly interdependent envi-
ronment.

MARL is particularly relevant in economic simulations where multiple entities,
such as firms, interact within a market environment. Inside of this environment, we
can model agents as firms that learn to set prices and adjust their strategies based
on competitors’ actions, potentially leading to collusive outcomes. MARL in this
context allows for an exploration of the strategic interactions between the agents.
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2.1.3 Bellman Equation

The Bellman equation is essential in RL for formulating the dynamic program-
ming approach that solves decision-making problems by breaking them down into
smaller, manageable sub-problems, thus encapsulating the principle of optimality
for decision-making under uncertainty. It plays a critical role in determining the
optimal policy 7 by relating the value of a state v(s;) to the values of subsequent
states (v(S¢+1,v(St+2), -..), guiding agents towards decisions that maximize cumu-
lative rewards R [13]. The formulation of the equation is adaptable to the specific
nature of the environment, whether the setting is predictable (deterministic) or in-
volves randomness (stochastic), to fit the problem at hand.

Deterministic Bellman Equation

In a deterministic setting, the value of a state s denoted V'(s), simplifies to the
following equation:

V(s) = max (R(s,a) + vV (s')) (2.1)
where:
* R(s,a) is the reward the agents receive after taking action a in state s.

* ~v is the discount factor, which values future rewards less than immediate
rewards.

» V(¢') is the value of the state resulting from taking action « in state s.

This equation assumes that for every state s and action a, the transition to the
next state s’ is deterministic, and the reward R(s, a) is also deterministic.

Stochastic Bellman Equation

Consider a state s in a finite MDP. The value of s, denoted V' (s), can be expressed
as follows:

/

V(s) = max (R(s, a) + Z P(s,a, s')V(s’)) (2.2)

)

where:

* P(s,a,s’) is the probability of transitioning to state s’ from state s after
taking action a.
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Figure 2.2: Grid World example containing the agent (blue), a punishment tile
(red), and the goal (green).

* R(s,a) is the immediate reward received after transitioning from state s to
state s/, due to action a.

* ~ is the discount factor, which values future rewards less than immediate
rewards.

» The sum over s’ € S represents summation over all possible subsequent
states.

2.1.4 Grid World

A classic example of an RL problem is Grid World, a finite, two-dimensional, dis-
crete environment [129] (cf Figure 2.2). In Grid World an agent (blue) navigates
through various states—represented as grid cells—to reach a goal, thereby encoun-
tering rewards (green) and obstacles (red). This simple yet effective model allows
for a comprehensive discussion of the previously mentioned RL terminology. In
this example, The agent, as the decision-making entity, explores the environment
(the grid), takes actions (moves north, east, south, or west), and receives rewards
(+1 for reaching the goal, -1 for attempting to move outside the grid, -10 for step-
ping on a red tile representing a hazard). While navigating through the grid, the
agent constantly reevaluates which action will guide it to a state closer to the goal,
essentially leading toward optimal decisions. This function quantifies the desir-
ability of state-action pairs. Based on this information, the agent develops a policy,
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which essentially translates the value function into actionable decisions. The pol-
icy, developed by the agent, is a direct mapping from states to actions, dictating the
agent’s movement strategy. An optimal policy maximizes the expected cumulative
reward, which is often the sum of the rewards the agent collects, discounted by
a factor that accounts for the uncertainty of future rewards. The agent then uses
a trial-and-error learning process, often employing specific algorithms such as Q-
learning or policy gradients, to discover which actions yield the highest reward by
updating the policy based on the value function’s estimations.

Moreover, the policy can be deterministic or stochastic. In a deterministic Grid
World example, like the one in Figure 2.2, the outcomes of all actions are known
and predictable. In a stochastic environment certain states have varying rewards
and transition dynamics are subject to change. As the agent interacts with the envi-
ronment, the policy becomes more refined, increasingly leading the agent towards
the goal state while avoiding penalties and maximizing the overall reward.

If we assume a deterministic environment of Grid World, a respective MDP
can be defined as a tuple M = (S, A, T, R, ), where:

* S is a finite set of states,

e A is a finite set of actions,

e T:5xAxS —[0,1] is the state transition probability function,
e R:5 x A xS — Ris the reward function, and

* 7 is the discount factor, v € [0, 1].

Given a state s; € S, an action a; € A, and a resulting state s;11 € S, the
transition probability T'(s, at, st+1) specifies the likelihood of transitioning from
5¢ to s¢+1 by taking action ay.

1 if a; leads from s; to s,y directly without obstacles,
0 otherwise.

T(s¢,at, S¢41) = {

(2.3)

The reward function R(s, at, si+1) specifies the immediate reward received

after transitioning from s; to s;y1 via action a;. The discount factor v quantifies
the importance of future rewards.

+1 if 5441 is the goal state,
R( ) -1 if a; leads outside the grid, (2.4)
S Y Q Y S = . . . *
b ot —10  if s441 is a hazard state (red tile),

—0.1 otherwise.
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2.1.5 Reinforcement Learning Algorithms

The algorithms operationalizing these RL principles serve as the core mechanisms
by which an agent can learn from and interact with its environment. While the RL
field encompasses a diverse array of algorithms, certain foundational techniques
are critical to understanding the standard RL problem-solving toolkit. Among
these, Q-Learning and policy gradient methods stand out due to their broad ap-
plicability [144, 131]. This section delves into five fundamental RL algorithms,
detailing their mechanisms, advantages, and typical applications.

RL approaches are categorized into two primary types: those that operate with-
out an explicit model of the environment (model-free) and those that leverage a
constructed or assumed model to make decisions (model-based) [73]. Model-free
algorithms, such as Q-learning and SARSA, operate without an explicit model of
the environment. They learn the optimal policy through trial and error, directly
from the rewards and transitions experienced. This makes them well-suited for en-
vironments where the dynamics are unknown or difficult to model. On the other
hand, model-based algorithms attempt to construct a model of the environment’s
dynamics—understanding how actions lead to subsequent states and rewards. This
model is then used to plan and make decisions. Model-based approaches can be
more sample efficient, as they allow for simulated experiences to supplement ac-
tual interactions, but they require accurate models to be effective, which can be
challenging to obtain in complex environments. In the remainder of this disserta-
tion, our selection is confined to model-free methods as these are generally more
popular, quicker to implement, and more extensively developed and tested than
model-based methods [3], which lend themselves for experimental setups.

Monte Carlo Methods

Monte Carlo Methods are one of the first learning methods for solving decision-
making problems under uncertainty. After collecting enough experiences (i.e., by
the completion of an episode), this method samples and averages the returns for
each state-action pair. Unlike dynamic programming approaches, Monte Carlo
methods do not require a model of the environment and can learn directly from
episodes of experience [130].

The value of a state s, denoted V' (s), is estimated as the average of returns G
following visits to s, where the return G, is the total discounted reward from time
t:

1
V(s) = 5o > Gy (2.5)
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where N (s) is the number of times state s has been visited, and 7 (s) is the
set of time steps at which s was visited. For incremental updates, the formula
incorporates « as follows:

V(s) « V(s) + a(Gt — V(s)), (2.6)

where G; — V (s) is the error in the current estimate. The learning rate, c, is a
crucial hyperparameter in Monte Carlo methods and other RL algorithms in gen-
eral. It determines the weight given to new information relative to old information.
A higher « allows the algorithm to learn more quickly, adapting to new data at
the expense of potentially disregarding valuable older information. Conversely, a
lower o makes learning from new data more gradual, preserving older information
but possibly slowing down the adaptation to new patterns.

In this context of the simple grid world environment, Monte Carlo methods can
be employed to estimate the value of each state, representing the expected return
or cumulative reward of starting from that state and following a certain policy to
reach the goal. Each episode represents a complete journey from the start state
to the goal or until a predetermined number of steps is reached. After collecting
a sequence of states, actions, and rewards for each episode, the agent calculates
the return for each state visited during the episode. This process is repeated for
multiple episodes, allowing the agent to improve its policy for navigating the grid
world.

A primary advantage of Monte Carlo Methods is their straightforward imple-
mentation and the ability to learn directly from episodes of experience without
requiring a model of the environment. This makes Monte Carlo methods partic-
ularly appealing for problems where the environment’s dynamics are complex or
unknown. Moreover, by focusing on complete episodes, these methods can effec-
tively handle episodic tasks where the goal is to optimize the return over a finite
sequence of steps. However, their reliance on episodes to complete before updat-
ing value estimates can lead to slower learning, especially in environments where
episodes are long or infrequent. Additionally, because Monte Carlo methods aver-
age returns over entire episodes, they can exhibit high variance in their estimates,
requiring many episodes to converge to stable value function estimates. Balancing
the exploration of new strategies with the exploitation of known strategies remains
a critical challenge, as excessive exploration can lead to suboptimal learning out-
comes [130]. These shortcomings set the stage for methods that learn from incom-
plete sequences.
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Temporal Difference (TD)

Temporal Difference (TD) Learning blends ideas from Monte Carlo methods and
Dynamic Programming. It stands out for its ability to learn directly from raw
experience without a model of the environment’s dynamics, and yet, it does not
require the episode to complete before updating value estimates [128]. Unlike
Monte Carlo methods, which wait until the end of an episode to determine the total
reward and update value function estimates, TD Learning uses bootstrapping® to
update estimates based in part on other learned estimates, without waiting for a
final outcome. This approach allows for more frequent updates and can lead to
faster learning in many scenarios.

Central to TD Learning is the TD error, a measure of the difference between
consecutive value function estimates. For a given state s; and its successor state
S¢11, the TD error d; is given by:

6t = rer1 + YV (s141) — V(se), (2.7)

where 741 is the reward received after transitioning from state s; to state Syy1,
~ is the discount factor, and V'(s;) and V' (s;41) are the value estimates of the
current and next states, respectively. The value function for state s; is then updated
as follows:

V(St) — V(St) + ady, (2.8)

where « is the learning rate, a parameter controlling the magnitude of value
function updates.

Going back to the grid world example, where an agent must navigate from a
starting position to a goal. Using TD Learning, the agent updates its value func-
tion after each step based on the TD error, gradually learning the expected total
reward from each position in the grid. This process enables the agent to develop a
policy that guides it along the shortest path to the goal. TD learning’s introduction
to bootstrapping leads to more efficient learning methodologies, thus laying the
groundwork for more complex algorithms that combine TD methods with policy
control.

Q-Learning

Q-Learning is a pivotal algorithm in model-free RL that seeks to learn the value
of action-state pairs without requiring a model of the environment, cf. [144].
Essentially, Q-learning uses the Bellman equation as a basis to iteratively update

Zplease refer to [128] for an introduction to bootstrapping.
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Q-values based on experience, enabling model-free learning. Within this frame-
work, Q" symbolizes the action’s quality, indicating the action’s effectiveness in
securing future rewards. Usually, future rewards are discounted by a factor v per
timestep [100]. Using this, the future discounted return at time ¢ can be defined as

Re=> 4""ry, (2.9)

where 7' is the timestep at which the game terminates.

Q-Learning is designed to learn the value Q*(s;, a;) of an action a; in a specific
state s; to maximize the total expected reward over all successive steps s¢+1, S¢+2, ---
starting from the current state s;. The previously depicted Bellman equation plays
a fundamental role in calculating the optimal action-value function. This principle
emerges from the rationale that if we were to know the optimal value Q*(Sy41, at+1)
for every possible action ay; in the subsequent state s¢ 1, the best course of action
would be to choose a1 that maximizes the expected return of r+~vQ* (S¢+1, at4+1),
where ;1 is the immediate reward and + is the discount factor for future rewards.
This concept is mathematically represented as:

Q" (st,ar) =E [T’t+1 + ’Y%ﬁ? Q" (St+1, ar41)|5¢, at} (2.10)

Q-learning operationalizes this concept by applying an update rule to the Q-
values based on the observed experience. The Q-value of a state-action pair is
updated as follows:

Q(st,ar) < Qs a) + o l:rt-i-l + 'YH}I%XQ(SH—h ai+1) — Q(st, at):| (2.11)

As experiences are gathered, basic Q-learning uses this equation to iteratively
update a Q-table, essentially mapping states, values, and actions. This update is
driven by the TD error, the discrepancy between the current estimate of Q*(s¢, a;)
and the new estimate formed from the newly observed reward and the maximum
predicted Q-value of the next state.

Q-learning is an off-policy algorithm that learns the optimal policy’s value in-
dependently of the agent’s current actions, facilitating exploration without jeop-
ardizing the acquisition of optimal actions. Off-policy algorithms allow learning
from actions outside the current policy, enabling efficient exploration and exploita-
tion balance but may lead to convergence issues if not carefully managed [129].

The algorithm’s capacity to identify the optimal policy without necessitating
an environmental model is a pivotal advantage, as it allows agents to learn ef-
fective strategies directly from interactions, circumventing the need for complex
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representations or simulations of the environment [109]. furthermore, its straight-
forward implementation contributes to its widespread use, facilitating rapid de-
ployment in various applications without extensive customization [4]. However,
Q-learning’s performance diminishes in environments characterized by large state
spaces. An increase in potential state-action pairs demands substantial computa-
tional resources and memory for the Q-table [94]. Additionally, the effectiveness of
Q-learning hinges on accumulating a vast amount of experience. This necessitates
extended periods of interaction with the environment, which can be impractical in
complex or dynamically changing scenarios [103].

State-Action-Reward-State-Action

The on-policy algorithm State-Action-Reward-State-Action (SARSA), aims to up-
date the Q-value for policy improvement, just like Q-learning. Contrary to the
off-policy method Q-learning, where the Q-value update is based on the maximum
estimated future reward, however, it does so based on the policy’s actual choices,
incorporating the estimated Q-value of the next state-action pair chosen according
to the current policy.

The SARSA algorithm updates the Q-value for a state-action pair (s, a;) using
the formula:

Q(st,at) < Q(st,at) + alrev1 + YQ(Se41, arv1) — Q(8t, ar)], (2.12)
where:
* (s, ay) is the current estimate of the Q-value for state s; and action ay,
* « is the learning rate,
* r¢y1 is the reward received after taking action ay in state s,
* 7 is the discount factor, representing the importance of future rewards,
* s;41 is the new state after taking action a,
* a;y1 is the next action taken, chosen according to the current policy,
* Q(St+1,a¢+1) is the estimated Q-value for the next state-action pair (S41, G¢41)-

This formula highlights the difference between Sarsa and Q-learning. SARSA
calculates the TD using both the current and subsequent state-action pairs, thus
needing to know the future action a; for the update process.
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Going back to the grid world example, where an agent moves to reach a goal
state from a starting position. Using SARSA, the agent updates its Q-values based
on the policy it follows, for example, an e-greedy policy where it mostly chooses
the best-known action but occasionally tries a random action. The Q-values guide
the agent through the grid, learning from each step and its outcome, adjusting its
path based on both immediate rewards and estimated future rewards of subsequent
actions.

SARSA, being an on-policy learning method, enables the algorithm to poten-
tially lead to safer or more conservative learning outcomes, effectively avoiding
risky moves that might seem optimal in theoretical scenarios but are hazardous in
real-world applications [129]. It moreover exhibits a high degree of flexibility with
regard to the policies it can employ. This adaptability allows it to be effectively in-
tegrated into a variety of scenarios, thus broadening its applicability across diverse
RL tasks [129]. On the other hand, the requirement for SARSA to explore and learn
the policy in a simultaneous manner can sometimes result in slower convergence
rates, especially when compared to off-policy methods such as Q-learning [129].
This characteristic may lead to inefficiencies in environments where rapid learn-
ing of optimal policies is crucial. Furthermore, SARSA may not always find the
most optimal policy as efficiently as some off-policy methods. This is particu-
larly evident in environments characterized by high variability or risk, where the
exploration necessary for on-policy learning can result in less efficient policy opti-
mization [140].

Policy Gradient

Policy Gradient methods represent a different approach to the RL problem, where
the focus is on directly learning the policy 7— a mapping from states s to actions
a — without relying on a value function V'(s) [131]. By adjusting the parameters
of the policy in the direction of greater rewards (the gradient), the agent iteratively
improves its behavior.

The foundational concept of Policy Gradient methods revolves around the pol-
icy function, p(A; = a|S; = s)VA; € A(s), Sy € S, representing the probability
of taking action a in state s, parameterized by 6 [131]. Unlike value-based meth-
ods, which first learn a value function and derive a policy from it, Policy Gradient
methods learn the policy function directly by adjusting the parameters 6 to maxi-
mize the expected return, J(#), from the start state. This is often expressed as:

J(O)= E [R(1)], (2.13)
Tr~Tg

where R(7) is the total discounted reward of a trajectory 7 and E, ., denotes

the expectation taken over the distribution of all possible trajectories 7 generated by
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following the policy 7. The Policy Gradient theorem provides a way to compute
the gradient of J(#) as:

T
Vol(0)= E > Vglogms(as|se)Re | (2.14)
t=0

where R; is the discounted return from time ¢. This gradient can then be used to
update the parameters 6 using gradient ascent, thereby improving the policy [118].
The policy gradient algorithm then performs a stochastic gradient ascent:

Opr1 = 0 + OéVgJ(ng), (2.15)

where « represents the learning rate.

The Policy Gradient’s direct way of optimizing the policy can lead to bet-
ter convergence properties for problems with high-dimensional action spaces or
continuous action spaces [126]. Additionally, the capability to learn stochastic
policies, allows these methods to naturally represent and learn stochastic policies,
which can be advantageous in certain environments [129]. On the downside, the
high variance of gradient estimates can make training less stable and require more
samples to converge [117]. This is coupled with a sensitivity to hyperparameter
tuning, such as learning rate « and discount factor -, which can significantly affect
performance [117].

2.1.6 Deep Reinforcement Learning Algorithms

Traditional RL methods excel in environments characterized by discrete and finite
state and action spaces, however, their applicability becomes constrained when
faced with high-dimensional spaces, primarily due to the curse of dimensionality,
which leads to an exponential increase in the number of state-action pairs [13]. To
circumvent the limitations inherent in traditional RL, DRL integrates deep neural
networks.?. Through the usage of deep learning, DRL simplifies complex environ-
ments, allowing agents to make decisions in situations with a lot of information
or a wide range of possible actions [100, 125]. In the following, I will proceed
to examine key DRL algorithms instrumental in advancing the field, highlighting
their distinct methodologies and contributions to overcoming complex challenges
through the fusion of deep learning and RL. The subsequent selection includes
Deep Q-Networks (DQN) [101] and Proximal Policy Optimization (PPO) [119]

3This dissertation assumes a foundational understanding of neural networks. For readers seeking
an introduction or a more comprehensive understanding, the following sources are recommended [57,
85].
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with the intention of featuring an algorithm for both sides of the model-free taxon-
omy (g-learning and policy optimization)*. The algorithms also support the use of
discrete action spaces, reducing the number of possible error sources.

Deep Q-Learning

The limitation of traditional tabular Q-learning is its inability to scale to prob-
lems with complex or continuous state spaces. Tabular Q-learning maintains a
lookup table to store Q-values for every possible state-action pair. However, as
the complexity of the environment increases, so does the dimensionality of this ta-
ble, making tabular methods impractical. To manage more complex environments,
the enhancement of Q-learning through the integration of neural networks, known
as Deep Q-Learning or Deep Q-Networks (DQN), can offer significant improve-
ments [101]. DQN facilitates the approximation of Q-values for a vast number of
state-action pairs that would be infeasible to store and compute explicitly.

In DQNs, the neural network is parameterized by weights and biases collec-
tively denoted by 6. The network is tasked with estimating Q-values, denoted
as Q(s,alf). A pivotal enhancement introduced in DQN is the utilization of a
target network and the concept of experience replay. The experience replay de-
scribes a process in which the DQN stores the agent’s experiences at each timestep,
(8¢, at, 441, S¢+1), in a dataset D, known as the replay buffer. It then samples
mini-batches uniformly at random from this buffer (U(D)) to perform updates.
This method breaks the correlation between consecutive learning updates, signif-
icantly improving learning stability and efficiency by reusing past experiences.
The target network estimates the Q-value of the next state-action pair, denoted
by Q(s¢4+1,a:+1]0; ). The target network represents a copy of the Q-network, held
constant to stabilize the target Q-values during the learning updates. Periodically,
the weights of the Q-network 6; are copied to the target network to slowly in-
corporate parameter updates, reducing the risk of divergence or oscillations in the
learning process due to the moving target problem. The loss function, central to
the optimization of the DQN, is defined as:

2
L(0:) = E(s, a1 r041,5001)~U(D) [(Ttﬂ + Wla"fiégiQ(Stﬂ, at+110;) — Q(st, at|9z’)>

(2.16)
The loss function L(6;) aims to minimize the difference between the predicted
Q-values by the current network parameters 6; and the target Q-values, which are

“Please refer to [4] for a comprehensive overview of the model-free taxonomy.
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calculated using the target network’s parameters 6, . This difference, squared, con-
stitutes the TD error, reflecting the discrepancy between the current estimate and
the optimal target estimate. Parameter updates are then applied according to the
gradient of this loss function with respect to 6, leading to:

This process enables the neural network model to effectively generalize across
the state and action space. Unlike tabular approaches, where the scalability is
directly limited by the cardinality of S x A, the parameterization through 6 in
DQN allows for generalization, significantly reducing the dimensionality chal-
lenge. Nonetheless, the methodology may lead to oscillations or divergence in
Q-value updates due to the concurrent use of the network for generating and up-
dating target Q-values. Techniques such as experience replay and the use of fixed
target networks aim to mitigate these challenges, thus stabilizing the learning pro-
cess within the Deep Q-Learning framework.

DQN:ss are highly popular among computer scientists as they are comparatively
simple to hyperparametrize, have a high sample efficiency, and proved successful
in achieving superhuman performances in games [101]. This success underscores
DQNs’ capacity to handle complex decision-making tasks, significantly extending
the applicability of RL. Just like Q-learning, DQNs operate in an offline manner,
however, the offline nature of DQNSs necessitates careful consideration of the ex-
ploration versus exploitation balance and the design of the replay buffer to ensure
effective learning [66].

Proximal Policy Optimization

PPO emerges as a refinement of policy gradient methods, specifically designed to
address their computational complexity and instability issues. PPO strikes a bal-
ance between ease of implementation, sample efficiency, and robustness, making it
particularly well-suited for a wide array of RL problems, including those encoun-
tered in high-dimensional environments [118].

Central to PPO’s approach is the idea of optimizing a surrogate objective func-
tion while ensuring that the new policy does not deviate too far from the old policy.
This is achieved through the use of a clipped probability ratio, which bounds the
amount of change introduced in the policy update. The objective function of PPO
is expressed as:

LCLIP () = B, |min(ry(0) Ay, clip(ry(6),1 — e,1 + E)At)] : (2.18)

where:
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. E, represents the empirical expectation over a batch of samples at timestep
t, emphasizing the method’s reliance on sampled data to approximate the
expected value.

o 1(0) = % is the probability ratio, indicating how the current pol-
icy’s probal;lﬁity of selecting action a; in state s; compares to the probability
under the old policy.

o A, is an estimator of the advantage function at timestep ¢, measuring the
benefit of choosing action a; over other possible actions in terms of expected
future rewards.

* The clip function bounds 7(f) within the range [1 — €, 1 + €], with € being a
small positive value (hyperparameter) that determines how much the policy
is allowed to change at each update.

This clipped objective function helps to prevent the policy from changing too
dramatically, which could destabilize the learning process. By taking the minimum
between the unclipped and clipped objective, PPO encourages policy improvement
while ensuring the updates remain within a safe margin defined by e. PPO’s in-
troduction of clipping and the empirical expectation calculation reflects a practical
approach to implementing policy gradient methods, particularly suitable for envi-
ronments with large or continuous action spaces. It balances the exploration of
new policies with the stability of incremental learning, making it one of the most
widely used algorithms in DRL today.

PPO’s clipped objective function mitigates the risk of excessively large policy
updates, a common pitfall in earlier policy gradient methods that could lead to de-
structive large steps in the policy space [119]. The algorithm facilitates multiple
epochs of minibatch updates using the same trajectory data, enhancing sample effi-
ciency—a critical advantage in complex environments [119, 64]. This efficiency is
complemented by PPO’s flexibility to work with both continuous and discrete ac-
tion spaces, broadening its applicability across various DRL scenarios. Compared
to its predecessors and contemporaries, such as Trust Region Policy Optimization
(TRPO)’, PPO offers a more straightforward implementation without compromis-
ing performance. It eliminates the need for a complicated second-order optimiza-
tion by approximating the trust region constraint with a simpler clipping mecha-
nism [119]. Despite its advantages, PPO is not without challenges. Fine-tuning its
hyperparameters, like the learning rate o and clipping parameter €, remains crucial
for achieving optimal performance [65].

SPlease refer to [116] for an in-depth introduction to TRPO.
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2.2 Dynamic Pricing

Dynamic pricing, also referred to as real-time pricing or demand pricing, is an
adaptive pricing strategy whereby businesses set flexible prices for products or ser-
vices based on current market demands. This approach leverages advanced data
analytics and machine learning algorithms to adjust prices in response to a variety
of factors including changes in supply and demand, competitor pricing, and cus-
tomer behavior patterns. The underlying premise is that by dynamically adjusting
prices, businesses can maximize their revenue and profit margins while maintaining
competitiveness in the market (cf. [21]). Research indicates that dynamic pricing
can lead to an increase in sales volume and profit margins. Dynamic pricing strate-
gies, when properly implemented, can improve profitability by enabling sellers to
adjust prices based on the real-time balance of supply and demand [45]. Due to
the rising adoption of RL throughout the last decade, dynamic pricing algorithms
have shifted from static heuristics to Al-driven software as they outperform them
in terms of average daily profits [83]. Studies have already shown that in cer-
tain markets it is unreasonable to conduct business at a profitable level lacking this
technology, as algorithmic price setting frequencies create a significant competitive
edge [12].

2.2.1 Dynamic Pricing in E-Commerce

The rise in online shopping worldwide has helped E-Commerce grow significantly,
making up 14.1% of all sales and reaching $3.5 trillion in 2019 [34]. This trend is
further bolstered by advancements in information technologies and the expansion
of transportation networks, facilitating increased availability of goods worldwide.
Consequently, local suppliers find themselves competing on a global scale, neces-
sitating adaptive strategies to stay competitive. With the advent of the big data rev-
olution and the proliferation of cloud computing [78], companies are increasingly
leveraging data analytics to inform and potentially automate decision-making pro-
cesses. There is a discernible shift towards data-driven insights and over-reliance
on intuitive judgment among sellers, leading to the processing of extensive data to
glean customer preferences, disseminate pertinent information, and identify pre-
vailing market trends to capture a larger share of consumers’ spending [38].

This data-centric paradigm is driving the adoption of more frequent and tar-
geted price adjustments aimed at maximizing revenue while maintaining consumer
satisfaction. As such, sellers make use of dynamic pricing, also known as demand-
based pricing. This pricing strategy aims to adjust prices in real-time in response
to market conditions to maximize profitability by optimizing the price at which
goods or services are sold [28]. Dynamic pricing is based on the economic prin-
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ciple of supply and demand. When demand is high, prices increase to balance the
demand and supply. Conversely, when demand is low, prices decrease to encourage
purchase [132].

This principle offers several benefits. It allows businesses to respond quickly
to changes in the market, making them more competitive [150]. It also enables
businesses to manage inventory more effectively, reducing waste and increasing
efficiency [91]. Furthermore, dynamic pricing can lead to increased revenue and
profitability [20]. Nevertheless, dynamic pricing has been criticized for potentially
leading to price discrimination [54]. Some consumers may end up paying more for
the same product or service based on factors such as their location or the time of
purchase [153]. Therefore, businesses must implement dynamic pricing strategies
carefully to avoid potential backlash [53].

In the E-Commerce sector, the comprehensive implementation of dynamic
pricing strategies has become virtually indispensable for maintaining competitive-
ness [55]. As a result, prices no longer merely mirror fluctuations in supply and
demand but also encapsulate evolving opportunity costs in the face of demand
uncertainty and scarcity. The cost associated with selling a unit of inventory at
present is contingent upon a firm’s potential to sell it in the future. Moreover,
demand may exhibit predictable temporal variations. For instance, if consumers
with a high willingness to pay tend to arrive later, firms may have an incentive to
conserve inventory. In all the aforementioned scenarios, prices may be adjusted
in response to competitive interactions. However, a significant portion of the the-
oretical and empirical literature on dynamic pricing in perishable goods markets
has entirely abstracted from competition. This paper introduces a framework to
study dynamic price competition. We explore how dynamic price competition can
detrimentally impact market efficiency and how alternative pricing mechanisms
can enhance overall welfare [17].

2.2.2 Deep Reinforcement Learning in Dynamic Pricing

Dynamic RL-based pricing strategies supersede static ones in terms of average
daily profits [83]. As 27 percent of the respondents of a 2017 study by KPMG
identified price or promotion as the factors that are most likely to influence their
decision regarding which product or brand to buy online [82], it is a logical con-
sequence that successful companies (such as Amazon [29]) base their decisions on
these algorithms to learn from and react to their competitor’s pricing policies as
well as to adjust to external factors, such as a transformation of demand or product
innovations [49].

In various studies, researchers have explored (D)RL algorithms to enhance dy-
namic pricing approaches. As such, Lu et al. [93] explored the application of
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RL within the context of a hierarchical smart-grid system. By implementing Q-
learning, the service provider can determine the retail electricity price adaptively,
considering the uncertainty of customers’ load demand profiles and the flexibility
of wholesale electricity prices. Experimental results highlight improved service
provider profitability, reduced customer energy costs, balanced energy supply and
demand in the electricity market, as well as improved reliability of electric power
systems. Zhang et al. [151] confirm these findings within a review of the applica-
tion of DL, RL, and DRL in smart grids. They discuss how these Al techniques,
especially DRL, can enhance prediction accuracy, anomaly detection, decision-
making in smart grids, and DRL’s ability to make strategic decisions in complex
environments.

In an exploratory study, a researcher described the optimization of a dynamic
congestion pricing system in conjunction with RL [11]. Based on highway con-
gestion levels, an RL algorithm would dynamically adjust the price for a toll road.
Although RL proved to be quite demanding for the proprietary traffic simulator
used in the study, the authors concluded that it can inform basic feedback control
methods.

Other research focused on simulating (online) markets. As such, Kastius and
Schlosser [75] explore the use of DQN and SAC for dynamic pricing in various
market models. The study finds that both algorithms produce reasonable results,
with SAC performing better than DQN, and suggest that under certain conditions,
RL algorithms can be induced into collusion without direct communication. Others
present an end-to-end framework using DRL for dynamic pricing on E-Commerce
platforms [90], contributing by showing significant performance improvements
over manual pricing by extending the problem to continuous price sets and defining
a novel reward function. Furthermore, Reza Refaei et al., [5] feature a novel hyper-
parameter optimization method and demonstrate significant revenue improvement
over benchmark methods in the context of online advertising.

2.2.3 Evidence of Deep Reinforcement Learning in E-Commerce

However, RL has not only been investigated in experimental setups. Evidence
from major online retailers suggests that RL-based dynamic pricing, also known
as pricing agents, is now a standard practice. A study of Germany’s retail gas
market identified a large-scale adoption of pricing algorithms since 2016 based on
a catalog of potential characteristics. As a consequence, sellers reached margins
above competitive levels. As their data indicates no initial effects, followed by
an eventual convergence to high prices and margins, they infer that the algorithms
were able to learn tacitly collusive strategies over time [12].

Brown and MacKay [22] tackle the issue from a different angle, examining
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the strategic use of pricing algorithms among five pharmacy firms with varying
frequencies of price changes. Their findings suggest that firms employing high-
frequency pricing algorithms not only adjust to market dynamics more effectively
but also potentially gain a competitive edge, leading to increased price levels and
affecting the overall market dynamics, including price dispersion and the impact
of mergers on pricing strategies [22].

Researchers from Alibaba, one of the leading E-Commerce shops [9], address
the problem of dynamic pricing on E-Commerce platforms using methods based
on DRL [90]. The study demonstrates the superiority of employing a continuous
pricing strategy over a traditional discrete approach, innovates with a new reward
function named the difference of revenue conversion rates, and addresses the ini-
tial data scarcity challenge through pre-training on historical transactions. This
DRL-based method surpasses traditional expert-driven pricing tactics, showcasing
a breakthrough in implementing DRL for practical E-Commerce pricing scenarios.

Further evidence of DRL’s impact on E-Commerce is highlighted through stud-
ies conducted on Amazon [29] and Bol.com [62]. The research on Amazon demon-
strates how algorithmic pricing strategies, utilized by over 500 sellers, foster price
competitiveness and volatility, emphasizing the significance of dynamic pricing
in enhancing market presence [29]. Similarly, an empirical analysis on Bol.com,
the largest online marketplace in the Netherlands and Belgium, reveals that algo-
rithmic sellers adjust prices dynamically, influencing the Buy Box’s price [62].
These findings underscore the widespread adoption of DRL-based pricing strate-
gies across major online platforms, contributing to a more dynamic E-Commerce
ecosystem.

2.3 Antitrust Law

This thesis, while primarily focused on Al, acknowledges the importance of incor-
porating foundational legal principles to interpret the results and discuss their legal
implications accurately. This interdisciplinary approach ensures that our findings
are not only technically robust but also applicable under Article 101 Treaty on the
Functioning of the European Union (TFEU)® and Section 1 Act against Restraints
of Competition (ARC) of the German competition law.

2.3.1 Mutual Agreement

The primary objective of antitrust law is to promote market competition and, by
extension, safeguard the interests of consumers [77]. To achieve this, business en-

For US law see [138, 59).
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Figure 2.3: A simplified differentiation of parallel behavior and concerted prac-
tices.

tities, referred to as “undertakings”, operating within the market must act indepen-
dently from one another. This principle of independence mandates that any form
of direct or indirect interaction among market players, which could potentially in-
fluence or reveal one’s market strategy to a competitor, is strictly prohibited [47].
Such interactions are considered harmful as they might distort market conditions
from what would naturally arise from uninfluenced competition.

Article 101 of the TFEU and Section 1 of the ARC explicitly forbid any form
of agreement or coordinated behavior among businesses that could restrict market
competition [47, 23]. Undertakings shall independently decide over their market
behavior and must not coordinate with their competitors. This is known as the
“requirement of independence”. This includes decisions made by groups of com-
panies and any joint actions that could lead to competitive constraints. Essentially,
these rules draw a clear line between acceptable independent actions and illegal
cooperative tactics. For an action to fall under the prohibition of Article 101 TFEU
and Section 1 ARC, it must involve companies coming together to agree on a mu-
tual course of action in the market (cf. Figure 2.3). Both European and German
competition law distinguish three possible conducts of infringing the cartel prohi-
bition:

1. Agreements between undertakings,
2. Decisions by associations of undertakings,

3. Concerted practices.

Agreements Between Undertakings

An agreement between undertakings encompasses any form of agreement, arrange-
ment, or concerted action between two or more undertakings that have the object
or effect of preventing, restricting, or distorting competition within the internal
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market. These agreements can be formal or informal, written or oral, and in-
clude both horizontal agreements (between competitors) and vertical agreements
(between companies at different levels of the supply chain, such as manufacturers
and distributors). Examples include price-fixing, market-sharing, and production
limitation agreements.

The prohibition is aimed at agreements that have an anti-competitive object
(i.e., their purpose is to restrict competition) or an anti-competitive effect (i.e., they
may not intend to restrict competition but do have that effect). The assessment of
these agreements often involves analyzing their context and the competitive struc-
ture of the market.

Decisions by Associations of Undertakings

This category targets decisions made by associations or collective groups of busi-
nesses, such as trade associations or professional organizations. Similar to agree-
ments between undertakings, these decisions are prohibited if they have the ob-
ject or effect of restricting competition. Examples include collective price-setting,
adoption of standards that exclude certain competitors, or coordinated market-
sharing.

Decisions by associations can significantly impact market competition, as they
can influence the behavior of a number of companies within an industry. The
scrutiny under this provision ensures that collective actions by businesses through
their associations do not undermine competitive dynamics.

Concerted Practices

Concerted practices refer to forms of coordination between undertakings that, with-
out having reached the stage of a formal agreement, knowingly substitute practical
cooperation between them for the risks of competition. This could involve activi-
ties where companies align their behavior on the market, such as by sharing sen-
sitive market information, that lead to a condition of reduced competition without
the need for an explicit agreement.

The concept of a concerted practice is somewhat broader and more nuanced
than explicit agreements or decisions, capturing situations where companies may
not explicitly agree to engage in anti-competitive behavior but engage in coor-
dinated actions that have a similar effect. Identifying concerted practices often
involves analyzing patterns of market behavior and communication between com-
panies to infer collusion.
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2.3.2 Pricing Agents and Antitrust Law

In a proposal for an Artificial Intelligence Act, the European Commission em-
phasizes the importance of the safety and lawfulness of Al systems, of legal cer-
tainty concerning Al, the governance and effective enforcement of existing law on
fundamental rights, and the installation of safety requirements [32]. In line with
these goals, Al price policies must oblige competition law just as prices set by hu-
mans. Essentially, undertakings must ensure that their pricing agent refrains from
any form of communication or interaction that could affect a competitor’s busi-
ness strategy or reveal its own plans and strategies to a competitor. The purpose
of this rule is to ensure that the competitive environment remains natural and is
not distorted by agreements or shared plans among competitors that could lead to
unnatural market conditions [43].

The independently chosen intelligent adaption of an undertaking’s market be-
havior to the observed market behavior of its competitors (generally) is permitted.
Drawing a clear line between the adaption of an observed market behavior and a
conduct through which competition knowingly is replaced by practical cooperation
and therefore constitutes a concerted practice within the meaning of Article 101 (1)
TFEU is often difficult and sometimes even impossible. Especially in transparent
markets with few market participants, the market outcome of collusion can often
hardly be traced back to be (or not to be) the product of a concerted practice (cf.
petrol station market). While collusion, or companies working together in ways
that harm consumers, innovation, and economic growth, is bad for the economy
and undesired from a welfare perspective, it’s challenging to legally hold anyone
accountable for such market outcomes from a theoretical standpoint. The ratio-
nale behind this is that the law typically requires specific actions or agreements to
impose liability, not just harmful market effects. [145].

Our goal is to disclose whether a certain sequence of actions or a specific pat-
tern can be identified as a situation in which the uncertainty about the competitor’s
next moves is replaced by a practical cooperation. The rise of self-learning algo-
rithms in the market, which can analyze vast amounts of important data and re-
spond to price changes very quickly, may increase market transparency to such an
extent that it becomes difficult to tell if market outcomes are the result of legitimate
competitive strategies or illegal collusion. These algorithms’ ability to monitor the
market so closely and act so frequently makes it challenging to distinguish be-
tween companies independently making similar decisions and those engaging in
coordinated, anti-competitive practices.

However, when no such coordination can be identified, the collusive market
outcome generally must be considered legally neutral. Although collusion can
be detrimental to consumers, innovation and economic growth are therefore un-
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desirable from a welfare economic point of view, the difficulty from a dogmatic
perspective is that legal responsibility cannot easily be attached to a market out-
come as such [31]. This evokes three major legal questions. First, does the agent’s
behavior constitute a minimum degree of coordination and thus violate the cartel
prohibition under existing German and European competition law? Second, do
the existing rules readily fit an algorithmic conduct or do we face a regulatory gap
within the cartel prohibition? Third, should we expand cartel law to encompass
algorithmic collusion?

2.4 Economics

In this section, we will delve into the fundamental concepts of economics that are
central to discussions on market structures, demand and supply, pricing strategies,
and the strategic interactions among firms. We will start with an introduction to
market structures, exploring the differences between perfect and imperfect mar-
kets, and then move on to an analysis of demand, supply, and price determina-
tion. Furthermore, we will discuss the implications of supracompetitive pricing,
the application of game theory to strategic interactions, and the specific models of
Bertrand and Cournot competition. Finally, we will address the importance of en-
suring consumer welfare in the context of antitrust laws and economic efficiency.’

2.4.1 Introduction to Market Structures

In the general understanding, a market is typically seen as a physical location where
goods are purchased and sold. However, economists define a market as a collection
of buyers and sellers engaged in transactions involving a specific type of goods or
services. The demand for a product is determined by the buyers, while the supply
of the product is determined by the sellers [96].

Market structures are fundamentally categorized based on the number of firms
in the market, the nature of the product being offered, entry and exit barriers, and
the degree of information symmetry among participants [96]. As displayed in 2.4
research primarily differentiates perfect and imperfect market forms. Perfect com-
petition embodies a market with numerous small firms, homogeneous products, no
barriers to entry or exit, and perfect information. In such markets, no single entity,
neither buyer nor seller, has the market power to influence prices, thus acting as
“price-takers”. Price-takers must accept prevailing prices in a market, lacking the
ability to influence market prices independently. Imperfect markets conversely, are

7you can find a thorough introduction to Economics in [96, 84].
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characterized by single or few firms dominating the market, monopolistic compe-
tition, and asymmetric information. Imperfect competition is also characterized by
barriers to entry and exit, which prevent the market from adjusting to new entrants
or exits smoothly. Imperfection generally leads to sellers acting as “’price-makers”.
However, the degree of freedom in their price selection is influenced by the specific
characteristics of the market structure and the level of competition within it [84].

In the following thesis, our focus will primarily be on oligopolies and mo-
nopolistic competition, as these market structures present unique challenges and
opportunities for deploying pricing strategies through DRL agents. Oligopolies, a
market characterized by few dominating firms, provide a unique setting to explore
strategic pricing behaviors, including tacit collusion, price wars, and the impact
of market entry or exit. This market structure reflects many modern industries,
such as telecommunications, airlines, and pharmaceuticals, where the understand-
ing of pricing dynamics can have significant economic and regulatory implica-
tions [122, 26]. Monopolistic competition, defined by many firms selling differ-
entiated products, allows for an investigation of how product differentiation influ-
ences pricing strategies. It offers insights into how firms balance between pricing
for market penetration and pricing for profit maximization. This market structure
is particularly relevant for sectors with high levels of product innovation and mar-
keting, such as consumer goods and technology markets [137, 80].

2.4.2 Demand, Supply, and Price Determination

In economics literature, the market is observed from different perspectives, the
buyers and sellers. From a seller’s perspective, we define The law of demand. This
law posits that when the price of a good rises, the quantity demanded of the good
falls, and vice versa. Conversely, from a buyer’s perspective, the research describes
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the law of supply, suggesting that a higher price will encourage producers to supply
a greater quantity of the good. The price of a product or service where the quantity
demanded by consumers equals the quantity supplied by producers is known as the
market equilibrium (cf. Figure 2.6). This equilibrium price ensures that the market
clears, with no excess supply or demand [68].

On a price-demand curve, a monopolist can set the price above the marginal
cost, leading to an allocative inefficiency, causing a deadweight loss to society.
This pricing strategy will conversely result in a lower quantity of goods. In con-
trast, in a market characterized by perfect competition, prices tend to align more
closely with the marginal cost of production. The large number of firms and the ho-
mogeneity of the products ensure that no single firm has significant market power
to influence prices. Here, the equilibrium price is determined at the intersection of
the market supply and demand curves, where the quantity supplied equals the quan-
tity demanded (cf. Figure 2.6). This results in a lower price and higher quantity of
goods sold compared to a monopolistic market, thereby maximizing consumer and
producer surplus without generating significant deadweight loss [74].
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2.4.3 Supracompetitive Pricing

Supracompetitive pricing refers to the strategy of setting prices above what would
be expected in a perfectly competitive market where prices typically reflect the
marginal cost of production. This pricing strategy is commonly observed in market
conditions characterized by limited competition, such as oligopolies or monopolis-
tic markets, where firms possess sufficient market power to influence prices to their
advantage (cf. [98] and [53]).

In economic terms, supracompetitive prices exceed the level necessary to cover
all costs, including the normal return on investment. Such pricing can lead to higher
profit margins for the firms involved but often at the expense of consumer welfare
and market efficiency. This phenomenon is particularly relevant in discussions
of market power and regulatory responses. For instance, when a small number
of firms control a significant portion of the market, they may tacitly or explicitly
collude to maintain prices at a supracompetitive level, thereby restraining trade and
reducing total welfare in the market. Supracompetitive pricing can distort market
signals, resource allocation, and the competitive landscape, potentially leading to
market failures.
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2.4.4 Game Theory and Strategic Interaction

To fully understand how Al pricing agents interact in market environments, es-
pecially in oligopoly and monopolistic competition, it is necessary to introduce
foundational concepts of game theory. Central to game theory is the concept of
Nash equilibrium, a situation in which no player can benefit by unilaterally chang-
ing their strategy, given the strategies of all other players remain constant. In the
context of pricing strategies, Nash equilibrium represents a state where each firm’s
pricing decision is optimal, considering the pricing decisions of its competitors.
Analyzing these interactions helps illuminate the conditions under which pricing
agents might arrive at competitive equilibria or, contrarily, collude to set prices
above the competitive level [37, 12713.

Game theory furthermore differentiates between repeated games and single-
shot games. Repeated games consider the possibility of interactions occurring over
multiple periods, allowing for the study of strategies that evolve based on past ac-
tions [56]. This framework lends itself to analyzing the potential for tacit collusion
among pricing agents. When firms interact repeatedly, they may sustain coopera-
tion implicitly, avoiding overt collusion but achieving similar outcomes by learning
and adapting to each other’s pricing strategies over time. The anticipation of future
interactions can thus foster a cooperative equilibrium, even in the absence of for-
mal agreements, as long as the benefits of maintaining cooperation outweigh the
short-term gains from deviating.’

24.5 Bertrand Competition

In a Bertrand competition model firms use their prices to compete for a homoge-
neous product. In this model, each firm independently chooses its price, assuming
that the prices of its competitors remain constant. Consumers, facing no product
differentiation aside from price, will purchase from the firm offering the lowest
price [15].

A Bertrand Competition model with identical products and no capacity con-
straints can be solved using game theory. If Firm 1 and Firm 2 have the same
marginal cost ¢, and Firm 1 sets a price 1 > c, Firm 2 can set a price P» such that
c < Py < P to capture the market. Hence, rational behavior leads both firms to
set P = ¢, resulting in a Nash equilibrium of P = P» = c. This equilibrium is
derived under the premise that if any firm sets a price above the marginal cost, a

8Please refer to [56] for an in-depth introduction to game theory

°[33] and [135] investigate how repeated interactions and the prospect of future engagement can
incentivize firms to adopt cooperative strategies, facilitating outcomes that mirror those of formal
collusive agreements without explicit coordination.
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competitor can slightly undercut this price, essentially capturing the entire market.
Thus, firms earn zero economic profit, similar to perfect competition outcomes,
despite a smaller number of firms in the market.

While this model underscores the potential intensity of price competition, it is
often criticized for its assumption of perfect substitutability. As such, the Bertrand
equilibrium may be less realistic in markets where products are differentiated or
where strategic pricing involves more complex considerations beyond undercutting
competitors’ prices [98].

2.4.6 Cournot Competition

Cournot competition investigates a setting in which firms compete on quantities
rather than prices. Each firm decides its production quantity, assuming its com-
petitors’ quantities are fixed. The market price is determined by the aggregate sup-
ply through a demand function. Cournot competition is relevant in markets where
firms exert control over production levels but accept the market price as determined
by total industry output [98].

To determine the equilibrium quantities in a Cournot duopoly mathematically,
one considers two firms facing a linear demand function () = a—bP, where Q) rep-
resents the total quantity demanded, P is the price of the good, a and b are param-
eters determining the position and slope of the demand curve, respectively. Given
constant marginal costs ¢ for both firms, the inverse demand function, which relates
price to the total quantity supplied by both firms, is derived as P = 7 — % The
profit for Firm 1 (7r1) can be expressed as the difference between total revenue and
total cost, or 11 = (P — ¢)q1, where ¢ is the quantity produced by Firm 1. Sub-

stituting P from the inverse demand function gives m; = (% — @ — c) q1,

where g9 is the quantity produced by Firm 2. To find the equilibrium quantity
for Firm 1, we take the derivative of 7y with respect to g;, set it to zero, and
solve for ¢ as a function of gs. This results in Firm 1’s reaction function, which
shows how Firm 1 optimally adjusts its output in response to Firm 2’s output level.
Firm 2’s equilibrium quantity and reaction function are derived symmetrically. The
Cournot Nash equilibrium occurs at the point where these reaction functions inter-
sect, meaning each firm’s output level is the best response to the other firm’s output
level.

While the Cournot model is useful in analyzing markets where firms compete
in quantities, and it incorporates the strategic interdependence of firms’ decisions,
it is limited by its assumption that firms choose quantities simultaneously, with-
out considering potential reactions from competitors in real time. This assumption
does not hold in markets where firms can quickly adjust their production in re-
sponse to competitors [98].
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2.4.7 Ensuring Consumer Welfare

As highlighted, antitrust laws are designed to preserve competitive independence
among firms, prohibiting actions that undermine this principle. To establish a vi-
olation of these laws, it is often necessary to demonstrate evidence of collusion or
other forms of unlawful cooperation between competitors. Economic theories and
analytical tools enable investigators to scrutinize market outcomes, such as pricing
patterns, to discern whether they are the result of competitive behavior or indicative
of illegal coordination.

One indicator of potential anticompetitive behavior is supracompetitive pric-
ing. This phenomenon occurs when prices are set significantly higher than what
would be expected in a highly competitive market, which can be indicative of col-
lusion among firms or an abuse of market power by a dominant player. Beyond
merely suggesting anticompetitive behavior, supracompetitive pricing leads to a
specific form of economic inefficiency known as allocative inefficiency [97].

Allocative inefficiency arises when the price of a good exceeds the marginal
cost of its production, leading to reduced output from the level that would prevail
in a competitive market (cf. 2.7. This misallocation results in a situation where the
goods that are not produced and sold would have provided greater value to potential
buyers than their production costs, representing a net loss to society. Essentially,
the production and consumption of goods are not optimized, leading to a scenario
where resources are not allocated to their highest-valued use [97].

Consider a market for e-books. In a competitive landscape, assume e-books
are sold at €5 each, closely aligning with the cost of production plus a nominal
profit margin. Now, if a single firm gains control over the majority of e-book rights
it would essentially enable it to act as a monopolist. If that firm decides to price
e-books at €10, several potential consumers who value the e-books between €5
and €10 are priced out of the market. These consumers would have purchased
the e-books at a price reflective of their production costs plus a competitive profit
(i.e., €5), but are unwilling or unable to do so at the monopolist’s higher price
point (i.e., €10). The reduction in output and the resultant higher price prevent
these transactions, which would have been mutually beneficial under competitive
conditions. The value that these foregone transactions would have added to soci-
ety — representing consumer and producer surplus — is lost, epitomizing allocative
inefficiency.



Chapter 2. Fundamentals 39

Price
Supply

50

40

allocative
efficiency
effect

30

20

10 Demand

1000 2000 3000 4000 5000  Quantity

Figure 2.7: Allocative efficiency effect within a linear supply and demand model.

2.5 Related Work: Reinforcement Learning, Collabora-
tion, and Collusion

In this section, we delve into the relevant literature surrounding the dynamics
of cooperation and competition in RL. Hence, we provide a review of how RL
agents develop cooperative behaviors in multi-agent systems and the mechanisms
through which pricing algorithms might independently facilitate collusive behav-
iors in oligopolistic markets.

2.5.1 Cooperation in Reinforcement Learning

Particularly in the context of MAS, cooperation between RL agents is essential for
tasks where individual agents must interact to strategically achieve a common goal.
One of the primary methods to promote collaboration in RL is through the use of
joint rewards. As such, scholars introduced an improved cooperative RL algorithm
that utilizes joint rewards to ensure agents learn cooperative behaviors [149]. An-
other approach involves integrating social payoffs into the reward structure, which
has been shown to facilitate cooperation in spatial prisoner’s dilemma games [51].
Promoting cooperation among RL agents can also be facilitated through internal
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rewards [139, 152].

In recent years, researchers built on this by proposing collaborative DRL frame-
works to address the heterogeneity among different learning tasks [87], by improv-
ing exploration by having agents share a common exploration goal [89], or by
setting up coordinated challenges to search for superior performance in strategy
games [111].

As highlighted by previous research, RL agents have demonstrated exceptional
effectiveness in collaborative tasks. Building on this foundation, recent investi-
gations have begun to explore the potential of RL agents to collaborate within
competitive environments. These studies frequently utilize simple game scenar-
ios to evaluate the agents’ performance and interaction dynamics in competitive
settings [133, 58, 52]. These studies have demonstrated an emergence of both
competitive and collaborative behaviors between (D)RL agents, which were able
to develop more robust strategies to maximize their benefits when pitted against
adaptive agents. In a more recent study, researchers investigated the emergence
of competitive or collaborative behaviors in a 3D simulated environment using a
self-play approach. By comparing independently trained agents against those con-
trolled by the same policy, revealing cooperative behaviors even in theoretically
competitive scenarios [36].

2.5.2 Pricing Algorithms and Collusion

The study of pricing algorithms and their potential for collusion has garnered sig-
nificant attention, particularly as advancements in Al and ML have enabled self-
learning algorithms to adopt sophisticated strategies. This section delves into the
mechanisms through which algorithms can independently achieve collusive behav-
iors. We review seminal and recent research that investigates these dynamics within
oligopolistic markets, considering both theoretical frameworks and empirical stud-
ies. Key insights from game theory, RL, and economic simulations highlight the
propensity for algorithm-driven tacit collusion and the conditions under which it
arises.

Primarily legal scholars have commented on the possibility of self-learning al-
gorithms to quickly learn to achieve a price-setting collaboration especially within
oligopolies (e. g., [48, 49, 50]). With the power of modern hardware, Als would
be able to monitor the market in which they act, resulting in a rapidly arising tacit
collusion. Researchers investigated the issue by creating game theory-like sce-
narios with the intention of pushing the agents towards a Nash equilibrium (e. g.,
[49, 143]). In essence, it seems to be “incredibly easy, if not inevitable” to achieve
“such a tacitly collusive, profit-maximizing equilibrium” [120]. While collusion
has been presumed to appear in enclosed MARL scenarios, scholars have neither
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studied how to spot the origin of collusion nor if competitors can apply tacit collu-
sion by displacing others.

Researchers have investigated circumstances that can be juxtaposed with collu-
sion between pricing agents, such as bidding processes [121, 39] or economy sim-
ulations [154]. However, the authors did not control for or induce communication
or collaboration. To combat this shortcoming, scholars within the economics realm
created oligopolistic models, particularly Cournot oligopolies (e. g., [143, 76, 124])
to show collusion between agents. Izquierdo and Izquierdo [70] show that simple
iterative procedures, such as the win-continue, lose-reverse (WCLR) rule are able
to achieve collusive outcomes. However, the results are not robust in terms of mi-
nor, independent perturbations in the firms’ cost or profit functions. Similar results
were achieved with basic Q-learning [143]. As a case in point, using a price-setting
duopoly model with fixed production, in which two firms follow a Q-learning al-
gorithm, Tesauro and Kephart [134] observed convergence to prices higher than
the competitive level. Major takeaways from these studies are, that cooperation is
more likely to occur in simplified, static environments with a homogeneous good
and that communication is vital to achieve collusive outcomes, particularly when
more than two firms operate in a market. Such results suggest that the ability to
communicate could also be pivotal for algorithmic collusion to occur [120].

Other scholars investigated the issue by adding human participants [146], by
specifically analyzing sizes of discrete action spaces [79], or by building custom,
more elaborate scenarios [2]. Few researchers applied deep neural networks. The
ones that did, were able to improve on Calvano et al. [24] by achieving a shorter
learning time due to the usage of DQNs as well as reward averaging [67]. Others
restricted algorithms to only memorize the periods when they do not exceed in
terms of profits and ignored the ones when they outperform. Scholars, nevertheless,
emphasize that “more efforts are needed in exploring other architectures of deep
networks” [60]. Due to the characteristic learning behavior of RL-algorithms or Al,
the quality of learning data significantly influences agents’ propensity for collusion.
To test this hypothesis, some scholars employed a simple upper confidence bound
bandit algorithm to set a discrete number of prices [61]. Their outcome indicated
that the prices are bound to the signal-to-noise ratio of their inputs, resulting in a
supracompetitive state for less noisy input data and vice versa.

The current state of research is mainly simulation-based, with few scholars
collecting empirical data. An investigation into Germany’s retail gas market, con-
ducted using a catalog of potential characteristics, identified widespread adoption
of pricing algorithms since 2016. Consequently, sellers achieved margins above
competitive levels. As their data indicates no initial effects, followed by an even-
tual convergence to high prices and margins, they infer that the algorithms were
able to learn tacitly collusive strategies over time [12]. Brown and MacKay [22]
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tackle the issue from a different angle. The authors extract pricing data from five
pharmacy firms with differing price changing frequencies [22]. Musolff [102] em-
ploys a dataset acquired from Amazon’s buybox, an algorithmic pricing-heavy fea-
ture used by third-party sellers, to show that repricers have been able to avoid the
competitive behavior by regular price raises.



Chapter 3

Investigating Collusion in a Toy Prob-
lem

While the previous chapter introduced the fundamental concepts of this thesis, this
section delves into the results within a ”toy problem” scenario. A toy problem
serves to demonstrate various problem-solving approaches. They are simplified,
idealized systems that strip down a problem to its essential features, removing real-
world complexities to clarify the underlying mechanics or principles.! In the con-
text of studying collusion, we investigate a competitive MARL game simulation to
observe the agents’ behavior in a controlled setting. The agents play a three-player
version of Rock Paper Scissors (RPS). We aim to analyze the agents’ learning
performances and potential collaboration strategies. Through a game theoretic ap-
proach, our study investigates how DRL agents make pricing decisions and how
these decisions can lead to tacit collusion without explicit communication among
the agents. The most significant observation is a demonstration of the ”stages of
collusion”. The DRL agents’ action selection evolves throughout the runs, suggest-
ing that these agents can independently learn to avoid competitive pricing strategies
in favor of higher profits, thereby mimicking collusive behavior. Furthermore, we
raise critical questions about the implications for market dynamics and regulatory
frameworks.

The remainder of this paper is structured as follows. Section 3.1.1 introduces
the term trustworthy Al in the context of reasonable machines and white-box Als.
We furthermore present a foundation of anti-competitive agreements and possi-

"While specific foundational texts in these areas, such as [142] for game theory, or [129] for Al
and machine learning, do not necessarily introduce the term toy problem,” they employ the concept
by discussing simplified models to explain intricate ideas.

43
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ble overlaps betweenMARL, and related work in analyzing possible cooperation
between RL agents. In section 3.2, we establish a case study that builds on DQNs-
Agents to present the training process of collusion. Section 3.3 portrays the out-
comes of the different learning sessions. Finally, we discuss our findings, highlight
the boundaries of our study, and conclude with promising avenues for future re-
search.

Parts of this work presented in this chapter have been published before
in [114] and extended upon in [99].

3.1 Related Work

3.1.1 Trustworthy AI

As mentioned in Section 2.3, the European Commission emphasizes the impor-
tance of the safety and lawfulness of Al systems, legal certainty concerning Al,
governance and effective enforcement of existing law on fundamental rights, and
the installation of safety requirements to Al systems [32]. As Als are inevitably
deciding on legal questions by controlling price policies on their own, should one
demand reasoning on their acting decisions? Benzmiiller and Bertram [14] portray
Als that explicitly encode legal and ethical regulation as “reasonable machines”.
These machines interact with black box Al systems in an attempt to search for
possible justifications, i.e., reasons, for their decisions and (intended) actions with
regard to some formally encoded ethicolegal theories defined by regulating bodies.
This design originated from a theory in psychology, where researchers usually ex-
plore the distinction between intuitive and deliberate thinking, separated into Sys-
tem 1 (fast thinking) and System 2 (slow thinking) [14]. Applied to the example of
pricing Als; System 1 is responsible for setting the pricing policy, while System 2
verbalizes and regulates their fast System 1 layer computations. Without this form
of communication, unwanted side effects, such as the aforementioned likelihood
of learned tacit communication are hard to rule out.

3.1.2 Infringing the Cartel Prohibition

In line with the goals of the European Commission, Al price policies must comply
with competition law just as prices set by humans do. The independently chosen
intelligent adaption of an undertaking’s market behavior to the observed market
behavior of its competitors (generally) is permitted. Drawing a clear line between
the adaption of an observed market behavior and a conduct through which com-
petition knowingly is replaced by practical cooperation and therefore constitutes a
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concerted practice within the meaning of Article 101 (1) TFEU? is often difficult
and sometimes even impossible. Especially in transparent markets with few mar-
ket participants, the market outcome of collusion can often hardly be traced back
to be (or not to be) the product of a concerted practice (cf. petrol station market).
Although collusion as a market outcome can be detrimental to consumers, innova-
tion, and economic growth and is therefore undesirable from a welfare economic
point of view, the difficulty from a dogmatic perspective is that legal responsibility
cannot be attached to a market outcome as such [145].

We scrutinize whether a certain sequence of actions or a specific pattern can
be identified as a situation where practical cooperation replaces the uncertainty
about the competitor’s next moves. It is conceivable that such accurate determi-
nation might not be possible due to the increased market transparency achieved
by the self-learning algorithms: their ability to quickly process large amounts of
competition-relevant data and to react to price movements in an almost unlimited
frequency might lead to such a high degree of transparency on a market that makes
it impossible to determine from its outcome whether or not the result of collusion is
due to intelligent market observation and parallel behavior or a concerted practice.

3.1.3 Collaboration in Multi-Agent Reinforcement Learning

A tacit collaboration between RL agents can only occur in certain situations. The
agents have to interact within a MARL environment, where competing agents and
prices are recognized as part of such [27]. Due to that, the environment is usually
subjective for every agent, resulting in differing learning performance and a diverse
landscape of achieved competencies. It is unclear whether one of these competen-
cies might arise in the skill to communicate with specific other agents to adjust
their pricing policies accordingly; resulting in a higher producer’s pension and a
displacement of a competitor.

3.2 Methodology

3.2.1 Problem Definition

Oroojlooy and Hajinezhad [104] recommend modeling a MARL problem based
on (i) centralized or decentralized control, (ii) a fully or partially observable envi-
ronment, and (iii) a cooperative or competitive environment. Our case demands a
decentralized control, with a partially to fully observable environment, so that ev-
ery agent is able to make its own decisions based on the information given by the

2For US law see [138, 59]
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Table 3.1: Three player RPS combinatorics.

Agent1 | Agent2 | Agent3 || 72 r3

Rock Paper Scissors 0 0 0
Rock Rock Rock 0 0 0
Scissors | Scissors | Scissors 0 0 0
Paper Paper Paper 0 0 0
Scissors | Rock Rock -1 105105
Rock Paper Paper -1 | 05105
Paper Scissors | Scissors || -1 | 0.5 | 0.5

Paper Rock Rock 2
Rock Scissors | Scissors 2 -1 -1
Scissors | Paper Paper 2

Expected Reward r H 0 ‘ 0 ‘ 0 ‘

environment. Lastly, we apply a cooperative inside of a competitive environment,
so that agents can team up against other agents.

3.2.2 Approach

In this three-player MARL version of RPS, every agent i = {1, ..., 3} represents
a player with a set of legal game actions A = {1, ..., 3} comprising the moves
of rock, paper and scissors. The agents interact with a stochastic environment E
which solely contains the chosen actions of every agent of the current time step ¢.
Hence, a state at ¢ can be described as s; = {a], ..., a}}. Following a collective
action, every agent receives a reward out of R = {-1, 0, 0.5, 2} mapped to the
possible game outcomes presented in table 3.1, resulting in a direct association be-
tween input and output. This formalism gives rise to a finite MDP in which every
t relates to a distinct state, encouraging an application of standard RL methods for
MDPs. The goal of the agent is to interact with E by selecting actions in a way
that maximizes future rewards. As the agents receive a reward at the end of every
timestep, we will not apply any discount to future rewards. We define the optimal
action-value function Q*(s, a) as the maximum expected return achievable by fol-
lowing any strategy, after seeing some sequence s and then taking some action a,
Q*(s,a) = max, E[R;|s; = s,a; = a, 7], where 7 is a policy that maps sequences
to actions (or distributions over actions). In an attempt to induce strategic behav-
ior, resulting in tacit communication within this competitive MARL environment,
we utilize DQNs [100] with an experience replay and a target network [88]. After
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performing experience replay, the agent selects and executes an action according
to an e-greedy policy. The agents select the action a! that maximizes the expected
value of r + Q*(s', a’), updating the Q-values by:

Q*(s,a) :ES/NE[T+mz}xQ*(3',a’)]3,a] 3.1

Our main argument for the selection of this specific scenario is the controlled,
unambiguous reward allocation in combination with the restricted moveset of the
agents. Thus, every step ¢ develops into a zero-sum game (as shown in Table 3.1).
On the one hand, we create an environment, where no agent can earn a profit, if
it does not communicate with another agent. On the other hand, we counteract
the poor learning performance of MARL [7] (due to the defined equilibrium/ local
optimum) as well as increase the comprehensibility of the neural network’s predic-
tions. We expect the agents to converge to a collusive state after several episodes,
as described by economics and law scholars (e. g., [49, 143]).

We also attempt to induce a displacement of one agent due to the actions se-
lected by the other two agents. In our use case, they need to learn a specific policy
that would force two colluding agents to not repeat their allied agents’ actions.
While this would not necessarily result in a better short-term step reward for these
agents, it would however eliminate the ability to achieve a ’big win” (e. g., playing
Paper if the opponents play Rock and Rock) for the third, competing agent. Gen-
erally speaking, if two agents avoid choosing the same action, the expected reward
for the third player is negative. We aim to simulate this circumstance in diverging
settings.

In mode 1, collusion is induced by explicit communication as suggested by
Schwalbe [120]. More specifically, we designate two ’cheating’ agents i, C ¢ and
a ’fair’ agent iy € 4, iy ¢ i. ahead of a training session. Before its turn, one of
the cheating agents transmits his picked action to the other cheating agent. The
message will be enclosed to input to the receiver’s DQN.? In mode 2, instead of
making the players communicate explicitly, we provoke tacit communication by
adjusting the reward of the cheating agents r{ to r; = —r%. In other words,
they will try to maximize their joint instead of their individual reward, which is
equivalent to minimizing 7 ;’s reward. We additionally denoise the rewards; hence,
i. will receive 1 for a loss or a tie with 7 ¢ and -1 for a win of iy. To further stress
this issue, we perform control runs, where i is replaced with an agent that plays
random actions (which is the best strategy in a competitive 3-player version of
RPS).

31t is important that in the eyes of the receiving agent, this is just a variable with the values of A
which does not have the specific semantics of this is the other agent’s next move.
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Figure 3.1: Architecture of the DQN.

3.2.3 Implementation

The main weakness of RPS in a real-world scenario is the unpredictability of an
opponent’s move. The best player would just play randomly, however, since play-
ing this game is psychologically based on personal human short-term memory be-
havior, there is a tendency to follow specific patterns, like not repeating moves or
trying to play unpredictably [6]. In an artificial MARL problem, we can model
that by not only reacting to an opponent’s last move but learning from the history
of its last moves. After testing, we chose to apply a history size of 100 games to
accommodate a stable learning process. Regarding the experience replay, we chose
to use the last 3 timesteps as an input for the neural net. The network is made up
of four dense layers (input, two hidden layers, and output), whose main task is to
compress the given information and provide the chosen action. For that matter, we
design a DQN with an input layer comprising 8100 neurons (300 steps * 3 one-hot
encoded actions * 3 players * 3 time steps), two hidden layers with 2700 and 9
neurons and a dense output with 3 neurons to choose either rock, paper or scissors
(cf. figure 3.1). The neurons required for the number of players will increase by 1
for the cheating player to accommodate for the action received by the messaging
agent. We use TensorFlow 2 to build and train the DQN:ss.

3.3 Results

To counter inconsistent MARL outcomes, we chose to train the agents for 10 runs
with 100 episodes each (300 steps per episode), comprising three different learning
rates (0.001, 0.005, 0.01), resulting in 30 runs with 900.000 games of RPS per sce-
nario. We picked learning rates that are fairly small to counteract quickly develop-
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Figure 3.2: Episode reward distribution.

ing local optima, causing repetitions of the same action, due to the straightforward
connection between action and reward. For every scenario with 7. involved, we
also performed another 15 runs (5 per learning rate) where iy is replaced with an
agent that randomly picks actions in order to further stress the issue by simulating
a perfect RPS policy.

3.3.1 Collusion between all agents

In our series of simulations, we were able to achieve collusive results within every
of the chosen learning rate scenarios (cf. figure 3.2%). When averaged, the different
action sequences can be visually divided into three learning stages. In stage 1,
the agents basically acted randomly, due to the epsilon-greedy algorithm. After
approximately 5 episodes (stage 2), one of the agents achieved a better outcome
due to a lucky action selection. The agents stuck to their learned strategy while
randomly delving into different policies. Upon further examination, we discovered
that the strategies usually involve a single action that will be repeated in the next
turns, even if this might not be the best action. This sub-optimal behavior stems
from the first few episodes being mostly played randomly due to the epsilon-greedy
strategy. Thus, the agents were only able to learn from a short history, which taught
them to repeat the most successful action, rather than a certain sequence of actions.
Stage 3 establishes a collusive sequence of actions from episode 40 onwards with
two different scenarios (3a and 3b).

As presented in table 3.3, the agents try to avoid a negative reward over a long
term, resulting in an average episode profit of zero. However, stages 3a and 3b
differ significantly in their way of achieving this. In 3a, one of the players repeated
one action (e. g., scissors) and occasionally deviated from that due to the epsilon-

*Please refer to the appendix for a detailed learning rate breakdown
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Figure 3.3: Action samples from two runs, divided into stages 1, 2, 3a, and 3b.

greedy strategy, while the others predominantly alternate between two moves that
change over time. In stage 3b, the agents played seemingly random. However, if
examined more closely, specific alternation patterns occurred. A specific pattern
can be identified when observing the actions of agent 1 in figure 3.3. The player
oscillates between choosing rock and scissors in the first moves and transitions to
scissors and paper towards the end of the episode. The remainder of the agents
follow more elaborate patterns, however specific repetitions can be discovered by
scanning the history.

3.3.2 Collusion between two agents

Mode 1: Explicit Communication

We successfully trained a displacing collision policy with the help of explicit com-
munication between the cheating agents i.. The results represented in figure 3.4
indicate that the agents were able to learn the suggested policy of not repeating
their collaborator’s action after a few episodes. After about 5 episodes, 7. achieve
a higher reward on average. Thus, for the next 30 Episodes ¢ is only rarely able
to achieve a ’big win”. However, just like when colluding with all agents, after
approximately 45 episodes, they tend to converge to an average game reward of 0.
While it would be feasible to prolong this behavior by including variable learning
rates or reducing the target update frequency during later episodes, we chose to
encourage a long-term formation of a zero-centered equilibrium. Our reasoning
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Figure 3.4: Episode reward distribution within mode I including control runs where
iy is choosing random actions (lower half).

behind this is the comparison to a real-world oligopoly, where two market partici-
pants could only uphold a displacement by reducing the price up to a certain point,
before damaging themselves.

In order to further stress the issue, we chose to replace i with an agent that
chooses actions randomly. While ¢, were able to successfully learn a displacement
strategy in every training session, the results within the first 40 episodes were less
significant than when iy acted on behalf of the DQN. Nevertheless, we were able
to observe slightly better results in the later stages, due to the added randomness.

Mode 2: Implicit Communication

The agents i, successfully learned the suggested implicit collusion policy. After
about 5 episodes, 7. achieve a higher game reward on average. This circumstance
is especially prominent in the section between 20 episodes and 40 episodes (cf. the
upper right half of figure 3.5). On average, i is rarely able to exceed a reward of
0. Again, after about 40 episodes, the agents converge to an average game reward
of 0.

We were able to observe a less prevailing, but still effective policy when im-
plementing a randomly acting agent zy. As demonstrated in figure 3.5, the median
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Figure 3.5: Episode reward distribution within mode 2 including control runs where
iy is choosing random actions (lower half).

of 74’s winrate was still 0 in between episodes 0 to 40, yet the interquartile range is
greater than before, indicating less stable learning due to the added randomness of
17’s action selection. We also experienced a few runs, where the agents were able
to learn the displacement policy and not unlearn it in later episodes. In those spe-
cific runs, agent 1 repeated the same actions from episode 22 onward while agent
0 played the action that would lose against that one in a regular game. Hence, the
joined rewards i turn out greater than those of 7 ;.

3.4 Discussion

Our research successfully confirmed the hypothesis from law and economics schol-
ars (e. g., [143] or [70]) about possible collusion between RL-based pricing agents
in MARL scenarios without being specially trained to do so. We furthermore ex-
tended these findings by providing specific learning stages that could be translated
into real-world scenarios to possibly set a foundation for a system that is capable of
detecting collusion in early stages. Moreover, we were able to show that with the
appropriate reward function, DRL can be used to learn an effective displacement
strategy in a MARL environment.
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Based on the results of the experiments, we derive several implications. Due
to the noticeable segmentation of action selection in different learning stages, one
could argue that the transition episodes between a fair and a collusive state can
be seen as a signaling process, where agents agree on specific patterns to increase
the joint reward. This proposition is supported by the fact, that a repeating action
selection pattern of another agent could be predicted and punished by the DQN
due to its experience replay [88]. In a real-world scenario, a malicious Al could
be trained to repeat patterns, that are less recognizable for humans. We would like
to emphasize that within inelastic selling conditions (as they appear in collusive
markets), cooperation between two agents will be facilitated as the existing com-
munication strategy will furthermore ease the displacement of a competitor. From
a legal perspective, the question of whether the cartel prohibition can be applied to
such factual achieved, however non-volitional, state of collusion, is subject to this
project’s further legal research.

3.5 Further Legal Investigation

3.5.1 The Algorithms’ Way to the Nash Equilibrium

As all three agents individually learn that the maximum long-term reward lies in
the Nash equilibrium, their main goal shifts towards tying up with the competi-
tors [18]. If a game does not end up in a tie, they let the other agents win and thus
sacrifice the chance of a short-term win, for the sake of increasing the long-term
maximum reward. This can be observed in some sequences where agent 1 played
according to a specific pattern for several rounds. Agents 0 and 2 observed this
pattern. However, they did not adjust their own policy to catch a short-term win
because they knew from the experience gained in numerous previous rounds that
this would increase the long-term variance and thus distance them from the Nash
equilibrium in the long run. Moreover, they recognize the risk that making such an
attempt could trigger countermeasures which would endanger the long-term maxi-
mum reward even further.

Even though we cannot identify one specific move or “pattern sequence” as
point zero symbolizing the initial starting point of concertation, we can see that
these pattern sequences occur in increasing frequency and that the agents further
approach the equilibrium from pattern sequence to pattern sequence (cf., stage 2 of
Figure 3.3).
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3.5.2 Joint Collusion or Tacit Collusion

It could, on the one hand, be concluded from this observation that the agents know-
ingly substitute practical long-term cooperation between each other for the risk of
competition (in which they would probably choose the short-term chance to win
a higher reward having lower average long-term rewards). On the other hand, it
could also be seen as a mere intelligent adaptation to the observed, processed, and
anticipated conduct of their competitors [46]. As a result, we see an outcome that
provides all three agents with the long-term maximum reward rates without being
able to clearly determine whether this is the result of joint conduct or independent
behavior considering the expected response of the competing agents (tacit collu-
sion) [69].

The fact that the agents can develop a degree of certainty about their competi-
tors’ probable or anticipated next move to an extent that goes beyond a mere obser-
vation of the actual state and a logical conclusion from it speaks for a concertation
rather than an intelligent adaption. The agents’ decisions are based on a significant
number of results from previous rounds, which from their perspective—are not
even distinguishable from other environmental information processed and there-
fore inherent to their decision about the next move. In the eyes of the receiving
agent, the input is just a variable with values which does not have the specific se-
mantics of “this is the other agent’s next move.” It could be argued that algorithms
need no further reciprocity to gain the extra amount of trust in their competitors’
expected next move, which in the case of human behavior would be added through
any (minimal) contact.

3.5.3 Identifying Concertation and Distinct Subsequent Conduct

A further problem, however, is that the RL algorithm’s action selection behavior
does not fit the categories of concertation and subsequent conduct, making it im-
possible to distinguish between the two. Concertation requires a minimum degree
of concurrence of wills [43]. However, RL algorithms make “neutral” decisions
based on the observed and processed environmental information (i.e., the outcome
of numerous previous rounds in our game). There is no “will” underlying their
behavior. Therefore, it seems that the concept of concerted practice as developed
by case law for human behavior might reach its limits in scenarios containing RL
algorithms. One approach to solve this problem could be to assume a simultaneity
of concertation and conduct. If one could or would not occur without the other,
the requirement of a causal connection between them would become redundant.
Another possibility could be to omit a distinct identification of concertation and
subsequent conduct or to make a basic assumption for one or the other. In the
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case of an assumed concertation, the presumption developed by case law that a
concertation has been followed by a respective conduct and has been taken into
account where the undertakings concerned remained active on the market could be
applied [42].

3.6 Limitations and Outlook

As with every study, the results are beset with limitations, opening the door for
future research. As aforementioned, our experiment is a simplified, gamified ver-
sion of an economy simulation game. As such, it lacks the data complexity of a
real-world pricing Al as well as the scaling opportunities. To further develop our
research, we intend to apply the gained knowledge to a MARL environment resem-
bling one of the real pricing Als, where we can further highlight specific moments
in which the agent’s behavior tips over from independence to collusion. Especially
the division into distinct stages should be investigated in the context of realistic
pricing environments. While we focused on highlighting the possible dangers of
pricing Als in a MARL environment, we opened the opportunity for research ex-
plicitly investigating measures to avoid it. As such, law and IT scholars alike could
benefit from this research as a foundation for guidelines, law amendments, or spe-
cific laws concerning the training and behavior of pricing Als.
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Chapter 4

Collusion in a Market Simulation

Given the outcomes of the toy problem, which highlight both the collusive potential
and specific strategies of DRL agents, we aim to extend this knowledge to the realm
of E-Commerce. In this chapter, we employ an experimental oligopoly model of
repeated price competition, systematically varying the environment to cover sce-
narios from economic theory to more realistic consumer demand conditions. We
also introduce a novel demand framework that enables the implementation of vari-
ous demand models, allowing for a weighted blending of different models. In con-
trast to existing research in this domain, we aim to investigate the strategies and
emerging pricing patterns developed by the agents, which may lead to a collusive
outcome. Furthermore, we investigate a scenario where agents cannot observe their
competitors’ prices. Finally, we provide a comprehensive legal analysis across all
scenarios. Our findings indicate that RL-based Al agents converge to a collusive
state characterized by the charging of supracompetitive prices, without necessar-
ily requiring inter-agent communication. Implementing alternative RL algorithms,
altering the number of agents or simulation settings, and restricting the scope of
the agents’ observation space does not significantly impact the collusive market
outcome behavior.

Parts of this work have been published as an extended abstract in [115]
and as a full paper in [112].
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4.1 Introduction

4.2 Contribution

As highlighted in Chapter 2.5.2 the major shortcomings of current research are
the substantial deviation from realistic market models, the over-representation of
tabular g-learning, a comprehensive legal analysis of the experiments, as well as
the low density of empirical studies. This Chapter aims to bridge the gap between
real-world empirical analyses and simplified simulations. Thus, we propose a novel
demand framework that enables the implementation of various demand models and
facilitates integration between them, allowing for a weighted blending of different
models. Within the framework, we investigate the behavior of a scalable amount of
agents that rely on state-of-the-art deep RL technologies (i.e., PPO, DQN). By un-
derstanding the underlying causes of collusive outcomes using an interdisciplinary
approach, we contribute to the ongoing efforts of building Al systems that align
with societal values and objectives.

4.3 Experiment Design

We consider an oligopoly setting at the core of our experiments. This fundamental
stage game comprises m € N consumers Y = {y1,...,ym} and n € N firms x =
{z1, ..., z,} that simultaneously set the prices P = {p, ..., pn} so that p; € [0, 2]
holds for all i € {1,...,n}. Accordingly, we define a general selling or demand
probability as follows:

d:=d(Q):{1,..,n} —[0,1]" where Y d;j=1 (4.1)
ie{l,...,n}
The parameter 2 represents the buyers’ background knowledge, allowing an im-
plementation of a custom buying probability. For example, €2 might entail domain
data such as the demand function of a market, leading to new demand probabilities.
Given ppin = minj<;<n(pi) and Py, := {p € P : p = Pmin }, We can then define
a Bertrand selling probability d° : {1,...,n} — [0,1]" via

{0, Pi 7 Pmin

b
d} = 1 o s
[P’ Pi = Pmin

i 4.2)
thus exclusively depending on the prices P. According to Bertrand [15], sellers
will end up in a Nash equilibrium, represented by a price equal to the marginal costs
(i.e., the competitive price) due to the buyers consistently purchasing the lowest-
priced product. In a classic Bertrand oligopoly setting, the goods are characterized
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as perfect substitutes. However, this buying behavior is based on a theoretic con-
struct as homogeneous goods may still be acquired from diverging sellers due to
subjective consumer preferences in a realistic scenario. We aim to counteract this
shortcoming from two sides. Legal research states that ”a relevant product market
comprises all those products and services which are regarded as interchangeable or
substitutable by the consumer, because of the products® characteristics, their prices,
and their intended use” [1]. To combat this from an IT perspective, we used a se-
lection strategy proposed by [155]. While solely relying on prices, this approach
allows us to create a simulation that counteracts the Bertrand model’s main limita-
tion: its extremely punishing nature, which might complicate the learning process
or force the agents into a collusive state. Furthermore, with the roulette wheel,
we can model switching barriers (i.e., expenses consumers feel they experience by
switching from one alternative to another). Based on ppx as the maximum price
achievable in a market scenario, this modification results in the buying behavior

d: _ Pmax _A Di . (4.3)
> jeft,...ny (Pmax — Dj)

In order to bridge theory and empiricism, we introduce the factor p € [0, 1].

L serves as a weight to gradually transition from one buying behavior to another.

With this work, we combine the previously defined selection strategies d® in (4.2)
and d” in (4.3) with >, d? = 1= >"_, d’ by means of

n
dOmO i — 1 s d® 4 (1 — p) % d” with Z dlc.omb’“ =1. 44
i=1

Due to this specific combination, z acts as a bias.! If it is set to 1, the products
are perfect substitutes, if it is set to 0, the consumers’ buying behavior is regulated
by the roulette selection (this means d*°™9 = ¢" and d°°™®! = ¢"). With this in
mind, we can switch from a theoretical Bertrand model to a more realistic setting,
that involves subjective consumer preferences.

With the parameters set, a seller can achieve a monopolistic price (MP) (i.e., the
price that relates to the maximum revenue a monopolist can achieve in the market)
of 1.50 (with a cumulative quantity of 50) and a competitive benchmark (CB) (i.e.,
the price one unit above the marginal costs) of 1.01 (with a cumulative quantity
of 99) (cf. Figure 4.1). To create comparable results, we restrict the number of
consumers to m = 200 and thus result in a maximum price pmax = 2. We chose

"We restrict d°™ to dj, and d,- in this work. However this approach can be analogously extended
to k € N buying behaviours via biases 1, ..., iy if 25:1 w; = 1.
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Figure 4.1: Economic settings within the environment

these specific model settings based on the demand function. We need to choose
arbitrary confinements in order to satisfy the presented economic rules. The agents
can set prices above and below these confinements.

4.3.1 Deep Reinforcement Learning Algorithms

While the implementation and analysis of deep RL algorithms are more complex,
we benefit from conditions that more likely resemble state-of-the-art pricing al-
gorithms, as the number of possible states and variables of a real-world market
environment most likely overstrain basic RL tables. By including multiple, hetero-
geneous RL technologies we aim to scrutinize the robustness of our results further.
However, our selection is confined to model-free methods as these are generally
more popular, quicker to implement, and more extensively developed and tested
than model-based methods [3]. Our selection includes DQN [100] and PPO [118]
with the intention of featuring an algorithm for both sides of the model-free taxon-
omy (qg-learning and policy optimization). The algorithms also support the use of
discrete action spaces, reducing the number of possible error sources.
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4.3.2 Markov Decision Process

When an agent tries to maximize its interests from the economic environment, it
must consider both the reward it receives after each action and the feedback from
the environment. This can be simplified as a MDP [141], more specifically, a Par-
tially Observable Markov Process (POMDP) [63] due to the multi-agent environ-
ment hiding sensitive information from the competitors. We choose this method,
as the main issue of this paper can only be solved by various agents conducting
subjective observations, due to which future game states will depend on more than
just a single agent’s current input. As MDPs are step-based and our previous il-
lustrations were more general, we introduce time step ¢ to our established settings.
We consider a sequential decision-making problem in which every agent (seller)
i € {1,...,n} interacts with a stochastic MARL environment. Each agent at time
step t observes a state s(t) = (p;(t), ..., pn(t),c) € S where p;(t) is the price set
by agent ¢ at time ¢, ¢ are the costs to purchase a good and S is the global state
space. For every time ¢, an agent i takes an action a;(t) € A where A is the
valid, discrete action space, and executes it in the environment to receive a reward
€; (t) eR

€ (t) =mx [pi(t) — c} x d;(t), 4.5)

where d(t) = (di(t),..,dn(t)) is the previously defined selling or demand

probability at time ¢. Given the state s(t) at time step t, the new state s(¢ + 1) is to

be be reached after carrying out the actions A(t) := (ai(t),...,an(t)) € A™ with

the probabilities IP; : A™ — [0, 1]. For a fixed timestamp ¢, the goal of every agent

i is to determine a policy m;(A, s|0) — [0, 1] with A := A(¢) and s := s(¢), that
maximizes the long-term reward:

Ry = v xrilt) (4.6)
t=0

where 0 < ¢ < 1is a discount factor for time period ¢. If 4 = 0, the agent values
only immediate rewards, focusing solely on the present benefits and ignoring future
consequences. If 4 = 1, the agent considers future rewards just as valuable as
immediate ones, indicating a long-term strategic approach.

4.3.3 Preprocessing and Model Architecture

The RL agents are set up using a slight variation of the same baseline parametriza-
tion? as we aim to keep our experiment as general as possible to ensure fungibility

2cf. Raflin et al., [108] to see tested implementations and baseline parametrization for several RL
algorithms.
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in different environments. In order to decrease the number of actions and thus
simplify the action selection process, we decided to use a discrete action space.
Compared to current literature?, however, actions are selected based on the price
set in the last episode p;(t — 1) for an agent 7. In order to discretize the actions
(i.e., the price) within the economic environment, we generate an evenly-spaced
logarithmic distribution. The new price is calculated as follows:

pi(t) = In(1 4 ePet-NFailt=1)) 4.7

For the sake of reducing complexity as well as computational cost we restrict
the action space to a size of |.A| = 7 and the maximum adjustment of a price step
to 2, resulting in the discrete action space A = [-2,-0.14,-0.01,0,0.01,0.14, 2]*,
Hence, they will be able to keep the same price or evoke an increase or decrease
within 3 gradients (small/ moderate/ big adjustment). We choose a Softplus acti-
vation in order to restrict the agents from setting prices below 0 while facilitating
a derivation of the function (as opposed to ReLU). In order to counteract potential
price rises due to the Softplus activation and to improve the overall robustness of
the learning process, we restrict the randomizer to initialize the prices P randomly
from the interval [0.5, 1.5] each at the beginning of every episode. Although we
track the agents’ capital, they are able to accumulate debts without any conse-
quences in the game, which yields more efficient learning. Since each episode rep-
resents a full cycle and the environment resets after each episode, we set vy to 1 in
order to reward long-term strategic behavior. This allows the agents to fully explore
the consequences of their pricing strategies over the complete episode without dis-
counting. This reveals insights into how pricing strategies might develop if agents
place equal value on profits regardless of when they occur within the episode. This
setting also allows us to analyze how strategies evolve from the beginning to the
end of an episode without the influence of discounting.

4.4 Experiments

We investigate collusion in two scenarios. Our baseline scenario Scenario A depicts
three agents that act based on decisions proposed by their given algorithm. In
Scenario B we manipulate each agent’s state so that they are only able to observe
their own prices as opposed to every price on the market. With this experimental
setup, we can investigate whether the algorithms change their behavior when the

3cf. Calvano et al., [24] and Hettich [67] for other discrete (deep) g-learning action space imple-
mentations.

*We also test different action space sizes (i.e., 21, 51, and 71 actions). Please refer to the supple-
mentary material for the results.
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experimental setup makes it more difficult to achieve collusion (i.e., in Scenario
B). We apply Ray’s RLIIB to profit from an open-source, industry-standard RL-
algorithm implementations.’

Each scenario is made up of several sub-scenarios, where we vary the number
of agents (3, 5), the algorithm (PPO, DQN), and the biases ¢+ = 0,0.5, 1. Every
run is repeated 5 times to control for outliers, resulting in 90 runs overall (60 for
Scenario A, 30 for Scenario B). A run comprises 10000 episodes with 365 steps
each. We average the prices of every step to an episode price as well as a step
profit (average profit of all steps in an episode) before averaging every run within
the same setting. Finally, we apply locally-weighted scatterplot smoothing [110]
to the averaged data. In addition to the agent data, the graphs incorporate the
CB (i.e., 1.01) as well as the monopolistic price (MP| i.e., 1.50). On the other
hand, the monopolistic profit (also abbreviated as MP) shown in the profit graphs
is calculated by computing the profit a single seller would make by selling at the
monopolistic price, divided by the number of sellers. If the agents converge to
a price above the CB (i.e., the Bertrand Equilibrium), economists classify this as
a collusive market outcome. We assume that in practice, ECommerce companies
would likely utilize similar pricing software due to the prevalence of a leading
product. We thus focus on the interaction between similar agents. However, we
challenge these settings by adjusting the neural network neurons, the algorithm’s
learning rate, the number of agents as well as their time of entry, or the number
of action gradients within the scope of an ablation study expounded upon in the
technical appendix.

Due to our modified way of action space discretization, we define convergence
in a slightly different way than previous literature [24]. A run converges if the
rolling standard deviation of the mean agents’ prices a(P(t)) falls below a thresh-
old of 0.01 for more than 100 episodes and this state lasts until the end of a run.
If a(P(t)) reaches a value above the threshold of 0.01, we restart the counter. If
it lasts below the threshold, we define this as episodes until convergence tpyc.
There is a legal implication in the chosen definition of convergence phases, as dur-
ing cartel cases, jurists generally attempt to identify phases during a run in which
the risk of collusive behavior is especially high. Unlike human collusive behavior,
which can mostly be traced back to certain collusive acts, algorithmic collusion is
not induced by one single action, but by specific episodic phases. Our definition of
convergence is one possible attempt to narrow down critical phases that qualify as
collusion.

To generate a factor for measuring a degree of collusion in an economic sense,

To ensure full reproducibility, we attached the code to this work in the GitHub repository
https://github.com/mschlechtinger/PriceOfAlgorithmicPricing.
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we need a consistent measure across all simulations. In line with Calvano et
al. [24], we calculate the average profit gain of all firms in a run A, defined as

II—Icg

Amo B
IImp — Tlcn

(4.8)

where I represents the average profit upon convergence of all firms (i.e., after
passing every tgyc), Ilcp is the profit in the Bertrand-Nash static equilibrium
(i.e., the CB), and ITyp constitutes the profit in a state of perfect collusion (i.e., the
monopoly price). Thus, A = 0 corresponds to the competitive outcome and A = 1
to the perfectly collusive outcome. It is important to mention that collusion in an
economic sense does not imperatively indicate collusion in a legal sense, however,
it can be an indicator of the latter.

4.4.1 Scenario A: Competition

Scenario A represents the main competitive setting of this research. Every agent
operates based on the decisions computed by its own algorithms and their neural
networks. In various sub-scenarios, we employed three and five agents, averaging
data generated by PPO and DQN algorithms.



Chapter 4. Collusion in a Market Simulation 65

3 Agents Scenario A: Price 5 Agents
2 — A0 — Al — A2 — A3 — A4 CB =- MP
(e} “L A
T e o m o e o e e ] —
3
1 T T T T 1 T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
2 —_
) W
S
O . et ettt ettt I (L e
3
1 T T T T 1 1 T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
-
Il
3
1 T T T T T 1 T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Scenario A: Profit

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

Figure 4.2: Pricing and Profit in Scenario A.
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Figure 4.2 presents the consolidated outcome of the runs through the price
settings of three and five sellers on the left and right sides respectively. The pale
blue area in each graph represents the variance of the runs. Although the competing
agents exhibit distinct responses to the three bias weightings, each scenario leads to
cooperative behavior that yields a supracompetitive price equilibrium in the long-
term. These prices exceed the monopolistic price on average. However, the further
we increase the price sensitivity (u) the higher the price-variance. We observe a
similar, yet more extreme behavior when enhancing the number of sellers. The
profit data (cf. Figure 4.2) asserts these observations; the increased variance also
significantly reduces earnings.
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To further scrutinize these results, we extracted the prices set and profits accu-
mulated during the first 100 steps of the last episode in Figure 4.3. Compared to
the averaged episode overview, we can observe a price-setting behavior resembling
an oscillation pattern, starting with a random price predefined by the environment.
The agents occasionally slightly diverge from this cycle, however after a few steps,
they usually get back in sync. These patterns explain why the prices exceed the
monopolistic price on average; the agents find a strategy to collectively act as a
monopolist on the market. To achieve this in a collaborative way, they traverse
through three stages of pricing that are fundamentally the same but differ in execu-
tion in both » = 0 and p = 1. Initially, prices are set in close proximity to the CB.
Subsequently, prices are gradually escalated until a certain threshold is reached,
beyond which they surpass the point of consumer demand saturation. Then, they
return below the MP. The presented strategy exploits the boundaries set by the sim-
ulation by always having one agent earning the maximum. When z = 3 and 4 = 0
they abuse the lowered price sensitivity to create an increased demand with a higher
price, thus maximizing the joint profit and exceeding the profit a monopolist would
be able to achieve (i.e., p = [1.01,1.75,1.75], 7 = [12.46,0.66, 12.46]). Simi-
lar patterns are discernible in instances where ;x = 1. Notably, due to heightened
price sensitivity, agents are unable to effectively stimulate increased demand. As
a result, the agents endeavor to establish a monopolistic pricing regime, whereby
two agents adopt prices above the threshold of p = 2.0, while the third agent at-
tempts to set a price near 1.50 (i.e., P = [2.0,2.0,1.50],II = [0, 0, 25]), with the
objective of maximizing the joint profit. Although the oscillation patterns tend to
remain consistent upon increasing the number of agents, identifying collaborative
behaviors becomes more challenging when relying solely on visual inspection of
the graphical representations.

4.4.2 Scenario B: Constrained Observation Space

In an attempt to weaken the ability to set supracompetitive prices, we constrain the
agents’ observation space in Scenario B to s;(t) = {pi(t), ¢}, thus removing the
other competitors’ prices from each agent’s vision.

The modification yields results that are comparable to those of Scenario A,
under both run settings (3 and 5 agents) (cf. Figure 4.4). In fact, contrary to our
expectations, we observe less variance in the results. Analogously to Scenario A,
we study a decrease in price with an increase of bias as well as an increase of
variance when increasing the number of agents. The observations are reflected in
the profit data.

Upon investigating the step pricing (Figure 4.3), we observe similar patterns to
those in Scenario A. In both cases, where ¢ = 0 and p = 1, the agents exhibit an
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oscillation pattern, resembling a slightly bent sawtooth shape. These observations
are further confirmed by the step profit analysis, which depicts fluctuations between
earning the minimum and earning above the monopolistic profit split.

4.5 Discussion

Our experiments have unveiled several noteworthy insights. First, our findings un-
derscore the proficiency of DRL agents in establishing supracompetitive pricing
strategies across a plethora of scenarios, without the need to disclose their com-
petitors’ pricing information. Second, our observations revealed the emergence
of oscillation patterns within the agents’ pricing behavior, which could be con-
strued as an indicator of collaborative strategies. Third, the algorithms employed
in our study yielded remarkable profitability, even more so when using PPO rather
than DQN. This was exemplified by the agents achieving an average profit gain of
A > 1, indicating an outcome akin to perfect collusion, surpassing even monop-
olistic profit benchmarks. Fourth, we observed an overarching market stagnation
that was achieved within a short timeframe and characterized by a consistently el-
evated A > 0.7. Fifth, we underscore the robustness of our results in an ablation
study (please refer to the supplementary material), revealing that modifications to
fundamental simulation parameters fail to prevent a collusive outcome; conversely,
they even enhance profit gains. These revelations collectively contribute to our un-
derstanding of the intricate dynamics of RL pricing agents in market scenarios and
their inherent potential to attain collusive outcomes.

Our experiments confirmed the ability of deep RL agents to charge supracom-
petitive prices in a plethora of scenarios. In line with Calvano et. al [24], we
provide evidence that every thoroughly tested scenario proved to have an average
profit gain closer to perfect collusion than to a working competition. Furthermore,
it is noteworthy that the algorithms exhibited remarkable success (even more so
when using PPO rather than DQN), in some cases achieving a A > 1.5, The large
number of runs that were able to converge within 10000 episodes show a state of
market stagnation (most of them involving a A > 0.5).

The results of the ablation study confirm these results despite systematically
altering the number of agents, their entry timing into the market, the learning rate,
the structure of neural networks, and the granularity of action spaces. By demon-
strating that even substantial modifications to the simulation setup fail to deter
collusive behavior, the ablation study reinforces our main research finding: DRL
agents possess a pronounced propensity for developing collusive pricing strategies
under a wide array of conditions. This insight contributes to the broader research

SFor a detailed overview of the descriptive statistics, please refer to the technical appendix.
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question concerning the regulation and oversight of Al-driven pricing mechanisms,
highlighting the need for robust frameworks that can address and mitigate the risk
of unintended collusion in dynamic market environments.

Although every run successfully implemented supracompetitive pricing strate-
gies, subsequent analyses revealed that, within a theoretical Bertrand model, the
agents encountered challenges in accumulating profits comparable to those ob-
served in the unbiased runs. This can be attributed to multiple factors; the main
reason for this weaker performance is the punishing nature of the theoretical sce-
nario. Tying reward functions to the achieved profit immediately results in a pun-
ishment of exploration, which proves to be an important factor for collusive states
(cf. Calvano et al. [24]). This finding is relevant to investigate how to prevent RL
agents from colluding. Waltman and Kaymak [143] expressed that a force towards
the collusive state is stronger if the agents get to experiment; if we can constrain
the agents’ ability to explore, we will thus experience less collusive behavior.

In line with Waltman [143], we found that collusive states can be difficult to
avoid in an oligopoly. This becomes particularly evident when examining the out-
comes of the ablation study (please refer to the supplementary material). In contrast
to the current literature, our outcome revealed that an increase in agents does not
imply a decrease in prices. Aligning with the current research trend of employ-
ing base-parametrized RL algorithms, we assert that optimizing these algorithms
through proper tuning will only enhance the effectiveness of price-setting mecha-
nisms in real-world scenarios.

One of the most notable findings from the data is the agents’ capability to set
prices above the competitive level without requiring access to their competitors’
pricing information. Hansen et al. [61] already argued that the signal-to-noise ra-
tio heavily affects results. We can only partly confirm those findings. While the
average profit gains in Scenario B are slightly lower, we find that the overall out-
come shares a striking resemblance to the results of Scenario A despite this severe
confinement. The resiliency stems from the ability to approximate the prices via
the reward function, in which other agents’ prices embody unknown variables.
This finding concurs well with Waltman [143], who observed that agents without
a memory were still able to collude.

In this context, it is important to mention that our step analysis experiments re-
semble the repricing patterns appearing in Amazon’s Buybox [102] as well as the
observations by Klein [79]. We attribute two causes to the occurrence of these os-
cillating pricing patterns: First, the agents were able to increase short-term rewards
with this strategy by increasing their profit above the monopolist’s profit. Second,
the discretization of the action space implies that the exact Bertrand and monopoly
prices may not be feasible at all times, so the agents created mixed-strategy equi-
libria (cf. Calvano et al. [24] and the results of our ablation study).
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While the results of our experiments show a collusive outcome in an economic
sense, they do not undoubtedly exhibit whether algorithmic pricing constitutes per-
missible parallel behavior or a prohibited concerted practice and thus violates the
cartel prohibition. Yet, they show that the agents seem to develop a degree of cer-
tainty about their competitors’ anticipated next action to an extent that goes beyond
mere observation of a single state and a logical adaption to it.

The cartel prohibition under Article 101 TFEU forbids any kind of joint con-
duct of independent market participants. According to the established case law of
the European Court of Justice (ECJ), the characteristic of a concerted practice pre-
supposes a minimum degree of coordination (concertation), a subsequent market
conduct, and a causal link between the two.” This concertation does not have to be
as binding as a contract or a direct agreement. It is sufficient that the uncertainty
about the competitors’ market behavior, which usually exists under competitive
circumstances, is reduced.® However, there has to be at least an indirect contact
between them because the cartel prohibition does not deprive them of the right to
adapt their behavior to the observed or expected behavior of their competitors [41].

It is questionable whether these prerequisites, which follow human behavior’s
basic assumptions and logic, can equally be applied to RL decision-making pro-
cesses. Based on our results, it could be argued that RL algorithms do not require
any further reciprocity to gain the extra amount of trust in their competitors’ ex-
pected next moves, which - in the case of human behavior - would be added through
minimal contact. The insecurity about the competitors’ next move is already re-
duced by the significant number of processed results from previous rounds, which
are even indistinguishable from other environmental information and therefore in-
herent to each decision [114].

It could be considered that the requirement of a minimum degree of communi-
cation might be obsolete because every important piece of information is explicitly
or implicitly received via the reward function (cf. Scenario B). This raises the pos-
sibility that the reward function might channel competitor information, facilitating
a concerted practice. However, the reward function simply symbolizes the agents’
feedback on the profits achieved. Any market participant is allowed to know its
own profit and draw conclusions about future pricing strategies from it. Given the
aforementioned, the assumption that a collusive market outcome is inherently neu-
tral if clear concertation is not detectable is debatable in the context of algorithmic
pricing.

When conceptualizing simplified experiments, questions about the transferabil-
ity of observations to reality and the validity of drawn conclusions quickly arise.

7cf. the cases [42] para. 161; [43] para. 38, 39; [40] para. 125, 126.
8¢f. the cases [43] para. 51; [44] para. 39; [40] para. 126.
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We would like to emphasize that, while the present findings originate from a the-
oretical simulation, the overarching strategies hold the potential for broad appli-
cability within real-world market contexts. As the economics of markets can be
formulated as a (PO-)MDP, that - in theory - is solvable by RL algorithms, the
agents will always strive for a policy that ultimately achieves the maximum re-
ward. If this reward is tied to the profit, agents will realize that cooperation will
help them achieve the best reward in the long run.

As with every study, the results are beset with limitations which opens the door
for future research. Although our experiments systematically investigated multiple
algorithms, the exploration of potential interactions among heterogeneous algo-
rithms was not pursued. While we present diverse scenarios in the context of an ab-
lation study, we believe that further diversification of simulations will broaden our
understanding of pricing algorithms. Moreover, future research endeavors could
delve into strategies for imposing constraints on algorithms, thereby discouraging
the emergence of collusive states.

4.6 Conclusion

This paper utilizes an experimental approach to investigate algorithmic collusion.
We find that deep RL agents using PPO and DQN are capable of charging supra-
competitive prices without explicitly instructing them to do so. Furthermore, we
have demonstrated that the algorithms will gravitate towards a collusive state, even
when being restricted in their ability to conceive their competitors’ prices. The
results have undergone rigorous validation with the help of an ablation study, in-
volving alterations of algorithmic hyperparameters and factors such as the number
of action gradients.
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Chapter 5

Predicting and Quantifying Collu-
sion

We previously highlighted that agents can acquire the ability to cooperate with-
out the need to explicitly communicate with each other. This suggests that the
agents are able to use pricing information to infer their competitors’ future behav-
ior. Based on data collected from the experimental oligopoly model of repeated
price competition, we employ predictive statistical techniques alongside time se-
ries classification methodologies to predict future behavior from the pricing sig-
nals. Our findings reveal that self-learning pricing algorithms’ convergence to-
wards a collusive market outcome can be accurately anticipated using fundamental
machine learning methodologies. Considering the inherent advantages of collusion
in economic markets, we conclude that a collusive outcome is virtually inevitable
when RL algorithms set market prices.

5.1 Introduction

In recent research, evidence has emerged suggesting that (RL-based pricing agents
possess the capability to engage in collusive behaviors, leading to the establishment
of supracompetitive pricing strategies. These findings, consistent across various
scenarios, indicate that such agents can develop oscillation patterns in pricing that
resemble collaborative strategies, even in the face of significant perturbations to
their operating environments [115]. This resilience underscores the sophisticated
adaptive mechanisms of RL algorithms, enabling them to navigate and exploit mar-
ket dynamics [24].

Given the recurring emergence of these collusive patterns across numerous ex-

75
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perimental runs, a critical question arises: Can we predict—and thereby quan-
tify—collusion among RL-based pricing agents? Accurately predicting collusion
would enhance our understanding of the dynamics and inform the development
of regulatory mechanisms to maintain competitive market practices. This inquiry
builds on the premise that consistent collusive behaviors may exhibit identifiable
patterns, analyzable through data-driven approaches [61].

However, current research mainly focuses on detecting collusive outcomes by
highlighting certain phases within the pricing data. Economic signs, such as co-
ordinated prices, pricing above a CB, oscillation patterns, or reward-punishment
schemes could hint at collusive behavior. While the extensive body of literature
has primarily focused on the question of whether agents are capable of collusion,
our research uniquely delves into the intricacies of how agents orchestrate collu-
sion. This shift in emphasis allows us to investigate the underlying mechanisms
and strategies involved in collusion among self-learning agents, shedding light on
this phenomenon. To address this research gap, we extend upon the model in-
troduced in Chapter 4, employing it to generate data within our proposed model.
Subsequently, we conduct a rigorous analysis of the generated data to identify and
elucidate potential collusive strategies with means of classification, regression, and
time series analysis methods.

5.2 Model

We base our analysis on the dataset obtained from the model established in Chapter
4. As such, we set the market parameters as proposed before. With the parame-
ters set, a seller can achieve a monopolistic price (MP) (i.e., the price that relates
to the maximum revenue a monopolist can achieve in the market) of 1.50 (with a
cumulative quantity of 50) and a CB (i.e., the price one unit above the marginal
costs) of 1.01 (with a cumulative quantity of 99) (cf. Figure 5.1). To create com-
parable results, we restrict the number of consumers to m = 200 and thus result
in a maximum price Pmax = 2. We chose these specific model settings based on
the demand function. We need to choose arbitrary confinements in order to satisfy
the presented economic rules. The agents can set prices above and below these
confinements. We zero in on PPO to leverage a state-of-the-art algorithm capa-
ble of accommodating discrete action spaces, thereby reducing potential sources
of errors.
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5.3 Results

We investigate collusion in a scenario that depicts three agents that act based on
the decisions proposed by their given algorithm, i.e., PPO. In this scenario, each
agent at time step ¢ observes a state s(t) = (p;(t), ..., pn(t), c) € S where p;(t) is
the price set by agent ¢ at time ¢, ¢ are the costs to purchase a good and S is the
global state space. . Every run is repeated 5 times and comprises 10,000 episodes
with 365 steps each. The outcomes of our analysis are presented in Figure 5.1 and
Figure 5.2. In order to properly plot the results, we average the prices of every step
to an episode price as well as a step profit (average profit of all steps in an episode)
before averaging every run within the same setting. Finally, we apply locally-
weighted scatterplot smoothing [110] to the averaged data. In addition to the agent
data, the graphs incorporate the CB i.e., 1.01) as well as the MP (i.e., 1.50). On
the other hand, the monopolistic profit (also abbreviated as MP) shown in the profit
graphs is calculated by computing the profit a single seller would make by selling
at the monopolistic price, divided by the number of sellers. If the agents converge
to a price above the CB (i.e., the Bertrand Equilibrium), economists classify this as
a collusive market outcome. We assume that in practice, E-Commerce companies
would likely utilize similar pricing software due to the prevalence of a leading
product. We thus focus on the interaction between similar agents. However, we
challenge these settings by adjusting the neural network neurons, the algorithm’s
learning rate, the number of agents as well as their time of entry, or the number
of action gradients within the scope of an ablation study expounded upon in the
appendix.

Figure 5.1 presents the consolidated pricing and profit outcome of the runs
through the price settings of three sellers. The pale blue area in each graph rep-
resents the variance of the runs. Although the competing agents exhibit distinct
responses to the three bias weightings, each scenario leads to cooperative behavior
that yields a supracompetitive price equilibrium in the long term.

To further scrutinize these results, we extracted the prices set and profits accu-
mulated during the first 100 steps of the last episode (i.e., episode 10,000) in Figure
5.2. Compared to the averaged episode overview, we can observe a price-setting
behavior resembling an oscillation pattern, starting with a random price predefined
by the environment. These patterns explain why the prices exceed the monopolis-
tic price on average; the agents find a strategy to collectively act as a monopolist
on the market. To achieve this collaboratively, they traverse through three stages
of pricing that are fundamentally the same but differ in execution. Initially, prices
are set close to the CB. Subsequently, prices are gradually escalated until a certain

"For more information about the MDP, please refer to Chapter 4
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Figure 5.1: Averaged episode pricing and profit.

threshold is reached, beyond which they surpass the point of consumer demand
saturation. Then, they return below the MP. The presented strategy exploits the
boundaries set by the simulation by always having one agent earning the maximum.
The agents abuse the lowered price sensitivity to create an increased demand with a
higher price, thus maximizing the joint profit and exceeding the profit a monopolist
would be able to achieve (i.e., p = [1.01,1.75, 1.75], 7 = [12.46, 0.66, 12.46)).

5.3.1 Classification
Feature Selection

In this analysis we aim to predict the Price p of the next Timestep ¢ + 1 using the
following features as input for our prediction methodology:

« Episode ID € [0, 10000]
* Step ID € [0, 364]

* Price € [0, o]
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Figure 5.2: Step pricing and profit of the last episode of a run.

The Episode and the Step IDs were included to capture potential patterns or de-
pendencies related to the episode sequence. The Price represents the key predictor
that directly influences the target that we are aiming to predict. This target variable
describes the relation of the new price to the previously selected price of the agent.
It is categorized as follows:

* Class 0: Indicates that the new price is lower than the last price
* Class 1: Indicates that the new price is equal to the last price
* Class 2: Indicates that the new price is higher than the last price

The feature selection process aimed to include relevant information while min-
imizing unnecessary complexity in the model.

Baseline Models

Two baseline models were used for comparison; the majority class baseline as-
sumes that the most frequent class in the dataset is always predicted. It was de-
termined to be class 2 in each of the runs, which corresponds to the new price
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being greater than the last price. The predictions made by this baseline resulted in
an accuracy of 0.923. This remarkable result can be attributed to the characteris-
tic oscillation pattern in the pricing behavior of agents. Prices gradually rise until
reaching a certain threshold, at which point they sharply decline to align with a
CB, leading to a prevalence of entries with a Class of 2 in the dataset. The random
class baseline was established by randomly selecting a class from the three possi-
ble classes (0, 1, and 2) with equal probability. This baseline achieved an accuracy
of 0.039.

Classification Results

We randomly sampled 10000 rows from each of the datasets and trained a decision
tree classification model? to predict the next price in the time series dataset. The
following results were obtained:

* Accuracy (Averaged): 0.986 (98.6%)
* Average Cross Validation Accuracy (k = 10): 0.986 (98.6%)

These averaged results indicate a high level of accuracy in predicting the next
price, with consistent performance across cross-validation folds.
Feature Importance

Furthermore, a feature importance analysis was conducted to determine the sig-
nificance of each input feature in the classification model. The following feature
importances were calculated:

* Episode ID: 0.069
» Step: 0.048
* Price: 0.883

Among these features, the price feature exhibited the highest importance, sug-
gesting that it has the most significant influence on the classification model’s pre-
dictions.

Rolling Window classification:

We hypothesize that a potential encoding within the price signal could become
more apparent the more learning has been done. Therefore, we examine our ability

Zsee Table D.1 in the appendix for the decision tree settings.
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Figure 5.3: Rolling window classification accuracy scores across the episodes.

to predict from past signals by conducting a rolling window classification in Figure
5.3. Using a window size of 72800 steps (50 windows), we observe an accuracy
that rises from 0.825 up to 1, resembling the convergence of the average episode
prices to the collusive outcome.

5.3.2 Regression

In order to predict the upcoming prices, we obtained the Mean Absolute Error
(MAE), the Mean Squared Error (MSE), and the Root Mean Squared Error (RMSE)
within two baselines, a regression across the full dataset, several lag regressions as
well as a sliding window regression task.

Baseline Models

We employed two baseline models to measure the performance of our regression
task. Baseline 1 predicts the next price by assuming it will be equal to the current
price. We obtained the following error metrics:

* MAE: 0.244
e MSE: 0.225

* RMSE: 0.474
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Baseline 2 predicts the next price by taking the average of the last 10 prices. The
results are as follows:

* MAE: 0.375
* MSE: 0.244

* RMSE: 0.493

Regression (Full Dataset)

Similar to the classification task, our objective is to forecast the price p for the
subsequent timestep ¢t + 1 employing identical input features for our regression
analysis:

« Episode ID € [0, 10000]
* Step ID € [0, 364]
* Price € [0, oo

Thus, our target variable is the price p. A decision tree regression model® was
trained on the entire dataset. The following evaluation metrics were obtained:

* MAE: 0.048 (4,8 Cent)
* MSE: 0.067

* RMSE: 0.258

Lag Regression

To comprehensively assess the reliability of our results and account for potential
time dependencies in our pricing data, we conducted supplementary analyses using
a lag regression model, which allows us to examine the relationship between the
current price and past values within the entire dataset. A lag regression model,
in essence, assesses how the current value of a variable is influenced by its past
values at specific time intervals, enabling us to uncover any temporal patterns or
dependencies within the data. In our study, this approach is vital for exploring
how past pricing behavior relates to and predicts current price dynamics. While
we employ the same input variables (i.e., Episode ID, Step ID, Price), we include
their preceding or lagged counterparts, depending on the lag variable (i.e., Lag

3see Table D.2 in the appendix for the decision tree settings.
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3 = t—3). The output variable remains the price p of timestep ¢+ 1. The following
results comprise a range of lag values, each accompanied by corresponding error
metrics:

Lag 3: MAE 0.033, MSE 0.035, RMSE 0.182

Lag 5: MAE 0.032, MSE 0.034, RMSE 0.179

Lag 7: MAE 0.032, MSE 0.033, RMSE 0.178

Lag 9: MAE 0.031, MSE 0.033, RMSE 0.177

Sliding Window Regression

To assess potential variations in the regression accuracy scores over different time
segments, we implemented a rolling window regression analysis, as depicted in
Figure 5.4. Consistent with the parameters employed in our classification task,
we utilized a sliding window configuration with a window size of 109214 steps,
encompassing a total of 50 distinct windows. The results of this analysis revealed a
substantial decline in error metrics as the analysis progressed, indicative of reduced
uncertainty in predicting future prices following model convergence.
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Figure 5.4: Rolling window regression error scores across the episodes.
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5.3.3 Time Series Analysis
(Partial) Autocorrelation Function

We employ an Autocorrelation Function (ACF) and a Partial Autocorrelation Func-
tion (PACF) to provide insights into the temporal relationships and underlying pat-
terns within the data. In the context of our analysis, we use these methods to better
understand the structure of our time series and identify potential autoregressive
(AR) components.

The ACF measures the correlation between a data point and its lagged values
at various time intervals. It produces a wave pattern in which the correlation starts
with a high amplitude at low lag values and gradually decreases while maintaining
a consistent frequency. This pattern is indicative of a decaying correlation structure
with a persistent underlying periodicity. Such behavior often arises when there is
a long-term relationship between observations at short lags, and this relationship
gradually weakens as the lag increases. The consistent frequency observed in the
ACF suggests the presence of a repeating pattern or seasonality within the time
series [19].

In our analysis, we observe a strong correlation between the current observation
and its immediate neighbors in the ACF, signifying a short-term dependence. Ad-
ditionally, the presence of a decaying amplitude could be associated with a damped
oscillatory behavior, where the initial strong correlation between data points and
their lagged values diminishes over time due to damping factors.

The PACF plot, on the other hand, assesses the direct relationship between a
time series and its lagged values after removing the effects of shorter lags. In our
dataset, the PACF reveals a relatively high value of 0.897 at lag 1, indicating a
significant direct correlation. Furthermore, there are several other notable values at
higher lags (lag 2, lag 3, etc.), suggesting the potential presence of an AR compo-
nent.

By jointly analyzing both the PACF and ACF, we can draw several key insights:
First, we observe a strong autocorrelation at lag 1; both the PACF and ACF exhibit
a substantial correlation at lag 1 (0.897), pointing to a robust autocorrelation at this
specific lag. Second, the graph shows a potential AR Component, which gradually
decreases in PACF and ACF values with increasing lag suggesting a potential AR
component in the data. We perceive complex dynamics within the analysis. The
significant PACF values at lags 2-5 and 11-14 hint at the possibility of an AR order
of 1 or 2. However, the presence of a negative PACF value at lag 14 followed by
positive values may indicate the presence of more complex or seasonal dynamics
within the data.
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Figure 5.5: Results of the (partial) autocorrelation functions.

Fourier Transform

We conduct a Fast Fourier Transform (FFT) analysis on the price time series dataset
in order to filter the apparent noise and possibly identify periodic patterns within
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the dataset [71].

The x-axis of an FFT graph represents the frequencies or cycles per unit of
time. The specific frequency values are usually displayed in terms of “cycles per
time unit”. The axis starts from O (representing the lowest possible frequency)
and extends up to the Nyquist frequency, which is half of the sampling frequency.
It represents the highest frequency that can be detected in the data. If the data is
sampled at a frequency of 100 samples per second, the Nyquist frequency would be
50 Hz. However, the frequency in this graph is normalized (ranging from O to 0.5)
and represents a fraction of the Nyquist frequency. In general, the further a value
is to the right on the x-axis, the higher the frequency it represents, and therefore,
the less frequently it appears in the signal. The x-axis represents the magnitude or
amplitude of the frequency components present in the data. It indicates the strength
or intensity of each frequency component [71].

Figure 5.6a displays the results of applying FFT to the full dataset of 10000
episodes. We observe a peak at a frequency of O in our FFT plot. This indicates
the presence of a constant or average component in the data. We suggest that this
is mostly due to the noisy nature of the data, especially apparent at the beginning
of the learning phase. Figure 5.6b in contrast successfully filters this noisy com-
ponent. Moreover, we observe a peak at a frequency of 0.08 with an amplitude
of 175. Hence, there is a significant periodic pattern in the data that repeats every
12.5 days (1 day/ 0.08 = 12,5). Referring to Figure 5.2, it is evident that agents
reset their oscillation pattern every 12.5 steps, showcasing this specific behavioral
cycle.
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(a) Fourier transform of the full dataset.



Chapter 5. Predicting and Quantifying Collusion 87

1504

Amplitude

(b) Fourier transform of episodes 5000-10000.

Figure 5.6: Results of the Fourier transform.

Seasonal Decomposition

To further scrutinize the structure of our pricing data, we employ seasonal decom-
position methods. If we assume an additive decomposition, then we can establish
y: = St + 1t + Ry, where y, is the data, S; is the seasonal component (i.e., the in-
creasing or decreasing value in the series), 7} is the trend-cycle component (i.e., the
repeating short-term cycle in the series), and R; is the residual or noise component
(i.e., the random variation in the series), all at period ¢ [30].

We conducted an analysis of episodes occurring at different stages within the
simulation run. As depicted in Figure 5.2, the timeline exhibits irregularities, lead-
ing to notable variations in the outcomes based on the choice of the decomposition
period parameter. Figures 5.7a-5.7c underscore these disparities when opting for
period values of 12, 13, or 14. However, utilizing FFT at an earlier stage of the
analysis indicated a periodicity of 13 steps (more specifically 12.5 steps), which
emerges to align with the underlying data, effectively capturing the trend and sea-
sonal components. We observe a relatively constant trend pattern, that zeroes in on
a price of 1.83. Furthermore, the amplitude of the seasonal component is substan-
tial, indicative of robust seasonal influences. The significant presence of residuals
within the dataset indicates the inherent noise resulting from the necessity of round-
ing the periodicity factor to 13. However, it is noteworthy that the data exhibits a
mean and standard deviation in close proximity to zero, suggesting an accurate
decomposition. A comparison between episodes 9500 and 10000 reveals simi-
lar patterns. Conversely, when contrasting these findings with the early learning
phases, such as Episode 5, no discernible patterns are evident.
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Figure 5.7: Seasonal decomposition graphs.

Hurst Exponent

The Hurst exponent, denoted as H, quantifies the long-term memory or persistence
in a time series. A value of H > 0.5 represents a time series with long-term
memory or persistent behavior. If the series has been increasing recently, it is more
likely to continue increasing in the near future, and vice versa. Contrarily, H < 0.5
indicates a time series with short-term memory or anti-persistent behavior, meaning
that if the series has been increasing recently, it is more likely to decrease in the
near future and vice versa. H = (0.5 suggests a random or Brownian motion-like

time series with no long-term memory or trend. In this case, future values are not
correlated with past values [95].
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We downsampled the pricing data with a factor of 10, retaining every 10th
episode to enhance the legibility of a visualization. Subsequently, we computed H
for the resulting subset of 1000 episodes and plotted the results in Figure 5.8. The
Hurst exponent values vary significantly across the dataset, ranging from approx-
imately 0.6 (H < 0.5) to -0.1 (H < 0.5), indicating that the underlying pricing
data starts with a trending behavior and transitions into a mean-reverting behav-
ior throughout the run. This regime shift resembles the learning behavior of the
agents; while the agents try to learn an effective policy in the beginning, we ob-
serve a trending behavior towards a collusive outcome. Approaching this outcome,
the agents’ actions resemble a mean-reverse behavior and only occasionally drift
back to a trending behavior. The time series only swiftly passes H = 0.5, indicat-
ing that future values are indeed correlated with past values.
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Figure 5.8: Hurst exponent development across a run.

5.4 Evaluation

Throughout this study, we uncovered several significant insights drawn from our
experimental analysis. First, our investigations have illuminated a remarkable level
of classification accuracy and regression performance that consistently improves
throughout the runs. Second, our observations reveal a dynamic progression in
prediction accuracy, closely aligned with a regime shift in the Hurst exponent, mir-
roring the behavior exhibited by the agents’ price-learning behavior itself. Third,
our analysis unveiled a recurring periodic pattern within the pricing data, a phe-
nomenon substantiated through FFT analysis and seasonal decomposition.

These results significantly contribute to our objective of quantifying collusive
behaviors in market scenarios. A central issue with using market prices as evidence
is their inability to definitively prove collusion; they can only suggest the possibil-
ity of such activities. Consequently, while our analysis acts as an indicator of
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potential collusion, it does not serve as conclusive evidence. However, accumulat-
ing multiple indicators can facilitate a more robust argument for proving collusive
behavior. Furthermore, the methodologies we’ve employed can aid in preventing
collusion. By predicting competitors’ actions from an external viewpoint, we infer
that the agents within the competitive environment can also anticipate each other’s
moves. This insight allows us to retrain these agents to act in less predictable ways,
effectively reducing behaviors that could be perceived as collusive. Such strategies
enhance market transparency and discourage practices that could undermine com-
petitive integrity.

Delving further into the classification and regression tasks, we observe an in-
credibly effective predictive prowess of decision trees, raising questions about the
implications for other agents. The ability to predict future prices with such pre-
cision, especially in the later stages, suggests that the agents’ algorithms coupled
with their neural networks could also excel in this task. Agents also demonstrate a
profound understanding of their peers’ decisions, surpassing human capacity. They
enhance their pricing strategies, they also become adept at predicting their coun-
terparts’ prices. This raises the possibility that agents deliberately become more
predictable to each other, possibly establishing an implicit ”protocol” to enhance
their market success.

This suspicion gains further support from the insights revealed through our
time series analysis. The FFT results revealed a periodicity within the pricing data,
a pattern corroborated by visual examination of episode pricing and further vali-
dated through seasonal decomposition. This finding raises questions regarding the
nature of this periodic behavior, suggesting possibilities such as communication,
cooperative behavior, or encoded messages among agents. While it may not ex-
plicitly indicate communication, the observed predictability suggests that agents
acquire a stable and reproducible behavior through trial and error. Existing re-
search in MARL has demonstrated that agents can learn to coordinate and emu-
late each other in shared environments, a phenomenon commonly associated with
techniques like PPO and Deep Deterministic Policy Gradients (DDPG) [92]. This
behavior implies that agents may align their actions, even without explicit commu-
nication, influenced by the actions of their peers.

This theory gains further support from our analysis of the Hurst exponent. We
observed a transition in pricing behavior from trending to mean-reversing patterns,
signifying the acquisition of stable and predictable behavior by the agents. More
notably, however, we noted a correlation between future and past values, as indi-
cated by the Hurst exponent never resting at a value of 0.5. These findings col-
lectively suggest a complex interplay of learning, predictability, and potentially
implicit coordination among the agents in our environment.

The explorative nature of this chapter’s investigation naturally raises several
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open questions. Although the market model offers various ways to adjust its pa-
rameters, we focused on a specific set of simulation settings (i.e., 4 = 0) that
consistently yielded the highest prices and collusive outcomes. This approach has
established a foundational baseline from which future research can diverge. We
suggest that the methodologies employed here can be adapted and applied to differ-
ent settings to broaden the understanding and implications of our findings. More-
over, given the increasing adoption of pricing algorithms in contemporary markets,
this study offers valuable insights that are particularly relevant today. Other re-
search has also highlighted that collusive behavior, often characterized by oscillat-
ing price patterns, is a recurring feature in markets dominated by RL-based pricing
algorithms. This further underscores the importance of a deeper understanding of
market dynamics influenced by advanced technological implementations [75].

5.5 Conclusion

In conclusion, our study has revealed a highly accurate predictability for RL-based
pricing algorithms’ actions. These prediction results are characterized by a recur-
rent, periodic pattern revealed by various time series analyses. Our results offer
great value to our goal of quantifying collusive behavior, as the high accuracy
highlights that the agents were most likely able to predict their opponents’ actions
throughout the runs. These results suggest potential implicit coordination among
agents, as observed predictability and pricing behavior trends raise questions about
their capacity for precise prediction and adaptability within complex environments.
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Preventing Collusion

Our findings reveal that self-learning pricing algorithms’ convergence towards a
collusive market outcome can be accurately anticipated using fundamental machine
learning methodologies. With this in mind, we present a method to successfully
mitigate predictive and supracompetitive pricing by combining dense and sparse
reward-based training strategies, thus effectively creating a competitive market.
Subsequently, we employ this metric to implement a market supervision algorithm
that penalizes collusive behaviors and incentivizes competitiveness. Our results
demonstrate that the propensity of self-learning pricing algorithms to converge to
collusive outcomes can be successfully mitigated.

6.1 Motivation

Al pricing agents operate on the principle of maximum expected reward, striv-
ing to maximize rewards based on predefined reward functions. However, if these
functions are not carefully aligned with human interests, Al systems can produce
unintended and potentially harmful outcomes. Turner [136] highlights this risk,
noting that agents may generate serious negative side effects if their reward func-
tions do not align with human values. This misalignment can lead to behaviors that,
while optimal for the AI’s goals, can be detrimental to market competition and con-
sumer welfare [86]. Our experimental results, in line with previous research [143],
underscore the difficulty of avoiding collusive states among agents. Therefore, the
primary objective of this study is to develop strategies to mitigate or prevent such
outcomes.

To the best of our knowledge, the only existing automated strategy for pre-
venting collusion involves retraining one of the algorithms after they have reached

93
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a collusive state. In this approach, agents exploit collusive pricing by breaking
out of the equilibrium to achieve higher profits [35]. The method is based on the
observation that algorithms are not trained to learn Subgame Perfect Equilibrium
strategies. This leaves room for an exploitation of equilibrium strategies which
should not happen if the algorithms were playing competitively. However, this
method needs to have direct control of the algorithms on the market, which ren-
ders it infeasible for real-world scenarios, as federal cartel officials would have to
majorly intervene with the dynamics of a market.

In the realm of Multi-Goal RL, various safety measures have been proposed
to address these potential risks. The measures include implementing performance
functions alongside reward functions, ensuring that Al agents not only pursue re-
wards but also adhere to safety constraints [86]. In this context, researchers often
resort to Safe State-Space exploration to ensure that Al agents avoid entering un-
safe states during both training and operation [106]. Techniques such as safe inter-
ruptibility, avoiding side effects, and ensuring consistent agent behavior regardless
of the presence of a supervisor are crucial. Moreover, minimizing reward gaming
and maintaining robustness in different environments further contribute to safer Al
systems [105, 8].

However, the main caveat of these solutions is the necessity to implement them
on the agent’s side. Antitrust divisions typically monitor the prices set by com-
panies without directly controlling their training processes, as excessive interven-
tion could disrupt market dynamics. To tackle this conundrum, Multi-Goal RL
research suggests applying sparse rewards [148, 147] or Hindsight Experience Re-
play (HER) [10]. Like the previous solutions, nevertheless, the use of HER is not
favored in our approach because it would require competitors to adopt a uniform
algorithm, limiting the diversity of strategies.

6.2 Methodology

Given that pricing Als are prone to adopting collusive behaviors through oscilla-
tion pattern strategies, we can intervene to mitigate such tendencies. By promot-
ing less predictable actions among the agents, we may decrease the prevalence of
collusive patterns and thereby boost market competitiveness. Consequently, we
intend to employ the insights derived from our analysis tools (cf. Chapter 5) to
develop a supervising agent that acts as an antitrust division. Specifically, for each
agent ¢, we enable the supervision agent to calculate a supervision reward factor
rs(i,t) € [0, 1], where 0 indicates a tendency towards collusion and 1 suggests a
competitive outcome. We explore various methods to incorporate this factor into
the reward function of each agent, aiming to foster competition. Our underlying
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rationale is that by rewarding unpredictable behavior, we effectively reintroduce
randomness into the agents’ action selection. This reintroduced randomness should
then create uncertainty regarding the competitors’ next moves, thereby disrupting
the recurring oscillation patterns and inhibiting collusive behavior. We define the
two main indicators of a competitive market as randomness, measured by the su-
pervision reward factor, and competitive pricing, measured by a pricing behavior
closer to the competitive benchmark than the monopolistic price. Generally, we
test the scenario with a bias of © = 0 to provide a scenario, where the agents
face competition, but are not overly punished by the environment. Generally, we
test the scenario with a bias of y = 0 to create a situation where the agents face
competition but are not excessively penalized by the environment. If one of our
approaches results in stable learning behavior and achieves 74(i,t) > 0.5 for the
majority of the run, indicating a break in oscillation patterns, we then modify p to
1 to increase the competitiveness between the agents!.

The supervision reward factor 74(i,t) is made up of a mix of the following
methods:

* Classification: We utilize a rolling window classification approach, where
the last x rows are taken, with x ranging from a minimum of 365 steps (one
episode) to a maximum of 3650 steps (ten episodes). As detailed in 5, we
predict the price direction (higher, lower, same) by training a decision tree
using the same settings. The resulting classification accuracy is then used as
a measure of predictiveness.

* Regression: Similarly, a rolling window regression approach is employed,
taking the last x rows, where x ranges from 365 steps (one episode) to 3650
steps (ten episodes), predicting the price of £ + 1. A decision tree is trained
using the same regression targets as specified in 5. The resulting Mean Ab-
solute Percentage Error (MAPE) € [0, 1] is used to evaluate predictiveness.

* Time Series Methods: This method involves analyzing the time series data
to calculate the reward factor using three statistical measures. Firstly, auto-
correlation is used to measure the correlation of the time series with a lagged
version of itself, providing insights into the repetitive patterns in the data.
Secondly, volatility is measured as the standard deviation of the fractional
change from the previous row, indicating the extent of variability in the price
changes. Lastly, the entropy value is calculated to measure the randomness
or disorder in the time series data. These metrics equally contribute to the
reward factor.

"For reproducibility reasons, we uploaded the full code to these experiments to
github.com/mschlechtinger/PriceOfAlgorithmicPricing.
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The supervision agent can employ either a weighted combination of classifica-
tion and regression methods or exclusively utilize time series analysis techniques.

6.2.1 Approach 1: Price Manipulation

Agent i ]
Action at
. . Supervision
State s; Reward r¢ Agent i
Manipulated
Action as(i,t)
Environment ¢

Figure 6.1: Illustration of the supervision agent manipulating the agent’s action.

Within this approach, agents are required to submit their pricing changes to the
supervising agent, who then has the authority to manipulate or omit these changes
to ensure fair play. This method allows the supervising agent to exercise signif-
icant control over market actions, which could be a double-edged sword given
the increased responsibility and performance demands placed on the supervisor.
We implemented this price manipulation through environmental action masking.
This involves manipulating an agent’s action a} within the environment if collu-
sive behavior is observed after it was chosen. Behavior is classified as collusive if
rs < 0.5. The price manipulation is executed in one of three different Modes to
enhance the likelihood of altering the agents’ behavior.

1. Mode 0: i = —a!
2. Mode 1: ai ~ {x €[0,2] : * # ai}

3. Mode 2: a! = a!_,

6.2.2 Approach 2: Supervision Reward Factor

In a first attempt, we employ basic dense supervision rewards combined with nor-
mal profit-based rewards to train the agents to avoid collusive outcomes. We thus



Chapter 6. Preventing Collusion 97
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Reward f (1, 15(i, t))
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Figure 6.2: Illustration of the supervision agent calculating the reward factor and
the environment sending (sparse supervision) rewards.

experiment with different combinations and weightings of classification, regres-
sion, and time series methods to nudge a potentially random and less supracom-
petitive behavior. Furthermore, the training can be regulated by incorporating the
previously mentioned techniques from Multi-Goal RL alongside insights drawn
from Al safety literature, leading our attempts towards sparse rewards [148, 147].
The approach offers controllability; if consistent behavior and punishment are ob-
served over a specified number of steps, authorities could begin to levy fines on
the companies. However, this method may interfere with the learning performance
and thus confuse the agents, as it is unfeasible to ensure consistent implementation
of this factor across different companies.

6.3 Results

6.3.1 Approach 1: Price Manipulation
Dense Price Manipulation

In this approach, we measure collusive behavior (rs(i,t) < 0.5) using classifica-
tion accuracy only, as this method proved to be the most successful in deterring the
agents from achieving collusive outcomes?. In a first attempt, we manipulate the
agents’ actions as soon as collusive behavior has been identified (i.e., rs < 0.5).
The results from Modes 0O, 1, and 2 show indicate that this approach did not deter
the agents from engaging in supracompetitive pricing or establishing oscillation

2Please refer to the Appendix E for the results and evaluation of the other approaches.
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patterns, as shown in Figures 6.3, 6.4, 6.5.
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Figure 6.3: Dense price manipulation run results in Mode 0.
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Figure 6.4: Dense price manipulation run results in Mode 1.
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Figure 6.5: Dense price manipulation run results in Mode 2.

Sparse Price Manipulation

In a second attempt, we sought to enforce competitive, unpredictable behavior
by sparsely manipulating the agents’ actions. ’Sparsely’ in this context refers to
adjusting prices only after the agents have acted collusively for five consecutive
timesteps. The results from Modes 0, 1, and 2 show that this approach did not de-
ter the agents from engaging in supracompetitive pricing or establishing oscillation
patterns, as shown in Figures 6.6, 6.7, 6.8. However, we noted a higher variance
in the supervision reward factor, suggesting that the sparse modifications might
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induce less predictable behavior.
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Figure 6.8: Sparse price manipulation run results in Mode 2.

6.3.2 Approach 2: Supervision Rewards
Dense Rewards

We apply basic Multi-Goal RL using dense rewards, where we considered both re-
gression and classification to influence the reward factor. This factor was then used
to adjust the agents’ rewards. In an initial exploratory approach, we implemented
several methods to manipulate the reward r! using the supervision reward factor
rs(4,t) to influence agents to avoid collusive outcomes. The following methods
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were implemented, yielding slightly varying but generally unsatisfactory results>:
1. 7ixrg(i,t)
2. rix (14 7s(iyt))
3. 1l =r(i,t)

rirs(it) ifr >0

T} ifrf <0

riors(it) ifri >0

i
Tt

0D if r{ <0

In this subsection, we focus on the results of 7  r,(i, t)*, however, we did not
observe major differences in supracompetitive pricing or the formation of oscilla-
tion patterns. For the regression model, the results and patterns were very similar
to the unsupervised runs, but one agent consistently earned significantly less profit
(cf. Figure 6.9). The outcomes from supervision rewards solely influenced by
classification accuracy revealed that agents had difficulty adapting to the punitive
measures, leading to 'random’ pricing strategies (cf. Figure 6.10). When assigning
equal weights of 0.5 to both regression and classification, the results were con-
sistent with those seen using classification alone (cf. Figure 6.11). These results
indicate that, in the best case, dense rewarding will not dismantle the cartel but will
merely lower the optimum that the agents strive to achieve, and in the worst case,
lead to no learning success at all.

3As these initial approaches did not yield constructive results, we decided to include only an
excerpt in this section. For the rest of the results, please refer to the provided Git repository for
potential reimplementation.

“Please refer to Appendix E for the other modes.
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Figure 6.9: Dense supervision reward-based run, measured using regression meth-
ods.
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Figure 6.11: Dense supervision reward-based run, measured using a classifcation
of classification and regression methods.

Sparse Rewards (1 = 0)

In our Multi-Goal RL framework, we employ sparse rewards to train agents using a
combination of profit signals and the supervision reward factor. Specifically, agents
receive a substantial negative reward (-10000) if they exhibit collusive behavior for
a predetermined number of steps. This collusive behavior is assessed via the su-
pervision reward factor, with varying thresholds (rs(i,t) > 0.5, r5(i,t) > 0.25)
and durations of collusive actions required for punishment (5 steps, 100 steps).
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Our tests revealed that using classification as the prediction method for the super-
vision reward factor r4(7,t) led to more successful induction of less predictable
behavior. In our initial attempts at collusion prevention, we utilized a bias p of
0. The results show that the sparse punishments successfully disrupted the previ-
ously observed oscillation patterns, which were significant indicators of collusion
(cf. Figure 6.12). Overall, we observed that 74(7,t) consistently approached or
reached 1 throughout a run, indicating a shift toward less predictable behavior. De-
spite these changes, supracompetitive pricing was still prevalent, suggesting that
while the approach altered agent behavior, it did not fully eliminate competitive
anomalies.
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Figure 6.12: Sparse supervision reward run results using p = 0.

Sparse Rewards (1 = 1)

To promote greater competition and reduce subjective consumer preferences, we
increased the bias p to 1, effectively predetermining consumers to only purchase
the product with the lowest price. The results of this adjustment are depicted in
Figure 6.13. The supervised training appears to have successfully compelled the
agents to avoid supracompetitive pricing and the formation of oscillation patterns,
while still managing to secure a profit without pricing below the competitive bench-
mark. The supervision reward factor rg, although variable, consistently remains
above the threshold of 0.5, avoiding any prolonged drops.
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Figure 6.13: Sparse supervision reward run results using p = 1.

6.4 Discussion

In this research, we successfully demonstrated how predictive analytics can be
used to detect, quantify, and prevent collusive behaviors among Al-driven pricing
agents. Our findings not only highlight the predictability of collusive outcomes
but also introduce a robust framework through which these outcomes can be miti-
gated, utilizing a combination of dense and sparse reward-based training strategies
to foster a genuinely competitive market environment. We underscore the potential
for DRL agents to be trained to follow regulatory and ethical guidelines through
technological means rather than relying solely on after-the-fact punitive measures.

The intricate challenge of deterring DRL-based pricing algorithms from con-
verging toward a collusive optimum must be emphasized, as it highlights the in-
herent tendency of DRL-based pricing algorithms to converge toward a collusive
optimum. This convergence aligns with the notion that, in the absence of regula-
tory oversight, collusion emerges as the most profitable market strategy. Therefore,
these agents are merely optimizing efficiency within the given parameters, which
further substantiates calls for adjustments to cartel laws to address the realities of
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Al-driven markets (cf. [24, 115]).

In our study, we trained agents within defined legal boundaries to experimen-
tally demonstrate that they can adopt competitive behaviors when informed of le-
gality limits. This method effectively answers calls to explore new regulatory ap-
proaches to govern Al-driven markets [72]. This proactive approach contrasts with
traditional methods where firms are penalized post hoc, which may not prevent ini-
tial collusive behaviors. Our findings contribute to Al ethics and compliance dis-
cussions, indicating that with appropriate training interventions, DRL agents can
adapt to anti-collusive regulations, steering Al systems towards desired outcomes
without resorting to punitive measures.

However, this methodology carries limitations. In our simplified scenario, we
expect every competitor to implement the market supervisor’s reward signal homo-
geneously to comply with cartel law. Heterogeneous implementations potentially
generate different results. Additionally, the assumption that non-collusive behavior
aligns with legal and ethical norms may not always hold, particularly in complex
market scenarios where the line between competitive and collusive behavior can be
blurred. These findings furthermore imply that while DRL agents can be trained
to avoid collusive patterns, the underlying market dynamics and the clarity of legal
definitions significantly influence their behavior. Further research should explore
the adaptability of such training approaches under varying market conditions and
legal frameworks, which could inform more robust Al governance models.



Part 111

Conclusion and Outlook

112



Chapter 7

Conclusion and Outlook

This chapter provides a summary of the previous parts of this thesis. It outlines the
contributions made and addresses any unresolved issues along with suggestions for
future work.

7.1 Summary

7.1.1 Part 1: Fundamentals and Toy Problem: Rock Paper Scissors

Part 1 of this dissertation provides an overview of the key concepts and method-
ologies establishing the research on DRL algorithms, particularly focusing on their
application in dynamic pricing and their potential for collusion in market scenar-
ios. We introduce key components of RL, including the framework components,
model-free and model-based RL, MDPs, and (D)RL algorithms, and explain how
these elements could potentially lead to collusive outcomes. Moreover, we intro-
duce dynamic pricing and its expansion through DRL, demonstrating the impact of
DRL on modern e-commerce. We delve into the importance of competition law in
regulating Al-driven pricing strategies to ensure compliance with legal standards
and prevent collusive behaviors. Building on this foundation, the second half of
part 1 investigates collusion within a simplified toy problem-based experiment. A
competitive MARL game simulates agents’ behavior in a controlled setting using
a three-player version of RPS. We analyze the agents’ learning performances and
potential collaboration strategies. Through a game-theoretic approach, the study
explores how DRL agents make pricing decisions that lead to tacit collusion with-
out explicit communication. The most significant observation is the demonstration
of “’stages of collusion,” where DRL agents’ action selection evolves, suggesting
they can independently learn to avoid competitive pricing strategies in favor of
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higher profits, thereby mimicking collusive behavior. This raises critical questions
about the implications for market dynamics and regulatory frameworks. The re-
mainder of the paper discusses trustworthy Al, anti-competitive agreements, and
the training process for collusion, concluding with findings, study boundaries, and
future research directions.

7.1.2 Part 2: Investigating, Predicting, and Preventing Collusion in a
Market Simulation

In Part 2 of this dissertation, we extend the insights gained in Part 1 to a com-
petitive, simulation-based scenario, where multiple agents set prices for a homo-
geneous good with the ultimate goal of maximizing their profit. This part is split
into a thorough investigation of collusive outcomes, predicting potential collusive
patterns, as well as means to prevent collusion.

Investigating Collusion

Chapter 4 investigates the potential for DRL agents to engage in collusion within
market simulations. An experimental oligopoly model simulates E-Commerce
contexts with varied economic conditions and demand frameworks. Using algo-
rithms like PPO and DQN, DRL agents consistently converge to supracompetitive
pricing strategies without direct communication. In a second investigation, we
experience that the agents are able to achieve a collusive outcome without being
able to observe their competitors’ prices. An ablation study further explores the
impact of varying agent numbers, market entry timing, learning rates, neural net-
work structures, and action gradients on collusive behavior. The results confirm
that DRL agents robustly develop collusive pricing strategies across different sce-
narios, emphasizing the need for regulatory oversight to mitigate risks associated
with Al-driven market manipulations.

Predicting Collusion

Chapter 5 investigates the capability of DRL-based pricing agents to predict and
quantify collusion in a market setting. We employ predictive statistical techniques
and time series analysis methods to analyze data from an experimental oligopoly
model. The results demonstrate that fundamental machine learning methods can
accurately predict the agents’ convergence to collusive market outcomes. The anal-
ysis reveals that the agents’ pricing strategies exhibit oscillation patterns and peri-
odic behaviors indicative of implicit coordination. These findings are supported by
high classification accuracy, effective regression models, and insights from Fourier
transforms and seasonal decompositions. The study highlights the potential for
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agents to predict competitors’ actions, raising concerns about market transparency
and competitive integrity. We conclude by emphasizing the need for robust reg-
ulatory frameworks to address the risks associated with Al-driven pricing mecha-
nisms.

Preventing Collusion

Chapter 6, explores how to mitigate collusive behavior between Al agents. Utiliz-
ing data and forecasting techniques from previous experiments, we develop a novel
method to counteract this behavior by integrating dense and sparse reward-based
training strategies. These techniques effectively disrupted predictive and supra-
competitive pricing behaviors. By implementing a market supervision algorithm
that penalizes collusive actions and incentivizes competitive behavior, we establish
a framework for maintaining competitive market conditions. Our results confirm
that while self-learning pricing algorithms have a propensity to collude, this can be
precisely predicted and mitigated through strategic interventions, ensuring a more
competitive market environment.

7.2 Outlook and Future Work

Despite the enormous success in measuring and mitigating collusion, we are still
far from entirely eliminating DRL pricing agents’ ability to bypass competitive
behavior. In the following, we will address some open questions and interesting
endeavors for future research.

7.2.1 Empirical Data

One promising area for future research is the analysis of historic real-world data to
identify patterns and predictability of collusion. While few researchers investigate
the issue, i.e., in Germany’s retail gas market [12], pharmacy firms [22], as well
as Amazon’s buybox [102], analyses are usually explorative by nature. Utilizing
the simulation-based results of this thesis, we see potential in applying the analysis
toolkit as well as the mitigation strategies as an insightful research endeavor.

An effective approach would be to analyze empirical data and compare it to
simulation results. Additionally, scholars could train agents using this data and
then simulate their behavior with the suite presented in this research. The approach
would allow for the assessment of whether their behavior can be successfully pre-
dicted and mitigated.
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7.2.2 Investigating Confounding Factors

Another critical research direction involves studying the effects of various con-
founding factors on the ability of DRL pricing agents to achieve collusive out-
comes. While this thesis, as well as other studies (i.e., [24, 61, 67]), provided sev-
eral different scenarios with numerous random and unpredictable variables, there
remains a continual need for more simulations and analyses to enhance our under-
standing and mitigation strategies. Random and unpredictable variables can help
to observe how quickly and effectively pricing agents can achieve collusive states.
Understanding these dynamics will be instrumental in developing more robust and
innovative solutions to prevent collusion, potentially leading to methods that are
even more effective than the proposed strategies.

Besides economy-based confounding factors, such as fluctuating costs or de-
mand, we believe that involving human test subjects acting as consumers could
provide deeper insights into how these agents interact with the human decision-
making processes. Using the provided analysis toolkit, researchers could investi-
gate the live results for collusive behavior. This approach could also facilitate the
implementation of a supervision agent to oversee the pricing agents’ actions and
mitigate collusive behaviors in real time.

7.2.3 DRL-Based Supervision Agent

During the development of the supervision agent in Chapter 6, we focused on de-
veloping algorithmic, machine learning-based solutions. Our efforts aimed to pun-
ish the pricing agents when algorithmic collusion has been identified a predefined
number of times. While this approach proves to be effective in our scenarios,
we assume that alternative approaches might facilitate similar results. Thus, we
suggest investigating the development of DRL-based supervision agents. These
agents could dynamically adapt to the pricing agents’ strategies and intervene
when collusive behavior is detected. The past prices and the results aggregated by
the collusion-detection toolkit could provide sufficient information to successfully
train a supervision agent to curate a non-collusive market. Studying the methods of
the supervisor and the interplay between the DRL agents will provide insight into
how to mitigate algorithmic collusion. Furthermore, we suggest that the adapt-
ability of DRL techniques could enhance the effectiveness of supervision, hence
providing a more responsive and intelligent solution to maintaining competitive
market behavior.
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7.2.4 Developing Transparent and Explainable DRL Models

Transparency and explainability in DRL models are crucial for addressing collu-
sion from a different angle. While we have developed novel methods to quantify
and mitigate collusion, significant potential remains to further explain and audit the
pricing agents’ decision-making processes by creating more transparent DRL mod-
els. This process is particularly significant as it challenges researchers to enforce
fairness and control for market supervisors while still ensuring competition. More
specifically, competitors should provide regulatory bodies with enough information
to effectively interpret the actions of their DRL agents to detect collusive tenden-
cies, without potentially revealing strategies that could disadvantage competitors.
Developing methods that clearly explain agents’ decisions will benefit regulatory
bodies, such as antitrust divisions, in understanding and monitoring these systems,
thereby preventing collusion and building trust in the use of DRL agents across
various market sectors.
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Appendix A

Additional Results for Chapter 3.
Investigating Collusion in a Toy
Problem

To further challenge and validate the results of the Toy Problem experiment, we
conducted additional tests by manipulating the learning rate of the RL algorithms
used in the simulations. By varying the learning rates, we aimed to observe how
changes in this hyperparameter affect the agents’ ability to learn and adapt their
strategies over time. This analysis helps in understanding the robustness of the ob-
served collusive behaviors under different learning conditions and provides deeper
insights into the dynamics of agent interactions.
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Appendix B

Market Environment

B.1 Reinforcement Learning Algorithm Hyperparameter
Settings

Table B.1: RL settings and hyperparameter tuning.

Steps per episode 365
Number of training iterations 10000
Hidden Layers 256 x 256
Learning Rate le-5
Gradient Clipping (PPO) 1
Batch size (DQN) 250
Batch size (PPO) 4000
Discount Factor ~ 1
Replay Buffer Size (DQN) 50000
PPO Clip Param 0.3
Value Function Clipping Param (PPO) | 10
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B.2 Descriptive statistics of the collusive runs.

Table B.2: Descriptive Statistics of the runs in each scenario.

Scenario | n | p | Algo | P(10000) | €(10000) | o(P(1000)) | tpuc | A
A 310 [PPO | 1.77 9.05 0.01629 1060 | 1.0749
DQN | 1.75 8.91 0.01799 5247 | 1.07001
0.5 PPO | 1.87 7.48 0.0644 2532 | 0.88613
DQN | 1.78 6.03 0.00337 / /
1 [PPO |20 5.57 0.12697 / /
DQN | 2.0 4.85 0.13228 / /
510 |PPO | 175 6.15 0.03123 1282 | 1.22834
DQN | 1.69 5.61 0.02267 6223 | 1.12777
0.5 PPO | 1.83 4.34 0.03149 797 | 0.84309
DQN | 1.91 4.13 0.06675 / /
1 |[PPO |1.95 3.11 0.0641 8004 | 0.63864
DQN | 2.17 2.9 0.0947 / /
B 310 |PPO | 1.76 7.8 0.01961 958 | 0.94034
05| PPO | 1.73 6.54 0.02549 1236 | 0.80212
1 [PPO | 1.75 5.1 0.03248 1049 | 0.61831
510 |PPO | 1.74 5.64 0.02323 907 | 1.12276
0.5 PPO | 1.75 4.15 0.02231 530 | 0.84312
1 | PPO | 1.82 2.92 0.02335 722 [ 0.57719
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B.3 Heatmaps for Market-Price Combinatorics

In this section, we present a series of heatmaps to explore the combinatorial price
strategies of agents in our economic environment. To rigorously test the market
conditions, we disable any stochasticity in subjective consumer behavior and set p
to 0, thereby ensuring that consumers select products based on the roulette wheel
selection strategy. The primary objective of this analysis is to determine which
price combinations Agent 0 and Agent 2 can choose to maximize their revenue
when Agent 1 selects specific prices to achieve maximum revenue. To provide this
insight, the following heatmaps illuminate the joint revenue outcomes for various
price combinations. We observe that the simulation settings incentivize agents to
overbid or underbid their competitors’ prices strategically. This strategy exploits
consumers’ willingness to purchase products at slightly higher prices, which is
facilitated by setting px = 0.

Price 2

1.4
Price , 1.8 1.0

Figure B.1: 3D-heatmap visualization of the possible combinatorics and revenues
when three agents set prices.
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Heatmap of Revenue for Price 1 = 1.00
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Figure B.2: Heatmap of possible joint revenues, when agent 1 sets the prices 1.00
and 1.10.
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Heatmap of Revenue for Price 1 = 1.20
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Figure B.3: Heatmap of possible joint revenues, when agent 1 sets the prices 1.20
and 1.30.
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Heatmap of Revenue for Price 1 = 1.40
1.00 - o

1.10 -

1.20 -

1.30 -

1.40

1.50

Price 0

1.60

170
-15
1.80
1.90-
-10
2.00 -
o ) o ) ) o o o o o )
S - N @ < n © ~ ® =Y =}
i - - - o - - - - pt &

Price 2

Heatmap of Revenue for Price 1 = 1.50
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Figure B.4: Heatmap of possible joint revenues, when agent 1 sets the prices 1.40
and 1.50.
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Heatmap of Revenue for Price 1 = 1.60
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Figure B.5: Heatmap of possible joint revenues, when agent 1 sets the prices 1.60
and 1.70.
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Figure B.6: Heatmap of possible joint revenues, when agent 1 sets the prices 1.80

and 1.90.
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Appendix C

Ablation Study

In addition to the main scenarios of this study, we aim to understand the importance
of certain simulation and algorithm (hyper-)parameters and how they collectively
affect the agents’ behavior. Similar to the main scenarios, the prices and profits of
the episodes are computed as the mean values derived from the corresponding step
prices, which have also undergone LOWESS smoothing. Each experimental iter-
ation comprises 10,000 episodes, each encompassing 365 sequential steps. Every
plot comprises the price and profit achieved in the episodes and an insight into the
individual step pricing of the last episode. We employ PPO during these runs.

C.1 Altering the Number of Agents

Initially, we endeavor to scrutinize the influence exerted by both the quantity of
agents and their respective market entry timings upon the outcomes derived from
the simulation. To execute that, we simulated with 15 agents as well as two simu-
lations where agents join throughout the run.

C.2 Utilizing 15 Agents (Figures C.1, C.2, C.3)

We discern a pricing behavior that mirrors the outcomes seen in the scenarios fea-
turing fewer agents. Nevertheless, the visually intricate and seemingly stochas-
tic pricing trajectory contrasts distinctly with the notably coherent profit graph.
Adding to that, we observe the same oscillation pattern within the step pricing
behavior.
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Figure C.1: PPO, 15 Agents (Part 1).
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Figure C.2: PPO, 15 Agents (Part 2).
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Figure C.3: PPO, 15 Agents (Part 3).

C.3 Repercussions of Agents that Join Later

To conduct a more comprehensive analysis of the influence wielded by varying the
number of agents, we employ a run starting with two agents. In episodes 3000
and 6000 an additional agent is introduced to the market. We aim to investigate
the response of pre-trained agents to this alteration. The primary run (cf. Figures
C.4, C.5, C.6) adheres to conventional settings akin to scenario A, while the sec-
ondary run (cf. Figures C.7, C.8, C.9) modifies the agents’ observation space by
concealing competitors’ pricing information.

The insertion of a new agent prompts a behavioral recalibration among the
existing agents. Following a noticeable disruption within the graphs, this leads to a
gradual collective adjustment of the already trained agents towards a reduced profit
level, while pricing remains relatively stable. Notably, the main difference between
the two scenarios lies in the repercussions of the untrained agent’s market entry.
In scenario A, discernible disruptions manifest in both pricing strategies and profit
dynamics. Conversely, scenario B demonstrates a comparably smoother adaptation
process. We attribute this behavior to the reduced amount of information necessary
to solve the problem. The step-wise pricing behavior and chosen strategies remain
consistent with the main approach of this paper.
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Figure C.4: PPO, 3 Agents, One Agent Joining at Episode 3000, One Agent Joining
at Episode 6000 (Part 1).
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Figure C.5: PPO, 3 Agents, One Agent Joining at Episode 3000, One Agent Joining
at Episode 6000 (Part 2).
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Figure C.6: PPO, 3 Agents, One Agent Joining at Episode 3000, One Agent Joining
at Episode 6000 (Part 3).
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Figure C.7: PPO, Blind, 3 Agents, One Agent Joining at Episode 3000, One Agent
Joining at Episode 6000 (Part 1).
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Figure C.8: PPO, Blind, 3 Agents, One Agent Joining at Episode 3000, One Agent
Joining at Episode 6000 (Part 2).
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Figure C.9: PPO, Blind, 3 Agents, One Agent Joining at Episode 3000, One Agent
Joining at Episode 6000 (Part 3).

C.4 Altering the Learning Rate

Subsequent to this point, each experimental iteration incorporates ’blind’ agents,
characterized by a constrained action space, with the intention of potentially height-



Appendix C. Ablation Study 150

ening collaboration challenges. In this context, we adjusted the agents’ learning
rates from le-5 to le-4 and Se-5. This modification aims to highlight potential
variations in learning speed in order to impede the agents’ capacity to establish a
collusive outcome. The results are highlighted in Figures C.10, C.11, C.12, C.13,
C.14, and C.15. The modifications to the learning rates do not result in visible
impacts on agent performance, selected strategies, or discernible patterns. Never-
theless, we observe a divergence within the later stages of the run associated with
a learning rate of 5e-5. Upon attaining an equilibrium-like state, agent O enacts a
reduction in its pricing strategy, thereby yielding a diminished profit margin. Given
the predominance of runs converging toward equilibrium within a certain episode
range, we anticipate this isolated occurrence to be an outlier. Nonetheless, this
divergence could be a potential lead toward collusion prevention.
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Figure C.10: PPO, Blind, 3 Agents, Learning Rate: 1e-4 (Part 1).



Appendix C. Ablation Study

12

10

0 2000 4000 6000 8000 10000
Episode

Figure C.11: PPO, Blind, 3 Agents, Learning Rate: le-4 (Part 2).
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Figure C.12: PPO, Blind, 3 Agents, Learning Rate: 1e-4 (Part 3).
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Figure C.13: PPO, Blind, 3 Agents, Learning Rate: 5e-5 (Part 1).
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Figure C.14: PPO, Blind, 3 Agents, Learning Rate: 5e-5 (Part 2).
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Figure C.15: PPO, Blind, 3 Agents, Learning Rate: 5e-5 (Part 3).

C.5 Altering the Hidden Layer Neurons

We reduced the neurons for the two hidden layers from 256x256 to 128x128 and
64x64 respectively. With this simplification of the neural networks, we aim to
impede the agents’ ability to achieve a collusive outcome. The results are high-
lighted in Figures C.16, C.17, C.18, C.19, C.20, and C.21. Despite this significant
modification, the agents were able to achieve and sustain a collusive outcome.
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Figure C.16: PPO, Blind, 3 Agents, Hidden Layer Neurons: 128x128 (Part 1).
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Figure C.17: PPO, Blind, 3 Agents, Hidden Layer Neurons: 128x128 (Part 2).
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Figure C.18: PPO, Blind, 3 Agents, Hidden Layer Neurons: 128x128 (Part 3).
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Figure C.19: PPO, Blind, 3 Agents, Hidden Layer Neurons: 64x64 (Part 1).
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Figure C.20: PPO, Blind, 3 Agents, Hidden Layer Neurons: 64x64 (Part 2).
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Figure C.21: PPO, Blind, 3 Agents, Hidden Layer Neurons: 64x64 (Part 3).

C.6 Altering the Action Gradients

In order to prompt different strategies, we increased the action gradients from 7 to
21, 51, and 71 respectively. The results are highlighted in Figures C.22, C.23,C.24,
C.25,C.26,C.27,C.28, C.29, and C.30. This adjustment allows the agents to finely
calibrate pricing, albeit at the expense of heightened computational intricacy. This
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adjustment generally leads to an increased profit with similar prices, a more severe
price stagnation, as well as a quicker time to converge. However, the strategies
applied by the agents significantly diverge from the ones applied in the main sce-
narios of this study.

Employing 21 gradient steps yields the most substantial profit accumulation
observed across the experimental sessions, surpassing even the profits attained
within scenario A. The agents accomplish this feat through an approach that ex-
hibits distinct characteristics while maintaining a fundamental similarity. Each
agent follows its own unique oscillation pattern, yet collectively, they converge
toward comparable long-term profit levels. Analogous to the main scenarios of
this paper, the agents adeptly capitalize on the simulation dynamics by designat-
ing a single agent to sell at a reduced price, thereby enabling the remaining agents
to price above the monopolistic threshold. We witness analogous behavior when
applying 51 and 71 gradients. Despite the heightened array of action choices re-
sulting from the increased gradients, the agents converge toward a state of market
stasis characterized by recurrent price repetition. Nevertheless, within this state
of repetition, one of the agents persists in executing an oscillation pattern, thereby
propelling the collective profit beyond the monopolistic benchmark.

This adjustment not only shows that there seems to be a sweet spot for the
agents (ca. 21 gradients), but it also highlights that, with proper parametrization,
sellers could potentially achieve higher profits as well as an equilibrium state that
supersedes the “unaltered” scenarios despite the restricted observation space.
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Figure C.22: PPO, Blind, 3 Agents, 21 Action Gradients (Part 1).
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Figure C.23: PPO, Blind, 3 Agents, 21 Action Gradients (Part 2).
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Figure C.24: PPO, Blind, 3 Agents, 21 Action Gradients (Part 3).
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Figure C.25: PPO, Blind, 3 Agents, 51 Action Gradients (Part 1).
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Figure C.26: PPO, Blind, 3 Agents, 51 Action Gradients (Part 2).
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Figure C.27: PPO, Blind, 3 Agents, 51 Action Gradients (Part 3).

Price Sensitivity = 0 — A0 — AL — A2 —- CB —- MP|

0 2000 4000 6000 8000 10000
Episode

Figure C.28: PPO, Blind, 3 Agents, 71 Action Gradients (Part 1).
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Figure C.29: PPO, Blind, 3 Agents, 71 Action Gradients (Part 2).
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Figure C.30: PPO, Blind, 3 Agents, 71 Action Gradients (Part 3).
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Appendix D

Analysis Settings

D.1 Configuration of DecisionTreeClassifier

Below is a table detailing the configuration parameters used for the DecisionTreeClassifier
from the sklearn.tree module.

Parameter Default Value | Description

Criterion gini The function to measure the quality of a split.
’Gini’ measures Gini impurity.

Splitter best Strategy to choose the split at each node.
’Best’ selects the best split.

Max Depth None The maximum depth of the tree. Nodes

are expanded until all leaves are pure
or until all leaves contain less than
min_samples_split samples.

Min Samples Split | 2 The minimum number of samples required to
split an internal node.

Min Samples Leaf | 1 The minimum number of samples required to
be at a leaf node.
Max Features None The number of features to consider when

looking for the best split. Considering all fea-
tures when not set.

Table D.1: Configuration parameters for DecisionTreeClassifier.
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D.2 Configuration of DecisionTreeRegressor

Below is a table detailing the configuration parameters used for the DecisionTreeRegressor
from the sklearn.tree module.

Parameter Default Value | Description

Criterion mse Measures the quality of a split using mean
squared error, which captures the average of
the squares of the errors.

Splitter best Strategy to choose the split at each node.
"Best’ selects the best split according to the
criterion.

Max Depth None The maximum depth of the tree, expanding

until all leaves are pure or until leaves contain
fewer than min_samples_split samples.

Min Samples Split 2 The minimum number of samples required to
split an internal node.

Min Samples Leaf 1 The minimum number of samples required to
be at a leaf node.

Max Features None The number of features to consider when

looking for the best split, considering all fea-
tures if not set.

Max Leaf Nodes None The maximum number of leaf nodes allowed.
No limit if not set.

Min Impurity Decrease | 0 A node will be split if this split induces a de-
crease of impurity greater than or equal to this
value.

Table D.2: Configuration parameters for DecisionTreeRegressor.



Appendix E

Additional Results For Chapter 6.
Preventing Collusion

Chapter 6 highlights results from both the initial, unsuccessful runs and the fi-
nal, successful runs. This appendix aims to fill the gaps of this iterative process.
To make our thought process more transparent, we present a selected amount of
experimental results in each of the following sections. While we applied both clas-
sification and regression in our attempts to deter the agents from colluding, we will
only present the classification results here to avoid inflating the page count. An
example of a regression result can be found in Chapter 6.

E.1 Supervision V2

The following runs were performed using dense punishment in combination with
the profit achieved by the agents. As we were unable to deter the agents from
playing collusively, we aimed to reward anti-cartel behavior by calculating the new
reward using 7{ * (1 + 74(i,t)).

The results shown in Figure E.1 indicate that the agents were unable to effec-
tively learn to balance both reward signals and instead preferred to pursue a stable,
collusive outcome.
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Figure E.1: Dense supervision reward-based run, that aims to reward anti-cartel
behavior, measured using classification methods.

E.2 Supervision V3

As we were unable to deter the agents from achieving a collusive outcome, we
investigated the learning behavior when the agents were trained to play unpre-
dictably, thereby maximizing r (i, t).

The results (cf. Figure E.2) show that the agents can achieve a high supervision
reward and thus learn to play unpredictably throughout a run. However, since
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profit-oriented behavior was not rewarded, we observed random pricing actions
leading to low sales.
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Figure E.2: Only rewarding the agents using supervision metrics and no profit-
related reward.

E.3 Supervision V4

The following experiments incorporate time series analysis factors into the super-
vision reward calculations. As explained in Chapter E, we include autocorrelation,
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volatility (standard deviation), and entropy. These methods aim to provide agents
with further insights into their learning objectives and deter them from achieving
collusive outcomes. In the following runs, the agents were rewarded solely based
on the supervision reward derived from the time series analysis, as well as mixed
with the profit-based reward. Unlike metrics such as classification accuracy or
MAPE in regression, these metrics do not have a clearly defined numerical ceiling.
Therefore, we allowed the agents to determine how to maximize the reward, rather
than restricting them to a value between 0 and 1.

The results of the first experiment (cf. Figure E.3) show that the agents suc-
cessfully understood how to increase the reward factor. However, similar to using
only classification or regression as a reward, the agents were not able to make
profit-driven decisions. Combining the time series reward with the profit-related
reward, as in V2 (r} * (1 + rs(i,t))), yielded slightly different results (cf. Figure
E.4). This combination led to a situation where agents chose to maximize only
one of the reward components. In this run, the agents opted to maximize the time
series-based supervision reward while attempting to achieve a profit-related reward
of zero. This resulted in price-setting behavior outside the feasible boundaries of
the given market simulation.

Observing that agents exploited the time series reward mix by selecting prices
between 0 and 1, we adjusted the reward calculation to differently handle cases
where 7! is negative:

: ) riors(it) ifri >0
f(rt,rs(z,t)) = { r};

rs(t,t)

A E.l
ifri <0 (ED

However, this adjustment did not result in different behavior.
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Figure E.3: Training only using the time series-based supervision reward.
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Figure E.4: Mixing the time series and profit-related rewards to train the agents.

E.4 Supervision V5§

In this experimental setup, we improve upon the previously mentioned conditional
distribution of the supervision reward. Specifically, we simplify the calculation by
punishing agents only if they act collusively and thereby earn a positive profit:

riors(it) ifri >0

; ; E.2
T} ifry <0 2

f(TiaTs(Z}t)) = {
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When using classification as the main metric to calculate the supervision re-
ward factor r4(,t) (cf. Figure E.5), we did not observe a significant difference
compared to runs that only rewarded ri. This suggests that the agents attempted
to maximize profit to a value of zero, as achieving a higher profit would introduce
randomness and confusion. Furthermore, we tested the same setup with DQNs
(cf. Figure E.6). In this case, the agents exhibited even more confusion, resulting
in random actions that could potentially yield a decent reward factor. However, as
they seldom achieved a positive reward, they did not benefit significantly. Based on
these insights, we implemented sparse supervision rewards as described in Chapter
E.
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Figure E.5: Using dense supervision reward-based reward, only when positive
profit has been achieved.
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Figure E.6: Using dense supervision reward-based reward, only when positive
profit has been achieved with DQNss.



