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Abstract
In an epidemic, the regulation of social distancing and testing is critical for the large
group of individuals who are possibly infected, but have not developed clear, distinct
symptoms. Each individual’s reaction to a regulation scheme depends on its private
probability assessment of being infected. Assuming nomonetary transfers, we identify
a simple class of schemes for welfare maximization: all individuals who ask for a test
are tested with the same probability, independently of their infection probabilities, and
the social distancing regulation depends on who asks for a test. Social distancing has
a double role: to provide incentives so that the right people get tested, and to curb the
spread of the disease. If testing capacities are scarce it can be optimal to test only a
randomly selected fraction of those who ask for a test, and require maximal social
distancing precisely for those individuals who ask unsuccessfully. If public costs and
benefits are small, laissez faire is optimal.

Keywords Infectuous disease · Optimal test allocation · Transfer-free mechanisms ·
Private health signals

JEL Classification I12 · I18 · D62 · D82

1 Introduction

Social distancing and testing for an infection are the two main tools for curbing the
spread of a virus when no vaccination is available. A ready example is the early phase
of the Covid-19 pandemic: social-distancing regulation, ranging from the obligation
to a wear a mask in public to temporary apartment confinement or a prohibition to
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work, had a strong impact on the lifes of most people in most countries; in addition,
a negative infection test result became a precondition for most social activities.

Optimal regulation is critical for the large group of those individuals who, at a
given point in time, are possibly infected, but have not (yet) developed clear, distinct
symptoms. Each such individual is privately informed about their current likelihood
of being infected, due to private knowledge of recent social contacts, and possibly due
to early symptoms. We investigate how a regulator can and should utilize the private
probability assessment of each individual, which we call the person’s health signal,
type, or belief.1

Social distancing and testing are intertwined. The regulator’s goal is to foster the
treatment of infected individuals and reduce the spread of the diseasewhileminimizing
the disruptions that are caused by social distancing. Testing affects the extent to which
fast treatment and quarantining of infected people is possible. How can the regulation
scheme assure that the right people get tested, and how should the social distancing
of untested people be regulated? We investigate these questions.

In line with survey evidence,2 we assume that an individual’s personal value for
getting tested is increasing in her type (with small types having a negative value).
Our analysis begins with the simple insight that, given that testing is costly and is
a hassle, and only infected people can spread the disease, only those individuals
who are sufficiently likely to be infected should be tested.3 However, the marginally
tested type in the social optimum will generally have a non-zero value for getting
tested. Thus, the regulation scheme uses social distancing to provide incentives for
individuals to reveal their health types.

Social distancing is unpleasant for any individual, but putting an infected person in
quarantine (i.e., maximal social distancing) has the positive effect of preventing this
person from spreading the disease. Thus, any person should be put into quarantine if
and only if it is sufficiently likely to be infected. We assume that a tested individual
is put in quarantine if the test is positive, and no social distancing is imposed if the
test is negative.

If the government can use money to incentivize people, then—as we show—the
social optimum can be implemented in a straightforward way. There is a price for a
test. The price may be positive or negative (i.e., a subsidy), depending on the circum-
stances. If the price is set optimally, it induces exactly the types above the socially
optimal threshold to get tested. In addition, agents may be offered a monetary com-
pensation if they choose to go into quarantine without being tested first. If set right,

1 Weare not assuming that individuals consciously do calculationswith probabilities.Nevertheless, thinking
in terms of degrees of likelihood is common sense and is relevant to many aspects of life beginning with
the weather forecast. While psychological research has identified many biases in decision-making under
uncertainty (e.g., Gigerenzer (2008), Kahneman (2011)), it is fair to say that the individuals in our model
face quite simple decision problems, given the testing-and-social-distancing schemes that we propose.
2 Fallucchi et al. (2021) observe that individuals’ willingness to get tested is positively correlated with
concerns about contracting Covid-19.
3 If done so, the rate of infections among the tested individuals will be higher than the base rate in the
population. We assume the regulator knows the base rate (and, in fact, the distribution of beliefs). See Stock
et al. (2020) on how to identify the base rate from a biased testing sample in the Covid-19 pandemic, using
data from Iceland.
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this compensation induces the socially optimally range of types to go into quarantine
right away without being tested.

Monetary incentives are problematic for two reasons. First, it is well known that
using government funds to pay subsidies or collect fees can have shadowcosts. Second,
our simplemodelmisses the fact that, in reality, the incentive effects ofmoney correlate
with the individual’s wealth. This correlation can garble the regulation scheme: two
individuals of the same health type, but with different wealth levels, will generally
react differently to the same monetary incentives. Both reasons probably contributed
to the weak role of regulated monetary incentives for testing and social distancing in
the Covid-19 pandemic.

We investigate the optimal incentive-compatible regulation of testing and social
distancing without monetary incentives in a one-period model. We find that the threat
of social distancing can replace incentives viamonetary transfers to some extent. Thus,
we identify a double role of social distancing: to provide incentives to get tested, and
to curb the spread of the disease.

In anoptimal regulation schemewithoutmonetary incentives there exists a threshold
type p̌ such that an individual will not be tested if its health signal is below p̌, and
all individuals with health signals above will be tested with the same probability.
Given that any tested individual is quarantined if and only if the test is positive, the
social distancing of untested individuals is regulated such that an intermediate level
of distancing between complete freedom and quarantine is stipulated.

Note the qualitatively new features that are absent from the optimal regulation
schemewithmonetary incentives. First, the government optimally collects only binary
information from the individuals, essentially asking only who would like to get
tested, whereas with monetary transfers it can be optimal to further divide the group
of untested individuals into quarantined and non-quarantined individuals. Second,
randomized testing can be optimal if capacities are scarce, whereas with monetary
transfers the government would simply increase the price of a test. Third, intermediate
levels of required social distancingmay be used as a quasi-money that induces the right
individuals to get tested, whereas with monetary transfers the government optimally
requires either maximal or minimal social distancing for each individual. In addition
to these qualitative differences, the range of optimally tested types will generally not
be the same as with monetary incentives.

To outline the structure of the optimal regulation scheme, we distinguish four cases.
The first case is the simplest: in extreme circumstances it can be optimal to quarantine
everybody and test nobody. The other three cases can be described in terms of the
threshold type p̌ that the government would like to implement.

One possibility for the structure of the optimal regulation scheme is that p̌ equals the
type of an individual with the value zero for being tested. We call this the laissez-faire
solution because no social distancing is required for those individuals who decide not
to get tested, and those who want to get tested do get tested. This scheme is optimal
if the benefits of quarantining are small, while testing and quarantining are rather
costly for the government. The possible optimality of laissez faire constitutes another
qualitative feature that is absent from the optimal regulation with monetary transfers
(where such optimality is a non-generic case).
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The next possibility is that test capacities are relatively abundant, so that the gov-
ernment would like to test many individuals. In this case, p̌ will be so low that an
individual of type p̌ will have a strictly negative valuation for a test, and all individ-
uals with types above p̌ will be tested for sure. The trick to make individuals with
all types down to p̌ reveal themselves so they can be tested, is to require some inter-
mediate level of social distancing for any individual who decides to remain untested.
This lowers the payoff from not getting tested so that, if the level of social distancing
is chosen right, individuals of type p̌ become indifferent between being tested and
not being tested. Incentive compatibility is then satisfied. This form of the testing-
and-social-distancing schedule explains why it can be optimal to require some social
distancing even for those individuals who are quite sure to be uninfected. A ready
example is the common regulation during the Covid crisis that requires a negative test
for certain social activities such as visiting a restaurant.

The remaining, last, possibility is that test capacities are scarce. In this case, the
government must carefully select who to test. Here, the marginally tested type p̌ is
so high that an individual of type p̌ has a strictly positive valuation for a test. How
are individuals with a strictly positive valuation and a type below p̌ prevented from
snatching a test by claiming a type above? The solution is to introduce probabilistic
testing. Only a randomly selected fraction of the individuals who claim to have types
above p̌ are tested. For any individual who claims a type above p̌, if the randomization
implies that this individual does not belong to the tested fraction, maximal social
distancing is required. Each individual now faces a gamble if she claims a type above
p̌: on the one hand, this allows her to grab a test with some probability, but, on the
other hand, it sends her in quarantine for sure if (through the randomization) she ends
up not getting tested. Higher types are more willing than lower types to take such a
gamble because for them the test is more valuable, while the hassle of being put in
quarantine for those who do not get a test is type-independent.4

1.1 Literature

There is a huge literature on the dynamics of infectious diseases.5 Our model has
only one period. This should be interpreted as a snapshot view at a particular point in
an epidemic, and can be a building block for a dynamic model in which the govern-
ment would continuously adapt its regulation scheme as costs and benefits (which are
exogeneous in our model) evolve dynamically and endogeneously.

Behavioral aspects have been taken into account only recently in the literature
on epidemology (see the surveys by Klein et al. (2007), Avery et al. (2020), and
McAdams (2021)). The behavioral aspect that is modelled most frequently is that
each individual chooses their degree of social distancing. Many papers focus on
calibration results. See, e.g., Kremer (1996) concerning the HIV/AIDS epidemic, and

4 As for a concrete application example, imagine this schedule to be used for the group of individuals who
arrive at an airport on a given day if tests are too scarce to test everybody who wants a test. A random
selection of those who state a willingness to be tested get a test, while the others are put in quarantine.
5 See von Thadden (2020) for an adaptation to the epidemiological specifics of the Covid-19 pandemic.
See Ellison (2024) for variants that allow for heterogeneity in contact rates.
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Fenichel et al. (2011), Eichenbaum et al. (2021), Droste and Stock (2021) concerning
Covid-19. Given the negative externalities of social contacts in an epidemic, a social
planner’s role to enforce social distancing arises. Farboodi et al. (2021) have estimated
welfare gains from optimal social-distancing restrictions in the Covid-19 pandemic.
Jones et al. (2020) introduce congestion in the health-care system; they show that
in a laissez faire equilibrium agents have rather weak social distancing incentives
because they expect to get infected eventually no matter what, implying that a social
planner who can enforce social distancing saves many lifes. Makris (2021) shows the
empirical importance of modeling social-distancing preferences that are heterogenous
across the population if the regulator imposes aminimum social-distancing restriction.
Relatedly, Brotherhood et al. (2020) assume that social-distancing preferences are
age-dependent and so should be their regulation.

Complementing these calibration results, there are some analytical contributions.
Kruse and Strack (2020) present results on the optimal timing of social-distancing
restrictions; McAdams et al. (2023) emphasize the importance of modelling social
contacts as strategic complements; Carnehl et al. (2023) distinguish between the
affects of changes in the transmission rate and changes in the contact rate.

The impact of testing has also been studied. Droste et al. (2024) show that
widespread screening tests have huge economic benefits, especially if supported by
confirmatory tests. Eichenbaum et al. (2022) compare societies with different levels
of aversion to social distancing in a world where testing capacities arise gradually.
Berger et al. (2022) emphasize the positive role of targeted quarantining through
frequent testing of asymptomatic individuals.

Virtually all these models augment the basic distinction between susceptible,
infected, and recovered individuals,6 but do not analyze the role of private informa-
tion. We consider the sub-population of susceptible and possibly infected individuals
and consider incentive constraints with respect to the private probability assessment
of carrying an infection.7

An individual’s believed probability of being infected is behaviorally relevant.Gong
(2015) present evidence for the HIV/AIDS epidemic, showing that individuals who
are surprised by a positive (negative) HIV test tend to increase (decrease) their sexual
activity. This suggests that, in the context of HIV, an individual’s social-distancing
preferences are decreasing in the belief of being infected. Paula et al. (2014), however,
in their study of HIV in Malawi, present evidence that points in the opposite relation.
Similarly, Brotherhood et al. (2020) for their calibration to the Covid pandemic, rely
on social-distancing preferences that are increasing in the belief of being infected:
time at home is valued more by an infected than a healthy individual, and in between
by an uncertain (“fevery”) individual.

In contrast to the above literature, our analysis focusses on a group of individuals
who, independently of their private health signals, have the same social-distancing

6 A mathematically different approach is Acemoglu et al. (2020) who study the spread of an infection on a
network of agents who choose their social activities depending on their preferences. More testing can lead
to more social activity and more infections.
7 Chari et al. (2021) model heterogeneity that arises from public information that is obtained via a contact-
tracing technology. This allows the government to condition their social-distancing regulation on these
beliefs without having to satisfy incentive constraints.
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preferences. In essence, we are assuming that a high-risk type’s smaller expected cost
of becoming infected through social contacts is balanced by her altruistic concern of
possibly infecting others. The assumption simplifies our analysis because it means
that the regulation of social contacts serves as a quasi-money that has the same value
for everybody. With heterogenous social-contact preferences, the value of this quasi-
moneywouldbe type-dependent, and the valuation for a testwould also changebecause
quarantine applies to those who are tested positive.8

Piguillem and Shi (2020) analyze whether social distancing and testing are com-
plements or substitutes, and they argue for the latter. This result, however, relies on the
assumption that the government forces a random (and, in their calibration to the Italian
Covid-19 outbreak, sometimes large) fraction of the population to get tested frequently.
No private health signals are considered. That is, Piguillem and Shi (2020) propose
to randomly test everybody and to forego any social-distancing restrictions. In our
model, higher welfare is obtained when only the individuals with high private signals
of an infection get tested, although this needs to be incentivized via social-distancing
regulations. In this sense, in our model social distancing and testing are complements.

Deb et al. (2022) consider, like we, a model in which agents make choices based on
their private health signals. However, they assume that social distancing and testing can
only be regulated indirectly, through monetary incentives. No welfare improvement
over the laissez faire is possible without monetary incentives. Our model is comple-
mentary to their’s because we show how by regulating social distancing directly the
government can achieve welfare gains even without monetary transfers. Moreover,
we identify major qualitative features of an optimal regulation scheme that are differ-
ent from their world. First, our regulator may require an intermediate level of social
distancing whereas in Deb et al. (2022) agents exercise either minimal or maximal
distancing. Second, in our world it is always optimal to test only agents with suffi-
ciently high infection risks, whereas in their’s at-work testing can be optimal, which
implies that only agents with sufficiently low infection risks are tested.

Ely et al. (2021) study the problem of optimally allocating scarce imperfect tests of
different sensitivities to individuals with heterogenous infection risks. They assume
that the regulator observes each individual’s infection risk, but remark that “incentive
compatibility may be a substantial part of the practical test-allocation problem”, a
concern that our model takes up.

Chen (2006) considers the welfare effects of vaccination, a tool which we assume is
not available. Each individual chooses whether or not to get vaccinated, which incurs
a personal cost. Due to the incentive effects of a vaccination, its overall welfare effect
can be ambiguous.

Caplin and Eliaz (2003), in a static model, combine individual choices of being
tested and contact choices that are conditional on a certificate of the test result. Fear of
a positive test result is introduced as a psychological bias, and the optimal certification
policy of the government is determined.

8 If the type-dependence is moderate, then it will still be possible to incentivize high types to get tested by
assigning enough social distancing to untested types, and the regulation schemes that we find should come
close to optimality.
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On a technical level, finding the optimal regulation scheme in our model is a
mechanism-design problem in which an individual’s required degree of social dis-
tancing acts as a quasi-money that steers every individual to reveal her type. From
the individual’s point of view, getting tested is like receiving a good that may have a
positive or negative value for the individual. The technical challenge of solving the
government’s problem mainly arises from the fact that the probability of becoming
quarantined is restricted between 0 and 1, thus restricting the amount of quasi-money
that can be paid by any individual.9

The rest of the paper is structured as follows. In Sect. 2 we define the government’s
regulation problem. Section3 presents all of our results. Section4 is devoted to the
detailed arguments behind our solution to the government’s problem. After concluding
in Sect. 5 we present the remaining proofs in Sect. 6.

2 Model

We consider an individual who is uncertain about whether or not she is infected
by a given disease. At time 0, the individual possesses a private signal, her type
p ∈ [p, p], that describes the individual’s personal probability assessment that she
is infected, given her current symptoms and recent contacts with other people, where
0 ≤ p ≤ p < 1.10 (At a point in time after time 0, the individual may develop clear,
distinct symptoms, but our analysis focusses on time 0.) Although ourmodel considers
a single individual, it is instructive to imagine a population of individuals with private
health signals out of which the considered individual is a representative member.

We assume that, across the population, individuals’ probability assessements are
not systematically wrong, that is, for all p, among all individuals who think that they
are infected with probability p, the expected fraction p is in fact infected. Let F denote
the c.d.f. for the distribution of types p in the population of individuals. We assume
that F has a density f that is strictly positive on the open interval (p, p).

At time 0, the individual may be tested for the illness. For an individual of type p,
the expected value of being tested is

v(p) = pb − ct , (1)

where b > 0 and ct > 0 are given parameters. The parameters are easiest to interpret
if the test is perfect. Then ct denotes the individual’s (hassle) cost of having the test

9 Again on a technical level, our setup may be seen as a case of mechanism design with costly state-
verification (see Ben-Porath et al. (2014)). In this literature, a designer commits to verifying states and
implementing outcomes conditional on agents’ reports when agents have private information related to
these states. In our setting, the government is able to verify an individual’s health state by testing for the
infection, but she is not able to verify the agent’s type. The verification of the health state carries a cost not
only to the government, but is also costly to the individual.
10 The assumption p < 1 is not used in our formal analysis, but it is needed for the consistent interpretation
of our model. We do not dispute the existence of individuals who believe to be infected with a probability
above p, but they are left out of the model. The implicit assumption is that such people have clear, distinct
symptoms so that their health signals are not private, but public and verifiable. Thus, they can be regulated
separately from those with private signals. Also, their preferences may be different because they may prefer
to stay in bed or go to a hospital.
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done, and b is the benefit of knowing about one’s infection: the individual can adapt
its plans such as cancelling a trip, and it can unlock a fast treatment if the medical
provider has a rule to only accept patients with confirmed infections. If the test is not
perfect, the interpretations of ct and b change because these numbers then include
any expected hassle costs from false negatives or false positives such that the value
v(p) is reduced, but the qualitative features of the function v are unchanged if the test
imperfections are small.

We assume that there is enough heterogeneity in the population so that a conflict
exists between thosewho, in the absenceof anyother incentives,would like to get tested
and those who do not want to get tested, that is, v(p) < 0 < v(p). Let p∗ ∈ (p, p)
denote the indifferent type, that is, v(p∗) = 0, or

p∗ = ct

b
. (2)

The individual’s payoff also depends on its social distancing (starting at time 0). We
consider degrees of social distancing from 0 and 1. We use the term quarantine to
indicate the maximal social-distancing level, 1. The social-distancing level of 0 will
be identified with the individual’s voluntary level of social contacts, which we assume
is independent of her type. Considering any social contact, an altruistic person would
be concerned about the probability of infecting others, which is increasing in her type,
while any individual will be concerned about the probability of getting infected, which
is decreasing in her type. For the sake of analytical tractability, we assume that these
two motives cancel out across the range of types [p, p].

For the purposes of the model, any social-distancing level may be thought of as a
probability of being put into quarantine. We assume that any positively tested individ-
ual is put into quarantine while any negatively tested individual is set free, and this is
taken into account in the definition of the testing value v(p).11 For any individual that
is not positively tested, the cost of being in quarantine is denoted cq > 0. We assume
that being quarantined is more unpleasant than being tested,

cq > ct . (3)

The government’s goal is to set up a rule for determining who gets tested and what
level of social distancing will be required for untested individuals.

Even before introducing the government’s welfare function, it is pretty clear that
the optimal testing-and-social-distancing rule will, in general, be type-dependent. For
all p, let

0 ≤ m(p) ≤ 1 (4)

denote the probability that an individual of type p is tested and let

0 ≤ q(p) ≤ 1 (5)

11 If we allowed some social distancing for some types of negatively tested individuals, or a reduced
social-distancing level for some types of positively tested individuals, the testing-value function would turn
into a function that depends both on the actual type and the announced type, thus changing the incentive
constraints for all types of individuals. We leave this problem to future research.
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denote the required degree of social distancing for the individual conditional on the
event that the individual does not get tested. The pair of functions (m, q) defines the
government’s rule or (direct) mechanism.

The main difficulty for the government is that, given any individual’s personal
value of getting tested and cost of getting quarantined, individuals may lie about their
personal health signal. Due to the revelation principle, there is no loss of generality
in restricting attention to mechanisms (m, q) that are incentive compatible, that is,
direct mechanisms in which no individual can gain from making a false claim about
her type. In order to spell out this condition, let

U ( p̂, p) = v(p)m( p̂) − cq(1 − m( p̂))q( p̂) (6)

denote the expected utility of an individual of any type p who pretends to be of some
type p̂. The incentive-compability condition requires that

U (p, p) ≥ U ( p̂, p) for all p̂ andp. (7)

Ourmodel does not attempt to capture the dynamic aspects of the spread of the disease.
Rather, we are interested in the problem of which mechanism is optimal at the given
current point in time (implicitly assuming that the government can adapt its rule over
time). Thus, we take it as given that the goverment is concerned about two things:
first, the current expected utility of an (average) individual, which should be kept
high; second, the probability that any given individual spreads the disease, which
should be kept low.

An individual can spread the disease if and only if it is infected and is not quaran-
tined. Let bq > 0 denote the social benefit of quarantining an infected individual. Let
y denote the probability that the test result is positive if the individual is infected. We
assume that the probability of a false negative is small in the sense that

1 − y <
b

bq
. (8)

The expected quarantining benefit that is achieved by the goverment’s rulewith respect
to type p is equal to

(bq y)m(p)p + bq(1 − m(p))pq(p).

This is because, in case the individual is tested (probabilitym(p)), the benefit bq occurs
if and only if the individual is infected and tested positive (probability yp); if, however,
the individual is not tested (probability 1−m(p)), then being infected (probability p)
and getting quarantined (probability q(p)) are stochastically independent events, so
that the benefit bq only occurs with probability pq(p).

The government’s welfare objective is given by

W = Ep∼F

[
U (p, p) + (bq y)m(p)p + bq(1 − m(p))pq(p)

w1U (p, p) − cgtm(p) − cgq(1 − m(p))q(p)
]
, (9)

123



158 T. Tröger

where cgt > 0 denotes the government’s cost of performing a test, and cgq ≥ 0
denotes the government’s surveillance cost of enforcing the quarantine of an untested
person.12 Interpreting cgt as an opportunity cost, we can view cgt as a measure of
the current scarcity of test medication units or test facilities, that is, the higher cgt

the higher is the cost of using a test unit for any particular individual. In this view,
cgt is the government’s value of saving a test unit for a different point in time or of
using it for an individual outside the considered population of individuals. The cost
cgq can be interpreted as a measure of the availability of surveillance and enforcement
infrastructure.

By scaling the parameters b, cq , and ct , the utilityU can be scaled arbitrarily. This
scale defines the relative weight of the individual’s utility in the welfare function. In
our static model all parameters are exogeneous.13

The government’s goal is to solve the following (second-best) welfare-
maximization problem:

max
m(·),q(·) W s.t. (4), (5), (7),

where the expected utilities that occur in (7) are computed via (6).

2.1 What constitutes a population?

For a regulator, it is important to define what constitutes the population of individuals
to which a regulation scheme (m(·), q(·)) is applied. Generally, the government may
achieve welfare gains by conditioning its regulation scheme on any verifiable trait
that allows for statistical discrimination. For example, the quarantining benefit bq

can depend on a person’s profession, where, say, a school teacher may have a higher
bq than a lighthouse keeper, suggesting welfare gains if individuals of these two
professions are assigned to different populations. Another important discrimination
possibility would be based on age. A young person without preexisting illness will
typically have a lower testing benefit b than an old person, so optimal regulation will
generally depend on age. Similarly, the regulation of teenagers should be based on
their—likely large—quarantining cost cq . Alternatively, a group of people may also
be characterized by a particular type distribution F , such as the group of individuals
who arrive in an airplane from a particular country with a known high infection rate,

12 For simplicity, we assume that there is no cost of enforcing the quarantine of a positively tested person.
While such a cost could be easily incorporated into our model, it is reasonable to assume that the cost of
enforcing the quarantine of a positively tested person is much smaller than of an untested individual that
lacks clear, distinct symptoms and can hide its infection risk. A person who is tested positive may prefer
(possibly due to moral obligation or legal concerns) to stay at home or go to a medical facility, which will
enforce the quarantine without incurring significant extra costs beyond the cost of caring for and treating
the individual.
13 In a dynamic model, because the fraction of infected individuals in the population becomes a variable,
the definition of an agent’s current expected utility must be altered such that she obtains a benefit from
being healthy. The testing-and-social-distancing rule would be adapted dynamically. The relative weight
on the individual utility in the welfare function would depend on the impact of the current spread of the
disease on the discounted expected utility of forward-looking agents.
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or the group of people who live in a particular geographic region (see Allcott et al.
(2024) on the empirical importance of geographic variation).

3 Results

We first solve the government’s problem without informational frictions (Sect. 3.1),
then provide the solution structure to the actual regulation problem (Sect. 3.2) and
illustrate the solution via numerical examples (Sect. 3.3). Finally, we fully characterize
optimal regulation schemes and provide comparative-statics results (Sect. 3.4).

3.1 The first-best social optimum andmonetary transfers

As a benchmark, we first describe the rule the government would implement if it could
either use monetary incentives, or could directly observe the individual’s type and thus
could set up any rule without relying on the individual’s type report. Such a social
planner can regulate each type separately and solves the following first-best problem:

max
m(·),q(·) W s.t. (4), (5).

To state the solution, we define three threshold types. Let p = pq denote the type of
an individual for whom the social benefit of quarantining without a test, pbq , equals
the total (i.e., individual and social) cost of quarantining, cq + cgq . That is,

pq = cq + cgq

bq
.

Next, let p = pt denote the type such that the total (i.e., individual and social) benefit
of testing an otherwise unquarantined individual of type p, p(b + bq y), equals the
total cost of testing, ct + cgt . That is,

pt = ct + cgt

b + bq y
.

Lastly, let p = pqt denote the type of an individual for whom the individual benefit
of testing, pb, equals the total cost differential between testing and quarantining. That
is,

pqt = cgt + ct − cgq − cq

b
.

The optimal scheme partitions the type space in up to three intervals.

Proposition 1 A first-best testing-and-quarantining schedule is given as follows.
If pq ≥ pt , then an individual is tested if and only if her type is at least pt ; no

social distancing is required for untested individuals.
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Fig. 1 Example of a government’s first-best optimal rule as a function of the cost of a test unit, cgt . The
blue curve given by the value of pt or, resp., pqt , indicates the marginally tested type. The orange line
indicates the marginally quarantined type. For this diagram, it is assumed F is the uniform distribution on
the interval [p, p] = [0.1, 0.8], y = 1, b = 4, cq = 3, ct = 1, bq = 8, cgq = 0.1. The computations were
performed using Mathematica 12

If pq < pt , then an individual is tested if and only if her type is at least pqt ; there
is a nonempty interval of types—the types in [pq , pqt )—such that an individual with
such a type is quarantined right away, without being tested; no social distancing is
required for individuals with types in [p, pq).
The proof is straightforward and is relegated to the “Appendix”.

We illustrate Proposition 1 via a discussion of the comparative statics with respect
to the cost of testing, cgt . If test capacities are abundant (i.e., cgt ≈ 0), then the first
“If” case applies because

pt ≈ ct

b + bq
(3)
<

cq

b + bq y

(8)
<

cq + cgq

bq
= pq .

All individuals with types above pt are tested, and no social distancing is required for
untested types. Note that pt < p if p > 0 and bq is sufficiently large. That is, unless
some individuals are almost certain to be healthy (i.e., p = 0), all individuals will be
tested if the public benefit bq is sufficiently large.

As cgt increases, the marginally tested type pt increases, so that fewer and fewer
individuals are tested. There exists cgt such that pt = pq . If test capacities become
even scarcer, the second “If” case in Proposition 1 applies. The set of tested types
shrinks ever more as cgt increases further, but the quarantining threshold pq remains
constant. At some point, test capacity is so scarce that pqt ≥ p. Then nobody is tested
anymore, but quarantining of individuals with types in the interval [pq , p] persists;
depending on the parameters, it can be optimal to quarantine nobody (if pq > p) or
everybody (if pq ≤ p).

Figure 1 provides an illustration. It shows an example of the marginally tested
type and the marginally untested quarantined type as functions of the testing cost cgt ,
keeping the other parameters fixed.
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Asimple, but very important, observation is that,with the exceptionof extremecases
or non-generic cases, the first-best solution is not incentive compatible. Generically,
the marginally tested type, pt or pqt , will be different from the type p∗ who has a test
value of 0.Moreover, if the solution requires that some, but not all, untested individuals
are quarantined then these would not reveal their types. Thus, in order to achieve
its welfare goal, the government must take the individual’s incentive compatibility
constraints into account.

The first best can be implemented if incentives can be modulated via monetary
transfers. To achieve this, the government sets a (positive or negative) price zt for a
test. In addition, a compensation zq for individuals who decide to go into quarantine
without testing may be set. Specifically, if pq ≥ pt , then by setting zt = v(pt ), an
individual of type pt becomes indifferent between testing and not testing. Because
in this case no untested individual is to be quarantined, no further compensation is
needed, that is zq = 0.

Suppose now pq < pt . Then the price zt = v(pt )+cq makes an individual of type
pt indifferent between testing andnot testing. In addition, byoffering the compensation
zq = cq for any individual who decides to go into quarantine, all untested individuals
become indifferent, so that the first best is again incentive compatible.

Actual government regulation of epidemics typically does not rely much on explicit
monetary incentives. Accordingly, in the rest of the paper, we focus on optimal regula-
tion without monetary incentives. This will lead to rather different insights concerning
what the government should do.

3.2 The structure of optimal regulation schemes

Next we present our core result; it resolves the structure of optimal regulation
schemes. The result reveals four different categories of solutions: no-testing-always-
quarantining, laissez faire, setting up testing incentives, and testing disincentives. The
latter three categories correspond to ranges of a one-dimensional parameter, the testing
threshold p̌.

Proposition 2 It is either optimal for the government to test nobody and quarantine
everybody, or the government’s problem has a solution (m∗, q∗) that takes the fol-
lowing form. There exists p̌ ∈ [p, p] such that, for all types p, the optimal testing
schedule is

m∗(p) =
{
0 if p < p̌,
m̌ if p ≥ p̌,

where

m̌ = cq

cq + max{v( p̌), 0} . (10)

Moreover, we distinguish the following cases.
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“Laissez faire” If p̌ = p∗, then m̌ = 1 and the optimal quarantining probability for
untested individuals is

q∗(p) = 0 for all p < p̌.

“Testing incentives” If p̌ < p∗, then m̌ = 1 and the optimal quarantining probability
for untested individuals is

q∗(p) = −v( p̌)

cq
> 0 for all p < p̌.

“Testing disincentives” If p̌ > p∗, then m̌ < 1 and, for all p, the optimal quarantining
probability for untested individuals is

q∗(p) =
{
0 if p < p̌,
1 if p ≥ p̌.

No-testing-always-quarantining should be interpreted here as saving any available
testing capacity for a different population of individuals or for use at another point in
time.

The central insight underlying the other three solution categories is that the optimal
scheme only makes use of a binary information. In essence, it asks whether the indi-
vidual believes its risk is small (type below p̌) or large (type above p̌). The government
could implement schemes such that the testing probability is strictly increasing across
a range of types, but such complicated schemes would not bring any improvements.
Rather, all individuals with risk types below the threshold p̌ are not tested, and all other
individuals are tested with a fixed probability m̌. The binary-information property is
analogous to an optimal auction with a single agent (Myerson 1981). However, we can
have m̌ < 1 whereas in an auction it is never optimal for the seller to sell a fraction of
the good.

Laissez fairemeans that the individual behavior remains unregulated. All typeswith
positive values for getting tested (i.e., types above p̌ = p∗) are tested for sure (i.e.,
m̌ = 1), and all other types are not tested. No social distancing of untested individuals
is required (i.e., q∗(p) = 0 for all p < p̌).

Another possibility for the optimum is that the government sets up testing incentives
(i.e., p̌ < p∗, or v( p̌) < 0). Intuitively, test capacities are relatively abundant so that
the government tests more individuals than would like to get tested in the absence of
regulation. In order to make individuals with negative values for getting tested reveal
themselves, some social distancing (i.e., q∗(p) > 0) is enforced for individuals who
remain untested. This lowers each individual’s payoff from not getting tested. (Note
that an extreme possibility is that p̌ = p, that is, everybody is tested.)

The remaining last possibility for the optimum is that the government sets up testing
disincentives (i.e., p̌ > p∗, or v( p̌) > 0). Intuitively, test capacities are relatively
scarce so that the government tests fewer individuals than would like to get tested
in the absence of regulation. In order to prevent individuals with positive values for
getting tested from seeking a test, randomized testing is introduced. Only a randomly
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selected fraction m̌ < 1 of the individuals who claim to have types above p̌ are tested,
and each individual of such a type that does not belong to the tested fraction is put in
quarantine for sure. Each individual now faces a gamble if she asks to get tested: with
some probability she is then not tested and is still put in quarantine, whereas she would
not have been put in quarantine had she not asked for a test. Individuals with higher
types are more willing than those with lower types to take such a gamble because for
them the test is more valuable, while the hassle of being put in quarantine for those
who do not get a test is type-independent.14

The proof of Proposition 2 is relegated to Sect. 4.

3.3 Numerical examples

In this section, we illustrate the optimal regulation scheme via some numerical exam-
ples (the computations rely on the characterization of the optimal testing threshold in
the next section).

3.3.1 Combined importance of test scarcity and average infection risk

Our first numerical example illustrates the combined importance of the scarcity of tests
and the average infection risk in the population. Both dimensions affect the optimal
regulation scheme.

Specifically, we consider a parameterized class of type distributions

F(p) =
(
p − p

p − p

)β

,

where we assume that the lowest type p = 0.1, the highest type p = 0.8, and the
parameter β ranges from 0.1 to 1.5. The larger β the more probability mass is shifted
to higher-risk types, in the sense of first-order stochastic dominance. Thus, a larger β

captures a population that is more at risk.
To model different degrees of test scarcity, we consider testing costs cgt that range

from 1 to 4.
Figure 2 illustrates the respective optimality of three of the four basic regulation

regimes (because no-testing-always-quarantining is never optimal in the example), as
a function of the testing cost cgt and the riskiness parameter β. All other parameters
are fixed as described in the caption of Fig. 2.

Figure 2 shows that the combination of a low testing cost and a relatively high
riskiness (the upper-left area) implies that setting up testing incentives is optimal.
The opposite, a combination of a high testing cost and a sufficiently low riskiness
(the lower-right area) implies that setting up testing disincentives is optimal. In the
remaining middle area, laissez faire is optimal.

14 Note that one possibility is that p̌ = p. Such a solution is essentially equivalent to no-testing-no-
quarantining (strictly speaking, the highest type, p, is tested with a positive probability, but this exact type
occurs with probability 0, and the government may as well not test this type).
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Fig. 2 Parameter constellations such that setting up testing incentives is optimal (upper left region), laissez
faire is optimal (middle region), and setting up testing disincentives is optimal (lower right region). For this
diagram, it is assumed that p = 0.8, p = 0.1, F(p) = ((p− p)/(p− p))β , y = 1, b = 4, cq = 4, ct = 1,
bq = 8, cgq = 0.1. Consequently, p∗ = 0.25. The upper left region represents pairs (cgt , β) such that
p̌ < p∗; the middle region represents pairs (cgt , β) such that p̌ = p∗; the lower right region represents
pairs (cgt , β) such that p̌ > p∗. (The computations were performed using Mathematica 12.)

The presence of a parameter area where laissez faire is optimal is noteworthy. This
is a striking difference to the first-best solution, where laissez faire essentially never
occurs. Intuitively speaking, optimality of the laissez faire means that influencing an
individuals’ testing decisionswould be so costly for the regulator (in terms of distorting
the quarantining) that she renounces the attempt. The possible optimality of laissez
faire is a general feature of optimal regulation, as Corollary 6 below will show.

3.3.2 Dependence of the testing threshold on the testing cost

Our second example illustrates how the testing intensity varies with the scarcity of
the government’s testing capacity. Formally, we consider the optimal threshold type
p̌ as a function of the government’s testing cost cgt . In our example, the testing cost
ranges from 0 to 12. All other parameters are defined in the caption of Fig. 3 or
Fig. 4, respectively. The only difference between the figures stems from the cost of
quarantining cq .

Consider Fig. 3, where cq = 3. If the testing cost cgt is small, it is optimal to test
everybody, that is p̌ = p. Next there is a range of testing costs in which it is optimal to
set up testing incentives, but not everybody is tested, that is, p < p̌ < p∗ = 0.25. This
is followed by a range of testing costs such that laissez faire is optimal. If the testing
cost is even higher, it becomes optimal to provide ever stronger testing disincentives.
At the point cgt ≈ 6, testing capacity is so scarce that no-testing-always-quarantine is
optimal if the cost is even higher.

The second-best solution is strikingly different from of the first-best solution at
the same parameter values that was illustrated in Fig. 1. At low testing costs (cgt

below ≈ 3.7), the first best relies on testing some types without extra quarantining of
untested types, but the marginally tested type is different in the second best, where
type-revelation incentives are provided via social-distancing of untested types or via
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Fig. 3 Example of a government’s second-best optimal marginally tested type, p̌, as a function of the
government’s cost of a test unit, cgt . The cases in which cgt > cgt , where no-testing-always-quarantining
is optimal, are represented via a negative value of p̌. For this diagram, it is assumed that F is the uniform
distribution on the interval [p, p] = [0.1, 0.8], y = 1, b = 4, cq = 3, ct = 1, bq = 8, cgq = 0.1. The
computations were performed using Mathematica 12

Fig. 4 Example of the government’s second-best optimal marginally tested type, p̌, as a function of the
government’s cost of a test unit, cgt . If the testing cost is sufficiently high, then p̌ = p, that is, no-testing-
no-quarantining is optimal. For this diagram, it is assumed that F is the uniform distribution on the interval
[p, p] = [0.1, 0.8], y = 1, b = 4, cq = 4, ct = 1, bq = 8, cgq = 0.1. The computations were performed
using Mathematica 12

randomized testing. At higher testing costs (cgt above ≈ 3.7), the first best relies
on selectively quarantining a strict subset of the untested types. In the second best,
this is not possible: without testing, the regulator can only quarantine everybody or
nobody. As a result, the second best relies on some testing longer—up to the cost level
cgt ≈ 6—than the first best, where testing stops already at cost level cgt ≈ 5.3.

The case of Fig. 4 differs from the case of Fig. 3 because now we assume that
quarantine is more unpleasant, cq = 4. As in Fig. 3, there is a range of testing cost
levels such that laissez faire is optimal, and if testing cost are even higher, it becomes
optimal to provide ever stronger testing disincentives. In contrast to the example of
Fig. 3, however, no-testing-no-quarantine is optimal if testing capacities are sufficiently
scarce. This reflects the high individual cost of quarantine.
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Several lessons can be drawn from the example. First, the higher the testing cost the
less testing occurs in the optimal regulation scheme; this will be shown as a general
result in Corollary 7 below. Second, if the testing cost is very high, then all testing
ceases, and two different schemes can be optimal: quarantine everybody or quarantine
nobody. Third, as in the example of Fig. 2, laissez faire is optimal for a range of cost
levels.

3.4 Optimal regulation: full characterization and comparative statics

In this section,we characterize the cases inwhich no-testing-always-quarantine is opti-
mal and, concerning the remaining cases, characterize the optimal testing threshold p̌
(Proposition 4). Using this result, we obtain a simpler characterization of the respec-
tive parameter areas where each of the four regimes—no-testing-always-quarantine,
laissez faire, testing incentives, and testing disincentives—are optimal (Proposition 5).
We use these characterizations to show that the optimality of laissez faire is not non-
generic (Corollary 6), and to obtain comparative-statics results with respect to the
government’s cost of providing tests (Corollary 7).

Some auxiliary functions must be specified. For all types p, define

B(p) =
(

−bp − cgt − cgq

cq
v(p)

)
F(p)

+
(
b + bq y + bq

cq
v(p)

)
Ep′∼F [p′|p′ ≤ p]F(p). (11)

For all λ ≥ 0 and all types p, define

Aλ(p) = B(p) + 1p>p∗ · v(p)(λ − λ∗), (12)

where

λ∗ = −1 + bq Ep′∼F [p′] − cgq

cq
.

For all λ ≥ 0, define

αλ = −min
p

Aλ(p) + A0(p) − λcq . (13)

The following lemma implies that the function λ 	→ αλ is strictly decreasing on
[0,∞), and, by the Intermediate-value Theorem, intersects the horizontal axis. Thus,

there exists a unique λ̌ such that αλ̌ = 0. The proof is straightforward and is relegated
to the “Appendix”.

Lemma 3 The function λ 	→ αλ is Lipschitz continuous. Its derivative satisfies the
inequalities −v(p) − cq ≤ dαλ/dλ ≤ −cq . Moreover, α0 ≥ 0, and αλ < 0 for all
sufficiently large λ.

123



Optimal testing and social distancing of individuals… 167

Proposition 4 characterizes the optimal value of the threshold type p̌ that was left
as a free parameter in Proposition 2. The result also yields a computational path to
solving the government’s problem for any parameter constellation.

Proposition 4 Let λ̌ ≥ 0 be such that αλ̌ = 0. If λ̌ ≤ λ∗, then no-testing-always-
quarantine is optimal.

Alternatively, suppose that λ̌ ≥ λ∗. Let p̌ be a minimizer of Aλ̌. Then p̌ yields a
solution for the government’s problem as described in Proposition 2.

The proof of Proposition 4 is relegated to Sect. 4.
Our first application of these results is Proposition 5, where we characterize in a

computationally tractable way the cases in which each of our four solution categories
applies. The characterization refers to the five numbers λ∗, αλ∗

, B(p∗),

B = min
p≤p∗ B(p),

and Aλ, which relies on the auxiliary definitions

l = 1

cq
(A0(p) − B), λ = max{0, l},

and Aλ = min
p≥p∗ A

λ(p) for all λ ≥ 0.

Computing each of the five numbers is straightforward, by plugging in exogeneous
model parameters or solving a one-dimensional minimization problem.

Proposition 5 If λ∗ ≥ 0 and αλ∗ ≤ 0, then no-testing-always-quarantine is optimal.
Alternatively, suppose that λ∗ < 0, or λ∗ ≥ 0 and αλ∗

> 0.
If B ≤ Aλ and B = B(p∗), then laissez faire is optimal, that is, p̌ = p∗.
If B ≤ Aλ and B < B(p∗), then setting up testing incentives is optimal, that is,

p̌ < p∗.
If B > Aλ, then setting up testing disincentives is optimal, that is, p̌ > p∗.

Here is a sketch of the proof (for details see the “Appendix”). The condition for the
optimality of no-testing-always-quarantine means that the strictly decreasing function
λ 	→ αλ has already dipped below the horizontal axiswhen it reaches the pointλ = λ∗.
Thus, it intersects the horizontal axis to the left of the point λ∗, which corresponds to
the condition on λ̌ given in Proposition 4. To understand where the other conditions
arise, suppose for simplicity that l ≥ 0, that is, λ = l. Then

0 = −B + A0(p) − λcq ,

that is, λ is the number at which we would have αλ = 0 if the minimizer p̌ of Aλ

belonged to [p, p∗], that is, if B ≤ Aλ. In this case, by Proposition 4, the government’s

problem has a solution with λ̌ = λ and thus p̌ ≤ p∗. Similar arguments imply that,

if the opposite inequality B > Aλ holds, then λ̌ > λ and the minimizer p̌ of Aλ̌
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cannot belong to [p, p∗], that is, p̌ > p∗. The details of the proof of Proposition 5 are
relegated to the “Appendix”.

See Fig. 2 for an illustration of Proposition 5.

3.4.1 Optimality of laissez faire

The middle region in Fig. 2 indicates that it is often optimal for the regulator to do
nothing. This is an important lesson from the presence of private information in our
model: the optimality of laissez faire is not a non-generic case, in contrast to the
situation if information is public (or if monetary transfers are feasible). A general
sufficient condition is that the individual’s current well-being is sufficiently important
relative to the spread of the disease.

Corollary 6 If, for given values of the other parameters, the public cost and benefit
parameters cgt , cgq , and bq , are sufficiently close to 0, then laissez faire is optimal,
that is, p̌ = p∗.

To obtain a heuristic argument towards the proof, consider the hypothetical limit case
cgt = cgq = bq = 0. By definition of λ∗, we have λ∗ = −1 < 0. Hence, by
Proposition 5 there exists an optimal regulation scheme with some threshold type p̌.
Also note that (11) implies that

B(p) = bEp′∼F [1p′≤p · (−p + p′)],

which has the slope

B ′(p) = −bF(p) < 0,

implying that B is strictly decreasing.
On the other hand, (12) together with λ∗ = −1 implies that, for all p > p∗ and all

λ ≥ 0,

Aλ(p) = B(p) + v(p)(λ + 1),

which has the slope

(Aλ)′(p) = B ′(p) + b(λ + 1) ≥ b(1 − F(p)) > 0,

implying that Aλ is strictly increasing for all p ≥ p∗.
We conclude that Aλ, and in particular Aλ̌, is minimized at p∗, showing that p̌ = p∗

by Proposition 4. The arguments above are easily extended to the case in which the
parameters cgt , cgq , and bq are not exactly equal to 0, but are sufficiently close to 0;
the details are omitted.

The first-best solution described in Proposition 1 is different. If the public cost and
benefit parameters cgt , cgq , and bq are close to 0, but not exactly equal to 0, then,
generically, pt �= p∗, that is, the first-best solution differs from laissez faire. In other
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words, while the omniscient government’s optimal rule (or the optimal scheme with
monetary transfers) reacts with some active regulation to even the slighest concern
about public costs and benefits, a government that must take the incentive constraints
into account optimally sticks to laissez faire if public costs and benefits are small.

3.4.2 Comparative statics with respect to the government’s testing cost

To further understand the optimal regulation scheme, we describe the role of the cost
parameter cgt . We distinguish the case in which the individuals have a strong dislike of
quarantining (i.e., cq above a threshold) and the opposite casewhere curbing the spread
of the disease is considered relatively more important (i.e., cq below the threshold).
In both cases the range of tested types is decreasing in the testing cost cgt ,15 and in
the infinite-cost limit nobody is tested anymore. The quarantining in the infinite-cost
limit, however, is diametrically different across the two cases, with nobody being
quarantined in the first case and everybody in the second.

Corollary 7 Consider the case cq ≥ bq Ep′∼F [p′]−cgq . Then there exists amarginally
tested type p̌. Moreover, choosing either the minimal or the maximal p̌ in case of
multiplicity, p̌ is weakly increasing in cgt , and p̌ → p as cgt → ∞.

Consider the case cq < bq Ep′∼F [p′] − cgq . Then there exists a threshold cgt such
that, for all cgt < cgt , the marginally tested type p̌ (choose the minimal or maximal
p̌ in case of multiplicity) is weakly increasing in cgt ; no-testing-always-quarantine is
optimal for all cgt ≥ cgt .

The proof of Corollary 7—which is rather technical due to the implicit nature
of the definition of p̌—is relegated to the “Appendix”. Figure3 illustrates the case
cq < bq Ep′∼F [p′] − cgq ; Fig. 4 illustrates the case cq > bq Ep′∼F [p′] − cgq .

4 Proof of Proposition 2 and Proposition 4

As a first step, we rewrite the government’s problem as a convex maximization prob-
lem over testing schedules m(·). As a second step, we show that the solution m∗(·)
described in Proposition 2 and Proposition 4 satisfies the (Lagrangian first-order) suf-
ficient conditions for solving the problem as rewritten in the first step. As a third step,
we show that the optimal social-distancing schedule q∗(·) described in Proposition 2
and Proposition 4 is a consequence of the optimal testing schedule m∗(·).

4.1 Step 1: rewriting the government’s problem

Using standard techniques frommechanism design (see, e.g., Börgers (2015), Chapter
3), we have the following result.

15 From (10) it follows that the testing probability also decreases.
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Lemma 8 A rule (m, q) is incentive compatible if and only if16

U (p, p) = b
∫ p

p∗
m(p′)dp′ +U (p∗, p∗) for all p, (14)

and m(p) ≤ m(p′) for all p < p′. (15)

The first condition (14) is an envelope or integrability condition that yields a “revenue-
equivalence” result: the testing schedule m(·) determines the individual’s expected
utility as a function of the type, up to the constant (setting p̂ = p = p∗ in (6))

U (p∗, p∗) = −cq(1 − m(p∗))q(p∗).

Plugging this into the integrability condition (14) and using again the individual utility
expression (6), we get, for each type p, a condition for the quarantine probability q(p)
such that the integrability condition is satisfied:

v(p)m(p) − cq(1 − m(p))q(p) = b
∫ p

p∗
m(p′)dp′ − cq(1 − m(p∗))q(p∗).

Rearranging, we can express the cost of the expected quarantine of an untested
individual,

(1 − m(p))q(p) = ψm,q(p∗)(p), (16)

where we use the shortcut

ψm,q(p∗)(p) = 1

cq

(
v(p)m(p) − b

∫ p

p∗
m(p′)dp′

)
+ (1 − m(p∗))q(p∗).

(17)

Now consider a schedule m(·) that satisfies the monotonicity condition (15).
Wewould like to characterize the set ofm(·) such that (m, q) is incentive compatible

for some quarantining schedule q(·). Given somem(·), the question is then whether or
not there exists q(·) that satisfies the probability condition (5) such that the equation
(16) holds.

Multiplying (5) with 1 − m(q), we obtain the essentially equivalent condition

0 ≤ (1 − m(p))q(p) ≤ 1 − m(p) for all p, (18)

(Note that this condition, in contrast to (5), leaves q(p) undetermined ifm(p) = 1; this
change, however, is inessential because the quarantining probability q(p) is irrelevant
for an individual who is tested for sure.)

16 We use the convention
∫ p
p∗ · · · = − ∫ p∗

p . . . for all p < p∗.
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Plugging (16) into (18), the condition reads

0 ≤ ψm,q(p∗)(p) ≤ 1 − m(p) for all p. (19)

Note that this condition implies 0 ≤ q(p∗) ≤ 1 if m(p∗) < 1. Thus, we can consider
q(p∗) as a free variable in the following.

The next step is to express the welfareW as a function of the testing schedule m(·)
and q(p∗). This is achieved by plugging into (9) the expressions obtained in (14) and
(16), giving

W = Ep∼F

[
b

∫ p

p∗
m(p′)dp′ − cq(1 − m(p∗))q(p∗)

×
∫ p

p
+ (

bq yp − cgt
)
m(p) + (

bq p − cgq
)
ψm,q(p∗)(p)

]
. (20)

In summary, the government’s goal is to solve the following problem:

max
m(·), q(p∗)

W s.t. (4), (15), (19).

The left condition in (19) is satisfied for all p if and only if it is satisfied for the p that
minimizes the function ψq(p∗),m(p). The minimizer is p = p∗; to see this, consider
any p �= p∗ and note that

(
ψq(p∗),m(p) − ψq(p∗),m(p∗)

)
cq

= v(p)m(p) − b
∫ p

p∗
m(p′)dp′ = b(p − p∗)m(p) − b

∫ p

p∗
m(p′)dp′.

Due to (15), the last integral is bounded above by (p− p∗)m(p), showing thatψ(p) ≥
ψ(p∗).

Thus we can replace the left condition in (19) by the simpler condition 0 ≤
ψq(p∗),m(p∗) or, equivalently, using (17), by the condition

0 ≤ (1 − m(p∗))q(p∗). (21)

The right condition in (19) is satisfied for all p if and only if it is satisfied for the p
that maximizes the function ψq(p∗),m(p) + m(p). The maximizer is p = p; to see
this, consider any p < p and note that

(
ψq(p∗),m(p) + m(p) − ψq(p∗),m(p) − m(p)

)
cq

= (v(p) + cq)m(p) − (v(p) + cq)m(p) − b
∫ p

p
m(p′)dp′

︸ ︷︷ ︸
≤(p−p)m(p) by (15)

.
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Due to (3), v(p) + cq > 0. Thus, again using that m(p) ≤ m(p) from (15), we can
continue the above equation via the estimation

≥ (v(p) + cq)m(p) − (v(p) + cq)m(p) − (b − cq)(p − p)m(p)

= (v(p) − v(p))m(p) − b(p − p)m(p)

= 0,

where the last equality relies on the definition of v in (1).
Thus, we can replace the right condition in (19) by the simpler condition

ψq(p∗),m(p) ≤ 1 − m(p) or, equivalently, using (16), by the condition

(1 − m(p∗))q(p∗) ≤ 1 − m(p) − 1

cq

(
v(p)m(p) − b

∫ p

p∗
m(p′)dp′

)
. (22)

At this point, it is useful to take stock: we have replaced the condition (19), which is
required for all p, by two one-dimensional conditions: (21) provides a lower upper
bound for q(p∗) if m(p∗) < 1, and (22) provides an upper bound.

Now we can eliminate the variable q(p∗) from the government’s problem.
According to (17) and (20), the dependence of W on q(p∗) is described by the

additive term

(
bq Ep∼F [p] − cgq − cq

)
(1 − m(p∗))q(p∗).

Thus, W is linear with respect to q(p∗), with slope (1 − m(p∗))λ∗cq , where

λ∗ = bq Ep∼F [p] − cgq

cq
− 1.

In the following computations, we have to distinguish two cases, depending on the
sign of λ∗. Suppose first that

λ∗ ≤ 0. (23)

Then W is weakly decreasing in q(p∗). Thus, there exists an optimal q(p∗) that hits
the lower bound provided by (21), that is,

q(p∗) = 0. (24)

Plugging (24) into (22), we have

0 ≤ 1 − m(p) − 1

cq

(
v(p)m(p) − b

∫ p

p∗
m(p′)dp′

)
.
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This (one-dimensional) condition replaces (19) in the government’s optimization.
Rearranging, we obtain the equivalent condition

(v(p) + cq)m(p) − b
∫ p

p∗
m(p′)dp′ ≤ cq . (25)

Next we rewrite the welfare W . Plugging (24) into (17), we get

ψm,q(p∗)(p) = 1

cq

(
v(p)m(p) − b

∫ p

p∗
m(p′)dp′

)
, (26)

and plugging (24) into (20) we get

W = Ep∼F

[
b

∫ p

p∗
m(p′)dp′

×
∫ p

p
+ (

bq yp − cgt
)
m(p) + (

bq p − cgq
) 1

cq

(
v(p)m(p) − b

∫ p

p∗
m(p′)dp′

)]
.

= Ep∼F

[(
1 − bq p − cgq

cq

)
b

∫ p

p∗
m(p′)dp′

]

+Ep∼F

[(
bq yp − cgt + bq p − cgq

cq
v(p)

)
m(p)

]

= −
∫ p

p

∫ p

p∗
κ(p) b m(p′)dp′dp +

∫ p

p
L(p)m(p)dp, (27)

where we have used the auxiliary functions

κ(p) =
(

−1 + bq p − cgq

cq

)
f (p) (28)

and L(p) =
(
bq yp − cgt + bq p − cgq

cq
v(p)

)
f (p). (29)

The first of the two terms in (27) can be rewritten into a more useful form. To do this,
we split it into two integrals:

−
∫ p

p

∫ p

p∗
m(p′)κ(p)dp′dp =

∫ p∗

p

∫ p∗

p
m(p′)κ(p)dp′dp

−
∫ p

p∗

∫ p

p∗
m(p′)κ(p)dp′dp.

Each of these double integrals can be simplified via changing the order of integration.

∫ p∗

p

∫ p∗

p
m(p′)κ(p)dp′dp =

∫ p∗

p

∫ p′

p
m(p′)κ(p)dpdp′ =

∫ p∗

p
K (p′)m(p′)dp′,
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where we have used the auxiliary function

K (p) =
∫ p

p
κ(p′)dp′ (30)

Similarly, the second integral can be written as

−
∫ p

p∗

∫ p

p∗
m(p′)κ(p)dp′dp = −

∫ p

p∗

∫ p

p′
m(p′)κ(p)dpdp′

=
∫ p

p∗
(K (p′) − K (p))m(p′)dp′.

Summing up,

−
∫ p

p

∫ p

p∗
m(p′)κ(p)dp′dp =

∫ p

p

(
K (p′) − 1p≥p∗ · K (p)

)
m(p′)dp′.

Note that

K (p) = λ∗.

Thus, (27) has been simplified as

W =
∫ p

p

(
bK (p) + L(p) − 1p≥p∗ · bλ∗)m(p)dp. (31)

So far we have achieved the following reformulation of the government’s problem

(case λ∗ ≤ 0) s.t. max
m(·) (31) s.t. (4), (15), (25).

We can use, e.g., the space PC[p, p] of right-continuous and piecewise continuous
functions for the testing chedules m(·); this is a linear vector space. The constraints
(4) and (15) define a convex subset � of PC[p, p]. Then the government’s problem
can be written as

(case λ∗ ≤ 0) s.t. max
m(·)∈�

(31) s.t. (25).

Now suppose that

λ∗ ≥ 0. (32)

Then the government’s objectiveW is weakly increasing in q(p∗). Hence, it is optimal
to choose q(p∗) such that it hits the upper bound provided by (22). We can proceed
analogously to the case (23), obtain the welfare expression
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W =
∫ p

p
(bK (p) + L(p))m(p)dp − K (p)

(
(v(p) + cq)m(p) − cq

)
, (33)

and can write the government’s problem as

(case λ∗ ≥ 0) s.t. max
m(·)∈�

(33) s.t. (25).

4.1.1 Step 2: solving the rewritten problem

We will now show that the solution m∗ described in Proposition 2 and Proposition 4
solves the government’s problem as reformulated in Step 1.

As in Step 1, we distinguish two cases depending on the sign of λ∗. Suppose first
that λ∗ ≤ 0.

Consider the reformulated problem from Step 1 (case λ∗ ≤ 0). The following
two Lagrangian conditions are sufficient for a solution (see, e.g., Luenberger (1968),
Chapter 8). First, there exists a number λ ≥ 0 (“Lagrange multiplier”) such thatm∗(·)
solves the problem

max
m(·)∈�

∫ p

p

(
bK (p) + L(p) − 1p≥p∗ · bλ∗)m(p)dp

− λ

(
(v(p) + cq)m(p) − b

∫ p

p∗
m(p′)dp′

)
. (34)

Second, (25) is satisfied with equality at m = m∗.
In order to show that m∗ satisfies these conditions, we begin by rewriting the

objective of the Lagrangian problem (34):

W λ =
∫ p

p

≡aλ(p)︷ ︸︸ ︷(
bK (p) + L(p) + 1p≥p∗ · b (

λ − λ∗))m(p)dp

−λ(v(p) + cq)m(p). (35)

In order to further rewriteW λ, we introduce additional notation. For any type p, define
the conditional expectations

η(p) = Ep′∼F [p′|p′ ≤ p],
η2(p) = Ep′∼F [(p′)2|p′ ≤ p].

Thus, using integration by parts,

∫ p

p
F(p′)dp′ = −

∫ p

p
p′ f (p′)dp′ + pF(p) = (p − η(p))F(p). (36)
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Similarly,

∫ p

p

∫ p′

p
p′′ f (p′′)dp′′dp′ = −

∫ p

p
(p′)2 f (p′)dp′ + p

∫ p

p
f (p′′)dp′′

= (pη(p) − η2(p))F(p). (37)

Using (28) and (30),

K (p) = −
(
1 + cgq

cq

)
F(p) + bq

cq

∫ p

p
p′ f (p′)dp′.

Thus, using (36) and (37),

∫ p

p
K (p′)dp′ = −

(
1 + cgq

cq

)
(p − η(p))F(p) + bq

cq
(pη(p) − η2(p))F(p).

Using the definition (29),

L(p) =
(

−cgt + cgq

cq
ct

)
f (p) +

(
bq y − bq

cq
ct − cgq

cq
b

)
p f (p) + bq

cq
bp2 f (p).

Thus,

∫ p

p
L(p′)dp′ =

(
−cgt + cgq

cq
ct

)
F(p) +

(
bq y − bq

cq
ct − cgq

cq
b

)
η(p)F(p)

+bq

cq
bη2(p)F(p). (38)

Combining the derived expressions,

∫ p

p

(
bK (p′) + L(p′)

)
dp′ =

(
−b

(
1 + cgq

cq

)
p − cgt + cgq

cq
ct

)
F(p)

+
(
b

(
1 + bq

cq
p

)
+ bq y − bq

cq
ct

)
η(p)F(p)

=
(

−bp − cgt − cgq

cq
v(p)

)
F(p)

+
(
b + bq y + bq

cq
v(p)

)
η(p)F(p)

= B(p).

where we have used the definition (11). Thus, by definition of the function aλ,

∫ p

p
aλ(p′)dp′ =

∫ p

p

(
bK (p′) + L(p′) + 1p′≥p∗ · b (

λ − λ∗)) dp′
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= B(p) + 1p≥p∗ · b(p − p∗)︸ ︷︷ ︸
=v(p) by (2)

(
λ − λ∗)

= Aλ(p),

where the last equality follows from (12).
With this in mind, we apply integration by parts to the right-hand side of (35),

yielding

W λ = −
∫ p

p
Aλ(p)dm(p) + Aλ(p)m(p) − λ(v(p) + cq)m(p),

where m is interpreted as a c.d.f.
Note that, using the definition (12),

Aλ(p) = B(p) + v(p)(λ − λ∗).

Thus, we obtain the simplified formula

W λ = −
∫ p

p
Aλ(p)dm(p) + (

B(p) − v(p)λ∗ − λcq
)
m(p)

= −
∫ p

p
Aλ(p)dm(p) +

(
A0(p) − λcq

)
m(p). (39)

Now consider specifically the Lagrange multiplier λ = λ̌ from Proposition 4. Fixing

any m(p) (0 ≤ m(p) ≤ 1), W λ̌ is maximized if m puts all of the mass m(p) on a

point p̌ where Aλ̌ is minimized, that is,

m(p) =
{
0 if p < p̌,
m(p) if p ≥ p̌.

Given such an m, the value of the Lagrangian can be written as

W λ̌ =
(

−min
p

Aλ̌(p) + A0(p) − λ̌cq
)
m(p) = αλ̌m(p) = 0.

In particular, m∗ as described in Proposition 2 maximizes W λ̌. Thus, the first of the
two Lagrangian conditions is satisfied.

It remains to verify the second condition, that the constraint (25) is satisfied with
equality.

Suppose that p̌ ≤ p∗. Then m∗(p) = m̌ = 1 according to the formula given for m̌
in Proposition 2. Thus, (25) is satisfied with equality because
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(v(p) + cq)m∗(p) − b
∫ p

p∗
m∗(p′)dp′ = (v(p) + cq)m̌ − b(p − p∗)m̌ = cqm̌

= cq ,

where we have used the definitions of v(p) and p∗.
Now suppose that p̌ > p∗. Then at m(p) = 1 the left-hand side of (25) would

be strictly larger than cq . Thus, there exists m̌ < 1 such that, at m(p) = m̌, (25) is
satisfied with equality. It is straighforward to check that the formula for m̌ given in
Proposition 2 yields the required value.

Now consider the reformulated problem from Step 1 (case λ∗ ≥ 0). The following
three Lagrangian conditions are sufficient for a solution (see, e.g., Luenberger (1968),
Chapter 8). First, there exists a number λ2 ≥ 0 (“Lagrangemultiplier”) such thatm∗(·)
solves the problem

max
m(·)∈�

∫ p

p
(bK (p) + L(p))m(p)dp − λ∗ (

(v(p) + cq)m(p) − cq
)

− λ2

(
(v(p) + cq)m(p) − b

∫ p

p∗
m(p′)dp′

)
. (40)

Second, (25) is satisfied at m = m∗. Third, if (25) is satisfied with strict inequality at
m = m∗, then λ2 = 0.

In order to show that m∗ satisfies these conditions, we begin by rewriting the
objective of the Lagrangian problem (40):

=
∫ p

p

(
bK (p) + L(p) + λ2b1p≥p∗

)
m(p)dp − (λ2 + λ∗)(v(p) + cq)m(p) + λ∗cq

= W λ2+λ∗ + λ∗cq , (41)

where the last equality is immediate from a comparison with (35). Note that the term
λ∗cq is constant and thus can be dropped from the maximization problem.

First we consider the case λ̌ ≤ λ∗. Fix the Lagrange multiplier λ2 = 0. Then,

αλ2+λ∗ ≤ 0 (42)

because α is a decreasing function.
Fixing any m(p) (0 ≤ m(p) ≤ 1) and applying (39) with λ = λ2 + λ∗, we see that

the objective of the Lagrangian problem is maximized if m puts all of the mass m(p)
on a point p̌ where Aλ2+λ∗

is minimized, that is,

m(p) =
{
0 if p < p̌,
m(p) if p ≥ p̌.
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Given such an m, the value of the Lagrangian can be written as

W λ2+λ∗ = αλ2+λ∗
m(p) + λ∗cq ,

and, due to (42), this expression is maximized by settingm(p) = 0. That is, no testing
is optimal. The constraint (25) is obviously satisfied.

Now suppose that λ̌ ≥ λ∗. Then, we consider the Lagrange multiplier λ2 = λ̌−λ∗.
Using the fact that the Lagrangian can be written in the form (41), the rest of the proof
is as in the case λ∗ ≤ 0 that was treated above.

4.1.2 Step 3: optimal quarantining schedule

As in Step 1 and in Step 2, we distinguish two cases depending on the sign of λ∗.
Suppose first that λ∗ ≤ 0.

Consider first the case p̌ ≤ p∗. Then m̌ = 1. Using the definition of m∗, (16), and
(26), for all p < p̌,

q∗(p) = (1 − m∗(p))q∗(p)
= ψm∗,q(p∗)(p)

= 1

cq

(
v(p)m∗(p) − b

∫ p

p∗
m∗(p′)dp′

)
= − 1

cq
b( p̌ − p∗) = −v( p̌)

cq
,

as was to be shown.
Now consider the case p̌ > p∗. Then m̌ < 1. Using the definition of m∗, (16), and

(26), for all p < p̌,

q∗(p) = (1 − m∗(p))q∗(p) = ψm∗,q(p∗)(p) = 0,

as was to be shown. For all p ≥ p̌, using again the definition of m∗, (16), and (26),

(1 − m̌)q∗(p) = 1

cq

(
v(p)m̌ − b

∫ p

p̌
m̌dp′

)
= 1

cq
(
v(p) − b(p − p̌)

)
m̌

= 1

cq
v( p̌)m̌.

Dividing both sides by 1 − m̌ yields the formula

q∗(p) = v( p̌)
m̌

(1 − m̌)cq
for all p ≥ p̌.

Plugging into the right-hand side the formula (10), we obtain the desired conclusion
q∗(p) = 1.

The arguments in the case λ∗ ≥ 0 are similar and are omitted. This completes the
proof of Proposition 2 and Proposition 4.
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5 Conclusion

Wehave shown that individuals’ private health signals play a crucial role for the optimal
regulation of testing and social distancing in a pandemic. Future research may focus
on diseases for which a vaccination is available, where an individual’s decision to get
vaccinated also depends on private information,17 and on incorporating individuals’
type-dependent testing or vaccination decisions into a dynamic regulation model.

Another possible direction may be a model variation in which agents are system-
atically too pessimistic or optimistic, or have s-shaped probability distortions as in
prospect theory (see Kahneman (2011) for an introduction). A psychological bias
towards overestimating the probability of being infected may be considered a plau-
sible model variation in a population with a small rate of infections when the illness
nevertheless draws a lot of public attention.

6 Appendix

Proof of Proposition 1 We replace the expression (6) for U (p, p) in W and rearrange
terms,

W = Ep∼F
[
v(p)m(p) − cq(1 − m(p))q(p) + bq ypm(p) + bq p(1 − m(p))q(p)

× w1U (p, p) − cgtm(p) − cgq(1 − m(p))q(p)
]

= Ep∼F [C(p)m(p) + D(p)(1 − m(p))q(p)] , (43)

where we use the shortcuts

C(p) = v(p) + bq yp − cgt ,

D(p) = −cq + bq p − cgq .

Note that both C and D are linear and strictly increasing functions of p, and C is
steeper than D because v′(p) + bq y = b + bq y > bq by (8).

Using (43), the welfare-maximizing value of m(p) and q(p) can be determined
separately for each p. Noting that D(pq) = 0, constraint (5) together with (43) shows

that an optimal quarantining schedule is given by18

q∗∗(p) =
{
1 if p ≥ pq ,
0 otherwise.

(44)

17 Pancs (2024) considers such a setting. In contrast to us, he assumes that each individual’s utility is
quasilinear with respect to money and describes a Vickrey–Clarke–Groves auction that allocates vaccine
while taking into account vaccination externalities.
18 It is possible that pq < p, in which case everybody should be quarantined, or pq ≥ p, in which case
nobody should be quarantined.
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Using this schedule, the welfare can be expressed as a function of the testing schedule
m:

W = Ep∼F [C(p)m(p) + max{0, D(p)}(1 − m(p))] .

Thus, by constraint (4), an optimal testing schedule is given by

m∗∗(p) =
{
1 if C(p) − max{0, D(p)} ≥ 0,
0 otherwise.

In order to achieve amore explicit form for the optimal testing schedule, we distinguish
two cases. Suppose first that

pq ≥ pt . (45)

In this case, D(p) ≤ 0 for all p < pt , implying m∗∗(p) = 0. For all p ∈ [pt , pq ],
we have C(p) > 0 and D(p) ≤ 0, implying m∗∗(p) = 1. For all p > pq , it is also
true that m∗∗(p) = 1 because

C(p) − D(p) > C(pq) − D(pq) = C(pq) ≥ C(pt ) = 0,

where the first inequality follows from the fact that C is steeper than D.
Summarizing the insights so far, we have seen that, if condition (45) holds, then

m∗∗(p) =
{
1 if p ≥ pt ,
0 otherwise.

Note that, under condition (45), the optimal quarantining required by (44) never comes
to play: due to (45), all types that are optimally quarantined if they are not tested are
tested anyway.

Secondly, consider the case in which (45) does not hold. Here, C(p) < 0 for all
p ≤ pq , implying m∗∗(p) = 0. For all p > pq , we have D(p) > 0, implying

C(p) − max{0, D(p)} = C(p) − D(p).

Note that the definition of pqt implies

C(pqt ) − D(pqt ) = 0.

Because C(pq) − D(pq) = C(pq) < 0 and C is steeper than D, we have

pqt > pq ,

and thus

m∗∗(p) =
{
1 if p ≥ pqt ,
0 otherwise.
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Thus, in the case where (45) does not hold, the range of types that are tested is
smaller than the range of types that are quarantined. In other words, there is a range of
intermediate types that are quarantined right away, without a test being applied; only
high types are tested. ��

Proof of Lemma 3 Because Aλ(p) is strictly increasing in λ if p > p∗ and is indepen-
dent of λ if p ≤ p∗, the expression minp Aλ(p) is weakly increasing in λ, showing
that αλ is weakly decreasing in λ.

To show that α 	→ αλ is Lipschitz continuous, it remains to verify that there exists
a number L > 0 such that, for all λ2 > λ1,

αλ2 − αλ1 ≥ −L(λ2 − λ1). (46)

To see this, let p1 denote aminimizer of Aλ1 . Thenminp Aλ2(p) ≤ Aλ2(p1), implying

αλ2 − αλ1 ≥ −Aλ2(p1) + Aλ1(p1) − (λ2 − λ1)c
q

= −1p1>p∗ · v(p1)(λ2 − λ1) − cq(λ2 − λ1),

so that Lipschitz continuity is satisfied with L = v(p) + cq .
By Lipschitz continuity, the derivative dαλ/dλ exists almost everywhere. Using

the envelope theorem (Milgrom and Segal 2002), and letting pλ denote a minimizer
of Aλ,

dαλ

dλ
= − d

dλ
min
p

Aλ − cq = −1pλ>p∗ · v(pλ) − cq ,

from which the inequalities stated in the lemma are immediate.
Note that α0 ≥ 0 from (13).
If we choose λ larger than λ∗ − 1

b minp>p∗ dB/dp, then Aλ is strictly increasing on
the interval (p∗, p], showing that any minimizer of Aλ belongs to the interval [p, p∗].
For all p in this interval, we have Aλ(p) = B(p). Thus, for all sufficiently large λ,

αλ = − min
p≤p∗ B(p) + A0(p) − λcq ,

showing that αλ < 0 if λ is sufficiently large. ��

Proof of Proposition 5 Suppose thatλ∗ ≥ 0 andαλ∗ ≤ 0.ByLemma3, there exists λ̌ ≤
λ∗ such that αλ̌ = 0. Thus, Proposition 4 implies that no-testing-always-quarantining
solves the government’s problem.

Now suppose that λ∗ < 0, or λ∗ ≥ 0 and αλ∗
> 0. By Lemma 3, there exists

λ̌ ≥ max{0, λ∗} such that αλ̌ = 0. Thus, Proposition 4 implies that the government’s
problem has a solution with a threshold p̌. Choose p̌ minimal if multiple solutions
exist.
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Note that, for all λ ≥ 0 and all p ≤ p∗, Aλ(p) = B(p). Thus,

min
p≤p∗ A

λ(p) = B.

First consider the case B ≤ Aλ. It is sufficient to show that p̌ ≤ p∗. Note that

B = min
p

Aλ(p) ≤ Aλ(p).

This implies l ≥ 0 because otherwise we would have λ = 0, implying B ≤ A0(p) by
the inequality above, implying l ≥ 0 by the definition of l.

Thus, λ = l.
Suppose that λ̌ < λ. Then Aλ̌ ≤ Aλ, implying

αλ̌ = −min{Aλ̌, B} + A0(p) − λ̌cq > −min{Aλ, B} + A0(p) − λcq

= −B + A0(p) − lcq = 0,

contradicting the definition in Proposition 4.
Thus, λ̌ ≥ λ. In the case B < Aλ, we cannot have a solution with p̌ > p∗ because

this would imply

Aλ̌( p̌) ≥ Aλ( p̌) ≥ Aλ > B,

contradicting the fact that p̌ minimizes Aλ̌ on the interval [p, p].
Similarly, in the case B = Aλ and λ̌ > λ, we cannot have a solution with p̌ > p∗

because this would imply

Aλ̌( p̌) > Aλ( p̌) ≥ Aλ = B,

again contradicting the fact that p̌ minimizes Aλ̌ on the interval [p, p].
In the case B = Aλ and λ̌ = λ, the function Aλ̌ has a minimizer that is ≤ p∗,

showing that p̌ ≤ p∗, as claimed.
Now consider the case B > Aλ. This implies

min{Aλ, B} < B.

Suppose first that l ≥ 0. Then λ = l, implying

αλ = −min{Aλ, B} + A0(p) − λcq > −B + A0(p) − lcq = 0,

Thus, λ̌ > λ because αλ is decreasing.
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Suppose that p̌ ≤ p∗. This would imply B ≤ Aλ̌, thus

αλ̌ = −B + A0(p) − λ̌cq < −B + A0(p) − lcq = 0,

contradicting the definition of λ̌.
Finally, consider the case l < 0, that is, A0(p) − B < 0. Suppose that p̌ ≤ p∗.

This would imply B ≤ Aλ̌, thus

αλ̌ = −B + A0(p) − λ̌cq ≤ −B + A0(p) < 0,

contradicting the definition of λ̌. ��
Proof of Corollary 7 The condition cq ≥ bq Ep′∼F [p′] − cgq is equivalent to the
condition λ∗ ≤ 0.

We indicate the dependence of Aλ on cgt by using the notation Aλ
cgt . Similarly,

we will use the notation αλ
cgt . For any cgt , let λ̌(cgt ) denote the unique point λ where

αλ
cgt = 0 (cf. Lemma 3). For any λ ≥ 0 and any cgt > 0, let pλ

cgt denote the smallest
minimizer of Aλ

cgt (p); the proof will be identical if we select the largest minimizer for
all λ and all cgt .

By Proposition 4, if λ̌(cgt ) < λ∗, then no-testing-always-quarantining is optimal;

otherwise, p̌ = pλ̌(cgt )
cgt is the optimal threshold type at the cost cgt . Thus, it is sufficient

to prove the following four claims:

the function cgt 	→ λ̌(cgt ) is weakly decreasing; (47)

lim
cgt→∞

λ̌(cgt ) = 0. (48)

the function cgt 	→ pλ̌(cgt )
cgt is weakly increasing. (49)

lim
cgt→∞

pλ̌(cgt )
cgt = p, (50)

Recalling the definition (12), the envelope theorem (Milgrom and Segal 2002) yields
that the function cgt 	→ minp Aλ

cgt (p) is Lipschitz continuous and its derivative is, for
Lebesgue-almost every cgt , given by

d

dcgt
min
p

Aλ
cgt (p) = ∂Aλ

cgt

∂cgt
(pλ

cgt ) = −F(pλ
cgt ).

Similarly,

∂

∂cgt
A0
cgt (p) = −1.

Thus, using (13),

∂

∂cgt
αλ
cgt = F(pλ

cgt ) − 1. (51)
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By (51), ∂αλ
cgt /∂c

gt ≤ 0. Together with the fact that αλ
cgt is strictly decreasing in

λ (cf. Lemma 3), this implies (47). Next we show that the function cgt 	→ λ̌(cgt ) is
Lipschitz continuous, implying that its derivative exists almost everywhere.

Consider any two cost levels cgt1 < cgt2 . Then

0 = α
λ̌(cgt2 )

cgt2
− α

λ̌(cgt1 )

cgt1

= α
λ̌(cgt2 )

cgt2
− α

λ̌(cgt2 )

cgt1
−

(
α

λ̌(cgt1 )

cgt1
− α

λ̌(cgt2 )

cgt1

)

=
∫ cgt2

cgt1

∂

∂cgt
α

λ̌(cgt2 )

cgt dcgt −
∫ λ̌(cgt1 )

λ̌(cgt2 )

∂αλ

cgt1

∂λ
dλ. (52)

Thus, using (51) and the estimate −dαλ/dλ ≥ cq from Lemma 3,

0 ≥ (−1)(cgt2 − cgt1 ) +
(
λ̌(cgt1 ) − λ̌(cgt2 )

)
cq ,

implying that

λ̌(cgt1 ) − λ̌(cgt2 ) ≤ 1

cq
(cgt2 − cgt1 ).

This completes the proof that the function cgt 	→ λ̌(cgt ) is Lipschitz continuous.
Because the function is also weakly decreasing,

λ̌′(cgt ) ≤ 0 for Lebesgue-almost every cgt .

Using (12), for all p,

d

dcgt
Aλ̌(cgt )
cgt (p) = −F(p) + 1p>p∗v(p)λ̌′(cgt ).

Thus, for all p1, p2 with p2 > p1, and all cgt1 , cgt2 with cgt2 > cgt1 ,

A
λ̌(cgt2 )

cgt2
(p2) − A

λ̌(cgt2 )

cgt2
(p1) −

(
A

λ̌(cgt1 )

cgt1
(p2) − A

λ̌(cgt1 )

cgt1
(p1)

)

= A
λ̌(cgt2 )

cgt2
(p2) − A

λ̌(cgt1 )

cgt1
(p2) −

(
A

λ̌(cgt2 )

cgt2
(p1) − A

λ̌(cgt1 )

cgt1
(p1)

)

= − (F(p2) − F(p1))︸ ︷︷ ︸
>0

(cgt2 − cgt1 )︸ ︷︷ ︸
>0

+ (
1p2>p∗v(p2) − 1p1>p∗v(p1)

)
︸ ︷︷ ︸

≥0(
λ̌(cgt2 ) − λ̌(cgt1 )

)
︸ ︷︷ ︸

≤0

< 0. (53)
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Recall that

p
λ̌(cgt1 )

cgt1
∈ argmin

p
A

λ̌(cgt1 )

cgt1
(p)

and

p
λ̌(cgt2 )

cgt2
∈ argmin

p
A

λ̌(cgt2 )

cgt2
(p).

Thus, for all p < p
λ̌(cgt1 )

cgt1
,

A
λ̌(cgt1 )

cgt1
(p

λ̌(cgt1 )

cgt1
) − A

λ̌(cgt1 )

cgt1
(p) ≤ 0.

Applying (53) with p2 = p
λ̌(cgt1 )

cgt1
and p1 = p, we conclude that

A
λ̌(cgt2 )

cgt2
(p

λ̌(cgt1 )

cgt1
) − A

λ̌(cgt2 )

cgt2
(p) < 0.

Thus,

p /∈ argmin
p

A
λ̌(cgt2 )

cgt2
(p),

implying that19

p
λ̌(cgt2 )

cgt2
≥ p

λ̌(cgt1 )

cgt1
,

hence (49) follows.
An analogous argument shows that, for all λ ≥ 0, the marginal-type function

cgt 	→ pλ
cgt is weakly increasing, implying that p

λ̌(cgt2 )

cgt ≤ p
λ̌(cgt2 )

cgt2
for all cgt ≤ cgt2 .

Thus, for any two cost levels cgt1 < cgt2 , (51) implies that

∫ cgt2

cgt1

∂

∂cgt
α

λ̌(cgt2 )

cgt dcgt = −
∫ cgt2

cgt1

(
1 − F

(
p

λ̌(cgt2 )

cgt

))
dcgt

≤ −(cgt2 − cgt1 )

(
1 − F

(
p

λ̌(cgt2 )

cgt2

))
.

19 For a general background of this type of monotone-comparative-statics argument, see Milgrom and
Shannon (1994)).
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On the other hand, the estimate −dαλ/dλ ≤ cq + v(p) from Lemma 3 implies that

−
∫ λ̌(cgt1 )

λ̌(cgt2 )

∂αλ

cgt1

∂λ
dλ ≤

(
λ̌(cgt1 ) − λ̌(cgt2 )

) (
cq + v(p)

)
.

In summary, (52) implies that

0 ≤ −(cgt2 − cgt1 )

(
1 − F

(
p

λ̌(cgt2 )

cgt2

))
+

(
λ̌(cgt1 ) − λ̌(cgt2 )

) (
cq + v(p)

)
.

Rearranging this yields the inequality

λ̌(cgt1 ) − λ̌(cgt2 )

cgt2 − cgt1
≥ 1

cq + v(p)

(
1 − F

(
p

λ̌(cgt2 )

cgt2

))
.

Taking the limit cgt1 → cgt2 yields that

− λ̌′(cgt2 ) ≥ 1

cq + v(p)

(
1 − F

(
p

λ̌(cgt2 )

cgt2

))
. (54)

This implies (50) because otherwise the derivative (54) is bounded away from zero
for all cgt , contradicting the fact that λ̌(cgt ) ≥ 0.

To show (48), suppose otherwise. Then there exists a sequence (cgtn )n=1,2,... with
cgtn → ∞ and a number ε > 0 such that λ̌(cgtn ) > ε for all n. Then (13) implies that

lim sup
n

α
λ̌(cgtn )

cgtn

≤ lim sup
n

(
−Aλ̌(cgtn )

cgtn
(pλ̌(cgtn )

cgtn
) + A0

cgtn
(p)

)
− lim inf

n
λ̌(cgtn )cq

≤ lim sup
n

(
−Aλ̌(cgtn )

cgtn
(p) + A0

cgtn
(p)

)
+ lim sup

n

(
Aλ̌(cgtn )

cgtn
(p) − Aλ̌(cgtn )

cgtn
(pλ̌(cgtn )

cgtn
)
)

− lim inf
n

λ̌(cgtn )cq

≤ −v(p)ε + 0 − εcq
(3)
< 0,

contradicting the optimality condition α
λ̌(cgtn )

cgtn
= 0 from Proposition 4. ��
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