
Neural Methods for Link
Prediction in Knowledge Graphs

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Adrian Kochsiek

Mannheim, 2025

Dekan Prof. Dr. Claus Hertling, Universität Mannheim
Referent Prof. Dr. Rainer Gemulla, Universität Mannheim
Korreferent Prof. Dr. Simone Paolo Ponzetto, Universität Mannheim
Korreferent Prof. Dr. Gerard de Melo, Hasso Plattner Institute

Tag der mündlichen Prüfung: 15.01.2025

Abstract

Integrating neural models with multi-relational data poses a significant challenge,
mainly due to the complexity and highly interconnected nature of such data, which is
prevalent in domains such as social networks, knowledge graphs, and biomedical data-
bases. In this context, this thesis explores three key challenges: effectively capturing
multi-relational data for efficient reasoning and integration into downstream applica-
tions, integrating structural and textual information, and managing the evolving nature
of multi-relational graphs. Knowledge graph embeddings (KGE) offer a promising
approach, learning low-dimensional representations for entities and relations to en-
hance tasks such as recommendation, question answering, and visual relationship
detection. However, scalability and quality assurance in KGE models remain issues,
especially with large-scale graphs. Recent frameworks address scalability through
parallelization techniques, but their impact on model quality requires further study.
While extensive hyperparameter optimization can considerably improve the resulting
embedding quality, current optimization methods do not scale to large-scale graphs.
Moreover, integrating textual information with structural data in a simple, scalable,
and versatile manner remains an open problem.

Addressing these challenges, this thesis makes several key contributions. First, it
evaluates and improves the efficiency and effectiveness of parallel training techniques
for KGE models. By re-implementing and extensively testing various parallelization
methods, the study identifies optimal techniques for large-scale KGE training, demon-
strating significant speedups while maintaining model quality. Second, it proposes
GraSH, a scalable hyperparameter optimization algorithm based on successive halv-
ing, achieving state-of-the-art results on large-scale knowledge graphs with minimal
search budgets. Third, the thesis introduces KGT5-context, a novel approach that
integrates structural and textual information by posing link prediction as a sequence-
to-sequence task, achieving or surpassing state-of-the-art results in link prediction
and downstream tasks. Finally, it presents the Wikidata5M-SI benchmark for eval-
uating model performance on dynamic graphs with emerging entities in a realistic,
large-scale setting.

iii

Zusammenfassung

Die Integration von neuronalen Modellen mit multi-relationalen Daten stellt eine
bedeutende Herausforderung dar, aufgrund der Komplexität der verbundenen Daten,
wie sie in Bereichen wie sozialen Netzwerken, Wissensgraphen und biomedizin-
ischen Datenbanken vorkommen. In diesem Kontext untersucht diese Arbeit drei
zentrale Herausforderungen: (i) das effektive Erfassen von multi-relationalen Daten
für effiziente Inferenz und die Integration in nachgelagerte Anwendungen, (ii) die In-
tegration von strukturellen und textuellen Informationen sowie (iii) die Handhabung
der dynamischen Eigenschaft von multi-relationalen Graphen. Knowledge Graph
Embeddingsa (KGE) bieten einen vielversprechenden Ansatz, indem sie niedrigdi-
mensionale Repräsentationen für Entitäten und Relationen lernen, um Aufgaben wie
Empfehlung, Fragebeantwortung und visuelle Beziehungserkennung zu verbessern.
Allerdings bleiben Skalierbarkeit und Qualitätssicherung bei KGE-Modellen Heraus-
forderungen. Neue Frameworks adressieren die Skalierbarkeit durch Parallelisierung-
stechniken, aber deren Auswirkungen auf die Modellqualität bedürfen weiterer Un-
tersuchung. Während umfangreiche Hyperparameter-Optimierung die Qualität der
resultierenden Embeddings erheblich verbessern kann, skalieren aktuelle Optimier-
ungsmethoden nicht auf große Graphen. Zudem bleibt die Integration von textuellen
Informationen mit strukturellen Daten auf einfache, skalierbare und flexible Weise
ein ungelöstes Problem.

Zur Bewältigung dieser Herausforderungen leistet diese Arbeit mehrere wesent-
liche Beiträge. Erstens bewertet und verbessert sie die Effizienz und Effektivität paral-
leler Trainingstechniken für KGE-Modelle. Durch die Neuimplementierung und um-
fangreiche Prüfung verschiedener Parallelisierungsmethoden identifiziert die Studie
optimale Techniken für das Training von KGE Modellen auf großen Graphen und
zeigt eine signifikante Reduzierung der Trainingszeit bei gleichzeitiger Erhaltung der
Modellqualität. Zweitens wird GraSH eingeführt, ein skalierbarer Hyperparameter-
Optimierungsalgorithmus basierend auf “Successive Halving”, der mit minimalen
Suchbudget Ergebnisse auf dem Stand der Technik auf großen Wissensgraphen erzielt.

aMögliche Übersetzung des Fachbegriffs ins Deutsche: Wissensgrapheinbettungen.

v

Drittens führt die Arbeit KGT5-Kontext ein, einen neuartigen Ansatz, der strukturelle
und textuelle Informationen integriert, indem er die Vorhersage von neuen Verbindun-
gen im Graphen als Sequenz-zu-Sequenz-Aufgabe darstellt und dabei den derzeitigen
Stand der Technik in der Linkvorhersage und darauf aufbauenden Aufgaben erreicht
oder übertrifft. Schließlich wird die Wikidata5M-SI-Benchmark vorgestellt, um die
Modellleistung auf großen, dynamischen Graphen mit neuen Entitäten in einem real-
istischen Setting zu evaluieren.

vi

Contents

Abstract iii

Zusammenfassung v

Contents vii

Acknowledgments ix

1 Introduction 1

2 Fundamentals 7
2.1 Knowledge Graphs . 7
2.2 Link Prediction . 9
2.3 Categorization of Link Prediction Approaches 11
2.4 Training . 18
2.5 Evaluation . 21
2.6 Datasets . 22

3 Training of Large-Scale KGE Models 27
3.1 Introduction . 27
3.2 Parallel Training . 29
3.3 Partitioning . 34
3.4 Negative Sampling . 42
3.5 Experimental Study . 45
3.6 Parallel & Subsequent Work . 58
3.7 Conclusion . 60

4 Hyperparameter Tuning for Large-Scale KGE Models 63
4.1 Introduction . 64
4.2 Related Work . 65
4.3 Successive Halving for Knowledge Graphs (GraSH) 68
4.4 Low-fidelity Approximation Techniques 71
4.5 Experimental Study . 75
4.6 Conclusion . 82

5 Sequence-to-Sequence Link Prediction 85
5.1 Introduction . 86
5.2 Related Work . 87

vii

5.3 The KGT5 Model . 91
5.4 Expanding KGT5 with Context . 94
5.5 Experimental Study . 96
5.6 Conclusion . 107

6 Semi-Inductive Link Prediction 109
6.1 Introduction . 110
6.2 Related Work . 111
6.3 The Wikidata5M-SI Benchmark 112
6.4 Semi-Inductive Link Prediction Models 115
6.5 Experimental Study . 116
6.6 Conclusion . 120

7 Conclusions 123

A Additional Material to Chapter 4 127

B Additional Material to Chapter 5 129
B.1 Building a Vocabulary over Features 129

C Additional Material to Chapter 6 131
C.1 Integrating Text into KGE Models 131

Bibliography 135

List of Figures 151

List of Tables 153

List of Algorithms 157

viii

Acknowledgments

I never initially planned to pursue a PhD. With limited interest in research, I started
my master’s thesis primarily as a means to earn a degree. However, during those six
months, my advisor, Rainer Gemulla, along with his PhD students at the time, Daniel
Ruffinelli and Samuel Broscheit, showed me how fascinating and enjoyable research
could be. I want to thank all three of you for sparking my interest in research. Thank
you, Rainer Gemulla, for guiding me on this journey, for pointing me toward exciting
research directions, and especially for your rigorous, detailed feedback, which greatly
improved my research, writing, and presentations. This thesis would not have been
possible without your support.

I am also grateful to Alexander Renz-Wieland for engaging discussions on par-
allel training methods for embeddings and for the support at the start of my PhD.
Additionally, I extend my gratitude to Apoorv Saxena for a great collaboration and
for steering my research into the NLP domain. I would like to express my sincere
thanks to the DWS group for their unwavering support along the way. In particular, I
want to highlight Andreea Iana and Patrick Betz for making every little break more
enjoyable.

This work would not have been possible without the abundance of support I
received from my family and friends during my studies and throughout my PhD.
Thank you all! Finally, I am especially thankful to my incredible fiancée, Linsha Li,
for being my greatest source of support and encouragement over the years, and for all
the wonderful moments we’ve shared and will continue to share. Having you in my
life makes everything better!

ix

C
ha

pt
er 1

Introduction

“I am convinced that the crux of the problem of learning is recognizing
relationships and being able to use them.”

Christopher Strachey in a letter to Alan Turing, 1954

The integration of neural models with multi-relational data represents a pivotal chal-
lenge. Multi-relational data, which encompasses a myriad of interconnected entities
and their relationships, is omnipresent in numerous domains such as social net-
works (El-Kishky et al. 2022), knowledge graphs (Suchanek et al. 2007; Vrandečić
and Krötzsch 2014), and biomedical databases (Gene Ontology Consortium 2004;
Robinson et al. 2008). These complex data structures provide rich contextual inform-
ation that, if effectively harnessed, can significantly enhance the performance and
applicability of neural models. This thesis addresses three key questions within this
context.

(i) How can multi-relational data be effectively captured for efficient reasoning
within the graph and integration into downstream applications?

(ii) How can this structural information be integrated with textual information
describing the entities and relations in such multi-relational graphs?

(iii) How can the ever-changing nature of multi-relational graphs be managed when
capturing and integrating its information?

A prominent modeling approach to addressing the first objective is knowledge
graph embeddings (KGE). These neural models learn low-dimensional representa-
tions, termed embeddings, for each entity and relation within a knowledge graph

1

2 Chapter 1. Introduction

(KG) or any other multi-relational graph. KGE models are typically trained on the
task of link prediction, i.e., predicting new relationships between the entities in the
graph. The resulting embeddings, in turn, allow neural models to integrate the rela-
tional knowledge stored in these representations to be used as features for downstream
tasks, such as recommendation (El-Kishky et al. 2022; Iana et al. 2022), question an-
swering (Huang et al. 2019; Saxena et al. 2020, 2022), query approximation (Hamilton
et al. 2018), as well as visual relationship detection (Baier et al. 2017). While KGs can
scale to millions or even billions of entities and contain a vast set of facts, much of the
literature on KGEs focuses on small KGs (Ali et al. 2021a; Bordes et al. 2013; Chen
et al. 2021; Ruffinelli et al. 2020). For large-scale KGs and integration into real-world
applications, it is crucial that KGEs are scalable and ensure high embedding quality
effectively capturing multi-relational information.

To address scalability, recently, frameworks capable of training KGE models for
large-scale KGs by parallelization across multiple GPUs or machines have been pro-
posed (Lerer et al. 2019; Zhu et al. 2019; Zheng et al. 2020, 2024). These frameworks
employ various parallelization techniques, enabling the handling of large-scale KGs
with reasonable training times. However, the impact of these methods on model qual-
ity has not been comprehensively studied. Ensuring high embedding quality, Ali et al.
(2021a) and Ruffinelli et al. (2020) explored the impact of hyperparameter choices
and training techniques for KGE models on the resulting model quality. They found
the search space to be vast and hyperparameter choices to be dataset- and model-
dependent. For instance, the best configuration found for one model may perform
poorly with another. But these studies focused on small KGs only. Conducting such
an extensive hyperparameter search is generally not cost-efficient or even feasible
on large-scale KGs, where KGE training is expensive in terms of runtime, memory
consumption, and storage cost. To mitigate these excessive costs, the prior studies
focussing on scale either forgo hyperparameter optimization (HPO) altogether or re-
duce runtime and memory consumption by employing various heuristics (Lerer et al.
2019; Zhang et al. 2022; Zheng et al. 2020). The former approach leads to suboptimal
quality, while the latter’s impact on quality and cost has not been studied in a prin-
cipled way. While KGEs are a valuable approach addressing research objective (i) on
a small scale, the described challenges on efficient and effective training and tuning
need to be addressed for the use of KGEs on large-scale data.

Next to valuable structural information, KGs often provide useful textual inform-
ation, such as entity mentions and descriptions. In addition to the described scaling
challenges, KGEs typically disregard these valuable textual sources. However, in-
tegrating both structural and textual information is desirable and should be achieved

3

through a simple and scalable architecture that maintains high quality and allows for
versatile downstream task integration. Initial integration approaches either initialize
or concatenate KGE embeddings with pretrained text embeddings (Hu et al. 2021;
Daza et al. 2021; Xie et al. 2016). More sophisticated approaches directly finetune
Transformer-based architectures on graph tasks (Yao et al. 2019; Clouatre et al. 2021;
Wang et al. 2022). But, all of these approaches lack at least one of the integration
goals of simplicity, scalability, quality, and versatility. A sufficient answer to research
objective (ii) should fulfill all four goals.

Finally, even if a model proves as a solution to the first two research objectives, for
a useful and long-term integration into real-world applications, such a model needs
to be able to handle the ever-changing nature of the underlying information source.
For example, new users joining social networks, new products being released, or new
events occurring. Many models can only answer queries for such emerging entities
after retraining, which becomes prohibitively expensive for large-scale graphs. Con-
sequently, multiple benchmarks (Albooyeh et al. 2020; Daza et al. 2021; Galkin et al.
2021; Shah et al. 2019; Wang et al. 2019) evaluate models on link prediction queries
involving emerging entities. However, emerging entities may come with varying
amounts of information, including contextual facts and textual details. Benchmarks
should allow for a fine-grained evaluation on large-scale graphs while considering
the varying amounts of information. This level of detail and scale is not provided in
a realistic setting by existing benchmarks.

This thesis addresses these challenges by evaluating and improving existing par-
allel training techniques for KGE models in terms of efficiency and effectiveness, pro-
posing a scalable hyperparameter optimization approach for large-scale KGEs, suc-
cessfully integrating structural and textual information through a text-based sequence-
to-sequence link prediction approach, and finally evaluating model performance on
evolving KGs with new entities joining the graph.

Contributions

Efficient and effective training for large-scale KGE models. To evaluate the
efficiency and effectiveness of available parallelization methods for KGE training, we
re-implemented large-scale training techniques proposed by prior work (Lerer et al.
2019; Zheng et al. 2020; Zhu et al. 2019) within a common framework and conducted
an extensive experimental study. We discovered that prior evaluation methodologies
are often inconsistent and can be misleading, as degradations in model quality due to
parallel training may go undetected. Our results indicate that current (combinations

4 Chapter 1. Introduction

of) parallel training methods tend to have a negative impact on embedding quality or
fail to provide substantial speedups. However, we found that efficient and effective
parallel training of large-scale KGE models is achievable with a careful selection of
techniques, which is dependent on the dataset. For example, training a large-scale
KGE model for the full Freebase KG on 8 GPUs achieved a 7× speedup and model
quality competitive with sequential methods, surpassing prior results.

Hyperparameter optimization for large-scale KGE models. To allow for high
embedding quality of large-scale KGEs and address the lack of efficient HPO ap-
proaches, we explored the effective use of a given HPO budget to obtain high-quality
KGE models. To do so, we first summarized and analyzed both the cost and quality
of various approximation techniques proposed by prior work (Lerer et al. 2019; Tu
et al. 2019; Zhang et al. 2022; Zheng et al. 2020). Building on these findings, we de-
veloped GraSH, an efficient multi-stage HPO algorithm for large-scale KGE models
based on the popular successive halving algorithm (Jamieson and Talwalkar 2016).
Our extensive experimental study demonstrated that GraSH achieves state-of-the-art
results on large-scale KGs with a low overall search budget, equivalent to only three
complete training runs.

Integration of textual and structural information. To integrate textual and struc-
tural information directly, we framed KG link prediction as a sequence-to-sequence
task and trained an encoder-decoder Transformer model (Vaswani et al. 2017) on
this task. This simple yet powerful approach, which we call KGT5, achieved scalab-
ility by using compositional entity representations and autoregressive decoding for
inference. It allows to further simplify the learning problem by integrating a graph
lookup before inference. This extension, termed KGT5-context, achieved or out-
performed state-of-the-art results on two large-scale link prediction benchmarks and
demonstrated versatile application in downstream tasks such as question answering.

Evaluation of model performance on emerging entities. To evaluate model per-
formance on emerging entities in a realistic, large-scale setting, we introduced the
Wikidata5M-SI benchmark. This benchmark enables evaluation of model perform-
ance on queries involving emerging entities with varying amounts of contextual facts
and textual information on a large-scale KG. Our experimental study with recent link
prediction approaches revealed that performance for emerging entities significantly
lags behind that for seen long-tail entities. There is generally a trade-off between
performance on seen and emerging entities, and the proper integration of contextual
and textual information warrants further exploration.

5

Outline

Before delving into the details of the contributions, we introduce relevant fundament-
als in Chapter 2. This includes an introduction to knowledge graphs and the task of
link prediction, a categorization of link prediction models, as well as a description
of common training and evaluation approaches. Chapter 3 provides an overview of
parallel training approaches for KGE models and presents an extensive experimental
study evaluating their efficiency and effectiveness, and finally suggests improvements.
In Chapter 4, we present an efficient and scalable hyperparameter optimization ap-
proach for KGE models on large-scale graphs. Subsequently, in Chapter 5, we address
the integration of textual and structural information by treating link prediction as a
sequence-to-sequence task. In Chapter 6, we focus on the dynamic nature of multi-
relational graphs and introduce a new benchmark for link prediction that includes
previously unseen entities and report on an experimental study comparing existing
link prediction approaches. Finally, we summarize our findings and conclusions in
Chapter 7.

Publications

The work presented in this thesis is based on the following publications.

• Kochsiek, A., & Gemulla, R. (2021).
Parallel training of knowledge graph embedding models: a comparison of
techniques.
In Proceedings of the VLDB Endowment, 15(3).

• Kochsiek, A., Niesel, F., & Gemulla, R. (2022).
Start small, think big: On hyperparameter optimization for large-scale
knowledge graph embeddings.
In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML-PKDD).

• Saxena, A., Kochsiek, A., & Gemulla, R. (2022).
Sequence-to-Sequence Knowledge Graph Completion and Question An-
swering.
In Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (ACL, Volume 1: Long Papers).

• Kochsiek, A., Saxena, A., Nair, I., & Gemulla, R. (2023).
Friendly Neighbors: Contextualized Sequence-to-Sequence Link Predic-
tion.

6 Chapter 1. Introduction

In Proceedings of the 8th Workshop on Representation Learning for NLP
(Repl4NLP@ACL).

• Kochsiek, A., & Gemulla, R. (2023).
A Benchmark for Semi-Inductive Link Prediction in Knowledge Graphs.
In Findings of the Association for Computational Linguistics (EMNLP).

Further, this thesis builds upon the following publication.

• Broscheit, S., Ruffinelli, D., Kochsiek, A., Betz, P., & Gemulla, R. (2020).
LibKGE-A knowledge graph embedding library for reproducible research.
In Proceedings of the 2020 conference on empirical methods in natural language
processing: system demonstrations (EMNLP).

C
ha

pt
er 2

Fundamentals

“All knowledge is connected to all other knowledge. The fun is in making
the connections.”

Arthur C. Aufderheide, n.d.

In this chapter, we introduce fundamental concepts and methods used throughout this
thesis. We begin by presenting the concept of a knowledge graph and the task of
link prediction, which not only enhances the completeness of knowledge graphs but
also serves as a measure of how effectively models can learn relational knowledge.
We then provide a comprehensive overview and categorization of link prediction
approaches and introduce the training and evaluation settings employed. Finally, we
summarize common benchmark datasets used in the experimental studies presented
in the subsequent chapters.

2.1 Knowledge Graphs

A knowledge graph (KG) is a multi-relational, directed graph describing facts about
relationships between real-world entities. These facts are represented as (subject,
predicate, object)-triples like (Nicholson, acted in, Departed). In such a graph,
each node describes an entity, and each edge a relation. Next to the mere structure
following a strict schema, KGs often come with rich textual features and descrip-
tions (e.g., entity names, descriptions), numerical attributes (e.g., birthday), and even
images (e.g., profile pictures). A visualization of an example KG can be seen in

7

8 Chapter 2. Fundamentals

Figure 2.1: An example knowledge graph describing facts about movies.

Fig. 2.1. This modeling approach is used to provide structured knowledge of broad
(e.g., Wikidata (Vrandečić and Krötzsch 2014), Yago (Suchanek et al. 2007)) as
well as domain-specific sources (e.g., biomedical knowledge (Gene Ontology Con-
sortium 2004; Robinson et al. 2008), machine parks (Yahya et al. 2021), and traffic
rules (Monka et al. 2022)). The structured information can, for example, be helpful
for predictive maintenance (Cao et al. 2022), autonomous driving (Monka et al. 2021),
and enforcing factual correctness in large language models (Févry et al. 2020; Logan
et al. 2019). For an in-depth overview of KGs, their modeling conventions, querying
as well as reasoning approaches, see the survey presented by Hogan et al. (2021).

KGs are manually or automatically crafted following strict sets of rules. However,
naturally many real-world systems can be described by a large number of interact-
ing multi-typed components (Han 2009), e.g., human interactions, social networks,
computer systems, and biological networks. When modeling these interactions as a
graph, the resulting structure—termed heterogeneous information network (HIN) (Shi
et al. 2016; Sun and Han 2013)—is similar to KGs. HINs and KGs mainly differ in
the underlying data and slightly in the underlying schema. KGs describe a curated
knowledge base of structured facts, and HINs mainly model interactions. Further, in
HINs the nodes are typed, while in KGs types are represented as facts in the form of
triples. This work focuses on KGs and shows the effectiveness of presented methods
on KG-based datasets. However, due to the similarity of HINs and KGs, the presented
methods can and are applied to HINs as well (El-Kishky et al. 2022). In the following,
we do not distinguish between the two terms, but use the term KG to describe both
data structures.

2.2. Link Prediction 9

Notations

𝑎 scalar
𝒂 vector
𝑨 matrix
A three-way tensor
A set
R set of real numbers
C set of complex numbers

Operations

|A| size of set
| |𝒂 | | L2 norm
| |𝒂 | |1 L1 norm
�̄� elementwise complex conjugate

Table 2.1: Notations.

While KGs offer a structured set of facts, the knowledge stored in this structure
is limited, and most graphs remain incomplete. The underlying unstructured data is
vast, and the construction of a high-quality graph can be a large effort. Therefore,
assumptions need to be made about knowledge not contained in the graph. Under
the closed world assumption, all facts not described in the KG are treated as false.
In contrast, following the open world assumption, such facts can either be true or
false (Nickel et al. 2015). A middle ground between both is the partial-closed world
assumption. Following this assumption, parts of the underlying data can be treated
under the closed world assumption (complete), while others are assumed to be open
(possibly incomplete). Following the open or partial-closed world assumption, we
can reason about the yet undefined knowledge in the graph.

Throughout this thesis, we model a KG following the notations summarized in
Tab. 2.1. A KG G = (E ,R,K), with K ⊆ E × R × E , is a collection of 𝑁 = |K|
subject-predicate-object (SPO) triples, where E denotes the set of entities and R the
set of relations.

2.2 Link Prediction

Link prediction (LP) (Nickel et al. 2015) is the task of predicting missing facts in
an incomplete KG in an automated fashion. Next to improving the completeness
of a KG, the task of link prediction applies to recommendation systems (i.e., sug-
gesting products/movies to users with similar tastes), social networks (e.g., friend
suggestions), as well as protein-protein interaction networks (e.g., identifying new

10 Chapter 2. Fundamentals

(a)

Transductive
(Charlie, speaks, French)

Semi-inductive
(Dave, speaks, French)

Inductive
(Dave, speaks, German)

(b)

Figure 2.2: Example of a transductive, semi-inductive, and inductive query (italic) and
expected answer (underlined) on a given graph. Entities not contained in the graph are
marked in bold. In the semi-inductive setting, the new entity might come with additional
information, such as connections to existing entities and/or text descriptions. In the inductive
setting, a separate graph with disjunct entities but common relations might be provided during
inference.

interaction based on known biological data). Alongside the direct application, it can
serve as a proxy evaluating to what extent a model can process, store, and utilize
structured information, which may be necessary for downstream applications; e.g.,
for drug discovery in a biomedical KG (Mohamed et al. 2019), for question answer-
ing (Huang et al. 2019; Saxena et al. 2020, 2022), query approximation (Hamilton
et al. 2018), visual relationship detection (Baier et al. 2017), or replacing hand-crafted
features in recommendation systems (El-Kishky et al. 2022).

LP is further subcategorized into three tasks; transductive (TD), semi-inductive
(SI), and inductive link prediction. For a visualization of the three query types, see
Fig. 2.2. Transductive link prediction is the task of predicting missing facts between
existing entities in the KG. Semi-inductive link prediction focuses on modeling entities
that are not yet part of the graph, and connecting them to existing entities; e.g., a new
user joining a social network, a new product, or event. Here, the new entity typically
comes with additional information such as connections to existing entities and/or text
descriptions. To address this task without retraining the complete model (which can
be expensive), models need to be able to process new additional input information
during inference. Inductive link prediction reasons about a new KG with completely
separate entities (but shared relations). To address this task, models need to reason
about the new input graph during inference. Ch. 3-5 focus on transductive and Ch. 6
on semi-inductive link prediction.

2.3. Categorization of Link Prediction Approaches 11

Model Type Text Models
Lo

ca
l Bi-Encoder

RESCAL (Nickel et al. 2011), TransE (Bordes et al. 2013),
DistMult (Yang et al. 2015), ComplEx (Trouillon et al. 2016),
SimplE (Kazemi and Poole 2018), RotatE (Sun et al. 2019),
TuckER (Balažević et al. 2019), MEIM (Tran and Takasu
2022)

✓
DKRL (Xie et al. 2016), KEPLER (Wang et al. 2021b),
BLP (Daza et al. 2021), StaR (Wang et al. 2021c),
SimKGC (Wang et al. 2022)

Cross-Encoder ✓ KG-Bert (Yao et al. 2019)

Encoder-Decoder ✓ KGT5 (Ch. 5)

G
lo

ba
l GNN RGCN (Schlichtkrull et al. 2018), NBFNet (Zhu et al. 2021)

Rule-based Amie (Galárraga et al. 2013), AnyBURL (Meilicke et al.
2019), LERP (Han et al. 2023)

H
yb

rid Bi-Encoder HittER (Chen et al. 2021)

✓ SimKGC (Wang et al. 2022)

Encoder-decoder ✓ KGT5-context (Ch. 5)

Table 2.2: Categorization of link prediction approaches. Parametric approaches (marked in
italics) scale independently of the graph size.

2.3 Categorization of Link Prediction Approaches

Tab. 2.2 gives an overview of common link prediction approaches. The models
can mainly be grouped into two categories, global and local models. Global models
operate on the full graph for inference, such as GNN-based and rule-based approaches.
Local models operate on a triple level. They can be further subcategorized into bi-
encoder, cross-encoder, and encoder-decoder models. For a visualization of the
three subcategories, see Fig. 2.3. However, some models fall in between the two
main categories, global and local. We call those models hybrid. Note that for all
visualizations in this section, we use the example KG presented in Fig. 2.2 together
with the running example query (Charlie, speaks, ?).

2.3.1 Local Models

Bi-encoder models (Fig. 2.3a) consist of two separate encoder modules, a query
encoder 𝑓𝑞𝑒, and a target encoder 𝑓𝑡𝑒. Given representations 𝒔 and 𝒑 of the query entity
𝑠 and relation 𝑝 (and optional additional query-specific features), bi-encoder models
create a combined representation of the query via the query encoder— 𝑓𝑞𝑒 (𝒔, 𝒑).
Typically, the target encoder is applied to all possible answers, i.e., T = { 𝑓𝑡𝑒 (𝒆) |

12 Chapter 2. Fundamentals

(a) Bi-encoder.

(b) Cross-encoder.

(c) Encoder-decoder.

Figure 2.3: Inference of local models visualized for the transductive example query of
Fig. 2.2. (a) A bi-encoder encodes query and target separately. For inference, all possible
targets are encoded and scored against the query via the model-specific scoring function.
(b) A cross-encoder encodes the query together with each possible target. Inference can be
performed on a triple basis, i.e., by classifying whether the triple exists, or by calculating a
probability distribution over all possible encoded query-target pairs. (c) An encoder-decoder
assumes each entity to be represented by a sequence of tokens. It encodes the query, and a
decoder generates sequences that are mapped to candidate entities.

𝑒 ∈ E}. To gauge the plausibility of a possible answer, bi-encoder models define a
scoring function that combines the query (𝒒𝒆) and target representation (𝒕). For a
ranking of all possible answers, this scoring function is applied to all resulting target
representations 𝑓𝑠𝑐𝑜𝑟𝑒 (𝒒𝒆, 𝒕)∀𝒕 ∈ T .

Cross-encoder models (Fig. 2.3b) offer a holistic view and encode the query and target
in a combined fashion. They define the scoring function to gauge the plausibility of
a possible answer candidate 𝑐 as 𝑓𝑠𝑐𝑜𝑟𝑒 (𝒔, 𝒑, 𝒄). This combined encoding allows for
more fine-grained interaction between the query features and the answer candidate,
but leads to increased inference cost, as the query needs to be encoded together with
each possible answer candidate.

Encoder-decoder models (Fig. 2.3c) define a query encoder 𝑓𝑞𝑒 (𝒔, 𝒑) similar to the
bi-encoder approaches. However, they replace the target encoder with a generative
decoder. Such an architecture is mainly applicable if an entity can be represented by
a sequence of representations; e.g., textual input such as entity mentions. Consider

2.3. Categorization of Link Prediction Approaches 13

an entity with the mention “black hole”. For this example, the mention could be
represented by the sequence of tokens “black” and “hole”. The model defines a
vocabulary consisting of a fixed number of such tokens. For generation, we sample
step by step from the distribution over the tokens conditioned on the input query.

Knowledge Graph Embeddings

Knowledge graph embedding (KGE) models are non-parametric bi-encoder models
(Fig. 2.3a). They associate an embedding with each entity and each relation; the
embeddings are taken from a vector space specific to the respective KGE model.
Additionally, they define model-specific query- and target-encoders, as well as scoring
functions. For most KGE models, however, the target encoder is defined by an
embedding layer only. Most KGE models are trained and applied in a transductive
link prediction setting. For a semi-inductive setting, extensions are needed; see Ch. 6.

KGE models can mainly be grouped into two families; translational distance and
semantic matching models. In the following, we describe the subset of KGE models
utilized throughout this study.

Translational Distance Models
Translational distance models define the query encoding as a relation-specific trans-
lation of the query entity and measure the distance of the translated query entity to
the target.

TransE (Bordes et al. 2013) is a simple and one of the most popular translational
distance models. Both, entities and relations are embedded into the same space. It
defines the translation as a sum and the distance function as the Euclidian distance.
Given a triple (𝑠, 𝑝, 𝑜), and its corresponding representations 𝒔, 𝒑, and 𝒐, its query
encoder and scoring function are

𝑓𝑞𝑒 (𝒔, 𝒑) = 𝒔 + 𝒑, 𝑓𝑠𝑐𝑜𝑟𝑒 (𝒔, 𝒑, 𝒐) = −|| 𝑓𝑞𝑒 (𝒔, 𝒑) − 𝒐 | | (2.1)

A triple has high plausibility if the translated subject representation is close to
the object representation. However, the proposed translation approach implemented
by the sum operation cannot represent symmetric relations, such as marriedTo.

RotatE. Addressing the limitations of TransE representing symmetric relations, Ro-
tatE (Sun et al. 2019) defines the translation operation as a rotation from the subject to
the object entity in complex space. This translation is implemented via the Hadamard
product (◦) between complex valued representations. Its query encoder and scoring
function are

14 Chapter 2. Fundamentals

𝑓𝑞𝑒 (𝒔, 𝒑) = 𝒔 ◦ 𝒑, 𝑓𝑠𝑐𝑜𝑟𝑒 (𝒔, 𝒑, 𝒐) = −|| 𝑓𝑞𝑒 (𝒔, 𝒑) − 𝒐 | |1 (2.2)

where 𝒔, 𝒑, 𝒐 ∈ C𝑑 .

Further examples of translational distance models are BoxE (Abboud et al. 2020)
and PairRE (Chao et al. 2021).

Semantic Matching Models
Semantic matching models use similarity functions to gauge the existence of a triple.
A subfamily of semantic matching models is bilinear models. These models treat
the representation learning process as a tensor factorization. Considering the KG as
a three-way adjacency tensor indicating connections between entities via relational
slices, bilinear models learn to represent this sparse tensor via dense representations.
This factorization approach can be described as

K = 𝑬R𝑬𝑇 , (2.3)

where K ∈ N |E |× |R |× |E | , 𝑬 ∈ R |E |×𝑑 , R ∈ R |R |×𝑑×𝑑 , and 𝑑 ≪ |E |

DistMult (Yang et al. 2015), also called bilinear diagonal model, performs tensor
factorization with constraints. It restricts the matrix representing a relation 𝑖 to a
diagonal matrix, i.e., R[𝑖] = 𝑑𝑖𝑎𝑔(𝒑), where 𝒑 ∈ R𝑑 and R[𝑖] ∈ R𝑑×𝑑 . Its scoring
function to gauge the plausibility of a single triple (an entry in K) is

𝑓𝑞𝑒 (𝒔, 𝒑) = 𝒔𝑇𝑑𝑖𝑎𝑔(𝒑), 𝑓𝑠𝑐𝑜𝑟𝑒 (𝒔, 𝒑, 𝒐) = 𝑓𝑞𝑒 (𝒔, 𝒑)𝒐 (2.4)

While simple, this approach comes with limitations in representing relational
patterns. Due to the symmetric property of the dot product used in the scoring
function, the model is not able to represent antisymmetric relationship types; e.g.,
childOf.

ComplEx. In contrast to DistMult, ComplEx (Trouillon et al. 2016) increases the
number of representable relation patterns by utilizing complex valued embeddings.
It uses the score function

𝑓𝑞𝑒 (𝒔, 𝒑) = 𝒔𝑇𝑑𝑖𝑎𝑔(𝒑), 𝑓𝑠𝑐𝑜𝑟𝑒 (𝒔, 𝒑, 𝒐) = 𝑅𝑒(𝑓𝑞𝑒 (𝒔, 𝒑) �̄�) (2.5)

where 𝒔, 𝒑, 𝒐 ∈ C𝑑 and Re(𝑥) refers to the real part of 𝑥 ∈ C and �̄� to the element-wise
complex conjugate of 𝒙 ∈ C𝑑 .

Further examples of semantic matching models are RESCAL (Nickel et al. 2011),
SimplE (Kazemi and Poole 2018), QuatE (Zhang et al. 2019), TuckER (Balažević
et al. 2019), and MEIM (Tran and Takasu 2022).

2.3. Categorization of Link Prediction Approaches 15

Text-Based Link Prediction

KGE models utilize the underlying graph structure only without considering any
additional information. However, multiple graphs are enriched with text information
such as entity and relation mentions and even descriptions. Numerous approaches
try to integrate both information sources, structural and textual information. One
straightforward integration of text into existing architectures is to initialize KGE
models with word embeddings; an approach taken by DKRL (Xie et al. 2016). In
this setting, the textual encoding is performed separately for subject, relation, and
object. To allow for interaction of text information stemming from the query entity
and relation, the bi-encoder SimKGC (Wang et al. 2022) defines the query encoder as
a BERT Transformer (Devlin et al. 2019) encoding the combined sequence of query
entity and relation (e.g., “Charlie | speaks”, c.f. Fig. 2.3a). In addition, it defines
a separate Transformer as the target encoder to capture the textual information for
the answer candidates. Offering a holistic view of the query and possible answer,
the cross-encoder KG-BERT (Yao et al. 2019) encodes the textual information of
the query together with the target (e.g., “Charlie | speaks | French”, c.f. Fig. 2.3b).
However, this holistic view comes with high inference cost, as the query needs to be
encoded together with each possible target. Finally, the encoder-decoder approach
KGT5 (Ch. 5) treats link prediction as a sequence-to-sequence task. As SimKGC,
it utilizes a Transformer-based query-encoder but replaces the target encoder with a
decoder. The decoder generates mentions corresponding to possible answer entities
(c.f. Fig. 2.3c). For a more detailed overview of text-based link prediction approaches,
see Ch. 5.

With these text-based approaches, entities are represented by the sequence of
(sub-)words building the entity mention. In contrast to KGE models, they do not
learn a representation per unique entity but rather per unique subword. Therefore,
they are parametric, and the model size scales with the size of this vocabulary V
over sub-words. Typically, for large graphs |V | ≪ |E | holds. Consequently, the
model size is considerably smaller compared to KGE models. Further, as entities are
represented based on their textual input, most text-based approaches can represent
emerging entities and can therefore be applied in the transductive, semi-inductive,
and in some cases even inductive setting.

16 Chapter 2. Fundamentals

(a) NBFNet initialization. (b) NBFNet propagation.

Figure 2.4: (a) NBFNet initializes the query entity with the initial representation of the query
relation (marked in blue). (b) This representation is propagated through the graph. Each
entity results with a query-specific representation, which is used to score the possible answer
candidates using the model-specific scoring function.

2.3.2 Global Models

GNN-Based Link Prediction

GNNs (Kipf and Welling 2016) are a prominent architecture choice for link prediction
in graphs. They encode nodes by their multi-hop neighborhood and update node
representations by aggregating information from a node’s neighbors through learnable
functions. However, they do not make use of information stemming from multiple
different relation types. RGCNs (Schlichtkrull et al. 2018) incorporate multiple
relationship types by using separate aggregation operations for different types of
relationships in the graph. While this approach is promising for tasks like node
classification, performance on link prediction tasks stays behind other approaches like
KGEs. Focusing on link prediction, Zhu et al. (2021) introduced NBFNet. NBFNet
does not learn entity embeddings but calculates query-specific representations based
on layer-specific relation transformations. This procedure is visualized in Fig. 2.4 for
the example query (Charlie, speaks, ?). The representation of the query entity
(Charlie) is initialized with parameters specific to the query relation (speaks). This
representation is then propagated through the graph, so that each entity results with a
query-specific representation, capturing the relation-specific interconnections to the
query entity through the graph. To gauge the plausibility of a triple, the resulting entity
representations of query and target are scored similarly to semantic matching KGEs.
This approach can perform on par or even outperform KGEs for link prediction (see
Tab. 2.4). As NBFNet calculates entity representations per query on a provided graph,
it offers flexibility for changing graphs. It allows for transductive, semi-inductive, and
inductive link prediction. Additionally, in contrast to KGEs and RGCNs, NBFNet is
parametric. It does not scale with the size of the graph, but by |R| × 𝑑. However, for

2.3. Categorization of Link Prediction Approaches 17

(a) All occurrences of a sampled path marked
in red.

speaks(x, French)← lives in(x, France),
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 2, 𝑐𝑜𝑛 𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 = 2/3

Rule

speaks(Charlie, French)←
lives in(Charlie, France)

Grounded rule

(b) Resulting rule (top) and grounded rule
for inference (bottom).

Figure 2.5: Rule mining for link prediction. Sample paths over a knowledge graph, count
occurrences for support and calculate confidence to build a set of rules.

inference, all entity representations are materialized resulting in a memory footprint
of (|E | + |R|) × 𝑑.

Rule-Based Link Prediction.

Next to neural, rule-based approaches can be used for link prediction. Here, one
of the currently best-performing approaches is AnyBURL (Meilicke et al. 2019). It
mines rules by sampling paths and counting individual occurrences in the KG. For
an exemplified visualization for the query (Charlie, speaks, ?), see Fig. 2.5.
When no representations for further downstream tasks are needed, such rule-based
approaches are a lightweight alternative to neural ones, and even establish the state-
of-the-art on multiple benchmarks (see Tab. 2.4).

Here, the model size is dependent on the number of learned rules. In contrast
to neural approaches, rule-based models are defined by a set of rules (Fig. 2.5b top).
However, approaches such as AnyBURL (Meilicke et al. 2019) learn millions of rules
even for small graphs to reach a high link prediction performance. In these cases,
storage cost might even be higher than for neural approaches. But the number of
rules is (rather) independent of graph size. Therefore, on large-scale graphs, storage
overhead is typically considerably lower compared to most neural approaches.

2.3.3 Hybrid Models

Some models cannot be clearly categorized into global or local models. Those models
are mainly extensions of local models that query the graph to encode a subgraph
together with either query or target. Consider the input to the query encoder in Fig. 2.3:
“Charlie | speaks”. The input together with the subgraph consisting of the one-
hop neighborhood of the query entity could, for example, be “Charlie | speaks

18 Chapter 2. Fundamentals

context: lives in | France”.a Such an approach is taken by the Transformer-
based bi-encoder HittER (Chen et al. 2021). It encodes the query together with
embeddings/features of sampled neighbors of the one-hop neighborhood of the query
entity. Similarly, the encoder-decoder approach KGT5-context (Ch. 5) extends KGT5
with HittER’s neighborhood integration idea for raw-text feature input. Further,
SimKGC (Wang et al. 2022) can be extended to encode the raw-text feature input of
the query entity’s, as well as target entity’s one-hop neighborhood. Due to the high
cost, Wang et al. (2022) only apply this extension on small graphs.

2.4 Training

One popular training objective for link prediction models is separating positive (i.e.,
correct) triples from negative (incorrect) triples. Here, models aim to assign high
scores to positive triples and low scores to negative ones. They are trained using
gradient-based optimization. The cost function is composed of the mean loss (e.g.,
binary cross entropy) taken over each positive triple 𝑡 ∈ K and its associated negative
examples S− (𝑡)—i.e, |K|−1 ∑

𝑡∈K loss(𝑡,S− (𝑡))—and regularization terms. How-
ever, the knowledge graph provides only positive but no negative triples. Therefore,
training often relies on negative sampling to provide pseudo-negative examples, i.e.,
triples that are likely but not guaranteed to be actual negatives.

2.4.1 Negative sampling

A common and effective method to obtain informative pseudo-negative triples is to
corrupt the subject or object (and sometimes also the relation) of known positive
triples. For example, the positive triple (Hitchcock, directed, Psycho) can be
corrupted by replacing the object with some other entity obtaining, say, the pseudo-
negative triple (Hitchcock, directed, Avatar). Pseudo-negatives are commonly
generated using negative sampling, in which the replacement entity is sampled ran-
domly from the set of entities. In the simplest setting, the replacement entity is
sampled uniformly from the set of all entities E . However, this set can be predefined,
e.g., by restricting it to the entities occurring in a training batch. Additionally, the
distribution can be adapted; e.g., sampling by the frequency of entities. For a more
detailed overview of sampling methods and their effects on large-scale training, see
Sec. 3.4. Each positive triple is used to generate multiple pseudo-negative samples;
the number of such samples is a hyperparameter. Note that an alternative approach

aHere presented with raw text input. The input can also be the embeddings/features corresponding
to the mentioned entities and relations.

2.4. Training 19

Algorithm 1 Basic bi-encoder training.
Require:
G - KG defined by a set of entities E , relations R, and triples K,
𝑁−𝑠 - num. negatives (subject),
𝑁−𝑜 - num. negatives (object),

Ensure: 𝑀 - Model
1: for each epoch do
2: for each B ∈ batch(K) do
3: S− ← ∅
4: for each (𝑠, 𝑝, 𝑜) ∈ B do
5: E−𝑠 , E−𝑜 ← sample_negatives(𝑁−𝑠 , 𝑁−𝑜 , E)
6: S− ← S− ∪ {(𝑠′, 𝑝, 𝑜) for each 𝑠′ ∈ E−𝑠 } ⊲ Corrupt subject
7: S− ← S− ∪ {(𝑠, 𝑝, 𝑜′) for each 𝑜′ ∈ E−𝑜 } ⊲ Corrupt object
8: end for
9: 𝑠𝑐𝑜𝑟𝑒𝑠← 𝑀.score(B ∪ S−) ⊲ Score positives and negatives

10: 𝑙𝑜𝑠𝑠← compute_loss(𝑠𝑐𝑜𝑟𝑒𝑠,B ∪ S−)
11: 𝑀 ← update_parameters(𝑀, 𝑙𝑜𝑠𝑠)
12: end for
13: end for

to sampling is to use all entities from E for corruption. Although this “1vsAll”
method (Dettmers et al. 2018) can be very effective on smaller KGs, we do not
consider it further because it does not scale to large KGs with millions of entities.

2.4.2 Training Procedure

Bi- & cross-encoder training. The general training approach for bi- and cross-
encoder models is summarized in Alg. 1. Processing is performed in mini-batches of
batch size 𝐵 (e.g., 1024, line 2). For each triple in the batch, 𝑁− = 𝑁−𝑠 + 𝑁−𝑜 pseudo-
negative examples are generated by corrupting the subject 𝑁−𝑠 × and the object 𝑁−𝑜 ×
(line 4-8). Each batch thus consists of 𝐵 positive and 𝐵𝑁− pseudo-negative triples.
Batches are processed in parallel (on a GPU). This involves computing the batch loss
(forward pass, line 10), its gradient (backward pass) and updating model parameters
(line 11) using an optimizer such as Adagrad (Duchi et al. 2011) or Adam (Kingma
and Ba 2015). Note that GNN-based training for models such as NBFNet is similar to
the described procedure, but before scoring the triples (line 9), query-specific entity
representations need to be calculated.

Encoder-decoder training. A common approach for training generative models like
encoder-decoder is teacher forcing (Williams and Zipser 1989). Here, the training
objective is to generate the next correct token corresponding to the sequence repres-
enting the answer entity of a query. Therefore, instead of aiming for a high score for

20 Chapter 2. Fundamentals

correct triples and a low one for incorrect triples, as for bi-encoders, we aim for a high
probability for the correct token and a low probability for incorrect tokens. This can
be seen as a “1vsAll” training approach, scoring against all tokens in the vocabulary
in each generation step, in contrast to scoring against all entities. For more details on
encoder-decoder training, see Ch. 5.

Training cost. During each epoch of training a bi-encoder model, all positives and
their associated negatives are scored, i.e., the overall number of per-epoch score
computations is (|K| + 1)𝑁−. We use this number as a proxy for computational
cost throughout. As the architecture of most KGE models is slim, with the encoder
being an embedding layer only, scoring a single triple is cheaper compared to text-
based approaches. Therefore, the text-based approaches are typically trained for
considerably fewer epochs and using fewer negative examples (e.g., see (Wang et al.
2022)). As encoder-decoder approaches are trained via teacher forcing, training is
independent of the negatives. Here, cost scales by the vocabulary size and sequence
length of the entity representations. Rule-based methods do not learn representations,
but sample rules over the graph. For large graphs, training is typically cheaper
compared to neural approaches.

2.4.3 Hyperparameters

The resulting model quality, especially for KGE models, is highly dependent on
selected hyperparameters (Ali et al. 2021a; Ruffinelli et al. 2020). In addition, the
choice of hyperparameters is model- and dataset-dependent. Therefore, training
comes with high cost for hyperparameter tuning. Important hyperparameters include
embedding dimensionality, training type (e.g., negative sampling, 1vsAll), number
𝑁− of negatives, sampling type (e.g., uniform, frequency-based), loss function (e.g.,
cross entropy, margin loss), optimizer (e.g., Adam, Adagrad), learning rate, type and
weight of regularization (e.g., weighted, unweighted, L2, L3), and amount of dropout.

The hyperparameter space for KGE models is discussed in detail in Ali et al.
(2021a) and Ruffinelli et al. (2020).

2.4.4 Frameworks

Frameworks such as OpenKE (Han et al. 2018), Ampligraph (Costabello et al. 2019),
PyKeen (Ali et al. 2021b) or LibKGE (Broscheit et al. 2020) provide implementa-
tions of various KGE models as well as training algorithms, evaluation methods, and
hyperparameter tuning approaches. Further, Pytorch BigGraph (Lerer et al. 2019),
DGL-KE (Zheng et al. 2020), and Dist-KGE (Ch. 3) provide KGE implementations

2.5. Evaluation 21

Algorithm 2 Evaluation - entity ranking.
Require:
G - KG defined by set of entities E , relations R, and triples K,
K𝑒𝑣𝑎𝑙 - Hold-out evaluation set,
𝑀 - trained model

Ensure: 𝑚 - Evaluation metric aggregated over ∀𝑡 ∈ K𝑡𝑒𝑠𝑡

1: Q← ∅ ⊲ Set of ranks
2: for each (𝑠, 𝑝, 𝑜) ∈ K𝑒𝑣𝑎𝑙 do

⊲ tail prediction
3: C𝑜 ← {(𝑠, 𝑝, 𝑜′) for each 𝑜′ ∈ E} ⊲ Tail candidate triples
4: 𝑠𝑐𝑜𝑟𝑒𝑠𝑜 ← 𝑀.score(C𝑜)
5: 𝑠𝑐𝑜𝑟𝑒𝑠𝑜 ← filter_out_true_answers(K, 𝑠𝑐𝑜𝑟𝑒𝑠𝑜)
6: Q← Q ∪ get_rank(𝑜, 𝑠𝑐𝑜𝑟𝑒𝑠𝑜, E)

⊲ head prediction
7: C𝑠 ← {(𝑠′, 𝑝, 𝑜) for each 𝑠′ ∈ E} ⊲ Head candidates triples
8: 𝑠𝑐𝑜𝑟𝑒𝑠𝑠 ← 𝑀.score(C𝑠)
9: 𝑠𝑐𝑜𝑟𝑒𝑠𝑠 ← filter_out_true_answers(K, 𝑠𝑐𝑜𝑟𝑒𝑠𝑠)

10: Q← Q ∪ get_rank(𝑠, 𝑠𝑐𝑜𝑟𝑒𝑠𝑠, E)
11: end for
12: 𝑚 ← compute_metric(Q)

and training approaches for large-scale graphs. Rule-based approaches are imple-
mented in PyClause (Betz et al. 2024).

2.5 Evaluation

The standard approach to evaluate model quality for the link prediction task is to use
the entity ranking protocol (Ji et al. 2021; Wang et al. 2017) summarized in Alg. 2.
This protocol asks models to answer the queries (𝑠, 𝑝, ?) (line 3-6) and (?, 𝑝, 𝑜)
(line 7-10) for all triples of a held-out evaluation set. As multiple entities could be
a correct answer, models need to generate multiple ranked candidates. Usually, all
entities in E are scored to compute a ranking. Given the ranked answer candidates,
common metrics reported over the ranked candidates are the mean reciprocal rank
(MRR) and Hits@𝑘 . For the MRR, we extract the reciprocal rank of the true answer
and take the mean over all queries (Eq. 2.6). Hits@𝑘 describes the number of times
the true answer has rank ≤ 𝑘 normalized by the number of queries |2K𝑡𝑒𝑠𝑡 | (Eq. 2.7).
To avoid punishing a model for ranking a true but already known answer high, we
filter out all candidate triples that occur in the training, validation or test data before
determining the reciprocal rank or Hits@𝑘 of the test triple itself (line 5 & 9). In

22 Chapter 2. Fundamentals

the case of ties, we use the mean rank to avoid misleading results (Rossi et al. 2021;
Ruffinelli et al. 2020; Sun et al. 2020).

MRR =
1

2|K𝑒𝑣𝑎𝑙 |
∑︁

(𝑠, 𝑝,𝑜) ∈Keval

(
1

𝑟𝑎𝑛𝑘 (𝑠 |𝑝, 𝑜) +
1

𝑟𝑎𝑛𝑘 (𝑜 |𝑠, 𝑝)

)
, (2.6)

Hits@𝑘 =
1

2|K𝑒𝑣𝑎𝑙 |
∑︁

(𝑠, 𝑝,𝑜) ∈Keval

(1(𝑟𝑎𝑛𝑘 (𝑠 |𝑝, 𝑜) ≤ 𝑘) + 1(𝑟𝑎𝑛𝑘 (𝑜 |𝑠, 𝑝) ≤ 𝑘))

(2.7)

Evaluation cost. For each (𝑠, 𝑝, 𝑜)-triple in a held-out test set Ktest, this protocol
requires to score all triples of form (𝑠, 𝑝, ?) and (?, 𝑝, 𝑜) using all entities in E .
Overall, 2|Ktest | |E | scores are computed so that evaluation cost scales linearly with the
number of entities. Since this cost can be substantial, sampling-based approximations,
termed sMRR, have been used in some prior studies (Lerer et al. 2019; Zheng et al.
2020). In this case, the MRR is not reported over all ranked candidates but only a
sampled subset of candidates. In Ch. 3, we show that such approximations can be
misleading in that they do not reflect model quality faithfully. However, in general,
this inference setting is related to maximum inner product search (MIPS) (Abuzaid
et al. 2019; Aguerrebere et al. 2023; Douze et al. 2024; Johnson et al. 2019), and
corresponding algorithms can be directly applied to many bi-encoder models to find
top scoring candidates with ≪ |E | score calculations. However, the global NBFNet
model calculates query-specific entity representations. It is infeasible to precompute
these representations and, therefore, MIPS is not advantageous. Inference cost of
a generative encoder-decoder approach is independent of the number of entities
in the graph. Here, inference cost depends on the vocabulary size, depth of the
decoder, and average number of tokens used per entity representation. For rule-based
approaches, inference cost depends on the number of rules, number of entities, and
length of the rule. Applying all relevant rules (see Fig. 2.5b bottom) and aggregating
their confidences to rank all possible candidates can be more expensive than neural
approaches.

2.6 Datasets

Throughout this work, we make use of a wide range of benchmark datasets introduced
over the last decade. Statistics of presented datasets are summarized in Tab. 2.3 and
the current state-of-the-art per dataset in Tab. 2.4.

FB15K introduced by Bordes et al. (2013) is a subset of the knowledge graph Free-
base (Bollacker et al. 2008). It contains almost 15 000 unique entities and over 1 000

2.6. Datasets 23

Dataset Entities Relations |Train| |Valid| |Test|

FB15K 14 951 1 345 483 142 50 000 59 071
FB15K-237 14 505 237 272 115 17 535 20 466
WN18 40 943 18 141 442 5 000 5 000
WNRR 40 559 11 86 835 3 034 3 134
Yago3-10 123 182 37 1 079 040 5 000 5 000
Wikidata5M 4 818 579 828 21 343 681 5 357 5 321
Freebase 86 054 151 14 824 304 727 650 16 929 318 16 929 308
WikiKG90Mv2 91 230 610 1 387 601 062 811 15 000 10 000

Table 2.3: Dataset statistics.

Dataset Text Model Paper MRR Hits
@10

FB15K ComplEx (Lacroix et al. 2018) 0.860 0.910

WN18 Inverse Model (Dettmers et al. 2018) 0.963 0.964

FB15K-237 NBFNet (Zhu et al. 2021) 0.415 0.599
✓ SimKGC (Jiang et al. 2023) 0.367 0.543

WNRR LERP (Han et al. 2023) 0.622 0.682
✓ SimKGC (Jiang et al. 2023) 0.692 0.811

Yago3-10 MEIM (Tran and Takasu 2022) 0.585 0.716
✓ KGT5+ComplEx (Saxena et al. 2022) 0.552 0.680

Wikidata5M AnyBURL (Meilicke et al. 2024) 0.353 0.433
✓ KGT5-context (Kochsiek et al. 2023) 0.426 0.460

Freebase AnyBURL (Meilicke et al. 2024) 0.711 0.728

WikiKG90Mv2 ✓ KGT5-context (Kochsiek et al. 2023) 0.301b -

Table 2.4: Current state-of-the-art per dataset. For a categorization of each listed model see
Tab. 2.2.

relations with a large fraction of the content being about movies, actors, awards,
sports and sport teams. Bordes et al. (2013) selected only entities occurring in the
Wikilinks database that have ≥ 100 mentions in Freebase.

FB15K-237 introduced by Toutanova and Chen (2015) is an adaption of the dataset
FB15K. The authors realized that a large part of test queries could be answered by a
near identical relation or near inverse relation observed in the training data. E.g., the
test set contains the triple

b Valid-MRR instead of test-MRR. KGT5-context directly used mentions of entities and relations
for WikiKG90Mv2, instead of the textual embeddings used by other models. For this reason, the
benchmark authors (Hu et al. 2021) did not provide scores on the hidden test set. Mentions are provided
with the dataset.

24 Chapter 2. Fundamentals

(Hello Dolly!, award_nomination/award, Award for Best Original Mu-
sical),

while the train set contains the triple

(Award for Best Original Musical, award_nomination/nominated_for,
Hello Dolly!).

To make the task more challenging, Toutanova and Chen (2015) removed infre-
quent relations, near duplicate, and near inverse relations. This change reduced the
number of relations from ≈ 1 000 to 237. Additionally, from the validation and test
sets, they filtered any triples whose entity pairs were directly linked in the training
set. While such cases could be present in a realistic scenario, they were excluded to
avoid additional trivial cases.

WN18 introduced by Bordes et al. (2014) is a subset of the KG Wordnet, designed to
produce an intuitively usable dictionary and thesaurus. This dataset uses 18 relations
of the full graph and selects all connected entities occurring at least 15×. This results
in over 40 000 entities. An example triple of this KG is (statisticalRegression,
partOf, regressionAnalysis).

WNRR introduced by Dettmers et al. (2018) is an adaption of the dataset WN18.
Similar to FB15K, WN18 contains a large number of near inverse relations; e.g.,
the relations partOf and hasPart. Specifically, learning a rule to identify inverse
relations and using this rule for inference by checking the query’s inverse relation
in the training set has led to the most effective method on WN18 so far. This rule
achieved the current highest MRR on WN18, see Tab. 2.4. The authors followed the
approach taken for the creation of FB15K-237 to create the more challenging subset
WNRR. This procedure reduced the number of relations from 18 to 11.

Yago3-10 introduced by Dettmers et al. (2018) is a subset of the KG YAGO3 (Mah-
disoltani et al. 2015). This subset is constructed so that each entity has a degree of
≥ 10. It consists of over 120 000 entities, 37 relations, and over 1 000 000 triples.
Most triples deal with descriptive attributes of people, such as (AlbertEinstein,
wasBornIn, Ulm)

Wikidata5M introduced by Wang et al. (2021b) is a subset of the KG
Wikidata (Vrandečić and Krötzsch 2014). A subset of ≈ 5𝑀 entities is extracted
by discarding all entities, which either cannot be mapped to a Wikipedia page or have
a Wikipedia description consisting of < 5 words. Similarly, only relations with non-
empty Wikipedia pages are kept resulting in 822 relations. Next to the pure graph
structure, Wikidata5M additionally offers text-based mentions, as well as Wikipe-

2.6. Datasets 25

dia descriptions alongside each entity. This allows for evaluation of text-based link
prediction and KGE models.

Freebase. The full KG constructed by Bollacker et al. (2008) is used and provided
by Zheng et al. (2020) as a large-scale benchmark for link prediction. With more than
80𝑀 entities and 300𝑀 triples, this benchmark aims to simulate large-scale industry
settings.

WikiKG90Mv2 introduced by Hu et al. (2021) is a large-scale benchmark with a
public leaderboard. It is based on a dump of Wikidata of the year 2021. Next to
the graph structure, this benchmark comes with pretrained MPNet (Song et al. 2020)
embeddings based on entity mentions and descriptions. While raw text entities and
descriptions are provided, the use of this data is not allowed for competition on the
public leaderboard.

C
ha

pt
er 3

Training of Large-Scale Knowledge
Graph Embedding Models

“Scaling laws are decided by god; the constants are determined by
members of the technical staff.”

Sam Altman, 2024

Knowledge graphs scale up to millions (e.g., Freebase) or even billions (e.g., social
networks) of nodes. However, a large part of the available literature focuses on small
KGs. Recently, several frameworks that are able to train KGE models for large-
scale KGs by parallelization across multiple GPUs or machines have recently been
proposed. So far, the benefits and drawbacks of the various parallelization techniques
have not been studied comprehensively. In this chapter, we report on an experimental
study in which we presented, re-implemented in a common computational framework,
investigated, and improved the available techniques.

This chapter is based on Kochsiek and Gemulla (2021).

3.1 Introduction

Large-scale knowledge graphs contain millions of entities, which makes training KGE
models challenging. The Freebase (Bollacker et al. 2008) KG, for example, contains
more than 80M entities and 100s of millions of triples, leading to large model sizes
and long training times. Even relatively low-dimensional KGE models may exceed the

27

28 Chapter 3. Training of Large-Scale KGE Models

memory of GPUs (e.g., a ComplEx model with 𝑑 = 400 takes 128 GB plus optimizer
state). A more extreme example is Bess (Cattaneo et al. 2022). The authors train an
ensemble of 85 KGE models with a total parameter count of ≈ 2.6 T, highlighting the
necessity of efficient and effective parallel training and parameter handling.

However, a large part of the available literature focuses on small KGs, and training
of such large-scale KGE models is only possible due to recently proposed parallel-
ization approaches; namely the frameworks PyTorch BigGraph (Lerer et al. 2019),
GraphVite (Zhu et al. 2019), and DGL-KE (Zheng et al. 2020). These frameworks
have enabled large-scale industry applications of KGEs. For instance, El-Kishky et al.
(2022) utilized KGEs trained with PyTorch BigGraph on a large-scale social network
for downstream recommendation tasks, effectively replacing numerous handcrafted
features with the trained embeddings.

Each of these frameworks introduced distinct parallelization techniques. This
chapter presents an independent investigation into the efficiency and effectiveness of
these techniques within a unified framework.

The primary challenge in parallelizing KGE training lies in the synchronization
of entity and relation embeddings across workers. Accesses to these embeddings
are required both when processing a triple from the KG but also in the negative
sampling step (see Fig. 3.2). Each access potentially involves communication between
workers, which is costly. To reduce this cost, parallel training methods (Lerer et al.
2019; Zheng et al. 2020; Zhu et al. 2019) try to keep embedding accesses local
to each worker; this is done by carefully partitioning the KG across workers and
by employing customized negative sampling techniques. The available techniques
include relation partitioning (Zheng et al. 2020), graph-cut partitioning (Zheng et al.
2020), stratification (Lerer et al. 2019; Zhu et al. 2019; Mohoney et al. 2021), shared
sampling (Lerer et al. 2019; Zheng et al. 2020), local sampling (Lerer et al. 2019;
Zheng et al. 2020; Zhu et al. 2019), and batch sampling (Lerer et al. 2019; Zheng et al.
2020). While parallel training methods can handle KGs of such scale and provide
reasonable training times, their use may also impact model quality negatively. A
comprehensive study of the benefits and drawbacks of these techniques has not been
conducted so far.

In this chapter, we report on an extensive experimental study in which we invest-
igated the efficiency and effectiveness of the available parallelization methods. To
ensure a fair comparison, we re-implemented all techniques on top of the LibKGE
framework (Broscheit et al. 2020). We found that the evaluation methodologies used
in prior work are often not comparable and can be misleading in that degradations

3.2. Parallel Training 29

in model quality due to parallel training may remain undetected. Our results suggest
that current (combinations of) training methods tend to have a negative impact on
embedding quality and/or do not provide substantial speedups. We propose a simple
but effective variation of the stratification technique used in PyTorch BigGraph that
mitigates these problems. We also found that on some datasets (and when combined
with suitable sampling techniques) the random-partitioning baseline outperformed
more sophisticated methods. Ultimately, we found that efficient and effective parallel
training of large-scale KGE models is indeed achievable but requires a careful choice
of techniques; the best choice is dataset-dependent. For example, training a large-
scale KGE model for Freebase on 8 GPUs is possible with 7× speedup and a model
quality that is competitive to sequential methods and exceeds prior results.

Note that following this study, multiple improvements were proposed to the ex-
isting parallelization frameworks (Mohoney et al. 2021; Waleffe et al. 2023; Zheng
et al. 2024). These improvements mainly address shortcomings of stratification par-
titioning. We expect the presented findings of this study to still hold in combination
with newly proposed improvements. In particular, we (partially) addressed multiple
of the shortcomings in this study already. For more details on this follow-up work,
see Sec. 3.6.1.

3.2 Parallel Training

Typically, KGE models are trained using negative sampling (Sec. 2.4.1). 𝑁− pseudo-
negative triples are obtained by corrupting the 𝑁−𝑠 × the subject and 𝑁−𝑜 × the object
slot of a positive triple. The model is optimized to produce a high score for the positive
and low scores for the pseudo-negative triples via gradient-based optimization. This
process is performed in mini-batches of size 𝐵. For the score calculation of a single
triple, the embeddings of the subject and object entity, as well as of the relation
are needed. These entity and relation embeddings are the parameters of the model.
The key insight that is used by existing parallel training techniques is that when
processing a batch, only the embeddings relevant to the batch need to be accessed
and updated. In particular, the embeddings of the entities and relations of the batch’s
triples (positives and pseudo-negatives) are relevant, whereas the embeddings of all
other entities and relations are not. This insight is exploited to reduce the overhead
of parallel processing to the extent possible.

To update the embeddings during training, KGE models rely on optimizers like
Adagrad (Duchi et al. 2011) or Adam (Kingma and Ba 2015). These optimizers keep
an internal state for each model parameter, i.e., each dimension of an embedding. In

30 Chapter 3. Training of Large-Scale KGE Models

Figure 3.1: General architecture for parallel KGE training. The KG (all triples) is replicated
to the workers. A master process indicates workers with the partition information on which
part of the triples to work on. Embeddings are distributed across workers using a parameter
server. Training is performed on each worker in parallel using a GPU (marked in gray).

the case of Adagrad, this internal state has a space consumption of 𝑂 (𝑑 (|E | + |R|)).
During training, the corresponding state for each processed entity and relation needs to
be communicated together with its embeddings. For large models, Lerer et al. (2019)
propose to use “row-wise” optimizers that significantly reduce the storage overhead
of Adagrad or Adam by maintaining an optimizer state per embedding (instead of per
component of each embedding). This reduces the space consumption of the optimizer
from 𝑂 (𝑑 (|E | + |R|)) with Adagrad to 𝑂 (|E | + |R|) with Row-Adagrad.

Here and subsequently, embedding refers to the model parameters used to repres-
ent a single entity or relation as well as their associated optimizer states.

To facilitate our goal of investigating various techniques to scale KGE training, we
make use of a simple architecture (Fig. 3.1) and computational framework (Alg. 3) that
generalizes prior multi-GPU and multi-machine KGE training methods and allows
to mix and match multiple techniques. For a visualization of this computational
framework applied on a specific example, see Fig. 3.2. We first summarize this
general framework and subsequently use it to describe the different parallelization
methods proposed in the literature.

General architecture. We assume a setup in which multiple workers are coordinated
by a master process as in Fig. 3.1. The workers may be situated on a single machine
(e.g., for multi-GPU training) or distributed across multiple machines. We denote
the number of workers by 𝑊 . The triples K are replicated to each worker. The
master communicates to the worker which subset of the triples it needs to process.
We denote such triple subsets as triple partitions. Each worker stores a subset of

3.2. Parallel Training 31

Figure 3.2: Example for processing a single triple of the example KG presented in Fig. 2.2.
Triples and embeddings are partitioned via random partitioning (see Sec. 3.3.2) over two
workers. Worker 1 performs a training step using the triple (Bob, speaks, French) by (i)
creating negative examples (see Sec. 2.4.1), (ii) fetching needed embeddings from local RAM
(green) and from remote workers (red) to GPU VRAM (gray), and (iii) pushing update deltas
back to local and remote storage locations.

the embeddings of the KGE model. We denote those embedding subsets as entity
and relation partitions; they are defined by the underlying partitioning technique.
Synchronization, communication, and updates of embeddings are handled via a co-
located parameter server (PS). The PS exchanges data either via shared memory or
network.

Master. The general computational framework is described in lines 1–9 of Alg. 3.
We start by partitioning the triples of the knowledge graph K into multiple triple
partitions K1, . . . , K𝑃 (line 2) and initialize the embeddings stored at each worker
(line 3). The partitioning technique, the number 𝑃 of triple partitions as well as the
initial location of each embedding depends on the method being used. Training is
then performed in multiple epochs until some convergence criterion is met. In each
epoch, the master process distributes triple partitions to workers (after optionally
repartitioning the data and potentially in a dynamic fashion or in multiple rounds)
and waits until all workers have processed their partitions.a Note that the cost of
distributing triple partitions to workers is generally not a bottleneck: it is done at

aThe number of triple partitions can be higher than the number of workers. In this case, workers
request the next triple partition to process from the master, as soon as they finished processing. The
master waits until all triple partitions are processed.

32 Chapter 3. Training of Large-Scale KGE Models

Algorithm 3 Framework for parallel KGE training
Require: A knowledge graph (set of positive triples)
Ensure: KGE model (entity and relation embeddings)

1: Master():
2: Partition knowledge graph ⊲ see Sec. 3.3
3: Initialize embeddings (parallel)
4: for each epoch do
5: Repartition triples ⊲ optional
6: Distribute triple partitions to workers
7: Wait for all workers to complete
8: end for
9: return trained embeddings

10: Worker():
11: while true do
12: Retrieve triple partition from master ⊲ latency
13: Relocate embeddings (async) ⊲ optional
14: for each batch do ⊲ constructed from current partition
15: Sample negative examples ⊲ work; see Sec. 3.4
16: Pull batch embeddings ⊲ latency
17: Process batch on GPU ⊲ work, latency
18: Push batch embedding updates ⊲ latency
19: end for
20: Signal completion to master
21: end while

once per epoch, and communication cost only involves triple IDs, as all triples are
replicated to the workers.

Embedding/parameter management. The embeddings are partitioned across the
individual workers and stored in their main memory; the architecture is similar to
the key-value store of Zheng et al. (2020). Each worker may pull (i.e., read) or push
(i.e., update) any embedding. The pull operation first retrieves the current value of an
embedding from its current location and stores it in GPU memory; likewise, the push
operation copies embedding updates from the GPU back to its storage location. Note
that the push operation forwards deltas instead of actual values, i.e., the difference
between the pulled and updated value; these deltas are applied sequentially. If an
embedding is stored locally at a worker, this process is fast, otherwise, latency and
communication overheads occur (none if in that worker’s GPU memory, some if in
that worker’s main memory, more if on some other worker). Workers may request to
relocate an embedding from its current location at a remote worker to themselves to

3.2. Parallel Training 33

minimize these overheads.b Such relocation allows for efficient implementation of the
parameter management schemes used by Zheng et al. (2020) and Lerer et al. (2019)
within a common framework. Unless stated otherwise, embeddings are relocated only
into the worker’s main memory. In some cases (which we will point out explicitly),
relocated embeddings are subsequently copied to GPU memory; in this case, the pull
and push operations are omitted.c

Workers. Each worker repeatedly processes a triple partition as described in lines 10–
21 of Alg. 3. After retrieving a triple partition from the master (line 12), each worker
may initiate an (asynchronous) relocation of all embeddings relevant to the triple
partition to itself, i.e., the entity and relation partitions corresponding to the triple
partition. The triple partition is then divided into mini-batches of size 𝐵, which
are processed in sequence. For each mini-batch, the worker first samples pseudo-
negative triples using negative sampling (line 15), then obtains the values of all
embeddings relevant for the batch (line 16), processes the batch on a GPU (line 17),
and (asynchronously) writes back the update deltas to the PS (line 18). After the entire
triple partition has been processed, the worker signals completion to the master.

Concurrent embedding accesses. During training, some embeddings may be con-
currently accessed by multiple workers, leading to conflicts. Due to the sparsity of
KGs, the number of conflicts is low for most embeddings (Zhang et al. 2017), but
they may arise more frequently for relation embeddings and highly connected entities.
Some partitioning techniques (Sec. 3.3) specifically minimize these access conflicts,
but they generally cannot be completely avoided. In such cases, access to stale embed-
ding versions may occur. Our PS ensures sequential consistency, however. Moreover,
lost updates do not occur because the push operation forwards deltas instead of actual
values, and these deltas are applied sequentially.

Discussion. In Alg. 3, we marked each step of the worker with whether (i) actual
work is performed and (ii) latency due to data movement may arise. Note that
only negative sampling (line 15) and batch processing (line 17) of our framework
correspond to “training work”; the rest of the framework constitutes coordination and
communication overhead. Key to effective parallel training is to reduce this overhead
to the extent possible (most notably, in lines 16–18), e.g., by reducing the amount

bIn our implementation, we use the Lapse parameter server (Renz-Wieland et al. 2020), which
supports transparent parameter relocation (see Sec. 3.5.2).

cEmbeddings are relocated to a GPU only if (i) there is sufficient memory on the GPU and (ii) it
can be ensured that no other worker accesses these embeddings. In this case, the updated embeddings
are copied back from the GPU to the worker’s main memory once the entire triple partition has been
processed (line 20 in Alg. 3).

34 Chapter 3. Training of Large-Scale KGE Models

PBG
(Lerer et al. 2019)

DGL-KE
(Zheng et al. 2020)

GraphVite
(Zhu et al. 2019)

This
study

1 D 1 D 1 D 1 D
Pa

rti
tio

ni
ng Random N/A ✓ ✓

Relation ✓ N/A ✓ ✓
Graph-Cut ✓ N/A ✓ ✓
Stratification ✓ ✓ ✓ N/A ✓ ✓

N
eg

.s
am

p. Uniform N/A ✓ ✓
Shared ✓ ✓ ✓ ✓ N/A ✓ ✓
Local ✓ ✓ ✓ ✓ N/A ✓ ✓
Batch ✓ ✓ ✓ ✓ N/A ✓ ✓

Table 3.1: Summary of techniques for parallel KGE training. 1 refers to single-machine
multi-GPU setup, 𝐷 means multiple machines.

of data that is communicated between workers and between main memory and GPU
memory as well as by minimizing the impact of communication latency.

Techniques. Pytorch BigGraph (PBG) (Lerer et al. 2019), GraphVite (Zhu et al.
2019), and DGL-KE (Zheng et al. 2020) provide methods for scalable training of
KGE models. The main goals of these methods are (i) low communication overhead,
(ii) fast epoch times, and (iii) high embedding quality. Generally, careful partitioning
and embedding relocation as well as customized negative sampling strategies are
required to obtain effective methods, and the frameworks differ mainly w.r.t. how this
is done. We discuss partitioning in Sec. 3.3 and negative sampling in Sec. 3.4. An
overview of the various techniques is given in Tab. 3.1.

3.3 Partitioning

We are now ready to describe and compare various approaches to partition the KG
across workers (lines 2 and 5 of Alg. 3). The most basic partitioning scheme,
which serves as a baseline for our study, is random partitioning. We also describe
relation partitioning, graph-cut partitioning, and finally stratification and discuss their
influence on the performance of parallel training. An overview of which framework
proposed or used which partitioning method is given in Tab. 3.1. Following this study,
further frameworks have been proposed, mainly improving on techniques presented
with PBG. For an overview, see Sec. 3.6.1.

3.3. Partitioning 35

Load balancing Variety Comm. cost

Random + + -
Relation ° + °
Graph-cut - - +
Stratification (plain) ° - +
Stratification (CARL) ° ° +

Table 3.2: Influence of partition approaches on balancing of partition sizes, variety, and
communication cost.

3.3.1 Desiderata for Partitioning Techniques

The choice of the partitioning method influences all three goals of parallel training
mentioned above: low communication cost, fast epoch times, and high quality. We
discuss each goal in turn; see Tab. 3.2 for a coarse overview of the influence of each
partitioning scheme on these three criteria.

Low communication cost. First, the choice of partitioning scheme influences com-
munication cost because it determines which data is processed by which worker and
consequently which embeddings are accessed by which workers. If the partitioning of
the embeddings across workers is well-coordinated with the partitioning of the triples,
latency can be largely avoided and overall communication cost reduced. Generally,
this is done by allocating embeddings to the workers that access them frequently
(line 13 of Alg. 3). Note that the communication overhead can further be reduced by
selective replication of embeddings, as done in follow-up work (Renz-Wieland et al.
2023). For more insights on such improvements, see Sec. 3.6.2.

Fast epoch times. Next, assuming that communication latency has been addressed
and is not a bottleneck, the wall-clock time taken for an epoch is mainly driven
by load balancing: If each worker has a similar amount of work, all workers can
operate in parallel. Otherwise, overloaded workers may stall progress and become a
bottleneck (e.g., line 7 in Alg. 3). To assess whether a partitioning scheme balances
computation, we use triple partition sizes as a proxy: We generally prefer partitionings
in which triple partition sizes are balanced over partitionings in which they are not.
Another factor is the number 𝑃 of partitions: many small partitions (𝑃 ≫ 𝑊) may
induce higher cost than a few larger partitions (e.g., 𝑃 = 𝑊), mainly due to overheads
incurred when switching partitions at a worker.

High Quality. Finally, and perhaps less obviously, the partitioning scheme also
influences the quality of the resulting embeddings. On the one hand, this is because
some partitioning schemes limit “variety” in that the distribution of co-occurrence
of some triples (or entities) is changed so that they do not or only seldom co-occur

36 Chapter 3. Training of Large-Scale KGE Models

in a partition or a batch. On the other hand, and perhaps more importantly, the
partitioning schemes also influence the impact on quality of the parallel negative
sampling techniques in that the negative sampling pool might be dependent on the
entity partitions. These influences will be discussed in Sec. 3.4.

3.3.2 Random Partitioning

In random partitioning, the underlying triples K of the KG G are randomly divided
into 𝑃 equally-sized triple partitions K1, . . . , K𝑃, where typically 𝑃 equals the
number of workers 𝑊 . Likewise, all embeddings are partitioned randomly across
workers, resulting in 𝑃 entity/relation partitions. An example training step with
random partitioning is visualized in Fig. 3.2.

Discussion. Random partitioning ensures perfect load balancing and wide variety of
triples within each triple partition. Its main problem is communication cost. Since the
partitioning ignores the structure of the knowledge graph, most embedding accesses
(pull and push in Alg. 3) will be non-local and incur communication and latency: each
individual embedding access is local with a probability of only 1/𝑊 . The resulting
cost of remote embedding accesses may exceed potential parallelization benefits.

3.3.3 Relation Partitioning

The random partitioning scheme can be improved by making use of the following
observation. In most large KGs, the number of entities (say, multiple millions) exceeds
by far the number of relations (say, a few thousand). Since the processing of each SPO
triple in a batch requires access to its corresponding entity and relation embeddings, a
substantial fraction of the embedding accesses are to relation embeddings. In addition
to being responsible for a substantial amount of communication (O(1/3)) in random
partitioning, there are generally more conflicts between these accesses in that multiple
workers may access given relation embeddings simultaneously (just because there are
few relations).

Both problems can be avoided by relation partitioning (Zheng et al. 2020). Here
the set R of relations is partitioned into 𝑃 subsets R1, . . . , R𝑃, where as before
𝑃 = 𝑊 . The KG is then partitioned accordingly: triple partition K𝑝 consists of the
triples with a relation in R𝑝, i.e., K𝑝 = K ∩ E × R𝑝 × E . An example of relation
partitioning with 𝑃 = 2, R = { 𝑟1, 𝑟2 } and R𝑝 =

{
𝑟𝑝

}
is shown in Fig. 3.3a.

Discussion. In general, relation partitioning aims to provide balanced triple partition
sizes. Finding such a partition is a multiway number partitioning problem (Graham
1966) (where the numbers correspond to relation sizes) and greedy approximation

3.3. Partitioning 37

(a) Relation partitioning: Triple partition
membership is determined by each triple’s re-
lation (here: 𝑟1 and 𝑟2).

(b) Graph-cut partitioning: Triple partition
membership is determined by each triple’s
subject entity. Entities are partitioned via a
graph cut (indicated by vertex color).

(c) Stratification partitioning: Triple partition
membership is determined by each triple’s
subject and object entity. Entities are parti-
tioned randomly (indicated by vertex color).

Figure 3.3: Illustration of partitioning approaches for𝑊 = 2 workers. Colors indicate triple
partition membership.

methodsd empirically tend to work well as long as there are no overly large relations.
However, such relations do arise in practice; e.g., the most frequent relation occurs
in between 3% and 35% of the training triples of the datasets used in this study. In
such cases, triple partitions either become unbalanced (impacting load balancing) or
the relation partitioning is “softened” by splitting the triples of large relations across
workers (impacting communication cost).

Since in (hard) relation partitioning each relation occurs only at a single worker,
relation embeddings do not need to be communicated across workers and can, in
fact, be stored in each worker’s GPU memory during the relocation step (line 13 in

dWe use the popular heuristic of sorting the relations in descending order first, before applying
greedy-number-partitioning.

38 Chapter 3. Training of Large-Scale KGE Models

Alg. 3); no subsequent costs arise for pulling or pushing these embeddings. If soft
relation partitioning is used, this benefit vanishes for frequent relations. There is also
no benefit for accessing entity embeddings so substantial communication costs may
still arise. These costs may be slightly reduced by relocating each entity to the worker
that accesses it most often; this is especially beneficial if certain entities only arise in
a single relation.

Finally, relation partitioning reduces variety when compared to random partition-
ing. Whether two triples may co-occur in a triple partition (and consequently a batch)
depends on the relations of these triples.

3.3.4 Graph-Cut Partitioning

An alternative to partitioning the relations is to partition the set E of entities into 𝑃
entity partitions E1, . . . , E𝑃, which are distributed across the workers. The triples
K are partitioned accordingly in that each triple is assigned to a triple partition that
corresponds to the entity partition of its subject entity: We have K𝑝 = K∩E𝑝 ×R×E
for 1 ≤ 𝑝 ≤ 𝑃. Triple partition K𝑝 is processed by the worker at which E𝑝 is located.
The idea of graph-cut partitioning (Zheng et al. 2020) is to partition the entities in such
a way that (i) partition sizes |K𝑝 | are balanced and (ii) most triples are local to their
partition. A triple (𝑠, 𝑟, 𝑜) ∈ K𝑝 is local if 𝑠, 𝑜 ∈ E𝑝: in this case, no communication
is required to access the corresponding entity embeddings during training. Zheng
et al. (2020) use METIS (Karypis and Kumar 1998) to create such a balanced graph
cut; see Fig. 3.3b for an example.

Discussion. Entity partitions influence the communication cost between workers and
triple partitions the computational cost at each worker. There is generally a trade-off
between balancing the sizes of entity and triple partitions and the fraction of local
triples. The communication overhead for relation embeddings is not reduced. Most
knowledge graphs admit a well-balanced cut in terms of entity partitions, but these
cuts result in unevenly-sized triple partitions; e.g., our experimental study showed a
coefficient of variation of triple partition sizes of up to 37%, leading up to 2× longer
processing times of the largest partition compared to the smallest (c.f. Tab. 3.16).

As the effectiveness in terms of training time reduction is heavily dependent on
this balancing, graph-cut partitioning is beneficial for datasets for which there is a
good graph cut with balanced entity partitions and balanced triple partitions. In
general, many entities occur in multiple partitions so data movement across workers
as well as between main memory and GPU memory cannot be avoided. Finally,
entity partitions tend to contain highly interconnected entities (communities), which

3.3. Partitioning 39

Figure 3.4: Possible schedule for 𝑊 = 2 workers with stratification using 𝑀 = 4 entity
partitions. Each block indicates one scheduling step processing one stratum. Each color
indicates one worker and each marked triple partition inside a stratum is processed in parallel
by a worker. Combined stratification (bottom) halves the number of strata compared to plain
stratification (top) by combining mirror partitions.

substantially reduces variety across partitions. This is especially problematic in
conjunction with some of the sampling techniques discussed in Sec. 3.4.

3.3.5 Stratification Partitioning

Stratification partitioning was originally introduced in the context of matrix factoriz-
ation (Gemulla et al. 2011) and subsequently adapted to training KGEs (Lerer et al.
2019; Zhu et al. 2019). The idea behind stratification is to create triple partitions
(termed buckets in (Lerer et al. 2019)) that access pairwise disjoint sets of entities.
A set of 𝑆 such triple partitions is called a stratum (Gemulla et al. 2011). The key
insight behind stratification is that we can process the triple partitions within a stratum
in parallel across 𝑆 workers without any need to synchronize entity embeddings in
between as they are pairwise disjoint.e Strata can be obtained in the following way:
first partition the set E of entities randomly into𝑀 entity partitions E1, . . . , E𝑀 (where
generally 𝑀 = 𝛩(𝑊)) and subsequently partition the triples based on their subject
and object entities. For example, a triple with a subject of entity partition 𝑝1 and
an object of entity partition 𝑝2 is assigned to the triple partition K𝑝1𝑝2 . We obtain
𝑃 = 𝑀2 triple partitions of form K𝑝𝑠 𝑝𝑜 = K ∩ (E𝑝𝑠 ×R× E𝑝𝑜) for 1 ≤ 𝑝𝑠, 𝑝𝑜 ≤ 𝑀 .
Such a partitioning is visualized in Fig. 3.3c for 𝑀 = 2. The resulting triple partitions
are then scheduled across workers such that at any point in time, the set of currently
processed triple partitions forms a stratum (see below). An example schedule for
𝑀 = 4 and 𝑊 = 2 is shown in Fig. 3.4 (top). Before processing a triple partition,

eNote that synchronization may be required to process negative samples. We come back to this
point in Sec. 3.4.

40 Chapter 3. Training of Large-Scale KGE Models

workers relocate their entity embeddings to themselves (line 13 of Alg. 3) so that
accesses to these entities are local.f

Partitioning and scheduling. The number 𝑀 of entity partitions must be carefully
chosen. Generally, any two triple partitions K𝑝𝑠 𝑝𝑜 and K𝑝′𝑠 𝑝

′
𝑜

within a stratum must
be guaranteed to contain disjoint entities, i.e., we require { 𝑝𝑠, 𝑝𝑜 } ∩

{
𝑝′𝑠, 𝑝

′
𝑜

}
= ∅.

A natural choice is to set 𝑀 = 𝑊 ; however, such a choice does not ensure that all
strata contain 𝑊 triple partitions and thus saturate all workers. In Fig. 3.3c, where
𝑀 = 2, it is only possible to build the non-trivial stratum {K11,K22 }; all other pairs
of triple partitions do not form a stratum and thus cannot be processed in parallel.
During training, this means that K12 and K21 are processed sequentially and one
worker remains idle. We call such a schedule blocking.

To increase worker saturation, Lerer et al. (2019) proposed to set 𝑀 > 𝑊 ; in
particular 𝑀 = 2𝑊 (less does not suffice). The resulting 𝑃 = (2𝑊)2 triple partitions
can be grouped into 4𝑊 strata, each of size exactly 𝑊 . An example of such a
non-blocking schedule is shown in Fig. 3.4 for 𝑊 = 2 and consequently 𝑀 = 4.
Scheduling must be done carefully. A best-effort scheduler such as the one used in
PBG (Lerer et al. 2019) does not always produce a non-blocking schedule. Follow-
up work improved on this scheduling for single (Mohoney et al. 2021; Waleffe et al.
2023) and multi-GPU (Zheng et al. 2024) training. For an overview of improvements,
see Sec. 3.6.1.

Processing order. Processing a triple partition only leads to updates in its cor-
responding entity partitions. For this reason, the embedding spaces of each entity
partition may not be aligned in the first epochs when trained with a single worker. This
problem can be mitigated by a carefully chosen processing order (Lerer et al. 2019).
In our setting, this issue vanishes as concurrent updates of relation embeddings by
multiple workers automatically lead to aligned embedding spaces. In fact, a random
ordering of strata performed best in our experiments.

Discussion. Since entities are partitioned randomly, all triple partitions have the
same size in expectation (= 𝑁/𝑃 = 𝑁/𝑀2). Triple partition sizes may still vary
somewhat; the variance depends on the data distribution. A key problem with
stratification is that the number of triple partitions scales quadratically with the
number of workers (since 𝑀 = 𝛩(𝑊)). This is problematic especially when the KG
is small relative to the number of workers. The main advantage of stratification is that
(i) overall communication cost is reduced and (ii) no access latency arises during batch

fRelocation is to main memory in general to allow across-partition negative sampling. When local
sampling is used (see Sec. 3.4.4), relocation to GPU is possible.

3.3. Partitioning 41

processing for the embeddings of the partition’s entities. Assuming a non-blocking
schedule and ignoring negative sampling, each entity embedding is relocated at most
𝑃/𝑊 times (e.g., 4𝑊 times for the choice of 𝑀 = 2𝑊). In practice, roughly half of the
relocations can be avoided by scheduling triple partitions to workers that already have
their subject or object entities localized. Finally, stratification does reduce variety
between triple partitions, but it does so in a less systematic way than graph-cut
partitioning.

3.3.6 Improved Stratification Partitioning (CAR)

Stratification partitioning is a promising technique but, as discussed above, may suffer
from (i) small triple partitions, (ii) many relocations, and (iii) reduced variety. We
propose three simple techniques that mitigate these problems: (i) combining mirror
partitions (C), (ii) relocating only active entities (A), and (iii) repartitioning between
epochs (R). We refer to the resulting variant of stratification as CAR stratification and
study its impact in the experimental section.

Combining mirror partitions (C) is a technique that halves the number of triple
partitions required to create a non-blocking schedule. It consequently reduces com-
munication cost and leads to more variety within triple partitions. The approach
works as follows: First compute triple partitions as in plain stratification and sub-
sequently merge each pair of mirror partitions into a single triple partition. The
mirror partition of K𝑝𝑠 𝑝𝑜 is K𝑝𝑜 𝑝𝑠 when 𝑝𝑠 ≠ 𝑝𝑜. When 𝑝𝑠 = 𝑝𝑜 = 𝑝, the mirror
partition is K(𝑝+1) (𝑝+1) for odd 𝑝 and K(𝑝−1) (𝑝−1) for even 𝑝. An example is shown
in Fig. 3.4 (bottom); here, mirror partitions are indicated by the same color. One
can show that when 𝑀 = 2𝑊 , mirror partitions also admit a non-blocking schedule
such as the one shown in Fig. 3.4 (bottom). Roughly speaking, when some worker
𝑤 processes K𝑝𝑠 𝑝𝑜 , plain stratification ensures that no other worker processes mirror
partition K𝑝𝑜 𝑝𝑠 concurrently. We can thus merge each partition with its mirror.

Active entities (A). In plain stratification, the entity embeddings of the combined
entity partitions E𝑝𝑠∪E𝑝𝑜 are relocated to the worker before processing triple partition
K𝑝𝑠 𝑝𝑜 . However, only a fraction of these entities may actually occur either as subject
or object of a triple in K𝑝𝑠 𝑝𝑜 . We denote those entities as active and propose a simple
variant that relocates only the embeddings of active entities instead. This approach
reduces communication cost significantly when partitions are sparse (as is often the
case in large KGs). Furthermore, this affects the pool for the local sampling technique
discussed in Sec. 3.4.4.

42 Chapter 3. Training of Large-Scale KGE Models

Batch (pos.
triples)

Uniform
negatives

Shared
negatives

Batch
negatives

(Hitchcock,
directed,
Psycho)

Computer,
LionKing

Computer,
LionKing

GreenBook,
Ali

(Ali,
ActorIn,

GreenBook)

University,
Biden

Computer,
LionKing

Ali,
Psycho

Table 3.3: Example for negative samples produced by various techniques (𝐵 = 2, 𝑁− = 2).
Only the sampled corrupted entities are shown. In shared sampling, corrupted triples are
reused across positive triples. In batch sampling, corrupted entities are sampled from the
positive triples occurring in the batch.

Repartitioning (R). The entity partitioning and hence the triple partitioning in plain
stratification is static, i.e., it does not change between epochs. To increase variety,
one may repartition both entities (randomly) and triples between epochs. This repar-
titioning can be performed in the background and only incurs minor communication
costs when each worker has access to the complete knowledge graph. Note that
repartitioning is also possible for random partitioning, but generally not for graph-cut
and relation partitioning.

Discussion. All of the above modifications are simple. Our experimental study sug-
gests that they are effective or even instrumental for the efficient use of stratification.

3.4 Negative Sampling

The partitioning techniques discussed in the previous section aim to make access to
(the entity and relation embeddings of) positive triples from K more efficient. We
now turn attention to pseudo-negative triples. Recall that these triples are constructed
by negative sampling, i.e., for each positive triple in a batch, we create 𝑁− pseudo-
negative triples by corrupting either its subject or its object with a randomly sampled
entity. All embeddings of the so-sampled entities needed to be pulled to the worker
as well, which induces communication overhead. If 𝑁− is large, this overhead is
substantial and may by far outweigh the communication overhead required to process
positive triples.

The communication overhead is mainly driven by (i) the number of unique entities
sampled for a batchg and (ii) the location of the corresponding entity embeddings.
Both factors can be influenced by biasing the sampling distribution used for corrup-

gIf an entity occurs multiple times in a batch, its embedding needs to be pulled/pushed only once.

3.4. Negative Sampling 43

Technique Unique entities per batch

Uniform sampling 2𝐵 + 𝐵𝑁−
Shared sampling 2𝐵 + 𝑁−
Batch sampling 2𝐵

Table 3.4: Number of unique entities per batch (upper bound) by sampling technique.
Corresponding entity embeddings need to be communicated and copied to GPU memory.

tion. The key techniques are shared sampling (Lerer et al. 2019; Zheng et al. 2020),
batch sampling (Lerer et al. 2019; Zheng et al. 2020), and local sampling (Lerer et al.
2019; Zheng et al. 2020; Zhu et al. 2019). An example per technique is given in
Tab. 3.3, and an overview of the techniques used in various frameworks in Tab. 3.1.
In the following, we describe the techniques and analyze them in terms of the number
of unique entities being used (Tab. 3.4).

3.4.1 Uniform Sampling

Uniform sampling is the basic technique used in sequential methods for training KGE
embeddings; we use it as a baseline. Each negative sample is obtained by sampling
the corrupted entity uniformly and independently from the set E of all entities. This
leads to a large number of unique entities per batch: with a batch size of 𝐵, up to
2𝐵 unique entities occur in the positive triples (subject and object entity) and up
to 𝐵𝑁− additional unique entities in the pseudo-negative triples (corrupted entity).
Consequently, even for small choices of 𝑁−, most entities relevant for a batch arise
from negative sampling. In expectation, only a fraction of 1/𝑊 of these entities is
local to the worker so communication costs are high.

3.4.2 Shared Sampling

The idea of shared sampling (Lerer et al. 2019; Zheng et al. 2020) is to use the
same corrupted entities for triples in a batch. In more detail, 𝑁− triples are sampled
uniformly and independently from the set of all entities and then shared across positive
triples.h This substantially reduces the number of unique corrupted entities from 𝐵𝑁−

to 𝑁− and consequently leads to a significant reduction of communication costs and
epoch time. For many KGE models, computational cost can also be reduced because
it facilitates the scoring of all negative triples in a batch on the GPU via matrix
multiplication. This approach is used in PBG and DGL-KE. A key drawback of
shared sampling is that variety is reduced, which can have a negative impact on

hShared sampling can also be applied to a subset of the batch as done by Zheng et al. (2020).
However, we did not see any benefits of this approach.

44 Chapter 3. Training of Large-Scale KGE Models

embedding quality. In fact, our experimental study (Sec. 3.5.5) suggests that (i) this
issue can be mitigated by increasing the number of negatives drastically, and (ii) even
with the higher number of negative samples, shared sampling is far more efficient
than uniform sampling.

3.4.3 Batch Sampling (B)

To avoid transferring additional embeddings for the entities of negative triples (both
to worker and to GPU memory), batch sampling (termed degree-based sampling in
(Zheng et al. 2020)) does not sample from the set E of all entities but from the set
of entities that already occur in a positive triple of the batch. The number of unique
entities per batch reduces to 2𝐵 and in particular, does not depend on the number
𝑁− of negative samples anymore. The size of the sampling pool for the negative
samples is heavily reduced and their distribution is data-dependent (more frequent
entities are more likely to occur in a batch and thus to occur as a negative). Zheng
et al. (2020) combine batch sampling with uniform sampling to increase variance. Our
experimental study suggests that the benefits of batch sampling depend on both dataset
and partitioning technique. On most datasets, batch sampling heavily deteriorated
embedding quality, but it was highly beneficial in terms of both embedding quality
and communication overhead on the Freebase dataset. Here, uniform negatives may
lead to “easy” negative samples (Kotnis and Nastase 2017), whereas batch samples
may contain harder negatives.

3.4.4 Local Sampling (L)

Another approach to bias the sampling distribution is local sampling, where corrupted
entities are drawn from the set of entities whose embeddings are located at the worker
(in the parameter server). This ensures that pull operations for negatives do not incur
communication with other workers. Local sampling is used by DGL-KE, PBG, and
GraphVite and can be combined with shared sampling.

Since local sampling biases the sampling distribution, it has an impact on embed-
ding quality. This impact is mainly determined by the allocation of entity embeddings
across workers, which in turn is driven by the partitioning scheme being used. For
example, if graph-cut partitioning is used, the allocation is static: for all triples of
partition K𝑝, negative samples are taken from E𝑝. Likewise, when processing par-
tition K𝑝𝑠 𝑝𝑜 in stratification partitioning, negative samples are taken from the set
E𝑝𝑠 ∪ E𝑝𝑜 of entities (or the subset of active entities in CAR stratification). Con-

3.5. Experimental Study 45

sequently, local sampling may degrade quality in all these cases; we investigate this
degradation empirically in our experimental study.

One counter-measure to mitigate degradation effects is to repartition the data
between epochs as in CAR stratification. Such an approach is not possible for
graph-cut partitioning (since partitions are deterministic), however, and it is very
restricted in relation partitioning. An alternative approach that ensures a dynamic
local-sampling pool is to reshuffle the entity partitions (but not the triple partitions)
randomly between epochs. This approach—denoted (r)—can be used with random
and relation partitioning since these methods use a random entity allocation.

Note that when local sampling is combined with stratification partitioning, it is
guaranteed that (i) all entity embedding accesses (positive and negative) of a worker
are local and (ii) no other worker accesses these embeddings concurrently. For this
reason, the embeddings can be stored directly in GPU memory, and the pull/push
operations (lines 16 and 18 of Alg. 3) can be omitted.

3.5 Experimental Study

We conducted an experimental study in which we investigated the various partitioning
and negative sampling techniques in a common framework. Our main goal was to
provide insight into (i) the efficiency of the techniques in terms of runtime as well as,
(ii) their effectiveness in terms of embedding quality, and ultimately (iii) whether and
to what extent parallelization is beneficial to train KGE models. We consider both
single-machine multi-GPU scenarios as well as multi-machine multi-GPU training.

3.5.1 Key Findings

Before describing the experimental setup and results of our study in detail, we briefly
summarize our key findings.

General findings.

1) The right choice of partitioning and negative sampling technique was crucial.
With such a choice, both multi-GPU and multi-machine parallelization were
effective and efficient, especially for larger knowledge graphs (Sec. 3.5.3).

2) The right choice is dataset-dependent.

3) With the right choice, 7× speedup with 8 GPUs was possible.

4) The sampled MRR metric (Sec. 2.5) used in prior work to evaluate KGE model
quality on large KGEs is misleading and should not be used (Sec 3.5.4).

46 Chapter 3. Training of Large-Scale KGE Models

5) Row-based optimizers such as Row-Adagrad reduced communication overhead
while preserving a high embedding quality (Sec. 3.5.9).

6) The findings are stable over varying configurations of hyperparameters
(Sec. 3.5.10).

Partitioning techniques (Sec. 3.5.3).

1) CAR stratification in combination with local sampling was most efficient and
effective on most datasets. It also outperformed plain stratification.

2) Random partitioning consistently led to high-quality embeddings. On Freebase,
it was the overall method of choice.

3) Graph-cut partitioning was least effective due to unbalanced triple partition
sizes (Sec. 3.5.7).

4) Relation partitioning led to time improvements but had a negative influence on
embedding quality on some datasets.

Sampling techniques (Sec. 3.5.5, 3.5.6).

1) Shared sampling was instrumental for efficiency and should always be used.
2) Local sampling with a dynamic sampling pool improved efficiency and should

be used on large graphs.
3) A static local sampling pool often had a negative influence on embedding

quality.
4) Batch sampling significantly deteriorated resulting quality on most graphs. On

Freebase, however, it significantly improved quality.

3.5.2 Experimental Setup

We provide code, search configurations, and resulting hyperparameters at
https://github.com/uma-pi1/dist-kge.

Datasets. We used knowledge graphs of varying sizes; see Tab. 3.5. FB15K (Bordes
et al. 2013), a small subset to compare to prior work on KGE, Yago3-10 (Dettmers
et al. 2018), Wikidata5M (Wang et al. 2021b) and the Freebase KG as used by Zheng
et al. (2020) and Lerer et al. (2019).i Note that a KGE model for Freebase does
not fit on a single GPU (e.g., a ComplEx model with 𝑑 = 400 takes 128 GB plus
optimizer state). For all datasets except Freebase, we use the validation and test sets
that accompany the datasets. For Freebase, we sample 10 000 triples from the original
validation and test sets (which contain about 17M triples each) to keep evaluation costs
feasible. These sets are still sufficiently large to estimate model quality accurately.

idump: https://developers.google.com/freebase/, preprocessed: http://web.inform
atik.uni-mannheim.de/pi1/kge-datasets/freebase.tar.gz.

https://github.com/uma-pi1/dist-kge
https://developers.google.com/freebase/
http://web.informatik.uni-mannheim.de/pi1/kge-datasets/freebase.tar.gz
http://web.informatik.uni-mannheim.de/pi1/kge-datasets/freebase.tar.gz

3.5. Experimental Study 47

Dataset Entities Relations |Train| |Valid| |Test|

FB15K 14 951 1 345 483 142 50 000 59 071
Yago3-10 123 182 37 1 079 040 5 000 5 000
Wikidata5M 4 818 579 828 21 343 681 5 357 5 321
Freebase 86 054 151 14 824 304 727 650 16 929 318 16 929 308

Table 3.5: Datasets used in this study.

Hardware. We ran all experiments on the same hardware. We used two machines
with 40 CPUs (Intel(R) Xeon(R) CPU E5-2640 v4, 2.40GHz) and 4 GPUs (GeForce
RTX 2080 Ti). The bandwidth between the machines was 1 GB/s. For each experi-
ment, we write 𝐺@𝐶 to indicate that 𝐺 GPUs were used on each of 𝐶 machines. For
example, a 1@2 experiment uses two machines with one GPU each. On each GPU,
we run two workers so that the 1@2 setup trains with four workers.

Implementation. We implemented parallel training on top of the PyTorch-based
LibKGE library (Broscheit et al. 2020), which provides a number of KGE mod-
els, training methods, and evaluation techniques. KGE models can be grouped
into semantic matching models and translational distance models (Sec. 2.3.1). We
considered ComplEx (Trouillon et al. 2016) and RotatE (Sun et al. 2019), which
are among the currently best-performing models (Ali et al. 2021a; Sun et al. 2019;
Ruffinelli et al. 2020; Lacroix et al. 2018) for the former and latter group, respect-
ively. For single-machine multi-GPU training, we used a shared-memory PyTorch
tensor to store embeddings in main memory. For multi-machine training, we used the
parameter server Lapse (Renz-Wieland et al. 2020).

Metrics. We compared parallel to sequential training methods. We used two different
sequential settings: sequential (GPU memory) and sequential (main memory), which
differ in the location of the embeddings. For the main memory version, embeddings
are copied to and retrieved from the GPU memory when processing each batch; this
allows for handling very large KGE models. We evaluated efficiency in terms of
runtime and communication cost (GBs transferred) per epoch. To evaluate quality,
we follow standard practice and compute the filtered mean reciprocal rank (MRR)
and Hits@𝑘 for the link prediction task; for details see Sec. 2.5. Finally, to evaluate
effectiveness, we combined efficiency and result quality, which may be affected by
parallelization. In particular, for each setting, we report the time required to reach an
MRR that exceeds 95% of the best MRR achieved in the sequential setting.

Hyperparameter optimization. A solid choice of hyperparameters is key to obtain-
ing high-quality KGE models. In general, we followed Ruffinelli et al. (2020) and
performed the model selection using a quasi-random search with 30 trials in a sequen-

48 Chapter 3. Training of Large-Scale KGE Models

B Batch sampling Sec. 3.4.3
L Local sampling Sec. 3.4.4
A Sampling from active entities only Sec. 3.3.6

r Reshuffle entity partitions every epoch Sec. 3.4.4
R Repartition triple and entity partitions every epoch Sec. 3.3.6
C Combining mirror partitions Sec. 3.3.6

Table 3.6: Summary of short notations.

tial setup. Each trial was run for 20 epochs using Adagrad; the best resulting model
was then run for up to 300 epochs (Wikidata5M) or 400 epochs (FB15K, Yago3-10).
An exception is Freebase; (which would be infeasible to run sequentially); here we fol-
lowed Lerer et al. (2019) and used the best-performing setting on FB15K, and trained
up to 10 epochs using Row-Adagrad. Evaluating the effects of this hyperparameter se-
lection based on a smaller graph, we additionally used the large-scale hyperparameter
optimization approach GraSH (Ch. 4) and compared findings (Sec. 3.5.10). Note that
results on Freebase tuned on FB15K are considerably behind performance using the
properly tuned hyperparameter configurations. However, general findings hold over
both sets of hyperparameters. For our parallel experiments, we generally used the
best-performing sequential hyperparameters. We used 128-dimensional embeddings
for all datasets.

Techniques. As shared negative sampling was instrumental for efficient parallel
training, we consistently used it unless noted otherwise. We explored local (L) and
batch (B) sampling, repartitioning of triple partitions and relocation of corresponding
entity partitions (R), shuffling of entity partitions (r), combined mirror triple partitions
(C), and active entities (A). For an overview of short notations see Tab. 3.6. We use
batch sampling combined with uniform sampling (50/50) unless stated otherwise.
For stratification we set 𝑀 = 2𝑊 for all datasets but Freebase. For Freebase, we used
𝑀 = 32 throughout so that the entity partitions fit in GPU memory in all settings.

3.5.3 Partitioning Techniques (Tab. 3.7–3.10)

Tab. 3.7 (ComplEx) and Tab. 3.8 (RotatE) summarize the most effective parallelization
techniques for various numbers of GPUs and machines. For all settings but 4@2, we
ran all partitioning techniques and reported the one with the lowest time to 0.95 MRR.
For 4@2, we used the best-performing partitioning technique found for 1@2 (2@2 for
Freebase). Parallelization was effective on all datasets, but the speedups on Yago3-10
were small; here parallelization overheads and quality degradation dominated. For the
larger Wikidata5M and Freebase datasets, speedups were significant: up to 7×without

3.5. Experimental Study 49

Set
up

Partitioning
technique

Epoch
time

Time to
0.95 MRR MRR Hits

@10

FB
15

K
1@1 Seq. (GPU memory) 5.9s 3.9min 0.779 0.862
1@1 Seq. (main memory) 7.7s 5.1min 0.779 0.862
2@1 Random (R) 2.6s 2.0min 0.775 0.859
1@2 Random (R) 2.9s 2.2min 0.775 0.859

4@2 Random (R) 1.3s 1.3min 0.766 0.858

Ya
go

3-
10

1@1 Seq. (GPU memory) 24.3s 38.5min 0.542 0.675
1@1 Seq. (main memory) 42.6s 67.5min 0.542 0.675
2@1 Relation 19.0s 33.2min 0.538 0.669
1@2 Random (RL) 19.5s 35.8min 0.547 0.679

4@2 Random (RL) 5.6s n.r. 0.503 0.653

W
ik

id
at

a5
M 1@1 Seq. (GPU memory) 438.4s 219.0min 0.297 0.385

1@1 Seq. (main memory) 774.3s 387.0min 0.297 0.385
2@1 Stratification (CARL) 232.8s 77.6min 0.308 0.398
1@2 Stratification (CARL) 228.0s 76.0min 0.308 0.398

4@2 Stratification (CARL) 97.1s 105.2min 0.294 0.377

Fr
ee

ba
se

1@1 Seq. (main memory) 3929.0s - 0.364 0.487
4@1 Random (RLB) 704.6s - 0.426 0.529
2@2 Random (RLB) 966.7s - 0.426 0.529

4@2 Random (RLB) 591.6s - 0.421 0.523

Table 3.7: Partitioning techniques (best-performing variant in terms of time to 0.95 MRR).
Calculating time to 0.95 MRR was too expensive for Freebase. (ComplEx, n.r. means not
reached)

any quality degradation. The two models behaved similarly but overall RotaE training
times were higher compared to ComplEx. Furthermore, graph-cut partitioning had a
smaller negative influence on quality with RotatE than with ComplEx.

Overall, the best-performing techniques were dataset-dependent. In most cases,
a variant of stratification or random partitioning outperformed other techniques or
was close to the best result. We analyzed Freebase separately (Tab. 3.10). Here the
random partitioning baseline in combination with local (L) and batch (B) sampling
was most effective; stratification led to the overall worst results. One reason for the
weaker performance of stratification was the reduced effectiveness of batch sampling
with this partitioning technique, see Sec. 3.5.6. Increasing the number of negative
samples by 10×mildened this effect and led to an overall increased embedding quality
(see also Tab. 3.10). Graph-cut partitioning further reduced communication cost by
5-6×, but did not provide faster epoch times due to unbalanced triple partition sizes.

50 Chapter 3. Training of Large-Scale KGE Models

Set
up

Partitioning
technique

Epoch
time

Time to
0.95 MRR MRR Hits

@10

FB
15

K
1@1 Seq. (GPU memory) 9.5s 11.9min 0.705 0.834
1@1 Seq. (main memory) 11.4s 14.3min 0.705 0.834
2@1 Stratification (CARL) 4.6s 5.8min 0.725 0.835
1@2 Stratification (CARL) 5.9s 7.4min 0.725 0.835

Ya
go

3-
10

1@1 Seq. (GPU memory) 74.1s 259.3min 0.451 0.637
1@1 Seq. (main memory) 88.0s 307.8min 0.451 0.637
2@1 Stratification (CARL) 40.8s 166.6min 0.438 0.607
1@2 Stratification (CARL) 43.3s 175.8min 0.438 0.607

W
ik

id
at

a5
M 1@1 Seq. (GPU memory) 798.4s 199.6min 0.258 0.348

1@1 Seq. (main memory) 985.7s 246.4min 0.258 0.348
2@1 Stratification (ARL) 466.7s 77.8min 0.264 0.344
1@2 Stratification (ARL) 477.7s 79.6min 0.264 0.344

Fr
ee

ba
se

1@1 Seq. (main memory) 6495.7s - 0.566 0.627
4@1 Random (RLB) 1290.8s - 0.567 0.630
2@2 Random (RLB) 1541.4s - 0.567 0.630

4@2 Random (RLB) 938.3s - 0.562 0.621

Table 3.8: Partitioning techniques (best-performing variant in terms of time to 0.95 MRR).
Calculating time to 0.95 MRR was too expensive for Freebase. (RotatE)

Rand. (R) Rand. (RL) Rel. GC (L) Strat. (CARL)

Total time 338±6 275±0 315±1 232±54 227±0
Proc. time 228±4 218±0 219±4 193±44 217±2
Wait time 110±1 63±0 96±3 39.3±10 11±2

Table 3.9: Avg. processing and wait time in seconds per worker and epoch with std. dev. (Com-
plEx, 1@2, Wikidata5M).

Tab. 3.9 shows processing and wait time per worker and epoch for each partitioning
technique. Stratification (CARL) and graph-cut heavily reduced wait times and
therefore led to the shortest overall processing times. However, graph-cut showed a
high variance between workers; see Sec. 3.5.7 for additional analysis on graph-cut.

3.5.4 Comparison to Original Work (Tab. 3.11)

The above results were all obtained using an independent implementation of parallel
training. It is challenging to put these results in perspective with the results originally
reported by the DGL-KE and PBG frameworks. The reason is that these prior studies
(i) did not report MRR but sampled MRR (sMRR) and (ii) used different variants
of sMRR. In general, sMRR/𝑋 is obtained by ranking test triples against a set of 𝑋

3.5. Experimental Study 51

Set-
up

Partition
technique

Epoch
time

Data sent
per epoch

sMRR
/1,000 MRR Hits

@10

1@1 Seq. (mm) 3929s - 0.811 0.364 0.487
1@1 Seq. (B) (mm) 3925s - 0.815 0.426 0.528

2@2 Random (RLB) 966s 232.8GB 0.816 0.426 0.529
2@2 Relation (rLB) 823s 205.9GB 0.801 0.397 0.507
2@2 Strat. (CARLB) 803s 123.2GB 0.793 0.325 0.424
2@2 Graph-cut (LB) 1170s 42.5GB 0.789 0.407 0.512

4@2 Random (RLB) 592s 251.9GB 0.819 0.421 0.523

10
×

ne
g. 2@2 Random (RLB) 1481s 232.8GB 0.841 0.478 0.588

2@2 Relation (rLB) 1341s 205.9GB 0.808 0.454 0.569
2@2 Strat. (CARLB) 1127s 122.1GB 0.798 0.451 0.556
2@2 Graph-cut (LB) 1810s 44.4GB 0.786 0.467 0.567

Table 3.10: Comparison of partitioning techniques (ComplEx, Freebase). Note that the
sampled MRR (sMRR) metrics used in some prior studies are misleading. The lower part
shows results with 10× # negatives.

Setup Frame-
work

Partition
technique Dim. Epoch

Time MRR Hits@10

2@2 PBG Strat. (LB) 100 2856s 0.157 0.250
2@2 Ours Strat. (LB) 100 1983s 0.291 0.384

4@1 DGL-KE Relation (B) 400 ~600sj 0.614 0.665
4@1 Ours Relation (B) 400 860s 0.612 0.662

Table 3.11: Performance comparison to original implementations (ComplEx, Freebase).

random triples instead of all triples. Note that sMRR/𝑋 decreases with increasing 𝑋
until it reaches the MRR. The use of sMRR is computationally cheaper, but we found
that it produced misleading results. As can be seen in Tab. 3.10, sMRR highly over-
estimated MRR, and, perhaps more importantly, different models suggested similar
quality in terms of sMRR even when their MRR differed substantially. One reason for
this misleading approximation is that “hard negative” entities (which appear before
the target entity in the full ranking) are unlikely to be sampled. Addressing this
issue (Lerer et al. 2019) and (Zheng et al. 2020) proposed a batch sampling approach.
We did not consider these methods because they did not solve the problematic ap-
proximation in preliminary experiments and resulted in an evaluation metric that is
batch size dependent. For this reason, we use MRR, even though the computation is
expensive.

jThis epoch time is approximated since DGL-KE does not have a concept of epochs but only reports
in steps.

52 Chapter 3. Training of Large-Scale KGE Models

Setting 𝑁−𝑠 𝑁−𝑜
Epoch
time

Data sent
per epoch MRR Hits

@10

Ya
go

3-
10 Uniform 892 894 114.9s 66.5GB 0.518 0.659

Shared 892 894 9.3s 1.9GB 0.508 0.649
Shared 8919 8942 21.1s 7.2GB 0.538 0.672

W
ik

i-
da

ta
5M

Uniform 66 236 5112.3s 3262.0GB 0.218 0.325
Shared 66 236 153.6s 24.6GB 0.204 0.310
Shared 2176 7851 347.2s 114.2GB 0.296 0.395

Table 3.12: Shared sampling reduced communication overhead and epoch time (ComplEx,
1@2, Random (R)).

To get some intuition into the framework performance, we trained a ComplEx
model with DGL-KE and PBG with their provided hyperparameter settings. We then
trained a corresponding model in our framework (using the same dimensionality).
The results in Tab. 3.11 suggest that our implementation is competitive.

3.5.5 Sampling Techniques (Tab. 3.12- 3.14)

Shared Sampling. To investigate the effect of shared sampling, we ran a hyper-
parameter search for the model ComplEx with uniform sampling (1@1) to obtain a
suitable choice of the numbers 𝑁−𝑠 and 𝑁−𝑜 of negative samples. We fixed this config-
uration but (i) switched to shared sampling to measure the impact on quality and (ii)
used a 1@2 setup with random partitioning to measure the impact on communication
cost. Our results are summarized in Tab. 3.12.

First, observe that shared sampling is very efficient: its use led to a 40x reduction
in network footprint and a 7x reduction in epoch time. However, the model quality
suffered in that the resulting MRR decreased. This is a consequence of the reduced
variety of negative samples introduced by shared sampling. We found that the quality
degradation could be countered by using a large number of negative samples. We
reran the hyperparameter search with shared sampling and a 10x larger limit in the
upper bound on the number of samples; the results are also reported in Tab. 3.12.
As can be seen, the increased number of samples led to models of similar or better
quality than those obtained with uniform sampling but was substantially more efficient
in terms of epoch time and network footprint. The lower part of Tab. 3.10 shows that
these quality improvements also hold for the largest dataset Freebase.

Local Sampling. To study the impact of local sampling, we first investigated the
performance obtained by the various partitioning techniques with shared sampling
with and without local sampling; see Tab. 3.13. We found that none of the partitioning

3.5. Experimental Study 53

Sample from: All Entities Local Entities

Time Comm. MRR Time Comm. MRR

FB
15

K
Random (R) 2.9s 0.7GB 0.775 2.9s 0.5GB 0.775
Relation 2.8s 0.6GB 0.771 2.8s 0.4GB 0.729
Strat. (CAR) 3.5s 0.3GB 0.771 2.9s 0.1GB 0.765
Graph-cut 3.3s 0.3GB 0.766 3.3s 0.1GB 0.506

Ya
go

3-
10 Random (R) 21.1s 7.2GB 0.538 19.5s 1.3GB 0.547

Relation 23.6s 7.1GB 0.538 22.6s 1.3GB 0.497
Strat. (R) 29.8s 12.1GB 0.534 13.8s 1.2GB 0.531
Graph-cut 28.3s 11.2GB 0.535 18.2s 0.2GB 0.211

W
ik

id
at

a5
M Random (R) 347.2s 114.2GB 0.296 290.6s 27.2GB 0.297

Relation 320.5s 111.4GB 0.296 275.6s 24.1GB 0.290
Strat. (CAR) 393.1s 143.7GB 0.291 228.0s 15.0GB 0.308
Graph-cut 417.4s 137.7GB 0.294 317.2s 6.1GB 0.192

Table 3.13: Local sampling reduced epoch time. The static sampling pool of relation/graph-
cut can have a negative influence on quality. Best per dataset marked in bold (ComplEx,
1@2).

0 100 200 300
Epoch

0.10

0.15

0.20

0.25

0.30

M
RR

Stratification
Graph-cut
Random
Relation
(L) no repartitioning
(RL) repartitioning
(L) no repartitioning
(RL) repartitioning

Figure 3.5: Local sampling without repartitioning led to substantial drops in embedding
quality for stratification and graph-cut. (ComplEx, Wikidata5M)

techniques provided substantial benefits w.r.t. random partitioning without the use of
local sampling. When local sampling was used, epoch times and communication cost
decreased for all partitioning techniques on all datasets; stratification benefited the
most.

While local sampling may be efficient, it is not always effective as it may de-
crease quality. To gain insight into why this is the case, Fig. 3.5 shows the progress
of validation MRR during training for various techniques. Note that there was a
substantial drop in validation MRR for stratification and graph-cut partitioning once

54 Chapter 3. Training of Large-Scale KGE Models

Dataset Batch Neg. Time Comm. MRR Hits@10

FB15K
0% 2.9s 0.7GB 0.775 0.859

50% 2.9s 0.6GB 0.766 0.852
100% 2.7s 0.6GB 0.745 0.845

Yago3-10
0% 21.1s 7.2GB 0.538 0.672

50% 14.4s 5.6GB 0.422 0.589
100% 9.1s 1.0GB 0.375 0.555

Wiki-
data5M

0% 347.2s 114.2GB 0.296 0.395
50% 230.8s 72.3GB 0.224 0.321

100% 142.6s 19.4GB 0.186 0.274

Free-
base

0% 983.8s 295.0GB 0.364 0.483
50% 944.7s 263.4GB 0.420 0.525

100% 948.2s 232.0GB 0.405 0.512

Table 3.14: Batch sampling was dataset-dependent. Best per dataset marked in bold (Com-
plEx, 1@2, Random (R)).

local sampling was used. Stratification with repartitioning (as also done in CARL
stratification) remained unaffected. Since repartitioning changes the sampling pool
from epoch to epoch, the quality degradation was avoided.

We conclude that local sampling was generally efficient, but required data repar-
titioning between epochs to avoid large drops in embedding quality.

Batch Sampling. We analyzed the effect of batch sampling next. We trained
ComplEx in a 2@1 setup. For each setting, we trained with 0%, 50%, and 100% of
entities sampled from within the batch (and the rest shared). The results are shown
in Tab. 3.14. We found that the substantial reduction of the sampling pool performed
by batch sampling consistently deteriorated embedding quality on all datasets but
Freebase, where batch sampling substantially improved embedding quality. Results
are thus highly dataset-dependent. Over all datasets a combination of uniform and
batch sampling was preferable. To see whether the quality degradation can be avoided,
we performed a separate hyperparameter search with batch sampling enabled but were
not able to reach a similar quality as achieved without batch sampling.

3.5.6 Combination of Sampling and Partitioning Techniques
(Tab. 3.15)

We investigated the interplay of partitioning techniques with local sampling as well
as batch sampling on Freebase, the only dataset for which we saw a positive influence
of batch sampling. Our results for random and stratification partitioning are shown in

3.5. Experimental Study 55

Set-
up

Partition
technique

Epoch
time

Data sent
per epoch MRR Hits

@10

1@1 Seq. (mm) 3929s - 0.364 0.487
1@1 Seq. (B) (mm) 3925s - 0.426 0.528

2@2 Random (R) 983s 295.0GB 0.364 0.483
2@2 Random (RL) 953s 232.0GB 0.365 0.485
2@2 Random (RB) 944s 263.4GB 0.420 0.525
2@2 Random (RLB) 966s 232.8GB 0.426 0.529

2@2 Strat. (CARL) 819s 124.3GB 0.327 0.439
2@2 Strat. (CARB) 1128s 182.4GB 0.391 0.491
2@2 Strat. (CARLB) 803s 123.2GB 0.325 0.424

Table 3.15: Comparison of sampling technique combinations (ComplEx, Freebase).

Dataset #Parti-
tions

#Triples Epoch time

CV Min Max Min Max

FB15K 8 24.9% 6.3% 17.4% 0.8s 2.0s
Yago3-10 8 37.1% 7.3% 22.0% 5.6s 14.8s
Wikidata5M 8 28.9% 7.3% 17.3% 92.4s 194.7s
Freebase 8 15.9% 9.4% 15.1% 587.9s 1170.6s

Table 3.16: Graph-cut leads to unbalanced triple partitions. CV is the coefficient of variation
of the triple partition sizes.

FB15K Yago3-10 Wikidata5M Freebase

Normal 78.6% 37.3% 27.3% 25.9%
Combined 82.6% 62.0% 43.2% 31.3%

Table 3.17: Stratification - average fraction of active entities per partition (𝑀 = 8).

Tab. 3.15. Batch sampling was generally beneficial, whereas a combination of local
and batch sampling deteriorated quality with stratification but not random partitioning.

3.5.7 Graph-Cut Partitioning (Tab. 3.16)

In our experiments, we often found that graph-cut partitioning led to lower speedups
than CARL stratification (in addition to often leading to deteriorating embedding
quality). The reason was that triple partition sizes were often quite unbalanced.
Tab. 3.16 shows that this holds for all datasets and that the time required to process a
partition varied substantially between the smallest and largest partition.

56 Chapter 3. Training of Large-Scale KGE Models

All entities Active entities

Dataset Epoch
time

Data
sent

Epoch
time

Data
sent

N
or

m
al FB15K 3.4s 0.2GB 3.6s 0.2GB

Yago3-10 13.8s 1.2GB 10.7s 0.4GB
Wikidata5M 296.7s 60.3GB 245.6s 26.5GB

C
om

-
bi

ne
d FB15K 3.0s 0.1GB 2.9s 0.1GB

Yago3-10 11.3s 0.6GB 10.9s 0.4GB
Wikidata5M 252.3s 31.0GB 228.0s 15.0GB

Table 3.18: With stratification, sampling only from active entities (A), and combining mirror
partitions (C) network footprint and epoch time decreased (ComplEx 1@2).

3.5.8 Plain Stratification (Tab. 3.18)

We used the improved CARL stratification throughout the experimental study because
it was consistently more efficient and effective than plain stratification. Here we report
on the influence of combining mirror partitions (C), relocating only active entities
(A), and repartitioning (R). We trained various variants of stratification in a 2@1
setting and measured training time, embedding quality, and communication costs.

Tab. 3.17 lists the average fraction of active entities for stratification with 𝑀 = 8
with and without combining mirror partitions. Note that for the larger datasets, most
entities are inactive, i.e., they do not occur in the respective partition. As shown
in Tab. 3.18, the restriction of embedding relocation to active entities substantially
reduced the network footprint (up to 70%) and also improved epoch times (up to
almost 20%). Combining partitions further reduced the network footprint and com-
munication cost as embeddings needed to be synchronized less often.

Repartitioning (R) mainly affected quality; see Fig. 3.6. In fact, stratification
without repartitioning led to a substantial drop in quality due to local sampling, as
discussed in Sec. 3.5.5. Stratification with repartitioning as well as CARL stratific-
ation did not lead to reduced quality. In contrast, we observed a small improvement
with CARL stratification. This may be due to the change of sampling bias when using
active entities: it is closer to the actual distribution of entities in the KG.

Overall, CARL stratification was instrumental for the effectiveness of stratifica-
tion; plain stratification was not competitive.

3.5. Experimental Study 57

0 100 200 300
Epoch

0.10

0.15

0.20

0.25

0.30
M

RR
Stratification (L)
Stratification (RL)
Stratification (ARL)
Stratification (CARL)

Figure 3.6: Repartitioning (R) and sampling only from active entities (A) had a positive
influence on quality (ComplEx, Wikidata5M).

Partition Technique Data sent MRR

Adagrad Row-Adagrad Adagrad Row-Adagrad

Sequential - - 0.297 0.291
Random (R) 125.2GB 65.7GB 0.296 0.298
Relation 123.8GB 63.5GB 0.296 0.300
Stratification (CARL) 15.0GB 7.4GB 0.308 0.306
Graph-cut 6.1GB 3.7GB 0.192 0.181

Table 3.19: Row-wise optimizers reduced storage overhead and communication cost (Com-
plEx, 1@2, Wikidata5M)

3.5.9 Row-Wise Optimizers (Tab. 3.19)

Row-wise optimizers treat each embedding as a single parameter instead of each
dimension of an embedding and therefore reduce storage and communication overhead
by about 50%. We observed no negative influence on the resulting embedding quality
for all partitioning methods but graph-cut partitioning, where the drop was small
but noticeable. Overall, we found Row-Adagrad to be a suitable approach to reduce
storage and communication costs; see Tab. 3.19

3.5.10 Influence of Hyperparameter Search (Tab. 3.20)

As hyperparameter search for KGEs on large-scale graphs is expensive, this study
followed previous work (Lerer et al. 2019; Zheng et al. 2020) and tuned models
for Freebase on the smaller benchmark FB15K based on the same KG. However,
the resulting quality is suboptimal. Therefore, we analyzed whether the choice
of hyperparameters had an impact on takeaways on parallel training techniques. For

58 Chapter 3. Training of Large-Scale KGE Models

Partition
Technique

HPO on
FB15K

HPO with
GraSH

no (B) (B) no (B) (B)

Random (RL) 0.365 0.426 0.622 0.642
Relation (rL) 0.306 0.397 0.463 0.621
GraphCut (L) 0.317 0.407 0.485 0.629
Stratification (CARL) 0.328 0.325 0.589 0.591

(a) Influence of partitioning technique
did not change.

Batch
Neg.

HPO on
FB15K

HPO with
GraSH

0% 0.364 0.594
50% 0.420 0.642

100% 0.405 0.609

(b) Influence of batch
sampling
did not change (Random (R)).

Table 3.20: Influence on MRR of parallel training techniques did not change with improved
hyperparameters. Best training setting per hyperparameter setting marked in bold (ComplEx,
4@1, Freebase).

efficient and effective hyperparameter optimization, we used GraSH. For more details
on GraSH and large-scale HPO see Ch. 4. Results are summarized in Tab. 3.20.

Mainly, the influence of parallel training techniques stayed the same; findings were
stable over hyperparameters. The best training approach stayed random partitioning
with repartitioning and a combination of local and batch sampling. Further, we saw
a similar strong influence of batch sampling on all partitioning techniques except
stratification. But the performance of stratification is stronger and closer to other
partitioning techniques with proper hyperparameter tuning.

3.6 Parallel & Subsequent Work

3.6.1 Strata Scheduling

Marius (Mohoney et al. 2021), developed in parallel to this study, focuses on efficient
training of (knowledge) graph embeddings on a single machine with a single GPU.
It relies on stratification partitioning with two main improvements; (i) improved
pipelining, and (ii) improved partition scheduling. For (i), Marius allows for stale
embeddings. In particular, it loads the embeddings needed for the upcoming batch
in parallel to writing updates of the current batch. W.r.t. (ii), Marius ensures with
the so-called Beta ordering that only one of the two entity partitions forming a triple
partition in stratification is exchanged after processing. As the underlying stratification
partitioning does not use repartitioning, we expect a negative impact of this approach
as seen in Sec. 3.5.8.

Marius-GNN. Next to improvements for large-scale GNN training, the extension
Marius-GNN (Waleffe et al. 2023) further improves on the Beta scheduling and offers

3.6. Parallel & Subsequent Work 59

a dynamic approach of stratification termed COMET. COMET builds smaller entity
partitions compared to Beta and allows for more randomness during scheduling.
Here, the schedule is changed every epoch. This approach is closely related to our
repartitioning approach presented in Sec. 3.3.6.

GE2 (Zheng et al. 2024) offers an additional improvement to stratification scheduling.
While the Beta and COMET scheduling already reduced communication overhead,
these scheduling approaches were built for single GPU training only. GE2 addresses
this shortcoming and further reduces communication overhead for multi-GPU training
with stratification partitioning. It builds a schedule by framing the arrangement of
partitions as the RBIBD problem (Kirkman 1847). To ensure high quality it utilizes
repartitioning as proposed in Sec. 3.3.6.

3.6.2 Parameter Management

In this work, we used the parameter server Lapse (Renz-Wieland et al. 2020) to
relocate embeddings and manage (concurrent) embedding access. The follow-up
work AdaPM (Renz-Wieland et al. 2023) additionally allows (i) to signal intents
when embeddings are needed in later training steps and (ii) for a mixture between
embedding relocation and replication. These two additions allow for more efficient
training, especially with random partitioning. In this setting, embeddings of hot spot
entities like high-degree entities can be automatically replicated when necessary, and
sparsely accessed embeddings relocated before they are needed. This approach can
further hide latencies occurring especially in the multi-machine setup. However,
AdaPM was evaluated for CPU training only, and does not offer direct relocation
to GPU. Further integrating GPUs in the parameter management process, fully
sharded data parallel (FSDP) (Zhao et al. 2023), integrated in PyTorch, allows to
shard embeddings over VRAM of multiple GPUs and CPU RAM, as well as for
asynchronous prefetching of needed embeddings and/or activations. Next to the
training of dense Transformer models, this approach showed promising results in
training recommendation models with sparse parameter accesses similar to KGE
training. Making the parameter server “GPU-native“ and relocating or replicating
embeddings directly to the device would reduce latency. However, the impact of
this latency reduction would differ per partitioning and negative sampling technique.
Therefore, future studies should explore if the findings of this study hold if such
latency-hiding techniques were applied.

60 Chapter 3. Training of Large-Scale KGE Models

3.7 Conclusion

We described and evaluated state-of-the-art techniques for parallel training of KGE
models of large-scale knowledge graphs. We found that it is possible to achieve high
speedup (up to 7×with 8 GPUs) with high embedding quality, both in a single-machine
multi-GPU and in a multi-machine multi-GPU setup. However, the parallelization
techniques currently implemented in large-scale KGE training frameworks did not
realize these improvements and often led to quality degradation compared to sequen-
tial training. This was mainly caused by the combination of static partitioning and
local sampling used by these implementations. Our experiments suggest that the
overall choice of partitioning and sampling technique is highly dataset-dependent.
For example, on Freebase, the random partitioning baseline in combination with im-
proved sampling methods led to the overall best results. On all other datasets, CARL
stratification—a variant of stratification as used in PyTorch BigGraph—along with
shared local sampling often performed competitive or best.

In subsequent studies, several enhancements to existing parallelization frame-
works have been proposed (see Sec. 3.6). Despite these advancements, we anticipate
that the findings presented in this study remain valid when integrated with these new
improvements. Notably, recent developments in parameter management have signi-
ficantly enhanced latency hiding and reduced the communication costs of parameter
servers. These advancements, coupled with the strong performance of the random
partitioning baseline demonstrated in this study, suggest that contemporary parallel
training of KGEs should leverage random partitioning in conjunction with improved
parameter servers.

3.7.1 Limitations

With this study, we implemented and improved techniques presented in previous
works in a common framework. Even though the underlying Python implementation
mainly relies on C-based libraries, it puts a limit on the execution time of each parallel
training technique. For more efficient training, the most promising techniques should
be implemented, e.g., in C/C++, avoiding Pythons thread-lock and allowing for
improved pipelining approaches.

Further, this study was performed using GPUs with a VRAM of 11 GB. A larger
VRAM size could impact the communication overhead between workers as well as the
embedding relocation overhead between RAM and VRAM. E.g., sets of embeddings
of larger stratification partitions could be allocated directly on GPU, reducing cost of
partition swaps.

3.7. Conclusion 61

Additionally, we only studied graph and model sizes for which all embeddings
fit into main memory. While the decreasing cost of main memory allows scaling
to larger model sizes, all embeddings for larger graphs as present in industry might
not fit into main memory. The effects of loading embeddings from disk on training
speed and the impact of pipelining approaches on model quality should be analyzed
in future work.

While we evaluated the effect of large-scale HPO on parallel training techniques
(Sec. 3.5.10), we did not perform a separate hyperparameter search per partitioning
and sampling technique. A proper HPO per technique could further influence the
resulting model quality.

Finally, improved strata scheduling techniques (Sec. 3.6.1) introduced after this
study may influence performance of stratification partitioning, and later introduced
parameter management techniques (Sec. 3.6.2) hide and reduce the latency of embed-
ding exchanges. While we assume that improved parameter management techniques
have an especially positive impact on simple techniques like random partitioning, it
should be investigated, to what extent these newly introduced approaches influence
the findings of this study.

C
ha

pt
er 4

Hyperparameter Tuning for
Large-Scale Knowledge Graph

Embedding Models

“Harpists spend 90% of their lives tuning their harps and 10% playing
out of tune.”

Igor Stravinsky, n.d.

In the previous chapter, we have shown that efficient and effective training of large-
scale KGE models is possible, but the resulting quality depends on underlying training
techniques. In addition to training techniques, KGE models are sensitive to hyperpara-
meter settings, with suitable choices being model and dataset-dependent (Ali et al.
2021a; Ruffinelli et al. 2020). However, for large KGs (such as Freebase), the cost
of evaluating individual hyperparameter configurations is excessive. In the previous
chapter, we as well as prior studies (Lerer et al. 2019; Zheng et al. 2020) avoided
this cost by using various heuristics, e.g., by training on a subgraph or by using fewer
epochs. In this chapter, we systematically discuss and evaluate the quality and cost
savings of such heuristics and other low-cost approximation techniques. Based on
our findings, we introduce GraSH, an efficient multi-fidelity hyperparameter optim-
ization (HPO) algorithm for large-scale KGEs that combines both graph and epoch
reduction techniques and runs in multiple rounds of increasing fidelities.

This chapter is based on Kochsiek et al. (2022).

63

64 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

4.1 Introduction

Prior studies have shown that embedding quality is highly sensitive to the hyperpara-
meter choices used when training the KGE model (Ali et al. 2021a; Ruffinelli et al.
2020). Moreover, the search space is large and hyperparameter choices are dataset-
and model-dependent. For example, the best configuration found for one model may
perform badly for a different model. As a consequence, we generally cannot transfer
suitable hyperparameter configurations from one dataset to another or from one KGE
model to another. Instead, a separate hyperparameter search is often necessary to
achieve high-quality embeddings. However, the positive impact of a well-performed
hyperparameter search is drastic; e.g., a performance increase of ≈ 20 percentage
points in MRR is possible over the use of heuristics as done in Ch. 3.

Although using an extensive hyperparameter search may be feasible for smaller
datasets—e.g., the study of Ruffinelli et al. (2020) uses 200 configurations per dataset
and model—, such an approach is generally not cost-efficient or even infeasible on
large-scale KGs, where KGE training is expensive in terms of runtime, memory
consumption, and storage cost. For example, the Freebase KG consists of ≈ 86 M
entities and more than 300 M triples. A single training run of a 512-dimensional
ComplEx embedding model on Freebase takes up to 50 min per epoch utilizing 4 GPUs
and requires ≈ 164 GB of memory to store the model. Therefore, following Ruffinelli
et al. (2020) and tuning a single model in such a setting would take more than two
months.

To reduce these excessive costs, prior studies on large-scale KGE models either
avoid hyperparameter optimization (HPO) altogether or reduce runtime and memory
consumption by employing various heuristics. The former approach leads to subop-
timal quality, whereas the impact in terms of quality and cost of the heuristics used
in the latter approach has not been studied in a principled way. The perhaps simplest
of such heuristics is to evaluate a given hyperparameter configuration using only a
small number of training epochs (e.g., in Ch. 3 we only used 20 epochs for HPO
on the Wikidata5M dataset). Another approach is to use a small subset of the large
KG (e.g., the small FB15K benchmark dataset instead of full Freebase) to obtain
a suitable hyperparameter configuration (Lerer et al. 2019; Zheng et al. 2020) or a
set of candidate configurations (Zhang et al. 2022). The general idea behind these
heuristics is to employ low-fidelity approximations (fewer epochs, smaller graph) to
compare the performance of different hyperparameter configurations during HPO,
before training the final model on full fidelity (many epochs, entire graph).

4.2. Related Work 65

In this chapter, we explore how to effectively use a given HPO budget to obtain
a high-quality KGE model. To do so, we first summarize and analyze both cost and
quality of various low-fidelity approximation techniques. We found that there are
substantial differences between techniques and that a combination of reducing the
number of training epochs and the graph size is generally preferable. To reduce KG
size, we propose to use its 𝑘-core subgraphs (Seidman 1983); this simple approach
worked best throughout our study.

Building upon these results, we present GraSH (short for graph successive
halving), an efficient HPO algorithm for large-scale KGE models. At its heart,
GraSH is based on successive halving (SH) (Jamieson and Talwalkar 2016). It
uses multiple fidelities and employs several KGE-specific techniques, most notably, a
simple cost model, negative sample scaling, subgraph validation, and a careful choice
of fidelities. We conducted an extensive experimental study and found that GraSH
achieved state-of-the-art results on large-scale KGs with a low overall search budget
corresponding to only three complete training runs. For example, using GraSH, the
model ComplEx performed up to 20 percentage points better on the full Freebase KG,
in terms of MRR, compared to a similar setting using heuristics (c.f. results in Ch. 3
and Zheng et al. (2024)). To reach such high quality with low resource consumption,
both the use of multiple reduction techniques simultaneously and of multiple fidelity
levels was key.

4.2 Related Work

GraSH is a multi-fidelity HPO algorithm for KGEs and builds upon findings of
KGE-specific tuning approaches as well as multi-fidelity search algorithms. In the
following, we present relevant approaches of both categories.

4.2.1 HPO for KGEs

HPO algorithms for KGEs can be categorized into three groups: full-fidelity, low-
fidelity, and two-stage HPO. The three categories are summarized in Fig. 4.1.

Full-fidelity HPO (Fig. 4.1a). Recent studies analyzed the impact of hyperparameters
and training techniques for KGE models using full-fidelity HPO (Ali et al. 2021a;
Ruffinelli et al. 2020). In these studies, the vast hyperparameter search space was
explored using a random search and Bayesian optimization with more than 200 full
training runs per model and dataset. The studies focused on smaller benchmark KGs,
however; such an approach is excessive for large-scale knowledge graphs.

66 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

(a) Full fidelity HPO. (b) Low-fidelity HPO.

(c) Two-stage HPO.

Figure 4.1: Schematic illustration of HPO approaches for KGEs. 𝜆 describes a single
hyperparameter configuration.

Low-fidelity HPO (Fig. 4.1b). Recent work on large-scale KGE models circumvented
the high cost of full-fidelity HPO by relying on low-fidelity approximations such as
epoch reduction (Ch. 3) and using smaller benchmark graphs (Ch. 3 & (Lerer et al.
2019; Zheng et al. 2020)) in a heuristic fashion. The best-performing hyperparameters
in low-cost approximations were directly applied to train a single full-fidelity model.
Our experimental study suggests that such an approach may neither be cost-efficient
nor produce high-quality results.

Two-stage HPO (Fig. 4.1c). AutoNE (Tu et al. 2019) is an HPO approach for training
large-scale network embeddings that optimizes hyperparameters in two stages. It first
approximates hyperparameter performance on subgraphs created by random walks, a
technique we will explore in Sec. 4.4. Subsequently, AutoNE transfers these results
to the full graph using a meta-learner. In the context of KGs, this approach was
outperformed by KGTuner (Zhang et al. 2022),a which uses a multi-start random
walk (fixed to 20% of the entities) in the first stage and evaluates the top-performing
configurations (fixed to 10) at full fidelity in the second stage. Such fixed heuristics
often limit flexibility in terms of budget allocation and lead to an expensive second
stage on large KGs. In contrast, GraSH makes use of multiple fidelity levels, carefully
constructs and evaluates low-fidelity approximations, and adheres to a prespecified
overall search budget. These properties are key for large KGs; see Sec. 4.5.3 for an
experimental comparison with KGTuner.

4.2.2 Multi-Fidelity HPO

Successive halving (SH) (Jamieson and Talwalkar 2016) is a general HPO approach
that selects hyperparameters over multiple rounds of increasing fidelity. Typically,

aKGTuner was proposed in parallel to this work.

4.2. Related Work 67

the fidelity is either defined by the number of training epochs or training examples.
The approach works as follows:

(i) Initialization. Define/sample an initial set of hyperparameter configurations
and overall budget for HPO.

(ii) Evaluation. (Train and) evaluate model quality on fidelity based on round
budget. The round budget is dependent on the overall HPO budget and reduction
factor 𝜂.

(iii) Halving. Select and keep the fraction of ⌈1/𝜂⌉ best-performing hyperparameter
configuration. By default 𝜂 = 2.

(iv) Succession. Increase fidelity, repeat steps (ii) and (iii) until only a single
configuration is left.

For an exemplified visualization of GraSH, an extension of SH, see Fig. 4.2. Note
that the runtime of SH can be improved by asynchronous execution (Li et al. 2020),
i.e., increasing fidelity before step (ii) finished.

Hyperband (Li et al. 2017) is an extension of successive halving and uses it as
a subroutine. Successive halving requires the number of initial configurations as
well as the overall search budget as input. The choice of whether to evaluate more
configurations on a lower fidelity or to evaluate a smaller number of configurations on
a higher fidelity can have a significant impact on resulting quality. Therefore, these
parameters can be seen as hyperhyperparameters. Hyperband addresses this tradeoff
by running successive halving multiple times with varying combinations of number
of trials and training budget.

BOHB (Falkner et al. 2018) further extends hyperband by integrating Bayesian op-
timization. In particular, it uses hyperband to determine how many configurations
to evaluate per fidelity but replaces the random selection of configurations with a
model-based search. As soon as enough data points are gathered (i.e., configurations
evaluated), BOHB fits a tree parzen estimator (Bergstra et al. 2011) surrogate model
per fidelity. It always uses the surrogate model fit using the highest fidelity, for which
enough observations are available. For robustness, this approach is combined with
continued random sampling of configurations.

MFES-HB (Li et al. 2021). Hyperband discards most configuration evaluations early,
ending up with many low-fidelity measurements and only a few high-fidelity ones.
The Bayesian optimization integrated in BOHB only utilizes the few high-fidelity
optimizations. Addressing this limitation with MFES-HB, Li et al. (2021) train an
ensemble surrogate model over multiple fidelity levels.

68 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

Figure 4.2: Example run of GraSH starting with 8 configurations on Yago3-10, using a
combined reduction technique of epoch and graph reduction, and reducing with factor 𝜂 = 2.

While the techniques presented in this study rely on successive halving, the
underlying multi-fidelity search algorithm can be exchanged by the here presented
approaches for possible further improvements.

4.3 Successive Halving for Knowledge Graphs (GraSH)

GraSH is a multi-fidelity HPO algorithm for KGE models based on successive
halving (Jamieson and Talwalkar 2016). As successive halving, GraSH proceeds in
multiple rounds of increasing fidelity; only the best configurations from each round
are transferred to the next round. An example run of GraSH is visualized in Fig. 4.2. In
contrast to other KGE-specific HPO techniques discussed in Sec. 4.2.1, this approach
allows to discard of unpromising configurations at very low cost. GraSH differs from
successive halving mainly in its parameterization and its use of KG-specific reduction
and validation techniques.

Parameterization. GraSH is summarized in Alg. 4. Given knowledge graph G,
GraSH outputs a single optimized hyperparameter configuration. GraSH is para-
meterized as described in Alg. 4; default parameter values are given if applicable.
The most important parameters are the maximal number 𝐸 of epochs and the overall
search budget 𝐵. The search budget 𝐵 is relative to the cost of a full training run,
which in turn is determined by 𝐸 . The default choice 𝐵 = 3, for example, corresponds
to an overall search cost of three full training runs. We chose this parameterization

4.3. Successive Halving for Knowledge Graphs (GraSH) 69

Algorithm 4 GraSH: Successive halving for knowledge graph embeddings
Require:

KG G = (E ,R,K),
max. epochs 𝐸 ,
search budget 𝐵, default: 3,
num. configurations 𝑛, default: 64,
reduction factor 𝜂, default: 4,
reduction method 𝑟 ∈ {epoch, graph, combined}, default: combined

Ensure: Hyperparameter configuration
1: 𝑠← ⌈log𝜂 (𝑛)⌉ ⊲ Number of rounds
2: 𝑅 ← 𝐵/𝑠 ⊲ Per-round budget
3: 𝛬1 ← generate configurations {𝜆1, . . . , 𝜆𝑛} ⊲ 𝑛 hyperparameter configurations
4: for 𝑖 ∈ {1, . . . , 𝑠} do ⊲ 𝑖-th round
5: 𝑓𝑖 ← 𝑅/|𝛬𝑖 | if 𝑣 ≠ combined else 𝑅/

√︁
|𝛬𝑖 | ⊲ Target fidelity

6: 𝐸𝑖 ← 𝑓𝑖𝐸 if 𝑟 ≠ graph else 𝐸 ⊲ Epochs in round 𝑖
7: G𝑖 ← reduced KG with 𝑓𝑖 |K| triples if 𝑣 ≠ epoch else G ⊲ Graph in round 𝑖
8: Gtrain

𝑖
,Gvalid

𝑖
← create train and valid split of G𝑖

9: 𝑉𝑖 ← ∅
10: for 𝜆 ∈ 𝛬𝑖 do
11: 𝜆← adapt 𝜆 to Gtrain

𝑖
by scaling negatives

12: 𝑚 ← train a model with 𝜆 on Gtrain
𝑖

for 𝐸𝑖 epochs
13: 𝑉𝑖 ← 𝑉𝑖 ∪ {validate 𝑚 on Gvalid

𝑖
}

14: end for
15: 𝛬𝑖+1 ← best ⌈|𝛬𝑖 |/𝜂⌉ configurations from 𝛬𝑖 according to 𝑉𝑖
16: end for
17: return 𝛬𝑠+1 ⊲ Only single configuration left

because it is independent of utilized hardware and both intuitive and well-controllable.
The reduction factor 𝜂 controls the number of configurations (starts at 𝑛, decreases
by factor of 𝜂 per round) and fidelity (increases by factor of 𝜂) of each round. Note
that GraSH does not train at full fidelity, i.e., its final configuration still needs to be
trained on the full KG (not part of budget 𝐵). Finally, GraSH is parameterized by a
reduction method 𝑟 . This parameter controls which reduction technique to use (only
epoch, only graph, or combined).

Algorithm overview. Like successive halving, GraSH proceeds in rounds. Each
round has approximately the same overall budget but differs in the number of config-
urations and fidelity. For example, using the default settings of 𝐵 = 3, 𝑛 = 64, and
𝜂 = 4, GraSH uses three rounds with 64, 16, and 4 configurations and a fidelity of
1/64, 1/16, and 1/4, respectively. The hyperparameter configurations in the first round
are sampled randomly from the hyperparameter space. Depending on the variant be-
ing used, GraSH reduces the number of epochs, the graph size, or both to reach the
desired fidelity. If no graph with size corresponding exactly to the budget defined by

70 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

the fidelity exists, the next smaller one is used. After validating each configuration
(see below), the best-performing 1/𝜂-th of the configurations is passed on to the next
round. This process is repeated until only one configuration remains.

Validation on subgraphs. Care must be taken when validating a KGE model trained
on a subgraph, e.g., G𝑖 = (E𝑖 ,R𝑖 ,K𝑖) in round 𝑖. The full graph G comes with training
𝐺 train, validation 𝐺valid and test split 𝐺 test. Since G𝑖 typically contains a reduced set
of entities E𝑖 ⊆ E , the full validation set 𝐺valid cannot be used without ignoring all
triples containing entities E \ E𝑖 . This is because no embedding is learned for the
“unseen” entities in E \E𝑖 , so that we cannot score any triples containing these entities
(as required by the entity ranking protocol). While this filtering procedure offers a
comparable validation score to the full validation set for graphs containing close to
all entities, it might lead to small validation sets for subgraphs with a small set E𝑖 and
might introduce a query selection bias depending on the graph reduction technique.
To avoid this problem, we explicitly create new train and valid splits Gtrain

𝑖
and Gvalid

𝑖

in round 𝑖. Here, Kvalid
𝑖

is sampled randomly from K𝑖 and Ktrain
𝑖

= K𝑖 \ Kvalid
𝑖

.
Although this approach is very simple, it worked well in our study. An alternative is
the construction of “hard” validation sets, e.g., as proposed by Toutanova and Chen
(2015). We leave the exploration of such techniques to future work.

Negative sample scaling. Recall that the number 𝑁− of negative samples is an
important hyperparameter for KGE model training. Generally (and assuming without-
replacement sampling), each entity is sampled as a negative with probability 𝑁−/|E |.
When we use a subgraph G𝑖 as in GraSH, this probability increases to 𝑁−/|E𝑖 |,
i.e., each entity is more likely to act as a negative sample due to the reduction of
the number of entities. To correctly assess hyperparameter configurations in such
cases, GraSH scales the number of negative examples and uses 𝑁−

𝑖
=
|E𝑖 |
|E | 𝑁

− in
round 𝑖. This choice preserves the probability of sampling each entity as a negative
and provides additional cost savings since the total number of scored triples is further
reduced in low-fidelity experiments.

Cost model and budget allocation. To distribute the search budget 𝐵 over the rounds,
we make use of a simple cost model to estimate the relative runtime of low-fidelity
approximations. This cost model drives the choice of 𝑓𝑖 in Alg. 4. In particular, we
assume that training cost is linear in both the number of epochs (𝐸𝑖) and the number
of triples (|K𝑖 |). For example, this implies that training five configurations for one
epoch has the same cost as training one configuration for five epochs. Likewise,
training five configurations with 20% of the triples has the same cost as training one
configuration on the whole KG. Using this assumption, the relative cost of evaluating
a single hyperparameter configuration in round 𝑖 is given by 𝐸𝑖

𝐸

|K𝑖 |
|K | . More elaborate

4.4. Low-fidelity Approximation Techniques 71

cost models are conceivable, but this simple approach already worked well in our
experimental study. Note, for example, that our simple cost model neglects negative
sample scaling and thus tends to overestimate (but avoids underestimation of) training
cost.b

4.4 Low-fidelity Approximation Techniques

In this section, we summarize and discuss various low-fidelity approximation tech-
niques. As discussed previously, the two most common types are graph reduction
(i.e. training on a reduced graph) and epoch reduction (i.e., training for fewer epochs).
Note that although graph reduction is related to dataset reduction techniques used in
other machine learning domains, it represents a major challenge since the relationships
between entities need to be taken into account.

Generally, good low-fidelity approximations satisfy the following criteria:

1) Low cost. Computational and memory costs for model training (including
model initialization) and evaluation should be low. Recall that computational
cost is mainly determined by the number of triples, whereas memory and
evaluation cost are determined by the number of entities. Ideally, both quantities
are reduced.

2) High transferability. Low-fidelity approximations should transfer to the full
KG in that they provide useful information. E.g., rankings of hyperparameter
configurations evaluated using low-fidelity approximations should match or
correlate with the rankings at full-fidelity.

3) Flexibility. It should be possible to flexibly trade off computational cost and
transferability.

All three points are essential for cost-effective and practical multi-fidelity HPO.

In the following, we present the graph reduction approaches triple sampling,
entity sampling, multi-start random walk, and 𝑘-core decomposition, as well as epoch
reduction. A high-level comparison of these approaches w.r.t. the above desiderata is
provided in Tab. 4.1. The assessment given in the table is based on our experimental
results (Sec. 4.5.2).

4.4.1 Graph Reduction

Graph reduction techniques produce a reduced KG G𝑖 = (E𝑖 ,R𝑖 ,K𝑖) from the full
KG G = (E ,R,K). This is commonly done by first determining the reduced set K𝑖

bAccounting for the negative sampling scaling, the cost model would result in 𝐸𝑖

𝐸
|K𝑖 |
|K | (1+

|E𝑖 |
|E | 𝑁

−).

72 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

Technique Low
Cost

High
Transferability Flexibility

Triple sampling ◦ - +
Entity sampling ◦ ◦ +
Random walk ◦ ◦ +
𝑘-core decomposition + + ◦
Epoch reduction - ◦ +

Table 4.1: Comparison of low-fidelity approximation techniques.

(a) Triple sampling
(60%).

(b) Entity sampling
(4 entities).

(c) Random walk
(𝑠 = 2, 𝑙 = 3).

(d) 𝑘-core
(𝑘 = 3).

Figure 4.3: Schematic illustration of selected graph reduction techniques. All reduced graphs
contain 6 of the 10 original triples but a varying number of entities.

of triples and subsequently retaining only those entities (in E𝑖) and relations (in R𝑖)
that occur in K𝑖 .c A reduction in triples thus may lead to a reduction in the number
of entities and relations as well. This consequently results in further savings in
computational cost, evaluation cost, and memory consumption. The graph reduction
techniques discussed here are illustrated in Fig. 4.3.

Triple sampling (Fig. 4.3a). The perhaps simplest approach to reduce graph size
is to sample triples randomly from the graph. As shown in Fig. 4.3a, many entities
with sparse interconnections can remain in the resulting subgraphs (e.g., the two
entities at the top right) so that E𝑖 tends to be large and G𝑖 consists of many connected

cAll other entities/relations do not occur in the reduced training data so we cannot learn useful
embeddings for them.

4.4. Low-fidelity Approximation Techniques 73

Graph reduction Triples Entities Median
entity degree

Connected
components

Triple sampling 10 790 15 296 1 4 540
Entity sampling 8 512 6 298 2 743
Random walk 10 790 11 178 1 1 967
𝑘-core 10 179 317 53 1

Table 4.2: Statistics of a Yago3-10 subgraph with ≈ 1% of triples.

components. See Tab. 4.2 for subgraph statistics. The cost in terms of model size
and evaluation time is consequently only slightly reduced. We also observed (see
Sec. 4.5.2) that triple sampling leads to low transferability, most likely due to this
sparsity. Triple sampling does offer very good flexibility, however, since triple sets
of any size can be constructed easily.

Entity sampling (Fig. 4.3b). Instead of sampling the triples directly, a subset of
entities can be sampled uniformly at random to reduce the graph. Here, the resulting
graph G𝑖 is the induced graph of all sampled entities E𝑖 . Sampled entities without
any connection in the induced graph are discarded. This induced graph leads to a
considerably better-connected graph with fewer entities and connected components
compared to triple sampling; see Tab. 4.2. We observed that entity sampling leads to
improved transferability over triple sampling. However, flexibility is reduced. Due to
the combination of skewed entity degrees and random sampling of entities, the size
of an induced graph is hard to estimate, and finding an induced graph of expected
size can be an exhaustive search.

Random walk (Fig. 4.3c). In multi-start random walk, which is used in AutoNE (Tu
et al. 2019), a set of 𝑠 random entities is sampled from E . A random walk of length 𝑙
is started from each of these entities and the resulting triples form K𝑖 . Empirically,
many entities may ultimately remain so that the reduction of memory consumption
and evaluation cost is limited. Although the resulting subgraph tends to be better
connected than the ones obtained by triple sampling (c.f. Tab. 4.2), transferability
is still low and close to triple sampling (again, see Sec. 4.5.2). As triple sampling,
the approach is very flexible though. KGTuner (Zhang et al. 2022) improves on the
basic random walk considered here by using biased starts and adding all connections
between the retained entities (even if they do not occur in a walk); i.e., constructing
the induced graph, as done in entity sampling. The 𝑘-core decomposition, which
we discuss next, offers a more direct approach to obtaining such a highly connected
graph.

74 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

𝑘-core decomposition (Fig. 4.3d). The 𝑘-core decomposition (Seidman 1983) allows
for the construction of subgraphs with increasing cohesion. The 𝑘-core subgraph
of G, where 𝑘 ∈ N is a parameter, is defined as the largest induced subgraph in
which every retained entity (i.e., E𝑖) occurs in at least 𝑘 retained triples (i.e., in
K𝑖). The computation of 𝑘-cores is cheap and supported by common graph libraries.
Generally, the number of entities contained in𝐺𝑖 is reduced drastically with increasing
𝑘 , resulting in considerably fewer entities compared to triple sampling and random
walk (c.f. Tab. 4.2). This is due to the skewed degree distribution of entities present
for most graphs; i.e., few high-degree and many low-degree entities. For 𝑘-cores
with 𝑘 > 1 long-tail entities with infrequent connections are removed. Moreover,
they are highly interconnected by construction. As a consequence, we found that
computational cost and memory consumption are low and transferability high. The
approach is less flexible than the other graph reduction techniques, as the choice of 𝑘
and the graph structure determines the resulting fidelity. One may interpolate between
𝑘-cores for improved flexibility, but we did not explore this approach in this work.

4.4.2 Epoch Reduction

Epoch reduction is the most common form of fidelity control used in HPO (Baker
et al. 2018; Wang et al. 2021a). As the set E of entities does not change with varying
fidelity, memory and evaluation cost are very large even when using low-fidelity
approximations. We observed good transferability as long as the number of epochs is
not too small (Sec. 4.5.2); otherwise, transferability is often considerably worse than
graph reduction techniques. This limits flexibility: Especially on large-scale graphs,
the overall training budget often consists of only a small number of epochs in the first
place (e.g., 10 as in Ch. 3 and Zheng et al. (2020)). Note that the available budget in
low-fidelity approximations can be smaller than the cost of one complete epoch (when
𝑓𝑖 < 1/𝐸 in Alg. 4). Although partial epochs can be used easily, epoch reduction
then corresponds to a form of triple sampling (with the additional disadvantage of not
reducing the set of entities).

4.4.3 Summary

In summary, as long as the desired fidelity is sufficiently high, epoch reduction
offers high-quality approximations and high flexibility. It does not improve memory
consumption and evaluation cost, however, and it leads to high cost and low quality
on large-scale graphs with limited budget. Graph reduction approaches, on the other
hand, reduce the number of entities and hence memory consumption and evaluation
cost. Compared to triple sampling, entity sampling, and random walks, the 𝑘-core

4.5. Experimental Study 75

decomposition has the highest transferability and lowest cost. In GraSH, we use a
combination of epoch reduction and 𝑘-core decomposition by default to avoid training
for partial epochs and the use of very small subgraphs with low fidelity.

4.5 Experimental Study

We conducted an experimental study to answer the following research questions: (i) To
what extent can low-fidelity approximations be used for hyperparameter evaluation
for the task of link prediction in KGs? (ii) Can the multi-fidelity search algorithm
GraSH improve upon using low-fidelity approximations only and reach quality close
to a full search and current state-of-the-art? To address question (i), we investigated
to what extent hyperparameter rankings obtained with low-fidelity approximations
correlate with the ones obtained at full fidelity (Sec. 4.5.2). For question (ii), we used
the best low-fidelity approximations in combination with GraSH, and evaluated the
resulting model quality (Sec. 4.5.3), resource consumption during HPO (Sec. 4.5.4),
and the robustness of the search algorithm (Sec. 4.5.5). Further, we compared GraSH
to the parallel work of KGTuner (Zhang et al. 2022) (Sec. 4.5.3). In summary, we
found that:

1) GraSH was cost-effective and produced high-quality hyperparameter config-
urations. It reached state-of-the-art results on a large-scale graph with a small
overall search budget of three complete training runs (Sec. 4.5.3).

2) Using multiple reduction techniques was beneficial. In particular, a combina-
tion of graph- and epoch-reduction performed best (Sec. 4.5.2 and 4.5.3).

3) Low-fidelity approximations correlated best to full fidelity for graph reduction
using the 𝑘-core decomposition and, as long as the budget was sufficiently
large, second-best for epoch reduction (Sec. 4.5.2).

4) Graph reduction was more effective than epoch reduction in terms of reducing
computational and memory cost. Evaluation using small subgraphs had low
memory consumption and short runtimes (Sec. 4.5.4).

5) Using multiple rounds with increasing fidelity levels was beneficial (Sec. 4.5.5).

6) GraSH was robust to changes in budget allocation across rounds (Sec. 4.5.5).

4.5.1 Experimental Setup

Source code, search configurations, and resulting hyperparameters can be found at
https://github.com/uma-pi1/GraSH.

https://github.com/uma-pi1/GraSH

76 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

Scale Dataset Entities Relations |Train| |Valid| |Test|
Small Yago3-10 123 182 37 1 079 040 5 000 5 000
Medium Wikidata5M 4 594 485 822 21 343 681 5 357 5 321
Large Freebase 86 054 151 14 824 304 727 650 1 000 10 000

Table 4.3: Dataset used in this study.

Datasets. We used common KG benchmark datasets of varying sizes with a focus on
larger datasets; Yago3-10 (Dettmers et al. 2018), Wikidata5M (Wang et al. 2021b),
and the largest dataset Freebase (Zheng et al. 2020). For statistics see Tab. 4.3 and for
details Sec. 2.6. For all datasets except Freebase, we use the validation and test sets
that accompany the datasets to evaluate the final model. For Freebase, we used the
same sub-sampled validation (1 000 triples) and test sets (10 000 triples) from Ch. 3.d

Hardware. All runtime, GPU memory, and model size measurements were taken on
the same machine (40 Intel Xeon E5-2640 v4 CPUs @ 2.4GHz; 4 NVIDIA GeForce
RTX 2080 Ti GPUs).

Implementation and models. GraSH uses DistKGE, presented in Ch. 3, for parallel
training of large-scale graphs and HpBandSter (Falkner et al. 2018) for the implement-
ation of SH. We considered the models ComplEx (Trouillon et al. 2016), RotatE (Sun
et al. 2019), and TransE (Bordes et al. 2013). All three models are commonly used
for large-scale KGEs (Lerer et al. 2019; Zheng et al. 2020).

Hyperparameters. We used the same hyperparameter search space as in Ch. 3.
The search space consists of nine continuous and two categorical hyperparameters.
The upper bound on the number of negative samples for ComplEx is 10 000 and for
RotatE and TransE 1 000 (since these models are more memory-hungry). We set
the maximum training epochs on Yago3-10 to 400, on Wikidata5M to 64, and on
Freebase to 10.

Methodology. For the GraSH search, we used the default settings (𝐵 = 3, 𝜂 = 4,
𝑛 = 64). Apart from the upper bound of negatives, we used the same 64 initial
hyperparameter settings for all models and datasets to allow for a fair comparison.
For graph reduction, we used 𝑘-core decomposition unless mentioned otherwise.
Subgraph validation sets generated by GraSH consisted of 5 000 triples.

Metrics. We used the common filtered MRR metric to evaluate KGE model quality
on the link prediction task as described in Sec. 2.5. Additionally, results for Hits@𝑘

are presented in Tab. A.1 in Appendix A.
dThe original test set contains ≈17 M triples, which leads to excessive evaluation costs. For the

purpose of MRR computation, a much smaller test set is sufficient.

4.5. Experimental Study 77

1% 10% 100%
Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

's
Co

rre
la

tio
n

k-core
Epoch
Combined
Entity Sampling
Random Walk
Triple Sampling

(a) Yago3-10 (max. 40 epochs).

100 101 102

Budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ea

rm
an

's
Co

rre
la

tio
n

k-core
Epoch
Combined

(b) Wikidata5M (max. 20 epochs).

Figure 4.4: Comparison of low-fidelity approximation techniques. Shows Spearman’s rank
correlation between low-fidelity approximations and a full-fidelity baseline. Budget (log-
scale) corresponds to the relative number of epochs and/or triples.

4.5.2 Comparison of Low-Fidelity Approximation Techniques (Fig. 4.4)

To address the question of to what extent low-fidelity approximation can be used
for hyperparameter evaluation, we studied and compared the transferability of low-
fidelity approximations to full-fidelity results. To do so, we first ran a full-fidelity
hyperparameter search consisting of 30 pseudo-randomly generated trials. We then
trained and evaluated the same 30 trials using the approximation techniques described
in Sec. 4.4 at various budgets. To keep computational cost feasible, this experiment
was only performed on the two smaller datasets and with a smaller number of epochs.

78 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

Since the validation sets used with graph reductions differ from the ones used at
full fidelity (see Sec. 4.3), we compared the ranking of hyperparameter configurations
instead of their MRR metrics. In particular, we used Spearman’s rank correlation
coefficient (Zwillinger and Kokoska 1999) between the low-fidelity and the high-
fidelity results. A higher value corresponds to a better correlation.

Our results on Yago3-10 are visualized in Fig. 4.4a. We found high transferability
for the 𝑘-core decomposition and epoch reduction. Graph reduction based on triple
sampling and random walks led to clearly inferior results and was not further con-
sidered. A combination of 𝑘-core subgraphs and reduced epochs (each contributing
50% to the savings) further improved low-budget results.

To investigate the behavior on a larger graph, we evaluated the three best tech-
niques on Wikidata5M, see Fig. 4.4b. Recall that due to the high cost, a small number
of epochs is often used for training on large KGs. This has a detrimental effect on the
transferability of epoch reduction, as partial epochs need to be used for low-fidelity
approximations (see Sec. 4.4.2). In particular, there is a considerable drop in trans-
ferability for epoch reduction below a budget of 10%. This drop in performance is
neither visible for the 𝑘-core approximations nor for the combined approach.

Note that even for the best low-fidelity approximation, the rank correlation in-
creased with budget. This suggests that using multiple fidelities (as in GraSH) instead
of a single fidelity is beneficial. In our study, this was indeed the case (see Sec. 4.5.5).

4.5.3 Final Model Quality (Tab. 4.4)

To analyze the performance of GraSH in terms of the quality of its selected hyper-
parameter configurations, we evaluated the search approach on three datasets, using
three models with varying model dimensionalities. We used GraSH with epoch
reduction, graph reduction, as well as the combined approach. Test-data performance
of the resulting configurations trained at full fidelity is summarized in Tab. 4.4a.

Results (Tab. 4.4a). The combined variant of GraSH offered best or close to best
results across all datasets and models. In comparison to the other variants, it avoided
the drawbacks of training partial epochs (e.g., epoch reduction on Freebase) as well
as using subgraphs that are too small (e.g., graph reduction on Yago3-10).

Comparison to prior results (Tab. 4.4b). We compared the results obtained by
GraSH to the best published prior results known to us, see Tab. 4.4b. Note that prior
models were often trained at substantially higher cost. For example, on Wikidata5M,
GraSH used an overall budget of 4 · 64 = 256 epochs for HPO and training, whereas
some prior methods used 1 000 epochs for a single training run. Likewise, dimen-

4.5. Experimental Study 79

Dataset
Reduc-→
tion
Model ↓

Epoch
Dim
128

Graph
Dim
128

Comb.
Dim
128

Comb.
Dim
512

Sm
al

l Yago
3-10

ComplEx 0.536 0.463 0.528 0.552
RotatE 0.432 0.432 0.434 0.453e

(𝐸 = 400) TransE 0.499 0.422 0.499 0.496

M
ed

iu
m Wiki-

data5M
ComplEx 0.300 0.300 0.300 0.294
RotatE 0.241 0.232 0.241 0.261

(𝐸 = 64) TransE 0.263 0.263 0.268 0.249

La
rg

e Free-
base

ComplEx 0.572 0.594 0.594 0.678
RotatE 0.561 0.613 0.613 0.615

(𝐸 = 10) TransE 0.261 0.553 0.553 0.559

(a) GraSH with default settings (𝐵 = 3, 𝑛 = 64, 𝜂 = 4).

MRR Dim Epochs

0.551 128 400 †f
0.495 1 000 ? ††

0.510g 350 4 000 ‡
0.308 128 300 ‡‡
0.290 512 1 000 $
0.253 512 1 000 $

0.612 400 10 ‡‡
0.567 128 10 ‡‡

- - -

(b) Prior results

Table 4.4: Model quality in terms of MRR. State-of-the-art results underlined. Best reduction
variant in bold. Note that best prior results often use a considerably larger budget and/or
model dimensionality. Marked results are from † Broscheit et al. (2020), †† Sun et al. (2019),
‡ Costabello et al. (2019), ‡‡ Chap 3, $ Wang et al. (2021b)

sionalities of up to 1 000 were sometimes used. For a slightly more informative
comparison, we performed a GraSH search with an increased dimensionality of 512,
but kept the low search and training budgets. Even with this low budget, we found that
on small to midsize graphs, GraSH performed either similarly (ComplEx, Yago3-10
& Wikidata5M) or sometimes slightly worse (RotatE, Wikidata5M) than the best
prior results. On the large-scale Freebase KG, where low-fidelity hyperparameter
search is a necessity, GraSH outperformed state-of-the-art results by a large margin.

Comparison to KGTuner. KGTuner (Zhang et al. 2022) was developed in parallel
to this work and follows similar goals as GraSH. We compared the two approaches
on the smaller Yago3-10 KG with ComplEx; a comparison on the larger datasets
was not feasible since KGTuner has large computational costs. We ran both GraSH
and KGTuner with the default settings of KGTuner (𝑛 = 50 trials, 𝐸 = 50 epochs,
dim. 1 000) to obtain a fair comparison. KGTuner reached an MRR of 0.505 in about
5 days (its search budget corresponds to 𝐵 ≈ 20). GraSH reached an MRR of 0.530
in about 1.5 hours (𝐵 = 3, sequential search on 1 GPU), i.e., a higher quality result at
lower cost. The high computational cost of KGTuner mainly stems from its inflexible

eRotatE benefits from self-adversarial sampling as used in (Sun et al. 2019). We did not use this
technique to keep the search space consistent across all models. An adapted GraSH search space led
to an MRR of 0.494 (combined, 𝑑 = 512), matching the prior result.

fPublished in the online appendix of (Broscheit et al. 2020).
gPublished with the AmpliGraph library (Costabello et al. 2019), which ignores unseen entities

during evaluation. This inflates the MRR so that results are not directly comparable.

80 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

Round time (min) Model size (MB)
Epoch Graph Comb. Epoch Graph Comb.

Yago3-10

Round 1 43.9 24.7 15.9 60.2 0.3 2.0
Round 2 34.8 13.3 27.1 60.2 0.4 6.3
Round 3 38.7 28.1 33.5 60.2 6.3 16.7

Total 117.4 66.1 76.5

Wikidata5M

Round 1 182.3 60.1 82.3 2 353.3 1.0 71.3
Round 2 134.2 87.4 88.6 2 353.3 36.0 182.0
Round 3 126.9 92.5 95.3 2 353.3 182.0 454.7

Total 443.4 240.0 266.2

Freebase

Round 1 915.9 250.7 179.7 42 025.9 87.3 1 322.2
Round 2 507.9 172.0 151.2 42 025.9 520.1 2 667.7
Round 3 423.4 197.5 207.0 42 025.9 2 667.7 6 571.3

Total 1 847.2 620.2 537.9

Table 4.5: Resource consumption per round (ComplEx).h

and inefficient budget allocation (e.g., always 10 full-fidelity evaluations). The higher
quality of GraSH stems from its use of multiple fidelities (vs. two in KGTuner) and by
using a combination of 𝑘-cores and epoch reduction (vs. random walks in KGTuner).

4.5.4 Resource Consumption (Tab. 4.5)

Next, we investigated the computational cost and memory consumption of each round
of GraSH. We used 4 GPUs in parallel, evaluating one trial per GPU with the same
settings as used in Sec. 4.5.3. Our results are summarized in Tab. 4.5.

Memory consumption. Epoch reduction was less effective than graph reduction and
a combined approach in terms of memory usage. With epoch reduction, training is
performed on the full graph in every round and therefore performed with full model
size. Due to the large model sizes on the largest graph Freebase, the model could not
be kept in GPU memory introducing further overheads for parameter management
(for more details, see Ch. 3). Graph reduction with 𝑘-core decomposition reduced
the number of entities contained in a subgraph considerably. As the model size is
mainly driven by the number of entities, the resulting model sizes were small.

Runtime. Similarly to memory consumption, a GraSH search based on epoch
reduction was less effective in terms of runtime compared to graph reduction and a
combined approach. With epoch reduction, runtime was mainly driven by the cost

hThe time needed to compute the 𝑘-core decompositions is excluded. It is negligible compared to
the overall search time (e.g., ≈ 28 min for Freebase with igraph (Csardi et al. 2006)).

4.5. Experimental Study 81

𝜂 = 2 𝜂 = 4 𝜂 = 8 𝜂 = 64 𝜂 = 64
Dataset 6 rounds 3 rounds 2 rounds 1 round 1 round

𝐵 = 3 𝐵 = 3 𝐵 = 3 𝐵 = 3 𝐵 = 1
(default)

Yago3-10 0.463 0.463 0.485 0.427 0.427
Wikidata5M 0.300 0.300 0.300 0.300 0.285
Freebase 0.594 0.594 0.594 0.572 0.572

Table 4.6: Influence of the number of rounds on model quality in terms of MRR (ComplEx,
graph reduction, 𝑛 = 64 trials, 𝐵 = 3). The number of rounds is directly controlled by the
choice of 𝑛 and 𝜂.

of model evaluation and model initialization. This is especially visible in the first
round of the search on large graphs. Here, the number of trials and therefore the
number of model initializations and evaluations is high. Additionally, on the largest
graph, the overhead for parameter management for training on the full KG increased
runtime further. In contrast, small model sizes and low GPU utilization with graph
reduction would even allow further performance gains. For example, improving on
the presented results, the runtime of the first round on Wikidata5M can be reduced
from 60.1 to 22.9 minutes by training three models per GPU instead of one.

4.5.5 Influence of Number of Rounds (Tab. 4.6)

In our final experiment, we address the question of whether we need multiple fidelities,
as well as how sensitive GraSH is to the number of rounds (i.e. the number of
fidelities) being used. Our results are summarized in Tab. 4.6. All experiments were
conducted at the same budget (𝐵 = 3) and number of trials (𝑛 = 64). Note that the
number of rounds used by GraSH is given by log𝜂 (𝑛), where 𝑛 denotes the number
of trials and 𝜂 the reduction factor. The smaller 𝜂, the more rounds are used and the
lower the (initial) fidelity.

We found that on the two larger graphs, the search was robust to changes in budget
allocation and 𝜂 did not influence the final trial selection (as long as at least 2 rounds
were used). Only on the smaller Yago3-10 KG, the final model quality differed with
varying values of 𝜂. Here, low-fidelity approximation (small 𝜂) was riskier since the
subgraphs used in the first rounds were very small.

To investigate whether multi-fidelity HPO—i.e., multiple rounds—are beneficial,
we (i) used the best configuration of the first round directly (𝜂 = 64, 𝐵 = 1) and
(ii) performed an additional single-round search with a comparable budget to all
other settings (𝜂 = 64, 𝐵 = 3). As shown in Tab. 4.6, both settings did not reach

82 Chapter 4. Hyperparameter Tuning for Large-Scale KGE Models

the performance achieved via multiple rounds. We conclude that the use of multiple
fidelity levels is essential for cost-effective HPO.

4.6 Conclusion

We first presented and experimentally explored various low-fidelity approximation
techniques for evaluating hyperparameters of KGE models. Based on our findings,
we proposed GraSH, an open-source, multi-fidelity hyperparameter optimizer for
KGE models based on successive halving. We found that GraSH often reproduced
or outperformed state-of-the-art results on large knowledge graphs at very low overall
cost, i.e., the cost of three complete training runs. We argued that the choice of low-
fidelity approximation is crucial (𝑘-core reduction combined with epoch reduction
worked best), as is the use of multiple fidelities.

4.6.1 Limitations

Finding 𝑘-core subgraphs corresponding to a given fidelity is dependent on the
underlying graph structure. For some graphs with a highly skewed entity degree, one
might not be able to find a fitting subgraph, i.e., the subgraph might be too big or too
small. While interpolating between 𝑘-cores can increase flexibility, in extreme cases,
this approach reduces to entity sampling.

Further, 𝑘-core decomposition introduces a bias to keep high-degree entities.
While this approach worked well on general domain KG evaluated in this study, the
transferability of such cores might be less for some domain-specific graphs.

Finally, our cost model for subgraph selection only considered training cost (se-
lection by number of triples) and ignored evaluation cost. However, the entity ranking
protocol used for evaluation comes with considerable cost which scales linearly with
the number of entities contained in the graph. Taking this cost into account could
change the subgraph selection and in turn resulting quality and resource consumption.
Nevertheless, parts of the cost reduction of GraSH compared to other HPO approaches
come from the cheaper evaluation on subgraphs. For a more detailed comparison,
future work could compare GraSH to HPO approaches utilizing more cost-efficient
evaluation strategies. E.g., integrating maximum inner product search (Aguerrebere
et al. 2023; Douze et al. 2024) into entity ranking as discussed in Sec. 2.5.

4.6. Conclusion 83

4.6.2 Future Work

Bayesian optimization. GraSH builds upon successive halving. BOHB (Falkner
et al. 2018) integrates Bayesian optimization into the successive halving extension
Hyperband (Li et al. 2017). This showed promising results on multiple HPO bench-
marks. A similar Bayesian optimization integration could further strengthen the
resulting quality of GraSH.

HPO for GNNs. Recently GNNs showed promising results for link prediction in
KGs (Zhu et al. 2021). However, approximating the performance of hyperparameter
settings might work worse for GNNs, as representations are strongly dependent on
the graph structure and size of the graph. Further research is needed to evaluate the
implications and performance of HPO on subgraphs for GNNs.

Reuse subgraph representations. Currently, in each round GraSH trains models
from scratch if subgraph size increases. Reusing parameters trained on smaller
graphs by initializing corresponding parameters in the next larger model could further
decrease cost. However, first experiments in this regard showed a decrease in final
model quality. Further research could explore necessary changes in parameter updates
to keep quality at a high level and make use of pretrained subgraph representations.

C
ha

pt
er 5

Sequence-to-Sequence Link
Prediction

“If words are not things, or maps are not the actual territory, then,
obviously, the only possible link between the objective world and the
linguistic world is found in structure, and structure alone.”

Alfred Korzybski, 1958

While relying on graph structure only, KGEs offer high link prediction quality. They
can be trained (Ch. 3) and tuned (Ch. 4) efficiently and effectively. However, next
to the structural, KGs often carry textual information, e.g., entity mentions and
descriptions. A proper integration of both information sources can further improve
link prediction and downstream task performance. In this chapter, we show that an
off-the-shelf encoder-decoder Transformer model can serve as a scalable and versatile
model obtaining state-of-the-art results for link prediction. We achieve this by posing
link prediction as a sequence-to-sequence task and exchanging the triple-scoring
approach taken by prior KGE methods with autoregressive decoding. Such a simple
but powerful method reduces the model size up to 98% compared to conventional
KGE models while matching or even improving upon state-of-the-art link prediction
approaches.

This chapter is based on Saxena et al. (2022) and Kochsiek et al. (2023).

85

86 Chapter 5. Sequence-to-Sequence Link Prediction

5.1 Introduction

KGE models can be trained (Ch. 3) and tuned (Ch. 4) efficiently and effectively on
large-scale graphs. They offer high-quality link prediction models relying on graph
structure only. However, text-attributed graphs are prevalent in many real-world
scenarios (Yan et al. 2023), and integration of this textual information can further
benefit the resulting quality. Especially KGs carry valuable textual information, such
as entity mentions and descriptions, for example, mapped from Wikipedia or domain-
specific sources. Given this textual information, and taking into account the large
size of real-world KGs (Wikidata contains ≈90M entities), as well as the applicability
to downstream tasks, link prediction models should be able to utilize the textual
information effectively while fulfilling the following desiderata:

(i) Scalability. Have model size and inference time independent of the number of
entities,

(ii) Quality. Reach good empirical performance,

(iii) Versatility. Be applicable for multiple tasks such as link prediction and question
answering,

(iv) Simplicity. Consist of a single module with a standard architecture and training
pipeline.

Existing approaches integrating textual information lack at least one of these
desiderata. They either fall behind the state-of-the-art in link prediction quality (Cl-
ouatre et al. 2021; Yao et al. 2019; Wang et al. 2021b; Xie et al. 2016), introduce
high cost limiting scalability (Yao et al. 2019), or are limited in terms of versatil-
ity (Wang et al. 2021b, 2022; Xie et al. 2016). A comparison of approaches in terms
of desiderata is summarized in Tab. 5.1 with a detailed overview in Sec. 5.2.

In this chapter, we show that all of these desiderata can be fulfilled by a simple
sequence-to-sequence (seq2seq) model. To this end, we pose KG link prediction as a
seq2seq task and train an encoder-decoder Transformer model (Vaswani et al. 2017)
on this task. This simple but powerful approach, which we call KGT5, is visualized
in Fig. 5.1. With such a unified seq2seq approach, we achieve (i) scalability – by
using compositional entity representations and autoregressive decoding (rather than
scoring all entities) for inference, (ii) quality – we obtain state-of-the-art performance,
(iii) versatility – the same model can be used for both link prediction and question
answering over incomplete KGs, and (iv) simplicity – we obtain all results using an
off-the-shelf model with no task or dataset-specific hyperparameter tuning.

5.2. Related Work 87

predict tail: john o'connor | position held

predict head: blondeliini | parent taxon

predict answer: what do jamaican people speak

archbishop

euhalidaya

jamaican english

Figure 5.1: Overview of our method KGT5. KGT5 is first trained on the link prediction task
(predicting head/tail entities, given tail/head and relation). For question answering, the same
model is further finetuned using QA pairs.

KGT5 offers a strong integration of structural and textual information. General
themes for such an integration of KGs and language models are a KG lookup during
inference (Lewis et al. 2020; Li et al. 2023; Wu et al. 2022), or a KG integration
during pretraining (Kang et al. 2022; Li et al. 2022b; Xiong et al. 2020). KGT5 is
a combination of both. It is trained directly on the KG itself capturing textual and
structural information in a unified manner. With an additional graph lookup during
inference, KGT5’s extension—KGT5-context—offers further improvements in terms
of link prediction quality.

In summary, we make the following contributions:

• We show that KG link prediction can be treated as sequence-to-sequence tasks
and tackled successfully with a single encoder-decoder Transformer (with the
same architecture as T5 (Raffel et al. 2020)).

• With this simple but powerful approach called KGT5, we reduce model size
for KG link prediction up to 98% while outperforming conventional KGEs on
a dataset with 90M entities.

• We show that the link prediction performance of such a seq2seq approach can
be strengthened significantly via a simple graph lookup, i.e., integrating the
query entity’s one-hop neighborhood.

Further, building upon these contributions, Saxena et al. (2022) showcase the
versatility of this approach through the task of question answering over incomplete
KGs. By pretraining on KG link prediction and finetuning on question answering,
KGT5 performs similar to or better than much more complex methods on multiple
large-scale benchmarks.

5.2 Related Work

Previously, and in parallel to this work, multiple approaches utilizing textual inform-
ation for link prediction were presented. However, existing approaches lack at least
one of the desiderata presented in Sec. 5.1. We first compare related work in terms

88 Chapter 5. Sequence-to-Sequence Link Prediction

(Sc) (Q) (V) (Si) Pre-
trained Text-model Approach

KGE ✓ ✓ - bi-encoder
HitteER
(Chen et al. 2021)

✓ - hierarchical
bi-encoder

KGE + MPNet
(Hu et al. 2021)

✓ ✓ MPNet bi-encoder

DKRL
(Xie et al. 2016)

✓ ✓ ✓
word2vec
+ CNN bi-encoder

BLP
(Daza et al. 2021)

✓ ✓ ✓ BERT bi-encoder

KEPLER
(Wang et al. 2021b)

✓ ✓ ✓ RoBERTa bi-encoder
+ MLM

SimKGC
(Wang et al. 2022)

✓ ✓ ✓ ✓ BERT bi-encoder

KG-BERT
(Yao et al. 2019)

✓ ✓ ✓ BERT cross-encoder

MLMLM
(Clouatre et al. 2021)

✓ ✓ ✓ ✓ RoBERTa encoder
+ sampling

Better Togethera

(Chepurova et al. 2023)
✓ ✓ ✓ ✓ ✓ T5 encoder-decoder

KGT5 (ours) ✓ ✓ ✓ ✓ T5 encoder-decoder
KGT5-context (ours) ✓ ✓ ✓ ✓ T5 encoder-decoder

Table 5.1: Comparison of related work in terms of the desiderata described in Sec. 5.1,
grouped by approach with the first group showcasing non-text models.
(Sc) - Scalability, (Q) - Quality, (V) - Versatility, (Si) - Simplicity.

of textual integration for the link prediction alongside presented desiderata, followed
by a summary of approaches integrating neighborhood information. For an overview,
see Tab. 5.1.

5.2.1 Text-Based Link Prediction Models

Multiple textual link prediction approaches evolved from the KGE architecture. Due
to the non-parametric nature of KGEs scaling linearly with the number of entities in the
graph, KGEs result in a high parameter count limiting their scalability. Additionally,
they lack versatility. While, for example, question-answering methods leveraging
KGEs outperform traditional approaches on incomplete KGs, combining KGEs with
the question-answering pipeline is a non-trivial task (Huang et al. 2019; Ren et al.
2021; Sun et al. 2021; Saxena et al. 2020). Textual integrations can help address

aBetter Together (Chepurova et al. 2023) was published after this study, and shows with a very
similar approach to KGT5-context similar improvements.

5.2. Related Work 89

these drawbacks. E.g., by allowing for compositional entity embeddings addressing
the scalability issue, making versatile adaptions to downstream applications possible,
and further improving link prediction quality. However, seldom all drawbacks are
addressed at once. We grouped textual link prediction approaches by the architecture
types introduced in Sec. 2.3, starting with simple baselines integrating text directly
into the KGE architecture.

Integrating text into KGEs. A baseline to utilize textual together with structural
information is to concatenate learnable KGEs with text embeddings of entity mentions
and descriptions; e.g., Hu et al. (2021) use MPNet (Song et al. 2020) to embed textual
information. With useful textual information, this baseline can improve quality but
comes with the limited scalability and versatility of KGEs.

Bi-encoder. Addressing the limited scalability, DKRL (Xie et al. 2016) and BLP Daza
et al. (2021) do not use learnable KGEs. DKRL embeds entities by combining
word embeddings of entity descriptions with a CNN encoder, followed by the TransE
scoring function. Similarly, BLP embeds raw text using BERT (Devlin et al. 2019). In
addition to BLP’s approach, KEPLER (Wang et al. 2021b) uses a language modeling
objective for training. While these simple approaches indeed improve scalability,
they have a negative impact on quality.

SimKGC (Wang et al. 2022) was developed in parallel to KGT5. In contrast to the
other bi-encoder approaches, it utilizes two pretrained BERT Transformers: one to
embed query entities (and relations) based on their mention and description, and one
for tail entities. This approach reaches high quality and was tested on larger graphs,
such as Wikidata5M. SimKGC’s quality can further be improved by improved training
strategies and ensembling multiple SimKGC models (Jiang et al. 2023). However,
the applied training strategies (generating hard negative samples) lead to increased
training cost limiting the scalability of the approach.

In general, the presented composable bi-encoder approaches offer scalable mod-
els. However, for efficient inference, they materialize all compositional embeddings
to be able to score a query against all possible answers. Inference cost still scales lin-
early w.r.t. the number of entities. This reduces the scalability benefits. Additionally,
bi-encoder approaches offer limited versatility, similar to KGEs.

Cross-encoder. KG-BERT (Yao et al. 2019) utilizes BERT as a cross-encoder. To
retrieve the plausibility of a single triple, KG-BERT encodes a sequence containing
subject description, relation mention, and object description with BERT, and feeds the
[CLS] token into a classification head. This approach holds potential for versatility
as it is applicable to downstream NLP tasks. However, the underlying cross-encoder

90 Chapter 5. Sequence-to-Sequence Link Prediction

leads to scalability issues for link prediction, as the query needs to be encoded
repeatedly together with all possible answers.

Encoder-sampling. MLMLM (Clouatre et al. 2021) encodes the query with a
RoBERTa-based model and uses [MASK] tokens to generate predictions. In contrast
to the sampling approach applied for KGT5’s decoder, MLMLM samples directly
from the encoder filling the masked slot. While the underlying idea of generating
answer entities is close to KGT5, MLMLM performs significantly worse than atomic
KGE models on link prediction on large KGs and is yet to be applied to downstream
text-based tasks.

5.2.2 Integrating Neighborhood Information

HittER (Chen et al. 2021) inspired the neighborhood integration of KGT5-context.
It is an atomic bi-encoder approach that utilizes a Transformer to encode the query
entity together with the query relation. Note that as for traditional KGE models,
entities and relations are represented by a unique embedding. To integrate context
information, each neighboring connection (entity and relation) is encoded separately
via the Transformer. An additional stacked Transformer takes the [CLS] tokens from
query and neighbor Transformers, and contextualizes the query in its neighborhood.
Tail entities are encoded separately and scored together with the contextualized query
representation using a classification head. While this approach achieves high quality
on small benchmarks, it does not scale to large-scale graphs. Further, the stacked
bi-encoder approach limits versatility.

SimKGC (Wang et al. 2022) can similarly integrate neighborhood information. When
entity descriptions are limited, Wang et al. (2022) integrate context information
by appending mentions of neighboring entities. However, due to a large memory
footprint, the integrated context is small, ignores connecting relations, and is only
applied on small datasets.

With a simple encoder-decoder architecture and posing link prediction as a
seq2seq task, KGT5 fulfills all desiderata. A simple hybrid extension integrating the
neighborhood allows for considerable quality improvements. Further, independent
follow-up work performing a comparable study, confirms these improvements (Che-
purova et al. 2023).

5.3. The KGT5 Model 91

5.3 The KGT5 Model

For a direct integration of textual information, we pose knowledge graph link pre-
diction as a sequence-to-sequence task. We then train a simple encoder-decoder
Transformer—that has the same architecture as T5 (Raffel et al. 2020) but without
the pretrained weights—on this task. This method, which we call KGT5, results in
a scalable, text-based KG link prediction model with vastly fewer parameters than
conventional KGE models for large KGs. This approach also confers simplicity and
versatility to the model, whereby it can be easily adapted to question answering
over KGs on any dataset regardless of question complexity. For more insights into
versatility and the application to question answering see Saxena et al. (2022).

Posing KG link prediction as a seq2seq task requires textual representations of
entities and relations, and a verbalization scheme to convert link prediction queries to
textual queries; these are detailed in Sec. 5.3.1. The link prediction training procedure
is explained in Sec. 5.3.2 and inference in Sec. 5.3.3 and 5.3.4.

5.3.1 Textual Representations & Verbalization

Text mapping. We require a one-to-one mapping between an entity/relation and its
textual representation, and the mapped textual representation needs to hold useful
information describing the entity/relation. For Wikidata-based KGs, we use canon-
ical mentions of entities and relations as their textual representation, followed by a
disambiguation scheme that appends unique IDs to duplicate names.

Verbalization. We convert (𝑠, 𝑝, ?) query answering to a sequence-to-sequence task
by verbalizing the query (𝑠, 𝑝, ?) to a textual representation. This is similar to the
verbalization performed by Petroni et al. (2019), except there is no relation-specific
template. For example, given a query (barack obama, born in, ?), we first obtain the
textual mentions of the entity and relation and then verbalize it as

“predict tail: barack obama | born in”.

This sequence is input to the model, and the output sequence is expected to be
the answer to this query, “united states”, which is the unique mention of entity
United States. When entity descriptions are available, we include “description:

<description of query entity>” right after the query.

5.3.2 Training KGT5

To train KGT5, we need a set of (input, output)-sequences. For each triple (𝑠, 𝑝, 𝑜)
in the training graph, we verbalize the queries (𝑠, 𝑝, ?) and (?, 𝑝, 𝑜) according to

92 Chapter 5. Sequence-to-Sequence Link Prediction

 sequences

predict tail: john o connor | position held

verbalize

(John O'Connor, position held, ?)

sample sequences

score all entities

 p
re

di
ct

io
ns

(John O'Connor, position held,?)

top-k predictions

Entity Score

⋮
Ace Ventura
Archbishop
Attack on Titan
Blondeliini
Catholic Bishop

⋮

⋮
-2.0
8.1

-9.9
-6.5
6.1
⋮

(A) (B)

Mention log-prob

catholic bishop

archbishop

⋮

-1.5
-0.3
⋮

map and
top-k predictions

Archbishop
Catholic Bishop

Entity space

Mention space

Legend:

Archbishop
Catholic Bishop

k=2 k=2

Figure 5.2: Inference pipeline of (A) conventional KGE models versus (B) KGT5 on the link
prediction task. Given a query (𝑠, 𝑝, ?), we first verbalize it to a textual representation and
then input it to the model. A fixed number of sequences are sampled from the model decoder
and then mapped back to their entity IDs. This is in contrast to conventional KGEs, where
each entity in the KG must be scored. Please see Sec. 5.3.3 for more details.

Sec. 5.3.1 to obtain two input sequences. The corresponding output sequences are the
text mentions of 𝑜 and 𝑠 respectively. KGT5 is trained with teacher forcing (Williams
and Zipser 1989) and cross entropy loss.

One thing to note is that, unlike standard KGE models, we train without explicit
negative sampling. At each step of decoding, the model produces a probability
distribution over possible next tokens. While training, this distribution is penalized
for being different from the ‘true’ distribution (i.e., a probability of 1 for the true next
token, 0 for all other tokens) using cross entropy loss. Hence, this training procedure
is most similar to the 1vsAll (c.f. Sec. 2.4.1) + cross entropy loss used in Dettmers
et al. (2018) and Ruffinelli et al. (2020), except instead of scoring the true entity
against all other entities, we are scoring the true token against all other tokens at each
step, and the process is repeated as many times as the length of the tokenized true
entity. This avoids the need for many negatives and is independent of the number of
entities.

5.3.3 Link Prediction Inference

In conventional KGE models, we answer a query (𝑠, 𝑝, ?) by finding the score
𝑓 (𝑠, 𝑝, 𝑜) ∀𝑜 ∈ E , where 𝑓 is the model-specific scoring function. The entities
𝑜 are then ranked according to the scores.

In our approach, given a query (𝑠, 𝑝, ?), we first verbalize it (Sec. 5.3.1) before
feeding it to KGT5. We then sample a fixed number of sequences from the decoder,

5.3. The KGT5 Model 93

0 10 20 30 40 50
Beam size/sample size

0.25

0.26

0.27

0.28

0.29

M
RR

Beam search
Sampling

Figure 5.3: Link prediction performance on Wikidata5M. Increasing the sample size steadily
increases MRR for the sampling strategy; the opposite effect is seen with beam size ≥ 5 and
beam search (also c.f. Yang et al. (2018)).

which are then mapped to their entity IDs.b By using such a generative model, we can
approximate top-𝑚 model predictions without having to score all entities in the KG,
as is done by conventional KGE models. However, while in this setting the inference
cost is independent of the number of entities, the cost scales quadratically with the
sequence length 𝑠 of the generated text, as well as the depth 𝑙 of the underlying
Transformer. Hence, the generation cost scales by 𝑂 (𝑚𝑙𝑠2) with 𝑠 ≪ 𝑚 ≪ |E | and
𝑙 ≤ 12 in our setting. For each decoded entity, we assign a score equal to the (log)
probability of decoding its sequence. This gives us a set of (entity, score)-pairs.
To calculate the final ranking metrics comparable to traditional KGE models, we
assign a score of −∞ for all entities not encountered during the sampling procedure.
A comparison of the inference strategy of conventional KGE models and KGT5 is
shown in Fig. 5.2.

5.3.4 Sampling Strategy for Link Prediction

Multiple strategies to generate multiple high-probability sequences using a decoder
have been proposed. A commonly used one is beam search (Graves 2012). Beam
search allows to deterministically generate as many sequences as needed. Although,
while in theory, wider beam sizes should give improved performance, in practice, it has
been observed that for beam sizes > 5, the performance of generative models suffers

bThe decoded sequence may or may not be an entity mention. We experimented with constrained
decoding (Cao et al. 2021) to force the decoder to output only entity mentions; however, we found this
unnecessary since the model almost always outputs an entity mention, and increasing the number of
samples was enough to solve the issue.

94 Chapter 5. Sequence-to-Sequence Link Prediction

drastically (Yang et al. 2018). We observed the same phenomenon for generative link
prediction; the MRR decreased with beam size > 5 (see Fig. 5.3).

But, as each query can have multiple correct answers, a large number of unique
generated answers is a necessity for high link prediction performance. Possible
improvements for beam search in this regard could be modifying the stopping cri-
terion (Murray and Chiang 2018) or training method (Welleck et al. 2019). In this
work, however, we opted for a simple sampling approach. In particular, at each step of
decoding, we calculate a probability distribution over tokens. We sample a token from
this distribution and then autoregressively decode until the ‘stop’ token. By repeating
this sampling procedure multiple times, we can get multiple predictions for the same
input sequence. The score for a sequence is the sum of log probabilities for its tokens.
For an input sequence 𝑖𝑛𝑝𝑢𝑡 and an entity mention tokenized as [𝑤1, 𝑤2, ..., 𝑤𝑇], the
score for the entity would be

𝑇∑︁
𝑡=1

log(IP(𝑤𝑡 |𝑖𝑛𝑝𝑢𝑡, 𝑤1, 𝑤2, ..., 𝑤𝑡−1)),

where IP is the model’s output distribution. While this approach sacrifices the de-
terminism offered by beam search, it offers considerably higher performance (see
Fig. 5.3).

Note that both approaches could be combined for additional quality improvements,
e.g., by generating the first five answer candidates using beam search and sampling
all further candidates.

5.4 Expanding KGT5 with Context

To answer a query (𝑠, 𝑝, ?), KGT5 has to have facts learned about the query entity 𝑠.
Under the assumption that the KG will be present during inference, this learning
problem can be simplified. Therefore, we extend the verbalization of the query used in
KGT5 with information stemming from a graph lookup. We term this approach KGT5-
context. In particular, we append a textual sequence of the one-hop neighborhood of
the query entity 𝑠 to the verbalized query of KGT5. As a result, the query entity is
contextualized, an approach that has been applied successfully before with the HittER
model (Chen et al. 2021). While HittER is a non-parametric Transformer model that
contextualizes the representation of the query entity with the representations of the
neighbors using a stacked transformer, KGT5-context reduces the architecture to a
single Transformer working directly on raw-text input. KGT5-context simplifies the
prediction problem because additional information that is readily available in the

5.4. Expanding KGT5 with Context 95

Figure 5.4: Overview of KGT5-context (bottom) and comparison to KGT5 (top); real example
from Wikidata5M, best viewed in color. KGT5-context differs from KGT5 in that it appends
the neighboring relations and entities of Yambaó (a drama movie) to the verbalized query.
Both models then apply T5, sample predictions from the decoder, map the samples to entities,
and rank by sample logit scores.

KG is provided along with the query. In the example of Fig. 5.4, the contextual
information states that Yambaó is a Mexican movie. This information is helpful; e.g.,
it already rules out the top two predictions of KGT5, which incorrectly suggest that
Yambaó is a piece of music. For a more detailed analysis, see Sec. 5.5.3.

Verbalization details. We obtain mentions of the entities and relations in the query
as well as in the one-hop neighborhood of the query entity. We use these mentions to
verbalize the query together with the neighborhood as

“query: <query entity mention> | <query relation mention> |

context:

<context relation 1 mention> | <context entity 1 mention>

<SEP>

<context relation 2 mention> | <context entity 2 mention>

<SEP>

. . . ”.

When entity descriptions are available, we include “description:

<description of query entity>” right before the query context. To
keep the direction of relations, we prepend the relation mention with “reverse of”
if the query entity acts as an object, i.e., the relation “points towards” the query entity.
A real-world example is given in Fig. 5.4. Inspired by neighborhood sampling in
GNNs (Hamilton et al. 2017), we sample up to 𝑘 (default: 𝑘 = 100) relation-neighbor
pairs uniformly, at random, and without replacement.

96 Chapter 5. Sequence-to-Sequence Link Prediction

Dataset Entities Relations |Train| |Valid| |Test|
FB15K-237 14 505 237 272 115 17 535 20 466
WNRR 40 559 11 86 835 3 034 3 134
Yago3-10 123 182 37 1 079 040 5 000 5 000
Wikidata5M 4 818 579 828 21 343 681 5 357 5 321
WikiKG90Mv2 91 230 610 1 387 601 062 811 15 000 10 000

Table 5.2: Datasets used in this study.

5.5 Experimental Study

We conducted an experimental study to investigate (i) whether KGT5—i.e. a simple
seq2seq Transformer model—can effectively be used for link prediction, (ii) whether
an ensemble of the text-based KGT5 model with a KGE model can improve perform-
ance, (iii) to what extent integrating context in terms of the entity neighborhood into
KGT5 improves link prediction performance, and (iv) for what kind of queries context
is helpful. We found that:

1) The text-based KGT5-context improved the state-of-the-art performance on
Wikidata5M (Tab. 5.3).

2) KGT5-context was orders of magnitude smaller than the leading models on
WikiKG90Mv2 and reached competitive performance (Tab. 5.4).

3) Although standalone KGT5 was good at generalization to unseen facts, it was
rather poor at memorizing facts. This problem could be alleviated, if needed,
by either integrating context information (using KGT5-context) or using an
ensemble of KGT5 and conventional KGE models (Tab. 5.7).

4) Neighborhood information was especially useful if it resided on the shortest
path to the answer (Tab. 5.9).

5.5.1 Experimental Setup

We made all source code and configurations publically available at https://gith

ub.com/uma-pi1/kgt5-context.

Datasets. We evaluate KGT5 and KGT5-context on two commonly used
large-scale link prediction benchmarks: Wikidata5M (Wang et al. 2021b), and
WikiKG90Mv2 (Hu et al. 2021). Additionally, we considered the small bench-
marks FB15k-237 (Toutanova and Chen 2015), WNRR (Dettmers et al. 2018), and
Yago3-10 (Dettmers et al. 2018). We use entity and relation mentions provided

https://github.com/uma-pi1/kgt5-context
https://github.com/uma-pi1/kgt5-context

5.5. Experimental Study 97

with the datasets.c,d For Wikidata5M, we also consider the usefulness of entity de-
scriptions, which are provided with the dataset and have been used in some prior
studies (Wang et al. 2022; Jiang et al. 2023). Note that we do not use these descrip-
tions by default, and clearly mark throughout when they have been used. In contrast to
Wikidata5M, WikiKG90M is only evaluated on tail prediction, i.e.,(𝑠, 𝑝, ?) queries.
Dataset statistics are summarized in Tab. 5.2. For more details about the datasets see
Sec. 2.6.

Metrics. We follow the standard procedure to evaluate model quality for the link
prediction task; see Sec. 2.5. Note that for KGT5 and KGT5-context, we do not score
all entities during evaluation, but instead sample 𝑚 times (with 𝑚 ≪ |E |, default
𝑚 = 500) from the decoder and ignore outputs that do not correspond to an existing
entity mention.

Settings. For all experiments, we used the same T5 architecture (T5-base for KGT5-
context on WikiKG90Mv2, T5-small for everything else) without any pretrained
weights. Training from scratch ensures test data is unseen during (pre-)training and
avoids leakage. We used the SentencePiece tokenizer pretrained by Raffel et al.
(2020). We trained on 8 A100-GPUs with a batch size of 40 (effective batch size of
320) for KGT5 and 32 (effective batch size of 256) for KGT5-context using the Ada-
Factor optimizer. No dataset-specific hyperparameter optimization was performed.
For KGT5-context, we sampled up to 100 neighbors per query entity or up to an input
sequence length of 512 tokens. For inference, we obtained 500 samples from the
decoder.

Models. On Wikidata5M, we compare KGT5(-context) to the KGE atomic models
(only graph structure used) ComplEx (Trouillon et al. 2016), RotatE (Sun et al. 2019),
and SimplE (Kazemi and Poole 2018), as well as to the text-based models DKRL (Xie
et al. 2016), KEPLER (Wang et al. 2021b), MLMLM (Clouatre et al. 2021), and
to the parallel work SimKGC (Wang et al. 2022) and its extension utilizing hard
negatives (Jiang et al. 2023). On WikiKG90M, we compare to the models presented on
the official leaderboard.c Those include atomic KGE models, KGE models combined
with text-based MPNet embeddings, as well as ensembles consisting of up to 85
KGE models combined with text-based embeddings. Note that ensemble approaches
were proposed after KGT5 but before KGT5-context. For small benchmark KGs, we

c We directly used mentions of entities and relations for WikiKG90Mv2, instead of the textual
embeddings used by other models. For this reason, the benchmark authors (Hu et al. 2021) did not
provide us with scores on the hidden test set. Mentions are provided with the dataset.

dFor small-scale datasets, mentions and descriptions are provided by (Yao et al. 2019).

98 Chapter 5. Sequence-to-Sequence Link Prediction

Ent.
emb.

Pre-
trainedModel MRR Hits@1 Hits@3 Hits@10 Params 1-hop

RotatE† 0.290 0.234 0.322 0.390 2 400M
SimplE† 0.296 0.252 0.317 0.377 2 400M
ComplEx†† 0.308 0.255 - 0.398 614M

SimKGCe 0.212 0.182 0.223 0.266 220M ✓ ✓
KGT5 (ours) 0.300 0.267 0.318 0.365 60M

+ ComplEx 0.336 0.286 0.362 0.426 674M
KGT5-context (ours) 0.378 0.350 0.396 0.427 60M ✓

DKRL‡ 0.160 0.120 0.181 0.229 20M ✓ ✓
KEPLER‡ 0.210 0.173 0.224 0.277 125M ✓ ✓
MLMLM‡‡ 0.223 0.201 0.232 0.264 355M ✓ ✓
SimKGC + Desc.$ 0.358 0.313 0.376 0.441 220M ✓ ✓

+ Hard Negative Ensemble$$ 0.420 0.381 0.435 0.490 1 100M ✓ ✓
KGT5 + Desc. (ours) 0.381 0.357 0.397 0.422 60M
KGT5-context + Desc. (ours) 0.426 0.406 0.440 0.460 60M ✓

Table 5.3: Link prediction results on Wikidata5M, test split. The first group does not
make use of textual information, the second group uses mention names, and the third group
additionally entity descriptions. Best per group underlined, best overall bold. Ent. emb.
denotes, whether entity embeddings need to be precalculated for inference. 1-hop denotes,
whether the 1-hop neighborhood needs to be retrieved for inference. Marked results are from
† Zhu et al. (2019), †† Ch. 3, ‡Wang et al. (2021b), ‡‡ Clouatre et al. (2021), $ Wang et al.
(2022), $$ Jiang et al. (2023).

compared with the currently best-performing link prediction model NBFNet (Zhu
et al. 2021).

5.5.2 Link Prediction Performance

Link prediction performance on Wikidata5M is shown in Tab. 5.3. Generally, we
found that textual information was highly beneficial. Using mentions only, KGT5 per-
formed on par with the large KGE models and outperformed its bi-encoder counterpart
SimKGC by 9pp.e Integrating context information into KGT5 improved performance
considerably. KGT5-context was the only model that improved upon KGE models
(which do not use textual information) when only mention information was available.
Entity descriptions provided further improvements; they hold valuable information
for this benchmark. With these descriptions, all three approaches—KGT5, KGT5-
context, as well as SimKGC—outperformed traditional KGE models by a large margin
(12pp in terms of MRR for KGT5-context), with a model size reduction of 90–98% for
KGT5(-context) and 80–95% for SimKGC. Both, with and without descriptions, the
seq2seq approach KGT5 and especially KGT5-context outperformed the bi-encoder

e SimKGC uses descriptions by default. For this ablation, we trained the model with the same
hyperparameters but without descriptions.

5.5. Experimental Study 99

Model Release
Date

Test
MRR

Valid
MRR Params

Atomic ComplEx Sep. 2022 0.141 0.182 18.2B
TransE Oct. 2021 0.082 0.110 18.2B

+ Text
embedding

ComplEx-Concat Oct. 2021 0.176 0.205 18.2B
TransE-Concat Oct. 2021 0.176 0.206 18.2B

+ Ensemble
PIE-RM Oct. 2022 0.212 0.254 18.2Bg

DGLKE + Rule Mining Nov. 2022 0.249 0.292 18.2Bg

BESS Dec. 2022 0.254 0.292 23.3Bg

Raw text KGT5, T5 small (ours)c Mar. 2022 - 0.221 60M
KGT5-context, T5 base (ours)c May 2023 - 0.301 220M

Table 5.4: Link prediction results on WikiKG90Mv2. Baseline numbers are from the official
leaderboard of OGB-LSC (Hu et al. 2021).

approach SimKGC and set a new state-of-the-art.f Only utilizing expensive negat-
ive sampling approaches and an ensemble of multiple SimKGC models, the approach
reached performance close to KGT5-context. Previous text-based approaches (DKRL,
KEPLER, MLMLM), did not reach results close to the state-of-the-art.

The results on the much larger WikiKG90Mv2 are shown in Tab. 5.4.c Here,
KGT5 outperformed KGE models and their combination with text embeddings. Note
that these text embeddings are based on the same textual data used with KGT5(-
context). Only large (300M-45B× larger) and expensive ensembles further improved
upon KGT5.g But, with context-integration and a slightly larger Transformer ar-
chitecture (T5-base vs. T5-small), KGT5-context further improved validation MRR
by almost 1pp over ensemble approaches. Even with a larger Transformer archi-
tecture, KGT5-context is multiple orders of magnitude smaller than the currently
best-performing models.

Tab. 5.5 shows link prediction performance on KGs with ≤ 150𝐾 entities. Here
KGT5 and KGT5-context sometimes fall behind the baselines; Transformer models
are known to struggle when data is scarce, and this could be the reason for poor
performance on these small datasets. Utilizing a pretrained Transformer might help
as shown by Wang et al. (2022).

fFor SimKGC, we used the same hyperparameters as reported for the Wikidata5M dataset in the
original paper. However, training for more epochs might further improve SimKGC’s performance.

g The parameter count in Tab. 5.4 corresponds to the size of the largest model in an ensemble,
not the overall model size. For example, BESS (Cattaneo et al. 2022) consists of 85 models, and the
complete ensemble has 2.6T parameters; the KGT5-context model is 5 orders of magnitude smaller.

100 Chapter 5. Sequence-to-Sequence Link Prediction

Model WNRR FB15K-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

ComplEx 0.475 0.438 0.547 0.348 0.253 0.536 0.551 0.476 0.682
NBFNet (Zhu et al. 2021) 0.551 0.497 0.666 0.415 0.321 0.599 - - -

KGT5 0.508 0.487 0.544 0.276 0.210 0.414 0.426 0.368 0.528
KGT5-context 0.502 0.470 0.569 0.298 0.233 0.439 0.410 0.367 0.484
KGT5-ComplEx Ensemble 0.542 0.507 0.607 0.343 0.252 0.377 0.552 0.481 0.680

Table 5.5: Link prediction results on small KGs (≤ 150k entities). KGT5 is generally worse
than both NBFNet and ComplEx on FB15k-237 and YAGO3-10 datasets. Performance on
WNRR is somewhat better; however, a part of this could be due to the use of entity definitions
(see Sec. 5.6.1).

5.5.3 Context Analysis

To study the impact of context information, we investigated the following questions:

(i) How much context can be used?,

(ii) How much context is useful?,

(iii) In which cases is context useful?,

(iv) What kind of context is useful?,

(v) Does context have a similar effect in a bi-encoder architecture?

How much context can be used?

We provide an overview of the lengths of tokenized entities and relations in Fig. 5.5a
and Fig. 5.5b respectively. Further, we tokenized each entity together in its one-hop
neighborhood; results are summarized in Fig. 5.5c. For 99% of entities, the query
including full context information does fit into the default input length of 512 tokens.
This does still hold when taking entity descriptions into account (Fig. 5.5d). Larger
input lengths are not necessary.

How much context is useful?

To investigate the effect of context size on quality, we trained multiple KGT5-context
models for a single epoch with increasing context size during training, as well as
during evaluation. Results are summarized in Tab. 5.6. Performance improved with
increasing context size up to 50. Improvements stagnate most likely due to 99% of
entities having a degree ≤ 50. The results further indicate that training cost could be
reduced by limiting the context size during training to 10 but keeping a larger size for
inference. Variance is negligible in all settings.

5.5. Experimental Study 101

0 20 40 60 80 100 120
Number of tokens

0.0

0.5

1.0

1.5

2.0
Co

un
t

1e6

(a) Number of tokens per entity mention in
Wikidata5M.

2 4 6 8 10 12 14 16 18
Number of tokens

0

100

200

300

400

500

600

Co
un

t

(b) Number of tokens per relation mention in
Wikidata5M.

0 100 200 300 400 500
Number of tokens

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
un

t

1e6

(c) Number of tokens per entity together with
its one-hop neighborhood in Wikidata5M.
Lengths > 512 fall into bin 513.

0 20 40 60 80 100 120
Number of tokens

0.0

0.2

0.4

0.6

0.8

1.0
Co

un
t

1e6

(d) Number of tokens per entity description in
Wikidata5M. Lengths > 128 fall into bin 129.

Figure 5.5: Length of tokenized entities and relations.

In which cases is context useful?

To investigate in which cases context information was beneficial, we empirically
analyzed LP performance w.r.t. (i) query frequency and (ii) the degree of the query
entity.

Query frequency. The frequency of a test query (𝑠, 𝑝, ?) is the number of answers to
the query already available in the training data. For example, queries for N:1 relations
have frequency 0, whereas queries for 1:N relations can have a large frequency for
high-degree query entities. We bucketized the test queries of Wikidata5M into low,
medium, and high frequency queries and report average MRR for various models in
Tab. 5.7. Generally, high-frequency queries appear harder to answer. These queries
have many known true answers already (tying up model capacity); there may be
many additional, potentially unrelated answers, and incompleteness of the KG may

102 Chapter 5. Sequence-to-Sequence Link Prediction

Evaluation→
Training ↓ 1 10 50 100

1 0.280 0.296 0.284 0.284
10 0.269 0.342 0.354 0.354
50 0.259 0.340 0.357 0.357

100 0.258 0.339 0.356 0.356

Table 5.6: Influence of context size on valid-MRR. Rows define the context size during
training, and columns during evaluation. Each model was trained for a single epoch on
Wikidata5M. Mean over three evaluation runs. Standard deviation is negligible.

Model 0 1-10 >10 All

ComplEx 0.534 0.351 0.045 0.296
KGT5 0.624 0.215 0.015 0.300
KGT5-context 0.738 0.415 0.014 0.378

KGT5 + ComplEx 0.624 0.351 0.045 0.336
KGT5-context + ComplEx 0.738 0.351 0.045 0.379

Table 5.7: Test MRR on Wikidata5M grouped by query frequency during training.

be a concern during evaluation. In contrast, a low-frequency query such as (Brendan
Fraser, instance Of, ?) has few or no known answers and might be easier to infer,
even when the combination of this particular subject and relation was not yet seen
during training.

Ensemble with KGE models. In general, the KGT5 model performed reasonably
well on queries that did not occur in the training data but was outperformed by a
large amount by ComplEx on queries seen multiple times. Hence, both models
complemented each other in an ensemble. For this ensemble, we used KGT5 if the
query did not have answers in the train KG; otherwise, we used ComplEx. While
such an ensemble improves quality over both models separately, it neither achieves the
goal of scalability nor versatility. KGT5-context strongly improved performance over
ComplEx, KGT5, and the KGT5+Complex ensemble for low- and medium-frequency
queries. For this reason, an ensemble between KGT5-context and ComplEx only
brought negligible benefits but had substantial drawbacks. Consequently, an ensemble
of KGT5-context with a KGE model is not needed and should not be used.

Entity degree. We also investigated the benefit of contextual information w.r.t. to the
degree of the query entity (see Fig. 5.6). We found that KGT5-context was beneficial
and performed well on query entities with a degree of up to 100. For entities with very
large degrees (i.e., nodes with more than 100 or even 1000s of neighbors), ComplEx

5.5. Experimental Study 103

full <=1
(5%)

<=5
(20%)

<=10
(15%)

<=100
(21%)

<=1000
(8%)

>1000
(30%)

Entity Degree

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
RR

ComplEx
KGT5
KGT5-context

Figure 5.6: MRR grouped by entity degree on Wikidata5M. Group weight is given in
brackets.

Inference Setting Max. context size MRR MRR-head MRR-tail

Default 100 0.3601 0.0743 0.6477
Best context (leakage) 1 0.3830 0.0964 0.6696

Table 5.8: Performance of KGT5-context with the best possible selected context on 500
sampled Wikidata5M validation triples. Context selection was performed exhaustively, know-
ing the correct answer upfront.

showed benefits. As before, we feel that these performance benefits are negligible
considering the increase in model size and decrease in scalability.

What kind of context is useful?

Exhaustive search. To investigate what kind of context useful is, we sampled 500
validation triples and exhaustively ranked the correct answer using a query with each
possible context triple separately. Therefore, we ran each query with a context size
of 1 as often as the degree of the query entity. The possible performance, when
selecting the best possible context is summarized in Tab. 5.8. Note that this approach
introduces leakage and cannot be used in production. The correct answer needs to be
known upfront for this analysis. In contrast to the results presented in Tab. 5.6, this
exhaustive analysis showed that a context size of 1 can be enough or even better than
a large size of 100 if selected properly. While this exhaustive search showcased that
there may be potential for improvements of KGT5-context, we did not find a selection
strategy without leakage performing close to using large context windows.

104 Chapter 5. Sequence-to-Sequence Link Prediction

Pattern Head Tail

Contains answer 6.6% 6.4%
Contains query relation 3.6% 6.0%
Lies on shortest path 26.4% 58.8%

Table 5.9: Percentage of cases in which the best-selected context (i) contains the answer
entity, (ii) contains the query relation, or (iii) lies on the shortest path to the answer. Analyzed
on 500 sampled Wikidata5M validation triples.

Pattern analysis. To find out what context was the best, we analyzed how often
(i) the best context entity was the answer entity, (ii) the best context relation was the
query relation, and (iii) the best context resides on the shortest path to the answer
entity. Results are summarized in Tab. 5.9. For Wikidata5M, the correct answer
entity appears in the one-hop neighborhood of the query entity for about 7% of the
validation triples. In these cases, the best-selected context was the current connection
to the answer entity itself. Utilizing the same relation as context was only beneficial
for some relation types. The most beneficial by far, was the context that lies on the
shortest to the answer entity. This was the case for almost 60% of tail prediction
queries.

Anecdotal results. We manually probed some predictions of KGT5-context and
found, in addition to previous insights, the context to be beneficial when the query
entity mention only provided limited information about the entity itself. A case
of this is shown in Fig. 5.4, a real example. Here, KGT5 was able to capture the
geographic region of the real-world entity only based on its mention. Based on this
geographic notion, it proposed the music genre Latin pop but was unaware that the
entity is a movie. This useful information can be obtained directly from the one-hop
neighborhood and, indeed, was exploited by KGT5-context. Further, in some cases,
even though the answer does not directly appear in the context, it may contain entities
strongly hinting at the correct answer. For example, it is easier to predict that an
entity has occupation biochemist, when the context already contains the information
that the entity is a chemist. In multiple cases, these situations overlap with the context
entity lying on the shortest path to the answer.

To what extent is context useful for a bi-encoder approach?

KGT5-context includes neighborhood information of the query entity. A similar
approach can be taken for SimKGC. However, the architecture additionally allows
contextualizing the target entity in its neighborhood. To analyze the impact of this
integration, we trained SimKGC on Wikidata5M with 10 neighbors for query and

5.5. Experimental Study 105

Setting MRR

SimKGC + desc. 0.358
SimKGC-context + desc. OOM
SimKGC-DistillBert + desc. 0.361
SimKGC-DistillBert-context + desc. 0.397

Table 5.10: Context information is beneficial for the bi-encoder approach SimKGC. MRR
on Wikidata5M.

target entities. Results are summarized in Tab. 5.10. Since SimKGC consists of two
separate BERT encoders, its memory overhead is high. The additional neighborhood
information exceeds the GPU-VRAM. Therefore, we exchange BERT with the slightly
smaller DistillBERT (Sanh 2019). This exchange does not impact performance.
The neighborhood contextualization shows similar (but not as strong) performance
improvements for SimKGC as it does for KGT5-context.

5.5.4 Impact of Raw Text Information

KGT5-context and SimKGC showed with the integration of detailed textual informa-
tion strong improvements over link prediction models relying on structural informa-
tion only (see Tab. 5.3). While text-augmented graphs are prevalent, in many graph
settings detailed text information might not be provided. Here, we investigate to
what extent the performance gain came from the raw text information and if both
model types are useful without textual input using only feature-based and structural
information.

We performed a two-step analysis. In the first step, we kept textual information
but condensed it to a low-dimensional input embedding. For this analysis, we em-
bedded mentions and descriptions using MPNet (Song et al. 2020) as done for the
WikiKG90M-v2 benchmark (Hu et al. 2021). Note, that the answer entity mention for
tail prediction was oftentimes directly contained in the entity description of the query
entity (31% of tail prediction and 1% of head prediction queries on Wikidata5M valid
split). With this first step, we kept the valuable textual information which most likely
had a strong influence on final performance. However, without raw text input but the
information stored in an embedding, a direct copy of the answer string might not be
possible. In the next step, we discarded text information and evaluated performance
with structural input features like knowledge graph embeddings. For this analysis, we
used ComplEx trained on Wikidata5M.

For SimKGC, we directly replaced the raw text input with feature representations
(padded to the default BERT input dimension). Additionally, we contextualized entity

106 Chapter 5. Sequence-to-Sequence Link Prediction

Model Vocab.
learning

Feature
input MRR

ComplEx - 0.308
SimKGC + desc. tokenizer raw text 0.358
SimKGC-DistillBert-context + desc. tokenizer raw text 0.397
KGT5-context + desc. tokenizer raw text 0.426

SimKGC-context - ComplEx 0.280
KGT5-context PQ ComplEx 0.268
KGT5-context FSQ-VAE ComplEx 0.260

SimKGC-context - MPNet 0.355
KGT5-context PQ MPNet 0.299
KGT5-context FSQ-VAE MPNet 0.291

Table 5.11: Performance of text-based models drops significantly with feature-based input.
MRR on Wikidata5M.

representations with the feature representation of its one-hop neighborhood, similar
to the contextualization of KGT5-context. For KGT5-context, direct replacement
of raw text with feature embeddings is not advisable. For generation, the model
should represent each entity by a set of tokens using an underlying vocabulary and
represent each token by an embedding. With direct replacement, each entity would
be represented by a separate unique token. Here, generation would be performed
via sampling in a single step from the complete set of entities. To create a useful
vocabulary over the input features, we utilized an adaption of product quantization
(PQ) (Jegou et al. 2010), as well as a finite scalar quantized variational autoencoder
(FSQ-VAE) (Mentzer et al. 2023). For more details on the vocabulary learning step,
see Appendix B.1. Results are summarized in Tab. 5.11.

Both approaches showed a significant drop in performance over their raw-text
counterparts. With neighborhood contextualization, the bi-encoder approach could
recover the performance of the raw-text approach without contextualization. This con-
textualization was possible due to smaller memory overhead; each entity (including
description) was represented by a single embedding only. However, contextualized
SimKGC using a smaller model with raw text input still outperformed the feature-
based approach. Since KGT5-context only used the feature input implicitly by first
learning a vocabulary over the input, the drop in performance is even more significant.

With structural information only, using ComplEx embeddings, performance
dropped further. The models could barely recover the performance of the under-
lying structural model ComplEx. Therefore, it can be concluded that the performance
improvements of both modeling approaches mainly stem from the beneficial use of

5.6. Conclusion 107

raw text information. If it is not provided, the architectures do not bear benefits over
previously introduced models.

5.6 Conclusion

We have shown that KG link prediction can be treated as a seq2seq task and tackled
successfully with a single encoder-decoder Transformer model. We did this by train-
ing a Transformer model with the same architecture as T5 on the link prediction task.
This simple but powerful approach, which we call KGT5, performed competitively
with the state-of-the-art methods for KG completion on large KGs while using up
to 98% fewer parameters. Additionally, KGT5-context extends the KGT5 model by
using contextual information of the query entity for prediction. Integrating contextual
information simplifies the learning problem and further improves upon the current
state-of-the-art.

5.6.1 Limitations

KGT5(-context) relies on the textual mentions of entities and relations (and, option-
ally, entity descriptions). Therefore, it is only applicable to KGs that provide such
information. KGT5-context may be able to handle some entities without textual fea-
tures when well-described by their neighborhood; we did not investigate this though.
To use KGT5-context for prediction, the KG has to be queried to obtain context in-
formation, i.e., the one-hop neighborhood of the query entity. KGT5-context thus
cannot be used without the underlying KG. The verbalized neighborhood of the
query entity leads to long input sequences, which in turn may induce higher memory
consumption and higher computational cost during training. Overall, training KGT5-
context is typically more expensive than training traditional KGE models, which can
be tuned (Ch. 4) and trained efficiently (Ch. 3). For inference, KGT5-context first
samples relation-neighbor pairs for contextualization, and then samples possible an-
swers from the decoder. These sampling steps can lead to variance in predictive
performance. We found this effect to be negligible on Wikidata5M, but it may be
larger on other datasets.

5.6.2 Future Work

GPT for link prediction. As this study showed that a generative approach can be
used for link prediction, it opens a door for the direct application of pretrained LLMs
like GPT 4 and Gemini. Multiple following studies evaluated (i) whether GPT can
be used without further finetuning on link prediction in KGs (Chepurova et al. 2023;

108 Chapter 5. Sequence-to-Sequence Link Prediction

Veseli et al. 2023), and (ii) whether LLMs can store information of KGs (Sun et al.
2023). W.r.t. (i), the performance is still far from state-of-the-art even though GPT
has (most likely) seen the full KG during pretraining, and (ii) LLMs further show
limitations in representing factual knowledge. Hence, future work could study how to
improve the factual correctness of LLMs, as well as improve memorizing capabilities.

Context selection and increased context size. KGT5-context offers a suitable
baseline for contextualized link prediction. However, the current context selection is
limited to the sampled one-hop neighborhood. A natural direction, for example, is
to explore approaches that integrate contextual information in a less naive way than
KGT5-context does. Here, an integration of rule-based link prediction approaches
like AnyBurl (Meilicke et al. 2019) might be helpful. Next to context selection, an
increased context window for the integration of multi-hop neighborhoods might be
beneficial. The context window could be increased by utilizing Transformers allowing
long input sequences, such as BigBird (Zaheer et al. 2020) or Reformer (Kitaev et al.
2020), or by summarizing the prompt including the neighborhood using so-called
“gist-tokens” (Mu et al. 2023).

Improved sampling methods. For text generation, KGT5 relies on random sampling.
Future work should investigate if improvements in sampling techniques, such as,
nucleus sampling (Holtzman et al. 2019) and unique randomizer (Shi et al. 2020),
translate to improvements in seq2seq link prediction. With random sampling, KGT5
oftentimes samples the same sequence multiple times. Considerably improving the
variety of sampled sequences, an integration of the unique randomizer would increase
the probability that the sequence corresponding to the correct answer entity will be
contained in the set of sampled sequences.

Multilingual link prediction. While most research focuses on link prediction in
monolingual graphs, recent work proposed to provide KGs to a wider community
through multilingualism (Han and Gardent 2023; Singh et al. 2021). A straightforward
approach to allow KGT5 to use information stemming from multiple languages would
be to exchange the underlying T5 model with mT5 (Xue et al. 2021). In this case,
KGT5 should utilize the pretrained multilingual Transformer and finetune for link
prediction only.

C
ha

pt
er 6

Semi-Inductive Link Prediction

“There are things known and there are things unknown, and in between
are the doors of perception.”

Aldous Huxley, n.d.

In previous chapters, we focused on transductive link prediction. In this setting, all
entities are known a priori. In contrast, semi-inductive link prediction in knowledge
graphs is the task of predicting facts for new, previously unseen entities based on
context information. Although new entities can be integrated by retraining the model
from scratch in principle, such an approach is infeasible for large-scale KGs, where
retraining is expensive and new entities may arise frequently. In this chapter, we
evaluate models’ abilities to model emerging entities. To do so, we propose and
describe a large-scale benchmark to evaluate semi-inductive link prediction models.
The benchmark is based on and extends Wikidata5M: It provides transductive, k-shot,
and 0-shot link prediction tasks, each varying the available information from (i) only
KG structure, to (ii) including textual mentions, and (iii) detailed descriptions of the
entities. Using this benchmark, we report on a small study of recent approaches and
found that semi-inductive link prediction performance is far from transductive per-
formance on long-tail entities throughout all experiments. The benchmark provides
a test bed for further research into integrating context and textual information in
semi-inductive link prediction models.

This chapter is based on Kochsiek and Gemulla (2023).

109

110 Chapter 6. Semi-Inductive Link Prediction

6.1 Introduction

Previous chapters focused on transductive (TD) link prediction with all entities known
a priori. New links are only predicted between entities that were part of the training
data. However, in many settings, new entities emerge frequently. Addressing these
emerging entities, link prediction can be semi-inductive (SI; some entities known a
priori), as well as inductive (no entities known a priori). In this chapter, we concentrate
on the semi-inductive setting in its interplay with transductive link prediction.

Semi-inductive link prediction focuses on modeling entities that are unknown or
unseen during inference, such as out-of-KG entities (not part or not yet part of the
KG) or newly created entities, e.g., a new user, product, or event. Such previously
unknown entities can be handled by retraining in principle. For large-scale KGs,
however, retraining is inherently expensive, and new entities may arise frequently.
Therefore, the goal of semi-inductive link prediction is to avoid retraining and perform
link prediction directly, i.e., to generalize beyond the entities seen during training.

To perform link prediction for unseen entities, context information about these
entities is needed. The amount and form of context information varies widely and
may take the form of facts and/or textual information, such as an entity mention and/or
its description. For example, a new user in a social network may provide a name,
basic facts such as gender or country of origin, and perhaps a textual self-description.

In this chapter, we introduce the Wikidata5M-SI benchmark for semi-inductive
link prediction to evaluate current models’ abilities to model such emerging entities.
Our benchmark is based on the popular Wikidata5M (Wang et al. 2021b) benchmark
and has four major design goals:

(G1) Long-tail entities. It ensures that unseen entities are long-tail entities since
popular entities (such as, say, Germany) and/or types and taxons (such as
human and organization) are unlikely to emerge after the initial construction of
the graph.

(G2) Varying amounts of contextual facts. It allows to evaluate each model with
varying amounts of contextual facts (0-shot, few-shot, transductive), i.e., to
explore individual models across a range of tasks.

(G3) Controlled amount of textual information. It provides a controlled amount
of textual information (none, mention, full description), where each setting
demands different modeling capabilities.

(G4) Large-scale. The benchmark is large-scale so that retraining is not a suitable
approach.

6.2. Related Work 111

Base Dataset G1 G2 G3 G4

WN11 WN11-OOKB (Hamaguchi et al. 2017)

WN18RR oWN18RR (Albooyeh et al. 2020)
WN18RR-dynamic (Daza et al. 2021)

FB15K-237
FB15K-237-OWE (Shah et al. 2019) ✓
oFB15K-237 (Albooyeh et al. 2020)
FB15K-237-dynamic (Daza et al. 2021)

FB15K FB20K (Xie et al. 2016) ✓
FB15K (Wang et al. 2019)

Yago3-10 oYago3-10 (Galkin et al. 2021)

DBPedia DBPedia50K (Shi and Weninger 2018) ✓
DBPedia500K (Shi and Weninger 2018) ✓ ✓

Wikidata5M Wikidata5M-SI (ours) ✓ ✓ ✓ ✓

Table 6.1: Overview of existing SI link prediction benchmarks.

All prior semi-inductive link prediction benchmarks, which we’ll discuss in Sec. 6.2,
violate at least one of these criteria. Using our introduced benchmark, we report on
a small experimental study with recent link prediction approaches. In general, we
found that

1) SI performance was far behind TD performance in all experiments for long-tail
entities,

2) there was generally a trade-off between TD and SI performance,
3) textual information was highly valuable,
4) proper integration of context and textual information needs further exploration,

and
5) facts involving less common relations provided more useful context.

Our benchmark provides directions and a test bed for further research into SI link
prediction.

6.2 Related Work

Semi-Inductive benchmarks. Multiple SI link prediction datasets have been pro-
posed in the literature. For a summary of the proposed benchmarks w.r.t. the goals
introduced in Sec. 6.1, see Tab. 6.1. The benchmarks WN18RR-dynamic, FB15K-
237-dynamic (Daza et al. 2021), oWN18RR, oFB15K-237 (Albooyeh et al. 2020),
and oYago3-10 (Galkin et al. 2021) are obtained by first merging the splits of smal-
ler transductive link prediction datasets and subsequently sampling unseen entities

112 Chapter 6. Semi-Inductive Link Prediction

Transductive Semi-inductive

Train Valid Test Valid Test

Triples 20 600 187 4 983 4 977 5 500 5 500
Entities 4 593 103 7 768 7 760 3 722 3 793
Entities unseen - 0 0 500 500
Relations 822 217 211 126 115

Table 6.2: Statistics of the Wikidata5M-SI splits.

uniformly to construct validation and test splits. These benchmarks do not satisfy
goals G1–G4. With DBPedia50k and DBPedia 500k Shi and Weninger (2018), and
with FB15K-237-OWE Shah et al. (2019) follow a similar approach but focus on only
0-shot evaluation based on textual features only. For FB20k, Xie et al. (2016) select
entities from Freebase with connection to entities in FB15K (Bordes et al. 2013), also
focussing on 0-shot evaluation using rich textual descriptions. These approaches do
not satisfy G2 and G3. Finally, Wang et al. (2019) and Hamaguchi et al. (2017) uni-
formly sample test triples and mark occurring entities as unseen. These approaches
do not focus on long-tail entities (and, in fact, the accumulated context of unseen
entities may be larger than the training graph itself) and they do not satisfy G1–G3.

Inductive benchmarks. There are also several fully inductive LP benchmarks (Teru
et al. 2020; Wang et al. 2021b) involving KGs. While semi-inductive link prediction
aims to connect unseen entities to an existing KG, fully inductive link prediction
reasons about a new KG with completely separate entities (but shared relations).
Teru et al. (2020) create inductive benchmarks of common small-scale link predic-
tion benchmarks by sampling multiple subgraphs with disjoint entities but common
relations. During inductive inference, models have access to a separate inductive
inference graph. Next to the transductive Wikidata5M, Wang et al. (2021b) provide a
fully inductive split. Here, each new unseen entity comes with textual mentions and
descriptions during inference, but without further facts in the form of triples. Galkin
et al. (2022) extend this setting by adding an additional inference graph, similar to the
benchmarks presented by Teru et al. (2020). In this work, we do not further consider
the fully inductive setting but focus with semi-inductive link prediction on the task of
connecting emerging entities to an existing KG.

6.3 The Wikidata5M-SI Benchmark

Wikidata5M-SI is based on the popular Wikidata5M (Wang et al. 2021b) benchmark,
which is induced by the 5M most common entities of Wikidata. Our benchmark

6.3. The Wikidata5M-SI Benchmark 113

WikidataID Mention All entities Long-tail entities

Q5 human 39% 61%
Q11424 film 3% 8%
Q484170 commune of France 1% 7%
Q482994 album 3% 1%
Q16521 taxon 9% 1%
Q134556 single 1% 1%
Q747074 commune of Italy 0% 1%
Q2074737 municipality of Spain 0% 1%
Q571 book 1% 1%
Q7889 video game 1% 1%

Table 6.3: Distribution of top 10 entity types over long-tail entities with degrees between 11
and 20 compared to all entities.

contains transductive and semi-inductive valid/test splits; see Tab. 6.2 for an overview.
Generally, we aimed to keep Wikidata5M-SI as close as possible to Wikidata5M. We
did need to modify the original transductive valid and test splits, however, because
they unintentionally contained both seen and unseen entities (i.e., these splits were
not fully transductive). We did that by simply removing all triples involving unseen
entities.

Unseen entities. To ensure that unseen entities in the semi-inductive splits are from
the long tail (G1), we only considered entities of degree 20 or less. To be able to
provide sufficient context for few-shot tasks (G2), we further did not consider entities
of degree 10 or less. In more detail, we sampled 500 entities of degrees 11–20
(stratified sampling grouped by degree) for each semi-inductive split. All sampled
entities, along with their facts, were removed from the train split. Note that these
long-tail entities have a different class distribution than entities from the whole KG;
see Tab. 6.3 for an overview of the distribution shift for the top 10 entity types. This
difference is natural. In particular, high-degree entities in a KG such as Wikidata
often refer to types/taxons (e.g., human, organization, ...) as well as popular named
entities (e.g., Albert Einstein, Germany, ...). These entities are fundamental to the
KG and/or of high interest and have many facts associated with them. For this reason,
they do not form suitable candidates for benchmarking unseen or new entities. In
addition, removing high-degree entities for the purpose of evaluating SI-LP is likely
to distort the KG (e.g., consider removing the type "human" or "Germany"). In
contrast, Wikidata5M-SI focuses on entities for which knowledge is not yet abundant:
long-tail entities are accompanied by no or few facts (at least initially) and our SI-LP
benchmark tests reasoning capabilities with this limited information.

114 Chapter 6. Semi-Inductive Link Prediction

ID Q18918

Mention Sam Witwer

Description Samuel Stewart Witwer (born October 20, 1977) is an American actor and
musician. He is known for portraying Crashdown in Battlestar Galactica, Davis
Bloome in Smallville, Aidan Waite in Being Human, and Ben Lockwood in
Supergirl. He voiced the protagonist Galen Marek / Starkiller in Star Wars: The
Force Unleashed, the Son in Star Wars: The Clone Wars and Emperor Palpatine
in Star Wars Rebels, both of which he has also voiced Darth Maul.

Context instance of | human M: ◦ D: ◦
triples country of citizenship | United States of America M: × D: ◦

occupation | musician M: × D: ✓
occupation | actor M: × D: ✓
place of birth | Glenview M: × D: ×
given name | Samuel M: ◦ D: ✓
given name | Sam M: ✓ D: ◦
cast member | Battlestar Galactica M: × D: ✓
cast member | Being Human - supernatural drama television series M: × D: ✓
cast member | Star Wars: The Force Unleashed II M: × D: ◦
cast member | The Mist M: × D: ×

Table 6.4: Example of an entity from the semi-inductive validation set of Wikidata5M-SI.
For each triple, we annotated whether the answer is contained in (✓), deducible from (◦), or
not contained in (×) mention (M) or description (D).

Tasks and metrics. For TD tasks, we follow the standard protocol of Wikidata5M.
To construct SI tasks, we include 11 of the original facts of each unseen entity into
its SI split; each split thus contains 5,500 triples. This enables up to 10-shot SI tasks
(1 fact to test, up to 10 facts for context). For entities of degree larger than 11, we
select the 11 facts with the most frequent relations; see Tab. 6.4 for an example.
The rationale is that more common relations (such as instanceOf or country) may
be considered more likely to be provided for unseen entities than rare ones (such as
militaryBranch or publisher). We then construct a single 𝑘-shot task for each triple
(𝑠, 𝑝, 𝑜) in the SI split as follows. When, say, 𝑠 is the unseen entity, we consider
the LP task (𝑠, 𝑝, ?) and provide 𝑘 additional facts of form (𝑠, 𝑝′, 𝑜′) as context.
Context facts are selected by frequency as above, but we also explored random and
infrequent-relation context in our study. Models are asked to provide a ranking of
predicted answers, and we determine the filtered mean reciprocal rank (MRR) and
Hits@𝑘 of the correct answer (𝑜).

Textual information. For each entity, we provide its principal mention and a detailed
description (both directly from Wikidata5M); see Tab. 6.4. This allows to differentiate
model evaluation with varying amounts of textual information per entity (G3): (A)
atomic, i.e., no textual information, (M) mentions only, and (D) detailed textual
descriptions as in Ch. 5. This differentiation is especially important in the SI setting,

6.4. Semi-Inductive Link Prediction Models 115

as detailed text descriptions might not be provided for unseen entities and each setting
demands different modeling capabilities. In fact, (A) performs reasoning only using
graph structure, whereas (D) also benefits from information extraction to some extent.
We discuss this further in Sec. 6.5.

6.4 Semi-Inductive Link Prediction Models

Recall that link prediction models can be grouped into global, local, and hybrid
models (c.f. Sec. 2.3). We briefly summarize, how existing link prediction models
can be used directly or extended in a semi-inductive setting.

Global Models

Global models operate on the full graph for inference, e.g., GNNs and rule-based
approaches. As most models in this category can reason on a (slightly) different
graph during inference than training, they can handle emerging entities and perform
semi-inductive link prediction. In this study, we evaluate the rule-based approach
AnyBurl (Meilicke et al. 2019). We originally planned to consider NodePiece (Galkin
et al. 2021), representing entities by a combination of anchor embeddings, and
NBFNet (Zhu et al. 2021)a, a GNN-based LP model; both support SI-LP directly.
However, the available implementations did not scale to Wikidata5M-SI (out of
memory).b

Local & Hybrid Models

In contrast to global models, local models operate on a triple level. For more details
see Sec. 2.3. Multiple local models learn representations of the entities in the graph
which are in turn used for inference, e.g., KGE models. As such representations do not
yet exist for emerging entities, these models cannot reason about queries containing
these entities by default. For SI-LP, models must be able to create such representations
“on the fly” given the input features of the emerging entities. Common approaches
are (i) the integration of neighborhood information using a hybrid extension and/or
(ii) representing entities via their textual features. For (i) the emerging entity is
represented by aggregated features of its one-hop neighborhood, and for (ii) by an
embedding of textual mentions and description coming with the emerging entity. In

aFor more details on NBFNet, see Sec. 2.3.2.
bFor NBFNet (Zhu et al. 2021), the large memory footprint is inherent to the model; it is a full-graph

GNN and hard to scale. For NodePiece (Galkin et al. 2021), however, the problem mainly lies in the
expensive evaluation. All intermediate representations are precomputed, leading to a large memory
overhead.

116 Chapter 6. Semi-Inductive Link Prediction

the following, we summarize local and hybrid models and/or their extensions for
SI-LP, which we considered in our experimental study.

Graph-only models. To extend KGE models for SI-LP, we follow a fold-in approach
explored by Jambor et al. (2021), as well as a hybrid extension proposed by Albooyeh
et al. (2020). For the fold-in approach, we first represent each entity as the sum of a
local embedding (one per entity) and a global bias embedding. For 0-shot, we solely
use the global bias for the unseen entity. For k-shot, we perform the actual fold-in and
obtain the local embedding for the unseen entity by performing a single training step
on the context triples (keeping all other embeddings fixed). For the hybrid extension,
we consider oDistMult-ERAvg (Albooyeh et al. 2020). Here, we represent unseen
entities by aggregating the embeddings of the relations and entities in the context.c

A more direct approach is taken by the hybrid HittER (Chen et al. 2021), which
contextualizes the query entity with its neighborhood for TD-LP. The approach can
be used for SI-LP directly by using a masking token (akin to the global bias above)
for an unseen entity.

Text-based models. To extend KGE models for SI-LP using textual information,
we consider the baseline approach of concatenating learnable representations with
pretrained text embeddings explored in the WikiKG90M benchmark (Hu et al. 2021);
see Sec. C.1 for details on this integration. The remaining approaches are purely
textual. In particular, we considered the approaches we evaluated for TD link predic-
tion in Ch. 5; i.e., SimKGC and KGT5. Both approaches support 0-shot SI-LP when
textual information is provided for the query entity. They do not utilize additional
context, however, i.e., do not support k-shot SI-LP. But, as the hybrid model KGT5-
context extends the input of KGT5 by the one-hop neighborhood of the query entity,
it consequently supports k-shot LP directly.d

6.5 Experimental Study

We evaluated all presented baseline models in the TD and SI setting on the atomic,
mentions, and descriptions dataset. Further, we evaluated in detail which context was
most useful and what information was conveyed by textual mentions and descriptions.

Setup. Source code, configuration, and the benchmark itself are available at https:

//github.com/uma-pi1/wikidata5m-si. For hyperparameter optimization for
cTo address the high memory footprint (Galkin et al. 2021) of oDistMult-ERAvg, we extend it with

neighborhood sampling.
dSimilar to KGT5-context, SimKGC can be and is used in a hybrid setting on small KGs. However,

the memory footprint of SimKGC in this hybrid setting is too large for Wikidata5M-SI. For more details
on this extension, including its effect on quality and memory, see Sec. 5.5.3.

https://github.com/uma-pi1/wikidata5m-si
https://github.com/uma-pi1/wikidata5m-si

6.5. Experimental Study 117

Transductive Semi-inductive (num. shots) Pre-
trainedModel All Long tail 0 1 3 5 10

ComplEx + Bias + Fold in 0.308 0.523 0.124 0.151 0.176 0.190 0.206 no
DistMult + ERAvg 0.294 0.512 - 0.171 0.246 0.295 0.333 no
HittER 0.284 0.512 0.019 0.105 0.153 0.179 0.221 no
AnyBurl 0.353 0.569 .e .e .e .e 0.407e no

DistMult + ERAvg + Mentions 0.299 0.535 - 0.187 0.235 0.258 0.280 yes
SimKGC (mentions only) 0.212 0.361 0.220 - - - - yes
KGT5 0.281 0.542 0.310 - - - - no
KGT5-context 0.374 0.678 0.220 0.217 0.236 0.259 0.311 no

+ Context hidingf 0.371 0.676 0.283 0.263 0.258 0.272 0.316 no

DistMult + ERAvg + Descriptions 0.313 0.585 - 0.278 0.281 0.285 0.292 yes
SimKGC + Descriptions 0.353 0.663 0.403 - - - - yes
KGT5 + Descriptions 0.364 0.728 0.470 - - - - no
KGT5-context + Descriptions 0.420 0.777 0.417 0.420 0.416 0.420 0.437 no

+ Context hidingf 0.418 0.775 0.449 0.447 0.443 0.440 0.446 no

Table 6.5: Transductive and semi-inductive link prediction results in terms of MRR on the
dataset Wikidata5M-SI. The first group presents results on the atomic, the second on the
mentions and the third on the descriptions dataset. “Long tail” describes queries with a query
entity of degree ≤ 10. Best per TD/SI in bold. Best per group underlined.

ComplEx (Trouillon et al. 2016), DistMult (Yang et al. 2015), and HittER (Chen
et al. 2021), we used the multi-fidelity approach GraSH (Ch. 4) implemented in
LibKGE (Broscheit et al. 2020) with 64 initial trials and trained for up to 64 epochs.
For fold-in, we reused training hyperparameters and trained for a single epoch on
the provided context. For text-based approaches, we used the hyperparameters and
architectures proposed by the authors for the transductive split of Wikidata5M. We
trained on up to 5 A6000-GPUs with 49GB of VRAM.

Main results. Transductive and SI performance in terms of MRR of all models is
presented in Tab. 6.5; Hits@𝑘 in Tab. C.1-C.3 in the appendix. Note that overall
transductive performance was oftentimes below best reported SI performance. This
is due to varying degrees of query entities between both settings. Typically, models
perform better predicting new relations for an entity (e.g., the birthplace) than predict-
ing additional objects for a known relation (e.g., additional awards won by a person);
c.f., Sec. 5.5.3. For a direct comparison between both settings, we additionally report
TD performance on long tail query entities; i.e., query entities as entities with degree
≤ 10 (as in the SI setting).

Atomic (graph-only). TD performance on the long tail was considerably higher
than SI performance. As no information was provided for unseen entities, 0-shot was
not reasonably possible. Without text-based information, context was a necessity.
A simple neighborhood aggregation—entity-relation average (ERAvg)—offered the

118 Chapter 6. Semi-Inductive Link Prediction

Mention Description
Contained 10% 44%
Deducible 7% 10%
Not contained 83% 46%

Table 6.6: Information about a query answer contained in mentions and descriptions. An-
notated for 100 sampled triples from 0-shot valid. For an example, see Tab. 6.4.

best integration of context for neural models. The rule-based approach AnyBurl
performed best in the TD as well as the SI setting.e

Mentions. Integrating mentions did not improve performance on its own, as provided
text information was still limited. However, additionally providing context informa-
tion during inference (KGT5-context) simplified the learning problem and improved
TD performance significantly. But for 0-shot, the limited text information provided
with mentions allowed for reasonable performance. To analyze what information is
conveyed for 0-shot, we annotated 100 valid triples; see Tab. 6.6. In 10% of cases,
the answer was already contained in the mention, and it was deducible in at least
7%. This enabled basic reasoning without any further information. In contrast to
the TD setting, KGT5 outperformed its context extension. KGT5-context was reli-
ant on context which was lacking especially during 0-shot. This showed a trade-off
between best performance in the SI and TD setting among the text-based models.
This trade-off could be mitigated by applying (full and partial) context hiding. With
such adapted training, KGT5-context reached a middle ground improving upon its
SI performance with only minor losses in the TD setting.f However, even with full
context (10-shot), performance was still only on par with KGT5. Therefore, context
information did not bring any further benefits when text was provided.g Note that
context information could also be integrated into SimKGC, and might be more bene-
ficial with its underlying bi-encoder architecture, which allows incorporating context
for query and target entity. However, due to the memory overhead of this approach,
we did not investigate this approach further. For more details on the effects of such
an integration on transductive performance, see Sec. 5.5.3. Overall, mentions were

e Note that due to a limiting implementation, we allowed AnyBurl access to the contextual facts
of other queries during inference. This additional information might slightly inflate the presented SI
performance. Given this limitation, we only evaluated AnyBurl in the 10-shot setting. However, this
model can perform reasoning given any number of shots.

fIn 25%/25%/50% of cases, we hid the full context/sampled between 1-10 neighbors/used the full
context, respectively.

gFor more details on the context impact on SI performance of KGT5-context, one could extend the
ablation of context hiding and train a model per context size. This would give an indication of the upper
SI performance limit of KGT5-context for a specific 𝑘-shot setting.

6.5. Experimental Study 119

Contained Deducible Not contained
0

10

20

30

40

Pe
rc

en
t

Correct prediction
Incorrect prediction

Figure 6.1: Number of correct (rank=1) and incorrect predictions by KGT5+descriptions on
annotated examples per annotation label.

Context selection 1 3 5
Most common 0.217 0.236 0.259
Least common 0.253 0.273 0.290
Random 0.237 0.260 0.281

Table 6.7: Influence of context selection. Semi-inductive test MRR of KGT5-context.

mainly beneficial in the TD setting. The rule-based approach AnyBurl outperformed
all text-based models relying on mentions for SI-LP.

Descriptions. Further, integrating descriptions improved performance for both set-
tings, TD and SI, considerably; see Tab. 6.5. Similar to the mentions-only setting,
KGT5-context performed best in TD and KGT5 in the SI setting. Applying the same
trade-off with context-hiding reached a similar middle ground between TD and SI
performance.

Descriptions were very detailed and partially contained the correct answer as well
as the same information as contained in context triples; see Tab. 6.6. Therefore,
performance did not further improve with context size. In such cases, models mainly
benefit from information extraction capabilities. To judge how much information
extraction helps, we grouped the performance of KGT5+description in the 0-shot
setting on validation data into the groups contained, deducible, and not contained in
the description; see Fig. 6.1. When contained, the correct answer was extracted in
≈ 70% of cases.

Context selection. We selected the most common relations as context triples so far,
as this may be a more realistic setting. To investigate the effect of this selection
approach, we compared the default selection of choosing most common relations to

120 Chapter 6. Semi-Inductive Link Prediction

least common and random. Results for KGT5-context are shown in Tab. 6.7; for
all other models in Tab. C.4 in the appendix. We found that the less common the
relations of the provided context, the better the SI performance. More common
context relations often described high-level concepts, while less common provided
further detail; see the example in Tab. 6.4. While the more common context may be
more readily available, less common context was more helpful in describing a new
entity.

6.6 Conclusion

We proposed the new Wikidata5M-SI large-scale benchmark for semi-inductive link
prediction. The benchmark focuses on unseen entities from the long tail and allows
evaluating models with varying and controlled amounts of factual and textual context
information. In our experimental evaluation, we found that semi-inductive link
prediction performance fell behind transductive performance for long-tail entities
in general, and that detailed textual information was often more valuable than factual
context information. Moreover, current models did not integrate these two types of
information adequately, suggesting a direction for future research.

6.6.1 Limitations

This study was performed on Wikidata5M-SI, i.e., a subset of a single knowledge
graph. Model performance and insights may vary if graph structure and/or availability
and usefulness of mentions and description is different. In particular, the entity
descriptions provided with Wikidata5M-SI partly contained information relevant to
link prediction so that models benefited from information extraction capabilities. Due
to a limiting implementation, we allowed AnyBurl access to the contextual facts of
other queries during inference. This additional information might slightly inflate
the presented SI performance. The effect of this should be analyzed in detail and
implementations made more flexible.

6.6.2 Future Work

Knowledge editing. Connecting emerging entities to the graph extends the overall
knowledge base. With this new knowledge, the learned information about the now
connected entities might need to be updated next to processing the emerging entities
themselves. This update step could be performed by so-called knowledge editing. In
general, knowledge editing addresses the need to change any facts in the graph that
might have changed in the real world and needs to be updated in the knowledge base.

6.6. Conclusion 121

As for semi-inductive link prediction, these changes are, in the best case, incorporated
without model retraining. This task of knowledge editing in language models was
first introduced with the KnowledeEditor presented by De Cao et al. (2021). The
KnowledgeEditor learns to predict needed weight updates for knowledge editing
without affecting the rest of the knowledge. This post-hoc approach could be applied
in language model based link prediction, such as SimKGC and KGT5(-context). In
contrast, Hewitt et al. (2023) propose to directly adapt the language model architecture
to allow for straightforward editing and interpretation. They represent tokens by an
aggregation of so-called “sense vectors”. Editing the sense vectors of a target word
(replacing the association of one word with the association of another) allows for
editing relationships between entities. Such a language model could exchange the
underlying T5 Transformer utilized in KGT5(-context).

Improved integration of textual information. The integration of detailed textual
information considerably improved model performance in the TD, as well as in the SI
setting. However, some models relying on graph structure only were able to perform
close to models focusing on textual information. Hence, an improved integration
of text information into these structure-based models could further improve overall
performance. Here, a promising candidate is the rule-based approach AnyBurl with
the strongest TD and SI performance among graph-only models.

C
ha

pt
er 7

Conclusions

This thesis has systematically explored the integration of neural models with multi-
relational data, focusing on three primary areas: making multi-relational data access-
ible for efficient reasoning and downstream applications, integrating structural and
textual information, and managing the dynamic nature of evolving multi-relational
graphs. A promising candidate for the first area was knowledge graph embeddings.
However, for effective integration, such models must be scalable and reach high
embedding quality; i.e., capture large-scale relational data well.

Hence, we evaluated state-of-the-art parallel training methods for KGE models
on large-scale knowledge graphs, finding that current implementations often degrade
model quality compared to sequential training. Nonetheless, efficient and effective
training was achievable with careful technique selection. Our experiments demon-
strated that a simple random baseline for parallel training, combined with state-of-
the-art parameter management systems, is both efficient and effective. Utilizing this
random baseline, improvements in parameter servers are likely to directly translate
to improvements in parallel KGE training. Considering recent developments in para-
meter servers as well as hardware improvements, such as faster and larger GPUs, KGE
models can be trained efficiently and effectively on a single machine with multiple
GPUs with little additional implementation overhead.

Next to parallel training methods, selected hyperparameter configurations have
a strong impact on the resulting embedding quality. However, an extensive hyper-
parameter search leads to excessive cost for KGEs on large-scale graphs. To mitigate

123

124 Chapter 7. Conclusions

this, we explored various low-fidelity approximation techniques for hyperparameter
evaluation of KGE models. Based on our findings, we proposed a multi-fidelity hy-
perparameter optimizer for KGE models based on successive halving. With such an
efficient HPO approach, strong resulting quality can be achieved with little budget.
This considerably reduces the entry barrier for applying KGEs to large-scale applic-
ations.

Many graphs provide textual information together with their structure. Our second
research area focused on integrating structural and textual information. In this context,
we demonstrated that this integration could be effectively approached by posing link
prediction as a sequence-to-sequence task. This framing allowed to use language
models for link prediction, leading to state-of-the-art performance with up to 98%
fewer parameters. Given relevant textual information, LLMs can effectively support
graph-based tasks. Furthermore, future advancements in LLMs are expected to
enhance their performance on text-heavy graph-based tasks. Our approach focused
on learning graph data directly; however, it remains to be explored to what extent
LLMs should instead learn to access, use, and reason about structured data as needed.
One first step in this direction is offered by the research area of retrieval augmented
generation.

Lastly, we addressed the dynamic nature of evolving multi-relational graphs. To
realistically evaluate link prediction models in dynamic settings, we introduced the
large-scale, semi-inductive link prediction benchmark Wikidata5M-SI. We observed
that semi-inductive link prediction performance generally lags behind transductive
performance for long-tail entities and that detailed textual information is often more
valuable than factual context information. Moreover, current models did not integrate
these two types of information adequately. This finding again suggests that models
applied to structured data should balance learning, retrieving, and reasoning to ef-
fectively handle dynamic graph data and allow for extending, editing, and deleting
existing information.

Future Work

The presented work opens up multiple avenues for future research, which we outline
below.

Our study utilized the task of link prediction to evaluate the ability of models to
capture and use relational information. While link prediction serves as a proxy for
downstream tasks like recommendation systems, some effects explored in this thesis
may not directly translate to the integration of relational knowledge in these applic-

125

ations. For instance, it remains to be evaluated to what extent training techniques
and hyperparameter choices influence downstream performance. On a small scale,
Ruffinelli and Gemulla (2024) already showed that strong link prediction performance
does not always translate directly to strong performance on other graph-based tasks.
A promising starting point for such an investigation on large-scale data is the work
by El-Kishky et al. (2022), where the authors trained large-scale knowledge graph
embedding models and integrated the resulting embeddings as features in various re-
commendation models. Building on their methodology, future research could assess
the impact of different training and tuning techniques in similar pipelines and fur-
ther explore optimal strategies for integrating relational knowledge into downstream
applications.

While embedding approaches such as KGEs can be directly utilized as features
in downstream applications, and relational knowledge can even be integrated into
Transformer-based models for natural language interactions, these approaches capture
the factual knowledge of the knowledge graph in a somewhat imprecise manner. KGs
are constructed with factual correctness in mind, but the methods used to capture this
knowledge might not ensure the same level of accuracy in downstream applications.
Two possible research directions to address this issue are: (i) integrating logical
approaches, and (ii) exploring retrieval-augmented methods.

Regarding (i), rule-based approaches have shown promising results in link pre-
diction tasks and enhanced interpretability. However, they lack integration with
textual information and may be challenging to incorporate into certain downstream
applications. However, combining neural, text-based and rule-based methods could
potentially improve both quality and factual correctness.

Concerning (ii), while language models can learn and reason about structured
data, it may be beneficial to store knowledge externally and focus on interaction
learning. By storing factual knowledge outside the model parameters and retrieving
it when necessary, we can ensure that the retrieved knowledge aligns with the factual
accuracy provided by the KG. This approach also facilitates the handling of frequently
updated knowledge, thereby avoiding the need for expensive retraining. Further
exploring memory modules, as discussed by Févry et al. (2020) and Li et al. (2022a),
could enable separate knowledge storage, allowing for extensions, deletions, and
updates. Additionally, reinforcement learning could aid Transformers in learning
when and how to retrieve information from underlying graphs or memory, potentially
performing retrieval iteratively.

A
pp

en
di

x A
Additional Material to Chapter 4

Variant→ Hits@1 Hits@10

Dataset Model ↓ Epoch Graph Comb. Epoch Graph Comb.

Sm
al

l Yago
3-10

ComplEx 0.460 0.375 0.455 0.672 0.634 0.660
RotatE 0.337 0.337 0.342 0.619 0.619 0.607

(𝐸 = 400) TransE 0.406 0.311 0.406 0.661 0.628 0.661

M
ed

iu
m Wiki-

data5M
ComplEx 0.247 0.247 0.247 0.390 0.390 0.390
RotatE 0.187 0.169 0.187 0.331 0.326 0.331

(𝐸 = 64) TransE 0.210 0.210 0.213 0.358 0.358 0.363

La
rg

e Free-
base

ComplEx 0.486 0.511 0.511 0.714 0.726 0.726
RotatE 0.522 0.578 0.578 0.625 0.669 0.669

(𝐸 = 10) TransE 0.078 0.520 0.520 0.518 0.614 0.614

Table A.1: Model quality in terms of Hits@1 and Hits@10. Best reduction variant in bold.
GraSH with default settings (𝐵 = 3, 𝑛 = 64, 𝜂 = 4). Model dim = 128.

127

A
pp

en
di

x B
Additional Material to Chapter 5

B.1 Building a Vocabulary over Features

To enable KGT5(-context) to work with feature input, rather than raw text, we learn
a vocabulary over the provided features. Here, we evaluate two approaches; (i) a
simplified version of product quantization, and (ii) finite scalar quantization.

Product quantization. (Jegou et al. 2010) is typically used as an efficient index for
MIPS; e.g., in Faiss (Douze et al. 2024). Here, the feature vector is split into 𝑛 chunks.
For each chunk over all inputs (entity + relation), we train kmeans with 𝑘 centroids.
Each centroid is treated as a token of our vocabulary. The resulting vocabulary size
is 𝑛 × 𝑘 . Each entity is represented by 𝑛 tokens. However, it is not guaranteed that
resulting entity representations are unique. With a resulting vocabulary size of 32K
tokens only 3/4 of entities have a unique representation; see Tab. B.1. Therefore,
for a fair evaluation, we treat all entities with the same representations as ties before
calculating MRR.

Finite scalar quantization. Recent work shows that for image, video, and sound
input data, vector quantization (VQ) (Gray 1984) in combination with variational
autoencoders (VAE) (Van Den Oord et al. 2017) allows for strong autoregressive
solutions (Esser et al. 2021; Villegas et al. 2022). In this setting, VQ-VAE is utilized
to learn a vocabulary over the input data. However, the underlying codebooks for
VQ-VAE are hard to train and often underutilized. A drop-in replacement for VQ
is finite scalar quantization (FSQ) (Mentzer et al. 2023). Here, each scalar in the
input feature vector is independently quantized. Using an FSQ-VAE, we reach a high

129

130 Appendix B. Additional Material to Chapter 5

Setting Vocab. size
Unique
entity

representations

Default 32 128 4 594 485
Product Quantization (𝑛 = 8, 𝑘 = 4000) 32 000 3 432 648
FSQ-VAE 16 000 4 458 108

Table B.1: Unique entity representations given the trained vocabulary over MPNet feature
input embeddings on Wikidata5M.

percentage of independent coded entities with smaller vocabulary sizes compared to
product quantization; see Tab. B.1.

A
pp

en
di

x C
Additional Material to Chapter 6

C.1 Integrating Text into KGE Models

To integrate text into traditional KGE models, we follow the baseline models of the
WikiKG90M link prediction challenge (Hu et al. 2021). We embed mentions com-
bined with descriptions using MPNet (Song et al. 2020), concatenate the resulting
descriptions embedding with the entity embedding, and project it with a linear layer
for the final representation of the entity. In combination with oDistMult-ERAvg (Al-
booyeh et al. 2020), we apply the aggregation of neighboring entities and relations on
the entity embedding part only. The resulting aggregation is then concatenated with
its description and finally projected.

This approach is closely related to BLP (Daza et al. 2021). The main differences
to BLP are:

1) Hu et al. (2021) use MPNet, BLP uses BERT.

2) In combination with DistMult-ERAvg, we concatenate a learnable “structural
embedding” to the CLS embedding of the language model, whereas BLP does
not.

131

132 Appendix C. Additional Material to Chapter 6

Semi-inductive (num. shots)

Model Trans. 0 1 3 5 10

Complex + Bias + Fold in 0.260 0.058 0.097 0.118 0.124 0.132
DistMult + ERAvg 0.237 - 0.115 0.151 0.185 0.209
HittER 0.234 0.005 0.076 0.115 0.132 0.153

DistMult + ERAvg + Mentions 0.239 - 0.106 0.142 0.153 0.167
SimKGC (mentions only) 0.182 0.187 - - - -
KGT5 0.249 0.263 - - - -
KGT5-context 0.347 0.184 0.177 0.195 0.218 0.263

+ Context hiding 0.344 0.241 0.215 0.214 0.227 0.268

DistMult + ERAvg + Descriptions 0.252 - 0.152 0.153 0.153 0.161
SimKGC + Descriptions 0.311 0.349 - - - -
KGT5 + Descriptions 0.332 0.430 - - - -
KGT5-context + Descriptions 0.400 0.379 0.382 0.373 0.378 0.393

+ Context hiding 0.399 0.409 0.407 0.400 0.397 0.401

Table C.1: Transductive and semi-inductive link prediction results in terms of H@1 on the
dataset Wikidata5M-SI.

Semi-inductive (num. shots)

Model Trans. 0 1 3 5 10

ComplEx + Bias + Fold in 0.337 0.165 0.180 0.202 0.219 0.242
DistMult + ERAvg 0.328 - 0.190 0.292 0.352 0.401
HittER 0.309 0.013 0.109 0.158 0.188 0.242

DistMult + ERAvg + Mentions 0.332 - 0.239 0.289 0.314 0.340
SimKGC (mentions only) 0.223 0.227 - - - -
KGT5 0.296 0.332 - - - -
KGT5-context 0.390 0.236 0.234 0.257 0.278 0.335

+ Context hiding 0.389 0.300 0.283 0.278 0.292 0.342

DistMult + ERAvg + Descriptions 0.344 - 0.368 0.373 0.378 0.380
SimKGC 0.367 0.421 - - - -
KGT5 + Descriptions 0.385 0.490 - - - -
KGT5-context + Descriptions 0.432 0.441 0.443 0.443 0.447 0.463

+ Context hiding 0.433 0.472 0.469 0.469 0.467 0.476

Table C.2: Transductive and semi-inductive link prediction results in terms of H@3 on the
dataset Wikidata5M-SI.

C.1. Integrating Text into KGE Models 133

Semi-inductive (num. shots)

Model Trans. 0 1 3 5 10

ComplEx + Bias + Fold in 0.387 0.231 0.245 0.282 0.309 0.336
DistMult + ERAvg 0.389 - 0.270 0.409 0.493 0.564
HittER 0.376 0.050 0.157 0.226 0.270 0.359

DistMult + ERAvg + Mentions 0.411 - 0.320 0.392 0.440 0.478
SimKGC (mentions only) 0.266 0.283 - - - -
KGT5 0.344 0.398 - - - -
KGT5-context 0.423 0.293 0.295 0.310 0.336 0.400

+ Context hiding 0.421 0.367 0.354 0.343 0.354 0.408

DistMult + ERAvg + Descriptions 0.425 - 0.465 0.472 0.484 0.491
SimKGC 0.432 0.504 - - - -
KGT5 + Descriptions 0.416 0.544 - - - -
KGT5-context + Descriptions 0.455 0.484 0.489 0.489 0.495 0.516

+ Context hiding 0.454 0.523 0.521 0.517 0.517 0.522

Table C.3: Transductive and semi-inductive link prediction results in terms of H@10 on the
dataset Wikidata5M-SI.

Model Context selection 1 3 5

ComplEx + fold-in
Most common 0.151 0.161 0.168
Least common 0.166 0.185 0.195
Random 0.164 0.187 0.196

DistMult + ERAvg
Most common 0.171 0.246 0.295
Least common 0.217 0.299 0.323
Random 0.215 0.303 0.318

oDistMult + ERAvg + Mentions
Most common 0.187 0.235 0.258
Least common 0.237 0.274 0.279
Random 0.232 0.265 0.272

HittER
Most common 0.105 0.153 0.179
Least common 0.151 0.195 0.216
Random 0.136 0.190 0.206

KGT5-context
Most common 0.217 0.236 0.259
Least common 0.253 0.273 0.290
Random 0.237 0.260 0.281

KGT5-context + Desc.
Most common 0.420 0.416 0.420
Least common 0.423 0.424 0.430
Random 0.422 0.430 0.430

Table C.4: Influence of context selection. Semi-inductive test MRR. Best per model in bold.

Bibliography

Ralph Abboud, Ismail Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. 2020.
Boxe: A Box Embedding Model for Knowledge Base Completion. In Advances in
Neural Information Processing Systems, Vol. 33. 9649–9661.

Firas Abuzaid, Geet Sethi, Peter Bailis, and Matei Zaharia. 2019. To Index or Not
to Index: Optimizing Exact Maximum Inner Product Search. In 2019 IEEE 35th
International Conference on Data Engineering. IEEE, 1250–1261.

Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper, and
Theodore Willke. 2023. Similarity Search in the Blink of an Eye with Compressed
Indices. Proceedings of the VLDB Endowment 16, 11 (2023), 3433–3446.

Marjan Albooyeh, Rishab Goel, and Seyed Mehran Kazemi. 2020. Out-of-Sample
Representation Learning for Knowledge Graphs. In Findings of the Association for
Computational Linguistics: EMNLP 2020. 2657–2666.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Mikhail Galkin,
Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. 2021a. Bring-
ing Light into the Dark: A Large-Scale Evaluation of Knowledge Graph Embedding
Models under a Unified Framework. IEEE Transactions on Pattern Analysis and
Machine Intelligence 44, 12 (2021), 8825–8845.

Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Laurent Vermue, Sahand Sharifz-
adeh, Volker Tresp, and Jens Lehmann. 2021b. PyKEEN 1.0: A Python Library
for Training and Evaluating Knowledge Graph Embeddings. Journal of Machine
Learning Research 22, 82 (2021), 1–6.

Stephan Baier, Yunpu Ma, and Volker Tresp. 2017. Improving Visual Relation-
ship Detection Using Semantic Modeling of Scene Descriptions. In International
Semantic Web Conference. Springer, 53–68.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2018. Accelerating
Neural Architecture Search Using Performance Prediction. In The Sixth Interna-
tional Conference on Learning Representations (Workshop).

Ivana Balažević, Carl Allen, and Timothy M Hospedales. 2019. Tucker: Tensor
Factorization for Knowledge Graph Completion. In Proceedings of the 2019 Con-

135

136 Bibliography

ference on Empirical Methods in Natural Language Processing. 5185–5194.
James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms

for Hyper-Parameter Optimization. In Advances in Neural Information Processing
Systems, Vol. 24.

Patrick Betz, Luis Galarraga, Simon Ott, Christian Meilicke, Fabian M Suchanek,
and Heiner Stuckenschmidt. 2024. PyClause-simple and Efficient Rule Handling
for Knowledge Graphs. In Proceedings of the 33rd International Joint Conference
on Artificial Intelligence: Demo Track.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008.
Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data. 1247–1250.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. 2014. A Semantic
Matching Energy Function for Learning with Multi-Relational Data: Application
to Word-Sense Disambiguation. Machine Learning 94 (2014), 233–259.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. 2013. Translating Embeddings for Modeling Multi-Relational Data.
In Advances in Neural Information Processing Systems, Vol. 26. 2787–2795.

Samuel Broscheit, Daniel Ruffinelli, Adrian Kochsiek, Patrick Betz, and Rainer
Gemulla. 2020. LibKGE - A Knowledge Graph Embedding Library for Reprodu-
cible Research. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. 165–174.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. 2021. Autore-
gressive Entity Retrieval. In The Ninth International Conference on Learning Rep-
resentations.

Qiushi Cao, Cecilia Zanni-Merk, Ahmed Samet, Christoph Reich, François De Ber-
trand De Beuvron, Arnold Beckmann, and Cinzia Giannetti. 2022. KSPMI: A
Knowledge-Based System for Predictive Maintenance in Industry 4.0. Robotics
and Computer-Integrated Manufacturing 74 (2022), 102281.

Alberto Cattaneo, Daniel Justus, Harry Mellor, Douglas Orr, Jerome Maloberti,
Zhenying Liu, Thorin Farnsworth, Andrew Fitzgibbon, Blazej Banaszewski, and
Carlo Luschi. 2022. BESS: Balanced Entity Sampling and Sharing for Large-
Scale Knowledge Graph Completion. arXiv preprint arXiv:2211.12281 (2022).
arXiv:2211.12281

Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu. 2021. PairRE: Knowledge
Graph Embeddings via Paired Relation Vectors. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International

Bibliography 137

Joint Conference on Natural Language Processing (Volume 1: Long Papers),
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for
Computational Linguistics, Online, 4360–4369.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng
Ji. 2021. HittER: Hierarchical Transformers for Knowledge Graph Embeddings. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. 10395–10407.

Alla Chepurova, Aydar Bulatov, Yurii Kuratov, and Mikhail Burtsev. 2023. Better
Together: Enhancing Generative Knowledge Graph Completion with Language
Models and Neighborhood Information. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023. 5306–5316.

Louis Clouatre, Philippe Trempe, Amal Zouaq, and Sarath Chandar. 2021. MLMLM:
Link Prediction with Mean Likelihood Masked Language Model. In Findings of
the Association for Computational Linguistics: ACL-IJCNLP 2021. 4321–4331.

Luca Costabello, Sumit Pai, Chan Le Van, Rory McGrath, Nicholas McCarthy, and
Pedro Tabacof. 2019. AmpliGraph: A Library for Representation Learning on
Knowledge Graphs.

Gabor Csardi, Tamas Nepusz, et al. 2006. The Igraph Software Package for Complex
Network Research. InterJournal, complex systems 1695, 5 (2006), 1–9.

Daniel Daza, Michael Cochez, and Paul Groth. 2021. Inductive Entity Representations
from Text via Link Prediction. In Proceedings of the Web Conference 2021. 798–
808.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Editing Factual Knowledge in
Language Models. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics,
Online and Punta Cana, Dominican Republic, 6491–6506.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.
Convolutional 2d Knowledge Graph Embeddings. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). 4171–4186.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.

138 Bibliography

The Faiss Library. arXiv preprint arXiv:2401.08281 (2024). arXiv:2401.08281
John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization. Journal of machine learning
research 12, 7 (2011).

Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim,
Ramy Eskander, Yury Malkov, Frank Portman, Sofía Samaniego, Ying Xiao,
et al. 2022. Twhin: Embedding the Twitter Heterogeneous Information Network
for Personalized Recommendation. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 2842–2850.

Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021. Taming Transformers for
High-Resolution Image Synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 12873–12883.

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. In International Conference on Machine
Learning. PMLR, 1437–1446.

Thibault Févry, Livio Baldini Soares, Nicholas Fitzgerald, Eunsol Choi, and Tom
Kwiatkowski. 2020. Entities as Experts: Sparse Memory Access with Entity
Supervision. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing. 4937–4951.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. 2013.
AMIE: Association Rule Mining under Incomplete Evidence in Ontological Know-
ledge Bases. In Proceedings of the 22nd International Conference on World Wide
Web. 413–422.

Mikhail Galkin, Max Berrendorf, and Charles Tapley Hoyt. 2022. An Open
Challenge for Inductive Link Prediction on Knowledge Graphs. arXiv preprint
arXiv:2203.01520 (2022). arXiv:2203.01520

Mikhail Galkin, Etienne Denis, Jiapeng Wu, and William L Hamilton. 2021. Node-
Piece: Compositional and Parameter-Efficient Representations of Large Knowledge
Graphs. In The Ninth International Conference on Learning Representations.

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. 2011. Large-Scale
Matrix Factorization with Distributed Stochastic Gradient Descent. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 69–77.

Gene Ontology Consortium. 2004. The Gene Ontology (GO) Database and Inform-
atics Resource. Nucleic acids research 32, suppl_1 (2004), D258–D261.

Ronald L Graham. 1966. Bounds for Certain Multiprocessing Anomalies. Bell system
technical journal 45, 9 (1966), 1563–1581.

Bibliography 139

Alex Graves. 2012. Sequence Transduction with Recurrent Neural Networks. arXiv
preprint arXiv:1211.3711 (2012). arXiv:1211.3711

Robert Gray. 1984. Vector Quantization. IEEE Assp Magazine 1, 2 (1984), 4–29.
Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. 2017.

Knowledge Transfer for Out-of-Knowledge-Base Entities: A Graph Neural Net-
work Approach. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence. 1802–1808.

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. 2018.
Embedding Logical Queries on Knowledge Graphs. In Advances in Neural Inform-
ation Processing Systems, Vol. 31. 2030–2041.

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems,
Vol. 31. Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

Chi Han, Qizheng He, Charles Yu, Xinya Du, Hanghang Tong, and Heng Ji. 2023. Lo-
gical Entity Representation in Knowledge-Graphs for Differentiable Rule Learning.
In The Eleventh International Conference on Learning Representations.

Jiawei Han. 2009. Mining Heterogeneous Information Networks by Exploring the
Power of Links. In 12th International Conference on Discovery Science. Springer,
13–30.

Kelvin Han and Claire Gardent. 2023. Multilingual Generation and Answering of
Questions from Texts and Knowledge Graphs. In Findings of the Association for
Computational Linguistics: EMNLP 2023. 13740–13756.

Xu Han, Shulin Cao, Lv Xin, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi
Li. 2018. OpenKE: An Open Toolkit for Knowledge Embedding. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. 139–144.

John Hewitt, John Thickstun, Christopher Manning, and Percy Liang. 2023. Backpack
Language Models. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguistics,
Toronto, Canada, 9103–9125.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,
Sebastian Neumaier, et al. 2021. Knowledge Graphs. ACM Computing Surveys
(Csur) 54, 4 (2021), 1–37.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The Curi-
ous Case of Neural Text Degeneration. In International Conference on Learning

140 Bibliography

Representations.
Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure

Leskovec. 2021. OGB-LSC: A Large-Scale Challenge for Machine Learning on
Graphs. In Advances in Neural Information Processing Systems, Track on Datasets
and Benchmarks, Vol. 35.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. 2019. Knowledge Graph
Embedding Based Question Answering. In Proceedings of the Twelfth ACM Inter-
national Conference on Web Search and Data Mining. Association for Computing
Machinery, New York, NY, USA, 105–113.

Andreea Iana, Mehwish Alam, and Heiko Paulheim. 2022. A Survey on Knowledge-
Aware News Recommender Systems. Semantic Web Journal (2022).

Dora Jambor, Komal Teru, Joelle Pineau, and William L Hamilton. 2021. Exploring
the Limits of Few-Shot Link Prediction in Knowledge Graphs. In Proceedings of
the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume. 2816–2822.

Kevin Jamieson and Ameet Talwalkar. 2016. Non-Stochastic Best Arm Identifica-
tion and Hyperparameter Optimization. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics. PMLR, 240–248.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product Quantization
for Nearest Neighbor Search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications.
IEEE Transactions on Neural Networks and Learning Systems (2021).

Fan Jiang, Tom Drummond, and Trevor Cohn. 2023. Don’t Mess with Mister-in-
between: Improved Negative Search for Knowledge Graph Completion. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics. 1810–1824.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-Scale Similarity Search
with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

Minki Kang, Jinheon Baek, and Sung Ju Hwang. 2022. KALA: Knowledge-
augmented Language Model Adaptation. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 5144–5167.

George Karypis and Vipin Kumar. 1998. Multilevel k-Way Partitioning Scheme for
Irregular Graphs. Journal of Parallel and Distributed computing 48, 1 (1998),
96–129.

Bibliography 141

Seyed Mehran Kazemi and David Poole. 2018. SimplE Embedding for Link Prediction
in Knowledge Graphs. In Advances in Neural Information Processing Systems,
Vol. 32. 4289–4300.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiz-
ation. In The Second International Conference on Learning Representations.

Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph
Convolutional Networks. In The Third International Conference on Learning Rep-
resentations.

Thomas P Kirkman. 1847. On a Problem in Combinations. Cambridge and Dublin
Mathematical Journal 2 (1847), 191–204.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The Efficient
Transformer. In The Eighth International Conference on Learning Representations.

Adrian Kochsiek and Rainer Gemulla. 2021. Parallel Training of Knowledge Graph
Embedding Models: A Comparison of Techniques. Proceedings of the VLDB
Endowment 15, 3 (2021), 633–645.

Adrian Kochsiek and Rainer Gemulla. 2023. A Benchmark for Semi-Inductive Link
Prediction in Knowledge Graphs. In Findings of the Association for Computational
Linguistics: EMNLP 2023. 10634–10643.

Adrian Kochsiek, Fritz Niesel, and Rainer Gemulla. 2022. Start Small, Think Big:
On Hyperparameter Optimization for Large-Scale Knowledge Graph Embeddings.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 138–154.

Adrian Kochsiek, Apoorv Saxena, Inderjeet Nair, and Rainer Gemulla. 2023. Friendly
Neighbors: Contextualized Sequence-to-Sequence Link Prediction. In Proceedings
of the 8th Workshop on Representation Learning for NLP.

Bhushan Kotnis and Vivi Nastase. 2017. Analysis of the Impact of Negative Sampling
on Link Prediction in Knowledge Graphs. arXiv preprint arXiv:1708.06816 (2017).
arXiv:1708.06816

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical
Tensor Decomposition for Knowledge Base Completion. In Proceedings of 35th
International Conference on Machine Learning. PMLR, 2863–2872.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-Biggraph: A Large Scale Graph
Embedding System. Proceedings of Machine Learning and Systems 1 (2019),
120–131.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al.

142 Bibliography

2020. Retrieval-Augmented Generation for Knowledge-Intensive Nlp Tasks. In
Advances in Neural Information Processing Systems, Vol. 33. 9459–9474.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. 2017. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–
6816.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-
Tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2020. A System for
Massively Parallel Hyperparameter Tuning. Proceedings of Machine Learning and
Systems 2 (2020), 230–246.

Shiyang Li, Yifan Gao, Haoming Jiang, Qingyu Yin, Zheng Li, Xifeng Yan, Chao
Zhang, and Bing Yin. 2023. Graph Reasoning for Question Answering with Triplet
Retrieval. In Findings of the Association for Computational Linguistics: ACL 2023.
3366–3375.

Shaobo Li, Xiaoguang Li, Lifeng Shang, Cheng-Jie Sun, Bingquan Liu, Zhenzhou Ji,
Xin Jiang, and Qun Liu. 2022b. Pre-Training Language Models with Deterministic
Factual Knowledge. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing. 11118–11131.

Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. 2021. Mfes-Hb:
Efficient Hyperband with Multi-Fidelity Quality Measurements. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35. 8491–8500.

Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. 2022a. Decoupled Context Processing
for Context Augmented Language Modeling. In Advances in Neural Information
Processing Systems, Vol. 35. 21698–21710.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh.
2019. Barack’s Wife Hillary: Using Knowledge Graphs for Fact-Aware Language
Modeling. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, Anna Korhonen, David Traum, and Lluís Màrquez (Eds.).
Association for Computational Linguistics, Florence, Italy, 5962–5971.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. 2015. Yago3: A
Knowledge Base from Multilingual Wikipedias. In Conference on Innovative Data
Systems Research.

Christian Meilicke, Melisachew Wudage Chekol, Patrick Betz, Manuel Fink, and
Heiner Stuckeschmidt. 2024. Anytime Bottom-up Rule Learning for Large-Scale
Knowledge Graph Completion. The VLDB Journal 33, 1 (2024), 131–161.

Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuck-
enschmidt. 2019. Anytime Bottom-up Rule Learning for Knowledge Graph Com-

Bibliography 143

pletion.. In IJCAI. 3137–3143.
Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. 2023.

Finite Scalar Quantization: VQ-VAE Made Simple. In The Twelfth International
Conference on Learning Representations.

Sameh K Mohamed, Aayah Nounu, and Vít Nováček. 2019. Drug Target Discovery
Using Knowledge Graph Embeddings. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. 11–18.

Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Marius: Learning Massive Graph Embeddings on a Single
Machine. In 15th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 21). 533–549.

Sebastian Monka, Lavdim Halilaj, and Achim Rettinger. 2022. A Survey on Visual
Transfer Learning Using Knowledge Graphs. Semantic Web Journal 13, 3 (2022),
477–510.

Sebastian Monka, Lavdim Halilaj, Stefan Schmid, and Achim Rettinger. 2021. Learn-
ing Visual Models Using a Knowledge Graph as a Trainer. In International Semantic
Web Conference. Springer, 357–373.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023. Learning to Compress Prompts
with Gist Tokens. In Advances in Neural Information Processing Systems, Vol. 37.

Kenton Murray and David Chiang. 2018. Correcting Length Bias in Neural Machine
Translation. In Proceedings of the Third Conference on Machine Translation:
Research Papers. Association for Computational Linguistics, Brussels, Belgium,
212–223.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015. A
Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 104,
1 (2015), 11–33.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data. In Proceedings of the
28th International Conference on Machine Learning. PMLR, 809–816.

Fabio Petroni, Tim Rocktäschel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
Alexander H. Miller, and Sebastian Riedel. 2019. Language Models as Knowledge
Bases?. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67.

144 Bibliography

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michihiro Yasunaga, Haitian
Sun, Dale Schuurmans, Jure Leskovec, and Denny Zhou. 2021. LEGO: Latent
Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge
Graphs. In Proceedings of the 38th International Conference on Machine Learning.
PMLR, 8959–8970.

Alexander Renz-Wieland, Rainer Gemulla, Steffen Zeuch, and V. Markl. 2020. Dy-
namic Parameter Allocation in Parameter Servers. Proceedings of the VLDB
Endowment 13, 11 (2020), 1877–1890.

Alexander Renz-Wieland, Andreas Kieslinger, Robert Gericke, Rainer Gemulla, Zoi
Kaoudi, and Volker Markl. 2023. Good Intentions: Adaptive Parameter Manage-
ment via Intent Signaling. In Proceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management. 2156–2166.

Peter N Robinson, Sebastian Köhler, Sebastian Bauer, Dominik Seelow, Denise
Horn, and Stefan Mundlos. 2008. The Human Phenotype Ontology: A Tool for
Annotating and Analyzing Human Hereditary Disease. The American Journal of
Human Genetics 83, 5 (2008), 610–615.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge Graph Embedding for Link Prediction: A Comparative
Analysis. ACM Transactions on Knowledge Discovery from Data 15, 2 (2021), 1–
49.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. 2020. You {CAN} Teach
an Old Dog New Tricks! On Training Knowledge Graph Embeddings. In The
Eighth International Conference on Learning Representations.

Daniel Ruffinelli and Rainer Gemulla. 2024. Beyond Link Prediction: On Pre-
Training Knowledge Graph Embeddings. In Proceedings of the 9th Workshop on
Representation Learning for NLP.

V Sanh. 2019. DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper
and Lighter.. In Workshop on Energy Efficient Machine Learning and Cognitive
Computing @ NeurIPS, Vol. 5.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. 2022. Sequence-to-Sequence
Knowledge Graph Completion and Question Answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2814–2828.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. 2020. Improving Multi-Hop
Question Answering over Knowledge Graphs Using Knowledge Base Embeddings.
In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 4498–4507.

Bibliography 145

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling Relational Data with Graph Convolutional
Networks. In Extended Semantic Web Conference. Springer, 593–607.

Stephen B Seidman. 1983. Network Structure and Minimum Degree. Social networks
5, 3 (1983), 269–287.

Haseeb Shah, Johannes Villmow, Adrian Ulges, Ulrich Schwanecke, and Faisal
Shafait. 2019. An Open-World Extension to Knowledge Graph Completion Mod-
els. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
3044–3051.

Baoxu Shi and Tim Weninger. 2018. Open-World Knowledge Graph Completion. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32. 1957–1964.

Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A Survey of
Heterogeneous Information Network Analysis. IEEE Transactions on Knowledge
and Data Engineering 29, 1 (2016), 17–37.

Kensen Shi, David Bieber, and Charles Sutton. 2020. Incremental Sampling without
Replacement for Sequence Models. In International Conference on Machine Learn-
ing. PMLR, 8785–8795.

Harkanwar Singh, Soumen Chakrabarti, PRACHI JAIN, Sharod Roy Choudhury,
et al. 2021. Multilingual Knowledge Graph Completion with Joint Relation and
Entity Alignment. In 3rd Conference on Automated Knowledge Base Construction.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnet: Masked
and Permuted Pre-Training for Language Understanding. In Advances in Neural
Information Processing Systems, Vol. 33. 16857–16867.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A Core
of Semantic Knowledge. In Proceedings of the 16th International Conference on
World Wide Web. 697–706.

Haitian Sun, Andrew O. Arnold, Tania Bedrax-Weiss, Fernando Pereira, and Wil-
liam W. Cohen. 2021. Faithful Embeddings for Knowledge Base Queries. In
Advances in Neural Information Processing Systems, Vol. 33.

Kai Sun, Yifan Ethan Xu, Hanwen Zha, Yue Liu, and Xin Luna Dong. 2023. Head-
to-Tail: How Knowledgeable Are Large Language Models (LLM)? AKA Will
LLMs Replace Knowledge Graphs? arXiv preprint arXiv:2308.10168 (2023).
arXiv:2308.10168

Yizhou Sun and Jiawei Han. 2013. Mining Heterogeneous Information Networks: A
Structural Analysis Approach. ACM SIGKDD Explorations 14, 2 (2013), 20–28.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Know-
ledge Graph Embedding by Relational Rotation in Complex Space. In The Seventh

146 Bibliography

International Conference on Learning Representations.
Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming Yang.

2020. A Re-evaluation of Knowledge Graph Completion Methods. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics.
5516–5522.

Komal Teru, Etienne Denis, and Will Hamilton. 2020. Inductive Relation Prediction
by Subgraph Reasoning. In International Conference on Machine Learning. PMLR,
9448–9457.

Kristina Toutanova and Danqi Chen. 2015. Observed versus Latent Features for
Knowledge Base and Text Inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and Their Compositionality. 57–66.

Hung Nghiep Tran and Atsuhiro Takasu. 2022. MEIM: Multi-partition Embedding
Interaction beyond Block Term Format for Efficient and Expressive Link Prediction.
In Proceedings of the 31st International Joint Conference on Artificial Intelligence.
2262–2269.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In Proceedings
of the 33rd International Conference on Machine Learning. PMLR, 2071–2080.

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. 2019. Autone: Hyperpara-
meter Optimization for Massive Network Embedding. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
216–225.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural Discrete Representation
Learning. In Advances in Neural Information Processing Systems, Vol. 30. 6306–
6315.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In
Advances in Neural Information Processing Systems, Vol. 31.

Blerta Veseli, Simon Razniewski, Jan-Christoph Kalo, and Gerhard Weikum. 2023.
Evaluating the Knowledge Base Completion Potential of GPT. Findings of the
Association for Computational Linguistics: EMNLP 2023 (2023), 6432–6443.

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo,
Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru
Erhan. 2022. Phenaki: Variable Length Video Generation from Open Domain
Textual Descriptions. In The Tenth International Conference on Learning Repres-
entations.

Bibliography 147

Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative
Knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, and Shivaram Venkatara-
man. 2023. MariusGNN: Resource-efficient out-of-Core Training of Graph Neural
Networks. In Proceedings of the Eighteenth European Conference on Computer
Systems. 144–161.

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. 2021c.
Structure-Augmented Text Representation Learning for Efficient Knowledge Graph
Completion. In Proceedings of the Web Conference 2021. 1737–1748.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming Liu. 2022. SimKGC: Simple
Contrastive Knowledge Graph Completion with Pre-Trained Language Models.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 4281–4294.

Peifeng Wang, Jialong Han, Chenliang Li, and Rong Pan. 2019. Logic Attention
Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 7152–7159.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge Graph
Embedding: A Survey of Approaches and Applications. IEEE Transactions on
Knowledge and Data Engineering 29, 12 (2017), 2724–2743.

Ruochen Wang, Xiangning Chen, Minhao Cheng, Xiaocheng Tang, and Cho-Jui
Hsieh. 2021a. RANK-NOSH: Efficient Predictor-Based Architecture Search via
Non-Uniform Successive Halving. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 10377–10386.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan Zhang, Zhiyuan Liu, Juanzi
Li, and Jian Tang. 2021b. KEPLER: A Unified Model for Knowledge Embedding
and Pre-Trained Language Representation. Transactions of the Association for
Computational Linguistics 9 (2021), 176–194.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason
Weston. 2019. Neural Text Generation with Unlikelihood Training. In The Eighth
International Conference on Learning Representations.

Ronald J. Williams and David Zipser. 1989. A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks. Neural Computation 1, 2 (1989),
270–280.

Yuxiang Wu, Yu Zhao, Baotian Hu, Pasquale Minervini, Pontus Stenetorp, and
Sebastian Riedel. 2022. An Efficient Memory-Augmented Transformer for
Knowledge-Intensive NLP Tasks. In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing. 5184–5196.

148 Bibliography

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. 2016. Repres-
entation Learning of Knowledge Graphs with Entity Descriptions. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 30. 2659–2665.

Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. 2020.
Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language
Model. In The Eighth International Conference on Learning Representations.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya
Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A Massively Multilingual
Pre-Trained Text-to-Text Transformer. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 483–498.

Muhammad Yahya, John G Breslin, and Muhammad Intizar Ali. 2021. Semantic Web
and Knowledge Graphs for Industry 4.0. Applied Sciences 11, 11 (2021), 5110.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang,
Jun Yin, Peiyan Zhang, Weihao Han, Hao Sun, et al. 2023. A Comprehensive
Study on Text-Attributed Graphs: Benchmarking and Rethinking. In Advances in
Neural Information Processing Systems, Vol. 36. 17238–17264.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015.
Embedding Entities and Relations for Learning and Inference in Knowledge Bases.
In The Second International Conference on Learning Representations.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018. Breaking the Beam Search Curse:
A Study of (Re-)Scoring Methods and Stopping Criteria for Neural Machine Trans-
lation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-BERT: BERT for Knowledge
Graph Completion. arXiv preprint arXiv:1909.03193 (2019). arXiv:1909.03193

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. 2020. Big Bird: Transformers for Longer Sequences. Advances in Neural
Information Processing Systems 33 (2020), 17283–17297.

Denghui Zhang, Manling Li, Yantao Jia, Yuanzhuo Wang, and Xueqi Cheng. 2017.
Efficient Parallel Translating Embedding for Knowledge Graphs. In Proceedings
of the International Conference on Web Intelligence. 460–468.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. Quaternion Knowledge Graph
Embeddings. In NeurIPS.

Yongqi Zhang, Zhanke Zhou, Quanming Yao, and Yong Li. 2022. Efficient Hyper-
parameter Search for Knowledge Graph Embedding. In Proceedings of the 60th

Bibliography 149

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2715–2735.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less
Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. 2023. PyTorch FSDP:
Experiences on Scaling Fully Sharded Data Parallel. Proceedings of the VLDB
Endowment 16, 12 (2023), 3848–3860.

Chenguang Zheng, Guanxian Jiang, Xiao Yan, Peiqi Yin, Qihui Zhou, and James
Cheng. 2024. GE2: A General and Efficient Knowledge Graph Embedding Learn-
ing System. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.

Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. 2020. Dgl-Ke: Training Knowledge Graph
Embeddings at Scale. In Proceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval. 739–748.

Zhaocheng Zhu, Shizhen Xu, Meng Qu, and Jian Tang. 2019. GraphVite: A High-
Performance CPU-GPU Hybrid System for Node Embedding. In The World Wide
Web Conference. ACM, 2494–2504.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. 2021. Neural
Bellman-Ford Networks: A General Graph Neural Network Framework for Link
Prediction. In Advances in Neural Information Processing Systems, Vol. 34. 29476–
29490.

Daniel Zwillinger and Stephen Kokoska. 1999. CRC Standard Probability and Stat-
istics Tables and Formulae. Crc Press.

List of Figures

2.1 An example knowledge graph describing facts about movies. 8
2.2 Example of a transductive, semi-inductive, and inductive query and ex-

pected answer on a given graph. 10
2.3 Inference of local models visualized for the transductive example query

of Fig. 2.2. 12
2.4 NBFNet. 16
2.5 Rule mining for link prediction. 17

3.1 General architecture for parallel KGE training. 30
3.2 Example for processing a single triple of the example KG presented in

Fig. 2.2. 31
3.3 Illustration of partitioning approaches for𝑊 = 2 workers. 37
3.4 Stratification schedule. 39
3.5 Local sampling without repartitioning. 53
3.6 Repartitioning and sampling only from active entities. 57

4.1 Schematic illustration of HPO approaches for KGEs. 66
4.2 Example run of GraSH. 68
4.3 Schematic illustration of selected graph reduction techniques. 72
4.4 Comparison of low-fidelity approximation techniques. 77

5.1 Overview of KGT5. 87
5.2 Comparison of inference pipeline of conventional KGE models and KGT5. 92
5.3 Link prediction performance on Wikidata5M. 93
5.4 Overview of KGT5-context and comparison to KGT5. 95
5.5 Length of tokenized entities and relations. 101
5.6 MRR grouped by entity degree on Wikidata5M. 103

151

152 List of Figures

6.1 Number of correct (rank=1) and incorrect predictions by
KGT5+descriptions on annotated examples per annotation label.

. 119

List of Tables

2.1 Notations. 9
2.2 Categorization of link prediction approaches. 11
2.3 Dataset statistics. 23
2.4 Current state-of-the-art per dataset. 23

3.1 Summary of techniques for parallel KGE training. 34
3.2 Influence of partition approaches on balancing of partition sizes, variety,

and communication cost. 35
3.3 Example for negative samples produced by various techniques. 42
3.4 Number of unique entities per batch by sampling technique. 43
3.5 Datasets used in this study. 47
3.6 Summary of short notations. 48
3.7 Partitioning techniques (best-performing variant in terms of time to 0.95

MRR, ComplEx). 49
3.8 Partitioning techniques (best-performing variant in terms of time to 0.95

MRR, RotatE). 50
3.9 Avg. processing and wait time in seconds per worker and epoch (Com-

plEx, 1@2, Wikidata5M). 50
3.10 Comparison of partitioning techniques (ComplEx, Freebase). 51
3.11 Performance comparison to original implementations (ComplEx, Freebase). 51
3.12 Shared sampling. 52
3.13 Local sampling. 53
3.14 Batch sampling. 54
3.15 Comparison of sampling technique combinations (ComplEx, Freebase). 55
3.16 Influence of graph-cut triple partition balancing. 55
3.17 Stratification - average fraction of active entities per partition. 55
3.18 CAR stratification. 56
3.19 Row-wise optimizers. 57

153

154 List of Tables

3.20 Best training setting per hyperparameter setting (ComplEx, 4@1, Free-
base). 58

4.1 Comparison of low-fidelity approximation techniques. 72
4.2 Statistics of a Yago3-10 subgraph with ≈ 1% of triples. 73
4.3 Dataset used in this study. 76
4.4 Model quality in terms of MRR. 79
4.5 Resource consumption per round. 80
4.6 Influence of the number of rounds on model quality in terms of MRR. . 81

5.1 Comparison of related work in terms of the desiderata described in
Sec. 5.1. 88

5.2 Datasets used in this study. 96
5.3 Link prediction results on Wikidata5M. 98
5.4 Link prediction results on WikiKG90Mv2. 99
5.5 Link prediction results on small KGs. 100
5.6 Influence of context size on valid-MRR. 102
5.7 Test MRR on Wikidata5M grouped by query frequency during training. 102
5.8 Performance of KGT5-context with the best possible selected context. . 103
5.9 Analysis of best-selected context w.r.t. answer entity, query relation, and

shortest path to answer. 104
5.10 Impact of context information on SimKGC. 105
5.11 Performance of text-based models with feature-based input. 106

6.1 Overview of existing SI link prediction benchmarks. 111
6.2 Statistics of the Wikidata5M-SI splits. 112
6.3 Distribution of top 10 entity types over long-tail entities with degrees

between 11 and 20 compared to all entities. 113
6.4 Example of an entity from the semi-inductive validation set of

Wikidata5M-SI. 114
6.5 Transductive and semi-inductive link prediction results in terms of MRR

on Wikidata5M-SI. 117
6.6 Information about a query answer contained in mentions and descriptions. 118
6.7 Influence of context selection. Semi-inductive test MRR of KGT5-context.119

A.1 Model quality in terms of Hits@1 and Hits@10. 127

B.1 Unique entity representations given the trained vocabulary over MPNet
feature input embeddings on Wikidata5M. 130

List of Tables 155

C.1 Transductive and semi-inductive link prediction results in terms of H@1
on the dataset Wikidata5M-SI. 132

C.2 Transductive and semi-inductive link prediction results in terms of H@3
on the dataset Wikidata5M-SI. 132

C.3 Transductive and semi-inductive link prediction results in terms of H@10
on the dataset Wikidata5M-SI. 133

C.4 Influence of context selection. Semi-inductive test MRR. 133

List of Algorithms

1 Basic bi-encoder training. 19
2 Evaluation - entity ranking. 21
3 Framework for parallel KGE training 32
4 GraSH: Successive halving for knowledge graph embeddings . . . 69

157

	Titlepage
	Abstract
	Zusammenfassung
	Contents
	Acknowledgments
	1 Introduction
	2 Fundamentals
	2.1 Knowledge Graphs
	2.2 Link Prediction
	2.3 Categorization of Link Prediction Approaches
	2.4 Training
	2.5 Evaluation
	2.6 Datasets

	3 Training of Large-Scale KGE Models
	3.1 Introduction
	3.2 Parallel Training
	3.3 Partitioning
	3.4 Negative Sampling
	3.5 Experimental Study
	3.6 Parallel & Subsequent Work
	3.7 Conclusion

	4 Hyperparameter Tuning for Large-Scale KGE Models
	4.1 Introduction
	4.2 Related Work
	4.3 Successive Halving for Knowledge Graphs (GraSH)
	4.4 Low-fidelity Approximation Techniques
	4.5 Experimental Study
	4.6 Conclusion

	5 Sequence-to-Sequence Link Prediction
	5.1 Introduction
	5.2 Related Work
	5.3 The KGT5 Model
	5.4 Expanding KGT5 with Context
	5.5 Experimental Study
	5.6 Conclusion

	6 Semi-Inductive Link Prediction
	6.1 Introduction
	6.2 Related Work
	6.3 The Wikidata5M-SI Benchmark
	6.4 Semi-Inductive Link Prediction Models
	6.5 Experimental Study
	6.6 Conclusion

	7 Conclusions
	A Additional Material to Chapter 4
	B Additional Material to Chapter 5
	B.1 Building a Vocabulary over Features

	C Additional Material to Chapter 6
	C.1 Integrating Text into KGE Models

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

