
Multifaceted Analysis of Deep
Convolutional Neural Networks and

Novel Fourier Modules

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Julia Grabinski

aus Hagen

Mannheim, 2025

Dekan: Prof. Dr. Claus Hertling, Universität Mannheim
Referent: Prof. Dr.-Ing. Margret Keuper, Universität Mannheim
Korreferent: Prof. Dr. Simone Schaub-Meyer, Technische Universität Darmstadt
Korreferent: Prof. Dr. Ivo Ihrke, Universität Siegen

Tag der mündlichen Prüfung: 14.07.2025

i

Erklärung zum Einsatz
von Generativen Textmodellen

Erklärung zum Einsatz von Generativen Textmodellen In der Erstellung dieser Ar-
beit wurden die generative Textmodelle (auch bekannt als large language models
(LLMs)) OpenAI ChatGPT, Google Gemini, LanguageTool, sowie Grammarly einge-
setzt, um die schriftliche Präsentation dieser Thesis zu verbessern. In diesem Zusam-
menhang wurden einzelne und bereits formulierte Sätze und Textpassagen sprach-
lich und grammatikalisch überarbeitet, umformuliert, strukturiert und/oder von
diesen Modellen zusammengefasst. Die erstellten Texte wurden zudem manuell
geprüft und häufig weiter überarbeitet. Die Modelle wurden nicht dazu eingesetzt,
neue Inhalte zu generieren. Insbesondere wurden alle in dieser Thesis eingeführten
Methoden, Experimente und Resultate eigenständig – beziehungsweise mit oder
von den jeweils gekennzeichneten Autoren – erarbeitet.

iii

Abstract

The increasing reliance on neural networks in everyday applications underscores a
critical challenge: ensuring their robustness and reliability beyond idealized con-
ditions. Evaluating vision classification models solely through clean accuracy and
spatial perspectives is insufficient. Thus, we employ a multifaceted analysis of ro-
bust models and leverage Fourier theory to enhance robustness, efficiency, and our
fundamental understanding of convolutional neural networks.

This thesis explores the interplay between adversarial robustness, confidence cal-
ibration, efficiency and sampling artifacts through the lens of Fourier Theory in con-
volutional neural networks.

We first demonstrate that adversarially robust models exhibit significantly lower
overconfidence compared to their non-robust counterparts. We demonstrate that
even subtle modifications to fundamental network components can significantly im-
prove confidence calibration, highlighting the power of architectural design. Build-
ing on this, we investigate aliasing effects in robust models, revealing that they
downsample more effectively than standard models, leading to reduced aliasing. To
quantify this phenomenon, we introduce a novel aliasing measure and show its con-
nection to catastrophic overfitting in FGSM adversarial training, inspiring an early
stopping criterion based on our aliasing measure.

Leveraging these discoveries, we present Frequency Low Cut (FLC) Pooling and
Aliasing and Sinc Artifact-free Pooling (ASAP), novel Fourier-domain downsampling
methods designed to be inherently aliasing-free. These techniques contribute to en-
hanced native robustness and improved adversarial training stability, effectively ad-
dressing catastrophic overfitting in FGSM adversarial training.

Building upon our Fourier-domain investigations, we present Neural Implicit Fre-
quency Filters (NIFFs), enabling efficient large convolutions. By leveraging neural im-
plicit functions for weight learning and efficient Fourier-domain convolution, NIFFs
provide a feasible and fair comparison to large spatial convolutions. Using NIFFs,
we analyse learned kernel size preferences, revealing insights that facilitate more
efficient network design. We demonstrate that optimal feature extraction often re-
quires kernels larger than the typical 3× 3, with 9× 9 kernels being predominately
learned by the network, especially on ImageNet-1k.

Our multifaceted analysis and findings contribute to a deeper understanding
of adversarial robustness, confidence calibration, sampling artifacts and the role of
Fourier theory in convolutional neural network design, paving the way for more
robust and efficient deep learning models.

v

Zusammenfassung
Die zunehmende Abhängigkeit von neuronalen Netzen in alltäglichen Anwendun-
gen unterstreicht eine kritische Herausforderung: die Gewährleistung ihrer Robust-
heit und Zuverlässigkeit über idealisierte Bedingungen hinaus. Die Bewertung von
Bildklassifikationsmodellen allein durch die Klassifikationsgenauigkeit und räum-
liche Perspektiven ist unzureichend. Daher führen wir eine facettenreiche Anal-
yse robuster Modelle durch und nutzen Konzepte der Fourier-Theorie, um Robust-
heit, Effizienz und unser grundlegendes Verständnis von Convolutional Neural Net-
works (CNNs) zu verbessern.

Diese Dissertation untersucht das Zusammenspiel zwischen adversärer Robus-
theit, Kalibrierung, Effizienz und Sampling-Artefakten mithilfe von Konzepten der
Fourier-Theorie in Convolutional Neural Networks.

Wir zeigen zunächst, dass adversär robuste Modelle eine signifikant geringere
Überkonfidenz aufweisen als ihre nicht-robusten Gegenstücke. Wir demonstrieren,
dass selbst kleine Modifikationen an grundlegenden Netzwerkkomponenten die Ka-
librierung erheblich verbessern können, was die Wichtigkeit eines durchdachten Ar-
chitekturdesignes Neuronaler Netze unterstreicht. Aufbauend darauf untersuchen
wir Aliasing-Effekte in robusten Modellen und stellen fest, dass robuste Modelle
effektiver downsamplen als Standardmodelle, was zu weniger Aliasing Artefakten
führt. Um dieses Phänomen zu quantifizieren, führen wir eine neuartige Aliasing
Messung ein. Wir zeigen, dass ein Anstieg des Aliasing mit Catastrophic Overfit-
ting im FGSM-adversären Training in Verbindung steht. Daher nutzen wir unsere
Aliasing-Messung, um das adversäre Training anzuhalten, bevor Catastrophic Over-
fitting auftritt.

Aufbauend auf diesen Entdeckungen präsentieren wir Frequency Low Cut (FLC)
Pooling und Aliasing and Sinc Artifact-free Pooling (ASAP), neuartige Fourier-Domain-
Downsampling-Methoden, die aliasing-frei downsamplet. Unsere neuen Methoden
tragen zu einer verbesserten nativen Robustheit und einer erhöhten Stabilität des ad-
versären Trainings bei und adressieren effektiv Catastrophic Overfitting im FGSM-
adversären Training.

Wir setzen unsere erfolgreiche Integration der Fourier-Theorie fort und präsen-
tieren Neural Implicit Frequency Filters (NIFFs), die effiziente, große Faltungen er-
möglichen. Durch die Nutzung neuronaler impliziter Funktionen um die Gewichte
zu Lernen und der Effizienz der Fourier-Domain-Faltungen bieten NIFFs einen prak-
tikablen und fairen Vergleich zu großen räumlichen Faltungen. Mit unseren NIFFs
analysieren wir gelernte Kernelgrößenpräferenzen und gewinnen Erkenntnisse, die
ein effizienteres Netzwerkdesign ermöglichen. Wir zeigen, dass optimale Feature-
Extraktion oft größere Kernel als die typischen 3× 3 erfordert, wobei 9× 9 Kernel
auf Datensätzen wie ImageNet-1k ausreichende Ergebnisse liefern.

Unsere facettenreiche Analyse und unsere neuen Methoden tragen zu einem
tieferen Verständnis von adversärer Robustheit, Kalibrierung, Sampling-Artefakten
und der Rolle der Fourier Theorie im Convolutional-Neural-Network-Design bei
und ebnen den Weg für robustere und effizientere Deep-Learning-Modelle.

vii

Acknowledgements
I’m deeply grateful to all the brilliant and kind people I had the pleasure of meet-

ing during my PhD journey, with special thanks to those who supported me both
professionally and personally.

First and foremost, I would like to thank my two advisors, Margret and Janis Ke-
uper, for their extensive and diverse guidance, patience, and support throughout my
research. I was fortunate to benefit from both of your perspectives, which comple-
mented each other perfectly, allowing me to gain invaluable knowledge throughout
my journey. Thank you, Margret, for encouraging me to begin my PhD journey and
for your constant availability and support. You motivated me to keep going and
pushed me to reach my full potential. Your guidance helped me find my way and
place within the academic world. Without you, I would not be submitting this thesis
today. Thank you so much. Thank you, Janis, for your unwavering support and
calming presence, which helped keep me grounded and more at ease throughout
my journey. Your clear perspective, along with your valuable and honest feedback,
guided me throughout my PhD. I’m truly grateful to both of you for mentoring me
and preparing me so well for the academic world.

I was fortunate to conduct visiting research at Tampere University, Finland, in
the computer vision department led by Esa Rathu during the final year of my PhD.
I would like to thank Esa and his group for their incredible hospitality and for fos-
tering a warm and welcoming atmosphere in the lab. This experience allowed me
to explore entirely new topics and broaden my horizons, for which I am truly grate-
ful. A special thanks to Ville and Nicklas for introducing me to Finnish culture and
exposing me to fascinating and diverse research topics that, while different from my
prior work, were truly intriguing.

Special thanks to my collaborators with whom I had the pleasure of working:
Paul, Shashank, Steffen and Teja. Working together on various projects has been
an invaluable learning experience, and I deeply appreciate the collective effort that
led to our successful publications. Some collaborations have grown into cherished
friendships, and each of you has left a lasting impact on my growth as a researcher.

I would like to extend my gratitude to all my colleagues, past and present, across
the various departments I’ve had the pleasure of working with. Our engaging dis-
cussions, retreats, and seminars created a research environment that was both enjoy-
able and supportive. I am also deeply thankful for the conference opportunities that
allowed me to meet so many wonderful and inspiring individuals.

Thank you to my friends outside academia for your understanding and keeping
me grounded and smiling through the challenges of this journey. Additionally, I
want to extend my gratitude to all my sports and dancing buddies, who have been
essential in helping me maintain a healthy work-life balance.

Last but not most importantly I would like to thank Chris, my partner, best friend
and greatest supporter during this whole journey. Your encouragement and ability
to bring joy in both the good times and the challenging moments have been invalu-
able. I also extend my deepest thanks to my family for their unconditional love and
support, which has been a constant source of strength.

ix

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

1 Introduction 1
1.1 Contribution Overview . 3

1.1.1 Robust Models are Less Over-Confident 5
1.1.2 Aliasing and Adversarially Robust Generalization of CNNs . . 6
1.1.3 Aliasing-Free Downsampling in the Frequency Domain 6
1.1.4 Neural Implicit Frequency Filters 7

1.2 Outline . 7
1.3 Publications . 9
1.4 Notation . 11

2 Foundations 13
2.1 Convolutional Neural Networks . 14

2.1.1 Components . 14
2.1.2 Evaluation Methods . 16

2.2 Adversarial Attacks . 18
2.2.1 Adversarial Training . 19

2.3 Datasets . 19
2.3.1 Low-Resolution Datasets . 19
2.3.2 High-Resolution Datasets . 20

2.4 Digital Signal Processing Fundamentals 20
2.4.1 Fourier Transform . 21
2.4.2 Fast Fourier Transform . 22
2.4.3 Convolution Theorem . 23
2.4.4 Sampling Theorem . 24
2.4.5 Aliasing . 24
2.4.6 Sinc Interpolation Artifacts . 26
2.4.7 Principal Component Analysis 27

x

3 Related Work 29
3.1 Robustness . 30

3.1.1 Common Corruptions . 30
3.1.2 Downsampling Attacks . 31
3.1.3 Adversarial Attacks . 31
3.1.4 Adversarial Training . 32

3.2 Confidence Calibration . 34
3.3 Frequency Domain for Image Classification 35

3.3.1 Frequency Analysis for Robustness and Attack Detection 35
3.3.2 Aliasing in CNNs . 36
3.3.3 Spectral Leakage Artifacts in CNNs 36
3.3.4 Training CNNs in the Frequency Domain 37

3.4 Dynamic and Steerable Filters . 38
3.4.1 Large Kernel Sizes . 39
3.4.2 Neural Implicit Representations 39

I Multifaceted Analysis of Robust CNNs 41

4 Robust Models are Less Over-Confident 43
4.1 Introduction . 44
4.2 Experiments . 45

4.2.1 Experimental Setup . 46
4.2.2 CIFAR Models . 47
4.2.3 ImageNet-1k Models . 54

4.3 Discussion . 55
4.3.1 Limitations . 56

4.4 Conclusion . 57

5 Aliasing and Adversarially Robust Generalization of CNNs 59
5.1 Introduction . 60
5.2 Method . 62

5.2.1 Aliasing Measure . 62
5.3 Experiments . 64

5.3.1 Aliasing in Existing Models . 64
5.3.2 CNN vs. FCN . 68
5.3.3 Aliasing During Adversarial Training 70
5.3.4 Catastrophic Overfitting . 72
5.3.5 Aliasing Early Stopping . 74

5.4 Discussion . 75
5.4.1 Spectrum of Adversarial Perturbations 76
5.4.2 Aliasing in Pre-Trained Models 77
5.4.3 Aliasing and Catastrophic Overfitting 77
5.4.4 Limitations . 78

5.5 Conclusion . 78

II Novel Fourier Modules 79

6 Aliasing-Free Downsampling in the Frequency Domain 81
6.1 Introduction . 83
6.2 Method . 84

xi

6.2.1 Aliasing in CNNs Downsampling 84
6.2.2 FrequencyLowCut Pooling . 84
6.2.3 Sinc Interpolation Artifact-Free Pooling 87
6.2.4 Integration into CNNs . 89

6.3 Experiments . 89
6.3.1 Artifact Representation . 90
6.3.2 Native Robustness . 94
6.3.3 Adversarial Training and Catastrophic Overfitting 97
6.3.4 Ablation Studies . 101

6.4 Discussion . 106
6.4.1 Efficiency . 106
6.4.2 Limitations . 106

6.5 Conclusion . 106

7 Neural Implicit Frequency Filters 109
7.1 Introduction . 110
7.2 Method . 112

7.2.1 Neural Implicit Frequency Filters 113
7.2.2 Common CNN Building Blocks using NIFF 114

7.3 Experiments . 115
7.3.1 Training Details . 115
7.3.2 How Large Do Spatial Kernels Really Need To Be? 116
7.3.3 Quantitative Results . 118
7.3.4 Filter Analysis . 120
7.3.5 Circular vs. Linear Convolution 123
7.3.6 Ablation on More Modules . 125

7.4 Discussion . 126
7.4.1 NIFF’s Architecture . 126
7.4.2 Efficiency . 128
7.4.3 Limitations . 129

7.5 Conclusion . 130

8 Conclusion and Outlook 131
8.1 Key Insights and Conclusion . 131

8.1.1 Impact on the Community . 133
8.1.2 Limitations . 134

8.2 Future Directions . 135
8.2.1 Exploring the Multifaceted Role of Aliasing 135
8.2.2 High-Resolution with NIFF and FLC Pooling 136
8.2.3 NIFF Beyond 2D . 137
8.2.4 A Comprehensive Overview . 137

A Supplementary for Chapter 4 163
A.1 Additional ECE Bar Plots . 163
A.2 Additional Overconfidence Bar Plots . 163
A.3 Empirical Confidence Distributions . 164
A.4 Additional Precision Recall Curves . 164
A.5 ROC curves for ImageNet-1k . 165
A.6 Model Overview . 165

xii

B Supplementary for Chapter 6 171
B.1 Confidence Distributions . 171

C Supplementary for Chapter 7 173
C.1 Additional Kernel Mass Evaluation . 173
C.2 Additional Evaluation of Non-Square Kernels 176
C.3 Additional Spatial Filter Visualization 177
C.4 Additional Frequency Filter Visualization 178

xiii

List of Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional

AA Auto Attack
Acc Accuracy
Acc@1 Top 1 Accuracy
Acc@5 Top 5 Accuracy
AM Aliasing Measure
APGD Adaptive Projected Gradient Descent
ASAP Aliasing and Sinc Artifact-free Pooling
AUC Area Under the Curve
AT Avdersarial Training

BIM Basic Iterative Method

CIFAR Canadian Institute For Advanced Research
CNN Convolutional Neural Network
CNNs Convolutional Neural Networks
CW Carlini and Wagner Attack

DDN Decoupling Direction and Norm
DF DeepFool
DFT Discrete Fourier Transform

ECE Expected Calibration Error

FAB Fast Adaptive Boundary Attack
FCN Fully Connected Network
FFT Fast Fourier Transform
FGSM Fast Gradient Sign Method
FLC Frequency Low Cut
FM Feature Map
FT Fourier Transform

xiv

i.e. id est

MLP Multi Layer Perceptron
MLPs Multi Layer Perceptrons
MNIST Modified National Institute of Standards and Technology

NIFF Neural Implicit Frequency Filter
NIFFs Neural Implicit Frequency Filters

PCA Principal Component Analysis
PGD Projected Gradient Descent
PRN PreAct-ResNet

RA RandAug
ReLU Rectified Linear Unit
RN ResNet
ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent
SiLU Sigmoid Linear Unit
SVHN Street View House Numbers

VGG Visual Geometry Group
ViT Vision Transformer
vs. versus

W.l.o.G. Without loss of Generality
WRN Wide-ResNet
w.r.t. with respect to

1

Chapter 1

Introduction
Contents

1.1 Contribution Overview . 3
1.1.1 Robust Models are Less Over-Confident 5
1.1.2 Aliasing and Adversarially Robust Generalization of CNNs 6
1.1.3 Aliasing-Free Downsampling in the Frequency Domain 6
1.1.4 Neural Implicit Frequency Filters . 7
1.2 Outline . 7
1.3 Publications . 9
1.4 Notation . 11

In recent years, neural networks have become deeply embedded in our daily lives,
powering vision-based applications across a vast spectrum, from facial recognition
systems in mobile devices [Guo & Zhang (2019)] and real-time object detection in au-
tonomous vehicles [Bochkovskiy et al. (2020)] to advanced medical imaging [Zhou
et al. (2019)] and smart city surveillance [Chen et al. (2019); Reed et al. (2023); Gupta
(2024)]. The profound integration of neural networks into so many facets of mod-
ern life raises a critical requirement: these networks must not only perform well
under known conditions but must also be robust and reliable under distributions
shift [Zhang (2019); Hendrycks & Dietterich (2019); Gavrikov et al. (2025)]. As their
applications extend further into safety-critical domains, ensuring robustness and re-
liability becomes paramount; otherwise, we risk deploying systems that may fail
in unexpected ways [Amodei et al. (2016)] or offer potential for attackers to fool
the network [Goodfellow et al. (2015); Madry et al. (2018); Andriushchenko et al.
(2020)]. To train more robust models, commonly used techniques include incorpo-
rating additional data [Gowal et al. (2021b); Rade & Moosavi-Dezfooli (2021); Rebuffi
et al. (2021)] or employing more sophisticated training methods [Madry et al. (2018);
Zhang et al. (2019b)]. Figure 1.1 highlights a significant advantage of robust mod-
els, i.e. adversarially trained models, observed in our work: they maintain accuracy
under various image distortions, such as shifts, blurring, and aliasing. Specifically,
while the non-robust model shows reduced confidence under shifts and blurring, it
is completely misled by aliasing and adversarial attacks, resulting in high-confident
incorrect predictions. In contrast, the robust model remains accurate and less over-
confident across all tested distortions. We demonstrate in Chapter 4 that robust mod-
els are often less overconfident while non-robust models make high-confident incor-
rect predictions when attacked. Furthermore, Figure 1.1 reveals another interesting
observation: adversarial attacks and aliasing produce visually similar artifacts that

2 Chapter 1. Introduction

Original Image

Non-Robust Model

Squirrel! Squirrel.

Confidence = 90% Confidence = 85%

Squirrel.

Confidence = 82%

Dog.

Confidence = 79%

Squirrel!

Confidence = 95%

Squirrel.

Confidence = 54%

Robust Model

Spatial Shift Aliasing

Squirrel.

Confidence = 78%

Elefant!

Confidence = 96%

Adversarial Attack

Squirrel.

Confidence = 81%

Squirrel.

Confidence = 73%

Blurring

FIGURE 1.1: Challenges for Robust and Non-Robust Deep Neural Networks. While ro-
bust models correctly predict the class label, non-robust models get fooled easily and fail
with high confidence (high confidence predictions are marked by “!" otherwise “."), overes-

timating their certainty in incorrect classifications.

both significantly degrade network performance. We find in Chapter 5 that adver-
sarial training not only improves model accuracy and reliability, but also results in
desirable properties such as reduced aliasing after downsampling. However, train-
ing robust models via e.g. adversarial training often leads to more complex training
tasks, resulting in longer training times as shown in Table 6.7 in Chapter 6. Fur-
thermore, as task complexity increases, larger model sizes are often preferred [Croce
et al. (2021)] leading to increased computational costs and memory consumption.

The development of deep learning models, especially in the case of making them
more robust via adversarial training or trough more training data, demands sig-
nificant computational resources, with the training of large networks requiring ex-
tensive GPU hours and substantial energy consumption. This leads to higher op-
erational costs and leading to significant environmental problems [Patterson et al.
(2021); Dhar (2020)]. Consequently, there is a critical need for approaches that make
neural networks architecture design [Tan & Le (2021)] and training processes [Meng-
hani (2023)] more resource-efficient to reduce computational load without sacrificing
performance.

Achieving efficiency begins with a fundamental examination of network archi-
tectures and their design. By analysing how different architectural choices affect
computational demands and performance, we can identify ways to build neural
networks that maximize resource use while maintaining high accuracy and relia-
bility. Efficient network architectures should prioritize optimization techniques that
reduce parameter counts, accelerate convergence, and ensure generalization across
diverse datasets and tasks. These architectural considerations are essential for ad-
vancing the field toward more sustainable and adaptable neural networks that can
efficiently meet the demands of real-world applications.

Achieving this balance requires a deep understanding of what a neural network
is fundamentally doing. At its core, a neural network receives input signals and
interprets them to produce meaningful outputs tailored to specific tasks, whether
that means classifying an image [He et al. (2016a)], detecting objects [Bochkovskiy
et al. (2020)] or reconstructing a scene [Mildenhall et al. (2021); Yu et al. (2021)]. An
abstract representation of the feature extraction process in a classification CNN is
depicted in Figure 1.2 (a). In this thesis, we focus on improving the two components,
convolutions and downsampling, to create efficient and sustainable systems and
optimise not only for performance but also for efficiency and resilience.

1.1. Contribution Overview 3

This thesis leverages mathematical principles like aliasing-free sampling, Fourier
transformations, and filtering, allowing modern computer vision systems to sidestep
common pitfalls like poor robustness and reliability. We reveal that robust models
are less overconfident than their non-robust counterparts in Chapter 4 and learn to
downsample with fewer artifacts in Chapter 5. By revisiting core concepts from
signal processing, we systematically analyse and refine classification convolutional
neural networks (CNNs), enhancing their efficiency, robustness, and capacity to pro-
cess larger inputs while minimizing computational overhead. One key aspect of
this thesis is the application of the Sampling Theorem [Shannon (1949)], through
which we demonstrate the intrinsic connection between aliasing and adversarial
vulnerabilities in CNNs in Chapter 5. By integrating classical signal processing tech-
niques with advanced neural architectures, we develop more effective downsam-
pling methods in Chapter 6 that enhance native adversarial robustness and improve
adversarial training to be more effective and efficient. Therefore, we leverage the
Fourier domain, guaranteeing aliasing-free downsampling as depicted in Figure 1.2
(b). Subsequently, in Chapter 7, by leveraging the Convolution Theorem [Bracewell
& Kahn (1966); Forsyth & Ponce (2003)], we implement convolution in the frequency
domain (Figure 1.2 (c)) to systematically study kernel sizes in CNNs and make large
convolutions more computationally efficient. This approach not only strengthens
the theoretical foundations of CNNs but also yields practical benefits by optimizing
computational efficiency and reducing memory consumption. By bridging the gap
between traditional signal processing and deep learning, this thesis provides a prin-
cipled framework for designing more robust and resource-efficient neural networks.

In summary, combining foundational mathematical principles, like Fourier The-
ory, with modern deep learning techniques provides a strong basis for developing
robust, reliable, and efficient computer vision models. This combination supports
the development of safer, more sustainable, and computationally efficient solutions,
enabling their use in fields such as healthcare, astrophysics, and autonomous sys-
tems.

1.1 Contribution Overview

This thesis is organized into three parts, one preliminary part which includes foun-
dations and related work in Chapters 2 and 3, respectively, followed by two main
parts, Parts I and II. In the first chapter of the preliminary part, in Chapter 2, we in-
troduce the foundational concepts relevant to this thesis. Following, in Chapter 3, we
review related research important for the approaches presented in the subsequent
chapters. In the first main part, Part I, we present two key studies investigating the
relationship between model robustness and both model reliability and aliasing ar-
tifacts. First, in Chapter 4, we demonstrate that adversarially trained classification
models exhibit reduced overconfidence. Second, in Chapter 5, we show that these
models learn to downsample with fewer aliasing artifacts. In the second main part,
Part II, we introduce novel Fourier modules, partially derived from the studies con-
ducted in Part I. Chapter 6 aims at enhancing model robustness and improving ad-
versarial training efficiency via aliasing-free downsampling in the Fourier domain.
Additionally, we enable a comprehensive analysis of classification network design,
specifically focusing on the preferred learned kernel size within a network in Chap-
ter 7 by leveraging the Fourier domain again. Finally, in Chapter 8, we summarize
the key contributions of this thesis, discuss its limitations and implications, and out-
line potential directions for future research.

4 Chapter 1. Introduction

Feature

Maps (FM)

Convolution

FM

Downsampling

FM FM

DownsamplingConvolution

(a) Feature Extraction CNN.

FFT
Feature

Maps (FM) FM FM

Aliasing-Free Downsampling ConvolutionConvolution

IFFT FM

Aliasing-Free

 Downsampling

(b) Aliasing-Free Feature Extraction.

FFT IFFT

Feature

Maps (FM) FM

NIFF

weights FM

NIFF

weights

Downsampling NIFF ConvolutionNIFF Convolution

FM

Downsampling

(c) NIFF Feature Extraction.

FIGURE 1.2: Our Fourier Modules. (a) Standard feature extraction process in a CNN. (b)
Feature extraction with our aliasing-free downsampling presented in Chapter 6. (c) Feature

extraction with our NIFF Convolutions presented in Chapter 7.2.1.

In the following, we give a brief overview on the main chapters of this thesis.
In Part I, we focus on analysing adversarially robust models from different perspec-
tives and find that adversarial robustness benefits more than robustness, namely
reliability and sampling.

In Chapter 4, we show that robustness is not only important for its own sake
but also comes with a beneficial side effect. We demonstrate that non-robust models
tend to be highly overconfident, i.e., prone to high-confidence incorrect predictions,
which can lead to critical failures in real-world scenarios. In contrast, we find that
adversarially robust models exhibit less overconfidence, making them more suitable
for deployment not only due to their robustness but also because of their more reli-
able behaviour.

In Chapter 5, we continue analysing robust models and reveal that robust mod-
els downsample more effectively. We measure the amount of aliasing after down-
sampling and demonstrate that non-robust models induce higher levels of alias-
ing, while adversarially trained models intrinsically learn cleaner downsampling,
i.e., with less aliasing. Additionally, we show that catastrophic overfitting in fast
gradient sign methods (FGSM) adversarial training (AT) is strongly correlated with
increased aliasing after downsampling. As a result, we introduce a more efficient
stopping criterion based on our aliasing measure, which is more efficient than using
the more computationally expensive Projected Gradient Descent (PGD) adversaries.

In Part II, we introduce novel Fourier modules for both analysing and imple-
menting models from an alternative perspective. Specifically, we propose down-
sampling and convolution in the Fourier domain.

Based on the findings of Chapter 5, we introduce aliasing-free downsampling in

1.1. Contribution Overview 5

the Fourier domain, called Frequency Low Cut Pooling, short FLC Pooling in the
second part, in Chapter 6. FLC Pooling reduces the risk of catastrophic overfitting,
thereby enhancing FGSM AT. Furthermore, we extend FLC Pooling to not only elim-
inate aliasing but also reduce sinc-interpolation artifacts, introducing aliasing- and
sinc-artifact pooling (ASAP). As a result, our downsampling methods improve na-
tive robustness and enhance fast FGSM AT as well as PGD training. Additionally,
our downsampling methods not only increase robustness but also provide higher
reliability in terms of prediction confidence. We demonstrate that robust networks
trained with our improved downsampling methods are less overconfident, show-
ing reduced confidence in incorrect predictions compared to the baseline, which en-
hances their suitability for real-world applications.

Finally, in Chapter 7, we not only leverage the Fourier domain for aliasing-free
downsampling but also introduce convolutions in the Fourier domain to learn spa-
tially infinite convolutions. To achieve this efficiently, we use a neural implicit func-
tion to limit the number of learnable parameters, calling our method Neural Implicit
Frequency Filters (NIFF). We use NIFF to study the practical receptive field that a
network prefers to learn to make models more efficient and effective for a given net-
work architecture and dataset. Further, NIFF scales effectively with increased input
and convolution size due to the neural implicit function and the convolution applied
in the frequency domain. The trick of calculating the convolution in the frequency
domain is already applied in the 1D case for State-Space models [Poli et al. (2023)].
In the 2D image domain with images of size N × N, this could offer even greater
gains, as the runtime of convolutions with NIFF is O(N2 log(N)), compared to the
common convolution’s O(N2M2), where M is the kernel size of the convolution and
commonly N > M is given.
Following, we outline each topic covered in this thesis in more depth and acknowl-
edge any relevant publications and collaborations with other researchers.

1.1.1 Robust Models are Less Over-Confident

In this work, we present an extensive study demonstrating that models trained to be
robust against adversarial samples are also significantly less overconfident in their
incorrect predictions. This behaviour is highly desirable for networks deployed in
real-world applications. Consider, for instance, a network misclassifying a malig-
nant tumor as benign with high confidence; such an error could have life-threatening
consequences. Therefore, networks should not only be resilient to adversarial at-
tacks, i.e. worst-case perturbations, but also avoid excessive confidence in their false
predictions, given the potentially severe impacts. We show that networks exhibiting
high robustness to adversarial attacks are less overconfident and can better distin-
guish correct from incorrect predictions based on their confidence scores. However,
we also find that commonly used confidence measures, such as the expected calibra-
tion error, fail to accurately reflect calibration for networks with low accuracy.

Contribution: This work was created in collaboration with Julia Grabinski, Paul
Gavrikov, Janis Keuper, and Margret Keuper. It was published in [Grabinski et al.
(2022a)] at NeurIPS 2022. Margret Keuper proposed the idea of evaluating robust
versus non-robust models in terms of their confidence, following initial results pro-
vided by Julia Grabinski. Paul Gavrikov trained the non-robust models, while Ju-
lia Grabinski evaluated all models regarding their confidence and calibration. Julia
Grabinski also created all figures and wrote the main body of the paper, which was
subsequently polished by all the authors.

6 Chapter 1. Introduction

1.1.2 Aliasing and Adversarially Robust Generalization of CNNs

In this work, we reveal that robust models inherently learn to downsample more
smoothly, leading to less aliasing artifacts after downsampling. We show that the
amount of aliasing artifacts after downsampling is much lower for robust models
compared to their non-robust counterparts. To measure this, we introduce a novel
aliasing measure which quantifies how much aliasing is introduced by the down-
sampling operation applied in the downsampling layers of a network. Furthermore,
we provide evidence of a strong correlation between catastrophic overfitting in sim-
ple FGSM AT and an increase in aliasing after downsampling. By using our aliasing
measure, we are then able to quantify an optimal early stopping point for FGSM AT.

Contribution: This work was created in collaboration with Julia Grabinski, Janis
Keuper, and Margret Keuper. It was published in [Grabinski et al. (2022c)] as a full
paper at ECML 2022 and in [Grabinski et al. (2022d)] as an abstract at the AAAI
Workshop on Adversarial Machine Learning and Beyond 2022. After thorough dis-
cussions with Margret and Janis Keuper on methods for measuring aliasing, Julia
Grabinski proposed and implemented the aliasing measure. She was fully responsi-
ble for the evaluation of all models and wrote the first draft of the paper, which was
subsequently polished by all the authors.

1.1.3 Aliasing-Free Downsampling in the Frequency Domain

Inspired by our prior work, we introduce a completely aliasing-free downsampling
operation called FrequencyLowCut Pooling, short FLC Pooling as well as Sinc in-
terpolation and Aliasing-free Pooling, short ASAP. FLC Pooling and ASAP leverage
the Fourier domain to guarantee aliasing-free downsampling by removing the high-
frequency components which could lead to aliasing. In comparison to prior work,
which could only reduce aliases but not guarantee aliasing-free downsampling, both
methods enhance the native robustness of CNNs. Additionally, models employing
our downsampling enhance AT and effectively reduce the risk of catastrophic over-
fitting, leading to higher robust and clean accuracy. We can also show that models
employing our downsampling techniques show favourable confidence calibrations
compared to standard downsampling when combined with AT.

Contribution: This work was created in collaboration with Julia Grabinski, Steffen
Jung, Janis Keuper, and Margret Keuper. FLC Pooling was published in [Grabinski
et al. (2022b)] at ECCV 2022 and the extension to ASAP [Grabinski et al. (2023)] is
currently under review at IJCV. Building on initial results from previous work and
discussions with Margret and Janis Keuper, Julia Grabinski proposed and imple-
mented the concept of aliasing-free downsampling in the frequency domain. She
trained all models except for the large model on ImageNet-1k with AT, which was
handled by Steffen Jung. The extension to aliasing- and sinc-interpolation-free pool-
ing using a Hamming window was also proposed by Julia Grabinski. For this study,
she conducted all training and evaluations, except for the AT on ImageNet-1k, which
was trained by Steffen Jung. Julia Grabinski drafted the initial version of the paper,
which was subsequently refined and polished by all authors.

1.2. Outline 7

1.1.4 Neural Implicit Frequency Filters

In this work, we leverage the Fourier domain to perform convolutions in the fre-
quency domain, establishing a framework to explore the benefits of increased spa-
tial context and analyse the preferred kernel sizes a network might naturally learn.
A thorough study of filter sizes requires that we decouple this variable from other
network aspects, such as width or the number of learnable parameters. Further-
more, the computational cost of the convolution operation must remain manage-
able; simply increasing the convolution kernel size is not feasible. Thus, we propose
to learn the frequency representations of filter weights as neural implicit functions,
such that the better scalability of the convolution in the frequency domain can be
leveraged. Additionally, due to the implementation of the proposed neural implicit
function, even large and expressive spatial filters can be parametrised by only a few
learnable weights. To ensure efficient implementation within existing frameworks,
our module is plug-and-play, allowing it to replace conventional convolutions in a
CNN seamlessly. Our analysis reveals that, although the networks could learn very
large convolution kernels, the learned filters are well localized and relatively small in
practice when transformed from the frequency to the spatial domain. Additionally,
we can reduce the amount of transformations needed between spatial and Fourier
domain by combining our NIFF with our proposed downsampling from Chapter 6.

Contribution: This work was created in collaboration with Julia Grabinski, Janis
Keuper, and Margret Keuper. It was published in [Grabinski et al. (2024)] in the
TMLR Journal 2024 with featured certification and is presented at ICLR 2025. The
need for frequency convolutions was based on our prior work introducing down-
sampling in the frequency domain. The idea of using a neural implicit function was
proposed by Margret and Janis Keuper. The implementation and evaluation were
handled by Julia Grabinski. She drafted the initial version of the paper, and Margret
Keuper helped in formalizing the convolution theorem. The paper was subsequently
refined and polished by all authors.

1.2 Outline

Following, we give a brief overview of the outline of this thesis. First, we describe
the preliminary Chapters 2 and 3 followed by the two main parts, which include
Chapters 4 to 7. Lastly, we briefly discuss Chapter 8, which concludes this thesis
and discusses future directions following from this thesis.

Chapter 2, Foundations This chapter lays the groundwork for this thesis by re-
viewing the foundational concepts it builds upon. First, we provide an overview
of convolutional neural networks (CNNs), which is the primary architecture em-
ployed in this thesis, highlighting their components, which are later adapted, and
the evaluation methods used throughout the thesis. A particular emphasis is placed
on adversarial attacks and training, as they serve as key tools for exposing network-
specific weaknesses. Subsequently, we introduce the datasets used in the various
studies presented in this thesis. Finally, we revisit digital signal processing princi-
ples utilized to evaluate and enhance modern computer vision models in this thesis.
Chapter 3, Related Work This chapter reviews related work, emphasising the var-
ious properties analysed and improved in this thesis. Starting with robustness and
its diverse perspectives, followed by reliability evaluations, which are later shown
to be closely connected. This chapter also highlights frequency domain implemen-
tations in image classification and their relevance to the analyses and improvements

8 Chapter 1. Introduction

presented in this thesis. Lastly, it explores dynamic and steerable filters, which can
be implemented in the frequency domain, as demonstrated in Chapter 7.
The research presented in this thesis is organized into two parts, as outlined in Fig-
ure 1.3. The first part (Chapters 4 and 5) comprises two key studies: one investigat-
ing the reliability of robust models and the other showcasing the signal-processing
advantages achievable through adversarial robustness.

Multifaceted Analysis of Deep Convolutional Neural Networks
and Novel Fourier Modules

Part I: Multifaceted Analysis
of Robust CNNs

Part II: Novel
Fourier Modules

Chapter 4:
Robustness and Reliability

ICML-W’22
NeurIPS’22

Chapter 6:
Aliasing-Free Downsampling

in the Fourier Domain
ECCV’22

Chapter 5:
Robustness and Aliasing

AAAI-W’22
ECML’22

Chapter 7:
Neural Implicit Frequency Filter
TMLR’24 [Featured Certification]

ICLR’25

FIGURE 1.3: Contribution Outline.

The second part (Chapters 6 and 7) focuses on practical implementations in the
Fourier domain derived from the correlations observed in the first part, resulting in
enhanced robustness and efficiency.
Chapter 4, Robust Models are Less Over-Confident This chapter reveals that ad-
versarially robust models, in addition to their robustness, possess a valuable prop-
erty: They are significantly less overconfident compared to their non-robust coun-
terparts. Furthermore, we show that fundamental building blocks play a critical role
in achieving desirable confidence calibration.
Chapter 5, Aliasing and Adversarially Robust Generalization of CNNs This chap-
ter demonstrates that robust models downsample more effectively than non-robust
models, resulting in reduced aliasing after downsampling. To quantify this differ-
ence, we introduce a novel aliasing measure. Additionally, we show that catas-
trophic overfitting in FGSM AT aligns with an increase in aliasing, inspiring the
development of a new early stopping criterion based on our metric.
Chapter 6, Aliasing-Free Downsampling in the Frequency Domain This chap-
ter introduces aliasing-free downsampling methods inspired by the observations in
Chapter 5. Our novel downsampling techniques improve native robustness and en-
hance AT, enabling FGSM AT to converge more effectively by reducing the risk of
catastrophic overfitting.
Chapter 7, Neural Implicit Frequency Filters This chapter introduces Neural Im-
plicit Frequency Filters (NIFFs), which facilitate fast and efficient large convolutions.
Using NIFFs, we investigate optimal kernel sizes in various CNNs and find that the
commonly used 3× 3 kernels are insufficient. However, slightly larger kernels, such
as 9× 9, appear adequate for datasets like ImageNet-1k.

1.3. Publications 9

Chapter 8, Conclusion and Outlook This chapter concludes the thesis by summariz-
ing the key insights and discussing the impact and limitations of our work, followed
by inspiration for future research in three practical directions and a brief general
overview.

Please Note: Throughout this thesis, we refer to the state-of-the-art models avail-
able at the time each individual paper was written. Similarly, the presented results
reflect the status at that time. For completeness, we have, if necessary, add a para-
graph discussing progress in subsequent work that demonstrates advancements in
a similar direction.

1.3 Publications

The following peer-reviewed papers contribute to this thesis:

• Aliasing and Adversarial Robust Generalization of CNNs
Julia Grabinski, Janis Keuper and Margret Keuper
Journal Springer, Machine Learning, presented at ECML 2022
[Grabinski et al. (2022c)]

• Aliasing Coincides with CNNs Vulnerability Towards Adversarial Attacks
Julia Grabinski, Janis Keuper and Margret Keuper
The AAAI-22 Workshop on Adversarial Machine Learning and Beyond 2022,
(Short Paper)
[Grabinski et al. (2022d)]

• Robust Models are Less Over-Confident
Julia Grabinski, Paul Gavrikov, Janis Keuper and Margret Keuper
Advances in Neural Information Processing Systems (NeurIPS) 2022
[Grabinski et al. (2022a)]

• FrequencyLowCut Pooling–Plug & Play against Catastrophic Overfitting
Julia Grabinski, Steffen Jung, Janis Keuper and Margret Keuper
Proceedings of the European Conference on Computer Vision (ECCV) 2022
[Grabinski et al. (2022b)]

• [Featured Certification] As large as it gets: Learning Infinitely Large Filters via
Neural Implicit Functions in the Fourier Domain
Julia Grabinski, Janis Keuper and Margret Keuper
Transactions on Machine Learning Research (TMLR) 2024, presented at ICLR
2025
[Grabinski et al. (2024)]

The following papers contribute to this thesis:

• Fix your Downsampling ASAP! Aliasing and Sinc Artifact-Free Pooling in the
Fourier Domain
Julia Grabinski, Janis Keuper and Margret Keuper
In submission to International Journal of Computer Vision (IJCV)
[Grabinski et al. (2023)]

Additional publications not being part of this thesis:

10 Chapter 1. Introduction

• On the Unreasonable Vulnerability of Transformers for Image Restoration -
and an easy fix
Shashank Agnihotri, Kanchana Vaishnavi Gandikota, Julia Grabinski, Para-
manand Chandramouli and Margret Keuper
Proceedings of the IEEE/CVF International Conference on Computer Vision,
4th Workshop on Adversarial Robustness In the Real World (AROW), ICCV
2023
[Agnihotri et al. (2023)]

• Towards Class-wise Robustness Analysis
Tejaswini Medi, Julia Grabinski and Margret Keuper
[Medi et al. (2023)]

• Improving Feature Stability during Upsampling – Spectral Artifacts and the
Importance of Spatial Context
Shashank Agnihotri, Julia Grabinski and Margret Keuper
Proceedings of the European Conference on Computer Vision (ECCV) 2024
[Agnihotri et al. (2024b)]

• Beware of Aliases–Signal Preservation is Crucial for Robust Image Restoration
Shashank Agnihotri, Julia Grabinski, Janis Keuper and Margret Keuper
[Agnihotri et al. (2024a)]

1.4. Notation 11

1.4 Notation

The following notation is used throughout this thesis:

R the space of real numbers
C the space of complex numbers

F (.) Fourier transform
F−1(.) inverse Fourier transform
j imaginary unit
u frequency
a a constant
τ a distance
T a period
XT Dirac comb with period T
δ Dirac delta function
H(n) Hamming window
β beta, Kaiser window sidelobe attenuation (relative)

⊛ circular convolution
∗ linear convolution
⊙ point-wise multiplication

x input data sample (e.g., an image)
y true label of input x
ŷ predicted label of input x
ẑ prediction confidence for predicted label ŷ
fθ neural network with parameters θ
g(x) feature map within a neural network fθ(x) w.r.t. to input x
G(u) the Fourier transform of g(x)
FΦ neural implicit function parametrised by Φ
J(θ, x, y) loss function (e.g., cross-entropy)

E[X] expectation operator, expected value (or mean) of a random variable X
P probability of an event

x′ adversarially perturbed input
x′n adversarially perturbed input, after n iterations
α alpha, initial perturbation budget for adversarial samples
∆ delta, adversarial perturbation added to x
ϵ epsilon, perturbation budget (attack strength)

13

Chapter 2

Foundations
Contents

2.1 Convolutional Neural Networks . 14
2.1.1 Components . 14
2.1.2 Evaluation Methods . 16
2.2 Adversarial Attacks . 18
2.2.1 Adversarial Training . 19
2.3 Datasets . 19
2.3.1 Low-Resolution Datasets . 19
2.3.2 High-Resolution Datasets . 20
2.4 Digital Signal Processing Fundamentals . 20
2.4.1 Fourier Transform . 21
2.4.2 Fast Fourier Transform . 22
2.4.3 Convolution Theorem . 23
2.4.4 Sampling Theorem . 24
2.4.5 Aliasing . 24
2.4.6 Sinc Interpolation Artifacts . 26
2.4.7 Principal Component Analysis . 27

In this chapter, we first introduce the network architectures utilized in this thesis,
convolutional neural networks (CNNs) and their components. Subsequently, we
outline the evaluation methods relevant to this work, with a particular focus on
assessing robustness through adversarial attacks and explaining the fundamental
principles of adversarial training. Additional details on related work in the field of
adversarial attacks and training methods are provided in Section 3.1. Following, we
introduce the datasets used for evaluation. The final part of this chapter addresses
digital signal processing principles relevant to this work, as we aim to offer a novel
perspective on the signal processing properties of modern CNNs. To this end, we
first present Fourier theory, covering the Fourier Transform, the Fast Fourier Trans-
form, as well as the Convolution and Sampling Theorem. Furthermore, we discuss
various artifacts that may arise e.g. from improper sampling, such as aliasing and
sinc-interpolation artifacts. Lastly, we explain principal component analysis (PCA),
which is employed in Chapter 7 to efficiently visualize kernel weights.

14 Chapter 2. Foundations

2.1 Convolutional Neural Networks

CNNs have been the leading architecture for various vision tasks [LeCun et al.
(1998); Krizhevsky et al. (2012); He et al. (2016a); Liu et al. (2022b)]. In this thesis,
we focus on classification CNNs and thus highlight the key components in the fol-
lowing.

2.1.1 Components

The primary feature of CNNs, as indicated by their name, is the use of convolutions.
Convolutions enable the incorporation of local neighbouring pixels, promoting lo-
cality, and are more efficient due to the shared parameters in the convolution kernel.
Additionally, CNNs encompass other elements, such as downsampling, activation
functions, and fully connected layers. The following sections present the key com-
ponents relevant to this thesis.

Convolution. The convolution ∗ expresses how one function f (x) is changed by
another function g(x). It is defined by the integral over the product of these two
functions where one is shifted by τ:

(f ∗ g)(x) =
∫ ∞

−∞
f (τ)g(x− τ)dτ (2.1)

In CNNs, discrete 2D convolution are commonly applied where a filter or kernel
g, which is a discrete matrix of weights of size l × k, is convolved with a discrete
input image or feature map f of size n×m to obtain the feature map f ′ = f ∗ g:

f ′(i, j) =
⌊l/2⌋

∑
a=−⌊l/2⌋

⌊k/2⌋

∑
b=−⌊k/2⌋

f (i− a, j− b)g(a, b) (2.2)

The filter g slides across the input f , performing element-wise multiplications
and summing the results to produce a single value at coordinate (i, j) in the out-
put feature map. Most CNN architectures primarily use square-shaped kernels g i.e.
l = k [He et al. (2016a); Simonyan & Zisserman (2015); Liu et al. (2022b)] or emulate
them through separated convolutional filters, consisting of filter with shapes l × r
followed by a filter of size r× k [Szegedy et al. (2017); Liu et al. (2023)]. However, it’s
not clear if this is the optimal configuration. With our method proposed in Chapter
7, we provide an analysis of kernels beyond square shapes in Section 7.3.2. Gener-
ally, convolutions allow the network to detect various features, such as edges, tex-
tures, and patterns within the input data. By leveraging spatial hierarchies and local
connectivity, convolutions enable CNNs to effectively capture spatial dependencies
and hierarchical features, making them highly effective for image classification and
other computer vision tasks. However, common CNNs employ small kernels due
to the computational costs of the convolution operation [Sandler et al. (2018)]. In
contrast, we present in Chapter 7 an approach that enables large convolutions with
low computational costs.

Downsampling. To abstract from the localized spatial information and learn higher-
order relations of parts, objects and entire scenes, CNNs apply downsampling oper-
ations to implement a spatial pyramid representation over the network layers. Thus,
the networks can learn local invariant priors and enhance efficiency due to compres-
sion.

2.1. Convolutional Neural Networks 15

Downsampling is typically performed via convolution with stride greater than
one or by so-called pooling layers depicted in Figure 2.1. Convolutions with stride
two are executed following Equation 2.2; however, the kernel g is shifted according
to the stride. The most common pooling layers are AveragePooling and MaxPool-
ing. AveragePooling computes the average in the local neighbourhood of the kernel,
while MaxPooling selects the maximum value in each window. All of these standard
downsampling operations are highly sensitive to small shifts or noise in the layer
input as demonstrated in Chapter 5 and in prior work [Li et al. (2021); Chaman &
Dokmanic (2021); Zhang (2019)].

0

N/2

N/2

standard
downsampling with

stride 2

N

N
27/16

41/8

17/16

17/16 27/16

41/8

N+1

feature map X
size N/2xN/2

N

N

5

3

2

4
2
1
8
4
7

9

2

3

8
1
3
9
5
4

4

2

8

2
3
1
4
3
1

36

6

7

1
1/4

1/16

1/8

1/8

1/16

1/8

1/16

1/8

1/16
4 5

71

0
0
0
0
0
0

0
0
0
0
0
0
0
00

0 0 0 0 0

0 00 00
0

0

feature map X
 size NxN

kernel weightsN+1

standard convolution
3x3 with padding

feature map X
size NxN

(a) Convolution with Stride Two.

0

N/2

N/2

standard
downsampling with

stride 2

N

N
8

9

5

5 8

9

feature map X
size N/2xN/2

n

n

5

3

2

4
2
1
8
4
7

9

2

3

8
1
3
9
5
4

4

2

8

2
3
1
4
3
1

36

6

7

1

4 5

71

0
0
0
0
0
0

0
0
0
0
0
0
0
00

0 0 0 0 0

0 00 00
0

0

feature map X
size NxN

standard
max pooling 3x3

with padding

N+1

N+1

feature map X
size NxN

(b) MaxPooling.

FIGURE 2.1: Standard downsampling operations used in CNNs. (a) Downsampling via
convolution with a stride of two. First, the feature map is padded, and the convolution is
executed. The stride defines the step size of the kernel. Thus, for a stride of two, the kernel
is moved two spatial units at a time. Effectively, this downsampling applies a standard
convolution with a stride of one and discards every second point in the spatial dimension.
(b) Downsampling via MaxPooling. The maximum value for each spatial window location

is selected, and the striding is implemented accordingly.

Activation Function. For a network to learn more complex relations besides lin-
ear transformations, non-linearities or so-called activation functions are introduced.
There is a huge variety of activation functions, however, the most commonly used
one is the Rectified Linear Unit (ReLU). The ReLU function is defined as follows
[Nair & Hinton (2010)]:

16 Chapter 2. Foundations

ReLU(x) =

{
x if x > 0
0 otherwise

(2.3)

Other commonly used activation functions are the Sigmoid Linear Unit (SiLU)
or hyperbolic tangent (Tanh). The SiLU function [Elfwing et al. (2018)] is formulated
as:

SiLU(x) = x · σ(x) (2.4)

where σ(x) is the sigmoid function:

σ(x) =
1

1 + e−x (2.5)

The Tanh function [Rumelhart et al. (1986)] is defined as:

tanh(x) =
ex − e−x

ex + e−x (2.6)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0 ReLU
SiLU
Tanh

FIGURE 2.2: Common Activation Functions. Examples of three different activation func-
tions used in CNNs: ReLU, SiLU and Tanh.

Fully Connected Layer. At the end of each classification CNN, a fully connected
layer is placed to perform the final prediction. By connecting every neuron in one
layer to every neuron in the next, fully connected layers allow the network to com-
bine the spatially distributed features into a comprehensive understanding of the
input, thereby enabling high-level reasoning and leading to accurate predictions.

2.1.2 Evaluation Methods

To evaluate classification models, several performance indicators can be used. The
most common one is accuracy [Deng et al. (2009)].

Accuracy is a fundamental metric used to evaluate the performance of a classifi-
cation model. It is defined as the ratio of the number of correct predictions to the
total number of predictions made. Mathematically, accuracy is expressed as:

accuracy =
correct predictions

total predictions
(2.7)

2.1. Convolutional Neural Networks 17

This metric provides a straightforward measure of how well a model’s predic-
tions align with the true labels. While accuracy is useful for assessing overall per-
formance, it may not always provide a comprehensive estimate of the model’s real-
world effectiveness. Therefore, evaluating a model using additional metrics such
as confidence for reliability or adversarial robustness for out-of-distribution perfor-
mance is essential for the practical deployment of vision classification networks.

Confidence as an evaluation metric for classification tasks with n classes is defined
in this thesis to the model’s prediction value after Softmax. After the fully connected
layer at the end of the network, all final predictions are fed through a Softmax layer,
which is defined as follows:

Softmax(x⃗)i =
exi

∑n
j=1 exj

(2.8)

Thus, these values are commonly interpreted as confidence for each class. The
class with the highest confidence is selected as the final prediction.

Expected Calibration Error (ECE) is defined by [Naeini et al. (2015)] for a model
f with 0 ≤ p < ∞ as

ECEp = E[|ẑ−E[1ŷ=y|ẑ]|p]
1
p (2.9)

where the model f predicts ŷ = y with the confidence ẑ. This can be directly re-
lated to the overconfidence o(f) and under-confidence u(f) of a network as follows
[Wenger et al. (2020)]:

|o(f)P(ŷ ̸= y)− u(f)P(ŷ = y)| ≤ ECEp, (2.10)

where [Mund et al. (2015)]

o(f) = E[ẑ|ŷ ̸= y] u(f) = E[1− ẑ|ŷ = y], (2.11)

I.e. the overconfidence measures the expectation of ẑ on wrong predictions, under-
confidence measures the expectation of 1− ẑ on correct predictions and ideally both
should be zero. The ECE provides an upper bound for the difference between the
probability of the prediction being wrong weighted by the networks overconfidence
and the probability of the prediction being correctly weighted by the networks under-
confidence and converges to this value for the parameter p→ 0 (see Equation 2.9).

Yet, it should be noted that the ECE metric is based on the assumption that net-
works make correct as well as incorrect predictions. A model that always makes
incorrect predictions and is less confident in its few correct decisions than it is in its
many erroneous decisions can end up with a comparably low ECE. Therefore, ECE
values for models with an accuracy below 50% are hard to interpret.

Robustness can be evaluated using several metrics. For this thesis, the primary met-
rics include robustness against common corruptions, pixel shifts, and adversarial at-
tacks. Robustness against common corruptions can be assessed using an ensemble
of sixteen different image distortions [Hendrycks & Dietterich (2019)]. Pixel shift ro-
bustness measures the model’s ability to handle spatial shifts [Zhang (2019)], while
adversarial robustness evaluates the model’s resistance to adversarial attacks. Each
of these metrics is quantified by calculating the accuracy (see Equation 2.7) when the
model is exposed to corrupted or perturbed data.

18 Chapter 2. Foundations

2.2 Adversarial Attacks

As previously introduced, adversarial attacks are one way to evaluate a model’s ro-
bustness to artificially crafted image perturbations. These perturbations are either
crafted given full knowledge about the model’s architecture and weights, so-called
white-box attacks [Goodfellow et al. (2015); Madry et al. (2018)], or without con-
crete knowledge of the network’s weights and limited knowledge of the model’s
architecture, so-called black-box attacks [Andriushchenko et al. (2020)]. Hence, in
a black-box attack scenario, the attacker either needs to query the original model
several times with induced perturbations to estimate the success of the attack [An-
driushchenko et al. (2020)] or uses a surrogate model [Lord et al. (2022)].

For this thesis, the white-box attacks are more relevant as they can be used to
examine model-specific vulnerabilities and test for different components that might
not align with human vision [Madry et al. (2018)].

One of the earliest methods to attack a model in a white-box attack setting is the
Fast Gradient Sign Method (FGSM) [Goodfellow et al. (2015)]. FGSM is a single-step
adversarial attack which produces the perturbed image x′ by adding a perturbation
with strength ϵ in the direction of the gradient of the network sign(∇xJ(θ, x, y)) onto
the original image x with class label y.

x′ = x + ϵ · sign(∇xJ(θ, x, y)) (2.12)

This attack operates under the L∞ norm, meaning that the perturbation is con-
strained such that no individual pixel is altered by more than ϵ, ensuring that the
change remains small but still effective at misleading the model.

Thereby, the image is in a single-step perturbed in the most harmful way, push-
ing the sample away from the true class label and possibly changing the network’s
prediction. This single-step attack can be enhanced to be more harmful by adding
several steps to the generation of x′n called the Basic Iterative Method (BIM) [Kurakin
et al. (2017)]. The starting point of this method is the original image, thus x′0 = x.
For the nth step to obtain the perturbed image x′n, similarly to Equation 2.12 the
perturbation is calculated but with noise level α.

x′n = x′n−1 + α · sign(∇xJ(θ, x′n−1, y)) (2.13)

Afterwards, x′n is clipped to stay within the bounds of ϵ and within the maximum
and minimum pixel intensities where the scalar ϵ is multiplied with the one-vector
1 to match the dimensions of x.

x′n = min(255, x + 1ϵ, max(0, x− 1ϵ, x′n)) (2.14)

Following up, Madry et al. (2018) suggested starting from random noise instead
of zeros for the adversarial noise, as done when x′0 is set to the original images x.
This method is called Project Gradient Descent (PGD).

Similar to FGSM, these iterative attacks operate under the L∞ norm. However,
such attacks can also be adapted to L2 norm, resulting in more spread-out, smooth
perturbations. In contrast, L∞ perturbations introduce small, localized changes across
all pixels, making them harder to detect visually. For this thesis, we mainly focus on
L∞ perturbations.

Multi-step attacks increase the effectiveness of the attack, however, they increase
computational costs depending on the number of steps as later shown in Table 6.7.

2.3. Datasets 19

In Section 3.1, we introduce additional related work, discussing various adversarial
attacks and their distinct properties.

2.2.1 Adversarial Training

Adversarial Training (AT) induces adversarial samples in the network’s training pro-
cess. To adversarially train a network hθ with a given input set S of image and label
pairs (x, y), the following min-max optimization problem must be solved [Goodfel-
low et al. (2015)]:

min
θ

1
|S| ∑

(x,y)∈S
max
||∆||≤ϵ

J(θ, (x + ∆), y) (2.15)

where ∆ is the added perturbation. This AT technique assumes that the at-
tacker has full knowledge of the model’s architecture and weights. The order of
the min-max optimization ensures that the training is as effective as possible, as the
attack, which seeks to maximize the loss, influences the adjustment of the network’s
weights, θ, during the overall minimization process. This basic form of adversarial
training can be modified to incorporate more complex adversaries, additional loss
functions, or supplementary data. In Section 3.1, we provide a more detailed discus-
sion of existing adversarial training methods in related work.

2.3 Datasets

The focus of this thesis lies in classification tasks, which can be evaluated on different
datasets. The datasets presented are categorized into two categories: high- and low-
resolution.

0 100 200

0

50

100

150

200

ImageNet-1k

0 20

0

10

20

30

CINIC-10

0 20

0

10

20

30

CIFAR-10

0 20

0

10

20

30

SVHN

0 10 20

0

10

20

MNIST

FIGURE 2.3: Datasets used in this Thesis. Example images from the different datasets used
in this thesis, arranged from left (easiest problem to solve) to right (hardest problem to solve).
MNIST images have a resolution of 28 × 28 pixels, while SVHN, CIFAR-10, and CINIC-
10 images are 32× 32 pixels. ImageNet images include the standard preprocessing size of

224× 224 pixels.

2.3.1 Low-Resolution Datasets

MNIST [LeCun & Cortes (2010)] is a dataset containing handwritten digits from
zero to nine, which are in grayscale and of size 28 by 28 pixels. The dataset contains
60.000 training samples and 10.000 samples.

Street View House Numbers (SVHN) [Netzer et al. (2011)] contains images from
house digits from Google Street View images. Similar to MNIST, the numbers rep-
resented are from zero to nine, hence, a ten-class problem. In contrast to MNIST, the
images are real-world images and in RGB colours encoded. All images are resized

20 Chapter 2. Foundations

to 32 by 32 pixels. The dataset contains 73.257 digits for training, 26.032 digits for
testing, plus 531.131 additional samples, to use as extra training data.

CIFAR-10 [Krizhevsky (2009)] contains ten classes showing animals and means of
transportation; each image is coloured and of size 32 by 32 pixels. The dataset con-
tains 50.000 training images and 10.000 testing images, with each class being equally
represented.

CIFAR-100 [Krizhevsky (2009)] shares similar characteristics with CIFAR-10, but in-
stead of 10 classes, it contains 100. Each class has 500 training images and 100 testing
images.

CINIC-10 [Darlow et al. (2018)] is similar to CIFAR-10 with the same classes. How-
ever, it has 4.5 times more images than CIFAR-10, 270.000, as it should bridge CIFAR-
10 and ImageNet in the sense of available image data. Each subset, training, valida-
tion and test contains 90.000 images.

2.3.2 High-Resolution Datasets

ImageNet-1k [Deng et al. (2009)] represents 1000 object classes. The images are dom-
inantly real-world images of varying sizes and different qualities. The standard pre-
processing [Szegedy et al. (2015)] of ImageNet-1k includes resizing of 256 by 256
pixels and centered cropping to 224 by 224 pixels. The dataset contains 1.281.167
training images, 50.000 validation images and 100.000 test images.

ImageNet-100[Deng et al. (2009)] is a subset of ImageNet-1k and contains only 100
selected classes instead of 1000.

2.4 Digital Signal Processing Fundamentals

Signal processing is a field of engineering and applied mathematics that focuses
on analysing, modifying, and extracting useful information from signals. A signal
is any time-varying or spatially varying quantity that conveys information such as
audio, images or sensor data.

In the context of machine learning, signal processing plays a crucial role in trans-
forming raw data into meaningful features that improve model performance. Tech-
niques like filtering via convolution, Fourier transforms and wavelet analysis help
reduce noise, enhance patterns, and compress data, making it easier for machine
learning algorithms to detect trends, classify information, and make predictions [Li
et al. (2020); Rao et al. (2021)]. In this thesis, we want to emphasize not only the
use of signal processing techniques to enhance neural network predictions but also
reveal that operations within our networks violate basic signal processing funda-
mentals. Thus, we suggest improving at this end to make our models more robust
and reliable for use in real-world applications.

In the following, we revisit some of the digital signal processing fundamentals
used in this thesis to analyse and improve our current deep convolutional neural
networks.

2.4. Digital Signal Processing Fundamentals 21

2.4.1 Fourier Transform

The Fourier transform (FT), F , transforms a signal from the spatial or temporal do-
main to the frequency domain. The spatial function f (x) to be transformed must fol-
low the Dirichlet conditions. It must be absolutely integrable over the entire real line
and sufficiently smooth i.e. shouldn’t have too many oscillations or abrupt changes
and a finite number of discontinuities, maxima and minima within a given interval
such that the integral converges. If the spatial signal is periodic, it can be repre-
sented as a sum of sine and cosine functions of different frequencies u in the Fourier
domain. Otherwise, if the function f (x) is non-periodic in the spatial domain, it’s
FT F (f (x)) denoted as F(u) is defined as follows [Bracewell & Kahn (1966)]:

F{ f (x)} = F(u) =
∫ ∞

−∞
f (x)e−j2πuxdx (2.16)

The inverse FT F(u) F
−1

−−→ f (x) is given by:

F−1{F(u)} = f (x) =
∫ ∞

−∞
F(u)ej2πxudu (2.17)

However, in computer vision, most analogue continuous signals are discretized
to store and work with them in an efficient manner. Hence, the signals used in
this thesis are predominantly discrete, for which the discrete Fourier transformation
(DFT) needs to be applied.

The DFT F(k) with discrete frequencies k for a periodic, one dimensional signal
f (n) with N samples is defined as:

F(k) =
N−1

∑
n=0

f (n)e−j2πkn/N , (2.18)

The inverse transformation is given by:

f (n) =
1
N

N−1

∑
k=0

F(k)ej2πkn/N , (2.19)

The DFT assumes periodicity, thus, it is assumed that the signal is repeated peri-
odically to perform the DFT [Arfken (1985)].

The signals used in computer vision are mainly images, which are two-dimensional
or scene volumes or videos, which can be three- or higher-dimensional. A n-dimensional
discrete Fourier transform is a cascade of one-dimensional Fourier transforms [Op-
penheim (1999); Bracewell & Kahn (1966)].

For the transformation of two-dimensional signals e.g. for images, the 2D DFT
F(k, l) of a input signal f (n, m) of size N ×M is defined as follows:

F(k, l) =
M−1

∑
m=0

N−1

∑
n=0

f (n, m)e−j2π(kn
N + lm

M), (2.20)

The 2D inverse DFT is given by:

f (n, m) =
1

NM

M−1

∑
l=0

N−1

∑
k=0

F(k, l)ej2π(kn
N + lm

M), (2.21)

22 Chapter 2. Foundations

2.4.2 Fast Fourier Transform

The direct computation of the DFT requires O(N2) operations. To address this inef-
ficiency, Cooley & Tukey (1965) introduced the Fast Fourier Transform (FFT), which
leverages a divide-and-conquer strategy to reduce the computational complexity to
O(NlogN).

The FFT exploits the inherent symmetry that arises from the periodic nature of
the transformed signal. To provide an intuitive understanding of this symmetry,
consider the signal shifted by N as follows:

F(k + N) =
N−1

∑
n=0

f (n)e−j2π(k+N)n/N ,

=
N−1

∑
n=0

f (n)e−j2πne−j2πkn/N ,

=
N−1

∑
n=0

f (n)e−j2πkn/N ,

(2.22)

as ej2πn = 1 for any integer n. Thus

F(k + N) = F(k) (2.23)

and also

F(k + iN) = F(k) (2.24)

hold for any integer i.
Given this symmetry, [Cooley & Tukey (1965)] partition the DFT into smaller

components, enabling its computation through a divide-and-conquer approach. Fol-
lowing, the DFT is reorganized into two parts:

F(k) =
N−1

∑
n=0

f (n)e−j2πkn/N

=
N/2−1

∑
m=0

f (2m)e−j2πk2m/N

+
N/2−1

∑
m=0

f (2m + 1)e−j2πk(2m+1)/N

=
N/2−1

∑
m=0

f (2m)e−j2πkm/(N/2)

+ e−j2πk/N
N/2−1

∑
m=0

f (2m + 1)e−j2πkm/(N/2)

(2.25)

Each part represents the even-numbered and odd-numbered values, respectively.
However, the runtime is still the same as each term consists of O(N

2 N) computations,
in total still O(N2).

Luckily, this division into two parts can be continued in each part again. Hence,
the range of k is 0 ≤ k ≤ N while m is now in the range of 0 ≤ m ≤ M where
M = N/2. Thus, solving the problem only takes half of the computations as before,
O(N2) becomes O(M2) where M is half the size of N. As long as M is even-valued,

2.4. Digital Signal Processing Fundamentals 23

the problem can be divided again into smaller parts. Applying this divide-and-
conquer strategy in a recursive implementation takes only O(NlogN).

2.4.3 Convolution Theorem

In Chapter 7, we apply convolutions not only within the common framework of
CNNs but also in the frequency domain. To establish this connection, we introduce
the convolution theorem, which explains the relationship between convolution in
the spatial domain and convolution in the frequency domain. The convolution the-
orem [Bracewell & Kahn (1966); Forsyth & Ponce (2003)] states that a convolution,
denoted by ∗, between a signal g(x) and filter k(x) in the spatial domain can be
equivalently represented by a point-wise multiplication, denoted by ⊙, of these two
signals in the frequency domain, by computing their FT, denoted by the function
F (.):

F (g ∗ k) = F (g)⊙F (k) (2.26)

with

F (g)(u) = G(u) =
∫ ∞

−∞
g(x)e−j2πuxdx (2.27)

This holds because the Fourier transformation as a system has specific properties
when the signal is shifted. According to the shifting property of Fourier transform,
if a function g(x) is shifted by a in the spatial domain expressed by g(x − a), this
results in a linear phase shift in the Fourier domain:

F (g(x− a)) = e−j2πuaG(u) (2.28)

By leveraging this shift property of the FT, the convolution theorem can be estab-
lished. The continuous convolution is defined as follows:

(g ∗ k)(y) =
∫ ∞

−∞
g(x)k(y− x)dx (2.29)

The Fourier transformation of (g ∗ k)(y) is defined by:

F (g ∗ k)(u) =
∫ ∞

−∞

[∫ ∞

−∞
g(x)k(y− x)dx

]
e−j2πuydy (2.30)

By reversing the order, the integration becomes:∫ ∞

−∞
g(x)

[∫ ∞

−∞
k(y− x)e−j2πuydy

]
dx (2.31)

where g(x) can be factored out of the inner integral. Given the shift property, the
inner integral can be expressed as:∫ ∞

−∞
k(y− x)e−j2πuydy = F (k(y− x)) = e−j2πuxK(u) (2.32)

Substituting this result, we obtain:

24 Chapter 2. Foundations

∫ ∞

−∞
g(x)

[∫ ∞

−∞
k(y− x)e−j2πuydy

]
dx

=
∫ ∞

−∞
g(x)e−j2πuxK(u)dx

=

[∫ ∞

−∞
g(x)e−j2πuxdx

]
K(u)

= G(u)K(u) = F (g)(u)F (k)(u),

(2.33)

which demonstrates that, for all spatial frequencies u, the Fourier transform of the
convolution is given by:

F (g ∗ k)(u) = F (g)(u)⊙F (k)(u). (2.34)

For further details on this topic, we refer the reader to [Bracewell & Kahn (1966);
Forsyth & Ponce (2003)].

Circular Convolutions vs. Linear Convolution. Applying a point-wise multiplica-
tion to a discrete signal (i.e. the signal is sampled) in the frequency domain translates
to a circular convolution, denoted by ⊛, in the spatial domain due to the sampling
theorem introduced in Section 2.4.4. Yet, CNNs apply linear convolution, denoted
by ∗, and not circular convolutions. A circular convolution can approximate the lin-
ear convolution by zero-padding the input g with size M and the kernel k with size
N to length L ≤ M + N − 1 [Winograd (1978)]. We use this property in Chapter 7 to
establish a fair comparison of standard CNN kernels and our proposed kernels.

2.4.4 Sampling Theorem

Sampling in the spatial domain is a pointwise multiplication with Dirac comb, which
is a periodic function [Shannon (1949)]:

XT(t) :=
∞

∑
i=−∞

δ(t− iT) (2.35)

with period T and a integer factor of i. The equivalent for this function in the
Fourier domain is similarly a Dirac comb but with period 1/T.

F (XT(u)) :=
∞

∑
i=−∞

δ(u− i
1
T
) (2.36)

The Dirac impulse comb behaves such that as T increases in the spatial domain,
the distance between each Dirac impulse in the Dirac comb in the frequency domain
decreases. Following the convolution theorem introduced in Section 2.4.3, sampling
in the spatial domain corresponds to a convolution with the transformed impulse
comb in the frequency domain. This leads to replica of the original signal, which
overlap if T is too large. This is referred to as aliasing.

2.4.5 Aliasing

Aliasing is a distortion that occurs when a signal is sampled at a rate that is too low
to accurately capture its frequency content i.e. the sampling rate fs which is inverse
proportional to the sampling period Ts = 1/ fs is too low. Specifically, if the sampling
rate fs is less than twice the highest frequency component present in the signal umax

2.4. Digital Signal Processing Fundamentals 25

Oversampled Signal
sampling frequency

Continous Signal in
the Fourier domain

000

Aliasing

Undersampled Signal
sampling frequency

FIGURE 2.4: Aliasing Theory Left: The frequency spectrum of a continuos 1D signal with
maximum frequency, umax. After sampling, replicas of the signal appear at distances us
which is inverse proportional to the sampling rate fs. Center: The spectrum after sampling
with a sufficiently high sampling rate and sampling frequency. Right: The spectrum after

under-sampling with aliases due to overlapping replicas.

known as the Nyquist rate 2umax then higher frequencies in the original signal will
appear as lower frequencies in the sampled signal [Shannon (1949)]. Thus multiple
high-frequency sinusoids can produce the exact same sampled values as a lower-
frequency sinusoid, making them indistinguishable after sampling. Following the
sampled signal Xs is obtained by convolving the original signal X(u) with S(u) =
F (XT)(u):

Xs(u) = X(u) ∗ S(u) =
∞

∑
i=−∞

X(u− i fs) (2.37)

Demonstrating that in the spectrum of the original signal X(u) is replicated at
integer multiples of the sampling frequency fs. Aliasing thus occurs when these
replicated spectral copies overlap i.e. fs ≤ 2umax causing higher frequencies to be
"folded back" and superimposed onto lower frequencies as demonstrated in Figure
2.4.

In the spatial domain, these aliasing artifacts become visible as grid artifacts, as
shown in Figure 6.1 in Chapter 6. We relate aliasing after downsampling and ro-
bustness of CNNs in Chapter 5 and propose aliasing-free downsampling in Chapter
6.

rectangle function rectangle functionhamming window hamming window

Spatial DomainFourier Domain

FFT

IFFT

1/ 1/

FIGURE 2.5: Sinc interpolation Artifacts Theory. Transformation of the rectangle function
(black), the Hamming window (blue), and the point-wise multiplication of these two (red,
dashed) from the Fourier domain (left) to the spatial domain (right). The rectangle function
transforms into an infinite sinc function with infinite oscillations. In contrast, the side lobes
of the Hamming window become nearly zero. Thus applying a Hamming window on the
rectangle function in the Fourier domain results in a suppressed version of the sinc function

in the spatial domain, with reduced oscillating side lobes.

26 Chapter 2. Foundations

2.4.6 Sinc Interpolation Artifacts

While aliasing is the most commonly referred artifact in computer vision [Vascon-
celos et al. (2021); Karras et al. (2021)], other kinds of spectral leakage artifacts also
exist, such as sinc interpolation artifacts. They appear as soon as a rectangle function
is applied in the Fourier domain. The rectangle function ∏ in the Fourier domain is
defined as follows:

rect(u, τ) = ∏
(

u
2/τ

)
=

{
1 for |u| ≤ 1/τ

0 otherwise
(2.38)

with a length of 2/τ as shown in Figure 2.5 (left) within the interval [−1/τ, 1/τ].
The equivalent of this rectangle function is a sinc function in the spatial domain,
as shown in Figure 2.5 (right). This rectangle function in the Fourier domain corre-
sponds to the following sinc function f (x, τ) in the spatial domain, which depends
on τ:

f (x, τ) = F−1
[
∏
(

u
2/τ

)]
=

2
τ

sinc
(

2πx
τ

)
(2.39)

Subsequently, the rectangle-function ∏
(

u
2/τ

)
can be introduced within the inte-

gration limits of [−1/τ, 1/τ]:

f (x, τ) = F−1
[
∏
(

u
2/τ

)]
=
∫ 1/τ

−1/τ
1 · ej2πuxdu

=
1

j2πx

[
ej2πux

]1/τ

−1/τ

=
1

j2πx
(ej2π x

τ − e−j2π x
τ)

=
1

πx
ej2π x

τ − e−j2π x
τ

2j

=
1

πx
sin
(

2πx
τ

)
=

2
τ

sin(2πx
τ)

2πx
τ

=
2
τ

sinc
(

2πx
τ

)

(2.40)

Hence, the sinc interpolation artifacts are proportional to the chosen size of τ. We
revisit in Section 6.2.3 that these sinc interpolation artifacts can arise from the appli-
cation of our proposed FreqeuncyLowCut Pooling and propose to apply a Hamming
window for mitigation.

2.4. Digital Signal Processing Fundamentals 27

2.4.7 Principal Component Analysis

The Principal Component Analysis (PCA) [Jolliffe (1986)] is a widely used dimen-
sionality reduction technique that transforms high-dimensional data into a lower-
dimensional representation while preserving as much variance as possible. One key
aspect of the PCA is that it transforms a dataset with many possibly correlated vari-
ables into a new set of linearly uncorrelated variables, the principal components,
which are orthogonal to each other. The first principal component captures the
largest amount of variance in the data, thereby representing the most significant
trend or underlying pattern. To accurately calculate PCA, the data x with data points
i and features j is first standardized.

x′ij =
xij − µj

σj
(2.41)

This step is crucial as PCA identifies directions of maximum variance, and un-
standardized features with larger scales would disproportionately influence the com-
ponents, potentially confusing true underlying relationships. After standardization
the covariance matrix Σjk is calculated.

Σjk =
1

N − 1

N

∑
i=1

(xij − µj)(xik − µk) (2.42)

Further, the eigenvectors v and eigenvalues λ of the covariance matrix of the
data are computed, identifying the directions (principal components) along which
the data exhibits the greatest variance.

Σv = λv (2.43)

The eigenvectors represent the directions in which the data varies the most, while
the explained variance, given by the corresponding eigenvalues, quantifies the pro-
portion of the total variance captured by each eigenvector. Following, the principal
components are ordered by the magnitude of their eigenvalues. A scree plot can
then be employed to determine the optimal number, k, of components to retain.
Lastly, the standardized data is projected onto the new, lower-dimensional subspace
by multiplying it with the matrix formed by the top-k selected principal compo-
nents. For more details on PCA, we refer to [Dunteman (1989)]. By projecting the
data onto these principal components, PCA reduces redundancy and noise, making
it particularly useful for aggregation, compression and feature extraction. We uti-
lize the compression property of PCA in Section 7.3 to visualize the structure of the
learned kernel weights in an aggregated manner.

29

Chapter 3

Related Work
Contents

3.1 Robustness . 30
3.1.1 Common Corruptions . 30
3.1.2 Downsampling Attacks . 31
3.1.3 Adversarial Attacks . 31
3.1.4 Adversarial Training . 32
3.2 Confidence Calibration . 34
3.3 Frequency Domain for Image Classification 35
3.3.1 Frequency Analysis for Robustness and Attack Detection 35
3.3.2 Aliasing in CNNs . 36
3.3.3 Spectral Leakage Artifacts in CNNs . 36
3.3.4 Training CNNs in the Frequency Domain 37
3.4 Dynamic and Steerable Filters . 38
3.4.1 Large Kernel Sizes . 39
3.4.2 Neural Implicit Representations . 39

In this section, we discuss related work relevant to this thesis. First, we explore the
field of robustness, emphasising its significance and methods for enhancing robust-
ness in computer vision networks. We outline different settings with which robust-
ness can be measured, starting with image corruptions, which might occur due to
bad weather conditions or wrong camera settings, followed by downsampling at-
tacks. A downsampling attack embeds an image within a higher-resolution image,
relying on the fact that preprocessing pipelines typically rescale input images. Sub-
sequently, we discuss adversarial attacks and adversarial training particularly rele-
vant for our analysis presented in Chapters 4 and 5, which both reveal interesting
properties of adversarially trained networks. Further, in Chapter 6, we introduce
two novel downsampling approaches that enhance robustness. Next, we provide
an overview of confidence calibration, as we demonstrate in Chapter 4 a close con-
nection between robustness and calibration. Furthermore, we delve into the use of
frequency representations in modern computer vision, particularly in the context of
aliasing and other spectral artifacts, which are closely tied to the inherent robustness
of networks as we show in Chapters 5 and 6. Additionally, we discuss the training of
convolutional neural networks (CNNs) in the frequency domain, which has shown
potential for developing more efficient networks. Finally, we examine dynamic and
steerable filters, achievable through convolutions in the frequency domain, as pre-
sented in Chapter 7.

30 Chapter 3. Related Work

3.1 Robustness

Robustness involves several perspectives. Generally speaking, a network should be
robust against changes in the input that would not cause a human to change their
prediction [Madry et al. (2018)]. For example, small pixel changes in an input image
should not affect the model’s prediction [Zhang (2019)]. Similarly, a sticker covering
only a small part of the input should not be able to deceive the network [Brown et al.
(2018)]. However, state-of-the-art vision models remain vulnerable to small changes
in the input, leading to unreliable and untrustworthy outcomes, which makes them
unsuitable for real-world tasks. In the following, different approaches are described
to test and enhance a network’s robustness.

Clean Image Gaussian Noise Shot Noise Impulse Noise Speckle Noise

Defocus Blur Glass Blur Zoom Blur Motion Blur Gaussian Blur

Frost Fog Snow Brightness Saturate

Contrast Elastic Transform Pixelate JPEG Compression Spatter

FIGURE 3.1: Example of Common Corruption. Example of the different Common Corrup-
tions types [Hendrycks & Dietterich (2019)] with severity four applied on one image of a

ladybug from the validation set of ImageNet-1k [Deng et al. (2009)].

3.1.1 Common Corruptions

One aspect of assessing the robustness of CNNs involves evaluating their resilience
against common corruptions caused by factors such as diverse weather conditions,
varying lighting conditions, or subpar camera quality. To measure this kind of ro-
bustness, the widely recognized ImageNet-C dataset is utilized [Hendrycks & Diet-
terich (2019)]. This dataset aims to simulate real-world scenarios through synthetic
means a few examples of these corruptions are depicted in Figure 3.1

Approaches that improve upon this form of robustness often employ data aug-
mentation techniques [Hendrycks et al. (2020); Cubuk et al. (2019)], include shape

3.1. Robustness 31

biasing [Geirhos et al. (2019)], or combine adversarial training (AT) with augmenta-
tions [Kireev et al. (2022)]. Another approach by Vasconcelos et al. (2021) uses non
trainable low-pass filters to reduce aliasing in the network.

With a similar viewpoint regarding aliasing, we demonstrate in Chapter 6 that
instead of suppressing aliasing, guaranteeing aliasing-free downsampling results in
higher performance and improved robustness against common corruptions com-
pared to Vasconcelos et al. (2021).

3.1.2 Downsampling Attacks

Xiao et al. (2017) demonstrated the effectiveness of downsampling attacks, which
modify images such that their original size exceeds the network’s input limits, ne-
cessitating downsampling during preprocessing. This process allows an entirely
different image to be embedded within the larger one, becoming apparent only after
downsampling and determining the predicted class label. Subsequently, Lohn (2020)
and Kim et al. (2021a) revisited this issue, proposing various defense mechanisms
against such attacks, as they remain feasible due to vulnerabilities in downscaling
within common Python libraries like TensorFlow and OpenCV [Lohn (2020)]. These
attacks underscore the critical role of downsampling in computer vision, emphasis-
ing the need for careful handling. In Chapter 5, we demonstrate the close connection
between improper downsampling and robustness. Furthermore, in Chapter 6, we
propose an improved downsampling method that ensures aliasing-free processing,
thereby enhancing the robustness of models.

3.1.3 Adversarial Attacks

In contrast to common corruptions and downsampling attacks, which involve fixed
alterations applied to the dataset, adversarial attacks exploit network-specific vul-
nerabilities. These attacks are crafted to deceive a network and can operate under
varying conditions. Designed "to measure progress of machine learning algorithms
towards human-level abilities" [Madry et al. (2018)], adversarial attacks are often
imperceptible to humans but significantly alter the model’s predictions. Adversarial
attacks can be categorized along two dimensions: (1) white-box vs. black-box, and
(2) targeted vs. untargeted. In a white-box attack scenario [Goodfellow et al. (2015);
Madry et al. (2018); Croce & Hein (2021); Kurakin et al. (2017)], the attacker has full
access to the network’s architecture and weights. Conversely, in a black-box attack
[Andriushchenko et al. (2020)], the attacker only has access to the network’s out-
puts, making the attack more challenging. Targeted attacks aim to manipulate the
model’s prediction towards a specific class label, whereas untargeted attacks aim
to misclassify the input into any class other than the true class. In this thesis, we
primarily focus on untargeted, white-box attacks due to their relevance in revealing
network-specific vulnerabilities.

One well-known white-box attack is the Fast Gradient Sign Method [Goodfellow
et al. (2015)], FGSM, mathematically described in Section 2.2, is an efficient single-
step attack. Thus, FGSM is fast to compute, yet not as effective as other methods.
More effective attacks use multiple optimization steps, e.g. as in the white-box Pro-
jected Gradient Descent (PGD) [Madry et al. (2018)], Basic Iterative Method (BIM)
[Kurakin et al. (2018)], DeepFool (DF) [Moosavi-Dezfooli et al. (2016)], Carlini and
Wagner (CW) [Carlini & Wagner (2017)] or Decoupling Direction and Norm (DDN)
[Rony et al. (2019)].

32 Chapter 3. Related Work

On the other hand, black-box attacks do not have access to the model’s weights
and thus not to the gradients of the models. Hence, they are often developed on
surrogate models [Chen et al. (2017); Ilyas et al. (2018); Tu et al. (2019)] to reduce
interaction with the attacked model in order to prevent threat detection. In gen-
eral, though, these attacks are less powerful due to their limited access to the target
networks.

Measuring Robustness Against Adversarial Attacks. While each attack can be
used to evaluate the robustness of a model by exposing it to specific attacks and
measuring its accuracy on prediction tasks, several hyperparameters must be care-
fully selected. These include the choice of attack, the attack’s strength, determined
by the attack budget ϵ, the attack norm, and other settings e.g. the number of attack
iterations for more specific attacks like PGD [Madry et al. (2018)] or BIM [Kurakin
et al. (2018)]. We discuss these settings more in-depth in Section 2.2. To establish a
standardized evaluation framework, Croce & Hein (2020a) introduced AutoAttack,
an ensemble of multiple attacks. AutoAttack includes two versions of adaptive PGD
(APGD) [Croce & Hein (2021)], one targeted and one untargeted, the fast adaptive
boundary attack (FAB) [Croce & Hein (2020b)], and Squares [Andriushchenko et al.
(2020)]. Due to its strong performance and comprehensive approach, AutoAttack is
widely used to benchmark adversarial robustness and is featured in RobustBench
[Croce et al. (2021)]. We use this benchmark in Chapters 4, 5 and 6 to ensure compa-
rability with state-of-the-art.

Establish Robustness Against Adversarial Attacks. To ensure adversarial robust-
ness, two main approaches can be employed. The first approach focuses on design-
ing networks that exhibit higher native robustness through architectural modifica-
tions as proposed in Chapter 6 for downsampling, in [Dai et al. (2022)] for activation
functions or in [Rodríguez-Muñoz & Torralba (2022)] for complete layers. The sec-
ond approach involves adversarial training, which is discussed in the following.

3.1.4 Adversarial Training

AT [Goodfellow et al. (2015); Rony et al. (2019); Wong et al. (2020)] exposes the net-
work to adversarial examples during training. The adversarial samples are incor-
porated by introducing an additional loss term during network training [Engstrom
et al. (2019); Zhang et al. (2019b)]. For the mathematical formulation, we refer to Sec-
tion 2.2. Further, additional training data [Rebuffi et al. (2021); Gowal et al. (2021a);
Carmon et al. (2019a); Sehwag et al. (2022); Gowal et al. (2021b); Wang et al. (2020b)]
can be utilized, particularly the ddpm dataset [Gowal et al. (2021b); Rade & Moosavi-
Dezfooli (2021); Rebuffi et al. (2021)], which consists of one million extra samples for
CIFAR-10 and is generated using the model proposed by Ho et al. (2020). Data aug-
mentation has also proven to enhance adversarial robustness [Gowal et al. (2021a)],
and combining it with weight averaging further improves performance [Rebuffi
et al. (2021)]. Some more advanced techniques involve adding specifically gener-
ated images to the training dataset [Gowal et al. (2021b)]. ? observed that the per-
formance depends on the models’ capacity. High-capacity models are able to fit
the (adversarial) training data better, leading to increased robust accuracy. Later
research investigated the influence on increased model width and depth [Gowal
et al. (2021a); Xie & Yuille (2020)], and quality of convolution filters [Gavrikov &
Keuper (2022)]. Consequently, the best-performing entries on RobustBench [Croce
et al. (2021)] often use Wide-ResNet-70-16s or even larger architectures. Besides this

3.1. Robustness 33

trend, concurrent works also started to additionally modify specific building blocks
of CNNs [Dai et al. (2022); Rodríguez-Muñoz & Torralba (2022)]. We show in Section
6.3.3 that weaknesses in simple AT, like FGSM, can be overcome by improving the
network’s downsampling operation.

While AT is quite effective, it comes with a major drawback: the vast increase in
computational resources required for training. Generating adversaries during train-
ing alone can increase training time by a factor of seven to fifteen [Madry et al. (2018);
Wang et al. (2020b); Wu et al. (2020); Zhang et al. (2019b)] due to the additional for-
ward and backward computations needed for each attack step. Adding additional
data or generating new images [Gowal et al. (2021b)] further amplifies the computa-
tional burden. Further, the slower convergence due to the harder learning problem
typically increases the training time [Kurakin et al. (2018); Madry et al. (2018); Wang
et al. (2020b); Zhang et al. (2019b)].

Therefore, utilizing an efficient adversary-generating method without the need
for additional data is preferable. FGSM [Goodfellow et al. (2015)] introduced for-
mally in Section 2.2, is a single-step attack and thus is more efficient than more com-
plex, multi-step methods like PGD [Madry et al. (2018)]. In common settings, this
iterative process of PGD takes nearly nine times (Table 6.7) longer than simple FGSM
training. However, FGSM training is susceptible to catastrophic overfitting [Wong
et al. (2020)].

Catastrophic Overfitting in FGSM AT. AT with single-step FGSM is a simple ap-
proach to achieve basic adversarial robustness [Chen et al. (2021a); Rice et al. (2020)]
(described in Section 2.2 in detail). Unfortunately, the robustness of this approach
against stronger attacks like PGD is starting to drop after a certain number of train-
ing epochs. Wong et al. (2020) called this phenomenon catastrophic overfitting. They
concluded that single-step adversarial attacks tend to overfit to the chosen adver-
sarial perturbation magnitude (given by ϵ) but fail to be robust against multi-step
attacks like PGD. Thus, Rice et al. (2020) introduced early stopping as a counter-
measure. After each training epoch, the model is evaluated on a small portion of
the dataset with a multi-step attack, which again increases the computation time.
As soon as the accuracy drops compared with a hand-selected threshold, the model
training is stopped. Further, Chen et al. (2021a) suggested preventing overfitting by
forcing the network to learn smoothly during AT. Therefore, they perform stochastic
weight averaging as well as smoothing of the logits. Kim et al. (2021b) and Stutz
et al. (2021) showed that the observed overfitting is related to the flatness of the loss
landscape. They introduced a method to compute the optimal perturbation length
ϵ′ for each image and do single-step FGSM training with this optimal perturbation
length to prevent catastrophic overfitting. Andriushchenko & Flammarion (2020)
showed that catastrophic overfitting not only occurs in deep neural networks but
can also be present in single-layer convolutional neural networks. They propose a
new kind of regularization, called GradAlign, to improve FGSM perturbations and
flatten the loss landscape to prevent catastrophic overfitting. We demonstrate in Sec-
tion 5.3.4 that catastrophic overfitting can be efficiently mitigated by introducing a
novel early stopping criteria based on our proposed aliasing measure. Further, we
replace standard downsampling with our aliasing-free downsampling to inherently
boost the network’s robustness and reduce the risk of overfitting in Chapter 6.

Adversarial Attack Detection. A practical defense, besides AT, can also be estab-
lished by the detection and rejection of malicious input. Most detection methods are

34 Chapter 3. Related Work

based on input sample statistics [Hendrycks & Gimpel (2017); Li & Li (2017); Harder
et al. (2021); Feinman et al. (2017); Grosse et al. (2017)], while others attempt to detect
adversarial samples via inference on surrogate models, yet these models themselves
might be vulnerable to attacks [Cohen et al. (2020); Metzen et al. (2017)]. While all of
these approaches perform additional operations on top of the model’s prediction, we
show that simply taking the model’s output after Softmax as prediction confidence
can be used as a heuristic to reject erroneous samples in Chapter 4.

Adversarial Training and Calibration. Only a few but notable prior works, such
as [Lakshminarayanan et al. (2017); Qin et al. (2021)] have investigated adversarial
training with respect to model calibration. Without providing a systematic overview,
Lakshminarayanan et al. (2017) showed that AT can help to smoothen the predic-
tion distributions of CNN models. Qin et al. (2021) investigated adversarial data
points generated using [Carlini & Wagner (2017)] with respect to non-robust mod-
els and find that easily attackable data points are badly calibrated while adversar-
ial models have better calibration properties. In contrast, we analyse the robust-
ness and calibration of pairs of robust and non-robust versions of the same models
in Section 4.2 rather than investigating individual data points. Tomani & Buettner
(2021) introduced an adversarial calibration loss to reduce the calibration error. Fur-
ther, Stutz et al. (2020) proposed confidence-calibrated adversarial training to force
adversarial samples to show uniform confidence, while clean samples should be
one-hot encoded. Complementary to RobustBench [Croce et al. (2021)], Chapter
4 provides an analysis of the predictive confidences of adversarially trained, ro-
bust models. Further, we released the conventionally trained counterparts of the
models from RobustBench [Croce et al. (2021)] in https://github.com/GeJulia/
robustness_confidences_evaluation to facilitate future research on the analysis of
the impact of training schemes versus architectural choices. Importantly, this pro-
posed large-scale study allows a differentiated view of the relationship between ro-
bustness and model calibration, as discussed in Section 4.2. In particular, the adver-
sarially trained models are not always better calibrated than vanilla models, partic-
ularly on clean data, while they are consistently less overconfident.

3.2 Confidence Calibration

For many models that perform well w.r.t standard benchmarks, it has been argued
that the model accuracy may be an insufficient metric [Amodei et al. (2016); De-
Groot & Fienberg (1983); Corbière et al. (2019); Varshney & Alemzadeh (2017)], in
particular when real-world applications with potentially open-world scenarios are
considered. In these settings, reliability must be established, which can be quantified
by the prediction confidence [Ovadia et al. (2019)]. Ideally, a reliable model would
provide high-confidence predictions on correct classifications and low-confidence
predictions on false ones [Corbière et al. (2019); Nguyen et al. (2015)]. However,
most networks are not able to instantly provide a sufficient calibration. Most com-
mon CNNs are overconfident [Lakshminarayanan et al. (2017); Guo et al. (2017);
Nguyen et al. (2015)]. Moreover, the most dominantly used activation in modern
CNNs [He et al. (2016a); Szegedy et al. (2015); Simonyan & Zisserman (2015); Huang
et al. (2017a)] remains the ReLU function, while it has been pointed out by Hein et al.
(2019) that the ReLU operation causes a general increase in the models’ prediction
confidences, regardless of the prediction validity. This is also the case for the vast

https://github.com/GeJulia/robustness_confidences_evaluation
https://github.com/GeJulia/robustness_confidences_evaluation

3.3. Frequency Domain for Image Classification 35

majority of the adversarially trained models considered in Section 4.2.2, except for
the model by Dai et al. (2022) to which particular attention is devoted.

Other methods to improve calibration are based on additional loss functions
[Lakshminarayanan et al. (2017); Gurau et al. (2018); Moon et al. (2020); Li & Hoiem
(2020); Hein et al. (2019)], on adaptions of the training input by label smoothing
[Szegedy et al. (2016); Reed et al. (2014); Müller et al. (2019); Qin et al. (2021)] or on
data augmentation [Zhang et al. (2018); DeVries & Taylor (2017); Lakshminarayanan
et al. (2017); Thulasidasan et al. (2019)]. Further, [Ovadia et al. (2019)] presents a
benchmark on classification models regarding model accuracy and confidence un-
der dataset shift.

3.3 Frequency Domain for Image Classification

The frequency domain has been utilized for various purposes in modern image clas-
sification [Yin et al. (2019); Saikia et al. (2021); Pratt et al. (2017)]. It provides deeper
insights into the data, enabling the detection of noise applied to the data, such as that
introduced by adversarial attacks [Harder et al. (2021); Hossain et al. (2023); Bern-
hard et al. (2021); Wang et al. (2020a)]. This makes it an effective tool for identifying
attacks and even enhancing robustness, as presented in Chapter 6. Additionally, the
convolution theorem, facilitated in Chapter 7, allows for more efficient and faster
convolutions in the frequency domain, which have been employed to reduce infer-
ence time and memory consumption [Ayat et al. (2019); Guan et al. (2019); Mathieu
et al. (2013); Pratt et al. (2017); Vasilache et al. (2014); Wang et al. (2016)]. In the
following, we discuss different ways the frequency domain has been leveraged in
related work and shortly outline how we leveraged the frequency domain in this
thesis.

3.3.1 Frequency Analysis for Robustness and Attack Detection

Yin et al. (2019) showed that conventional CNNs are sensitive to changes in the
high-frequency components of an image, like Gaussian noise, while most CNNs are
robust against changes in the low-frequency components, i.e. in the coarse struc-
tures. In contrast, when models are trained using additional data augmentation
techniques, they are less sensitive to high-frequency changes but sacrifice their ro-
bustness in the low-frequency domain [Yin et al. (2019)]. Recently, Hossain et al.
(2023) analysed the frequency spectrum of adversarial examples and observed that
adversarial perturbations are not exclusively affecting high-frequency components,
which was assumed before [Wang et al. (2020a)]. Hossain et al. (2023) observed
that the perturbations spectrum highly depends on the dataset used, i.e. CIFAR-10
or ImageNet. Also Bernhard et al. (2021) highlighted the fact that adversarial at-
tacks do not exclusively hurt the high-frequency components by incorporating a
frequency constraint, which needs to be adapted to the frequency features of the
data. Harder et al. (2021) used the spectrum of the adversarial examples to detect
them, and Lorenz et al. (2021) trained a classifier to detect adversarial examples and
defend CNNs. These works indicate that there is a severe domain shift between the
frequency distribution of genuine images and adversarial attacks.

In Chapter 5, we analyse robust models and their downsampling operation in
the Fourier domain and reveal that robust models suffer much less from aliasing
artifacts than non-robust models.

36 Chapter 3. Related Work

3.3.2 Aliasing in CNNs

The issue of aliasing effects in CNN-based neural networks has been extensively ex-
plored in the literature from various perspectives. A brief mathematical overview is
given in Section 2.4.5. Azulay & Weiss (2019) discussed why CNNs struggle to learn
invariance to small image transformations (such as shifts) from training data and
argued that aliasing during downsampling is responsible for this behaviour. Since
then, anti-aliasing filters have become increasingly important in the Deep Learn-
ing community. Zhang (2019) proposed to apply predefined fixed blurring kernels
before downsampling to reduce aliasing. Building on this work, shift invariance
is further improved in [Zou et al. (2023)] by utilizing learned blurring filters in-
stead of predefined kernels. In [Li et al. (2021)], the pooling operations leverage the
low-frequency components of wavelets to mitigate aliasing and enhance robustness
against common image corruptions. Depth-adaptive blurring filters before pooling
are proposed in [Hossain et al. (2023)], along with an anti-aliasing activation func-
tion. This activation function is inspired by C-ReLU [Shang et al. (2016)] but uses a
smooth roll-off phase instead of a sharp cutoff at the threshold t. The importance of
anti-aliasing is also recognized in the field of image generation. The use of blurring
filters to eliminate aliases during image generation in generative adversarial net-
works (GANs) is suggested in [Karras et al. (2021)], while [Durall et al. (2020)] and
[Jung & Keuper (2021)] incorporate additional loss terms in the frequency domain to
address aliasing. As mentioned previously, we empirically demonstrate that adver-
sarially robust models exhibit lower levels of aliasing in their downsampling layers
in Chapter 5. Motivated by these findings, we propose two aliasing-free downsam-
pling methods in the Fourier domain for increased native robustness and to prevent
catastrophic overfitting in Chapter 6. In contrast to previous work, which focused
on fixing shift-invariance and model robustness by incorporating anti-aliasing tech-
niques, we are the first to focus on the analysis of aliasing and obtain a distinct
aliasing measurement in Chapter 5 which we reformulate in Chapter 6 to guarantee
aliasing-free downsampling.

3.3.3 Spectral Leakage Artifacts in CNNs

In contrast to the well-known issue of aliasing, spectral leakage artifacts have re-
ceived less attention in the context of CNNs. A common example is the induction
of sinc interpolation artifacts, mathematically described in Section 2.4.6, which often
arise when applying finite windows to periodic signals in the frequency domain.
These artifacts manifest as ringing effects in the spatial domain, as described in [Gon-
zales & Wintz (1987)], and are associated with the Gibbs phenomenon [Hamming &
Stearns (1979)].

To mitigate these spectral leakage artifacts, various window functions can be
employed, as discussed in [Prabhu (2014)]. In digital image processing, the use of 2D
window functions is prevalent, particularly in biomedical image processing, where
these functions play a crucial role in spectral analysis [Jähne (2005); Semmlow &
Griffel (2021)].

More recently, spectral leakage artifacts in CNNs have been studied in [Tomen
& van Gemert (2021)], showing that small spatial kernels can contribute to such
artifacts. As a solution, they propose learning larger spatial kernels while applying
a Hamming window to the convolution weights.

3.3. Frequency Domain for Image Classification 37

In Section 6.2.3, we show that spectral leakage artifacts also play a crucial role
during downsampling in the frequency domain. By reducing sinc-interpolation arti-
facts, we can enhance the network’s robustness against adversarial attacks and com-
mon corruptions.

3.3.4 Training CNNs in the Frequency Domain

In the following, we discuss two directions which leverage the frequency domain
for CNN training and inference. First, we explore its role in enhancing robustness
and generalization. Second, we examine resource-efficient training and inference
techniques that utilize the convolution theorem.

Related work has shown that a model’s robustness can be enhanced by training
separate low- and high-frequency experts [Saikia et al. (2021)]. They suggest train-
ing two different models: one that relies solely on low-frequency components for
prediction and another that uses only high-frequency components. The joint predic-
tion from both models achieves much higher robustness than standard models. This
approach bypasses the time and computational resources required for AT, though it
still necessitates training both experts separately. In the field of domain adaptation
and generalization, Yang & Soatto (2020) demonstrated that the Fourier phase and
amplitude of an image can be adapted for data augmentation, leading to a model
with improved generalization in the context of domain adaptation. Similarly, Xu
et al. (2021) used the Fourier phase and shuffled the amplitude of images to train
for better domain generalization. In Section 6.3 we can show that downsampling in
the frequency domain can enhance generalized robustness against a variety of chal-
lenges, like adversarial attacks, robustness against common corruptions and pixel
shifts.

Another line of work concentrates on resource-efficient and fast convolutions by
leveraging the convolution theorem, which is described in detail in Section 2.4.3.
Most works implementing convolutions in the frequency domain focus on the ef-
ficiency of the time and memory consumption of this operation [Ayat et al. (2019);
Guan et al. (2019); Mathieu et al. (2013); Pratt et al. (2017); Vasilache et al. (2014);
Wang et al. (2016)] since the equivalent of convolution in the spatial domain is a
point-wise multiplication in the frequency domain. However, most of these ap-
proaches still learn the convolution filters in the conventional setting in the spatial
domain and transform feature maps and kernels into the frequency domain to make
use of the faster point-wise multiplication at inference time [Ayat et al. (2019); Math-
ieu et al. (2013); Wang et al. (2016)]. This is mostly due to the fact that one would
practically need to learn filters as large as feature maps when directly learning the
frequency representation. Those few but notable works that propose to learn con-
volutional filters in CNNs purely in the frequency domain, until now, could only
achieve desirable evaluation performances on MNIST and reach low accuracies on
more complex datasets like CIFAR or ImageNet [Pan et al. (2022); Pratt et al. (2017);
Watanabe & Wolf (2021)] if they could afford to evaluate on such benchmarks at all.
In contrast, Rao et al. (2021) demonstrated that Vision Transformer can greatly bene-
fit from convolutions in the frequency domain, increasing performance but also the
number of learnable parameters. Table 3.1 gives a brief overview of some of these
approaches, executing the convolution or even more components in the frequency
domain.

Further approaches apply model compression by zeroing out small coefficients
of the feature map in the frequency domain [Guan et al. (2019)], enhancing robust-
ness by frequency regularization [Lukasik et al. (2023)] or enriching conventional

38 Chapter 3. Related Work

convolutions with the frequency perspective to get more global information [Chi
et al. (2020)].

In contrast to all these approaches, Chapter 7 introduces neural implicit fre-
quency filters (NIFFs), which efficiently learn and execute convolutions in the fre-
quency domain. While NIFF offers great potential for efficient large convolutions,
we focus on the analysis of which filter size CNNs practically make use of if they
have the opportunity to learn infinitely large kernels in this thesis. Our NIFFs are
the first approach to fully learn the convolutions of a CNN in the frequency do-
main while maintaining state-of-the-art performance on common image classifica-
tion benchmarks.

TABLE 3.1: Vision Models operating in the Fourier Domain. Overview of different ap-
proaches operating in the frequency domain compared to our NIFF introduced in Chapter 7.
The approaches in the first two rows [Mathieu et al. (2013); Wang et al. (2016)] focus on the
time improvement of the point-wise multiplication compared to standard convolution. The
third and fourth row present approaches that operate (almost) fully in the frequency domain
[Pratt et al. (2017); Pan et al. (2022)]. Tomen & van Gemert (2021) apply a global filter layer
via point-wise multiplication in the frequency domain at the stem of a transformer model. In
comparison, our NIFF, a plug-and-play operation, can replace any kind of convolution op-
eration to learn and infer fully in the frequency domain. Note that these methods have been
proposed and optimized for different purposes, and the respective numbers on CIFAR-10

reported are not comparable.

Method Architecture Operations in the Fourier Domain reported CIFAR-10 Acc@1

Fast FFT 2013 not reported Executing of the Convolution no acc. reported
CS-unit 2016 not reported Convolution + Downsampling no acc. reported
FCNN 2017 FCNN Full Network ∼ 23%
CEMNet 2022 CEMNet Full Network except MaxPooling 59.33%-78.37%
GFN 2021 Swin-Transformer First Patchifying operation 98.60%

NIFF (ours) any CNN Convolution 90.63%-94.03%

3.4 Dynamic and Steerable Filters

Our NIFFs proposed in Chapter 7 implemented inherently so-called dynamic fil-
ters, as they can learn filters of varying size and enable an effective analysis of the
individual filter size needed for the task and network at hand. Dynamic filtering
and steerable filters [Freeman et al. (1991)] allow for adaptive filtering based on the
content or orientation of the input data by e.g. deformable convolutions [Dai et al.
(2017)]. Unlike traditional convolutions, where the kernel is fixed and applied uni-
formly across the input, deformable convolutions allow the filter to adapt its shape
and size based on the input data. This is done via a learnable offset that controls
the sampling locations of the convolutional operation within the input feature map.
Further, Pintea et al. (2021) proposed to use flexible kernel sizes at each stage by
learning the σ values for a combination of Gaussian derivative filters, thus inher-
ently controlling the size of the filter. Sosnovik et al. (2020) combined the concepts
of steerable filters and group equivariance to achieve scale-equivariant representa-
tions, allowing it to effectively handle objects at different scales without the need for
explicit scale normalization techniques. Similarly, Worrall & Welling (2019) aimed to

3.4. Dynamic and Steerable Filters 39

achieve equivariance over scale. They integrate scale-space operators, such as Gaus-
sian blurring and Laplacian of Gaussian operators, into the network layer to be more
robust to variations in object size or resolution.

3.4.1 Large Kernel Sizes

While the first CNNs used relatively large kernels w.r.t the image recognition tasks
e.g. 5× 5 for MNIST in [LeCun et al. (1998)] or 11× 11 for ImageNet [Krizhevsky
et al. (2012)]. This trend shifted with the introduction of VGG [Simonyan & Zisser-
man (2015)], which uses only small 3× 3 kernels, making computations more effi-
cient. Recently, the development of Vision Transformers (ViTs) has shifted the focus
back to utilizing a larger spatial context for vision tasks. ViTs have led to significant
improvements in image classification [Dosovitskiy et al. (2021); Vaswani et al. (2017)]
and related tasks. These models rely on larger image patches and self-attention
mechanisms, enabling the encoding of the entire spatial context. Subsequently, Liu
et al. (2021) demonstrated that incorporating convolutions with receptive fields of
7× 7 to 12× 12 can enhance network performance, while follow-up works further
increased the window sizes [Dong et al. (2022)]. The general observation remains
that image-processing models benefit from encoding a larger spatial context, partic-
ularly in deeper network layers. In this regard, Liu et al. (2022b) proposed a CNN
architecture employing 7× 7 depth-wise convolutions, outperforming transformer
models and demonstrating that convolutional approaches remain highly relevant
for image recognition tasks. In the context of CNNs, Guo et al. (2022) and Peng et al.
(2017) further increased the receptive fields of the convolution and Ding et al. (2022)
and Liu et al. (2023) achieved improved results with 31× 31 and even 61× 61 sized
convolution filters, respectively. To facilitate scaling, Ding et al. (2022) used depth-
wise convolutions instead of full convolutions and thereby increased the model size
by only 10-16%. Liu et al. (2023) decomposed the 61× 61 convolution into two par-
allel and rectangular convolutions to reduce the computation load and parameters.
Further, we showed in [Agnihotri et al. (2024b)] that increased spatial context can
improve the upsampling in decoder networks.

In sequence modelling, so-called long convolutions enable models to encode larger
parts of a sequence at a low cost. Several works [Poli et al. (2023); Gu et al. (2022)]
make use of the convolution theorem to model global large 1D convolutions. Rao
et al. (2021) proposed Global Filter Networks based on Swin-Transformers. They
encode intermediate layers as convolutions in the frequency domain followed by a
feed-forward neural network and thus facilitate efficient convolutions with infinite
extent. They achieve very good results on ImageNet-1k. However, they face the
computational overhead of learning the filter weights directly, resulting in an in-
crease in the number of parameters. In Chapter 7, we compute convolutions in the
frequency domain to benefit from the better scalability of the convolution operation.
Yet, our NIFF module uses neural implicit functions to preserve the original number
of model parameters. E.g. the model proposed by Rao et al. (2021) is over six times
larger than ours.

3.4.2 Neural Implicit Representations

As previously outlined, large kernels, which offer a broader context and thus greater
flexibility, suffer from low computational efficiency. Neural implicit representation
can be used to enhance the learning of large kernels.

40 Chapter 3. Related Work

Generally speaking, neural implicit representations map a point, encoded by co-
ordinates, to a continuous output domain using a Multi-Layer Perceptron (MLP).
This approach represents an object as a function rather than as fixed discrete values,
which is more common in traditional methods (e.g., discrete grids of pixels for im-
ages, discrete samples of amplitudes for audio signals, and voxels, meshes, or point
clouds for 3D shapes) [Chibane et al. (2020); Sitzmann et al. (2020)]. Continuous
representations through neural implicit methods offer a fixed number of parameters
and are independent of spatial or frequency resolutions. Moreover, neural implicit
representation can also be used to learn to generate high-resolution data [Chen et al.
(2021b)], or to learn 3D representations from 2D data [Sitzmann et al. (2019)].

HyperNetworks. One specific form of neural implicit representations are Hyper-
Networks [Ha et al. (2017)], which are essentially neural networks designed for
specific subtasks within a larger neural network. Ha et al. (2017) utilized a pre-
defined SIREN [Sitzmann et al. (2020)] architecture, consisting of stacked 1x1 convo-
lutions and periodic activations, to predict spatial kernel weights with a predefined
size. While Ma et al. (2022) and Ma et al. (2023) introduced hyperconvolutions for
biomedical image segmentation. Similarly, Romero et al. (2022b) and Romero et al.
(2022a) introduced continuous kernels by learning spatial kernel weights that match
the size of the feature maps, using a HyperNetwork composed of stacked 1x1 convo-
lutions. These kernels are then masked and cropped to obtain the actual filter size.
All of their operations are applied in the spatial domain. To enhance the learning
of appropriate filter structures, they replace the periodic activation function of the
SIREN with Multiplicative Anisotropic Gabor Networks. Additionally, Romero et al.
(2022a) learned a Gaussian filter on top to determine the spatial kernel size. In con-
trast, our NIFFs, introduced in Chapter 7, directly learn the Fourier representation
of convolution filters, i.e. a representation in a basis of sine and cosine waves, using
stacked 1× 1 convolutions with conventional activations. Thus, we can efficiently
execute the convolution in the Fourier domain with the objective of investigating the
effective spatial extent of the learned convolution filters

41

Part I

Multifaceted Analysis of Robust
CNNs

43

Chapter 4

Robust Models are Less Over-Confident
Contents

4.1 Introduction . 44
4.2 Experiments . 45
4.2.1 Experimental Setup . 46
4.2.2 CIFAR Models . 47
4.2.3 ImageNet-1k Models . 54
4.3 Discussion . 55
4.3.1 Limitations . 56
4.4 Conclusion . 57

In this chapter, we analyse the correlation between adversarial robustness of models
and their inherent confidence calibration. Despite the success of CNNs in many aca-
demic benchmarks for computer vision tasks [He et al. (2016a); Liu et al. (2022b)],
their application in the real-world is still facing fundamental challenges [Hendrycks
& Dietterich (2019); Guo et al. (2017); Goodfellow et al. (2015)]. One of these open
problems is the inherent lack of robustness, unveiled by the striking effectiveness
of adversarial attacks [Goodfellow et al. (2015); Madry et al. (2018)]. Current at-
tack methods are able to manipulate the network’s prediction by adding specific
but small amounts of noise to the input. In turn, adversarial training (AT) aims to
achieve robustness against such attacks and, ideally a better model generalization
ability by including adversarial samples in the training set [Goodfellow et al. (2015);
Rony et al. (2019); Wong et al. (2020)]. Following, we empirically analyse a variety of
adversarially trained models, following denoted as robust models, that achieve high
robust accuracies when facing state-of-the-art attacks and show that AT has an in-
teresting side-effect: it leads to models that are significantly less overconfident with
their decisions compared to models trained without AT, in the following denoted as
non-robust models. Further, our analysis of robust models reveals that not only AT
but also the model’s building blocks (like activation [Dai et al. (2022)] functions and
pooling, explained in detail in Chapter 6) have a strong influence on the models’
prediction confidences.
The trained models and our evaluation can be found at https://github.com/GeJulia/
robustness_confidences_evaluation.

This chapter is based on Grabinski et al. (2022a) . Julia Grabinski, as the first
author, conducted all experiments besides training the non-robust models. These

https://github.com/GeJulia/robustness_confidences_evaluation
https://github.com/GeJulia/robustness_confidences_evaluation

44 Chapter 4. Robust Models are Less Over-Confident

models were trained and made available on GitHub by Paul Gavrikov. Julia Grabin-
ski was the main writer.

4.1 Introduction

CNNs have been shown to successfully solve problems across various tasks and do-
mains. However, distribution shifts in the input data can have a severe impact on
the prediction performance. In real-world applications, these shifts may be caused
by a multitude of reasons, including corruption due to weather conditions, cam-
era settings, noise, and maliciously crafted perturbations to the input data intended
to fool the network (adversarial attacks). In recent years, a vast line of research
(e.g. [Hendrycks & Dietterich (2019); Goodfellow et al. (2015); Madry et al. (2018)])
has been devoted to solving robustness issues, highlighting a multitude of causes
for the limited generalization ability of networks and potential solutions to facilitate
the training of better models.

A second, yet equally important issue that hampers the deployment of deep
learning-based models in practical applications is the lack of calibration concern-
ing prediction confidences. In fact, most models are overly confident in their pre-
dictions, even if they are wrong [Lakshminarayanan et al. (2017); Guo et al. (2017);
Nguyen et al. (2015)]. Specifically, most conventionally trained models are unaware
of their own lack of expertise, i.e. they are trained to make confident predictions
in any scenario, even if the test data is sampled from a previously unseen domain.
Adversarial examples leverage this weakness [Goodfellow et al. (2015)], as they are
fooling the network with high-confident wrong predictions [Lee et al. (2018)]. In
turn, AT has shown to improve the prediction accuracy under adversarial attacks
[Goodfellow et al. (2015); Zhang et al. (2019b); Rony et al. (2019); Engstrom et al.
(2019)]. However, few works have been investigating the links between calibration
and robustness [Lakshminarayanan et al. (2017); Qin et al. (2021)], thus, we provide
a systematic synopsis of adversarial robustness and prediction confidence in the fol-
lowing.

In this chapter, we provide an extensive empirical analysis of diverse adversari-
ally robust models with regard to their prediction confidences. Therefore, we evalu-
ate more than 70 adversarially robust models and their conventionally trained coun-
terparts, which show low robustness when exposed to adversarial examples. By
measuring their output distributions on benign and adversarial examples for correct
and erroneous predictions, we show that adversarially trained models have benefits
beyond adversarial robustness; they are less overconfident.

To cope with the lack of calibration in conventionally trained models, Corbière
et al. (2019) proposed to rather use the true class probability than the standard con-
fidence obtained after the Softmax layer, such as to circumvent the overlapping con-
fidence values for wrong and correct predictions. However, we observe that these
overlaps are an indicator of insufficiently calibrated models and can be mitigated by
the improvement of CNNs building blocks, namely downsampling and activation
functions, that have been proposed in the context of adversarial robustness [Gra-
binski et al. (2022b); Dai et al. (2022)]. We evaluate our proposed downsampling
methods from Chapter 6 in more depth in Section 6.3.4.

In the following, we focus on analysing the relationship between robust models
and model confidence. Our experiments for 71 robust and non-robust model pairs
on the datasets CIFAR-10 [Krizhevsky (2009)], CIFAR-100 and ImageNet-1k [Deng

4.2. Experiments 45

et al. (2009)] confirm that non-robust models are overconfident with their false pre-
dictions. This highlights the challenges for usage in real-world applications. In con-
trast, we show that robust models are generally less confident in their predictions,
and, especially CNNs, which include improved building blocks (downsampling and
activation) turn out to be better calibrated, manifesting low confidence in wrong pre-
dictions and high confidence in their correct predictions. Further, we demonstrate
that the prediction confidence of robust models can be used as an indicator for er-
roneous decisions. However, despite their robustness, we find that adversarially
trained networks still overfit to training adversaries, exhibiting similar performance
to non-robust models against unseen attacks. Our contributions can be summarized
as follows:

• We provide an extensive analysis of the prediction confidence of 71 adversar-
ially trained models (robust models), and their conventionally trained coun-
terparts (non-robust models). We observe that most non-robust models are
exceedingly overconfident, while robust models exhibit less confidence and
are better calibrated for slight domain shifts.

• We observe that specific layers that are considered to improve model robust-
ness also impact the models’ confidences. In detail, improved downsampling
layers and activation functions can lead to an even better calibration of the
learned model.

• We investigate the detection of erroneous decisions by using the prediction
confidence. We observe that robust models are able to detect wrong predic-
tions based on their confidence. However, when faced with unseen adversaries
or corruptions, they exhibit in some cases similar performance as non-robust
models.

Our analysis provides a first synopsis of adversarial robustness and model cal-
ibration and aims to foster research that addresses both challenges jointly rather
than considering them as two separate research fields. To further promote this re-
search, we released our modelzoo at https://github.com/GeJulia/robustness_
confidences_evaluation.

4.2 Experiments

In the following, we first describe our experimental setting in which we then con-
duct an extensive analysis on the two CIFAR datasets, CIFAR-10 and CIFAR-100,
with respect to robust and non-robust model1 confidence on clean and perturbed
samples as well as their ECE. Further, we observe by computing the ROC curves of
these models that robust models are best suited to distinguish between correct and
incorrect predictions based on their confidence. In addition, we point out that the
improvement of pooling operations or activation functions within the network can
enhance the models’ calibration further. Finally, we also investigate ImageNet-1k as
a high-resolution dataset and observe that the model with the highest capacity and
AT can achieve the best performance results and calibration.

1The classification into robust and non-robust models is based on the models’ robustness against
adversarial attacks. We consider a model to be robust when it achieves considerably high accuracy
under AutoAttack [Croce & Hein (2020a)].

https://github.com/GeJulia/robustness_confidences_evaluation
https://github.com/GeJulia/robustness_confidences_evaluation

46 Chapter 4. Robust Models are Less Over-Confident

CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
mean model confidence

 correct classification

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
m

od
el

 c
on

fid
en

ce

 in
co

rr
ec

t c
la

ss
ifi

ca
tio

n

Clean samples

0.0 0.2 0.4 0.6 0.8 1.0
mean model confidence

 correct classification

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
m

od
el

 c
on

fid
en

ce

 in
co

rr
ec

t c
la

ss
ifi

ca
tio

n

PGD samples

0.0 0.2 0.4 0.6 0.8 1.0
mean model confidence

 correct classification

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
m

od
el

 c
on

fid
en

ce

 in
co

rr
ec

t c
la

ss
ifi

ca
tio

n

Squares samples

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

Acc
 non-robust

 models

80

82

84

86

88

90

92

94

Acc
 robust
 models

4

6

8

10

12

14

16

18

Acc
 non-robust

 models

10

20

30

40

50

60

Acc
 robust
 models

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Acc
 non-robust

 models

10

20

30

40

50

60

70

Acc
 robust
 models

CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
mean model confidence

 correct classification

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
m

od
el

 c
on

fid
en

ce

 in
co

rr
ec

t c
la

ss
ifi

ca
tio

n

Clean samples

0.0 0.2 0.4 0.6 0.8 1.0
mean model confidence

 correct classification

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
m

od
el

 c
on

fid
en

ce

 in
co

rr
ec

t c
la

ss
ifi

ca
tio

n

PGD samples

0.0 0.2 0.4 0.6 0.8 1.0
mean model confidence

 correct classification

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
m

od
el

 c
on

fid
en

ce

 in
co

rr
ec

t c
la

ss
ifi

ca
tio

n

Squares samples

65

70

75

80

Acc
 non-robust

 models

54

56

58

60

62

64

66

68

70

Acc
 robust
 models

10

15

20

25

30

35

Acc
 non-robust

 models

22

24

26

28

30

32

34

36

38

Acc
 robust
 models

48

50

52

54

56

58

60

62

64

Acc
 non-robust

 models

26

28

30

32

34

36

38

40

Acc
 robust
 models

FIGURE 4.1: Confidence Overview for Robust- and Non-Robust Models. Mean model
confidences for their correct (x-axis) and incorrect (y-axis) predictions over the full CIFAR-
10 dataset (top) and CIFAR-100 dataset (bottom), for clean (left) and perturbed data with the
attacks PGD (middle) and Squares (right). Each point represents a model. Circular points
(light blue colourmap) represent non-robust models, while diamond-shaped points (light
red colourmap) represent robust models. The colour of each point indicates the model’s
accuracy, with darker colours signifying higher accuracy (better performance) on the given
data samples (clean or perturbed). The star in the bottom right corner indicates the optimal
model calibration and the grey area marks the region where the confidence distribution of
the network is worse than random, i.e., where the model is more confident in incorrect pre-

dictions than incorrect ones.

4.2.1 Experimental Setup

We have collected 71 checkpoints of robust models [Rebuffi et al. (2021); Huang et al.
(2021); Zhang et al. (2020, 2019a); Hendrycks et al. (2019); Zhang et al. (2021); Chen
& Lee (2021); Andriushchenko & Flammarion (2020); Cui et al. (2021); Rice et al.
(2020); Dai et al. (2022); Gowal et al. (2021a); Sitawarin et al. (2021); Chen et al. (2022);
Zhang et al. (2019b); Wu et al. (2020); Wong et al. (2020); Huang et al. (2020); Carmon
et al. (2019b); Pang et al. (2020); Gowal et al. (2021b); Sehwag et al. (2020); Sridhar
et al. (2022); Chen et al. (2020); Sehwag et al. (2022); Addepalli et al. (2021); Ding
et al. (2020); Rade & Moosavi-Dezfooli (2021); Wang et al. (2020b); Engstrom et al.
(2019)] listed on the ℓ∞-RobustBench leaderboard [Croce et al. (2021)]. Additionally,
we compare each appearing architecture to a second model trained without AT or
any specific robustness regularization and without any external data (even if the robust
counterpart relied on it).

Non-robust Model Training: For training, CIFAR-10/-100 data was zero-padded
by 4 pixels along each dimension and then transformed using 32× 32 pixels random
crops and random horizontal flips. Channel-wise normalization was replicated as
reported by the original dataset authors. Training hyperparameters have been set
to an initial learning rate of 1e-2, a weight decay of 1e-2, a batch size of 256 and a
nesterov momentum of 0.9. We scheduled the SGD optimizer to decrease the learn-
ing rate every 30 epochs by a factor of γ = 0.1 and trained for a total of 125 epochs.
The loss is determined using Categorical Cross Entropy and we used the model ob-
tained at the epoch with the highest validation accuracy. Training was executed on

4.2. Experiments 47

a A+ Server SYS-2123GQ-NART-2U machine with four NVIDIA A100-SXM4-40GB
GPUs for approximately 17 GPU hours. Training ImageNet-1k architectures with
our hyperparameters resulted in a rather poor performance and we therefore rely
on the baseline model without AT provided by timm [Wightman (2019)].

Then we collect the predictions alongside their respective confidences of robust
and non-robust models on clean validation samples, as well as on samples attacked
by a white-box attack (PGD) [Madry et al. (2018)], and a black-box attack (Squares)
[Andriushchenko et al. (2020)] as well as common corruptions [Hendrycks & Diet-
terich (2019)] for CIFAR-10. PGD effectively exposes network-specific vulnerabilities
due to its optimization for individual architectures and weights. In our comparison,
some robust models might have been trained using PGD or a similar attack. Conse-
quently, PGD could be considered an in-domain attack for those models. In contrast,
the Squares attack alters the data at random with an allowed budget until the label
flips without access to the model architecture and weights. Such samples are rather
to be considered out-of-domain samples even for adversarially trained models and
provide a proxy for a model’s generalization ability. Thus, Squares can be seen as an
unseen attack for all models, while PGD might not be unseen for some adversarially
trained, robust models. Similarly, common corruptions are out-of-domain samples,
yet not optimized for the respective network at all.

4.2.2 CIFAR Models

CIFAR-10 Evaluation. As described in Section 2.3, CIFAR-10 [Krizhevsky (2009)]
is a simple ten-class dataset consisting of 50.000 training and 10.000 validation im-
ages with a resolution of 32× 32 pixels. Due to its low resolution and the resulting
reduced training costs compared to datasets like ImageNet-1k, CIFAR-10 is a practi-
cal choice for AT experiments, which explains its prevalence on RobustBench [Croce
et al. (2021)].

Clean Samples PGD Samples Squares

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
ve

rc
on

fid
en

ce

non-robust model robust model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
ve

rc
on

fid
en

ce

non-robust model robust model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
ve

rc
on

fid
en

ce

non-robust model robust model

FIGURE 4.2: Robust Models are Less Over-Confident on CIFAR-10. Overconfidence (lower
is better) bar plots of the robust models and their respective non-robust counterparts trained
on CIFAR-10. Non-robust models are highly overconfident, in contrast, their robust coun-

terparts are less overconfident.

Figure 4.1 shows an overview of all robust and non-robust models trained on
CIFAR-10 in terms of their accuracy as well as their confidence in their correct and
incorrect predictions. Along the isolines, the ratio between confidence in correct and
incorrect predictions is constant. The gray area indicates scenarios where models
are even more confident in their incorrect predictions than in their correct predic-
tions. Concentrating on the models’ confidence, we can observe that robust models
(marked by a diamond) are, in general, less confident in their predictions, while
non-robust models (marked by a circle) exhibit high confidence in all their predic-
tions, both correct and incorrect. This indicates that non-robust models are not only

48 Chapter 4. Robust Models are Less Over-Confident

more susceptible to (adversarial) distribution shifts but are also highly overconfi-
dent in their false predictions. Practically, such behaviour can lead to catastrophic
consequences in safety-related, real-world applications. Robust models tend to have
lower average confidence and a favourable confidence trade-off even on clean data
(Figure 4.1, top left). Considering adversarial samples like PGD (Figure 4.1, top
middle), the non-robust models even fall into the gray area of the plot where more
confident decisions are likely incorrect. As expected, adversarially trained models
not only make fewer mistakes in this case but are also better adjusted in terms of
their confidence. Black-box attacks (Figure 4.1,top right) provide non-targeted out-
of-domain samples. Adversarially trained models are overall better calibrated to
this case, i.e. their mean confidences are hardly affected, whereas non-robust mod-
els’ confidences fluctuate heavily.

TABLE 4.1: Robust Models have a Lower ECE on CIFAR-10. Mean ECE (lower is better) and
standard deviation over all non-robust model versus all their robust counterparts trained on

CIFAR-10. Robust model exhibit a significantly lower ECE.

Robustness
Samples

Clean ↓ PGD ↓ Squares ↓

non-robust models 0.6736 ± 0.1208 0.6809 ± 0.1061 0.6635 ±0.1156
robust models 0.1894 ±0.1531 0.2688 ± 0.1733 0.2126 ± 0.1431

Four models stand out in Figure 4.1 (top left): two robust and two non-robust
models which are much less confident in their true and false predictions than oth-
ers. These less confident models are indeed trained from two different model archi-
tectures, with and without AT. The model by Pang et al. (2020) uses a hypersphere
embedding, which normalizes the features in the intermediate layers and weights
in the Softmax layer, leading to less confident predictions. The other model pro-
posed by Chen et al. (2020) employs an ensemble of three different pre-trained mod-
els (ResNet-50) to boost robustness. These architectural changes have a significant
impact on the absolute model confidence, yet do not necessarily lead to a better cali-
bration. These models are underconfident in their correct predictions and tend to be
comparably confident in wrong predictions.

Table 4.1 reports the mean ECE over all robust models and their non-robust coun-
terparts and Figure A.1 in the Appendix A.1 presents the ECE of each model and
it’s non-robust counterpart, showing similar results. Robust models on CIFAR-10
exhibit a significantly lower ECE, suggesting that they are better calibrated. The
models’ full empirical confidence distributions are given in Figure A.3 in the Ap-
pendix A.3 for transparency. Figure 4.2 further visualizes the significant decrease in
overconfidence of robust models w.r.t. their non-robust counterparts.

CIFAR-10-C Evaluation. Additionally, to the previously studied attacks, we eval-
uate the confidence of robust versus non-robust CIFAR-10 models on the out-of-
distribution dataset CIFAR-10-C with severity level 4 (the results for other severity
levels follow the same trajectory and are therefore omitted). We benchmark mod-
els robust to adversarial attacks and their non-robust counterparts and evaluate the
prediction confidence.

First, we compare the model’s overconfidence with respect to each corruption
type. In accordance with our findings on adversarial perturbations, robust models
are much less overconfident than their non-robust counterparts. Figure 4.3 depicts

4.2. Experiments 49

the overconfidence of each model pair for each corruption type. We can clearly see
that robust models are generally much less overconfident.

0.0

0.2

0.4

0.6

0.8

O
ve

rc
on

fid
en

ce

fog frost spatter zoom_blur defocus_blur

0.0

0.2

0.4

0.6

0.8

O
ve

rc
on

fid
en

ce

speckle_noise jpeg_compression gaussian_noise brightness elastic_transform

0.0

0.2

0.4

0.6

0.8

O
ve

rc
on

fid
en

ce

contrast gaussian_blur snow shot_noise saturate

0.0

0.2

0.4

0.6

0.8

O
ve

rc
on

fid
en

ce

glass_blur motion_blur pixelate impulse_noise

non-robust model
robust model

FIGURE 4.3: Robust Models are Less Over-Confident on CIFAR-10-C. Overconfidence bar
plots of the robust CIFAR-10 model and the respective non-robust counterpart evaluated on
CIFAR-10-C. Robust models are less overconfident for most models compared to their non-

robust counterparts.

CIFAR-100 Evaluation. Similar resolution as CIFAR-10, CIFAR-100 includes 100
classes and can be seen as a more challenging classification task. This is reflected
in the reduced model accuracy on the clean and adversarial samples (Figure 4.1 ,
bottom). On CIFAR-100, robust models are also less overconfident. They are slightly
closer to the optimal calibration point in the lower right corner, even on clean data
and perform significantly better on PGD samples where the confidences of non-
robust models are again reversed (middle). The Squares attack illustrates the sta-
ble behaviour of robust models’ confidences. Similar to CIFAR-10, the models’ full
empirical confidence distributions are given in the Appendix A.3 in Figure A.4 for
transparency.

We also report the ECE values for CIFAR-100 in Table 4.2 and Figure 4.5 and
overconfidence in Figure A.2 in the Appendix A.2. Please note that the accuracy of
the CIFAR-100 models is not very high (ranging between 56.87% and 70.25% even
for clean samples), resulting in an unreliable calibration metric. Especially under
PGD attacks, non-robust networks make mostly incorrect predictions such that the
ECE collapses to being the expected confidence value of incorrect predictions (see
eq. [2.9]), regardless of the confidence of the few correct predictions. In this case,
ECE is not meaningful. We discuss this in more depth in Section 4.3.

50 Chapter 4. Robust Models are Less Over-Confident

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

fog spatter zoom_blur defocus_blur speckle_noise

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

jpeg_compression frost gaussian_noise brightness elastic_transform

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

contrast gaussian_blur snow shot_noise

0.00 0.25 0.50 0.75 1.00
False positive rate

saturate

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

glass_blur

0.00 0.25 0.50 0.75 1.00
False positive rate

motion_blur

0.00 0.25 0.50 0.75 1.00
False positive rate

pixelate

0.00 0.25 0.50 0.75 1.00
False positive rate

impulse_noise

robust models
non-robst models
random baseline

FIGURE 4.4: Robust Models can Distinguish between Correct and Incorrect Predictions
on CIFAR-10-C. Mean ROC curves for each robust and non-robust CIFAR-10 model pair
evaluated on CIFAR-10-C. Robust models can better distinguish between correct and incor-

rect predictions for all corruptions, but fog, brightness, contrast and saturate.

Another interesting observation is that non-robust models can achieve higher
accuracy on the clean data and, quite surprisingly, on the applied black-box attacks
(Figure 4.1, right). This indicates that most robust models overfit white-box attacks
used during training and do not generalise well to other attacks. While making
more mistakes, robust models still have a favourable distribution of confidence over
non-robust models in this case.

Model Confidences Can Predict Erroneous Decisions. Next, we evaluate the pre-
diction confidences in terms of their ability to predict whether a network prediction
is correct or incorrect. We visualize the ROC curves for all models and compare the
averages of robust and non-robust models in Figure 4.6 (top row for CIFAR-10, bot-
tom row for CIFAR-100). While robust and non-robust models perform on average
very similarly on clean data, robust model confidences can reliably predict erro-
neous classification results on adversarial examples where non-robust models fail.
Also, for out-of-domain samples from the black-box attack Squares (middle right)
and common corruptions (right), robust models can reliably assess their prediction
quality and can better predict whether their classification result is correct. In Figure
4.4 we present the mean ROC curves for each corruption. The ROC curve analysis
reveals that robust models demonstrate improved ability to separate correct from
incorrect predictions using confidence values when compared to non-robust mod-
els. However, robust models are inferior regarding their calibration on corruptions

4.2. Experiments 51

TABLE 4.2: ECE Evaluation on CIFAR-100. Mean ECE (lower is better) and standard devi-
ation for all non-robust models versus their robust counterparts trained on CIFAR-100. The
robust models exhibit a slightly lower ECE on clean samples and a significantly lower ECE
on Square samples. However, on PGD samples, the robust models actually exhibit a higher

ECE compared to their non-robust counterparts.

Robustness
Samples

Clean ↓ PGD ↓ Squares ↓

non-robust models 0.3077 ± 0.1257 0.2159 ± 0.0738 0.2780 ± 0.1348
robust models 0.2962 ±0.1722 0.2307 ± 0.1494 0.2076 ± 0.1247

Clean Samples PGD Samples Squares Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

 (E
C

E
)

0.
77

0.
62

0.
79

0.
66

0.
79

0.
62

0.
79

0.
7

0.
8

0.
63

0.
61

0.
61

0.
79

0.
59

0.
61

0.
62

0.
63

0.
57

0.
76

0.
54

non-robust model robust model

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

 (E
C

E
)

0.
09

0.
32

0.
08

0.
36

0.
1

0.
3

0.
09

0.
3

0.
06

0.
33

0.
12

0.
32

0.
07

0.
33

0.
11

0.
35

0.
12

0.
31

0.
14

0.
22

non-robust model robust model

0.0

0.1

0.2

0.3

0.4

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

 (E
C

E
)

0.
59

0.
32

0.
64

0.
37

0.
65

0.
31

0.
64

0.
34

0.
65

0.
33

0.
55

0.
32

0.
62

0.
35

0.
55

0.
36

0.
59

0.
32

0.
62

0.
25

non-robust model robust model

FIGURE 4.5: ECE Bar Plots on CIFAR-100. ECE (lower is better) bar plots of robust models
and their non-robust counterparts trained on CIFAR-100. The models’ accuracy is marked
for the different samples below each bar. The ECE score of the robust models for the CIFAR-
100 is much worse than the one for CIFAR-10. Interestingly the robust models seem to be as

bad as their non-robust counterparts or even worse on clean and PGD samples.

changing the image’s colour palette, like fog, brightness, contrast, and saturation.
We report the precision recall curves for CIFAR-10 and CIFAR-100 in Figures A.5
and A.6 in the Appendix A.4, which present similar results. The non-robust mod-
els perform slightly better on clean samples while being completely fooled by PGD
samples and less well on Square samples compared to their robust counterparts.

Robust Model Confidences Can Detect Adversarial Samples. Further, we evalu-
ate the adversarial detection rate of the robust models based on their ROC curves
(averaged over all robust models) in Figure 4.7, comparing the confidence of cor-
rect predictions on clean samples and incorrect predictions caused by adversarial
attacks. We observe different behaviours for gradient-based, white-box attacks and
black-box attacks. While non-robust models fail completely against gradient-based
attacks, they are almost as good as robust models for the detection of black-box at-
tacks. Similarly, when taking the left two plots from Figure 4.6 into account, one
might get the impression that non-robust models perform similar or even better
on detecting erroneous samples compared to robust ones. Thus, we hypothesize
that robust models indeed overfit the adversaries seen during training, as those are
mostly gradient-based adversaries. Therefore, we assume that adversarially trained
models are not better calibrated in general; however, when strictly looking at over-
confidence, robust models are consistently less overconfident and, therefore, better
applicable for safety-critical applications. We report similar results for the precision
recall curves in Figure A.7 in Appendix A.4.

52 Chapter 4. Robust Models are Less Over-Confident

CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Clean Samples

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Squares Samples

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

CIFAR-10-C Samples

CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Clean Samples

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Squares Samples

robust models
non-robust models

random baseline

FIGURE 4.6: Robust Models can Better Distinguish between Correct and Incorrect Pre-
dictions on CIFAR-10 and CIFAR-100 under attack. Average ROC curve for all robust and
non-robust models trained on CIFAR-10 (top) and CIFAR-100 (bottom). Standard deviation
is marked by the error bars. The dashed line would mark a model which has the same
confidence for each prediction. We observe that the model’s confidence can be an indica-
tor of the correctness of the prediction. On PGD samples the non-robust models fail while
the robust models can distinguish correct from incorrect predictions based on the prediction

confidence.

Improved CNN Building Blocks. Moreover, we see indications that exchanging
simple building blocks like the activation function [Dai et al. (2022)] or the down-
sampling method, explained in depth in Section 6.2, alters the properties of robust
models concerning their confidence calibration. We investigate these models’ pre-
diction confidence and observe that their correct prediction confidence is high while
the confidence in the erroneous predictions remains low. Our findings should nur-
ture future research on jointly considering model calibration and robustness.

Downsampling Technique. Most common CNNs apply downsampling to com-
press feature maps with the intent to increase spatial invariance and overall higher
sparsity. However, we show in Chapter 5 that aliasing during the downsampling op-
eration highly correlates with the lack of adversarial robustness and provide aliasing-
free downsampling in Chapter 6, which enables improved downsampling of the
feature maps. Figure 4.8, left, compares the confidence distribution of three different
networks. The top row shows a PreAct-ResNet-18 (PRN-18) baseline without AT,
the second row shows our approach applied to the same architecture, and the third
row shows a robust model trained by Rebuffi et al. (2021) without improved down-
sampling. The baseline model is highly susceptible to adversarial attacks, especially
under white-box attacks, while the two robust counterparts remain low-confident in
false predictions and show higher confidence in correct predictions. However, while
the model by Rebuffi et al. (2021) has a high variance amongst the predicted confi-
dences, our approach significantly improves this by disentangling the confidences.
Our model provides low variance and high confidence in correct predictions and
reduced confidence in false predictions across all evaluated samples.

4.2. Experiments 53

CIFAR-10 CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e
PGD Samples

robust models, AUC = 0.9221
non-robst models, AUC = 0.5168
random baseline

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Squares Samples

robust models, AUC = 0.9245
non-robst models, AUC = 0.8425
random baseline

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

PGD Samples

robust models, AUC = 0.8278
non-robst models, AUC = 0.5262
random baseline

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Squares Samples

robust models, AUC = 0.8631
non-robst models, AUC = 0.8071
random baseline

FIGURE 4.7: Robust Models can Use Prediction Confidence as Attack Detection on CIFAR-
10 and CIFAR-100. Average ROC curve for all robust and non-robust models, comparing
confidence on clean, correctly classified samples to perturbed, wrongly classified samples
on CIFAR-10 and CIFAR-100. The confidence of robust models can be used as thresholds for
detecting white-box adversarial attacks (PGD). For black-box adversarial attacks (Squares),

both robust and non-robust models can partially detect erroneous samples.

Activation Function. Next, we analyse the influence of activation functions. Only
one RobustBench model utilizes an activation other than ReLU. Dai et al. (2022)
introduced learnable activation functions with the intent to improve robustness.
Figure 4.8, right, shows at the top row a Wide-ResNet-28-10 (WRN-28-10) baseline
model without AT, the model by Dai et al. (2022) in the middle and a model with the
same architecture adversarially trained by Carmon et al. (2019a) without improved
activation function.
Although this is an arguably sparse basis for a thorough investigation, we observe
that the model by Dai et al. (2022) can retain high confidence in correct predictions
for both clean and perturbed samples. Furthermore, the model is much less confi-
dent in its wrong predictions for the clean as well as the adversarial samples. Simi-
lar to the used pooling variation, also the activation function seems to influence the
model’s calibration.

To show the impact of improved downsampling and activation functions, we
provide the ROC curves and AUC values of the models with and without those im-
proved building blocks (similar to Figure 4.8). Figure 4.9 presents the ROC curves
and AUC values for each approach on the improved building blocks as well as
on comparable robust models with the same architecture. The improved building
blocks result in slightly better calibration.

Next, we compare the confidence impact of improved downsampling opera-
tions and activations on out-of-distribution data like CIFAR-10-C. We summarize
our findings by the mean over all corruptions. Figure 4.10 shows that robust models
are, on average, better calibrated than non-robust models. The impact of improved
downsampling or activation functions is marginal.

Summary of Low-Resolution Datasets. On CIFAR-10 and CIFAR-100 non-robust
models can achieve higher standard accuracy and at least match or even exceed
the performance of robust models under black-box attacks like Squares. Only un-
der the white-box attack PGD, the robust models show higher accuracy. However,
non-robust models are highly overconfident in all their predictions and are hence
limited in their applicability for real-world tasks. In contrast, the correctness of a
robust model’s prediction can be estimated by the prediction confidence and can ad-
ditionally serve as a defence against adversarial attacks. Further, we observe that
the confidence of non-robust models decreases with increasing task complexity. In

54 Chapter 4. Robust Models are Less Over-Confident

Non-robust PRN-18 Model Confidences Non-robust WRN-28-10 Model Confidences

0.00 0.25 0.50 0.75 1.00
Confidence

0

5

10

15

D
en

si
ty

Clean

0.00 0.25 0.50 0.75 1.00
Confidence

0

20

40

60

D
en

si
ty

PGD

0.00 0.25 0.50 0.75 1.00
Confidence

0

5

10

D
en

si
ty

Squares

0.00 0.25 0.50 0.75 1.00
Confidence

0

20

40

60

D
en

si
ty

Clean

0.00 0.25 0.50 0.75 1.00
Confidence

0

20

40

D
en

si
ty

PGD

0.00 0.25 0.50 0.75 1.00
Confidence

0

20

40

60

D
en

si
ty

Squares

FLC Pooling (ours) Robust Model [Dai et al. (2022)] Confidences

0.00 0.25 0.50 0.75 1.00
Confidence

0

20

40

60

D
en

si
ty

Clean

0.00 0.25 0.50 0.75 1.00
Confidence

0

50

100

150

D
en

si
ty

PGD

0.00 0.25 0.50 0.75 1.00
Confidence

0

50

100

D
en

si
ty

Squares

0.00 0.25 0.50 0.75 1.00
Confidence

0

10

20

D
en

si
ty

Clean

0.00 0.25 0.50 0.75 1.00
Confidence

0

10

20

30

40

D
en

si
ty

PGD

0.00 0.25 0.50 0.75 1.00
Confidence

0

10

20

30

D
en

si
ty

Squares

Robust Model [Rebuffi et al. (2021)] Confidences Robust Model [Carmon et al. (2019a)] Confidences

0.00 0.25 0.50 0.75 1.00
Confidence

0

1

2

3

4

D
en

si
ty

Clean

0.00 0.25 0.50 0.75 1.00
Confidence

0

1

2

3

4

D
en

si
ty

PGD

0.00 0.25 0.50 0.75 1.00
Confidence

0

2

4
D

en
si

ty

Squares

0.00 0.25 0.50 0.75 1.00
Confidence

0

2

4

D
en

si
ty

Clean

0.00 0.25 0.50 0.75 1.00
Confidence

0

2

4

D
en

si
ty

PGD

0.00 0.25 0.50 0.75 1.00
Confidence

0

2

4

D
en

si
ty

Squares

correct prediction
wrong prediction

correct prediction
wrong prediction

FIGURE 4.8: Adapting CNN Building Blocks for Optimized Confidence Distributions.
Left: Confidence distribution on three different PRN-18. The first row shows a model with-
out adversarial training and standard pooling, the second row the model which uses FLC
Pooling which we introduce in Chapter 6 instead of standard pooling and the third row
shows the model by Rebuffi et al. (2021) adversarially trained and with standard pooling.
Right: Confidence distribution on three different WRN-28-10. The first row shows a model
without adversarial training and standard activation (ReLU), the second row the model by
Dai et al. (2022) which uses learnable activation functions instead of fixed ones and the third
row shows the model by Carmon et al. (2019a) adversarially trained and with the standard

activation (ReLU)

contrast, robust models are less affected by the increased task complexity and exhibit
similar confidence characteristics on both datasets.

4.2.3 ImageNet-1k Models

We rely on the models provided by RobustBench [Croce et al. (2021)] for our ImageNet-
1k evaluation. We report the clean and robust accuracy against PGD and Squares
with an ϵ of 4/255 in Table 4.3. The non-robust model, trained without AT, achieves
the highest performance on clean samples but collapses under white- and black-box
attacks. Further, the models trained with multistep adversaries by Engstrom et al.
(2019) and Salman et al. (2020) achieve higher robust and clean accuracy than the
model trained by Wong et al. (2020) which is trained with single-step adversaries.
Moreover, the largest model, a WRN-50-2, yields the best robust performance. Still,
the amount of robust networks on ImageNet-1k is quite small, thus we can not make
any generalized assumptions. In terms of overconfidence and ECE, a clear trend is
recognizable in Figure 4.11; The non-robust models exhibit a much higher ECE and
are also highly over-confident on all samples. Figure 4.12 depicts the precision-recall
curve for our evaluated models. Under evaluation with clean samples, the non-
robust model without AT performs best. Under both attacks (PGD and Squares), the
largest model, Wide-ResNet-50-2 (WRN-50-2) by Salman et al. (2020) performs best
and the worst performer is the smallest model, a ResNet-18 (RN-18). This may sug-
gest that bigger models can not only achieve a better trade-off in clean and robust

4.3. Discussion 55

PRN-18 (Downsampling)

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Clean Samples

FLC Pooling, AUC = 0.8901
Rebuffi et al., AUC = 0.8523
Baseline, AUC = 0.8959
random baseline

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

PGD Samples

FLC Pooling, AUC = 0.9832
Rebuffi et al., AUC = 0.9592
Baseline, AUC = 0.0942
random baseline

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Squares Samples

FLC Pooling, AUC = 0.9957
Rebuffi et al., AUC = 0.9731
Baseline, AUC = 0.8347
random baseline

WRN-28-10 (Activation)

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Clean Samples

Dai et al., AUC = 0.8969
Carmon et al., AUC = 0.8847
Baseline, AUC = 0.9326
random baseline

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 r

at
e

PGD Samples

Dai et al., AUC = 0.9755
Carmon et al., AUC = 0.9639
Baseline, AUC = 0.2781
random baseline

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Squares Samples

Dai et al., AUC = 0.9877
Carmon et al., AUC = 0.9823
Baseline, AUC = 0.9076
random baseline

FIGURE 4.9: Adapting CNN Building Blocks for Optimized ROC curves on CIFAR-10.
ROC curves for robust models with and without improved building block, like downsam-

pling (top) and activation function (bottom).

accuracy but are also more successful in disentangling confidences between correct
and incorrect predictions.

TABLE 4.3: Performance Evaluation for Robust Models on ImageNet-1k. Clean and robust
accuracy against PGD and Squares (higher is better) of ResNet-50 trained on ImageNet-1k

with AT over 10000 samples.

Method Architecture Acc@1 ↑ PGD ↑ Squares ↑
Baseline RN50 76.13 0.00 11.48
Engstrom et al. (2019) RN50 62.41 35.47 54.93
Wong et al. (2020) RN50 53.83 29.43 42.26
Salman et al. (2020) RN50 63.87 42.23 56.58
Salman et al. (2020) WRN50-2 68.41 44.75 61.29
Salman et al. (2020) RN18 52.50 31.92 43.81

4.3 Discussion

Our experiments confirm that non-robust models are highly overconfident, espe-
cially under gradient-based, white-box attacks. However, when confronted with
clean samples, common corruptions or unseen black-box attacks like Squares, non-
robust and robust models are equally able to detect wrongly classified samples based

56 Chapter 4. Robust Models are Less Over-Confident

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0
Severity 4

False positive rate

FLC Pooling

non-robust Baseline, FLC Pooling
non-robust Baseline
Rebuffi et al.

random baseline

T
ru

e
po

si
ti

ve
 r

at
e

0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 r
at

e

Severity 4

Dai et al.
Carmon et al.
non-robust Baseline
non-robust Baseline, Dai et al.
random baseline

FIGURE 4.10: Adapting CNN Building Blocks for Optimized ROC curves on CIFAR-10-C.
ROC curve for improved downsampling (left) and activation function (right) on the mean
CIFAR-10-C corruptions with severity 4. Robust models are superior to the normal models,

and, the impact of activation and pooling is marginal.

Overconfidence Empirical Calibration Error
Clean Samples PGD Samples Squares Clean Samples PGD Samples Squares
0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.8

0.6

0.4

0.2

0.0

0.5

0.4

0.2

0.3

0.1

0.0

0.5

0.4

0.3

0.2

0.1

0.0

0.8

0.6

0.4

0.2

0.0

0.4

0.3

0.2

0.0

0.1

RN-18, Baseline
RN-18, Salman et al., 2020

RN-50, Baseline
RN-50, Wong et al., 2020

RN-50, Engstrom et al., 2019 WRN-50-2, Baseline
RN-50, Salman et al., 2020 WRN-50-2, Salman et al., 2020

(lower is better)

FIGURE 4.11: Robust Models are Less Over-Confident on ImageNet-1k. Overconfidence
(left) and ECE (right) (lower is better) bar plots of the models trained on ImageNet provided
by RobustBench [Croce et al. (2021)] and their respective non-robust counterparts. The non-
robust baselines exhibit the highest overconfidence and ECE. In contrast, the robust models

are better calibrated.

on their prediction confidence. Indicating that adversarially trained networks over-
fit the kind of adversaries seen during training.

Moreover, our results indicate that the selection of the activation functions as
well as the downsampling, are important factors for the models’ performance and
confidence. Our method, which improves the downsampling, as well as the method
by Dai et al. (2022), which improves the activation function, exhibit the best calibra-
tion for the network’s prediction; High confidence on correct predictions and low
confidence on the incorrect ones.

A further point to discuss is that the ECE is not a well-suited measure as it ag-
gregates the information too strongly. Thus, the network could be highly confident
for wrong samples and low-confident in true samples, yet averaged, it might be on
par with the overall accuracy for the reported class.

4.3.1 Limitations

Our evaluation is based on the models provided on RobustBench [Croce et al. (2021)].
Thus, the amount of networks on more complex datasets, like ImageNet-1k, is rather
small and therefore, the evaluation not universally applicable. While the number of

4.4. Conclusion 57

Clean Samples

Recall

1.0

0.8

0.4

0.6

0.2

0.0 0.2 1.00.80.60.4

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

P
re

ci
si

on
PGD Samples

Recall

1.0

0.8

0.4

0.6

0.2

0.0 0.2 1.00.80.60.4

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

P
re

ci
si

on

Squares Samples

Recall

1.0

0.8

0.4

0.6

0.2

0.0 0.2 1.00.80.60.4

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

P
re

ci
si

on

RN-50, Engstrom et al., 2019
WRN-50-2, Salman et al., 2020 RN-50, Salman et al., 2020 RN-50, Wong et al., 2020

iso-f1 curvesRN-50, BaselineRN-18, Salman et al., 2020

FIGURE 4.12: Robust Models can Disentangle Confidences between Correct and Incorrect
Predictions on ImageNet-1k. Precision Recall curves for the classification of correct versus
erroneous predictions based on the confidence on ImageNet-1k, evaluated over 10,000 sam-
ples. Robust and non-robust models are taken from RobustBench [Croce et al. (2021)]. For
clean samples (left) the non robust baseline performs best, while its confidences are less reli-
able under attack (middle and right). The robust WRN-50-2 by Salman et al. (2020) performs

best on the PGD and Squares samples.

models for CIFAR is large, the proposed database can only be understood as a start-
ing point for future research. Further, the analysis of neural network building blocks
e.g. our analysis on the use of improved building blocks, is limited to single-model
evaluations, potentially leading to inconclusive results. A deeper investigation of
downsampling blocks done in Chapter 6 reveals significant variability in confidence
distribution improvements across different random seeds, highlighting their poten-
tial unreliability. This observation emphasizes the need for further exploration of
the impact of training hyperparameters on such essential properties. Additionally,
we rely simply on the confidence obtained after the Softmax layer, while there are
many other metrics for uncertainty measurement. E.g. Guo et al. (2017) introduced
temperature scaling which is a variant of Platt Scaling [Platt (1999)] to calibrate neu-
ral networks predictions. However, including temperature scaling assumes that the
model is refined or trained with this additional scaling factor. As we wanted to study
the networks as they are, the Softmax is the most straight-forward method.

4.4 Conclusion

We provide an extensive study on the confidence of robust models and observe an
overall trend: Robust models tend to be less overconfident than non-robust models.
Thus, while achieving a higher robust accuracy, AT generates models that are less
overconfident. Further, the prediction confidence of robust models can actually be
used to reject wrongly classified samples on clean data and even adversarial exam-
ples.
Moreover, we observe indications that modifying basic building blocks, such as the
activation function [Dai et al. (2022)] or the downsampling method, affects the con-
fidence calibration properties of robust models. Specifically, in our investigated
examples, these models exhibit increased prediction confidence for correct predic-
tions while maintaining low confidence for erroneous predictions. Thus, when opti-
mizing the architectures (which we do in the following e.g. Chapter 6) and training
schemes of deep neural networks, we should address model robustness and calibra-
tion jointly rather than treating them as separate aspects. This approach is essential
for developing reliable and robust networks suitable for real-world applications.

59

Chapter 5

Aliasing and Adversarially Robust
Generalization of CNNs
Contents

5.1 Introduction . 60
5.2 Method . 62
5.2.1 Aliasing Measure . 62
5.3 Experiments . 64
5.3.1 Aliasing in Existing Models . 64
5.3.2 CNN vs. FCN . 68
5.3.3 Aliasing During Adversarial Training . 70
5.3.4 Catastrophic Overfitting . 72
5.3.5 Aliasing Early Stopping . 74
5.4 Discussion . 75
5.4.1 Spectrum of Adversarial Perturbations 76
5.4.2 Aliasing in Pre-Trained Models . 77
5.4.3 Aliasing and Catastrophic Overfitting . 77
5.4.4 Limitations . 78
5.5 Conclusion . 78

In this chapter, we analyse adversarially trained, robust models in the context of a
specific network operation, the downsampling layer, and provide evidence that ro-
bust models have learned to downsample more accurately and suffer significantly
less from downsampling artifacts, aka. aliasing, than non-robust models. We pro-
pose a novel aliasing measure with which we can quantify the amount of aliasing
introduced after a downsampling operation. In the case of catastrophic overfitting,
we observe a strong increase in aliasing and propose a novel early stopping ap-
proach based on our proposed aliasing measure.

This chapter is based on Grabinski et al. (2022c) and Grabinski et al. (2022d) .
Julia Grabinski, as the first author, conducted all experiments and was the main
writer.

60 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

Downsampling
without Anti-Aliasing

Downsampling
with Anti-Aliasing

PGD
Adversarial Example

FIGURE 5.1: Similarities between Aliasing and Adversarial Attack. Illustration of down-
sampling with (top right) and without an anti-aliasing filter (bottom right), as well as an
adversarial example (bottom left). The top left image shows the original. In the top right,
the image is correctly downsampled using an anti-aliasing filter. In the bottom right, no
filter is applied, leading to aliasing. The adversarial example (bottom left) exhibits visually
similar artifacts. In this chapter, we investigate the role of aliasing in adversarial robustness.

5.1 Introduction

CNNs provide highly accurate predictions in a wide range of applications. Yet, to
allow for practical applicability, CNN models should not be fooled by small image
perturbations, as they are realized by adversarial attacks [Goodfellow et al. (2015);
Moosavi-Dezfooli et al. (2016); Rony et al. (2019)]. Such attacks are optimized to find
image perturbations such that the network makes incorrect predictions while human
observers are not distracted by these perturbations and can still easily recognize the
correct class label. Susceptibility to such perturbations is prohibitive for the applica-
bility of CNN models in real-world scenarios, as it indicates limited reliability and
generalization of the model.

A range of sophisticated methods have been proposed to improve adversarial
robustness [Goodfellow et al. (2015); Rony et al. (2019); Madry et al. (2018)]. How-
ever, a clear trade-off exists: while methods like [Madry et al. (2018); Wu et al. (2020);
Zhang et al. (2019b)] offer strong defenses against diverse attacks, they are compu-
tationally demanding. In contrast, resource-efficient methods, such as [Goodfellow
et al. (2015)], demonstrate good performance against simple adversaries but suffer
from catastrophic overfitting, resulting in a loss of generalization against stronger
attacks like PGD [Madry et al. (2018)].

In fact, when considering the architecture design of commonly employed CNN
models, we might have found one factor why these models perform well in the
standard setting but can be fooled easily.

Concretely, most architectures sub-sample feature maps without ensuring to sam-
ple above the Nyquist rate [Shannon (1949)], such that, after each downsampling
operation, spectra of sub-sampled feature maps may overlap with their replica. This

5.1. Introduction 61

is called aliasing and implies that the network should be genuinely unable to fully re-
store an image from its feature maps. Following this line of thought, recently, several
publications suggest improving CNNs by including anti-aliasing techniques during
downsampling in CNNs [Zhang (2019); Zou et al. (2023); Li et al. (2021); Hossain
et al. (2023)]. They aim to make the models more robust against image translations,
such that the class prediction does not suffer from small vertical or horizontal shifts
of the content.

In contrast, we investigate the relationship between adversarial robustness and
aliasing. Thus, we introduce a novel aliasing measure and compare several recently
proposed adversarially robust models to conventionally trained models in terms of
aliasing. We inspect intermediate feature maps before and after the downsampling
operation at inference. Our first observation is that these models indeed fail to sub-
sample according to the Nyquist Shannon Theorem [Shannon (1949)]: we observe
severe aliasing. Further, our experiments reveal that adversarially trained networks
exhibit less aliasing than standard trained networks, indicating that AT encourages
CNNs to learn how to properly downsample data without severe artifacts. Next, we
visualize the frequency spectra of adversarial attacks on baseline models as well as
on adversarially trained ones. Our experiments show that attacks behave in a less
characteristic spectrum when attacked models are adversarially robust. This indi-
cates that adversarial attacks might employ network aliasing as a backdoor, such
that high-frequency changes can flip the network decision, while attacks on adver-
sarially robust networks have to hamper with the low-frequency components of the
image, i.e. the coarse details. Additionally, we ablate on the importance of spatial
encoding for robustness and compare the attack structures of adversaries created
for CNNs versus fully connected networks (FCNs), which do not inherently encode
the spatial relations. Finally, we investigate the behaviour during FGSM AT and
observe a strong correlation between catastrophic overfitting during training and
the amount of aliasing in the network’s downsampling operations. Specifically, the
amount of aliasing increases significantly as the model overfits to the FGSM pertur-
bations. Based on these findings, we propose a new early stopping criterion based
on our measurement of aliasing to prevent catastrophic overfitting during AT.

In summary, our contributions are:

• We introduce a novel measure for aliasing and show that common CNN down-
sampling layers fail to sub-sample their feature maps in a Nyquist-Shannon
conform way.

• We analyse various adversarially trained models, that are robust against a
strong ensemble of adversarial attacks, AutoAttack [Croce & Hein (2020a)],
and show that they exhibit significantly less aliasing than standard models.

• We ablate on the importance of spatial encoding for aliasing and adversarial
robustness and show that attacks on FCN are more centered towards the ob-
jects and thus stronger visible for the human eye.

• We present strong evidence that catastrophic overfitting coincides with an in-
creased amount of aliasing for several network architectures.

• We introduce a new early stopping criterion for FGSM AT based on our alias-
ing measure.

62 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

5.2 Method

CNNs usually have a pyramidal structure in which the data is progressively sub-
sampled in order to aggregate spatial information while the number of channels
increases. During sub-sampling, no explicit precautions are taken to avoid aliases,
which arise from under-sampling. Specifically, when sub-sampling with stride 2,
any frequency larger than N/2, where N is the size of the original data, will cause
pathological overlaps in the frequency spectra (Figure 2.4 in Section 2.4.5). Those
overlaps in the frequency spectra cause ambiguities such that high-frequency com-
ponents appear as low-frequency components. Hence, local image perturbations can
become indistinguishable from global manipulations.

0 10 20 30

0

10

20

30
0 5 10 15

0

5

10

15

Aliasing Free Stride 1

FIGURE 5.2: Aliasing Measure, Computation of the Aliasing-Free Feature Map. Step-by-
step computation of the aliasing-free version of a feature map. The left image depicts the
magnitude of the Fourier representation (not center-shifted) of a feature map, with the zero-
frequency component in the upper-left corner (i.e., high-frequency components are in the
center). Aliasing-free downsampling suppresses high-frequency components prior to sam-
pling. This can be efficiently implemented in the Fourier domain by cropping and reassem-
bling the low-frequency regions of the Fourier representation, i.e., its four corners. Aliasing
corresponds to folding the deleted high-frequency components into the reconstructed repre-

sentation

0 10 20 30

0

10

20

30

0.2

0.4

0.6

0.8

1.0

0 5 10 15

0

5

10

15

0.2

0.4

0.6

0.8

1.0

0 5 10 15

0

5

10

15

Stride 2Aliasing Free Stride 1 Aliasing Free - Stride 2

0.2

0.4

0.6

0.8

1.0

0 5 10 15

0

5

10

15
0.3

0.2

0.1

0.0

0.1

FIGURE 5.3: Aliasing Measure, Overview. Left: The FFT-transformed feature map (not
center-shifted) at the original resolution. Middle left: Downsampling of this feature map
as described in Figure 5.2. Middle right: FFT-transformed, standard downsampled feature
map (not center-shifted) with a stride of two. Right: Difference between the aliasing-free

and standard downsampled feature maps in the Fourier domain.

5.2.1 Aliasing Measure

To measure the possible amount of aliasing appearing after downsampling, we com-
pare each downsampled feature map in the Fourier domain with its aliasing-free
counterpart. To this end, we consider a feature map g(x) of size 2N × 2N before
downsampling. We compute an "aliasing-free" downsampling by extracting the N

5.2. Method 63

lowest frequencies along both axes in Fourier space. W.l.o.G. , we consider specif-
ically downsampling operations by strided convolutions since these are predomi-
nantly used in adversarially robust models [Zagoruyko & Komodakis (2016)].

In each strided convolution, the input feature map g(x) is convolved with the
learned weights w and downsampled by a stride of two, thus potentially introducing
frequency replica (i.e. aliases) in the downsampled signal ĝs2.

ĝs2 = g(x) ∗ k(w, 2) (5.1)

Afterwards the 2D FFT of the new feature maps ĝs2 is computed, which we denote
Gs2.

Gs2(k, l) =
1

N2

N−1

∑
m=0

N−1

∑
n=0

ĝs2(m, n)e−2π j(k
N m+ l

N n), (5.2)

To measure the amount of aliasing, we explicitly construct feature map frequency
representations without such aliases. Therefore, the original feature map g(x) is
convolved with the learned weights w of the strided convolution without applying
the stride k(w, 1) to obtain ĝs1.

ĝs1 = g(x) ∗ k(w, 1) (5.3)

for k, l = 0, . . . , N − 1. For the non-downsampled feature maps ĝs1, we proceed
similarly and compute for k, l = 0, . . . , 2 · N − 1

Gs1(k, l) =
1

4N2

2N−1

∑
m=0

2N−1

∑
n=0

ĝs1(m, n)e−2π j(k
2N m+ l

2N n). (5.4)

The aliasing-free version Gs1 can be obtained by setting all frequencies above the
Nyquist rate to zero before downsampling,

G↑s1(k, l) = 0 (5.5)

for k ∈ [N/2, 3N/2] and for l ∈ [N/2, 3N/2]. Then the downsampled version in the
frequency domain corresponds to extracting the four corners of G↑s1 and reassem-
bling them as shown in Figure 5.2,

Gs1(k, l) = G↑s1(k, l) for k, l = 0, . . . , N/2

Gs1(k, l) = G↑s1(k + N, l) for k = N/2, . . . , N
and l = 0, . . . , N/2

Gs1(k, l) = G↑s1(k, l + N) for k = 0, . . . , N/2
and l = N/2, . . . , N

Gs1(k, l) = G↑s1(k + N, l + N) for k, l = N/2, . . . , N (5.6)

This way, we guarantee that there are no overlaps, i.e. aliases, in the frequency spec-
tra. Figure 5.2 illustrates the computing process of the aliasing-free downsampling
in the Fourier domain. The aliasing-free feature map can be compared to the actual
feature map in the Fourier domain to measure the degree of aliasing. The full pro-
cedure is presented in Figure 5.3, where we start on the left with the original feature
map. Then, we obtain the two downsampled versions (with and without aliases)
and compute their L1 difference.

The overall aliasing measure, AM, for a downsampling operation is calculated by

64 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

the L1 distance between downsampled and aliasing-free feature maps in the Fourier
domain, averaged over all K feature maps,

AM =
1
K

K

∑
k=0
∥Gs1,k − Gs2,k∥. (5.7)

The proposed AM is zero when aliasing is absent in all downsampled feature maps,
indicating sampling above the Nyquist rate. An AM value exceeding zero signifies
the presence of aliasing, suggesting theoretical vulnerability to adversarial attacks
due to the model’s inability to reliably differentiate between fine details and coarse
input structures.

5.3 Experiments

Downsampling
Conv(stride=2)

ShortCut
Conv(stride=2)additional operations

+

Conv(stride=1)

ShortCut
Conv(stride=1)/Identityadditional operations

+

FIGURE 5.4: Abstract Illustration of a Building Block in ResNet architectures. Abstract
illustration of a building block in PRN-18 and WRN-28-10. The first operation in a block
is a convolution, executed with a stride of either one or two. For a stride of one (left), the
shortcut simply passes the identity of the feature maps forward. If the first convolution is
executed with a stride of two, the shortcut must also have a stride of two (right) to ensure

that both representations can be added at the end of the building block.

5.3.1 Aliasing in Existing Models

We conduct an extensive analysis of already existing adversarially robust models
trained on CIFAR-10 [Krizhevsky (2009)] with two different architectures, namely
WideResNet-28-10 (WRN-28-10) [Zagoruyko & Komodakis (2016)] and Preact Res-
Net-18 (PRN-18) [He et al. (2016b)]. These architectures are widely supported by nu-
merous AT approaches on RobustBench [Croce et al. (2021)] while remaining com-
pact enough to allow efficient execution and training. As a baseline, we trained a
plain WRN-28-10 and PRN-18, both with similar training schemes on an NVIDIA
Tesla V100. Each model is trained with 200 epochs, a batch size of 512, CrossEn-
tropy loss and SGD with an adaptive learning rate starting at 0.1 and reducing it at
100 and 150 epochs by a factor of 10, a momentum of 0.9 and a weight-decay of 5e-4.
All adversarially trained networks are pre-trained models provided by RobustBench
[Croce et al. (2021)].

Both architectures have similar building blocks and the key operations, includ-
ing downsampling, are shown abstractly in Figure 5.4. Each block starts with a
convolution with stride two, followed by additional operations like ReLU and con-
volutions with stride one. The characteristic skip connection of ResNet architectures

5.3. Experiments 65

also needs to be implemented with stride two if downsampling is applied in the cor-
responding block. Consequently, we need to analyse all downsampling units and
skip connections before they are summed up to form the output feature map.

The WRN-28-10 networks have four operations in which downsampling is per-
formed. These operations are located in the second and third blocks of the network.
In comparison, the PRN-18 networks have six downsampling operations, located in
the second, third and fourth layers of the network.

0 10 20 30 40 50 60

4

5

6

7

8

9

10

11

0 10 20 30 40 50 60

2

4

6

8

10

0 10 20 30 40 50 60
1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

0 10 20 30 40 50 60

2.0

2.5

3.0

3.5

4.0

Layer 2 Downsampling, r = -0.8710

Normal

Normal Normal

Normal
Adversarial

Adversarial Adversarial

Adversarial

Layer 3 Downsampling, r = -0.7677

AutoAttack robust accuracy AutoAttack robust accuracy

Layer 2 Shortcut, r = -0.9663

Layer 3 Shortcut, r = -0.9091

A
li

as
in

g
A

li
as

in
g

FIGURE 5.5: Adversarial Robustness vs. Aliasing on WRN-28-10 models. Adversarial ro-
bustness versus aliasing and the according correlation r, evaluated on different pre-trained
WRN-28-10 models from RobustBench [Croce et al. (2021)] as well as two baseline models
without AT, one from RobustBench and one trained by us. All blue dots represent adversar-

ially trained networks and the light red ones represent standard trained models.

WideResNet 28-10. In the following, we compare differently trained WRN-28-10
networks in terms of their robust accuracy against AutoAttack [Croce & Hein (2020a)]
and the amount of aliasing after downsampling.

Figure 5.5 indicates significant differences between adversarially trained and
standard trained networks. First, the networks trained without AT are not able to
reach any robust accuracy, meaning their accuracy under adversarial attacks is equal
to zero. Second, and this is most interesting for our investigation, standard trained
networks exhibit much more aliasing during their downsampling layers than ad-
versarially trained networks. Through all layers and operations in which downsam-
pling is applied, the adversarially trained networks (blue dots Figure 5.5) have much
higher robust accuracy and much less aliasing compared to the standard trained net-
works (red dots Figure 5.5). We indicate the Pearson correlation r between aliasing
and robust accuracy above each scatter plot in Figure 5.5, indicating a significant
negative correlation. Additionally, we can observe that the amount of aliasing in the
second layer is much higher than in the third layer. This can be explained by the
different feature map sizes in the two layers as we calculate the absolute L1 norm.

66 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

When comparing the conventionally trained networks against each other, it can
be observed that the specific training scheme used for training the network can have
an influence on the amount of aliasing of the network. Concretely, the standard base-
line model provided by RobustBench [Croce et al. (2021)] exhibits less aliasing than
the one trained by us. Unfortunately, there is no further information about the exact
training schedule from RobustBench, such that we can not make any assumptions
on the interplay between training hyperparameters and aliasing.

0 10 20 30 40 50 60 70

6

8

10

12

14

0 10 20 30 40 50 60 70

4

5

6

7

8

9

0 10 20 30 40 50 60 70

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

0 10 20 30 40 50 60 70

1.5

2.0

2.5

3.0

3.5

0 10 20 30 40 50 60 70

1.30

1.35

1.40

1.45

1.50

1.55

1.60

0 10 20 30 40 50 60 70

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Layer 2 Downsampling, r = -0.9172

AdversarialAdversarial
Normal Normal

Normal Normal

Normal Normal

Adversarial Adversarial

Adversarial Adversarial

Layer 2 Shortcut, r = -0.6032

Layer 3 Shortcut, r = -0.6834

Layer 4 Shortcut, r = 0.0218

Layer 3 Downsampling, r = -0.7921

Layer 4 Downsampling, r = -0.9270

AutoAttack robust accuracy AutoAttack robust accuracy

A
li

as
in

g
A

li
as

in
g

A
li

as
in

g

FIGURE 5.6: Adversarial Robustness vs. Aliasing on PRN-18 models. Adversarial robust-
ness versus aliasing and the according correlation r, exemplary evaluated on different pre-
trained PRN-18 models. The blue dots represent adversarial trained networks and the light

red dot represent a standard trained model without AT.

Preact ResNet-18. Consistent with our approach for WRN-28-10, we performed
identical measurements and employed the same training protocol for PRN-18 mod-
els while accounting for an extra layer and two additional downsampling steps.

The overall results, presented in Figure 5.6, are similar to the ones for the WRN-
28-10 networks; most adversarially trained networks exhibit significantly less alias-
ing and higher robustness than conventionally trained ones. Yet, the additional
downsampling layer allows one further observation. While the absolute aliasing

5.3. Experiments 67

measure is overall lower, the robust networks reduce the amount of aliasing pre-
dominantly in the earlier layers, the second and third layers. The amount of aliasing
in the fourth layer of adversarially robust models is not significantly different from
the amount of aliasing in conventionally trained models in the same layer. This
phenomenon might be explained by the sparsity of the deeper layers. While the
earlier feature maps represent the spatial properties of input images, deeper layers
rather encode semantic properties that are sparsely encoded and, therefore, might
be harder to affect. Yet, this aspect needs further investigation for a better under-
standing, which goes beyond the scope of this work.

Pooling Variation. In addition to our observation of robust and non-robust net-
works on CIFAR-10, we conducted an ablation on MNIST to inspect the influence of
different pooling methods. Therefore, we trained six small CNNs which all have the
same architecture and only differ in the downsampling operation. Either we down-
sample by using Max- or AvgeragePooling, or we use convolution with stride two,
as it was done for the models provided by RobustBench [Croce et al. (2021)]. We
train three different seeds and report the mean and standard deviation over these
runs. Each network was trained for 10 epochs with the Adam optimizer, a cycling
learning rate and a maximal learning rate of 5e− 3. We employ a CrossEntropy loss
and batch size is chosen to be 100. For the AT, we used FGSM adversaries with
ϵ = 0.3 and α = 3.75. The training was executed on one NVIDIA Titan V100, each
training run took around 2 minutes.

TABLE 5.1: Performance Evaluation of different Pooling variants. Mean clean and robust
accuracy against AutoAttack (AA) [Croce & Hein (2020a)] with ϵ = 0.3 for different pooling
variations in the same network architecture on MNIST trained with three different seeds. As

well as the amount of aliasing encountered in the downsampling layers.

Pooling Training Acc@1 ↑ AA ↑ Aliasing ↓
Convolution Clean 99.30 ± 0.01 0.00 ± 0.00 8.91 ± 2.17
MaxPooling Clean 99.44 ± 0.03 0.00 ± 0.00 29.07 ± 2.10
AveragePooling Clean 99.21 ± 0.04 0.00 ± 0.00 18.50 ± 0.95

Convolution FGSM 98.78 ± 0.33 54.97 ± 38.98 9.15 ± 5.42
MaxPooling FGSM 98.20 ± 0.03 25.05 ± 10.21 11.49 ± 0.98
AveragePooling FGSM 98.68 ± 0.21 55.86 ± 35.55 16.75 ± 2.11

Models using MaxPooling result in the most pronounced aliasing when trained
without AT and demonstrate the poorest performance against adversarial attacks,
regardless of AT. In contrast, downsampling via convolution and AveragePooling
effectively suppress aliasing and increases robustness against attacks when adver-
sarially trained. AveragePooling can be interpreted as blurring before downsam-
pling, which is often applied in signal processing to suppress high-frequency com-
ponents and thus reduces aliasing. Overall, the amount of aliasing is reduced due to
FGSM AT and the learned convolutions with stride two exhibit the lowest aliasing
compared to the static downsampling via Average- or MaxPooling. AveragePooling
exhibits the highest aliasing when combined with AT. The high standard deviation
in adversarial robustness suggested that some of the trained models experienced
catastrophic overfitting.

68 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

Spectrum of Adversarial Perturbations. Further, we analyse the spectrum of the
perturbations created by adversarial examples, i.e. perturbations created by AutoAt-
tack [Croce & Hein (2020a)].

0 10 20 30

0

5

10

15

20

25

30
0.6

0.7

0.8

0.9

1.0

1.1

1.2

0 10 20 30

0

5

10

15

20

25

30

W
R

N
 b

as
el

in
e

C
ar

m
on

 e
t a

l.,
 2

01
9

H
en

dr
yc

ks
 e

t a
l.,

 2
01

9
W

an
g

et
 a

l.,
 2

02
0

R G B

0.6

0.7

0.8

0.9

1.0

0 10 20 30

0

5

10

15

20

25

30 0.6

0.7

0.8

0.9

1.0

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

0 10 20 30

0

5

10

15

20

25

30 0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 10 20 30

0

5

10

15

20

25

30 0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

0 10 20 30

0

5

10

15

20

25

30 0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

1.75

(A) WRN

0 10 20 30

0

5

10

15

20

25

30
0.4

0.6

0.8

1.0

1.2

0 10 20 30

0

5

10

15

20

25

30
0.4

0.6

0.8

1.0

1.2

0 10 20 30

0

5

10

15

20

25

30
0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30

0

5

10

15

20

25

30

Wong2020Fast

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 10 20 30

0

5

10

15

20

25

30

Wong2020Fast

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 10 20 30

0

5

10

15

20

25

30

Wong2020Fast

0.5

1.0

1.5

2.0

0 10 20 30

0

5

10

15

20

25

30

Rice2020Overfitting

0.5

1.0

1.5

2.0

0 10 20 30

0

5

10

15

20

25

30

Rice2020Overfitting

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 10 20 30

0

5

10

15

20

25

30

Rice2020Overfitting

0.5

1.0

1.5

2.0

0 10 20 30

0

5

10

15

20

25

30

Sehwag2021Proxy_R18

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30

0

5

10

15

20

25

30

Sehwag2021Proxy_R18

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30

0

5

10

15

20

25

30

Sehwag2021Proxy_R18

0.25

0.50

0.75

1.00

1.25

1.50

P
R

N
 b

as
el

in
e

W
on

g
et

 a
l.,

 2
02

0
R

ci
e

et
 a

l.,
 2

02
0

S
eh

w
ag

 e
t a

l.,
 2

02
1

R G B

(B) PRN

FIGURE 5.7: Center-shifted Spectrum of the AutoAttack Perturbations. Center-shifted
spectrum of the RGB perturbations created over CIFAR-10 samples by AutoAttack (Croce
& Hein, 2020a) on the baseline model (top row) and three different robust models from Ro-
bustBench [Croce et al. (2021)]. While the robust models differ from the non-robust baseline,

there is no significant difference among the robust models.

Firstly, we compare the spectrum of the perturbations created by the AutoAt-
tack standard attack on our baseline model as well as on the robust models which
we already evaluated in section 5.3.1. We compute the perturbations as differences
between adversarial and clean images. Afterwards, we transform each perturba-
tion into the Fourier space and take each of the three channels, RGB. The results are
presented in Figure 5.7.

The frequency distribution of adversarial attacks, like AutoAttack, is variable,
aligning with the findings of [Maiya et al. (2021)]. We observe variations between
the non-robust baseline and the robust models. However, the spectral differences
among the robust models are not significant.

5.3.2 CNN vs. FCN

We also conducted additional experiments on MNIST to investigate the difference
between fully connected networks (FCNs) and CNNs. While CNNs work with the
structural characteristics (neighbourhood) of the data, the FCN only takes the single
pixels as stand-alone into account. Thus, we might not encounter aliasing issues in
FCNs. Both FCN and CNN classifiers compress spatial resolution during the map-
ping from input data to class labels, not solely in the final layer. While this com-
pression, inherent in mapping images to semantic labels, obscures intuitive under-
standing of spatial information in dense architectures, convolutional networks with
controlled spatial compression (i.e. sampling) allow for systematic aliasing measure-
ment. This is challenging in dense networks. To further understand the behavioural
differences between convolutions and dense networks (FCNs), we performed an ab-
lation study on MNIST.

5.3. Experiments 69

We trained a FCN without convolutional layers with the same amount of lay-
ers, three, and approximately the same number of parameters, 40000, clean and
with FGSM AT. The cleanly trained network can achieve a clean accuracy of 97.68%
and no robust accuracy 0%. These results are similar to the CNN performance as
reported in Table 5.1.

Origin

CNN

|CNN-Origin|

CNN-Origin

FCN

|FCN-Origin|

FCN-Origin

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.2

0.0

0.2

0.00

0.25

0.50

0.75

1.00

0.0

0.1

0.2

0.3

0.2

0.0

0.2

FIGURE 5.8: Adversarial Sample Generated for a CNN vs. FCN. Comparison of adversarial
examples generated for a CNN and an FCN. The top row shows the original image without
perturbations. The second, third, and fourth rows show the adversarial examples generated
for the CNN, as well as the absolute and normalized differences between the original im-
age and the adversaries, including the pure perturbations. The bottom three rows show the
adversarial examples generated for the FCN, along with the absolute and normalized differ-

ences between the original image and the adversaries generated for the FCN.

Attack Structures. Further, we visualize the adversarial examples created on the
CNN compared to the FCN presented in Figures 5.8 and 5.9. In Figure 5.8 we ran-
domly picked six samples from MNIST to investigate the difference of the perturba-
tions on FCN vs. CNN. While CNN perturbations exhibit fine-structured artifacts,
FCN adversaries are characterized by block-like patterns. Figure 5.9 illustrates the
mean perturbation across MNIST classes. For FCNs, these mean perturbations are
concentrated on the target objects. In contrast, CNN mean perturbations are dis-
tributed throughout the image and appear more noisy.

70 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

m
ea

n
or

ig
in

al
 im

ag
es

m

ea
n

pe
rt

ur
ba

tio
ns

 C
N

N
m

ea
n

pe
rt

ur
ba

tio
ns

 F
C

N

FIGURE 5.9: Mean Adversarial Attack for a CNN vs. FCN. Comparison of the mean image
over each MNIST class original and perturbed with FGSM between FCN and CNN. The
top two rows show the clean images, the middle two rows are the mean adversarial images
on the CNN and the last two rows are the mean adversarial images on the FCN. While the
MNIST numbers are still visible for the mean original images and the perturbations on the
CNN, the perturbations on the FCN are much more related to the numbers that should be

recognized in the MNIST task making the perturbations more visible to the human eye.

Intrinsic Robustness. Finally we measure the robustness of CNN and FCN with
respect to varying epsilons. We compare the standard trained FCN vs. CNN. Figure
5.10 presents the results, revealing that CNNs exhibit greater robustness at lower
epsilon values, while FCNs become more robust beyond an epsilon of 0.07. Both ar-
chitectures are effectively compromised when epsilon exceeds 0.1. We acknowledge
that network robustness is also influenced by factors such as model parameters and
activation functions, which were held constant within our experiments.

5.3.3 Aliasing During Adversarial Training

Next, we consider the amount of aliasing during training of AT and conventional
training. We adversarially trained five PRN-18 models with different training schemes
and one PRN-18 without AT as baseline, using the same training parameters as de-
scribed in Section 5.3.1. The AT schemes provided by Wong et al. (2020) and Rice
et al. (2020) are used while we adapt the proposed method by Wong et al. (2020) to
run with and without early stopping. During each training run, we computed the
amount of aliasing in each downsampling and shortcut layer for each epoch from
100 randomly picked CIFAR-10 training samples.

5.3. Experiments 71

0.00 0.02 0.04 0.06 0.08 0.10
epsilon

0

20

40

60

80

100

AA
 r

ob
us

t a
cc

ur
ac

y

FCN
CNN

FIGURE 5.10: Robustness Evaluation CNN vs. FCN. Robust accuracy on AutoAttack [Croce
& Hein (2020a)] for FCN and CNN across varying epsilon values. At small epsilon values,
the CNN outperforms the FCN. However, as epsilon increases, both models fail, with the

CNN being completely fooled at a lower epsilon threshold.

Figure 5.11 depicts the aliasing levels across all layers, with each plot represent-
ing the mean aliasing between downsampling and shortcut layers for various AT
schemes and the baseline. We observe that adversarially trained networks consis-
tently exhibit reduced aliasing in the second and third layers throughout training.
In the fourth layer, aliasing is substantially lower for all methods, including the base-
line. Table 5.2 presents the final robust accuracy for all adversarially trained models.
All AT models demonstrate lower aliasing and higher robust accuracy compared to
the baseline.

TABLE 5.2: Performance Evaluation for different AT schemes. Clean and robust accuracy
against PGD (higher is better) and the amount of aliasing in the second layer (lower is better)
for the baseline and adversarially trained networks, using the training scheme provided by
Wong et al. (2020) and Rice et al. (2020), as well as FGSM with the training schedule from

Wong et al. (2020), including early stopping criteria based on our aliasing measure.

Method Acc@1 ↑ PGD ↑ Aliasing ↓
Baseline 93.29 0.00 12.12

FGSM (Wong et al., 2020) 90.85 7.05 9.31
early-stopping FGSM (Wong et al., 2020) 80.16 39.76 6.14
Free (Wong et al., 2020) 83.86 48.10 5.62

PGD (Wong et al., 2020) 85.06 56.37 6.30
Robust Overfitting (Rice et al., 2020) 84.58 46.70 3.99

Aliasing FGSM (ours) 82.91 52.43 5.78

Further, we can observe that early stopping for FGSM AT plays a crucial role
for the robust accuracy as well as for the amount of aliasing. Table 5.2 shows that
FGSM without early stopping performs nearly as poorly as training without any
adversaries. Figure 5.11 indicates that the model trained with FGSM without early

72 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

Layer 2 Layer 3

Layer 4
epochs

0 200100 12550 7525 150 175

0 200100 12550 7525 150 175

0

2

4

6

8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

10

12

14

16

200100 12550 7525 150 175

no adversarial training
Wong et al., 2020 FGSM training wo early stopping
Wong et al., 2020 FGSM training w early stopping

epochs

epochs

al
ia

si
ng

al
ia

si
ng

al
ia

si
ng

Wong et al., 2020 FGSM training
w aliasing early stoppig indication

Wong et al., 2020 free adversarial training
Rice et al., 2020 FGSM training

early stopping point

early stopping point

FIGURE 5.11: Aliasing and Early Stopping in FGSM AT. Amount of aliasing in all layers of
PRN-18 during training over 100 random images of CIFAR-10 training set for the baseline
and AT training provided by Wong et al. (2020) and Rice et al. (2020). The amount of aliasing
is quantified as the mean value between the aliasing measure of the downsampling and the
shortcut layer. All networks are trained for 200 epochs, except FGSM training including
early stopping. There, the training is stopped earlier based on the evaluation of the model
on PGD or our aliasing measure. Still, we record the epochs after early stopping and mark
the point of early stopping by the dashed lines, to demonstrate the relationship between

aliasing and early stopping.

stopping has a high increase in aliasing at the end of the training. The models which
include early stopping stop before and thus exhibit no increased aliasing. The FGSM
AT without early stopping continues and the amount of aliasing increases while the
robust accuracy drops. This indicates that aliasing and adversarially robust general-
ization are highly related.

The decline in PGD robustness for FGSM AT without early stopping is known
as catastrophic overfitting. To mitigate this, models are evaluated with PGD attacks
after each epoch, comparing robust accuracy to the previous epoch. This approach,
while less computationally intensive than full PGD training, yields comparable ro-
bustness. However, early stopping can lead to an underconverged network, which
we discuss in Section 5.4.4 in greater detail.

5.3.4 Catastrophic Overfitting

Following, we explore the relation of catastrophic overfitting and aliasing further
and show that the amount of aliasing increases when catastrophic overfitting takes
place.

Aliasing vs. PGD accuracy. To highlight the relationship between aliasing and
PGD attackability, we examined their correlation during training. Figures 5.12 and

5.3. Experiments 73

5.13 depict aliasing levels and PGD accuracy across epochs for WRN-28-10 and PRN-
18, respectively, demonstrating that catastrophic overfitting, marked by a sharp drop
in PGD accuracy, coincides with a significant and sustained increase in aliasing.

0 50 100 150 200
2

4

6

8

10

12

0 50 100 150 200

2

4

6

Layer 2 Layer 3

epochs

0

epochs

aliasing PGD accuracy clean accuracy
ac

cu
ra

cy

al
ia

si
ng

al
ia

si
ng

ac
cu

ra
cy

0

2020

40 40

6060

80 80

FIGURE 5.12: Aliasing and Catastrophic Overfitting in FGSM AT on a WRN-28-10. Alias-
ing, clean accuracy and PGD accuracy during training of a WRN-28-10 with FGSM AT and
cycling learning rate. The model starts to exhibit robust overfitting in epoch 70, i.e. the PGD

accuracy drops to zero and the amount of aliasing increases significantly.

0 50 100 150 200

4

6

8

10

a
lia
si
n
g

0 50 100 150 200

3.0

3.5

4.0

4.5

0 50 100 150 200

1.6

1.8

2.0

2.2

Layer 2 Layer 3 Layer 4

ac
cu

ra
cy

ac
cu

ra
cy

ac
cu

ra
cy

al
ia

si
ng

al
ia

si
ng

al
ia

si
ng

aliasing PGD accuracy clean accuracy

epochsepochs epochs

20

FIGURE 5.13: Aliasing and Catastrophic Overfitting in FGSM AT on a PRN-18. Aliasing,
clean accuracy and PGD accuracy during training of a PRN-18 with FGSM AT and cycling
learning rate. The model starts to exhibit catastrophic overfitting in epoch 180, i.e. the PGD

accuracy drops to zero and the amount of aliasing increases significantly.

While the WRN-28-10 suffers from catastrophic overfitting already at epoch 60
the PRN-18 needs to be trained at least 180 epochs to exhibit catastrophic overfitting
and an increased amount of aliasing. While the clean accuracy for the WRN-28-10
is highest right before the increase in aliasing, i.e. the catastrophic overfitting, and
stays further below, the PRN-18 clean accuracy increases right after the increase in
aliasing.

Spectrum of Adversarial Perturbations during AT. Next, we visualize the spec-
trum of attacks on our robust models before and after catastrophic overfitting. The
results for the attacks are depicted in Figure 5.15. While the perturbations of the
robust models before catastrophic overfitting exhibit spectral characteristics similar
to the robust models from RobustBench [Croce et al. (2021)], the perturbations of the
models after catastrophic overfitting shift more toward the higher frequency spec-
trum. In contrast, they do not fall into the middle-frequency spectrum, similar to the
baseline model in Figure 5.7.

74 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

0 25 50 75 100 125 150 175 200
2

4

6

8

10

12

2

4

6

8

10

0 25 50 75 100 125 150 175 200

4

6

8

10

2

4

6

8

10

aliasing

WRN-28-10 Layer 2 PRN-18 Layer 2

clean confidence PGD confidence bad PGD confidence

epochsepochs

co
nf

id
en

ce

co
nf

id
en

ce

al
ia

si
ng

al
ia

si
ng

FIGURE 5.14: Confidence and Aliasing during FGSM AT. Aliasing of the second layer (red)
and confidence of a WRN-28-10 (left) and PRN-18 (right) model trained with FGSM AT. In
red the amount of aliasing, the dotted lines represent the confidences overall on the clean
(yellow) and adversarial data (blue) as well as the confidence on the false predictions caused

by the adversaries (black).

Effect on Network Confidences. To investigate further into the co-occurrence of
aliasing and catastrophic overfitting, we take a look into the predicted confidence
of the network as previously done in Chapter 4. Therefore, we calculate the overall
confidence of the network predictions on the clean and PGD perturbed data as well
as the confidence on the false predictions caused by PGD, which we call bad pgd
confidence.

Figure 5.14 presents the networks’ confidences on the clean and PGD data as well
as the confidence on the wrong predictions caused by PGD and the amount of alias-
ing. We can observe for both WRN-28-10 and PRN-18, the model’s confidence on
the clean and adversarial test data increases significantly when aliasing increases,
i.e. catastrophic overfitting takes place. Interestingly, the false confidence on PGD
perturbations is relatively low before the increase in aliasing but gets highest after
the increase. We assume that the network is not only not robust but much more con-
fident with its false predictions after catastrophic overfitting, which is well aligned
with our finding in Chapter 4 where we found that non-robust models are much
more overconfident than robust models.

5.3.5 Aliasing Early Stopping

In Section 5.3.4, we showed that catastrophic overfitting during FGSM AT coincides
with a sudden increase in aliasing in the models’ feature maps. Now, we investigate
whether we can exactly determine this overfitting point using our proposed aliasing
measure. Catastrophic overfitting mainly occurs for FGSM AT consequently, we
perform our early stopping criteria with aliasing.

Analogous to [Wong et al. (2020)], who set a threshold for the robust accuracy
gap to PGD [Madry et al. (2018)], we define a threshold for the aliasing gap between
successive epochs.

In this experiment, we only employ our aliasing measure computed from the
feature maps in the second layer as we could observe the strongest peak of aliasing
in the second layer. Further, when focusing only on one layer, we can additionally
save computing time and be more efficient. One PRN-18 layer with downsampling
includes two downsampling operations, so we build the mean between their aliasing
measure as done before. However, the aliasing also depends on the images in each
specific batch, i.e. aliasing is low for feature maps computed on very smooth input
images while it is high for textured input data. To reduce noise, we apply a median

5.4. Discussion 75

0 10 20 30

0

5

10

15

20

25

30

0.5

1.0

1.5

2.0

0 10 20 30

0

5

10

15

20

25

30
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 10 20 30

0

5

10

15

20

25

30
0.5

1.0

1.5

2.0

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 10 20 30

0

5

10

15

20

25

30 0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 10 20 30

0

5

10

15

20

25

30
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 10 20 30

0

5

10

15

20

25

30
0.4

0.6

0.8

1.0

1.2

0 10 20 30

0

5

10

15

20

25

30
0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30

0

5

10

15

20

25

30 0.4

0.6

0.8

1.0

1.2

0 10 20 30

0

5

10

15

20

25

30 0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 10 20 30

0

5

10

15

20

25

30
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 10 20 30

0

5

10

15

20

25

30
0.4

0.6

0.8

1.0

1.2

1.4

1.6

R G B

ep
oc

h
 1

79
ep

oc
h

 1
81

ep
oc

h
 1

80
ep

oc
h

 1
82

FIGURE 5.15: Center-shifted Spectrum of AutoAttack Perturbations after Catastrophic
Overfitting. Center-shifted spectrum of the RGB perturbations created by AutoAttack at
different epochs of a model training, before (two top rows, epoch 179 and 180) and after

robust overfitting (bottom rows, epoch 181 and 182).

filter on the aliasing measure. This median filtered version is represented by the blue
line in Figure 5.16.

On the median filtered aliasing curves, we simply compare each new aliasing
measure to the median and predict a high loss in PGD accuracy when the aliasing
measure increases. Figure 5.17 evaluates, for five different FGSM AT runs, the early
stopping points computed by Algorithm 1 for varying thresholds t. We report the
distance (in epochs) of our predicted stopping point to the best early stopping point
predicted using PGD. Across all training runs, relative thresholds ranging from 0.3
to 0.35 consistently identified the PGD stopping point. Therefore, we decide for a
threshold of 0.33, meaning training halts upon an increase in aliasing exceeding 33%
(see Algorithm 1).

Our AM can determine the early stopping point in FGSM AT "on the fly" with-
out explicit robustness tests. The computation of the early stopping point with our
aliasing measure takes only around 903.44 milliseconds per epoch, while PGD takes
around 1315.89 milliseconds per epoch on a NVIDIA Tesla V100. The results of
FGSM AT are presented in Table 5.2. When compared with FGSM AT and FGSM
AT with early stopping based on PGD provided by Wong et al. (2020) our aliasing
early stopping is able to find the best trade-off between clean accuracy and robust
accuracy while keeping the amount of aliasing low.

5.4 Discussion

Our experiments reveal that common CNNs fail to sub-sample their feature maps
in a Nyquist-Shannon conform way and consequently introduce aliasing artifacts.
Further, we can give strong evidence that aliasing and adversarial robustness are
highly related. All evaluated robust models exhibit significantly less aliasing than
standard trained models.

76 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

0 25 50 75 100 125 150 175 200

3

4

5

6

7

8

9

10

epochs

aliasing during training
early stopping
median filtered

al
ia

si
ng

FIGURE 5.16: Aliasing Measure Evaluation during FGSM AT. Aliasing measure in the sec-
ond layer during training of a PRN-18 with FGSM AT. In epoch 182, the PGD robustness as

well as the proposed aliasing measure predict the best early stopping point.

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

threshold

di
ff

er
en

ce
 to

 ta
rg

et
 e

po
ch

FIGURE 5.17: Threshold Estimation for our Aliasing Measure. Evaluation of the threshold
for our aliasing measure over five independent training runs. Each line represents one alias-
ing one run. The difference of epochs is the L1 difference between the early stopping epoch

and the epoch calculated by the aliasing measure with the corresponding threshold.

We also gave an example use case for this finding, i.e. we showed that our alias-
ing measure could replace the explicit evaluation of network robustness as an early
stopping criterion in FGSM. We discuss both aspects in the following.

5.4.1 Spectrum of Adversarial Perturbations

We could show that adversarial perturbations of robust models dominantly lie in
the low-frequency spectrum, while the perturbations of non-robust models can lie
in the low as well as in the middle or high frequencies. For models that exhibit ro-
bust overfitting, the generated perturbations dominantly lie in the high-frequency
spectrum. These findings align with [Maiya et al. (2021)], suggesting that the fre-
quency spectrum in which perturbations can occur depends not only on the dataset
but also on the specific model architecture and training scheme. Furthermore, we
assume that aliasing is one of the key vulnerability exploited by adversarial attacks.

5.4. Discussion 77

Algorithm 1 Aliasing Early Stopping

Require: bat
Ensure: the model weights mbest, stopping point pstop

t← 0.33
AMhist ← [], history of the aliasing measure
AMd, AMs ← ALIASING MEASURE(2, m, X) ▷ Aliasing Measure quantifies the
aliasing for the downsampling layer AMd and the shortcut AMs
AM← (AMd + AMs)/2
AMhist ← AMhist.append(AM)
for e in N do

do network training
AMd, AMs ← ALIASING MEASURE(2, m, X)
AM← (AMd + AMs)/2
AMhist ← AMhist.append(AM)
if AM > MEDIAN(AMhist) ∗ (1 + t) then

pstop ← e
return mbest, pstop

else
AMhist.append(AM)
mbest = m

end if
end for

5.4.2 Aliasing in Pre-Trained Models

After the application of downsampling operations in standard CNNs all feature
maps suffer from aliasing artifacts occurring due to insufficient sub-sampling.

As already observed in Section 5.3.1, low aliasing is especially important in the
earlier layers. This can likely be explained by the fact that information is spatially
more and more compressed as it is propagated to deeper layers. Therefore, deep lay-
ers require sparsity in the feature maps to be expressive. Thus, we hypothesize that
deeper layers are less vulnerable to aliasing, whereas earlier layers are more suscep-
tible. Therefore, the difference in aliasing between robust and non-robust models is
most pronounced in the early layers.

Summarizing, adversarially trained networks exhibit significantly less aliasing
in their feature maps than standard trained networks with the same architecture. As
shown in Section 5.3.1, this is valid for different model architectures and training
schemes. It raises the question of whether models with a low amount of aliasing are
necessarily more robust. We show in the following, in Chapter 6, that aliasing-free
downsampling indeed improves native robustness and enhances AT.

5.4.3 Aliasing and Catastrophic Overfitting

We provide strong evidence that catastrophic overfitting in FGSM AT is negatively
correlated with the amount of aliasing after downsampling. Whenever a model ex-
periences catastrophic overfitting during FGSM AT, the amount of aliasing increases
significantly, i.e. the increase in aliasing marks the point at which the model loses its
robust generalization ability.

78 Chapter 5. Aliasing and Adversarially Robust Generalization of CNNs

Aliasing as Early Stopping Indication. We could show that our aliasing measure
can be an indication for the early stopping point, which is needed to prevent catas-
trophic overfitting on single-step AT schemes like FGSM. Thereby, we choose the
relative increase in aliasing, t, at which to stop to be 33%. This threshold is chosen
by comparing different trained networks and their aliasing measure during network
training. With this setting, we aim for transferability of the approach to different net-
work architectures and datasets.

Yet, the same issue exists for previous approaches where some threshold had to
be determined [Wong et al. (2020)]. In contrast to the explicit robustness evaluation
in [Wong et al. (2020)], the aliasing measure indicator does not depend on specific,
externally computed perturbations but can be evaluated during each training itera-
tion on the training batch.

5.4.4 Limitations

However, early stopping inevitably interrupts the training process, resulting in under-
converged networks. While our early stopping criterion provides a straightforward
and effective method to halt training before catastrophic overfitting occurs, it may
also lead to networks that are not fully converged, potentially reducing their perfor-
mance.

Furthermore, our aliasing measure essentially applies a rectangular function to
the frequency representation, which may introduce additional spectral artifacts, such
as sinc-interpolation artifacts, which are discussed in greater detail in Section 6.2.3.
Consequently, the aliasing-free ground truth may inherently favour sinc-like struc-
tures. Additionally, the feature map that is downsampled using a stride of two and
subsequently transformed into the frequency domain may suffer from spectral leak-
age artifacts. This happens due to the absence of padding, which leads to an insuffi-
ciently refined frequency representation, causing energy to disperse across multiple
frequency bins.

5.5 Conclusion

In conclusion, we demonstrate a strong correlation between aliasing and adversarial
robustness in CNNs. Specifically, increased aliasing coincides with decreased PGD
robustness during catastrophic overfitting in FGSM AT. Further, we are able to tackle
the problem of catastrophic overfitting via early stopping based on our aliasing mea-
sure. We hypothesize that aliasing is one of the main underlying factors that lead
to the vulnerability of CNNs. Recent methods to increase model robustness rather
heal the symptoms of the underlying problem than investigate its origins. To over-
come this challenge we might need to start thinking about CNNs in a more signal
processing manner and account for basic principles from this field, like the Nyquist-
Shannon theorem, which gives us clear instructions on how to prevent aliasing. In
the following, Chapter 6, we show how to inherently implement this principle in
current downsampling methods. Thereby enhancing the models’ native robustness
and AT. Besides downsampling, padding can also lead to unwanted aliasing effects.
Still, it is not straightforward to incorporate this knowledge into the architecture and
structure of common CNN designs as we have many components to account for. We
aim to offer a novel yet fundamentally sound perspective on CNNs, enhancing their
performance and reliability for real-world applications.

79

Part II

Novel Fourier Modules

81

Chapter 6

Aliasing-Free Downsampling in the
Frequency Domain
Contents

6.1 Introduction . 83
6.2 Method . 84
6.2.1 Aliasing in CNNs Downsampling . 84
6.2.2 FrequencyLowCut Pooling . 84
6.2.3 Sinc Interpolation Artifact-Free Pooling 87
6.2.4 Integration into CNNs . 89
6.3 Experiments . 89
6.3.1 Artifact Representation . 90
6.3.2 Native Robustness . 94
6.3.3 Adversarial Training and Catastrophic Overfitting 97
6.3.4 Ablation Studies . 101
6.4 Discussion . 106
6.4.1 Efficiency . 106
6.4.2 Limitations . 106
6.5 Conclusion . 106

In this chapter, we introduce aliasing-free downsampling. Since from an image and
signal processing point of view, the huge success of CNNs is counter-intuitive, as the
inherent spatial pyramid design of most CNNs is apparently violating basic signal
processing laws, i.e. the Sampling Theorem in their downsampling operations, lead-
ing to aliasing. This issue was broadly neglected until model robustness started to
receive more attention. We showed previously in Chapter 5 that there is a strong
correlation between the vulnerability of CNNs and aliasing artifacts induced by
bandlimit-violating downsampling. Thus, we propose to downsample in the fre-
quency domain to ensure aliasing-free downsampling, denoted by Frequency Low
Cut Pooling (FLC Pooling), which we further extend to Aliasing and Sinc Artifact-
free Pooling (ASAP). ASAP is aliasing-free and removes further artifacts from sinc-
interpolation. Our experimental evaluation on ImageNet-1k, ImageNet-C and CI-
FAR datasets on various CNN architectures shows that networks using FLC Pool-
ing and ASAP as downsampling methods achieve higher robustness against com-
mon corruptions and adversarial attacks natively, i.e., without explicitly training for
robustness, while maintaining a clean accuracy similar to the respective baseline

82 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

models. Further, FLC Pooling and ASAP effectively reduced the risk of catastrophic
overfitting in FGSM AT, leading to improved performance.

This chapter is based on Grabinski et al. (2022b, 2023) . Julia Grabinski, as the first
author, conducted all experiments besides the AT of the networks on ImageNet-1k,
Steffen Jung conducted those. Julia Grabinski was the main writer.

0 50 100 150 200 250

0

50

100

150

200

250

M
ax

Po
ol

in
g

Original Image

0 50 100 150 200 250

0

50

100

150

200

250St
ri

de
d

D
ow

ns
am

pl
in

g

0 50 100 150 200 250

0

50

100

150

200

250

FL
C

 P
oo

lin
g

(o
ur

s)

0 50 100 150 200 250

0

50

100

150

200

250

AS
AP

 (o
ur

s)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

2x Downsampling

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 10 20 30 40 50 60

0

10

20

30

40

50

60

4x Downsampling

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 10 20 30 40 50 60

0

10

20

30

40

50

60

0 5 10 15 20 25

0

5

10

15

20

25

Zoom In

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

FIGURE 6.1: Impact of Downsampling Methods: Visual Quality of different Downsam-
pling Techniques. A qualitative comparison of different downsampling techniques. The
first and second rows show the commonly used MaxPooling and strided downsampling. In
the third and fourth rows, we apply our FLC Pooling and ASAP, respectively. While Max-
Pooling does not preserve the image structure well, FLC Pooling and ASAP much better
retain structural and spatial information. Strided downsampling also preserves the zebra’s
structure, yet suffers from severe aliasing artifacts, visible as grid-like patterns on the ze-
bra’s fur. These artifacts are removed with our FLC Pooling and ASAP. While, FLC Pooling
exposes sinc artifacts, visible for example around the zebras head after the first two down-

sampling stages, such artifacts are removed in ASAP.

6.1. Introduction 83

6.1 Introduction

Most CNN architectures use a combination of small convolutional kernels and down-
sampling to increase the network’s receptive field while keeping computational costs
low. However, standard downsampling methods such as MaxPooling, AveragePool-
ing, or convolution with a stride of two suffer from a significant drawback: their sus-
ceptibility to aliasing [Zhang (2019); Zou et al. (2023)]. We demonstrated in Chap-
ter 5 that aliasing correlates with the network’s vulnerability to distribution shifts
[Zhang (2019); Zou et al. (2023)] and adversarial attacks [Li et al. (2021); Hossain
et al. (2023)]. Based on these results, we investigate the manner in which 2D signals,
in case of CNNs’ input images and feature maps, are downsampled and how this
results in undesired artifacts. So far, prior research mainly focused on reducing alias-
ing artifacts [Hossain et al. (2023); Zhang (2019); Zou et al. (2023)], proposing the use
of blur kernels for mitigation [Zhang (2019); Zou et al. (2023)]. However, these ap-
proaches are neither capable of completely removing aliasing nor addressing other
types of spectral leakage artifacts associated with downsampling in CNNs.

We propose downsampling in the frequency domain to achieve aliasing-free
downsampling, via Frequency Low Cut (FLC) Pooling. Networks using FLC Pool-
ing achieve higher robustness against common corruptions [Hendrycks & Dietterich
(2019)], adversarial attacks [Goodfellow et al. (2015); Madry et al. (2018)], and en-
hance AT [Goodfellow et al. (2015)] by mitigating catastrophic overfitting. Building
on these insights, we analyse the properties of CNN feature maps after frequency-
domain downsampling and identify limitations in FLC Pooling. Specifically, while
FLC Pooling eliminates aliasing, it remains susceptible to other spectral distortions,
such as sinc-interpolation artifacts, which manifest as rippling patterns in the spatial
domain. For instance, in Figure 6.1, the third row and third column show repeated
structures near the zebra’s head caused by these artifacts. To address this, we pro-
pose an improved method: Aliasing and Sinc Artifact-free Pooling (ASAP). By ex-
tending FLC Pooling with Hamming windowing in the frequency domain, ASAP
further reduces spectral artifacts, enhancing both inherent robustness and robust-
ness after AT. In contrast to our downsampling, MaxPooling distorts the zebra’s im-
age (Figure 6.1, first row), and strided downsampling generates substantial aliasing
(Figure 6.1, second row). These results highlight the importance of revisiting and
improving CNN downsampling methods.

Our contributions are as follows:

• We investigate current downsampling methods, such as MaxPooling as well
as strided convolutions, and demonstrate why they should be replaced with
downsampling methods that conform to signal processing principles like the
Nyquist Shannon Theorem.

• We introduce Frequency Low Cut Pooling, short FLC Pooling, for guaranteed
aliasing-free downsampling without additional hyperparameters.

• We show that even aliasing-free downsampling can be susceptible to further
corruptions in the frequency domain, specifically sinc-interpolation artifacts.

• Consequently, we propose Aliasing and Sinc Artifacts-free Pooling, short ASAP.
Thus, we achieve higher robustness with and without AT compared to state-
of-the-art models incorporating standard downsampling methods. Like FLC
Pooling, ASAP is hyperparameter-free.

84 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

• To validate the robustness of FLC Pooling and ASAP, we empirically evaluate
against adversarial attacks [Goodfellow et al. (2015); Madry et al. (2018); Croce
& Hein (2021)], common corruptions included in ImageNet-C [Hendrycks &
Dietterich (2019)] and spatial shifts [Zhang (2019)].

• Furthermore, we combine FLC Pooling and ASAP with FGSM [Goodfellow
et al. (2015)] and PGD [Madry et al. (2018)] AT. Our results demonstrate that
the resulting models achieve favourable performance in both clean and robust
accuracy while effectively avoiding catastrophic overfitting during FGSM AT.

6.2 Method

First, we elaborate shortly on aliasing in CNN’s downsampling. Afterwards, we
present our aliasing-free downsampling method, FLC Pooling, which completely
removes aliasing artifacts during downsampling. Additionally, we further extend
FLC Pooling by introducing Aliasing and Sinc Artifact-free Pooling, short ASAP,
which addresses not only the well-known issue of aliasing but also tackles sinc-
interpolation artifacts.

6.2.1 Aliasing in CNNs Downsampling

Common CNNs sub-sample their intermediate feature maps to aggregate spatial in-
formation and increase the network’s invariance. However, current sub-sampling
methods do not incorporate aliasing prevention. Specifically, sub-sampling with in-
sufficient sampling rates causes pathological overlaps in the frequency spectra (Fig-
ure 2.4). These overlaps occur when the sampling rate falls below twice the signal’s
bandwidth [Shannon (1949)], leading to ambiguities: high-frequency components
cannot be clearly distinguished from low-frequency components. As a result, CNNs
might misconceive local uncorrelated image perturbations as global manipulations.
In Chapter 5, we show that aliasing in CNNs strongly coincides with the robustness
of the model. From this observation, we hypothesize that models over-relying on
high-frequency components are inherently less robust. Empirical evidence in Figure
6.9 validates this hypothesis within adversarial training (AT), showing that catas-
trophic overfitting is accompanied by increased aliasing during FGSM AT. Based on
this observation, we expect that networks employing aliasing-free sampling meth-
ods, such as FLC Pooling and ASAP, exhibit more stable behaviour in FGSM AT
settings.

6.2.2 FrequencyLowCut Pooling

Previous approaches have introduced downsampling methods that reduce aliasing
by applying blurring techniques before downsampling [Zhang (2019); Zou et al.
(2023); Hossain et al. (2023)]. They do so by classical blurring operators in the spatial
domain. While those methods reduce aliasing, they can not entirely remove it due
to sampling theoretic considerations in theory and limited filter sizes in practice (see
[Gonzalez & Woods (2006)] for details).

In contrast, we perfectly remove aliases in CNNs’ downsampling operations
without adding additional hyperparameters. Therefore, we directly address the
downsampling operation in the frequency domain, where we can sample accord-
ing to the Nyquist rate, i.e. remove all frequencies above samplingrate

2 and thus discard

6.2. Method 85

any potential aliases. Similar to our proposed aliasing measure in Chapter 5, we ex-
clusively select the low-frequency components below the Nyquist frequency. How-
ever, we employ a simple yet effective method, fftshift, to facilitate the extraction of
low-frequency components. Our proposed aliasing-free downsampling operation is
illustrated in Figure 6.2.

We first perform a Discrete Fourier Transform (DFT) on the feature maps g. Fea-
ture maps with height M and width N that are to be downsampled are represented
as follows:

G(k, l) =
1

MN

M−1

∑
m=0

N−1

∑
n=0

g(m, n)e−2π j(k
M m+ l

N n) . (6.1)

In the resulting frequency space representation G(k, l), all coefficients of frequencies
k, l, with |k| or |l| > samplingrate

2 have to be set to 0 before downsampling. CNNs
commonly downsample with a factor of two, such that the resulting sampling rate
is 1

2 . Aliasing-free downsampling thus corresponds to removing coefficients where
|k|, |l| > 1

4 . The remaining coefficients denoted by Gd are then transformed back to
the spatial domain via inverse DFT:

gd(m̂, n̂) =
1

K̂L̂

K̂−1

∑
k=0

L̂−1

∑
l=0

Gd(k, l)e2π j(m̂
K̂

k+ n̂
L̂

l). (6.2)

Implementation. Practically, the DFT(g) returns an array G of complex numbers
with size K × L = M × N, where the frequency k, l = 0 is stored in the upper left
corner and the highest frequency is in the center. We thus shift the low-frequency
components into the center of the array via FFT-shift to get Gs and crop the frequen-
cies below the Nyquist frequency, umax, as Gsd = Gs[K′ : 3K′, L′ : 3L′] for K′ = K

4
and L′ = L

4 , for all samples in a batch and all channels in the feature map. After the
inverse FFT-shift, we obtain array Gd with size [K̂, L̂] = [K

2 , L
2], containing exactly all

frequencies below the Nyquist frequency umax, which we can transform back to the
spatial domain via inverse DFT for the spatial indices m̂ = 0 . . . M

2 and n̂ = 0 . . . N
2 .

We thus receive the aliasing-free downsampled feature map gd with size [M
2 , N

2].
Due to the process of cutting out the low-frequency components, we call this ap-
proach Frequency Low Cut Pooling, short FLC Pooling.

Figure 6.2 presents this procedure in detail. Particularly, FLC Pooling begins
with an FFT to obtain the spectral representation. The next step is the low-pass cut,
which corresponds to the third step in Figure 6.2, followed by the IFFT. In the spatial
domain, the low pass cut operation would amount to convolving the feature map
with an infinitely large (non-bandlimited) sinc(m) = sin(m)

m filter, which can not be
implemented in practice. In the following, we discuss the practical implications of
this in detail and propose an extension of our FLC Pooling in Section 6.2.3.

Why Do We Need FLC Pooling? In the following, we briefly discuss why spatial
blurring [Zhang (2019); Zou et al. (2023); Hossain et al. (2023)] can not guarantee
the prevention of aliasing in the feature maps, even if large convolutional kernels
would be applied, and why, in contrast, the proposed FLC Pooling can guarantee
to prevent aliasing. Zhang (2019); Zou et al. (2023) proposed to apply approxi-
mated Gaussian filter kernels to the feature map. This operation is motivated by
the fact that an actual Gaussian in the spatial domain corresponds to a Gaussian in
the frequency domain. As the standard deviation of the Gaussian in the spatial do-
main increases, the standard deviation of its frequency representation decreases. Yet,

86 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

Low Pass Cut

stabilized
FFT

n

n

n/2

n/2

stabilized
IFFT

Hamming Filter

n/2

n/2n

n

Input OutputSpectral Representation

FIGURE 6.2: FLC Pooling and ASAP, Method Overview. Overview of our aliasing-free
FLC Pooling and it’s extension to aliasing- and sinc-artifact-free downsampling, short ASAP.
First, we transform the input into the frequency domain and center-shift using our stabilized
FFT and shift the low-frequency components to the center. For ASAP we afterwards apply
a Hamming filter to the frequency representation to prevent sinc interpolation artifacts, this
step is skipped for FLC Pooling. Next, we apply the low pass cut to downsample aliasing-
free. Finally, we transform the feature map back into the spatial domain using our stabilized

IFFT.

the Gaussian distribution has infinite support, regardless of its standard deviation,
i.e. the function never actually drops to zero. The convolution in the spatial domain
corresponds to the point-wise multiplication in the frequency domain. Therefore,
even after convolving a signal with a perfect Gaussian filter with a large standard
deviation (and infinite support), all frequency components that were ̸= 0 prior to
the convolution remain non-zero, albeit reduced in magnitude. Specifically, convo-
lution with a Gaussian filter, even under theoretically ideal conditions, can mitigate
apparent aliasing but cannot entirely eliminate it. In practice, these ideal settings
are not given: Prior works such as [Zhang (2019); Zou et al. (2023)] have to employ
approximated Gaussian filters with finite support (usually not larger than 7× 7). In
the spatial domain, the ideal low pass filter operation employed in our FLC Pool-
ing corresponds to a convolution of the feature maps with the Fourier transform of
the rectangular function rect(u, τ) (by the Convolution Theorem, e.g. [Gonzalez &
Woods (2006)]) defined here between frequencies −1/τ and 1/τ.

rect(u, τ) = ∏
(

u
2/τ

)
=

{
1 for |u| ≤ 1/τ

0 otherwise
(6.3)

with 1/τ defined at Nyquist frequency umax or practically speaking for our im-
plementation in FLC Pooling at M/2 and N/2.

This trivially guarantees all frequencies above below M/2 and N/2 to be zero.
The Fourier transform of this rectangle function is given by (details to the derivation
are given in Section 2.4.6):

f (x, τ) = F−1
[
∏
(

u
2/τ

)]
=

2
τ

sinc
(

2πx
τ

)
, (6.4)

However, while the ideal low pass filter in the Fourier domain has finite support

∏
(

u
2/τ

)
, its equivalent in the spatial domain has infinite support, i.e. 2

τ sinc
(2πx

τ

)
will never approach zero. Hence, we need an infinitely large convolution kernel to
apply perfect low-pass filtering in the spatial domain. This is obviously not possible
in practice and prior work did use Gaussian kernels not larger than 7× 7.

6.2. Method 87

Sinc Interpolation Artifacts. Following this line of argumentation, we now dis-
cuss the occurrence of sinc interpolation artifacts from the application of a rectan-
gular impulse in the frequency domain more in depth. In Figure 6.6 we visualize
aliasing in the spatial domain. The leftmost image represents the original image
before downsampling, the other images depict the downsampled versions (here by
a factor of eight for better visibility). The middle image (strided downsampling),
downscaled without any anti-aliasing, exhibits prominent grid artifacts, which are
particularly noticeable in the zebra’s fur. In contrast, the image downsampled using
FLC Pooling shows an aliasing-free downscaled version (the fourth image from the
left in Figure 6.6).

However, upon closer examination of the quality and stability of the FLC pooled
image, we observe that it is still susceptible to sinc-interpolation artifacts, or ringing
artifacts, predominantly visible around the zebra’s head in Figures 6.1 and 6.6. In
the following, we briefly discuss these artifacts and present a simple approach to
mitigate them.

As previously discussed, we apply a rectangle function as point-wise multiplica-
tion in the Fourier domain, which is equivalent to circular convolution, i.e. a convo-
lution with circular boundary conditions, with a sinc-function in the spatial domain.
This leads to (i) sinc-interpolation artifacts, also referred to as ringing artifacts in the
spatial domain, and (ii) to wrap-around effects of the circular sinc-convolution at the
boundaries of the feature map, where, for example, signal from the left boundary of
a feature map is convolved into the signal on the right.

6.2.3 Sinc Interpolation Artifact-Free Pooling

To achieve completely aliasing-free downsampling, it is necessary to apply the rect-
angle function in the frequency domain. To mitigate sinc artifacts (i.e. ringing arti-
facts), it is common to apply a filter that smoothens the sharp edges of the rectangle
function. Therefore, we propose the use of a Hamming window, H(n), which is
defined for 1D signals as follows:

H(n) = a− (1− a) · cos
(

2πn
N

)
, 0 ≤ n ≤ N (6.5)

The 2D Hamming filter is defined as the outer product of two 1D Hamming filters,
where a = 25/46 and N represents the number of samples in the signal. However,
unlike in [Tomen & van Gemert (2021)], we do not utilize the Hamming filter as a
window function in the spatial domain. Instead, we directly apply the Hamming
filter in the frequency domain as a point-wise multiplication.

The spatial representation of the Hamming window from the frequency domain
is shown in Figure 2.5 (right, blue line) in Chapter 2. The side slopes of the trans-
formed Hamming window become near zero, effectively reducing interpolation ar-
tifacts. Further, we show in Figure 2.5 the combination of the rectangle function and
the Hamming window (red dashed line) in the Fourier domain (left) and the spa-
tial domain (right). The Hamming window suppresses the oscillations of the sinc
function, while remaining completely aliasing-free. Further, the possible boundary
artifacts from the circular convolution with the sinc function are also suppressed as
the side slope of the signal becomes near zero.

88 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

unsymmetric

padding

FIGURE 6.3: Effect of Unsymmetrical Padding for Low-Frequency Component Cuts. We
use unsymmetrical padding to achieve an uneven number of input samples. Thus, the fre-
quency representation is symmetric and the DC component is centered. During the cut of
the low-frequency components also the cut remains symmetric while this is not the case for

the unpadded signal.

Stabilized Fast Fourier Transform. To further enhance our approach, we found
that it is necessary to stabilize the Fourier Transform. Common FFT implementa-
tions [Cooley & Tukey (1965)] leverage the separability of the Fourier Transform.
Typically, the n-dimensional FT are cascaded 1D Fourier transforms. Hence, the 2D
FFT is computed first in one direction (vertically) and then in the other direction
(horizontally). Due to numerical instabilities, this process can introduce shifts in
the image after multiple transform applications (see Figure 6.7, second and third
column).

We suppose that the numerical issues of the usual row-first FFT originate from
the fact that our signal is usually even-sized (even number of pixels in width and
height), leading to non-centered frequency representations (see Figure 6.3, left). The
resulting asymmetric cut-out of the low-frequency components can be avoided by
padding. Specifically, asymmetric padding can help to center the frequency repre-
sentation as demonstrated in Figure 6.3, right.

0 2 4 6 8 10

0

2

4

6

8

10

0.0 2.5 5.0 7.5 10.0 12.5 15.0

0

2

4

6

8

10

12

14

2D rectangle filter
transformed from the Fourier

into spatial domain

padded 2D rectangle filter
transformed from the Fourier

into spatial domain

FIGURE 6.4: Effect of Padding to Prevent Sinc Interpolation Artifacts. Left: Rectangle filter
transformed from the Fourier domain to the spatial domain without padding. At the edges
we can see severe sinc-interpolation artifacts. Right: Padded rectangle filter transformed
from the Fourier domain to the spatial domain. After the transformation the padding is re-
moved by a centered crop (red line). Thus, some of the dominant sinc-interpolation artifacts

are removed.

In theory, padding can also serve as a mitigating factor against sinc interpola-
tion artifacts. The rationale behind this is twofold. First, the padding compensates
for possible ringing artifacts that fold in, as the padding is removed after the opera-
tion, as shown in Figure 6.4. Second, through the padding and transformation into
the frequency domain, we artificially increased the resolution of the signal. Thus,

6.3. Experiments 89

when cutting at the Nyquist frequency of the higher resolution signal, we artificially
increase the value for 1/τ, resulting in a more narrow sinc in the spatial domain.
In our analysis, we provide two options for padding. Small padding, denoted by
ASAPsp, only adds one line of zeros to the bottom and left. Large padding, denoted
by ASAPlp, pads by inputsize

2 − 1 to the top and left. Both lead to centered represen-
tations (see Figure 6.7). Larger padding could provide better results, while smaller
padding is more efficient. Yet, since the FFT algorithm is optimized for data in the ar-
ray size of powers of two, even small padding can increase the compute costs when
the size before padding is exactly a power of two.

Therefore, we evaluate a very cost-efficient heuristic to avoid the numerical ar-
tifacts introduced by row-first 2D FFTs: we transpose the feature map before every
other FFT, such that row-first and column-first FFT are applied in an alternating
manner. We denote this stabilization method as ASAPstbl. We discuss the computa-
tion cost in Section 6.3.4.

FFT
Feature

Maps (FM) FM FM

Aliasing-Free Downsampling ConvolutionConvolution

IFFT FM

Aliasing-Free

 Downsampling

FIGURE 6.5: FLC Pooling and ASAP, integration in CNN. Abstract integration of our
aliasing-free downsampling for feature extraction in a CNN, similar to Figure 1.2 (b) from

Chapter 1.

6.2.4 Integration into CNNs

The integration of our FLC Pooling as ASAP and straight-forward, whenever the
networks includes an operation with stride two, it is replaced with our downsam-
pling. If the original downsampling operation was a convolution, we add a convo-
lution after our downsampling approach to account for the flexibility of the opera-
tion. When the original downsampling operation was Max- or AveragePooling, it
is simply replaced. Therefore, the abstract workflow of a CNN incorporating our
downsampling is illustrated in both Figure 6.5 and Figure 1.2 (b).

6.3 Experiments

For evaluation, we first visualize aliasing artifacts following standard downsam-
pling, as well as sinc-interpolation artifacts resulting from FLC Pooling. Second, we
compare the performance of state-of-the-art models trained using different down-
sampling techniques against both our FLC Pooling and ASAP. This evaluation shows
that FLC Pooling and ASAP exhibit superior native robustness against spatial shifts,
common corruptions and adversarial attacks. Third, we evaluate our FLC Pooling
and ASAP networks in combination with AT and demonstrate their ability to pre-
vent catastrophic overfitting during FGSM AT, resulting in higher robust accuracy
while maintaining high clean accuracy. Last, we conduct an ablation study.

90 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

0 50 100 150 200

0

50

100

150

200

Zo
om

ed
 In

 r
eg

io
n

Original Image

0 200 400 600 800

−15

−10

−5

0

Po
w

er
 S

pe
ct

ru
m

0 10 20

0

5

10

15

20

25

MaxPooling

0 200 400 600 800

−15

−10

−5

0

0 10 20

0

5

10

15

20

25

Strided Downsampling

0 200 400 600 800

−15

−10

−5

0

0 10 20

0

5

10

15

20

25

FLC Pooling (ours)

0 200 400 600 800

−15

−10

−5

0

0 10 20

0

5

10

15

20

25

ASAPstbl (ours)

0 200 400 600 800

−15

−10

−5

0

0 10 20

0

5

10

15

20

25

ASAPsp (ours)

0 200 400 600 800

−20

−15

−10

−5

0

0 10 20

0

5

10

15

20

25

ASAPlp (ours)

0 200 400 600 800

−20

−15

−10

−5

0

FIGURE 6.6: Image Quality and Power Spectrum Differences for different Downsampling
Techniques. Qualitative comparison of different downsampling methods regarding their
image quality and power spectrum differences. The first row shows the original images and
the downsampled versions (downsampled by factor eight) with different pooling methods.
After MaxPooling the zebra’s fur structures are much less recognizable. When simple down-
sampling via stride is applied, grid structures appear, and we observe aliasing artifacts. FLC
Pooling removes these aliasing artifacts. However, ringing artifacts surrounding the zebra’s
head become visible. Only our ASAP is able to downsample the image without artifacts.
The second row presents the power spectrum (in log scale for the y-axis, x-axis presents the
frequency bands) of the images. The first column represents the original power spectrum of
the image. Underlying each power spectrum of the downsampled versions we plotted the
spectrum of the original image in red. Our ASAP variants are the only methods to achieve a

similar power spectrum to the original image.

6.3.1 Artifact Representation

The subsequent analysis focuses on the artifacts produced by improper downsam-
pling. We begin with qualitative observations and then proceed to a quantitative
assessment of different downsampling techniques.

Qualitative Analysis in the Spatial Domain. We first visually inspect downsam-
pling artifacts for several downsampling stages (factor 2, 4, and 8) in a toy example
in Figure 6.7. MaxPooling (first column) has the expected effect of disintegrating
the spatial structure of the sample. In the bottom row of column two, the sinc-
interpolation artifacts for FLC Pooling, discussed in Section 6.2.3, become visible:
they appear as ringing artifacts. The same effect can be observed in Figures 6.1 and
6.6. To mitigate these artifacts, we apply a Hamming filter, as described in Section
6.2.3, suppressing these artifacts (four last columns of Figure 6.7). A remaining, po-
tentially undesired effect is the slight shift of the signal to the lower right, which is
removed by the stabilization in all ASAP variants.

Qualitative Analysis in the Frequency Domain. Figure 6.6 depicts the 1D power
spectrum after downsampling for a more realistic example. The first column de-
picts the original image with the full power spectrum. Each column presents a dif-
ferent downsampling technique, with the qualitative result after downsampling in
the first row and its power spectrum in the second row. The power spectrum for
each downsampling method in Figure 6.6 demonstrates that the strided convolu-
tion alters the frequency spectrum and is not able to represent the high-frequency
components accurately compared to the original. While the power spectrum of the
MaxPooled images appears more similar to the original power spectrum than the
strided convolution, it still missed to represent the low-frequency components cor-
rectly. FLC Pooling introduces slightly more varied frequency components, which
can be attributed to the additional ringing artifacts resulting from sinc-interpolation.

6.3. Experiments 91

O
ri

gi
na

l I
m

ag
e

MaxPooling
2x

 D
ow

ns
am

pl
in

g
4x

 D
ow

ns
am

pl
in

g
6x

 D
ow

ns
am

pl
in

g
FLC Pooling (ours) FLC + Hamming ASAPstbl (ours) ASAPsp (ours) ASAPlp (ours)

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 6.7: Qualitative Image Comparison of Different Downsampling Techniques. We
qualitatively compare the influence of downsampling using different methods. The first
column shows the commonly used MaxPooling. In the second column, we use FLC Pooling,
and in the third column, we show FLC with an additional Hamming window applied. In
the last three columns, we present our ASAP variants, which include the Hamming window

and different stabilization techniques.

In contrast, all our ASAP variants obtain a power spectrum similar to the one of the
original image.

Quantitative Analysis. To quantify several different downsampling methods, we
evaluate the aliasing measure proposed in Section 5.2.1 as well as the difference in
power spectrum for different downsampling methods in Table 6.1. Methods that ap-
ply blurring before downsampling, including prior work [Zhang (2019); Zou et al.
(2023)], FLC Pooling, and all variants of our proposed ASAP, best preserve the power
spectrum of the original image. Surprisingly, while the qualitative analysis of the
power spectrum after MaxPooling in Figure 6.6 appeared satisfactory, the power
spectrum seems to be altered in an undesirable way, leading to a high difference in
power spectrum when evaluated over several images. With respect to the amount
of aliasing introduced by the downsampling method, our FLC Pooling and all vari-
ants of ASAP are the only entirely aliasing-free approaches. ASAPlp offers the most
favourable trade-off, being aliasing-free and preserving the power spectrum well.

Padding. As previously discussed, we introduce three variants of our ASAP to en-
hance its stability. Two of these variants incorporate padding, which increases the
size of the feature maps. This padding can potentially reduce artifacts but also in-
creases the computational burden for the FFT and IFFT. Figure 6.7 (columns four
to six) demonstrates the qualitative visual effect of using large or small asymmetric
padding before transforming into the frequency domain. In both cases, the represen-
tations are correctly centered; however, large padding is more effective at preventing
ringing artifacts. On the downside, large padding significantly increases the compu-
tational cost of the FFT. Depending on the padding size, this results in an 8% increase

92 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

TABLE 6.1: Aliasing Measure and Power Spectrum Difference for various Downsampling
Techniques. The mean and standard deviation of the aliasing measure proposed in Chapter
5 and power spectrum difference, measured via KL divergence, after downsampling with
conventional methods and our downsampling methods over 1000 images from CIFAR-10.

FLC Pooling, as well as ASAP, do not suffer from aliasing, hence aliasing is zero.

Name Aliasing ↓ Power Spectrum
difference ↓

Max Pooling 0.26 ± 0.30 0.0113 ± 0.1019
Strided Downsampling 0.17 ± 0.17 0.0025 ± 0.0070
BlurPooling [Zhang (2019)] 0.17 ± 0.17 9e-06 ± 0.0008
ABlurPooling [Zou et al. (2023)] 0.22 ± 0.23 0.0007 ± 0.0115
Wavelet Pooling [Li et al. (2020)] 0.84 ± 0.30 0.0025 ± 0.0070
FLC Pooling (ours) 0 0.0036 ± 0.0107
ASAPstbl (ours) 0 0.0011 ± 0.0049
ASAPsp (ours) 0 0.0006 ± 0.0075
ASAPlp (ours) 0 0.0004 ± 0.0071

TABLE 6.2: Time Evaluation of Additional Padding within our ASAP. We evaluate the time
for a single execution on 32× 32 CIFAR-10 input images across 100 independent runs over
the validation set on an NVIDIA A100. Small padding adds only one line of zeros at the
bottom and left. Large padding adds padding equal to half of the input size, with one line
less on the top and right. A sequence includes three stacked operations, such that the input
is downsampled by a factor of eight, while a single execution only downsamples by a factor

of two.

Padding Size Sec Per Single Execution ↓ Sec Per Sequence ↓
No Padding 0.0522 ± 0.0181 0.0738 ± 0.0195
Small Padding 0.0623 ± 0.0211 0.0794 ± 0.0185
Large Padding 0.2903 ± 0.0254 0.3782 ± 0.0282

in computational cost for small padding and a 5.1× increase for large padding on an
NVIDIA A100, as reported in Table 6.2. For a single execution on the largest feature
map size of 32× 32, the computational time increases by 19% for small padding and
5.6× for large padding.

6.3. Experiments 93

TABLE 6.3: Native Robustness of Aliasing-Free Downsampling on ImageNet-1k. Clean
and robust accuracy (in percent, higher is better) for several common models trained without
adversarial training on ImageNet-1k. Attacks are performed with an epsilon of ϵ = 1/255
to reveal the difference in native robustness. While standard robustness evaluations are
typically conducted with ϵ = 4/255 this attack strength would cause all networks to fail
completely. Our FLC Pooling and ASAP strengthen the native robustness against adversarial

attacks. In addition, ASAPsp outperforms all methods on common corruptions.

Arch Method Acc@1 Acc@5 APGD FGSM Corr@1 Corr@5

R
es

N
et

-1
8

Baseline 69.56 89.09 0.01 21.20 34.37 54.66
BlurPooling 2019 71.38 90.12 0.07 21.78 35.97 56.48
Wavelet Pooling 2020 71.29 90.12 0.01 23.10 37.53 58.34
FLC Pooling (ours) 69.16 88.91 0.32 35.21 40.19 61.82
ASAPstbl (ours) 69.53 89.11 0.31 36.44 40.33 61.99
ASAPlp (ours) 71.18 89.93 0.31 40.33 43.14 64.63
ASAPsp (ours) 71.54 90.24 0.28 39.57 43.44 64.87

R
es

N
et

-5
0

Baseline 75.85 92.88 0.07 36.00 40.80 61.18
BlurPooling 2019 77.19 93.38 0.24 39.44 43.03 63.60
Wavelet Pooling 2020 76.56 92.95 0.13 38.45 42.13 62.79
low-pass 2021 77.50 - - - 30.00 -
low-pass 2021 + RA 78.40 - - - 34.50 -
low-pass 2021 + Swish + RA 78.80 - - - 35.10 -
FLC Pooling (ours) 77.13 93.44 0.53 59.05 50.51 71.59
ASAPstbl (ours) 77.12 93.45 0.67 57.72 50.76 71.87
ASAPlp (ours) 78.11 94.00 0.67 58.37 53.34 74.00
ASAPsp (ours) 78.54 94.10 0.94 56.84 54.20 74.83

R
es

N
et

-1
01

Baseline 77.25 93.54 0.04 38.66 46.09 67.01
BlurPooling 2019 78.15 94.03 0.25 42.76 46.92 67.70
Wavelet Pooling 2020 78.06 93.96 0.04 46.11 48.49 69.16
FLC Pooling (ours) 78.16 93.95 1.26 58.49 52.91 73.72
ASAPstbl (ours) 78.11 94.12 1.32 59.56 53.13 73.99
ASAPlp (ours) 79.07 94.35 1.57 58.99 55.82 76.19
ASAPsp (ours) 79.34 94.63 1.78 58.06 56.14 76.51

W
id

eR
es

N
et

-5
0-

2 Baseline 78.29 94.03 0.28 37.74 45.23 65.75
BlurPooling 2019 78.60 94.18 0.60 39.39 46.22 66.58
FLC Pooling (ours) 79.67 94.74 0.64 54.00 48.48 69.22
ASAPstbl (ours) 79.68 94.71 0.61 53.43 48.99 69.63
ASAPlp (ours) 80.01 94.98 0.45 49.88 50.17 70.40
ASAPsp (ours) 80.31 94.96 0.51 48.52 50.93 70.98

M
ob

ile
N

et
-v

2

Baseline 71.36 90.12 0.00 14.29 34.13 54.43
BlurPooling 2019 72.47 90.69 0.00 13.37 34.33 54.50
Wavelet Pooling 2020 71.94 90.46 0.00 13.04 34.28 54.61
FLC Pooling (ours) 66.81 87.72 0.26 25.21 34.70 55.64
ASAPstbl (ours) 66.83 87.71 0.29 25.58 35.10 56.18
ASAPlp (ours) 68.70 88.80 0.42 28.37 37.15 58.48
ASAPsp (ours) 69.14 88.87 0.41 28.06 38.34 59.98

94 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

6.3.2 Native Robustness

To evaluate the native robustness, i.e. the robustness of models trained without AT, of
our proposed FLC Pooling and ASAP, we conduct experiments using two different
datasets, ImageNet-1k [Deng et al. (2009)] and CIFAR-10 [Krizhevsky (2009)].

High-Resolution Data. We use ImageNet-1k [Deng et al. (2009)] and trained one
network per ASAP method (stabilized FFT, large and small padding). The baseline
networks utilized the pre-trained weights provided by PyTorch. The weights for
BlurPooling are provided by Zhang (2019) and for Wavelet Pooling by Li et al. (2020).
Zou et al. (2023) only provided weights for ResNet-101. For our FLC Pooling and
ASAP, we follow the training procedures suggested by the original authors of each
network.

Table 6.3 presents the performance of each network on clean, perturbed, and
corrupted versions of the ImageNet-1k dataset. All models benefit from the use of
our ASAP method for robustness against common corruptions. Consistently, our
ASAPsp outperforms all other methods. Interestingly, all of our ASAP variants out-
perform the baseline and all other state-of-the-art methods, like BlurPooling [Zhang
(2019)], adaptive BlurPooling (ABlurPooling) [Zou et al. (2023)] or WaveletPooling
[Li et al. (2020)] on the corrupted data. For all ResNet-like networks, the clean per-
formance of the network is improved with our ASAPsp and ASAPlp. However, for
MobileNet-v2 [Sandler et al. (2018)], our downsampling methods cannot beat the
baseline in terms of clean accuracy. We hypothesize that this behaviour is due to the
highly optimized training schedule used to train a MobileNet-v2. Thus, including a
new kind of downsampling might require additional finetuning of the training hy-
perparameters. Analysing the adversarial robustness of our FLC Pooling and ASAP
networks, we observe a trend towards higher robustness against FGSM and APGD
for all downsampling methods, including the removal of high-frequency informa-
tion in the frequency domain. Hence, networks with our ASAP and our FLC Pooling
can maintain high accuracy under FGSM attack. The stronger APGD attack is able
to fool the baseline in almost all cases completely. Other methods against aliasing
are similarly weak in preventing the model from being fooled. In contrary, net-
works using our ASAP and FLC Pooling cannot be fooled on all samples by the at-
tack. Comparing the robustness against common corruptions ASAPsp outperforms
all other methods for all architecture, even the ResNet-50 models provided by Vas-
concelos et al. (2021) which are specialized to perform well on common corruptions
by including a low-pass filter as well as RandAugment [Cubuk et al. (2020)] and
exchanges activation function using Swish [Ramachandran et al. (2018)].

Low-Resolution Data. We train ResNet-18 [He et al. (2016a)] and Wide-ResNet-50-
2 [Zagoruyko & Komodakis (2016)] models on CIFAR-10 [Krizhevsky (2009)] with
five different random seeds per network architecture. We compare the standard
baseline network, BlurPooling [Zhang (2019)], ABlurPooling [Zou et al. (2023)] and
WaveletPooling [Li et al. (2020)]. All networks are trained with the same set of hy-
perparameters: 150 epochs, a batch size of 256, a cosine learning rate schedule with
a maximum learning rate of 0.2 and a minimum of 0.0, a momentum of 0.9, and a
weight decay of 0.002. We utilize label smoothing with a factor of 0.1, and Stochastic
Gradient Descent (SGD) for optimization.

6.3. Experiments 95

TABLE 6.4: Native Robustness of Aliasing-Free Downsampling on CIFAR-10. Mean ac-
curacy (in percentage) and standard deviation on clean samples, perturbed samples with
FGSM [Goodfellow et al. (2015)] and PGD [Madry et al. (2018)] as well as corrupted sam-
ples [Hendrycks & Dietterich (2019)] for four different architectures (five different random
seeds) trained without adversarial training on CIFAR-10. Attacks are done with an epsilon
of ϵ = 1/255 and corruption performance is reported as mean over all severities. For CIFAR-
10 our ASAP and FLC Pooling outperform the baseline and show overall a high robustness

against adversarial attacks and common corruptions.

Arch Method Acc@1 ↑ FGSM ↑ PGD ↑ Corruptions ↑

R
es

N
et

-9

Baseline 2023 94.29 59.58 53.04 -
DCT Conv WD 2023 93.18 59.25 56.08 -
DCT Conv SD 2023 93.09 59.87 56.89 -
FLC Pooling (ours) 94.53 ± 0.11 69.05 ± 0.22 66.60 ± 0.58 75.29 ± 0.75
ASAPstbl (ours) 94.56 ± 0.16 68.96 ± 0.61 65.81 ± 0.89 74.79 ± 0.64
ASAPlp (ours) 94.52 ± 0.15 68.56 ± 0.52 66.06 ± 1.04 75.04 ± 0.73
ASAPsp (ours) 94.55 ± 0.08 68.52 ± 0.53 65.28 ± 1.03 74.61 ± 0.73

R
es

N
et

-1
8

Baseline 93.03 ± 0.13 78.62 ± 0.28 72.49 ± 0.67 76.93 ± 0.45
BlurPooling 2019 93.25 ± 0.17 79.24 ± 0.32 75.23 ± 0.55 77.70 ± 0.54
ABlurPooling 2023 92.77 ± 0.15 79.65 ± 0.52 76.94 ± 0.79 76.59 ± 0.33
WaveletPooling 2020 93.00 ± 0.06 79.15 ± 0.15 72.71 ± 0.55 78.40 ± 0.23
DCT Conv WD 2023 88.80 ± 0.16 60.53 ± 1.06 58.65 ± 1.21 73.88 ± 0.41
DCT Conv SD 2023 89.93 ± 0.10 61.37 ± 0.51 59.40 ± 0.74 75.84 ± 0.35
FLC Pooling (ours) 93.12 ± 0.19 78.92 ± 0.26 74.17 ± 0.60 78.59 ± 0.29
ASAPstbl (ours) 93.12 ± 0.25 79.08 ± 0.43 75.06 ± 0.76 78.68 ± 0.19
ASAPlp (ours) 93.24 ± 0.15 79.17 ± 0.23 74.94 ± 0.56 78.65 ± 0.33
ASAPsp (ours) 93.00 ± 0.12 79.12 ± 0.49 74.69 ± 1.36 78.42 ± 0.20

W
id

eR
es

N
et

-5
0-

2

Baseline 94.33 ± 0.13 77.92 ± 0.64 69.36 ± 1.20 77.08 ± 0.38
BlurPooling 2019 94.42 ± 0.12 76.21 ± 0.30 68.66 ± 0.49 77.59 ± 0.47
ABlurPooling 2023 93.66 ± 0.18 78.26 ± 1.50 71.76 ± 1.91 76.74 ± 1.10
WaveletPooling 2020 94.44 ± 0.13 78.12 ± 1.11 69.26 ± 1.02 79.95 ± 0.42
FLC Pooling (ours) 94.33 ± 0.20 75.41 ± 0.41 66.30 ± 0.87 79.33 ± 0.43
ASAPstbl(ours) 94.51 ± 0.17 77.22 ± 0.89 71.24 ± 1.86 79.90 ± 0.37
ASAPlp (ours) 94.20 ± 0.18 78.63 ± 0.57 72.36 ± 0.67 79.72 ± 0.41
ASAPsp(ours) 94.16 ± 0.21 77.30 ± 0.24 70.74 ± 1.14 79.61 ± 0.82

A
le

xN
et

Baseline 89.45 ± 0.23 69.28 ± 0.22 69.97 ± 0.28 73.74 ± 0.13
FLC Pooling (ours) 87.80 ± 0.10 70.40 ± 0.36 71.49 ± 0.36 74.33 ± 0.50
ASAPstbl (ours) 87.59 ± 0.23 70.50 ± 0.26 71.52 ± 0.22 73.84 ± 0.27
ASAPlp (ours) 87.90 ± 0.09 70.87 ± 0.26 71.93 ± 0.20 74.02 ± 0.42
ASAPsp (ours) 87.68 ± 0.16 70.71 ± 0.30 71.82 ± 0.26 73.94 ± 0.21

96 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

Table 6.4 presents the results of the low-resolution (32× 32 pixel) dataset, CIFAR-
10. FLC Pooling and ASAP consistently outperform the baseline in terms of native
robustness while maintaining similar clean performance. On ResNet-18, ABlurPool-
ing [Zou et al. (2023)] achieves the highest native robustness against adversarial at-
tacks, yet with a slight decrease in clean performance and robustness against com-
mon corruptions.

Further, we compare our method to [Rodríguez-Muñoz & Torralba (2022)], which
uses anti-aliasing mechanisms for downsampling and activation function to gain
high native robustness i.e. without AT. Figure 6.8 demonstrates that our improved
downsampling techniques can consistently provide higher native robustness com-
pared to [Rodríguez-Muñoz & Torralba (2022)].

FGSM [Goodfellow et al. (2015)] PGD [Madry et al. (2018)]

0 2 4 6 8
Epsilon

40

60

80

R
ob

us
t A

cc
ur

ac
y

0 2 4 6 8
Epsilon

20

40

60

80

ASAPlp (ours) ASAPsp (ours) ASAPstbl (ours) Anti-Aliasing FLC Pooling

FIGURE 6.8: ASAP exhibits High Robustness under Different Attack Budgets. Native ro-
bustness for different attack epsilon budgets of ResNet-50 on CIFAR-10. We compare models
using our FLC Pooling and ASAP to the approach by Rodríguez-Muñoz & Torralba (2022)
(Anti-Aliasing). Our downsampling variants consistently exhibit higher native robust accu-

racy on adversarial attacks than the model by Rodríguez-Muñoz & Torralba (2022).

TABLE 6.5: Consistency under Spatial Shifts for Different Downsampling Techniques.
Mean consistency and standard deviation under spatial shifts of different downsampling
methods. We trained five different random seeds on a PRN-18 model without AT on CIFAR-

10. ASAPlp performs best under spatial shifts and FLC Pooling second best.

Model Acc@1 ↑ Consistency under shift ↑
Baseline 93.03 ± 0.13 88.02 ± 6.51
BlurPooling 2019 93.25 ± 0.17 91.38 ± 3.25
ABlurPooling 2023 92.77 ± 0.15 88.94 ± 3.95
FLC Pooling (ours) 93.12 ± 0.19 91.77 ± 3.18
ASAPstbl (ours) 93.12 ± 0.25 88.80 ± 4.23
ASAPsp (ours) 93.24 ± 0.15 88.19 ± 2.74
ASAPlp (ours) 93.00 ± 0.12 91.85 ± 2.76

Shift-Invariance. Anti-aliasing in CNNs has previously been discussed in the con-
text of shift-invariance [Zhang (2019)]. Following our evaluation of the model against
adversarial attacks and common corruptions, we further analyse the performance of
FLC Pooling and ASAP under pixel shifts. Our model is compared with the base-
line as well as the shift-invariant models proposed by Zhang (2019) and Zou et al.

6.3. Experiments 97

(2023) in Table 6.5. Both FLC Pooling and ASAPlp demonstrate the highest consis-
tency under pixel shifts, outperforming sophisticated methods such as BlurPooling
[Zhang (2019)] and ABlurPooling [Zou et al. (2023)], which are specifically designed
to enhance shift-invariance.

5.0
7.5

0 25 50 75 100 125 150 175 200
epochs

0

1

2

lo
ss

FGSM, catastrophic overfitting, aliasing
FGSM, catastrophic overfitting, PGD train loss
FGSM, catastrophic overfitting, PGD test loss
FLC Pooling on FGSM (ours), PGD train loss
FLC Pooling on FGSM (ours), PGD test loss

ASAPstbl on FGSM (ours), PGD train loss
ASAPstbl on FGSM (ours), PGD test loss
ASAPsp on FGSM (ours), PGD train loss
ASAPsp on FGSM (ours), PGD test loss

0.0

2.5

5.0

al
ia

si
ng

8
10

FIGURE 6.9: Catastrophic Overfitting in FGSM AT and Aliasing. Example of FGSM AT
facing catastrophic overfitting and its relationship to aliasing. FGSM training is prone to
catastrophic overfitting (solid lines) and experiences a significant increase in aliasing (red
solid line) as soon as catastrophic overfitting occurs. Specifically, the error on stronger adver-
saries, like PGD, increases (blue solid line), while the error on the simpler adversary, FGSM,
(yellow solid line) remains low. Our methods, FLC Pooling and ASAP, are able to train with

fast FGSM AT while preventing catastrophic overfitting (dashed and dotted lines).

6.3.3 Adversarial Training and Catastrophic Overfitting

In the following, we demonstrate that our FLC Pooling and ASAP can enhance AT
and help in mitigating catastrophic overfitting in FGSM AT. Catastrophic overfit-
ting occurs when models adversarially trained with FGSM [Goodfellow et al. (2015)]
overfit to the FGSM attack itself [Kim et al. (2021b); Wong et al. (2020)], leading
to a significant drop in robustness against stronger attacks like PGD [Madry et al.
(2018)]. This phenomenon typically arises after several training epochs. A common
technique to address catastrophic overfitting is early stopping, which typically re-
lies on monitoring PGD accuracy during training and halting once it declines [Wong
et al. (2020)]. However, early stopping interrupts the training process and may leave
networks under-converged. In Chapter 5, we observed that catastrophic overfitting
in FGSM AT often correlates with increased aliasing in the model’s downsampling
layers. We proposed a stopping criterion based on our aliasing measure as an al-
ternative to early stopping based on PGD. Nevertheless, interruptions due to early
stopping remains a limitation. Our FLC Pooling and ASAP, both aliasing-free tech-
niques, can reduce the risk of catastrophic overfitting in FGSM AT. These methods
enable the use of cost-effective FGSM AT while achieving results comparable to more
computationally expensive methods like PGD.

Qualitative Analysis. In Figure 6.9, we evaluate the training loss during FGSM AT
on CIFAR-10 with different downsampling techniques. The baseline model clearly
exhibits catastrophic overfitting, showing a huge increase in PGD test loss and, ad-
ditionally, a huge increase in aliasing at the same time. In comparison our FLC Pool-
ing, ASAPstbl and ASAPsp which are aliasing-free, do no experience this increase in
PGD test loss, indicating that they do not experience catastrophic overfitting. As

98 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

2 4 6 8 10

66

68

70

72

74

R
es

N
et

-1
8

FGSM robust accuracy

2 4 6 8 10
68

70

72

74

76

78

80

W
id

eR
es

N
et

-5
0-

2

2 4 6 8 10
Epsilon

66

68

70

72

74

76

Pr
ea

ct
R

es
N

et
-1

8

2 4 6 8 10
0

10
20
30
40
50
60
70

PGD robust accuracy

2 4 6 8 10
20
30
40
50
60
70
80

2 4 6 8 10
Epsilon

30

40

50

60

70

Baseline FLC Pooling (ours) ASAPstbl (ours) ASAPlp (ours) ASAPsp (ours)

FIGURE 6.10: Robustness of our Downsampling Approaches with AT. Evaluation (accu-
racy in percent) of networks trained with FGSM AT [Goodfellow et al. (2015)] on CIFAR-10
evaluated on FGSM [Goodfellow et al. (2015)] (left) and PGD [Madry et al. (2018)] (right)
adversaries with different budgets of ϵ. Our three ASAP variants consistently exhibit higher
robust accuracy on all architectures, adversarial attacks and across ϵ values than the base-

line.

a result, networks incorporating our downsampling methods can be trained to full
convergence without requiring early stopping. To validate these empirical findings,
we strengthen our hypothesis by AT different networks on CIFAR-10 with three dif-
ferent random seeds in the following paragraph.

Adversarial Training on Low-Resolution Data. For CIFAR-10, we trained each
model architecture with FGSM AT using three different random seeds. All hyper-
parameters were kept consistent across architectures and downsampling methods.
Each network underwent 300 training epochs with a batch size of 512 and a cy-
cling learning rate schedule ranging from a maximum of 0.2 to a minimum of 0.0.
The momentum was set to 0.9, and weight decay was set to 0.0005. We employed
CrossEntropy loss and utilized SGD as optimizer. The budget for the adversaries
during training was set to ϵ = 8/255.

The results in Table 6.6 indicate that ASAP and FLC Pooling achieve higher ro-
bustness against adversarial attacks than the baseline. Particularly when confronted
with more complex adversaries like PGD [Madry et al. (2018)], our ASAPlp consis-
tently outperforms the baseline and FLC Pooling. The high variance in performance
on PGD samples for the ResNet-18 and Wide-ResNet-50-2 baselines indicate that
some of the trained models lose all their robustness against PGD during FGSM AT
due to catastrophic overfitting. In contrast, our FLC Pooling and ASAP do not expe-
rience this issue and maintain high robustness against strong and simple adversaries
in all models. For PreAct-ResNet-18, which is commonly used for AT [Gowal et al.
(2021b); Rade & Moosavi-Dezfooli (2021); Rebuffi et al. (2021)], none of the networks

6.3. Experiments 99

TABLE 6.6: Robustness of various Architectures with our Downsampling Approaches
with AT. Accuracy (in percent) for several common models trained with FGSM AT [Goodfel-
low et al. (2015)] on CIFAR-10. We report adversarial robustness against FGSM [Goodfellow
et al. (2015)] and PGD [Madry et al. (2018)] with an ϵ of 8/255. We clearly see that our ASAP,
which neither suffers from aliasing nor sinc artifacts, is also more robust in combination with

adversarial training.

Method Acc@1 ↑ FGSM ↑ PGD ↑

R
es

N
et

-1
8 Baseline 78.85 ± 1.74 34.49 ± 2.68 21.14 ± 14.88

FLC Pooling 79.77 ± 0.49 34.37 ± 1.07 32.23 ± 0.68
ASAPstbl 79.59 ± 0.64 35.13 ± 0.75 32.65 ± 0.59
ASAPlp 80.63 ± 0.14 37.04 ± 0.65 33.43 ± 0.13
ASAPsp 79.19 ± 0.32 35.44 ± 0.75 33.68 ± 0.31

W
id

e-
R

es
N

et
-5

0-
2

Baseline 79.42 ± 0.34 39.18 ± 7.15 23.36 ± 16.35
FLC Pooling 82.94 ± 0.89 39.23 ± 0.32 29.69 ± 11.81
ASAPstbl 83.63 ± 0.14 39.67 ± 0.28 37.62 ± 0.24
ASAPlp 84.60 ± 0.13 39.56 ± 0.88 36.99 ± 0.19
ASAPsp 83.26 ± 0.24 39.16 ± 0.37 38.86 ± 0.17

Pr
eA

ct
-

R
es

N
et

-1
8 Baseline 77.92 ± 0.19 31.74 ± 0.56 32.52 ± 0.35

FLC Pooling 79.99 ± 0.09 36.39 ± 0.74 33.15 ± 0.19
ASAPstbl 79.91 ± 0.17 36.25 ± 0.20 33.20 ± 0.14
ASAPlp 81.29 ± 0.20 38.02 ± 0.85 33.48 ± 0.05
ASAPsp 79.77 ± 0.20 35.88 ± 0.49 33.35 ± 0.19

experiences catastrophic overfitting. This is one reason why this network architec-
ture is frequently used for AT. Still, our FLC Pooling and ASAP outperform the base-
line on clean and perturbed samples. Furthermore, all ASAP variants exhibit supe-
rior robustness against FGSM attacks and higher clean accuracy compared to the
baseline (up to 5% improvement against FGSM attacks and up to 4% improvement
on clean data). ASAPlp improves the clean as well as the robust performance for the
smaller models like ResNet-18 and PreAct-ResNet-18. The larger Wide-ResNet-50-2
only benefits from the large padding for clean accuracy.

CIFAR Training Efficiency. The incorporation of our FLC Pooling and ASAP into
FGSM AT increases the computational costs due to repeated FFT and IFFT as well
as potential padding. However, due to the efficiency of FGSM AT it is still much
more efficient than comparable AT methods as presented in Table 6.7. Our analysis
demonstrates that incorporating additional FFT operations increases training time
by only a factor of 1.3, whereas more sophisticated AT, like PGD [Madry et al. (2018)]
or TRADES [Zhang et al. (2019b)] increase the training time by a factor of at least 9 or
even 17, respectively. Our proposed ASAP increases the training time dependent on
the variant used. Simple stabilization by the transpose operation and small padding
increase the AT time per epoch by a factor of 1.2. While large padding increases the
training time by a factor of 2.8, it is still faster than other sophisticated AT methods.
Further, we want to point out that incorporating additional data like ddpm [Ho et al.
(2020)], which is a widely used source for AT [Gowal et al. (2021b); Rade & Moosavi-
Dezfooli (2021); Rebuffi et al. (2021)] increases the training time by a factor of 20.

100 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

TABLE 6.7: Runtime of different AT schemes. Runtime of different AT schemes in seconds
per epoch over 200 epochs with a batch size of 512, using PRN-18 on the original CIFAR-
10 dataset without additional data. Experiments were conducted on a single Nvidia Tesla
V100. We evaluate clean and robust accuracy (higher is better) on APGD [Croce & Hein
(2021)] using our trained models. Note that the models reported by the original authors may
yield varying results due to differences in hyperparameter selection. The top row shows the

baseline without AT.

Method
Average #seconds Acc (%)

per epoch ↓ Acc@1 ↑ APGD ↑
Baseline 6.6 ± 0.01 93.06 0.00

FGSM & early stopping 2020 12.6 ± 0.01 82.88 11.82
FGSM & FLC Pooling (ours) 14.7 ± 0.01 80.94 31.16
FGSM & ASAPstbl (ours) 15.6 ± 0.08 80.47 31.75
FGSM & ASAPsp(ours) 17.1 ± 0.16 80.47 31.40
FGSM & ASAPlp (ours) 36.4 ± 0.01 81.12 31.39
PGD 2018 115.4 ± 0.2 83.11 41.12
Robustness lib 2019 117 ± 19.0 76.37 33.09
AWP 2020 179.4 ± 0.4 82.61 53.53
MART 2020b 180.4 ± 0.8 55.49 10.03
TRADES 2019b 219.4 ± 0.5 81.49 49.65

Ablating the Attack Strength. Additionally, we assessed the behaviour of our FLC
Pooling and ASAP under different budget settings of ϵ for FGSM and PGD. Fig-
ure 6.10 displays the mean robust accuracy trend across each architecture, varying
the budget of ϵ. It is evident that our ASAP consistently outperforms the baseline.
Moreover, ASAPlp demonstrates superior performance over all epsilon strengths un-
der FGSM attack. In comparison, under PGD attack all our ASAP variants perform
equally well.

TABLE 6.8: Robustness Evaluation of our Downsampling on ImageNet-1k with AT. Com-
parison of ResNet-50 models trained on ImageNet-1k. The first row presents the baseline
without AT. The second, third and fourth row are trained with FGSM AT and the last
three row with PGD AT. The clean and robust accuracy (against AutoAttack [Croce & Hein
(2020a)]) are present in percentage on the ImageNet-1k validation set. We compare against

models reported on RobustBench [Croce et al. (2021)].

Method Acc@1 ↑ AA Linf
ϵ = 4

255
↑

Non-adversarial training [Croce et al. (2021)] 76.52 0.00

FG
SM

FLC Pooling (ours) 63.52 27.29
ASAPsp (ours) 64.51 30.93
Wong et al., 2020 [Wong et al. (2020)] 55.62 26.24

PG
D

Robustness lib, 2019 [Engstrom et al. (2019)] 62.56 29.22
Salman et al., 2020 [Salman et al. (2020)] 64.02 34.96
ASAPsp (ours) 64.54 31.02

Adversarial Training on High-Resolution Data. We also train our FLC Pooling
and ASAPsp with FGSM and PGD AT on ImageNet-1k. We trained on a ResNet-50

6.3. Experiments 101

and compared models reported on RobustBench [Croce et al. (2021)] with the same
architecture. Table 6.8 demonstrates that our FGSM trained model outperforms the
baseline model trained with FGSM [Wong et al. (2020)] in robust and clean accu-
racy, and even the model trained by Engstrom et al. (2019) which takes significantly
longer than our method as shown in Table 6.7. The model by Salman et al. (2020)
achieves higher robustness, while being slightly worse on clean samples than our
FGSM trained ASAPsp model. Further, Table 6.8 also indicates that PGD training
can benefit from proper downsampling. For this evaluation, we train a ASAPsp
ResNet-50 with the training schedule by [Engstrom et al. (2019)] and achieve higher
robustness and clean accuracy than their baseline. We also achieve higher clean per-
formance than [Salman et al. (2020)] while not relying on extra data.

ImageNet Training Efficiency. When evaluating practical training times (in min-
utes) on ImageNet-1k per epoch, we can not see a measurable difference in the costs
between a ResNet-50 with FLC Pooling or strided convolution.

We varied the number of workers for dataloaders with clean training on 4 A-
100 GPUs and measured ≈ 43m for 12 workers, ≈ 22m for 48 workers and ≈ 18m
for 72 workers for both. FGSM-based AT with the pipeline by [Goodfellow et al.
(2015)] takes 1:07 hours for both FLC Pooling and strided convolutions per epoch.
We conclude that training with FLC Pooling in terms of practical runtime is scalable
(runtime increase in ms-s range) and training times are likely governed by other
factors.

The training time of our model should be comparable to the one from Wong
et al. [Wong et al. (2020)] while other reported methods have a significantly longer
training time. Yet, the clean accuracy of the proposed model using FLC Pooling
improves about 8% over the one reached by [Wong et al. (2020)], with a 1% improve-
ment in robust accuracy. For instance, the training procedure proposed in [Engstrom
et al. (2019)] increases the training time by factor four on CIFAR-10 compared to our
model (see Table 6.7). This model achieves overall comparable results to ours. The
model by Salman et al. (2020) is trained with the training schedule proposed by ?
and uses a multi-step adversarial attack for training. Since there is no release of
the training script of this model on ImageNet, we can only roughly estimate their
training times. Since they adopt the training schedule from ?, we assume a similar
training time increase of a factor of four, which is similar to the multi-step times
reported for PGD in Table 6.7.

6.3.4 Ablation Studies

In the following, we conduct a series of ablation studies. Specifically, we investigate
the effect of including additional frequency components in FLC Pooling. Moreover,
we ablate the specific window functions to be used and the combination of the differ-
ent ASAP variants. Further, we ablate the frequency spectrum of adversarial attacks
of our different downsampling variants similar to our evaluations in Section 5.3.1
Figures 5.7 and 5.15. Lastly, we revisited the findings from Section 4.2.2, where we
discovered that basic building blocks influence a model’s confidence distribution,
resulting in a desirable pattern: high confidence in correct predictions and low con-
fidence in incorrect ones. To further investigate, we conducted an ablation study
analysing three different random seeds for each model. Our results revealed that, in
addition to the building blocks, hyperparameters as simple as the random seed also
play a role in shaping the confidence distribution.

102 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

Low Pass Cut

FFT n

n

n/2

n/2
IFFT

n/2

n/2n

Input OutputSpectral Representation

n/2

n/2

n
standard

downsampling
via stride = 2

+

(a) FLC Pooling Plus Downsampling via Stride Two.

Low Pass Cut

FFT n

n

n/2

n/2
IFFT

n/2

n/2n

Input OutputSpectral Representation

n/2

n/2

n

standard
downsampling
via stride = 2

+

High Pass
Filter

n/2

n/2 n

n

IFFT

(b) FLC Pooling Plus High-Pass Filtered Downsampling.

FIGURE 6.11: FLC Pooling Plus. Adding additional frequency components to the low-cut
frequencies. FLC Pooling Plus either includes the original downsampled signal with strided
convolution applied (a), or the high-frequency components filtered by a high-pass filter in
the Fourier domain and downsampled in the spatial domain by an identity convolution of

stride two (b).

Ablation on Including Additional Frequency Components in FLC Pooling. We
aim to determine whether the aggressive FLC Pooling leads to significant loss of in-
formation and whether additional high-frequency information is needed to compen-
sate for the discarded details. Hence, in addition to the low-frequency components,
we tested different settings in which a second path is established to incorporate high-
frequency components or the original information. Figure 6.11 illustrates the proce-
dure for including a second path. One approach involves standard downsampling
and adding the result to the FLC pooled feature map. The other approach applies
a high-pass filter to the feature map, followed by downsampling. Afterwards, the
FLC pooled feature maps and the high-pass filtered, downsampled ones are added
together. Table 6.9 demonstrates that both FLC Pooling Plus variants achieve mi-
nor improvements in clean accuracy but also minor degradation in robust accuracy.
Therefore, we decided to retain only the low-frequency information preserved by
FLC Pooling, as incorporating additional components did not improve robustness
and led to increased training time per epoch as well as a slight increase in model
size.

Ablation on Window Function. For our work, we mainly focused on the Ham-
ming window, but there are several widely known window functions that could

6.3. Experiments 103

TABLE 6.9: Performance Evaluation of FLC Pooling Plus. Performance evaluation of FLC
Pooling with an additional path for standard downsampling or a high-pass pooled version.
We train with FGSM AT [Goodfellow et al. (2015)] and evaluate clean accuracy, PGD [Madry
et al. (2018)] robust accuracy, training time, and model size. The results demonstrate that
incorporating additional information does not improve performance. Given the extra com-
putational cost required for the high-frequency or original components, we chose to discard

them entirely and focus solely on low-frequency cutting.

Method Acc@1 ↑ PGD Linf
ϵ = 8

255 ↑
Seconds per

epoch (avg) ↓
Model size

(MB) ↓

FLC pooling 84.81 38.41 34.6 ± 0.1 42.648
FLC pooling + HighPass pooling 85.38 38.02 45.2 ± 0.4 42.652
FLC pooling + Original pooling 85.37 38.30 35.4 ± 0.1 42.652

be used to reduce sinc artifacts. Thus, we ablated four additional choices for the

TABLE 6.10: Using Different Window Functions in our ASAP. Ablation study on using dif-
ferent window functions in the frequency domain to reduce spectral artifacts. We report the
mean clean and robust accuracy along with their standard deviations on CIFAR-10 for five
different window functions, evaluated over five random seeds. The best result is marked
in bold, and the second best is indicated with underlining. Using no window function,
such as in our FLC Pooling, or a simple Gaussian window, which requires an additional hy-
perparameter, performs poorly. All window functions that are specializations of the Kaiser
window perform reasonably well. The Hamming window, used in our ASAP method, con-

sistently ranks among the top two performing methods.

Window Hyperparameter Acc@1 ↑ FGSM ↑ PGD ↑ Corruptions ↑

None 93.12 ± 0.19 78.92 ± 0.26 74.17 ± 0.60 78.59 ± 0.29
Hamming 93.12 ± 0.25 79.08 ± 0.43 75.06 ± 0.76 78.68 ± 0.19
Gaussian σ = (k− 1)/6 92.34 ± 0.15 77.85 ± 0.30 69.47 ± 0.40 78.53 ± 0.14
Hanning 93.13 ± 0.19 79.23 ± 0.27 75.32 ± 0.92 78.56 ± 0.26
Kaiser β = 7 93.21 ± 0.17 78.87 ± 0.33 74.57 ± 1.25 78.66 ± 0.21
Blackman 93.00 ± 0.17 78.82 ± 0.43 74.78 ± 1.16 78.77 ± 0.21

window function in our ASAP method. Here, we additionally evaluate a standard
Gaussian kernel, a Blackman window, a Hanning window, and a Kaiser window
with β = 7. Similar to the Kaiser kernel, we needed to choose an additional hyper-
parameter σ for the Gaussian kernel. We set sigma σ in relation to the kernel size k
such that σ = (k− 1)/6 as the length of 99 percentile of the Gaussian pdf is 6σ. Table
6.10 presents the performance of five different random seeds trained on CIFAR-10
with the mentioned different window functions. One can note that the models us-
ing a Gaussian window do not support the robustness of the network well, while all
models based on a Kaiser window 1 perform similarly well on clean, perturbed and
corrupted data. When considering the top two performing methods, the Hamming
window used for our ASAP performs consistently well and is, thus, a good choice.

Ablation on ASAP Variants. We combine our method to stabilize the FFT by trans-
posing, ASAPstbl with padding. Table 6.11 ablates on this combination. We evaluate

1Hamming, Hanning and Blackman window are all specializations of a Kaiser window with fixed
β = 6.0, β = 5.0 and β = 8.6 respectively.

104 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

TABLE 6.11: Study on Stabilization in our ASAP. We report accuracy (in percent) on clean
samples, perturbed samples using FGSM [Goodfellow et al. (2015)] and PGD [Madry et al.
(2018)], as well as corrupted samples [Hendrycks & Dietterich (2019)], for different config-
urations of ASAP on ResNet-18 [He et al. (2016a)] trained without adversarial training on
CIFAR-10. The attacks are performed with ϵ = 1/255, and corruption performance is re-

ported as the mean over all severities.

Architecture Acc@1 ↑ FGSM ↑ PGD ↑ Corruptions ↑
Baseline 93.03 ± 0.13 78.62 ± 0.28 72.49 ± 0.67 76.93 ± 0.45
ASAPstbl 93.12 ± 0.25 79.08 ± 0.43 75.06 ± 0.76 78.68 ± 0.19
ASAPlp 93.24 ± 0.15 79.17 ± 0.23 74.94 ± 0.56 78.65 ± 0.33
ASAPsp 93.00 ± 0.12 79.12 ± 0.49 74.69 ± 1.36 78.42 ± 0.20
ASAPlp+stbl 93.22 ± 0.07 78.37 ± 0.77 75.65 ± 1.43 78.38 ± 0.38
ASAPsp+stbl 92.88 ± 0.11 77.29 ± 1.02 74.82 ± 1.90 78.77 ± 0.17

over five different random seeds. The combination of both approaches, stabilization
through transposing the signal and padding, yields no further systematic benefit,
indicating that both approaches address the same issue during pooling in the fre-
quency domain.

Ablation on Attack Spectrum. We investigate if there is a difference in perturba-
tions created by APGD [Croce & Hein (2020a)] depending on the models’ down-
sampling. Figure 6.12 presents the perturbations created by APGD on convention-
ally trained models (top) and adversarially trained models (bottom). The perturba-
tions on conventionally trained models target all frequency bands, as shown in the
spectrum difference. While the attack mostly targets low-frequency bands for the
adversarially trained models, there is no clear difference between models, including
conventional downsampling or our downsampling methods.

C
on

ve
nt

io
na

lly

 T
ra

in
ed

Baseline FLC Pooling (ours) ASAPstbl (ours) ASAPsp (ours) ASAPlp (ours)

Ad
ve

rs
ar

ia
lly

 T

ra
in

ed

FIGURE 6.12: Center-shifted Attack Spectrum Difference for our Downsampling ap-
proaches. Average difference in the center-shifted spectrum over 1000 CIFAR-10 images
between the clean image and the attacked image with APGD [Croce & Hein (2021)]. For con-
ventionally trained networks (top row), the spectrum of the perturbation differs depending
on the downsampling method. However, for adversarially trained networks (bottom row),

there is no clear difference.

6.3. Experiments 105

Ablation on Confidence Distributions. In Section 4.2.2, we discovered that sim-
ple building blocks like activation functions and downsampling strategies can pos-
itively impact a model’s confidence distribution. While previous evaluations of a
single model with FLC Pooling demonstrated a desirable confidence distribution,
we now quantitatively assess whether this holds across all our downsampling ap-
proaches. Figure 6.13 presents an ablation study over three random seeds for FLC
Pooling and ASAPstbl models trained with FGSM AT, compared to standard down-
sampling trained under the same conditions. Additional visualizations for all ASAP
variants are presented in Figure B.1 in Appendix B.1, showing similar trends as de-
picted in the bottom row of Figure 6.13. On clean samples, all models display similar
confidence distributions. However, under adversarial attacks, the baseline model
tends to produce incorrect predictions with very high confidence. In contrast, FLC
Pooling and ASAP approaches significantly reduce the number of highly confident
incorrect predictions. Nevertheless, the desirable confidence distribution observed
for a single model in Figure 4.8 from Section 4.2.2 does not fully generalize across
different seeds. This highlights the importance of future research to identify spe-
cific hyperparameters that influence confidence distributions and enable consistent
improvements.

Baseline PRN-18

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

D
en

si
ty

Squares

correct prediction
wrong prediction

FLC Pooling PRN-18 (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

300

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

200

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

200

D
en

si
ty

Squares

correct prediction
wrong prediction

ASAPstbl PRN-18 (ours)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

200

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

D
en

si
ty

Squares

correct prediction
wrong prediction

FIGURE 6.13: Confidence Distribution of our ASAPstbl with FGSM AT. Mean confidence
distribution and standard deviation for PRN-18 baseline, FLC Pooling and ASAPstbl models
trained with FGSM AT on three different seeds. While both downsampling methods perform
equally well on clean samples, our models with FLC Pooling and ASAPstbl exhibits fewer
highly confident incorrect predictions on PGD and Square attacks. However, when exam-
ining multiple random seeds, the results deviate from the observations for a single model
shown in Figure 4.8 in Chapter 4, underscoring the influence of training hyperparameters.

106 Chapter 6. Aliasing-Free Downsampling in the Frequency Domain

6.4 Discussion

Our FLC Pooling and ASAP achieve higher native robustness against common cor-
ruptions and adversarial attacks while reducing the risk of catastrophic overfitting
during FGSM AT. In the following, we discuss efficiency implications and outline
the primary limitations

6.4.1 Efficiency

For our aliasing-free downsampling, additional operations are required to transform
data between the spatial and frequency domains, resulting in increased computa-
tional effort. This computational cost becomes especially pronounced when us-
ing large additional padding, with the transformation cost increasing by a factor
of 5.6 in execution time. Nevertheless, we demonstrated that small padding can
yield equal or even better robustness improvements while only increasing compu-
tational effort by a factor of 1.2 compared to no padding (Table 6.2). In contrast,
additional data augmentation for robustness against common corruptions increases
the number of samples to be learned, and AT requires multiple forward and back-
ward passes for each batch. As reported in Table 6.7, more sophisticated AT meth-
ods can increase training time by factors of up to 17. Additionally, incorporating
external data sources, such as ddpm [Ho et al. (2020)], a widely used resource for AT
[Gowal et al. (2021b); Rade & Moosavi-Dezfooli (2021); Rebuffi et al. (2021)], further
increases training time by a factor of 20. In summary, improving downsampling to
be aliasing-free and thus also integrating FFT operations into the network achieves
high robustness while maintaining relatively low training time compared to other
sophisticated training methods to increase robustness.

6.4.2 Limitations

FLC Pooling and ASAP consistently reduce highly confident incorrect predictions
under adversarial attacks compared to the baseline, however, the desirable con-
fidence distribution observed for a single model does not fully generalize across
seeds. This variability underscores the need for future research to identify specific
hyperparameters that reliably influence confidence distributions and ensure consis-
tent improvements.

Our focus was limited to classification tasks, which appear less reliant on high-
frequency information, as significant removal or inclusion as done in our ablation
in Section 6.3.4 did not impact performance. However, we find in our subsequent
work [Agnihotri et al. (2024a)], not included in this thesis, that for tasks that rely on
fine details, like image reconstruction, the high-frequency information needs to be
preserved for satisfying results.

6.5 Conclusion

We introduce two downsampling methods: aliasing-free and hyperparameter-free
pooling in the frequency domain, called FrequencyLowCut Pooling (FLC Pooling)
and Aliasing and Sinc Artifact-free Pooling (ASAP). FLC Pooling ensures aliasing-
free downsampling, while ASAP further addresses artifacts from sinc interpolation.
Our qualitative analysis confirms that FLC Pooling eliminates aliasing, and ASAP
avoids both aliasing and sinc interpolation artifacts. To enhance FFT transformation
stability, we address shift issues caused by repeated FFT executions. Quantitative

6.5. Conclusion 107

evaluations reveal that FLC Pooling and ASAP provide superior native robustness
against spatial shifts, common corruptions and adversarial attacks while maintain-
ing high accuracy on clean data. When integrated with FGSM AT, these methods
mitigate catastrophic overfitting, enabling efficient and fast AT without the need for
early stopping, which often results in under-converged networks. These findings
highlight the critical role of analysing signal-processing properties in neural network
components to improve native robustness.

109

Chapter 7

Neural Implicit Frequency Filters
Contents

7.1 Introduction . 110
7.2 Method . 112
7.2.1 Neural Implicit Frequency Filters . 113
7.2.2 Common CNN Building Blocks using NIFF 114
7.3 Experiments . 115
7.3.1 Training Details . 115
7.3.2 How Large Do Spatial Kernels Really Need To Be? 116
7.3.3 Quantitative Results . 118
7.3.4 Filter Analysis . 120
7.3.5 Circular vs. Linear Convolution . 123
7.3.6 Ablation on More Modules . 125
7.4 Discussion . 126
7.4.1 NIFF’s Architecture . 126
7.4.2 Efficiency . 128
7.4.3 Limitations . 129
7.5 Conclusion . 130

In this chapter, we introduce Neural Implicit Frequency Filters (NIFF), a powerful
tool for analysing the effective filter size of CNNs. Recent work in image classifica-
tion models has trended towards increasing spatial context, whether through larger
convolution kernels or self-attention. However, these approaches often scale poorly,
with gains in accuracy coming at high computational costs. To facilitate a mean-
ingful study of the effective filter size needed, several challenges need to be ad-
dressed: (i) we need an effective means to train models with large filters (potentially
as large as the input data) without increasing the number of learnable parameters,
(ii) the employed convolution operation should be a plug-and-play module that can
replace conventional convolutions and allow for an efficient implementation in cur-
rent frameworks, (iii) the study of filter sizes has to be decoupled from other aspects
such as the network width or the number of learnable parameters, and (iv) the cost
of the convolution operation itself has to remain manageable i.e. we can not naïvely
increase the size of the convolution kernel. To address these challenges, we propose
to learn the frequency representations of filter weights as neural implicit functions,
such that the better scalability of the convolution in the frequency domain can be
leveraged. Additionally, due to the implementation of the proposed neural implicit
function, even large and expressive spatial filters can be parametrised by only a few

110 Chapter 7. Neural Implicit Frequency Filters

learnable weights. Notably, our analysis reveals that while these networks could
learn large convolution kernels, the resulting filters remain well-localized and rela-
tively compact in the spatial domain. We anticipate that our insights into optimised
filter sizes help create more efficient and effective models in the future. Our code is
available at https://github.com/GeJulia/NIFF.

This chapter is based on Grabinski et al. (2024). Julia Grabinski, as the first author,
conducted all experiments and was the main writer.

7.1 Introduction

Recent progress in image classification, such as [Liu et al. (2022b)], builds upon ob-
servations on the behaviour of vision transformers [Dosovitskiy et al. (2021); Khan
et al. (2022); Touvron et al. (2021); Vaswani et al. (2017)], which rely on the learned
self-attention between large image patches and therefore allow information from
large spatial contexts to be encoded. In particular, there has been a recent trend to-
ward increasing the spatial context during encoding in CNNs, leading to improved
performance accordingly, as for example in [Guo et al. (2022); Liu et al. (2023); Ding
et al. (2022); Peng et al. (2017)]. Yet, model parameters and training times scale
poorly with the filter size, such that the increased model accuracy often comes at
significant costs if no additional model-specific tricks are applied. At the same time,
it remains unclear whether there is an optimal filter size and which size of filters
would be learned, could the models learn arbitrary sizes.

N
IF

F
5
6
x5

6

v0 v1 v2 v3 v4 v5 v6

0.62

N
IF

F
zo

o
m

e
d

9
x9

0.17 0.10 0.04 0.04 0.01 0.01

0.25

S
ta

n
d
a
rd

3
x3

0.14 0.14 0.12 0.10 0.08 0.06

0.87

N
IF

F
1
4
x1

4

0.09 0.02 <0.01 <0.01 <0.01 <0.01

0.69

S
ta

n
d
a
rd

3
x3

0.14 0.07 0.03 0.03 0.01 0.01
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

La
ye

r
1

La
ye

r
4

FIGURE 7.1: ImageNet-1k Models Learn Larger Kernels than 3× 3. PCA components of
learned kernel weights in the first layer of a ResNet-50 trained on ImageNet-1k: the first
row shows the learned NIFF kernels transformed to the spatial domain. The second row
visualizes a zoomed-in version with explained variance for each component denoted below.
The third row shows the PCA and explained variance for a standard CNN with the standard
kernel size of 3× 3. The fourth row demonstrates that NIFF learns large, highly structured
spatial filters in the fourth layer of the same network, while the baseline model is limited to
small filters. This PCA analysis is one of the tools we apply to address the central question
of this chapter: How large do CNN kernels really need to be? It reveals that networks capable of
learning filter kernels as large as their feature maps still tend to learn well-localized, small

kernels. However, these kernels are larger than the commonly used 3× 3 kernels.

https://github.com/GeJulia/NIFF

7.1. Introduction 111

With our NIFF, we aim to provide such a study and the corresponding tool that
can modularly replace the convolution operation in any CNN architecture, allowing
for the efficient training of arbitrarily large convolution kernels. However, efficiently
training models on standard datasets such as ImageNet [Deng et al. (2009)] with
large filters (potentially as large as the input data) is non-trivial. Not only should
the number of parameters remain in a range comparable to the one of the baseline
models, but also, the cost of the actual convolution operation has to remain manage-
able. Neural implicit functions, such as previously used in [Romero et al. (2022a);
Sitzmann et al. (2020)], can limit the number of learnable parameters while learn-
ing large convolution filters. Yet, their evaluation is limited to low-resolution data
because of the poor scalability of the convolution operation itself, i.e. increasing the
size of the learned convolution filters directly or implicitly is not a scalable solu-
tion. Therefore, we propose to learn filters in the Fourier domain via neural implicit
functions. This has several advantages: First, the convolution operation can be exe-
cuted in the Fourier domain, where it scales significantly better with the filter size.
Second, due to the implementation of the neural implicit function, the number of
learnable model parameters remains similar to that of the baseline model. Third, the
learned filters are directly expressed in the Fourier domain i.e. as oriented sine and
cosine waves. Thus, highly structured periodic spatial convolution kernels can be
learned using small MLPs with only a few parameters. We propose Neural Implicit
Frequency Filter (NIFF),a plug-and-play convolution module, designed to replace
standard CNN convolutions and facilitate efficient integration into current frame-
works. The resulting neural implicit frequency CNNs are the first models to achieve
results on par with the state-of-the-art on standard high-resolution image classifi-
cation benchmarks while executing convolutions solely in the frequency domain.
Thus, NIFFs allow us to provide an extensive analysis of the practically learned fil-
ter sizes while decoupling the filter size from other aspects, such as the network
width or the number of learnable parameters. Interestingly, our analysis reveals
that although the proposed networks could learn very large convolution kernels,
the learned filters practically correspond to well-localized and relatively small con-
volution kernels when transformed from the frequency to the spatial domain.

Our contributions can be summarized as follows:

• We present a novel approach which enables efficient learning of spatially in-
finitely large convolutional filters. We introduce MLP-parametrised Neural
Implicit Frequency Filters (NIFFs), which learn filter representations directly
in the frequency domain and can be plugged into any CNN architecture.

• Empirically, we show that NIFFs facilitate a model performance on par with
the baseline without any hyperparameter tuning. Hence, our proposed fre-
quency filters allow, for the first time, to efficiently analyse filter sizes and en-
coded context sizes via filters that potentially have an infinite extent in the
spatial domain.

• Furthermore, we analyse the spatial representations of the resulting large fil-
ters learned by various CNN architectures and show very interesting results
in terms of practically employed spatial extent.

• Finally, we integrate our NIFF convolution with the FLC Pooling from Chapter
6, further advancing the transformation of CNNs into the Fourier domain.

112 Chapter 7. Neural Implicit Frequency Filters

Cq
multiplication

weights
size NxN

Spatial Large
Convolution

-3

1

2 2

1 1

0 0

2

1

0

-1 -1

2

1

0

-2 -2

0

1

2

-2 -1

-2 -1

-2 -1

0

0

0

-2 -1

1

0

1

1

1

-2 -1 0 1 2

2

2

2

2
stacked

1x1
Convolutions Cq

multiplication
weights

size NxN

2 2

1

0

-1

-2

-2

-2

-1

-1 0

0 1

1

2

2

n/2

n/2

n/2

n/2

n/2

n/2

n/2

n/2 n/2 n/2 n/2 n/2 n/2 n/2

-n/2 -n/2 -3

-n/2

-n/2

-n/2

-n/2

-n/2

-n/2

-n/2

fixed numbers of
parameters

Neural Implicit Frequency Filter
(NIFF) (ours)

fixed numbers of
parameters

Neural Implicit Filter
 naïve implementation

MLP

not parallelizable, query MLP
 times

parallelized

numbers of parameters

for
for

in
in

Cq
multiplication

weights
size NxN

FIGURE 7.2: Method Comparison: Standard Large Convolution vs. our NIFF. While learn-
ing large kernels increases the number of learnable parameters quadratically (here N×N
(left)), neural implicit functions use a fixed amount of learnable parameters (middle). When
using a simple MLP, the input is a 2D vector containing the ux and uy coordinates of the
desired filter position. Our NIFF (right) efficiently implements the MLP using several 1×1
convolutions, starting with an input channel size of two, which encodes the ux and uy direc-
tions. This eliminates the need to iterate over each coordinate separately. Subsequently, we
include hidden layers and activation functions to facilitate learning. In the final layer, the
number of output channels is set to match the desired number of element-wise multiplica-

tion weights.

7.2 Method

For the development of our NIFF, we use several concepts from different back-
grounds. We leverage neural implicit functions in a novel setting: We learn neu-
ral implicit representations of the spatial frequencies of large convolution kernels.
This allows us to employ the Convolution theorem from signal processing [Forsyth
& Ponce (2003)] and conduct convolutions with large kernels efficiently in the fre-
quency domain via point-wise multiplications.

Properties of Convolutions in the Frequency Domain. According to the Convo-
lution theorem [Forsyth & Ponce (2003)], a circular convolution, denoted by ⊛, be-
tween a signal g and filter k in the spatial domain can be equivalently represented by
a point-wise multiplication, denoted by ⊙, of these two signals in the frequency do-
main, for example by computing their Fast Fourier Transform (FFT), denoted by the
transform F (.) and then, after point-wise multiplication, their inverse FFT F−1(.):

g ⊛ k = F−1(F (g)⊙F (k)) (7.1)

While this equivalence has been less relevant for the relatively small convolution
kernels employed in traditional CNNs (typically 3× 3 [He et al. (2016a); Simonyan
& Zisserman (2015)] or at most 7× 7 [Liu et al. (2022b)]), it becomes highly relevant
as the filter size increases to a maximum: The convolution operation in the spatial
domain is in O(M2N2) for a discrete 2D signal g with N × N samples and filters k
of size M×M, i.e. O(N4) when discrete filters k have the same size as the signal g.
In contrast, the computation is in O(N2log(N)) when executed using FFT [Cooley &
Tukey (1965)] and point-wise multiplication according to Equation (7.1). The proof
for the FFT according to [Cooley & Tukey (1965)] is given in Section 2.4.2.

Thus, for efficient filter learning, we assume that our input signal, i.e. our input
image or feature map, is given in the frequency domain. There, we can directly learn
the element-wise multiplication weights m corresponding to F (k) in Equation (7.1)
and thereby predict infinitely large spatial kernels. These element-wise multipli-
cation weights, m, perform a circular convolution, which can be interpreted as an

7.2. Method 113

NxN
feature maps

FFT

IFFT

Small Spatial depth-
wise Convolution Depth-wise NIFF (ours)

NxN
feature maps

NxN
multiplication

weights* 3x3
kernels

.

Large Spatial depth-
wise Convolution

NxN
feature maps * NxN

kernels

FIGURE 7.3: Concept of our NIFF Convolutions. Concept of our NIFF convolutions and the
computational complexity for each operation, illustrated using the example of a depth-wise
convolution. Left: In the standard depth-wise convolution, the number of kernels matches
the number of feature maps. Each kernel is convolved with its corresponding feature map.
Middle: A large convolution where the kernels are as large as the feature maps. Right:
The NIFF convolution, which applies a simple pointwise multiplication between the FFT-
transformed feature maps and the learned kernel weights via our NIFF. The updated feature

maps are then transformed back into the spatial domain using the IFFT.

infinite convolution due to the periodic nature of the frequency domain represen-
tation. Practically, this means that representing a signal (e.g., an image or feature
map) in the frequency domain and transforming it back to the spatial domain im-
plicitly assumes the signal is periodic and infinitely repeating. For many images,
such boundary conditions can make sense since the image horizon line is usually
horizontally aligned.

Practically, the kernels applied in the frequency domain are bandlimited to the
highest spatial frequency that can be represented in the feature map. However, since
higher frequencies can not be encoded in the discrete input signal by definition, this
is no practical limitation. In the frequency domain, we can thus efficiently apply
convolutions with filters of standard sizes, such as 224× 244 (for ImageNet) or 32×
32 (for CIFAR-10), using learned spatial frequencies solely limited by the resolution
of the input feature map.

7.2.1 Neural Implicit Frequency Filters

Images are typically stored as pixel-wise discrete values. Similarly, the filter weights
of CNNs are usually learned and stored as discrete values, i.e. a 3 × 3 filter has 9
parameters to be learned and stored, a 7× 7 filter as in ConvNeXt has 49 param-
eters and a filter as large as the feature map would require e.g. 224 × 224 (50176)
parameters for ImageNet-sized network input. In this case, it is not affordable to
directly learn these filter weights, neither in the spatial nor in the frequency domain.
To address this issue, we propose to parametrise filters by neural implicit functions
instead of learning the kernels directly. This is particularly beneficial since we can
directly learn the neural implicit filter representations in the frequency domain. Fig-
ure 7.2 depicts the benefit of neural implicit functions for large kernel sizes.

Thus, formally, we learn a function F parametrised by Φ that takes as input the
spatial frequency (ux, uy) whose filter value it predicts,

FΦ : R2 7→ CC, m(ux, uy) := FΦ(ux, uy) (7.2)

where C is the number of filter channels and the complex-valued m(ux, uy) in di-
mension c is the c-th filter value in the frequency domain to be multiplied with
F (g)(ux, uy) for feature map g. Specifically, with the implicit function FΦ, we parametrise

114 Chapter 7. Neural Implicit Frequency Filters

the weights with which the feature maps are multiplied in the frequency domain
based on equation 7.1 by point-wise multiplication. The number of MLP output
channels is equivalent to the number of channels C for the convolution, and its hid-
den dimensions determine the expressivity of each learned filter, which we term
Neural Implicit Frequency Filter (NIFF). In practice, the complex and real valued parts
of NIFFs are independently parametrised.

Efficient Parametrisation of NIFFs. Neural implicit functions allow parametrising
large filters with only a few MLP model weights, however, their direct implemen-
tation would be highly inefficient. Therefore, we resume to a trick that allows effi-
cient training and inference using standard neural network building blocks. Specifi-
cally, we arrange the input to the MLP, i.e. the discrete spatial frequencies (ux, uy) for
which we need to retrieve filter values, in 2D arrays that formally resemble feature
maps in CNNs but are fixed for all layers. Thus, the MLP takes one input matrix
encoding the x coordinates and one encoding the y coordinates, as shown in Fig-
ure 7.3. Then, the MLP can be equivalently and efficiently computed using stacked
1× 1 convolutions, where the first 1× 1 convolution has input depth two for the two
coordinates, and the output layer 1× 1 convolution has C output dimensions.

FFT IFFT

Feature

Maps (FM) FM

NIFF

weights FM

NIFF

weights

Downsampling NIFF ConvolutionNIFF Convolution

FM

Downsampling

FIGURE 7.4: NIFF, integration in CNN. Abstract integration of our NIFF convolution for
feature extraction in a CNN, similar to Figure 1.2 (c) from Chapter 1.

7.2.2 Common CNN Building Blocks using NIFF

As shown in Figure 7.4, our NIFF replaces the convolution operation within the
CNN feature extraction. Since CNNs utilize various convolution types, we will dis-
cuss each variant and its corresponding NIFF replacement in the following. Well-
established models like ResNet [He et al. (2016a)] use full convolutions, while more
recent architectures employ depth-wise and 1× 1 convolutions separately [Liu et al.
(2022b)]. Our neural implicit frequency filters can be implemented for all these cases.
However, operations that include downsampling by a stride of two are kept as orig-
inal spatial convolution. We ablate in Section 7.3.6 on the combination of our NIFF
with FLC Pooling, introduced in Section 6.2.2, to perform downsampling with our
NIFF in the frequency domain. In the following, we describe how commonly used
convolution types are implemented using NIFF.

Depth-Wise Convolution. The NIFF module for the depth-wise convolution is as
follows: First, we transform the feature maps into the frequency domain via FFT.
The learned filters are then applied through element-wise multiplications with the
feature maps. Subsequently, the feature maps are transformed back to the spatial
domain via inverse FFT if the subsequent operation occurs in the spatial domain.
The entire process is visualized in Figure 7.3, right. As discussed above, this process
allows to train models with large circular convolutions in a scalable way. An ablation
on circular versus linear convolutions in the frequency domain is given in Table 7.3.

7.3. Experiments 115

Full Convolution. To perform a full 2D convolution (2DConv) using NIFF with Cp
input channels and Cq output channels, the convolved feature maps are summed
according to

2DConv(gCp , kCp,Cq) =
Cp

∑
c

gc ⊛ kc,Cq = gCq . (7.3)

Conveniently, a summation in the spatial domain is equivalent to a summation in
the frequency domain and can be performed right away.

g + k = F−1(F (g) +F (k)) (7.4)

The full convolution in the frequency domain can be implemented by first predicting
the frequency representation of kCp,Cq directly using NIFF, i.e. for each output chan-
nel. Then, all input channels are element-wise multiplied with the filter weights and
summed up in 2DConvNIFF:

Cp

∑
c

gc ⊛ kc,Cq = F−1

(
Cp

∑
c
F (gc)⊙F (kc,Cq)

)
(7.5)

The NIFF needs to output Cp×Cq multiplication weights instead of only Cq at its last
layer, leading to a significant increase of learnable parameters for our NIFF. Thus, for
efficiency reasons, we decompose the full convolution into a depth-wise convolution
followed by a 1× 1 convolution in practice. The transformation into the frequency
domain is applied before the depth-wise convolution, where the backward trans-
formation into the spatial domain is applied after the 1× 1 convolution. While not
equivalent, the amount of learnable parameters decreases significantly with this ap-
proach, and the resulting models achieve similar or better performance in practice.
An ablation on full convolutions versus depth-wise separable convolutions is pro-
vided in Tables 7.1 and 7.2.

1× 1 Convolution. To perform a 1× 1 convolution, we transform the input into the
frequency domain via FFT. Afterwards, we apply a linear layer with channel input
neurons and desired output dimension output neurons on the channel dimension.
Finally, we transform back into the spatial domain via inverse FFT. While spatial
1× 1 convolutions only combine spatial information in one location, our 1× 1 in the
frequency space is able to combine and learn important information globally.

Other operations, such as downsampling, normalization, and non-linear activa-
tion, are applied in the spatial domain so that the resulting models are as close as
possible to their baselines while enabling infinite-sized convolutions. Yet, we ablate
in Section 7.3.6 on the effect of transforming more modules in the Fourier domain.

7.3 Experiments

7.3.1 Training Details

ImageNet. The training parameters and data preprocessing are kept the same for
ImageNet-1k and ImageNet-100. Each network architecture is trained with the gen-
eral training pipeline and data preprocessing provided by Liu et al. (2022b). The
training parameters for each individual network are taken from the original pa-
pers provided by the authors ResNet [He et al. (2016a)], DenseNet-121 [Huang et al.
(2017b)] ConvNeXt-tiny [Liu et al. (2022b)] and MobileNet-v2 [Sandler et al. (2018)].

116 Chapter 7. Neural Implicit Frequency Filters

CIFAR-10. For CIFAR-10, we used the same training parameter for all networks.
We trained each network for 150 epochs with a batch size of 256 and a cosine learning
rate schedule with a learning rate of 0.02. We set the momentum to 0.9 and weight
decay to 0.002. The loss is calculated via LabelSmoothing loss with label smoothing
of 0.1 and as an optimizer, we use SGD.

For data preprocessing, we used zero padding by four and cropping back to 32×
32 and horizontal flip, as well as normalizing with mean and standard deviation.

Computing Infrastructure. For training, we use NVIDIA Titan V and NVIDIA
A100 GPUs. For the training on low-resolution data (CIFAR-10), we used one NVIDIA
Titan V. Depending on the model architecture and the convolution used (baseline,
NIFF or large convolution) the training took between 15 minutes and 90 minutes. For
the training on high-resolution data (ImageNet-100 and 1k), we used four NVIDIA
A100 in parallel. The training time depends on the used model architecture and
varies if we use the full ImageNet-1k dataset or only ImageNet-100. The training
time for ImageNet-1k varies between one day and one hour and ten days and nine
hours for ImageNet-100 between 93 minutes and one day eight hours depending on
the model architecture and the number of epochs for training.

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-18

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-50

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-101

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

DenseNet-121

Layer 1 (max reslution 56x56)
Layer 2 (max resolution 28x28)
Layer 3 (max resolution 14x14)
Layer 4 (max resolution 7x7)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ConvNeXt-tiny

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 20 40 60 80 100
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

MobileNet-v2

max resolution 112x112
max resolution 56x56
max resolution 28x28
max resolution 14x14
max resolution 7x7
effective kernel size 9x9

FIGURE 7.5: Kernel Mass Ratio on ImageNet-1k. Effective kernel size evaluation on
ImageNet-1k with out KMR. We plot the average ratio of the entire kernel mass contained
within the limited spatial kernel size, where the x-axis denotes the width and height of the
squared kernels. For ResNet-18, ResNet-50, ResNet-101, DenseNet-121 and ConvNeXt-tiny
each layer encodes one resolution. Thus, these network’s layers could be summarised (Layer
1 encoding 56× 56, Layer 2 encoding 28× 28, Layer 3 encoding 14× 14 and Layer 4 encoding

7× 7). However, for MobileNet-v2 the resolution is downsampled within a layer.

7.3.2 How Large Do Spatial Kernels Really Need To Be?

To answer this question, we quantitatively analyse how large the spatial kernels
really tend to be by introducing a new metric, called kernel mass ratio, short KMR.
To do so, we transform the learned filters into the spatial domain and plot the relative
density of each spatial kernel k, i.e. the ratio of the kernel mass that is contained
within centered, smaller sized, squared kernels. The full kernel has the same width

7.3. Experiments 117

and height as the feature map (FM) it is convolved to.

KMR(width, height) =

width

∑
w=1

height

∑
h=1

k
(

c− ⌊width
2
⌋+ w, c− ⌊height

2
⌋+ h

)
FMwidth

∑
w=1

FMheight

∑
h=1

(k(w, h))

,

(7.6)

where c is the center of the full kernel k in the spatial domain.
In Figure 7.5, we report the kernel mass ratio for different networks trained on

ImageNet-1k. We observe that all networks mostly contain well-localized kernels
that are significantly smaller than possible. Yet, the first layer in DenseNet-121 and
the second and third layer in ResNet-18 also contain larger kernels that make use
of the possible kernel size up to 56 × 56 and 28 × 28, respectively. Surprisingly,
the smaller ResNet-18 model learns larger kernels than the ResNet-50 or ResNet-
101 in the second layer. For MobileNet-v2, the spatial kernels are predominantly
well-localized and small. However, at the maximal resolution of 112 × 112 some
kernels are quite large, at least 56× 56 (15%), indicating that MobileNet-v2, which
uses small 3× 3 kernels, could benefit from larger kernels. These findings are in line
with Romero et al. (2022a), who investigated the spatial kernel size of CNNs in the
spatial domain. Similar results on ImageNet-100 are reported in the Appendix C.1
in Figure C.1.

0 2 4 6 8 10 12 14 16
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-18

Layer 1 (max resolution 16x16)
Layer 2 (max resolution 8x8)
Layer 3 (max resolution 4x4)
effective kernel size 5x5

0 5 10 15 20 25 30
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

MobileNet-v2

max resolution 32x32
max resolution 16x16
max resolution 8x8
max resolution 4x4
effective kernel size 5x5

FIGURE 7.6: Kernel Mass Ratio on CIFAR-10. Effective kernel size evaluation on CIFAR-
10 with out KMR. We plot the average ratio of the entire kernel mass contained within the
limited spatial kernel size, where the x-axis denotes the width and height of the squared
kernels. For ResNet-18, each layer encodes one resolution. Thus, the layers could be sum-
marised (Layer 1 encoding 16× 16, Layer 2 8× 8 and Layer 3 4× 4). For MobileNet-v2 the

resolution is downsampled within a layer.

In Figure 7.6, we evaluate the spatial KMR for ResNet-18 and MobileNet-v2
trained on CIFAR-10; an overview with all models is shown in Figure C.2 in Ap-
pendix C.1 and demonstrates similar results. All models tend to learn in all layers
well-localized, small kernels, similar to networks trained on high-resolution data.
For CIFAR-10, the learned kernels barely exceed the size of 5 × 5 for ResNet-18.
However, the first block in MobileNet-v2 seems to make use of larger kernels, as
over 50% of the kernels are larger than 5× 5.

118 Chapter 7. Neural Implicit Frequency Filters

Non-Square Kernels. Following [Romero et al. (2022a)], we analyse our kernels
beyond square shapes, which are typically applied in CNNs, but also rectangular
shape kernels. Thus, we fit a 2D Gaussian to the kernels learned using our NIFF
and compare the variance given by σx and σy in the x- and y- direction. In detail, we
evaluate the ratio between σx and σy of the Gaussian. To aggregate over all kernels
within one layer, we plot the mean and standard deviation of these ratios in Figure
7.7 for ImageNet-1k and ResNet-50, MobileNet-v2 and ConvNeXt-tiny. We report
all models on ImageNet-1k and ImageNet-100 in the Appendix C.2 Figures C.3 and
C.4, respectively. The mean over all kernels for all models within a layer is near to a
ratio of one, indicating that most kernels exhibit square shapes. For some layers (the
last layer of ResNet-50 and ResNet-101 on ImageNet-1k and ResNet-18 and ResNet-
50 on ImageNet-100), the variance is quite high, indicating that σx and σy differ and
non-square, rectangle kernels are learned. Note that the learned kernels by Romero
et al. (2022a) are parametrised by a Siren [Sitzmann et al. (2020)], leading to more
wave-like, smooth kernels. In contrast, we learn the kernels in the frequency domain
which could be wave-like, but are mostly not wave-like as shown in Figures C.24 and
C.23 which depict a random selection of the learned spatial kernels in the Appendix
C.3. Therefore, the measured standard deviations in x and y direction should not
be understood as a kernel mask, as argued in [Romero et al. (2022a)]. They merely
indicate the rough spatial distribution of filter weights.

layer1 layer2 layer3 layer4
layer-depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x
/

y

ResNet-50

Square kernels
Mean over all kernels
Std over all kernels

112 56 28 14
resolution

0.6

0.8

1.0

1.2

1.4

1.6

x
/

y

MobileNet-v2

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
/

y

ConvNeXt-tiny

Square kernels
Mean over all kernels
Std over all kernels

FIGURE 7.7: Analysis of Non-Square Kernel Shapes for our NIFF on ImageNet-1k. We
analyse NIFF ResNet-50, MobileNet-v and ConvNeXt-tiny of non-square kernel shapes on
ImageNet-1k. We compare the variance σx and σy in x- and y-direction of a Gaussian fitted
onto our learned spatial weights. The red dashed line indicates square-shaped kernels as the

variance σx and σy are equal.

7.3.3 Quantitative Results

We evaluate a variety of classification CNNs with our proposed NIFF. Overall, we
achieve accuracies on par with the respective baselines. For high-resolution data, our
NIFF CNNs perform slightly better than the baseline models, while the large kernels
are apparently less beneficial for low-resolution data, especially in deeper layers
where the feature map sizes are very small. Further, we evaluate the performance of
NIFF when combined with other modules applied in the frequency domain.

ImageNet. For high-resolution datasets such as ImageNet-1k and ImageNet-100,
NIFF CNNs demonstrate performance comparable to baseline models. These re-
sults are presented in Table 7.1. For models which originally employ full 2D con-
volutions, we also ablate on the effect of replacing these with depth-wise separated

7.3. Experiments 119

TABLE 7.1: NIFF performance evaluation on ImageNet-1k and ImageNet-100. Evaluation
of top 1 and 5 test accuracy on ImageNet-1k and ImageNet-100 for different network archi-
tectures. We used the standard training parameter for each architecture and the advanced
data augmentation from Liu et al. (2022b) for all architectures. Additionally, we add the
numbers reported by Pytorch for the timm baseline models on ImageNet-1k for each net-

work. Our ablation on linear convolutions is given in Table 7.3.

ImageNet-1k ImageNet-100
Model Method # Params ↓ Acc@1 ↑ Acc@5↑ # Params ↓ Acc@1 ↑ Acc@5 ↑

R
es

N
et

18

Pytorch 11.689.512 69.76 89.08 11.227.812 - -
Baseline 11.689.512 72.38 90.70 11.227.812 87.52 97.50
NIFF 2D conv (ours) 21.127.320 71.00 89.95 20.665.620 86.42 97.08
separated conv 3.327.400 69.12 88.84 2.865.700 86.52 97.20
NIFF (ours) 3.660.360 70.75 90.01 3.198.660 86.52 97.14

R
es

N
et

50

Pytorch 25.557.032 76.13 92.86 23.712.932 - -
Baseline 25.557.032 79.13 94.43 23.712.932 89.88 98.22
NIFF 2D conv (ours) 33.778.328 78.65 94.25 31.934.228 90.08 98.06
separated conv 18.275.688 77.76 93.72 16.431.588 89.78 98.18
NIFF (ours) 18.605.000 79.65 94.80 16.760.900 89.98 98.44

R
es

N
et

10
1

Pytorch 44.549.160 77.37 93.55 42705.060 - -
Baseline 44.549.160 80.63 95.11 42.705.060 90.54 98.14
separated conv 28.394.088 79.53 94.64 26.549.988 90.20 98.36
NIFF (ours) 29.187.432 80.26 95.23 27.343.332 90.54 98.38

D
en

se
N

et

12
1

Pytorch 7.978.856 76.65 92.17 7.978.856 - -
Baseline 7.978.856 75.11 92.50 7.056.356 90.06 98.20
NIFF 2D conv (ours) 10.119.752 73.96 91.82 9.197.252 89.66 98.32
separated conv 6.145.128 69.80 89.02 5.222.628 89.94 98.08
NIFF (ours) 6.159.512 74.58 92.33 5.237.012 90.24 98.18

C
on

v

N
eX

t-
t Pytorch 28.589.128 82.52 96.15 28.589.128 - -

Baseline 28.589.128 - - 27.897.028 91.70 98.32
NIFF (ours) 28.890.664 81.83 95.80 28.231.684 92.00 98.42

M
ob

ile

N
et

-v
2 Pytorch 3.504.872 71.88 90.29 3.504.872 - -

Baseline 3.504.872 70.03 89.54 2.351.972 84.06 96.52
NIFF (ours) 3.512.560 71.53 90.50 2.359.660 85.46 96.70

convolutions in spatial domain with the original filter size. In line with the finding
e.g. in [Liu et al. (2022b)], the differences are rather small, while the amount of pa-
rameters decreases significantly as depth-wise separable convolutions are applied.
According to our results, this is equally true for both, convolutions executed in the
spatial and in the frequency domain. For comparability, we simply used the base-
line hyperparameters reported for each of these models in the respective papers,
i.e. we achieve results on par with the respective baselines without hyperparameter
optimization. For different ResNet architectures, we even achieve improvements on
both high-resolution datasets.

However, for small networks like MobileNet-v2, we observe that both the base-
line model and the NIFF version have comparably low accuracy. For MobileNet-v2,
the training pipeline is usually highly optimized for best performance. The data
augmentation scheme from [Liu et al. (2022b)], that we employ for all trainings to
achieve comparable results, does not seem to have a beneficial effect here.

Similar to ImageNet-1k, ImageNet-100 exhibits a trend where NIFF provides
substantial gains for larger models but less so for lightweight models.

CIFAR-10. Although NIFF CNNs can perform on par with the respective baseline
on high-resolution datasets, their performance is limited on low-resolution datasets.
Table 7.2 presents the results on CIFAR-10 with different architectures. Unfortu-
nately, our NIFF CNNs lose around 1 to 3 % points compared to the baseline models.

120 Chapter 7. Neural Implicit Frequency Filters

TABLE 7.2: NIFF performance evaluation on CIFAR-10. Performance evaluation of differ-
ent networks trained on CIFAR-10, including the number of learnable hyperparameters for
each network. To ensure comparability across all models and architectural variations, we
applied the same training schedule for each. Results show that NIFF CNNs achieve slightly
better performance when using a ConvNeXt backbone [Liu et al. (2022b)]. However, for

other architectures, their performance is slightly lower.

Model Method # Params ↓ Acc@1 ↑

ConvNeXt-tiny
Baseline 6.376.466 90.37
NIFF (ours) 6.305.746 91.48

ResNet-18

Baseline 11.173.962 92.74
NIFF 2D conv (ours) 20.613.546 92.66
separated conv 2.810.341 90.18
NIFF (ours) 1.932.432 90.63

ResNet-50

Baseline 23.520.842 93.75
NIFF 2D conv (ours) 31.743.914 93.39
separated conv 16.237.989 92.13
NIFF (ours) 15.491.600 93.11

DenseNet-121

Baseline 6.956.426 93.93
NIFF 2D conv (ours) 9.099.098 92.47
separated conv 5.121.189 92.00
NIFF (ours) 5.555.856 92.49

MobileNet-v2
Baseline 2.236.682 94.51
NIFF (ours) 2.593.760 94.03

MobileNet-v3
Baseline 1.528.106 86.28
NIFF (ours) 1.526.466 86.60

This can be addressed to our previous observation: Networks trained on CIFAR-10
exploit a limited portion of NIFF’s available kernel size, effectively using kernels
equivalent to the baseline model’s 3× 3 kernels.

This slight drop in performance might be due to the low spatial resolution of
images and feature maps. Particularly in deeper layers, the potential benefit from
large convolutions is therefore limited. Further, we want to emphasize that NIFF is
not conceived to improve over baseline methods (we are, of course, glad to observe
this tendency for high-resolution data) but to facilitate the evaluation of effective
kernel sizes in CNNs.

7.3.4 Filter Analysis

In this section, we visualize the spatial kernels learned by our NIFF. We do so by
transforming the learned multiplication weights via IFFT into the spatial domain.
Afterwards, we apply Principle Component Analysis (PCA) per layer to evaluate the
predominant structure of the learned spatial kernels. For each layer, we separately
plot the six most important eigenvectors and zoom in to visualize the 9× 9 center.
The full visualizations without center cropping are present in Figure C.13 in the
Appendix C.3. Additionally, an overview of a random selection of original spatial
kernels is given in Figures C.24 and C.23 in the Appendix C.3.

7.3. Experiments 121

0.62

La
ye

r
1

56
x5

6

v0

0.17

v1

0.10

v2

0.04

v3

0.04

v4

0.01

v5

0.01

v6

0.75
La

ye
r

2
56

x5
6

0.15 0.04 0.01 0.01 0.01 <0.01

0.90

La
ye

r
3

28
x2

8

0.06 0.02 0.01 <0.01 <0.01 <0.01

0.87

La
ye

r
4

14
x1

4

0.09 0.02 <0.01 <0.01 <0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 7.8: Spatial Filter Visualizations for our NIFF ResNet-50 on ImageNet-1k. PCA
basis and explained variance for each basis vector (below) of all spatial filters for each layer
of a ResNet-50 trained on ImageNet-1k zoomed to 9× 9 (the full size filters are presented
in Figure C.13 in the Appendix C.3). On the left, the maximal filter size for the correspond-
ing layer is given. We can see that most filters only use a well-localized, small kernel size

although they could use a much bigger kernel.

High-Resolution Data. Our results indicate that the networks, although they could
learn infinitely large kernels, learn well-localized, quite small (3 × 3 up to 9 × 9)
kernels, especially in early layers. The spatial kernel size is different for low- and
high-resolution data. Figure 7.8 visualizes the eigenvectors of the spatial kernel

0.85

La
ye

r
1

16
x1

6

v0

0.13

v1

0.01

v2

0.01

v3

<0.01

v4

<0.01

v5

<0.01

v6

0.78

N
IF

F
La

ye
r

2
8x

8

0.07 0.06 0.05 0.03 0.01 0.01

0.72

La
ye

r
3

4x
4

0.10 0.09 0.07 0.03 <0.01 <0.01

0.25St
an

da
rd

La

ye
r

3
3x

3

0.18 0.13 0.12 0.09 0.08 0.06 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 7.9: Spatial Filter Visualizations for our NIFF ResNet-18 on CIFAR-10. PCA basis
and explained variance for each basis vector (below) of all spatial filters learned by NIFF for
each layer as well as the learned filters for the third layer of a standard ResNet-18 trained
on CIFAR-10. On the left, the layer and its filter size are given. Most filters only use a well-

localized, small kernel size although they could use a much bigger kernel.

weights for each layer in our NIFF CNN for ResNet-50 trained on ImageNet-1k. All
layers dominantly learn filters with well-localized, small kernel sizes. Especially
in the later layers, most variance is explained by simple 1× 1 kernels, whereas the
first-layer kernels have the most variance explained by simple 5× 5 or 7× 7 kernels.
Hence, the networks learn larger kernels than the standard 3 × 3 kernels used in
a ResNet. However, the full potential of possible sizes of 56× 56 and more is not
used. Similar results are shown in Figure 7.1 as well as for more architectures on
ImageNet-1k in the Appendix C.3 (Figures C.5, C.6 and C.7) and ImageNet-100 (Fig-
ures C.8, C.9, C.10 and C.11); all networks learn well-localized, small kernels, even

122 Chapter 7. Neural Implicit Frequency Filters

though they could learn much larger ones.
Some exceptions can be observed for the 4th layer in Figures 7.1 and 7.8, where the
eigenvector with the second-highest explained variance still uses a larger extent of
the kernel. In combination with the downsampling applied prior to the fourth layer,
this indicates that the network tries to keep a large spatial context.

Low-Resolution Data. The same effect can be observed for networks trained on
CIFAR-10. Figure 7.9 depicts the PCAs of the spatial kernel weights for each layer
in our NIFF CNN for a ResNet-18 trained on CIFAR-10. There, the dominant basis
vectors for the first layer learned by our NIFF kernels do not exceed a size of 3× 3 in
the spatial domain. However, in the second layer, a few kernels (19%) are larger than
3× 3, mostly 7× 7. In the last layer, the kernels again do not exceed the standard
size of 3× 3. Similar results on MobileNet-v2 are presented in Figure C.12 in the
Appendix C.3.

ResNet-50 ConvNeXt-tiny DenseNet-121 MobileNet-v2

0.61

La
ye

r
1

56
x5

6
R

ea
l

v0

0.61

Im
ag

v0

0.73

La
ye

r
2

56
x5

6
R

ea
l

0.73

Im
ag

0.90

La
ye

r
3

28
x2

8
R

ea
l

0.90

Im
ag

0.59

La
ye

r
4

14
x1

4
R

ea
l

0.59

Im
ag

0.065

0.070

0.075

0.080

0.085

0.090

0.92

La
ye

r
1

56
x5

6
R

ea
l

v0

0.92

v0

0.84

La
ye

r
2

56
x5

6
R

ea
l

0.84

0.85

La
ye

r
3

28
x2

8
R

ea
l

0.85

0.55

La
ye

r
4

14
x1

4
R

ea
l

0.55

0.073

0.072

0.071

0.070

0.069

0.068

0.067

0.066

0.98

La
ye

r
1

56
x5

6
R

ea
l

v0

0.98

Im
ag

v0

0.98

La
ye

r
2

28
x2

8
R

ea
l

0.98
Im

ag

0.98

La
ye

r
3

14
x1

4
R

ea
l

0.98

Im
ag

0.93

La
ye

r
4

7x
7

R
ea

l

0.93

Im
ag

0.08

0.10

0.12

0.14

0.16

0.18

0.99

11
2x

11
2

R
ea

l

v0

0.99

v0

0.84

56
x5

6
R

ea
l

0.84

0.78

28
x2

8
R

ea
l

0.78

0.79

14
x1

4
R

ea
l

0.79

0.73
7x

7
R

ea
l

0.73

0.20

0.15

0.10

0.05

0.00

FIGURE 7.10: Center-shifted Frequency Filter Visualizations for our NIFF models on
ImageNet-1k. First PCA basis and explained variance (below) of the element-wise multi-
plication weights for the real and imaginary part in the center-shifted frequency domain
for each layer of a ResNet-50, ConvNeXt-tiny, DenseNet-121 and MobileNet-v2 trained on
ImageNet-1k. For each network the maximal filter size is denoted left for the corresponding

layer. The left image represents the real part, the right the imaginary part.

NIFF Multiplication Weights. Moreover, we analyse the learned element-wise mul-
tiplication weights for the real and imaginary parts of different models trained on
ImageNet-1k in the frequency domain. We present the most important informa-
tion contained in the first principle component for each network in Figure 7.10. In
Appendix C.3, we include Figures C.25, C.26, C.28 and C.27 which show the full
PCA per layer for the learned element-wise multiplication weights for ResNet-50,
DenseNet-121, ConvNeXt-tiny and MobileNet-V2 respectively. For ResNet-50 and
ConvNeXt-tiny, it seems as if the networks focus in the first layer on the low- and
middle-frequency spectra and in the later layers more on the high-frequency spec-
tra. The multiplication weights learned for MobileNet-V2 focus in the first layer on
low-frequency information in the second layer on high-frequency information and
in the third layer again on low-frequency information. The DenseNet-121 learns
high-frequency information prior in the first two layers and low-frequency infor-
mation predominately in the later, third layer. Hence, a general claim for different
models and their learned multiplication weights in the frequency domain can not
be derived from our empirical analysis. Still, for all networks, the imaginary part

7.3. Experiments 123

seems to be less important for these networks and thus, the learned structures are
less complex. This might be owed to the fact that with increased sparsity through the
activation function in the network, the network favours cosine structures (structures
with a peak in the center) over sine structures.

7.3.5 Circular vs. Linear Convolution

TABLE 7.3: NIFF Performance Approximating Linear Convolutions on ImageNet-100.
Evaluation of top 1 and top 5 accuracies on ImageNet-100 for networks learning filters with
our NIFF, but afterwards, these filters are padded in the spatial domain and transformed
back into the frequency domain to mimic linear convolutions. All ResNet architectures and
DenseNet-121 were trained with separate depth-wise and 1x1 convolutions for efficiency
reasons. All models using finite linear convolutions performed significantly worse than the
baseline and our NIFF, which applies circular convolutions. This observation is consistent

with low-resolution data like CIFAR-10.

Model Name Acc@1 ↑ Acc@5 ↑

ConvNeXt-tiny
Baseline 91.70 98.32
NIFF (ours) 92.00 98.42
NIFF linear 83.00 95.36

ResNet-18
separated conv 86.52 97.20
NIFF (ours) 86.52 97.14
NIFF linear 81.90 95.42

ResNet-50
separated conv 89.78 98.18
NIFF (ours) 89.98 98.44
NIFF linear 86.76 97.16

ResNet-101
separated conv 90.20 98.36
NIFF (ours) 90.54 98.38
NIFF linear 86.70 97.06

DesNet-121
separated conv 89.94 98.08
NIFF (ours) 90.24 98.18
NIFF linear 81.40 95.52

MobileNet-v2
Baseline 84.06 96.52
NIFF (ours) 85.46 96.70
NIFF linear 73.90 93.16

Our NIFF, as proposed, performs a circular convolution, which allows us to di-
rectly apply the Convolution theorem and execute the spatial convolution as mul-
tiplication in the frequency domain. However, standard convolutions in CNNs are
finite linear convolutions. A circular convolution can mimic a linear convolution
when zero-padding a signal with length M and a kernel with length K to length
L ≤ M + K − 1 [Winograd (1978)]. Thus, to ablate on circular versus finite linear
convolutions, the input feature maps with size N × N are zero-padded to 2N × 2N.
For both the linear and the circular case, NIFF learns filters with the original size
N× N of the feature map. To mimic linear filters, the learned filters by our NIFF are
transformed into the spatial domain and zero-padded similarly to the input feature
maps to 2N× 2N. Afterwards, they are transformed back into the frequency domain

124 Chapter 7. Neural Implicit Frequency Filters

TABLE 7.4: NIFF Performance Approximating Linear Convolutions on CIFAR-10. Eval-
uation of top 1 on CIFAR-10 for networks learning filters with our NIFF but afterwards
those are padded in the spatial domain and transformed back into the frequency domain
to mimic linear, non-circular convolutions. All models using finite linear convolutions per-
form significantly worse than the baseline and our NIFF. This observation is consistent with

high-resolution data like ImageNet-100.

Model Method Acc@1 ↑

ConvNeXt-tiny
Baseline 90.37
NIFF (ours) 91.48
NIFF linear 84.30

ResNet-18

Baseline 92.74
NIFF full (ours) 92.66
NIFF full linear 85.10
separated conv 90.18
NIFF (ours) 90.63
NIFF linear 83.11

ResNet-50

Baseline 93.75
NIFF full (ours) 93.39
NIFF full linear 88.22
separated conv 92.13
NIFF (ours) 93.11
NIFF linear 87.54

DenseNet-121

Baseline 93.93
NIFF full (ours) 92.47
NIFF full linear 85.73
separated conv 92.00
NIFF (ours) 92.49
NIFF linear 79.95

MobileNet-v2
Baseline 94.51
NIFF (ours) 94.03
NIFF linear 93.21

and the point-wise multiplication is executed. Note that this is not efficient and just
serves the academic purpose of verifying whether any accuracy is lost when replac-
ing linear convolutions with circular ones in our approach. However, the resulting
networks experience a performance drop compared to the baseline and our NIFF, as
shown in Tables 7.3 and 7.4. We hypothesize that this drop in performance results
from the enforcement of really large kernels. The additional padding mimics linear
finite convolutions that are as big as the feature maps. Related work has shown that
larger context can improve model performance [Ding et al. (2022); Liu et al. (2023)].
Still, there is a limit to which extent this holds as with large kernels artifacts may
arise [Tomen & van Gemert (2021)]. Thus, enforcing kernels as large as the feature
maps seems to be not beneficial, as shown by our quantitative results. Another ex-
planation for the drop in accuracy could be the introduction of sinc interpolation
artifacts into the padded and transformed feature maps and kernels. The padding

7.3. Experiments 125

is formally a point-wise multiplication with a rectangular function in the spatial do-
main. Thus, sinc-interpolation artifacts in the frequency domain can arise. Figure
7.12 demonstrates that the learned spatial kernels are larger than the learned kernel
when we apply a circular convolution with our NIFF. While the first and second
layers still learn relatively small filters compared to the actual size they could learn,
the third and fourth layers make use of the larger kernels. Since these results come
with a significant drop in accuracy, we should, however, be careful when interpret-
ing them. We provide the PCA analysis without zoom in the Appendix C.3 in Figure
C.22.

0.87

La
ye

r
1

56
x5

6

v0

0.10

v1

0.01

v2

0.01

v3

0.00

v4

0.00

v5

0.00

v6

0.92

La
ye

r
2

56
x5

6

0.03 0.03 0.01 0.00 0.00 0.00

0.78

La
ye

r
3

28
x2

8

0.20 0.00 0.00 0.00 0.00 0.00

0.70

La
ye

r
4

14
x1

4

0.25 0.02 0.02 0.01 0.01 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 7.11: Spatial Filter Visualizations for our NIFF ResNet-18 with Additional
Padding on ImageNet-100. PCA analysis of the learned kernels in the spatial domain of a
ResNet-18 with additional zero padding before our NIFF trained on ImageNet-100. We plot
for each kernel the zoomed-in (9× 9) version for better visibility the original PCA analysis
is presented in Figure C.21 in the Appendix C.3. Still, most kernels exhibit well-localized,

small spatial kernels.

Ablation on Padding. We further evaluate our NIFF when the feature maps are
padded with different kinds of padding methods. Due to the padding of the fea-
ture maps and the cropping after the application of our NIFF, possible artifacts can
be mitigated. The padding is applied around the feature maps before transforming
them into the frequency domain. The padding size is as large as the original feature
map. After the application of our NIFF, the feature maps are transformed back into
the spatial domain and cropped to their original size. The resulting networks experi-
ence similar performance as our baseline NIFF as presented in Table 7.5. Figures 7.11
and C.21 show the learned spatial kernels when only the feature maps are padded.
The learned spatial kernels are still relatively small and well-localized.

7.3.6 Ablation on More Modules

We demonstrate that our NIFF can be combined with other Fourier modules to
achieve networks that operate mostly in the Fourier domain. Hence, the number of

126 Chapter 7. Neural Implicit Frequency Filters

0.51
La

ye
r

1
56

x5
6

v0

0.23

v1

0.20

v2

0.02

v3

0.01

v4

0.01

v5

0.01

v6

0.74

La
ye

r
2

56
x5

6

0.12 0.06 0.04 0.02 0.01 0.01

0.65

La
ye

r
3

28
x2

8

0.15 0.08 0.04 0.03 0.02 0.01

0.85

La
ye

r
4

14
x1

4

0.10 0.03 0.02 0.00 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE 7.12: Spatial Filter Visualizations for our NIFF ResNet-18 with Approximating
Linear Convolutions on ImageNet-100. Actual kernels in the spatial domain of a ResNet-
18 which mimics linear convolutions with our NIFF trained on ImageNet-100. We plot for
each kernel the zoomed-in (13× 13) version below for better visibility. Still, most kernels ex-
hibit well-localized, small spatial kernels. However, they are slightly larger than the kernels

learned without padding and cropping.

transformations can be reduced. Table 7.6 demonstrates that adding the downsam-
pling layer, our FLC Pooling from Section 6.2.2 or the last AveragePooling and the
fully connected layer also yields good results. Also, combining all of them, NIFF,
FLC Pooling and the Average Pooling plus Fully connected layer performs quite
well. However, incorporating the ComplexBatchNorm [Trabelsi et al. (2018)] leads
to a drop in accuracy by roughly 15%. We also tried to incorporate the non-linearity
into the frequency domain, but we were not able to achieve much better results than
by removing it fully.

7.4 Discussion

We now discuss key architectural design choices for NIFF. Further, we compare
NIFF’s performance with both standard and large filter sizes, analysing required
FLOPs and runtime for NIFF versus standard convolutions across various kernel
sizes. Finally, we outline limitations.

7.4.1 NIFF’s Architecture

In the following, we discuss the architecture used for our NIFFs for each backbone
network architecture. Note that the size of the NIFF is adjusted to the size of the
baseline network as well as the complexity of the classification task.

High-Resolution Data For the networks trained on ImageNet-100 and ImageNet-
1k, the size of the neural implicit function to predict the NIFF is kept the same for
each architecture, respectively, while the size of the neural implicit function is ad-
justed to the network architecture to achieve approximately the same number of

7.4. Discussion 127

TABLE 7.5: Performance of Different Padding Methods for our NIFF. Evaluation of top
1 and top 5 accuracies on ImageNet-100 for our NIFF ResNet-18 with different kinds of

padding.

Name Acc@1 ↑ Acc@5 ↑
Baseline 87.52 97.50
NIFF (ours) 86.52 97.14
NIFF zero padding 87.00 97.54
NIFF reflect padding 86.64 97.24
NIFF circular padding 87.06 97.34

TABLE 7.6: Towards CNNs in the Fourier Domain. Comparison on CIFAR-10 of NIFF
MobileNet-v2 [Sandler et al. (2018)] incorporating more modules, like our FLC Pooling in-
troduced in Chapter 6 and other methods like Complex BatchNorm, short Complex BN
[Trabelsi et al. (2018)] and the AveragePooling which is equivalent to selecting the DC-
component in the frequency domain and operating the fully connected layer, FC, into the

frequency domain.

NIFF (ours) FLC Pooling (ours) Complex BN 2018 AvgPooling + FC Acc@1 ↑
✓ ✗ ✗ ✗ 94.03
✓ ✓ ✗ ✗ 93.61
✓ ✗ ✓ ✗ 78.60
✓ ✗ ✗ ✓ 93.82
✓ ✓ ✓ ✗ 79.83
✓ ✓ ✗ ✓ 93.27
✓ ✗ ✓ ✓ 73.90
✓ ✓ ✓ ✓ 55.81

trainable parameters. Hence, the lightweight MobileNet-v2 model [Sandler et al.
(2018)] and the small DenseNet-121 [Huang et al. (2017b)] incorporate a smaller
lightweight neural implicit function to predict the NIFF, while larger models like
ResNet [He et al. (2016a)] or ConvNeXt-tiny [Liu et al. (2022b)] incorporate a larger
neural implicit function. For simplicity, we define two NIFF architectures. One for
the large models and one for the smaller, lightweight models.

For the smaller, lightweight models, the neural implicit function consists of three
stacked 1× 1 convolutions with one SiLU activation after the first one and one after
the second one. The dimensions for the three 1× 1 convolutions are as follows. We
start with two channels and expand to eight channels. From these eight channels,
the second 1× 1 convolution suppresses the channels down to four. Afterwards, the
last 1× 1 convolution maps these four channels to the desired number of point-wise
multiplication weights.

For the larger models, we used four layers within the neural implicit function
for NIFF. The structure is similar to the small NIFF between each 1 × 1 convolu-
tion a SiLU activation function is applied. The dimensions for the four layers are as
follows. First, from two to 16 channels, secondly from 16 to 128 channels and after-
wards suppressed down from 128 to 32 channels. The last 1× 1 convolution maps
these 32 channels to the desired number of point-wise multiplication weights.

We show that the smaller NIFF size for the lightweight models does not influence

128 Chapter 7. Neural Implicit Frequency Filters

the resulting performance. Thus, we train a lightweight MobileNet-v2 with larger
NIFFs (similar size as the larger models). The results are presented in Table 7.7. The
network does not benefit from the larger NIFF size. Hence, we assume that keeping
the smaller NIFFs for the smaller, lightweight models can achieve a good trade-off
between the number of learnable parameters and performance.

TABLE 7.7: NIFF Size Evaluation. Evaluation of top 1 and top 5 accuracies on ImageNet-100
for different NIFF sizes for the lightweight MobileNet-v2 [Sandler et al. (2018)].

Name Acc@1 ↑ Acc@5 ↑
Baseline 84.94 96.28
small NIFF 83.72 96.40
big NIFF 83.82 96.32

Low-Resolution Data All networks trained on CIFAR-10 incorporate the same
NIFF architecture. The NIFF consists of two stacked 1× 1 convolutions with a ReLU
activation function in between. The 1× 1 convolution receives as input two chan-
nels, which encode the x and y coordinates as described in Figure 7.2. The 1 × 1
convolution expands these two channels to 32 channels. From these 32 channels, the
next 1× 1 convolution maps the 32 channels to the desired number of point-wise
multiplication weights.

Ablation on Separated Convolution Further, we ablate our design choices to use
separated depth-wise and 1 × 1 convolutions instead of full convolutions for effi-
ciency. Hence, we train all standard networks incorporating full convolutions to
use separated convolutions (separated in depth-wise and 1× 1 convolution) as well
as our NIFF as full convolution. Tables 7.1 and 7.2 demonstrate that using sepa-
rated convolutions in the spatial domain performs slightly worse than the baseline
but also reduces the amount of learnable parameters similarly to our NIFF. Using
full convolutions in our NIFF leads to an increase in accuracy but also an increased
amount of learnable parameters. Hence, we can see a clear trade-off between the
number of learnable parameters and accuracy.

0 100 200 300 400 500
feature map/filter size

108

1010

1012

FL
O

Ps

Convolution
NIFF
FFT + IFFT
NIFF linear Convolution

FIGURE 7.13: FLOPs for Different Kinds of Convolutions. FLOPs in Log-scale for comput-
ing a simple FFT and IFFT, a standard depth-wise convolution and our NIFF (including FFT
and IFFT) and a linear convolution executed without NIFF for convolutions with kernels as

big as the feature maps for the example of 64 channels.

7.4.2 Efficiency

Since our NIFF implementation is conceived for analysis purposes, our models are
not optimized for runtime. In particular, we compute repeated FFTs in PyTorch to

7.4. Discussion 129

allow the computation of the remaining network components in the spatial domain
so that the models are equivalent to large kernel models computed in the spatial do-
main. Yet, Figure 7.13 demonstrates that with large kernel sizes, our NIFF approach
with repeated FFTs is much more efficient in terms of FLOPs compared to the spatial
convolution.

Our approach is slower than the current implementation with spatial convolu-
tions due to the repetitive use of FFT and IFFT. However, when comparing the num-
ber of FLOPs needed to compute convolutions with kernel sizes as big as the feature
maps to our NIFF approach, NIFF requires significantly fewer FLOPs, especially
with increased feature map size. Figure 7.13 demonstrates that most of the FLOPs
for our NIFF result from the additional FFT and IFFT operation. Still, we require
much fewer FLOPs than large spatial convolutions. Moreover, when combined with
further modules in the Fourier domain like our FLC Pooling from Chapter 6, the
number of transformations needed is reduced.

Moreover, we evaluate the runtime per epoch for each model on CIFAR-10 (Ta-
ble 7.8) and ImageNet-100 (Table 7.9) and compare it to the standard spatial 3×3
convolution, which has a much smaller spatial context than our NIFF as well as
spatial convolutions which are as large as the feature maps. This would be com-
parable to our NIFF. Obviously, small spatial kernels (3× 3) are much faster than
larger kernels like NIFF or large spatial kernels. However, NIFF is much faster than
the large spatial kernels during training. Especially on high-resolution datasets like
ImageNet-100, our NIFF is over four times faster on ResNet-50 and over three times
faster on ConvNeXt-tiny compared to the large convolution in the spatial domain.

In general, we want to emphasize that our NIFF models still learn infinite large
kernels while all kernels in the spatial domain are limited to the set kernel size. Per-
forming a 2D spatial convolution on an N × N image, g, with filters of the same
size requires O(N4) operations. However, employing FFT and pointwise multi-
plication, as done by our NIFF, (following Equation 7.1) reduces the complexity to
O(N2log(N)).

TABLE 7.8: NIFF Efficiency Evaluation on CIFAR-10. Average training (left) and inference
time (right) per epoch in seconds and standard deviation on one NVIDIA Titan V of NIFF
compared to standard spatial convolutions 3× 3 or 7× 7 and maximal larger spatial convo-

lutions on CIFAR-10.

Architecture Training Time ↓ Inference Time ↓

Filter Size
Baseline Spatial Conv NIFF Baseline Spatial Conv NIFF
3x3/7x7 feature map sized (ours) 3x3/7x7 feature map sized (ours)

ConvNeXt-tiny 68.31 ± 0.62 108.97 ± 0.25 96.48 ± 1.97 2.35 ± 0.05 4.06 ± 0.02 6.32 ± 0.14
ResNet-18 8.57 ± 0.20 22.75 ± 0.28 17.87 ± 0.54 2.69 ± 0.10 3.29 ± 0.08 3.14 ± 0.54
ResNet-50 7.98 ± 0.10 37.05 ± 0.48 27.36 ±0.16 3.09 ± 0.13 5.05 ± 0.45 5.26 ± 0.06
DenseNet-121 26.36 ± 1.32 67.11 ± 0.25 84.51 ± 3.71 3.40 ± 0.05 5.27 ± 0.02 6.50 ± 0.14
MobileNet-v2 22.50 ± 0.26 143.47 ± 0.20 83.41 ± 4.78 2.93 ± 0.06 8.68 ± 0.43 7.02 ± 0.04

7.4.3 Limitations

While NIFF maintains performance and generates reasonable filter weights, it ap-
proximates, rather than precisely replicates, linear convolutions. We detail the dif-
ferences between NIFF and linear convolutions and propose an approximation in

130 Chapter 7. Neural Implicit Frequency Filters

TABLE 7.9: NIFF Efficiency Evaluation on ImageNet-100. Average training (left) and in-
ference (right) time per epoch in seconds and standard deviation on four NVIDIA A100 of
NIFF compared to standard spatial convolutions (3× 3 or 7× 7) and maximal larger spatial

convolutions on ImageNet-100.

Architecture Training Time ↓ Inference Time ↓

Filter Size
Baseline Spatial Conv NIFF Baseline Spatial Conv NIFF
3x3/7x7 feature map sized (ours) 3x3/7x7 feature map sized (ours)

ConvNeXt-tiny 92.19 ± 4.21 487.89 ± 3.54 149.70 ± 1.32 4.86 ± 0.13 17.07 ± 0.19 6.06 ± 0.08
ResNet-18 31.99 ± 0.71 608.13 ± 22.53 89.00 ± 0.60 4.53 ± 0.52 24.57 ± 0.21 4.52 ± 0.18
ResNet-50 85.51 ± 0.22 951.43 ± 6.09 204.82 ± 0.33 5.43 ± 0.30 42.33 ± 0.21 10.35 ± 0.14
ResNet-101 152.39 ± 5.07 1392.21 ± 47.91 349.83 ± 2.44 7.35 ± 0.17 54.85 ± 0.25 16.82 ± 0.10
DenseNet-121 128.95 ± 1.64 10188.15 ± 28.17 408.08 ± 2.20 5.12 ± 0.07 104.36 ± 0.40 12.04 ± 0.18
MobileNet-v2 32.64 ± 0.25 856.84 ± 4.35 100.75 ± 0.15 4.27 ± 0.13 28.97 ± 0.04 6.61 0.16

Section 7.3.5. Nevertheless, potential factors such as ringing artifacts from the peri-
odicity assumption (briefly discussed in Section 7.2) may affect comparability. Fur-
thermore, the periodicity assumption and global filter application inherent in NIFF
raise concerns regarding vulnerability to image corruptions and attacks. We dis-
cussed our NIFF only in the context of filter analysis, yet its true advantages may
become more evident when applied to real high-resolution images. This is partic-
ularly relevant since computation times for NIFF are significantly higher than the
standard convolutions with the currently employed kernel sizes. Furthermore, NIFF
has the potential to enhance applications where data is inherently acquired in the fre-
quency domain, such as seismic imaging or medical imaging. However, exploring
these applications is beyond the scope of this thesis and should be considered for
future research. We further discuss this direction in Section 8.2.

7.5 Conclusion

Using the proposed NIFF, we analysed the effective kernel sizes learned by state-
of-the-art CNNs. We found that most models do not utilize the full potential for
larger receptive fields. Specifically, on low-resolution datasets like CIFAR-10, net-
works rarely learn kernels larger than 5 × 5. On high-resolution datasets such as
ImageNet, while models use kernels larger than 3× 3, the majority remain within
9× 9. Consequently, networks with small kernels, such as ResNet [He et al. (2016a)],
can benefit from NIFF, whereas networks like ConvNeXt [Liu et al. (2022b)] are al-
ready near optimal for ImageNet. However, networks do learn a small number of
large kernels, suggesting no globally optimal fixed kernel size exists. This necessi-
tates a reevaluation of the current practice of using uniform kernel sizes.

In summary, we introduce NIFF CNNs, enabling the learning of convolution fil-
ters in the frequency domain that translate to infinitely large spatial kernels. NIFF
efficiently replaces spatial convolutions with frequency-domain element-wise mul-
tiplication. Analysis of the resulting spatial kernels reveals they are localized and
generally small (9× 9). NIFF achieves comparable or superior performance to spa-
tial convolutions on high-resolution datasets, leveraging large spatial context.

We anticipate that NIFF will significantly impact high-resolution real-world ap-
plications. Furthermore, its frequency-specific implementation offers advantages for
frequency-domain imaging modalities, such as MRI and seismic scans.

131

Chapter 8

Conclusion and Outlook
Contents

8.1 Key Insights and Conclusion . 131
8.1.1 Impact on the Community . 133
8.1.2 Limitations . 134
8.2 Future Directions . 135
8.2.1 Exploring the Multifaceted Role of Aliasing 135
8.2.2 High-Resolution with NIFF and FLC Pooling 136
8.2.3 NIFF Beyond 2D . 137
8.2.4 A Comprehensive Overview . 137

The growing use of neural networks in daily life, especially in safety-focused appli-
cations, makes robustness and reliability key. While augmentation and adversarial
training can improve robustness, a deeper understanding of model failures and their
mitigation is necessary for practical application.

Thus, we take a step further in this direction by thoroughly analysing the prop-
erties of adversarially robust models in Part I of this thesis. With this analysis, we
want to highlight the importance of evaluation beyond accuracy for classification
models. In Part II, we take training CNNs beyond the spatial perspective, leverag-
ing Fourier Theory, such as the Sampling and Convolution Theorems, to improve
the robustness and efficiency of modern CNNs. Particularly, we develop aliasing-
free downsampling to improve inherent robustness and make adversarial training
more efficient and effective. Additionally, we establish a comprehensive and fair
framework for systematically examining the preferred kernel size for a given net-
work and task in an efficient manner. In the following, we outline the key insights
and limitations of our work, as well as potential directions for future research.

8.1 Key Insights and Conclusion

Summarizing this thesis combines and highlights the need of a multifaceted analysis
of classifier models beyond accuracy and provides inspiration for switching perspec-
tives to e.g. Fourier representations for efficient and robust model development. Part
I focuses on the multifaceted analysis of robust models, investigating their reliability
and downsampling quality. For evaluating the downsampling quality, we introduce
a novel aliasing measure. Part II leverages Fourier theory, proposing novel Fourier
modules, for enhanced model robustness and efficiency. We continue assessing our

132 Chapter 8. Conclusion and Outlook

novel approaches from various perspectives e.g. different robustness measures, reli-
ability and artifact measures for Chapter 6. Further, we introduce novel quantitative
and qualitative measures for studying the learned kernel weights in Chapter 7.

In the following, we revisit the contributions of each chapter in more detail, high-
lighting the key findings and placing them within the broader context of this thesis.
Subsequently, we discuss future research directions from this work in Section 8.2.

In Part I, which includes Chapters 4 and 5, we conduct two relevant studies
of robust models and show that robust models are less overconfident and learn to
downsample with less aliasing, respectively. This suggests that robustness enhances
network properties beyond its primary purpose, including reliability and proper
sampling. Our research underscores the importance of comprehensive model eval-
uation, extending beyond accuracy, for secure real-world applications.

Chapter 4 outlines the relationship between adversarial robustness and the re-
liability of various classification CNN models. We conduct an extensive study that
evaluates the model’s confidence of adversarial robust models and their non-robust
counterparts. We find that robust models are less overconfident, and their predic-
tion confidence can be used to reject erroneous samples. Further, we observe that
adapting basic building blocks within the network, like activation function or down-
sampling, can lead to more desired confidence distributions i.e. high confidence in
correct predictions and low confidence in incorrect ones. We argue that relying solely
on accuracy for model evaluation is inadequate for real-world applications. To en-
sure safe and reliable deployment, models must perform robustly under both known
and unknown conditions. While accuracy can give a sense of the known conditions,
adversarial attacks can reveal worst-case behaviour in unknown conditions. Our
findings suggest that non-robust models often exhibit high levels of overconfidence
compared to adversarially robust models, raising significant safety concerns. Ad-
ditionally, commonly used metrics like the expected calibration error may become
unreliable when a network’s accuracy is too low. To address these limitations, we
recommend evaluating models using an ensemble of metrics to obtain a comprehen-
sive understanding of their performance.

Chapter 5 further investigates into the properties of robust models. By propos-
ing a new aliasing measure that quantifies downsampling-induced artifacts, we can
analyze the behaviour of robust and non-robust models. We show that AT enables
models to learn more effective downsampling strategies, reducing aliasing. In our
study, we find a significant negative correlation between robustness and aliasing in
almost all cases. Further, we analyse FGSM AT and the phenomena of catastrophic
overfitting and find that catastrophic overfitting coincides with a steep increase in
aliasing in the epoch of catastrophic overfitting. Hence, we propose to use our alias-
ing measure as an alternative early stopping criterion for FGSM AT and show that
the resulting models achieve results on par.

These two chapters underscore the importance of comprehensive model evalua-
tion, beyond accuracy, and the application of classical principles, like the sampling
theorem, to develop reliable, robust, and efficient models.

In Part II, we continue broadening our perspective and leverage the Fourier the-
ory to enhance CNNs for improved downsampling and more efficient large convo-
lutions in Chapters 6 and 7, respectively.

Chapter 6 introduces aliasing-free downsampling based on the revealed correla-
tion between aliasing and robustness in Chapter 5. Our proposed FLC Pooling and
ASAP guarantee to be aliasing-free and ASAP further reduces sinc-interpolation ar-
tifacts. Both methods increase the native robustness of the models, leading to better

8.1. Key Insights and Conclusion 133

performance on common corruptions under pixel shift or adversarial attacks. More-
over, our FLC Pooling and ASAP enhance adversarial training, leading to higher
adversarial robustness and less overconfident models under attack. In the case of
FGSM AT, which is significantly more efficient than more sophisticated AT meth-
ods, our downsampling approach reduces the risk of catastrophic overfitting. This
enables faster AT and improved convergence compared to FGSM AT with early stop-
ping. Our results demonstrate that leveraging perspectives such as the Fourier the-
ory leads to more robust and efficient models. This highlights the need to broaden
the perspectives we adopt, similar to our recommendation of using multiple evalu-
ation metrics for a comprehensive performance assessment in Part I.

Chapter 7 introduces Neural Implicit Frequency Filters (NIFFs), a powerful tool
which also leverages Fourier theory, for analysing the optimal filter sizes in CNNs.
Amid the trend of increasingly large models and filters, we pose the question: "How
large do CNN kernels really need to be?" NIFFs enable us to study the preferred filter
size learned decoupled from the number of parameters in an efficient manner by
leveraging the Convolution Theorem and Neural Implicit Functions in the Fourier
domain. Our analysis reveals that networks primarily learn small, localized fil-
ters, typically 9 × 9 for high-resolution datasets like ImageNet and 3 × 3 for low-
resolution datasets like CIFAR. However, in rare cases, networks prefer much larger
filters, sometimes as large as the feature map itself. This suggests a need to re-
consider the static implementation of CNNs. Additionally, NIFFs facilitate efficient
large-scale convolutions, a promising avenue for handling growing data scales and
resolutions. The frequency-specific nature of NIFFs also makes them well-suited for
imaging modalities inherently recorded in the frequency domain, such as MRI or
seismic scans, offering exciting potential for future applications.

Furthermore, we integrate our NIFF with the aliasing-free pooling method in-
troduced in Chapter 6, reducing the number of FFT transformations required while
achieving results comparable to the baseline. This marks a step forward in transi-
tioning classical CNNs into the Fourier domain.

8.1.1 Impact on the Community

Based on our key findings, we outline the impact we hope this thesis will have on
our research community in the following.

First and most importantly, we want to raise awareness for proper analysis set-
tings and shift the focus of our evaluation metrics from the simple evaluation of
accuracy to more diverse and very important properties like reliability and robust-
ness, making models more applicable and safe for the real world. Furthermore, we
demonstrate that fundamental principles from digital signal processing are essential
for achieving desirable properties in neural networks. Therefore, analysing and thor-
oughly understanding these models and their components remains a key challenge.
By leveraging well-established theorems and classical signal processing methods,
we enhance network robustness and gain deeper insights into kernel design. We
hope to inspire future research to further explore these rich theoretical foundations.

Another key aspect we aim to raise awareness of is the impact of architectural
choices on a network’s performance and biases. While the computer vision commu-
nity has become increasingly aware of issues such as aliasing [Karras et al. (2021);
Hossain et al. (2023); Zhang (2019); Zou et al. (2023); Vasconcelos et al. (2020)], many
practitioners applying computer vision models remain unaware of these challenges.
For instance, the widely used U-Net [Ronneberger et al. (2015)], which is still a stan-
dard in medical image segmentation, introduces several artifacts due to its reliance

134 Chapter 8. Conclusion and Outlook

on MaxPooling for downsampling. We examine this issue in more detail in Section
8.2, highlighting its implications for model performance and potential mitigation
strategies.

Furthermore, our analysis of CNN kernel design indicates that for current low-
resolution classification datasets, small kernels are a suitable choice. However, as
input image resolutions increase, we expect networks to favour larger kernel sizes.
This trend is supported by Transformer models, which emphasize the importance
of larger receptive fields achieved through larger convolutions such as the 11× 11
kernels used in Swin Transformer [Liu et al. (2021, 2022a)] and the role of cross-
patch correspondences in capturing a more global representation of the input for
image classification Additionally, Rao et al. (2021) demonstrated that incorporating
frequency representations within Transformer architectures can lead to improved
performance. With the general framework established by our NIFF, we aim to pro-
vide a broader understanding of the necessary model capacity to enhance efficiency.
Moreover, our approach could facilitate the use of larger convolutions, which are
significantly more computationally efficient when performed in the Fourier domain
rather than in the spatial domain.

Another key takeaway we highlight is the value of reassessing one’s own meth-
ods. During subsequent experiments with our FLC Pooling, we discovered that it
introduced sinc-interpolation artifacts due to the rectangular function applied. Con-
sequently, we refined it with a Hamming window, proposing our ASAP method.
However, both approaches are based on the assumption that blurring is acceptable
for the task at hand. Our subsequent work in [Agnihotri et al. (2024a)], not presented
in this thesis, demonstrates that for tasks such as image deblurring or denoising, the
high-frequency information removed by FLC Pooling and ASAP is essential and
should be preserved. This setting is discussed in our ablation study in Section 6.3.4.
Although high-frequency information was not essential for classification in our ab-
lation, it is critical for image deblurring, which relies on restoring edge details as
present in our follow-up work not included in this thesis [Agnihotri et al. (2024a)].

8.1.2 Limitations

We have discussed the specific limitations of each approach presented in this thesis
within their respective chapters. Below, we summarize the key limitations from our
analysis in Part I, which includes Chapters 4 and 5. Finally, we highlight the main
limitation in Part II, which includes Chapters 6 and 7 and briefly discuss how we
aim to address some of these limitations in future work.

In Part I, the primary limitation of both analyses is their reliance on the provided
models, allowing us to evaluate only one model per set of training hyperparameters.
Consequently, variations resulting from different training strategies or even simple
variance by selecting a different random seed cannot be accounted for. Notably,
our experiments in Section 6.3.4, which assess model confidence calibration under
attack, confirm the findings from Section 4.2.2 regarding improved downsampling
and confidence calibration. However, the observed benefits are less pronounced
than those found for a single seed evaluated in Section 4.2.2, highlighting the lim-
ited expressiveness of our evaluation. Further, we limit our scope to confidences
based on the values after Softmax, which, as we discuss in Section 4.3.1, is not opti-
mal. Yet, as already discussed, using the Softmax output is the most straightforward
method without the need for training or fine-tuning the model, which was essential
for our analysis. Additionally, our proposed aliasing measure introduced in Chapter
5 might similarly as our FLC Pooling from Chapter 6 suffer from sinc-interpolation

8.2. Future Directions 135

artifacts due to the rectangle cutout of the low-frequency components, limiting its
reliability to serve as the optimal downsampling groundtruth. Given these limita-
tions, we emphasize the importance of diverse evaluations, highlighting that a com-
prehensive analysis may require multiple perspectives to draw accurate conclusions.
One example of this kind of comprehensive analysis is given in Chapter 7 where we
first evaluate the kernel mass ratio (Section 7.3.2) which gives an overview of all ker-
nels and the following PCA analysis (Section 7.3.4) dives deeper in the predominate
structure of the kernels from different perspectives.

Part II presents novel Fourier modules derived from Fourier theory to enhance
CNNs. Specifically, we propose downsampling and convolutions in the Fourier do-
main to improve robustness and efficiency. Although our models achieve compa-
rable or superior performance and are theoretically grounded in the Sampling and
Convolution theorems, they still rely on approximations. E.g. our FLC Pooling, suf-
fers from sinc-interpolation artifacts and our ASAP is highly smooth which is not an
issue for classification tasks looked at in this thesis but is indeed an issue if you want
to take it beyond classification to e.g. pixel-wise prediction tasks like segmentation
or image deblurring. We propose a solution for the loss of high-frequency informa-
tion in [Agnihotri et al. (2024a)] countering this limitation. However, the discrete
transformation between the spatial and Fourier domains inherently introduces ap-
proximation errors due to the quantization of both frequency components and pixel
values.

Next, we outline the limitation we seek to address in future research for Chapters
6 and 7. While all our approaches work well on datasets like CIFAR or ImageNet,
testing on real-world data is not in the scope of this thesis. These datasets contain
real images but are cleaner and quite low-resolution compared to real-world data.
Thus, we suggest, as one further direction, to use the tools developed in this thesis
for real-world applications. There are many use cases where proper sampling is
of high importance, such as in medical imaging, seismic imaging, or astrophysics.
Further, high-resolution data is available but still hard to handle, which could be
addressed e.g. with our NIFF.

8.2 Future Directions

In the following, we discuss potential future directions resulting from this thesis.
The first three parts of this Section focus on extending and integrating our methods
proposed in Part II. Followed by Section 8.2.4, which highlights broader directions
that can be pursued based on the ideas and approaches developed in this thesis.

8.2.1 Exploring the Multifaceted Role of Aliasing

In Chapter 5, we establish a strong link between robustness and aliasing caused by
incorrect sampling. Subsequently, we introduce aliasing-free sampling in Chapter 6,
which leads to increased robustness of the networks with and without AT. In [Agni-
hotri et al. (2024a)], we show that aliasing is not only an issue for decoder networks
but also plays a crucial role in encoder networks. Specifically, encoder-decoder net-
works benefit from symmetric sampling, meaning that both the encoder and decoder
should employ similar sampling approaches. We propose an aliasing-free path for
both to enhance the network robustness against adversarial attacks on inputs in im-
age deblurring tasks. For image generation, Karras et al. (2021) showed that aliasing
is one of the main drivers for unrealistic image generation, as details appear glued
to image coordinates instead of being aligned with the surface of the object. They

136 Chapter 8. Conclusion and Outlook

propose an ensemble of architecture improvements, incorporating a low-pass filter
after sampling and another post-activation, effectively suppressing aliasing. Their
approach underscores that aliasing artifacts can originate from sources beyond mere
sampling e.g. activation functions. Building upon our findings in Chapter 4, which
demonstrated that smoother activation functions improve network calibration, and
the observation in [Hein et al. (2019)] that ReLU networks are highly overconfident,
further investigation into the interplay of activation functions, aliasing, and reliabil-
ity is a valuable avenue for future research.

Moreover, we believe that there are many other applications and areas where
aliasing plays a crucial role. One specific area is medical imaging, where care-
ful precautions are taken to reduce aliasing during image acquisition. However,
when using and interpreting the data, the most commonly used network architec-
ture is still the classical U-Net [Ronneberger et al. (2015)], which employs in the
standard setting MaxPooling as the downsampling method. As we demonstrated
in Section 6.3.1 (Figure 6.6 and Table 6.1), MaxPooling is highly susceptible to alias-
ing, significantly distorting the information in the image. Thus, depending on the
task to solve, we recommend replacing standard downsampling with our aliasing-
free downsampling for classification tasks or for reconstruction tasks, adapting the
method presented in [Agnihotri et al. (2024a)], which provides an aliasing-free path
while preserving high-frequency information necessary for detailed reconstructions.
Our method proposed in [Agnihotri et al. (2024a)] offers an aliasing-free path that
significantly enhances the network’s robustness, making it more suitable for real-
world tasks.

Our goal is to highlight the existence and urgency of this problem. Standard
downsampling methods as well as activating functions can compromise neural net-
work security, resulting in high-confidence but incorrect predictions and increased
attackability.

8.2.2 High-Resolution with NIFF and FLC Pooling

The data employed for academic testing of new models is still very low-resolution.
CIFAR with 32× 32 pixels is so small that recognizing specific classes like different
cat breeds would not be possible (e.g. Figure 2.3). In contrast, ImageNet images with
224× 224 pixels have a higher resolution and also include different cat breeds, like
Persian or Egyptian cats. However, also ImageNet is still far below the actual im-
ages we humans perceive every day (e.g. 11% of mobile phones in December 2024
use 360× 800 pixels [StatCounter (2024)] and our flat screens use up to 7680× 4320
pixels for 8K screens [Statista (2021)] or 1920 × 1080 for standard full HD screens
[Video Electronics Standards Association (VESA) (2013)]). For a long time, we were
restricted to small resolutions due to computational constraints and limited data
availability. However, with the increase in data size and increased computational re-
sources, it is now possible to make predictions on much higher-resolution data. Reed
et al. (2023) presented an academic approach for analysing high-resolution images to
enable effective geospatial representation learning, called Scale-Aware Masked Au-
toencoder (Scale-MAE). This method was applied in real-world scenarios to better
organize first-aid efforts during events such as the 2023 earthquake in Turkey [Gupta
(2024)], highlighting the relevance and need for high-resolution image processing to
have a real impact.

Scale-MAE decodes masked images, splitting them during the decoding process
into low- and high-frequency components using a so-called Laplacian Block to pro-
duce images at different scales. However, all these operations are performed in the

8.2. Future Directions 137

spatial domain, which does not entirely separate low- from high-frequency infor-
mation. This limitation could be addressed by our FLC Pooling implementation,
which preserves high-frequency information instead of removing it. Consequently,
we would achieve a complete separation of high-frequency information from low-
frequency components. Additionally, with our NIFF, we can utilize larger convo-
lutions, eliminating the need for compute- and memory-consuming transformer ar-
chitectures, which are often preferred due to the global view they provide compared
to conventional CNN architectures. These changes could enhance both model per-
formance and efficiency, with the added benefit of creating more sustainable mod-
els. NIFF could also be applied in other domains with high-resolution data, such
as astrophysics, seismic, or medical imaging, by leveraging global information and
making computations more efficient at scale.

8.2.3 NIFF Beyond 2D

While our NIFF framework demonstrates excellent scalability in 2D, we believe there
is significant potential for extending its application to higher-dimensional convolu-
tions. The first step would be the extension to 3D convolutions, which could find
applications in Video Processing [Tran et al. (2015)], Action Recognition [Carreira &
Zisserman (2017)] or Medical Imaging [Çiçek et al. (2016); Kamnitsas et al. (2017)],
3D convolutions are still sparsely used and convolutions beyond 3D are not com-
mon at all due to the high computational costs associated with increased dimen-
sions [Rahim et al. (2021)]. However, with NIFF, these limitations can be mitigated,
as it leverages the convolution theorem to maintain computational efficiency, even
in higher dimensions. Furthermore, the efficient learning capabilities of NIFF, fa-
cilitated by neural implicit filters, can be adapted to accommodate the training of
higher-dimensional weight tensors. This makes NIFF particularly well-suited for
applications in medical imaging, such as MRI, where data dimensions can range
from one to six [Sosnovik et al. (2009)], enabling the model to leverage the diversity
and depth of multi-dimensional data. Moreover, NIFF naturally exploits frequency-
specific features, which can be particularly relevant in medical imaging, where such
features often carry critical information.

8.2.4 A Comprehensive Overview

In this thesis, we demonstrate the importance of implementing models grounded
in theory and the need of adapting different perspectives to gain a comprehensive
model understanding. Therefore, reintroducing fundamental signal processing tech-
niques to enhance robustness, reliability, and efficiency represents a step in the right
direction toward developing sustainable and secure models for the future.

In the following, we list several areas that can benefit from our proposed ap-
proaches:

1. Increased Robustness. We demonstrate in Chapter 6 that proper downsam-
pling, grounded in Fourier theory, leads to improved robustness. Our im-
provement stems from the proper evaluation and understanding of the proper-
ties of robust model properties through a signal processing lens. Incorporating
this fundamental knowledge enables better handling of noise, distortions, and
irregularities inherent in real-world data, thereby improving model robustness
and generalizability.

138 Chapter 8. Conclusion and Outlook

2. Efficient Feature Extraction. Signal processing methods are highly effective in
extracting relevant features from signals structured in time or space, which can
reduce the complexity of neural networks. With our NIFF, we demonstrate that
it is possible to learn spatially infinite large convolutions while maintaining a
comparable number of parameters to the baseline. Additionally, by leveraging
the Convolution Theorem, we ensure that the computations remain manage-
able. The following outlines additional benefits and related concepts:

• Dimensionality Reduction. Techniques like Fourier transforms, wavelet
analysis, or spectrograms can transform raw signals into representations
that are easier to analyse, reducing the dimensionality of the input data
while preserving crucial information. Guan et al. (2019) made use of this
property and zeroed out small coefficients of the feature map in the fre-
quency domain. This approach could be further explored in combination
with our NIFF, for instance, by applying additional sparsity regulariza-
tion on the learned weights.

• Domain-Specific Features. In audio (e.g., speech recognition) and image
processing (e.g., edge detection), features that are derived through signal
processing (e.g., Mel-frequency cepstral coefficients (MFCCs) or Gabor fil-
ters) can lead to better model performance, as they capture key signal
characteristics more efficiently than raw data. Alekseev & Bobe (2019) in-
deed showed that constraining the first layer of a CNN to fit a learned
Gabor function improves convergence and reduces training complexity.
We show in subsequent work not included in this thesis that we can con-
strain our NIFF to learn Wiener filters, which enhances model robustness.

• Multi-Scale Analysis. Wavelet transforms, our FLC Pooling, ASAP or
other signal processing tools enable multi-scale analysis, capturing infor-
mation at different resolutions. Thus benefiting both robustness and the
acquisition of global insights by mitigating sampling artifacts. As dis-
cussed in Section 8.2.2, incorporating our NIFF and an adapted version of
our FLC Pooling could enhance Scale-MAE [Reed et al. (2023)] by captur-
ing more global information, reducing artifacts during the split into high-
and low-frequency images, and increasing efficiency.

3. Reduced Model Complexity. As shown with our NIFF, signal processing-
based feature extraction often helps reduce the size and complexity of neural
networks. By preprocessing data and extracting meaningful features, mod-
els can become more compact. Further executing large convolutions in the
frequency domain reduces the computational costs significantly, as shown in
Table 7.13.

4. Prevents Overfitting. By focusing on signal-relevant features, models avoid
learning spurious correlations and are less prone to overfitting, as shown with
our FLC Pooling and ASAP in Section 6.3.3, which both reduce the risk of
catastrophic overfitting in FGSM AT.

5. Improved Interpretability. The model’s behaviour can partially be traced back
to physical properties of the signal, such as frequency, phase [Meyer et al.
(2018)], or energy, which might be easier to understand and use in a mean-
ingful way. We leveraged this property in the analysis of the filters learned
by our NIFF, observing that the network learns less complex structures for the

8.2. Future Directions 139

imaginary part in Section 7.3.4. This suggests that the network prefers learning
cosine structures (with a peak in the center) over sine structures.

6. Explainability and Verification. Signal processing-based models may offer
greater explainability as their foundations are based on well-understood math-
ematical operations. This is increasingly important in fields where safety and
trust are crucial (e.g., healthcare, finance, and autonomous systems). Further-
more, models that leverage signal processing principles may be easier to ver-
ify and validate against real-world phenomena, ensuring more reliable perfor-
mance. Chapter 5 demonstrates a strong link between robustness and alias-
ing after downsampling, emphasizing the need to mitigate these issues for
enhanced model robustness. This was further validated in Chapter 6, where
aliasing-free pooling improved model robustness. Building on this, we be-
lieve further advancements for network modules and learning strategies are
possible. For instance, Karras et al. (2021) improved image realism by reduc-
ing aliasing through enhanced activation functions, and Jung & Keuper (2021)
achieved better image generalization with an added frequency loss.

7. Incorporating Domain Knowledge. Domain-specific knowledge across fields
like telecommunications, audio processing, and medical imaging can be inte-
grated more easily if models follow digital signal processing pipelines. Lever-
aging this knowledge can ensure that models respect physical and engineering
constraints inherent to signals (e.g., bandwidth limitations, sampling theorem)
[Ladwig et al. (2024); Harder et al. (2022)].

8. Data Augmentation and Preprocessing. The preprocessing process of the in-
put data needs to be designed carefully to avoid e.g. downscaling attacks as
proposed by Xiao et al. (2017). Signal processing methods can be used to pre-
process or augment data to evaluate modern models against diverse image
corruptions. Müller et al. (2023) proposed a benchmark for investigating ro-
bustness to realistic, practically relevant optical blur effects based on optical
aberrations, implemented with specific kernels in the Fourier domain. We ex-
pect that using signal-processing-conform downsampling methods, such as
our FLC Pooling and ASAP, could better withstand certain corruptions com-
pared to standard downsampling, similar to the results presented in Section
6.3 on common corruptions.

141

Bibliography

Addepalli, S., Jain, S., Sriramanan, G., Khare, S., and Radhakrishnan, V. B. Towards
achieving adversarial robustness beyond perceptual limits. In International Confer-
ence on Machine Learning Workshop on Adversarial Machine Learning, 2021.

Agnihotri, S., Gandikota, K. V., Grabinski, J., Chandramouli, P., and Keuper, M. On
the unreasonable vulnerability of transformers for image restoration - and an easy
fix. In Proceedings of the IEEE/CVF International Conference on Computer Vision Work-
shops, pp. 3707–3717, 2023.

Agnihotri, S., Grabinski, J., Keuper, J., and Keuper, M. Beware of aliases–
signal preservation is crucial for robust image restoration. arXiv preprint
arXiv:2406.07435, 2024a.

Agnihotri, S., Grabinski, J., and Keuper, M. Improving feature stability during up-
sampling – spectral artifacts and the importance of spatial context. In European
Conference on Computer Vision. Springer, 2024b.

Alekseev, A. and Bobe, A. Gabornet: Gabor filters with learnable parameters in
deep convolutional neural network. In International Conference on Engineering and
Telecommunication, pp. 1–4, 2019.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Andriushchenko, M. and Flammarion, N. Understanding and improving fast adver-
sarial training. Advances in Neural Information Processing Systems, 33:16048–16059,
2020.

Andriushchenko, M., Croce, F., Flammarion, N., and Hein, M. Square attack: a
query-efficient black-box adversarial attack via random search. In European Con-
ference on Computer Vision, pp. 484–501. Springer, 2020.

Arfken, G. Discrete orthogonality–discrete fourier transform. Mathematical Methods
for Physicists, 3:787–792, 1985.

Ayat, S. O., Khalil-Hani, M., Ab Rahman, A. A.-H., and Abdellatef, H. Spectral-
based convolutional neural network without multiple spatial-frequency domain
switchings. Neurocomputing, 364:152–167, 2019.

142 BIBLIOGRAPHY

Azulay, A. and Weiss, Y. Why do deep convolutional networks generalize so poorly
to small image transformations? Journal of Machine Learning Research, 20(184):1–25,
2019.

Bernhard, R., Moëllic, P.-A., Mermillod, M., Bourrier, Y., Cohendet, R., Solinas, M.,
and Reyboz, M. Impact of spatial frequency based constraints on adversarial ro-
bustness. In International Joint Conference on Neural Networks, pp. 1–8. IEEE, 2021.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. Yolov4: Optimal speed and accu-
racy of object detection. arXiv preprint arXiv:2004.10934, 2020.

Bracewell, R. and Kahn, P. B. The fourier transform and its applications. American
Journal of Physics, 34(8):712–712, 1966.

Brown, T. B., Mané, D., Roy, A., Abadi, M., and Gilmer, J. Adversarial patch. arXiv
preprint arXiv:1712.09665, 2018.

Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks.
In IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and Liang, P. S. Unlabeled
data improves adversarial robustness. Advances in Neural Information Processing
Systems, 32, 2019a.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and Liang, P. S. Unlabeled
data improves adversarial robustness. Advances in Neural Information Processing
Systems, 32, 2019b.

Carreira, J. and Zisserman, A. Quo vadis, action recognition? a new model and the
kinetics dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6299–6308, 2017.

Chaman, A. and Dokmanic, I. Truly shift-invariant convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 3773–3783, 2021.

Chen, E.-C. and Lee, C.-R. Ltd: Low temperature distillation for robust adversarial
training. arXiv preprint arXiv:2111.02331, 2021.

Chen, J., Cheng, Y., Gan, Z., Gu, Q., and Liu, J. Efficient robust training via back-
ward smoothing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 6222–6230, 2022.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-J. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training sub-
stitute models. In Proceedings of the 10th ACM workshop on Artificial Intelligence and
Security, pp. 15–26, 2017.

Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., and Huang, X. A survey on
an emerging area: Deep learning for smart city data. IEEE Transactions on Emerging
Topics in Computational Intelligence, 3(5):392–410, 2019.

Chen, T., Liu, S., Chang, S., Cheng, Y., Amini, L., and Wang, Z. Adversarial ro-
bustness: From self-supervised pre-training to fine-tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 699–708, 2020.

BIBLIOGRAPHY 143

Chen, T., Zhang, Z., Liu, S., Chang, S., and Wang, Z. Robust overfitting may be
mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2021a.

Chen, Y., Liu, S., and Wang, X. Learning continuous image representation with local
implicit image function. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8628–8638, 2021b.

Chi, L., Jiang, B., and Mu, Y. Fast fourier convolution. In Advances in Neural In-
formation Processing Systems, volume 33, pp. 4479–4488. Curran Associates, Inc.,
2020.

Chibane, J., Mir, A., and Pons-Moll, G. Neural unsigned distance fields for implicit
function learning. In Advances in Neural Information Processing Systems, volume 33,
pp. 21638–21652. Curran Associates, Inc., 2020.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O. 3d u-net:
learning dense volumetric segmentation from sparse annotation. In Medical Image
Computing and Computer-Assisted Intervention, pp. 424–432. Springer, 2016.

Cohen, G., Sapiro, G., and Giryes, R. Detecting adversarial samples using influ-
ence functions and nearest neighbors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14453–14462, 2020.

Cooley, J. W. and Tukey, J. W. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

Corbière, C., Thome, N., Bar-Hen, A., Cord, M., and Pérez, P. Addressing failure
prediction by learning model confidence. Advances in Neural Information Processing
Systems, 32, 2019.

Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an en-
semble of diverse parameter-free attacks. In International Conference on Machine
Learning, 2020a.

Croce, F. and Hein, M. Minimally distorted adversarial examples with a fast adap-
tive boundary attack. In International Conference on Machine Learning, pp. 2196–
2205. PMLR, 2020b.

Croce, F. and Hein, M. Mind the box: l_1-apgd for sparse adversarial attacks on
image classifiers. In International Conference on Machine Learning, pp. 2201–2211.
PMLR, 2021.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chi-
ang, M., Mittal, P., and Hein, M. Robustbench: a standardized adversarial robust-
ness benchmark. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2021.

Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le, Q. V. Autoaugment: Learn-
ing augmentation strategies from data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 113–123, 2019.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition workshops, pp. 702–703, 2020.

144 BIBLIOGRAPHY

Cui, J., Liu, S., Wang, L., and Jia, J. Learnable boundary guided adversarial train-
ing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
15721–15730, 2021.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and Wei, Y. Deformable convo-
lutional networks. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 764–773, 2017.

Dai, S., Mahloujifar, S., and Mittal, P. Parameterizing activation functions for adver-
sarial robustness. In IEEE Security and Privacy Workshops, pp. 80–87. IEEE, 2022.

Darlow, L. N., Crowley, E. J., Antoniou, A., and Storkey, A. J. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

DeGroot, M. H. and Fienberg, S. E. The comparison and evaluation of forecasters.
Journal of the Royal Statistical Society: Series D (The Statistician), 32(1-2):12–22, 1983.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 248–255. IEEE, 2009.

DeVries, T. and Taylor, G. W. Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552, 2017.

Dhar, P. The carbon impact of artificial intelligence. Nat. Mach. Intell., 2(8):423–425,
2020.

Ding, G. W., Sharma, Y., Lui, K. Y. C., and Huang, R. Mma training: Direct input
space margin maximization through adversarial training. In International Confer-
ence on Learning Representations, 2020.

Ding, X., Zhang, X., Han, J., and Ding, G. Scaling up your kernels to 31x31: Re-
visiting large kernel design in cnns. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11963–11975, 2022.

Dong, X., Bao, J., Chen, D., Zhang, W., Yu, N., Yuan, L., Chen, D., and Guo, B. Cswin
transformer: A general vision transformer backbone with cross-shaped windows.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 12124–12134, 2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

Dunteman, G. H. Principal components analysis, volume 69. Sage, 1989.

Durall, R., Keuper, M., and Keuper, J. Watch your up-convolution: Cnn based gen-
erative deep neural networks are failing to reproduce spectral distributions. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7890–7899, 2020.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. Neural networks, 107:3–11,
2018.

BIBLIOGRAPHY 145

Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., and Tsipras, D. Robustness (python
library), 2019. URL https://github.com/MadryLab/robustness.

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

Forsyth, D. and Ponce, J. Computer Vision: A Modern Approach. An Alan R. Apt book.
Prentice Hall, 2003. ISBN 9780130851987.

Freeman, W. T., Adelson, E. H., et al. The design and use of steerable filters. IEEE
Transactions on Pattern analysis and machine intelligence, 13(9):891–906, 1991.

Gavrikov, P. and Keuper, J. Adversarial robustness through the lens of convolutional
filters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 139–147, 2022.

Gavrikov, P., Lukasik, J., Jung, S., Geirhos, R., Mirza, M. J., Keuper, M., and Keuper,
J. Can we talk models into seeing the world differently? In International Conference
on Learning Representations, 2025.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel,
W. Imagenet-trained CNNs are biased towards texture; increasing shape bias im-
proves accuracy and robustness. In International Conference on Learning Representa-
tions, 2019.

Gonzales, R. C. and Wintz, P. Digital image processing. Addison-Wesley Longman
Publishing Co., Inc., 1987.

Gonzalez, R. C. and Woods, R. E. Digital Image Processing (3rd Edition). Prentice-Hall,
Inc., USA, 2006. ISBN 013168728X.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2015.

Gowal, S., Qin, C., Uesato, J., Mann, T., and Kohli, P. Uncovering the limits of
adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2021a.

Gowal, S., Rebuffi, S.-A., Wiles, O., Stimberg, F., Calian, D. A., and Mann, T. A. Im-
proving robustness using generated data. Advances in Neural Information Processing
Systems, 34, 2021b.

Grabinski, J., Gavrikov, P., Keuper, J., and Keuper, M. Robust models are less over-
confident. In Advances in Neural Information Processing Systems, 2022a.

Grabinski, J., Jung, S., Keuper, J., and Keuper, M. Frequencylowcut pooling–plug
& play against catastrophic overfitting. In European Conference on Computer Vision,
2022b.

Grabinski, J., Keuper, J., and Keuper, M. Aliasing and adversarial robust generaliza-
tion of cnns. Machine Learning, pp. 1–27, 2022c.

Grabinski, J., Keuper, J., and Keuper, M. Aliasing coincides with CNNs vulnerabil-
ity towards adversarial attacks. In The AAAI-22 Workshop on Adversarial Machine
Learning and Beyond, 2022d.

https://github.com/MadryLab/robustness

146 BIBLIOGRAPHY

Grabinski, J., Keuper, J., and Keuper, M. Fix your downsampling asap! aliasing and
sinc artifact free pooling in the fourier domain. arXiv preprint arXiv:2307.09804,
2023.

Grabinski, J., Keuper, J., and Keuper, M. As large as it gets – studying infinitely large
convolutions via neural implicit frequency filters. Transactions on Machine Learning
Research, 2024. ISSN 2835-8856. Featured Certification.

Grosse, K., Manoharan, P., Papernot, N., Backes, M., and McDaniel, P. On the (sta-
tistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

Gu, A., Goel, K., and Re, C. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022.

Guan, B., Zhang, J., Sethares, W. A., Kijowski, R., and Liu, F. Specnet: spectral
domain convolutional neural network. arXiv preprint arXiv:1905.10915, 2019.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321–1330. PMLR,
2017.

Guo, G. and Zhang, N. A survey on deep learning based face recognition. Computer
vision and image understanding, 189:102805, 2019.

Guo, M.-H., Lu, C.-Z., Hou, Q., Liu, Z.-N., Cheng, M.-M., and min Hu, S. Segnext:
Rethinking convolutional attention design for semantic segmentation. In Advances
in Neural Information Processing Systems, 2022.

Gupta, R. Understanding chaotic environments and the policies surrounding dual-
use ai. Fall 2024 BAIR Vision Workshop, 2024.

Gurau, C., Bewley, A., and Posner, I. Dropout distillation for efficiently estimating
model confidence. arXiv preprint arXiv:1809.10562, 2018.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In International Conference on
Learning Representations, 2017.

Hamming, R. W. and Stearns, S. D. Digital filters. IEEE Transactions on Systems, Man,
and Cybernetics, 9(1):67–67, 1979.

Harder, P., Pfreundt, F.-J., Keuper, M., and Keuper, J. Spectraldefense: Detecting
adversarial attacks on cnns in the fourier domain. In International Joint Conference
on Neural Networks, pp. 1–8. IEEE, 2021.

Harder, P., Yang, Q., Ramesh, V., Sattigeri, P., Hernandez-Garcia, A., Watson, C. D.,
Szwarcman, D., and Rolnick, D. Generating physically-consistent high-resolution
climate data with hard-constrained neural networks. In NeurIPS 2022 Workshop on
Tackling Climate Change with Machine Learning, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in deep residual networks.
In European Conference on Computer Vision, pp. 630–645. Springer International Pub-
lishing, 2016b.

BIBLIOGRAPHY 147

Hein, M., Andriushchenko, M., and Bitterwolf, J. Why relu networks yield high-
confidence predictions far away from the training data and how to mitigate the
problem. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 41–50, 2019.

Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to com-
mon corruptions and perturbations. International Conference on Learning Represen-
tations, 2019.

Hendrycks, D. and Gimpel, K. Early methods for detecting adversarial images. In
International Conference on Learning Representations Workshops, 2017.

Hendrycks, D., Lee, K., and Mazeika, M. Using pre-training can improve model
robustness and uncertainty. In International Conference on Machine Learning, pp.
2712–2721. PMLR, 2019.

Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J., and Lakshminarayanan,
B. AugMix: A simple data processing method to improve robustness and uncer-
tainty. International Conference on Learning Representations, 2020.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Hossain, M. T., Teng, S. W., Lu, G., Rahman, M. A., and Sohel, F. Anti-aliasing
deep image classifiers using novel depth adaptive blurring and activation func-
tion. Neurocomputing, 536:164–174, 2023.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. Densely connected
convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2017a.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected
convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4700–4708, 2017b.

Huang, H., Wang, Y., Erfani, S., Gu, Q., Bailey, J., and Ma, X. Exploring architec-
tural ingredients of adversarially robust deep neural networks. Advances in Neural
Information Processing Systems, 34:5545–5559, 2021.

Huang, L., Zhang, C., and Zhang, H. Self-adaptive training: beyond empirical risk
minimization. Advances in Neural Information Processing Systems, 33:19365–19376,
2020.

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. Black-box adversarial attacks with
limited queries and information. In International Conference on Machine Learning,
pp. 2137–2146. PMLR, 2018.

Jähne, B. Digital image processing. Springer Science & Business Media, 2005.

Jolliffe, I. Principal Component Analysis. Springer Verlag, 1986.

Jung, S. and Keuper, M. Spectral distribution aware image generation. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 1734–1742, 2021.

Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K.,
Rueckert, D., and Glocker, B. Efficient multi-scale 3d cnn with fully connected crf
for accurate brain lesion segmentation. Medical image analysis, 36:61–78, 2017.

148 BIBLIOGRAPHY

Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., and Aila, T.
Alias-free generative adversarial networks. Advances in Neural Information Process-
ing Systems, 34, 2021.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. Transformers
in vision: A survey. ACM computing surveys (CSUR), 54(10s):1–41, 2022.

Kim, B., Abuadbba, A., Gao, Y., Zheng, Y., Ahmed, M. E., Nepal, S., and Kim, H. De-
camouflage: A framework to detect image-scaling attacks on cnn. In 2021 51st An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pp. 63–74, 2021a. doi: 10.1109/DSN48987.2021.00023.

Kim, H., Lee, W., and Lee, J. Understanding catastrophic overfitting in single-step
adversarial training. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8119–8127, 2021b.

Kireev, K., Andriushchenko, M., and Flammarion, N. On the effectiveness of adver-
sarial training against common corruptions. In Uncertainty in Artificial Intelligence,
pp. 1012–1021. PMLR, 2022.

Krizhevsky, A. Learning multiple layers of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Sys-
tems, volume 25. Curran Associates, Inc., 2012.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial machine learning at scale.
In International Conference on Learning Representations, 2017.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial examples in the phys-
ical world. In Artificial intelligence safety and security, pp. 99–112. Chapman and
Hall/CRC, 2018.

Ladwig, D., Spitznagel, M., Vaillant, J., Dorer, K., and Keuper, J. Ai-guided noise
reduction for urban geothermal drilling. In Proceedings of the Upper-Rhine Artificial
Intelligence Symposium, 2024.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in Neural Information Pro-
cessing Systems, 30, 2017.

LeCun, Y. and Cortes, C. MNIST handwritten digit database. 2010. URL http:
//yann.lecun.com/exdb/mnist/.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, K., Lee, K., Lee, H., and Shin, J. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Advances in Neural Information
Processing Systems, 31, 2018.

Li, Q., Shen, L., Guo, S., and Lai, Z. Wavelet integrated cnns for noise-robust image
classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7245–7254, 2020.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

BIBLIOGRAPHY 149

Li, Q., Shen, L., Guo, S., and Lai, Z. Wavecnet: Wavelet integrated cnns to suppress
aliasing effect for noise-robust image classification. IEEE Transactions on Image
Processing, 30:7074–7089, 2021. doi: 10.1109/tip.2021.3101395.

Li, X. and Li, F. Adversarial examples detection in deep networks with convolutional
filter statistics. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 5764–5772, 2017.

Li, Z. and Hoiem, D. Improving confidence estimates for unfamiliar examples. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2686–2695, 2020.

Liu, S., Chen, T., Chen, X., Chen, X., Xiao, Q., Wu, B., Kärkkäinen, T., Pechenizkiy,
M., Mocanu, D. C., and Wang, Z. More convnets in the 2020s: Scaling up kernels
beyond 51x51 using sparsity. In International Conference on Learning Representations,
2023.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. Swin trans-
former: Hierarchical vision transformer using shifted windows. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021.

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L.,
Wei, F., and Guo, B. Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12009–12019, 2022a.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., and Xie, S. A convnet for
the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022b.

Lohn, A. J. Downscaling attack and defense: Turning what you see back into what
you get. arXiv preprint arXiv:2010.02456, 2020.

Lord, N. A., Mueller, R., and Bertinetto, L. Attacking deep networks with surrogate-
based adversarial black-box methods is easy. In International Conference on Learning
Representations, 2022.

Lorenz, P., Harder, P., Straßel, D., Keuper, M., and Keuper, J. Detecting autoat-
tack perturbations in the frequency domain. In International Conference on Machine
Learning Workshop on Adversarial Machine Learning, 2021.

Lukasik, J., Gavrikov, P., Keuper, J., and Keuper, M. Improving native cnn robust-
ness with filter frequency regularization. Transactions on Machine Learning Research,
2023.

Ma, T., Dalca, A. V., and Sabuncu, M. R. Hyper-convolution networks for biomedical
image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pp. 1933–1942, 2022.

Ma, T., Wang, A. Q., Dalca, A. V., and Sabuncu, M. R. Hyper-convolutions via im-
plicit kernels for medical image analysis. Medical Image Analysis, 86:102796, 2023.
ISSN 1361-8415.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learn-
ing models resistant to adversarial attacks. In International Conference on Learning
Representations, 2018.

150 BIBLIOGRAPHY

Maiya, S. R., Ehrlich, M., Agarwal, V., Lim, S.-N., Goldstein, T., and Shrivastava, A.
A frequency perspective of adversarial robustness. arXiv preprint arXiv:2111.00861,
2021.

Mathieu, M., Henaff, M., and LeCun, Y. Fast training of convolutional networks
through ffts. In International Conference on Learning Representations, 2013.

Medi, T., Grabinski, J., and Keuper, M. Towards class-wise robustness analysis. In
The 2nd Workshop and Challenges for Out-of-Distribution Generalization in Computer
Vision, ICCV Workshops, 2023.

Menghani, G. Efficient deep learning: A survey on making deep learning models
smaller, faster, and better. ACM Computing Surveys, 55(12):1–37, 2023.

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. On detecting adversarial
perturbations. In International Conference on Learning Representations, 2017.

Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M., and
Schroers, C. Phasenet for video frame interpolation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng,
R. Nerf: Representing scenes as neural radiance fields for view synthesis. Com-
munications of the ACM, 65(1):99–106, 2021.

Moon, J., Kim, J., Shin, Y., and Hwang, S. Confidence-aware learning for deep neural
networks. In International Conference on Machine Learning, pp. 7034–7044. PMLR,
2020.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deepfool: a simple and accurate
method to fool deep neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2574–2582, 2016.

Müller, P., Braun, A., and Keuper, M. Classification robustness to common optical
aberrations. In Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops, pp. 3632–3643, 2023.

Müller, R., Kornblith, S., and Hinton, G. E. When does label smoothing help? Ad-
vances in Neural Information Processing Systems, 32, 2019.

Mund, D., Triebel, R., and Cremers, D. Active online confidence boosting for efficient
object classification. In IEEE International Conference on Robotics and Automation, pp.
1367–1373, 2015. doi: 10.1109/ICRA.2015.7139368.

Naeini, M. P., Cooper, G., and Hauskrecht, M. Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2015.

Nair, V. and Hinton, G. E. Rectified linear units improve restricted boltzmann ma-
chines. In International Conference on Machine Learning, pp. 807–814, 2010.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading digits
in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

BIBLIOGRAPHY 151

Nguyen, A., Yosinski, J., and Clune, J. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 427–436, 2015.

Oppenheim, A. V. Discrete-time signal processing. Pearson Education India, 1999.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshmi-
narayanan, B., and Snoek, J. Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift. Advances in Neural Information Process-
ing Systems, 32, 2019.

Pan, H., Chen, Y., Niu, X., Zhou, W., and Li, D. Learning convolutional neural
networks in the frequency domain. arXiv preprint arXiv:2204.06718, 2022.

Pang, T., Yang, X., Dong, Y., Xu, K., Zhu, J., and Su, H. Boosting adversarial training
with hypersphere embedding. Advances in Neural Information Processing Systems,
33:7779–7792, 2020.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D.,
Texier, M., and Dean, J. Carbon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Peng, C., Zhang, X., Yu, G., Luo, G., and Sun, J. Large kernel matters – improve
semantic segmentation by global convolutional network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017.

Pintea, S. L., Tömen, N., Goes, S. F., Loog, M., and van Gemert, J. C. Resolution learn-
ing in deep convolutional networks using scale-space theory. IEEE Transactions on
Image Processing, 30:8342–8353, 2021.

Platt, J. Probabilistic outputs for support vector machines and comparisons to regu-
larized likelihood methods. 1999.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T., Baccus, S., Bengio, Y., Ermon,
S., and Ré, C. Hyena hierarchy: Towards larger convolutional language models.
In International Conference on Machine Learning, pp. 28043–28078. PMLR, 2023.

Prabhu, K. M. Window functions and their applications in signal processing. Taylor &
Francis, 2014.

Pratt, H., Williams, B., Coenen, F., and Zheng, Y. Fcnn: Fourier convolutional neural
networks. In Machine Learning and Knowledge Discovery in Databases, pp. 786–798,
Cham, 2017. Springer International Publishing. ISBN 978-3-319-71249-9.

Qin, Y., Wang, X., Beutel, A., and Chi, E. Improving calibration through the re-
lationship with adversarial robustness. Advances in Neural Information Processing
Systems, 34:14358–14369, 2021.

Rade, R. and Moosavi-Dezfooli, S.-M. Helper-based adversarial training: Reducing
excessive margin to achieve a better accuracy vs. robustness trade-off. In Inter-
national Conference on Machine Learning Workshop on Adversarial Machine Learning,
2021.

Rahim, R., Shamsafar, F., and Zell, A. Separable convolutions for optimizing 3d
stereo networks. In 2021 IEEE International Conference on Image Processing (ICIP),
pp. 3208–3212. IEEE, 2021.

152 BIBLIOGRAPHY

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for activation functions. In
International Conference on Learning Representations, 2018.

Rao, Y., Zhao, W., Zhu, Z., Lu, J., and Zhou, J. Global filter networks for image
classification. In Advances in Neural Information Processing Systems, 2021.

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O., and Mann, T. Data
augmentation can improve robustness. In Advances in Neural Information Processing
Systems, 2021.

Reed, C. J., Gupta, R., Li, S., Brockman, S., Funk, C., Clipp, B., Keutzer, K., Candido,
S., Uyttendaele, M., and Darrell, T. Scale-mae: A scale-aware masked autoencoder
for multiscale geospatial representation learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4088–4099, 2023.

Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., and Rabinovich, A. Train-
ing deep neural networks on noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596, 2014.

Rice, L., Wong, E., and Kolter, Z. Overfitting in adversarially robust deep learning.
In International Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Rodríguez-Muñoz, A. and Torralba, A. Aliasing is a driver of adversarial attacks.
arXiv preprint arXiv:2212.11760, 2022.

Romero, D. W., Bruintjes, R.-J., Tomczak, J. M., Bekkers, E. J., Hoogendoorn, M.,
and van Gemert, J. Flexconv: Continuous kernel convolutions with differentiable
kernel sizes. In International Conference on Learning Representations, 2022a.

Romero, D. W., Kuzina, A., Bekkers, E. J., Tomczak, J. M., and Hoogendoorn, M.
CKConv: Continuous kernel convolution for sequential data. In International Con-
ference on Learning Representations, 2022b.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted interven-
tion, pp. 234–241. Springer, 2015.

Rony, J., Hafemann, L. G., Oliveira, L. S., Ayed, I. B., Sabourin, R., and Granger, E.
Decoupling direction and norm for efficient gradient-based l2 adversarial attacks
and defenses. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4322–4330, 2019.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Saikia, T., Schmid, C., and Brox, T. Improving robustness against common corrup-
tions with frequency biased models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 10211–10220, 2021.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry, A. Do adversarially
robust imagenet models transfer better? Advances in Neural Information Processing
Systems, 33:3533–3545, 2020.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

BIBLIOGRAPHY 153

Sehwag, V., Wang, S., Mittal, P., and Jana, S. Hydra: Pruning adversarially ro-
bust neural networks. Advances in Neural Information Processing Systems, 33:19655–
19666, 2020.

Sehwag, V., Mahloujifar, S., Handina, T., Dai, S., Xiang, C., Chiang, M., and Mittal,
P. Robust learning meets generative models: Can proxy distributions improve ad-
versarial robustness? In International Conference on Learning Representations, 2022.

Semmlow, J. L. and Griffel, B. Biosignal and medical image processing. CRC press, 2021.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Understanding and improving con-
volutional neural networks via concatenated rectified linear units. In International
Conference on Machine Learning, pp. 2217–2225. PMLR, 2016.

Shannon, C. Communication in the presence of noise. Proceedings of the IRE, 37(1):
10–21, 1949. doi: 10.1109/JRPROC.1949.232969.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

Sitawarin, C., Chakraborty, S., and Wagner, D. Sat: Improving adversarial training
via curriculum-based loss smoothing. In Proceedings of the 14th ACM Workshop on
Artificial Intelligence and Security, pp. 25–36, 2021.

Sitzmann, V., Zollhöfer, M., and Wetzstein, G. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetzstein, G. Implicit neural
representations with periodic activation functions. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 7462–7473. Curran Associates, Inc., 2020.

Sosnovik, D. E., Wang, R., Dai, G., Reese, T. G., and Wedeen, V. J. Diffusion mr
tractography of the heart. Journal of Cardiovascular Magnetic Resonance, 11(1):47,
2009.

Sosnovik, I., Szmaja, M., and Smeulders, A. Scale-equivariant steerable networks.
In International Conference on Learning Representations, 2020.

Sridhar, K., Sokolsky, O., Lee, I., and Weimer, J. Improving neural network robust-
ness via persistency of excitation. In American Control Conference, pp. 1521–1526.
IEEE, 2022.

StatCounter. Mobile screen resolution stats worldwide, 2024. URL https://
gs.statcounter.com/screen-resolution-stats/mobile/worldwide. Accessed:
2025-01-11.

Statista. Pixels per inch (ppi) of 4k and 8k tvs, by screen size, as of
2021, 2021. URL https://www.statista.com/statistics/1196348/
pixels-per-inch-4k-8k-tv-by-screen-size/. Accessed: 2025-01-11.

Stutz, D., Hein, M., and Schiele, B. Confidence-calibrated adversarial training: Gen-
eralizing to unseen attacks. In International Conference on Machine Learning, pp.
9155–9166. PMLR, 2020.

https://gs.statcounter.com/screen-resolution-stats/mobile/worldwide
https://gs.statcounter.com/screen-resolution-stats/mobile/worldwide
https://www.statista.com/statistics/1196348/pixels-per-inch-4k-8k-tv-by-screen-size/
https://www.statista.com/statistics/1196348/pixels-per-inch-4k-8k-tv-by-screen-size/

154 BIBLIOGRAPHY

Stutz, D., Hein, M., and Schiele, B. Relating adversarially robust generalization to
flat minima. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 7787–7797, 2021. doi: 10.1109/ICCV48922.2021.00771.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the incep-
tion architecture for computer vision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826, 2016.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. Inception-v4, inception-resnet
and the impact of residual connections on learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Tan, M. and Le, Q. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, pp. 10096–10106. PMLR, 2021.

Thulasidasan, S., Chennupati, G., Bilmes, J. A., Bhattacharya, T., and Michalak, S. On
mixup training: Improved calibration and predictive uncertainty for deep neural
networks. Advances in Neural Information Processing Systems, 32, 2019.

Tomani, C. and Buettner, F. Towards trustworthy predictions from deep neural net-
works with fast adversarial calibration. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 9886–9896, 2021.

Tomen, N. and van Gemert, J. C. Spectral leakage and rethinking the kernel size in
cnns. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
5138–5147, 2021.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. Training
data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, S., Santos, J. F.,
Mehri, S., Rostamzadeh, N., Bengio, Y., and Pal, C. J. Deep complex networks.
In International Conference on Learning Representations, 2018.

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. Learning spatiotem-
poral features with 3d convolutional networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4489–4497, 2015.

Tu, C.-C., Ting, P., Chen, P.-Y., Liu, S., Zhang, H., Yi, J., Hsieh, C.-J., and Cheng, S.-M.
Autozoom: Autoencoder-based zeroth order optimization method for attacking
black-box neural networks. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pp. 742–749, 2019.

Varshney, K. R. and Alemzadeh, H. On the safety of machine learning: Cyber-
physical systems, decision sciences, and data products. Big data, 5(3):246–255,
2017.

Vasconcelos, C., Larochelle, H., Dumoulin, V., Roux, N. L., and Goroshin,
R. An effective anti-aliasing approach for residual networks. arXiv preprint
arXiv:2011.10675, 2020.

BIBLIOGRAPHY 155

Vasconcelos, C., Larochelle, H., Dumoulin, V., Romijnders, R., Le Roux, N., and
Goroshin, R. Impact of aliasing on generalization in deep convolutional net-
works. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 10529–10538, 2021.

Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., and LeCun, Y.
Fast convolutional nets with fbfft: A gpu performance evaluation. arXiv preprint
arXiv:1412.7580, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

Video Electronics Standards Association (VESA). Coordinated video timings (cvt)
standard. Patent, 2013. Available through VESA.

Wang, H., Wu, X., Huang, Z., and Xing, E. P. High-frequency component helps
explain the generalization of convolutional neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694,
2020a.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Improving adversarial ro-
bustness requires revisiting misclassified examples. In International Conference on
Learning Representations, 2020b.

Wang, Z., Lan, Q., Huang, D., and Wen, M. Combining fft and spectral-pooling
for efficient convolution neural network model. In 2nd International Conference on
Artificial Intelligence and Industrial Engineering, pp. 203–206. Atlantis Press, 2016.

Watanabe, T. and Wolf, D. F. Image classification in frequency domain with 2srelu: a
second harmonics superposition activation function. Applied Soft Computing, 112:
107851, 2021.

Wenger, J., Kjellström, H., and Triebel, R. Non-parametric calibration for classifica-
tion. In International Conference on Artificial Intelligence and Statistics, pp. 178–190.
PMLR, 2020.

Wightman, R. Pytorch image models, 2019.

Winograd, S. On computing the discrete fourier transform. Mathematics of computa-
tion, 32(141):175–199, 1978.

Wong, E., Rice, L., and Kolter, J. Z. Fast is better than free: Revisiting adversarial
training. In International Conference on Learning Representations, 2020.

Worrall, D. and Welling, M. Deep scale-spaces: Equivariance over scale. Advances in
Neural Information Processing Systems, 32, 2019.

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight perturbation helps robust gen-
eralization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Xiao, Q., Li, K., Zhang, D., and Jin, Y. Wolf in sheep’s clothing - the downscaling
attack against deep learning applications. arXiv preprint arXiv:1712.07805, 2017.

Xie, C. and Yuille, A. Intriguing properties of adversarial training at scale. In Inter-
national Conference on Learning Representations, 2020.

156 BIBLIOGRAPHY

Xu, Q., Zhang, R., Zhang, Y., Wang, Y., and Tian, Q. A fourier-based framework
for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14383–14392, 2021.

Yang, Y. and Soatto, S. Fda: Fourier domain adaptation for semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 4085–4095, 2020.

Yin, D., Gontijo Lopes, R., Shlens, J., Cubuk, E. D., and Gilmer, J. A fourier perspec-
tive on model robustness in computer vision. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yu, A., Ye, V., Tancik, M., and Kanazawa, A. pixelnerf: Neural radiance fields from
one or few images. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4578–4587, 2021.

Zagoruyko, S. and Komodakis, N. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Zhang, D., Zhang, T., Lu, Y., Zhu, Z., and Dong, B. You only propagate once: Accel-
erating adversarial training via maximal principle. Advances in Neural Information
Processing Systems, 32, 2019a.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and Jordan, M. I. Theoretically
principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, 2019b.

Zhang, J., Xu, X., Han, B., Niu, G., Cui, L., Sugiyama, M., and Kankanhalli, M. At-
tacks which do not kill training make adversarial learning stronger. In International
Conference on Machine Learning, pp. 11278–11287. PMLR, 2020.

Zhang, J., Zhu, J., Niu, G., Han, B., Sugiyama, M., and Kankanhalli, M. Geometry-
aware instance-reweighted adversarial training. In International Conference on
Learning Representations, 2021.

Zhang, R. Making convolutional networks shift-invariant again. In International
Conference on Machine Learning, 2019.

Zhou, Y., He, X., Huang, L., Liu, L., Zhu, F., Cui, S., and Shao, L. Collaborative learn-
ing of semi-supervised segmentation and classification for medical images. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2079–2088, 2019.

Zou, X., Xiao, F., Yu, Z., Li, Y., and Lee, Y. J. Delving deeper into anti-aliasing in
convnets. International Journal of Computer Vision, 131(1):67–81, 2023.

157

List of Figures

1.1 Challenges for Robust and Non-Robust Deep Neural Networks. 2
1.2 Our Fourier Modules. 4
1.3 Contribution Outline. 8

2.1 Standard downsampling operations used in CNNs. 15
2.2 Common Activation Functions. 16
2.3 Datasets used in this Thesis. 19
2.4 Aliasing Theory . 25
2.5 Sinc interpolation Artifacts Theory. 25

3.1 Example of Common Corruption . 30

4.1 Confidence Overview for Robust- and Non-Robust Models. 46
4.2 Robust Models are Less Over-Confident on CIFAR-10. 47
4.3 Robust Models are Less Over-Confident on CIFAR-10-C. 49
4.4 Robust Models can Distinguish between Correct and Incorrect Predic-

tions on CIFAR-10-C. 50
4.5 ECE Bar Plots on CIFAR-100. 51
4.6 Robust Models can Better Distinguish between Correct and Incorrect

Predictions on CIFAR-10 and CIFAR-100 under attack. 52
4.7 Robust Models can Use Prediction Confidence as Attack Detection on

CIFAR-10 and CIFAR-100. 53
4.8 Adapting CNN Building Blocks for Optimized Confidence Distribu-

tions. 54
4.9 Adapting CNN Building Blocks for Optimized ROC curves on CIFAR-

10. 55
4.10 Adapting CNN Building Blocks for Optimized ROC curves on CIFAR-

10-C. 56
4.11 Robust Models are Less Over-Confident on ImageNet-1k. 56
4.12 Robust Models can Disentangle Confidences between Correct and In-

correct Predictions on ImageNet-1k. 57

5.1 Similarities between Aliasing and Adversarial Attack. 60
5.2 Aliasing Measure, Computation of the Aliasing-Free Feature Map. . . 62
5.3 Aliasing Measure, Overview. 62
5.4 Abstract Illustration of a Building Block in ResNet architectures. 64
5.5 Adversarial Robustness vs. Aliasing on WRN-28-10 models. 65

158 List of Figures

5.6 Adversarial Robustness vs. Aliasing on PRN-18 models. 66
5.7 Center-shifted Spectrum of the AutoAttack Perturbations. 68
5.8 Adversarial Sample Generated for a CNN vs. FCN. 69
5.9 Mean Adversarial Attack for a CNN vs. FCN. 70
5.10 Robustness Evaluation CNN vs. FCN. 71
5.11 Aliasing and Early Stopping in FGSM AT. 72
5.12 Aliasing and Catastrophic Overfitting in FGSM AT on a WRN-28-10. . 73
5.13 Aliasing and Catastrophic Overfitting in FGSM AT on a PRN-18. . . . 73
5.14 Confidence and Aliasing during FGSM AT. 74
5.15 Center-shifted Spectrum of AutoAttack Perturbations after Catastrophic

Overfitting. 75
5.16 Aliasing Measure Evaluation during FGSM AT. 76
5.17 Threshold Estimation for our Aliasing Measure. 76

6.1 Impact of Downsampling Methods: Visual Quality of different Down-
sampling Techniques. 82

6.2 FLC Pooling and ASAP, Method Overview. 86
6.3 Effect of Unsymmetrical Padding for Low-Frequency Component Cuts. 88
6.4 Effect of Padding to Prevent Sinc Interpolation Artifacts. 88
6.5 FLC Pooling and ASAP, integration in CNN. 89
6.6 Image Quality and Power Spectrum Differences for different Down-

sampling Techniques. 90
6.7 Qualitative Image Comparison of Different Downsampling Techniques. 91
6.8 ASAP exhibits High Robustness under Different Attack Budgets. . . . 96
6.9 Catastrophic Overfitting in FGSM AT and Aliasing. 97
6.10 Robustness of our Downsampling Approaches with AT. 98
6.11 FLC Pooling Plus. 102
6.12 Center-shifted Attack Spectrum Difference for our Downsampling ap-

proaches. 104
6.13 Confidence Distribution of our ASAPstbl with FGSM AT. 105

7.1 ImageNet-1k Models Learn Larger Kernels than 3× 3. 110
7.2 Method Comparison: Standard Large Convolution vs. our NIFF. 112
7.3 Concept of our NIFF Convolutions. 113
7.4 NIFF, integration in CNN. 114
7.5 Kernel Mass Ratio on ImageNet-1k. 116
7.6 Kernel Mass Ratio on CIFAR-10. 117
7.7 Analysis of Non-Square Kernel Shapes for our NIFF on ImageNet-1k. . 118
7.8 Spatial Filter Visualizations for our NIFF ResNet-50 on ImageNet-1k. . 121
7.9 Spatial Filter Visualizations for our NIFF ResNet-18 on CIFAR-10. . . . 121
7.10 Center-shifted Frequency Filter Visualizations for our NIFF models

on ImageNet-1k. 122
7.11 Spatial Filter Visualizations for our NIFF ResNet-18 with Additional

Padding on ImageNet-100. 125
7.12 Spatial Filter Visualizations for our NIFF ResNet-18 with Approxi-

mating Linear Convolutions on ImageNet-100. 126
7.13 FLOPs for Different Kinds of Convolutions. 128

A.1 Robut Models have a Lower ECE on CIFAR-10 164
A.2 Overconfidence of Robust vs. Non-Robust Models on CIFAR-100 . . . 164
A.3 Robust Models are Better Calibrated on CIFAR-10. 165

List of Figures 159

A.4 Robust Models are Better Calibrated on CIFAR-100. 168
A.5 Robust Models can Disentangle Confidences between Correct and In-

correct Predictions on CIFAR-10. 168
A.6 Robust Models can Disentangle Confidences between Correct and In-

correct Predictions on CIFAR-100. 169
A.7 Robus Model Confidences as Detection for Adversarial Samples. . . . 169
A.8 ROC curves for Robust vs. Non-Robust Models on ImageNet-1k. . . . 169

B.1 Aliasing-Free Downsampling Exhibits Desirable Confidence Distri-
butions. 172

C.1 Effective Kernel Size Evaluation on ImageNet-100. 174
C.2 Effective Kernel Size Evaluation on CIFAR-10. 175
C.3 Analysis of Non-Square Kernel Shapes for our NIFF on ImageNet-1k. . 176
C.4 Analysis of Non-Square Kernel Shapes for our NIFF on ImageNet-100. 177
C.5 Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-

1k. 178
C.6 Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-1k.179
C.7 Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-1k.179
C.8 Spatial Filter Visualization for our NIFF ResNet-50 on ImageNet-100. . 180
C.9 Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-

100. 180
C.10 Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-

100. 181
C.11 Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-

100. 181
C.12 Spatial Filter Visualization for our NIFF MobileNet-v2 on CIFAR-10. . 182
C.13 Spatial Filter Visualization for our NIFF ResNet-50 on ImageNet-1k

without Zoom. 183
C.14 Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-

1k without Zoom. 183
C.15 Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-

1k without Zoom. 184
C.16 Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-

1k without Zoom. 184
C.17 Spatial Filter Visualization for our NIFF ResNet-50 on ImageNet-100

without Zoom. 185
C.18 Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-

100 without Zoom. 185
C.19 Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-

100 without Zoom. 186
C.20 Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-

100 without Zoom. 186
C.21 Spatial Filter Visualization for our NIFF ResNet-18 with additional

Zero Padding on ImageNet-100 without Zoom. 187
C.22 Spatial Filter Visualization for our NIFF ResNet-18 Mimic Linear Con-

volutions on ImageNet-100 without Zoom. 187
C.23 Overview of random Spatial Kernels of our NIFF ResNet-50 on ImageNet-

1k. 188
C.24 Overview of random Spatial Kernels of our NIFF ConvNeXt-tiny on

ImageNet-1k. 189

160 List of Figures

C.25 Frequency Filter Visualization for our NIFF ResNet-50 on ImageNet-1k.190
C.26 Frequency Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-

1k. 190
C.27 Frequency Filter Visualization for our NIFF DenseNet-121 on ImageNet-

1k. 191
C.28 Frequency Filter Visualization for our NIFF MobileNet-v2 on ImageNet-

1k. 191

161

List of Tables

3.1 Vision Models operating in the Fourier Domain. 38

4.1 Robust Models have a Lower ECE on CIFAR-10. 48
4.2 ECE Evaluation on CIFAR-100. 51
4.3 Performance Evaluation for Robust Models on ImageNet-1k. 55

5.1 Performance Evaluation of different Pooling variants. 67
5.2 Performance Evaluation for different AT schemes. 71

6.1 Aliasing Measure and Power Spectrum Difference for various Down-
sampling Techniques. 92

6.2 Time Evaluation of Additional Padding within our ASAP. 92
6.3 Native Robustness of Aliasing-Free Downsampling on ImageNet-1k. . 93
6.4 Native Robustness of Aliasing-Free Downsampling on CIFAR-10. . . . 95
6.5 Consistency under Spatial Shifts for Different Downsampling Tech-

niques. 96
6.6 Robustness of various Architectures with our Downsampling Approaches

with AT. 99
6.7 Runtime of different AT schemes. 100
6.8 Robustness Evaluation of our Downsampling on ImageNet-1k with AT.100
6.9 Performance Evaluation of FLC Pooling Plus. 103
6.10 Using Different Window Functions in our ASAP. 103
6.11 Study on Stabilization in our ASAP. 104

7.1 NIFF performance evaluation on ImageNet-1k and ImageNet-100. . . . 119
7.2 NIFF performance evaluation on CIFAR-10. 120
7.3 NIFF Performance Approximating Linear Convolutions on ImageNet-

100. 123
7.4 NIFF Performance Approximating Linear Convolutions on CIFAR-10. 124
7.5 Performance of Different Padding Methods for our NIFF. 127
7.6 Towards CNNs in the Fourier Domain. 127
7.7 NIFF Size Evaluation. 128
7.8 NIFF Efficiency Evaluation on CIFAR-10. 129
7.9 NIFF Efficiency Evaluation on ImageNet-100. 130

163

Appendix A

Supplementary for Chapter 4
Contents

A.1 Additional ECE Bar Plots . 163
A.2 Additional Overconfidence Bar Plots . 163
A.3 Empirical Confidence Distributions . 164
A.4 Additional Precision Recall Curves . 164
A.5 ROC curves for ImageNet-1k . 165
A.6 Model Overview . 165

In the following, we provide additional information and details that accompany
chapter 4:

• Section A.1 - additional ECE bar plots presenting all individual robust models
and their non-robust counterparts on CIFAR-10.

• Section A.2 - additional overconfidence bar plots presneting all individual ro-
bust models and their non-robust counterparts on CIFAR-100.

• Section A.3 - full empirical confidence distributions

• Section A.4 - additional precision recall curves for CIFAR-10 and CIFAR-100

• Section A.5 - additional ROC curves for ImageNet-1k

• Section A.6 - the overview of all trained models in our modelzoo

A.1 Additional ECE Bar Plots

In the following, we present the ECE bar plots of each model and its non-robust
counterpart for CIFAR-10 in Figures A.1. Robust models exhibit a significantly lower
ECE suggesting that they are better calibrated.

A.2 Additional Overconfidence Bar Plots

In the following, we present the overconfidence bar plots of each model and its non-
robust counterpart for CIFAR-100 in Figures A.2. Most robust models exhibit signif-
icantly lower overconfidence, however not all models especially those under attack.

164 Appendix A. Supplementary for Chapter 4

Clean Samples PGD Samples Squares Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

 (E
C

E
)

non-robust model robust model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

 (E
C

E
)

non-robust model robust model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

 (E
C

E
)

non-robust model robust model

FIGURE A.1: Robut Models have a Lower ECE on CIFAR-10 ECE (lower is better) bar
plots of robust models and their non-robust counterparts trained on CIFAR-10. Non-robust

models exhibit a much higher ECE than their robust counterparts.

Clean Samples PGD Samples Squares Samples

0.0

0.1

0.2

0.3

0.4

O
ve

rc
on

fid
en

ce

non-robust model robust model

0.0

0.1

0.2

0.3

0.4

O
ve

rc
on

fid
en

ce

non-robust model robust model

0.0

0.1

0.2

0.3

0.4

O
ve

rc
on

fid
en

ce

non-robust model robust model

FIGURE A.2: Overconfidence of Robust vs. Non-Robust Models on CIFAR-100 Overconfi-
dence (lower is better) bar plots of the robust models and their respective non-robust coun-
terparts trained on CIFAR-100. For CIFAR-100 most robust models are less overconfident on
clean and Squares samples than their non-robust counterparts. However, on PGD samples

more robust models are overconfident than their non-robust counterparts.

A.3 Empirical Confidence Distributions

In the following, we present the empirical confidence distribution of all robust mod-
els and their non-robust counterparts for CIFAR-10 and CIFAR-100 in Figures A.3
and A.4, respectively. Each row contains the robust and non-robust counterpart and
their confidence distributions on the clean samples and the perturbed samples by
PGD and Squares.

A.4 Additional Precision Recall Curves

In the following, we present the precision recall curves for CIFAR-10 and CIFAR-100
in Figures A.5 and A.6, respectively. We can observe similar results as presented
in the ROC curves in Chapter 4, the non-robust models are slightly better on clean
samples and fail completely under attack. For Squares samples, both the robust
models perform slightly better.

When considering the precision recall curves between the confidence of clean
correct samples and perturbed wrong samples (Figure A.7), we can observe that
robust models are indeed able to detect adversarial samples based on thresholding
the confidence of the model.

A.5. ROC curves for ImageNet-1k 165

Non-robust models Robust models
Clean

D
en

si
ty

0.00 0.25 0.50 0.75 1.00
Confidences

PGD

0.00 0.25 0.50 0.75 1.00
Confidences

Squares

0.00 0.25 0.50 0.75 1.00
Confidences

correct prediction incorrect prediction

Clean

D
en

si
ty

0.00 0.25 0.50 0.75 1.00
Confidences

PGD

0.00 0.25 0.50 0.75 1.00
Confidences

Squares

0.00 0.25 0.50 0.75 1.00
Confidences

correct prediction incorrect prediction

FIGURE A.3: Robust Models are Better Calibrated on CIFAR-10. Density plots for robust
and non-robust models on CIFAR-10, showing the models’ confidence in their correct and
incorrect predictions. Each row contains the same model, both adversarially (right) and
standard (left) trained. Non-robust models exhibit high confidence in all of their predictions,
even though they may be incorrect. Especially in the case of PGD samples, these models
are highly confident in their incorrect predictions. In contrast, the robust models are better
calibrated: they are confident in their correct predictions and less confident in their incorrect

ones.

A.5 ROC curves for ImageNet-1k

Figure A.8 presents the ROC curve on the clean as well as the perturbed samples
for the robust models and the baseline on ImageNet-1k. The difference between the
robust models is barely visible.

A.6 Model Overview

In the following we provide the overview over all models trained and provided
at https://github.com/GeJulia/robustness_confidences_evaluation with their
names, the respective paper, the architecture as well as their performance measured
in clean and robust accuracy.

The robust checkpoints provided by RobustBench [Croce et al. (2021)] are licensed
under the MIT Licence. The clean models for ImageNet are provided by timm [Wight-
man (2019)] under the Apache 2.0 licence.

Paper Dataset Architecture Adv.
Trained
Clean
Acc.

Adv.
Trained
Robust
Acc.

Norm.
Trained
Clean
Acc.

Norm.
Trained
Robust
Acc.

2020 cifar10 PreActResNet-18 79.84 43.93 94.51 0.0
2019a cifar10 WideResNet-28-10 89.69 59.53 95.10 0.0
2020 cifar10 WideResNet-28-10 88.98 57.14 95.10 0.0
2020b cifar10 WideResNet-28-10 87.50 56.29 95.10 0.0
2019 cifar10 WideResNet-28-10 87.11 54.92 95.35 0.0
2020 cifar10 WideResNet-34-20 85.34 53.42 95.46 0.0
2019b cifar10 WideResNet-34-10 84.92 53.08 95.26 0.0

Continued on next page

https://github.com/GeJulia/robustness_confidences_evaluation

166 Appendix A. Supplementary for Chapter 4

Paper Dataset Architecture Adv.
Trained
Clean
Acc.

Adv.
Trained
Robust
Acc.

Norm.
Trained
Clean
Acc.

Norm.
Trained
Robust
Acc.

2019 cifar10 ResNet-50 87.03 49.25 94.90 0.0
2020 cifar10 ResNet-50 86.04 51.56 86.50 0.0
2020 cifar10 WideResNet-34-10 83.48 53.34 95.26 0.0
2020 cifar10 WideResNet-34-20 85.14 53.74 76.30 0.0
2020 cifar10 PreActResNet-18 83.34 43.21 94.25 0.0
2020 cifar10 WideResNet-28-4 84.36 41.44 94.33 0.0
2019a cifar10 WideResNet-34-10 87.20 44.83 95.26 0.0
2020 cifar10 WideResNet-34-10 84.52 53.51 95.26 0.0
2020 cifar10 WideResNet-28-10 88.25 60.04 95.10 0.0
2020 cifar10 WideResNet-34-10 85.36 56.17 95.64 0.0
2021a cifar10 WideResNet-70-16 85.29 57.20 87.91 0.0
2021a cifar10 WideResNet-70-16 91.10 65.88 87.91 0.0
2021a cifar10 WideResNet-34-20 85.64 56.86 88.33 0.0
2021a cifar10 WideResNet-28-10 89.48 62.80 88.20 0.0
2022 cifar10 WideResNet-34-10 85.85 59.09 95.64 0.0
2022 cifar10 ResNet-18 84.38 54.43 94.87 0.0
2021 cifar10 WideResNet-34-10 86.84 50.72 95.26 0.0
2022 cifar10 WideResNet-34-10 85.32 51.12 95.35 0.0
2021 cifar10 WideResNet-34-20 88.70 53.57 95.44 0.0
2021 cifar10 WideResNet-34-10 88.22 52.86 95.26 0.0
2021 cifar10 WideResNet-28-10 89.36 59.64 95.10 0.0
2021 cifar10 WideResNet-28-10 87.33 60.75 88.20 0.0
2021 cifar10 WideResNet-106-

16
88.50 64.64 86.92 0.0

2021 cifar10 WideResNet-70-16 88.54 64.25 87.91 0.0
2021 cifar10 WideResNet-70-16 92.23 66.58 87.91 0.0
2022 cifar10 WideResNet-28-10 89.46 59.66 95.10 0.0
2022 cifar10 WideResNet-34-15 86.53 60.41 95.50 0.0
2021 cifar10 PreActResNet-18 83.53 56.66 89.01 0.0
2021 cifar10 PreActResNet-18 89.02 57.67 89.01 0.0
2021 cifar10 PreActResNet-18 86.86 57.09 89.01 0.0
2021 cifar10 WideResNet-34-10 91.47 62.83 88.67 0.0
2021 cifar10 WideResNet-28-10 88.16 60.97 88.20 0.0
2021 cifar10 WideResNet-34-R 90.56 61.56 95.60 0.0
2021 cifar10 WideResNet-34-R 91.23 62.54 95.60 0.0
2021 cifar10 ResNet-18 80.24 51.06 94.87 0.0
2021 cifar10 WideResNet-34-10 85.32 58.04 95.26 0.0
2021b cifar10 WideResNet-70-16 88.74 66.11 87.91 0.0
2022 cifar10 WideResNet-28-10-

PSSiLU
87.02 61.55 85.53 0.0

2021b cifar10 WideResNet-28-10 87.50 63.44 88.20 0.0
2021b cifar10 PreActResNet-18 87.35 58.63 89.01 0.0
2021 cifar10 WideResNet-34-10 85.21 56.94 95.64 0.0
2021 cifar10 WideResNet-34-20 86.03 57.71 95.29 0.0

Continued on next page

A.6. Model Overview 167

Paper Dataset Architecture Adv.
Trained
Clean
Acc.

Adv.
Trained
Robust
Acc.

Norm.
Trained
Clean
Acc.

Norm.
Trained
Robust
Acc.

2021a cifar100 WideResNet-70-16 60.86 30.03 60.56 0.0
2021a cifar100 WideResNet-70-16 69.15 36.88 60.56 0.0
2021 cifar100 WideResNet-34-20 62.55 30.20 80.46 0.0
2021 cifar100 WideResNet-34-10 70.25 27.16 79.11 0.0
2021 cifar100 WideResNet-34-10 60.64 29.33 79.11 0.0
2022 cifar100 WideResNet-34-10 62.15 26.94 78.75 0.0
2020 cifar100 WideResNet-34-10 60.38 28.86 78.79 0.0
2021 cifar100 WideResNet-34-10 62.82 24.57 79.11 0.0
2019 cifar100 WideResNet-28-10 59.23 28.42 79.16 0.0
2020 cifar100 PreActResNet-18 53.83 18.95 76.18 0.0
2021 cifar100 WideResNet-70-16 63.56 34.64 60.56 0.0
2021 cifar100 WideResNet-28-10 62.41 32.06 61.46 0.0
2021 cifar100 PreActResNet-18 56.87 28.50 63.45 0.0
2021 cifar100 PreActResNet-18 61.50 28.88 63.45 0.0
2021 cifar100 PreActResNet-18 62.02 27.14 76.66 0.0
2021 cifar100 WideResNet-34-10 65.73 30.35 79.11 0.0
2021 cifar100 WideResNet-34-10 64.07 30.59 79.11 0.0
2020 imagenet ResNet-50 55.62 26.24 80.37 0.0
2019 imagenet ResNet-50 62.56 29.22 80.37 0.0
2020 imagenet ResNet-50 64.02 34.96 80.37 0.0
2020 imagenet ResNet-18 52.92 25.32 69.74 0.0
2020 imagenet WideResNet-50-2 68.46 38.14 81.45 0.0

168 Appendix A. Supplementary for Chapter 4

Non-robust models Robust models
Clean

D
en

si
ty

0.0 0.5 1.0
Confidences

PGD

0.0 0.5 1.0
Confidences

Squares

0.0 0.5 1.0
Confidences

correct prediction incorrect prediction

Clean

D
en

si
ty

0.0 0.5 1.0
Confidences

PGD

0.0 0.5 1.0
Confidences

Squares

0.0 0.5 1.0
Confidences

correct prediction incorrect prediction

FIGURE A.4: Robust Models are Better Calibrated on CIFAR-100. Density plots for robust
and non-robust models on CIFAR-100, showing the models’ confidence in their correct and
incorrect predictions. Each row contains the same model, both adversarially and standard
trained. Non-robust models exhibit high confidence in all their predictions, even though
they may be incorrect. Especially in the case of PGD samples, the models are highly confi-
dent in their incorrect predictions. In contrast, the robust models are better calibrated: they
are mediocre confident in their correct predictions and fortunately much less confident in

their incorrect ones.

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Clean Samples

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Squares Samples

r ob u s t m od e ls n on -r ob s t m od e ls iso-f1 cu r ve s

FIGURE A.5: Robust Models can Disentangle Confidences between Correct and Incor-
rect Predictions on CIFAR-10. Average precision-recall curve for all robust and non-robust
models trained on CIFAR-10. Standard deviation is indicated by the error bars. For clean
samples, the non-robust models can slightly better distinguish between correct and incorrect
predictions based on the confidence of the predictions. The superiority of the robust models
is evident in samples created by PGD, where the non-robust models are unable to distin-
guish. However, for samples created by Squares, the classification of correct and incorrect
predictions based on confidence is almost equally feasible for robust and non-robust models.

A.6. Model Overview 169

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Clean Samples

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0

Recall
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Squares Samples

r ob u s t m od e ls n on -r ob s t m od e ls iso-f1 cu r ve s

FIGURE A.6: Robust Models can Disentangle Confidences between Correct and Incor-
rect Predictions on CIFAR-100. Average precision-recall curve for all robust and non-robust
models trained on CIFAR-100 for 1000 samples. Standard deviation is indicated by the error
bars. For clean samples, the non-robust models can slightly better distinguish between cor-
rect and incorrect predictions based on the confidence of the predictions. The superiority of
the robust models is clearly evident in samples created by PGD, where the non-robust mod-
els are unable to distinguish. However, for samples created by Squares, the classification
of correct and incorrect predictions based on confidence is almost equally feasible for both

robust and non-robust models.

CIFAR-10 CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Squares Samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Squares Samples

FIGURE A.7: Robus Model Confidences as Detection for Adversarial Samples. Precision-
recall curve comparing the confidence of clean, correctly classified samples and perturbed,
incorrectly classified samples on CIFAR-10 and CIFAR-100. The confidences of robust mod-

els can be used as thresholds for detecting adversarial attacks.

Clean Samples

False positive rate

1.0

0.8

0.4

0.6

0.2

0.0 0.2 1.00.80.60.4

T
ru

e
po

si
ti

ve
 r

at
e

PGD Samples

False positive rate

1.0

0.8

0.4

0.6

0.2

0.0 0.2 1.00.80.60.4

T
ru

e
po

si
ti

ve
 r

at
e

Squares Samples

False positive rate

1.0

0.8

0.4

0.6

0.2

0.0 0.2 1.00.80.60.4

T
ru

e
po

si
ti

ve
 r

at
e

RN-18, Salman et al., 2020
RN-50, Salman et al., 2020

RN-50, Baseline RN-50, Engstrom et al., 2019
WRN-50-2, Salman et al., 2020

random baseline
RN-50, Wong et al., 2020

FIGURE A.8: ROC curves for Robust vs. Non-Robust Models on ImageNet-1k. ROC
curves for the robust models and the non-robust baseline trained on ImageNet-1k provided

on RobustBench [Croce et al. (2021)].

171

Appendix B

Supplementary for Chapter 6
Contents

B.1 Confidence Distributions . 171

In the following, we provide additional information and details that accompany
Chapter 6:

• Section B.1 - additional confidence distributions for all our ASAP variant

B.1 Confidence Distributions

Following, we provide additional plots in Figure B.1 presenting the confidence dis-
tributions of all our proposed downsampling methods and the baseline with stan-
dard downsampling. While the baseline exhibits many very high overconfident pre-
dictions under attack our downsampling methods exhibit less high-confident false
predictions.

172 Appendix B. Supplementary for Chapter 6

Baseline PRN-18

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

D
en

si
ty

Squares

correct prediction
wrong prediction

FLC Pooling

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

300

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

200

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

200

D
en

si
ty

Squares

correct prediction
wrong prediction

ASAPstbl

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

50

100

150

200

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

D
en

si
ty

Squares

correct prediction
wrong prediction

ASAPsp

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

200

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

D
en

si
ty

Squares

correct prediction
wrong prediction

ASAPlp

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

300

400

D
en

si
ty

Clean

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

D
en

si
ty

PGD

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

100

200

D
en

si
ty

Squares

correct prediction
wrong prediction

FIGURE B.1: Aliasing-Free Downsampling Exhibits Desirable Confidence Distributions.
Mean confidence distribution and standard deviation for PRN-18 baseline, FLC Pooling,
ASAPstbl, ASAPsp and ASAPlp models trained with FGSM AT on three different seeds.
While both downsampling methods perform equally well on clean samples, our models
with FLC Pooling,ASAPstbl, ASAPsp and ASAPlp exhibits fewer highly confident incorrect
predictions on PGD and Square attacks. However, when examining multiple random seeds,
the results deviate from the observations for a single model shown in Figure 4.8 in Chapter

4, underscoring the influence of training hyperparameters.

173

Appendix C

Supplementary for Chapter 7
Contents

C.1 Additional Kernel Mass Evaluation . 173
C.2 Additional Evaluation of Non-Square Kernels 176
C.3 Additional Spatial Filter Visualization . 177
C.4 Additional Frequency Filter Visualization 178

In the following, we provide additional information and details that accompany
chapter 7:

• Section C.1 - kernel mass evaluation for all networks on ImageNet-1k, ImageNet-
100 and CIFAR-10

• Section C.2 - additional evaluation of non-square kernels

• Section C.3 - additional filter visualizations in the spatial domain

• Section C.4 - additional filter visualizations in the frequency domain

C.1 Additional Kernel Mass Evaluation

In the following, we present the kernel mass evaluations for all models on ImageNet-
100 and additional models on CIFAR-10 in Figures C.1 and C.2, respectively. The
findings are consistent across all models and datasets, as discussed in the Chapter
7. Models trained on large datasets like ImageNet-1k and ImageNet-100 accumulate
the most kernel mass within 9× 9 kernels, whereas for a smaller dataset like CIFAR-
10, the most kernel mass is concentrated within 5× 5 kernels. Hence, the standard
kernel size of 3× 3, as used in ResNet [He et al. (2016a)], DenseNet [Huang et al.
(2017b)], and MobileNet [Sandler et al. (2018)], is insufficient. In contrast, ConvNeXt
[Liu et al. (2022b)], which employs 7× 7 kernels, represents a significant step in the
right direction.

174 Appendix C. Supplementary for Chapter 7

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-18

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-50

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-101

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ConvNeXt-tiny

Layer 1 (max resolution 56x56)
Layer 2 (max resolution 56x56)
Layer 3 (max resolution 28x28)
Layer 4 (max resolution 14x14)
effective kernel size 9x9

0 10 20 30 40 50
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

DenseNet-121

Layer 1 (max reslution 56x56)
Layer 2 (max resolution 28x28)
Layer 3 (max resolution 14x14)
Layer 4 (max resolution 7x7)
effective kernel size 9x9

0 20 40 60 80 100
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

MobileNet-v2

max resolution 112x112
max resolution 56x56
max resolution 28x28
max resolution 14x14
max resolution 7x7
effective kernel size 9x9

FIGURE C.1: Effective Kernel Size Evaluation on ImageNet-100. We plot the average ratio
of the entire kernel mass contained within the limited spatial kernel size, where the x-axis
denotes the width and height of the squared kernels. For ResNet and ConvNeXt-tiny each
layer encodes one resolution. Thus, the layers could be summarised (Layer 1 encoding 56×
56, Layer 2 56× 56, Layer 3 28× 28 and Layer 4 14× 14). For DenseNet-121 each layer can be
summarised similarly, yet the after the first layer the feature maps are already downsampled
resulting in the following: Layer 1 encoding 56× 56, Layer 2 28× 28, Layer 3 14× 14 and

Layer 4 7× 7. However, for MobileNet-v2 the resolution is downsampled within a layer.

C.1. Additional Kernel Mass Evaluation 175

0 2 4 6 8 10 12 14 16
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-18

Layer 1 (max resolution 16x16)
Layer 2 (max resolution 8x8)
Layer 3 (max resolution 4x4)
effective kernel size 5x5

0 2 4 6 8 10 12 14 16
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ResNet-50

Layer 1 (max resolution 16x16)
Layer 2 (max resolution 8x8)
Layer 3 (max resolution 4x4)
effective kernel size 5x5

0 5 10 15 20 25 30
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

MobileNet-v2

max resolution 32x32
max resolution 16x16
max resolution 8x8
max resolution 4x4
effective kernel size 5x5

0 2 4 6 8 10 12 14 16
kernel size

0.0

0.2

0.4

0.6

0.8

1.0

ke
rn

el
 m

as
s

ra
tio

ConvNeXt-tiny

Layer 1 (max resolution 16x16)
Layer 2 (max resolution 8x8)
Layer 3 (max resolution 4x4)
effecive kernel size 5x5

FIGURE C.2: Effective Kernel Size Evaluation on CIFAR-10. We plot the average ratio of the
entire kernel mass contained within the limited spatial kernel size, where the x-axis denotes
the width and height of the squared kernels. For ResNet models, each layer encodes one
resolution. Thus, the layers could be summarised (Layer 1 encoding 16× 16, Layer 2 8× 8
and Layer 3 4× 4). For ConvNeXt-tiny the first layer started with 32× 32. However, for

MobileNet-v2 the resolution is downsampled within a layer.

176 Appendix C. Supplementary for Chapter 7

C.2 Additional Evaluation of Non-Square Kernels

In the following, we present the full results on evaluating the kernel shape of the
learned kernels in the spatial domain. Figures C.3 and C.4 demonstrate that all mod-
els have a mean of roughly one indicating the same results presented in Section 7.3,
the learned kernels are predominately square-shaped.

layer1 layer2 layer3 layer4
layer-depth

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

x
/

y

ResNet-18

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x
/

y

ResNet-50

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0

1

2

3

x
/

y

ResNet-101

Square kernels
Mean over all kernels
Std over all kernels

112 56 28 14
resolution

0.6

0.8

1.0

1.2

1.4

1.6

x
/

y

MobileNet-v2

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.0

0.5

1.0

1.5

2.0

2.5

x
/

y

DenseNet-121

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
/

y

ConvNeXt-tiny

Square kernels
Mean over all kernels
Std over all kernels

FIGURE C.3: Analysis of Non-Square Kernel Shapes for our NIFF on ImageNet-1k. Anal-
ysis of non-square kernel shapes on ImageNet-1k. We compare the variance σx and σy in x-
and y-direction of a Gaussian fitted onto our learned spatial weights. The red dashed line

indicates square-shaped kernels as the variance σx and σy are equal.

C.3. Additional Spatial Filter Visualization 177

layer1 layer2 layer3 layer4
layer-depth

1

0

1

2

3

4

5
x

/
y

ResNet-18

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.0

0.5

1.0

1.5

2.0

2.5

x
/

y

ResNet-50

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.6

0.8

1.0

1.2

1.4

1.6

x
/

y

ResNet-101

Square kernels
Mean over all kernels
Std over all kernels

112 56 28 14
resolution

0.6

0.8

1.0

1.2

1.4

1.6

x
/

y

MobileNet-v2

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.0

0.5

1.0

1.5

2.0

x
/

y

DenseNet-121

Square kernels
Mean over all kernels
Std over all kernels

layer1 layer2 layer3 layer4
layer-depth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x
/

y

ConvNeXt-tiny

Square kernels
Mean over all kernels
Std over all kernels

FIGURE C.4: Analysis of Non-Square Kernel Shapes for our NIFF on ImageNet-100. Anal-
ysis of non-square kernel shapes on ImageNet-100. We compare the variance σx and σy in x-
and y-direction of a Gaussian fitted onto our learned spatial weights. The red dashed line

indicates square-shaped kernels as the variance σx and σy are equal.

C.3 Additional Spatial Filter Visualization

In the following, we present the spatial filter visualizations. First, the zoomed-in
PCA analysis for additional networks on ImageNet-1k, ImageNet-100, and CIFAR-
10 is provided. Figures C.5, C.6 and C.7 present the PCA for ConvNeXt-tiny, Dense-
Net-121 and MobileNet-v2 trained on ImageNet-1k, respectively.

All spatial filter for the models trained on ImageNet-100 are presented in Fig-
ures C.8, C.9, C.10, and C.11 for ResNet-50, ConvNeXt-tiny, DenseNet-121, and
MobileNet-v2, respectively.

For CIFAR-10, the additional MobileNet-v2 results are shown in Figure C.12. The
findings are consistent with those reported in Chapter 7, showing that the highest
variance for the kernels is expressed in small, well-localized kernels compared to the
size they could have learned.

Second, we provide the original-size PCA analysis for all networks and high-
resolution datasets which we zoomed in prior for better visibility to ensure trans-
parency. The results for ImageNet-1k are presented in Figures C.13, C.14, C.15 and
C.16 for ResNet-50, DenseNet-121, ConvNeXt-tiny and MobileNet-v2 respectively.
The results for ImageNet-100 are presented in Figures C.17, C.18, C.19 and C.20 for
ResNet-50, ConvNeXt-tiny, DenseNet-121, and MobileNet-v2, respectively.

Further, we provide the full visualization without zoom of the PCA analysis for
the ResNet-18 trained on ImageNet-100 with additional zero padding before our
NIFF in Figure C.21.

The full visualization without zoom of the PCA analysis for the ResNet-18 trained
on ImageNet-100 with additional zero padding of our NIFF and the featuremaps to
mimic a linear convolution in Figure C.22.

178 Appendix C. Supplementary for Chapter 7

0.86

La
ye

r
1

56
x5

6

v0

0.04

v1

0.03

v2

0.03

v3

0.03

v4

0.01

v5

<0.01

v6

0.78
La

ye
r

2
56

x5
6

0.07 0.06 0.04 0.03 <0.01 <0.01

0.79

La
ye

r
3

28
x2

8

0.06 0.05 0.04 0.02 0.02 <0.01

0.41

La
ye

r
4

14
x1

4

0.35 0.17 0.04 0.01 0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.5: Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-1k.
PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a ConvNeXt-tiny trained on ImageNet-1k zoomed to 9× 9. On the left, the maxi-
mal filter size for the corresponding layer is given. ConvNeXt convolutions are standardly
equipped with larger kernel sizes than usual (7× 7). However, our analysis reveals that the
network barely uses large filters if it gets the opportunity to learn large filters. The learned

filters in the first and third layer mostly use small (3× 3), well-localized filters.

Finally, we present a random selection of the spatial kernels in both their full size
and zoomed-in views in Figure C.23 for ResNet-50 and Figure C.24 for ConvNeXt-
tiny.

C.4 Additional Frequency Filter Visualization

In the following, we provide the visualizations of the full PCA analysis up to the
fourth principle component of the multiplication weights of our ImageNet-1k NIFFs
learned in the frequency domain. Figures C.25, C.26, C.28 and C.27 show the full
PCA per layer for the learned element-wise multiplication weights for ResNet-50,
DenseNet-121, ConvNeXt-tiny and MobileNet-V2 respectively.

C.4. Additional Frequency Filter Visualization 179

0.96
La

ye
r

1
56

x5
6

v0

0.02

v1

<0.01

v2

<0.01

v3

<0.01

v4

<0.01

v5

<0.01

v6

0.98

La
ye

r
2

28
x2

8

0.02 <0.01 <0.01 <0.01 <0.01 <0.01

0.97

La
ye

r
3

14
x1

4

0.02 <0.01 <0.01 <0.01 <0.01 <0.01

0.98

La
ye

r
4

7x
7

0.01 <0.01 <0.01 <0.01 <0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.6: Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-1k.
PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a DenseNet-121 trained on ImageNet-1k zoomed to 9 × 9. On the left, the maxi-
mal filter size for the corresponding layer is given. We can see that most filters only use a

well-localized, small kernel size although they could use a much bigger kernel.

0.78

St
ag

e
12

8x
12

8

v0

0.11

v1

0.10

v2

0.01

v3

<0.01

v4

<0.01

v5

<0.01

v6

0.84

St
ag

e
56

x5
6

0.08 0.05 0.03 <0.01 <0.01 <0.01

0.72

St
ag

e
28

x2
8

0.08 0.07 0.06 0.04 0.01 0.01

0.81

St
ag

e
14

x1
4

0.05 0.05 0.04 0.02 0.01 <0.01

0.85

St
ag

e
7x

7

0.09 0.02 0.01 0.01 0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.7: Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-1k.
PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a MobileNet-v2 trained on ImageNet-1k zoomed to 9 × 9. On the left, the maxi-
mal filter size for the corresponding stage is given. For MobileNet-v2 the feature maps are
downsampled within a layer, thus the stages are combine by feature maps size rather than
the layers. We can see that most filters only use a well-localized, small kernel size although

they could use a much bigger kernel.

180 Appendix C. Supplementary for Chapter 7

0.74
La

ye
r

1
56

x5
6

v0

0.14

v1

0.05

v2

0.03

v3

0.01

v4

0.01

v5

0.01

v6

0.69

La
ye

r
2

56
x5

6

0.18 0.04 0.03 0.02 0.02 <0.01

0.77

La
ye

r
3

28
x2

8

0.07 0.04 0.03 0.03 0.01 0.01

0.82

La
ye

r
4

14
x1

4

0.13 0.02 0.01 0.01 <0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.8: Spatial Filter Visualization for our NIFF ResNet-50 on ImageNet-100. PCA
basis and explained variance for each basis vector (below) of all spatial filters for each layer
of a ResNet-50 trained on ImageNet-100 zoomed to 9 × 9. On the left, the maximal filter
size for the corresponding layer is given. We can see that most filters only use a really small

kernel size although they could use a much bigger kernel.

0.88

La
ye

r
1

56
x5

6

v0

0.03

v1

0.03

v2

0.03

v3

0.02

v4

<0.01

v5

<0.01

v6

0.89

La
ye

r
2

56
x5

6

0.04 0.02 0.02 0.02 <0.01 <0.01

0.82

La
ye

r
3

28
x2

8

0.11 0.03 0.02 0.02 <0.01 <0.01

0.70

La
ye

r
4

14
x1

4

0.24 0.03 0.01 0.01 <0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.9: Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-100.
PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a ConvNeXt-tiny trained on ImageNet-100 zoomed to 9× 9. On the left, the maximal
filter size for the corresponding layer is given. We can see that most filters only use a really

small kernel size although they could use a much bigger kernel.

C.4. Additional Frequency Filter Visualization 181

0.87

La
ye

r
1

56
x5

6

v0

0.06

v1

0.02

v2

0.02

v3

0.01

v4

0.01

v5

0.01

v6

0.80

La
ye

r
2

28
x2

8

0.09 0.04 0.03 0.02 0.01 0.01

0.80

La
ye

r
3

14
x1

4

0.08 0.05 0.02 0.02 0.01 <0.01

0.83

La
ye

r
4

7x
7

0.11 0.03 0.02 0.01 <0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.10: Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-100.
PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a DenseNet-121 trained on ImageNet-100 zoomed to 9× 9. On the left, the maximal
filter size for the corresponding layer is given. We can see that most filters only use a well-

localized, small kernel size although they could use a much bigger kernel.

0.98

St
ag

e
12

8x
12

8

v0

0.01

v1

0.01

v2

<0.01

v3

<0.01

v4

<0.01

v5

<0.01

v6

0.90

St
ag

e
56

x5
6

0.06 0.03 0.01 0.01 <0.01 <0.01

0.78

St
ag

e
28

x2
8

0.16 0.03 0.01 0.01 <0.01 <0.01

0.72

St
ag

e
14

x1
4

0.14 0.07 0.03 0.01 0.01 0.01

0.72

St
ag

e
7x

7

0.15 0.09 0.02 0.01 <0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.11: Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-100.
PCA basis and explained variance for each basis vector (below) of all spatial filters for each
layer of a MobileNet-v2 trained on ImageNet-100 zoomed to 9× 9. On the left, the maxi-
mal filter size for the corresponding stage is given. For MobileNet-v2 the feature maps are
downsampled within a layer, thus the stages are combine by feature maps size rather than
the layers. We can see that most filters only use a well-localized, small kernel size although

they could use a much bigger kernel.

182 Appendix C. Supplementary for Chapter 7

0.59

32
x3

2

v0

0.18

v1

0.12

v2

0.06

v3

0.02

v4

0.01

v5

0.01

v6

0.42

16
x1

6

0.24 0.16 0.12 0.03 0.02 0.01

0.31

N
IF

F
8x

8

0.24 0.21 0.17 0.04 0.03 <0.01

0.38

4x
4

0.29 0.18 0.10 0.05 <0.01 <0.01

0.42St
an

da
rd

3x

3

0.20 0.13 0.13 0.05 0.04 0.02
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.12: Spatial Filter Visualization for our NIFF MobileNet-v2 on CIFAR-10. PCA
basis and explained variance for each basis vector (below) of all spatial filters for each res-
olution for the NIFF convolutions of a MobileNet-V2 trained on CIFAR-10 as well as the
learned filters for the third layer of a standard MobileNet-V2 trained on CIFAR-10 (bottom
row). On the right, the maximal filter size for the corresponding layer is given. We can see
that most filters only use a well-localized, small kernel size although they could use much

bigger kernels.

C.4. Additional Frequency Filter Visualization 183

0.62
La

ye
r

1
56

x5
6

v0

0.17

v1

0.10

v2

0.04

v3

0.04

v4

0.01

v5

0.01

v6

0.75

La
ye

r
2

56
x5

6

0.15 0.04 0.01 0.01 0.01 <0.01

0.90

La
ye

r
3

28
x2

8

0.06 0.02 0.01 <0.01 <0.01 <0.01

0.87

La
ye

r
4

14
x1

4

0.09 0.02 <0.01 <0.01 <0.01 <0.01 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.13: Spatial Filter Visualization for our NIFF ResNet-50 on ImageNet-1k without
Zoom. PCA basis and explained variance for each basis vector (below) of all spatial filters
for each layer of a ResNet-50 trained on ImageNet-1k original size (not zoomed). On the left,
the maximal filter size for the corresponding layer is given. We can see that most filters only

use a well-localized, small kernel size although they could use a much bigger kernel.

0.96

La
ye

r
1

56
x5

6

v0

0.02

v1

0.02

v2

0.00

v3

0.00

v4

0.00

v5

0.00

v6

0.86

La
ye

r
2

56
x5

6

0.09 0.02 0.02 0.01 0.00 0.00

0.82

La
ye

r
3

28
x2

8

0.16 0.01 0.00 0.00 0.00 0.00

0.78

La
ye

r
4

14
x1

4

0.14 0.04 0.02 0.01 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.14: Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-1k
without Zoom. PCA basis and explained variance for each basis vector (below) of all spatial
filters for each layer of a ConvNeXt-tiny trained on ImageNet-1k original size (not zoomed).
On the left, the maximal filter size for the corresponding layer is given. We can see that most
filters only use a well-localized, small kernel size although they could use a much bigger

kernel.

184 Appendix C. Supplementary for Chapter 7

0.96

La
ye

r
1

56
x5

6

v0

0.02

v1

0.00

v2

0.00

v3

0.00

v4

0.00

v5

0.00

v6

0.98

La
ye

r
2

28
x2

8
0.02 0.00 0.00 0.00 0.00 0.00

0.97

La
ye

r
3

14
x1

4

0.02 0.00 0.00 0.00 0.00 0.00

0.98

La
ye

r
4

7x
7

0.01 0.00 0.00 0.00 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.15: Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-1k
without Zoom. PCA basis and explained variance for each basis vector (below) of all spatial
filters for each layer of a DenseNet-121 trained on ImageNet-1k original size (not zoomed).
On the left, the maximal filter size for the corresponding layer is given. We can see that most
filters only use a well-localized, small kernel size although they could use a much bigger

kernel.

0.78

11
2x

11
2

v0

0.11

v1

0.10

v2

0.01

v3

0.00

v4

0.00

v5

0.00

v6

0.84

56
x5

6

0.08 0.05 0.03 0.00 0.00 0.00

0.78

28
x2

8

0.12 0.04 0.03 0.02 0.00 0.00

0.84

14
x1

4

0.09 0.05 0.01 0.01 0.00 0.00

0.82

7x
7

0.11 0.03 0.03 0.01 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.16: Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-1k
without Zoom. PCA basis and explained variance for each basis vector (below) of all spatial
filters for each layer of a MobileNet-v2 trained on ImageNet-1k original size (not zoomed).
On the left, the maximal filter size for the corresponding layer is given. We can see that most
filters only use a well-localized, small kernel size although they could use a much bigger

kernel.

C.4. Additional Frequency Filter Visualization 185

0.76
La

ye
r

1
56

x5
6

v0

0.15

v1

0.03

v2

0.03

v3

0.01

v4

0.01

v5

0.01

v6

0.79

La
ye

r
2

56
x5

6

0.14 0.05 0.01 0.01 0.00 0.00

0.89

La
ye

r
3

28
x2

8

0.06 0.02 0.01 0.01 0.01 0.00

0.78

La
ye

r
4

14
x1

4

0.18 0.02 0.01 0.01 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.17: Spatial Filter Visualization for our NIFF ResNet-50 on ImageNet-100 with-
out Zoom. PCA basis and explained variance for each basis vector (below) of all spatial
filters for each layer of a ResNet-50 trained on ImageNet-100 original size (not zoomed). On
the left, the maximal filter size for the corresponding layer is given. We can see that most
filters only use a well-localized, small kernel size although they could use a much bigger

kernel.

0.98

La
ye

r
1

56
x5

6

v0

0.02

v1

0.00

v2

0.00

v3

0.00

v4

0.00

v5

0.00

v6

0.96

La
ye

r
2

56
x5

6

0.03 0.00 0.00 0.00 0.00 0.00

0.98

La
ye

r
3

28
x2

8

0.02 0.00 0.00 0.00 0.00 0.00

0.82

La
ye

r
4

14
x1

4

0.14 0.02 0.02 0.00 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.18: Spatial Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-100
without Zoom. PCA basis and explained variance for each basis vector (below) of all spatial
filters for each layer of a ConvNeXt-tiny trained on ImageNet-100 original size (not zoomed).
On the left, the maximal filter size for the corresponding layer is given. We can see that most
filters only use a well-localized, small kernel size although they could use a much bigger

kernel.

186 Appendix C. Supplementary for Chapter 7

0.91

La
ye

r
1

56
x5

6

v0

0.05

v1

0.03

v2

0.01

v3

0.00

v4

0.00

v5

0.00

v6

0.97

La
ye

r
2

28
x2

8
0.01 0.01 0.00 0.00 0.00 0.00

0.57

La
ye

r
3

14
x1

4

0.41 0.01 0.00 0.00 0.00 0.00

0.80

La
ye

r
4

7x
7

0.10 0.07 0.02 0.01 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.19: Spatial Filter Visualization for our NIFF DenseNet-121 on ImageNet-100
without Zoom. PCA basis and explained variance for each basis vector (below) of all spatial
filters for each layer of a DenseNet-121 trained on ImageNet-100 original size (not zoomed).
On the left, the maximal filter size for the corresponding layer is given. We can see that most
filters only use a well-localized, small kernel size although they could use a much bigger

kernel.

0.98

11
2x

11
2

v0

0.01

v1

0.01

v2

0.00

v3

0.00

v4

0.00

v5

0.00

v6

0.90

56
x5

6

0.06 0.03 0.01 0.01 0.00 0.00

0.81

28
x2

8

0.14 0.04 0.01 0.00 0.00 0.00

0.79

14
x1

4

0.12 0.07 0.01 0.01 0.00 0.00

0.80

7x
7

0.08 0.07 0.03 0.01 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.20: Spatial Filter Visualization for our NIFF MobileNet-v2 on ImageNet-100
without Zoom. PCA basis and explained variance for each basis vector (below) of all spatial
filters for each layer of a MobileNet-v2 trained on ImageNet-100 original size (not zoomed).
On the left, the maximal filter size for the corresponding layer is given. We can see that most
filters only use a well-localized, small kernel size although they could use a much bigger

kernel.

C.4. Additional Frequency Filter Visualization 187

0.87

La
ye

r
1

56
x5

6

v0

0.10

v1

0.01

v2

0.01

v3

0.00

v4

0.00

v5

0.00

v6

0.92

La
ye

r
2

56
x5

6

0.03 0.03 0.01 0.00 0.00 0.00

0.78

La
ye

r
3

28
x2

8

0.20 0.00 0.00 0.00 0.00 0.00

0.70

La
ye

r
4

14
x1

4

0.25 0.02 0.02 0.01 0.01 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.21: Spatial Filter Visualization for our NIFF ResNet-18 with additional Zero
Padding on ImageNet-100 without Zoom. Actual kernels in the spatial domain of a ResNet-
18 with additional zero padding before our NIFF trained on ImageNet-100. Still, most ker-

nels exhibit well-localized, small spatial kernels.

0.51

La
ye

r
1

56
x5

6

v0

0.23

v1

0.20

v2

0.02

v3

0.01

v4

0.01

v5

0.01

v6

0.74

La
ye

r
2

56
x5

6

0.12 0.06 0.04 0.02 0.01 0.01

0.65

La
ye

r
3

28
x2

8

0.15 0.08 0.04 0.03 0.02 0.01

0.85

La
ye

r
4

14
x1

4

0.10 0.03 0.02 0.00 0.00 0.00 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.22: Spatial Filter Visualization for our NIFF ResNet-18 Mimic Linear Convolu-
tions on ImageNet-100 without Zoom. Actual kernels in the spatial domain of a ResNet-18
which mimics linear convolutions with our NIFF to mimic linear convolutions trained on
ImageNet-100. Still, most kernels exhibit well-localized, small spatial kernels. However,

they are slightly larger than the kernels learned without padding and cropping.

188 Appendix C. Supplementary for Chapter 7

La
ye

r
1

56
x5

6

La
ye

r
1

zo
om

ed

9x
9

La
ye

r
1

56
x5

6

La
ye

r
1

zo
om

ed

9x
9

La
ye

r
2

56
x5

6

La
ye

r
2

zo
om

ed

9x
9

La
ye

r
2

56
x5

6

La
ye

r
2

zo
om

ed

9x
9

La
ye

r
3

28
x2

8

La
ye

r
3

zo
om

ed

9x
9

La
ye

r
3

28
x2

8

La
ye

r
3

zo
om

ed

9x
9

La
ye

r
4

14
x1

4

La
ye

r
4

zo
om

ed

9x
9

La
ye

r
4

14
x1

4

La
ye

r
4

zo
om

ed

9x
9

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.23: Overview of random Spatial Kernels of our NIFF ResNet-50 on ImageNet-
1k. Actual kernels in the spatial domain of a ResNet-50 including our NIFF trained on
ImageNet-1k. We plot for each kernel the zoomed-in (9× 9) version below for better vis-

ibility. Overall, most kernels exhibit well-localized, small spatial kernels.

C.4. Additional Frequency Filter Visualization 189

La
ye

r
1

56
x5

6

La
ye

r
1

zo
om

ed

9x
9

La
ye

r
1

56
x5

6

La
ye

r
1

zo
om

ed

9x
9

La
ye

r
2

56
x5

6

La
ye

r
2

zo
om

ed

9x
9

La
ye

r
2

56
x5

6

La
ye

r
2

zo
om

ed

9x
9

La
ye

r
3

28
x2

8

La
ye

r
3

zo
om

ed

9x
9

La
ye

r
3

28
x2

8

La
ye

r
3

zo
om

ed

9x
9

La
ye

r
4

14
x1

4

La
ye

r
4

zo
om

ed

9x
9

La
ye

r
4

14
x1

4

La
ye

r
4

zo
om

ed

9x
9

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

FIGURE C.24: Overview of random Spatial Kernels of our NIFF ConvNeXt-tiny on
ImageNet-1k. Actual kernels in the spatial domain of a ConvNeXt-tiny including our NIFF
trained on ImageNet-1k. We plot for each kernel the zoomed-in (9× 9) version below for

better visibility. Overall, most kernels exhibit well-localized, small spatial kernels.

190 Appendix C. Supplementary for Chapter 7

0.61La
ye

r
1

56
x5

6
R

ea
l

v0

0.17

v1

0.10

v2

0.04

v3

0.61

Im
ag

v0

0.17

v1

0.10

v2

0.04

v3

0.73La
ye

r
2

56
x5

6
R

ea
l

0.15 0.05 0.02 0.73

Im
ag

0.15 0.05 0.02

0.90La
ye

r
3

28
x2

8
R

ea
l

0.06 0.02 0.01 0.90

Im
ag

0.06 0.02 0.01

0.59La
ye

r
4

14
x1

4
R

ea
l

0.36 0.04 0.01 0.59
Im

ag
0.36 0.04 0.01 0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

FIGURE C.25: Frequency Filter Visualization for our NIFF ResNet-50 on ImageNet-1k.
PCA basis and explained variance for each basis vector (below) of all element-wise multipli-
cation weights for the real and imaginary part in the frequency domain for each layer of a
ResNet-50 trained on ImageNet-1k. On the left, the maximal filter size for the correspond-
ing layer is given. Right the weights for the real values are given, and on the left are the

imaginary values.

0.92La
ye

r
1

56
x5

6
R

ea
l

v0

0.04

v1

0.03

v2

0.01

v3

0.92

Im
ag

v0

0.04

v1

0.03

v2

0.01

v3

0.84La
ye

r
2

56
x5

6
R

ea
l

0.07 0.05 0.02 0.84

Im
ag

0.07 0.05 0.02

0.85La
ye

r
3

28
x2

8
R

ea
l

0.07 0.04 0.02 0.85

Im
ag

0.07 0.04 0.02

0.55La
ye

r
4

14
x1

4
R

ea
l

0.32 0.07 0.03 0.55

Im
ag

0.32 0.07 0.03

0.1

0.0

0.1

0.2

FIGURE C.26: Frequency Filter Visualization for our NIFF ConvNeXt-tiny on ImageNet-
1k. PCA basis and explained variance for each basis vector (below) of all element-wise
multiplication weights for the real and imaginary part in the frequency domain for each
layer of a ConvNeXt-tiny trained on ImageNet-1k. On the left, the maximal filter size for the
corresponding layer is given. Right the weights for the real values are given, and on the left

are the imaginary values.

C.4. Additional Frequency Filter Visualization 191

0.98La
ye

r
1

56
x5

6
R

ea
l

v0

0.01

v1

<0.01

v2

<0.01

v3

0.98

Im
ag

v0

0.01

v1

<0.01

v2

<0.01

v3

0.98La
ye

r
2

28
x2

8
R

ea
l

0.01 0.01 <0.01 0.98

Im
ag

0.01 0.01 <0.01

0.98La
ye

r
3

14
x1

4
R

ea
l

0.01 <0.01 <0.01 0.98

Im
ag

0.01 <0.01 <0.01

0.93La
ye

r
4

7x
7

R
ea

l

0.04 0.02 <0.01 0.93

Im
ag

0.04 0.02 <0.01

0.2

0.1

0.0

0.1

0.2

FIGURE C.27: Frequency Filter Visualization for our NIFF DenseNet-121 on ImageNet-
1k. PCA basis and explained variance for each basis vector (below) of all element-wise
multiplication weights for the real and imaginary part in the frequency domain for each
layer of a DenseNet-121 trained on ImageNet-1k. On the left, the maximal filter size for the
corresponding layer is given. Right the weights for the real values are given, and on the left

are the imaginary values.

0.9911
2x

11
2

R
ea

l

v0

0.01

v1

<0.01

v2

<0.01

v3

0.99

Im
ag

v0

0.01

v1

<0.01

v2

<0.01

v3

0.84

56
x5

6
R

ea
l

0.08 0.05 0.03 0.84

Im
ag

0.08 0.05 0.03

0.78

28
x2

8
R

ea
l

0.11 0.07 0.03 0.78

Im
ag

0.11 0.07 0.03

0.79

14
x1

4
R

ea
l

0.07 0.05 0.04 0.79

Im
ag

0.07 0.05 0.04

0.73

7x
7

R
ea

l

0.15 0.09 0.01 0.73

Im
ag

0.15 0.09 0.01

0.4

0.3

0.2

0.1

0.0

0.1

0.2

FIGURE C.28: Frequency Filter Visualization for our NIFF MobileNet-v2 on ImageNet-
1k. PCA basis and explained variance for each basis vector (below) of all element-wise
multiplication weights for the real and imaginary part in the frequency domain for each
layer of a MobileNet-v2 trained on ImageNet-1k. On the left, the maximal filter size for the
corresponding layer is given. Right the weights for the real values are given, and on the left

are the imaginary values.

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Contribution Overview
	Robust Models are Less Over-Confident
	Aliasing and Adversarially Robust Generalization of CNNs
	Aliasing-Free Downsampling in the Frequency Domain
	Neural Implicit Frequency Filters

	Outline
	Publications
	Notation

	Foundations
	Convolutional Neural Networks
	Components
	Evaluation Methods

	Adversarial Attacks
	Adversarial Training

	Datasets
	Low-Resolution Datasets
	High-Resolution Datasets

	Digital Signal Processing Fundamentals
	Fourier Transform
	Fast Fourier Transform
	Convolution Theorem
	Sampling Theorem
	Aliasing
	Sinc Interpolation Artifacts
	Principal Component Analysis

	Related Work
	Robustness
	Common Corruptions
	Downsampling Attacks
	Adversarial Attacks
	Adversarial Training

	Confidence Calibration
	Frequency Domain for Image Classification
	Frequency Analysis for Robustness and Attack Detection
	Aliasing in CNNs
	Spectral Leakage Artifacts in CNNs
	Training CNNs in the Frequency Domain

	Dynamic and Steerable Filters
	Large Kernel Sizes
	Neural Implicit Representations

	I Multifaceted Analysis of Robust CNNs
	Robust Models are Less Over-Confident
	Introduction
	Experiments
	Experimental Setup
	CIFAR Models
	ImageNet-1k Models

	Discussion
	Limitations

	Conclusion

	Aliasing and Adversarially Robust Generalization of CNNs
	Introduction
	Method
	Aliasing Measure

	Experiments
	Aliasing in Existing Models
	CNN vs. FCN
	Aliasing During Adversarial Training
	Catastrophic Overfitting
	Aliasing Early Stopping

	Discussion
	Spectrum of Adversarial Perturbations
	Aliasing in Pre-Trained Models
	Aliasing and Catastrophic Overfitting
	Limitations

	Conclusion

	II Novel Fourier Modules
	Aliasing-Free Downsampling in the Frequency Domain
	Introduction
	Method
	Aliasing in CNNs Downsampling
	FrequencyLowCut Pooling
	Sinc Interpolation Artifact-Free Pooling
	Integration into CNNs

	Experiments
	Artifact Representation
	Native Robustness
	Adversarial Training and Catastrophic Overfitting
	Ablation Studies

	Discussion
	Efficiency
	Limitations

	Conclusion

	Neural Implicit Frequency Filters
	Introduction
	Method
	Neural Implicit Frequency Filters
	Common CNN Building Blocks using NIFF

	Experiments
	Training Details
	How Large Do Spatial Kernels Really Need To Be?
	Quantitative Results
	Filter Analysis
	Circular vs. Linear Convolution
	Ablation on More Modules

	Discussion
	NIFF's Architecture
	Efficiency
	Limitations

	Conclusion

	Conclusion and Outlook
	Key Insights and Conclusion
	Impact on the Community
	Limitations

	Future Directions
	Exploring the Multifaceted Role of Aliasing
	High-Resolution with NIFF and FLC Pooling
	NIFF Beyond 2D
	A Comprehensive Overview

	Supplementary for Chapter 4
	Additional ECE Bar Plots
	Additional Overconfidence Bar Plots
	Empirical Confidence Distributions
	Additional Precision Recall Curves
	ROC curves for ImageNet-1k
	Model Overview

	Supplementary for Chapter 6
	Confidence Distributions

	Supplementary for Chapter 7
	Additional Kernel Mass Evaluation
	Additional Evaluation of Non-Square Kernels
	Additional Spatial Filter Visualization
	Additional Frequency Filter Visualization

