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“The first principle is that you must not fool yourself — and you are the easiest person to fool.”
— Richard P. Feynman



Erklärung zum Einsatz von
Generativen Textmodellen

In der Erstellung dieser Arbeit wurden die generative Textmodelle (auch bekannt als large language
models (LLMs)) OpenAI ChatGPT, Google Gemini, LanguageTool, sowie Grammarly eingesetzt, um die
schriftliche Präsentation dieser Thesis zu verbessern. In diesem Zusammenhang wurden einzelne und
bereits formulierte Sätze und Textpassagen sprachlich und grammatikalisch überarbeitet, umformuliert,
strukturiert und/oder von diesen Modellen zusammengefasst. Die erstellten Texte wurden zudem
manuell geprüft und häufig weiter überarbeitet. Die Modelle wurden nicht dazu eingesetzt, neue
Inhalte zu generieren. Insbesondere wurden alle in dieser Thesis eingeführten Methoden, Experimente
und Resultate eigenständig – beziehungsweise mit oder von den jeweils gekennzeichneten Autoren –
erarbeitet.
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Abstract

A key challenge in machine learning, particularly for image classifiers, is the robust generalization to
new data – while models often perform well on data drawn from similar distributions as their training
set, they struggle with samples exhibiting even slight deviations. Although increasing training data
volume is a straightforward solution, it is often expensive, resource-intensive, and sometimes simply
impossible. We propose a more structured approach: rather than indiscriminately training on massive
datasets, we focus on understanding and leveraging knowledge embedded within existing models. Our
goal is to investigate model populations with varying degrees of generalization ability to uncover the
underlying mechanisms that contribute to robust performance.

We pursue this goal through two complementary lines of investigation. The first part of this thesis
focuses on representations in learned weights: We analyze the representations encoded in the learned
weights of Convolutional Neural Networks (CNNs), specifically focusing on convolutional filters.
Through several studies, we identify points of representational divergence across different CNN models
and explore the factors influencing these differences, with a particular emphasis on the impact of
adversarial training – a state-of-the-art regularization technique to achieve robustness to adversarial
perturbations. Based on these findings, we propose a novel, simple, and computationally efficient
regularization technique for convolution filters in standard training that enhances model robustness
against adversarial attacks and other forms of covariate shift.

The second part of this thesis focuses on visual perception biases. We investigate the visual biases
exhibited by models, specifically comparing them to human perception by measuring alignment. We
demonstrate how adversarial regularization affects these biases and correlate several well-known biases
with generalization performance. Our results challenge previous claims that simply aligning individual
visual biases holistically improves model generalization. Instead, we find that bias alignment often only
improves predictions under specific types of covariate shift. Finally, we examine the propagation of
visual information within large vision-language models (VLMs), revealing that simple natural language
prompts can effectively steer inherent visual perception biases.

Taken together, this thesis offers valuable insights into the learned representations of object recognition
models. By enhancing our understanding of generalization mechanisms, we establish promising
techniques such as filter regularization for discriminative models and test-time bias steering in VLMs.
Furthermore, we delineate the limitations of existing approaches and identify less promising directions,
such as simply regularizing biases during the training of discriminative models.
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Zusammenfassung

Eine zentrale Herausforderung im maschinellen Lernen – insbesondere bei Bildklassifikatoren – besteht
in der robusten Generalisierung auf neue Daten. Während diese Modelle häufig gute Leistungen
auf Daten erbringen, die aus Verteilungen stammen, die ihrem Trainingsdatensatz ähneln, haben sie
Schwierigkeiten mit Beispielen, die auch nur geringfügig abweichen. Obwohl eine Vergrößerung des
Trainingsdatensatzes eine naheliegende Lösung darstellt, ist dieser Ansatz oft zu teuer, ressourcenin-
tensiv und manchmal schlichtweg unmöglich. Wir schlagen einen strukturierteren Ansatz vor: Anstatt
scheinbar wahllos auf massiven Datensätzen zu trainieren, konzentrieren wir uns darauf, das in bestehen-
den Modellen eingebettete Wissen zu verstehen und zu nutzen. Unser Ziel ist es, Modellpopulationen
mit unterschiedlichen Ausprägungen der Generalisierungsfähigkeit zu untersuchen, um die zugrunde
liegenden Mechanismen aufzudecken, die zu einer robusten Leistung beitragen.

Dieses Ziel verfolgen wir durch zwei komplementäre Forschungsansätze. Der erste Teil dieser Ar-
beit konzentriert sich auf Repräsentationen in den gelernten Gewichten: Wir analysieren die in den
Gewichten von Convolutional Neural Networks (CNNs) kodierten Repräsentationen, wobei unser
besonderer Fokus auf den Faltungsfiltern liegt. Durch mehrere Studien identifizieren wir Punkte
repräsentativer Divergenz zwischen verschiedenen CNN-Modellen und untersuchen die Faktoren, die
diese Unterschiede beeinflussen – mit besonderem Augenmerk auf den Einfluss des “Adversarial
Trainings”, einer effektiven Regularisierungstechnik, die Robustheit gegenüber “feindlichen Angriffen”
(Adversarial Attacks) erreicht. Basierend auf diesen Erkenntnissen schlagen wir eine neuartige, einfache
und recheneffiziente Regularisierungstechnik für Faltungsfilter im Standardtraining vor, die die Robus-
theit von Modellen gegenüber feindlichen Angriffen und anderen Formen der Kovariaten-Verschiebung
(Covariate Shift) erhöht.

Der zweite Teil dieser Arbeit widmet sich visuellen Wahrnehmungsverzerrungen. Wir untersuchen
die von den Modellen gezeigten visuellen Verzerrungen, indem wir diese gezielt mit der menschlichen
Wahrnehmung vergleichen und deren Übereinstimmung messen. Dabei zeigen wir, wie die Regular-
isierung durch “Adversarial Training” diese Verzerrungen beeinflusst, und stellen Korrelationen zwischen
mehreren bekannten Verzerrungen und der Generalisierungsleistung her. Unsere Ergebnisse stellen
frühere Behauptungen in Frage, wonach allein die Korrektur von einzelnen visuellen Verzerrungen
die Generalisierung von Modellen verbessern soll. Stattdessen stellen wir fest, dass eine Angleichung
der Verzerrungen häufig nur unter bestimmten Formen der Kovariaten-Verschiebung zu verbesserten
Vorhersagen führt. Abschließend untersuchen wir die Verarbeitung von visueller Informationen inner-
halb großer Bild-Sprach-Modelle (VLMs) und zeigen, dass einfache Prompts in natürlicher Sprache die
inhärenten visuellen Wahrnehmungsverzerrungen effektiv steuern können.

Zusammenfassend bietet diese Arbeit wertvolle Einblicke in die gelernten Repräsentationen von Objek-
terkennungsmodellen. Durch ein vertieftes Verständnis der Generalisierungsmechanismen etablieren
wir vielversprechende Techniken wie die Filterregularisierung für diskriminative Modelle und die
Wahrnehmungsverzerrungs-Steuerung in VLMs zur Testzeit. Darüber hinaus skizzieren wir die Gren-
zen bestehender Ansätze und identifizieren weniger vielversprechende Richtungen, etwa das bloße
Regularisieren von Verzerrungen während des Trainings diskriminativer Modelle.
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Chapter 1

Introduction

Could Frank Rosenblatt have envisioned the vast array of artificial intelligence (AI) models that have
emerged from his pioneering work on the Perceptron (Rosenblatt, 1958)? Step by step, with the
invention of backpropagation (Rumelhart et al., 1986), breakthroughs in network architecture design
(LeCun et al., 1989a; Hochreiter & Schmidhuber, 1997; Krizhevsky et al., 2012; He et al., 2016; Vaswani
et al., 2017; Dosovitskiy et al., 2021), learning methods (Rumelhart et al., 1986; de Sa, 1993; Hinton
et al., 2006, 2015; Radford et al., 2021), alongside many other techniques, humanity has developed
impressive models based on neural networks for numerous narrow problems (e.g., (Krizhevsky et al.,
2012; Graves et al., 2013; Sutskever et al., 2014)) and recently also increasingly general solutions across
data modalities (e.g., Reed et al. (2022); OpenAI (2024); Gemini Team (2023); Anthropic (2024)). Of
particular success are computer vision models that can see and recognize objects or, more abstractly
speaking, patterns – often even surpassing human performance at doing so.

A key driver of this progress and the differentiator to classical machine learning (ML) is that, in
deep learning, input features are not just weighted by their importance but also implicitly learned
from (large amounts of) raw data. This is especially useful for unstructured data like images, where
features are not intuitively apparent to humans and are hard to formalize. However, this convenience
comes at the cost of opaqueness and a lack of control. As feature extraction is optimized through
backpropagation on the loss function (Rumelhart et al., 1986; LeCun et al., 1998a), there is an inherent
risk to extract and utilize features that are (locally) optimal concerning the training data but not for
the underlying real-world data - i.e., overfitting to shortcut features (Geirhos et al., 2020a). In such
cases, the model would learn to prioritize (or even exclusively utilize) spurious, task-irrelevant, and
training distribution-specific shortcut features instead of utilizing useful, semantic, and task-relevant
core features. Given that training, validation, and test datasets are assumed to be drawn from the
same distribution (i.i.d.), it may not even be detectable that the model has overfitted and will not be
able to generalize to new data.

As an example, we may want to train a simple image classification model to detect cats in images. In
deep learning fashion, we would collect a reasonable amount of images of cats and apply some kind of
gradient-based learning technique. If, however, all cat photos are taken in daylight conditions and
are photos of actual living cats, our model may overfit this specific distribution of features. While
this would suffice to classify i.i.d. samples from the given dataset, this model may fail to generalize
to real-world scenarios, where the photo quality may be poor, the lighting is different, there is some
influence of weather, or the cat is an artistic rendition such as a painting as in Figure 1.1. It is
already challenging to think of and model all feature distribution shifts at test time for small-scale
problems like this one, and may quickly appear hopeless as we aim to develop general vision models
with orders of magnitudes more objects to recognize – each potentially having their own kinds of
expected distribution shifts.

One example of a larger-scale vision problem is the popular ImageNet Large Scale Visual Recognition
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Figure 1.1: The quest for model generalization. We want to train models that recognize all cats
shown here, but the features describing a cat observed at training time may diverge from the observed
features at test time. Here, we observe clear daylight photos of cats during training, but at test time,
we encounter a variety of images: some are blurry, some are artistic representations, some are taken in
different weather conditions, and some are toys. Image Source: (Deng et al., 2009; Hendrycks &
Dietterich, 2019; Hendrycks et al., 2021a; Wang et al., 2019)

Challenge (ILSVRC) 2012 (Deng et al., 2009; Russakovsky et al., 2015). To this day, the 1,000-way
classification challenge on a dataset of 1.3M images serves as an important benchmark in image
classification. While the community made tremendous progress on top-1 accuracy improvements on
the test dataset in the past decade (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He et al.,
2016; Huang et al., 2017; Dosovitskiy et al., 2021; Zhai et al., 2022a; Srivastava & Sharma, 2024) and
already surpassed (estimated) human accuracy in 2015 (Karpathy, 2014; He et al., 2015) it became
quickly evident that even the best models are not robust – even small modifications of test samples
leads to a rapid decline in performance.

For instance, the decision rules are sensitive to barely noticeable additive perturbations of the input
data, leading to misclassification with high confidence (adversarial attacks) (Biggio et al., 2013;
Szegedy et al., 2014b). These adversarial perturbations are often expected to be noise-like and lack
semantic meaning for humans,1 however, even intuitively easier-to-grasp input alterations, such as
simple geometrical transformations (Kanbak et al., 2018), viewpoint (Dong et al., 2022) or background
changes (Rosenfeld et al., 2018; Xiao et al., 2021a), or common corruptions observed in photography
(Hendrycks & Dietterich, 2019; Kar et al., 2022) can strongly deteriorate the performance of trained
models.

A straightforward solution to address most robustness issues is to increase (i.e., scale) the number of
training samples – essentially, memorize the distribution until there’s nothing left to learn. Indeed,
this strategy has driven much of the progress in recent years (Sutton, 2019; Branwen, 2020). However,
it is extremely expensive, potentially wasteful, and relies on the assumption of abundant amounts of
training data that never runs out and scaling laws that never saturate. Yet, data will eventually run
out (Villalobos et al., 2024), and as Ilya Sutskever said at NeurIPS 2024: “Data is the fossil fuel of
AI”.

In many domains, scaling data can be challenging, as readily available datasets may be limited, and

1This is a common misconception and not entirely true, as a recent study showed that human subjects could also be
slightly influenced by these perturbations (Veerabadran et al., 2023). The majority of attacks, however, are semantically
meaningless.
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Figure 1.2: Augmentation as a form of regularization. We demonstrate the effect of augmen-
tation on an ImageNet batch of 16 samples, using a mix of various transformations under a modern
training regime (Wightman et al., 2021). Image Source: (Deng et al., 2009)

acquiring new samples can be prohibitively expensive or even impossible. This is particularly evident in
medical imaging, where data collection often relies on costly specialized equipment rather than simple
cameras. Additionally, accurate labeling requires the expertise of highly trained medical professionals,
such as radiologists or pathologists, further complicating and increasing the cost of data acquisition.
Further privacy concerns and strict regulations (e.g., HIPAA) make it challenging to build large-scale
datasets for developing (or testing) robust AI models in medical vision tasks.

An orthogonal approach to improve generalization is regularization – the induction of prior assump-
tions about the ideal model. Regularization can take various forms and is part of most training pipelines.
Often the ideal posterior is not known and likely impossible to estimate, so explicit regularization is
not possible, and techniques will always be coarse and implicit approximations. One common form of
regularization in machine learning is weight decay, which can be seen as Occam’s razor, assuming that
simpler solutions generalize better. Examples of more specific regularization are data augmentation
techniques (shown in Figure 1.2), that (synthetically) transform samples at training time to increase
the de facto number of samples and to model desired invariances to specific transformations of the data.
Specifically crafted worst-case augmentations to maximize the loss (adversarial training (Madry
et al., 2018)), are also amongst the only successful methods to increase robustness to adversarial
attacks.

This thesis investigates the impact of implicit regularization on the learned representations of trained
models, with a central focus on understanding its role in generalization. Implicit regularization
influences the model’s final weights or behavior without being explicitly defined in the loss function.
Our primary goal is to decipher how this implicit regularization shapes the learned representations and,
leveraging these insights, to develop more effective and explicit regularization strategies. Specifically,
we will mostly focus on adversarial training and robustness.

Rather than conducting a case study of individual models, our approach emphasizes the discovery
of generalizable patterns that transcend specific model and training configurations. We analyze
populations of models, trained under varying conditions, to identify statistical trends and regularities
in their learned representations. Our central hypothesis is that these cross-model patterns reveal
deeper, more fundamental mechanisms for generalization than those observable in individual models.
By focusing on these population-level trends, we aim to uncover intrinsic properties of the learning
process that contribute to robust generalization performance. This stands in contrast to explanations
that rely on specific model architectures or training hyperparameters, which may not generalize across
different settings.

Building upon our focus on population-level analysis of implicit regularization and its impact on
generalization, our study covers two angles. First, we examine the learned parameters (weight space)
itself, investigating how implicit regularization manifests in the statistical properties of the learned
weights across populations of models.

Second, we adopt a behavioral perspective, exploring how models with improved generalization perceive

3
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input data and what features they may be biased toward. This involves analyzing the decision rules
learned by these models and comparing them to human visual perception, aiming to understand the
representational differences (alignment) contributing to robustness. By comparing model behavior to
human vision, we aim to gain insights into the nature of robust representations.

In both these lines of inquiry – the statistical analysis of weight spaces and the behavioral study of
biases in model perception – our ultimate goal is to translate our findings into actionable insights.
These insights will inform the design of more effective explicit regularization techniques, allowing us to
directly control and enhance the generalization capabilities of machine learning models based on the
principles uncovered through our population-based analysis of implicit regularization.

Ultimately, this research seeks to advance knowledge about how generalization is represented, enabling
the design of more principled and effective regularization techniques for improved generalization in
object recognition models.

1.1 Contribution Overview
In this section, we will discuss the contributions grouped by subtopics, which may span multiple
chapters. For an outline of the thesis, dissecting the contribution of each chapter, see Section 1.2.

1.1.1 Measuring Representational Distances
Interpreting the individual decision rules encoded within the learned weights of deep neural networks,
particularly in deeper layers, is challenging due to their compositional nature. Consequently, research
comparing the similarity (or distance) between neural representations commonly focuses on the
activation space, effectively studying the similarity of intermediate features (see Sucholutsky et al.
(2024) for an overview). Established methods include Representational Similarity Analysis (RSA)
(Kriegeskorte et al., 2008; Mehrer et al., 2020) and Centered Kernel Alignment (CKA) (Kornblith
et al., 2019a). Other approaches involve activation clustering (Dravid et al., 2023), manual inspection
of feature visualizations (Olah et al., 2020b; Geirhos et al., 2024), and clustering of learned weights
(Babaiee et al., 2024b,c,a).

Our contributions In Chapter 3, we introduce a novel metric explicitly designed to compare
weight representations in Convolutional Neural Networks (CNNs), based on the distribution of learned
convolution filter patterns. We apply this metric to analyze representational differences across a diverse
range of CNN-based models on global and local scales (Chapter 3) and to understand the impact of
adversarial regularization (Chapter 4).

Furthermore, we propose comparing representations using quantitative statistics of learned weights. In
Chapter 3, Chapter 4, and Chapter 5, we introduce several metrics tailored to convolutional filters,
capturing the diversity, orthogonality, sparsity, and frequency distribution of learned filter patterns. In
Chapter 6, we broaden this scope by proposing a more abstract metric that gauges the criticality of
any layer with learnable parameters.

1.1.2 Learned Representations under Adversarial Training
Adversarial training (AT) against pixel-wise perturbation attacks was amongst the first proposed
solutions to improve generalization under adversarial perturbations (Goodfellow et al., 2015) and
remains one of the most successful methods at achieving adversarial robustness to date (Madry et al.,
2018; Peng et al., 2023; Bartoldson et al., 2024). More specifically, it improves robustness against the
threat model during training. In some sense, this form of regularization turns out-of-distribution test
(for a normal model) into in-distribution training examples. This results in a tendency to overfit the
training threat – meaning that exposure to adversarial perturbations generated by a different attack,
norm, or budget, etc. may result in no effective improvement in robustness or even in the decrease of
robustness (Rice et al., 2020).
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While multiple works seek to improve adversarial training, only a few attempt to understand its
implications (both positive and negative). For instance, prior work has shown that adversarial models
transfer better (Salman et al., 2020), are better-calibrated (Grabinski et al., 2022a), are more shape-
biased (Zhang & Zhu, 2019; Chen et al., 2022a; Geirhos et al., 2021), or are more interpretable (Tsipras
et al., 2019).

Our contributions We extend the findings about adversarially-trained models in two areas. We
provide the first thorough and large-scale study of the learned weight space in Chapter 4, showing that
adversarially-trained CNNs contain more diverse filter patterns that are additionally more orthogonal
and less sparse. Specifically, for L∞-norm bounded training, we also discover filters in the first layer
that refute the common assumption that all CNNs learn a similar first-layer representation independent
of the objective (Yosinski et al., 2014). We additionally show that robust models show a stronger
tendency to develop low-frequency filters, especially in early layers, excluding the first layer in Chapter 5.
Finally, we also show that AT models utilize more of the network capacity in Chapter 6.

From a bias perspective, we also enrich previous literature studying the shape bias (Zhang & Zhu,
2019; Chen et al., 2022a; Geirhos et al., 2021) by a more thorough investigation in Chapter 7: We
investigate the shape bias on a broader scale of models and under increasing perturbation strength in
training. We are able to show that the increase in shape bias is persistent, even for transformer-based
models and under different norms. We also investigate other aspects of alignment and show that
adversarially-trained models increase their error consistency toward humans. Finally, we provide a more
nuanced analysis of OOD performance, showing that AT increases robustness to perturbations having
a similar spectral distribution but, on average, decreases performance, especially if the performance of
the normally-trained models strongly exceeded human performance.

1.1.3 Low-Frequency Regularization
Regularization is an umbrella term for techniques that improve the generalization performance of a
model at test time (Goodfellow et al., 2016). Multiple techniques have been proposed to improve
robust generalization, including augmentation techniques (Hendrycks et al., 2020; Tokozume et al.,
2018; Zhang et al., 2018; Cubuk et al., 2019; Yun et al., 2019; Hendrycks et al., 2021a), and adversarial
training (Madry et al., 2018) can be seen as an extreme form of augmentation that trains the model
on worst-case perturbations of input samples.

Our contributions Based on our observations that adversarially-trained models learn more low-
frequent filters in Chapter 5, we derive a simple regularization that imposes a frequency penalty on
learned convolution weights during normal training. While this form of regularization is not able to
match the performance of adversarial training, it strongly improves the adversarial robustness against
small ε-perturbations, as well as robustness to common corruptions (Hendrycks & Dietterich, 2019),
and increases shape bias (Geirhos et al., 2019). Compared to previous techniques aiming at regularizing
or attenuating high-frequency signals, our implementation has minimal overhead, both during training
and inference.

1.1.4 Connection between ImageNet Biases and Generalization
Since the release of the first successful neural network AlexNet in 2012 (Krizhevsky et al., 2012),
newer models have strongly increased in accuracy on the ImageNet challenge. However, while most
modern models even exceed human prediction accuracy (He et al., 2015), they are by far not as good
in generalization on altered samples (Geirhos et al., 2018) and fail in many cases (Kanbak et al., 2018;
Geirhos et al., 2018; Hendrycks & Dietterich, 2019; Dong et al., 2022; Rosenfeld et al., 2018; Xiao et al.,
2021a). A common explanation for the failure to generalize is that models learn non-representative
“shortcut” features (Geirhos et al., 2020a) that are sufficient to classify the train and i.i.d. test set but
do not represent the learned objects well under covariate shifts. A few works identified specific biases
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and went as far as to suggest that improving these biases in the direction of human perception would
repair robustness (Geirhos et al., 2019; Wang et al., 2020a; Subramanian et al., 2023).

Our contributions We provide a large-scale study sanity-checking these claims (specifically (Geirhos
et al., 2019; Wang et al., 2020a; Subramanian et al., 2023)) to understand if regularization techniques
that aim to improve or align a specific bias are expected to correlate with generalization in Chapter 8.
Under controlled conditions, we find that none of the investigated biases correlates with a holistic view
of generalization – if at all, biases only generalize with specific forms of generalization or under specific
forms of regularization like adversarial training. Surprisingly, misaligning models can sometimes even
improve performance.

1.1.5 Visual Biases in Multi-Modal Models
Although research on interpretability lags behind the development of new models and training methods,
biases in uni-modal models are relatively well understood. For instance, vision models trained on
ImageNet are known to exhibit biases towards texture (Geirhos et al., 2018), watermarks (Li et al.,
2023d), and background cues (Rosenfeld et al., 2018). Similarly, large language models (LLMs)
have their own biases, such as a preference for “high-value” options (Sivaprasad et al., 2024). The
emergence of multi-modal models, particularly vision-language models (VLMs) like LLaVA (Liu et al.,
2024), which combine an LLM with a vision encoder, introduces new complexities to bias analysis.
The fusion of modality-specific tokens can amplify existing uni-modal biases, generate novel cross-
modal biases arising from inter-modality interactions, or even mitigate certain biases by integrating
complementary information. Therefore, understanding biases in these models requires investigating
how information is processed and combined across modalities rather than simply extrapolating from
uni-modal findings.

Our contributions As an initial exploration of visual biases in LLM-based VLMs, we investigate
the texture/shape bias (Geirhos et al., 2019) across a diverse set of state-of-the-art models in Chapter 9.
We analyze the propagation of this visual bias and demonstrate the significant role of the LLM in
its formation, typically resulting in a stronger shape bias in VLMs compared to their underlying
vision encoder models. This observation leads to a key finding: we can influence a VLM’s perception
through natural language prompting, effectively “talking the model into seeing the world differently”
and steering its visual bias. Furthermore, we demonstrate that this influence extends beyond the
texture/shape bias by introducing a new dataset to benchmark the low/high-frequency bias, which we
also show can be steered through prompting.

1.2 Outline
Here, we discuss the structure of the thesis, chapter by chapter. Please also see Figure 1.3 for an
overview of the main chapters.

Chapter 2, Background presents the most important background information for this thesis.

The main chapters are divided into two parts (Figure 1.3), each focusing on a distinct viewpoint of
generalization.

Part I explores generalization in the weight space of convolutional neural networks (CNNs)
focusing on how we can measure, compare, and regularize generalization. It is organized into the
following chapters:

Chapter 3, Convolution Filter Analysis introduces key metrics for quantifying convolution filter
statistics and identifying distribution shifts in emerging patterns between two sets of convolution filters.
These metrics are applied to CNN Filter DB, a database of 3× 3 convolution filter kernels extracted
from 647 CNN models trained on various problems. Interesting insights are uncovered regarding how
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Chapter 3:
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CVPR 2022 Oral

Chapter 4:
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TMLR 2023

Chapter 6:
Beyond Filter Analysis: Layer Criticality

NeurIPS-W 2024

Chapter 7:
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CVPRW 2023

Chapter 8:
Are Visual Biases Correlated with ImageNet Generalization?

CVPR 2024

Chapter 9:
Talking Models Into Seeing the World Differently

ICLR 2025

Part I:
Convolution Weights

Part II:
Visual Perception Biases

Figure 1.3: Thesis Outline.

overparameterization and robustness manifest in weight space and the layers where distribution shifts
are most prominent, expanding previously held beliefs about layer specialization.

Chapter 4, Convolution Filters under Adversarial Regularization expands the filter analysis
to compare 71 robust classification models trained with adversarial regularization against equivalent
models trained normally. This comparison aims to uncover patterns that can drive the design of
(adversarially-)robust models without relying on adversarial regularization. Findings reveal that
robust models develop fewer sparse but more diverse and orthogonal filter patterns throughout the
network, particularly in overparameterized settings. Significant differences are observed in the first
layer, challenging prior claims about its universal transferability across imaging tasks.

Chapter 5, Filter Frequency Regularization extends our previous study, highlighting a low-
frequency bias of robust models that is also visible in convolution filter weights, distinguishing
adversarial-regularized models from standard ones. Building on this observation, a regularization
technique is proposed to enhance robustness against adversarial attacks and other distribution shifts.
The resulting models achieve native robustness, which increases a wide spectrum of robustness but
avoids dependence on predefined threat models during training and thus alleviates the risk of overfitting
them.

Chapter 6, Beyond Filter Analysis: Layer Criticality proposes an alternative exploration of
weight space through critical layers, revisiting findings by Zhang et al. (2022), which suggest that
not all layers equally contribute to a model’s learned decision-function. The original methodology is
refined to evaluate similarity in prediction behavior rather than relying solely on numerical accuracy
comparisons. Applying this metric to a set of 50 models with identical architectures but varying
regularization methods reveals significant differences in criticality, particularly in the context of
adversarial robustness.

Part II investigates visual perception biases by testing the behavior of models and humans against
specific features and comprises the following chapters:
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Chapter 7, Adversarial Training and Alignment to Human Vision examines the effects
of adversarial training on alignment with human visual perception. This study evaluates trends in
out-of-distribution generalization, the evolution of the texture/shape bias, and agreement on correct and
erroneous predictions of models against human observers. It also offers a frequency-based explanation
of generalization in adversarially-trained models.

Chapter 8, Are Visual Biases Correlated with ImageNet Generalization? evaluates the
hypothesis that biases can explain failures in model generalization and are thus good priors during
training. By fixing architecture and training data (ImageNet) and varying only regularization,
the relationship between biases and generalization is carefully analyzed, and we conclude that the
alignment of individual biases does not guarantee to transfer to improvements of wide spectrum
generalization.

Chapter 9, Talking Models Into Seeing the World Differently explores visual biases when
facing multi-modal fusion with language in vision-language models (VLMs) through the lens of tex-
ture/shape bias. The results reveal that large language models can modify low-level visual information,
which allows us to steer perception biases in VLMs simply through language prompts as an alternative
to expensive in-training regularization that is necessary for discriminative and uni-modal models.

Chapter 10, Discussion provides a summary and discussion of the thesis findings and concludes
the thesis with an outlook on future research directions and a broader view on the topic.

1.3 List of Publications
The following provides a list of publications that have appeared during the PhD program. Publications
contributing to this thesis are sorted chronologically. An asterisk ∗ next to author names denotes
shared first authorship by equal contribution. We state individual contributions for each author and
paper.

Peer-reviewed conference and journal publications

• [Oral] CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov, Janis Keuper
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022 (Gavrikov & Keuper, 2022b)

This article was selected as “Oral” at the Conference on Computer Vision and Pattern Recognition
(CVPR 2022); an abstract under the title “An Empirical Investigation of Model-to-Model Distribution
Shifts in Trained Convolutional Filters” was accepted at the NeurIPS 2021 Workshop on Distribution
Shifts: Connecting Methods and Applications (Gavrikov & Keuper, 2021).

Project idea: J.K.; model collection, codebase, quality metrics, and analysis: P.G. with input
from J.K. (who also provided the idea for SVD-based comparisons); paper writing: P.G. and J.K.;
guidance, funding, and infrastructure: J.K.

• Improving Native CNN Robustness with Filter Frequency Regularization
Jovita Lukasik∗, Paul Gavrikov∗, Janis Keuper, Margret Keuper
Transactions on Machine Learning Research, 2023 (Lukasik et al., 2023)

Joint first-authorship by J.L. and P.G.; Project idea: M.K. and J.K.; codebase: initially developed
by P.G. and expanded by J.L.; decomposition approaches: J.K. (SD) and P.G. (WD); regularization
method: J.L. and M.K.; model training and evaluations: J.L. with substantial support of P.G.;
coefficient and spectrum analysis and visualizations: P.G.; derivation of connection between shape
and low-frequency dominance: M.K.; paper writing: J.L. and P.G. jointly with substantial support
of M.K. and input from J.K.; guidance, funding, and infrastructure: M.K. and J.K.
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This paper has not been included in the thesis of Jovita Lukasik (Lukasik, 2023).

• Can Biases in ImageNet Models Explain Generalization?
Paul Gavrikov, Janis Keuper
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024 (Gavrikov & Keuper, 2024)

Project idea and execution: P.G.; paper writing: P.G. with input from J.K.; guidance, funding, and
infrastructure: J.K.

• Can We Talk Models Into Seeing the World Differently?
Paul Gavrikov, Jovita Lukasik, Steffen Jung, Robert Geirhos, M. Jehanzeb Mirza, Margret Keuper,
Janis Keuper
International Conference on Learning Representations (ICLR), 2025 (Gavrikov et al., 2025)

An abstract under the title “Are Vision Language Models Texture or Shape Biased and Can We Steer
Them?” was accepted at the CVPR 2024 Workshop on What is Next in Multimodal Foundation
Models? (Gavrikov et al., 2024b).

Project idea and lead: P.G.; model collection, codebase, and analysis: P.G. with support of S.J.
(GPT-4); conception of OCR analysis (not included in the paper): S.J. and M.K.; idea for VQA
analysis: M.J.M.; visualizations: P.G. with support of S.J.; curation of related work: B.L. (preprint)
and S.J.; paper writing: P.G. with substantial support of J.L./R.G. and input of all authors; funding:
P.G., S.J., M.K., and J.K.; guidance and infrastructure: M.K. and J.K.

Peer-reviewed workshop publications

• Adversarial Robustness Through the Lens of Convolutional Filters
Paul Gavrikov, Janis Keuper
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2022 (Gavrikov & Keuper, 2022a)

Project idea: J.K.; model collection, codebase, and analysis: P.G.; paper writing: P.G. with input
of J.K.; guidance, funding, and infrastructure: J.K.

• Does Medical Imaging learn different Convolution Filters?
Paul Gavrikov, Janis Keuper
NeurIPS 2022 Workshop on Medical Imaging, 2022 (Gavrikov & Keuper, 2022c)

Project idea: P.G. and J.K.; analysis: P.G.; paper writing: P.G. with input from J.K.; guidance,
funding, and infrastructure: J.K.

• An Extended Study of Human-Like Behavior Under Adversarial Training
Paul Gavrikov, Janis Keuper, Margret Keuper
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2023 (Gavrikov et al., 2023)

Project idea and execution: P.G.; model collection, codebase, and analysis: P.G.; idea for spectrum
analysis: M.K.; paper writing: P.G. with substantial input from M.K.; guidance, funding, and
infrastructure: J.K. and M.K.

• How Do Training Methods Influence the Utilization of Vision Models?
Paul Gavrikov, Shashank Agnihotri, Margret Keuper, Janis Keuper
NeurIPS Workshop on Interpretable AI: Past, Present and Future, 2024 (Gavrikov et al., 2024a)

Project idea and execution: P.G.; paper writing: P.G. with input from S.A./M.K./J.K.; guidance,
funding, and infrastructure: J.K. and M.K.
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Other publications not contributing to this thesis

• GLOV: Guided Large Language Models as Implicit Optimizers for Vision Language
Models
M. Jehanzeb Mirza, Mengjie Zhao, Zhuoyuan Mao, Sivan Doveh, Wei Lin, Paul Gavrikov, Michael
Dorkenwald, Shiqi Yang, Saurav Jha, Hiromi Wakaki, Yuki Mitsufuji, Horst Possegger, Rogerio
Feris, Leonid Karlinsky, James R. Glass
In submission to Transactions on Machine Learning Research, 2024 (Mirza et al., 2024)

• VisualTorch: Streamlining Visualization for PyTorch Neural Network Architectures
Willy Fitra Hendria, Paul Gavrikov
Journal of Open Source Software (JOSS), 2024 (Hendria & Gavrikov, 2024)

• On the Interplay of Convolutional Padding and Adversarial Robustness
Paul Gavrikov, Janis Keuper
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops,
2023 (Gavrikov & Keuper, 2023a)

• Robust Models are less Over-Confident
Julia Grabinski, Paul Gavrikov, Janis Keuper, Margret Keuper
Advances in Neural Information Processing Systems (NeurIPS), 2022 (Grabinski et al., 2022a)

An abstract under the same title was accepted at the ICML 2022 Workshop on New Frontiers in
Adversarial Machine Learning (Grabinski et al., 2022b).

1.4 Notation
In this section, we define the notion that we use in this thesis. We largely follow the notation defined in
Goodfellow et al. (2016), which we reproduce here for completeness, with some modifications, deletions
and additions.

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the elements of A that are not in B

A ∪ B Set union, i.e., the set containing the all elements of A and B

A ∩ B Set intersection, i.e., the set containing the elements that are in A and B

∅ Empty set {}

ai Element i of vector a, with indexing starting at 1
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a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A, we may omit trailing : for brevity

Ai:j Rows i - j (excluding j) of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

A> Transpose of matrix A

A�B Element-wise (Hadamard) product of A and B

∇xy Gradient of y with respect to x∫
f(x)dx Definite integral over the entire domain of x

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or over a variable
whose type has not been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

DKL(P‖Q) Kullback-Leibler divergence of P from Q

N (µ,σ2) Gaussian distribution with mean µ and variance σ2

U(a, b) Uniform distribution with range [a, b]

O(n) Big-O asymptotic notation with order of n complexity

i.i.d. Independent and identically distributed

f(x;θ) A function of x parametrized by θ. (Sometimes we write f(x) and omit the
argument θ to lighten notation)

log(x) Natural logarithm of x

ReLU(x) Rectified Linear Unit (ReLU), max(0, x)

||x||p Lp norm of x

||x|| L2 norm of x

|x| Cardinality, i.e., the number of elements in x, if x is a vector, matrix, tensor,
or set.

I(condition) Indicator function is 1 if the condition is true, 0 otherwise

`(ŷ,y) A generic loss function l between the model prediction ŷ and the true target
y

clip(x, a, b) Clips all elements in x to [a, b] range

sign(x) Returns the sign of x, i.e., -1 for negative values, 1 for positive values, and
0 otherwise.

Concat(x(1), ..., x(n)) Concatenates all elements x(i) into a higher-dimensional structure.
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pdata The data generating distribution

p̂data The empirical distribution defined by the training set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised learning
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Chapter 2

Background

The background chapter provides an overview of the foundational concepts and methodologies relevant
to the research presented in this thesis, establishing the context and framing the key ideas necessary
for understanding the subsequent chapters.

We will begin with the introduction of Fourier transforms in Section 2.1, which is an integral part of this
thesis. Then we will introduce relevant fundamentals of deep learning: Multi-Layer Perceptrons (MLPs)
in Section 2.2, Convolutional Neural Networks (CNNs) in Section 2.3, and Vision Transformers (ViTs)
in Section 2.4. Following these sections, we offer an introduction to the task of image classification and
outline its role in deep learning in Section 2.5. Afterward, we will introduce the issue of generalization
in deep learning in Section 2.6, with a specific focus on distribution shifts in Section 2.7, and robustness
in Section 2.8. Finally, we will conclude this chapter with details about feature biases in the context of
visual perception tasks in Section 2.9.

2.1 Fourier Transform
In this thesis, we will frequently convert signals (e.g., images) from their source domain to the frequency
domain for analysis. To accomplish this, we will utilize the Fourier transform (Fourier, 1822) and briefly
introduce its definition based on Fisher et al. (1997); Pinsky (2008); Szeliski (2022), and application to
images here.

Let f(x) be a continuous signal in the time domain. The Fourier-transformed signal F (u) is defined
as

F (u) =

∫
f(x) · e−i2πux dx, (2.1)

and the corresponding inverse, which transforms the signal back to the time domain, is given by

f(x) =

∫
F (u) · ei2πux du. (2.2)

Since we primarily apply the Fourier transform to images, we extend these definitions to the two-
dimensional case:

F (u, v) =

∫∫
f(x, y) · e−i2π(ux+vy) dx dy, (2.3)

with the corresponding inverse given by

f(x, y) =

∫∫
F (u, v) · ei2π(ux+vy) du dv. (2.4)
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Figure 2.1: Discrete Fourier transform of an image. (a) Original not-transformed image, (b)
Fourier magnitude spectrum (log-scaled), (c) shifted Fourier magnitude spectrum (log-scaled), (d)
shifted Fourier phase spectrum. Image Source: (Deng et al., 2009) (cat)

To handle discrete 2D inputs, we use the discrete Fourier Transform (DFT). Using matrix notation,
the 2D-DFT F of an input matrix X ∈ Rn×m is defined as F(X) = X̃, where

X̃u,v =

n∑
x=1

m∑
y=1

Xx,y · e
−i2π

(
(u−1)(x−1)

n +
(v−1)(y−1)

m

)
for u ∈ {1, . . . , n}, v ∈ {1, . . . ,m}. (2.5)

The inverse transform F−1(X̃) = F−1(F(X)) = X is given by

Xx,y =
1

nm

n∑
u=1

m∑
v=1

X̃u,v · e
i2π

(
(u−1)(x−1)

n +
(v−1)(y−1)

m

)
for x ∈ {1, . . . , n}, y ∈ {1, . . . ,m}. (2.6)

Note that while X is real-valued, its Fourier transform X̃ will be complex. Thus, when analyzing the
Fourier transform of an image X (see Figure 2.1 for an example), we typically focus on the magnitude
(or power) spectrum, given by |F(X)|, which corresponds to the absolute real part of the transform.
This spectrum captures the geometric structure of the original image (Fisher et al., 1997), as illustrated
in Figure 2.1b.

For visualization purposes, the spectrum is often shifted so that the first coefficient X̃1,1, which
represents the image mean (or DC-offset), is centered. The coefficients are then arranged to increase
in frequency from the center outward (compare Figure 2.1b with Figure 2.1c). In our example, we can
see that vertical and horizontal frequencies dominate, and generally, most information is contained in
lower frequencies. This holds true for most “natural” images (Ruderman, 1994).

The phase spectrum (shown in Figure 2.1d), containing the complex part of the Fourier transform, is
less interpretable. However, retaining the phase spectrum is essential during the inverse transformation
to fully reconstruct the original input (Fisher et al., 1997).

It is worth noting that the time complexity of the DFT for a sequence of length n is O(n2). Hence,
in practice, a family of more efficient algorithms known as the Fast Fourier Transform (FFT)
(Cooley & Tukey, 1965) is commonly used. These algorithms achieve computational efficiency by
exploiting underlying symmetries, reducing the time complexity to O(n logn) (Szeliski, 2022). We will
not introduce further details but imply FFT when utilizing Fourier transforms.

2.2 Multi-Layer Perceptrons (MLPs)
In deep learning, we utilize artificial neural networks to learn complex representations from data. This
idea is loosely inspired by the organization of the (human) brain.

In the simplest case, such a network consists of a single artificial neuron or perceptron (Rosenblatt,
1958). The output ŷ of the neuron is then given by a linear combination of cin input features x ∈ Rcin
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that are activated by some activation function σ(·)

ŷ = σ(xw + b), (2.7)

where w ∈ Rcin and b ∈ R are the learnable parameters weights and biases, respectively. Historical
choices for σ(·) were the tangens-hyperbolicus σ(x) = tanh(x) or the logistic σ(x) = 1

1+e−x function.
However, they are rarely used in modern neural networks. We will discuss modern activations further
on.

To model multiple outputs – i.e., to increase the number of neurons from 1 to cout, we can represent
our weight as matrix W ∈ Rcout×cin and the bias as vector b ∈ Rcout and call this a layer. The
transformation then becomes:

ŷ = σ(xW> + b). (2.8)

Building on this foundation, a single layer of perceptrons can be extended to multiple layers of neurons,
giving rise to what is known as a multi-layer perceptron (MLP). In an MLP, neurons are arranged
in sequential layers, with each layer’s output becoming the input to the next. This architecture allows
MLPs to model more complex relationships by stacking several layers, each layer l having its own set
of weights W (l), biases b(l), and activation functions σ(l):

x(l+1) = σ(l)

(
x(l)

(
W (l)

)>
+ b(l)

)
. (2.9)

This structure makes MLPs fully connected networks, meaning each neuron in a layer connects to
every neuron in the subsequent layer. The first, last, and intermediate layers in MLPs are called input,
output, and hidden layers, respectively. These networks may also be called feed-forward networks,1
as the information flows in one direction from inputs to outputs. An important property of MLPs
is that they can approximate any function if they are sufficiently large, as stated by the universal
function theorems (Hornik et al., 1989; Cybenko, 1989).

Activation Functions

Activation functions can introduce non-linearity into an otherwise linear transformation, enabling neural
networks like MLPs to learn more complex relationships. Without (non-linear) activation functions,
stacking multiple layers would still yield a linear function. By applying a non-linear activation after
each layer, MLPs can approximate a much broader range of functions, capturing intricate patterns in
data that linear models cannot.

A popular choice across tasks in gradient-based learning is the Rectified Linear Unit (ReLU)
activation function (popularized by Nair & Hinton (2010)):

ReLU(x) = max(0, x). (2.10)

It improves the training speed compared to tangens-hyperbolicus, due to faster derivatives (Krizhevsky,
2009), but also improves training stability by addressing the vanishing gradient problem (Bengio
et al., 1994). This follows from its desirable property that the gradient is either 1 or 0 (rectified),
never scaling gradients up or down. However, this property also leads to a new problem coined the
dying ReLU problem, where once a neuron outputs zero, its gradient also becomes zero, and it
effectively “dies” because it stops updating its weights during training. The frequency of dead neurons
increases with depth in ReLU networks (Lu et al., 2020). This issue can be mitigated by allowing a
small, non-zero gradient for negative activations – the corresponding activation function is termed
Leaky ReLU (Maas et al., 2013) and defined as:

LeakyReLU(x) =

{
x, x ≥ 0

αx, x < 0
. (2.11)

1Other network types such as recurrent neural networks (Hopfield, 1982; Hochreiter & Schmidhuber, 1997) are not
discussed in this thesis.
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Figure 2.2: Activation functions. We visualize Tanh, Logistic, ReLU, PreLU, and GELU activation
functions in the [−5, 5] range.

It can be fruitful to change α into a learnable parameter, which is then called a Parameterized
ReLU (PReLU) (He et al., 2015). However, gradient-based learning (Rumelhart et al., 1986) with
any of these activation functions suffers from instability, as the functions are not differentiable at 0. A
solution to this was given by the Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel,
2016), which is the standard choice in modern networks such as ConvNeXt's (Liu et al., 2022) or ViT's
(Dosovitskiy et al., 2021).

GELU(x) = x · 1
2

(
1 + erf(x/

√
2)
)
, (2.12)

where erf(·) is the Gauss error function. For computational reasons, the function can be approximated
by

GELU(x) ≈ 0.5 · x ·
(
tanh

(√
2/π

)
·
(
x+ 0.044715 · x3

))
. (2.13)

2.3 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks (CNNs) are a class of deep learning models specifically designed to
process structured grid-like data, such as images (Goodfellow et al., 2016). Originating from ideas
inspired by the visual cortex of animals (Hubel & Wiesel, 1959), CNNs have a layered architecture that
enables them to automatically and adaptively learn spatial hierarchies of features, from low-level edges
and textures to high-level patterns and objects (Zeiler & Fergus, 2013; Yosinski et al., 2014).

Each CNN layer applies a series of small, trainable filters that convolve over input data, detecting
localized features and creating feature maps that highlight important elements of the input. Unlike
traditional fully connected networks, CNNs are highly efficient for spatial processing because they
reduce the need for excessive parameters by sharing weights across spatial dimensions (Goodfellow
et al., 2016).

As CNNs are central to this thesis, we will introduce them in more detail. We will start this section
with an introduction to the convolution operation in Section 2.3.1, then we will expand this to the
definition of a layer in Section 2.3.2, and briefly discuss pooling in Section 2.3.3. Afterward, we will
introduce various CNN architectures in Section 2.3.4, before wrapping up this section with a primer
on learned convolution filters in Section 2.3.5.

2.3.1 Definition of the Convolution Operation
In the continuous space, the convolution operation between two functions f, g denoted by an asterisk
f ∗ g at a point t is defined by

(f ∗ g)(t) :=
∫

f(a)g(t− a) da. (2.14)
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Figure 2.3: Function of a 2D convolution on multi-dimensional inputs. A convolution filter
slides over the input and computes the dot product between the filter and the input under the local
receptive field. We call a filter a stack of kernels and a kernel a 2D slice of the filter, respectively.
A single element of the filter is called weight. A convolution layer in a neural network will typically
contain multiple filters and, thus, produce an equivalent amount of feature maps (not shown here).

As this thesis largely deals with 2D image inputs, we expand the notation to two dimensions and the
discrete case. First, let us assume a single channel (e.g., a gray-scale image) image X ∈ Rw×h with
resolution w × h, and a convolution kernel (or short: kernel) K ∈ Rk1×k2 with shape k1 × k2. Then
the output (or feature map) Y = X ∗K for a given 2D index (i, j) is defined by2

Yi,j =
∑
m

∑
n

Xi,jKi+m,j+n for i ∈ {1, . . . , w}, j ∈ {1, . . . , h}. (2.15)

Theoretically, the kernel K can be of any shape and is not limited to being rectangular. However, in
practice, it is often even square, meaning k1 = k2. For the rest of this thesis, if we refer to the kernel
size as k, we imply a square k × k-shaped kernel.

To process multichannel images X ∈ Rc×w×h (e.g., c = 3 for an image in the RGB space), we utilize a
filter F ∈ Rc×k×k which can be seen as a stack of kernels. For the special case of c = 1 the kernel is
also a filter. Then, Y = X ∗ F for a given 2D index (i, j) is defined by

Yi,j =
∑
l

∑
m

∑
n

Xl,i,jKl,i+m,j+n for i ∈ {1, . . . , w}, j ∈ {1, . . . , h}. (2.16)

The time complexity of a naive implementation of the 2D convolution is O(c × w × h × k2) and
visualized in Figure 2.3.

2.3.2 The Convolution Layer
Similar to linear layers in MLPs, convolutional layers will utilize multiple filters in parallel to process
input feature maps into multiple output feature maps. Additionally, each filter’s output may be offset
by a learnable bias term. Formally, we still deal with X ∈ Rc×w×h inputs, but now have a learnable
layer weight W ∈ Rcout×cin×k×k and an optional bias B ∈ Rcout term3, where cout is the number of

2Although the mathematical definition refers to cross-correlation, convolutions in machine learning are generally
implemented using cross-correlation. Consequently, the terms are often used interchangeably.

3Bias terms are often omitted in modern CNNs when paired with normalization layers (such as batch-normalization),
as these layers can effectively handle offset corrections.
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Table 2.1: Space and time complexity comparison between different convolutions types.
We ignore all parameters (e.g., padding, dilation, stride, bias) except the kernel size and dimensions of
input and output features.

Complexity
Method Time Space
Standard O(cout × cin × w × h× k2) O(cout × cin × k2)
Depthwise Separable O(cin × w × h× (k2 + cout)) O(cin × (k2 + cout))

Grouped (g groups) O
(

cout×cin×w×h×k2

g

)
O
(

cout×cin×k2

g

)

output features, cin the number of input features. The other parameters follow the previous definition.
The output Y of such a layer is then defined as

Yj = (Bj+)

cin∑
i=1

Wj,i ∗ Xi, for j ∈ {1, . . . , cout}. (2.17)

The final time complexity of a naive implementation of a 2D convolution layer is then O(cout × cin ×
w × h× k2), with a space complexity of O(cout × cin × k2). For clarity, we will omit the bias term in
the following chapters.

Depthwise Separability of the Convolution Operation

It is possible to reduce the complexity of the “normal” convolution operation by separating it among an
axis. A common separation in deep learning is across the channel dimension (depth) called depthwise-
separable convolutions (Howard et al., 2017; Chollet, 2017). Instead of learning a 3D filter that
operates on the entire input tensor’s depth, only one filter (kernel) is learned per input channel:

Y(l)
j = W(l)

j ∗ X(l)
j , for j ∈ {1, . . . , cin}. (2.18)

Unlike in normal convolutions, the channels are processed independently of each other, resulting
in no exchanged information between channels. To exchange information between channels, these
intermediate outputs Y(l) are further processed by a linear combination into the final outputs Y(l+1),
which is often implemented by a pointwise convolution (a convolution with a kernel size of 1):

Y(l+1)
j =

cin∑
i=1

W(l+1)
j,i · Y(l)

i , for j ∈ {1, . . . , cout}. (2.19)

In total, this changes the time complexity O(w × h × cin × (k2 + cout)) and space complexity to
O(cin × (k2 + cout)).

Actual implementations often mix non-linearities between the depthwise and pointwise convolutions
and are, thus, not truly linear convolutions (Howard et al., 2017; Tan & Le, 2020; Liu et al., 2022) – in
the sense that they can express transformations that a normal convolution would not be able to.

Grouped convolutions (Krizhevsky et al., 2012; Xie et al., 2017) generalize this concept of separating
input channels. Instead of fully separating the depth into cin individual 2D slices as in depthwise-
separable convolutions (where the number of groups g = cin), grouped convolutions operate on subsets
of input channels (g < cin). Standard convolutions can be viewed as a special case where g = 1.
Because grouped convolutions already mix different channels locally within groups (assuming g < cin),
a consecutive pointwise convolution is often omitted. Please note that the resulting operation is
not equivalent to the standard convolution. A full comparison of space and time complexity of all
introduced methods is shown in Table 2.1.
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Hyperparameters of Convolution Layers

Beyond the number of input and output channels, convolution layers (e.g., as implemented in PyTorch
(Paszke et al., 2019)) are parameterized by additional hyperparameters, each influencing how the kernel
interacts with the input data:

• Kernel Size: Defines the spatial dimensions (width and height) of the convolutional filter. A
larger kernel size allows the network to capture more context from the input, but also increases
computational cost and the number of learnable parameters.

• Padding: Determines the amount of padding added around the input tensor’s border. Padding
is typically used to control the spatial dimensions of the output feature map, preserving input
size when desired (known as “same” padding) or reducing it when not padded (known as “valid”
padding). The actual method of filling is often controlled by an additional “padding mode”
parameter and may be data-dependent (e.g., mirroring the image across the axes) or independent
(e.g., filling with zeros).

• Stride: Specifies the step size of the convolution as it moves across the input tensor – with a
default value of 1. Increasing the stride models a lossy downsampling of the feature map by
reducing its spatial dimensions, as it effectively skips over certain input positions.

• Dilation: Controls the spacing between individual weights within the kernel, allowing for “gaps”
in the kernel – with a default of 1 (no dilation). Dilation enlarges the effective receptive field
without increasing the number of learnable parameters, making it particularly useful for capturing
long-range dependencies in the inputs.

• Groups: Divide the input and output channels into separate groups that are convolved indepen-
dently. Grouped convolutions allow for reduced computation and can encourage more efficient
use of parameters.

• Bias: Adds a constant value to each element of the convolved output. This allows the layer to
model affine transformations, increasing its representational power, but is often omitted in newer
models, as batch-normalization has a similar effect (Ioffe & Szegedy, 2015).

2.3.3 Pooling
Pooling is another critical operation in CNNs, used to progressively reduce the spatial dimensions of
feature maps while preserving essential information. By applying pooling after convolutional layers,
CNNs achieve several benefits: reduced computational load and an increased receptive field, which helps
capture features at multiple scales and introduces a degree of local translation invariance (Goodfellow
et al., 2016).

Pooling operations perform downsampling by aggregating values within local regions of the input
feature maps. This can be seen as a specialized form of a convolution, where the kernel models an
aggregation function (e.g., maximum or average) instead of a weighted sum. The size of this local
region is defined by the pooling kernel size, and the stride determines how the kernel is shifted across
the input, similar to convolutional layers. While max and average pooling layers are the most common
(LeCun et al., 1989a; Krizhevsky et al., 2012; Simonyan et al., 2014; He et al., 2016; Huang et al.,
2017), more complex and even learnable pooling techniques exist and sometimes do not operate under
locality constraints (Chen et al., 2023b).

2.3.4 Network Architectures
The Neocognitron (Fukushima, 1988) laid the conceptual groundwork for CNNs. It was inspired by
the human visual cortex and employed a hierarchical, layered architecture of fixed feature-detecting
neurons to recognize patterns in images.

The evolution of convolutional neural networks (CNNs) for image recognition began with LeCun et al.
(1989a), who introduced the core idea of learnable convolutional filters trained via backpropagation to
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Figure 2.4: Building blocks of the ResNet network. We show (a) the Basic-Block used in
shallower models and the (b) Bottleneck-Block used in deeper models (He et al., 2016). The height of
the blocks (outside the downsampling branch) visualizes the number of channels.

detect handwritten digits in zip codes. Their LeNet-1 architecture employed two 5× 5 convolutional
layers and two linear layers with sigmoid activations. This was followed by LeCun et al. (1998a)’s
LeNet-5, which refined the architecture by adding subsampling (pooling) layers after the convolutional
layers and increasing the number of linear layers to three. LeNet-5 demonstrated the effectiveness of
CNNs for real-world applications, driving interest in deep learning for pattern recognition.

The big breakthrough moment for deep learning is often attributed to ImageNet (Deng et al., 2009), and
in particular, its 2012 challenge winner AlexNet (Krizhevsky et al., 2012). AlexNet was the first neural
network to win the annular challenge, exceeding the runner-up’s accuracy by 10.8%. The network
architecture expanded upon LeNet with more layers, ReLU activations, and dropout (Srivastava et al.,
2014) for regularization. The network also mixed kernel sizes: the first layer uses 11× 11, the second
layer 5× 5, and all other layers 3× 3 kernels. Importantly, the network was amongst the first successful
models to be trained with GPU acceleration. This success sparked a new wave of interest in deep
learning and multiple architectural changes in the coming years.

Simonyan & Zisserman (2015) introduced VGG, which demonstrated that stacking smaller 3× 3 kernels
could yield faster networks compared to networks with larger kernels like AlexNet while matching or
exceeding their performance. VGG’s architecture, which originally included 16 or 19 layers, allowed for
deeper networks while keeping parameter count manageable.

Lin et al. (2014) introduced Networks-in-Networks or pointwise (1× 1) convolutions, which enabled
more efficient mixing of channels and can be seen as a linear operation on the depth axis. This
innovation paved the way for compact yet expressive model architectures and enabled more flexible
manipulation of feature maps.

Szegedy et al. (2014a) introduced the Inception v1 architecture (also known as GoogLeNet), which
utilized parallel paths with varying kernel sizes in each layer to capture information at multiple
scales. This design enabled more efficient computation and increased model capacity, specifically in
model depth, compared to VGG. The next step in the design of Inception was the introduction of
batch-normalization layers (Ioffe & Szegedy, 2015), which resulted in the next iteration known as
Inception v2. Further modifications to the architecture, as well as the use of auxiliary losses, resulted
in Inception v3 (Szegedy et al., 2016b). The Inception architecture was also amongst the first to
switch to a single linear layer head for classification tasks (also see Section 2.5.1).

Another breakthrough was the invention of ResNet (He et al., 2016), which introduced residual skip
connections, allowing the network to pass an (almost) unmodified input across layers and thereby
reducing the vanishing gradient problem. Instead, of learning a transformation of the input signal
x(l+1) = g

(
x(l)

)
, a residual is learned:

x(l+1) = g
(
x(l)

)
+ x(l). (2.20)
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The introduction of residual connections allowed for the training of extremely deep networks, reaching
up to 1202 layers and significantly advanced image classification performance. ResNet’s architecture
differs from Inception’s parallel branch design, instead opting for a simpler, sequential arrangement
of residual blocks (shown in Figure 2.4), reminiscent of VGG but without intermediate pooling.

The network begins with a stem consisting of a 7×7 convolution followed by normalization, rectification,
and pooling. Then, the feature maps are processed through four stages, where each consists of multiple
residual blocks. The first residual block in each stage downsamples feature maps and increases the
number of channels. Smaller ResNets utilize Basic-Blocks, each containing two 3× 3 convolutional
layers. Increases in the number of channels (accompanied by reductions in spatial resolution) are
handled by the first convolution within these blocks. Larger ResNets utilize Bottleneck-Blocks for
improved efficiency. These blocks employ a pointwise convolution to reduce the number of channels,
followed by a 3× 3 convolution, and then another pointwise convolution to expand the channels back
(and potentially increase them further, mirroring the channel expansion of Basic-Blocks). Global
average pooling is performed on the final feature maps. For lower resolution images, He et al. (2016)
proposes ResNets that only contain three stages and other changes in order to reduce the number of
downsampling operations.

The concept of residual connections is often described as enabling a direct and uninterrupted flow of
information. While this is a useful intuition, in ResNet, this flow is only partially direct. The initial
stem, which includes convolutional and pooling operations, as well as the downsampling layers within
the residual blocks and the final global average pooling, introduce transformations that affect the
information flow. However, the residual connections still provide a significant improvement in gradient
flow compared to plain networks.

He et al. (2015) further optimized the gradient flow by using a more sophisticated initialization of
parameters and optimized activations and eventually surpassed the estimated 5.1% ImageNet top-5
error of humans (Karpathy, 2014; Russakovsky et al., 2015).

A different line of work attempted to decrease the latency and reduce the parameters of neural
networks for mobile applications – (Howard et al., 2017) introduced MobileNet, which employed
depthwise-separable convolutions and inverted bottleneck layers. This design enabled the creation
of lightweight, efficient networks without compromising accuracy significantly. The key idea here
is to replace traditional convolutions with depthwise-separable ones as discussed in Section 2.3.2
and to increase the number of channels within the residual block instead of reducing them as in
traditional Bottleneck-Blocks. Chollet (2017) also brought the idea of depthwise-separable convolutions
to non-resource-constrained models.

DenseNet (Huang et al., 2017) extended the idea of residual connections introduced by ResNet beyond
individual blocks. DenseNets concatenate the feature maps of all preceding layers in a block to
the current layer’s input. This dense connectivity pattern allows each layer to directly access the
feature maps learned by all earlier layers, promoting feature reuse and reducing the vanishing gradient
problem. This approach leads to improved performance with fewer parameters compared to traditional
convolutional neural networks but increases computational and memory costs. Yet, the prevalence of
standard skip connections over dense skip connections in newer CNN architectures suggests a preference
for cost (Tan & Le, 2020; Trockman & Kolter, 2023; Liu et al., 2022).

EfficientNet (Tan & Le, 2020) represents a significant advancement in designing CNNs with both
accuracy and computational efficiency in mind. Unlike prior architectures that focused primarily on
deeper or wider networks, EfficientNets employ a compound scaling method that balances depth
(number of layers), width (number of channels per layer), and resolution (input image size). This
scaling strategy first attempts to identify an optimal baseline model, EfficientNet-B0, which is
then scaled up to create a family of models (EfficientNet-B1-7) for different resource levels. The
compound scaling formula, designed through neural architecture search (NAS), optimizes the network’s
structure by adjusting the three dimensions in a balanced way. This ensures that each layer of the
network grows proportionally as the model scales up, which prevents local over- or underfitting while
maximizing efficiency. Later work proposed further optimizations to this architecture (Tan & Le,
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2021).

ConvNeXt (Liu et al., 2022) proposed a modern family of CNNs in light of the transformer architectures
that had become popular in vision tasks. Based on the ResNet architecture, the authors increased
kernel size to 7× 7, incorporated transformer-inspired patch preprocessing, GELU activations, and
multiple other smaller changes, demonstrating that CNNs could still be competitive with transformer
models. Further optimizations of the resulting model were obtained by introducing Global Response
Normalization Layers and the use of self-supervised pretraining (Woo et al., 2023).

Modern trends Recently, there has been a trend to increase kernel sizes to improve receptive field
and model expressiveness, as demonstrated by ConvNeXt (Liu et al., 2022) and other subsequent models
(Ding et al., 2022; Liu et al., 2023d). Additionally, some CNNs (e.g., (Trockman & Kolter, 2023; Liu
et al., 2022)) have begun adopting transformer-like patch preprocessing (see Section 2.4 for details),
blurring the line between CNNs and transformers for improved flexibility and performance in complex
visual tasks.

2.3.5 Understanding Learned CNNs Filters

color blobcolor-agnostic
Gabor

color-dependent
Gabor color contrast

Figure 2.5: Convolution filters in the first layer. Here we show 11× 11 filters extracted from
the first convolution layer of an ImageNet-trained AlexNet (Krizhevsky et al., 2012).

Unlike MLPs, the spatial dimension of convolution filters allows us to sometimes interpret the function
of a (learned) filter. For instance, it is well-established that the first layer of any CNN learns a fairly
universal set of filters (shown in Figure 2.5), including color-agnostic and color-dependent Gabor
filters processing texture information (Gabor, 1946) (also found in the V1 of the human visual cortex
(Olshausen & Field, 1997)), filters sensitive to color contrast, color blobs activating to specific colors,
amongst some others. Yosinski et al. (2014) suggest that these first-layer filters are not specific to task,
data, or network architecture, exhibiting transferability across various models. In contrast, deeper
layers exhibit increasing specialization with depth. This is further confirmed by the analysis of (Zeiler
& Fergus, 2013), which employed Deconvolutional Networks (Zeiler et al., 2010) to understand features
of higher-layer filters.

Unfortunately, a key limitation of filter interpretability is that while the first layer is easily interpretable
due to its direct operation on the input image (see Figure 2.5), deeper layers operate on mixed
representations from all preceding layers, obscuring the interpretability of encoded transformation.
Consequently, the number of interpretability studies focusing on deep filters is relatively limited.
One notable, thorough study of deeper layers is the exhaustive analysis of filters, connections, and
their organization in an ImageNet-trained InceptionV1 model (Szegedy et al., 2016a) presented in
(Olah et al., 2020a,b; Cammarata et al., 2020; Olah et al., 2020c; Schubert et al., 2021; Cammarata
et al., 2021; Voss et al., 2021a,b; Petrov et al., 2021). However, the authors primarily utilized feature
visualizations (Olah et al., 2017) for the interpretation of deeper layers.

A separate research direction focuses on a quantitive analysis of the “goodness” filters, often for pruning
purposes. This encompasses methods ranging from simple magnitude-based kernel or filter importance
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estimation (Anwar et al., 2017) to more sophisticated information criteria based on pattern diversity
(Li et al., 2019).

Understanding the structure of filters without interpreting them can also be of interest to improve
initialization, aiming to enhance performance or reduce the number of necessary learned parameters.
This fundamentally corresponds to a prior in weight space, offering an alternative to the commonly
practiced i.i.d. parameter initialization. To this end, Trockman et al. (2023) studied the covariance
structure of depthwise filters in the ConvMixer model (Trockman & Kolter, 2023) and proposed
a performance-enhancing initialization scheme. Similarly, (Babaiee et al., 2024b) clustered filters
of depthwise-separable convolutions, showing that filters are often derived from clusters of a few
patterns.

2.4 Vision Transformers (ViTs)
While CNNs were the dominant paradigm for vision tasks in the past decade, transformer-based
architectures have often exceeded the performance in multiple tasks such as image classification, object
detection, semantic segmentation (Dosovitskiy et al., 2021; Liu et al., 2021b), and learning universal
representations suitable for multiple down-stream tasks (Fang et al., 2023; Wang et al., 2023a; Oquab
et al., 2024).

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)

*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding
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Embedded 
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Figure 2.6: ViT architecture. Images are turned into patches, flattened and projected to high-
dimensional tokens, concatenated with position encoding, and processed by multiple transformer
encoder layers. Image Source: (Dosovitskiy et al., 2021)

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) shown in Figure 2.6 reimagine image pro-
cessing by replacing convolutions in favor of transformer-based self-attention mechanisms (Vaswani
et al., 2017). While CNNs rely on localized kernels to progressively learn features from input images,
ViTs process images as a sequence of patches (tokens), processing them similarly to tokens in a
sentence.

This is achieved by first transforming an input image X ∈ Rc×w×h into a flattened sequence Xp ∈
Rn×(p2·c) of n patches of p× p size, and then linearly projecting it into a “token” Xt ∈ Rn×d with a
latent vector size d. The dimensionality of the token and the number of tokens remains unchanged
throughout all layers of the ViT – which is another key differentiator for classical CNNs.
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Attention operations are invariant to the patch order, so a position embedding localizing the patch
token in the original sample is appended for spatial inputs like images.

For classification tasks, the original ViT design also included a special learnable [class] token that is
prepended to the image token sequence and eventually transformed into a prediction by a linear layer
– the remaining tokens were not utilized. Newer models do not rely on a dedicated [class] token and
instead discriminate over an aggregated representation of all tokens. However, the addition of separate
input-independent tokens can help to make ViTs more interpretable (Darcet et al., 2024).

At the heart of the vision transformer is the self-attention operation, which allows ViTs to capture
both short- and long-range dependencies within an image – even in early layers and without the need
for explicitly hierarchical feature extraction – making them often more robust than CNNs (Naseer
et al., 2021). Given an input sequence X ∈ Rn×d consisting of n tokens with dimensionality d, we
linearly project this by WQ,WK ,W V ∈ Rd×dh into queries Q ∈ Rn×dh , keys K ∈ Rn×dh , and values
V ∈ Rn×dh , with a hidden dimension dh. Self-attention then computes a weighted sum of the values,
where the weights (attention map) are determined by the dot-product of the query and the keys,
scaled by the square root of the hidden dimension dh, and normalized by the Softmax function (see
Equation 2.24):

Q,K,V = XWQ,XWK ,XW V

Attention(Q,K,V ) = Softmax
(
QK>
√
dh

)
︸ ︷︷ ︸

Attention Map

V (2.21)

The feature maps are generated by multiple attention heads. This process is called multi-head self-
attention (MHA), where every head serves as a neuron applying a (unique) attention transformation
to the input. The resulting outputs are concatenated and linearly projected by WO ∈ Rh·dh×d back to
d dimensional outputs.

MHA(Q,K,V ) = Concat(head1, . . . , headh)WO

where headi = Attention(XWQ
i ,XWK

i ,XW V
i )

(2.22)

Convolutions in transformers Vision transformers are not free of convolutions. The original ViT
model utilized a strided convolution with a kernel size of p and a stride of p to partition the input
image into patches. These patches were then linearly projected into token embeddings by d filters.
Later refinements, as seen in ViTC (Xiao et al., 2021b), replaced this initial “patchification” step with
iterative downsampling through multiple convolution layers. A subsequent pointwise convolution was
employed to match the latent vector dimensionality. This change improved optimization stability,
accuracy (Xiao et al., 2021b), and robustness (Singh et al., 2023).

2.5 Image Classification
Image classification is the task of assigning an image to one or more predefined classes or labels. In the
simplest case, binary classification, we aim to categorize an image into one of two classes. For instance,
we might want to classify an image as either a “cat” or a “dog.”

When dealing with more than two classes, we have two primary approaches: single-label and multi-label
classification. In single-label classification, we assign a single label to an image, even if it could
potentially belong to multiple classes. For example, an image of a “cat wearing a hat” would be
classified solely as a “cat.” In contrast, multi-label classification allows us to assign multiple labels to an
image, such as “cat” and “hat” in the previous example. While multi-label classification offers a more
nuanced approach, most research, including this thesis, focuses on single-label classification.

In the following subsections, we will introduce a few ways to classify the image with different networks
that are relevant to this thesis. Conceptually, all of these methods involve generating a logit vector,
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which can be seen as a list of scores, one for each label. The label with the highest score is then
selected as the predicted label. Formally, given a network f , this can be expressed as

argmax
i

f(x). (2.23)

Often, we are not only interested in the top prediction but also the corresponding confidence for the
prediction (and confidence in alternate predictions). To achieve this, we can convert our logit vector
z = f(x) with z ∈ Rn, where n is the number of class labels, into (pseudo-)probabilities using the
Softmax function, such that outputs lie in the [0, 1] range and sum to 1:

Softmax(z, τ) =

 ŷ1

...
ŷn

 , where ŷi =
ezi/τ∑n
j=1 e

zj/τ
. (2.24)

The Softmax function’s entropy, a measure of its uncertainty (Shannon, 1948), can be adjusted using a
temperature scale τ , with a default value of 1. Reducing τ below 1 results in a probability distribution
with lower entropy, effectively making the model’s predictions more peaked and confident, assigning
higher probabilities to the most likely classes and lower probabilities to less likely ones. Instead,
increasing τ beyond 1 smoothens the distribution and decreases the confidence for each class in favor
of a more uniform representation.

When we refer to probabilities predicted by some model, we imply the Softmax-processed logits with
temperature τ = 1, unless otherwise stated.

2.5.1 Linear Classification of Image Encoder Representations
Conceptually, a discriminative neural network for image classification can be separated into a feature-
extraction part φenc generating a representation of the input sample in a high-dimensional space
(features), and a task-specific classification head doing the actual classification (Goodfellow et al.,
2016). Older networks like AlexNet (Krizhevsky et al., 2012) or VGG (Simonyan & Zisserman, 2015)
used MLPs with non-linear and additional regularization such as dropout (Srivastava et al., 2014) in
the head to transform the representation from feature space into class-wise predictions scores (the
logits).

Modern networks will typically generate more disentangled feature spaces that are separated by a
single linear layer:

W · φenc(X) + b, (2.25)

where φenc(X) ∈ Rd generates a d-dimensional representation, that is modelled into logits for all n
classes, by a learnable weight W ∈ Rn×d and a bias b ∈ Rn.

2.5.2 Classification in Joint-Embedding Spaces
In joint-embedding classification, a model is learned to represent two or more modalities, such as
images and text, in a shared embedding space (Chen et al., 2020c; Radford et al., 2021; Jia et al., 2021).
At inference time, a distance metric defines the logits by measuring the distance between an input in
one modality (e.g., an image) and a given set of plausible labels in the other (e.g., text). This method
is also called zero-shot classification, as the model is not confined to the same set of prediction
labels as in traditional classification, and both the number of labels and the labels themselves can be
selected at inference time.

The cosine distance is the most common metric to extract a logit vector from a joint-embedding space.
Given an image encoder φimg and a text encoder φtxt, we obtain the logit z describing the distance
between a given image ximg and a prompt xprompt by:

z =
zimg · ztxt

‖zimg‖2‖ztxt‖2
, with zimg = φimg(ximg) and ztxt = φtxt(xprompt). (2.26)
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The prompt is often a combination of the class label and some surrounding text or template, like “a
photo of a <class>”, where <class> denotes the class label (Radford et al., 2021).

However, a key limitation of this classification approach is that not every label may be equally well
represented in the embedding space. For instance, even semantically similar or close labels could
be represented in different regions of the embedding space, leading to different performances under
classification. One relatively simple solution is to use an average text embedding obtained from an
ensemble of m prompts x(i)

prompt (Radford et al., 2021). Then,

ztxt =
1

n

m∑
i=1

φtxt

(
x
(i)
prompt

)
‖φtxt

(
x
(i)
prompt

)
‖2

. (2.27)

Both prompt templates and ensembles can be further optimized for the downstream task at hand,
which is an active research line under the umbrella term of prompt engineering (e.g., see (Zhou et al.,
2022; Roth et al., 2023; Mirza et al., 2024)).

2.5.3 Classification with Multi-Modal LLMs
Large language models (LLM) support a multitude of tasks, exceeding simple classification tasks,
however we can also turn them into simple classifiers. Conceptually, we could prompt a multi-modal
LLM to classify a given image. However, the autoregressive nature of LLMs generates an open-
vocabulary answer that we have to map to a class prediction. This mapping would be difficult to
implement, as the response might be in any format. Additionally, we would like a response as a logit
vector, as before, to be able to model confidence. We propose two options to tackle this.

Visual Question Answering with Multiple-Choice Answers

Input

Which option best describes the image?
A. cat
B. pineapple
Answer with the option’s letter from the given choices
directly.

Output

A

Figure 2.7: Classification via VQA. An example of an (ideal) conversation for multi-modal
multiple-choice VQA prompt.

In our first option, which is inspired by Visual Question Answering (VQA) (Antol et al., 2015), we
instruct the model to select an option from a given set of labels that best describes the given input,
without an option for no answer or “other” (shown in Figure 2.7). Further, we instruct the model
to only respond with the predicted option key and nothing else to better extract the response. This
instruction is conceptually equivalent to a single-label, multi-class classification.

If the number of options is smaller than the token vocabulary, we can map each option to one token –
i.e., use the token as an answer key. Firstly, this has the advantage of faster inference – we can instruct
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the LLM to respond only with one token and stop generation after a single forward pass, but only if
we trust that the LLM has followed the instruction to respond only with the option key and nothing
else.

Secondly, and even more importantly, it allows us to model confidence in each option. Typically,
obtaining a confidence judgment from an LLM is non-trivial; on the one hand, simply asking for its
confidence in the prompt is unlikely to return a grounded response. On the other hand, we cannot use
the conditional probability of the generated sequence as the confidence in the answer either, as there is
a large number of semantically equivalent responses, and modeling all of them seems impossible or, at
the least, impractical.

However, by artificially restricting the outputs to a single token, we can treat the logits of valid
responses as probabilities for each option (and ignore all other token logits).

Input

Describe the image.

Output

The photo shows a clever illusion that is styled to look like a cat.

Figure 2.8: Classification of LLM generated descriptions. An example of an (ideal) conversation
for a multi-modal description prompt.

Embedding of Image Captions

Alternatively, we can simply instruct the LLM to provide a description or caption of the input sample
(shown in Figure 2.8) and then use a text encoder model to calculate the distance between the response
and each label in the candidate set, similar to zero-shot classification with CLIP in Section 2.5.2.

Formally, given the response xdesc, a candidate label xlabel, and a text embedding model φtxt, we can
obtain the logit by

z =
φtxt(xdesc) · φtxt(xlabel)

‖φtxt(xdesc)‖2‖φtxt(xlabel)‖2
. (2.28)

2.5.4 Image Classification Datasets
This section introduces a few widely-used image classification datasets relevant to this thesis.

MNIST (LeCun et al., 1998b) is a dataset of 28 ×28 pixel grayscale images of handwritten digits,
which have been highly preprocessed to center the digits and remove any background. The dataset
contains 10 distinct classes representing the digits 0 through 9 and is split into 60,000 training and
10,000 test images, balanced across classes.

SVHN (Netzer et al., 2011) can be seen as an out-of-distribution variant of MNIST, where 32 ×32
pixel images also show digits from 0 to 9 but are cropped from photos of house numbers and are, thus,
harder to classify due to additional variance in style and color. The dataset is split into 73,257 training,
531,131 extra training, and 26,032 test images but is not balanced across classes.
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CIFAR-10 (Krizhevsky et al., 2009) is a subset of the web-crawled 80 Million Tiny Images dataset
(Torralba et al., 2008) containing 32 ×32 pixel color images of natural objects in 10 classes: airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Objects in CIFAR-10 are centered in each
image, and the dataset is split into 50,000 training and 10,000 test images with a balanced distribution
across classes.

CIFAR-100 (Krizhevsky et al., 2009) is a separate subset of the 80 Million Tiny Images dataset
(Torralba et al., 2008), featuring 100 fine-grained classes grouped into 20 broader categories. While
CIFAR-10 and CIFAR-100 share some similar objects, CIFAR-100 presents a greater challenge due to
its: (1) higher number of classes, (2) finer-grained labels, and (3) fewer samples per class. CIFAR-100
also has a class-balanced split of 50,000 training and 10,000 test images.

ImageNet (Deng et al., 2009) is a large, unbalanced dataset containing 14,197,122 images across 21,841
synsets (or classes) of “natural objects” categorized by nouns in the WordNet hierarchy (Fellbaum,
1998). This full dataset is sometimes referred to as ImageNet-21k or ImageNet-22k (where the suffix
indicates the approximate number of classes). Preprocessed versions of the Fall 2011 and Winter 2021
releases, which reduce the number of classes to roughly 11,000, are also available (Ridnik et al., 2021)
and are sometimes labeled as ImageNet-21k, -21k-P for “preprocessed”, or -11k. These large-scale
versions of ImageNet are rarely used as benchmarks due to their massive size and lack of standardized
train/validation/test splits, though they have been used to pre-train multiple state-of-the-art (SOTA)
models (Dosovitskiy et al., 2021; Liu et al., 2021b, 2022).

When we refer to ImageNet or ImageNet-1k in this thesis, we imply the official 1,000-class subset
from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 (Russakovsky et al.,
2015). This dataset mostly contains photographs of natural objects, including some fine-grained
classes (e.g., around 120 dog breeds). ImageNet-1k has become the standard benchmark for large-scale
image classification. It consists of 1.28 million training images (unbalanced across classes, with mostly
500–1,000 images per class), 50,000 balanced validation images, and 100,000 test images (with unknown
balance) with various resolutions. While labels are available for the training and validation sets, test
set labels are withheld, and the official test server is now inactive. As a result, the validation set is
commonly used as the community’s de facto test set.

The impact of ImageNet has led to numerous studies examining the correlation between ImageNet
performance and performance on other tasks (Recht et al., 2019; Shankar et al., 2021; Kornblith
et al., 2019b; Miller et al., 2021), the creation of datasets testing the generalization capabilities of
ImageNet-trained classifiers (Geirhos et al., 2018; Hendrycks & Dietterich, 2019; Wang et al., 2019;
Geirhos et al., 2019; Hendrycks et al., 2021a,b; Mintun et al., 2021; Li et al., 2023d), and even the
collection of new test sets following the original methodology, such as ImageNet-v2 (Recht et al., 2019).
Notably, while models experience a performance drop on ImageNet-v2, human performance remains
unaffected (Shankar et al., 2020).

However, due to its vast size, some ImageNet samples contain imperfect annotations. Issues include
incorrect labels, images with multiple valid classes but only one annotated label, and some overlapping
or hierarchical relationships among classes (Yun et al., 2021), which have led to new annotation efforts
of the test ImageNet-ReaL (Beyer et al., 2020) and train sets (Yun et al., 2021).

Training models on large datasets like ImageNet-1k can be computationally demanding. To address
this, several alternatives have been proposed to reduce the number of classes, samples, or resolutions.
Examples include Imagenette/ImageWoof (Howard, 2019) and ImageNet-32 (Chrabaszcz et al., 2017).
In this thesis, we will occasionally utilize TinyImageNet (Le & Yang, 2015), a subset of ImageNet
containing 200 classes. The images are downsampled to 64 ×64 pixels, with class-balanced splits
comprising 125,000 training samples, 25,000 validation samples, and 25,000 test samples.
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2.6 Generalization
To train a machine learning model, we collect a dataset X = {(x(1), y(1)), . . . , (x(n), y(n))} containing
(potentially noisy) samples drawn from the true data distribution pdata. The dataset is then randomly
split into disjoint training and test sets X = Xtrain ∪ Xtest with Xtrain ∩ Xtest = ∅.

During training, we then minimize the empirical risk on the training set Xtrain with ntrain training
samples, expressed by a function `(ŷ, y) that models the loss (or error) between the predicted label
distribution ŷ and true label y (Goodfellow et al., 2016):

min
θ

1

ntrain

ntrain∑
i=1

`
(
f
(
x
(i)
train;θ

)
, y

(i)
train

)
. (2.29)

This process minimizes the loss on the training data, but of course, we also a model that is able to
generalize, i.e., we want it to perform well on new and unseen data as well. We quantify the test
error or generalization error (Goodfellow et al., 2016) on the held-out test data by

1

ntest

ntest∑
i=1

`
(
f
(
x
(i)
test;θ

)
, y

(i)
test

)
. (2.30)

Statistical learning theory taught us that we only have a chance to reduce train and test error at the
same time if both train and test set are i.i.d.– meaning that the samples in each dataset are independent
and drawn from the same underlying distribution (Bishop, 1995; Goodfellow et al., 2016).

However, the distribution p̂data modeled by our collected dataset only approximates the true distribution
and may diverge from it in many ways. In that case, the empirical risk we obtain at test time may
severely underestimate the true risk

E(x,y)∼p̂data [`(f(x;θ), y)] � E(x,y)∼pdata [`(f(x;θ), y)]. (2.31)

If that were to be the case, the model would poorly generalize to new data because it overfitted the
training feature statistics. On the other hand, we may also obtain an underfitted model that achieves
a high loss on both the empirical (including training data) and true data distribution by learning an
oversimplified decision rule (Goodfellow et al., 2016).

2.6.1 Regularization
To avoid overfitting our training distribution, we can employ techniques known as regularization.
Goodfellow et al. (2016) defines regularization as “any modification we make to a learning algorithm
that is intended to reduce its generalization error but not its training error”. In the following, we will
give a non-exhaustive list of exemplary regularization techniques that are important for this thesis and
refer the reader to Goodfellow et al. (2016, Chapter 7) for more details.

• Weight Penalties: Weight penalties are a common regularization technique in machine learning,
where the loss function is modified to include a cost term based on the learnable parameters.
This is expressed as J(x,y;θ) = `(f(x;θ),y; )+λΩ(θ), where Ω(θ) is the cost function scaled by
a hyperparameter λ. Commonly, the term is designed to discourage large or complex parameter
values, effectively reducing the complexity of the learned algorithm. Choices for Ω(θ) include
the L1-norm (lasso), which promotes sparsity by encouraging many weights to become zero,
and the L2-norm (ridge), which discourages large weights without necessarily enforcing sparsity,
or a combination of both (elastic net). In ML lingo, the L2-norm penalty is also often known
as weight decay, albeit that weight decay is directly implemented in the weight update rule,
which introduces issues with optimizers such as Adam (Loshchilov & Hutter, 2019). The weight
penalty is, however, not constrained to norm penalties, for instance, we will introduce a more
sophisticated weight penalty that leverages frequency-domain properties in Chapter 5.
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• Dropout: Randomly removing units during training reduces the risk of overfitting by ensuring
that the model does not become overly dependent on specific units or features (Srivastava et al.,
2014). A “unit” can broadly refer to a single element in a feature map, a channel, or even the
output of an entire layer. Dropout can be effectively implemented by multiplying the activations
with a randomly generated mask that zeroes out certain elements with probability p. This
approach effectively models a dynamic ensemble of subnetworks during training, improving
generalization. Dropout often complements other regularization techniques, such as weight decay
or parameter norm constraints, but has also been shown to outperform these in individual
comparisons (Srivastava et al., 2014; Goodfellow et al., 2016).

• Image Augmentation: Scaling the number of training data (along other axes) is the best way
to improve generalization (Goodfellow et al., 2016; Sutton, 2019; Branwen, 2020). However, if
training data is limited, the number of de facto samples can be synthetically enlarged by various
label-preserving transformations known as augmentations. These can range from simple forms
like applying noise (Sietsma & Dow, 1991), crops and horizontal flips (Krizhevsky et al., 2012),
mixtures of multiple transformations (Hendrycks et al., 2020), to learned transformation policies
(Cubuk et al., 2019), combination of samples (Tokozume et al., 2018; Zhang et al., 2018; Yun
et al., 2019), and model-based approaches (Hendrycks et al., 2021a). Incorporating a specific
transformation into the data transformation process (at different intensities) trains the model to
become invariant to that transformation, meaning it learns to maintain consistent predictions
regardless of whether the transformation is present in the test data. For instance, if we apply a
brightness augmentation during training, we expect our model to become invariant to brightness
changes at test time (under reasonable conditions).

• Early Stopping: Under empirical risk minimization, training a neural network for more epochs
generally keeps decreasing the training loss (given appropriate optimization hyperparameters).
However, while the test loss often decreases initially as well, it may eventually increase if the
model begins to overfit (Goodfellow et al., 2016). Early stopping mitigates overfitting by halting
the training process when a predefined condition is met, such as no improvement in validation
loss for a number of consecutive epochs.

• Adversarial Training: Training on data that is perturbed to maximize training loss (Szegedy
et al., 2014b; Goodfellow et al., 2015; Madry et al., 2018), which can be seen as a worst-case
data augmentation. We will offer a more nuanced introduction to this technique in Section 2.8.2.

• Inductive Bias: The inductive bias of each neural network architecture can also be seen as
regularization, as it imposes constraints on how the data is processed. For instance, in CNNs,
the locality of the convolution operation and its weight-sharing property serve as a strong
regularization as compared to regular MLPs (Goodfellow et al., 2016).

2.7 Distribution Shifts
From a data perspective, the root cause of performance differences between train and test time is a
distribution shift in feature space (Storkey, 2008; Quiñonero-Candela et al., 2008; Moreno-Torres
et al., 2012). Here, we use “features” loosely to refer to any information present in the input samples.
In images, this could range from low-level details like pixel color intensities and frequency distributions
to higher-level attributes, or even entire objects or scene compositions.

Statistically speaking, we are modeling the conditional distribution p(Y |Z) between the feature space
Z and the label space Y based on the joint distribution ptrain(Z, Y ) from our training set. However,
our test distribution ptest may diverge: ptest(Z, Y ) 6= ptrain(Z, Y ). We can assume that an increased
divergence between ptrain and ptest decreases the model performance by common metrics. In this
section, we aim to formalize the conditions that may lead to distribution shifts.
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Recall that we can factorize a joint distribution p using conditional probabilities:

p(Z, Y ) = p(Z|Y ) · p(Y )︸ ︷︷ ︸
label shift

=

concept shift︷ ︸︸ ︷
p(Y |Z) · p(Z).︸ ︷︷ ︸

covariate shift

(2.32)

Based on Equation 2.32, we can now identify the shift that each term is introducing. Note that,
in theory, multiple shifts could co-occur. However, for simplicity, we consider mutually exclusive
shifts.

A covariate shift (Shimodaira, 2000; Gretton et al., 2009) occurs when the marginal distribution of
the input features, Z, changes between the training and testing time, such that ptest(Z) 6= ptrain(Z),
while the conditional distribution of the target variable given the features remains constant, i.e.,
ptest(Y |Z) = ptrain(Y |Z). This situation assumes that Z is causally related to Y .

In simpler terms, covariate shift implies that while the feature distribution differs in the test set, the
relationship between features and outputs is preserved. For example, consider training a classifier to
distinguish soda bottles from water bottles. If the training data contains only Coke bottles in the soda
class, the model may fail to recognize a Fanta bottle during testing. Although the relationship between
features and labels remains the same, the feature distribution shifts because Coke-specific features are
missing in the test set, replaced by new Fanta-specific features.

Covariate shift is one of the most extensively studied forms of distributional shift in machine learning
and is the central focus of this thesis.

A label shift (Zhang et al., 2013; Lipton et al., 2018) refers to a change in the marginal distribution
of the labels Y , between the training and testing time, while the conditional distribution of features
given the label remains constant. Formally, this implies that ptest(Y ) 6= ptrain(Y ), but ptest(Z|Y ) =
ptrain(Z|Y ). Label shift assumes that the labels influence the features, making it the inverse of covariate
shift.

To illustrate this, consider the soda versus water classification task from above. Imagine we train the
classifier using a dataset where soda bottles are much more common than water bottles, leading the
model to assign a high prior probability to the soda label. However, in the test setting, the distribution
changes, and water bottles become the majority. Although the visual features distinguishing sodas
from water remain the same, the model may struggle to adapt to this new label distribution, resulting
in a tendency to over-predict soda due to the training imbalance.

A concept shift (Widmer & Kubat, 1996; Tsymbal, 2004) occurs when the conditional distribution of
the label given the features, p(Y |Z), changes between the training and testing time, while the feature
distributions do not change, i.e., ptest(Y |Z) 6= ptrain(Y |Z) but ptest(Z) = ptrain(Z). Unlike covariate
shift or label shift, concept shift implies that even if the input features are distributed similarly, they
now correspond to different labels or interpretations. This scenario often arises when the criteria or
meaning of a label changes over time or across different contexts. To remain with the soda analogy, we
can observe a change in the label if we survey the term used to describe a soda bottle across different
states of the USA (Zhang et al., 2021a).4 Depending on the region, the “true” label may be pop, soda,
coke, or something else,5 while the features remain exactly the same.

In-distribution vs. Out-of-distribution Samples

In the context of machine learning, the terms in-distribution (ID) and out-of-distribution (OOD) are
frequently used but can carry different meanings, depending on the context. Out-of-distribution may
refer to a range of scenarios, from small covariate shifts to cases where samples belong to new labels
that were not observed during training.

4https://popvssoda.com/
5We assume that all these labels are part of Y .
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To understand this ambiguity, consider a covariate shift, where ptest(Z) 6= ptrain(Z). This can happen
for three main reasons:

1. Test features lie in the same manifold as train features but are differently distributed.

2. Test and train feature manifolds partially overlap (potentially on long tails), with potentially
different distributions within the overlapped regions.

3. Test and train features span disjoint manifolds.

Based on a literal interpretation, we might consider only scenarios (2) and (3) as OOD, since they
involve features that either partially or fully fall outside the training distribution. However, what
qualifies as OOD data ultimately depends on how we define our reference distribution. As a concrete
example, let us focus on common corruptions (ImageNet-C) (Hendrycks & Dietterich, 2019), which
includes synthetically corrupted versions of the ImageNet validation set. These corrupted samples
could be viewed as ID since they have been derived from the same ImageNet images, but also as
OOD because the specific corruptions may not appear – or may appear in different intensities – in the
training set. ID is equally difficult to define and to guarantee. Even if we take a balanced split of a
dataset into a train and test set, we cannot always guarantee the absence of some level of covariate
shift.

In the scope of this thesis, we will refer to covariate-shifted data as OOD data, but the test samples
are never novel in the sense that no new labels are introduced in the test data. We will only call test
data ID if it is a split coming from the same source dataset (e.g., ImageNet train and validation set
(Russakovsky et al., 2015)) or was sampled in an (almost) identical way (e.g., ImageNet train and
ImageNet-v2 (Recht et al., 2019)) accepting only small levels of covariate shift.

2.8 Robustness
We define robustness as invariance to mild distribution shifts (maintaining the previous notion of out-
of-distribution data), particularly covariate shifts. We consider robustness a necessary but insufficient
attribute for generalization on new samples from the true data distributions: a model that generalizes
optimally will always be robust, but a robust model may not necessarily generalize optimally. Also, in
the following chapters, we will sometimes explore specific kinds of robustness, such as robustness to
image corruptions (Section 2.8.1) or adversarial attacks (Section 2.8.2), which may be orthogonal to
each other.

2.8.1 Corruption Robustness

Original Corrupted

Figure 2.9: Exemplary corruptions to an image. We can expect that if a robust model correctly
recognizes the original image on the left, it should also generalize and recognize at least some of the
corrupted images on the right side. Image Source: (Deng et al., 2009; Hendrycks & Dietterich, 2019)

A basic notion of robustness to covariate shift assumes that a classifier performing well on an i.i.d. test
set will maintain similar performance even when that set is corrupted (see Figure 2.9 for an example).
Various corruption methods have been explored, including random synthetic image transformations
(Geirhos et al., 2018, 2019; Hendrycks & Dietterich, 2019; Mintun et al., 2021; Kar et al., 2022), targeted
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modifications of object attributes (Li et al., 2023c; Zhang et al., 2024), and using real photographs
with quality issues (Hendrycks et al., 2021a; Bafghi & Gurari, 2023).

Notably, most classifiers often struggle with corrupted data, even after achieving high accuracy
on clean i.i.d. data – a stark contrast to human performance, which remains largely unaffected
by these corruptions (Geirhos et al., 2018). While training on specific corruptions (e.g., through
data augmentation) can improve performance on test data with similar corruptions, sometimes even
surpassing human performance, the resulting models typically fail to generalize to unseen corruptions
(Geirhos et al., 2018) or generalize only when the test corruptions are perceptually similar to those
used during training (Yin et al., 2019; Mintun et al., 2021).

Defenses

Generally, defenses can be categorized into domain adaptation (see Wang & Deng (2018) for a survey)
or domain generalization (see Zhou et al. (2023) for a survey) approaches.

Domain adaptation aims to align the model to features of the target domain, often requiring access to
(supervised or unsupervised) samples from the test domain, potentially at the expense of performance
on the source domain (Ganin & Lempitsky, 2015; Sun & Saenko, 2016; Tzeng et al., 2017; Hoffman et al.,
2018). Test-time training (TTT) (Sun et al., 2020) represents a promising approach within domain
adaptation, adapting to the target domain using an unsupervised training signal during testing.

Conversely, in this thesis, we are interested in models that generalize without the need for adaptation.
Domain generalization seeks to learn features that generalize across domains without access to target
domain samples. A (narrow) domain generalization strategy for improving robustness to corruptions
focuses on designing augmentation techniques that generalize to unseen corruptions during testing
(Tokozume et al., 2018; Zhang et al., 2018; Yun et al., 2019; Geirhos et al., 2019; Lopes et al., 2020;
Rusak et al., 2020; Hendrycks et al., 2020, 2021a, 2022; Cubuk et al., 2019, 2020; Erichson et al., 2022;
Modas et al., 2022).

2.8.2 Adversarial Robustness

Input Perturbation Attacked Sample

+ 0.1× =

tiger cat (74%) 3 hummingbird (100%) 7

Figure 2.10: An example of an adversarial attack on image classification. A perturbation
that appears semantically irrelevant to humans (center; contrast amplified by a factor of 10; generated
with an L∞-PGD-40 attack with ε = 8/255) causes an ImageNet-trained ResNet-50 model (He et al.,
2016) to misclassify a photo of tiger cat as a hummingbird with maximum confidence. The figure is
inspired by Fig. 1 of (Goodfellow et al., 2015). Image Source: (Deng et al., 2009) (cat)

Adversarial data can be seen as a special kind of covariate shift. Instead of “natural” covariate shifts,
which may be caused by imbalanced representations of true features, we now actively modify the
feature distribution at test time with respect to our model and objective to increase the error.
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Applying this technique has demonstrated that learned decision rules by default are not even robust
around in-distribution samples – predictions are highly sensitive to small input perturbations (Biggio
et al., 2013; Szegedy et al., 2014b), even if they are (almost) imperceptible and semantically meaningless
to humans (see Figure 2.10 for an example). In some cases, these perturbations can be as small as
a single pixel (Su et al., 2019). The field of adversarial robustness is attempting to find (and
defend) perturbations of the inputs that would fool a model. For the task of image classification, these
perturbations would (but ideally should not) cause the misclassification of samples.

Adversarial Attacks

Adversarial attacks aim to modify an input sample in a way that fools the model to cause a prediction
error. Often, a core assumption of these attacks is that an additive perturbation δ to a sample x
fools the attacked model without carrying a semantic meaning to a human observer. For example
in classification, if we have a sample x(a) belonging to a class a and a sample x(b) belonging to a
class b it would be not surprising that argmax f

(
x(a) + δ

)
= b, if δ =

(
x(b) − x(a)

)
, as it actually

changes the resulting sample and its features to members of the class b. Instead, we are interested in
perturbations that are constrained to not cross the boundary of the “true” class manifold. This property
is commonly approximated by restricting perturbation magnitudes by some Lp-norm (Goodfellow
et al., 2015).

Formally, pixel-wise Lp-attacks can be defined as follows. Given an input sample x with its correspond-
ing class label y and a loss function `, the adversarial attack seeks to maximize the loss by finding
a small perturbation δ to x. This perturbation is constrained within a Lp-norm ball of radius (or
“budget”) ε, centered at x. The goal is to keep perturbations small enough (minor changes) to restrict
them to imperceptible alterations in input space while causing the model to misclassify the adversarial
sample xadv = x+ δ. We can approximate misclassifications by an increase in loss:

max
‖δ‖p≤ε

` (f (x+ δ;θ) , y) . (2.33)

The choice of p in the Lp norm significantly impacts the spatial distribution of perturbations. L∞-
bounded attacks constrain only the maximum change to any single pixel (e.g., by ±ε), allowing any
number of pixels to be perturbed. In contrast, L2-bounded attacks impose a trade-off: perturbing fewer
pixels allows for larger changes per pixel (up to ±ε if limited to a single pixel), while perturbing all n
pixels limits each change to ±

√
ε2/n. Due to the squared nature of the L2 norm, these attacks model

a trade-off between local exploitation (i.e., stronger local perturbation) and exploration (i.e., weaker
but more spatially distributed perturbation). Newer works have also moved beyond Lp perturbations
and extended them to functional spaces (Laidlaw & Feizi, 2019), patches (Brown et al., 2018), or other
similarity metrics (Wong et al., 2019; Laidlaw et al., 2021). However, in the context of this thesis,
whenever referring to adversarial robustness of any kind, we refer to Lp-robustness unless specified
differently.

Generally, adversarial attacks can be found in both white- and black-box settings (Liu et al., 2017;
Ilyas et al., 2018; Bhagoji et al., 2018; Andriushchenko et al., 2020) where the adversary has or hasn’t
full access to the model, respectively. Amongst the most effective attacks are white-box attacks that
utilize the gradient of the prediction to perturb images in the direction of the highest loss (Goodfellow
et al., 2015; Madry et al., 2018; Croce & Hein, 2020b,a). Some attacks may be targeted, i.e., attempting
to flip the prediction towards a specific label, as opposed to untargeted attacks, which can be seen as a
relaxed constraint that causes any misclassification. In the following, we will consider untargeted cases
unless stated otherwise.

A conceptually simple untargeted white-box attack is the fast gradient sign method (FGSM) (Goodfellow
et al., 2015). Given a sample x and attack radius ε under L∞-norm, it perturbs the input sample by a
single step in the direction of the gradient signs, thus maximizing the error.

xadv = x+ ε · sign(∇x` (f (x;θ) , y))︸ ︷︷ ︸
=δ

(2.34)
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A limitation of FGSM is its single-iteration approach, which may fail to identify an adversarial region
of the decision space. The attack success rate can be increased by using an iterative method, such as
basic iterative method (BIM) (Kurakin et al., 2017). As an additional benefit, this method does not
utilize the full perturbation budget by selecting perturbations at the maximum allowable boundary.
BIM takes t FGSM steps with radius α, which are clipped back to the radius should they exhaust the
budget.

x
(1)
adv = x

δ(t) =
(
x
(t)
adv + α · sign

(
∇x`

(
f
(
x
(t)
adv;θ

)
, y
)))

− x

x
(t+1)
adv = x+ clip

(
δ(t),−ε, ε

) (2.35)

A common modification of this, known as projected gradient descent (PGD), perturbs the initial sample
randomly (Madry et al., 2018):

x
(1)
adv = x+ p, where p ∼ U(−ε, ε) (2.36)

While BIM/PGD may not fully utilize the available perturbation budget, other methods more effectively
optimize perturbation magnitude. These include approaches that relax constraints such as the
requirement to maximum confidence (Carlini & Wagner, 2016), or boundary attacks (Brendel et al.,
2019; Croce & Hein, 2020a).

Whereas adversarial examples are often crafted against a specific model, some adversarial samples can
be universal and transferred to other deep learning and classical machine learning architectures alike
(Papernot et al., 2016).

Measuring Adversarial Robustness in Image Classification

A commonly reported metric for classification robustness is robust accuracy on some dataset X, i.e.,
the top-1 classification accuracy under a specified attack (with a maximum budget). Formally, we can
define this as

1

|X|
∑

(x,y)∈X

I (argmax f (σ (x, f)) = y) , (2.37)

where σ is the function generating the adversarial attack. This will be our quantification of robustness
in this thesis.

For completeness, we want to mention a few alternative ways to measure performance under adversarial
attacks. For instance, it is possible to measure the robust accuracy against label flips instead of the
true label by substituting y = f(x) in the indicator function. Furthermore, some works are interested
in quantifying the average minimum budget necessary to cause a misclassification, i.e.:

1

|X|
∑

(x,y)∈X

min {‖δ‖p | argmax f(x+ δ) 6= y} . (2.38)

Independent of the performance metric, it is necessary to discuss how adversarial robustness should
be evaluated. For instance, each attack may leave individual fingerprints that a neural network
(defense) can overfit. Thus, a faithful evaluation of adversarial robustness often employs an ensemble
of attacks (Carlini et al., 2019), e.g., through AutoAttack (Croce & Hein, 2020b). The ensemble
applies APGD-CE, APGD-T (Madry et al., 2018; Croce & Hein, 2020b), FAB (Croce & Hein, 2020a),
and Square (Andriushchenko et al., 2020) attacks to obtain a comparable (because parameter-free)
robustness accuracy. RobustBench (Croce et al., 2021) provides a benchmark for adversarial defense
methods using AutoAttack for evaluation and maintains a leaderboard of best-performing models.
Robustness is evaluated by p = 2, ε = 0.5 on CIFAR-10, as well as p = ∞, ε = 8/255 on CIFAR-10/100,
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and p = ∞, ε = 4/255 on ImageNet-1k, respectively. However, these established ε-thresholds were
disputed as being too large and generating perturbations that can easily be detected (Harder et al.,
2021). When evaluating the robustness of adversarially regularized models, we will nonetheless utilize
these thresholds to remain compatible with previous works. For the evaluation of normally trained
models, we will utilize significantly lower values that we will discuss in the individual chapters.

Adversarial Defenses

Models trained without adversarial defenses can typically not withstand attacks with high ε budgets
like the ones in RobustBench and will collapse below random accuracy. A straight-forward defense
to adversarial attacks is adversarial training (AT) (Madry et al., 2018), which trains the model on
perturbed samples during training and effectively turns out-of-distribution attacks into in-distribution
samples. It can be described by the following min-max objective:

min
θ

1

|X|
∑

(x,y)∈X

max
‖δ‖p≤ε

` (f (x+ δ;θ) , y) . (2.39)

Common choices for training attacks are FGSM or PGD. Unfortunately, adversarial training is also
susceptible to overfitting to the attacks employed during its training phase, especially under single-step
attacks like FGSM (Wong et al., 2020; Rice et al., 2020; Kim et al., 2021). The most effective method
to mitigate this is, surprisingly, also the simplest, namely early stopping on the validation data (Zhang
et al., 2020). It is worth noting that even with early stopping, adversarial training is very likely to
overfit to adversarial robustness, at a cost in clean accuracy (Tsipras et al., 2019) and robustness to
other forms of covariate shift (Moayeri et al., 2022; Kireev et al., 2022; Alhamoud et al., 2023).

AT also leads to a significant increase in training cost due to the additional gradient passes necessary to
compute perturbations and, thus, alternatives like adversarial purification (Shi et al., 2021; Yoon et al.,
2021; Nie et al., 2022; Carlini et al., 2023), randomized smoothing (Cohen et al., 2019), or inductive
priors (Wang et al., 2020a; Lukasik et al., 2023) have been proposed. However, most alternatives have
been identified as either conceptually invalid (Uesato et al., 2018; Carlini & Wagner, 2017; Athalye
et al., 2018), introduce other latency trade-offs (Cohen et al., 2019), or do not match the performance
of AT. Thus, AT remains (one of) the state-of-the-art approach for adversarial defense, especially
when combined with external (synthetic) data (Rebuffi et al., 2021a; Gowal et al., 2021; Wang et al.,
2023d) and/or more sophisticated loss functions (Carlini & Wagner, 2016; Pang et al., 2020a; Cui
et al., 2023).

In some scenarios, it may also be sufficient to simply detect and reject adversarial samples instead of
strengthening the neural decision rule (e.g., (Feinman et al., 2017; Lee et al., 2018; Ma et al., 2018;
Harder et al., 2021)).

2.9 Feature Biases in Visual Perception
In previous sections, we primarily discussed generalization through the lens of data, emphasizing
distribution shifts between train and test time. In this section, we shift our focus to the model’s
perspective to analyze how it may be biased against certain features (Section 2.9.1), then link this
back to generalization and robustness (Section 2.9.2), provide methods for the identification of biases
(Section 2.9.3), and finally provide some recent examples (Section 2.9.4).

2.9.1 Definition
Consider each input sample as a set of n features represented by x = {z(1), . . . , z(n)}, where we again
define features in an abstract sense. We can hypothesize that a model assigns a weight of importance
to each feature during inference. These will likely be of varying levels – some features could be highly
influential to the decision, receiving significant weight, while others might have minimal or no impact,
with small or zero weights. In the latter case, we can say that a model is invariant to the respective
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feature – a property that can be desirable, for instance, a cat is a cat independent of the background
behind it, it’s position in an image, or whether it is a close-up shot or not. This differential assignment
of importance leads to an implicit ranking of features. It is noteworthy that feature importance can
vary from one sample to another, even for samples belonging to the same class.

We define a bias as one or more features that are prioritized relative to others during a prediction. Our
definition of biases does not depend on whether the preferred features are genuinely correlated with
the label. Rather, it only focuses on the relative importance assigned by the model to each feature –
thus, biases could be desirable or destructive. For instance, if we aim to detect objects as in ImageNet
(Deng et al., 2009), a model that prefers the foreground features over the background has a desirable
bias, while the opposite bias would be destructive, as it is not correlated with the task.

We offer the following taxonomy of biases depending on their severity:

• Sample-specific bias: The feature importance distribution for a specific sample is biased.
Adversarial examples could be seen as highly biased examples, as they modify a sample to
increase the perceived importance of superficial features to cause prediction errors (Ilyas et al.,
2019).

• Group-specific bias: The feature importance distribution for multiple samples (e.g., all samples
from one class) is biased. An example of a group-specific bias can be seen when, for instance,
an ImageNet classifier relies on a watermark to make predictions for specific classes (Li et al.,
2023d), with the watermark functioning as the biased feature.

• Global biases: The feature importance distribution for all samples is biased. For instance,
CNNs trained on ImageNet are biased towards texture rather than shape information across all
decisions, whereas humans strongly prefer shape (Geirhos et al., 2019) – with texture serving
here as the biased feature.

2.9.2 Connection to Generalization
Ultimately, we can link our notion of biases to the model’s generalization capability. For example,
consider a taxonomy of feature types that a model could potentially learn, as outlined by Geirhos et al.
(2020a):

• Uninformative features: These show no meaningful correlation with the true data distribution
and align only at chance levels.

• Overfitting features: These features correlate with the training set labels but fail to generalize
to new data from the true distribution.

• Shortcut features: These correlate with labels in the i.i.d. training and test sets but fail under
distribution shifts (e.g., covariate shifts) or on new samples from the true data distribution.

• Intended features: These features maintain consistent correlations with labels across all
samples from the true data distribution.

Over a set of multiple samples, uninformative features will typically have zero importance. Overfitting
and shortcut features may have non-zero importance on specific empirical datasets, but do not extend
beyond them. Intended features, by contrast, have non-zero importance throughout the true data
distribution.

A model biased towards unintended, overfitting, or shortcut features is likely to exhibit poor general-
ization. Conversely, a model that is biased against intended features will generalize more effectively.
Identifying the optimal bias is often impossible in practice, and we may not even be able to rule out the
existence of multiple equally effective importance distributions. Typically, human evaluators can only
identify unwanted biases. For example, biases in ImageNet models towards watermarks or backgrounds
to detect (foreground) objects are clearly problematic, but defining an optimal set of biases to detect
an object is less obvious.
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Instead of establishing optimal biases, a fruitful approach can be to measure and compare biases for
different observers – for instance, one line of research explores comparing biases between artificial neural
networks and human vision, with human perception serving as a proxy for optimal bias (Geirhos et al.,
2019; Subramanian et al., 2023). In Part II, we, too, will measure and discuss biases in comparison to
human evaluators.

2.9.3 Methods for the Identification of Features/Biases
Now that we have established what a bias is, we want to outline methodologies to identify and quantify
bias in neural networks.

Figure 2.11: Attributions through saliency maps. We show ImageNet samples for the class bee
and the respective saliency maps (blue to red in increasing relevancy), which reveal the model’s bias to
classify based on the flower, and not the bee itself. Image Source: (Deng et al., 2009; Singla & Feizi,
2022)

Feature Attributions

Attributions maps attempt to highlight regions in input images that are relevant for a prediction, for
example through gradient propagation (Erhan et al., 2009; Baehrens et al., 2010; Simonyan et al., 2014;
Shrikumar et al., 2017) or attention (Serrano & Smith, 2019; Jain & Wallace, 2019; Wiegreffe & Pinter,
2019; Abnar & Zuidema, 2020) (one example is shown in Figure 2.11). In most cases, they will provide
a pixel or patch-level importance for a single prediction, where we consider (groups of) pixels/patches
to be the features. While attributions primarily highlight regions, they could, in principle, be utilized
to detect bias. For example, we could instruct a human or artificial observer to formulate a bias from
attributed regions over multiple predictions.

However, the success of this method is limited by the following components: (1) the attribution method
must generate a faithful attribution, (2) the observers (which may be humans) must be able to identify
the abstract feature from attributed pixels, and (3) the observers must be able to extrapolate a decision
rule based over multiple attributed samples.

Unfortunately, it has been shown that many attribution methods are not trustworthy and fail basic
sanity checks (Adebayo et al., 2018; Jain & Wallace, 2019), and likewise do the metrics that attempt to
establish their trustworthiness (Tomsett et al., 2020). However, even if they were trustworthy, human
judgment varies a lot and may not be sufficient to identify a bias from attributions alone. While we
do not dispute that attributions can be useful, and indeed have been used to identify class-specific
shortcuts (e.g., (Zech et al., 2018; Singla & Feizi, 2022; Neuhaus et al., 2023)), it seems very difficult
and impractical to discover global biases only based on attribution methods.
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Figure 2.12: Feature visualization. We show 5 neurons of the first residual block in stage 3 of an
ImageNet-trained ResNet-50.

Feature Visualization

The field of mechanistic interpretability (MI) aims to identify and interpret circuits (subgraphs in neural
networks) that connect inputs to outputs. In principle, this vision aligns well with our established goal
to identify global biases.

For image inputs, a common MI method used to “understand” a function of a neuron is feature
visualization – here, inputs are optimized to maximize the output of individual neurons (with some
similarity to adversarial attacks) (Nguyen et al., 2016; Mordvintsev et al., 2015; Olah et al., 2017)
(Figure 2.12).

However, being gradient-based, these methods suffer from limitations like sensitivity to initialization
and local optima. They assume that neurons are mono-semantic (representing one concept) but are
often poly-semantic (representing multiple concepts), making interpretation difficult (Olah et al., 2020b;
Elhage et al., 2022). Finally, regularization and preconditioning, while improving visual interpretability,
introduce biases that can misrepresent the neuron’s true function, potentially leading to misleading
conclusions despite looking visually appealing (Olah et al., 2017; Zimmermann et al., 2021; Geirhos
et al., 2024).

In summary, while feature visualization remains a valuable tool for exploring neural network repre-
sentations and has been used to detect biases such as the bias for written text (Goh et al., 2021),
its inherent limitations must be carefully considered. Further, the interpretation of visualizations is
subject to the same issues that we discussed for attribution methods.

Behavioral Testing

Rather than dissecting the intricacies of internal features, we can adopt a behavioral testing paradigm,
treating the network as a “black box” and probing its responses to carefully designed stimuli. This
approach offers several advantages. It provides a more precise methodology, as specific features
within the input stimuli can be explicitly manipulated to directly assess the model’s sensitivity to
those features. Furthermore, behavioral testing facilitates easier comparison with humans, as the
same stimuli can be presented to human participants, enabling a more intuitive understanding of the
model’s learned behavior relative to human perception. The downside is that the feature(s) must be
predetermined.

In the following, we will explore two distinct methodologies for behavioral testing: feature-ablated
stimuli and hybrid feature stimuli.

Feature ablations We can understand biases as the strong preference for one or multiple features –
i.e., if these features would no longer be present in the input, we would expect the performance to be
impacted strongly.

Assuming that we have an understanding of what features exist in our dataset, we can create a modified
test dataset that ablates a feature: Xz−ablation = {(x\z, y) | (x, y) ∈ Dtest}, where we assume that z
is the same feature across all samples (e.g., the lowest frequencies as shown in Figure 2.13). Then we
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\ =

x z

Figure 2.13: Feature ablation. A sample is constructed by removing one or more features. Here,
we remove ca. 11% of the low-frequency components (feature z) in Fourier space Section 2.1 from a
cat image. Image Source: Fir0002/Flagstaffotos (cat)

can simply measure the drop in accuracy (or alternatively loss):

bias(z) ≈ accuracy(f,Dtest)− accuracy(f,Dz−ablation) (2.40)

The higher the drop in accuracy, the higher the importance or bias of the tested feature must be –
thus, unlike the previous methods, we can also quantify the importance of the feature.

However, one needs to use caution when performing this type of ablation, as removing features from
an image may not always be easy and introduce artifacts (Tomsett et al., 2020). For example, let us
consider that we want to test the bias towards background cues of an object classifier. If we crop the
background of a photo to test the sensitivity to background cues, we need to consider how we crop and
replace it carefully. A coarse crop may destroy foreground features (e.g., hair) or retain background
artifacts. Similarly, filling a background with white color for a dark object will introduce stronger
edges, which may introduce a confounder to our study that prevents us from systematically isolating
the effect of the background.

In this thesis, we will only use feature ablations to test for bias in frequency space, largely avoiding
dealing with artifacts. In Chapter 8, we assess bias by masking specific frequency ranges within images.
To examine the impact of the critical band, we utilize the noise-injection methodology proposed by
Subramanian et al. (2023). This approach offers a significant advantage by enabling gradual and
controlled feature removal, unlike binary masking.

∪ =

z1; y1 = cat z2; y2 = elephant y = {cat, elephant}

Figure 2.14: Cue-conflicted image. A sample is constructed by two or more features belonging to
conflicting classes. Here we show the 2-way texture/shape conflict, where the shape feature z1 belongs
to the label “cat”, and the texture feature z2 belongs to the label “elephant”(Geirhos et al., 2019).
Image Source: (Deng et al., 2009; Geirhos et al., 2019)

Cue-conflicted images A different kind of ablation is performed through cue-conflicted images
(as inspired by Oliva et al. (2006)’s Hybrid Images), where we ablate and replace one or more features
with equivalent features obtained from a sample of a different conflicting class (Figure 2.14). For
instance, Geirhos et al. (2019) replaced texture information in ImageNet samples with conflicting (i.e.,
belonging to another class) textures to measure the texture/shape bias, where they assumed that the
remainder of the image defines the shape. Effectively, this methodology introduces conflicting feature
cues in an image, and the stimulus is now correlated with multiple targets.
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Formally, we define a set of stimuli (test dataset) as a (m + 1)-tuple containing a sample, and m

conflicting labels Xstimuli = {(x(1), y
(1)
1 , ..., y

(1)
m ), ..., (x(n), y

(n)
1 , ..., y

(n)
m )}. A stimulus x is then created

by x = B ∪ (
⋃m

i=1 z
(i))
i ) where zi

i is the i-th feature obtained from a sample with the label yi, such
that ∀(i,j);i6=jyi 6= yj . B is the unmodified set of features.

From an information perspective, the classification of all labels is valid, and applying an unbiased
classifier on these stimuli should generate equivalent confidence in any of the valid classes – however,
internal biases in the learned representation will often result in a prediction based on one particular
feature. We can quantify the relative importance or bias for z(i) by the frequency of predictions of yi,
of all correct predictions:

bias
(
z(i)
)
=

accuracy against i-th label
accuracy against all labels

=

∑
(x,y1,...,ym)∈Xstimuli

I(argmax f(x) = yi)∑
(x,y1,...,ym)∈Xstimuli

I(argmax f(x) ∈ {y1, ..., ym})
. (2.41)

In this thesis, we will exclusively look at cases with m = 2 conflicting features and B = ∅. Specifically,
we will use the cue-conflicted images to test for the texture/shape bias following Geirhos et al. (2019)
and introduce new cue-conflicted stimuli to test for low-/high-frequency bias in Chapter 9.

2.9.4 Examples of Biases in Object Recognition Models
This thesis primarily investigates global biases within object recognition, specifically focusing on
image classification (Section 2.5) of objects in natural scene contexts. Only a few of these biases are
currently known, especially in the context of large-scale object detection problems like ImageNet (see
Section 2.5.4 for details).

For instance, Geirhos et al. (2019) demonstrated that convolutional neural networks (CNNs) trained
on ImageNet are highly biased toward textures as opposed to shape cues. This bias means that, for
example, an image of a cat with elephant-like skin texture will likely be misclassified as an elephant.
Rosenfeld et al. (2018); Xiao et al. (2021a) found that many classifiers also often rely excessively on
background information to identify foreground objects. This reliance can lead to misclassification when
objects are placed on unusual backgrounds, such as birds positioned on water, as noted by Sagawa
et al. (2020). Furthermore, Wang et al. (2020a) revealed that image classifiers, particularly those
trained on low-resolution datasets, almost exclusively utilize high-frequency cues, even though the
information contained there should intuitively be irrelevant for classification. Relatedly, Subramanian
et al. (2023) analyzed the spectral bands that are utilized in object recognition. They showed that
artificial neural networks utilize significantly wider spectral bands than humans and thus rely on
additional features.

In the context of multi-modal models, Goh et al. (2021) studied the learned features of CLIP models
and observed a bias toward textual cues within images. For instance, an apple with a piece of paper
reading “iPod” stuck to it would likely be classified as an iPod rather than an apple.
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Part I
The CNN Weight Space

In this first part of the thesis, we want to focus on generalization in the learned parameters (weight space),
specifically in the convolution filters of Convolutional Neural Networks (CNNs) that we introduced in
Section 2.3. Before we dive into generalization (Section 2.6), we will define how to characterize and
compare CNN filter representations and obtain a general intuition about distribution shifts in weight
space through a large-scale study on a heterogeneous CNN model zoo (Chapter 3).

Turning to generalization, we look at a highly successful, yet specialized form of generalization to
adversarial attacks (Section 2.8.2): adversarial training (Madry et al., 2018) – a form of regularization
based on worst-case data augmentation against explicitly defined threat models. This computationally
highly expensive regularization results in implicit changes to the learned representations in weight
space, which we try to understand (Chapters 4 to 6), and turn into a computationally more reasonable
and explicit form of weight regularization beyond adversarial robustness (Chapter 5).

Finally, we propose a different angle on the weight space beyond filter patterns through layer criticality
in Chapter 6.

44



Chapter 3

Convolution Filter Analysis

Currently, many theoretical and practically relevant questions regarding the transferability of learned
representations in Convolutional Neural Networks (CNNs) remain unsolved. While ongoing research
efforts are engaging these problems from various angles, in most computer vision-related cases, these
approaches can be generalized to investigations of the effects of distribution shifts in image data (see
Sections 2.7 and 2.8).

In this thesis, we propose to study the shifts in the learned weights of trained CNN models. Here,
we specifically focus on the properties of the distributions of dominantly used 3× 3 convolution filter
kernels. We collect and provide a dataset with over 1.4 billion filter kernels from approximately
650 CNNs, trained with variations in datasets, architectures, and vision tasks. We then propose a
methodology to study filter representations and obtain insights about distribution shifts in CNNs on
both global (populations of model groups) and local scales (individual model comparisons).

This chapter is based on two publications. The main content is based on “CNN Filter DB: An
Empirical Investigation of Trained Convolutional Filters”, presented at CVPR, 2022 (Gavrikov
& Keuper, 2022b) and has received an Oral award (top 4% of submissions). The study on medical
imaging models is based on “Does Medical Imaging learn different Convolution Filters?”,
presented at the NeurIPS Workshop on Medical Imaging, 2022 (Gavrikov & Keuper, 2022c). As the
first author of both papers, Paul Gavrikov collected models, performed the experiments, and created
the plots. The analyses were written under supervision and with the input of Janis Keuper.

� Code: https://github.com/paulgavrikov/CNN-Filter-DB

3.1 Introduction
Despite their overwhelming success in the application to various vision tasks, the practical deployment
of convolutional neural networks (CNNs) (see Section 2.3 for an introduction) is still suffering from
several inherent drawbacks. Two prominent examples are (1) the dependence on very large amounts
of annotated training data (Sun et al., 2017), which is not available for all target domains and is
expensive to obtain, and (2) still widely unsolved problems with robustness and generalization abilities
of CNNs (Akhtar & Mian, 2018) towards shifts of the input data distributions (see Sections 2.6 to 2.8).
One can argue that both problems are strongly related since a common practical solution to (1) is
the finetuning (Pan & Yang, 2010; Yosinski et al., 2014; Razavian et al., 2014; Oquab et al., 2014) of
pre-trained models by small datasets from the actual target domain. This results in the challenge of
finding suitable pre-trained models based on data distributions that are “as close as possible” to the
target distributions. Hence, both cases (1+2) imply the need to model and observe distribution shifts
in the contexts of CNNs.

In this thesis, we propose not to investigate these shifts in the input (image) domain but rather in
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Figure 3.1: Convolution filter kernels. We show the first 28 3 × 3 filter kernels extracted of
each convolution layer in a ResNet-18 trained on CIFAR-10. The filters show a clear loss of pattern
diversity and increasing sparsity with depth. The color range is normalized by the largest weight in
each layer to emphasize relative magnitude.

the 2D filter kernel distributions of the CNNs themselves. We argue that the distributions of trained
convolutional filters in a CNN, which implicitly reflect the sub-distributions of the input image data,
are more suitable and easily accessible representations for this task. This is further backed by previous
work that showed a correlation between weight space structure in CNNs and generalization (Unterthiner
et al., 2021).

In order to foster systematic investigations of learned filters, we collect and now publicly provide a
dataset of over 1.4 billion filters with metadata from hundreds of trained CNNs, using a wide range of
datasets, architectures, and vision tasks.

On this data source, we conduct an analysis and report a series of novel insights into representations
of widely used CNN models. Based on the methods introduced in this chapter, we show that many
publicly provided models suffer from degeneration – i.e., some of their filters or entire layers do not
model “useful” transformations. For instance, we show that overparameterization leads to sparse and/or
non-diverse filters in normal models (as can be seen in Figure 3.1), while robust training increases
filter diversity and reduces sparsity. Our results also show that learned filters do not significantly
differ across models trained for various tasks, except for extreme outliers such as GAN-Discriminators.
Models trained on datasets of different visual categories do not significantly shift either. We find that
most shifts in the studied models are due to degeneration rather than an actual difference in structure.
Therefore, our results suggest that pre-training can be performed independently of the actual target
data, and only the amount of training data and its diversity matter. This is in line with recent findings
that models can be pre-trained even with non-natural images (Kataoka et al., 2020). For classification
models, we show that the most variance in learned filters is fairly spread out throughout model depth.
In contrast, object/face detection models only show significant variance in the early layers. At least
from a weight perspective, this overhauls the common notion that the most specialized filters are
always found in the last layers.
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We summarize our contributions as follows:

• We publish a diverse database of over 1.4B 3 × 3 convolution filters alongside relevant meta-
information of the extracted filters and models.

• We present a data-agnostic method based on sparsity and entropy of filter patterns to find
“degenerated” convolution layers due to overparameterization or non-convergence of trained CNN
models.

• We perform an analysis of distribution shifts in filters over various groups, providing insights
that the formed filters are fairly similar across a wide range of examined groups.

• We show that model-to-model shifts are, contrary to the predominant opinion, not only seen in
deeper layers.

3.2 Background
We are unaware of any systematic, large-scale analysis of learned filters across a wide range of datasets,
architectures, and tasks such as the one performed in this chapter. However, there are, of course,
several partially overlapping aspects of our analysis that have been covered in related works:

Filter analysis An extensive analysis of features, connections, and their organization extracted from
trained InceptionV1 (Szegedy et al., 2016a) models was presented in (Olah et al., 2020a,b; Cammarata
et al., 2020; Olah et al., 2020c; Schubert et al., 2021; Cammarata et al., 2021; Voss et al., 2021a,b;
Petrov et al., 2021). The authors claim different CNNs will form similar features and circuits, even
when trained for different tasks. We will obtain similar findings about the learned filters.

Transfer learning Our overall approach in this thesis and chapter can be seen as a form of transfer
learning, where we transfer knowledge about the generalization of model populations into new models.
A survey on transfer learning for image classification CNNs can be found in (Hussain et al., 2019),
and general surveys for other tasks and domains are available in (Pan & Yang, 2010; Zhuang et al.,
2020). Yosinski et al. (2014) studied learned filter representations in ImageNet-1k (Deng et al., 2009)
classification models and presented the first approaches towards transfer learning. They argued that
different CNNs will form similar filters in early layers, which will mostly resemble Gabor filters and
color blobs. In contrast, deeper layers will capture the specifics of the dataset by forming increasingly
specialized filters. However, multiple works have shown that overall, learned representations transfer
well to other problems (Zeiler & Fergus, 2013; Khaligh-Razavi & Kriegeskorte, 2014; Donahue et al.,
2014) which seem to contrast the findings of Yosinski et al. (2014).

Technically, more similar to our work is the work of Aygun et al. (2017) capturing convolution filter
pattern distributions with Gaussian Mixture Models to achieve cross-architecture transfer learning.
Additionally, Tayyab & Mahalanobis (2019) demonstrated that convolution filters can be replaced
by a fixed filter basis blended into the final weight by 1 × 1 convolution layers. Effectively, these
works indicate that the filter space is low-rank. While these works were mostly motivated by achieving
efficiency, we are rather interested in deeper insights into learned representations.

Pruning criteria Although we do not attempt pruning, our work overlaps with pruning techniques
as they commonly rely on estimation criteria to understand which parameters to compress. These
either rely on data-driven computation of a forward-pass (Alain & Bengio, 2018; Luo et al., 2017; He
et al., 2017; Lin et al., 2018, 2019), or backward-propagation (Yu et al., 2018; Ding et al., 2019), or
estimate importance solely based on the numerical weight (typically any Lp-norm) of the parameters
(Li et al., 2019; Han et al., 2015; Li et al., 2017; He et al., 2019, 2018). We will also use a simple
magnitude-based approach to estimate sparsity, but additionally introduce a method based on the
entropy of singular values.
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3.3 CNN Filter DB
To study learned filters, we construct CNN Filter DB, a database of learned filter kernels extracted
from a large and heterogeneous CNN model zoo.

3.3.1 Collecting Filter Kernels
We collect a total of 647 publicly available CNN models from Pytorch Image Models (timm)
(Wightman, 2019), RobustBench (Croce et al., 2021), torchvision (Paszke et al., 2019) and other
sources that have been pre-trained for various 2D visual tasks. In order to provide a heterogeneous
and diverse representation of convolution filters “in the wild,” we retrieved pre-trained models for 11
different tasks: Classification, GAN-Generator, Segmentation, Object Detection, Style Transfer, Depth
Estimation, Face Detection, Super Resolution, GAN-Discriminator, Face Recognition, Auto-Encoder.
We also recorded various metadata such as depth and frequency of included operations for each model
and manually categorized the variety of used training sets into 16 visually distinctive groups: plants,
natural, art, map, handwriting, medical CT, medical MRI, depth, faces, textures, fractals, seismic,
astronomy, thermal, medical X-ray, cars. This classification, while potentially subjective, provides a
pragmatic heuristic for the organization of our model zoo. In total, the models were trained on 71
different datasets, with the dominant subset being formed by image classification models trained on
ImageNet-1k (Deng et al., 2009) (355 models).

Additionally, we have purposely train low-resolution variants of AlexNet (Krizhevsky et al., 2012),
DenseNet-121/161/169 (Huang et al., 2017), ResNet-9/14/18/34/50/101/152 (He et al., 2016), VGG-
11/13/16/19 (Simonyan & Zisserman, 2015), MobileNet v2 (Sandler et al., 2018), Inception v3
(Szegedy et al., 2016b), and GoogLeNet (Szegedy et al., 2016a) models for image classification on
simple datasets such as CIFAR-10/100 (Krizhevsky et al., 2009), MNIST (LeCun et al., 1998b),
Kuzushiji-MNIST (KMNIST) (Clanuwat et al., 2018), and Fashion-MNIST (Xiao et al., 2017) in order
to study the effect of overparameterization on learned filters. Please see Section 2.3.4 for details about
these and other CNN architectures.

All collected models were trained with full 32-bit precision.1 Please see Gavrikov & Keuper (2022b) for
an overview of all models. Afterward, we converted the collected models into the ONNX format (Bai
et al., 2019), which allows a streamlined filter extraction without framework dependencies. Finally,
we extract filter kernels from the ONNX zoo. We only focus on the widely used filters from regular
convolution layers with a kernel size of 3× 3 to keep the computational load manageable.

3.3.2 Dataset Statistics
We provide CNN Filter DB as a ca. 100 GB large HDF5 file, which contains unprocessed 3× 3 filters
along with meta information. In total, 1,464,797,156 filter kernels from 21,436 layers and 647 models
have been obtained for our dataset. Every kernel is accompanied by metadata about its source model
and its position in the model architecture. Heatmaps for aggregated frequency of filters/models by
task and visual category are shown in Figure 3.2.

3.4 Methodology of our Study
In this section, we will introduce the methodology to analyze and compare convolution filters. Our
analysis is based on principal component analysis (PCA) achieved through singular value
decomposition (SVD) (Jolliffe, 1986) and magnitude statistics. We will briefly provide a general
introduction to PCA/SVD before applying it to our specific use case and introducing our magnitude-
based analysis.

1Although, experiments in Section 3.6.1 indicate that mixed/reduced precision training (Micikevicius et al., 2018)
does not affect distribution shifts beyond noise.
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Figure 3.2: CNN Filter DB statistics. Number of available (a) models and (b) filter kernels
for each task/visual category of the training dataset(s)-combinations in CNN Filter DB. Gray areas
denote no available samples.

Recall that we can apply a SVD transforming a matrix X ∈ Rn×m with n samples and m features
into

X = USV >(+µ), (3.1)

where U is a n × n orthogonal matrix, S is a n ×m diagonal scaling matrix, and V > is a m ×m
rotation matrix (Banerjee & Roy, 2014). We call the row vector Ci,: with C = US the coefficient
vector for the i-th sample in X. The diagonal entries Si,i, i = 1, . . . ,min(n,m) form the singular
values. We define them as being arranged in a decreasing order. Further, we will assume that n > m,
resulting in m singular values, and the last n − m rows of S being zero. The row vectors V >

i,: are
called principal components or basis vectors and form an orthonormal basis. Commonly, X is
normalized to feature-wise zero mean before the decomposition by computing the offset µ to ensure
that the principal components capture the directions of maximum variance in the data.

The explained variance of the i-th each principal component is given by S2
i,i/(n− 1). In the context

of machine learning, we are often not interested in the absolute variance, but its ratio to the total
variance η (variance ratio), which can be obtained by

ηi =
S2
i,i∑m

j=1 S
2
j,j

. (3.2)

Once a basis has been determined, we can project new samples X ′ onto it to compute their coefficients
C

′
= (X

′ −µ)
(
V >)> = (X

′ −µ)V , or, equivalently, project coefficients C ′ back to the original space
by C

′
V >(+µ) = X

′ .

3.4.1 Identifying Principal Patterns in Filter Groups
Given a group of filters – e.g., which may be all filters from one or multiple layers or models – we
first reshape each (cin × k × k)-shaped filter into a (cin × k2)-shaped matrix, and then stack all filter
matrices into one large group matrix containing n kernels X ∈ Rn×k2 , where n =

∑
i c

(i)
in . Recall that

we limit our analysis to k = 3 kernels.

If our group contains filters from different layers, they may be different in magnitude – for instance,
deeper layers are usually initialized with lower magnitudes to avoid vanishing gradients (Glorot &
Bengio, 2010; He et al., 2015). To introduce invariance to this, we rescale X kernel-wise to uniform
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norm (except zero kernels):

Xi,: =

{
Xi,:/‖Xi,:‖∞, if ‖Xi,:‖∞ 6= 0

Xi,: else
(3.3)

Then, we apply the PCA methodology from Equation 3.1 to obtain the basis V >. Reshaping V >

into a (k2 × k × k)-shaped tensor gives us the k2 principal patterns (basis vectors) – i.e., the patterns
from which the filters are constructed. Every i-th principal pattern is accompanied by the variance
ratio ηi, which can be understood as the importance of this pattern to the filter group. Note that this
methodology is invariant to the kernel magnitude and also the order in the filter, layer, or model.

3.4.2 Measuring Layer-wise Filter Quality
In our study, we want to measure the quality of trained filters. Specifically, given a convolution layer
weight W ∈ Rcout×cin×k×k with cout filters (along the first) axes, we are interested in gauging the
“goodness” of that layer.

Determining this may prove challenging, and we revert to an assumption based on the Lottery Ticket
Hypothesis (LTH) (Frankle & Carbin, 2019). The hypothesis states that each network has a specific
amount of weights that saturates its ability to transform a given dataset into a well-separable feature
space. Exceeding this number will result in a partitioning of the network into multiple interconnected
submodels, of which most (the losing subnetworks) will not contribute to the final prediction. We
hypothesize that these losing subnetworks can be seen in the form of “degenerated” filters in CNNs. In
like manner, an insufficient amount of training samples or training epochs will also lead to degenerated
filters.

We characterize the following possible types of degeneration.

1. High sparsity: Filters are dominantly close to zero and therefore produce quasi-zero feature maps
(Li et al., 2019). Resulting feature maps from these filters carry no vital information and can be
discarded (pruned) due to their low magnitude.

2. Low diversity in structure: Filters are structurally similar to each other and, therefore, redundant.
They produce similar feature maps in different scales and could be represented by a subset of
present filters.

3. Randomness: Filter weights are conditionally independent of their neighbors. This indicates that
no or not sufficient training was performed, and filters are performing random transformations.

Sparsity

We propose to measure sparsity degeneration in a layer by the ratio of sparse filter kernel in W. A
kernel Wi,j,:,: is considered sparse if all its entries are near zero – or, analogously, the L∞-norm of a
kernel falls below a certain threshold ε0. We define our first metric, sparsity, by

Sparsity(W) =
|{(i, j) ∈ {1, . . . , cout} × {1, . . . , cin} : ‖Wi,j,:,:‖∞ ≤ ε0(W)}|

coutcin
. (3.4)

Empirically, we set ε0 based on the magnitude of the largest kernel in the layer

ε0(W) = 10−2 max
i,j

‖Wi,j,:,:‖∞. (3.5)

(Principal Pattern) Variance Entropy

To detect the other types of degeneration, we introduce a metric termed (principal pattern) variance
entropy based on Shannon (1948) Entropy. Therefore, we reshape the tensor W into a (cout · cin × k2)-
shaped matrix and apply PCA to it as in Equation 3.1. Then, we measure the entropy of the explained
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variance ratio η of each principal component Equation 3.1.

VarianceEntropy(W) = −
k2∑
i=1

ηi log10 ηi (3.6)

If the entropy is close to zero, this indicates one strong principal pattern from which most of the kernels
can be reconstructed, and the weight, therefore, shows a low filter diversity degeneration. On the
other hand, a large entropy indicates a (close to) uniform distribution of the variance across patterns
(i.e., no actually principal pattern exists) and, thus, a randomness of the kernels. It should be noted
that the entropy only becomes expressive if the number of samples exceeds the number of features,
i.e., cout · cin � k2 in our case. Thus, our variance entropy metric can only be used for comparing
layers with approximately the same number of kernels n = cin · cout or needs to be normalized by a
“randomness” threshold.
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Figure 3.3: Randomness entropy
threshold. Sampled entropy for ran-
domly initialized convolution layers with
n kernels and sigmoid TH fitted to the
lower bound.

To obtain such a threshold, we perform multiple experiments
in which we initialize convolution filters of different sizes
from a standard normal distribution and fit a sigmoid TH

to the minimum results obtained for entropy.

TH(n) =
L

1 + e−k(log2(n)−x0)
+ b (3.7)

Specifically, we draw n = 21, . . . , 221 filters with 3×3 shape
from a standard normal distribution and calculate the layer
entropy. We repeat this process 1,000 times for each n and
fit a sigmoid to the lowest entropy we have observed for
each n. Figure 3.3 shows the obtained samples alongside
the fitted sigmoid TH . We obtain the following values
L = 1.26, x0 = 2.30, k = 0.89, b = −0.31 and call any layer
with VarianceEntropy(W) > TH(cin · cout) random. These
values are specific for 3× 3 kernels and will not be valid for
other kernel sizes.

This metric is related to sparsity, as sparse layers can be seen
as a specific form of low-diversity degeneration, whereas
sparsity and randomness are mutually exclusive.

3.4.3 Measuring Distribution Shifts between Filter Groups
Additionally, to the analysis of principal patterns and measuring the quality through our metrics, we
want to measure the “distance” between two groups of filters. For instance, we may compare all filters
from two layers, models, or even entire populations of models. Framing this as a distribution shift
between pattern distributions allows us to use the same preprocessing of reshaping, stacking, and
scaling each group into two matrices Xp,Xq. Note that the sample size between both tensors may be
different.

We can then project both tensors to a common basis V > giving us the coefficients Cp = Xp ·V >,Cq =
Xq · V >. In our case, we use the basis that we obtain from a PCA applied to all scaled kernels in our
database. Then we can represent each group by a density histogram (i.e., a discrete distribution) pi
for each principal component V >

i . The histogram range is defined by the minimum and maximum
values of all coefficients in our dataset and is divided into 70 uniform bins.

We measure the divergence between two distributions by the symmetric, non-negative variant of
Kullback & Leibler (1951), which we denote as (DKL−SYM).

DKL(p‖q) =
∑
x∈X

p(x) log p(x)

q(x)

DKL−SYM(p‖q) = DKL(p‖q) +DKL(q‖p)
(3.8)
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Finally, the shift D between two filter sets is given by the sum of the divergence of the coefficient
distributions pi, qi along every principal component index i. The sum is weighted by the ratio of
variance ηi explained by the i-th principal component of the common base V >.

D(p‖q) =
∑
i

ηi ·DKL−SYM (pi ‖ qi) (3.9)

To avoid undefined expressions, all probability distributions p are set to hold ∀x ∈ X : p(x) ≥ ε for
some small ε.

3.5 Analysis of Convolution Layer Degeneration in CNNs
In this section, we first discuss our quality metrics and then study relative degeneration in three
settings: global (all filters), overparameterization (model with an excessive capacity), and adversarial
robustness (models trained with adversarial training as introduced in Section 2.8.2).

3.5.1 (Global) Filter Quality
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Figure 3.4: Distribution of layer quality in CNN Filter DB. We measure the quality for each
layer and show heatmaps of the distribution over the relative depth of models in a number of layers.
Layers of relative depth 0 are the layers closest to the inputs, whereas a relative depth of 1 indicates a
layer at the outputs.

One interesting application of our metrics may be to use them as a data-independent criterion of layer
or model “goodness”, e.g., when selecting the best model for finetuning. To this end, we require a
threshold for our metrics, at which a layer could be called degenerated.

While we have established when a layer can be considered random, we have not provided a good
intuition of what it means when a layer has low entropy. Clearly, a layer is degenerated when all
variance is distributed on one principal component, i.e., VarianceEntropy(W) = 0 and there is no
diversity in the kernel structure. However, in most cases, a layer is already severely defunct before
that.

As an intuition for the threshold, we can only rely on statistics (Figure 3.4b): The average variance
entropy is 0.69 over all layers and continuously decreases from an average of 0.75 to 0.5 with depth.
Additionally, the minimum of the 1.5 interquartile range (IQR) also steadily decreases with depth. As
a rule of thumb, we suggest considering every layer with VarianceEntropy(W) < 0.5 as degenerated
due to low variance.

Equivalently, there is no intuitive way to derive a threshold for sparsity. A layer is degenerated if all
kernels are sparse under ε0(W) = 0 as this stops the feature flow, but intermediate values are hard to
interpret. From a capacity perspective, we want sparsity to be as low as possible to squeeze the most
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Chapter 3. Convolution Filter Analysis

performance from our model, but from a size perspective, we may prefer sparse models to decrease
inference time memory consumption.

Again, relying on global statistics (Figure 3.4a), we find that the average sparsity over all layers is
0.12 and only 56.5% of the layers in our dataset hold Sparsity(W) < 0.01, and 9.9% even have a 50%
sparsity. In terms of the depth of the associated convolution layer, the average sparsity varies between
9.9% and 14%, with the largest sparsity found in the last 20% of the model depth. The largest outliers
of the 1.5 IQR are, however, found in the first decile.

In both cases, we find it difficult to provide a meaningful general threshold and suggest determining
this value on a case-by-case basis. Our metrics can, however, be used to compare relative quality
between groups of interest.

3.5.2 Overparameterization
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Figure 3.5: Development of layer filter quality with model depth under overparameteri-
zation. We measure the layer entropy and sparsity of image classification models trained on MNIST
(most overparameterized), CIFAR-10, CIFAR-100, and ImageNet-1k (least overparameterized). We
group the depth of the layers into deciles for comparability to models with different depths. Outliers
are hidden for clarity.

The majority of the models that we have trained on our low-resolution datasets are heavily overparam-
eterized for these relatively simple problems. We base this argument on the fact that we have models
with different depths for most architectures and already observe near-perfect performance with the
smallest variants. Therefore, it is safe to assume that larger models are overparameterized, especially
since the performance only increases marginally.

First, we analyze layer sparsity and entropy for these models trained on MNIST, CIFAR-10, CIFAR-100,
and ImageNet-1k classification models found in our dataset. For all low-resolution datasets, we study
models with identical network architectures trained using the same hyperparameter settings. The data
for ImageNet-1k, on the other hand, is averaged over all respective models in our zoo.

Figure 3.5a shows a correlation between overparameterization and sparsity – models with a larger
degree of overparameterization contain significantly more sparse kernels on average. Further, sparsity
seems to increase with depth. In particular, we see the most sparse kernels for MNIST. However,
ImageNet-1k classifiers also seem to have some kind of “natural” sparsity, even though we do not
consider most of these models as overparameterized.

Entropy, on the other hand, decreases with increasing layer depth for every classifier but more rapidly
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in overparameterized models (Figure 3.5b). Again, the MNIST models degrade the fastest and overall
show more degeneration.

The overparameterized models contain layers that have an entropy close to 0 towards deeper layers,
which may indicate that these models are “saturated” and only produce differently scaled variants
of the same filters. In line with the oversaturation, these models also have increasingly sparse filters,
presumably as an effect of weight regularization (Section 2.6.1).

3.5.3 Adversarial Robustness
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Figure 3.6: Development of layer quality with model depth under adversarial robustness.
We measure the layer entropy and sparsity of image classification models trained on ImageNet-1k with
and without adversarial training. We group the depth of the layers into deciles for comparability to
models with different depths. Outliers are hidden for clarity.

Our dataset also contains “robust” models from the RobustBench (Croce et al., 2021) leaderboard
trained with adversarial training (Madry et al., 2018). Please see Section 2.8.2 for an introduction to
adversarial robustness. When comparing robust models with non-robust models trained on ImageNet-
1k, it becomes clear that robust models form almost no sparse filters in deeper convolution layers
(Figure 3.6a), while regular models show some sparsity there. The entropy of robust models is also
higher throughout depth (Figure 3.6b), indicating that robust models learn more diverse filters. We
provide a more comprehensive discussion and analysis of robust models in Chapter 4.

3.6 Analysis of Filter Patterns
In the next series of experiments, we analyze only the patterns of 3× 3 filter kernels, neglecting their
magnitude. We start by analyzing the principal patterns (basis) forming the filters. Figure 3.7 shows
some qualitative examples of obtained principal patterns, split by several metadata dimensions. Overall,
we observe that the PCA-obtained principal patterns (basis) are often very similar and independent
(ignoring variances due to inversion and the order) of the filter group we analyze, except for a few
outliers. The explained variance, however, fluctuates significantly and sometimes changes the order
of the basis images. Consistently, we observe substantially higher variance on the first principal
components.

However, this does not necessarily correlate with the shift observed between models, which we will
observe in later sections. Here, the biggest mean shift is also located in the first principal component
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(D̂ = 0.90) but is then followed by the sixth, third, and second component (D̂ = 0.78, 0.69, 0.58). The
coefficients of the sixth component also contain the strongest outliers (Figure 3.8).

We can additionally visualize the distributions of pattern coefficients along every principal pattern
for each group by plots of kernel density estimates (KDEs). For instance, in Figure 3.9, we depict
the distributions of filters grouped by some selected visual categories compared to the distribution of
coefficients for the full dataset. Noticeably, models with degenerated layers result in spiky/multi-modal
KDEs (as seen in medical MRI ).

Alternatively, the distributions can be visualized by bi-variate scatter plots between two principal pattern
distributions that may reveal more details than KDEs. We roughly categorize four salient distributions
that we observed (which we will call phenotypes) depending on their distribution characteristic in
the PCA space (Figure 3.10): sun: distributions where both dimensions are Gaussian-like. These
are to be expected coefficient distributions without significant sparsity/low diversity degeneration.
Yet, this phenotype may also include non-converged filters; spikes: distributions suffering from a low
variance degeneration resulting in local hotspots; symbols: at least one distribution is multi-modal,
non-centered, highly sparse or otherwise non-normal (low variance degeneration); point: coefficients
are primarily located in the center (sparsity degeneration).

(a) Sun (b) Spikes (c) Symbols (d) Point

Figure 3.10: Phenotypes of coefficient distributions. We show bi-variate plots between
component distributions showing the four phenotypes.

3.6.1 Formation of Filter Patterns during Training
Although our dataset only includes trained convolutional filters from models where we assume conver-
gence, we want to understand how the coefficient distribution shifts during training. Therefore, we
train a ResNet-9 (Myrtle AI Team, 2019) on CIFAR-10 and record a checkpoint every 10 training
epochs beginning, including one right after the weight initialization.

Figure 3.11 shows that the coefficient distributions along all principal components are Gaussian-
like distributed initially and eventually shift during training. For this specific model, distributions
along major principal components retain the standard deviation during training, while less significant
component distributions decrease. The initialization observation ultimately helped us remove models
from our collection where we failed to load the trained parameters and is the foundation for our
provided randomness metric.

Stability of emerged patterns Additionally, we want to understand how stable emerged filter
patterns are, i.e., would we observe other patterns if we had trained our model with a different random
seed? To this end, we train low-resolution networks on CIFAR-10 multiple times with identical
hyperparameters with different random seeds and save a checkpoint of each model at the epoch with
the highest validation accuracy. Then, we measure the distribution shift between all filters in the
models.

We find that most models converge to highly similar coefficient distributions when retrained with
different weight initialization (e.g., ResNet-9 with D < 5.3 · 10−4). However, some architectures
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Figure 3.11: Evolution of pattern coefficient distributions in training. Distributions over all
layers shown for a ResNet-9 trained on CIFAR-10 every 10 epochs.

such as MobileNetv2 show higher shifts (D < 2.6 · 10−2). This number can be seen as a baseline for
divergence when comparing models in later sections.

Distribution shift by precision A common “trick” to accelerate training is to reduce the precision
of learned weights. Initially, we assumed that quantization might cause the spikes phenotype, so we
decided to test what shift we obtain when training with fp16 instead of fp32 precision. Such “spiky”
distributions should show high shifts compared to smooth distributions.

We train all our low-resolution models on CIFAR-10 with the same hyperparameters and generally
observe marginal shifts. Outliers with somewhat higher shifts again include MobileNetv2. But we
have verified that this shift (and also on ResNet-9) does not exceed the shift we would measure by
training with random seeds.

3.7 Global Distribution Shifts between Model Populations
This section investigates distribution shifts between filter groups separated by different meta-dimensions
that include multiple models. We compute the shift and visualize this as heatmaps in Figure 3.12.
These heatmaps show shifts between all pairings of possible tasks, data categories, and layer depths
(grouped by decile). Additionally, we show some shifts between a few architectures trained on ImageNet.
We fix the range of the colorbar to the same values in all heatmaps for an easier comparison unless
stated otherwise.

Shifts between tasks Perhaps unsurprisingly, we find that classification, segmentation, object
detection, and GAN-generator distributions are quite similar since the non-classification models
typically include a classification backbone. The smallest mean shift to other tasks is observed in
object detection, GAN-generators, and depth estimation models. The least transferable distributions
are GAN-discriminators. Their distributions barely differ along principal components and can be
approximated by a Gaussian distribution. By our randomness metric, this indicates a filter distribution
that is close to random initialization, implying a “confused” discriminator that cannot distinguish
between real and fake samples towards the end of (successful) training. Overall, we do find that
representations of tasks show fairly low shifts.

It may be surprising to see a slightly larger average shift for classification. This is presumably due
to many degenerated layers in our collected models, which are also visible in the form of spikes
when studying the KDEs. Under an ablation of distributions including only non-degenerated filters,
classifiers showed a lower average shift due to the similarity of the aforementioned tasks.
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Figure 3.12: Global distribution shifts. We show population shifts between (A) tasks, (B) visual
categories, (C) layer depths, and (D) architectures.

Shifts between visual categories (and training sets) We find that the distribution shift is
well-balanced across most visual categories and training sets. Notable outliers include all medical types.
They have visible spikes in the KDEs, again indicating degenerated layers. This is confirmed by the
average sparsity in these models, which is extreme in the last 80% of the model depth. We provide a
more detailed discussion and analysis of medical models in Section 3.9.

Another interesting, albeit less significant, outlier is the fractal category. It consists of models trained
on Fractal-DB, which was proposed as a synthetic pre-training alternative to ImageNet-1k (Kataoka
et al., 2020). For ImageNet-trained models, the explained variance of the coefficients tends to shrink
towards the least significant principal components on our global basis. Still, this trend is not visible
for this category, suggesting the common basis we use is not well suited for this category. Indeed,
comparing the basis in Figure 3.7 shows us that some principal patterns are rotated compared to
other models. Also notable is a remarkably high variance explained by the first principal component,
suggesting a kind of “pattern collapse” where filters look relatively similar to each other and, thus,
model similar transformations. Interestingly, we observe a sub-average degeneration for this category.
Overall, this shows that while pretraining with Fractal-DB improves accuracy on ImageNet, it does
not lead to identical representations.
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Shifts in other categories can usually be explained by imbalances in our model zoo. For example, we only
have one model trained on plants data, the handwriting models consist exclusively of overparameterized
networks that suffer from layer degeneration, and textures consists of only one GAN-discriminator
which will naturally show high randomness, as discussed before.

Shifts by layer depth The shift between layers of various depth deciles increases with the difference in
depth, with distributions in the last decile of depth forming the most distinct interval and outdistancing
the second-to-last and first decile that follow next. However, the distribution shift between layers of
different deciles is very low overall. We attribute the observed shift in the deepest layers mostly to
degeneration, as discussed in Section 3.5.1. This suggests that in filter weight space, representations
are not fundamentally differently distributed throughout depth.

Shifts by architecture When we fix the training data (ImageNet) and task (Classification), we
observe an interesting phenomenon between models: the “family” of the architecture (e.g., VGG) seems
to control the pattern distribution, yet the scale of the architecture only has a minor influence (e.g.,
VGG-13 vs. VGG-19). Overall, this means that the intra-family shift is low while the inter-family shift
is high(er). We additionally visualize the intra-family similarity in Figure 3.13, showing the pairwise
divergence between classification models with a ResNet-50-like architecture. The two outliers consist
of models that show a high amount of sparsity. Note that in general, the intra-family similarity
does no longer hold if the architecture is changed significantly during scaling, e.g., ResNet-34 based
on Basic-Blocks vs. ResNet-101 based on Bottleneck-Blocks (although in this specific analysis the
Bottleneck-based ResNet-50 is more similar to ResNet-34).
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Figure 3.13: Distribution shifts in the ResNet family. Model-to-model shift between different
pairs of ResNet-classifiers excluding our intentionally overparameterized models. Each row/column
depicts one model.

Generally, we also find that models based on regular convolutions (i.e., VGG (Simonyan & Zisserman,
2015), ResNet (He et al., 2016), DenseNet (Huang et al., 2017), HarDNet (Chao et al., 2019)) seem
to be more similar in their patterns, than models based on depthwise-separable convolutions (as
introduced in Section 2.3.2) such as, HarDNet-ds (Chao et al., 2019), MobileNetv3 (Howard et al.,
2019), EfficientNetv2 (Tan & Le, 2021). The latter models form highly unique distributions compared
to other depthwise-separable models.
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Figure 3.14: Model-to-model distribution shifts by task. We exclude robust models and our
intentionally overparameterized models. Please mind the different X-axis scale.
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3.8 Local Model-to-Model Distribution Shifts
While we have analyzed the model population in the last section to understand global patterns across
selected meta-axes, we now turn our analysis to model-to-model comparisons, providing more actionable
insights.

We perform our analysis by studying the distribution shift between models along (relative) depth.
This shift exemplifies the uniqueness of formed filters per layer and will show us where models start
to diverge in their learned representations. Based on the general assumptions about deep learning,
our expectation is that early layers capture common patterns but start to specialize in deeper layers
(Zeiler & Fergus, 2013; Yosinski et al., 2014), which should be visible in their learned weights.

However, our results shown in Figure 3.14 suggest that this is not always true and the spatial distribution
of the shifted layers strongly depends on the training task. Segmentation models clearly follow the
expected trend, while object detection models primarily seem to diverge in the first decile of depth.
This counter-intuitive divergence along depth is also visible in face detection models, where divergence
is particularly pronounced in the first four deciles.

For image classification, we separate ImageNet-trained models from others due to the significantly
larger number of the former. We observe that the shift within ImageNet models is fairly static along
depth. For non-ImageNet models, we find that the shift appears to increase with depth, but the shift
within the first two deciles is also significant and stronger than in some of the deeper layers.

Finally, we also observe a very atypical depthwise distribution of shift for the style transfer models. It
is important to note that all models for this task are based on the same encoder-decoder architecture
(Gatys et al., 2016). The shift is particularly strong in the earliest and deepest layers, while intermediate
layers seem to form more transferable pattern distributions. Assuming that the encoder and decoder
occupy the same amount of parameters, the shift across the decoder is higher.

Taken together, our observations cast shadows on the general recommendation to only finetune deep
layers under transfer learning – depending on the task, the strongest shifts might be located in early
layers or uniformly distributed throughout the model.

3.9 A Closer Look at Medical Imaging Models
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Figure 3.15: KDEs of medical imaging models. We plot KDEs for every principal component
for all medical imaging models.

In Section 3.7, we have seen that medical imaging models form one of the most salient shifts by data,
as this domain showed distinct “spiky” coefficient distributions (see KDE plots for all filters in each
model in Figure 3.15).

This section focuses on studying these models in detail and understanding the possible causes of
the shifts. Our model zoo contains the following models: CompNet (Dey & Hong, 2018) contains
three customized CompNet architectures trained for brain segmentation on the OASIS (MRI) dataset
(Marcus et al., 2007); LungMask (Hofmanninger et al., 2020) contains three U-Net trained for lung
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Section 3.9. A Closer Look at Medical Imaging Models

segmentation on the LTRC and some proprietary CT datasets; TorchXRayVision (Cohen et al., 2022)
contains seven DensetNet-121 and one ResNet-50 classifier trained to detect various pathologies from
various datasets. Additionally, the framework includes one ResNet-101 auto-encoder trained on a
large aggregated dataset consisting of the previously mentioned datasets; Lastly, one individual U-Net
(Buda et al., 2019) is included that is also trained to perform brain segmentation on a public Kaggle
MRI dataset (Shih et al., 2019).

3.9.1 The Curious Case of CompNet
First, we observe that the salient “spiky” distributions are only seen in models of CompNet (on all
axes), while all other models form less salient distributions. In our analysis, this model family is highly
over-represented in medical classes due to their relatively large number of present convolution filter
kernels.

The CompNet architecture can be split into multiple encoder-decoder models: source inputs are fed
into an encoder that feeds into two parallel decoder branches. One of those constructs a binary brain
segmentation mask, and the other computes a complementary output for the non-brain part of the
image. Finally, the outputs are aggregated and further processed by an auto-encoder that learns a
latent-space representation (Dey & Hong, 2018).

–∞

+∞

Figure 3.16: Binary filters.
The filter kernels weights found
in CompNet are approximately
bi-modal.

Upon closer analysis, we observe that some layers learn filters with
(almost) binary weight distributions (Figure 3.16), explaining the
coefficient spikes in the KDEs. In contrast, other layers learn a less
conspicuous set of filters. We assume that the binary filters are
learned by the final auto-encoder as indicated by the presence in later
convolution stages. Yet, we cannot verify our hypothesis due to the
highly entangled implementation of the source model. Still, it seems
worthwhile to understand the cause of binary filters in future work,
as it is possible to learn them from a significantly lower dimensional
and discrete search space, which should, in theory, accelerate learning
and require fewer data samples. Interestingly, we find fewer such
binary filter layers in the model trained on the axial reconstruction
plane.

3.9.2 Distribution Shifts between Medical Models
Next, complementary to our previous findings, we observe that models based on the same architecture
(e.g., DenseNet-121) learn quite similar distributions when compared to each other but differ sub-
stantially when compared to other architectures: all CompNets learn similar coefficient distributions
although trained on different reconstruction planes; Albeit trained in different regimes, all LungMask
models also form similar distributions to the standalone U-Net. Still, some distribution shifts can be
measured, in particular in the DenseNet-121 models from TorchXRayVision, which were trained on
different datasets. The model trained on the Kaggle RSNA Pneumonia Challenge dataset seems to
overrepresent specific coefficients (and therefore contains clusters of specific filter patterns) by a large
amount, while the models trained on other datasets such as MIMIC-CXR (Johnson et al., 2019), NIH
(Wang et al., 2017; Majkowska et al., 2020), and CheXpert (Irvin et al., 2019) tend to learn coefficient
distributions that are smoother and more similar to the distribution of the model that was trained on
all datasets.

The most salient coefficient distribution is seen in the ResNet-50, which was trained on 512× 512 px
images instead of 256× 256 px. Spikes dominate the KDEs at 0 for all axes, which indicates a highly
sparse model. Indeed, by applying a structured pruning on the kernels, we find that only approx. 1%
of filters (N=12900) are non-sparse. Due to a lack of access to the datasets, we cannot verify the
integrity of this model and hypothesize that this model may exploit a shortcut. However, should this
model’s performance be on par with the other models, this opens the question of whether a) smaller
and, therefore, easier-to-train models would not be more suitable for this specific problem or b) higher
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Figure 3.17: Model-to-model-shifts for medical imaging models. Heatmaps showing the
pair-wise distribution shift for U-Net (left) and DenseNet (right) trained on different datasets (including
non-medical for comparison). Low values/dark colors denote low shifts.

resolution images may be more suitable as they may contain more salient features for classification
than their down-sampled counter-parts.

3.9.3 Distribution Shifts between Medical Imaging and other Domains
Finally, we compare the medical U-Net segmentation and DenseNet-121 classification models to similar
models from CNN Filter DB trained on other image domains (cars, seismic data, and natural images)
to understand whether medical models learn different convolution filters. We compute the KL in a
pair-wise manner between all model combinations and display the results in the form of heatmaps
(Figure 3.17). We observe that U-Net learns strikingly different representations on seismic data, but
only minor differences when trained to segment cars. DenseNet-121 also learns slightly different
representation when trained on ImageNet-1k (Russakovsky et al., 2015). Yet, it is worth noting that
this is a significantly larger dataset with 1.3 M samples and 1,000 categories that occupy more of the
model capacity. Finally, the most noticeable shift is seen in the model trained on the Kaggle dataset,
although it originates from the same image domain.

In all cases, it appears that the shifts between filters of medical domains and others are insignificant
and may even vanish when compared to more models.

3.9.4 Medical Imaging Models do not Learn special Filters
Taken together, the observed distribution outliers in Section 3.7 are directly caused by specific branches
in architectures, such as CompNet (Dey & Hong, 2018). After all, it turns out that medical imaging
models do not learn fundamentally different filter distributions than models of other image domains.
This means that pre-training with diverse image data originating from arbitrary domains should
accelerate the training of medical models (and others). Different levels of overparameterization may
explain the remaining shifts to other domains and bear potential for future work, which may study the
filter properties through our proposed filter metrics.

Additionally, we have observed that some layers learn highly specific clusters of filters. Others seem to
develop extreme levels of sparsity. In those cases, it would be reasonable to reduce the search space
during training and, in turn, accelerate training and/or reduce the amount of necessary training data.
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Given the scarcity of medical data and its acquisition cost, exploring this direction in future work
seems worthwhile.

3.10 Conclusions
Our results support our initial hypothesis that the distributions of trained convolutional filters are a
suitable and easy-to-access proxy for investigating distribution shifts in the context of transfer learning
and robustness.

One finding in our large-scale study is the presence of large amounts of degenerated filters in large,
well-performing networks – resulting in the phenotypes points, spikes, and symbols. We postulate that
their existence is a symptom in line with the Lottery Ticket Hypothesis (Frankle & Carbin, 2019),
which suggests that neural networks benefit from overparameterization to increase the odds of finding a
“good” subnetwork but not actually model the decision rule. Degenerated filters may be these “losing”
subnetworks. Yet, more generally, this finding indicates that the models do not fully utilize their
capacity, which we will further confirm through a different metric in Chapter 6.

Based on our metrics, we conclude that ideal models should have relatively high entropy throughout
all layers (suggesting many diverse transformations) and almost no sparse filters. Models that show
an increasing or generally high sparsity with depth are most likely overparameterized and could be
pruned, which would benefit inference and training speed. It is also likely that, at least theoretically, it
should be possible to learn smaller models reaching similar performance levels Frankle & Carbin (2019).
Similarly, it is likely that we can compress layers with low entropy into more efficient counterparts.
However, this would require a more sophisticated technique than zeroing out weights, as commonly
done in pruning.

We can also identify randomly initialized but not yet trained models based on an overall high level of
entropy throughout all layers and virtually no sparsity. This can also be an effect of the training task,
e.g., we have seen that GAN-Discriminators collapse back to their random state.

Another striking finding is the observation of very low global shifts in filter structure between different
meta-groups: (1) shifts inside a family of architectures are very low; (2) shifts are mostly independent
of the target image distribution and task; (3) also we observe rather small shifts between convolution
layers of different depths with the highest shifts in the first and last layers.

Overall, the analysis of over 1.4 billion learned convolutional filters in the provided dataset gives a
strong indication that the common practice of pre-training CNNs is indeed a sufficient approach if
the chosen model is not heavily overparameterized. Moreover, our CNN-Filter-DB is a rich source for
further research into transfer learning, robustness, pruning, and similar lines of research.

Limitations Our model zoo and, thus, data is biased by the large amount classification models and/or
natural datasets such as ImageNet-1k. Further, some splits will over-represent specific dimensions e.g.,
tasks may include exclusive visual categories and vice versa. Also, as previously shown, many of the
collected models show a large amount of degenerated layers that impact the distributions. This also
biases measurements of the distribution shifts. We performed an ablation study by removing filters
extracted from degenerated layers but could not find a clear correlation between degeneration and
distribution shifts, presumably due to a lack of justified thresholds.
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Chapter 4

Convolution Filters under
Adversarial Regularization

Deep learning models poorly generalize under distribution shifts of the input data (see Section 2.7). It is
possible to adversarially cause a distribution shift by optimizing small, barely perceivable perturbations
to the input data that force models to make wrong predictions with high confidence (see Section 2.8.2).
The most common defense mechanism is regularization through adversarial training (Madry et al.,
2018), which injects worst-case perturbations back into training to strengthen the decision boundaries
and reduce overfitting to individual data points. In this context, we aim to understand how this form
of training changes learned representations and perform an investigation of convolution filters based on
the methodology introduced in Chapter 3. Specifically, we compare filters of adversarially-regularized
models with normal ones.

This chapter is based on “Adversarial Robustness Through the Lens of Convolutional
Filters”, presented at the CVPR 2022 Workshop on The Art of Robustness: Devil and Angel in
Adversarial Machine Learning (in-proceedings) (Gavrikov & Keuper, 2022a). As the first author, Paul
Gavrikov collected and trained models, performed the experiments, and created the plots. The analyses
were written under supervision and with the input of Janis Keuper.

� Code: https://github.com/paulgavrikov/cvpr22w_RobustnessThroughTheLens

4.1 Introduction
Convolutional Neural Networks (CNNs) have been successfully applied to solve many different computer
vision problems. As the state-of-the-art has been consequently pushed, research was mostly devoted to
improving the performance (quality of predictions, inference speed, and others). However, recently,
it has been shown that these models are sensitive to distribution shifts in image data. Even small,
for humans almost imperceptible, perturbations applied to input images can force the networks to
make high-confidence, false predictions on samples that would otherwise have been classified correctly
(Szegedy et al., 2014b; Biggio et al., 2013).

Normal training of off-the-shelf architectures typically results in zero robustness against perturbed
samples at test time. This raises the question of whether such highly vulnerable deep learning models
should be used in safety-critical applications (Ma et al., 2021; Finlayson et al., 2019; Deng et al., 2020).
Consequently, researchers have devoted their work to studying the sensitivity to distribution shifts,
e.g., by finding and understanding adversarial inputs (Goodfellow et al., 2015; Carlini & Wagner, 2016;
Akhtar & Mian, 2018), and building defenses to those (Papernot et al., 2015; Goodfellow et al., 2015;
Madry et al., 2018; Shafahi et al., 2019). A more detailed introduction to adversarial attacks and
defenses can be found in Section 2.8.2.
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Section 4.2. Background

While most explanatory methods study the distribution shifts in the input data and/or activations,
we propose to extend our methodology introduced in Chapter 3 and evaluate differences in learned
parameters, specifically convolutional filters and, therefore, round out previous findings through a
different perspective. More precisely, we investigate shifts in the dominantly used 3 × 3 filters in
CNN linear classification models trained on CIFAR-10/100 (Krizhevsky et al., 2009) and ImageNet-1k
(Russakovsky et al., 2015) datasets that were trained to withstand L∞-bound adversarial attacks
in comparison to normally trained models. Please find an introduction to linear classification in
Section 2.5.1 and details about these datasets in Section 2.5.4.

We summarize our contributions and findings as follows:

• We collect 71 public robust models with 13 different architectures trained on 3 image datasets.
These models contain a total of 615,863,744 filters with a size of 3 × 3. Additionally, the
architectures used in robust models are trained from scratch without any robustness regularization.

• We show an in-depth empirical comparison of learned 3× 3 convolution filters between robust
and normal models. The resulting filter dataset is made available publicly.

• Our analysis shows that differences in filter structure increase with layer depth but significantly
explode towards the end of the model, with a dominant outlier also showing in the primary
convolution layer.

• We visualize the primary layer of L∞-robust models and their activations and observe a large
presence of thresholding filters that can remove perturbations from regions of interest.

• We discover that robust models appear to form more diverse, less sparse, and more orthogonal
convolution filters. Ultimately, this finding is a necessary but not sufficient criterion for adversarial
robustness.

4.2 Background
We refer the reader to Section 2.8.2 for an introduction to adversarial robustness, including a discussion
of adversarial training.

4.3 Methodology
Filter quality We apply the methodology introduced in Section 3.4 and compute sparsity (Equa-
tion 3.4) and variance entropy (Equation 3.6). However, for this study, we compute the variance
entropy over non-sparse filters to better decouple sparsity from pattern diversity. Recall that a variance
entropy value of 0 indicates the homogeneity of present filters, as all of them can be reconstructed from
one single principal pattern. In contrast, the maximum 0.954 (for 3× 3 kernels) indicates a uniformly
spread variance across all basis vectors, as found in random, non-initialized layers. Values close to
both limits indicate a degeneration.

We additionally include a measurement of orthogonality, as it is a desirable property in convolutional
weights (Brock et al., 2017, 2019), helping with gradient propagation and being coupled with the
diversity of generated feature maps. For computational reasons, we measure the orthogonality between
entire filterbanks (i.e., stacks of filters) instead of individual filters. Formally, given a convolution layer
weight W ∈ Rcout×cin×k×k with cin input-channels, cout output-channels, with a k× k kernel size (here:
k = 3), we reshape the tensor into a matrix

W ∈ Rcout×cin×k×k → W ∈ Rcout×(cin·k·k). (4.1)

Each filter in W is normalized to unit length. Then, we obtain the orthogonality by

1− ‖WW> − I‖1
cout · (cout − 1)

. (4.2)
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An orthogonality value of 1 stipulates the orthogonality of all filterbanks in a layer, whereas 0 indicates
parallel filterbanks that produce perhaps differently scaled but otherwise identical feature maps.

Measuring distribution shifts We employ the same KL-based methodology introduced in Sec-
tion 3.4, measuring the divergence between principal pattern distributions (Equation 3.9).

4.3.1 Model Zoos
Robust vs. normal models To compare filters of robust to normal models, we create a model zoo
consisting of 71 robust model checkpoints (Rebuffi et al., 2021b; Huang et al., 2022; Zhang et al., 2020,
2019a; Hendrycks et al., 2019; Zhang et al., 2021b; Chen & Lee, 2021; Andriushchenko & Flammarion,
2020; Cui et al., 2021; Rice et al., 2020; Dai et al., 2021; Gowal et al., 2020; Sitawarin et al., 2021;
Chen et al., 2021a; Zhang et al., 2019b; Wu et al., 2020; Wong et al., 2020; Huang et al., 2020; Carmon
et al., 2022; Pang et al., 2020b; Gowal et al., 2021; Sehwag et al., 2020; Sridhar et al., 2021; Chen
et al., 2020b; Sehwag et al., 2021; Addepalli et al., 2021; Ding et al., 2020; Rade & Moosavi-Dezfooli,
2021; Wang et al., 2020b; Engstrom et al., 2019) based on various network architectures from the
L∞-RobustBench leaderboard (Croce et al., 2021) for CIFAR-10/100 (Krizhevsky et al., 2009), and
ImageNet-1k (Russakovsky et al., 2015). We select benchmark entries on RobustBench that are bounded
by a budget ε with ε = 8/255 on CIFAR-10/100, and ε = 4/255 on ImageNet-1k under L∞-norm,
respectively.

Additionally, we train a separate model for each utilized architecture without applying any robustness
regularization and without using any external data, even if the robust counterpart relied on such
data. We use the following hyperparameters: CIFAR-10/100 data is zero-padded by 4 px along each
dimension and then transformed using a 32× 32 px random crops and random horizontal flips. We use
an initial learning rate of 1e-8, a weight decay of 1e-2, a batch size of 256, and a Nesterov momentum of
0.9. Further, we use an SGD optimizer and decrease the learning rate every 30 epochs by a factor of 0.1
for a total training time of 125 epochs. The loss is determined using Categorical Cross Entropy.

Our training ImageNet-1k architectures with these parameters resulted in rather poor performance,
and we, thus, replaced these models with pretrained ImageNet-1k models included from Pytorch Image
Models (timm) (Wightman, 2019).

An overview of all models and their performance on normal and adversarial test data can be found in
Appendix A.1. In Table 4.1, we show a small summary of key indicators.

Table 4.1: Model zoo performance overview. Comparison between average (mean±std) per-
formance and parameter size on all evaluated datasets. “Clean Acc.” refers to the regular validation
accuracy, while “Robust Acc.” refers to the robust accuracy as measured by RobustBench.

Normal Robust

Dataset 3 × 3 Filters [M] Clean Acc. [%] Clean Acc. [%] Robust Acc. [%]

CIFAR-10 9.1± 10.5 92.2± 4.2 86.9± 2.6 56.7± 5.9
CIFAR-100 9.3± 10.6 72.7± 8.5 62.2± 3.9 29.0± 3.9
ImageNet-1k 2.0± 1.7 78.5± 4.9 60.7± 6.3 30.8± 5.6

Models under increasing training budget Complementary to an absolute comparison between
robust and normal models, we want to study how the adversarial budget ε influences the above
observations by treating our observations as a function of ε. To this end, we collect ResNet-18,
ResNet-50 (He et al., 2016), and WideResNet-50x2 (Zagoruyko & Komodakis, 2016) models trained
on ImageNet-1k (Russakovsky et al., 2015) with adversarial training under increasing adversarial budget
from Salman et al. (2020). Additionally, this allows us to compare models trained with L∞-norm (ε
from 0 to 8/255) to L2-norm (ε from 0 to 5).
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Figure 4.1: Principal patterns. Filter basis and (cumulative) explained variance ratio per
component (below) for filters from (a) all models, (b) robust (adversarially-trained) models, (c) normal
models. Basis vectors are sorted by decreasing variance.

4.4.1 Principal Patterns
In the first step, we investigate the basis (principal patterns) forming the obtained filters. We, therefore,
separate the filters extracted from all models into three filter sets: all filters, only filters from robust
models, and only filters from normal models. Then, we apply a PCA to each set individually.

We observe that the basis vectors obtained from all three sets do not significantly differ (Figure 4.1).
Changes only include minor fluctuations (note that basis vectors can be inverted, which is equivalent
to inverting the coefficients). However, while 67% of the normal filter variance can be reconstructed
from the first basis vector alone, robust models show a more uniform distribution of the variance,
suggesting that these models form more structurally diverse filters.

4.4.2 Filter Pattern Distributions
In this section, we aim to understand the differences in the filter patterns. For this, we transform all
collected filters to the common basis obtained in Section 4.4.1 and measure shifts between coefficients
separated by dataset and regularization.

CIFAR-10
normal

CIFAR-10
robust

CIFAR-100
normal

CIFAR-100
robust

ImageNet
normal

2 0 2
c1

ImageNet
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2 0 2
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Figure 4.2: Distribution shifts between normal and robust models by training dataset.
Coefficient distribution along every basis of • normal models (blue) vs. • robust (adversarially-trained)
on different datasets. Shifts between robust and normal models appear to decrease with dataset
complexity.

Shift by dataset The coefficient distributions (Figure 4.2) show clear shifts between robust and
normal models, but this shift decreases with the increasing complexity of the dataset. We obtain
a weighted KL-divergence of 0.55, 0.16, and 0.01 for CIFAR-10/100, and ImageNet-1k respectively.
Interestingly, we also see a reduced shift for CIFAR-100 compared to CIFAR-10, although it has the
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Chapter 4. Convolution Filters under Adversarial Regularization

same amount of total training samples (but a different amount of samples per class). This suggests
that more complex datasets lead to smaller distribution shifts between robust and normal models, with
an emphasis on the fact that complexity does not only refer to the number of training samples.

It is worth noting that robust models achieve a significantly worse clean accuracy than their counterparts,
and this performance gap increases with dataset complexity (Table 4.1). On average, robust accuracy
is an additional 30% worse for all studied datasets. Further, ImageNet-1k models are trained and
evaluated with a different ε, which may hide their true (non)-robustness.

The studied ImageNet-1k models, on average, only employ 2M 3× 3 filters (plus a negligible amount
of larger filters in the first layer), while the models on the arguably simpler datasets employ 9M on
average. It is, therefore, likely that CIFAR-10/100 populations show an increased effect of degeneration
due to overparameterization (Section 3.5.2), which is not that extreme in ImageNet-1k models due to
their smaller architectures.
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Figure 4.3: Divergence by depth. Divergence in filter patterns between learned 3× 3 of robust
and normal models by depth decile. The first convolutional layer is displayed separately (not shown
for ImageNet-1k, as these models use larger kernels). The most significant shifts (large KL values)
appear in the primary convolution layer and deeper stages.

(a) First layer - Robust (b) First layer - Normal

(c) Last layer - Robust (d) Last layer - Normal

Figure 4.4: Filter visualization. Visualization of convolution filters from both the first stage and
last layer of a WideResNet-34-10 trained with adversarial and normal training on CIFAR-10. (a) and
(b) show filters from the first stage, while (c) and (d) show filter kernels from the last layer.

Shift by layer depth Following the previous observation, we investigate the most significant shifts
in filter coefficients and measure the divergence at various stages of depth. To compare models with
different depths, we group filter coefficients in deciles of their relative depth in the model. The obtained
shifts (Figure 4.3) seem to increase with convolution depth and peak in the last 20% of the depth for
CIFAR-10/100. For ImageNet-1k, the peak shift is measured in the 8th decile, whereas the shift in
later stages is minimal. Aside from the shifts in later stages, for all datasets, there is a relatively low
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Section 4.4. Analysis of Filters

shift throughout the depth with the most salient outlier being seen in the very first convolution layer.1
This outlier is indeed limited to the first layer, adding filters from the secondary layers vanishes the
shift. Once again, the maximum shift appears to decrease with dataset complexity.

We visualize the first and last convolution layers To better understand the cause of the observed
distribution shifts. The primary convolution stage (Figures 4.4a and 4.4b) shows a striking difference:
Normal models show an expected (Zeiler & Fergus, 2013; Yosinski et al., 2014) diverse set of various
filters including Gabor filters and color blobs, yet, almost all robust models collapse to a single filter
pattern where only one weight is non-null (which is typically in the filter center) – we call these
“thresholding” filters and will discuss the function in Section 4.4.3.

For the deepest convolution layers (Figures 4.4c and 4.4d), we observe the opposite: normal filters
show a clear lack of diversity, and mostly remind of Gaussian blur filters, while adversarially-trained
filters appear to be more diverse in patterns and are more likely to perform complex transformations.
Contrary to the distinct primary layer, this observation is visible across multiple deeper layers.

4.4.3 The First Layer of Robust Models
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Figure 4.5: Thresholding filters in L∞-robust models. The thresholding filters clip away certain
regions of the input and effectively remove perturbations contained within these (white areas) – other
regions still contain perturbations (blue and red areas).

Our analysis of the first layer of robust models reveals a prevalence of “thresholding” filters, characterized
by a single non-zero weight.2 These filters effectively compute a linear combination of the input channels,
analogous to a 1× 1 convolution if the weight is centered or a shifted linear combination if the weight is
off-center. Notably, while typical filters in first layers operate across multiple input channels (Yosinski
et al., 2014), we find that these thresholding filters generally focus on a single color channel. When
combined with the commonly used ReLU activations (and their derivatives, see Section 2.2), these
filters can be understood to perform a thresholding operation on the selected input channel.

Recall that L∞ attacks modify each pixel within the range [−ε,+ε]. The filter implements an affine
transformation, which may push some pixels into the negative range. The consecutive activation will
remove these negative parts of the feature map (the threshold) – this includes perturbations located in
there. Of course, this comes at the potential cost of discarding relevant scene information, as the global

1The primary convolution stages of ImageNet-1k-models use larger kernel sizes and are therefore not included here,
but we show and discuss them in Section 4.4.5.

2This is idealized. In practice, the other weights may not be exactly zero, but there will be one pixel that accounts for
the majority of magnitude in the kernel.
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Chapter 4. Convolution Filters under Adversarial Regularization

threshold is similarly applied to all pixels per channel, thus leading to either insufficient suppression of
adversarial perturbations or excessive removal of genuine signal.

We show the effect of thresholding filters in Figure 4.5, where we compute the activations for a
normal and adversarial input sample on ResNet-18 (Addepalli et al., 2021) after being processed by a
thresholding filter, including normalization and activation by a ReLU function. For some regions in
the activations, the difference between normal and adversarial inputs is zero, showing that these filters
have successfully removed perturbations in some regions. While this may remove entire objects from
the scene, it often leaves their shape (e.g., Filter 4 removes the cat and leg). In Chapter 7, we will
show that adversarially-robust models tend to be more shape-biased, and these filters may be partially
responsible for that.

It is worth noting that this mechanism is highly specific to the L∞ norm, where the perturbation will
be (mostly) spatially uniformly distributed. As we will later demonstrate in Section 4.4.5, training
with the L2 norm does indeed not result in the learning of such filters.

4.4.4 Filter Quality

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Sp

ar
sit

y

CIFAR-10 CIFAR-100 ImageNet

0.2

0.4

0.6

0.8

M
ea

n 
Va

ria
nc

e 
En

tro
py

0

(0.
0, 

0.1
]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

Layer Depth (decile)

0.6

0.7

0.8

0.9

1.0

M
ea

n 
Or

th
og

on
al

ity

0

(0.
0, 

0.1
]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

Layer Depth (decile)
(0.

0, 
0.1

]

(0.
1, 

0.2
]

(0.
2, 

0.3
]

(0.
3, 

0.4
]

(0.
4, 

0.5
]

(0.
5, 

0.6
]

(0.
6, 

0.7
]

(0.
7, 

0.8
]

(0.
8, 

0.9
]

(0.
9, 

1.0
]

Layer Depth (decile)

normal robust

Figure 4.6: Filter quality by depth. Distribution of filter quality comparison by depth measured via
sparsity (top), variance entropy (center), and orthogonality (bottom) between normal and adversarial-
training for CIFAR-10 (left), CIFAR-100 (center), ImageNet-1k (right) datasets.

While the earlier analysis focused on distribution shifts in filter patterns, this section focuses on the
related quality aspect of filters. In particular, we measure the amount of contributing filters through
sparsity (Equation 3.4); the diversity of filters through variance entropy (Equation 3.6); and the
expected redundancy of filterbanks through orthogonality (Equation 4.2). Similarly to the findings
in patterns, we observe fewer differences in quality with dataset complexity (Figure 4.6), but also a
general increase in quality for both robust and normal models. The results on ImageNet-1k are less
conclusive due to a near-optimal baseline and a low sample size.
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Sparsity We observe a very high span of sparsity across all layers for normal models that decreases
with dataset complexity. Robust training significantly further minimizes sparsity and its span across
all depths. Notable outliers include the primary stages, as well as the deepest convolution layers for
CIFAR-10. Generally, sparsity seems to be lower in the middle stages.

Variance entropy The average variance entropy is relatively constant throughout the model but
decreases with deeper layers. The entropy of robust models starts to decrease later and less significantly,
but the difference between them diminishes with dataset complexity. Compared to CIFAR-10, robust
CIFAR-100 models show a lower entropy in deeper layers, while there is no clear difference between
normal models. ImageNet-1k models show a higher entropy across all depths.

Orthogonality Robust models show an almost monotonic increase in orthogonality with depth,
except for the last decile, whereas normal models eventually begin to decrease in orthogonality. Again,
the differences diminish with dataset complexity and the span in obtained measurements of non-robust
models is crucially increased.

4.4.5 The Role of Adversarial Attack Strength (Budget)
In the preceding analyses, we compared the convolution filters of normal and robust models of our
main model zoo. Now we will change and treat our findings as a function of ε, and additionally test
L2-norm based regularization on our second model zoo.

Normal

L∞, ε = 0.5/255

L∞, ε = 1/255

L∞, ε = 2/255

L∞, ε = 4/255

L∞, ε = 8/255

L2, ε = 0.01

L2, ε = 0.1

L2, ε = 1

L2, ε = 3

L2, ε = 5

Figure 4.7: First convolutional layer filters in ResNet-50 models trained under increasing
adversarial attack budgets (ε) and norms. Each row corresponds to a specific attack strength ε,
highlighting the 24 filters with the highest magnitude in the layer (based on their L2-norm). Models
were trained using adversarial training on ImageNet-1k.

First layer We start by analyzing the evolution of the first layer of ResNet-50 under increasing
attack strength in L∞ training, shown in Figure 4.7. Unlike in the previous sections, we now study
larger kernels, as the ImageNet models use a 7× 7 convolution in the first stem. This further serves
as an opportunity to understand if our previous findings scale to larger kernel size. We find many
similarities of 7× 7 filters in robust models in comparison to the ones we have observed in models with
3× 3– Robust models still appear to form thresholding filters independent of the kernel size. Increasing
the adversarial attack strength in training interpolates smoothly between the excepted “natural” filters
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and these thresholding filters. However, for the large kernels, these can be off-center in any direction
more often, resulting in shifted feature maps.

Furthermore, at the largest budget (ε = 8/255), we still notice some other filter patterns that remind
us of dilated kernels. We assume that these are residues from former color blobs, and we suspect that
training with even larger ε would fully eliminate these patterns in favor of thresholding filters. For
example, the reader may trace the evolution of the green color blob (ε = 0) in Figure 4.7. The filter
first decreases in the magnitude of the green channel (ε = 0.5/255 or 1/255), then becomes grid-like
(ε = 2/255) before “dilating” (ε = 4/255), and eventually becoming a thresholding filter at ε = 8/255
(or significantly losing magnitude). A similar effect can be observed for the purple color blob.

When comparing the first layer of L∞ to L2 models, we find a strong difference. L2 models do not
form thresholding filters but instead strengthen the patterns that normal training yields, which can
be seen through similar brightness. Overall, we observe that the magnitude distribution of the filters
becomes more uniform under increasing L2-training, while the opposite holds for L∞.
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Figure 4.8: Average convolutional layer quality models trained under increasing adversarial
attack budgets (ε) on ImageNet. We measure sparsity, variance entropy, and orthogonality for all
layers with 3× 3 kernels and report the average for each architecture and value for ε. We distinguish
between L∞- and L2-bounded training.

Quality Next we apply our quality metrics to the model zoo and visualize the results in Figure 4.8.
For comparison, we report the quality metrics as averages over all 3× 3 convolution layers. Our trends
show that on all architectures, all three metrics increase with ε. Orthogonality appears to quickly
saturate, and generally, there are numerically smaller differences between robust and normal models.
Larger models show the highest orthogonality, which may simply be due to the larger number of filters
per layer. Variance entropy, on the other hand, does not appear to be saturated and is numerically
more pronounced in robust models. Once again, larger models show higher levels of variance entropy,
i.e., their filters are more diverse. Surprisingly, sparsity appears to increase as well under L∞-training
– especially in the smaller ResNet-18 model.

Unlike our findings regarding the first layer, there seems to be no significant difference between L∞-
and L2-bounded training for filter quality beyond the first layer – i.e., we obtain similar trends for both,
except for sparsity, which does not reveal a clear trend. However, it is worth noting that in all cases,
the average sparsity is very low compared to the measurements we have obtained on CIFAR-10/100,
remaining at 2% in the worst-case.

4.5 Is Filter Pattern Diversity Sufficient for Robustness?
In the previous section, we have shown that there is a correlation between robustness and filter quality,
specifically diversity, as measured through variance entropy. It remains to be shown if this correlation
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is a sufficient criterion for robustness – i.e., will models become robust if we increase the diversity
of filters without other forms of adversarial regularization? In light of this question, we propose a
kernel pattern diversity regularization during training. Then, we measure the correlation between the
diversity in filter patterns and the robust accuracy of the resulting models.

We construct the penalty term as follows:

ΩVE(θ) = El

VarianceEntropy
(

W(l)
)

TH

(
c
(l)
outc

(l)
in

)
 , (4.3)

where W(l) is the weight of the l-th convolution layer with a kernel size of 3× 3, VarianceEntropy is
the variance entropy defined in Equation 3.6, TH is the randomness threshold defined in Equation 3.7,
and c

(l)
outc

(l)
in is the number of kernels in the l-th layer.

Exemplarily, we test this regularization on a ResNet-20-64 (He et al., 2016) with an increased width
of 64 (to accommodate the additional complexity) trained on CIFAR-10. Input samples are zero-
padded by 4 px along each dimension and then transformed using 32 × 32 px random crops and
random horizontal flips. We use an initial learning rate of 1e-2, a weight decay of 1e-2, a batch
size of 256, and a Nesterov momentum of 0.9. Further, we use an SGD optimizer and a cosine
annealing schedule (Loshchilov & Hutter, 2017) for a total training time of 75 epochs. The final loss
J(x, y;θ) = `(f(x;θ), y) + λ · ΩVE(θ) uses Categorical Cross Entropy ` plus a scaled penalty term
with label smoothing of 0.1. We vary the regularization scale λ in the [−100, 100] range to model both
penalization of diversity and conformity.

We correlate the average variance entropy over all layers in the resulting models against accuracy under
AutoAttack at ε = 1/255, L∞. Our ε is chosen smaller than the regular value of 8/255 in RobustBench
because we expect that a simple regularization may not offer the same kind of robustness as explicit
training against the threat model would.
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Figure 4.9: Variance entropy vs. clean and robust accuracy in variance entropy regularized
models. We train ResNet-20-64 models on CIFAR-10 under different levels of kernel pattern
regularization.

Surprisingly, our results in Figure 4.9 show that even at both extremes of regularization, models
do learn an useful representation and achieve a highly non-trivial accuracy. When penalizing filter
conformity, we reach an average variance entropy of 1.00, suggesting random filter patterns. The
accuracy is still reaching 94.7% on the clean data and 24.1% against the adversarially perturbed data.
When penalizing filter diversity, we achieve a mean variance entropy of just 4e-7, suggesting that
almost all kernel patterns have collapsed to one pattern per layer. The clean test accuracy at 91.2%
(23.5%) is quite impaired compared to the baseline, but still an impressive performance given the
extremely limited representational capability.
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We obtain our most robust models at λ = −0.001, improving the robust accuracy by 1.9% against the
baseline. However, this result is quite low, given that we are testing against a low ε, and our results
are just obtained from a single run, which can be noisy on low-resolution datasets (Picard, 2023). The
average variance entropy is marginally different from the baseline. Overall, we do see that robust
accuracy is best around the baseline diversity, towards both extremes of filter diversity it decreases
– normal accuracy, on the other hand, does only seem to deteriorate significantly in the direction of
filter pattern collapse, and stays relatively stable with increasing randomness.

Taken together, our results show that filter pattern diversity, as captured through our variance entropy
metric, is only a necessary but not sufficient criterion to achieve adversarial robustness.

4.6 Conclusion
We have shown that adversarially-regularized models appear to learn a particularly more diverse, less
redundant, and less sparse set of convolution filters than their non-regularized variants do. We assume
that the increase in quality is a response to the additional training strain, as the more challenging
adversarial problem occupies more of the available model capacity that would otherwise be degenerated.
Indeed, we will obtain similar findings through the layer criticality metric in Chapter 6.

Frankle & Carbin (2019) presented the Lottery Ticket Hypothesis, claiming that neural networks
(under normal training) form various redundant subnetworks that each increase the odds of finding a
solution. Once a solution is found, the “losing” subnetworks can be removed without any significant
impacts on accuracy. Adversarial samples activate channels of the feature extractor more uniformly
and with larger magnitudes than normal ones (Bai et al., 2021). A straightforward solution to increase
robustness is suppressing channels (Bai et al., 2021) or enhancing subnetworks (Guo et al., 2022a)
leading to these channels in order to boost robustness. We hypothesize that these findings correlate
with filter quality and, as in Chapter 3, degenerated filters in normal models may “losing” subnetworks
that are activated by adversarial attacks. This is backed by our observations that filter quality seems
to be a necessary criterion to achieve robustness. Specifically, robust models increase in filter diversity,
suggesting overall stronger subnetworks,

However, although the filter quality of normally trained ImageNet-1k models is exceptionally high,
their robustness is not. Taken together with our pattern diversity regularization experiments, this
further confirms that filter quality alone is not a sufficient criterion to establish robustness.
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Chapter 5

Filter Frequency Regularization

Regularization through adversarial training (Madry et al., 2018) improves model generalization to some
extent. However, it is only one ingredient towards generally more robust models and requires knowledge
about the potential threat model at training time. This chapter focuses on how we can achieve native
robustness of models – i.e., we want to learn robust behavior directly from conventional training data
without out-of-distribution examples. To this end, we extend our filter studies from Chapters 3 and 4
to the frequency spectrum of learned convolution filters, showing that adversarially-trained models
learn more low-frequent filters and then propose a simple regularization term that mimics this behavior
in standard training. We obtain models with improved generalization that are not confined to highly
specialized improvements in adversarial robustness or at the cost of other forms of robustness.

This chapter is based on “Improving Native CNN Robustness with Filter Frequency
Regularization”, presented at TMLR, 2023 (Lukasik et al., 2023). As joint first authors, Paul
Gavrikov and Jovita Lukasik developed the code base, performed the experiments, created the plots,
and wrote the paper under supervision and with input from Janis Keuper and Margret Keuper. Jovita
Lukasik designed and performed the ablations in Section 5.9.

� Code: https://github.com/jovitalukasik/filter_freq_reg

5.1 Introduction
Modern convolutional neural networks (CNNs) (He et al., 2016; Tan & Le, 2020; Liu et al., 2022) show
a steady increase in performance in terms of test accuracy on a wide range of learning tasks. Yet,
most models suffer from a low generalization ability, even when faced with small distribution shifts
(see Section 2.7 and Section 2.8 for examples).

To improve the low generalization ability, previous work focused on aspects such as aliasing (Zhang,
2019; Zou et al., 2020; Li et al., 2020; Grabinski et al., 2022d,c), the padding operations (Gavrikov &
Keuper, 2023a), the training schedule (Lopes et al., 2020; Saikia et al., 2021), analyzing the image
feature spectrum (Geirhos et al., 2019; Wang et al., 2020a), or the activation of subnetworks (Bai et al.,
2021; Guo et al., 2022a). In addition, introducing perturbed images into the training data, known as
adversarial training (AT) (Madry et al., 2018), can alleviate low generalization to some extent. The
latter is a form of regularization (see Section 2.6.1) and remains one of the most effective methods to
obtain adversarial robust models.

However, AT is not the cure-all to improve network robustness and tends to overfit on training
attacks (Tramèr & Boneh, 2019; Rice et al., 2020; Yu et al., 2022a). Intuitively, the adversarial
attack used during training becomes an in-distribution sample of the model, while its robustness to
new out-of-distribution samples (e.g., a different adversarial attack) is hard to anticipate. Saikia
et al. (2021); Kireev et al. (2022) show that AT can even increase the mean corruption error on
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Figure 5.1: Study overview. Our proposed regularization decreases the magnitude of high-frequency
DCT-II coefficients, as visualized in (b),(c),(d) for a ResNet-20 trained on CIFAR-10. The magnitude
of DCT-II coefficients, computed as shown in (a), represent the frequency distribution in the respective
convolution layer.

ImageNet-C (Hendrycks & Dietterich, 2019). Therefore, we argue that AT can only be one ingredient
towards building more robust models, while the main focus should rather be to encourage behavior
that we call native robustness. We expect from natively robust models that they can learn robust
behavior directly from the conventional training data.

Robust behavior includes, on the one hand, a certain degree of adversarial robustness without being
confronted with adversarial attacks during training, i.e., the model should not easily be fooled
using attacks with very small perturbation budgets. Similarly, they should be robust against other
perturbations such as common corruptions (Hendrycks & Dietterich, 2019) as long as the severity of
the corruption is low. On the other hand, robust behavior implies a better alignment with human
perception, i.e., models should decide for a specific class more by the shape of an object than by
its texture (Geirhos et al., 2019). Note that the expected degree of specific robustness can not be
compared to the one obtained by techniques that specifically optimize for them, such as adversarial
training. For instance, adversarial samples remain out-of-distribution samples for such natively robust
models. Yet, additionally, training these natively robust models with AT should be complementary
and have a further beneficial effect.

In this chapter, we propose a new perspective on improving native robustness by investigating the
frequencies in the learned network filters directly – extending our studies in Chapters 3 and 4 from
spatial to frequency space. Specifically, we propose to project CNN convolution filter weights into the
frequency domain by applying a discrete cosine transformation (DCT-II).1 Although the resulting
formulation is, in principle, equivalent to the commonly adopted CNN formulation, it provides
direct access to the learned filter frequencies. Thereby, we aim to investigate the following research
questions:

(1) Which filter frequencies are predominantly learned in the layers of CNNs?

(2) Can we regularize the frequencies during the training process, such as to increase the native
robustness of the learned model?

We investigate these questions in the context of image classification (as introduced in Section 2.5)
– yet our approach bears the potential to be expanded to other tasks, such as object detection and
segmentation. First, we analyze the learned filter frequencies of modern CNNs and observe that they
tend to have a low-frequency bias in deep layers, while filters of earlier layers of the network are either
uniformly distributed in frequency space or even biased towards higher frequencies. In the latter cases,
the convolution thus relies on high-frequency information. On the contrary, adversarial training appears
to shift the focus to low filter frequencies in early layers. To leverage this behavior, we introduce a
regularization scheme (see Section 2.6.1 for other forms of regularization and an introduction), which
increases the bias to low-frequencies in these early layers (see Figure 5.1 for a visualization). We

1An introduction to the related discrete Fourier transform can be found in Section 2.1.
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evaluate the proposed decomposition and regularization on different CNNs under covariate shifts in
test data (Section 2.7). Results on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), SVHN (Netzer
et al., 2011), MNIST (LeCun et al., 1998b), TinyImageNet (Le & Yang, 2015), and ImageNet-1k (Deng
et al., 2009; Russakovsky et al., 2015) show increased native robustness.

We summarize our contributions as follows:

• We expand our filter analysis of Chapters 3 and 4 to the frequency domain and observe that
adversarial training results in a shift towards a low-frequency bias in the filter weights of early
layers during the early phases of training (Section 5.3).

• Based on this observation, we propose a high-frequency penalization term in the weight space of
convolution layers (Section 5.4) to mitigate the reliance on high-frequency information.

• Networks trained with this regularization become gradually, yet consistently, more robust against
a wide array of out-of-distribution generalization tasks without reliance on AT or additional data
- i.e., networks increase their native robustness (Section 5.5). Additional AT is complementary
and further improves the measurable adversarial robustness to a variety of attacks (Section 5.8).

5.2 Background
Adversarial robustness We refer the reader to Section 2.8.2 for an introduction to adversarial
robustness, including a discussion of adversarial training.

Robustness beyond adversarial attacks Unfortunately, the existence of adversarial attacks is
only a symptom of larger generalization issues of neural networks. For example, neural networks fail
to generalize under various corruptions such as weather conditions, changes in lighting, noise, and
blurring (Dodge & Karam, 2017; Hendrycks & Dietterich, 2019). We refer the reader to Section 2.8
for a more detailed overview of robustness and provide only the details important to this chapter
here.

For fast and comparable benchmarks, the test datasets CIFAR-10-C, CIFAR-100-C, and ImageNet-C
have been proposed (Hendrycks & Dietterich, 2019), which include 15 (+4 extra) types of “common”
corruptions (CC) at increasing severity level (from 1 to 5).

Additionally, Geirhos et al. (2019) observed that CNNs are biased towards detecting textures of an
image instead of the shape, which is in contrast to human vision behavior that focuses on shape
information, i.e., a dominant shape bias. To overcome this texture bias, they train on a stylized version
of ImageNet to increase the shape bias of CNNs and hypothesize that this improves robustness. For
fast evaluation of out-of-distribution (OOD) generalization Geirhos et al. (2021) proposed a benchmark
including 17 OOD datasets, from which 12 contain image perturbations and the other 5 are single
manipulations of ImageNet (Deng et al., 2009): texture/shape cue-conflict, sketches (Wang et al., 2019),
stylized (ImageNet), edges, and silhouettes.

Robustness from a frequency perspective Recent work highlighted the importance of learned
frequencies for model robustness and generalization. Wang et al. (2020a) demonstrated that CNNs
significantly rely on high-frequency information for their predictions. On the other hand, AT models
predominantly classify based on low-frequency information. Given that texture information typically
resides in higher frequency bands, this is a suitable explanation for the observations by Geirhos et al.
(2019). As such, there is also a correlation between AT and a reduced texture bias (Geirhos et al.,
2021) (which we will also examine in Chapter 7). Duan et al. (2021) exploit these findings by proposing
an adversarial attack that drops DCT coefficients corresponding to high frequencies from inputs to fool
neural networks. Yet, despite the common assumption, adversarial attacks are not always targeting
high-frequencies, and the behavior depends on the dataset (Maiya et al., 2021; Abello et al., 2021;
Bernhard et al., 2021; Ortiz-Jiménez et al., 2020).
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Multiple works explore the desensitization of neural networks to high-frequency (HF) from various
angles to avoid AT: Lopes et al. (2020) randomly add noise to image patches, Saikia et al. (2021)
regularize the feature maps produced by convolution layers in a dedicated two-stream architecture, and
Grabinski et al. (2022c) introduce a downsampling approach within the frequency domain that removes
aliasing-related high-frequency information. In contrast, we regularize high-frequency information
directly in convolution filters to improve the native robustness and OOD generalization of the model.
This differs from traditional adversarial training but can also be used to improve robust accuracy in
the context of adversarial training and mitigate robust overfitting.

Our regularization differs from previous works in the following way:

• Regularization vs. band-pass filtering: Previous methods often low-pass-filter signals, which
leads to a hard smoothing of the resulting feature maps and the active deletion of information
that may be necessary for predictions – especially in fine-grained classification problems. Instead,
we only regularize the attenuation and, thus, effectively force the network to reweigh information
without having to discard information.

• Data-independent and explicit attenuation: By regularizing weights, we induce an explicit
causal bias in the operator. Alternatively, an attenuation of feature maps would be implicit
and would highly depend on the frequency distribution of the inputs. Additionally, attenuating
the filters results in a local suppression (i.e., in the patch) of HF, while a (global) feature-map
regularization would affect the entire scene.

Basis decomposition In our study, we will decompose filters from spatial to the frequency domain,
analogous to our introduction to Fourier transform in Section 2.1. The decomposition of convolution
filters is typically studied in the context of compression, e.g., see Yaroslavsky (2014) for an overview.
The majority of decomposition approaches convert the convolution layer weights to the frequency
domain, e.g., by utilizing the DCT-II-basis (Chen, 2004; Chen et al., 2016; Lo & Hang, 2019; Cheinski
& Wawrzynski, 2020; Chen et al., 2022b; Ulicny et al., 2022) to prune and compress the number
of frequency components. But works also exist that transform the input images directly for better
performance and generalization (Xu et al., 2020; Hossain et al., 2019). In detail, the discrete cosine
transform (DCT) (Ahmed et al., 1974) maps an input signal into a frequency domain represented by
cosine basis functions. In particular, the common DCT-II variant is used in JPEG compression, where
it successfully compresses natural images (Wallace, 1992). These works mainly explore the fact that
data of multiple domains is not uniformly distributed in the frequency domain and is typically biased
towards low frequencies (Singh & Theunissen, 2004; Ruderman, 1994). In Chapters 3 and 4, we showed
the basis (principal patterns) of convolution filter kernels obtained via SVD is often highly similar and
independent of the architecture, learned task, or dataset. These identified principal patterns have a
striking similarity to the DCT-II basis.

Our realization of the DCT-II basis is similar to Ulicny et al. (2022) and other previous work, however,
instead of compression, we explore an orthogonal direction and study the role of individual frequencies
in training and apply regularization in the frequency space to improve generalization. DCT merely
serves as a tool in our study and could be replaced by any other basis with an inherent frequency
hierarchy (including DFT Section 2.1).

5.3 Frequency Analysis
In this initial analysis, we transform learned convolution filters to the frequency domain (see Section 2.1
for the related Fourier transform). We implement this by changing the basis of convolution weights
to DCT-II, revealing the coefficients and, therefore, frequency information. Formally, we define this
as follows. Let V ∈ Rk×k×k×k denote the k × k-DCT-II basis. Then every basis vector Vi,j with
horizontal frequency j and vertical frequency i is defined as:

Vi,j,m,n = cos
[
πi

k

(
m+

1

2

)]
cos
[
πj

k

(
n+

1

2

)]
for i, j,m, n ∈ {1, . . . , k}. (5.1)
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Every basis vector is additionally normalized to its L1 length: Vi,j = Vi,j/‖Vi,j‖1. We show the
DCT-II basis vectors for different kernel sizes k in Figure 5.2. Following the basis change, we
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Figure 5.2: The full DCT-II basis for different resolutions.

visualize the average magnitude of coefficients in every convolution layer by heat maps (as shown in
Figure 5.1). Having the frequency information at hand, we can directly analyze its distribution in
common CNNs.

In principle, DCT-II could be replaced by any other frequency base, such as a discrete Fourier or sine
transform. We have chosen DCT-II, as this base seems to best match the principal patterns identified
in Chapters 3 and 4.

5.3.1 Analysis of Learned Convolution Filters
We start by analyzing two modern networks trained on ImageNet without any robustness optimization
techniques: EfficientNet-B0 (Tan & Le, 2020) and ConvNeXt-Tiny (Liu et al., 2022). Instead of
analyzing the spatial patterns as done in Chapters 3 and 4, we now focus on their representations
in frequency space. Our visualizations in Figure 5.3 show that these CNNs do not always learn a
uniform frequency spectrum utilization throughout the network. Earlier layers show a more uniform
distribution of magnitude or are biased towards higher frequencies. However, deeper convolution layers
instead reveal a salient bias towards low frequencies. Some layers even appear to discard a majority of
high-frequency information.

In addition, we are interested in how adversarial training affects the frequency utilization in convolution
filters. As shown from various angles in (Wang et al., 2020a; Geirhos et al., 2019; Saikia et al., 2021),
robust models shift their bias to low-frequencies, as this reduces the possibility of overfitting on
high-frequencies and therefore provides better generalization abilities. Thus, we expect that these
results transfer to the frequency utilization in weight space to some extent. Indeed, Wang et al. (2020a)
stated that the very first convolution layer of AT CNNs learns smoother filters, which equals to filters

Layers

(a) EfficientNet-B0

(b) ConvNeXt-Tiny

0

max

Figure 5.3: Frequency distribution by layer. We show coefficient heatmaps for trained (a)
EfficientNet-B0 (containing 3 × 3 and 5 × 5 kernels) and (b) ConvNeXt-Tiny (containing 2 × 2
[downsampling layers], 5× 5 [stem] and 7× 7 kernels).
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Figure 5.4: Frequency distribution in training per layer. Evolution of the frequency distributions
in the first three convolution layers of an EfficientNet-B0 in comparison between (a) normal and (b)
adversarial training with CIFAR-10.

that are less reliant on high-frequency information than the equivalents in normally trained models.
However, their frequency analysis was limited to the first initial layer, while we aim to provide a
holistic analysis over the entire network. This is also backed by our previous observations showing
that frequency utilization varies by depth. Further, their results do not appear to be representative of
modern models that are trained under L∞-norm. Such models predominantly learn thresholding filters
(Madry et al., 2018) independent of architecture and dataset (Section 4.4.3) that do not resemble
“common” first layers, as shown by Yosinski et al. (2014). As such, they are hardly smooth.

Exemplarily, we proceed by comparing an adversarially-trained EfficientNet-B0 with its regularly-
trained counterpart. We observe that adversarial training leads to a characteristically different
distribution of learned frequencies during training (Figure 5.4). Especially in the first layers, the
network learns predominantly from low frequencies, which enables the network to preserve the global
image content rather than overfitting on high-frequency details such as texture. Interestingly, the
adversarially-trained model learns this behavior in the early training stages and faster than under
normal training conditions (Rahaman et al., 2019). Deeper layers, on the other hand, show no salient
differences.

Based on these findings, we propose a transformation approach of convolution weights into the frequency
domain to interact with frequency information. Secondly, based on the latter finding, we propose a
high-frequency regularization to further enforce the low-frequency bias in the first network layers and
thus increase the native robustness.

5.4 Filter Frequency Regularization
Recall our definition of a convolution layer in Equation 2.17. In the following, we propose a simple
representation in the frequency space by replacing the convolution weight W ∈ Rcout×cin×k×k with a
combination of learned coefficients on the DCT-II basis. In this work, we limit ourselves to kernels
with k ≥ 3. We realize this by two common implementations seen in related literature (Ulicny et al.,
2022).

5.4.1 Weight Decomposition (WD)
Our first approach Weight Decomposition (WD), shown in Figure 5.5, decomposes the weight in a
convolution layer into learnable coefficients C ∈ Rcout×cin×k×k and the basis V ∈ Rk×k×k×k defined in
Equation 5.1: W = C · V.

Then, the convolution can be rewritten as:

Yj =
∑
i

(Cj,i · V) ∗ Xi =
∑
i,m,n

(Cj,i,m,n · Vm,n) ∗ Xi for j ∈ {1, . . . , cout}. (5.2)

This adds one additional tensor multiplication per layer and increases the parameters to be kept in
memory by k4 (per layer or once if shared). However, these additional parameters are constant and do
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learned coefficients fixed basis

cin

*
cout

Figure 5.5: Flow of the weight decomposition implementation. Instead of learning the weight
directly, we learn coefficients of a DCT-II basis and construct the weight via a linear combination.

not need to be learned.

5.4.2 Signal Decomposition (SD)

*

depthwise convolution with fixed basis 

pointwise convolution with learned coefficients

cin cout

*

*

Figure 5.6: Flow of the signal decomposition implementation. Each input channel is convolved
with all basis vectors in a depthwise convolution layer. The outputs are then aggregated by a pointwise
(1× 1) convolution.

Alternatively, our second approach Signal Decomposition (SD), shown in Section 5.4.2, does not replace
the convolution weight W directly but performs a depthwise convolution of all combinations of inputs
and the fixed basis vectors which is then aggregated by a learnable pointwise (1×1) convolution.

Yj =
∑
i,m,n

Cj,i,m,n · (Vm,n ∗ Xi) for j ∈ {1, . . . , cout}. (5.3)

This increases the parameter number by a factor of cin · k2 to be kept in memory. Again, the number
of learnable parameters is not increased. Also, note that the associativity property of convolution
reveals the equivalence of both formulations in the forward pass:

Yj =
∑
i,m,n

Cj,i,m,n · (Vm,n ∗ Xi) =
∑
i,m,n

(Cj,i,m,n · Vm,n) ∗ Xi for j ∈ {1, . . . , cout}. (5.4)

However, the modifications may converge to different solutions due to different learning dynamics. In
both approaches, the initial coefficient weights are sampled from a uniform distribution with an adjusted
scale as per He et al. (2015). For the weight decomposition approach, we use cin · k2 as fan information.
The basis vectors are initialized as defined in Section 5.3 without any further adjustments.

5.4.3 Frequency Coefficient Regularization
As we have seen in Section 5.3.1, neural networks are biased towards low-frequency information, while
early layers also introduce more magnitude on high frequencies. However, adversarial training increases
the low-frequency bias already in the early training stages, resulting in an overall low-frequency
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dominance after convergence in the first layers. To make use of this finding and increase the robustness
of CNNs directly without adversarial training, we propose to regularize the DCT-II coefficients and
explore the frequency shift and performance. We hypothesize that this regularization mimics a “good”
detection mechanic of adversarially-trained models and, thus, improves generalization and, specifically,
robustness. Effectively, it can be seen as a weight penalty in frequency space (Section 2.6.1).
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SliceNorm(C, r) =

√√√√∑
i,j

((
r∑

n=1

C2
j,i,n,r

)
+

(
r∑

m=1

C2
j,i,r,m

)
− C2

j,i,r,r

)

R(C) =

︷ ︸︸ ︷ k∑
r=dk/2e+1

r · SliceNorm(C, r)

+

ρdiff ·max(SliceNorm(C, 2)︸ ︷︷ ︸−SliceNorm(C, 1)︸ ︷︷ ︸, 0).
(5.5)

Our proposed regularization (Equation 5.5 and Figure 5.7) penalizes the highest frequencies and
additionally forces the first coefficient to have a higher magnitude than coefficients of subsequent
frequencies. Such behavior – that the weight coefficients decay with their corresponding frequencies –
can also be observed in the adversarially robust weights in Figure 5.7. The occurrence of this latter
constraint is determined by the binary hyperparameter ρdiff, with ρdiff = 1 throughout the chapter, if
not stated otherwise. Let coefs(θ, h) denote a function that returns the set of convolution coefficient
weights of the learnable parameters θ in the first 1/h section of the network depth. To enforce the
dominance of low frequencies in early layers, we set h = 3 as our default value. We train the network
with the following modifications to the objective:

min
θ

` (f (x;θ) , y) + λ
∑

C∈coefs(θ,h)

R(C). (5.6)

Where ` is the original objective. An exemplary visualization of the learned coefficients under
regularization is given in Figure 5.1 for h ∈ {1, 3}.

5.5 Experiments
In the following, we compare different architectures with regular convolutions and both decomposition
variants (WD/SD) at varying frequency regularization (+ Reg.) (Equation 5.5). For each combination,
we report results on clean accuracy and robustness on multiple datasets.

Models and datasets We evaluate low-resolution datasets such as CIFAR-10/100 (Krizhevsky
et al., 2009), MNIST (LeCun et al., 1998b), SVHN (Netzer et al., 2011), and TinyImageNet (Le &
Yang, 2015) on ResNet-20 (as introduced for CIFAR in He et al. (2016)), ResNet-9 - a regular and
larger ResNet with optimization for CIFAR and a reduced number of layers (Myrtle AI Team, 2019),
and an EfficientNet-B0 (Tan & Le, 2020) where we remove striding from the stem convolution.
For ImageNet (Deng et al., 2009), we evaluate EfficientNet-B0 (Tan & Le, 2020) and ConvNeXt-
Tiny (Liu et al., 2022). We test h ∈ {1, 3} and λ ∈ {0.01, 0.05, 0.1} and report results for the best
performance over the mean of 5 runs except for ImageNet where we only report a single run.
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Note that we have selected models with different kernel sizes - e.g., after the stem, ResNets use k = 3,
EfficientNets-B0 mix k = 3 and k = 5, and ConvNeXts k = 7 (and k = 2 downsampling layers).
The variance in kernel size allows us to demonstrate the transferability of our proposed regularization
beyond the common k = 3 kernels.

Robustness evaluation To understand the effect on robustness and generalization of our proposed
decomposition and regularization approaches, we run the standard AutoAttack test suite (AA) (Croce
& Hein, 2020b) and additional FGSM-, and PGD-attacks at ε = 1/255 (ε = 16/255 for MNIST) under
the L∞-norm. We use Foolbox (Rauber et al., 2017) to run both FGSM and PGD at the default setting
(e.g., 40 steps for PGD). We do not include AA results for ImageNet, as these models barely withstand
any attacks and measure robust accuracies of 0% even at this small ε without adversarial training.
Further, we evaluate the robustness of common corruptions of CIFAR-10 and ImageNet models on the
respective corrupted datasets (Hendrycks & Dietterich, 2019). In addition, we are interested in the
behavior of the methods towards texture/shape bias (Geirhos et al., 2019), and OOD generalization
tests (Geirhos et al., 2021). Hence, we evaluate our ImageNet models on 5 of these OOD datasets:
texture/shape cue-conflict, ImageNet-Sketch, Stylized-ImageNet, and edge-/silhouette-transformations
of ImageNet using the implementation of Geirhos et al. (2021).

5.5.1 Hyperparameters
We train models for all low-resolution datasets with the same hyperparameters (except augmentations)
but use a different set of hyperparameters for ImageNet.

Low-resolution: CIFAR-10/100, MNIST, SVHN, TinyImageNet Models are trained for
120 epochs. For both ResNets, we use an SGD optimizer (with Nesterov momentum of 0.9) with an
initial learning rate of 1e-2 that we downscale by 0.1 every 30 epochs and a weight decay of 1e-2. For
EfficientNet-B0, we use an AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning
rate of 1e-4 that follows a cosine annealing schedule and a weight decay of 5e-2. In all cases, we use a
batch size of 256 and categorical cross entropy as a loss function with our regularization. We analyze
models with weights learned after the last gradient update.

We use the following augmentations for datasets:

• CIFAR-10/100: Training images are zero-padded by 4 px along each dimension, apply random
horizontal flips, and proceed with 32× 32 px random crops. Test images are not modified.

• TinyImageNet: Training images are obtained using randomly resized 56× 56 px crops. Test
images are 56× 56 px center crops.

• MNIST: Train and test images are upscaled to 32× 32 px.

• SVHN: Train and test images are not modified.

For all datasets, samples are normalized by the channel mean and standard deviation.

ImageNet We train all ImageNet models with the default hyperparameters and augmentations for
ConvNeXt-Tiny (Liu et al., 2022). In particular, we train 300 epochs with an effective batch size of
4096. For EfficientNet-B0, we reduce the batch size to 1024 due to memory constraints. Again, we
evaluate model parameters learned after the last gradient update.

5.6 Results
In this section, we discuss the results of our regularization when trained on multiple low-resolution
datasets (Section 5.6.1), including a comparison to prior work, and finally on ImageNet (Sec-
tion 5.6.2).
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Table 5.1: Frequency regularization experiments on CIFAR-10. Results are presented for
ResNet-20, ResNet-9, and EfficientNet-B0, with comparisons to prior work. We report the mean clean
accuracy, robust accuracy against adversarial attacks (FGSM, PGD-40, and AutoAttack) for L∞ norm
with ε = 1/255, and the mean corruption accuracy on CIFAR-10-C. All results are averaged over 5
runs. Best, Second Best (only for single method evaluations).

Variant Clean Adversarial Acc. (↑) Corruption
Acc. (↑) FGSM PGD-40 AA Acc. (↑)

ResNet-20

CNN 91.29 50.49 30.92 10.78 67.96

FLC (Grabinski et al., 2022c) 91.52 52.49 30.25 8.48 68.75
PaGA (Lopes et al., 2020) 91.29 50.36 31.50 11.38 67.73
Blur Pooling (Zhang, 2019) 89.89 41.61 29.43 15.58 66.73
Adaptive Blur Pooling (Zou et al., 2020) 89.48 41.94 32.09 18.22 67.17
Wavelet Pooling (Li et al., 2020) 89.89 41.17 27.88 13.78 67.40

WD 91.04 48.40 30.37 10.72 66.92
SD 91.36 50.83 32.98 11.97 67.48
WD + Reg. 89.86 50.85 41.81 26.79 74.04
SD + Reg. 90.54 53.12 44.42 29.14 74.14

WD + Reg + FLC 89.65 52.21 42.02 25.39 75.28
WD + Reg + PaGA 89.84 50.09 40.92 25.79 73.85
SD + Reg + FLC 90.37 54.89 45.13 28.11 74.41
SD + Reg + PaGA 90.32 52.47 42.98 27.30 73.19

ResNet-9

CNN 94.29 59.58 53.04 37.49 73.38

FLC (Grabinski et al., 2022c) 94.24 59.64 53.47 38.65 73.81
PaGA (Lopes et al., 2020) 94.33 59.12 52.62 37.50 73.72

WD 93.73 55.51 49.84 35.23 72.87
SD 93.97 55.73 50.29 36.00 73.48
WD + Reg. 93.18 59.25 56.08 43.62 76.41
SD + Reg. 93.09 59.87 56.89 44.80 77.72

WD + Reg + FLC 93.20 59.64 56.39 44.24 76.78
WD + Reg + PaGA 92.15 56.48 52.64 39.78 78.14
SD + Reg + FLC 93.43 60.80 58.18 46.08 77.60
SD + Reg + PaGA 93.14 59.86 57.24 45.06 77.54

EfficientNet-B0

CNN 90.38 53.55 54.05 45.51 68.09

FLC (Grabinski et al., 2022c) 89.68 51.92 53.09 45.37 69.72
PaGA (Lopes et al., 2020) 90.72 54.18 54.97 46.64 69.31

WD 90.51 49.87 49.97 40.76 67.10
SD 90.44 51.04 51.77 43.39 66.65
WD + Reg. 88.97 57.91 59.60 53.30 72.14
SD + Reg. 89.18 57.83 59.68 53.50 71.87

WD + Reg + FLC 87.67 52.68 54.66 48.14 71.17
WD + Reg + PaGA 88.49 55.15 56.70 50.05 74.16
SD + Reg + FLC 87.90 54.15 56.38 50.31 71.10
SD + Reg + PaGA 89.66 56.72 58.56 51.87 72.39

5.6.1 Low-Resolution Datasets
We start our discussion of results on models trained on CIFAR-10. Based on the shown results in
Table 5.1) we observe that replacing regular convolution layers with either decomposition variant (SD
or WD) but not applying regularization has a rather insignificant impact on the clean and robust
accuracy (for adversarial attacks and CIFAR-10C). This is to be expected, as the formulations are
equivalent, and the remaining differences can be attributed to changes in the gradient flow. However,
once we apply the regularization, we see clear improvements in robustness towards all threat models,
with a small trade-off on clean accuracy. We can also observe that SD slightly outperforms WD on
almost all tested architectures. Hence, it may be tempting to only proceed with SD. However, the
additional channels necessary to implement SD account for more parameters, a large memory overhead,
and slower inference and training performance. For instance, we see a 4.4x slower forward pass and
18% more total parameters on ResNet-20, while WD has a minimal overhead, both in parameters and
throughput (Table 5.2).

Targeting adversarial robustness, we see the largest gains on models that initially performed worst
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Table 5.2: Overhead benchmark. We apply various frequency attenuation techniques to a ResNet-
20 and evaluate the overhead for a batch size of 512 on an NVIDIA A100 GPU.

Variant Total Learnable Throughput Batch Update
Params (↓) Params (↓) (k img/sec) (↑) (ms) (↓)

CNN 272.5k 272.5k 128.0 24.7

FLC (Grabinski et al., 2022c) 272.5k 272.5k 82.7 30.2
Blur Pooling (Zhang, 2019) 272.5k 272.5k 113.0 26.5
Adaptive Blur Pooling (Zou et al., 2020) 272.7k 272.7k 34.4 44.0
Wavelet Pooling (Li et al., 2020) 272.5k 272.5k 103.0 26.5

WD (+ Reg.) 274.0k 272.5k 124.3 24.9
SD (+ Reg.) 323.3k 272.5k 28.0 51.9

(+18.36% AutoAttack (AA) increase on ResNet-20). Out of all our tested models, EfficientNet-B0
is the most robust, both before and after regularization.

All results were acquired with tuned regularization hyperparameters, and we often obtain the best
results for CIFAR-10 when regularizing only the first third of the network (h = 3). Other tested
regularization parameters result in a slightly worse robust accuracy. Noticeably, even the worst
hyperparameter combination for ResNet-20 (WD, λ = 0.01, h = 1, ρdiff = 0) still achieves a 14.22%
higher AA accuracy than the unregularized baseline.

For common corruptions (CC) (the last column in Table 5.1), we analyze the mean accuracy over
all corruptions and severities, as well as individual results for corruptions at the highest severity
level (not shown for brevity). We observe that regularized models become significantly more robust
against corruptions having predominantly high-frequency (HF) perturbations (cf ., Yin et al. (2019) for
spectrums) such as pixelate and defocus/glass/gaussian blur. Perhaps less surprisingly, regularized
models become less sensitive to increased JPEG compression, as they rely on (quantized) DCT-II
coefficients. Regularized performance remains largely unchanged for corruptions with larger variance in
the frequency spectrum. We see a slight degradation of performance in low-frequency (LF) corruptions
such as brightness, saturation, contrast, and impulse noise. However, the accuracy drop is relatively
low, considering the evaluation at the highest severity level. On average, our regularization increases
the robustness to common corruptions.

Comparison to other methods Lastly, we compare our method to other HF regularization
methods in prior work. Specifically, we compare to FrequencyLowCut Pooling (FLC) (Grabinski
et al., 2022c), Patch Gaussian Augmentation (PaGA) (Lopes et al., 2020), and, on ResNet-20, also
to Blur Pooling (Zhang, 2019), Adaptive Blur Pooling (Zou et al., 2020), and Wavelet Pooling (Li
et al., 2020) (Table 5.1). Regarding AA and CC performance, we observe that our method consistently
outperforms any other approach in standalone comparisons with a small degradation of clean validation
accuracy. Additionally, our regularization remains compatible with other methods and can improve
their robustness significantly, as we show for FLC and PaGA. Overall, we sometimes get the highest
levels of (specialized) robustness in combination with another method.

Other low-resolution datasets Although several works reported a shift in the frequency band of
adversarial attacks depending on the dataset (Maiya et al., 2021; Abello et al., 2021; Bernhard et al.,
2021; Ortiz-Jiménez et al., 2020), we consequently see an improvement in the results shown in Table 5.3,
due to our frequency regularization on multiple datasets. Arguably, we see smaller improvements
for SVHN/TinyImageNet – which are also the datasets that show more LF perturbations than HF.
Contrary to our CIFAR-10 results, WD outperforms SD on all datasets except SVHN.

5.6.2 ImageNet
Next, we aim to explore how our regularization performs on the common ImageNet dataset (Deng
et al., 2009). In particular, more OOD tests exist for this dataset, allowing us to study aspects
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Table 5.3: Regularization on other low-resolution datasets. We report the performance of
various networks on multiple datasets (CIFAR-100, SVHN, TinyImageNet, MNIST) similarly to our
experiments on CIFAR-10 (except that we use ε = 16/255 for MNIST).

Variant Clean Adversarial Acc. (↑)
Acc. (↑) FGSM PGD-40 AA

C
IF

A
R

-1
00

ResNet-20

CNN 60.41 14.36 5.45 1.17
WD 58.90 12.84 4.68 1.01
SD 60.34 13.87 5.18 1.13
WD + Reg. 56.65 16.85 12.73 5.59
SD + Reg. 58.19 17.20 12.24 5.11

ResNet-9

CNN 75.80 30.41 24.12 10.13
WD 75.52 29.97 23.68 10.80
SD 76.06 30.73 24.65 11.48
WD + Reg. 74.75 33.66 30.31 17.62
SD + Reg. 75.27 34.04 30.95 18.26

EfficientNet-B0

CNN 62.09 26.33 24.99 18.76
WD 63.49 23.55 18.13 9.91
SD 62.85 25.11 20.73 13.21
WD + Reg. 59.21 27.44 27.73 22.93
SD + Reg. 60.49 29.63 30.24 25.42

SV
H

N

ResNet-20

CNN 96.31 83.84 79.94 69.81
WD 96.35 83.52 80.01 71.25
SD 96.34 84.07 80.64 71.74
WD + Reg. 96.28 84.11 81.21 73.27
SD + Reg. 96.34 84.17 81.23 73.03

ResNet-9

CNN 95.92 83.02 82.48 77.32
WD 95.59 81.55 81.06 75.61
SD 95.78 82.46 82.08 77.06
WD + Reg. 95.69 82.08 81.70 76.81
SD + Reg. 95.83 82.90 82.71 78.14

T
in

yI
m

ag
eN

et ResNet-20

CNN 25.61 9.93 9.37 4.30
WD 24.50 9.27 8.97 4.30
SD 25.05 9.60 9.15 4.45
WD + Reg. 24.56 10.13 10.07 5.23
SD + Reg. 24.92 10.58 10.37 5.26

ResNet-9

CNN 53.20 17.79 16.76 9.57
WD 52.08 17.11 16.19 9.40
SD 52.12 16.85 15.88 9.15
WD + Reg. 51.25 18.10 17.34 10.23
SD + Reg. 51.22 18.26 17.40 10.39

M
N

IS
T

ResNet-20

CNN 99.68 89.74 45.37 8.92
WD 99.69 90.45 47.06 10.22
SD 99.65 91.23 54.08 16.80
WD + Reg. 99.69 90.70 55.84 25.92
SD + Reg. 99.69 88.98 50.02 21.71

Table 5.4: Regularization on ImageNet. We report results for EfficientNet-B0 and ConvNeXt-
Tiny on clean data, FGSM, PGD-40 (L∞, ε = 1/255), ImageNet-C, and out-of-distribution generaliza-
tion tests. All regularization hyperparameters are λ = 0.05 and h = 3.

Variant Clean Val. Acc. (↑) Adversarial Attacks Corruption Cue-Conflict Sketch (↑) Stylized (↑) Edge (↑) Silhouette (↑)
Acc. (↑) Error (↓) (↑)

Top 1 Top 5 FGSM PGD-40 ImageNet-C Top 1 Top 5 Top 1 Top 5 Top 1 Top 1

EfficientNet-B0

CNN 75.44 92.86 16.89 2.32 54.54 23.52 65.25 84.62 52.25 79.00 35.00 51.25
WD 75.80 92.94 14.86 2.03 53.99 22.58 66.12 86.25 48.25 78.88 40.62 55.00
SD 75.62 92.82 15.05 1.41 52.85 23.67 66.38 84.50 52.50 78.50 34.38 58.13
WD + Reg. 75.44 92.15 18.45 4.43 52.03 29.38 66.38 86.88 47.62 79.75 36.25 58.13
SD + Reg. 74.42 92.19 18.70 5.33 51.12 25.78 64.75 87.88 49.12 77.12 32.50 58.75

ConvNeXt-Tiny
CNN 81.32 95.53 35.53 3.93 41.92 24.84 71.50 88.00 56.00 78.38 48.12 62.50
WD 81.11 95.55 35.30 2.97 42.98 25.31 73.12 89.62 52.00 77.62 47.50 58.75
WD + Reg. 79.25 94.38 35.69 4.22 44.31 32.27 73.75 88.12 58.00 82.38 38.75 65.62
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outside adversarial robustness and robustness against common corruptions. Similar to our results on
other datasets, we see an improvement in adversarial robustness at slight (1-2%) degradation of clean
performance (Table 5.4). While we see an improvement in CC performance on EfficientNet, we see
an equal decrease for ConvNeXt. This may be due to the larger kernels (7× 7) that ConvNeXt utilizes
and may, thus, require other hyperparameters. Importantly, we see a significant improvement of the
cue-conflict in both cases - which is also reflected in the increased accuracy of silhouette (LF) and the
decrease in performance of edge (HF). This indicates that our regularization favorably shifts models
toward a shape bias (Geirhos et al., 2019).

5.7 Post-Regularization Network Behavior
The following section explores how our regularization affects the model’s decision-making process.
We employ attribution map visualizations to understand differences in salient input regions (see
Section 2.9.3 for an introduction to attributions) and analyze the distribution shift in activations and
generated perturbations of adversarial attacks.

5.7.1 Attribution Shifts
We start by visualizing and interpreting attribution maps via SmoothGrad (Smilkov et al., 2017). We
study the attributions of some selected ImageNet validation samples which maximize the gradient for
the true label. We generate attributions from a ConvNeXt-Tiny with the unmodified architecture and
with a regularized WD layer equivalent to Table 5.4. We assert that both models correctly predict
the top-1 label for all samples. Our results in Figure 5.8 show that our proposed regularization (WD
+ Reg.) shifts attributions from edges and local shortcuts to a more global focus on the respective
objects.

5.7.2 Distribution Shifts in Activations
Further, we aim to understand the implications of our regularization on the activations directly after
convolution layers. We compare a regularized ResNet-20 (SD + Reg.) against a CNN baseline
trained on CIFAR-10, and analyze the magnitude shift in the DCT-II coefficients of the feature maps
(Figure 5.9) of a clean validation batch. Our regularization causes a clear shift towards lower frequencies
in regularized layers. Interestingly, in the stem layer, we also see large shifts from entirely vertical or
horizontal frequencies to more balanced ones. In non-regularized (deeper) layers, we observe a slight
shift towards higher frequencies.

5.7.3 Distribution Shifts in Adversarial Perturbations
In Figure 5.10, we additionally show the attack spectrum of an FGSM attack with ε = 1/255, L∞ on
a ResNet-20, ResNet-9, and EfficientNet-B0 trained on CIFAR-10. We generate attack spectra
for the models for the non-robust baseline and regularized WD/SD layers. Regular convolutions are
fairly uniformly attacked throughout the spectrum, with a strong peak in the highest frequencies
(top-left). Under regularization, we observe a shift of attacks to lower frequencies, which indicates
a successful defense against high-frequency perturbations. We observe differences in the spectrum
depending on the architecture. The implementation of our approaches, on the other hand, shows
marginal differences.

5.8 Regularization under Adversarial Training
So far, we investigated the effect of our proposed regularization for native robustness under normal
training. To complete this, we aim to explore the role of our regularization in AT. We train our
models against FGSM-adversaries on CIFAR-10 (L∞, ε = 8/255) (Table 5.5). We use early stopping
based on PGD-40 test performance to avoid robust overfitting. We observe, that our regularization
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Figure 5.8: Changes in attributions. We show SmoothGrad attributions (Smilkov et al., 2017) of
ConvNeXt-Tiny without changes to convolution layers (middle), and regularized WD (bottom). The
regularization appears to shift attributions from edges and local shortcuts to a more global utilization
of the object.
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Figure 5.9: Frequency shifts in activations. Regularized layers (top row) of a ResNet-20 show
a shift towards LF after regularization, compared to non-regularized layers in rows two and three.
Frequency increases from the top-left outwards.
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Figure 5.10: Frequency shifts in adversarial perturbations. We show the mean absolute error
in the FFT spectrum of FGSM-attacks (ε = 1/255, L∞) on CIFAR-10 models with normal and both
regularized convolution modifications. Frequency increases from the center outwards.
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Table 5.5: FGSM-Adversarial Training on CIFAR-10. We train networks under L∞, ε = 8/255
attacks and report the mean over 5 runs for the FGSM train and validation accuracy of the epoch of the
best PGD-40 validation accuracy as well as the AutoAttack accuracy. We also report the corresponding
mean accuracy on CIFAR-10-C and report the difference to the clean-trained evaluations.

Variant Clean FGSM (↑) Adversarial Acc. (↑) Corruption Acc.
Val. Acc. (↑) Train Acc. PGD-40 AA Mean (↑) ∆ (AT-Normal) (↑)

ResNet-20
CNN 73.73 50.39 46.14 36.09 66.99 -0.97
WD + Reg. 71.69 48.46 45.38 35.64 65.48 -8.56
SD + Reg. 73.01 49.93 46.34 36.47 66.73 -7.41

ResNet-9
CNN 81.70 60.27 52.77 0.00 74.06 0.68
WD + Reg. 81.56 61.66 51.52 39.97 74.47 -1.94
SD + Reg. 82.56 63.39 51.80 40.14 75.40 -2.32

EfficientNet-B0
CNN 63.00 42.34 42.49 34.04 57.35 -10.74
WD + Reg. 68.50 45.87 45.13 36.56 62.66 -9.48
SD + Reg. 68.89 46.76 45.57 36.76 63.07 -8.8

Table 5.6: PGD-Adversarial Training on ImageNet. We train ResNet-50 under L∞, ε = 4/255
attacks and report the train and validation accuracy under PGD attacks, validation accuracy under
AutoAttack, corruption error, and cue-conflict. Results are from one run.

Variant Clean PGD (↑) Adversarial Acc. (↑) Corruption Cue-
Val Acc. (↑) Train Acc. PGD AA Error (↓) Conflict (↑)

CNN 56.85 33.88 36.04 22.33 78.65 38.83
WD + Reg. 58.09 36.00 37.09 24.32 78.36 39.38
SD + Reg. 57.61 35.86 35.85 22.25 77.33 38.59

has a beneficial effect on the out-of-distribution attacks (i.e., AA) and all runs show an increased
performance after regularization. We furthermore observe that our regularization appears to mitigate
robust overfitting of training attacks (similarly to Grabinski et al. (2022c)) on ResNet-9: without
regularization the AT-trained CNN achieves high FGSM train accuracy and high PGD-40 validation
accuracy but fails to generalize to other attacks (AA) and stagnates at 0%. All runs with regularization
show comparable or even better accuracy than the best non-regularized models. However, similarly to
the observations by Saikia et al. (2021), we generally see a significant decrease in CC accuracy due to
AT. Again, this demonstrates that AT is not the cure-all to improve network robustness, and there is
a need for other approaches, such as our proposed frequency regularization.

Additionally, we extend our experiments to AT on ImageNet (Table 5.6). Here, we switch to single-step
PGD training with the common ε = 4/255 and train the ResNet-50 architecture. Again, we report PGD,
AA, and CC performance, but this time also the cue-conflict score. Our regularized WD architecture
outperforms the baseline in all metrics: adversarial robustness, corruption error, and cue-conflict. This
demonstrates that our method can mitigate some of the overfitting aspects of adversarial training
while improving OOD generalization performance. We do not see inconsistent changes in robustness
for SD, but we achieve the overall lowest corruption error and increase the clean accuracy compared to
the baseline. We attribute the lack of robustness increases to suboptimal hyperparameters and expect
similar gains when appropriately tuned.

5.9 Ablation of the Regularization Term
In order to further support the regularization approach, we perform an ablation of our regularization
term. First, to motivate the regularization of high frequencies, we regularize inverse to our original
approach: instead of regularizing high frequencies, we regularize the low frequencies. For k = 3 we
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implement this penalty by:

Rinverse(C) = SliceNorm(C, 1) · 2 +

 min
n,m

(n=3 or m=3)

√∑
i,j

C2
j,i,m,n

− SliceNorm(C, 2)

 . (5.7)

Second, we observe that some layers predominantly learn non-zero coefficients in the first row and
column. To further investigate this observation, we regularize the lower quadrant, i.e., leaving the
coefficients in the first column and first row (ci,1, c1,i, for i ∈ {1, . . . , k}) unregulated.

Rquadrant(C) = ‖C:,:,2:,2:‖2 · 2. (5.8)

This way, we do not regularize all coefficients corresponding to high frequencies. As a result, quadrant
suppresses high frequencies on diagonal structures but allows vertical/horizontal high frequencies, while
our original regularization enforces regularization independent of the orientation.

We present the results in Table 5.7 on ResNet-20. The inverse approach does not increase robustness;
quite contrary, it even decreases the accuracy under adversarial attacks and CIFAR-10-C, which
strengthens the formulation of our original regularization. The quadrant regularization increases
robustness but performs subpar compared to our original approach.

Table 5.7: Ablation of different regularization types. We train ResNet-20 on CIFAR-10 under
different regularization schemes and evaluate against adversarial attacks (FGSM, PGD-40, AutoAttack)
and CIFAR-10-C. We report the mean accuracy in % over 5 runs.

Variant Clean Adversarial Acc. (↑) Corruption
Acc. (↑) FGSM PGD-40 AA Acc. (↑)

CNN 91.29 50.49 30.92 10.78 67.96
WD 91.04 48.40 30.37 10.72 66.92
SD 91.36 50.83 32.98 11.97 67.48

WD + Reg. (λ = 0.01, h = 1) 88.91 48.93 40.50 25.94 73.97
WD + Reg. (λ = 0.01, h = 3) 90.02 50.38 41.34 25.86 73.43
WD + Reg. (λ = 0.05, h = 1) 89.05 49.06 40.83 26.24 73.76
WD + Reg. (λ = 0.05, h = 3) 89.86 50.85 41.81 26.79 74.04
WD + Reg. (λ = 0.1, h = 1) 88.91 49.16 40.95 26.39 73.84
WD + Reg. (λ = 0.1, h = 3) 89.85 50.65 41.57 26.33 73.85

SD + Reg. (λ = 0.01, h = 1) 89.48 50.59 42.61 28.22 73.92
SD + Reg. (λ = 0.01, h = 3) 90.54 53.12 44.42 29.14 74.14
SD + Reg. (λ = 0.05, h = 1) 89.20 49.59 41.05 26.28 74.24
SD + Reg. (λ = 0.05, h = 3) 90.34 53.07 44.04 28.62 73.98
SD + Reg. (λ = 0.1, h = 1) 89.29 50.06 41.90 27.58 74.29
SD + Reg. (λ = 0.1, h = 3) 90.28 52.39 43.29 27.75 74.07

WD + Reg. (λ = 0.01, h = 3, inverse) 90.45 45.59 23.85 6.22 65.41
WD + Reg. (λ = 0.05, h = 3, inverse) 90.47 43.95 20.39 3.94 64.49
WD + Reg. (λ = 0.1, h = 3, inverse) 90.62 42.56 18.69 3.29 64.57
WD + Reg. (λ = 0.01, h = 3, quadrant) 90.50 51.76 41.03 24.37 71.02
WD + Reg. (λ = 0.05, h = 3, quadrant) 90.08 51.33 40.20 24.08 71.55
WD + Reg. (λ = 0.1, h = 3, quadrant) 90.10 51.14 40.81 24.79 71.62

SD + Reg. (λ = 0.01, h = 3, inverse) 90.69 47.23 25.26 6.36 65.92
SD + Reg. (λ = 0.05, h = 3, inverse) 90.86 45.94 21.81 4.36 65.04
SD + Reg. (λ = 0.1, h = 3, inverse) 90.56 44.10 20.17 3.66 64.05
SD + Reg. (λ = 0.01, h = 3, quadrant) 90.67 53.95 43.94 27.23 72.29
SD + Reg. (λ = 0.05, h = 3, quadrant) 90.49 52.98 42.31 25.65 72.22
SD + Reg. (λ = 0.1, h = 3, quadrant) 90.54 53.02 42.06 25.77 72.10
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5.10 Conclusion
Extending our spatial filter analysis from Chapter 3 to the frequency domain (as in Chapter 4) reveals
another key difference between standard and adversarially-trained (robust) models: robust models
exhibit increased magnitudes in their low-frequency filter components compared to normally trained
ones. While our earlier attempt in Section 4.5 to replicate the filter diversity of robust models in the
spatial domain via regularization proved unsuccessful, the frequency-based regularization proposed
in this chapter has yielded promising results. We have shown a first step towards improving the
native robustness of CNNs to multiple distribution shifts such as adversarial attacks, corruptions, and
shape-biased datasets. Additionally, our method remains compatible and beneficial for adversarial
training.

In particular, our regularization decreases the sensitivity to high-frequency perturbations and if
covariate shifts affect these bands. Albeit our results do not approach SOTA levels, we emphasize that
we improve robustness on a wide range of tests. In contrast, SOTA methods like AT often overfit to
one specific type of robustness, such as adversarial attacks, and often even impair performance on other
tests compared to normal baselines. Additionally, our method does not rely on OOD examples but
intrinsically strengthens the model. Our approach has been shown to generalize to different networks
with various kernel sizes that were trained on different datasets and different measures of robustness.
We have also shown that our method can be used in combination with other approaches such as PaGA
(Lopes et al., 2020), FLC (Grabinski et al., 2022c), and even AT (Madry et al., 2018) to improve
robust performance further. In combination with AT, our approach shows promise to mitigate robust
overfitting (Rice et al., 2020).

Limitations We observed that on some architectures, switching to WD/SD introduces a significant
drop in accuracy (without regularization). Although the forward pass of both methods is mathematically
equivalent to baselines, the backward pass is not. For instance, weight updates on linear combinations
of decomposed convolution filters and feature maps are in different backward pass stages and under
different quantization conditions due to limited bit precision. While we observe that our regularization
generally improves a multitude of robustness aspects, the regularized counterparts may underperform
CNN baselines due to the initial impairment due to the architecture change.
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Chapter 6

Beyond Filter Analysis: Layer
Criticality

In our filter analysis in Chapters 3 to 5, we compared distribution shifts between all convolution layers;
however, do all layers matter equally? Prior research suggests that this is not true Veit et al. (2016);
Zhang et al. (2022). In this section, we introduce a method to estimate the importance of a specific
layer (criticality) as a proxy for the overall complexity or length of the learned decision rule, and
then apply it to study how different forms of training regularization change the location and length of
the decision rule that image classifiers learn.

This chapter is based on “How Do Training Methods Influence the Utilization of Vision
Models?”, presented at the NeurIPS Workshop on Interpretable AI: Past, Present and Future, 2024
(Gavrikov et al., 2024a). As the first author, Paul Gavrikov developed the code base and methodology,
performed the experiments, created the plots, and wrote the paper with input from Shashank Agnihotri,
Janis Keuper, and Margret Keuper.

� Code: https://github.com/paulgavrikov/layer_criticality

6.1 Introduction
A famous neurology myth often misattributed to Albert Einstein states that humans only use 10% of
the neural connections in their brains (Radford, 1999). While modern research assumes that humans
use all neural connections (Boyd, 2008; Herculano-Houzel, 2009) – the same cannot be said about
artificial neural networks. Quite the contrary, it is well known that trained neural networks do not
utilize their entire capacity. This becomes evident through the lens of parameter pruning (LeCun
et al., 1989b; Hassibi et al., 1993), where (large numbers) of neurons can be removed after training
without affecting performance, or, alternatively, the distillation of large into equivalent smaller networks
(Hinton et al., 2015). Alas, the learned decision rule only occupies a fraction of the neural network,
and the remaining neurons seem to be wasted.

Veit et al. (2016); Zhang et al. (2022) showed that this seems to affect layers disproportionally. The
learnable parameters1 of some layers are critical to the decision rule and replacing them with any other
values than the learned ones (significantly) affects accuracy. In contrast, the performance is barely
affected when the parameters in auxiliary layers are randomized. For instance, entire residual blocks of
ResNets (He et al., 2016) trained on ImageNet (Deng et al., 2009) can be randomized without hurting
accuracy. Affected layers seem to be dictated by training data size or, more generally, the complexity
of the training function in addition to the architecture.

1Throughout the rest of this chapter, the term parameters will refer to learnable parameters.
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Section 6.2. Methodology

This finding has the potential to influence our analytical results in Chapters 3 to 5 as the pattern
distributions of auxiliary layers may distort our analyses. However, it may also serve as a better
metric to capture the weight-space – Chatterji et al. (2020) have even extended these findings to
generalization by showing that the average module criticality correlates with performance - i.e., more
complex networks seem to generalize better.

In light of this, we revisit the prior findings of Zhang et al. (2022); Chatterji et al. (2020) on image
classification models, which were obtained under rather clean conditions, such as the absence of weight
decay regularization (Krogh & Hertz, 1991) or batch-normalization layers (Ioffe & Szegedy, 2015) during
training, and an overall simple training pipeline. These conditions do not reflect practical training
pipelines well. Thus, we raise the question: how does the training method affect layer criticality? To
this end, we study criticality on a large model zoo of image classification models where the training
data and architecture are fixed, but the training pipeline, including regularization, is modified.

We summarize our contributions as follows:

• We propose a modification of the criticality metric introduced by (Zhang et al., 2022) that is
tailored to capture the predictive behavior instead of performance drops.

• We apply this metric on a large model zoo of image classifiers, all of which were trained on
the same ImageNet-1k data (Deng et al., 2009; Russakovsky et al., 2015) and are based on the
exact same ResNet-50 (He et al., 2016) network architecture but varying training methods. This
allows us to study the connection between criticality and training methods without confounders.

• We find that training methods leave clear patterns about criticality. For instance, adversarial
training (Madry et al., 2018) significantly increases the average criticality, while most improved
training recipes that increase accuracy tend to decrease the average criticality. We do find that
criticality is affected by distribution shifts, but there appears to not be a conclusive correlation
between criticality and generalization, nor our previously established filters metrics in Chapters 3
and 4.

6.2 Methodology
In the following subsections, we define how we quantify the criticality of a layer and the model zoo
that we will use for our analysis.

6.2.1 Testing Layers for Criticality
Our study aims to assess the contribution or criticality of individual layers to a neural network’s decision
rule. To gauge a layer’s importance, we replace its parameters with random values (randomization). If
the network’s decisions remain largely unchanged after randomization, it suggests that the learned
parameters contribute little beyond noise.

This methodology largely follows Zhang et al. (2022), who reset the parameters of individual layers to
values drawn from the original initialization. However, while Zhang et al. (2022) measured criticality
of a layer by the change in accuracy due to the randomization, we measure the angle between the
probability vectors resulting from the randomization. Specifically, we apply a Softmax (Equation 2.24)
function to the network logits to obtain (pseudo-)probabilities, measure the cosine distance between
those before and after randomization, and aggregate the measurements into a single scalar by averaging
over all samples. The effect of each layer randomization on this measured distance is what we define
as the criticality of a layer.

Formally, given a model f(x;θ) parameterized by θ that returns probabilities (i.e., applies the Softmax
function to its logits), and a dataset X, the criticality κl of the l-th layer is given by
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κl(θ) =
1

|X|
∑
x∈X

1− f (x;θ) · f
(
x;θ

(l)
rand

)
‖f (x;θ) ‖2‖f

(
x;θ

(l)
rand

)
‖2

 , (6.1)

where θ
(l)
rand denotes the parameters with randomized weights for the l-th layer.

There are multiple ways to randomize weights with different implications: (1) weights can be rewound
to their exact initial values before training – however, this “pattern” already carries an important
signal of the final weights (Frankle & Carbin, 2019) and is not what we want in this context; (2) draw
new parameters from a distribution normalized for gradient flow (Glorot & Bengio, 2010; He et al.,
2015)) – this would randomize the weights to our needs but may be incompatible with other layers,
e.g., if the initial parameters were initialized from a different distribution; (3) draw parameters from
the original distribution. The latter approach is more difficult to implement, but truly randomizes
weights and allows the best signal flow by matching the initialization of other layers. We, thus, opt for
this approach.

We call a layer auxiliary if the decision is insignificantly affected by the reset (κl(θ) = 0) and critical
(κl(θ) = 1) if the distance between decisions changes significantly. Realistically, the criticality for most
layers does not lie on the extremes of this spectrum, but anywhere in between. Due to a significant
variance (standard deviation of up to 45% on a few layers in specific models) in criticality on some
layers, we repeat experiments with different random seeds and report the mean over three trials. For
computational reasons, we evaluate layers on a subset of 10,000 random images from the ImageNet
ILSVRC-2012 challenge validation set (Russakovsky et al., 2015).

In summary, our methodology is derived from Zhang et al. (2022) but shows key differences. First, they
analyzed residual blocks as a whole – in contrast, we more meticulously randomize individual layers,
which include different convolution and fully connected layers.2 Furthermore, our methodological
change can be evaluated in an unsupervised manner and, more importantly, is also sensitive to changes
in the probability distribution including variations in errors (we refer the reader to (Geirhos et al.,
2020b) for a discussion on why this is important). As such, it provides a more holistic measurement of
consistency in the decision before and after randomization, well beyond correct predictions.

6.2.2 Model Zoo
We use the model zoo of Chapter 8 with a few replacements and select N = 50 different ResNet-50
image classification models (He et al., 2016) that all utilize the exact same network architecture but
were trained in different manners. A list of all models can be found in Appendix A.2. We separate our
model zoo into these color-coded categories:

• baseline: a model following the original training (He et al., 2016).

• augmentation: various data regularization techniques (Hendrycks et al., 2020, 2022, 2021a;
Jaini et al., 2024; Müller et al., 2023; Modas et al., 2022; Li et al., 2021; Erichson et al., 2022;
Cubuk et al., 2019, 2020; Lim et al., 2019; Geirhos et al., 2019).

• adversarial training (AT): training against a projected gradient descent (PGD) adversary
(Madry et al., 2018; Salman et al., 2020) – which, technically, is also a form of augmentation, but
we observed significantly different behavior of these models and treat them separately.

• self-supervised learning (SSL): unsupervised training on ImageNet-1k (Chen et al., 2020a,
2021b; Caron et al., 2021, 2020) with supervised finetuning of the classification-head

• improved training recipes: new recipes in Pytorch Image Models (timm) (Wightman, 2019;
Wightman et al., 2021) and PyTorch (Paszke et al., 2019; Vryniotis, 2023) combining multiple
hyperparameter optimizations into supervised training.

2With the exception of batch-normalization layers (Ioffe & Szegedy, 2015) to avoid signal propagation issues
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Section 6.3. Critical Layers in ImageNet-trained ResNet-50

6.3 Critical Layers in ImageNet-trained ResNet-50
Due to the wide use and availability of pre-trained models, all our results are obtained on ResNet-50
(He et al., 2016), which is introduced in Section 2.3.4. Recall that this architecture consists of a stem
(denoted by [0.*]), 4 stages (denoted by [1-4.*]), a pooling layer, and a fully connected classification
head (denoted by [Head]). Each stage consists of several residual Bottleneck-Blocks which include
learnable 1× 1 convolutions (conv1, conv3), 3× 3 convolutions (conv2), as well as batch-normalization
layers (Ioffe & Szegedy, 2015). The first residual block in each stage is special, as it downsamples by a
strided convolution, thus, adding a learnable layer on the skip connection (downsample). All models
in our study were trained on ImageNet-1k (Deng et al., 2009; Russakovsky et al., 2015). Please see
Section 2.5.4 for details about this dataset.

(9
8±

2)
(9

8±
3)

(7
6±

22
)

(8
5±

18
)

(9
9±

0)
(6

7±
30

)
(5

3±
29

)
(6

4±
30

)
(7

3±
25

)
(5

2±
29

)
(7

1±
25

)
(9

8±
2)

(7
3±

22
)

(9
4±

10
)

(9
6±

5)
(4

4±
28

)
(6

8±
24

)
(5

7±
29

)
(5

8±
27

)
(3

4±
24

)
(6

7±
29

)
(7

2±
22

)
(4

9±
30

)
(7

5±
24

)
(9

9±
1)

(7
0±

24
)

(9
5±

11
)

(8
4±

21
)

(5
0±

29
)

(7
1±

25
)

(6
1±

32
)

(6
1±

32
)

(3
2±

21
)

(5
5±

29
)

(7
0±

32
)

(3
6±

24
)

(5
3±

28
)

(7
1±

26
)

(3
7±

22
)

(5
8±

28
)

(7
6±

24
)

(3
6±

23
)

(6
7±

27
)

(9
4±

11
)

(7
6±

26
)

(8
6±

21
)

(7
4±

22
)

(7
6±

31
)

(6
4±

28
)

(7
1±

28
)

(8
2±

30
)

(7
0±

32
)

(7
5±

28
)

(9
5±

2)

(70±25)
(74±23)
(71±24)
(76±22)
(79±20)
(79±23)
(81±20)
(85±16)
(86±15)
(89±13)
(89±13)
(84±17)
(86±16)
(87±16)
(89±14)
(90±11)
(72±28)
(72±27)
(72±25)
(78±24)
(67±27)
(69±25)
(65±30)
(80±19)
(66±29)
(93±11)
(92±10)
(78±21)
(73±26)
(65±29)
(67±28)
(77±22)
(75±24)
(84±16)
(49±33)
(51±36)
(46±37)
(44±36)
(86±21)
(53±33)
(50±36)
(59±35)
(46±36)
(47±36)
(40±31)
(43±32)
(51±32)
(57±32)
(52±35)
(56±33)

[0
.0

] c
on

v:
7x

7
[1

.0
] c

on
v1

:1
x1

[1
.0

] c
on

v2
:3

x3
[1

.0
] c

on
v3

:1
x1

[1
.0

] d
ow

ns
am

pl
e

[1
.1

] c
on

v1
:1

x1
[1

.1
] c

on
v2

:3
x3

[1
.1

] c
on

v3
:1

x1
[1

.2
] c

on
v1

:1
x1

[1
.2

] c
on

v2
:3

x3
[1

.2
] c

on
v3

:1
x1

[2
.0

] c
on

v1
:1

x1
[2

.0
] c

on
v2

:3
x3

[2
.0

] c
on

v3
:1

x1
[2

.0
] d

ow
ns

am
pl

e
[2

.1
] c

on
v1

:1
x1

[2
.1

] c
on

v2
:3

x3
[2

.1
] c

on
v3

:1
x1

[2
.2

] c
on

v1
:1

x1
[2

.2
] c

on
v2

:3
x3

[2
.2

] c
on

v3
:1

x1
[2

.3
] c

on
v1

:1
x1

[2
.3

] c
on

v2
:3

x3
[2

.3
] c

on
v3

:1
x1

[3
.0

] c
on

v1
:1

x1
[3

.0
] c

on
v2

:3
x3

[3
.0

] c
on

v3
:1

x1
[3

.0
] d

ow
ns

am
pl

e
[3

.1
] c

on
v1

:1
x1

[3
.1

] c
on

v2
:3

x3
[3

.1
] c

on
v3

:1
x1

[3
.2

] c
on

v1
:1

x1
[3

.2
] c

on
v2

:3
x3

[3
.2

] c
on

v3
:1

x1
[3

.3
] c

on
v1

:1
x1

[3
.3

] c
on

v2
:3

x3
[3

.3
] c

on
v3

:1
x1

[3
.4

] c
on

v1
:1

x1
[3

.4
] c

on
v2

:3
x3

[3
.4

] c
on

v3
:1

x1
[3

.5
] c

on
v1

:1
x1

[3
.5

] c
on

v2
:3

x3
[3

.5
] c

on
v3

:1
x1

[4
.0

] c
on

v1
:1

x1
[4

.0
] c

on
v2

:3
x3

[4
.0

] c
on

v3
:1

x1
[4

.0
] d

ow
ns

am
pl

e
[4

.1
] c

on
v1

:1
x1

[4
.1

] c
on

v2
:3

x3
[4

.1
] c

on
v3

:1
x1

[4
.2

] c
on

v1
:1

x1
[4

.2
] c

on
v2

:3
x3

[4
.2

] c
on

v3
:1

x1
[H

ea
d]

 fc

Baseline
PGD Adversarial Training (ε= 0)

PGD Adversarial Training (L2, ε= 0.01)
PGD Adversarial Training (L2, ε= 0.03)
PGD Adversarial Training (L2, ε= 0.05)
PGD Adversarial Training (L2, ε= 0.1)

PGD Adversarial Training (L2, ε= 0.25)
PGD Adversarial Training (L2, ε= 0.5)

PGD Adversarial Training (L2, ε= 1)
PGD Adversarial Training (L2, ε= 3)
PGD Adversarial Training (L2, ε= 5)

PGD Adversarial Training (Linf, ε= 0.5/255)
PGD Adversarial Training (Linf, ε= 1/255)
PGD Adversarial Training (Linf, ε= 2/255)
PGD Adversarial Training (Linf, ε= 4/255)
PGD Adversarial Training (Linf, ε= 8/255)

AutoAugment (270Ep)
FastAutoAugment (270Ep)

RandAugment (270Ep)
AugMix (180Ep)

DeepAugment
DeepAugment+AugMix

Diffusion-like Noise
NoisyMix

OpticsAugment
PixMix (180Ep)
PixMix (90Ep)

PRIME
ShapeNet (SIN)

ShapeNet (SIN+IN)
ShapeNet (SIN+IN→ IN)
Texture/Shape-debiased

Texture/Shape Shape-biased
Texture/Shape Texture-biased

DINOv1
MoCo v3 (1000Ep)
MoCo v3 (100Ep)
MoCo v3 (300Ep)

SimCLRv2
SwAV

timm A1
timm A1h
timm A2
timm A3

timm B1k
timm B2k
timm C1
timm C2
timm D

TorchVision 2

Ad
ve

rs
ar

ia
l T

ra
in

in
g

Au
gm

en
ta

ti
on

s
SS

L
Im

pr
ov

ed
 T

ra
in

in
g

0

20

40

60

80

100

La
ye

r 
Cr

it
ic

al
it

y 
[%

]

Figure 6.1: Training methods determine what layers become critical. We measure the
criticality of (N = 50) different ResNet-50 models that all utilize the same exact network architecture
and training data (ImageNet-1k) but differ in their training methods. Darker spots denote layers that
are critical, i.e., resetting them results in significantly different predictions and decreased performance.
Brighter spots are auxiliary, i.e., resetting these layers does not significantly affect the model. We
denote the average (mean±std) layer criticality for both, a model across layers on the right, for a layer
across models on the bottom.

General observations The results in Figure 6.1 clearly show that the training method influences
which layers become critical – despite that all models were trained on the same training set (some
with more extreme forms of data augmentation utilizing a negligible amount of extra data).

In contrast to previous findings (Zhang et al., 2022; Chatterji et al., 2020), we observe that no layer
is always auxiliary across training methods. For instance, we observe an average criticality of just
36% for a spatial convolution layer ([3.5] conv2). Yet, if we randomize the same layer in a PixMix
(Hendrycks et al., 2022) model, we observe a strong criticality of 95%. On the contrary, we do find
layers that are always critical. As expected, these include the initial stem convolution ([0.0] conv)
and the classification head (fc). Beyond, we find that most first convolution layers in each stage
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Chapter 6. Beyond Filter Analysis: Layer Criticality

([*.0] conv1) are critical – yet the number of outliers increases with depth. Similarly, we find that the
downsampling convolution ([*.0] downsample) in each stage is often critical. In stage 1, this layer
is critical for all models, but again, the criticality of deeper downsampling convolutions depends on
the training strategy used for the model. Lastly, akin to Gavrikov & Keuper (2023b), we find that
pointwise convolution layers tend to be more critical than spatial convolution layers (except for the
stem). For all other layers, criticality depends on the training method. In the following paragraphs, we
analyze specific categories of training methods.
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Figure 6.2: Adversarial training in-
creases the average criticality pro-
portional to the training attack bud-
get ε. Please note, that reported ε values
for L∞ norms are short for ε/255 (but
not for the L2 norm). Each marker rep-
resents one model.

Adversarial Training (AT) This training technique
intends to increase the robustness of neural networks by
training on adversarially perturbed training samples (Madry
et al., 2018). To avoid perturbations that cause a shift in
semantic meaning, perturbations are often constrained by
an attack perturbation budget ε for some Lp norm. We
consider AT using a PGD attack (Madry et al., 2018), which
optimizes the perturbations over several iterations (here:
three).

We find that AT increases the criticality proportional to
the attack budget ε during training. To make this more
tangible, we average the criticality over all layers and show
the results in Figure 6.2. We do not observe differences
between training that utilizes L2 or L∞ norms for attacks.
Our findings suggest that neural networks utilize more of
their capacity under increasing training attack strength.
This augments previous findings that showed similar in-
sights through accuracy improvements with larger networks
(Madry et al., 2018) or richer representations in convolution
filters that we made in Chapters 3 and 4. AT primarily
increases the criticality in the layers of the first and second stages and slightly in the third stage.
The criticality of layers in the fourth stage is barely affected but rather decreases compared to the
baseline.

Augmentations Compared to AT, the influence of different augmentation strategies seems weaker.
We do find that many augmentations tend to increase the average criticality, i.e., they do occupy more
of the network capacity – but most changes are rather small. Affected layers seem to fluctuate by
method, but we find that all augmentation methods consistently increase the criticality of some of
the deepest layers ([4.0] downsample, [4.1] conv2, [4.2] conv2/3). Like the organization of the visual
cortex (Hubel & Wiesel, 1959, 1979; Olshausen & Field, 1997), deeper layers in neural networks are
associated with activations of more complex features. For images, these tend to correspond to shapes
as opposed to texture information that is captured by early layers (LeCun et al., 1989a; Yosinski et al.,
2014; Zeiler & Fergus, 2013). Indeed, we will show that our tested augmentations increase in their
shape responses in Chapter 8. Thus, a reasonable hypothesis is that the increased criticality in deeper
layers correlates with stronger shape representations.

Strong outliers to our observations are the PixMix models (Hendrycks et al., 2022). These models have
the highest average criticality in our model zoo without a single auxiliary layer. The augmentation
technique has been shown to improve multiple safety dimensions beyond test accuracy and combined
with the findings of Chatterji et al. (2020) it may indeed suggest that a higher degree of criticality
correlates with “better” neural networks.

Self-Supervised Learning (SSL) SSL has been shown to produce rich representations for many
downstream tasks (see Oquab et al. (2024) for a recent example) as the granularity and implicit biases
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of annotations do not confine it. Interestingly, we find that DINO (Caron et al., 2021), MoCo v3 (Chen
et al., 2021b), and SwAV (Caron et al., 2020) severely differ in their criticality measurements from the
supervised models we discussed before. These SSL models have a large presence of auxiliary layers in
the last three stages but (slight) increase in criticality of early layers. This suggests that SSL learns
shorter decision rules and, thus, seeks to strengthen early operations. However, we again find an outlier:
SimCLRv2 (Chen et al., 2020a) has no auxiliary layers and shows a somewhat similar distribution of
criticality to PixMix (Hendrycks et al., 2022).

Improved Training Recipes The standard 90 epoch training with simple augmentations (Krizhevsky
et al., 2012) was shown to be suboptimal for many models, including ResNets (Wightman et al.,
2021). Modern training recipes utilize a significantly more complex set of training tweaks – often in
combination with longer training schedules (Wightman et al., 2021; Vryniotis, 2023). Similar to our
findings on SSL, these improved training methods appear to shift model decisions to early operations
while relaxing deeper operations. Most notably, this increases the criticality of the first and second
residual blocks. These models show great improvements in generalization on many datasets, but at the
same time, they even further prioritize texture information (Gavrikov & Keuper, 2024). Ultimately,
this may suggest that these techniques better fit ImageNet-1k-like problems but may not provide
improvements for representations beyond.

6.3.1 Criticality under Distribution Shifts
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Figure 6.3: Criticality under different test data. We measure criticality of a baseline ResNet-50
against the ImageNet validation set, ImageNet validation set under PGD attack, ImageNet-v2, and
ImageNet-Sketch.

It is well known that different parts of a neural network are responsible for different kinds of features
(Zeiler & Fergus, 2013). We may, thus, assume that a covariate shift in the test data also results in a
different utilization of the layers. To assess if layer criticality is indeed influenced by test data, we
repeat the layer criticality evaluation of the baseline model (He et al., 2016) on ImageNet-v2 (Recht
et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-Renditions (Hendrycks et al., 2021a),
and a PGD-attacked (Madry et al., 2018) (L∞, ε = 1/255, α = 0.01/0.3, t = 40) ImageNet validation
set. We then compare these results to the previous measurements on the ImageNet validation set to
determine if there are any significant differences.

Our findings, presented in Figure 6.3, highlight shifts in layer criticality under distribution shifts.
Specifically, the average criticality increases across all datasets and appears correlated with the extent
of the covariate shift relative to the training data. For the relatively similar ImageNet-v2 (Recht et al.,
2019), we observe only a 4% increase in criticality. In contrast, datasets such as ImageNet-Rendition
(Hendrycks et al., 2021a) and ImageNet-Sketch (Wang et al., 2019), which are substantially more
distinct from the training data, exhibit a 9% increase. Notably, adversarial attacks designed to
maximize covariate shifts lead to the most pronounced increase in criticality (21%).

While the average criticality shifts, the layers that remain critical or become non-critical do not
fundamentally change. This effect is particularly pronounced under adversarial attacks, resulting
in nearly uniformly critical layers. We anticipate that analyzing the criticality of models employing
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Chapter 6. Beyond Filter Analysis: Layer Criticality

dynamic feature routing, such as mixture-of-experts (MoE) (Jacobs et al., 1991), could reveal changes
in the distribution of criticality.

6.3.2 Criticality and Generalization
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Figure 6.4: Correlation between av-
erage network criticality and perfor-
mance on ImageNet-1k. Each marker
represents one model.

Next, we attempt to connect criticality with generalization
(i.e., we sanity-check the claims of Chatterji et al. (2020)).
We cannot fully replicate the methodology of Chatterji et al.
(2020) which correlates the difference between training and
test loss against average criticality, as we do not have access
to the training loss (or accuracy) and measuring it faithfully
(including all forms of regularization) would be computation-
ally infeasible for our large model zoo. Instead, we retreat to
a simpler proxy, by correlating accuracy on the ImageNet-1k
validation set against the average criticality.

Our results in Figure 6.4 are quite sobering. Ignoring the
category labels, we observe a moderate Spearman’s R =
−0.46, but when we remove adversarially-trained models,
the correlation is faint (Spearman’s R = −0.17). Thus,
there is a low likelihood of a causal connection between
ImageNet-1k accuracy (and generalization as a whole) and
layer criticality.

6.3.3 Criticality and Filter Quality
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Figure 6.5: Correlation between the filter quality and criticality of the respective layers.
We correlate sparsity, variance entropy (normalized by number of kernels), and orthogonality of 3× 3
convolution layers in all our ResNet-50 models with the criticality of the respective layer. Each marker
represents one layer.

In this section, we aim to identify the weight-space properties of critical layers by leveraging our filter
quality metrics from Chapters 3 and 4. Since these metrics are specifically designed for convolutional
layers with 3 × 3 kernels, we focus our analysis on such layers. For these layers, we measure three
key attributes next to criticality: sparsity (Equation 3.4), variance entropy (Equation 3.6), and
orthogonality (Equation 4.2).

Our findings in Figure 6.5 reveal no clear linear relationship between criticality and the quality metrics.
However, a constrained mutual dependence can be observed. For example, layers with higher sparsity
tend to exhibit greater criticality, although criticality cannot be reliably inferred for non-sparse layers.
This observation aligns with our intuition: sparse kernels effectively mask out input features, and
increased sparsity leads to more distinct masking patterns.

Similarly, layers with lower entropy appear to be more critical, whereas high-entropy layers do not
allow us to estimate criticality. This, too, reflects the increased individuality of low-entropy layers
compared to their high-entropy counterparts.
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Surprisingly, even high-entropy layers can be critical despite the fact that these should be most similar
to random initializations. It seems that they still may capture subtle patterns or successive layers may
have highly specialized in their patterns – we show an extreme example of this in (Gavrikov & Keuper,
2023b), where we train pointwise convolutions but leave all spatial convolution layers frozen. This
conditional dependency between layers is captured by layer criticality but not by our filter quality
metrics, which treat all layers independently.

For orthogonality, we do not find any meaningful relationship.

6.4 Summary
Our study offers an additional angle to our survey of learned representations beyond filter patterns
(Chapters 3 to 5) by quantifying the criticality of learned parameters. In this chapter, we specifically
focused on the common impact of training methods over model populations on layer criticality and
extended previous findings about the complexity of learned decision rules in image classification models
Our results show that the training method leaves distinct patterns in the decision rule. In the studied
ResNet-50 models, this distinctiveness prevails even under changes in test data. However, overall, the
criticality of layers seems to be correlated with the magnitude of covariate shifts in the test data.

Given the large number of auxiliary layers in some of the studied models, we can assume that the
studied representations contain a lot of noise, potentially masking actual differences in critical parts
of the network. Unfortunately, on the one hand, we cannot generally identify critical layers by our
data-free filter quality metrics introduced in Chapters 3 and 4 (only for very specific cases), making
it hard to exclude auxiliary layers from representation studies without having to compute criticality.
However, criticality requires at least one forward pass per layer and is conditionally dependent on the
parameters. For instance, if criticality were used to greedily prune all auxiliary layers, the complexity
would be in O(L2 ∗ F ), where L is the number of layers to be tested, and F the number of forward
passes per layer.

On the other hand, there seems not to be a conclusive link between criticality and generalization
either, to just use criticality as a metric – at least as quantified in our study. One pitfall may be that
assessing the generalization of neural networks through benchmarks is, of course, tricky, as models
may specialize in specific settings at a cost to others. Capturing all of these nuances in static test
datasets is often an unrealistic journey. For example, models may excel in accuracy on the “clean”
ImageNet-1k data, but drop in performance if the same samples are corrupted (Hendrycks & Dietterich,
2019). In that sense, the decision rules’ complexity may still be valuable, as it offers a better (relative)
assessment of generalization by focusing on the inner mechanics of models as opposed to benchmark
results. Yet, it remains to be seen how the observed correlations of Chatterji et al. (2020) (and our lack
of correlations) hold on larger model zoos and wider notions of generalization beyond clean accuracy
on the ImageNet-1k validation set.

Further, even if criticality and generalization are orthogonal to each other, the complexity of the
decision rule may still be relevant and offer a better explanation of phenomena that were linked to
(adversarial) robustness before. For instance, these include more human-likeness as we will show in
Chapter 7, better calibration (Grabinski et al., 2022a), and transferability (Salman et al., 2020) under
adversarial training.
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Part II
Visual Perception Biases

Our second viewpoint on generalization in this thesis is the model perception, specifically, biases for or
against visual features that diverge between human observers and models as introduced in Section 2.9.
Such biases have also often been proposed as explanations of why models fail to generalize (Geirhos
et al., 2019; Wang et al., 2020a; Subramanian et al., 2023). We refer the reader to Section 2.9.4, where
we discussed a few of them.

Bridging our research from the first part, we start with an investigation of the connection between
adversarial training and alignment with the visual perception of human observers (Chapter 7). Then,
we continue with an investigation of the correlation between biases in ImageNet-models and multiple
forms of generalization (Chapter 8). Finally, we study visual biases in the current generation of deep
learning models: large vision-language models. We show that the perception, including biases in these
models, can be intuitively controlled at inference time via simple prompts, offering a powerful and
cost-effective alternative to regularization in training (Chapter 9).
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Chapter 7

Adversarial Training and Alignment
to Human Vision

Having analyzed the learned filter space, particularly for robust, adversarially-regularized models in
Part I, we now investigate how adversarial training influences alignment to human vision in ImageNet
models.

This chapter is based on “An Extended Study of Human-Like Behavior Under Adversarial
Training”, presented at the CVPR Workshop on Adversarial Machine Learning on Computer Vision:
Art of Robustness, 2023 (in-proceedings) (Gavrikov et al., 2023). As the first author, Paul Gavrikov
collected the models, developed the code base, performed the experiments, created the plots, and wrote
the paper with input from Janis Keuper and Margret Keuper.

� Code: https://github.com/paulgavrikov/adversarial_training_vs_humans

7.1 Introduction
Models trained on ImageNet (Deng et al., 2009; Russakovsky et al., 2015) have demonstrated significant
misalignment with human vision in several ways. These include poor generalization under distribution
shifts (Geirhos et al., 2018), inconsistent predictions compared to humans, including in their errors
(Geirhos et al., 2020b), and inherent biases to other features such as a texture bias (Geirhos et al.,
2019).

This raises a key question: are current models progressing towards better alignment with human vision?
To explore this, Geirhos et al. (2021) conducted a large-scale analysis of state-of-the-art models, focusing
on their alignment with human vision. Their findings revealed that robust models improve in some
aspects; for instance, adversarial training (AT) shifts the texture bias in CNNs toward shape-based
decisions (also shown by Zhang & Zhu (2019); Chen et al. (2022a)). However, their analysis was limited
to ResNet-50 (He et al., 2016) trained on ImageNet using AT against an L2-bounded adversary.

We argue that adversarial robustness is also a form of alignment to human vision and revisit and
extend their analysis to the more common L∞ setting for AT. Additionally, we include a wider range
of CNN architectures, such as ResNet-18 and WideResNet-50-2 (Zagoruyko & Komodakis, 2016),
alongside transformer-based models (XCiT-S/M/L12) (Ali et al., 2021), which lack distinct inductive
biases compared to CNNs, as well as hybrid models (ConvMixer-768-32) (Trockman & Kolter, 2023).
We evaluate these models under standard training and AT with varying norms and budgets, assessing
their alignment with human vision. Taken together, our methodology allows us to understand if the
selection of architecture and form of robustness biased the previously reported results.

Furthermore, we investigate adversarially-trained networks’ generalization under covariate shift from a
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Section 7.2. Background

frequency perspective (see Section 2.1 for an introduction to Fourier transform). Specifically, we analyze
the frequency spectra of out-of-distribution (OOD) image datasets to address two questions:

(1) Why does adversarial training cause accuracy decay on some datasets?

(2) How does AT influence the shape bias?

Taken together, our study aims to provide another angle to our representation analysis of adversarially
robust models in Part I through the lens of alignment to human vision.

We summarize our contributions as follows:

• We conduct a multi-faceted comparison of human visual alignment under adversarial training,
augmenting our weight analysis in Part I, particularly in Chapter 4. In this study, we investigate
the impact of network scale, the Lp-norm used in adversarial training (AT), and the model’s
inductive bias on this alignment.

• Our analysis of image frequency power distributions provides a novel explanation for the degrada-
tion of out-of-distribution (OOD) performance under adversarial training. This framework also
transfers to the observed shift from texture bias to shape bias induced by adversarial training.

7.2 Background
We refer the reader to Section 2.8.2 for an introduction to adversarial robustness, including a discussion
of adversarial training. Additionally, we have exclusively studied CNNs (Section 2.3) so far, and this is
the first chapter to include results on transformer-based models. We introduce Vision Transformers
(ViTs) in Section 2.4, including important concepts for this section, such as “patchification”.

7.2.1 Measuring Human Alignment in Vision
Geirhos et al. (2021) propose to measure the similarity or alignment to human vision through three
axes: (1) out-of-distribution (OOD) generalization, (2) feature biases (specifically the texture/shape
bias (Geirhos et al., 2019)), and (3) consistency in predictions (correct and wrong) with humans
(Geirhos et al., 2020b).

To measure OOD generalization, they propose benchmarking against a set of 12 ImageNet modification
datasets (Geirhos et al., 2018) at various intensities/conditions. At first glance, this may sound familiar
to ImageNet-C (Hendrycks & Dietterich, 2019), but benchmarks a different set of “corruptions”: (the
absence of) colour, contrast (changes), eidolon I/II/III (Koenderink et al., 2017), false-colour, high/low-
pass (frequency filtering), phase-scrambling, power-equalisation, rotation, uniform-noise. Additionally,
they propose to benchmark against a set of five datasets related to the identification of shape/texture-
bias (Geirhos et al., 2019): stylized, edge, silhouette, texture/shape cue-conflict, and sketch (the latter
provided by (Wang et al., 2019)). All datasets contain samples that belong to 16 ImageNet (super-
)classes and are therefore classifiable by ImageNet models. For all datasets, the authors include a
human baseline obtained in lab settings over 4–10 annotators that can be used to select “reasonable”
levels of corruption. The texture/shape cue-conflict dataset is of particular interest, as neural networks
are not only prone to overfit but – at least in the vision domain – they also tend to be biased to
texture features in images rather than shapes, which does not align with human vision (Geirhos et al.,
2019). For example, an image of an elephant with an overlaid lion texture will most likely result in a
prediction as “lion.” At the same time, most humans would predict “elephant” as the true label when
given a choice between both. It is worth noting that ImageNet can be largely accurately classified solely
based on texture (Brendel & Bethge, 2019). We show examples of all datasets in Figure 7.1.

As an additional metric to quantifying performance through accuracy, Geirhos et al. (2020b) propose to
evaluate the agreement in predictions. In particular, they analyze false predictions (error consistency)
as well as the intersection rate of predictions between correct prediction of humans and models (observed
consistency).
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colour (B&W) contrast eidolon I eidolon II eidolon III false-colour

high-pass low-pass phase-scrambling power-equalisation rotation uniform-noise

edge silhouette sketch stylized cue-conflict

Figure 7.1: Test samples. We show one sample for the “elephant” class of each test dataset. Image
Source: (Deng et al., 2009; Geirhos et al., 2019, 2018, 2021; Wang et al., 2019)

The authors maintain a leaderboard of the most “human-like” models, which is currently dominated
by transformer-based architectures such as ViT (Dosovitskiy et al., 2021; Zhai et al., 2022a) and CLIP
(Radford et al., 2021), or large convolutional neural networks (Yalniz et al., 2019; Kolesnikov et al.,
2020). A common denominator is that they are all being pre-trained on massive datasets.

7.3 Methodology
To study the likeliness to human-like behavior of adversarially-trained models, we use publicly available
checkpoints and perform an analysis according to the setting proposed in (Geirhos et al., 2021).

Model zoo We analyze pre-trained ResNet-18, ResNet-50, WideResNet-50-2 models trained
against L∞-bound adversaries with ε ∈ {0.5/255, 1/255, 2/255, 4/255, 8/255}, and against L2-bound
adversaries with ε ∈ {0.01, 0.03, 0.05, 0.1, 0.25, 0.5, 1, 3, 5}, and clean baselines (all provided by (Salman
et al., 2020)). Further, we analyze XCiT-S/M/L12 transformer models trained against L∞-bound
adversaries with ε = 4/255 provided by (Debenedetti et al., 2023) and a clean XCiT-S.1 baseline
provided in Pytorch Image Models (timm) (Wightman, 2019) Lastly, to better understand the differences
between CNNs and transformers, we also analyze a clean ConvMixer-768-32 checkpoint, again obtained
from timm, serving as “middle ground”. All models were trained on ImageNet-1k without any additional
pre-training.

Reported metrics For all models, we measure the accuracy of all datasets by reporting the mean
overall conditions in the dataset where average human performance was above 20% accuracy. Lastly,
we determine the observed and error consistency against human annotators as a mean over all datasets
and conditions.

Comparing AT under different Lp-norms We want to compare L2-AT models to models that
are trained using L∞-AT. Comparing these two training types is not straightforward due to the

1Clean pre-trained XCiT-M/L12 with the same configuration were not available.
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different types of perturbations they cause (as discussed in Section 2.8.2). As the L2-norm penalizes the
Euclidean distance, perturbations can locally be more severe than under L∞. Yet, if the perturbation
magnitude increases, the area of perturbations has to decrease under L2-norm. At the same time,
attacks under the L∞-norm can add perturbations to the entire image without constraints except for
the magnitude. Thus, there are multiple options for choosing comparable budgets between the two
norms. We choose a straightforward way and select budgets for both norms that approximately result
in the same clean accuracy:

ε under L2 0.1 1 3 5

ε under L∞ 0.5/255 1/255 4/255 8/255

As we have more checkpoints for L2-AT training, we only use a subset of those when comparing L∞

with L2 models, but we use all checkpoints for other analyses.

Power spectrum of datasets In the last part of our analysis, we impose a frequency perspective on
OOD performance and shape bias under AT. To back this analysis, we plot the power distribution in
Fourier space (see Section 2.1) for each OOD dataset and clean ImageNet validation samples belonging
to the same classes. Then, we compare each OOD distribution to the clean distribution to understand
where shifts in the frequency distribution are located. We obtain the frequency distribution plots as
introduced in (Durall et al., 2020): we compute the log-scaled FFT power spectrum and compute the
radial integral under increasing frequency, resulting in a frequency power distribution (Figure 7.2). For
comparability, we scale the resulting distributions by their area under the curve.
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Figure 7.2: Generation of power spectrum plots. Each frequency measurement in the spectrum
plot corresponds to the integral over the centered FFT power spectrum (frequency increases from the
center to outer edges) up to that particular frequency.

7.4 Results
This section presents an analysis of alignment under adversarial training (AT), particularly the potential
influence of network scale, adversarial attack norm, and inductive bias on correlation alignment.

7.4.1 Scale: Width and Depth of L2-bound CNNs
First, we want to evaluate the effect of L2-training on CNN architectures: WideResNet-50-2, ResNet-
50 and ResNet-18 (Figure 7.3, top row), which allows investigating the effect of L2-AT depending on
model depth and width.

We observe that increasing both width and depth improves clean performance and performance
on all OOD datasets, as well as the observed and error consistency. As such, WideResNet-50-2
performed best on clean performance, OOD mean, and observed/error consistency. It is also worth

106



Chapter 7. Adversarial Training and Alignment to Human Vision

noting that switching from ResNet-50 to WideResNet-50-2 has a smaller impact on performance
than switching from ResNet-18 to ResNet-50. Also, we observe that in some cases ResNet-18 shows
opposite trends with respect to training budget than 50-layer deep ResNets, e.g., for power-equalisation.
Still, ResNet-18 performs best on the edge dataset for large training budgets (not shown due to space
limitations). Overall, this suggests that increasing the model scale of L2-bound adversarially-trained
models correlates with increased alignment.
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7.4.2 Norm: L2- vs. Linf-bound AT
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Figure 7.4: Norm comparison. Comparison of performance on OOD datasets between robust
WideResNet-50-2 trained against L2- (upper ε values) and L∞-bound (lower ε values) adversaries
under increasing training budget ε. ε are selected in a way that clean accuracy approximately matches
between the norms.

Next, we compare how L2-AT relates to L∞-AT concerning human-like reasoning. Exemplarily, we
analyze the trend under comparable budgets of a WideResNet-50-2 (Figure 7.4). We observe that
on some datasets, there is barely any perceivable difference between norms as the budget increases
(colour, contrast, false-colour, uniform-noise, rotation, cue-conflict), but there are cases where one
norm or the other clearly performs better. L∞-robust models seem to be more robust against high-pass,
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phase-scrambling, and power-equalisation. On the other hand, L2-robust models appear to perform
better on low-pass and eidelonII/III. Lastly, there are some inconclusive settings where one performs
better depending on the budget (silhouette, eidolon I, stylized). Besides cue-conflict, none of the OOD
categories clearly benefit from AT for WideResNet-50-2. These observations only partly transfer to
other CNN architectures in Table 7.1. In general, Figure 7.3 (bottom) shows a similar trend for L2 and
L∞-AT, and all results support the finding that the cue-conflict score increases consistently under both
types of AT, i.e., the behavior becomes more human-like towards shape bias in both cases. Therefore,
we conclude that the more commonly used L∞-AT is equally effective in inducing human-like behavior
in CNNs, with respect to cue-conflict, and consistency.

7.4.3 Inductive Bias: AT on CNNs vs. Transformers

Table 7.1: Detailed comparison of accuracy and consistency. For robust models, we only
report ε = 3 (L2) and ε = 4/255 (L∞) for brevity. Models without adversarial training are highlighted
in gray. All results are in [%], and bold values indicate the best performance amongst all models per
column.

Out-of-distribution Accuracy Consistency
Model Clean colour contrast eidolon eidolon eidolon false high low phase power rotat. uniform edge silh. sketch styliz. cue Mean correct error

I II III colour pass pass scr. equal. noise conflict
R18 69.79 95.47 71.88 47.50 51.88 49.38 93.39 32.66 37.73 48.21 61.25 68.36 34.22 18.12 41.88 59.00 36.00 19.61 51.00 63.90 18.60
R18 (L2) 53.12 86.25 27.50 60.25 49.53 51.46 85.27 24.14 35.39 47.50 51.96 55.23 20.78 27.50 61.25 51.12 39.50 44.30 47.60 63.70 22.80
R18 (L∞) 52.49 84.69 23.62 61.12 50.94 51.67 83.57 25.86 35.55 47.05 56.07 55.23 18.83 26.88 56.88 50.88 40.62 42.27 47.50 63.30 22.60
R50 75.80 97.19 83.62 49.12 52.66 51.04 95.62 33.67 38.98 49.11 70.71 73.91 37.97 23.75 48.12 61.25 34.38 17.42 54.50 65.40 17.90
R50 (L2) 62.83 92.81 32.12 66.12 56.41 62.71 90.71 26.17 40.31 53.84 63.57 63.75 26.09 25.62 60.62 59.38 41.75 43.98 53.00 66.30 23.90
R50 (L∞) 63.86 91.25 29.25 64.25 54.37 57.50 91.07 30.70 38.52 53.39 68.04 64.06 26.25 25.62 58.75 60.50 43.25 43.05 53.10 66.70 24.70
WRN50-2 76.97 98.28 82.38 51.00 54.69 54.17 97.23 34.92 40.62 50.98 75.18 75.39 42.27 28.75 56.88 64.12 36.50 18.28 57.30 67.20 19.20
WRN50-2 (L2) 66.90 94.69 35.62 67.25 60.00 63.96 93.39 28.36 41.02 53.21 66.96 65.23 28.28 28.12 60.00 60.00 42.88 43.28 54.80 67.30 24.30
WRN50-2 (L∞) 68.41 95.00 33.12 65.75 56.09 59.17 94.73 30.94 38.12 54.73 73.39 65.47 25.86 30.63 63.75 61.88 46.62 44.92 55.40 67.70 24.00
ConvMixer 80.16 99.22 98.00 50.62 56.72 56.25 98.04 39.77 43.91 56.43 86.25 80.23 56.02 26.88 64.38 70.75 44.50 22.73 63.30 69.50 19.50
XCiT-S 81.97 98.91 98.88 55.12 59.38 64.17 98.75 69.84 46.72 62.14 91.07 81.41 55.62 37.50 61.88 71.12 57.75 25.55 68.90 70.90 19.50
XCiT-S (L∞) 72.34 96.88 47.62 66.50 58.91 61.04 96.88 36.95 39.77 56.61 82.14 70.70 40.47 31.87 63.75 70.75 48.75 46.80 60.60 70.00 24.10
XCiT-M (L∞) 74.04 97.34 48.25 66.88 60.16 62.29 96.96 36.80 39.06 57.59 81.43 70.86 41.17 26.25 66.88 71.00 52.62 47.27 60.90 70.40 24.80
XCiT-L (L∞) 73.76 98.12 47.38 69.38 60.62 64.58 98.66 41.95 41.72 58.21 84.11 70.62 42.27 35.62 69.38 74.00 54.12 48.83 63.40 71.10 22.70

Humans - 88.67 66.09 60.75 58.28 63.91 88.82 46.43 56.09 55.11 75.89 84.51 55.37 87.12 75.31 91.62 47.12 77.55 - - -

Finally, we expand our analysis to transformer architectures – specifically XCiT – for which we only
report clean and L∞-training performance.

On clean training, even the smallest transformer (XCiT-S12), which has a comparable number of
parameters to ResNet-50, performs significantly better than the largest CNN. Contrary to CNNs, it is
also able to surpass human performance on eidolon II/III, high-pass (with an impressive improvement
of approx. 35% above CNNs), phase-scrambling, power-equalisation, uniform-noise, and stylized. Under
AT, we largely see the same shift as with CNNs with one exception: while AT improves stylized
performance of CNNs, it decreases it on transformers. Still, transformers achieve higher accuracies
than humans in this category. Of all studied models, the adversarially-trained XCiT-L12 performs
best on eidolon I-III, silhouette, sketch, and cue-conflict. However, it is also worth noting that it
contains 50% more parameters compared to the largest CNN we analyze. In general, we can not
conclude that more parameters are always better as we, e.g., see some reduction in error consistency
from robust XCiT-S/M12 to XCiT-L12. Further, the clean ConvMixer, which contains no self-attention
(Equation 2.22) but patch-embeddings (see Section 2.4), shows also an increased cue-conflict. Generally,
there is a trade-off between CNNs and transformers in almost all studied datasets. We hypothesize
that patch embeddings may naturally be slightly shifted toward shape bias compared to traditional
CNN processing. This is because they allow convolutions to model long-range relationships through
operations on multiple patches, which are necessary for shape understanding, whereas, under normal
processing, the convolution can only access the receptive field.

7.4.4 Is Adversarial Training a good Option for Alignment?
While AT does improve the shape bias significantly and shifts the internal decision process toward
human-like shape bias behavior, it also decreases OOD performance across many datasets. Most
notably, it causes a significant drop in robustness to changes in contrast, rotation, and uniform noise
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compared to clean training. Interestingly, it also always reduces high-pass performance. In the case
of XCiT-models, this performance is slightly worse than for humans after AT, although the clean
model significantly outperformed humans (by approx. 23%). Generally, we often see that super-human
performance against specific corruptions deteriorates after adversarial training. Overall, we see the
largest OOD drops after in AT in XCiT, while the ResNets show only minor impairments.

Based on these findings, AT alone is insufficient to shift models toward human-like reasoning in all
aspects.

7.5 A Frequency Perspective on Adversarial Training
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Figure 7.5: Dataset power spectra. Average spectral power distribution of the utilized OOD
datasets in comparison to comparable ImageNet validation samples (clean). Frequency increases along
the X-axis. Shaded areas denote std.

In Figure 7.5, we plot for all considered OOD image categories their frequency power spectra, radially
integrated as described in Figure 7.2, and compare the frequency spectra to the spectrum of the
clean training images. This comparison shows that some OOD categories deviate heavily from the
natural image distribution in terms of their spectra. This is obviously true for high-pass and low-pass
images as well as for uniform-noise and edge, where the differences are particularly strong in the
high-frequency regime, but it is also visible for contrast, rotation, and power equalization, or phase
scrambling, with significant differences in the lowest frequencies. Although adversarial attacks might
slightly alter the frequency spectrum of attacked images, they are ε bounded and will, therefore, not
significantly change the frequency distribution over all samples. Thus, it would be natural that AT
(i.e., adding more training samples with a spectral distribution similar to one of clean images) would
harm the transferability of models to such out-of-distribution categories. In fact, Table 7.1 shows
exactly this trend: both types of AT cause a consistent decay in classification accuracy for the OOD
categories high-pass, low-pass, uniform-noise, contrast, rotation and power equalization. When the
differences are in the low-frequency regime, as for contrast, the decay seems to be particularly strong.
This observation supports the findings by (Saikia et al., 2021) that AT can harm robustness to other
corruption types and provides an initial explanation: Adding more training samples from the original
spectral distribution can harm the generalization to other diverging spectral distributions.

Figure 7.5 also shows that some OOD categories have power spectra that are quite similar to the
spectra of the original data (and thus of adversarial examples). For these categories, e.g., eidolon I,
eidolon II, eidolon II, false colour or cue-conflict, AT does not lead to a decay in accuracy but can
even lead to improvement in some cases. In the following, we will discuss in which cases we might
expect this improvement.
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Figure 7.6: Evolution of shape or texture predictions on cue-conflict under increasing
adversarial training budget (ε). Here, we show different ResNet models under L2-training, but
we observe similar findings with L∞. Stronger training attacks result in fewer predictions based on
textures and increase predictions based on shapes at approximately the same rate.

From the above observation, we see that the OOD data should share some important properties with
the clean data to benefit from AT, i.e., the frequency distribution should not differ too much. At the
same time, it has been argued that convolutional neural networks tend to decide based on texture
information (Geirhos et al., 2019), which is local and rather mid to high-frequency. Thus, adversarial
examples can attack such models by slightly altering the image in these frequency bands. While this
may vary by dataset (Maiya et al., 2021; Abello et al., 2021; Bernhard et al., 2021), at least some
high-frequency is always present as, e.g., adversarial attacks can be detected in the frequency spectrum
(Harder et al., 2021).

To compensate for these attacks, robust models desensitize to high-frequency and instead shift their
decisions towards global cues that involve low-frequency information, which can typically be observed
in FFT-spectra of perturbations after AT (cf . (Grabinski et al., 2022d), Fig. 8). The desensitization of
high-frequencies during training also results in more robust models, as shown from various perspectives
such as injecting noise patches to inputs (Lopes et al., 2020), blurring feature-maps (Sinha et al., 2020),
splitting and regularizing frequency information (Saikia et al., 2021), or low-pass filtering intermediate
feature-maps (Grabinski et al., 2022c) during training. There seem to be sufficient indicators to
reasonably assume that shifting the decisions toward low-frequency information by removing the focus
from high-frequency is at least a necessary ingredient of robustness. Clearly, AT encourages this shift,
which can also be seen in weights of convolution filters of robust models (see Chapter 5).

Likewise, the texture/shape bias can also be analyzed from a frequency perspective. Textures contain
high-frequency information, while shapes can not be represented without low-frequency bands. As
non-robust neural networks naturally prefer high-frequency information for predictions, they also tend
to reason based on textures. Under AT, models rely less on local high-frequency information and
prioritize the lower-frequent information that encodes global structures such as shapes. This effect can
be well seen in the cue-conflict performance, where images contain both types of information in the
images, and models can choose which information to prioritize. From an information perspective alone,
both choices would be acceptable. We want to emphasize that AT does not break the processing of one
cue but actually reprioritizes its features. This can be well seen when studying the prediction rate of
shape or texture classes (Figure 7.6). With increasing ε, the number of texture predictions decreases,
but the rate of shape predictions increases at an approximately similar rate.

Ultimately, this perspective does not explain all findings and other mechanics may influence the
decision process. For example, stylized performance improves under AT for CNNs while the accuracy of
transformers, starting at a higher level, is decreasing. It can just provide an intuition of why the model
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decisions learn to shift towards a more global shape bias – given that the overall spectral distribution
remains very similar to the original training data distribution in the cue-conflict category.

7.6 Summary
In Part I of this thesis, we have studied the representations of adversarially robust models in weight
space, showing salient differences in filter patterns (Chapters 3 to 5) and the utilization of capacity
Chapter 6. In this chapter, we have now analyzed these models from a different angle: alignment to
human vision.

We have refined the previous experiments of Geirhos et al. (2021) with a closer view of alignment with
human vision. Overall, our findings show that adversarial training increases some aspects of alignment,
specifically the texture/shape bias (Geirhos et al., 2019) and error consistency (Geirhos et al., 2020b).
Generally, we find that robust transformers appear to be more aligned than CNNs, mostly as they
perform better on OOD datasets and increasingly predict based on shape cues. However, AT also
misaligns model vision in other aspects, which can be seen in degradation against some corruptions
that do not seem to affect humans or models trained without AT (e.g., contrast).

Finally, we propose an explanation of why AT enforces shape bias from a frequency perspective: AT
causes the model to shift its decision from local high-frequency information to global shape information,
which better resembles the behavior of humans. However, doing so seems to hurt generalization against
OOD datasets where the spectral distribution significantly diverges from the training data.
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Chapter 8

Are Visual Biases Correlated with
ImageNet Generalization?

The current understanding of generalization in neural networks is limited. However, in computer vision,
specific biases distinguishing models from human vision have been proposed as a potential cause of a
lack of robustness or, more broadly, generalization. Consequently, various methods have been developed
to improve (or align) these biases during training in an effort to improve generalization (including our
frequency regularization in Chapter 5). In this chapter, we provide a critical evaluation of this line
of work by correlating biases with generalization across a large model zoo, carefully controlling for
confounding factors.

This chapter is based on “Can Biases in ImageNet Models Explain Generalization?”,
presented at CVPR, 2024 (Gavrikov & Keuper, 2024). As the first author, Paul Gavrikov collected the
models, developed the code base, performed the experiments, created the plots, and wrote the paper
with input from Janis Keuper.

� Code: https://github.com/paulgavrikov/biases_vs_generalization

Can these model biases explain generalization?

Figure 8.1: Study overview. We study the influence of three selected biases that separate models
from humans on the generalization of ImageNet models. Our study suggests that no single bias

correlates with generalization in a holistic sense. Specifically, we measure the texture/shape bias
(Geirhos et al., 2019), critical band (Subramanian et al., 2023), and low/high-frequency biases (Wang
et al., 2020a) on 48 models and correlate these biases against generalization that we measure on
several benchmarks belonging to four categories: in distribution, robustness, conceptual changes, and
adversarial robustness.
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Chapter 8. Are Visual Biases Correlated with ImageNet Generalization?

8.1 Introduction
Artificial neural networks have achieved outstanding performance in various tasks, particularly excelling
in vision tasks like image classification – commonly benchmarked on ImageNet (Deng et al., 2009).
While accuracy on ImageNet has dramatically improved in the last 15 years (Krizhevsky et al., 2012;
He et al., 2016; Dosovitskiy et al., 2021), with models matching or even surpassing human performance,
a critical issue remains: these models often fail to generalize beyond the specific data distribution they
were trained on (see Section 2.7 for a taxonomy of distribution shifts). This fragility becomes evident
when faced with covariate shifts, such as changes in weather conditions (Taori et al., 2020), digital
artifacts (Hendrycks & Dietterich, 2019), or even replacing photos objects with artistic renditions
(Hendrycks et al., 2021a). On an abstract level, this can be unified by the vulnerability to adversarial
attacks (Szegedy et al., 2014b; Biggio et al., 2013), where carefully crafted image perturbations can
fool models while remaining imperceptible to humans. This raises serious concerns about deploying
such models in safety-critical applications where human lives are at stake (Finlayson et al., 2019; Cao
et al., 2019).

Researchers seeking explanations for this lack of generalization have identified various biases that
differentiate model and human perception (see Section 2.9 for a detailed definition and an overview).
Effectively, these biases cause classifiers to latch on spurious features that may be sufficient to classify
samples at train time but do not transfer under distribution shifts (Section 2.9.1).

Three recent examples that have received significant attention are:

• texture/shape bias (Geirhos et al., 2019): models rely heavily on texture for object recognition,
whereas humans prioritize shape information

• critical band bias (Subramanian et al., 2023): models utilize other critical bands than humans
for object recognition

• high-frequency bias (Wang et al., 2020a): models exhibit a strong dependence on high-frequency
information and perform poorly on low-pass filtered data

Following the intuition that aligning these biases with human perception might improve generalization,
several studies have explored regularization techniques during training (Li et al., 2021; Lopes et al.,
2020; Saikia et al., 2021), including our proposed frequency regularization in Chapter 5. However, the
fundamental question (visualized in Figure 8.1) remains: how well do these biases actually correlate
with the ability to generalize? Or, in other words, how promising is it to just optimize the bias to
improve generalization? Although we have shown that enhancing adversarial robustness aligns certain
biases – such as the texture/shape bias discussed in Chapter 7 – it remains unclear whether the reverse
is true or if this effect extends beyond adversarial robustness and the texture/shape bias.

In this study, we take a step back from developing new methods and instead analyze these biases in
ImageNet classification models, investigating their connection to generalization performance under
various aspects. A cornerstone of this analysis is that we explore changes in training (e.g., regularization
like augmentation, contrastive learning, and others), while keeping the model architecture constant to
isolate the effect of inductive biases, as well as fixing the training data to ensure that improvements
are not caused by the memorization of additional data (similarly as in Chapter 6). We assess
generalization by measuring performance on different datasets, modeling in-distribution data, corrupted
data, conceptual changes, and under adversarial attacks.

This investigation aims to shed light on the true impact of these biases and inform the development of
more robust and generalizable models.

We summarize our contributions as follows:

• We systematically evaluate 48 models trained on ImageNet using diverse techniques, assessing
their performance across multiple generalization benchmarks, including in- and out-of-distribution
tests for robustness, concept generalization, and adversarial robustness. This comprehensive
evaluation allows us to analyze correlations between these generalization benchmarks and inherent
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biases in the models, such as texture/shape bias, frequency biases, and characteristics of the
critical band.

• Key findings: (1) No single tested bias fully explains generalization; some even exhibit negative
correlations with human perception. (2) Many previously reported correlations contain numerous
outliers. (3) Several biases show no correlation with generalization in our evaluation. (4) We
identify a surprising positive correlation between a high-frequency bias and generalization.

8.2 Background
In this section, we will introduce the three biases more closely and outline our testing method (following
Section 2.9.3) for each one.

Shape: cat bottle dog elephant truck chair
Texture: bottle keyboard clock dog chair knife

Figure 8.2: Examples from texture/shape cue-conflict. Images are constructed from syntheti-
cally combining two conflicting shape and texture cues and, thus, contain two labels per sample: one
for shape and one for texture. Image Source: (Geirhos et al., 2019)

8.2.1 Texture/Shape Bias
Geirhos et al. (2019) discovered that CNNs primarily rely on texture cues to identify objects (in
ImageNet). This is in stark contrast to the strong shape-biased decision observed in human perception
(Landau et al., 1988). They argue that improving the shape bias may be linked to improved robustness
and show that (pre-)training on a dataset without discriminative texture information indeed improves
robustness on some benchmarks, including common corruptions (Hendrycks & Dietterich, 2019).
Following this observation, multiple works have attempted to understand the origins of this bias
(Hermann et al., 2020; Islam et al., 2021), improve shape bias in training (Li et al., 2021; Shi et al.,
2020; Lukasik et al., 2023), or study representations beyond ImageNet-CNNs (Naseer et al., 2021; Jaini
et al., 2024; Gavrikov et al., 2024b; Dehghani et al., 2023; Geirhos et al., 2021). Prior works and our
study in Chapter 7 have also shown a correlation between adversarial training (AT) (Madry et al.,
2018; Zhang & Zhu, 2019; Chen et al., 2022a) and shape bias (Geirhos et al., 2021; Gavrikov et al.,
2023). However, an improved shape bias seems not to be the cure-all for generalization: (Mummadi
et al., 2021) designed an augmentation technique that improves shape bias but not robustness to
common corruptions (Hendrycks & Dietterich, 2019) and, thus, shows a counter-example to reject a
causal connection at least for this aspect of generalization. Similarly, our frequency regularization in
Chapter 5 increased the shape bias but not always the generalization of ImageNet models. In our
study, we test the shape bias beyond common corruptions against multiple benchmarks to derive a
more holistic understanding of this bias in the context of generalization.

Our testing We measure the texture/shape bias on the texture/shape cue-conflict dataset (Geirhos
et al., 2019) – corresponding to the behavioral cue-conflict testing methodology in Section 2.9.3.
Exemplary samples are shown in Figure 8.2. This dataset consists of ImageNet samples where shape
and texture cues belong to one of 16 different (conflicting) ImageNet super-classes (e.g., a cat (shape)
and a glass (texture)). We report the shape bias, which is defined by the ratio of shape predictions
compared to all correct decisions on the dataset – with a value of 0/1 indicating a texture/shape bias,
respectively. Humans achieve a strong average shape bias of 0.96, whereas most models are severely
texture-biased.
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Figure 8.3: Band-pass filtering of images. Visualization of low-pass (top) and high-pass (bottom)
filtered data at cutoff frequency f on one ImageNet sample.

8.2.2 Frequency Bias
Natural signals, such as images (Ruderman, 1994) and sounds (Singh & Theunissen, 2004), concentrate
most information in low-frequency bands. As such, it seems to be reasonable to draw predictive
cues from this band. Contrary, Wang et al. (2020a) demonstrated that image classification models
reach high accuracies on high-pass filtered images that mostly resemble noise and should not carry
discriminative information. Low-pass filtered images easily recognizable by humans, on the other hand,
are poorly recognized by the same models. While this seems to be more extreme on low-resolution
images, higher-resolution models such as ImageNet classifiers also unreasonably heavily rely on cues
from high-frequency (HF) bands (Abello et al., 2021). (Wang et al., 2020a) also link this spectral bias
to adversarial robustness (Szegedy et al., 2014b; Biggio et al., 2013) and show that adversarial training
(AT) (Madry et al., 2018) results in a reversed bias. Indeed, perturbations generated by adversarial
attacks on ImageNet seem to particularly target HF bands (Yin et al., 2019). A similar connection to
non-adversarial robustness can be made, as most common corruptions (Hendrycks & Dietterich, 2019)
primarily target HF bands (Yin et al., 2019). In a similar fashion, we showed that our HF regularization
in Chapter 5 increases robustness to adversarial attacks and common corruptions. Altogether, this
bias has received attention in the robustness community, where some hope to improve robustness by
stronger low-frequency biases (Lopes et al., 2020; Saikia et al., 2021). We seek to understand how
frequency biases, in particular from low/high-frequency cues, more broadly affect generalization.

Our testing To understand the frequency bias, we measure the performance of band-pass-filtered
ImageNet samples, similar to (Wang et al., 2020a). This corresponds to the behavioral feature ablation
methodology in Section 2.9.3. We differentiate between low and high-frequency biases by filtering the
test data at different cutoff frequencies. For instance, a low-pass filter with a cutoff of 30% will contain
the lowest 30% of the Fourier spectrum. Formally, let F denote the Fast Fourier Transformation (as
introduced in Section 2.1; including shifting the zero-frequency component to the center) and F−1 the
inverse operation, then we obtain the frequency filtered sample X ′ ∈ Rc×w×h from an input sample
X ∈ Rc×w×h as follows:

X ′ = F−1 (F (X)�Mf ) (8.1)
where Mf ∈ Rw×h denotes the frequency mask (filter) in the Fourier space, parameterized by the
cutoff frequency f implemented as follows:

1 h, w = X.shape[-2:]
2 cy, cx = h // 2, w // 2
3 ry = int(cutoff_freq * cy)
4 rx = int(cutoff_freq * cx)
5 if low_pass:
6 mask = torch.zeros_like(X)
7 mask[:, cy-ry:cy+ry, cx-rx:cx+rx] = 1
8 else:
9 mask = torch.ones_like(X)

10 mask[:, cy-ry:cy+ry, cx-rx:cx+rx] = 0

Listing 8.1: Frequency Mask Computation

An example of the resulting samples for both low- and high-pass filtering under different cutoff
frequencies can be found in Figure 8.3.
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To compensate for different test performances of the models on the clean data, we report the ratio of
the accuracy on the filtered data to the clean accuracy. In some cases, this may result in ratios > 1,
i.e., the accuracy on filtered data may exceed the original validation accuracy. As low/high-frequency
bands are not precisely defined, we average the performance observed at 10, 20, 30, 40, and 50% cutoffs
along the low-/high-pass filter tests to report the low/high-frequency bias, respectively.

8.2.3 Critical Band
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Figure 8.4: Overview of the critical band testing methodology. (A) Samples from ImageNet,
(B1) are grayscaled and contrast reduced, and (B2+C) then turned into stimuli testing inserted
Gaussian noise at different spatial frequencies and standard deviations. (D) These images are shown
to humans and models to obtain an (E) accuracy heatmap. (F) This heatmap is thresholded to fit a
2D Gaussian, characterizing the critical band. Image Source: (Subramanian et al., 2023)

Recently, Subramanian et al. (2023) have found another bias that separates human from model vision
in the critical band. This band defines what spatial-frequency channels are used to detect objects. On
ImageNet, humans use a one-octave wide channel. Yet, models measure significantly wider channels,
making them more sensitive to noise perturbations in frequency bands that do not affect human
vision. The study showed a strong correlation between the parameters of the critical band and shape
bias, as well as the adversarial robustness of adversarially-trained networks. Surprisingly, adversarial
training (AT) seems to further increase the bandwidth and, thus, increases misalignment – albeit
that it typically improves the texture/shape bias as we have shown in Chapter 7. We propose a few
optimizations to the underlying test process, and as for the previous biases, we aim to understand
possible connections to generalization beyond adversarial robustness/training.

Our testing Following the methodology of Subramanian et al. (2023) shown in Figure 8.4, we measure
the critical band by insertions of Gaussian noise to contrast-reduced and grayscaled ImageNet samples
with varying strength and different frequencies. This can also be understood as a behavioral feature
ablation – however, the feature is gradually replaced by noise and not directly ablated (Section 2.9.3).
Conditions where the accuracy falls below a predefined threshold mark the critical band. The fitting
of a 2D Gaussian obtains the parameters of the band over the performance results of a grid search for
noise strength and frequency pairs, characterized by the bandwidth (BW), center frequency (CF), and
peak-noise sensitivity (PNS).

A caveat of the original test is that the critical band is determined by conditions where the accuracy (on
a 16-class ImageNet subset) drops below 50%. However, adversarially-trained models perform poorly
on contrast-reduced images, as we have shown in Chapter 7. To compensate for this, we normalize the
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accuracy on the stimuli by a baseline accuracy on the contrast-reduced images before applying noise.
Furthermore, the original test only uses an average of just 30 ImageNet samples for each condition.
Instead, we use all 50,000 ImageNet validation samples. Finally, the original test measures the accuracy
against 16 super-classes for each subset. This was mainly done to keep the study feasible for human
subjects. Since we do not compare to human trials, we measure the top-1 accuracy against all 1,000
classes. Taken together, this results in a more computationally expensive but also more accurate
measurement. We will show an ablation of these changes in Section 8.4.3.

8.2.4 Limitations of Previous Studies
Previous studies have already correlated (some of) these biases with (some aspects of) generalization
(Wang et al., 2020a; Subramanian et al., 2023; Geirhos et al., 2021, 2019). In this section, we discuss
the limitations of these studies and show why their findings may not transfer to a more holistic view of
generalization.

Inductive biases of architectures were not ablated The architecture plays a significant role
in robustness (Tang et al., 2021) and, thus, can also be expected to affect a more holistic view of
generalization. As such, previously discovered correlations may be spurious concerning the bias
itself and just an effect of the architecture. To suppress this potential confounder, our model zoo is
limited to ResNet-50 models without any modifications to the original architecture as defined in (He
et al., 2016). As a matter of fact, we observe that many correlations no longer hold when we fix the
architecture.

Findings on subsets do not generalize It is well known that correlation does not imply causation,
and thus, it may not be surprising that we find that many observed correlations no longer hold for
our study. Common causes include (1) benchmarking only a specific type of training, e.g., adversarial
training. Yet, correlations for adversarial training may be differently strong or even reversed compared
to other forms of training (for example, see Figure 8.5); and/or (2) using only one benchmark, e.g.,
adversarial attacks. Performance on many ImageNet-benchmarks is moderate to strongly correlated
(Taori et al., 2020; Miller et al., 2021; Mania & Sra, 2021), which we also confirm in our study
(Figure 8.12b) but clear outliers exist. For instance, adversarial robustness (here measured by PGD
(Kurakin et al., 2017; Madry et al., 2018)) is not correlated to most other benchmarks (see Figure 8.12b)
and generally might be divergent to other forms of robustness (Liu et al., 2023a; Tsipras et al., 2019;
Raghunathan et al., 2019; Stutz et al., 2019). Our study focuses on generalization beyond but also
including adversarial robustness and is performed on various models including adversarially-trained
ones.

Inconsistent data transformations Comparing benchmarks without standardized transformation
pipelines can lead to misleading and incomparable results. We found that some authors produced
results using inconsistent transformation pipelines during testing, which resulted in non-comparable
results. For instance, the works by Hendrycks et al. (Hendrycks & Dietterich, 2019; Hendrycks et al.,
2020, 2022) upsample the 224 px ImageNet-C samples to 256 px, and then center-crop to 224 px. This
“Inception-like” preprocessing (Szegedy et al., 2016a) is common on ImageNet but clearly oversamples
the already processed samples. On the other hand, PRIME (Modas et al., 2022) does not resize or crop
loaded test samples, which is conceptually correct but leads to different results. In our study, we use
identical test transformations for all models and datasets to avoid discrepancies.

System noise Additionally, even system noise can lead to significant errors in evaluations e.g.,
due to low-level implementation details in data loaders such as JPEG decompression or subsampling
techniques (Wang et al., 2021). These issues advocate for benchmarking under comparable conditions
to obtain comparable results. Therefore, we produce all benchmarks on the same system, using the
same environment.
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8.3 Methodology
In our study, we measure models’ ability to generalize and correlate this to the biases that separate
human and model vision. The following paragraphs introduce our methodology in more detail.

8.3.1 Measuring Generalization
To benchmark generalization, we loosely follow the suggestions of prior work (Hendrycks et al., 2021a)
and rely on the accuracy of multiple semantically different benchmarks to faithfully assess multiple
facets. Our benchmarks can be separated into four categories: in-distribution (ID) datasets with
considerable statistical similarity to the ImageNet training set, robustness datasets that apply various
corruptions to ImageNet samples, datasets challenging models to recognize objects based on concepts
(e.g. sketches), and adversarial attacks to test robustness adaptively. For all benchmarks, we evaluate
the top-1 accuracy using a resolution of 2242 px and consistent transformation pipelines on the same
system to avoid the risk of falsifications due to system noise (Wang et al., 2021). We report the average
over the individual benchmarks for each of the four categories.

In distribution (ID)

• The ImageNet (IN) (Deng et al., 2009) validation set from the ILSVRC2012 challenge is the de
facto standard ImageNet test dataset, containing 50,000 images with 1,000 different classes.

• ImageNet v2 (IN-v2) (Recht et al., 2019) is a newer 10,000 images test set that was sampled a
decade later following the methodology of the original curation routine.

• ImageNet-ReaL (IN-ReaL) (Beyer et al., 2020) is a re-annotated version of the original ImageNet
validation set. It assigns multiple labels per image and contains multiple corrections of the
original annotations.

Robustness

• ImageNet-C (IN-C) (Hendrycks & Dietterich, 2019) is a dataset consisting of 19 synthetic
corruptions applied to the original ImageNet validation set under increasing severity. The original
protocol suggests averaging the error over all corruptions and severities normalized by the error
of AlexNet (Krizhevsky et al., 2012) on the same. On the contrary, we simply report the mean
accuracy over all 19 corruptions and severity levels.1

• ImageNet-C̄ (IN-C) (Mintun et al., 2021) extends IN-C by adding 10 new corruptions which
were chosen to be perceptually dissimilar but conceptually similar to the corruptions in IN-C.
We report the mean accuracy akin to IN-C.

• ImageNet-A (IN-A) (Hendrycks et al., 2021b) contains 7,500 additional images belonging to 200
ImageNet classes that are naturally hard to classify for ImageNet models and are, thus, posing
natural adversarial examples.

Concepts

• ImageNet-Renditions (IN-R) (Hendrycks et al., 2021a) is a dataset of 30,000 images of 200
different ImageNet classes in different styles, such as cartoons, paintings, toys, etc.

• ImageNet-Sketch (IN-S) (Wang et al., 2019) is a dataset of over 50,000 hand-drawn sketches
belonging to all ImageNet classes. Semantically, it can be seen as a subset of IN-R.

• Stylized ImageNet (SIN) (Geirhos et al., 2019) contains ImageNet validation images that have
been stylized using different artistic filters to destroy texture information. We use the official
16-class subset given in (Geirhos et al., 2021).

1The results remain comparable by a simple linear transformation.
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Adversarial robustness

• Projected Gradient Descent (PGD) (Madry et al., 2018) We apply a PGD attack on the ImageNet
validation set to adaptively evaluate robustness. Contrary to the previous benchmarks, this
benchmark is adaptive as it can continuously generate weaknesses for a given model. In theory,
a model might overfit a static dataset due to its limited number of test samples; however, an
(ideal) adaptive benchmark remains unaffected by this limitation. As models trained without
adversarial training (Madry et al., 2018) are highly susceptible to such attacks, we attack with a
reduced budget of ε = 0.5/255 under L∞ norm, using 40-steps with step size α = 2/255.

Data transformation pipeline We use the same data processing pipeline for all models to ensure
a fair comparison. We resize the smaller edge of the inputs to 256 px and the other edge with the
same ratio using bilinear interpolation, then center-crop to 224× 224 px. Channel-wise normalization
matches the individual normalization during the training of each model – typically, this is the mean
and std over all samples of the ImageNet dataset.

The samples in IN-C/C are preprocessed by default, and we skip the “Inception-like” (Szegedy et al.,
2016a) resizing and cropping steps. We want to point out that some prior works also apply the above
transformations to these datasets. This is questionable because it results in undersampling and, thus,
a loss of details and inconsistent evaluation compared to the clean ImageNet dataset and approaches
using “correct” preprocessing.

8.3.2 Models
We conduct our main analysis on models based on the ResNet-50 architecture (He et al., 2016) trained
on ImageNet-1k (Deng et al., 2009; Russakovsky et al., 2015). Fixing the architecture is crucial for our
study, as each architecture has its own inductive biases that may influence results. Thus, to disentangle
the inductive bias from generalization, we ensure that all models are based on an identical architecture.
This also means avoiding even minor changes like different activation functions, as they can drastically
affect the performance and introduce confounders to our analysis (Xie et al., 2021). Limiting the study
to ResNet-50 has additional benefits: the architecture is highly popular and comes without bells and
whistles. This status also ensures that a variety of techniques have been evaluated for this architecture,
specifically. The architecture also represents architectures used in real-life applications, where training
from scratch is necessary, but computational resources are limited. Further, we ensured no model was
trained with external data to avoid target leakage on our benchmarks. Most models were also not
specifically optimized for the tested biases, which provides an opportunity to understand if and to
what extent (aligned) biases arise through changes in training.

To represent changes in generalization, we use 48 models that differ in training. We loosely sort
these models into seven categories that we color-code. Throughout the study, we use different marker
symbols to differentiate individual models. Marker sizes of adversarially-trained models correlate with
the attack budget ε during training.

Our tested models belong to the following categories:

• baseline: a model following the original training (He et al., 2016)

• augmentation: techniques (Hendrycks et al., 2020, 2022, 2021a; Jaini et al., 2024; Müller et al.,
2023; Modas et al., 2022; Li et al., 2021; Erichson et al., 2022)

• stylized: (pre-)training on Stylized ImageNet (SIN), which can be seen as an extreme form of
augmentation that breaks correlations between textures and class labels (ShapeNet) (Geirhos
et al., 2021)

• adversarial training (AT): training against a PGD adversary (Madry et al., 2018) with
increasing attack budget ε under L2 and L∞-norm (Salman et al., 2020). Technically, this too
could be seen as augmentation, but we will show significant differences for this group of models
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• self-supervised learning (SSL): unsupervised learning through contrastive learning (Chen
et al., 2021b; Caron et al., 2021, 2020; Chen et al., 2020a) with supervised finetuning of the
classification-head

• freezing: a model trained with all spatial convolution filters weight frozen to the random
initialization (Gavrikov & Keuper, 2023b).

• improved training recipes: new recipes in Pytorch Image Models (timm) (Wightman, 2019)
based on the findings of Wightman et al. (2021) and PyTorch (Vryniotis, 2023; Paszke et al.,
2019);

A full model legend including all benchmark results and bias measurements can be found in Ap-
pendix A.3.

8.3.3 Measuring Correlations
We measure correlations via the Spearman’s rank-order correlation coefficient ρ. Due to the low sample
size (N � 500), we also assess the statistical significance by obtaining a p-value from a two-sided
permutation test. p is given by the ratio of generated ρ larger than the baseline ρ on all samples. We
consider results as significant if p < 0.05.

8.3.4 Implementation Details
All evaluations were performed with Python 3.10.12, PyTorch 2.0.1, CUDA 11.7, and cuDNN 8500 on
NVIDIA A100-SXM4 GPUs.

8.4 Are Vision Biases Correlated with Generalization?
In this section, we apply the previously introduced methodology to each bias individually to understand
if and to what extent aligning these biases can help with generalization. Figure 8.5 shows an overview
of the statistical correlation for all tested biases. Additionally, we inspect scatter plots (Figures 8.6
to 8.8) to detect non-monotonic correlations missed by Spearman’s ρ and pay attention to whether
outliers exist.
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Figure 8.5: Biases often only correlate with specific aspects of generalization or model
groups. We measure Spearman’s ρ correlation on all models (Total) and separately on adversarially-
trained (AT), and all other models, as there is often a different trend. Non-significant correlations
with p ≥ 0.05 are set to 0. Please note that ρ does not capture non-monotonic relations.

8.4.1 Shape Bias
For the shape bias, we observe a strong negative correlation to ID tests (Figure 8.6) – suggesting that
increasing misalignment with human vision increases ID accuracy. While it has been shown before
that ImageNet-trained CNNs are strongly texture-biased (Geirhos et al., 2019) and ImageNet can be
well separated by texture alone (Brendel & Bethge, 2019), the monotonic decrease in performance
with increasing shape bias without significant outliers is quite surprising. While this does not prove
causality, it raises the question of whether strongly shape-biased models can achieve strong performance
on ImageNet without relying on extra data.
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Figure 8.6: Shape bias vs. generalization. A value of 0/1 indicates a texture/shape bias,
respectively. The full marker legend is shown in Appendix A.3.

Similarly, we only note significant improvements in IN-A on strongly texture-biased models. Usually,
poor performance on IN-A is linked to spurious cues (Hendrycks et al., 2021b), and one may assume
that these are related to textures (similar to adversarial attacks on fragile features (Ilyas et al., 2019)).
However, it seems like these cues are more shape-related, and a certain degree of texture bias is
necessary to overcome them. But neither does a texture bias guarantee the best performance, as the
strongest texture-biased model (timm (A3) (Wightman et al., 2021)) with a shape bias of 0.13 still
performs 10.4% worse on IN-A than the best model (torchvision (v2)) with a (higher) shape bias
of 0.17.

In other aspects of generalization, we often obtain unrelated trends between adversarially-trained
(AT) and other models. For AT models, we observe a curvilinear (inverted “U”) relation (which is
not captured by Spearman’s ρ) to all aspects of generalization, which also seems to correlate with
the attack budget during training (pay attention to the marker size). For concepts and adversarial
robustness, we observe the best performance by AT models that balance shape and texture bias
(≈ 0.5 for ε = 1/255 (L∞), ε = 2/255 (L∞), and ε = 1 (L2)). There are no notable differences in the
trends between models trained on L2 and L∞-norm attacks. Non-AT models only show a (moderate)
correlation to concepts.

Our results extend previous findings showing that shape bias is not causally correlated with IN-C
performance (Mummadi et al., 2021) to a much broader view of generalization and contrast the claims
about improved robustness in (Geirhos et al., 2019). For adversarial robustness, shape bias may define
a ceiling where a balanced representation of shapes and textures works best. However, the model
set of top performers exclusively consists of adversarially-trained models, which may lead to spurious
correlations. Shape bias may also improve recognition of concepts – which is intuitive, as these samples
do not contain the same textures as ImageNet samples.

Summary In all the models, the only strong and holistic pattern we see is that the shape bias is
inversely related to ID performance. This means that as misalignment with human vision increases,
ID accuracy increases.

8.4.2 Frequency Bias
It is well known that adversarial training results in models with improved low-frequency at cost in
high-frequency performance (Wang et al., 2020a; Yin et al., 2019; Geirhos et al., 2021; Gavrikov et al.,
2023). Yet, the frequency bias of other methods has been less studied, especially in correlation to other
aspects of generalization beyond adversarial robustness.

Low-frequency bias To our surprise, we find no meaningful correlation between a low-frequency
bias and most aspects of generalization when considering all models (Figure 8.7) – except for adversarial
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Figure 8.7: Frequency biases vs. generalization. We correlate low-frequency (top) and high-
frequency bias (bottom). A value of 0 indicates no recognition of objects on the band pass, and 1
indicates no difference from the original performance. The full marker legend is shown in Appendix A.3.

robustness, where a stronger low-frequency bias improves adversarial robustness. This is intuitive, as
attacks prefer high-frequency bands on ImageNet (Yin et al., 2019). Improved reliance on cues from
non-affected bands is, therefore, a good defense strategy.

When separating AT from other models, we again observe divergent trends. On AT, this bias shows a
curvilinear correlation to all aspects of generalization (not captured by Spearman’s ρ in Figure 8.5).
For concepts and adversarial robustness, some low-frequency bias helps but eventually starts hurting
generalization. For ID and non-adversarial robustness, increasing low-frequency bias always seems
to reduce generalization. On non-AT models, it shows a moderate monotonic correlation with all
categories except ID. However, there is often a high variance in performance.

Summary Improving the focus to cues from low-frequency bands improves adversarial robustness
but hardly offers any guarantees beyond that independent of the training method. For adversarial
training, too much low-frequency bias is not desirable.

High-frequency bias A high-frequency bias, on the other hand, shows surprisingly moderate
to strong correlations to all aspects of generalization (Figure 8.5). For adversarial robustness, it
is negatively correlated but positive for all others. Upon manual inspection of the scatter plots
(Figure 8.7), we find that this correlation is slightly deceptive. There is a strong monotonic increase in
generalization as models start to classify some cues in high-frequency, but after some threshold, the
gains stagnate or even fall. A common outlier is ShapeNet (Geirhos et al., 2019), which shows some
ability to recognize high-frequency cues despite being trained on data without discriminative texture
cues that typically reside in these high-frequency bands. For adversarial robustness, we completely
reject a connection due to the variance for the lowest measurements – but it seems like only models
without any high-frequency bias can reach peak adversarial robustness. Unsurprisingly, AT models
show next to no high-frequency bias as they are desensitized to this frequency band.
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Summary Overall, a slight capability to detect high-frequency cues seems to improve generalization,
except for adversarial robustness. In this context, it also seems like more high-frequency bias is better
than no bias. For adversarial robustness, even the slightest increase in high-frequency bias decreases
performance rapidly.

8.4.3 Critical Band
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Figure 8.8: Critical band vs. generalization. We correlate three properties: the bandwidth (top),
center frequency (center), and peak-noise sensitivity (bottom). The full marker legend is shown in
Appendix A.3.

The critical band parameterized by its bandwidth, center frequency, and peak-noise sensitivity has been
recently shown to correlate with adversarial robustness (and shape bias) (Subramanian et al., 2023).
Akin to what we have observed on other biases, results show different trends between adversarially-
trained (AT) and other models. For AT, a higher bandwidth of the critical band correlated positively
with adversarial robustness, but the correlation was negative for other models. We repeat the
measurements using a more careful collection of models and benchmarks. Additionally, we tweak the
original test by using normalization, more samples, and more classes. Our normalization allows us
to include models trained under L∞-norm and larger attack budgets (ε) that couldn’t be tested with
the original methodology. It also allows us to scale the evaluation to all 1,000 ImageNet classes. In
both cases, non-normalized measurements will break the detection of the critical band, as all regions
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would be classified as critical. Overall, our measurements are more accurate but may not be directly
comparable to the original study.

Bandwidth The bandwidth not only moderately correlates with adversarial robustness (similarly
to the findings in (Subramanian et al., 2023)) but also strongly correlates with ID and robustness
(Figure 8.5). However, there is an inverted trend, and the correlation to adversarial robustness is
negative. For generalization to concepts, we only see a weak positive correlation. Generally, we observe
many outliers in the scatter plots (Figure 8.8), and often, the best performance is not achieved by
the models with the lowest bandwidth. Further, some trends only become noticeable or accelerated
by adversarially-trained models, which accumulate for models with the lowest bandwidth. It remains
to be discovered whether low-critical-bandwidth non-AT ResNet-50 exist and how they perform on
generalization tests.

Center frequency In contrast to the original study, we find no correlation between the center
frequency and any of our benchmarks (Figure 8.8). Even when we single out adversarially-trained
models, we still observe no statistically significant correlation.

Peak-noise sensitivity We measure a slight statistical correlation among both adversarial training
(AT) and non-AT models (Figure 8.5). However, the significant concentration (Figure 8.8) around the
value of 1 indicates an issue in the test and suggests that this metric might not effectively capture
trends in extensive evaluations such as ours. As for the rest, AT models don’t exhibit a distinct
clustering pattern yet display a notably strong positive correlation with both ID and non-adversarial
robustness.

Summary For the most part, the critical band seems to poorly explain generalization. However, a
lower bandwidth seems to be necessary for generalization except for adversarial robustness, where the
opposite holds.

Ablation of our Changes to the Methodology

For completeness, we have also evaluated our model zoo with the original method, and the results
are shown in Figure 8.9. In Figure 8.9a we replicate the evaluation of Subramanian et al. (2023), in
Figure 8.9b we additionally apply accuracy normalization as outlined in Section 8.2.3. Under the
original condition, we again see no reasonable correlation for any bias except when limiting the study
to AT models. For the normalized study, we also see no correlations between any bias for all models,
except for ID and robustness, which show some correlation to the center frequency. However, the
correlation is mostly determined by the tail of AT models. Removing these models would break the
correlation and, thus, make a causal connection highly unlikely.

In Figure 8.9c, we show the scatter plots between IN-1k and IN-16 obtained results and find no
correlation indicating that the results obtained by our method deviate from the original test. While
our modifications may not be perfect either (e.g., both our and Subramanian et al. (2023) arbitrarily
pick 50% as threshold) our modifications are theoretically better grounded and, thus, introduce an
improved measurement of the critical band for models. Overall, all tested methodologies fail to show
meaningful and holistic correlations.
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(a) Original on IN-16.
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(b) Original on IN-16 with normalization.
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(c) Critical band evaluation on IN-1k and IN-16 in comparison. We compare original (top) and
normalized (bottom) evaluations.

Figure 8.9: Methodological ablation for the critical band. Measurement of the critical band
following the original methodology of Subramanian et al. (2023). (a) original test; (b) original test
with normalized accuracy; (c) Comparison between results on ImageNet (IN-1k) and the 16-super-class
subset (IN-16). Models with unreasonable measurements (C-BW ≥ 100) were removed. The full
marker legend is shown in Appendix A.3.
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8.5 Observations on Low-/High-Pass-Filtered Images
In this section, we want to provide a few high-level findings split by training method from our
low/high-pass data test based on the visualization in Figure 8.10.
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Figure 8.10: Frequency band-pass test. We show the relative accuracy to the accuracy on the
original samples using (a) low-pass and (b) high-pass filters with increasing cutoff frequency (from 1%
to 99% of lowest/highest frequency components to, respectively). The distance to the original image
decreases with increasing cutoff. The full marker legend is shown in Appendix A.3.

SSL Firstly, we find that contrastive (self-supervised) learning models underperformed the baseline
in low-frequency recognition but performed on par for high-frequency recognition. We cannot prove
this to be indicative of a shortcoming of contrastive learning itself, as we primarily benchmark older
techniques that perform worse than supervised learning because newer methods are almost exclusively
designed for ViTs. Still, this may deserve some attention in future works.
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Figure 8.11: Examples of high-pass (30%)
filtered ImageNet samples. High-pass filtered
samples (center) are correctly classified by some
models but are unlikely to be recognized correctly
by humans. Only std normalized samples (bottom)
reveal some similarity to the original samples (top).

Augmentations We also find that some aug-
mentation techniques lead to an unreasonably
strong high-frequency recognition rate (the pur-
ple outliers in Figure 8.10). This frequency band
contains limited information and is almost imper-
ceptible to humans without normalization, e.g.,
see Figure 8.11) and yet, some models seem to be
able to classify a non-negligible amount of sam-
ples. This may be related to frequency shortcuts
(Wang et al., 2023b) and, in fact, be a sign of
overfitting.

On average, we also see that augmentation
techniques improve low-frequency bias, and
from all our tested models, the strongest per-
formance there is achieved by an augmenta-
tion model (DeepAugment + AugMix (Hendrycks
et al., 2021a)).

Improved Training Recipes Newer training recipes seem to mostly improve high-frequency
detection rates without significant changes to the low-frequency rates.
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Stylized SIN -only training reduces low-frequency detection rates but significantly raises performance
in mid-bands and sometimes even outperforms augmentation on some specific cutoffs.

Adversarial Training Similar to our findings in Chapter 5, we find that adversarially-trained models
improve in their low-frequency detection at a severe cost in high-frequency prediction rates.

Notably, all models make significant improvements on the lowest 1% of the spectrum, with training
recipes showing the least and AT the largest leaps. Gains from additional high-frequency information
saturate much earlier for almost all models.

8.6 Other Correlations
We also notice a couple of other correlations that may not directly fit into our storyline but are related
to the overall theme of this thesis.
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Figure 8.12: Correlations in our study. We measure correlations between (a) biases and (b)
benchmarks through Spearman’s ρ. Non-significant correlations with p ≥ 0.05 are set to 0.

Improved low-frequency performance does not guarantee a shape bias A shape bias causes
a model to prefer global over local information, as textures are mostly local information found in higher
frequency bands. Indeed, we find a moderately strong positive correlation between low-frequency and
shape bias (ρ = 0.66, p = 0.0002) in Figure 8.12a, but also clear outliers in both directions: ShapeNet
(trained on SIN ) (Geirhos et al., 2019) achieves a high shape bias of 0.81 but only a low-frequency
bias of 0.56; the baseline (He et al., 2016) achieves a low-frequency bias of 0.63 but only a shape bias
of 0.21.

Scaling data does not guarantee a shape bias Previous works have observed a trend where
upscaling (pre-)training data results in higher shape bias (and better generalization) (Geirhos et al.,
2021; Dehghani et al., 2023). However, when we extend our analysis to a ResNet-50 trained with
self-supervised learning on YFCC-100M (Thomee et al., 2016) containing 100 million additional
samples (Yalniz et al., 2019), we notice that it obtains the same 0.21 shape bias as the baseline despite
generally better performance. This shows that the shape bias is not simply determined by the dataset
scale alone.
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Baseline Augmentation Stylized Adv. Training SSL Freezing Training Recipes
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Figure 8.13: ID vs. OOD accuracy not on the line. We notice that on our model zoo, there is
often no perfect linear correlation between ID and OOD accuracy (Miller et al., 2021). The dotted line
is a linear regression on the accuracies, and we report Pearson’s R. The full marker legend is shown in
Appendix A.3.

ID vs. OOD accuracy not “on the line” Since we do observe a non-linear correlation between
ImageNet (ID) performance and performance on many datasets, we rarely see that the accuracy “is
on the line” in Figure 8.13, i.e. perfectly linearly correlated as claimed in (Miller et al., 2021). The
observation holds on IN-V2 and IN-ReaL, which aligns with the findings of Recht et al. (2019); Beyer
et al. (2020), but we already see many underspecified areas where there is no correlation on other
datasets, which have also been reported in other studies (Andreassen et al., 2021; Wenzel et al., 2022;
Teney et al., 2023). The clear outliers to “accuracy on the line” are SIN and IN-R, where correlations
are very weak or even statistically insignificant.

IN-C is a good proxy for non-adversarial robustness While OOD accuracy is not always on
the line, we notice that ImageNet accuracy strongly correlates with the average (R = 0.79) of the other
benchmarks (excluding SIN and PGD) (Figure 8.12b). However, we notice that IN-C shows an even
stronger correlation with the remaining benchmarks (R = 0.83). Even its weakest correlation (IN-A)
is still moderately strong. Yet, just like ImageNet, it does not correlate with PGD and SIN. Future
studies may prefer this benchmark to study robustness if they are restricted in their benchmarking
budget, as IN-C is a faster benchmark than IN-C due to fewer corruption classes.

8.7 Discussion and Conclusion
We have identified numerous shortcomings in previous studies showing correlations between shape bias,
frequency biases, and the critical band to generalization. Our holistic and more carefully designed
study shows that while correlations between some of these biases and some benchmarks exist, most of
them fail to correlate to a broader view of generalization. Thus, an isolated measure of bias cannot be
used to estimate generalization. Moreover, even if correlations exist, they might not be symmetric. For
instance, we have seen that increasing adversarial robustness through adversarial training increases the
shape bias in Chapter 7, but increasing the shape bias does improve adversarial robustness.

This brings us to the central question of this thesis: Is it useful to directly optimize for these biases?
Or, should we use these biases as priors? After all, we have seen a case where improving one bias
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seems to have improved broad generalization in Chapter 5. Ideally, a prior would monotonically and
causally correlate with wide-spectrum generalization. However, for the tested biases, we have seen
many outliers, non-monotonic trends, and/or only correlations with some aspects of generalization.
It is important to understand that, in this case, the utility of the bias concerning wide-spectrum
generalization is significantly lowered, but it does not necessarily mean that the bias itself is not useful.
Instead, it only tells us that such a bias alone is not sufficient to improve generalization but might still
be helpful in combination with other aspects or helpful to optimize generalization for a specific and
perhaps known distribution shift. Beyond that, there might be other valid reasons (e.g., interpretability
or alignment) to optimize these biases.

Additionally, we have seen that most biases show strong correlations on adversarially-trained models
(e.g., shape bias, low-frequency bias), but not on the entire model zoo. On the one hand, this means
that the bias is not useful as a prior independent of the regularization, i.e., it does not correlate if we
discard this metadata. On the other hand, this might also be a limitation of our study, as our AT
models are extremely homogenous compared to the other models. All the models were trained with
the same hyperparameters, except for the adversary parameters (see Salman et al. (2020)). While
we cannot reject causal correlations based on our model zoo, we cannot prove them either and look
forward to future studies that study adversarial training more closely – also extending beyond Lp

robustness.

Finally, we have seen some counter-intuitive trends where models misaligned with human perception
perform better – e.g., a stronger texture bias increases ID performance, and a high-frequency bias
seems to improve generalization (except for adversarial robustness) despite containing next to no
discriminative cues (see Figure 8.11 for examples). For the latter, it is worth noting that even the
strongest high-frequency biased model only detects an average of 9% of the samples based on this
band alone. As such, we cannot claim that a “high-frequency bias is all you need,” but drawing
some predictive cues from this band seems to be necessary. In general, we want to issue a word of
caution, as we are concerned that the reason for improvements we have seen might be due to dataset
biases like frequency shortcuts (Wang et al., 2023b) and not an intrinsically better representation.
A counter-argument to that theory is that we have seen correlations on many semantically different
datasets, and it seems unlikely that they all contain the same shortcuts. Yet, we are curious to see if
future work can derive a better understanding of generalization and design better benchmarks.

In summary, it seems that the generalization in neural networks – even when fixing the architecture
– is too complex to be explained by a single bias. Yet, certain biases may be necessary (e.g., a low
bandwidth of the critical band, or a bit of high-frequency bias) to achieve generalization. It remains to
be shown if a single bias or a combination of them exists that can explain generalization better.

Limitations This study explores biases in the ImageNet classification problem. While this dataset
and problem are representative of a significant portion of computer vision research, our (and previous)
findings may be limited in their transferability to other problems. For example, while there is a
theoretical grounding for shape bias in object recognition, it is not intuitively clear if this applies to
other classification tasks, such as medical recognition tasks. We ask researchers to exercise caution
when extrapolating findings from specific contexts to broader applications and encourage a rigorous
evaluation of model performance on their specific problem – in particular, in safety-critical domains
where human lives are at stake.
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Chapter 9

Talking Models Into Seeing the
World Differently

In our last chapter, we want to deep-dive into biases beyond discriminative ImageNet classifiers. Unlike
such traditional unimodal classifiers, large vision-language models (VLMs) offer an intuitive way to
interact with visual content through language prompting by combining a large language model (LLM)
with a vision encoder. However, both the LLM and the vision encoder come with their own set of cue
preferences and shortcuts. While these have been rigorously studied in uni-modal models, a timely
question is how these (potentially misaligned) vision biases behave under multi-modal fusion in VLMs
and how we can control them, perhaps even through language – literally, talking models into seeing
the world differently.

This chapter is based on “Can We Talk Models Into Seeing the World Differently?”,
accepted at ICLR 2025 (Gavrikov et al., 2025). As the first author, Paul Gavrikov collected the models,
developed the code base, performed the experiments, created the plots, and wrote the paper with input
from all authors. The teaser figure Figure 9.1 was created by Jovita Lukasik and refined by Steffen
Jung, who also implemented access to GPT-4V and helped to polish plotting code.

� Code: https://github.com/paulgavrikov/vlm_shapebias

Texture Bias

Shape: Elephant
Texture: Bottle
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Figure 9.1: Language can be used to steer visual cue preferences (biases) in vision-
language models (VLMs). Here we illustrate the (visual) texture/shape bias (Geirhos et al., 2019)
of some exemplary VLMs and highlight the steerability of InternVL-Chat 1.1 (Chen et al., 2024)
through the processing of vision and language inputs (prompts).

9.1 Introduction
As the old adage goes, all models are wrong, but some are useful (Box, 1976). Similarly, recent machine
learning models have proven to be very useful in practice, although we know their decisions to be
impacted by specific biases, such as cue preferences misaligned with human perception and shortcuts
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(Geirhos et al., 2020a). Some of these cue biases are particularly misaligned in traditional, uni-modal
models and often reveal fundamental differences in the decision rule compared to humans (Geirhos et al.,
2019; Subramanian et al., 2023; Wang et al., 2020a; Buolamwini & Gebru, 2018; Raji & Buolamwini,
2019). However, the current generation of deep learning models is increasingly multi-modal, for
example, by fusion of large language models (LLMs) with modality-specific encoders (OpenAI, 2023;
Alayrac et al., 2022; Huang et al., 2023). On the one hand, this approach allows for an exciting array
of applications that can be defined at inference via prompts in natural language. On the other hand,
the once well-studied biases are now combined in multi-modal fusion, leaving open questions on how
and if the specific biases interact.

Specifically for vision-language models (VLMs), we are therefore asking if we can talk models into
seeing the world differently – i.e., to what extent does the LLM-based multi-modal fusion change the
cues predominantly used for image classification and, furthermore, can we utilize natural language
prompts to override the inductive biases of vision encoders. If language is indeed able to influence a
vision-only bias, this may offer the possibility of aligning model behavior (with human behavior) using
intuitive language prompting.

In general, determining biases in the visual cues used by a model to make a particular prediction
is difficult (as outlined in Section 2.9.3). While we assume that there is a multitude of cue biases
learned in vision models, only a few of them are harmful or misaligned.1 An example of a benign
bias would be the “foreground” bias, i.e., models mostly classify images by their foreground objects.
Similarly, objects in the image center are usually perceived to be more important than objects in the
periphery. These biases follow human intuition and have, therefore, not been causing much controversial
discussion.

This is in contrast to the texture vs. shape bias (Geirhos et al., 2019) – one of the best-studied cue
biases in object recognition models (Hermann et al., 2020; Shi et al., 2020; Islam et al., 2021; Benarous
et al., 2023; Naseer et al., 2021; Subramanian et al., 2023). It states that humans predominantly
recognize objects in images by their shape (96% shape over texture decisions), whereas vision models
strongly prioritize texture cues and discount the object’s shape often. Machine perception is, thus, at
odds with human intuition, even if the model accuracy is high.

We are the first to provide a large-scale study for VLMs for which we investigate the texture/shape bias
in object recognition. Our investigation shows that the texture bias is, by default, far less pronounced
in VLMs than in most previously studied vision-only models. As shown in Figure 9.1, VLMs decide by
shape more often than by texture – albeit not matching the human shape bias (96%). Further, we find
that by using biased instructions, we can steer the model output to some extent in both directions
toward a texture or shape bias. This demonstrates that visual biases in multi-modal models can
be influenced by language, opening up an exciting new possibility of aligning model outputs using
language prompts without the need for retraining.

We summarize our contributions as follows:

• We show that VLMs preserve the bias of their vision-encoders only to some extent, yielding
decisions that are more shape-biased than pure vision models, albeit not reaching human levels
of the shape bias (Section 9.4).

• We show that the vision encoder generates a biased representation that contains texture and
shape cues. Ultimately, the language modality (the LLM) tends to suppress either of the cues,
such that objects are recognized purely on the grounds of either shape or texture (Section 9.4.2).

• We find that VLMs offer a unique opportunity to steer visual biases through language alone,
stemming from the multi-modal fusion. For instance, we can steer the shape bias as low as
49% and as high as 72% through prompting alone without significantly affecting the accuracy
(Section 9.5.2).

1We are explicitly focusing on biases in terms of low-level vision cues such as shape versus texture or high-frequency
versus low-frequency. High-level biases that may have a societal impact are, therefore, explicitly excluded from this
investigation. Please see Section 9.2 for a discussion.
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9.2 Background
Sparked by the success of vision-language pretraining (Radford et al., 2021; Jia et al., 2021; Zhai et al.,
2022b; Sun et al., 2023b), where features extracted from image-text paired data are aligned in a joint
embedding space, recent VLMs added language modeling during training (Li et al., 2022; Yu et al.,
2022b; Li et al., 2023b), enabling models to reason about images. Subsequently, finetuning these VLMs
on instruction-following data (Alayrac et al., 2022; Liu et al., 2023c; Luo et al., 2023; Dai et al., 2023;
Huang et al., 2023), such as reinforcement learning from human feedback (RLHF) (Ouyang et al.,
2022), enables users to prompt these models, easing their usability for humans. Resulting models are
commercialized (OpenAI, 2023; Gemini Team, 2023; Qwen Team, 2024) or open-sourced (Liu et al.,
2023c; Dai et al., 2023; Chen et al., 2024), and consequently become accessible to a wide range of
users.

This success of vision-language models calls for improving our understanding of the visual cues leveraged
by VLMs and the degree to which these can be affected through language. In particular, the fact
that vision models leverage cues different from the ones intuitively used by humans has been widely
discussed. In our study, we focus on the texture vs. shape bias as a particularly well-studied example
in vision-only models. Humans primarily rely on shape information to recognize objects. This is in
contrast to standard ImageNet-trained vision models, such as Convolutional Neural Networks (CNNs),
are biased towards texture to make their classification decisions (Geirhos et al., 2019). Nonetheless,
shape information can still be present in layers/latent space of the model before the classifier (Hermann
et al., 2020; Islam et al., 2021). Prior research has shown that the texture bias of CNNs can be
reduced in training (Geirhos et al., 2019; Lukasik et al., 2023; Li et al., 2021; Hermann et al., 2020;
Geirhos et al., 2021; Gavrikov et al., 2023; Jaini et al., 2024). But the network architecture has a
high influence, and vision-only Vision Transformers (ViTs) (Dosovitskiy et al., 2021) were shown
to be more shape-biased by default (Naseer et al., 2021), more human-like (Tuli et al., 2021), scalable
by data size (Zhai et al., 2022a), and can be explicitly designed to separate shape and texture in
their token space (Naseer et al., 2021). Jointly embedding vision and language in these networks
(but not CNNs), through CLIP (Radford et al., 2021), further increases their shape bias in zero-shot
classification (Geirhos et al., 2021). Yet, these models still do not reach human levels. The only known
models to achieve such levels are image-generative classifiers (Jaini et al., 2024), which also combine
vision and language in a different manner.

Measuring the texture/shape bias A cornerstone of our analysis is the measurement of the
texture/shape bias in (LLM-based) VLMs when performing tasks that are based on object recognition.
In the following, we summarize how this bias is measured for vision-only models, which forms the basis
for our study.

Like most studies on the shape-texture bias in vision models, we use the texture-shape cue-conflict
classification problem (or simply cue-conflict) (Geirhos et al., 2019) consisting of 1,280 samples with
conflicting shape and texture cues synthetically generated via a style transfer model (Gatys et al.,
2016) from ImageNet (Deng et al., 2009) samples (see Figure 9.1 for examples). The shape and texture
classes belong to 16 super-classes of ImageNet (airplane, bear, bicycle, bird, boat, bottle, car, cat,
chair, clock, dog, elephant, keyboard, knife, oven, truck). Following (Geirhos et al., 2019), we have
excluded 80 images from the dataset where texture and shape cues belong to the same class. From
an information perspective alone, predicting either cue label (or both) would be correct. However,
humans tend to prioritize the shape cue for predictions, which is in stark contrast to most models
(Geirhos et al., 2019).

Using the shape or texture cue label as the correct label allows us to measure the shape and texture
accuracy, respectively. Based on these measurements, we measure the cue accuracy as the ratio of
predictions that contain either the shape or texture label (as opposed to a misclassification):

Cue Accuracy = Shape Accuracy+ Texture Accuracy (9.1)

Throughout this chapter, we will refer to this as the accuracy. We use the definition of shape bias
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(Geirhos et al., 2019), which is the ratio of shape decisions to all correct decisions (a specific case of
the bias measurement defined in Equation 2.41):

Shape Bias = Shape Accuracy/Cue Accuracy (9.2)
While we primarily focus on measuring the shape bias in this study, the accuracy provides an important
signal of the model’s quality and robustness and for the comparability of results.

Other biases in deep neural networks We want to emphasize that we deliberately exclude
high-level, societal biases from our considerations. Our study merely considers biases in the sense of
low-level feature-based cues preferences.

High-level vision biases have been widely investigated, such as single-demographic effects (race and
gender) for face recognition tasks (Buolamwini & Gebru, 2018; Raji & Buolamwini, 2019). For language
models, several works focus on investigating societal biases, such as gender and race (Barikeri et al.,
2021; Lauscher et al., 2021) and ways of debiasing them (Lauscher et al., 2021; Meade et al., 2022; Guo
et al., 2022b), or explicitly forcing them (Haller et al., 2023). A recent study also found that LLMs
are biased towards high-value over likely options (Sivaprasad et al., 2024). Another study focused on
encoded moral beliefs (Scherrer et al., 2023). LLMs can also pick up human traits - one study found
that adding “take a deep breath” to prompts improves performance (Yang et al., 2024). Of course,
some of the uni-modal biases also apply to VLMs (e.g., (Yang et al., 2024)), but a few works have
also explicitly focused on biases in VLMs. For example, neurons of CLIP (Radford et al., 2021) were
studied in (Goh et al., 2021), revealing that some neurons respond to the same concept regardless of its
presentation, which is a potential reason for the high generalizability. On the other hand, this enables
attacks by rendering text on images (typographic attacks). Additionally, several works demonstrated
that VLMs fail to count objects (Radford et al., 2021; Liu et al., 2021a; Thrush et al., 2022) and
generally struggle in structured tasks (Zhai et al., 2022b).

9.3 Measuring Cue Biases in VLMs
Given a dataset such as proposed in (Geirhos et al., 2019) for shapes and textures, we propose to
measure the cue bias of VLMs through behavioral cue-conflicted testing (Section 2.9.3) in two tasks:
visual question answering (VQA) (Antol et al., 2015), where we seek to obtain a zero-shot classification
(Radford et al., 2021) of the object, and image captioning (Vinyals et al., 2015) where we look for
an accurate but brief description of objects in the image. For both tasks, we evaluate single-round
answering with no shared conversation history between conversations. To reduce the VLM behavior to
a classification task, we follow the methodology outlined in Section 2.5.3 and explain the nuances in
the following subsections.

9.3.1 VQA Classification
Following the questioning style in LLaVA (Li et al., 2023a), we ask the model to select the best option
from an alphabetic enumeration of all class labels in the style “A. airplane”. The prompt for VQA
Classification is:

"{VQA_INSTRUCTION}
A. airplane
...
Answer with the option's letter from the given choices directly."

with a default setting VQA_INSTRUCTION=“Which option best describes the image?”.

For a simpler response extraction and confidence evaluation, we end the prompt by instructing the
model to answer with only the letter corresponding to the correct answer. Compared to captioning,
this is similar to the discrimination in ImageNet (Deng et al., 2009) image classifiers (Krizhevsky et al.,
2012) in the sense that it only allows the model to respond with a single class and does not provide an
option to not answer - if models follow the instruction.
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Response extraction Despite instructing the models to only respond with an option letter, we
observe multiple response styles: option letter + label (“H. cat.”), just the label (“cat.”), long
explanation containing the option letter and/or label (“The image features a black and white
image of a cat.”). In all cases, punctuation and capitalization may be different (“H.”, “H”, “h)”).
The first two response styles are easily correctable by simple post-processing (we prioritize the option
letter in case of a conflicting option letter and label), and in some cases, explanations can be corrected
as well if the response includes the option letter. However, we avoid heavy post-processing and
consider individual answers wrong if they are not recoverable. In most cases, the ratio of these is
negligible.

Active Steering through Prompts

The above setting allows testing of the inherent cue bias of a given VLM. Yet, the multi-modal nature
of VLMs paves the way to not only test for a given bias but also to actively steer the model towards
using particular types of visual cues. Note that models are not explicitly trained to perform well under
this task, and it is unclear how flexible they are in basing a particular decision on one or another type
of cue (for example, on texture or shape).

To explore the flexibility of model predictions for given types of visual cues, we conduct experiments
comparing performance under a default neutral prompt and biased instructions.

In the simplest case, we can test the cue bias steering through hand-crafted prompting, where a model
is asked to identify the class using a particular visual cue (e.g., “Identify the primary shape in
the image.”). More generally, we set VQA_INSTRUCTION to “Identify the primary {BIASED_TERM}
in the image.”, with BIASED_TERM being “shape” and BIASED_TERM being “texture”, for shape-,
and texture-biased prompts, respectively.

Automated prompt engineering To further enhance the steering signal provided by the language
prompt, we further evaluate automatically crafted prompts. This is achieved by employing an LLM
as optimizer (Yang et al., 2024) to continuously generate new prompts in natural language targeting
to maximize either shape or texture bias in a feedback loop. We provide the LLM feedback about
the achieved accuracy and shape bias. Additionally, we opt for greedy token sampling in the VLM to
reduce noise in the feedback loop.

We utilize Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024), an open-source SOTA model at the
time of writing, that performed better than the Nous Hermes LLM we use for response extraction in
Section 9.3.2.

We instruct the model to provide a prompt in a new line starting with “PROMPT: ” that we then
extract and automatically evaluate. Afterward, we return the results to the LLM and ask it to generate
the next prompt. We have experimented with multiple prompts, but ultimately, our approaches can
be loosely divided into prompts that try to maximize or minimize a given bias without significantly
affecting accuracy. Besides linguistic tweaks, we experimented with the following techniques:

1. Offering rewards: We offered tips to the LLM to encourage it to generate more and better
results.2 However, Mixtral seems to be finetuned to refuse such attempts.

2. Adding in-context examples: We added an example (in language) of what it means to be
shape or texture-biased in classification. This often seemed to bias the model to generate prompts
that contain the example, too.

3. Summarizing previous attempts: We encouraged the LLM to summarize previous attempts
before generating the next prompt, hoping to keep the most important aspects in context. The
LLM did not always follow this suggestion.

2https://twitter.com/voooooogel/status/1730726744314069190 [Online; accessed 6. Mar. 2024]
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4. Returning the extracted prompt: The LLM sometimes did not start the prompt with the
requested prefix or misplaced it. We mitigated this by including the extracted prompt in our
responses.

5. Encouragements in response: Initially, we only returned the accuracy and shape bias but
found that the LLM sometimes abruptly quits the search. Thus, we included encouragements in
the form of questions like “What is your next prompt?”. This seemed to improve conversations
in terms of length but could not entirely prevent the LLM from quitting.

6. Simple but creative prompts: When just instructed the LLM to generate prompts, we noticed
that it would sometimes collapse to verbose prompts where it would attempt to rephrase terms
by synonyms. Inspired by regularization terms in optimization, we ask the model to keep its
prompt simple and creative to avoid minor tweaking in favor of more radical changes.

In all cases, we append a mock conversation (i.e., both roles are written by us) to the history containing
the neutral prompt and the respective shape bias/accuracy. An example conversation is shown in
Table 9.1. The first message is the final iteration integrating all of the above techniques.

It is worth noting that optimization with LLMs is a highly exciting but also very active research
field where best practices have not yet emerged. For example, we have noticed that our instruction
sometimes caused the LLM to refuse to continue when it deliberately determined that the search was
exhausted or caused the LLM to maximize shape bias despite the instruction to minimize it. Overall,
this is not an issue for our study, as we are merely interested in understanding if quantitatively more
texture/shape-biased prompts exist.

9.3.2 Image Captioning
In this task, we are instructing models to generate brief descriptions (“Describe the image. Keep
your response short.”). We specifically request the model to provide a short response to encourage
it to single out the most crucial aspects of the image according to its judgment. Additionally, this has
the benefit of faster inference.

Response extraction As the responses are open-ended, we rely on zero-shot classifications of the
generated description to marginalize the most descriptive class. To this end, we embed the generated
descriptions and all (raw) class labels using ember-v1 (LLMRails, 2024) and predict the class with the
smallest cosine distance (similar to zero-shot classification in CLIP (Radford et al., 2021)). However, the
generated caption may refer to multiple class labels (or none). As an additional signal, we perform a
more granular analysis using an additional LLM (Nous-Hermes-2-Mixtral-8x7B-DPO (Teknium et al.,
2024)) by instructing the model to extract all mentioned classes (similar to Yan et al. (2021)). This
allows us to understand if the model detects both cues (but the embedding model enforces a specific
prediction) and to quantify how often the model response is too generic to detect any class.

Specifically, we utilize the following prompt:

"Your task is to extract all objects that are described in the given message. Only
answer with all letters from the given choices that apply. If none apply, reply
with X. Do not explain. These are the possible objects:

↪→

↪→

A. airplane
...
Message: {Generated Image Caption}"

We post-process the output by splitting the generated string into a list. We found this prompt by
manually testing some examples and picking the best-performing one. For example, we experimented
with other options to denote generic responses like “-”. However, we found that this increases
hallucinations, presumably as “-” is often used to begin bullet points and, thus, causes the model to
continue generation.
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Table 9.1: Example conversation for the LLM-guided prompt search. ∗ denotes our mock
conversation.

User∗ Your task is to help me design an ideal image classification prompt
for a vision/language model to MINIMIZE the shape bias without
significantly hurting accuracy. The provided photos show natural
objects modified to contain shape and texture of conflicting object
classes. E.g., it could be a photo of an elephant (shape) with dog
fur (texture). The model should classify the image as ’dog’ based
on the texture of the object and ignore the shape. The model’s
accuracy is the percentage of correctly classified images. The shape
bias is the ratio of how often the model classified based on shape
over texture. You can test your prompt by outputting a single new
line starting with ’PROMPT: ’. Do not list options - the system
will provide them automatically. Try to keep the prompt as short
and simple as possible but be creative. It might be reasonable to
summarize insights of previous attempts and to outline your goals
before responding with a new prompt, but make sure that only
the prompt starts with ’PROMPT:’. In response to the prompt
you will be told the accuracy and shape bias. Then you will refine
the prompt and we will continue until I say stop. Let’s go!

Assistant∗ PROMPT: Which option best describes the image?
User∗ Prompt: [...], Accuracy: 82.58 %, Shape Bias: 59.43 %. What is

your next prompt?
Assistant To minimize the shape bias while maintaining accuracy, let’s

encourage the model to focus more on textures than shapes. Here’s
my next prompt:
PROMPT: Based on the surface characteristics and patterns, which
category does the image most resemble?

User Prompt: [...], Accuracy: 78.25 %, Shape Bias: 50.9 %. Can you
improve this?

· · ·
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9.4 Cue Biases in VLMs: An Analysis of the Texture/Shape
Bias

We base our core analysis on the cue-conflict dataset evaluation of the texture versus shape bias
(Geirhos et al., 2019). Traditional image classification models like ResNet-50 trained on ImageNet
have been shown to severely prioritize texture cues (only 22% shape bias), starkly contrasting the
strong shape bias of humans (96%). As of now, results on multi-modal LLM-based models are missing.
Therefore, we start our experimental evaluation by measuring the shape bias for the VQA and Image
Captioning tasks, using a collection of diverse VLMs reflecting the multitude of research directions.
These models include connections of common pretrained CLIP encoders and LLMs (Liu et al., 2023c,b,
2024; Dai et al., 2023; Bai et al., 2023b; Hong et al., 2023; Wang et al., 2023c; Sun et al., 2023a),
mixture-of-expert LLMs (Lin et al., 2024), optimized architectures for resource-constrained systems
(Kim et al., 2023), finetuning with RLHF (Sun et al., 2023c; OpenAI, 2023), or massive vision encoders
(Chen et al., 2024). Additionally, we survey commercial, closed-source models like Gemini Pro Vision
1.0 (Gemini Team, 2023), GPT-4V (Preview) (OpenAI, 2023), and Qwen-VL Plus/Max (Qwen Team,
2024) where access is limited to APIs and few details are known. For a brief description of these
models, please refer to Table A.5 in Appendix A.4.

9.4.1 Key Results
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Figure 9.2: Most VLMs prioritize shapes over texture cues. We measure the shape bias on the
texture/shape cue-conflict dataset (Geirhos et al., 2019). For reference, we also provide measurements
on an ImageNet-trained ResNet-50 (He et al., 2016), zero-shot classification with CLIP ViT-L/14
(Radford et al., 2021), and a human average (over 10 subjects (Geirhos et al., 2019)). The results in
table format are shown in Table A.6.

The results in Figure 9.2 paint a fairly uniform picture across different models and on two different
tasks (a full table of results is shown in Table A.6 in Appendix A.4). Overall, the shape bias of VLMs is
still significantly lower than that of humans (96%), but higher than in typical image-only discriminative
classifiers (e.g., 22% for an ImageNet-trained ResNet-50 (Geirhos et al., 2019)). Additionally, for
most models, the shape bias is higher than the ca. 60% shape bias of CLIP ViT-L/14
(Radford et al., 2021) - an interesting result given that this model is a common vision encoder used in
many of our tested models. GPT-4V (OpenAI, 2023) is an unexpected outlier both in terms of accuracy
and in terms of texture bias. We further discuss this particularity in Section 9.7.
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The task only marginally affects the shape bias. Despite conceptually different tasks, i.e., the
discriminative VQA task and the one open-ended captioning task, we do not observe fundamental
shifts in the utilized information cue. We were able to report shape bias under the image captioning
task for all models. However, a few models did not follow the VQA instructions and are, thus, not
reported in Figure 9.2. Most of these models displayed a pronounced texture bias, which might hint
towards a correlation between underfitting and texture bias, but to answer this question conclusively,
we would need more samples.

On average, the shape bias is slightly higher for the image captioning task than for VQA (on average
63.9% versus 61.6% for those models that could be evaluated on both tasks). However, this comes at
some cost in accuracy (on average 71.0% versus 78.9%). This decrease in accuracy is due to generic
captions that do not refer to any class (see Table A.6 for details). For VQA the range is from 52.9
- 73.8% and 54.1 - 73.2% for captioning – yet outliers with a significantly lower (38.2%) shape bias
in captioning exist, and for the individual models, the cue bias strongly depends on the considered
task (refer to the gap between circles and stars for several of the models in Figure 9.2). Exceptions
seem to be, for example, the Gemini Pro Vision 1.0 model, several of the LLaVA models, and the
InternVL-Chat 1.2+ model for which the considered task barely influences the cue bias.

Which models are the most shape-biased? The strongest shape bias is observed in InstructBLIP
Vicuna-7B (Dai et al., 2023) for VQA, but the model generally shows a lower accuracy compared to
other models. A more accurate model is InternVL-Chat 1.1 (Chen et al., 2024) which ranks second
place for VQA but first for captioning.

Does LLM scale matter? LLM capacity does not seem to correlate with shape bias and un-
predictably skews the shape bias by a few percent in each way, as can be seen in Qwen-VL, LLaVA
v1.5/NeXT/RLHF, or InternVL. Similarly, the overall largest models do not have the highest shape
bias. However, following the overall general trend, in our experiments, we also found that scale usually
improves accuracy.

Does RLHF align shape bias? RLHF-tuned VLMs were still rare at the creation of this survey,
and we only have three model samples. On both LLaVA-RLHF (Sun et al., 2023c) models, we see no
changes in comparison to the default LLaVA models. GPT-4V (OpenAI, 2023) (though it is unclear if
vision was also RLHF trained) shows one of the lowest shape biases in our study, but we do not know
how the base model ranks. Overall, it is hard to derive a conclusive answer, but it seems that at least
RLHF does not necessarily guarantee an alignment of visual preferences.

9.4.2 Mechanistic Analysis
We have observed that the shape bias in VLMs differs from that of CLIP (ViT-L/14), the vision
encoding model used in most of the tested models. This prompts an inquiry into the VLM’s decision
process. Specifically, it raises the question of whether language can affect a purely visual like the
texture/shape bias. In this section, we want to specifically look at the vision encoder and its
representation, having only access to the visual input and the LLM combining both modalities.

Vision Encoding

Most VLMs combine a frozen CLIP vision tower with an LLM via some projector (Dai et al., 2023;
Liu et al., 2023c; Alayrac et al., 2022). Hypothetically, the LLM could learn to perform zero-shot
classification using their encoders akin to a function call whenever the prompt requires some form of
classification and then simply forward the result. In such a case, the VLM would also inherit the shape
bias from the encoder. To gain more insights, we ablate the encoder using zero-shot classification
from the full model. We derive the encoder’s predictions by calculating the cosine similarity between
the encoded class labels3 and the input sample, selecting the label with the highest similarity to the

3We explore various prompt templates (and ensembles) in Section 9.6.2, yielding consistent results.
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Table 9.2: Comparison between VLMs and their encoders. We show the relative difference
between a VLM and its encoder in shape bias and accuracy when evaluated on texture/shape cue-conflict
tasks, along with error consistency (Geirhos et al., 2020b). VLM performances are assessed using VQA,
while the vision encoders are evaluated using zero-shot classification. Statistically significant changes
in shape bias (p < 0.05 in a two-sided t-test) are denoted by an ∗ next to the value.

VLM - Encoder [%] Error Con-
VLM Vision Encoder Accuracy Shape Bias sistency [%]
LLaVA v1.5 13B (Liu et al., 2023b)

� CLIP ViT-L/14@336px (Radford et al., 2021)

−3.50 +4.2∗ 73.5
LLaVA v1.5 7B (Liu et al., 2023b) −3.00 +1.5 76.8
LLaVA-NeXT 34B (Liu et al., 2024) −9.92 −3.9∗ 67.1
LLaVA-NeXT 13B (Liu et al., 2024) −0.33 −2.7 70.9
LLaVA-NeXT 7B (Liu et al., 2024) −1.08 −0.2 67.5
MoE-LLaVA v1.5 Phi2 x4 (Lin et al., 2024) −1.42 −0.3 73.4
MoE-LLaVA v1.5 Qwen x4 (Lin et al., 2024) −24.25 +3.0 51.4
MoE-LLaVA v1.5 StableLM x4 (Lin et al., 2024) −3.67 −0.8 73.1
InstructBLIP FLAN-T5-XL (Dai et al., 2023)

� EVA-01-CLIP ViT-g/14@224px (Sun et al., 2023b) −6.83 +1.8 73.7
InstructBLIP Vicuna-7B (Dai et al., 2023) −14.42 +7.4∗ 78.7

Emu2-Chat (Sun et al., 2023a) � EVA-02-CLIP-E/14+@448px (Sun et al., 2023b) −11.08 −9.5∗ 61.0

image (as described in Section 2.5.2). Specifically, we measure the difference in accuracy and shape
bias between the encoders of the VLM and the VLM itself, as well as their error consistency (Geirhos
et al., 2020b).

Error consistency is a metric to assess whether two observers (e.g., a human and a model) systematically
make errors on the same images. If that is the case, this suggests a deeper underlying similarity
compared to simply reaching similar overall accuracies since those could be reached with very different
strategies. The metric is based on Cohen’s κ (Cohen, 1960) and computes how frequently errors
made by two observers overlap (up to perfect overlap) while correcting for the overlap expected by
chance. Cohen’s κ is within [−1, 1], with a value of 0 indicating chance-level consistency, positive
values indicating systematic agreement, and negative values indicating systematic disagreement. For
our measurement, we treat all predictions other than the shape label that are not related to the shape
cues as errors. We show results for the VQA task in Figure 9.3.

The vision encoder provides a flexible representation Our comparisons in Table 9.2 show that
VLMs’ decisions differ from their isolated encoders. Even on the rather simple 16-way cue-conflict
problem, all VLMs decrease in accuracy compared to their encoders in zero-shot classification. This
may be expected as the increase in supported tasks in VLMs comes at a cost in specialization but is
already a sign of changes. Further, we note that the error consistency to their respective encoders
only matches up to 78.7%. This leaves at least 20% room for decisions that differ from the encoder,
proving that the LLM and the text prompt further influence the shape bias despite being a vision-only
bias. This deviation can only be possible if the generated vision tokens are flexible to some degree by
containing information belonging to both cues. This is further confirmed by the measurement of shape
bias, which shows a −9.5% to +7.4% difference in both directions.

LLM Processing of Vision Tokens

In the VQA task, we force the model to predict a single class – yet the previous section has shown that
the vision tokens generated by the encoder contain information from both cues. To better understand
the processing, we evaluate the VQA prediction confidences as follows.

All answer options in our VQA prompts correspond to a single character and, thus, a token. Well-
behaving models, where the response consistently starts with the option letter (and nothing else), allow
us to gather insights into the prediction process. For these models, the logits of each token correspond
to the logits of option letters. By applying a Softmax function (Equation 2.24) over the token logits
belonging to answer keys, we can analyze the confidence in each option (we select the top 16 tokens,
ignore all invalid tokens, and set the probability of missing answer tokens to 0). This allows us to
better study the sampling behavior and make the following observation:
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Figure 9.3: Error consistency between texture/shape cue-conflict observers. We measure
the pair-wise error consistency (Geirhos et al., 2020b) between all observers. For this analysis, an error
is any answer that does not belong to the shape class. Shown responses belong to LLM-based VLMs
(under the VQA task), other selected models including ImageNet models, (some) VLM encoders under
ImageNet-finetuning and zero-shot classification, and ten human subjects.
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models form highly biased decisions by completely ignoring one cue. Measured on LLaVA-NeXT 7B,
InternVL-Chat 1.1, and MoE-LLaVA-Phi2 for the VQA task.
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LLMs turn flexible representations into biased decisions In Figure 9.4, we visualize the
confidence of the token corresponding to the shape or texture answer option. This experiment can
only be performed on models where we have access to the logits, and the model consistently follows
the instructions to respond only with the predicted options letter. This limits the analysis to a few
models in our zoo, and we show similar results on LLaVA-NeXT 7B (Liu et al., 2024), InternVL 1.1
(Chen et al., 2024) and MoE-LLaVA-Phi2 (Lin et al., 2024).

To our surprise, we find that confidence in both options is almost binary. Analogously, when we
only focus on correct answers, we observe that the model is highly confident in its responses. As
the model places such high confidence in the selected cue, this suggests that information from the
alternative cue is effectively disregarded during LLM processing. This conclusion is further supported
by the observation that the second, significantly less confident prediction token does not align with
the conflicting cue. For example, in LLaVA-NeXT 7B (Liu et al., 2024), this occurs in 70.7% of cases.
Only 17.7% of the top-2 pairs contain both shape and texture. Thus, while the encoder has its own
inductive bias that directs the final decision, the actual biasing happens in the LLM, similar to linear
classification heads in discriminative models (Islam et al., 2021).

While it is not clear if these findings generalize to all other VLMs, the overall high error consistency
between all VLMs (see Figure 9.3 for a heatmap) on our task hints that our results may generalize
well to other models.

9.5 Bias Steering in VLM Outputs
In the previous section, we have seen that in VLMs, visual biases are not simply inherited from the
vision encoder, but the fusion with an LLM, including the text prompt, plays a crucial role. Given the
somewhat flexible representation of texture/shape bias, we test in the following if we can actively talk
VLMs into seeing the world differently, i.e., systematically steer the output towards either end of the
bias and go beyond the inductive bias.

Since the texture/shape bias is a vision-only bias, we first look into visual steering through image
preprocessing (Section 9.5.1). Then, we explore the influence of language through prompt engineering
on the visual texture/shape bias (Section 9.5.2). Furthermore, while we expect strong model steerability
through image preprocessing (obviously at high costs in model accuracy), Figure 9.1 indicates significant
flexibility of (some) VLMs through language, potentially offering a powerful way of shaping visual
biases in a user-specified way without the need to retrain a model. Finally, we study if prompt-based
bias steering can generalize beyond the texture/shape bias in Section 9.5.3.

9.5.1 Vision-based Steering of the Texture/Shape Bias
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Figure 9.6: Image preprocessing can strongly
steer texture/shape bias. Left: Shuffling im-
age patches with decreasing patch size results in
a strong texture bias. Right: Increasing Gaussian
noise introduces a strong shape bias.

Before we turn our analysis to steerability through
prompts, we show how and to which extent shape
bias can be steered in vision through perturba-
tions of the input images.

Earlier work demonstrated that ImageNet-models
can still detect objects even if the image is split
into patches and shuffled (Zhang & Zhu, 2019;
Shi et al., 2020; Naseer et al., 2021). As patch
size decreases, the operation is destroying more
global shape information, yet retaining local tex-
ture information. We utilize this technique to
significantly increase texture bias. Oppositely, to
increase the shape bias we experiment with added
Gaussian noise to inputs. This is loosely inspired
by applying “diffusion-like noise” during training
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Noise increases shape bias

Patch shuffling increases texture bias

Figure 9.5: Steering in the vision modality. For one example image, we show how patch shuffling
(top) increases texture bias by destroying shape information. Below, we show how adding Gaussian
noise increases shape bias by destroying texture information. Please note that we show more extreme
values than those used in our experiments for visualization purposes.

(and inference), which has been shown to drastically improve the shape bias of ImageNet-ResNets
(Jaini et al., 2024). However, we only apply the noise during inference and use a more simplistic
approach by adding N (0, σ2) noise to all channels, consecutively clamping values to [0, 1]. We visualize
the effects on one cue-conflict sample in Figure 9.5.

We show results on LLaVA-NeXT 7B in Figure 9.6. Adding noise results increases the VLMs shape bias
up to 89.5% at σ2 = 0.5, and patch shuffling decreases shape bias (increases texture bias) to 8.4% at
28× 28 patches. In both cases, the bias is indeed steered up to a certain threshold: the accuracy on
one cue (texture or shape accuracy) increases, whereas the accuracy on the other decreases. Beyond a
specific point, the operation is destroying one cue entirely and can no longer be considered steering.
Further, this form of steering comes at a cost in accuracy – yet all results are still well beyond random
chance.

Inspired by these strong results, we repeat the experiments on the naturally more shape-biased and
larger InternVL-Chat 1.1 (Chen et al., 2024). In this model, we can further extend the range to
91.7% (σ2 = 0.3) and down to 6.1% (28× 28 patches) shape bias.

9.5.2 Prompt-based Steering of the Texture/Shape Bias
Our previous results suggest that VLMs learn a connected multi-modal understanding of shape and
texture. This opens the question of whether visual biases in outputs can be influenced through text
processing in these models. We test this hypothesis by recording texture/shape bias as a function and
steering it via text through prompt engineering.

Hand-crafted prompting We start by asking VLMs to specifically identify either the “shape” or
the “texture” category in a given cue-conflict image. As shown in Figure 9.7, prompting can steer
a visual bias (without significantly affecting accuracy). Neutral prompts often perform similarly to
shape-biased prompts, whereas texture-biased prompts deviate more significantly. This suggests that
models may be more inclined to use shape by default but also have access to a certain amount of
texture information, which can be accessed through biased prompting.

To better test the representation of “shape” and “texture”, we additionally replace the respective terms
with strong synonyms obtained from Thesaurus.com (Dictionary.com, 2024a,b):
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Figure 9.7: Language can steer the texture/shape bias to some extent. We test the
same texture/shape-biased instructions on multiple models, showing that these can already shift
some decisions (usually in favor of texture). The stated percentages refer to the achieved accuracy
on cue-conflict. For InternVL 1.1 and LLaVA-NeXT 7B, we additionally test the understanding of
texture/shape by using synonyms. Furthermore, we use an LLM to automatically search for specific
prompts to optimize in either direction.

• shape: architecture, aspect, body, configuration, contour, format, frame, model, outline, pattern,
shadow, silhouette

• texture: balance, character, composition, consistency, fabric, feeling, make-
up, nature, pattern, quality, sense, smoothness, structure, surface, taste, touch

Our biased prompt is formed by replacing BIASED_TERM in the biased VQA prompt with the corre-
sponding synonym.

Then we measure shape bias on (InternVL-Chat 1.1 (Chen et al., 2024) and LLaVA-NeXT 7B (Liu
et al., 2024)). Synonyms of either term can steer shape bias as well to a certain degree. For “texture”
synonyms, we observe more variance, as “texture” is overloaded by different meanings (e.g., some
synonyms like “feeling”, “taste”, or “touch” are unrelated to texture in vision). In contrast, “shape”
is a fairly well-defined term. This demonstrates that the steering is not coincidental but leverages a
learned representation.

While the effect of steering by language is systematically visible, language steering alone does not
fundamentally change the reliance on the underlying cue. This effect does not appear to be a limitation
of LLM capacity – the evaluation on InternVL-Chat 1.2+ (34B vs. 13B) does not provide evidence
that larger LLMs offer more steerability.

Automated prompt engineering Did our results indicate a limit on how much language/prompting
can influence biases, or merely reflect that the handcrafted prompts were chosen suboptimally? To
address this question, we test automatically crafted prompts (see Section 9.3).

The results are shown in Figure 9.7 in gray and denoted as “search”. We observe that for both LLaVA-
NeXT-7B and InternVL-Chat 1.1, automatically generated prompts exceed the manually crafted
biased prompts in terms of their effectiveness to increase texture bias and roughly match them when it
comes to increasing shape bias. For InternVL-Chat 1.1, the delta between both extremes is 23.3%,
which can only serve as a lower bound and is likely improvable by a better design of the LLM task
(or using other optimizers). In line with hand-crafted prompts, overall accuracy does not change
considerably or sometimes even improves. We should also note that the optimization is done for the
texture/shape cue-conflict test set; this is simply done as a proof of concept to show that there are
prompts that can influence visual biases substantially, and not to claim a SOTA shape bias.
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LF: airplane bird clock elephant chair car
HF: bottle boat bicycle truck dog airplane

Figure 9.8: Examples from frequency-cue-conflict. Images are constructed from conflicting low
(LF) and high-frequency (HF) cues. Zooming may be necessary to see the high-frequent cues.

Steering human vision We also briefly compare our findings to human perception experiments
conducted by Geirhos et al. (2019). In their control experiments, humans were either instructed to
identify the shape while ignoring texture or, conversely, to identify the texture while ignoring the shape.
This “human prompt steering” worked, but only to a certain extent: When humans were tasked to
ignore the shape, the human shape bias decreased from 96% (neutral instruction) only to approx. 70%
shape bias (texture-biased instruction). Our tested VLMs behave somewhat similarly: their visual
shape bias can be steered through prompting, but it appears hard for them to completely go against
their default visual bias.

9.5.3 Prompt-based Steering of Other Biases

Table 9.3: Prompt steering on frequency-cue-
conflict. Statistically significant changes are marked
by * (two-sided t-test with p < 0.05). We compare
the “neutral” prompt with found prompts to maxi-
mize (“search (max)”) or minimize the respective bias
(“search (min)”).

Model Prompt Accuracy [%] LF Bias [%]

InternVL-Chat 1.1
neutral 92.92 34.5
search (max) 90.33 38.6*
search (min) 91.33 32.9

LLaVA-NeXT 7B
neutral 82.83 52.4
search (max) 84.25 54.5
search (min) 82.67 48.7*

So far, we have analyzed the texture/shape
bias. In this section, we show that steer-
ing is possible for other biases, too. To this
end, we explore a bias originating in the
spectral domain, specifically focusing on low-
/high-frequency cue conflicts (Oliva et al.,
2006). This bias has been shown to affect a
classification model’s robustness, for example,
in (Wang et al., 2020a) and our study in Chap-
ter 5. A related observation has been made
in (Subramanian et al., 2023), showing that
the critical frequency band of object recogni-
tion separates human perception from model
vision.

To investigate the steerability of frequency
biases, we present a novel dataset of stimuli following the texture/shape cue-conflict benchmark
methodology outlined by (Geirhos et al., 2019). This dataset consists of 1,200 samples across 16
ImageNet super-categories. Each stimulus is created by blending the low and high-frequency components
of two images with conflicting labels from a selected subset of 16 ImageNet classes. First, we randomly
select two samples with different labels from this subset. Each image is converted to grayscale by
extracting the L channel, resized to 256 pixels along the shortest edge while maintaining the original
aspect ratio, and then center-cropped to 224×224 pixels. The blending process involves combining 30%
of the low-frequency components from one image with 70% of the high-frequency components from the
other. The resulting stimuli are saved in JPEG format at 100% quality to preserve high-frequency
details and avoid compression artifacts. Examples of these stimuli are shown in Figure 9.8.

We test the same neutral prompt as for previous experiments and use our automated prompt search to
either maximize or minimize the bias. The results in Table 9.3 show that, again, we can steer the bias
by language. The range, of course, depends on the vision representation and language training and is
not as pronounced as for texture/shape bias. Still, we find that our prompts can result in statistically
significant changes in bias. On LLaVA-NeXT 7B, the prompts even improved accuracy alongside the
bias.
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Independent of the prompting, it is interesting that the smaller LLaVA-NeXT 7B model almost perfectly
balances the conflicting cues, whereas the larger InternVL 1.1 model is significantly biased toward
HF. We hope that this dataset can pave a new avenue for future research on frequency bias.

9.6 Ablations
In this section, we aim to ablate our experiments to see if we introduced biases through our methodol-
ogy.

9.6.1 VLM Prompts
VQA

In initial testing, we found that the choice of prompts affects the eventual results and has the potential
to inevitably influence our study. Thus, in an effort to address this, we extensively evaluated our models
with multiple different prompting techniques used in literature (Liu et al., 2023b; Dai et al., 2023) and
chose the best one. Our prompt for VQA is inspired by LLaVA’s prompts for multiple-choice questions
(LLaVA Team, 2024). In an additional experiment (Table 9.4), we ablated alternative prompts on
LLaVA-NeXT 7B (Liu et al., 2024). We change or use an empty VQA_INSTRUCTION and change options
to CLIP-style options (“X. a photo of a {class}”). However, we only observed a minor fluctuation
in accuracy and shape bias and no significant effects. Our default prompt delivers the best accuracy
and is, thus, our preferred choice.

Table 9.4: Exploration of alternative VQA prompts.

Shape Accu-
Prompt Bias [%] racy [%]

“Which option best describes the image?
[...]” (default)

59.2 82.58

Default with CLIP-style options 59.5 81.92

“Describe the object in the image: [...]” 60.2 81.33

“Describe the object in the image: [...]”
with CLIP-style options 59.4 80.17

Empty instruction (just options) 59.5 81.33

Image Captioning

Our image captioning prompt is a reformulation of the VQA prompt (“Which option best describes
the image?” → “Describe the image.”). In the following, we ablate if the suffix (“Keep your
response short.”) may have interfered with our results. Additionally, we tested an alternative suffix
that explicitly asks for more details on LLaVA-NeXT 7B (Liu et al., 2024). The results for the former
investigation, in Table 9.5, show that our suffix indeed did not heavily bias the results in terms of shape
bias. While adding the suffix leads to an impact on accuracy, it reduces the ratio of generic descriptions
(not referring to any class). It has, on average, almost 4x fewer tokens, resulting in significantly faster
inference. Switching the suffix to “Be precise.” increases shape bias but, at the same time, also
increases the number of generated tokens and, worryingly, the ratio of generic responses. Overall, we
find that captioning prompts are more fragile, but our chosen default prompt provides a fair balance.
For all ablated prompts, we find that the shape bias is higher than in VQA.
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Table 9.5: Exploration of alternative Image Captioning prompts.

Shape Accu- Avg. Generic
Prompt Bias [%] racy [%] Tokens Ratio [%]

“Describe the image. Keep your response
short.” (default)

64.0 65.08 55.5 39.5

“Describe the image.” 63.6 68.25 202.9 46.8

“Describe the image. Be precise.” 67.3 64.50 166.2 50.6

9.6.2 CLIP Prompts
In this section, we provide results for different CLIP models under three different prompting strategies:
a computation of zero-shot centroids from 80 different prompts including usage of the class name
(Radford et al., 2021), “a photo of {class}.” which is often used as a default prompt (note the
dot), and “{class}” (without dot). We will argue that the latter is more comparable to the VQA
task of our VLMs, but, of course, VLMs may have a better representation in weights. Either way, the
shape bias does not significantly deviate between the three strategies, as can be seen by shape bias
(and accuracy) measurements in Table 9.6.

We also noticed that the observed scaling laws in (Geirhos et al., 2021) do not always hold for vision
encoders, despite an increase in parameters from EVA02-CLIP-E/14+ (5B) to EVA02-CLIP-8B, we
actually see a significant decrease in shape bias (but an improvement in accuracy). This complements
our findings about shape bias in Section 8.6.

Our results also contain (rather uncommon) ResNet-based CLIP models. Note these are the only
models, where the 80 prompts significantly improve accuracy. In terms of shape bias, CLIP-ResNets
significantly underperforms any ViT or CLIP-ViT.

Table 9.6: Zero-shot classification on texture/shape cue-conflict with different CLIP(-like)
joint embedding models.

Model Prompt Shape Bias [%] Accuracy [%]

EVA01-CLIP-g/14 (Sun et al., 2023b) 80 Prompts (Radford et al., 2021) 66.03 87.83
EVA01-CLIP-g/14 (Sun et al., 2023b) “a photo of a {class}.” 66.03 87.08
EVA01-CLIP-g/14 (Sun et al., 2023b) “{class}” 66.44 86.67

EVA02-CLIP-8B@448px (Sun et al., 2024) 80 Prompts (Radford et al., 2021) 58.26 91.83
EVA02-CLIP-8B@448px (Sun et al., 2024) “a photo of a {class}.” 57.58 89.00
EVA02-CLIP-8B@448px (Sun et al., 2024) “{class}” 56.60 88.33

EVA02-CLIP-E/14+ (Sun et al., 2023b) 80 Prompts (Radford et al., 2021) 65.62 90.67
EVA02-CLIP-E/14+ (Sun et al., 2023b) “a photo of a {class}.” 64.44 89.75
EVA02-CLIP-E/14+ (Sun et al., 2023b) “{class}” 62.48 86.17

CLIP-ViT-L/14 (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 60.95 84.08
CLIP-ViT-L/14 (Radford et al., 2021) “a photo of a {class}.” 60.20 84.17
CLIP-ViT-L/14 (Radford et al., 2021) “{class}” 60.16 81.17

CLIP-ViT-L/14@336px (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 61.52 86.83
CLIP-ViT-L/14@336px (Radford et al., 2021) “a photo of a {class}.” 60.56 86.42
CLIP-ViT-L/14@336px (Radford et al., 2021) “{class}” 59.80 83.75

CLIP-ResNet-50 (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 19.70 77.83
CLIP-ResNet-50 (Radford et al., 2021) “a photo of a {class}.” 20.96 72.75
CLIP-ResNet-50 (Radford et al., 2021) “{class}” 20.77 71.83

CLIP-ResNet-101 (Radford et al., 2021) 80 Prompts (Radford et al., 2021) 25.50 74.83
CLIP-ResNet-101 (Radford et al., 2021) “a photo of a {class}.” 25.23 71.00
CLIP-ResNet-101 (Radford et al., 2021) “{class}” 25.41 70.83
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9.6.3 Temperature Scaling
We are also interested in determining if generation parameters can influence the behavior of shape
bias. Generally, VLMs only expose a few controllable parameters, but all offer some form of stochastic
sampling of tokens, often via temperature scaling of the token logits (see Section 2.5 and Equation 2.24).
Most models default to low-temperature settings (or settle for a greedy token strategy), which is more
correlated with precise answers and is reasonable for VQA. On the contrary, higher temperatures are
correlated with more creative outputs and eventually token gibberish at extreme values. In general,
temperature scaling also results in better-calibrated models (Guo et al., 2017).

Exemplarily, we study this on LLaVA-NeXT 7B for both VQA and Image Captioning. We repeat the
non-greedy experiments three times for statistically meaningful results; however, we generally notice
a marginal error between runs. Our results in Figure 9.9 show no significant correlation between
temperature in the [0, 1] range and shape bias. As expected, the accuracy (slightly) decreases with
increasing temperature because less confident tokens mapping to correct predictions are now replaced
by false predictions. Yet, this appears to affect texture/shape information alike. This can easily
be explained by our token sampling analysis in Section 9.4. On average, texture/shape options are
fairly similarly confident, and top-1 tokens have very high confidence (in the VQA setting), which the
temperature scaling barely affects.

On the one hand, this finding serves as important confirmation that our comparison of VLMs at default
values (picked by the original authors) is reasonable, as it does not interfere with the shape bias. On
the other hand, this implies that users seeking more creative outputs can tune the temperature (and
similarly other parameters that control stochastic token sampling) without changing the utilized cues
for vision inputs.
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Figure 9.9: Ablation of temperature scaling. Temperature scaling has no significant effect on
shape bias neither under VQA (left) nor Image Captioning (right) tasks but starts to decrease accuracy
at higher levels. Experiments performed on LLaVA-NeXT 7B with 3 seeds (except Temperature = 0
and Temperature = 1 of Image Captioning where we use a single seed).

9.6.4 Additional Thoughts on the Image Captioning Task
Did our choice of embedding model bias the results? While we assume that most embedding
models will provide similar classification performance if the description clearly mentions one class, it
is unclear how the classification is biased if the description refers to multiple classes, invalid classes,
or is generic. Thus, we additionally ablate results with SFR-Embedding (Meng et al., 2024), which at
the time of writing was the overall SOTA English embedding model on the Massive Text Embedding
Benchmark (MTEB) (Muennighoff et al., 2023). While the accuracy improved by a negligible amount,
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shape bias results were largely unaffected. Thus, we settled for the faster ember-v1 models.

What happens if the description mentions multiple classes? Based on our LLM analysis, we
notice that in the majority of cases (min: 79.3%, mean: 92.2%, median: 93.0%, max: 97.6%; minimum
is given by InstructBLIP Flan-T5-xl (Dai et al., 2023)), descriptions do not refer to multiple labels.
Thus, a potential bias of the embedding model is negligible for our analysis.

What happens if the description is generic? According to our LLM analysis, many generated
descriptions do not refer to any object class (min: 11.4%, mean: 31.9%, median: 32.3%, max: 60.4%) -
in stark contrast to VQA responses. However, we also notice that the embedding accuracy is above
random choice in these cases. This suggests that the LLM may have missed objects and slightly
overreported the ratio.

In the cases where the caption is indeed generic, our choice of embedding model may have biased our
study. However, switching to SFR-Embedding (Meng et al., 2024) showed similar trends. Thus, we
assume that most other SOTA embedding models would behave similarly, yet we are excited about
how future embedding models will embed these cases.

Another option is to remove generic responses from the analysis. We observe that this typically
increases shape bias (and accuracy) – naturally more notably in cases where the generic ratio was high
(Table 9.7). E.g., for the extreme case of GPT-4V (OpenAI, 2023), shape bias increases by 9.3% and
accuracy by 40.47% (!). This preprocessing also seems to restore scaling laws to a large extent: larger
models achieve higher shape bias and accuracy. One outlier to this trend is InternVL Chat v1.2+
(Chen et al., 2024). It may be intriguing to replace the reported results in Section 9.4/Figure 9.2 with
the analysis on non-generic responses, but we avoid doing so, as this would a) remove a significant
portion of results; b) lead to poorly comparable results obtained on different subsets.

Table 9.7: Comparison of Image Captioning performance under ablation of responses. We
compare the shape bias and accuracy for the Image Captioning task computed over all responses and
only responses that an external LLM did not classify as generic.

All responses Non-generic
Model Shape Bias [%] Accuracy [%] Shape Bias [%] Accuracy [%]

Gemini 1.0 Pro Vision 63.2 68.00 65.7 88.40
GPT-4V (Preview) 53.6 52.67 62.9 93.14
Qwen-VL Plus 67.9 65.50 71.9 88.56
Qwen-VL Max 69.7 68.50 72.1 91.52
Qwen-VL Chat 38.2 67.42 40.1 83.92
InternVL Chat 1.1 73.2 75.58 74.5 87.89
InternVL Chat 1.2+ 61.3 82.42 62.3 88.15
LLaVA v1.5 7B 61.4 76.08 62.8 87.24
LLaVA v1.5 13B 62.7 75.58 65.1 88.24
LLaVA-RLHF 7B 63.0 71.83 64.7 83.80
LLaVA-RLHF 13B 62.3 73.25 66.3 86.08
LLaVA-NeXT 7B 64.0 65.08 66.9 92.48
LLaVA-NeXT 13B 63.5 65.25 65.3 92.95
LLaVA-NeXT 34B 66.2 57.50 73.6 96.39
MoE-LLaVA-StableLM 63.0 73.92 64.1 86.28
MoE-LLaVA-Qwen 63.2 75.33 64.4 88.03
MoE-LLaVA-Phi2 61.1 75.42 63.1 86.05
InstructBLIP Flan-T5-xl 67.1 81.50 68.7 89.09
InstructBLIP Vicuna-7B 67.7 80.67 68.4 90.27
Emu2-Chat 59.6 65.00 60.3 89.94
CogAgent Chat 67.4 60.33 70.8 97.38
CogVLM Chat 57.6 66.58 61.9 93.72
UForm Gen Chat 38.8 64.50 37.9 83.00
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9.6.5 Multi-Modal Training Stages
In this last subsection, we want to ablate the potential impact of differences in multi-modal train-
ing.

LLaVA models are trained in two stages. During Stage 1 training, the vision encoder and LLM remain
frozen, and only the parameters of the connector in between are updated. During Stage 2, the
parameters of the LLM are included as well. To ablate the effect of these different training stages
on our results, we repeated our experiments with a Stage 1 LLaVA-1.5-Vicuna-7B checkpoint in
comparison to the final Stage 2 model and show the results in Table 9.8.

It is worth noting that due to the lack of proper instruction-tuning, the Stage 1 model does not follow
the VQA instructions and, depending on the prompt, either generates gibberish (e.g., “The image is a
collage of various items, including a bottle, a jar, a can, a spoon, a fork, a knife,
[..keeps repeating..]”) or is consistently giving a wrong prediction. However, we can assess the
bias in the captioning setting. These answers are repetitive and noisy, too, but can still be discriminated
by the embedding models.

We observe the following trends: instruction tuning (Stage 2) reduces the verbosity of generated
descriptions (avg. tokens) and increases accuracy. The shape bias of all responses is only marginally
affected (slightly decreases). The instruction-tuned model generates significantly fewer generic captions
(i.e., those that do not refer to any label), but it also reduces the ratio of answers referring to multiple
classes and, thus, becomes more biased by forgetting one cue. Because we force the sentence embedding
models to make a prediction even on generic captions, we may bias the results. To compensate for
this, we repeated the analysis only on the non-generic captions (similar to Table 9.7).

For non-generic responses, the Stage 1 model performs better (higher accuracy) and achieves a higher
shape bias. Taken together, this indicates that instruction tuning (at least in this specific LLaVA model)
seems to force the model to make stronger predictions (i.e., more correct predictions but also forgetting
one cue) and increases texture bias.

Table 9.8: Ablation of multi-modal training stages. Comparison of LLaVA v1.5-7B models
after Stage 1 and Stage 2 training with additional measurements on non-generic responses.

All responses Non-generic
Shape Accur- Avg. Single Class Generic Shape Accur-

Model Bias [%] acy [%] Tokens Ratio [%] Ratio [%] Bias [%] acy [%]
Stage 1 61.8 73.25 143.5 54.1 31.4 64.5 90.32
Stage 2 61.4 76.08 12.1 73.8 19.2 62.8 87.24

9.7 Conclusion
We acknowledge that the broader research question – whether models can be influenced to perceive
the world differently – extends beyond the scope of any single study. In our work, we focus specifically
on a well-defined and understood visual bias (texture/shape bias) and investigate if and how we can
steer the prediction of VLMs toward a larger texture/shape bias.

Surprisingly, we do find that through simple language prompts alone, we can affect the bias of
predictions. While this form of steering was not able to fundamentally change the utilized cue for the
texture/shape bias, it comes at almost no impact in accuracy and, most importantly, does not require
any retraining of the model. In fact, many attempts at steering shape bias in training have yielded
worse results through more expensive methods (e.g., (Li et al., 2021) or even our filter frequency
regularization in Chapter 5). Instead, we provide a simple and intuitive way for users to adjust the
output beyond the inductive bias at runtime with minimal effort. Thus, we can indeed talk VLMs into
seeing the world differently.
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Fundamentally, this indicates that the LLM can significantly alter the visual tokens generated by the
vision encoder, even at very low levels, such as shapes and textures. We complement the study by
steering of low-/high-frequency bias, showing that language-based steerability is not limited to one
specific bias. Thus, our prompt-based steering is an effective and computationally cheap method to
recalibrate the perception of VLMs.

In Chapter 8 we have shown that individual biases do not seem to correlate with wide-spectrum
generalization, i.e., we may not hope that steering an individual bias in VLMs will significantly improve
performance on vision benchmarks. However, given the cheap cost of steering, two future directions
open up:

(1) The texture/shape bias correlated with performance improvements on individual datasets (Chap-
ters 5 and 8). Thus, if the distribution shift is narrow and can be anticipated for a specific task,
our steering may improve performance.

(2) Our approach bears the potential to steer multiple biases at once. This combination of steering
may align the models’ perception closer to an “optimal” set of biases that correlates with improved
generalization.

Limitations Our study, like most studies, is not free of limitations. Even though we utilized a
diverse array of VLMs, there is a possibility that different models would lead to different conclusions.
We believe our results provide a fair reflection of the VLM landscape at the time of writing, but
radically different VLM architectures may lead to changes in bias mechanics and consequently alter
our findings.

Further, not all models have been behaving as expected in our study: Given that GPT-4V often
achieves SOTA performance and was considered an important baseline (at the time of writing), it has
surprisingly poor accuracy in both VQA and image captioning tasks compared to most other models –
mostly due to refusal to answer which affected 131/1280 VQA conversations, i.e., roughly 10%. This is
substantially higher than the refusal rate of all other models (< 1%). It is worth noting that refusal
rates do not affect the shape bias measurement. GPT-4V is also the model with the largest amount of
generic image captions (60.4%). Additionally, we acknowledge that other prompts may have led to
better results. However, the result is noteworthy, as the other VLMs mostly behave well under the
same prompts. Overall, prompting is a potential source of bias in our study. Different prompts could
have yielded different results, and certain models might have performed differently, particularly in
Visual Question Answering (VQA) tasks. While we mitigated this by utilizing simple, widely used
prompts, other choices remain to be explored in future investigations. We provide a brief exploration
of alternatives in Section 9.6.1.
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Chapter 10

Discussion

This chapter brings the thesis to its conclusion. In Section 10.1, we summarize the key findings of the
previous chapters, reflect on their impact, and discuss how this knowledge contributes to the research
community. Then, in Section 10.2, we explore promising directions for future research. Finally, we
provide a broader view of the topic in Section 10.3.

10.1 Summary and Conclusion
This thesis decoded mechanisms of generalization by comparing the decision rules of models with
strong and weak generalization capabilities. We mostly focused on adversarially-trained models (Madry
et al., 2018), which demonstrate exceptional robustness to adversarial covariate shifts by training
against specific pixel-level adversarial attacks. While this form of regularization achieves impressive
results, it also vastly increases training costs due to the additional backpropagations necessary to
identify adversarial perturbations. Additionally, it often fails to provide robustness beyond the threat
at training time. As such, identifying the resulting changes to the decision rule, specifically the “good”
ones, may provide an avenue to the design of regularization techniques aiming to achieve broader
generalization with cheaper means.

Due to the complexity of analyzing the decision rules of models with millions or billions of parameters,
we cannot understand the encoded decision rule directly. Thus, we have attempted to understand two
viewpoints and their relationship to generalization: analyzing properties of the learned parameters and
examining encoded feature biases.

How can we measure and compare model representations in weight space?

Instead of analyzing and comparing individual models, we chose a population-based approach. We
collect large numbers of models and study groups of models based on our central hypothesis that any
patterns separating our studied dimensions will generalize better. This led to the creation of multiple
model zoos tailored to our individual weight surveys (Chapter 3, Chapter 4, Chapter 6).

To compare the weight representations of convolutional neural networks (CNNs), we analyzed dis-
tribution shifts in learned convolution filters using four data-free metrics that we designed: sparsity,
principal pattern variance entropy (Chapter 3), filter orthogonality (Chapter 4), and filter frequency
(Chapter 5). These metrics are suitable for assessing filter quality and enable comparisons between
individual models or entire model populations.

Additionally, we developed a PCA-based methodology to study distribution shifts in learned principal
patterns of convolution filters (Chapter 3). Applying this to our large model zoos revealed how
various factors influence filter formation and model specialization, both at global (group) and local
(model-to-model) levels.
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Finally, we adapted the layer criticality metric from Zhang et al. (2022) (Chapter 6) to estimate
the importance of any learned layer or parameter to the decision rule. Unlike our data-free metrics,
this approach requires forward passes with representative data batches but is applicable to any
parameterized model, not just CNNs or discriminative classifiers.

Impact Our study sparked the development of further model zoos under more controlled conditions.
For instance, Schürholt et al. (2022b) created 3,844,360 model checkpoints of various image classifiers,
and Honegger et al. (2023) provided sparsified counterparts for these. Often, these works aim to
generate parameters by modeling a weight-space distribution (Schürholt et al., 2022a; Schürholt,
2024).

Other works directly utilized CNN Filter DB (Chapter 3), like Ourghi et al. (2024), which used it to
train an auto-encoder to compress filter weights.

What changes do we see between different CNN filter representations?

Our study in Chapter 3 showed that filter kernel distributions (at least those of 3 × 3 kernels) are
fairly similar across model groups trained for different tasks and/or on different dataset domains unless
they are severely overparameterized – in which case the convolution filters will “degenerate”, usually
affecting deeper layers. Overall, however, the shifts between different layers are also very low. We
identify some stronger shifts between models with different network architectures. This suggests that,
from a filter distribution perspective alone, any kind of pretraining should work if it is only complex
enough not to cause overfitting.

When comparing individual models, we find task-specific differences where distribution shifts occur.
For instance, we find that segmentation model representations increase in divergence with depth, but
image classification models remain fairly static throughout. Object and face detection models show the
strongest shifts in early layers. Overall, this may overhaul the common idea that the deepest layers are
the most specialized and suggest that transfer learning could also benefit from the adaptation of early
layers.

Impact In the medical domain, Juodelyte et al. (2023) tested our “any pretraining works” hypothesis
and confirmed our findings by showing that both pre-training with a domain-specific radiology dataset
and ImageNet converge to similar representations. Other works built on this idea, by training networks
with fixed filter weights. For instance, Linse et al. (2023, 2024) find that fixing filters to our discovered
principal patterns and some additional patterns matches the accuracy and sometimes even improves
the generalization.

Other works refined and extended our filter analysis to spatiotemporal filters (Kobayashi & Ye, 2024)
or more narrow cases like filters of depthwise-separable CNNs (Babaiee et al., 2024b). While Babaiee
et al. (2024b,c) utilize clustering to detect patterns in depthwise separable convolutions, they arrive at
the same conclusion that learned filters are similar across tasks, datasets (Babaiee et al., 2024a).

What changes do we see in the decision rules of robust models?

Analyzing convolutional filters in the weight space of our model zoo revealed that robust models
learn more diverse, less sparse, and more orthogonal filters (Chapters 3 and 4). These differences
were especially pronounced in overparameterized models, suggesting that adversarial training utilizes
more of the network’s capacity. This is further supported by our findings in Chapter 6, which show
increased parameter utilization (across all layers) with larger adversarial budgets (ε). This characteristic
appears unique to adversarial training, distinguishing it from other regularization methods like data
augmentation.

We also consistently observed a specialized first layer in models trained with L∞-norm adversarial
training (Chapter 4), regardless of the specific adversarial regularization method, training dataset,
or model architecture. These robust first layers (unlike those in L2-norm trained models) can
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mitigate certain additive perturbations by applying ReLU activations to a linear combination of input
channels.

While robust models are known to favor low-frequency signals, we demonstrated that this is also
directly reflected in filter weight frequencies, enabling regularization without direct interaction with
input samples or activations (Chapter 5).

Finally, we observed increased alignment with human perception in some aspects (Chapter 7): ro-
bust models exhibit a significantly higher shape bias and improved error consistency with human
annotations. However, their average out-of-distribution (OOD) performance suffers, particularly
under contrast changes or rotation, indicating that adversarial regularization overfits specific forms of
generalization.

Impact Grabinski et al. (2022a)1 used our robust vs. normal model zoo Chapter 4 to study the
calibration of robust CNNs. Cianfarani et al. (2022) repeated and extended our study on a smaller
collection of models via Centered Kernel Alignment (CKA) and also found that robust models increase
in representational divergence to normal models with depth. Others used our findings to back arguments
in their position papers (Lonnqvist et al., 2022; Mangal et al., 2023).

Which of the observed mechanisms in weight space should we replicate?

While adversarial training (in its current form) does not improve generalization and often decreases
average robustness to distribution shifts as a trade-off for highly specialized robustness, we aim to
incorporate beneficial aspects of the decision rules it produces selectively.

We have seen that decision rules of robust models occupy more of the network capacity. However,
artificially inflating the complexity of the decision rule’s complexity to match the complexity of
adversarially-trained models through regularization of filter pattern diversity (Section 4.5) in normal
training did not increase robustness and sometimes even diminished it. Overall, while complexity and
diversity are necessary for robustness, they are not sufficient criteria.

However, replicating their preference for low-frequency features, directly observable in convolution
weights (Chapter 5), offers a promising direction. This can be achieved by penalizing the learning of
coefficients on a frequency-ordered basis, such as the DCT-II, rather than directly learning the weights.
Our regularization across various datasets and architectures has increased native robustness – broad
robustness without defining an adversary during training. Notably, this approach may result in weaker
but more desirable biases towards low-frequency signals than the aggressive high-frequency suppression
induced by adversarial training. We also observed that this regularization shifts CNN decisions away
from texture and towards shape.

Impact While we observed that robust models had more diverse filters, we could not improve the
robustness of CNNs via regularization of filter pattern entropy. However, Gao & Spratling (2025)
managed to significantly improve robustness without adversarial training by modifying the architecture
to increase filter competition.

Suresh et al. (2024) combined our findings of a special first layer and frequency attenuation and
proposed architectural changes to the first layer of CNNs to improve the native robustness. Vries
(2024) utilized our frequency regularization to craft shape-selective filters and studied their properties
in classification tasks.

Can we improve generalization by an alignment of biases?

Robust models show improved biases in the direction of human alignment (Chapter 7), a trend also
observed in large-scale models regarding biases like texture/shape bias (Dehghani et al., 2023). Several
studies have proposed that mismatches between model and human visual biases explain why models

1Disclaimer: Paul Gavrikov is a co-author of this paper.
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fail to generalize (e.g., (Geirhos et al., 2019; Wang et al., 2020a; Subramanian et al., 2023)), suggesting
that bias alignment might be necessary or even sufficient for generalization. This would imply that
optimizing biases during training could improve generalization “for free”, i.e., without requiring
additional data.

However, our study (Chapter 8), examining a wider range of biases through different regularization
techniques when fixing architecture and training data, found no meaningful correlation between
individual biases and holistic generalization across multiple benchmarks. Instead, we sometimes even
observed instances where better-aligned models generalized worse than misaligned ones, and sometimes
the worst-aligned models performed best. While certain biases correlate with robustness against
specific threats (e.g., a shape bias improves robustness to high-frequency corruptions by inducing a
low-frequency bias), we found no correlation between changes in shape bias (in any direction) and
broad generalization improvement. However, we found that extreme forms of bias, such as completely
ignoring high-frequency cues, deteriorate generalization.

Therefore, directly manipulating individual biases may not be a universal solution for generalization
across arbitrary distribution shifts. However, it can be useful for designing robust models against
known threat models. In this context, we demonstrated that biases are particularly easy to align in
vision-language Models (VLMs) (Chapter 9). Unlike in discriminative models, we can simply steer
VLM biases in any direction without retraining the model (or its classification head) by using natural
language prompts. While bias alignment alone may not be the key to universal generalization, it
represents a crucial puzzle piece in the ongoing quest for truly robust and human-like AI.

Impact Multiple works have cited our findings in the frequency domain in Chapter 8 as motivation
to learn more carefully in the frequency domain, for instance through wavelets (Finder et al., 2024;
Liu & Yang, 2025), or frequency priors Cao et al. (2025); Ma et al. (2024). Others directly applied
our methodology – for instance, Ho et al. (2024) utilized it to benchmark ViTs in neural architecture
search.

How do large VLMs perceive the world?

In Chapter 9, we have analyzed the visual perception of Large vision-language models (VLMs),
expanding our previous work on unimodal discriminative classifiers. Through the lens of texture/shape
bias, we found that the large language models (LLMs) can interact with the visual information fed
from an unimodal vision encoder and significantly modify it.

For instance, most VLMs tend to be shape-biased and, in that respect, do more closely approximate
human vision. However, while their tested vision encoders generally provide flexible representations
capable of predicting either cue, the LLM selects one cue. It almost exclusively utilizes it for the
prediction, completely ignoring the other. This complements previous works on discriminative classifiers,
which have shown that the decision head in the form of the linear layer is often more biased than the
feature encoder itself (Islam et al., 2021; Kirichenko et al., 2023). In our case, the decision head is the
LLM.

As the LLM is conditioned by prompts, we were able to steer the visual perception of a VLM
by utilizing natural language prompts. This is a unique feature of prompt-driven models, clearly
separating them from discriminative classifiers, which would require retraining or finetuning to adjust
their perception.

Impact Multiple works extended our shape study on VLMs to other problems where a shape bias
is necessary for recognition: Hemmat et al. (2024) analyzed synthetic visual shape illusions; Wood
(2024) studied the recognition of two-tone Mooney images (Mooney, 1957); Eppel (2025) studied the
recognition of synthetic 3D objects under different viewpoints and changes of the object material and
background. Ye et al. (2024) built the MM-SpuBench benchmark testing for a wider range of spurious
biases in VLMs, including shapes.
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Chang et al. (2024) tested if the steerability we observed for visual cues processing extends to language-
specific tasks with limited success. Liang et al. (2024) repurposed parts of our methodology to study
backdoor attacks in VLMs.

10.2 Future Work
Our work paves the way for several promising future research avenues, offering new directions for
further exploration and development. This section outlines these opportunities and discusses their
potential impact on the field.

10.2.1 Weight Space
Improvement of weight space characterizations Future work should focus on developing more
comprehensive characterizations of learned representations within the weight space. While metrics like
variance entropy, sparsity, orthogonality, weight frequency, and layer criticality have proven useful for
comparing robust and standard models, many appear sufficient but not necessary for either robustness
or generalization. A key limitation is their predominantly single-layer focus (except for layer criticality),
neglecting layer connectivity. We hypothesize that metrics considering the model’s topology, or at least
spanning multiple layers (e.g., a residual block), are crucial for a deeper understanding.

One potential avenue is exploring post-hoc linear approximations, inspired by LIME (Ribeiro et al.,
2016), to create single-layer convolution surrogates for multi-layer blocks, allowing the application of
existing metrics. However, ensuring the surrogate accurately reflects the original block’s decision rule,
as highlighted by Slack et al. (2020) through adversarial attacks, presents a significant challenge –
surrogates themselves may overfit to capture a limited set of behavior of the underlying model.

Furthermore, it is advisable that future research prioritizes the development of differentiable and ideally
data-free metrics, enabling direct training and optimization for desired representational properties
across multiple layers, ultimately leading to a more holistic understanding of robust and generalizable
representations.

As demonstrated in Chapter 5, regularizing the frequency content of convolutional filters can enhance
native robustness. Our initial implementation involved an architectural modification, representing
filter weights using a DCT-II basis instead of directly learning the weights. While this representation is
theoretically equivalent in expressiveness to direct weight learning, we observed instances of decreased
clean and robust accuracy even without explicit regularization. We attribute these performance drops to
potential disruptions in gradient flow, possibly stemming from suboptimal initialization or the absence
of intermediate normalization. Given the small size of convolutional kernels, an alternative approach
is to compute the frequency decomposition on the fly just before the backward pass, eliminating
the need for architectural changes. We hypothesize that such an in-loss decomposition may further
improve robustness by avoiding the baseline performance degradation observed with the architectural
approach.

Extension of weight studies to transformers and attention This thesis has extensively
studied learned weights, particularly convolution filters, of CNNs (Chapters 3 to 6). With the rise of
transformers and models like ViTs (Dosovitskiy et al., 2021), the focus has shifted away from CNNs,
specifically for large-scale training (cf ., Oquab et al. (2024); Chen et al. (2024); Sun et al. (2024);
Dehghani et al. (2023)). Fortunately, our existing metrics can be adapted to transformers. While
most transformer parameters are one-dimensional and unsuitable for spatial analysis, we can analyze
attention maps (cf . Equation 2.21) by relaxing the data-free condition of our metrics. By collecting
activation maps for a single attention head across a batch of inputs, we could compute variance
entropy to assess their diversity. Low entropy would then suggest sample-independent behavior, while
high entropy would correlate with noise. This analysis would also allow us to investigate redundancy
between attention heads.
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While studies on Natural Language Processing (NLP) models have shown limited diversity among
attention heads (Clark et al., 2019; Voita et al., 2019; Michel et al., 2019), equivalent studies for vision
and multi-modal models are lacking. A key question is whether differences in attention mechanisms
between robust and non-robust ViTs exist, which could inform regularization strategies for model
training.

10.2.2 Visual Perception Biases

Methodological refinements & improvements for bias measurements Current empirical
methodologies for measuring bias may be a significant source of noise in our understanding of its
relationship with generalization. As discussed in Chapter 8, observed biases do not always correlate
with generalization performance, even when intuitive explanations for such a connection exist. This
discrepancy could stem from limitations in the measurement methods themselves and not the actual
biases. For example, the original methodology for the critical band bias (Subramanian et al., 2023)
suffers from a limited sample size, introducing considerable noise. Overall, we hypothesize that
each bias quantification method operates under specific assumptions and restrictions, contributing
to measurement inaccuracies. Therefore, the lack of observed empirical correlation between bias and
generalization may be attributable to these noisy measurements rather than a fundamental lack of causal
connection. Future research should focus on identifying these limitations and developing improved
methodologies, ranging from minor adjustments to entirely new approaches (e.g., the alternative
approach to texture/shape bias measurement proposed by Islam et al. (2021)).

Deeper exploration of biases in multi-modal LLMs While biases in uni-modal models have
been extensively studied, their investigation in multi-modal contexts, particularly in multi-modal
LLMs where modality-specific tokens are fused into entangled representations, remains significantly
underexplored. We have investigated the propagation of texture/shape bias (Geirhos et al., 2019) in
instruction-tuned models in Chapter 9, but many other biases warrant further investigation. Beyond
neuroscientific applications comparing human and artificial vision, understanding multi-modal biases
could still be crucial for improving robustness and generalization in machine learning. Key open
questions include: Are there optimal bias distributions that provide robustness to distribution shifts,
similar to human vision? If so, which biases are critical, and what are their optimal levels? Does this
optimality depend on the task, or is there a universally optimal bias configuration?

Enhancing test-time steering of model behavior As shown in Chapter 9, text prompting can
influence the outputs of VLMs by manipulating inherent visual biases, offering a powerful mechanism
for aligning model behavior with user preferences at inference time without retraining. However, our
findings on texture/shape and low/high-frequency biases revealed limitations in the steerable range.
While prompt optimization (e.g., using methods like (Mirza et al., 2024)) and in-context learning
(similar to (Hemmat et al., 2024)) may offer some improvements, they are ultimately constrained by
the vision encoder’s representations, which are not conditioned on the prompt. If the encoder produces
a strongly biased representation favoring a single cue, language steering becomes ineffective.

Two potential solutions exist for future exploration beyond prompt optimization: (1) adopting early
modality-fusion models like Chameleon (Chameleon Team, 2024), which minimize modality-specific
encoding beyond tokenization; or (2) directly steering the visual encoding itself. While simple image
processing can achieve the latter (as demonstrated in Section 9.5.1), we anticipate greater efficacy with
more sophisticated techniques such as visual prompting (Bahng et al., 2022). A specifically crafted
border padding (as used for adversarial robustness in (Chen et al., 2023a)) could be employed to steer the
vision encoder’s bias, either towards specific cues or towards equally fair and unbiased representations,
which can then be further steered by language. We believe these and other techniques hold significant
potential for expanding the steerability of VLM behavior and, ultimately, generalization.
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10.2.3 Testing Generalization
Perhaps the most central question in AI development is whether we are creating genuine intelligence.
In computer vision, this translates to asking whether models develop coherent visual concepts that
generalize beyond the inner percentiles of the training distribution or simply memorize long-tail features.
But how can we effectively evaluate this?

The empirical approach is to test models on large, diverse, held-out datasets representing various
distribution shifts. However, what constitutes in-distribution data for one model may be out-of-
distribution for another, depending on the training set. For example, recognizing an object in sketches
or paintings after training only on photographs suggests some generalization, but this would be less
impressive if such data were included in the training set. While we have largely avoided this issue by
comparing models trained on the same data (e.g., in Chapters 6 and 8), modern state-of-the-art (SOTA)
models are increasingly trained on vast datasets that can vary significantly between models. This
raises the question: how do we measure generalization in such cases? Without a clear understanding
of a model’s learned decision rule and its limitations, we are forced to rely on post-training problem
detection, requiring extensive domain knowledge or large-scale validation akin to random guessing.
For instance, even in a seemingly narrow task like face recognition, commercial systems from major
tech companies have exhibited significant gender and ethnic biases (as noted by Buolamwini & Gebru
(2018)), despite presumably passing internal tests.

Therefore, a key area for future work is developing improved methodologies for assessing generalization
– perhaps, beyond classical static datasets. This includes both creating more comprehensive out-of-
distribution datasets and enhancing the interpretability of learned decision rules.

10.3 A Broader View on the Topic
Deploying machine learning models in safety-critical domains where human lives are at stake, like medical
diagnostics (Ma et al., 2021; Finlayson et al., 2019), and autonomous driving (Deng et al., 2020), requires
an extreme level of generalization and robustness. While scaling training data can improve observed
performance, relying solely on this approach presents several significant drawbacks. Beyond cost and
feasibility, it hinders the democratization of AI development by creating a barrier to entry for smaller
research groups and organizations lacking access to massive datasets and computational resources.
Second, it remains unclear whether simply increasing data volume truly leads to genuine generalization
or merely creates a closer proximity to existing benchmarks, effectively “faking” generalization by
covering more of the known data distribution without necessarily understanding its underlying structure.
Crucially, scaling and regularization can be orthogonal directions that should be pursued in tandem.
While scale provides the raw material for learning complex decision rules, effective regularization guides
the learning process, preventing overfitting and promoting generalization. However, regularization
must be designed carefully as it can also be detrimental, limiting the model’s capacity to discover
fundamentally different and potentially superior solutions if it is too strict. Ultimately, designing
regularization and achieving the necessary level of trust in safety-critical applications necessitates a
stronger understanding of model mechanisms through interpretability – understanding why and how a
model makes a particular prediction is crucial for validating its reliability and identifying potential
failure modes, complementing the quantitative measures of robustness and generalization.
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“I felt not the regret of an ending, but the foreboding of a beginning.”
— Margaret Astrid Lindholm Ogden (Robin Hobb)
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Appendix

A.1 Model Overview for Chapter 4
We provide a table of all model pairs and their normal and robust accuracy on the corresponding
test datasets in Table A.1 used in Chapter 4. We assume a (close to) 0% robust accuracy for normal
models without explicitly measuring it.

Table A.1: Overview of our robust vs. normal model zoo. We show the clean and robust
accuracy for both the robust (adversarially-trained) and normal models. For the datasets, we denote
the usage of extra data by “extra” and synthetic data by “ddpm”. The robust accuracy for normal
models is always set to 0.

Robust Normal
Paper Dataset Architecture Clean

Acc.
[%]

Robust
Acc.
[%]

Clean
Acc.
[%]

Robust
Acc.
[%]

(Andriushchenko &
Flammarion, 2020)

CIFAR-10 PreActResNet-18 79.84 43.93 94.51 0.0

(Carmon et al., 2022) CIFAR-10 WideResNet-28-10 89.69 59.53 95.10 0.0
(Sehwag et al., 2020) CIFAR-10 WideResNet-28-10 88.98 57.14 95.10 0.0
(Wang et al., 2020b) CIFAR-10 WideResNet-28-10 87.50 56.29 95.10 0.0
(Hendrycks et al.,
2019)

CIFAR-10 WideResNet-28-10 87.11 54.92 95.35 0.0

(Rice et al., 2020) CIFAR-10 WideResNet-34-20 85.34 53.42 95.46 0.0
(Zhang et al., 2019b) CIFAR-10 WideResNet-34-10 84.92 53.08 95.26 0.0
(Engstrom et al.,
2019)

CIFAR-10 ResNet-50 87.03 49.25 94.90 0.0

(Chen et al., 2020b) CIFAR-10 ResNet-50 86.04 51.56 86.50 0.0
(Huang et al., 2020) CIFAR-10 WideResNet-34-10 83.48 53.34 95.26 0.0
(Pang et al., 2020b) CIFAR-10 WideResNet-34-20 85.14 53.74 76.30 0.0
(Wong et al., 2020) CIFAR-10 PreActResNet-18 83.34 43.21 94.25 0.0
(Ding et al., 2020) CIFAR-10 WideResNet-28-4 84.36 41.44 94.33 0.0
(Zhang et al., 2019a) CIFAR-10 WideResNet-34-10 87.20 44.83 95.26 0.0
(Zhang et al., 2020) CIFAR-10 WideResNet-34-10 84.52 53.51 95.26 0.0
(Wu et al., 2020) CIFAR-10 WideResNet-28-10 88.25 60.04 95.10 0.0
(Wu et al., 2020) CIFAR-10 WideResNet-34-10 85.36 56.17 95.64 0.0
(Gowal et al., 2020) CIFAR-10 WideResNet-70-16 85.29 57.20 87.91 0.0
(Gowal et al., 2020) CIFAR-10 +

extra
WideResNet-70-16 91.10 65.88 87.91 0.0

(Gowal et al., 2020) CIFAR-10 WideResNet-34-20 85.64 56.86 88.33 0.0

Continued on next page
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Robust Normal
Paper Dataset Architecture Clean

Acc.
[%]

Robust
Acc.
[%]

Clean
Acc.
[%]

Robust
Acc.
[%]

(Gowal et al., 2020) CIFAR-10 +
extra

WideResNet-28-10 89.48 62.80 88.20 0.0

(Sehwag et al., 2021) CIFAR-10 WideResNet-34-10 85.85 59.09 95.64 0.0
(Sehwag et al., 2021) CIFAR-10 ResNet-18 84.38 54.43 94.87 0.0
(Sitawarin et al.,
2021)

CIFAR-10 WideResNet-34-10 86.84 50.72 95.26 0.0

(Chen et al., 2021a) CIFAR-10 WideResNet-34-10 85.32 51.12 95.35 0.0
(Cui et al., 2021) CIFAR-10 WideResNet-34-20 88.70 53.57 95.44 0.0
(Cui et al., 2021) CIFAR-10 WideResNet-34-10 88.22 52.86 95.26 0.0
(Zhang et al., 2021b) CIFAR-10 WideResNet-28-10 89.36 59.64 95.10 0.0
(Rebuffi et al., 2021b) CIFAR-10 +

ddpm
WideResNet-28-10 87.33 60.75 88.20 0.0

(Rebuffi et al., 2021b) CIFAR-10 +
ddpm

WideResNet-106-16 88.50 64.64 86.92 0.0

(Rebuffi et al., 2021b) CIFAR-10 +
ddpm

WideResNet-70-16 88.54 64.25 87.91 0.0

(Rebuffi et al., 2021b) CIFAR-10 +
extra

WideResNet-70-16 92.23 66.58 87.91 0.0

(Sridhar et al., 2021) CIFAR-10 WideResNet-28-10 89.46 59.66 95.10 0.0
(Sridhar et al., 2021) CIFAR-10 WideResNet-34-15 86.53 60.41 95.50 0.0
(Rebuffi et al., 2021b) CIFAR-10 +

ddpm
PreActResNet-18 83.53 56.66 89.01 0.0

(Rade & Moosavi-
Dezfooli, 2021)

CIFAR-10 +
extra

PreActResNet-18 89.02 57.67 89.01 0.0

(Rade & Moosavi-
Dezfooli, 2021)

CIFAR-10 +
ddpm

PreActResNet-18 86.86 57.09 89.01 0.0

(Rade & Moosavi-
Dezfooli, 2021)

CIFAR-10 +
extra

WideResNet-34-10 91.47 62.83 88.67 0.0

(Rade & Moosavi-
Dezfooli, 2021)

CIFAR-10 +
ddpm

WideResNet-28-10 88.16 60.97 88.20 0.0

(Huang et al., 2022) CIFAR-10 WideResNet-34-R 90.56 61.56 95.60 0.0
(Huang et al., 2022) CIFAR-10 WideResNet-34-R 91.23 62.54 95.60 0.0
(Addepalli et al.,
2021)

CIFAR-10 ResNet-18 80.24 51.06 94.87 0.0

(Addepalli et al.,
2021)

CIFAR-10 WideResNet-34-10 85.32 58.04 95.26 0.0

(Gowal et al., 2021) CIFAR-10 +
ddpm

WideResNet-70-16 88.74 66.11 87.91 0.0

(Dai et al., 2021) CIFAR-10 WideResNet-28-10-
PSSiLU

87.02 61.55 85.53 0.0

(Gowal et al., 2021) CIFAR-10 +
ddpm

WideResNet-28-10 87.50 63.44 88.20 0.0

(Gowal et al., 2021) CIFAR-10 +
ddpm

PreActResNet-18 87.35 58.63 89.01 0.0

(Chen & Lee, 2021) CIFAR-10 WideResNet-34-10 85.21 56.94 95.64 0.0
(Chen & Lee, 2021) CIFAR-10 WideResNet-34-20 86.03 57.71 95.29 0.0

(Gowal et al., 2020) CIFAR-100 WideResNet-70-16 60.86 30.03 60.56 0.0
(Gowal et al., 2020) CIFAR-100 +

extra
WideResNet-70-16 69.15 36.88 60.56 0.0

(Cui et al., 2021) CIFAR-100 WideResNet-34-20 62.55 30.20 80.46 0.0
(Cui et al., 2021) CIFAR-100 WideResNet-34-10 70.25 27.16 79.11 0.0
(Cui et al., 2021) CIFAR-100 WideResNet-34-10 60.64 29.33 79.11 0.0

Continued on next page
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Robust Normal
Paper Dataset Architecture Clean

Acc.
[%]

Robust
Acc.
[%]

Clean
Acc.
[%]

Robust
Acc.
[%]

(Chen et al., 2021a) CIFAR-100 WideResNet-34-10 62.15 26.94 78.75 0.0
(Wu et al., 2020) CIFAR-100 WideResNet-34-10 60.38 28.86 78.79 0.0
(Sitawarin et al.,
2021)

CIFAR-100 WideResNet-34-10 62.82 24.57 79.11 0.0

(Hendrycks et al.,
2019)

CIFAR-100 WideResNet-28-10 59.23 28.42 79.16 0.0

(Rice et al., 2020) CIFAR-100 PreActResNet-18 53.83 18.95 76.18 0.0
(Rebuffi et al., 2021b) CIFAR-100 +

ddpm
WideResNet-70-16 63.56 34.64 60.56 0.0

(Rebuffi et al., 2021b) CIFAR-100 +
ddpm

WideResNet-28-10 62.41 32.06 61.46 0.0

(Rebuffi et al., 2021b) CIFAR-100 PreActResNet-18 56.87 28.50 63.45 0.0
(Rade & Moosavi-
Dezfooli, 2021)

CIFAR-100 +
ddpm

PreActResNet-18 61.50 28.88 63.45 0.0

(Addepalli et al.,
2021)

CIFAR-100 PreActResNet-18 62.02 27.14 76.66 0.0

(Addepalli et al.,
2021)

CIFAR-100 WideResNet-34-10 65.73 30.35 79.11 0.0

(Chen & Lee, 2021) CIFAR-100 WideResNet-34-10 64.07 30.59 79.11 0.0

(Wong et al., 2020) ImageNet ResNet-50 55.62 26.24 76.13 0.0
(Engstrom et al.,
2019)

ImageNet ResNet-50 62.56 29.22 76.13 0.0

(Salman et al., 2020) ImageNet ResNet-50 64.02 34.96 76.13 0.0
(Salman et al., 2020) ImageNet ResNet-18 52.92 25.32 69.76 0.0
(Salman et al., 2020) ImageNet WideResNet-50-2 68.46 38.14 78.47 0.0

A.2 Model Overview for Chapter 6
We provide a table of all models and their ImageNet validation accuracy in Table A.2 as used in Chapter 6.
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Section A.2. Model Overview for Chapter 6

Table A.2: An overview of the utilized models (training/regularization methods) in our
study.

Model ImageNet Accuracy [%]

Original Baseline (He et al., 2016) 76.15

A
dv
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ri
al
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g
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T
)

PGD-AT (ε=0) (Salman et al., 2020; Madry et al., 2018) 75.81
PGD-AT (L2, ε=0.01) (Salman et al., 2020; Madry et al., 2018) 75.67
PGD-AT (L2, ε=0.03) (Salman et al., 2020; Madry et al., 2018) 75.77
PGD-AT (L2, ε=0.05) (Salman et al., 2020; Madry et al., 2018) 75.58
PGD-AT (L2, ε=0.1) (Salman et al., 2020; Madry et al., 2018) 74.79
PGD-AT (L2, ε=0.25) (Salman et al., 2020; Madry et al., 2018) 74.14
PGD-AT (L2, ε=0.5) (Salman et al., 2020; Madry et al., 2018) 73.17
PGD-AT (L2, ε=1) (Salman et al., 2020; Madry et al., 2018) 70.42
PGD-AT (L2, ε=3) (Salman et al., 2020; Madry et al., 2018) 62.83
PGD-AT (L2, ε=5) (Salman et al., 2020; Madry et al., 2018) 56.14
PGD-AT (L∞, ε=0.5/255) (Salman et al., 2020; Madry et al., 2018) 73.74
PGD-AT (L∞, ε=1.0/255) (Salman et al., 2020; Madry et al., 2018) 72.04
PGD-AT (L∞, ε=2.0/255) (Salman et al., 2020; Madry et al., 2018) 69.09
PGD-AT (L∞, ε=4.0/255) (Salman et al., 2020; Madry et al., 2018) 63.87
PGD-AT (L∞, ε=8.0/255) (Salman et al., 2020; Madry et al., 2018) 54.53

A
ug

m
en

ta
ti

on
s

AutoAugment (270Ep) (Cubuk et al., 2019) 77.50
FastAutoAugment (270Ep) (Lim et al., 2019) 77.65
RandAugment (270Ep) (Cubuk et al., 2020) 77.64
AugMix (180Ep) (Hendrycks et al., 2020) 77.53
DeepAugment (Hendrycks et al., 2021a) 76.65
DeepAugment+AugMix (Hendrycks et al., 2021a) 75.80
Diffusion-like Noise (Jaini et al., 2024) 67.22
NoisyMix (Erichson et al., 2022) 77.05
OpticsAugment (Müller et al., 2023) 74.22
PRIME (Modas et al., 2022) 76.91
PixMix (180Ep) (Hendrycks et al., 2022) 78.09
PixMix (90Ep) (Hendrycks et al., 2022) 77.36
ShapeNet (SIN) (Geirhos et al., 2019) 60.18
ShapeNet (SIN+IN) (Geirhos et al., 2019) 74.59
ShapeNet (SIN+IN → IN) (Geirhos et al., 2019) 76.72
Texture/Shape-debiased Augmentation (Li et al., 2021) 76.89
Texture/Shape-Shape Bias Augmentation (Li et al., 2021) 76.21
Texture/Shape-Texture Bias Augmentation (Li et al., 2021) 75.27

SS
L

DINOv1 (Caron et al., 2021) 75.28
MoCo v3 (1000Ep) (Chen et al., 2021b) 74.60
MoCo v3 (100Ep) (Chen et al., 2021b) 68.91
MoCo v3 (300Ep) (Chen et al., 2021b) 72.80
SimCLRv2 (Chen et al., 2020a) 74.90
SwAV (Caron et al., 2020) 75.31

Im
pr

ov
ed

T
ra

in
in

g

timm A1 (Wightman, 2019; Wightman et al., 2021) 80.10
timm A1h (Wightman, 2019; Wightman et al., 2021) 80.10
timm A2 (Wightman, 2019; Wightman et al., 2021) 79.80
timm A3 (Wightman, 2019; Wightman et al., 2021) 77.55
timm B1k (Wightman, 2019; Wightman et al., 2021) 79.16
timm B2k (Wightman, 2019; Wightman et al., 2021) 79.27
timm C1 (Wightman, 2019; Wightman et al., 2021) 79.76
timm C2 (Wightman, 2019; Wightman et al., 2021) 79.92
timm D (Wightman, 2019; Wightman et al., 2021) 79.89
TorchVision 2 (Vryniotis, 2023; Paszke et al., 2019) 80.34
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A.3 Model Overview for Chapter 8
We provide a table of all models and quantification of their biases in Table A.4, as well as their performance on
each benchmark in Table A.3 as used in Chapter 8. These tables also contain the full symbol legend.

Table A.3: Overview of performance (accuracy) of each individual model on our general-
ization benchmarks.

Top-1 Test Accuracy [%] (↑)
In Distribution Robustness Concepts Adv.

Model IN IN-ReaL IN-V2 IN-A IN-C IN-C IN-R IN-S SIN PGD
• Original Baseline (He et al., 2016) 76.15 86.50 63.14 0.03 41.12 39.70 36.16 24.09 37.12 18.39

A
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g
(A
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)

 PGD-AT (L2, ε=0) (Salman et al., 2020; Madry et al., 2018) 75.81 88.65 63.70 1.85 40.90 39.48 35.76 23.50 34.38 18.88
 PGD-AT (L2, ε=0.01) (Salman et al., 2020; Madry et al., 2018) 75.67 84.97 63.64 1.69 42.13 39.78 36.85 24.22 38.50 30.56
 PGD-AT (L2, ε=0.03) (Salman et al., 2020; Madry et al., 2018) 75.77 87.42 63.33 1.92 42.25 39.72 36.71 24.60 38.50 40.05
 PGD-AT (L2, ε=0.05) (Salman et al., 2020; Madry et al., 2018) 75.58 84.66 62.93 1.79 41.66 40.18 37.28 24.69 40.00 46.86
 PGD-AT (L2, ε=0.1) (Salman et al., 2020; Madry et al., 2018) 74.79 86.20 62.44 1.88 41.91 39.35 37.61 24.70 39.25 53.76
 PGD-AT (L2, ε=0.25) (Salman et al., 2020; Madry et al., 2018) 74.14 85.28 61.65 1.96 42.02 39.58 38.23 25.31 40.88 61.23
 PGD-AT (L2, ε=0.5) (Salman et al., 2020; Madry et al., 2018) 73.17 86.50 59.97 2.08 40.82 39.23 38.94 24.21 43.88 64.30
 PGD-AT (L2, ε=1) (Salman et al., 2020; Madry et al., 2018) 70.42 84.36 56.95 2.09 38.79 37.90 38.95 23.68 44.12 64.37
 PGD-AT (L2, ε=3) (Salman et al., 2020; Madry et al., 2018) 62.83 75.77 48.91 1.87 34.60 34.83 36.99 20.93 41.75 59.47
 PGD-AT (L2, ε=5) (Salman et al., 2020; Madry et al., 2018) 56.14 74.54 42.49 1.77 30.65 31.15 33.09 17.24 39.00 53.63

PGD-AT (L∞, ε=0.5/255) (Salman et al., 2020; Madry et al., 2018) 73.74 84.36 61.38 2.29 40.11 40.04 39.39 24.68 43.88 65.11
PGD-AT (L∞, ε=1/255) (Salman et al., 2020; Madry et al., 2018) 72.04 83.44 59.21 2.20 38.82 39.72 40.96 24.51 44.00 66.39
PGD-AT (L∞, ε=2/255) (Salman et al., 2020; Madry et al., 2018) 69.09 82.52 56.15 2.39 37.49 38.85 39.33 23.10 45.75 65.25
PGD-AT (L∞, ε=4/255) (Salman et al., 2020; Madry et al., 2018) 63.87 78.83 51.31 2.29 33.71 36.56 38.92 21.87 43.25 61.22
PGD-AT (L∞, ε=8/255) (Salman et al., 2020; Madry et al., 2018) 54.53 71.78 41.86 2.11 28.78 31.91 34.84 18.57 40.00 52.57

A
ug

m
en

ta
ti
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s

N AugMix (180ep) (Hendrycks et al., 2020) 77.53 88.96 65.42 3.65 50.77 46.16 41.03 28.49 45.50 30.96
DeepAugment (Hendrycks et al., 2021a) 76.65 86.81 65.20 3.40 54.40 48.39 42.25 29.50 49.12 32.51
DeepAugment+AugMix (Hendrycks et al., 2021a) 75.80 86.20 63.65 3.85 59.53 51.34 46.79 32.62 57.50 40.40

• Noise Training (clean eval) (Jaini et al., 2024) 67.22 83.44 54.67 2.43 44.40 39.48 36.64 19.99 47.12 48.27
NoisyMix (Erichson et al., 2022) 77.05 89.57 64.28 3.32 54.23 50.62 45.77 31.18 49.38 50.70

 OpticsAugment (Müller et al., 2023) 74.22 86.50 62.03 1.73 42.90 40.39 37.50 24.69 43.88 16.08
� PRIME (Modas et al., 2022) 76.91 87.12 64.34 2.16 55.27 49.00 42.20 29.83 46.62 30.82

PixMix (180ep) (Hendrycks et al., 2022) 78.09 88.65 65.89 6.25 52.99 59.51 40.31 29.21 40.25 23.02
PixMix (90ep) (Hendrycks et al., 2022) 77.36 89.88 65.20 4.11 51.87 57.76 39.92 28.57 45.00 22.28
Shape Bias Augmentation (Li et al., 2021) 76.21 87.42 64.20 3.03 47.60 44.46 40.64 27.92 64.50 25.18
Texture Bias Augmentation (Li et al., 2021) 75.27 86.81 63.18 2.25 41.82 40.26 36.76 24.28 35.50 16.83
Texture/Shape Debiased Augmentation (Li et al., 2021) 76.89 86.20 65.04 3.39 48.28 45.47 40.77 28.42 56.00 25.99

SS
L

DINO V1 (Caron et al., 2021) 75.28 85.28 62.70 5.15 39.61 35.88 30.17 18.75 30.63 13.26
MoCo V3 (1000ep) (Chen et al., 2021b) 74.60 87.42 62.01 4.07 43.53 40.76 37.05 25.51 35.50 27.79
MoCo V3 (100ep) (Chen et al., 2021b) 68.91 82.52 56.28 2.43 37.75 36.62 31.71 20.48 36.75 24.61
MoCo V3 (300ep) (Chen et al., 2021b) 72.80 84.97 60.74 3.27 41.97 39.00 35.41 24.00 36.75 27.57

• SimCLRv2 (Chen et al., 2020a) 74.90 85.58 61.24 4.65 44.32 40.73 35.16 23.55 43.88 14.57
 SwAV (Caron et al., 2020) 75.31 87.73 62.15 5.49 41.48 37.63 30.24 18.94 30.38 14.75

Freezing • Frozen Random Filters (Gavrikov & Keuper, 2023b) 74.76 87.12 62.47 2.52 45.22 40.98 37.52 25.36 40.62 16.18

St
yl

. ShapeNet: SIN Training (Geirhos et al., 2019) 60.18 73.31 48.61 2.39 39.76 36.76 40.17 30.09 90.88 12.33
• ShapeNet: SIN+IN Training (Geirhos et al., 2019) 74.59 87.12 62.43 1.91 46.91 43.33 41.55 29.70 91.00 22.47
 ShapeNet: SIN+IN Training + FT (Geirhos et al., 2019) 76.72 88.34 64.65 2.23 43.55 41.86 38.93 26.92 45.00 21.23

T
ra
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g
R
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timm (A1) (Wightman, 2019; Wightman et al., 2021) 80.10 88.65 68.73 11.03 50.93 49.01 40.60 29.22 36.88 27.74
 timm (A1H) (Wightman, 2019; Wightman et al., 2021) 80.10 89.26 68.47 15.21 49.36 48.57 40.99 29.64 39.00 36.11

timm (A2) (Wightman, 2019; Wightman et al., 2021) 79.80 86.20 67.29 7.36 48.98 47.83 38.39 27.27 38.38 27.03
• timm (A3) (Wightman, 2019; Wightman et al., 2021) 77.55 86.81 65.04 6.35 41.03 43.20 35.93 24.61 34.75 23.32

timm (B1K) (Wightman, 2019; Wightman et al., 2021) 79.16 88.34 67.41 8.51 51.64 50.30 43.04 31.22 42.88 33.40
timm (B2K) (Wightman, 2019; Wightman et al., 2021) 79.27 87.42 67.79 8.64 52.25 50.05 42.44 30.40 40.75 32.82

� timm (C1) (Wightman, 2019; Wightman et al., 2021) 79.76 89.88 68.54 10.07 50.60 49.40 41.54 30.29 37.12 33.72
timm (C2) (Wightman, 2019; Wightman et al., 2021) 79.92 90.49 68.80 11.49 51.62 50.92 40.73 29.85 37.12 30.38
timm (D) (Wightman, 2019; Wightman et al., 2021) 79.89 89.26 68.73 9.76 51.26 49.53 40.61 29.85 36.00 29.62

N torchvision (V2) (Vryniotis, 2023; Paszke et al., 2019) 80.34 90.18 69.57 16.73 50.02 49.67 41.62 28.44 38.38 39.90
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Section A.4. Model Overview for Chapter 9

Table A.4: Overview of all bias measurements.

Bias
Critical Band

Shape Frequency (IN-1k non-normalized) (IN-1k normalized)
Model Bias LF HF C-BW C-CF C-PNS C-BW C-CF C-PNS

• Original Baseline (He et al., 2016) 0.21 0.63 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
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 PGD-AT (L2, ε=0) (Salman et al., 2020; Madry et al., 2018) 0.21 0.62 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
 PGD-AT (L2, ε=0.01) (Salman et al., 2020; Madry et al., 2018) 0.22 0.64 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
 PGD-AT (L2, ε=0.03) (Salman et al., 2020; Madry et al., 2018) 0.24 0.67 0.00 11295.35 3681.95 1.0 5.67 54.68 1.00
 PGD-AT (L2, ε=0.05) (Salman et al., 2020; Madry et al., 2018) 0.24 0.67 0.00 11295.35 3681.95 1.0 5.91 41.85 1.00
 PGD-AT (L2, ε=0.1) (Salman et al., 2020; Madry et al., 2018) 0.28 0.69 0.00 11295.35 3681.95 1.0 6.45 40.65 1.00
 PGD-AT (L2, ε=0.25) (Salman et al., 2020; Madry et al., 2018) 0.34 0.72 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
 PGD-AT (L2, ε=0.5) (Salman et al., 2020; Madry et al., 2018) 0.41 0.73 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
 PGD-AT (L2, ε=1) (Salman et al., 2020; Madry et al., 2018) 0.48 0.75 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
 PGD-AT (L2, ε=3) (Salman et al., 2020; Madry et al., 2018) 0.65 0.76 0.00 11295.35 3681.95 1.0 7.47 32.63 0.60
 PGD-AT (L2, ε=5) (Salman et al., 2020; Madry et al., 2018) 0.69 0.78 0.00 11295.35 3681.95 1.0 7.92 45.71 0.55

PGD-AT (L∞, ε=0.5/255) (Salman et al., 2020; Madry et al., 2018) 0.37 0.73 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
PGD-AT (L∞, ε=1/255) (Salman et al., 2020; Madry et al., 2018) 0.45 0.74 0.00 11295.35 3681.95 1.0 7.37 39.19 0.73
PGD-AT (L∞, ε=2/255) (Salman et al., 2020; Madry et al., 2018) 0.54 0.75 0.00 11295.35 3681.95 1.0 7.92 45.71 0.55
PGD-AT (L∞, ε=4/255) (Salman et al., 2020; Madry et al., 2018) 0.62 0.75 0.00 11295.35 3681.95 1.0 10.46 114.50 0.52
PGD-AT (L∞, ε=8/255) (Salman et al., 2020; Madry et al., 2018) 0.72 0.78 0.00 11295.35 3681.95 1.0 7.47 32.63 0.60

A
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N AugMix (180ep) (Hendrycks et al., 2020) 0.30 0.74 0.02 9.95 34.70 1.0 4.74 38.85 1.00
DeepAugment (Hendrycks et al., 2021a) 0.39 0.77 0.06 11295.35 3681.95 1.0 5.51 56.31 0.72
DeepAugment+AugMix (Hendrycks et al., 2021a) 0.52 0.84 0.09 9.95 34.70 1.0 4.67 38.28 0.63

• Noise Training (clean eval) (Jaini et al., 2024) 0.51 0.79 0.01 11295.35 3681.95 1.0 6.35 33.58 0.93
NoisyMix (Erichson et al., 2022) 0.32 0.75 0.01 9.95 34.70 1.0 4.74 38.85 1.00

 OpticsAugment (Müller et al., 2023) 0.24 0.63 0.01 11295.35 3681.95 1.0 4.45 61.21 1.00
� PRIME (Modas et al., 2022) 0.32 0.71 0.13 7.34 42.82 1.0 4.74 38.85 1.00

PixMix (180ep) (Hendrycks et al., 2022) 0.26 0.68 0.03 5.91 41.85 1.0 4.74 38.85 1.00
PixMix (90ep) (Hendrycks et al., 2022) 0.23 0.67 0.03 6.45 40.65 1.0 4.74 38.85 1.00
Shape Bias Augmentation (Li et al., 2021) 0.28 0.66 0.01 11295.35 3681.95 1.0 4.74 38.85 1.00
Texture Bias Augmentation (Li et al., 2021) 0.20 0.64 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
Texture/Shape Debiased Augmentation (Li et al., 2021) 0.26 0.67 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00

SS
L

DINO V1 (Caron et al., 2021) 0.18 0.44 0.01 7.34 42.82 1.0 4.74 38.85 1.00
MoCo V3 (1000ep) (Chen et al., 2021b) 0.33 0.56 0.01 7.34 42.82 1.0 4.74 38.85 1.00
MoCo V3 (100ep) (Chen et al., 2021b) 0.30 0.55 0.01 8.22 33.66 1.0 4.74 38.85 1.00
MoCo V3 (300ep) (Chen et al., 2021b) 0.31 0.55 0.01 7.34 42.82 1.0 4.74 38.85 1.00

• SimCLRv2 (Chen et al., 2020a) 0.23 0.55 0.01 11295.35 3681.95 1.0 4.74 38.85 1.00
 SwAV (Caron et al., 2020) 0.18 0.43 0.01 7.34 42.82 1.0 4.74 38.85 1.00

Freezing • Frozen Random Filters (Gavrikov & Keuper, 2023b) 0.31 0.68 0.01 11295.35 3681.95 1.0 4.74 38.85 1.00

St
yl

. ShapeNet: SIN Training (Geirhos et al., 2019) 0.81 0.56 0.04 11295.35 3681.95 1.0 4.42 45.57 0.67
• ShapeNet: SIN+IN Training (Geirhos et al., 2019) 0.35 0.63 0.01 11295.35 3681.95 1.0 4.33 39.67 1.00
 ShapeNet: SIN+IN Training + FT (Geirhos et al., 2019) 0.20 0.64 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00

T
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R
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timm (A1) (Wightman, 2019; Wightman et al., 2021) 0.21 0.63 0.02 5.67 54.68 1.0 3.96 42.09 1.00
 timm (A1H) (Wightman, 2019; Wightman et al., 2021) 0.17 0.61 0.02 5.67 54.68 1.0 3.71 46.56 1.00

timm (A2) (Wightman, 2019; Wightman et al., 2021) 0.16 0.62 0.01 5.67 54.68 1.0 4.33 39.67 1.00
• timm (A3) (Wightman, 2019; Wightman et al., 2021) 0.13 0.58 0.01 9.95 34.70 1.0 4.67 54.89 1.00

timm (B1K) (Wightman, 2019; Wightman et al., 2021) 0.19 0.64 0.02 5.67 54.68 1.0 4.14 47.02 0.91
timm (B2K) (Wightman, 2019; Wightman et al., 2021) 0.18 0.65 0.02 5.67 54.68 1.0 4.14 47.02 0.91

� timm (C1) (Wightman, 2019; Wightman et al., 2021) 0.18 0.64 0.02 5.67 54.68 1.0 3.96 42.09 1.00
timm (C2) (Wightman, 2019; Wightman et al., 2021) 0.18 0.62 0.02 5.67 54.68 1.0 3.92 53.43 0.86
timm (D) (Wightman, 2019; Wightman et al., 2021) 0.17 0.63 0.01 5.67 54.68 1.0 3.96 42.09 1.00

N torchvision (V2) (Vryniotis, 2023; Paszke et al., 2019) 0.17 0.66 0.01 5.67 54.68 1.0 3.92 53.43 0.86

A.4 Model Overview for Chapter 9
We provide a brief description of utilized VLMs in Table A.5 and show detailed results for the texture/shape
bias in Table A.6 that were used in Chapter 9. Specifically, Table A.6 shows the shape bias and accuracy
for the VQA and Image Captioning task (see Figure 9.2 in the main chapter for a visualization). For the
open-ended Image Captioning responses, we additionally provide evaluations through an LLM. These include
the number of generated tokens (to measure how effective our “Keep [...] short.” instruction is), the ratio
of responses where exactly one class was detected (single class ratio), and the ratio of responses that do not
refer to any description (generic ratio).
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Table A.5: An overview of the utilized VLMs.

Qwen-VL-Chat (Bai
et al., 2023b)

Adds vision capabilities to Qwen-7B (Bai et al., 2023a). We set a repetition
penalty of 1.2 for this model.

Qwen-VL Plus/Max
(Qwen Team, 2024)

AliBaba’s proprietary larger variants of Qwen-VL-Chat. Access only via API.

CogAgent (Hong et al.,
2023)

A special model for interaction with graphical user interfaces (GUIs) at high-
resolution.

CogVLM (Wang et al.,
2023c)

Adds “trainable visual expert module” in LLM layers to combine vision and
language.

Emu2 (Sun et al., 2023a) The 37B model claims “strong multi-modal in-context learning abilities”.

InstructBLIP (Dai
et al., 2023)

Connects frozen vision encoders and LLMs through a trainable Q-Former. Uses
Vicuna or FLAN-T5 as LLMs.

LLaVA v1.5 (Liu et al.,
2023b)

Improvements of LLaVA with modifications on the image encoder, the projector,
and task-specific data. Uses Vicuna-7/13B as LLM.

LLaVA-NeXT (Liu et al.,
2024)

Successor of LLaVA v1.5 supporting higher resolutions through patching, and
using better SFT training data for training, claiming “improved reasoning, OCR,
and world knowledge” (Liu et al., 2024). The 34B version switches from Vicuna-
7/13B to Nous Hermes 2 Yi 34B.

MoE-LLaVA v1.5 (Lin
et al., 2024)

Variants of LLaVA v1.5 employing 4 sparsely activated Mixture-of-Experts
(MoE), and smaller LLMs (Qwen, Phi-2, StableLM).

LLaVA-RLHF (Sun et al.,
2023c)

Variants of LLaVA v1.5 aligned with Factually Augmented RLHF (Fact-RLHF)
(Sun et al., 2023c).

UForm-Gen Chat (Kim
et al., 2023)

A small (1.5B) model for VQA and image captioning finetuned for multi-modal
chats.

Gemini 1.0 Pro
Vision (Gemini Team,
2023)

Google’s proprietary multi-modal model based on the Gemini Pro LLM. Access
only via API.

InternVL Chat
1.1/1.2+ (Chen et al.,
2024)

An open-source effort to provide an alternative to ViT-22B (Dehghani et al.,
2023). V1.1 is based on a 6B ViT and Vicuna-13B, V1.2+ uses Nous Hermes 2
Yi 34B as LLM including additional SFT on 10x more data.

GPT-4V (Preview)
(OpenAI, 2023)

OpenAI’s proprietary multi-modal model based on the GPT-4 LLM. Access
only via API. Often considered to be the most powerful model.
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Table A.6: Detailed results of our texture/shape study. We measure shape bias and respective
accuracy on the texture/shape cue-conflict dataset for various VLMs in VQA classification or image
description tasks. For the image description task, we additionally provide the average number of
tokens generated by Vicuna’s tokenizer and the ratio of responses that only contain a single class or
are generic (do not mention any class) as judged by a separate LLM. “-” indicates models that did not
follow instructions on VQA and could, thus, not be evaluated.

VQA Image Captioning
Shape Accu- Shape Accu- Avg. Single Class Generic

Model Bias [%] racy [%] Bias [%] racy [%] Tokens Ratio [%] Ratio [%]

Gemini 1.0 Pro Vision (Gemini Team, 2023) 64.1 82.33 63.2 68.00 18.9 63.0 32.3
GPT-4V (Preview) (OpenAI, 2023) 47.9 69.75 53.6 52.67 44.8 37.2 60.4
Qwen-VL Plus (Qwen Team, 2024) 64.8 82.92 67.9 65.50 21.9 59.2 36.0
Qwen-VL Max (Qwen Team, 2024) 62.4 85.50 69.7 68.50 151.9 52.1 41.0
Qwen-VL Chat (Bai et al., 2023b) - - 38.2 67.42 27.3 59.1 33.2
InternVL Chat 1.1 (Chen et al., 2024) 68.3 89.33 73.2 75.58 16.9 74.9 19.4
InternVL Chat 1.2+ (Chen et al., 2024) 61.1 90.83 61.3 82.42 15.8 80.4 11.4
LLaVA v1.5 7B (Liu et al., 2023b) 61.4 80.75 61.4 76.08 12.1 73.8 19.2
LLaVA v1.5 13B (Liu et al., 2023b) 64.1 80.25 62.7 75.58 28.9 65.8 23.8
LLaVA-RLHF 7B (Sun et al., 2023c) 61.7 68.08 63.0 71.83 47.9 65.1 24.7
LLaVA-RLHF 13B (Sun et al., 2023c) 63.4 80.42 62.3 73.25 38.3 64.7 27.7
LLaVA-NeXT 7B (Liu et al., 2024) 59.2 82.58 64.0 65.08 20.2 55.5 39.5
LLaVA-NeXT 13B (Liu et al., 2024) 57.2 83.42 63.5 65.25 48.8 52.6 40.9
LLaVA-NeXT 34B (Liu et al., 2024) 56.0 73.83 66.2 57.50 93.4 36.2 59.1
MoE-LLaVA-StableLM (Lin et al., 2024) 59.1 80.08 63.0 73.92 24.1 67.4 21.6
MoE-LLaVA-Qwen (Lin et al., 2024) 62.9 59.50 63.2 75.33 13.3 69.4 20.7
MoE-LLaVA-Phi2 (Lin et al., 2024) 59.6 82.33 61.1 75.42 34.9 67.0 18.6
InstructBLIP Flan-T5-xl (Dai et al., 2023) 68.2 79.58 67.1 81.50 116.7 57.0 22.3
InstructBLIP Vicuna-7B (Dai et al., 2023) 73.8 72.25 67.7 80.67 94.0 60.9 28.0
Emu2-Chat (Sun et al., 2023a) 52.9 75.08 59.6 65.00 13.6 63.0 34.0
CogAgent Chat (Hong et al., 2023) - - 67.4 60.33 40.1 49.6 47.7
CogVLM Chat (Wang et al., 2023c) - - 57.6 66.58 35.8 53.2 40.1
UForm Gen Chat (Kim et al., 2023) - - 38.8 64.50 30.2 59.3 33.0
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