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Abstract

High-stakes personality assessments are often compromised by faking, where test-
takers distort their responses according to social desirability. Many previous models
have accounted for faking by modeling an additional latent dimension that quantifies
each test-taker’s degree of faking. Such models assume a homogeneous response
strategy among all test-takers, reflected in a measurement model in which substan-
tive traits and faking jointly influence item responses. However, such a model will be
misspecified if, for some test-takers, item responding is only a function of substantive
traits or only a function of faking. To address this limitation, we propose a mixture
modeling extension of the multidimensional nominal response model (M-MNRM)
that can be used to account for qualitatively different response strategies and to
model relationships of strategy use with external variables. In a simulation study, the
M-MNRM exhibited good parameter recovery and high classification accuracy across
multiple conditions. Analyses of three empirical high-stakes datasets provided evi-
dence for the consistent presence of the specified latent classes in different person-
nel selection contexts, emphasizing the importance of accounting for such kind of
response behavior heterogeneity in high-stakes assessment data. We end the article
with a discussion of the model’s utility for psychological measurement.
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Introduction

Self-report personality questionnaires are frequently employed in high-stakes assess-
ments like personnel selection (Diekmann & Konig, 2015; Nikolaou & Foti, 2018),
as personality measures derived from self-report questionnaires have been found to
predict job performance and other outcomes in various contexts (e.g., Ones et al.,
2007; Sackett & Walmsley, 2014). However, considering that personality tests in
high-stakes assessments carry important consequences for test-takers, there is the
threat that test-takers deliberately present themselves in an overly favorable manner,
that is, engage in faking. Many studies over the past few decades have shown that
faking has several adverse effects on the psychometric properties of a test (Ziegler
et al., 2011), including elevated mean scores (e.g., Birkeland et al., 2006), inflated
correlations between trait scales (e.g., Christiansen et al., 2021), and biased rank
orders of test-takers which ultimately alter selection decisions (e.g., Mueller-Hanson
et al., 2003).

To account for the response bias of faking, several latent variable models have
been developed to capture variance in item responses that is due to faking (e.g.,
Hendy et al., 2021; Seitz et al., 2024, 2025; Ziegler et al., 2015). These models typi-
cally assume a homogeneous response strategy among test-takers, reflected in a mea-
surement model with a continuous latent faking dimension on which test-takers vary
quantitatively. However, research has shown that test-takers in high-stakes assess-
ments in fact employ qualitatively different response strategies (Griffith & Converse,
2011; Robie et al., 2007). In this case, a single measurement model does not fully
capture the faking process and potentially yields biased estimates of person and item
parameters.

In the present work, we address this limitation by extending the faking model by
Seitz et al. (2024, 2025) in a mixture modeling framework. Throughout this article,
we investigate the extended model in a simulation study and in a set of empirical
datasets from three job application settings. Before presenting details about the model
extension, we will first introduce previous model-based faking accounts as well as
previous mixture modeling approaches.

Model-Based Approaches to Accounting for Faking

As mentioned above, there are multiple approaches that account for faking using
latent variable modeling. One prominent approach is to use structural equation mod-
eling and model responses from a personality inventory with a bifactor model (Hendy
et al., 2021; see also Klehe et al., 2012; Schmit & Ryan, 1993). In such a model, all
items load on a common general factor, which captures variance among the items of
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different trait scales and thus reflects an ‘‘ideal-employee’ or faking factor. The
items of the different trait scales additionally load on specific factors, which reflect
the respective substantive personality traits after controlling for the general (faking)
factor. Previous work fitting a bifactor model to personality data has found that sub-
stantive trait estimates based on scores of specific factors are less distorted by faking
than trait estimates based on classical scale scores (Hendy et al., 2021), and that the
general faking factor is related to external covariates (Klehe et al., 2012).

Another approach to accounting for faking is to apply multidimensional item
response theory (IRT). Multidimensional IRT models have frequently been used to
account for response styles in rating scale data by specifying additional latent dimen-
sions that reflect the response styles of interest (see Henninger & Meiser, 2020, for
an overview). In many cases, these models are applications of the multidimensional
nominal response model (MNRM; Takane & de Leeuw, 1987). In the parameteriza-
tion of the model by Falk and Cai (2016; see also Thissen & Cai, 2016), item
responses are modeled through the following softmax function which accounts for
the influence of D latent dimensions:

exp((ai osik)/en + Vik) (1)

Yoi=k | oi, Si, v;, 0,)= ' .
p( n ‘ n) Zﬁzoexp((aiosim) 0n+7im)

Ye{0,1, ..., k, ..., K} is a random variable representing an item response,
with & denoting its realization (i.e., the selected response category). The probability
of response category k selected by person » on item 7 depends on a vector of person
parameters 0, (containing trait scores of person n on the D dimensions), a vector of
item-category intercepts vy; (containing intercept values of item 7 for the K +1 cate-
gories), a vector of item slopes «; (containing factor loadings [aka discrimination
parameters] of item i with respect to the D dimensions), and a matrix of scoring
weights ;. Scoring weights reflect the relationship between category k& and dimen-
sion d on item #, and can hence be used to specify the latent dimensions that should
be modeled. For modeling substantive traits, a scoring weight vector of evenly spaced
integer values is typically specified, following the partial credit model (Masters,
1982) for ordinal responses as a special case of the nominal response model (Bock,
1972; Thissen & Steinberg, 1986). For response styles such as extreme response style
(ERS) or midscale response style (MRS), a 0/1 scoring scheme is usually employed,
where categories triggered by high levels of the respective response styles are coded
as 1 and other categories are coded as 0.

Seitz et al. (2024, 2025) transferred the method of specifying scoring weights to
the response bias of faking. In particular, they set scoring weights of a faking dimen-
sion to values representing the desirability of a response category on a given item.
When modeling responses to a personality test designed to measure three substantive
traits with a 7-point Likert scale, the scoring weight matrix .S; for an item measuring
the first substantive trait can be denoted as:
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0 1 2 3 4 5 6
0 0 0 0 0 0 0
0 0 0 0 0 0 0 ’ (2)
des;o des;; desp des;z desy des;s  desi

S,‘:

where scoring weights of the substantive trait dimensions not measured by the partic-
ular item are set to 0 and des;; stands for category k’s desirability on item i. To get
the desirability values in an empirical setting, one can conduct a pilot study in which
participants are instructed to rate the desirability of each category of each item with
respect to the social context of the actual personality testing (typically with respect
to an application for a particular job; Seitz et al., 2025). Usually, items vary in how
desirable the respective categories are, and the relationship between categories and
desirability is oftentimes not strictly monotonic (Kuncel & Tellegen, 2009). Thus,
when specifying the faking dimension as described, item-specific and potentially
nonmonotonic faking effects can be modeled. In previous work, this way of model-
ing faking has been shown to significantly improve model fit, debias inflated correla-
tions between substantive traits (Seitz et al., 2025), and enhance the estimation of
individual substantive trait scores (Seitz et al., 2024).

Mixture Modeling Approaches to Accounting for Heterogeneity in Response
Behavior

Independent of the modeling of faking, there are other methods to account for differ-
ent kinds of heterogeneity in response behavior. One parametric approach is to use
mixture modeling. These models assume that the data consists of distinct, unobserved
subpopulations, so-called latent classes, each of which is associated with a separate
measurement model (e.g., McLachlan & Peel, 2000; von Davier & Rost, 2006). That
is, parameter values or the entire model structure may not be constant for all test-
takers but vary between classes. Substantively, the different classes are assumed to
represent distinct response processes, varying response strategies, or other types of
heterogeneity. To account for such heterogeneous response behavior, separate mea-
surement models are estimated based on assigning test-takers to the different classes.
As a result, mixture models yield estimates of class proportions and probabilities of
class membership for each test-taker.

In psychometrics, mixture models have been extensively used to account for het-
erogeneity in item responding. Many studies have followed an exploratory approach.
For example, mixture-distribution IRT models have been applied to study heteroge-
neity in the use of rating scales (Rost, 1991). Such analyses have often found two
classes characterized by varying threshold distances, typically treated as manifesta-
tions of ERS (e.g., Bockenholt & Meiser, 2017; Eid & Rauber, 2000; Gollwitzer
et al., 2005). However, the interpretation of classes in exploratory mixture models is
usually post hoc, atheoretical, and can become cumbersome in the case of complex
model structures.
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As opposed to fully exploratory mixture models, there are confirmatory mixture
modeling approaches. These models impose theoretically motivated parameter con-
straints to account for specific forms of heterogeneity. A prominent example of such
models are HYBRID models (Yamamoto, 1987, 1989), which assume two classes
with model structures related to different cognitive processes. One class is specified
in terms of a regular IRT model, whereas a model of stochastic independence is
specified in the second class (see von Davier & Yamamoto, 2004; Yamamoto &
Everson, 1995; for extensions). Thus, the HYBRID model separates regular test-
takers from test-takers who choose response categories randomly. An overview of
mixture-distribution IRT and HYBRID models can be found in von Davier and
Yamamoto (2007).

Furthermore, other confirmatory mixture models have been developed in recent
years to account for heterogeneity in rating scale responses. Tijmstra et al. (2018)
proposed a two-class mixture IRT model that models a qualitatively different use of
the midpoint category of a rating scale. Similar to a HYBRID model, a regular (in this
case, ordinal) IRT model is specified in one class, whereas the second class is para-
meterized in terms of an item response tree (IRTree) model where test-takers first
decide whether to choose the midpoint category and then, given they have not chosen
the midpoint category, indicate their actual endorsement level. The model thus sepa-
rates test-takers who use the midpoint category as part of the ordinal scale for item
endorsement from test-takers who treat the midpoint category as sort of a non-
response. Similarly, Kim and Bolt (2021) developed a two-class mixture model that
accounts for differences in how test-takers come to select extreme response cate-
gories. In this model, one class is specified in which the selection of extreme cate-
gories is determined by ERS, whereas the substantive trait influences the choice of
extreme categories in the second class. That is, the model allows for interindividual
differences regarding which latent dimensions affect item responses. Finally, Alag6z
and Meiser (2024) proposed a four-class model in which the mixture components
reflect a different use of ERS and MRS. To specify the classes, slopes of response
style dimensions that are not used in a class are fixed to 0, leading to an ““ERS-only
class,” “MRS-only class,” “ERS&MRS class,”” and ‘‘no response style class.”” The
model hence aims to detect fine-grained heterogeneity in test-takers’ response style
usage. In data applications of these three mixture models, all classes turned out to be
empirically prevalent, providing evidence for the existence of heterogeneous response
strategies in questionnaire data.

Heterogeneity of Response Strategies in High-Stakes Assessments

As noted above, previous faking models typically account for faking in terms of a
latent variable that captures each test-taker’s faking degree. That is, a single measure-
ment model is specified in which item responding is a function of test-takers’ sub-
stantive trait and faking levels. However, as for response styles, there is evidence that
test-takers in high-stakes assessments do not only differ quantitatively in faking but
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also qualitatively. Evidence for this claim comes, for instance, from studies examin-
ing the prevalence of faking. These studies have come to the conclusion that many
test-takers in high-stakes assessments do engage in faking but also that a considerable
proportion do not show self-presentational behavior (see Griffith & Converse, 2011;
for an overview). Griffith et al. (2007), for example, retested job applicants under
anonymous conditions and observed that 30% to 50% of applicants had significantly
elevated their scores in the preceding application whereas the remaining applicants
had not (see also Arthur et al., 2010). Similarly, using the randomized response tech-
nique, Konig et al. (2011) found that 32% of applicants in the United States exagge-
rate positive features in job application contexts whereas the other 68% do not (see
also Donovan et al., 2003). Furthermore, evidence for qualitative differences in test-
takers’ faking behavior is provided by studies investigating the thought process in
high-stakes personality testings (Robie et al., 2007; Réhner et al., 2025). Robie et al.
(2007), for example, asked test-takers to think aloud while they were responding to a
personality questionnaire under high-stakes conditions. Based on an analysis of ver-
bal protocols, they found three groups: a group of test-takers referring to themselves
and the ‘‘ideal’’ applicant while responding, a group of test-takers only considering
themselves, as well as a group of test-takers exclusively responding from the perspec-
tive of the ‘“‘ideal’” applicant.

Considering this line of research, it is questionable whether the response process
associated with faking can be described by a single continuous faking variable and a
homogeneous loading structure of substantive traits and faking across test-takers. If,
for subsets of test-takers, item responding is only a function of substantive traits or,
to the other extreme, only a function of faking, a model assuming a joint influence of
substantive traits and faking for all test-takers will be misspecified. For test-takers
only responding according to substantive traits, the model will be inappropriate
because substantive trait scores will be adjusted for an estimated faking degree that
has no actual foundation since faking has not influenced item responding. Likewise,
for test-takers for whom item responding is only a function of faking, the model will
be inappropriate because it will nonetheless yield substantive trait score estimates for
these test-takers. Apart from an inappropriate estimation of person parameters, one
can also expect that the estimation of item parameters and latent correlations will be
biased if test-takers differ qualitatively in how they (do not) align responses with
desirability (see the simulation below).

Mixture Multidimensional Nominal Response Model (M-MNRM)

To allow for different response strategies in the modeling of faking, we propose a
mixture extension of the MNRM that Seitz et al. (2024, 2025) used to account for
faking. We hereby follow a confirmatory mixture modeling approach by constraining
class-specific model parameters based on the definition of classes (see Alagdz &
Meiser, 2024, for a similar approach). In particular, we specify three latent classes
reflecting the response strategies test-takers may use in high-stakes assessments
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(see the above-described study by Robie et al., 2007). The first class represents a
response strategy where test-takers select categories based on a combination of sub-
stantive traits and a faking dimension (‘‘S&F class’’), which is equivalent to the
measurement model in the non-mixture version of the MNRM. Such a response
behavior is conceivable because the obvious goal of making a favorable impression
conflicts with the goal of staying true to oneself (Kuncel et al., 2011), so test-takers
may want to find a compromise. Also, the conflict between wanting the job and
social norms like telling the truth may lead to the joint consideration of substantive
traits and faking. The second class reflects a response strategy where test-takers only
respond based on substantive traits while faking does not influence item responses
(““S-only class’’). Reasons for such a response behavior can be that some test-takers
do not know how to portray themselves favorably and hence do not engage in faking
(Marcus, 2009; Ziegler, 2011), that some are afraid of being detected as liar or
imposter (Rohner et al., 2025; Turner, 2022), or that some deliberately want to be
honest in order to avoid being selected for a job they do not fit to (Kanfer et al.,
2001; Saks & Ashforth, 2002). The third class represents a response strategy where
item responding is not determined by substantive traits but solely by a faking dimen-
sion (“‘F-only class’”). Such a response behavior can occur when test-takers want to
be hired at any cost and therefore only consider desirability aspects of the items, or
when test-takers want to compensate for poor scores on other relevant selection cri-
teria (such as cognitive ability tests or grades).

To implement the three classes in the mixture model, one can impose class-
specific model constraints, namely, set slopes of latent dimensions that are not part
of a given response strategy to O for the respective class. Technically, the model
equation of the mixture MNRM (M-MNRM) can be written as:

3 eXp((atCOSik)’on +'Yikc)
p(Yni=k | Qe Si) Yic> 0")= Z K ’ p(§n=c) s (3)
c=1 Zmzo exp ((aicosim> 0,+ 'Yimc)

where {, € {1, 2, 3} denotes the class membership of person n. This equation
describes the total probability of response & for person # on item i by multiplying the
class-specific response probability with the probability of being a member of this
class before summing across the three classes. The term p({,=c) is often referred to
as the proportion of class c. When conditioning on person n’s class membership, the
equation boils down to the class-specific probability of response k& for person » on
item i:

- 0si) 0+,
p(Ym:k | e, Sia Yies gm anc)z KeXp((achSzk) n/ 'szc) ] (4)
Zm=0 exp((aicosim) 0n + Vimc)

Consider modeling faking in a personality questionnaire measuring three substantive
traits with three items each, the slope matrices of the three latent classes in the M-
MNRM can be denoted as:
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where the rows reflect the items and the columns reflect the latent dimensions.

Furthermore, to model relationships between the use of response strategies and
external variables, class membership can be predicted by a set of covariates. This can
be achieved through a latent multinomial logistic regression of class membership on
the covariates:

P
The :p(Cn =c | Xn :xn) = 3exp(Boc+ p:lPchxnp) . (8)
Zmzl exp(BOm + p=1 Bpmxnp)

X is a multivariate random variable representing the P covariates, x,, denotes the rea-
lizations for person n. B, is the regression intercept for class ¢, B, are regression
slopes that reflect the effect of covariate p on class c. In this article, the ““S&F class”
represents the reference class. Hence, regression coefficients pertaining to this class
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are fixed to 0, such that intercepts and slopes pertaining to the other classes are to be
interpreted with respect to the ‘““S&F class.”

It is important to note that the model does not imply that test-takers in the “‘S-only
class” per se do not have a faking person parameter or, correspondingly, that test-
takers in the ‘‘F-only class’ per se do not have substantive trait person parameters.
Instead, the model assumes that test-takers in the ‘“S-only class’ (‘‘F-only class’”)
do not consider the faking dimension (substantive trait dimensions) when responding
to the items. Similarly, the proposed model is not equivalent to a non-mixture model
in which ““S-only”* test-takers (‘‘F-only”’ test-takers) have faking person parameters
(substantive trait person parameters) of 0. Whereas a person parameter of 0 simply
reflects one possible value on the dimension’s latent continuum (oftentimes repre-
senting the latent mean), an item slope of 0 implies that the dimension does not
explain any variance in item responses, which captures the idea of qualitatively dif-
ferent response strategies (see also Alagdz & Meiser, 2024). More information on
this matter, including a data illustration, can be found in the Supplemental Material.

Note also that, in our parameterization, non-fixed item slopes are class-invariant.
This allows for measuring the same latent variables across classes, such that classes
only differ concerning the loading structure of items and factors (Alagdz & Meiser,
2024; Kim & Bolt, 2021). Allowing non-fixed item slopes to vary freely would
potentially change the meaning of the latent variables across classes. However, item-
category intercepts are class-specific in our parameterization. This is because the
three classes are likely to differ in their response distributions. As class-specific
intercepts can capture different response distributions across classes, modeling inter-
cepts in an unconstrained manner can be assumed to facilitate class separation when
estimating the model.

Differences to Other Faking Mixture Models

Before coming to details about the estimation of the model, we will first delineate
how the M-MNRM differs from other faking models including mixture components.
Zickar et al. (2004) applied a mixture-distribution IRT model to personality data from
an applicant sample. They found three classes characterized by a different ordering
and spacing of threshold parameters, which they interpreted as an honest, slight-fak-
ing, and extreme-faking class. Nevertheless, since such a mixture modeling approach
is fully exploratory, it remains uncertain whether the resulting classes truly capture
faking. It may well be that the classes in fact represent other response tendencies.
Also, such a model conceptualizes faking only as a discrete variable. Related work,
however, emphasized the continuous nature of faking (Ziegler et al., 2015).
Bockenholt (2014; see also Leng et al., 2020) modeled test-takers’ misreporting
behavior in sensitive survey questions. This model specifies for every item a binary
latent class variable indicating whether a test-taker edits his or her retrieved response.
If a test-taker has decided to edit, the selection of desirable response categories is
modeled by a transition function. Even though the model is conceptually appealing,
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it comes with the limitation that only one substantive trait can be modeled. Also, the
selection of categories when editing occurs is modeled in a monotonic way, such that
the selected categories are assumed to be always higher (lower) if the substantive
trait is generally desirable (undesirable).

Brown and Bdckenholt (2022) developed a grade-of-membership model to
account for intermittent faking. This model assumes that each item response either
stems from a ‘“‘real’’ (honest) or ‘“ideal’’ (faking) class that is predicted by a latent
editing factor and item characteristics. Within each class, item responses are either a
function of substantive traits or a function of a faking factor. Though theoretically
elaborate, the model does not include a class where responses are influenced by both
substantive traits and faking, which is conceivable considering the findings by Robie
et al. (2007) described above. Also, like the approaches by Zickar et al. (2004) and
Bockenholt (2014), the model does not explicitly account for nonmonotonic faking
effects in a way that, for some items, high faking levels make the selection of non-
extreme categories more likely (see Kuncel & Tellegen, 2009; Seitz et al., 2024,
2025).

Model Estimation

The M-MNRN can be estimated in a Bayesian Markov chain Monte Carlo (MCMC)
procedure. Therefore, we implemented the full model (Equation 3), in which the
latent regression of class membership on covariates (Equation 8) is nested, in the
program JAGS (version 4.3.1; Plummer, 2017). We accessed JAGS via the R envi-
ronment (version 4.4.0) using the package runjags (Denwood, 2016), and employed
the packages coda (Plummer et al., 2006) and MCMCvis (Youngflesh, 2018) for pro-
cessing MCMC outputs. The JAGS syntax and R code for estimating the model can
be found at https://osf.io/vwqf3/.

For model estimation, the following priors were used: Non-fixed item slopes were
sampled from a positively-truncated normal distribution (a;y ~ N*(0, 2?)). Class-
specific item-category intercepts were drawn from an uncensored normal distribution
(Yire ~ N(0, 5%)), with the intercept of the first category fixed to 0 due to model
identification. Substantive trait and faking scores were drawn from a multivariate nor-
mal distribution (8, ~ MVN(pn, 3)), where p=0 and 3 was a variance-covariance
matrix with unit variances. Thus, covariances represented correlations, which had a
uniform prior distribution (p,; ~ U(— 1, 1)). Latent regression coefficients were
sampled from a normal distribution (B, B,. ~ N(0, 2%)), with coefficients pertain-
ing to the ““S&F class” fixed to 0. Class membership was drawn from a categorical
distribution (¢, ~ Cat(1,)), in which 1, was a vector of person-specific class prob-
abilities resulting from the latent regression of class membership at the respective
MCMC iteration.

To obtain point estimates of continuous model parameters, means of posterior dis-
tributions were computed. For class membership as a discrete model parameter, the
posterior mode was considered (i.e., modal assignment; Dias & Vermunt, 2008).
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Because of the latent regression of class membership in the M-MNRM, the model
does not include explicit class proportion parameters. However, mean class probabil-
ities across persons and MCMC iterations can be calculated to get class proportion
estimates. Note that, in the present model, class labels are not arbitrary because dif-
ferent measurement models are explicated for the three classes. This prevents the
problem of label switching (Stephens, 2000) that is frequently encountered in the
Bayesian estimation of mixture models.

Simulation Study

To investigate the M-MNRM under different class proportion conditions, we con-
ducted a simulation study analyzing parameter recovery and the model’s superiority
over non-mixture models. Also, the simulation should examine whether the correct
model (non-mixture vs. mixture) is selected when either one or multiple classes are
present in the data.

Simulation Conditions

The simulation featured 10 class proportion conditions: In Condition 1, class propor-
tions were (33.3%, 33.3%, 33.3%), that is, the three classes were equally sized.
Conditions 2 to 4 were conditions in which either the *S&F class”
(Condition 2 : (60%, 20%, 20%)), the ““S-only class’” (Condition 3 : (20%, 60%,
20%)), or the “F-only class’ (Condition 4 : (20%, 20%, 60%)) was dominant. In
Conditions 5 to 7, one class was absent, either the ““S&F class” (Condition 5 :
(0%, 50%, 50%)), the “‘S-only class” (Condition 6 : (50%, 0%, 50%)), or the
“F-only class” (Condition 7 : (50%, 50%, 0%)). Conditions 8 to 10 represented
data situations with non-mixture populations. That is, only one class was present in
the data, either the “S&F class” (Condition 8 : (100%, 0%, 0%)), the “‘S-only
class” (Condition 9 : (0%, 100%, 0%)), or the “‘F-only class” (Condition 10 :
(0%, 0%, 100%)).

Data Generation and Fitted Models

For every simulation condition, we simulated item responses of a questionnaire mea-
suring 3 substantive traits with 10 items each on a 7-point Likert scale. We chose this
simulation design to examine data situations representative of empirical high-stakes
datasets (see the empirical demonstration below). To generate the data, we took the
following steps:

1. Ttem slopes a;;: Item slopes of substantive traits and faking were sampled
from U(0.5, 1).

2. Scoring weights s;4: Scoring weight vectors of substantive traits were set to
(0 1 2 3 4 5 6).Scoring weight vectors of faking also had a range
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Figure I. Simulation Study: Recovery of Substantive Trait and Faking Scores. (a) Recovery of
Substantive Trait Scores and (b) Recovery of Faking Scores.

Note. Values reflect the mean correlations (using Fisher’s z-transformation) between estimated and true
substantive trait scores (a) or faking scores (b) across replications within a condition. Results for
substantive traits are aggregated across the three substantive traits used in the simulation. Error bars
represent the standard error of the mean. “X” denotes that a proper recovery of the particular
parameters is precluded in the respective condition because they have not influenced item responses in
the data generation.

from 0 to 6 but varied between items to emulate a situation in which relation-
ships between response categories and desirability are item-specific.
Specifically, within every substantive trait scale, scoring weight vectors of
faking were generated reflecting monotonically increasing, nonmonotonically
increasing, as well as inverted-U-shaped relations between categories and
desirability (see Figure 1 in Seitz et al., 2024, for details).
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3. Item-category intercepts v;,.: For every item, the intercept of the first cate-
gory was fixed to 0. Intercepts of the remaining categories were simulated by
sampling sorted thresholds T, from U( — 2, 2) before the resulting values
were transformed into cumulative thresholds representing intercepts:
Yie= — er;=0TimC' This procedure was carried out independently for the
three classes.

4. Substantive trait and faking scores 6,,;: For each of N =1, 500 simulated test-
takers, three substantive trait scores and a faking score were drawn from

1
o o 1 .
MVN(p, ), with p=0and 3, = 30 —30 1 . The assignment

0 30 =30 1
of the latent correlations printed in italics to the three substantive trait pairs
was randomized between replications.

5. Latent regression coefficients B, 3,.: Three covariates of class membership
were considered, one with a null effect, one with weak effects, and one with
strong effects. With the ““S&F class’ as the reference class, latent regression
coefficients pertaining to this class were fixed to 0. Regression slopes of the
null-effect covariate pertaining to the remaining classes were also set to 0,
whereas slopes of the weak-effects and strong-effects covariates were
sampled from N(1, 0.22) and N(2, 0.2%), respectively. Half of the regression
slopes within each replication were multiplied by —1 to simulate both posi-
tive and negative covariate effects. Regression intercepts were specified to
lead to the class proportions of the respective simulation condition.

6. Covariate values X,,: For all simulated test-takers, values on the three covari-
ates were drawn from MVN(p, ), with p=0 and 3 as a diagonal matrix
with unit variances.

7. Class membership {,: Using Equation (8), class probabilities 7, were com-
puted for every simulated test-taker, which were then used to sample the
actual class membership from Cat(1s,).!

8. Based on the generated item parameters, substantive trait and faking scores,
as well as class memberships, item responses were simulated using Equation
4).

9. Steps | to 8 were replicated such that there were 30 generated datasets per
condition.

The data generation was performed in R using the packages MASS (Venables &
Ripley, 2002) and mirt (Chalmers, 2012). Within each condition, four models were
fitted to all generated datasets: a model only accounting for a faking dimension with
specified scoring weights (‘‘6 model’’), a model only accounting for substantive
traits (‘‘6g model’’), a model accounting for substantive traits and faking (“‘6</0r
model’’), as well as the M-MNRM accounting for substantive traits and faking with
the three latent classes (‘‘mixture 65/ model’’). Scoring weights were specified as
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in the data generation. The three non-mixture models were also estimated using the
Bayesian estimation framework described above (the non-mixture model syntaxes
are also available at https://osf.io/vwqf3/). Four parallel MCMC chains were run for
every model. The estimation featured a burnin phase of 2,000 iterations, followed by
5,000 regular iterations.

Simulation Results

To check model convergence, we considered R values of continuous model para-
meters (Gelman & Rubin, 1992). These were below 1.1 for all models. Also, we
visually inspected MCMC chains of item parameters, latent correlations, and latent
regression coefficients and found that trace plots were well-mixed.

Model Selection. As mentioned above, we examined if model selection criteria cor-
rectly chose the mixture model when there was more than one class in the data, and,
crucially, if they chose a non-mixture model when the data came from a non-mixture
population. Therefore, we considered the deviance information criterion (DIC;
Spiegelhalter et al., 2002) as calculated by Gelman et al. (2004), the widely applica-
ble information criterion (WAIC; Watanabe, 2010), and the leave-one-out informa-
tion criterion (LOOIC; Vehtari et al., 2017). These measures balance model fit and
model parsimony by penalizing the model’s mere fit to the data with the effective
number of parameters or by considering out-of-sample predictive accuracy. Table 1
shows the percentages with which DIC, WAIC, and LOOIC selected the correct
data-generating model. In conditions with more than one class present in the data,
every model selection criterion correctly selected the ‘‘mixture 85/0r model” in all
replications. In conditions with only one class in the data, the performance of model
selection criteria was still high (above 80%), though in some cases incorrect models
were selected. However, incorrect model selections were not only due to an overse-
lection of the mixture model but also due to false model selections within the three
non-mixture models. Percentages of incorrect mixture model selections in conditions
with only one class were below 10%. It is also important to note that, in replications
in which the mixture model was falsely selected, the number of simulated test-takers
assigned to a truly non-existent class was negligible (see hit rates below).

Parameter Recovery. To evaluate parameter recovery, we considered the bias of esti-
mation to investigate if parameters were systematically over- or underestimated as
well as the root mean square error (RMSE) to investigate the accuracy of estimation.
For the recovery of substantive trait and faking scores, we considered the correlation
between estimated and true parameters. To examine how well the individual class
membership was recovered, we considered the hit rate, which indicates the percent-
age of persons correctly assigned to their respective class and thus reflects a measure
of classification accuracy.


https://osf.io/vwqf3/
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Table I. Simulation Study: Percentages of Correctly Selected Models.

Condition

Model selection criterion

DIC

WAIC

LOOIC

Classes equally sized

“S&F class” dominant
“S-only class” dominant
“F-only class” dominant
“S&F class” absent

“S-only class” absent
“F-only class” absent

Only “S&F class” present
Only “S-only class” present
Only “F-only class” present

100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
80.0% (90.0%)
83.3% (93.3%)
86.7% (93.3%)

100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
96.7% (100.0%)
96.7% (96.7%)
93.3% (100.0%)

100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
100.0% (100.0%)
90.0% (90.0%)
93.3% (96.7%)
86.7% (93.3%)

Note. Percentages are based on 30 replications per condition. In simulation conditions in which more
than one class was present, the “mixture 6s/0r model” was the underlying population model, whereas
either the “85/0r model,” “6s model,” or “O model” was the population model in conditions in which
only the respective class was present. Values in brackets reflect percentages of correct decisions
concerning the question of whether a mixture or non-mixture model was the data-generating model.
DIC = deviance information criterion; WAIC = widely applicable information criterion; LOOIC = leave-
one-out information criterion.

Class proportions and class membership. The recovery of class proportions in the
“mixture 0s/0F model” is displayed in Table 2. Across conditions, class proportions
were estimated with negligible bias and small RMSE. Bias and RMSE did not sys-
tematically vary between conditions and the three classes.

Apart from an accurate estimation of overall class proportions, individual class
membership was also recovered well, indicated by high hit rates (see Table 2). In con-
ditions with more than one class in the data, hit rates ranged from 96.9% to 98.5%. In
conditions with only one class, hit rates were close to 100%. That is, virtually no simu-
lated test-taker was assigned to a class that was empty in the data generation, which
gives another indication along with model selection criteria that a less complex (i.e., a
non-mixture) model should be used in this case (see also the discussion below).

Latent regression coefficients. Similar to the recovery of class proportions, the
“mixture 0/0r model” estimated latent regression coefficients without systematic
bias (see Table 3). This applied to regression intercepts as well as regression slopes
representing the covariate effects. RMSE was also small for both intercepts and
slopes. Concerning intercepts, RMSE was relatively more pronounced in conditions
with unequally sized classes compared to conditions with equal class proportions and
conditions with one class being absent. Concerning slopes, RMSE increased slightly
with stronger covariate effect sizes.

Substantive trait and faking scores. Figure 1a shows the recovery of substantive trait
scores in models including substantive trait dimensions. The overall level of
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Table 3. Simulation Study: Recovery of Latent Regression Coefficients.

Condition Bias (RMSE) of regression coefficients
Intercepts Slopes of Slopes of Slopes of
null-effect weak-effects strong-effects
covariate covariate covariate
Classes equally sized 0.00 (0.09) 0.00 (0.07) —0.03 (0.09) 0.02 (0.13)
“S&F class” dominant —0.01 (0.11) 0.01 (0.08) 0.00 (0.10) 0.01 (0.11)
“S-only class” dominant —0.02 (0.15) —0.01 (0.07) —0.01 (0.11) 0.03 (0.14)
“F-only class” dominant 0.00 (0.13) 0.01 (0.08) 0.00 (0.09) —0.02 (0.13)
“S&F class” absent —0.01 (0.06) 0.02 (0.07) —0.03 (0.11) 0.03 (0.18)
“S-only class” absent 0.03 (0.06) 0.01 (0.06) 0.01 (0.07) 0.00 (0.09)
“F-only class” absent 0.00 (0.05) 0.01 (0.06) 0.02 (0.07) 0.01 (0.08)

Note. Values reflect the mean bias and RMSE (in brackets) of estimated latent regression coefficients
across replications within a condition. In the condition in which the “S&F class” was absent, the “S-only
class” is treated as the reference class. Results for conditions with only one class in the data are left out
because class membership is a constant in these conditions, which precludes a proper recovery of
regression coefficients. RMSE = root mean square error.

parameter recovery primarily varied with the proportion of simulated test-takers for
whom item responding was not influenced by substantive traits. Within conditions,
the ““Bs/0r model’” generally exhibited higher correlations between estimated and
true substantive trait scores than the ““8g model.”” Crucially, the “mixture 6g/0r
model”” improved correlations further in conditions in which more than one class was
present in the data. In conditions with only one class, the ‘‘mixture 05/6r model’” and
“0g/0r model’’ did not differ.

A similar pattern emerged for the recovery of faking scores (see Figure 1b). The
“mixture 0s/0r model” yielded the highest correlations between estimated and true
faking scores in most conditions with more than one class, whereas the “‘Og/0r
model”” and ‘0 model” differed only slightly. In the condition in which the ““S&F
class” was absent, all three models exhibited comparable levels of correlation.
Again, in conditions with only one class, the “mixture 85/0r model”” and ““6g/0r
model” performed equivalently.

Item slopes. The recovery of item slopes is presented in Figure 2. Substantive trait
slopes (Figure 2a) were generally underestimated in the ‘65 model”” and ““0s/0r
model”” and had pronounced RMSE, unless the respective model matched the popu-
lation model in conditions with only one class in the data. The ‘“‘mixture 0g/0r
model” eliminated the bias in all conditions and reduced RMSE considerably.
Likewise, estimates of faking slopes (Figure 2b) in the ‘0 model” and “‘0g/0g
model” were negatively biased when there was more than one class in the data,
whereas the “‘mixture 8g/6r model” showed negligible bias. RMSE was also much
smaller in the mixture model than in the non-mixture models. In conditions with only
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one class, the mixture model and the correctly specified non-mixture model both
yielded unbiased estimates with equivalent RMSE.

Item-category intercepts. Figure 3 shows the recovery of item-category intercepts,
which were class-specific in the data generation. The three non-mixture models gen-
erally yielded negatively biased intercept estimates with pronounced RMSE when
the data consisted of more than one class. Only in conditions with just one class and
if the respective model was not underparameterized, the non-mixture models esti-
mated intercepts without bias and with small RMSE. In contrast, the mixture model’s
class-specific intercept estimates had very small to negligible bias and RMSE in all
conditions.

Latent correlations. Latent correlations between substantive traits (see Figure 4a)
were heavily overestimated in the ‘‘8g model,”” especially in conditions with smaller
proportions of simulated test-takers for whom item responding was influenced by
substantive traits. The “‘8s/0r model’’ considerably reduced this bias, even yielding
fully unbiased estimates in conditions with a small ‘‘F-only class’’ proportion. The
“mixture 6g/0r model,” however, estimated latent correlations between substantive
traits without bias in all conditions. Also, RMSE was smaller in the mixture model
than in the two non-mixture models. Regarding latent correlations between faking
and substantive traits (see Figure 4b), the ““05/0r model’” generally yielded underesti-
mates with considerable RMSE, whereas the ‘‘mixture 05/0r model” afforded an
unbiased estimation with smaller RMSE. In the condition in which only the ‘“S&F
class” was present, both models exhibited no bias and equivalent RMSE.

Empirical Demonstration

Along with the reported simulation study, we applied the M-MNRM to three empiri-
cal datasets from personnel selection contexts. This allowed us to examine the exis-
tence and prevalence of the three latent faking classes in high-stakes assessment data
from different job application contexts.

Datasets

The datasets were made available by a Germany-based testing company that devel-
ops psychological tests for personnel selection. All three datasets contained responses
from test-takers who had taken a personality test as part of an application for a job.
Dataset 1 consisted of N =3,046 test-takers applying for a bank apprenticeship at a
financial institution in Germany (gender: 60.4% female, 39.6% male; age: M =18.22
years, SD=1.98, range=[14, 29]; this dataset was also analyzed by Seitz et al.,
2025). Dataset 2 comprised N =1, 824 applicants for a police officer traineeship at a
German police department (gender: 30.0% female, 70.0% male; age: M =21.02
years, SD=4.61, range =[15, 39]). Dataset 3 included N =2, 007 test-takers who had
applied for a position as insurance agent at a Germany-based insurance company
(gender: 28.7% female, 71.2% male).?



0.3 d.Jenbs ueaw 3004 = JS|Y "UONEILUIS BIRP BY3 Ul sasuodsau Wl padudNjul
10U aArY A5 BSNEIDQ UORIPUOD dAIddSaL ay3 Ul papnjaaud si susreweded JenonJed ays Jo Aiaaodad uadoud e 1eys seI0UBp X, "UBSW BY3 JO JOLIS pJepuels oyl
juasaudal sJeq JoJJ3 "paJapISUOD Je sarewnsd 1daduanul diydads-ssed 9ARdadsad Y1 [9pPOW 4NIXIW Yl 404 "UONIPUOD B UIYlMm suonedijdad ssoude (3) ,ssed Ajuo
-4, 40 “(q) ssep2 Auo-s, ‘(e) SSe|2 4°8S,, dY3 Ul SBN[BA dnJ3 9Y3 03 3adsa. Yam s3dedusaul A10391ed-WSl PRIBWINISD JO IS|AY O SBIG UBSW SY3 39§ SIN[BA 910N

Jsse|D) A|uo-4,, a3 jo sadeduanu| Auodare)-way| Jo AusAoday (9) pue ¢ sseD Auo-g, ays jo sydeduaiu| AuodaeD)-wal| jo
AK1ar029Yy (q) ¢, SSBD 4°8S,, @2 Jo s1dedumu| L108918)-Wa| Jo AI9A0D9Y (B) "sadedusiu) A103e1e)-wa| Jo A4aA0d9Yy Apnig uonenwis *¢ a4nsi4

oousara [l ouso [ epeu [l 19PON o tasgaran B wouoro Bl waso [ epous B 19POW
vonpuoo
o3 ?
4. . ! C potm | &
,mm i1 1 . 1 & mm
N L Ml i
. . EN ‘lllw‘xx‘x*k*x**x‘xx‘L‘lIl‘ -Haw B l‘llll,,wwu
o 35 33
T 7|83 8§
o L 58 £8
3 2
<8 E
W orouoroll epouso N epouo [l S19POW opou oo oman [l ou o [l powso [N vou % il {19POW
vonpuoo
K
8 H
H X 5 A L 5 1 o |
43 ! i H
, . LSRN ] . xit-iillhhnln...um
T |23 HH
N o i1 g
c HH
e .
H
<8 £ q
Jopou [ “12pOW jopou g o Bl opouware Bl opowse [ opou % [ :19POW
0@ i
¢ 5
§ . .
@ s 1 L
: - . " ;
42 i ‘ b H
32 ‘x*I:i;*il:‘ll‘:L::i*%h:‘h‘:ll‘:t-‘: .33
1 1 o 38 EE
' & Tl [ 82 g
f Tl ‘gz g2
3 .
i
= ie

20



Jo.J3 aJenbs uesw 1004 = ISy "uonessuad
®JBP 9Y3 Ul sasuodsaJ wall paduanjjul 30U dAeY A3yl asnedaq UOIIPUOD dAND3dsaJ ayl ul papn(a.d si sualaweded JenonJded ayy jo A1aA0da4 Jadoud e 1ey) sajousap
«X,, 'UBSW 32 JO JOJJD pJepuels a3 JudsaJdad sJeq JOJI] “UOIBINWIS SYI Ul PAsN SIBJY SAUBISGNS 994Y2 9Y2 SSOJoe pajeSausde aJe s)nsay "UONRIPUOD B UIYUM
suoned||dad ssoude (q) saedd sAnURISGNS pue Supje) Jo () SIIBJ) DAIUBISGNS USIMIDG SUOIIER|DJI0D JUSIB| PRIBWIISD JO JS|AY 4O SBIq UBSW Syl 1D3[joJ SaN[eA 910N

's)led| 9ADUBISQNS pue Supjeq USIMIDG SUONE[DIIOD) JUIIET JO
AJ9A029Y (q) pUE Sl SANUEBISGNS USSMIDG SUONE[SII0D) JUSIET JO AISA0DIDY (B) 'SUONED.IOD) JUSIET JO AI9A0DSY :ApmS uonenwis *p a4n3ig

lepow #g/Sg ainpay [l 1epow #g/Sp [l (19POW lepow #g/Sg ainpay [l 1epow #g/Sp [l (19POW
uonipuoy uonIpuo)
2 [}
£ @
wosoid ssep  wosoid ssep  wesoid ssep wosqe wesqe wesae weuop pezis wosexd sseo  wesaid s wesad e jussge wasqe weunwop uop weuwop pozis s
Tod, WO fuos MO 498, AVO. sswd Ao-s, ssen Ao, s v S50 495, Aienta sossero @ _Weile WS e “heiio. s s dves, 5905 Ao, 550D oS, 55w 435, Ajenbo saseeio g
9
X X X X X X 00 9 vo
m— b g
El 3
o 8 T
2 0 W
5 g
i} ]
g | . | I
[ J RV S I S - _ mm__WE oo §
3 A
@ Iy
w0 B 2
g El
2 2
o w0 g
vo & Z
E 3
3 8
8 3
B @
o 5
% vo Ty
2 E
o i
§
fopous /5 amxiy [l 1epow 950 [l opow S [ {IBPO fopous #g/5g oy [l 1epow 950 [l 1epow S [ {IBPO O—
uonpuoy uopuod
wesoid ssop weseid sso  weseid ssgo juosqe wosqe wesee op weuop weuop pazis woseid sswo  wasa wosad ssop wesa wasae wosqe weuop uop weuop pozs
oy Ao Awos WO 'S, Ao ssun Ao ssi Auos. ssep dvs Wos b Ao seep 495 Aenbo sesser B g DRSO s Aed  ssu Ao, ei9b Jgs.  step Auod.  step RS seen 495 Aienbs somsmp ©
00 B 5o 3
X X X g wpe— J m B
o =3
o 2
g E
0 3 o 8
T T W W
T 5
s ]
10 2 - N K- K- - —mmmmmm mmm=om - B -- N B e -=too o
T
©a | SR w
1 E 5
o T T =
5 S
08 0 3
T T g T = 1 g
g - 2
£ 3
2 8
g0 8 90 3
> T = -3
3 §
§

21



22 Educational and Psychological Measurement 00(0)

In the present empirical demonstration, we modeled data from three substantive
trait scales that were available in all datasets. These scales assessed the personality
traits of Emotional Stability, Extraversion, and Conscientiousness. Emotional
Stability was measured with 12 items (Dataset 1: Cronbach’s a=.75; Dataset 2:
a=.74; Dataset 3: «=.70), Extraversion with 9 items (Dataset 1: o =.74; Dataset 2:
a=.67; Dataset 3: «=.72), and Conscientiousness with 10 items (Dataset 1: a=.79;
Dataset 2: a=.77; Dataset 3: a=.66). Item responses were given on a 7-point Likert
scale (0 = does not apply at all to 6 = applies fully). Along with these three substan-
tive trait scales, covariates were available in the datasets, namely, the score of an
integrity test, the score of an achievement motivation test, and a measure of intelli-
gence (aggregate of verbal, numeric, and figural cognitive ability test scores).

Pilot Studies

Before fitting models to the data, we ran a series of pilot studies to determine scoring
weights for the faking dimension in the different personnel selection settings.
Therefore, we asked independent samples of participants to rate the social desirabil-
ity of every response category of every item with respect to the three job application
settings (Seitz et al., 2025; see also Kuncel & Tellegen, 2009). Participants should
hereby put themselves into the perspective of a person who is currently applying for
the respective job, and rate desirability accordingly. The Supplemental Material pro-
vides details on the procedure, samples, and results of the pilot studies.

Results of the Empirical Demonstration

We fitted the same four models as in the simulation to all three datasets. Regarding
scoring weights, we specified values as in Equation (2) and used the job-specific
mean desirability ratings from the pilot studies as scoring weights of faking, which
we linearly transformed to a possible range from 0 to 6 to achieve a common metric
of scoring weights across dimensions. Again, we used JAGS through the R environ-
ment to estimate the models. However, for the empirical analyses, we estimated
every model by running 12 parallel MCMC chains that featured 15,000 iterations
each, with the first 5,000 iterations discarded as burnin.> R values of continuous
model parameters were all below 1.1, indicating that all models converged. Also, by
visual inspection, we found well-mixed trace plots of item parameters, latent correla-
tions, and latent regression coefficients.

Model Selection and Model Fit. Table 4 contains fit indices of the four estimated mod-
els. The pattern of results was consistent across the three datasets. Regarding relative
fit, DIC, WAIC, and LOOIC all selected the ‘“mixture 85/0r model,”” indicating that
the mixture model in all datasets yielded a better compromise between fit and parsi-
mony than the three non-mixture models. Regarding absolute fit, we used posterior
predictive model checking (PPMC; e.g., Sinharay et al., 2006), which involves



Seitz et al. 23

Table 4. Empirical Demonstration: Model Fit Indices.

Model Model selection criterion SRMR
DIC WAIC LOOIC
Dataset | (bank apprenticeship)
“0r model” 273,890.3 272,099.5 273,791.2 0.136
“6s model” 260,497.4 254,836.5 258,927.7 0.076
“Bs/0 model” 256,858.1 249,733.1 254,442.7 0.066
“Mixture 0s/0 model” 254,427.1 246,881.8 251,235.1 0.056
Dataset 2 (police officer traineeship)
“0r model” 158,887.7 157,312.9 158,261.5 0.142
“Bs model” 150,546.9 146,721.1 149,101.2 0.101
“0s/0¢ model” 146,888.4 142,359.9 144,863.4 0.064
“Mixture 0s/0 model” 145,447.3 140,678.5 142,999.4 0.059
Dataset 3 (position as insurance agent)
“0r model” 164,408.8 163,075.1 163,994.7 0.126
“6s model” 157,679.1 153,093.9 155,437.5 0.121
“0s/0 model” 150,547.5 145,811.4 148,618.3 0.072
“Mixture 0s/0 model” 146,579.0 141,219.6 143,669.9 0.061

Note. Dataset |: N=3,046; Dataset 2: N=1,824; Dataset 3: N=2,007. The best-fitting model within
each dataset is printed in bold. DIC = deviance information criterion; WAIC = widely applicable
information criterion; LOOIC = |eave-one-out information criterion; PPMC = posterior predictive
model checking; SRMR = standardized root mean square residual (based on PPMC).

simulating data based on the model parameters’ posterior distribution and comparing
the simulated data to the observed data. As a measure of misfit, we considered the
standardized root mean square residual (SRMR), which indicates the discrepancy
between the model-implied and observed item intercorrelations.* The ““6r model”
had the largest SRMR in all job application contexts, followed by the ‘65 model”
and ““85/0r model” (see Table 4). Crucially, the “‘mixture 85/0r model’’ consistently
yielded the smallest SRMR, indicating that the mixture model had the best absolute
fit in the three datasets.

Class Proportions. Looking at the estimated class proportions in the ‘‘mixture 8g/6g
model,”” we found that every class had a considerable size in all datasets (see Table
5). Classes were, however, not equally sized. In all datasets, the ““S&F class’” had
the largest class proportion (46.8-57.4%), the “‘S-only class’” was the second largest
class (27.0-44.0%), and the ‘‘F-only class’’ made up the smallest class (9.2—15.6%).
Estimates of class proportions did not differ much between the three job application
contexts.

Additionally, we examined classification diagnostics of the ‘‘mixture 0g/0r
model,”” namely, posterior class probabilities and model entropy. These diagnostics
give an indication about the (un)certainty of class assignments in mixture models
(Masyn, 2013). In terms of posterior class probabilities, we considered for each test-
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Table 5. Empirical Demonstration: Estimated Class Proportions and Model Entropies.

Dataset Class Entropy
“S&F class” “S-only class” “F-only class”

Dataset | 0.520 [0.468, 0.384 [0.345, 0.096 [0.077, 0.854

(bank apprenticeship) 0.572] 0.423] 0.117]

Dataset 2 0.468 [0.407, 0.440 [0.398, 0.092 [0.068, 0.892

(police officer 0.529] 0.482] 0.118]

traineeship)

Dataset 3 0.574 [0.514, 0.270 [0.232, 0.156 [0.125, 0.900

(position as 0.632] 0.310] 0.190]

insurance agent)

Note. Dataset |: N=3,046; Dataset 2: N=1,824; Dataset 3: N=2,007. Values in brackets represent the
95% credible interval.

taker the percentage with which the modal class (i.e., the estimated class of a test-
taker) was sampled during the MCMC estimation. The mean posterior class probabil-
ities across test-takers were high for the three classes in all datasets (Dataset 1: 93.1—
94.2%; Dataset 2: 94.7-95.5%; Dataset 3: 94.0-96.8%). Posterior class probabilities
() can be condensed in the measure of entropy, which has a range from 0 to 1 and

S ST (e log(me)

is computed as 1 — oz for the described mixture model. As noted
in Table 5, entropies were also high in all datasets (0.854-0.900; cf. Vermunt, 2010).

Latent Regression of Class Membership. As mentioned above, the datasets also con-
tained covariates. We included these variables as latent predictors of class member-
ship in the “‘mixture 85/0r model’ in all datasets. Table 6 shows the estimates of
latent regression slopes. Results differed slightly between the datasets but were in
general consistent. Higher integrity scores were associated with higher probabilities
of being a member of the ““S-only class” compared to being a member of the “‘S&F
class’ (i.e., the reference class). At the same time, higher integrity scores were gen-
erally associated with lower probabilities of being an ‘‘F-only class” member com-
pared to being an ““S&F class’ member. For achievement motivation, results were
inconsistent. Both among applicants for a bank apprenticeship and among applicants
for a position as insurance agent, achievement motivation scores did not consistently
predict class membership. Among applicants for a police officer traineeship, how-
ever, achievement motivation was negatively related to being an ‘‘S-only class”
member and positively related to being an ‘‘F-only class’” member. Similar to integ-
rity, test-takers with higher scores of intelligence were more likely to belong to the
““S-only class’ compared to the ‘“S&F class,”” whereas higher intelligence was asso-
ciated with a lower probability of belonging to the ““F-only class’’ compared to the
“S&F class.”



Seitz et al. 25

Table 6. Empirical Demonstration: Estimated Latent Regression Slopes.

Dataset
Dataset | (bank Dataset 2 (police Dataset 3 (position
apprenticeship) officer traineeship) as insurance agent)
“S-only class” vs. “S&F class” (reference class)
Integrity 1.45[1.21, 1.71] 0.75 [0.47, 1.05] 0.38 [0.13, 0.65]
Achievement 0.29 [0.10, 0.49] —1.16 [—1.43, —0.91] 0.08 [—0.29, 0.46]
motivation
Intelligence 1.31 [1.13, 1.48] 0.75 [0.56, 0.94] 0.59 [0.43, 0.75]
“F-only class” vs. “S&F class” (reference class)
Integrity —1.13[—1.56, —0.71] —0.65[—1.07, —0.22] —0.18[—0.47,0.12]
Achievement 0.00 [—0.32, 0.34] 0.89 [0.59, 1.19] 0.00 [—-0.42, 0.42]
motivation
Intelligence —1.39[—1.65 —1.14] —0.59[—0.85 —0.34] —0.36 [—0.52. —0.20]

Note. Dataset |: N=3,046; Dataset 2: N=1,824; Dataset 3: N=2,007. All predictors were z-
standardized. Positive slopes indicate that higher predictor values go along with higher probabilities of
being a member of the “S-only class” or “F-only class” compared to the “S&F class.” Values in brackets
represent the 95% credible interval.

Validation of Class Assignments

Response Distributions Within Classes. To investigate whether the classes indeed repre-
sented the response strategies outlined above, we analyzed response distributions
within the three classes. For items at which the highest response category is most
desirable, one can expect test-takers responding solely based on a faking dimension
(i.e., the ““F-only class’’) to yield higher mean responses than test-takers considering
substantive traits and faking (i.e., the ““S&F class”). Test-takers only responding
based on substantive traits (i.e., the ““S-only class’’) should in turn yield the lowest
mean responses. However, for items at which desirability does not increase monoto-
nically with higher response categories, different effects can be expected. For items
having their category of highest desirability above the midpoint though not at the
extreme of the rating scale, differences in mean responses between the classes should
be less pronounced compared to items at which the highest category is most desir-
able. In contrast, there should be no substantial mean differences between classes for
items having their highest-desirability category at the scale midpoint. Figure 5 shows
the class-specific distributions of mean item responses for the exemplary case of
Dataset 1 (the pattern for the other datasets looked very similar). Results were gener-
ally in line with expectations, which supports the plausibility of class assignments in
the ““mixture 0g/6F model.”

Class Assignment of New Cases. To provide further evidence that the M-MNRM can
afford a valid classification of a test-taker’s response strategy based on his or her
response pattern, we applied the fitted ‘‘mixture 85/0r model” to another dataset that
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Figure 5. Empirical Demonstration: Class-Specific Distributions of Mean Item Responses for
Items with Different Desirability Characteristics. (a) Items With a Highest-Desirability
Category of “6”; (b) ltems With a Highest-Desirability Category of “5”; (c) Items With a
Highest-Desirability Category of “2,” “3,” or “4.

Note. Exemplary illustration for Dataset | (job application for a bank apprenticeship). The pattern for the
other datasets was analogous. Plots display kernel densities of mean item responses, split by the three
classes test-takers were assigned to by the “mixture 6s/0¢ model” (“S&F class™ n= 1,597, “S-only class”:
n=1,161, “F-only class”: n=288). (a) Depicts the distributions for items at which the response category
with highest desirability in the pilot study was “6,” (b) for items with a highest-desirability category of “5,”
and (c) for items with a highest-desirability category of “2,” “3,” or “4” (see the Supplemental Material for
more information on the pilot study).
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was made available by the testing company. This dataset consisted of N =306 sub-
jects (gender: 49.7% female, 48.4% male; age: M =35.05 years, SD=11.61,
range = [18, 64]) who responded to the same personality items used in our empirical
analyses above. However, responses were not given in a hiring setting but in the con-
text of career counseling. The personality test was embedded in a series of assess-
ments based on which subjects received suggestions regarding suitable jobs and
vocational paths. That is, one can expect that a considerably smaller proportion
engages in faking in such a context, because honest responding is essential for effec-
tive career counseling and because responses are not used for selection purposes.

For this validation analysis, we fixed item parameters and latent correlations to
the estimated values from the ‘‘mixture 05/0F model” in Dataset 3 (see Wetzel et al.,
2021, for a similar approach), and estimated the class proportions in the career coun-
seling dataset. Because the covariates from the high-stakes datasets were not part of
the career counseling assessment, we did not include any predictors in the latent
regression of class membership. The estimated class proportions were 18.5% for the
“S&F class” (95% credible interval: [14.1%, 23.4%]), 80.7% for the ‘“S-only class”
[75.8%, 85.1%], and 0.8% for the ‘‘F-only class” [0.1%, 2.1%]. That is, compared to
the high-stakes context, the model assigned a much smaller proportion of subjects to
classes including a faking dimension. The majority of subjects were instead classified
as following a response strategy without faking, which is in line with expectations.

General Discussion

In this article, we proposed a mixture modeling extension of the MNRM to account
for qualitatively different response strategies in high-stakes personality assessments.
In the non-mixture MNRM, all test-takers are assumed to engage in some degree of
faking, which influences item responses along with substantive traits (Seitz et al.,
2024, 2025). Faking is represented as a quantitative difference variable in this model.
In our mixture extension, however, faking is modeled in terms of both a continuous
and discrete variable. This is in line with Kiefer and Benit’s (2016) conclusion that a
combined use of quantitative and qualitative modeling techniques would fit the
current understanding of faking behavior best (cf. also Ziegler et al., 2015). In the
M-MNRM, the discrete nature of faking is modeled by a latent class that represents
conceivable response strategies in high-stakes assessments. The continuous nature of
faking is modeled by a quantitative latent variable that represents the degree of align-
ing responses with desirability. Importantly, as opposed to the non-mixture MNRM,
the M-MNRM is parameterized such that the quantitative faking variable only influ-
ences item responses if a test-taker adheres to a measurement model that includes a
faking dimension.
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Summary of Results

In the simulation study, we evaluated the M-MNRM in terms of parameter recovery
compared to alternative non-mixture models. Overall, we found the M-MNRM to be
superior to models without mixture components when there are indeed multiple
classes in the data. Four points are worth emphasizing: First, parameter recovery in
the M-MNRM was fairly stable across the different class proportion conditions. That
is, the M-MNRM does not seem to require roughly equal class sizes but can outper-
form non-mixture models also if one class is much larger than the other classes or if
one class is completely absent. Second, classification accuracy of the M-MNRM was
high in all conditions, indicating that the model can correctly categorize response
patterns as stemming from one of the described response strategies. Third, along with
a better recovery of item parameters and latent correlations, the M-MNRM also
improved the estimation of individual substantive trait scores, as the estimation of
individual person parameters is based on a class-specific measurement model.®
Fourth, covariate effects of different sizes were recovered well by the M-MNRM,
such that substantive relationships between response strategy use and variables of
interest can be modeled and tested effectively.’

At the same time, when there is only one class in the data, we found that the M-
MNRM is not inferior to the non-mixture model representing the underlying popula-
tion model. That is, although overparameterized, the M-MNRM does not seem to
introduce bias or afford less precise estimates in non-mixture populations. This can
be explained by the fact that the M-MNRM fitted to a non-mixture population
assigns virtually all test-takers to the respective single class, such that the same set of
data is used for parameter estimation in both the mixture and non-mixture model.
Nevertheless, the M-MNRM constitutes an overly complex model when there is only
one class in the data. Hence, for the sake of model parsimony and to reduce the risk
of overfitting, a non-mixture model should be preferred in this case. Researchers and
practitioners have two options to decide which model to choose in a given dataset:
First, formal model selection criteria (DIC, WAIC, LOOIC) can be used. As opposed
to model comparisons using likelihood-ratio tests in frequentist settings, DIC,
WAIC, and LOOIC are no significance tests indicating whether a model fits the data
significantly better than a more parsimonious model. Instead, they are information
criteria that quantify the balance between mere model fit and model parsimony,
which is achieved by penalizing model fit with the effective number of parameters
or by considering out-of-sample predictive accuracy. As information criteria are
descriptive measures, there are no fixed cutoffs or rules of thumb for differences in
DIC, WAIC, or LOOIC to be considered meaningful. Instead, common practice is to
simply select the model with the lowest information criterion value. In the simula-
tion, when the population model was a mixture model, information criteria correctly
chose the mixture model in all replications; when the population model was a non-
mixture model, information criteria correctly chose a non-mixture model in more
than 90% of the replications. Considering information criteria can hence be a trust-
worthy approach for choosing between models. Second, researchers and practitioners
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can consider the estimated class sizes in the M-MNRM for model selection. As indi-
cated by the simulation, the M-MNRM can accurately estimate class proportions and
test-takers’ class membership under different kinds of data-generating models.
Importantly, the simulation showed that this is also the case when one or two classes
are truly absent in the data, as the proportion of empty classes is then indeed esti-
mated to be 0 (see Alagoz & Meiser, 2024; Kim & Bolt, 2021; Tijmstra et al., 2018,
who observed the same result for other mixture models estimated in a Bayesian
framework). Given that DIC, WAIC, and LOOIC occasionally yielded false model
selections in the simulation, we advise researchers and practitioners to pay close
attention to how many test-takers actually make up each class, and let this informa-
tion guide the decision of which model to choose: If test-takers are distributed across
all classes, the full M-MNRM is appropriate; if one class is virtually empty, it is
appropriate to not include the particular class; and if a single class contains virtually
all test-takers, the respective non-mixture model is appropriate.

In the empirical demonstration, we showed that the M-MNRM can also prove suc-
cessful in real high-stakes assessment data. We found the M-MNRM to be selected
over non-mixture models in three datasets from different job application contexts,
despite its higher complexity in terms of additional parameters. Also with regard to
absolute fit, PPMC analyses revealed that the M-MNRM could describe the data bet-
ter than non-mixture models. Furthermore, entropy values indicated good class
separation in all empirical datasets. Comparing the results of the M-MNRM between
the three job application contexts, it should be noted that there were no pronounced
differences. Estimates of class proportions, for instance, were fairly constant in all
datasets, suggesting that the non-mixture MNRM is misspecified for about 50% of
test-takers in high-stakes assessments. For approximately 40%, a measurement model
including only substantive traits seems to be more appropriate, whereas a one-
dimensional measurement model of faking seems to describe the response behavior
best for about 10%. Moreover, class membership was consistently predicted by integ-
rity and intelligence, such that test-takers in the ‘“S-only class’ had the highest integ-
rity and intelligence values and test-takers in the ‘‘F-only class’ had the lowest
values. Validation analyses also provided evidence for the plausibility of empirical
class assignments performed by the M-MNRM, as class-specific response distribu-
tions and class proportions in a low-stakes sample were in line with expectations. To
sum up, the consistent results across the three independent samples of job applicants
provide evidence for the general usefulness of the M-MNRM in high-stakes personal-
ity assessments.

Utility of the Model

As mentioned in the introduction of the model, the M-MNRM constitutes a confirma-
tory as opposed to an exploratory mixture model. Jeon (2019) argued that, whereas
exploratory mixture models allow researchers to explore the potential presence and
substantive nature of multiple latent classes in the data, confirmatory mixture models
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are suited to confirm the existence and attributes of hypothesized latent classes.
Similar to the distinction between exploratory and confirmatory factor models, the
confirmatory approach in mixture modeling comes with stronger assumptions in the
form of a-priori-constrained parameters. However, this precise definition of classes
(a) allows for a theory-driven modeling of the data, (b) facilitates the interpretability
of results, and (c) alleviates the risk of exploiting noise in the data (i.e., overfitting;
cf. Celeux et al., 2019; van Havre et al., 2015). In our case, we modeled the three
conceptual response strategies of how test-takers may or may not consider substan-
tive traits and faking (Robie et al., 2007) and found all three classes to be present in
empirical high-stakes data despite their restrictive definition with item slopes of non-
used dimensions fixed to 0.

In applied settings, the combination of qualitative and quantitative modeling tech-
niques allows practitioners (a) to make individual classifications regarding the
response strategy of test-takers and (b) to more properly estimate and report substan-
tive trait scores. In terms of individual response strategy classifications, the
M-MNRM offers a faking detection technique that is more sophisticated than other
indirect methods for detecting faking (e.g., LaHuis & Copeland, 2009; Sun et al.,
2022; see Goldammer et al., 2024) or lie scales (e.g., Paulhus, 1988). Accurate fak-
ing classifications are vital for personality assessments used in high-stakes contexts.
For instance, if test-takers have a very high probability of belonging to the “‘F-only
class,” decision-makers should be informed that classical test scores, such as sum
scores of raw item responses, are likely no valid indicators of the intended-to-be-
measured traits. Likewise, accurate classifications are essential for the estimation of
substantive trait scores in the two remaining classes to be based on the correct mea-
surement model. As the simulation showed, the M-MNRM can indeed afford high
hit rates and, consequently, improve the estimation of substantive trait scores com-
pared to non-mixture models (more information on the class-specific estimation of
person parameters can be found in the Supplemental Material).

Limitations and Future Research Directions

Some limitations as well as future research directions warrant mentioning. One caveat
concerns the direct comparability of person parameter estimates across classes, which
can be an issue in all types of latent class models. To be able to make meaningful
comparisons of person parameters across classes, parameters must be on a common
scale (Pack & Cho, 2015). In the M-MNRM as presented in this article, item slopes
of dimensions not fixed to O are constrained to be class-invariant, in order to allow
for the same latent variables to be measured in every class. Item-category intercepts,
however, are unconstrained between classes, in order to capture different response
distributions in the three classes, which should facilitate class separation when esti-
mating the model. There are different approaches for establishing a common scale of
person parameters across classes despite this non-invariance of intercepts. These
resemble scaling methods in the context of test equating (see Kolen & Brennan,
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2004) as well as approaches for creating a common scale of item difficulty para-
meters in mixture Rasch models (Paek & Cho, 2015; Rost, 1990). One option is to
model a set of so-called anchor items. Anchor items are items whose slope and inter-
cept parameters are the same in all classes, such that these items create a common
scale of person parameters. In the context of faking, items with neutral social desir-
ability could serve as viable anchor items. Alternatively, assuming that the response
strategies test-takers employ in a high-stakes assessment do not transfer to an assess-
ment context where stakes are low, items administered to test-takers in a low-stakes
assessment setting could be candidate anchor items. If no anchor items are available
(as in our empirical demonstration), a common scale of person parameters can also
be achieved if the latent classes follow the same true trait distribution. For model
identification, latent means and variances of the multivariate normal distribution of
person parameters are set to 0 and 1, respectively, for all classes in the M-MNRM. If
this class-invariant identification of the scale of person parameters is in line with the
truth (i.e., if classes truly do not differ in their trait distribution), person parameter
estimates should be on the same scale across classes and hence be comparable. Such
a situation was modeled in an additional simulation reported in the Supplemental
Material, where intercepts were systematically different between classes but person
parameters were drawn from the same multivariate normal distribution irrespective of
class membership. As illustrated in Figure S2, non-mixture models in such a scenario
yield pronounced mean differences between classes in substantive trait score
estimates. In contrast, the M-MNRM does not produce such a bias, allowing that test-
takers can be meaningfully ranked across classes on substantive traits.® The assump-
tion of a homogeneous trait distribution across classes can be appropriate for many
personality constructs. However, if this assumption is violated, a common scale of
person parameters will not be achieved unless the scale is matched by other test
equating methods (such as anchor items; see Kolen & Brennan, 2004). Hence, we
generally advise researchers and practitioners to compare person parameters of test-
takers from different classes with caution.

Another set of limitations is related to the simulation of the current article, which
featured different class proportion conditions but was limited to a fixed sample size
and test length. Even though our simulation design was representative of datasets in
empirical high-stakes settings (see the empirical demonstration above), future
research should study the performance of the M-MNRM in data situations with dif-
ferent numbers of test-takers, items, and substantive trait scales. Also, even though
monotonically increasing, nonmonotonically increasing, as well as inverted-U-shaped
relations between response categories and desirability were simulated, scoring
weights of faking were equidistant within the segments of the desirability trajectories
in our simulation (see Figure 1 in Seitz et al., 2024). In empirical settings, however,
the relation between categories and desirability may well take on idiosyncratic forms
(Kuncel & Tellegen, 2009). To assess the sensitivity of the M-MNRM to situations
where categories are related to desirability in idiosyncratic, non-equidistant ways, we
ran an additional simulation in which we set scoring weights of faking to desirability
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values collected in the pilot study for Dataset 1 of the empirical demonstration (see
the Supplemental Material for details). This should emulate realistic relations
between categories and desirability, where scoring weights of faking are not necessa-
rily equidistant. Results of this additional simulation were essentially the same as in
the main simulation with equidistant scoring weights of faking. Nevertheless, future
research could examine the M-MNRM’s sensitivity to different kinds of item desir-
ability characteristics in more detail (cf. Seitz et al., 2024, who conducted a similar
investigation in the context of the non-mixture MNRM). Additionally, the number of
replications per condition in our simulation was limited to 30. This was primarily due
to the computational complexity of the M-MNRM (the estimation of the model in a
single replication of the simulation took more than ten hours on a high-performance
computer). As indicated by the error bars in Figures 1 to 4, results were nevertheless
fairly reliable with 30 replications per condition. The model’s computational com-
plexity with its Bayesian estimation may in itself constitute a limiting factor for
applied researchers and practitioners who wish to apply the model. However, this
limitation will be alleviated in the future with the ever-increasing availability of
high-performance computing machines. To facilitate dissemination of the model, we
provide commented syntax files for estimating the M-MNRM in an exemplary data-
set (available at https://osf.io/vwqf3/).

Also, notwithstanding the above-described positive features of confirmatory mix-
ture models, we encourage future research to model different response strategies in
high-stakes assessments in a less restrictive manner, for instance, by specifying class-
and dimension-specific proportionality constants on a class-invariant matrix of item
slopes. Future studies could also test alternative parameterizations of the ‘‘F-only
class,” for example, one with a model of independence. In such a model, “‘F-only”
test-takers’ overall tendency to respond according to desirability characteristics
would only be captured by item-category intercepts, whereas no variance would be
explained by a common factor in this class (i.e., all variation would be unsystematic).
However, it might be difficult to separate such a class from a class of test-takers who
simply respond inattentively (cf. Jin et al., 2018), even though careless responding is
arguably very rare in high-stakes assessments. An additional extension of the model
would be to allow class membership to vary not only between persons but also
between items. This would further increase the flexibility of the model and account
for switches between response strategies over the course of the questionnaire.
However, it should be noted that the information for class assignments in such a
person-by-item mixture model would be very sparse compared to a person mixture
model (namely, single item responses instead of a whole response vector). To over-
come this challenge, it could be worthwhile incorporating external information, such
as response times or other process data (see Ulitzsch et al., 2022, who modeled care-
less responding with a person-by-item mixture model that included response times).
In such a model, item-level covariates like item wording or other item characteristics
could be modeled to examine which types of item content are particularly susceptible
to faking.
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Furthermore, it would be appealing to compare the faking detection accuracy of
the M-MNRM to the accuracy of other recent faking detection methods, such as
machine-learning-based approaches (Calanna et al., 2020; see also Nie et al., 2025)
or approaches using IRTree models (Sun et al., 2022). Seeing under which conditions
the different methods perform best could help develop an integrative faking detection
technique that combines features from mixture IRT(ree) modeling and machine
learning. Another interesting endeavor for future studies analyzing follow-up data
from hired applicants would be to link test-takers’ class membership in the M-
MNRM to real-world job performance outcomes, especially to contextual perfor-
mance and counterproductive work behavior. In the empirical demonstration of the
current article, class membership was associated with integrity, achievement motiva-
tion, and intelligence. If, however, membership in the ‘‘S-only class’’ was related to
actual organizational citizenship behavior, or if membership in the “‘F-only class”
predicted undesired actions like turnover or absenteeism, distinguishing between dif-
ferent response strategies in high-stakes assessments would not only be important
from a psychometric measurement perspective but also provide in itself a valuable
piece of information for hiring decisions. Investigating associations between class
membership and meaningful consequences on the job would hence be helpful to
showcase the utility of such mixture models in applied measurement contexts like
personnel selection.

Conclusion

To conclude, as our simulation and empirical demonstration illustrated, the M-
MNRM provides a valuable extension of latent variable models of faking. Compared
to many other faking models, the M-MNRM is not restricted to a single measurement
model but allows for qualitatively different response strategies employed by test-
takers. Both psychometrically and from an applied measurement perspective, such
an extension is worthwhile since it offers researchers and practitioners a tool to
detect and account for response strategies associated with a different use of substan-
tive traits and faking, which would otherwise bias results. Future research can help
to discover boundary conditions of the model’s efficacy or alternative parameteriza-
tions that allow a sophisticated modeling of different faking tendencies.
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Notes

1. Because class membership was based on the described sampling procedure, slight devia-
tions between the actual class proportions in a replication and the class proportions pre-
sented in the Simulation Conditions section could occur. However, deviations were very
small (M =0.000, SD=0.014, range=[—0.060, 0.059]). Also, it was made sure that
classes that should be absent by design were indeed empty by using regression intercepts
of — o0,

2. Due to data protection guidelines, there was no age variable in Dataset 3. According to
consultations with the testing company, the approximate average age of applicants for this
particular position was above 30 years, with a range from 20 to 45.

3. Asis well known in the psychometric literature, mixture models can be hard to estimate in
empirical data because of multimodal likelihood functions (e.g., Hipp & Bauer, 2006;
McLachlan & Peel, 2000). Instead of just discarding MCMC chains that converged to a
local solution, we employed a two-step estimation of the ‘‘mixture 65/0r model.”” The first
step should optimize initial values for the actual model estimation in the second step (cf.
O’Hagan et al., 2012). This was done by running 30 parallel chains in the first step (each
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with 2,000 iterations after a 2,000-iteration burnin phase) and using the parameter esti-
mates from the chain that yielded the highest model likelihood as initial values for the sec-
ond step. The second step then featured the described estimation with 12 parallel chains.
However, to prevent that all chains started with the exact same set of initial values, we
added random noise to the initial values of every chain. Details can be found at https://osf.
io/vwqf3/

4. Specifically, for each MCMC iteration after the burnin phase, item responses were simu-
lated using the model equation of the respective model and the parameters sampled in the
given iteration. Then, the root of the mean squared deviation between item intercorrela-
tions in the simulated versus observed data was computed for each iteration, before the
average across iterations was calculated to yield the SRMR of a model.

5. We chose Dataset 3 for the validation analysis because item wordings in the career coun-
seling dataset were not fully identical to item wordings in Datasets 1 and 2. Some item
wordings in Datasets 1 and 2 had been adjusted to better fit the age group of applicants for
the respective job (mainly high school graduates).

6. More information on the class-specific estimation of person parameters can be found in the
Supplemental Material. There, we also report the debiasing effect of the mixture model on
substantive trait scores in a simulation with item-category intercepts differing systemati-
cally between classes.

7. We also conducted a simulation with all covariate effects fixed to 0 in the data generation
(see the Supplemental Material). Results, including the recovery of class proportions, class
membership, and latent regression coefficients, were equivalent to the findings reported
above. This suggests that the M-MNRM does not require class membership predictors of
considerable effect size to produce satisfactory results.

8. Note that it only makes sense to interpret and rank substantive trait score estimates of test-
takers from classes where item responses are influenced by substantive traits (i.e., ‘“‘S&F
class’ and “‘S-only class’”) As described in the Supplemental Material, the M-MNRM for-
mally estimates substantive trait scores for test-takers in the ““F-only class’’ (which should
be close to 0), but these estimates are meaningless and should not be interpreted.
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