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Preface

This dissertation consists of three chapters in a study of structural instabilities and systemic risk

analysis. A system of interest is assumed to be interconnected, but the underlying structure is

unknown or unobservable.

Chapter 1 develops a method to detect and localize the points of structural instabilities in

the cross-correlation structure of a panel. Cross-correlation structures contain valuable infor-

mation about the underlying linkages among variables and the channels of spillovers across

cross-sectional units. Instabilities in these structures often signal structural changes within the

system. We propose a novel method for detecting instabilities in cross-correlation structures

using a latent factor model framework. We introduce a suitable object – the column space of

the loading matrix (the factor space) – to capture structural correlation changes while being free

from the inherent identification issue of the latent model. The resulting detection criterion

is based on an intuitive distance measure between two factor spaces, integrating both the

detection and localization of breakpoints. In applications, our methods effectively detect

instability points consistent with the development of the subprime mortgage crisis, as well as

major policy changes such as the repeal of the Glass–Steagall Act and the U.S.–China trade war.

Chapter 2 proposes a novel framework to identify the most influential units behind structural

breaks. In a system represented by panel data, a break in the cross-correlation structure can

empirically indicate volatility propagation from individual (idiosyncratic) dimensions to the

entire system. Individual units contributing the most to this break can act as systemic risk com-

ponents, potentially driving further instability across the system. We propose a novel method

to detect these main contributors — referred to as ’granular units’— as an early detection

tool for potential systemic risk components. Assuming a standard approximate latent factor

structure to model system covariance dynamics agnostically, we introduce a straightforward

influence measure to evaluate the contributions of individual (idiosyncratic) second moments

to the structural break. Applied to S&P 100 daily return data across major economic crisis

periods, the proposed detection scheme effectively identifies likely sources of systemic risk

from early crisis stages.

Chapter 3 designs a new sequential early warning framework for structural changes that

accommodates a broad range of instabilities in the underlying latent network. Network and

vi



factor models are two important techniques for analyzing interconnected systems, and we

demonstrate that an interconnected system can naturally have a dual representation through

our network-factor model. This modeling enables the analysis of instabilities in the latent

network using various tools from factor analysis. This online warning framework can be

of practical importance for application to network-supported data in which the underlying

structure is unknown or unobservable.
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Preface

Notations. Throughout the chapters, we denote the norms for a matrixM or a vector

v as follows: For a matrixM , we denote the Frobenius norm as ∥M∥F ≡
√

tr(M ′M), and

the max norm as ∥M∥max ≡maxik ∣Mik∣. To simplify notations, we use the expression ∥ ⋅ ∥ in

either of two ways. For a vector v, it denotes the ℓ2 norm ∥v∥ = ∥v∥2 ≡
√

v′v. For a matrix

M , it denotes the operator norm ∥M∥ = ∥M∥op ≡
√
λmax(M ′M), the matrix norm induced

by the ℓ2 norm.

A superscript ⊥ on a vector subspaceW denotes the orthogonal complement in terms of the

Euclidean inner product inN−dimensional space,W ⊥ ≡ {v ∈ RN ∣v′w = 0, ∀w ∈W}. For

a column augmentation P of orthonormal basis vectors ofW , P ⊥ (or P⊥) denotes a column

augmentation of basis vectors of the orthogonal complementW ⊥
such thatP ⊥P ⊥

′ = I −PP ′.
The projector expressions can be shorthanded by P ≡ PP ′ and P⊥ ≡ IN − P .

Superscripts in the form ofNr ×Nc denote the row (Nr) and column (Nc) dimensions of a

matrix. A single subscript impliesNr = Nc. For a rankK real matrix PN×K
, the linear space

spanned by the column vectors {pk} of P is denoted by span(P ) ≡ {∑K
k=1 rkpk ∣ rk ∈ R}.

N denotes the set of all cross-sectional indices, {1, . . . ,N}. The letter i is reserved for the

cross-sectional index, and j is for the regime index.

a ∧ b ≡ min(a, b) and a ∨ b ≡ max(a, b). a ≲ b if a ≤ cb for some constant c > 0. a ≍ b if

a ≲ b and b ≲ a.
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1 Estimating Points of Structural

Correlation Instabilities with

Latent FactorModels

1.1 Introduction

Correlation structures contain rich information about underlying linkages among variables—or

channels of spillovers among cross-sectional units. Instabilities in the cross-correlation struc-

ture can indicate ongoing structural changes in a given system.

In this paper, we first show that the cross-correlation structure can be naturally modeled and

analyzed through a latent-factor model, and then propose a novel method to detect points of

instability. The task of analyzing structural instabilities in cross-correlations is closely related

to identifying large breaks in latent factor loadings.

As factor models have long been a crucial workhorse in economic analysis, a break or instability

in these models has become an important subject of study in the related literature. In studies

on factor-loading instabilities, substantial breaks in the loading matrix have been interpreted

as structural changes in the system—that is, as changes in the transmission mechanism of

common macro or systematic factors to the entire system. Dates of the breakpoints have been

shown to correspond to important economic events such as the 1979–1980 oil-price shock

or the Great Moderation (e.g., Stock and M. Watson, 2009, Chen et al., 2014, Ma and Su, 2018,

Baltagi et al., 2021). Banerjee et al., 2008 and Yamamoto, 2016 provide evidence that accounting

for such breaks is important for forecasting.

Latent-factor models offer a minimalistic framework and well-established tools to analyze

cross-correlation structures and their instabilities. However, because the factors are unob-

served, there is an inherent identification issue: do the instabilities stem from the latent loading

matrix or from the latent factor signals? We show that the column space of the loading matrix

(the factor space) is a suitable object for capturing structural correlation changes and is free

from this identification problem. The resulting detection scheme relies on an intuitive distance

measure between two factor spaces.

The contribution of our approach is its simplicity. Modeling cross-correlation structures

and their instabilities is agnostic and non-parametric within a latent factor model framework.

1



1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

Compared with studies of structural breaks in the loading matrix, we offer a technical innova-

tion that avoids the identification issue noted above. The proposed detection scheme is also

straightforward, integrating two kinds of model selection—whether a breakpoint exists and

where it is located—into a single criterion.

In the empirical exercise, we apply our breakpoint-detection method to a daily stock-return

panel and to a collection of monthly macro-financial variables. In the stock-return application,

our method detects early instability points ahead of the global financial crisis, consistent with

the development of the subprime-mortgage crisis. In the macro-financial exercise, it identi-

fies two dates corresponding to the repeal of the Glass–Steagall Act in 1998–1999 and the

U.S.-China trade war in 2018–2019.

Related Literature Numerous methods have been developed to detect large breaks

in the factor-loading matrix under a standard approximate unobservable factor model. One

branch of studies exploits the observational equivalence between a loading break and a factor

signal covariance break in the conventional factor specification, providing tests for breaks (e.g.,

Chen et al., 2014, Han and Inoue, 2015) or estimates of multiple breakpoints (e.g., Baltagi et al.,

2021). A second branch focuses on estimating breakpoints (e.g., Chen, 2015, Cheng et al., 2016,

Ma and Su, 2018), employing a residual-least-squares objective function.

All these approaches require factor signal covariance to remain fixed under the null of no load-

ing change; otherwise, a factor signal covariance change would be observationally equivalent

to a loading change. When one investigates a change in one part (the loading matrix) of the

two latent objects (loadings and factor signals), the other part (the factor signal covariance)

must be fixed under the null. Note that, with the number of factors held constant, a change

in the loading matrix that can be translated into a factor signal covariance change does not

alter the column space of the loading matrix—the factor space. Düker and Pipiras, 2024 and

Koo et al., 2024 provide additional criteria to determine whether a loading change alters the

factor space.

A major difference in our approach is that we do not require any assumption of factor signal

covariance stability, provided a strong factor structure exists. The factor space representation

we employ automatically absorbs mere factor signal covariance changes, is invariant to redun-

dant internal rotations, and separates out factor signal strengths. By working directly with

the factor space representation, our method sidesteps the need for additional arguments to

ensure that a change in the transmission rule is not simply an artifact of unobservability. In

this sense, focusing on the factor space is the simplest way to disentangle structural changes in

the transmission rule (the loading matrix) from changes in the latent signals (factors) it carries.

This paper proceeds as follows. Section 1.2 explains how changes in the factor space capture

substantial breaks in the major cross-correlation structure. Section 1.3 introduces a distance

measure between factor spaces and proposes a detection criterion and algorithm based on this

2



1.2 Cross-correlation Instabilities and Latent Factor Models

measure. Simulation results follow in Section 1.4. Section 1.5 presents applications to a daily

S&P 500 return panel and to McCracken and Ng, 2016’s collection of macro-financial variables.

Section 1.6 concludes.

1.2 Cross-correlation Instabilities and Latent

FactorModels

We consider a panel with a large cross-sectional dimension (N ) for a single variable, such

as a panel of stock returns. The cross-correlation structure and its instabilities contain rich

information for portfolio choice and risk analysis, considering the spillover or transmission of

risk factors across units through a hidden network topology.

Latent factor models can provide an agnostic description of the cross-correlation structure and

its instabilities. In the first section, we review the characteristics of the standard approximate

factor model – one of the most popular workhorse models in econometrics – as the modeling

of the cross-sectional covariance. It will discuss the pros and cons of employing latent factor

models to describe structural correlation instabilities. We detail the object of our strategic

interest to contain the information of the structural break. The second section will formally

introduce the benchmark model.

1.2.1 Modeling Covariance Dynamics with Standard Latent

Approximate FactorModel

LetN−dimensional process yt = [y1t, . . . , yNt]′ follow a standard approximate factor model

during a certain period of time,

yN×1
t = χt + ut, for all t ∈ I0. (1.1)

That is, yt can be decomposed into two parts: the common component χt, which contains

systematically important information, and the idiosyncratic component ut, the remaining

part. We assume all processes to be mean-zero.

In the most conventional form, the common component is specified to have a multiplicative

structure,

χt = Bft, for all t ∈ I0, (1.2)

which consists of a small number of (say, K) common factor signals ft = (fk
t )k=1,...,K and

their loadingsBN×K
. Those are considered systemically important because the cross-sectional

units are correlated mainly through the loadings of the common factors. The transmission

rule – how all cross-sectional units are affected by the latent factor signals – contained in the

loading matrixB is crucial to explain the major cross-correlation structure.

3



1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

A benefit of the latent factor models in describing the cross-correlation structure is that they

stay agnostic and robust to the true identity of the systematically important information. The

factors and loadings are unknown or unobservable, but we can still distinguish the system-

atically important part from the data. How do we do that? It is done by conditioning the

system covariance structure so that it can have the additive decomposition into two symmetric

matrices:

Σy = Σχ +Σu, t ∈ I0. (1.3)

One part Σχ is of low rank but dense and dominating in size, and the other part Σu is of

full rank but sparse and relatively negligible in size. The existence of the two uncorrelated

sub-processes χt and ut are guaranteed such that Σχ = E[χtχ
′
t], and Σu = E[utu′t]. The

major correlation structure of the system covariance is captured by the dense, low-rank part Σχ,

or by the sub-process χt, or, under the conventional specification (1.2), by the loadings of the

factor signals. A point to make is that the latent factor model is essentially a model at the level

of the system covariance. We say a system has a factor structure if it has this decomposability.

In related literature, substantial breaks in the factor loading matrix have been naturally inter-

preted as structural changes in the system, reflecting changes in how common macroeconomic

(systematic) factors transmit to the entire system. For instance, breakpoints correspond to

important economic events such as the 1979-1980 oil price shock or the Great Moderation,

e.g., in Stock and M. Watson, 2009, Chen et al., 2014, Ma and Su, 2018, and Baltagi et al., 2021.
1

Employing the factor models in modeling cross-correlation structure opens a ground of natural

economic interpretation connecting the system correlation instabilities and structural breaks

in macroeconomic shock transmission mechanisms.

We focus on structural cross-correlation instabilities that correspond to structural breaks in the

transmission mechanism. In general, the likely unknown true transmission mechanism can

be complex in nature, which renders direct modeling and analysis convoluted. The agnostic

approach based on a latent factor model is robust to specifications of the true transmission

mechanism. Robustness of this approach, however, does not come free. As both the factor

signals and the loading matrix are unobservable, one can not always distinguish the instabili-

ties of the loading matrixB from those of the factor signals. More precisely, the variance of

each common factor fk
t , or the correlations between fk

t and fk′

t can vary, and neither can be

distinguished from a change of the loading matrixB.

The loading matrix is an object containing the transmission rule, but not a good representation

to work with. Our solution for this issue is to use a different object to represent the trans-

mission rule. We introduce the object P = PP ′, which is the projector representation of the

column space of the loading matrixB. The object P can be constructed from the normalized

1
Banerjee et al., 2008 and Yamamoto, 2016 have provided evidence that consideration of such breaks is

important in forecasting.
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1.2 Cross-correlation Instabilities and Latent Factor Models

loading matrix P̃ ≡ B(B′B)−1/2
, such that P = P̃ P̃ ′ = B(B′B)−1B′. The information P

carries is essentially the ratio of the loadings across the units, how each unit receives the impact

of the latent common factors relative to each other. This distributive characteristic of the

factor loading matrix underpins the central characteristic of the transmission rule.

The objectP can be equivalently constructed by having the spectral decomposition (or thin

SVD)

Σχ = PΛχP
′, (1.4)

which guarantees P = PP ′. That is, the conventional specification (1.2) and the generic

spectral decomposition of the low rank symmetric matrix (1.4) guarantee that the loading

matrix

B = P̃ (B′B)1/2, (1.5)

where P̃ = PO for some orthonormal transformationO. The expression (1.5) is the polar
decomposition of a matrixB. Intuitively, one can always distinguish the directional information

of given B by a semi-orthonormal matrix P̃ (P̃ ′P̃ = IK), from the size information of B

captured by the remaining part. The directional information ofB is identical to that of P , in

the sense that the column space of the loading matrixB is equivalent to the column space of

P , represented as P = PP ′.
The object P = PP ′ is invariant under changes of the covariance structure of Σf = E[ftft

′],
as long as the rank of the common component is fixed, which we discuss in Properties 1 below.

If the rank of Σχ or the number of the common factors is changed, it does imply a change

in the transmission rule. It is conceptually natural, as an introduction or removal of a factor

necessitates an emergence or disappearance of specific pathways of transmission.

Properties 1. Assume that the decomposability (1.3) is guaranteed. P is invariant under any

rank preserving change of Σf = E[ftft
′].

Any changes in the common factor covariance, Σχ → Σ̃χ can be captured by a combination

of the rotation ft z→ Qft, and the rescaling ft z→Dft. First, the expression PP ′ is invariant

under a transformation P z→ PQ for any orthonormal Q, as QQ′ = Q′Q = IK . Second,

at the population level, the eigenvector information P is not affected by the change of the

diagonal scales. Hence, P is invariant under the potential instabilities in Σf . A more detailed

discussion follows in Appendix A.1.1.

Changes of the introduced object P capture instabilities in the factor loading that are not

observationally equivalent to the factor signal covariance change. This object will be named

factor space from now on, with its defining characteristics summarized below.

5



1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

Factor Space. Let the spectral decomposition Σχ = PΛχP ′. Factor space is the space

spanned by the columns of P inN−dimensional space (that is, col(P ), the column space of

P ), or equivalently, the column space ofB, under the specification (1.2). That is,

span(P ) ≡ col(P ) = {
Kj

∑
k=1

rkpk
j ∣ rk ∈ R} = col(B). (1.6)

Note that any space can be identified by a projection operator that projects any vectors onto

that space. Hence, we identify the factor space by its projector representation, such that

P = PP ′. The term factor space will naturally indicate both the object span(P ) and its repre-

sentation P = PP ′.

1.2.2 BenchmarkModel and Assumptions

In this subsection, we properly introduce the benchmark model of system covariance dynamics

based on a standard latent factor model. The model considers the evolution of the factor

space in discrete steps from one regime (period I0) to another regime (period I1), indexed by

j ∈ J = {0,1}. Note that it neither restricts the number of regimes to two nor assumes recur-

siveness. The number of regimes (∣J ∣) can be any integer J ∈ Z+. In the current discussion,

we showcase the case J = 2 solely for expository purposes. The regime is defined by the factor

space, and the change of regime is defined by the change of the factor space. A regime can be

either non-recursive or recursive. Our framework is not bound to these characteristics. The

benchmark model is stated as follows:

For each j ∈ {0,1}, yj,t is decomposed into common component χj,t and idiosyncratic

component ut, such that

yj,t = χj,t + ut, for all t ∈ Ij. (1.7)

Further, yj,t, χj,t and ut are all conventional mean-zero objects. Although ut is allowed to be

regime(j) specific, the regime index is omitted from this component only to emphasize that

the low-dimensional component defines the regime change. We will impose the following

assumptions:

Assumption 1. Σy,j = Σχ,j +Σu,j , where Σχ,j = PjΛχ,jPj
′

in terms ofKj ≪ N non-zero

eigenvalues λk
χ,j ≍ N for Λχ,j = diag(λk

χ,j)k=1,...,Kj
and Pj

′Pj = IKj
.
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1.2 Cross-correlation Instabilities and Latent Factor Models

Assumption 2. There exists a constant qj ∈ [0,1] such that

cu,j ≡ max
i=1,...,N

∑
i′=1,...,N

∣cov(uit, ui′t)∣qj = O(1).

Assumption 3. ∥P0P0′Σu,0P
⊥
0 P

⊥
0
′∥F = o(1).

Assumption 4. Σy,1 = Σy,0 +Z , where ∥P0
′ZP0

⊥∥F ≍ N .

Σχ,j = PjΛχ,jPj
′

is the (thin) singular value decomposition of the common component

covariance matrix. The non-zero eigenvalues λk
χ,j are in descending order.

Assumptions 1 and 2 – standard conditions of the approximate factor model – that guarantee

the decomposability or the identifiability of the factor structure (1.7), defining what makes

the Σχ,j distinguishable from the remaining part. The idiosyncratic components can be

correlated but in a bounded fashion for any size of the cross-sectional dimensionN , as stated

in Assumption 2. On the other hand, the common components prevail no matter how large

(measured by N ) the system is, following Assumption 1. As captured by the unbounded

eigenvalues of Σχ,j , the size of common component covariance is not dissipating in the large

N limit.
2

The major correlation structure of the system is captured by a small number,Kj ,

of important directions {pk
j}k=1,...,Kj

in which the non-dissipating eigenvalues are loaded; or

more precisely, it is captured by the factor space span(Pj) ≡ {∑Kj

k=1 rkpk
j ∣ rk ∈ R} spanned

by the important directions.
3

Under these two assumptions with a perturbation bound result

(the sin θ theorem) of Davis and Kahan, 1970, the eigenspace of theKj− leading eigenvalues of

Σy,j is consistent with the factor space at the population level.

Assumption 4 hypothesizes that the regime 0 covariance experiences a substantial perturbation

that is off-diagonal with respect to the previous basis [P0 P0
⊥]. Let Pj

⊥
denote a column

augmentation of N −Kj basis vectors of the space span(Pj)⊥ = {v ∈ RN ∣ v′p = 0, ∀p ∈
span(Pj)}, the orthogonal complement of the factor space span(Pj). Then, up to an error

E of order o(1) (note that ∥E∥max =maxi,i′ ∣Eii′ ∣ = o(1) by Assumption 3) for largeN , the

regime 0 covariance can be written in terms of P0 as

Σy,0 ≃ [P0 P0
⊥]
⎡⎢⎢⎢⎢⎣

Λ1,0 0K0×(N−K0)

0(N−K0)×K0 Λ2,0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

P0
′

P ⊥0
′

⎤⎥⎥⎥⎥⎦
. (1.8)

Due to the assumed perturbation, a sizable perturbation P0
′ZP0

⊥
(and P0

⊥′ZP0) will be

added to the initially zero off-diagonal blocks in the expression (1.8). After such a perturbation,

the previous important directions (or a basis of the regime-0 factor space) P0 can no longer

2
Although there is a natural explanation – Wang and Fan, 2017 equation (1.1) – the rate is assumed to be

linear in N mainly to simplify the later discussion. This can be easily generalized.

3
Such directional information can be interpreted regarding a network centrality. We will discuss this in the

latter part of this section.
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

explain the system’s major correlation structure. The new regime will thus admit a new set of

important directions represented by P1 such that

Σy,1 ≃ [P1 P1
⊥]
⎡⎢⎢⎢⎢⎣

Λ1,1 0K1×(N−K1)

0(N−K1)×K1 Λ2,1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

P1
′

P ⊥1
′

⎤⎥⎥⎥⎥⎦
, (1.9)

which implies that the factor space has changed from span(P0) to span(P1). Appendix A.1.2.1

contains a further discussion on covariance dynamics and factor space change, in which we

explain that the existence of factor structure in both regimes (Assumptions 1 and 2) also

suggests the type of perturbation characterized in Assumption 4.

The expression (1.7) can be further specified for χt,j in a multiplicative form such as (1.2).

Note that such a multiplicative specification has an uncountable degree of freedom without

further restrictions on the structure of the factor covariance E[fj,tfj,t
′]. For example, one

can assume that the underlying latent factors satisfy E[fj,tfj,t
′] = IKj

and loaded increasingly

more heavily as the cross-sectional dimension of the system increases; that is,χj,t = Bjft for the

loading matrixBj whose singular values growing asN grows. For another example, one can

assume that χj,t = Pjft with a fixed sized loading Pj while the latent factor signals grow more

intensive in larger systems, such that λk(E[fj,tfj,t
′]) ≍ N for all k = 1, . . . ,Kj . All possible

specifications indicate the unique factor structure Σy,j = Σχ,j+Σu,j of our benchmark model,

sharing the same factor space – span(Bj) = span(Pj), for the above mentioned two examples.

The covariance dynamics of our model are robust to the particularity of such extra modeling of

factor-loading structure and can be equivalently described by any of the possible specifications.

The benchmark model can be extended to allow certain types of non-stationarity within

regimes. We discuss the extended features of the model in Appendix A.1.2.2.

1.2.3 Structural Break as a Factor Space Change

We have discussed how structural correlation instabilities can be captured by factor space

changes. It connects the existing literature on the structural breaks in the factor loading, or

the transmission rule, based on latent factor models. Due to the importance of such structural

breaks in economic studies, there are numerous methods to detect large breaks in the factor

loading matrix. Most of them imposed the factor signal covariance to be fixed, to avoid the

observational equivalence of the change in the loading and the change in the factor signal

covariance. Otherwise, as in the recent studies Düker and Pipiras, 2024 and Koo et al., 2024,

additional layers should be introduced to distinguish if the observable factor loading changes

result in changes to the factor space.

By working with the factor space rather than the loading matrix, we can provide a more straight-

forward way to disentangle a structural change of the transmission rule (the factor loading)

from that of the latent signals (the factors), without restrictive assumptions or extra layers

8



1.2 Cross-correlation Instabilities and Latent Factor Models

of analysis. Properties 1 in Section 1.2.1 implies that changes of the factor space can capture

any changes in the factor loading that are not observationally equivalent to the factor signal

covariance changes. In this subsection, we will fully specify the types of structural breaks of

our interest captured by factor space changes. To assist this end, let us recall some important

characteristics of factor spaces.

As discussed in Section 1.2.1, it is conceptually natural that changes of the rank of the Σf or

the number of the common factors imply a change in the transmission rule, as an introduction

or removal of a factor should involve an emergence or disappearance of specific pathways of

transmission. Recall that the factor space P corresponds to the normalized factor loading

matrix. The information it carries is essentially the ratio of the loadings across the units; in

other words, how each unit receives the impact of the latent common factors relative to each

other. The factor space contains the distributive characteristic of the factor loading matrix,

which is the essence of the concept of the transmission rule.

The way the factor space captures the distributive characteristic of the factor loading is geo-

metrical, or more precisely, directional. It means that one can grasp the transmission rule by

directional information inN−dimensional space, carried by the factor space.

x1

x2

x3

P0

P1

V
Figure 1.1: A rotating 1−dimensional factor

space in N = 3 dimension.

P0 (P1) represents a basis of the

regime 0 factor space span(P0)
(span(P1), resp.).

(All vectors representing directional

information (P0,P1, and V ) have their

lengths normalized to 1.)

For example, let there be 1-dimensional latent factor models governing the process before

and after a structural break. To ease the graphical exposition, assume that the cross-sectional

dimension is small asN = 3. (Figure 1.1). In this example, the factor space of regime 0 is the

collection of all vectors scaled by any real number, span(P0) = {rP0 ∣ ∀r ∈ R}, for P0 a basis

vector of unit length. Graphically, it is the line stretched in the direction of the basis vector P0.

The conventionally chosen unit vector P0 has sufficient information to convey the directional

information. In Figure 1.1, we can read that the units 1 and 2 receive relatively less loading

than the unit 3, and the signs of the impact of the latent common factors are equal across all

units. This information is given regardless of the absolute strength of the latent factor signal.

The same type of interpretation applies to the regime 1 factor space spanned by P1. In general,

the factor spaces will be subspaces of different dimensions Kj , conveying the same line of

information through multi-dimensional collections of their basis vectors.

9



1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

We focus on structural breaks that associate new information on the transmission rule com-

pared to the old one. The representation of such a structural break will be directional, as

it is a change of the factor space that captures a change in the loading matrix robust to the

latent loading-factor specification. Such structural breaks correspond to two types of factor

space changes, comparing the true factor space before and after a break. The first type involves

directional changes in the basis of the true factor space, preserving the dimension of the factor

space. The above-discussed simple example falls into this type, where the existence of the

vector V (Figure 1.1) indicates the occurrence of a directional change keeping the factor space

dimension constant, literally and geographically. The second type of change is an increase

in the factor space dimension after the break due to the emergence of a new direction to

explain the after-break factor space. In general, a factor space change that incurs updated

directional information will be a combination of both types of changes. On the contrary, if the

factor dimension is reduced without introducing a new direction, we will not consider this a

structural break of interest. The major correlation structure of the system can still be explained

within the knowledge of the present regime in such cases. We summarize this specification

below:

Assumption 5. A structural break introduces new directional information to explain the

factor space of the new regime. There is no structural break if span(P1) is a subspace of

span(P0).

In Section 1.3, we will introduce a measure of factor space changes designed to capture this

type of structural break.

1.3 Detection of Structural Breaks

We discussed so far how to capture structural correlation instabilities by changes of the factor

space, assuming a latent factor structure. The regime j factor space, like any linear space, can be

identified as the projector operator Pj = PjPj
′

projecting any vectors on that space. Such an

expression is free from any identification issue of the standard unobservable factor models. In

this section, we introduce a measure of factor space changes and construct information criteria

to detect the structural breakpoints. Related aspects of estimation will also be discussed.

1.3.1 Measure of Factor Space Change

Assume that there are two time windows I0 and I1 indicating two supposed regimes. The level

of disparity of the factor spaces P0 and P1 from two windows can be captured by a distance

measure between these two spaces.
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1.3 Detection of Structural Breaks

ProjectionMetric The distance between factor spaces can be measured by the following

projection metric (Edelman et al., 1998):

dproj
(span(P0), span(P1)) ≡

√
tr(P⊥0P1),

which is the projected distance between two spaces span(P0) and span(P1) represented by the

form of projectors, where P⊥0 = IN − P0. We utilize the square of the projection metric,

d(span(P0), span(P1)) ≡ d2
proj
= tr[P⊥0P1]. (1.10)

The structural breaks of interest stated in Assumption 4 will be captured by the distance

measure (1.10) being non-zero, theoretically. Under the specification in Assumption 5, if there

is no structural break, the true d = 0. When the factor space dimensions are not changed

across regimes, d = 0 if and only if there is no directional change. When there is no directional

change in P1 compared to P0, by construction, P⊥0P1 = 0. For the same reason, d is zero

when the factor space dimension is simply reduced without introducing a new basis, as the

factor space span(P1) is spanned by a subset of the previously important directions; P0 is

still orthogonal to P1. On the contrary, if a new direction emerges in I1, then d ≠ 0. For an

increased factor space dimension fromK0 toK1, there areN −K0 independent directions

consisting P⊥0 . These directions can not be all orthogonal to P1; if we suppose they are, it

implies that there areN +K1−K0 > N independent bases in anN−dimensional space, which

is a contradiction.

The sample analogue of the distance measure (1.10) will be

d̂ ≡ tr[P̂⊥0 P̂1]. (1.11)

We will discuss additional estimation aspects before constructing the information criteria

based on the distance measure.

1.3.2 Estimation of the DistanceMeasure

The benchmark model (Section 1.2.2) is essentially written in terms of the second-moment

structure, rather than employing the conventional specification of factor loadings and signals,

as in (1.2). In this section, we revisit the connection between our second-moment-level descrip-

tions and the conventional factor model framework, which was partly discussed in Section

1.2.1.

Some more notations are introduced. The symbol I denotes the entire time period⊔j∈J Ij ,

the disjoint union of the true regime windows Ij . The length of each regime is given as
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

∣Ij ∣ = Tj = κjT , for some constant κj ∈ (0,1) where ∣I∣ = T . Recall from the models, we

have size Tj data for regime j, following

yj,t = χj,t + ut, for all t ∈ Ij (2.1)

where the corresponding Σχ,j = PjΛχ,jPj
′

has all nonzeroKj eigenvalues of Λχ,j diverging

linearly of orderN . Combined with the boundedness of the second moments of the idiosyn-

cratic component (Assumption 2 in Section 1.2.2), this guarantees identifiability of the factor

structure at the population level.

The low-rank part χj,t can be specified in a conventional way (Assumption 6). Under such

a specification, Assumption 1 in Section 1.2.2 is conditioned on Bj to absorb the linearly

growing eigenvalues of the low-rank component covariance Σχ,j , while the second moments

of ft are bounded regardless ofN .

Assumption 6. For any j ∈ J ,

χj,t = Bjfj,t, for all t ∈ Ij (1.2)

whereBj denotes the rankKj factor loading matrix fixed within regime for a givenN , and

fj,t denotesKj factor signals. The smallest (that is,Kj−th) eigenvalue ofBj
′Bj is of orderN .

Assumption 7. (ft,ut) is weakly stationary, E[ft] = 0Kj×1
and E[fktuit] = 0 for all i ∈ N

and k = 1, . . . ,Kj for t ∈ Ij for any j ∈ J .

As the factor signal process ft explicitly enters the model description, the modeling requires

more distributional assumptions regarding ft and ut. Mainly, ft and ut present exponential

tail bounds (Assumption 8), weak dependence (Assumption 9), and satisfy certain bounded

higher moment conditions (Assumption 10). The contents of the following Assumptions

7 to 11 are in line with standard regularity conditions in the related studies, closely resemble

Assumptions 1 to 4 of Fan et al., 2013, Section 3, but allowing weak stationarity for ft and

ut. Under this set of assumptions, the factor space dimensions and directions are consistent

through PCA on the sample covariance matrix, combined with Bai and Ng, 2002. We refer to

the original paper (Fan et al., 2013) for the full discussion.

Assumption 8. There exist constants r1, r2, b1, b2 > 0 such that for any s > 0, for all i ∈ N ,

for any j ∈ J and k = 1, . . . ,Kj for t ∈ Ij ,

sup
t∈Ij

Pr(∣uit∣ > s) ≤ exp{−s/b1}r1 ,

sup
t∈Ij

Pr(∣fkt∣ > s) ≤ exp{−s/b2}r2 .
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1.3 Detection of Structural Breaks

For Assumption 9, denote the σ−fields

FL2
L1
≡ σ({(ft,ut) ∣ t ∈ [L1, L2]})

and let the mixing coefficient be

α(T ) ≡ sup
ℓ∈Z

sup
A∈Fℓ

−∞
,B∈F∞

ℓ+T

∣Pr(A ∩B) −Pr(A)Pr(B)∣. (1.12)

Assumption 9. There existCr > 0 and r3 > 0 such that 3r−1
1 +(3/2)r−1

2 +r−1
3 > 1, satisfying

α(T ) < exp(−CrT r3) for all T ∈ Z+.

Assumption 10. There existsC > 0 such that, for any i ∈ N , for any j ∈ J , and s, t ∈ Ij ,

(a) ∥bi,j∥max < C , for the i−th row vector bi,j ofBj .

(b) E[(N−1/2{us,j
′ut,j −E[us,j

′ut,j]})
4] < C ,

(c) E[∥N−1/2B′jut,j∥4] < C .

Assumption 11. ln(N) = o(T γ/6) for γ−1 ≡ 3r−1
1 + (3/2)r−1

2 + r−1
3 + 1, and T ≍ N r

for

some r ∈ (0,2).

1.3.3 Information Criterion

We propose an information criterion that integrates two types of model selection – one

for determining the presence of a breakpoint and another for identifying the location of a

breakpoint, based on the distance measure (1.10).

1.3.3.1 Selection between models with orwithout a break

The discussion starts by assuming there is potentially one breakpoint in any time domain of

interest, I, of length T . A model with a breakpoint will take a point t(τ) = ⌊τT ⌋ ∈ I for

some τ ∈ (0,1) and hypothesize that there are distinct factor spaces up to the point (I0(τ))
and after (I1(τ)) the point, respectively. Denote P̂j(τ) the estimated factor space from the

window Ij(τ).
The sample analogue d̂(τ) = tr[P̂0⊥(τ)P̂1(τ)]measures the information gain by introducing

a ’new’ regime after t(τ). This gain should be penalized by the complexity of the model having

distinct regimes before and after t(τ). Recall that the factor space Pj(τ) is estimated by

minimizing tr[Σ̂sam

u,j (τ)] in each supposed regime Ij(τ) by following the information criteria

of Bai and Ng, 2002. Denote Tj = κjT the length of the window Ij(τ) for some constant

13



1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

κj ∈ (0,1), omitting the dependence on τ to simplify notations. The optimized penalty term

of the information criteria of Bai and Ng, 2002,

gj ≡ K̂j

N + Tj

NTj

ln( NTj

N + Tj

), (1.13)

which solves the optimal factor space P̂j(τ), captures the complexity of having one factor

model (1.7) in each supposed regime Ij(τ). Hence, we propose the combined penalties,

G(τ ; 1) = G({N,Tj,Kj}j∈J ) = g0 + g1, (1.14)

to construct the total information gain for having one break at t(τ) as follows.

S(τ ; 1) ≡ ln tr[P̂⊥0 (τ)P̂1(τ)] −G(τ ; 1). (1.15)

The statistic for the model without a breakpoint will be formulated by

S(0) ≡ −G(0), (1.16)

whereG(0) denotes the optimized penalty term that fits one approximate factor model for

the entire window I, such that

G(0) ≡ K̂N + T
NT

ln( NT

N + T ).

To have a breakpoint at b = τ∗T for certain τ∗ ∈ (0,1), the information gain d̂(τ∗) =
tr[P̂0⊥(τ∗)P̂1(τ∗)] should be sufficiently large to favor the existence of two distinct regimes

within I. That is, we require

S(τ∗; 1) > S(0). (1.17)

Proposition 1. Assume that there is no breakpoint in I. Then for any τ ∈ (0,1), Pr (S(τ ; 1) <
S(0)) → 1 asN,T →∞.

The proof is in Appendix A.2. The intuition is as follows. When there is no breakpoint, d̂

approaches d = 0 in probability, and it is stochastically bounded by the largest factor space

error of the ones estimated from each of the two supposed regime intervals. We show that

it leads to ln d̂ being dominated by the level of the complexity gj of the factor model in the

corresponding interval Ij of the largest error, almost surely for large N,T . Besides, as one

approximate factor model truly governs the whole time period, the estimated dimensions of

factor spaces (number of factors) in any separated windows will be asymptotically the same

as the number of factors estimated in the whole window I. That is, −gj +G(0) is negative
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1.3 Detection of Structural Breaks

almost surely for largeN,T for any j. Combined, it concludes that S(τ ; 1) +G(0) < 0 holds

asymptotically almost surely if there is no breakpoint.

1.3.3.2 EarlyWarnings of Structural Breaks

Conditional on the existence of a breakpoint, consider the following object τ maximizing the

left side of (1.17), or

τ = argmaxτ∈(0,1)S(τ ; 1). (1.18)

The componentG(0) is omitted from the left side of (1.17) as it is for global information, not

depending on local parameters such as τ .

The maximum point τ is the earliest possible location of a breakpoint in a given interval. To

elaborate, for the potential existence of a single breakpoint, the maximum point τ satisfying

S(τ ; 1) > S(0) indicates the existence of a breakpoint τ∗ in the location at or after τT . Recall

that, from the previous subsection,

S(τ ; 1) < S(0), (1.19)

implies that there is no breakpoint in the given interval.

As the dependence in τ arises only conditional on the existence of a breakpoint, we abbreviate

S(τ ; 1) = S(τ) from now on. The maximum point τ with the condition S(τ ; 1) > S(0)
provides information on the existence of a breakpoint in a given interval and its earliest possible

location.

Proposition 2. Assume that there exists a single breakpoint at b∗ = τ∗T for some τ∗ ∈ (0,1)
in a time window I of length T . Let τ = argmaxτ∈(0,1)S(τ). Then Pr[τ∗ ≥ τ] → 1 in the

largeN,T limit.

A description of a perturbed factor space explains this result, which we refer to in Appendix

A.2 for the details. When a supposed breakpoint τ is later than the true breakpoint, the implied

regime I0(τ) has a mixture of two processes. A misspecified factor space, which has a larger

dimension than the true factor space, is identified in the largeN,T limit. The implied distance

from the wrongly presumed regimes will be zero for τ > τ∗, as the misspecified regime-0 factor

space already captures all directional information of the true factor space P1. In addition, the

penalty terms cost more in misspecified windows as the apparent dimension of the factor space

is larger than the one from the true window.

The proposition extends to the cases with multiple breaks. We assume that as long as there are

multiple breakpoints present in a given interval, the regimes are not totally recurrent in the

following way:
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

Assumption 12. (No Total Recurrence) Let {τ∗j }j=1,...,J be breakpoints separating

regimes j = 0, . . . , J . For any partition of the regimesR0 = {0, . . . j} andR1 = {j+1, . . . , J},
there is no total recurrence of the previous regimesR0 in the latter regimesR1. That is, for

any partition of regimes, there exists j ∈ R1 such that Pj was not a factor space of any regime

inR0.

Corollary 3. Assume that there exists the first breakpoint at b∗ = τ∗1 T for some τ∗1 ∈ (0,1)
in a time window I of length T . Let τ = argmaxτ∈(0,1)S(τ). Under Assumption 11, Pr[τ∗1 ≥
τ] → 1 in the largeN,T limit.

Consider two windows I0 and I1(τ∗1 ), up to and after the first breakpoint τ∗1 . The distance

between P0 and the mixed factor space in I1(τ∗1 ) is d(τ∗1 ) = tr[P⊥0 ⊕J
j=1Pj]. In comparison,

for any τ > τ∗1 , the distance between mixed factor spaces in I0(τ) and I1(τ) is smaller than

d(τ∗1 ), as, intuitively, the first mixture factor space P0(τ) captures more directional informa-

tion as seen in Proposition 2.

Hence, the maximum points τ can serve as early warnings of structural breaks. Moreover,

a subsequent search over the early warning points can locate the breakpoints. In the next

subsection, we introduce the algorithm to detect the exact location of multiple breakpoints.

1.3.3.3 Breakpoint Detection Algorithm

The following algorithm yields the detection and the locations of the existing unknown

number of breakpoints, combining the findings of Propositions 1,2, and Corollary 3.

To simplify notations, for given I of the lengthT , we consider any τ ∈ (0,1) satisfying τT ∈ N,

which yields practically the relevant points of inspection. Denote S(τ ∣I) for the statistics

S calculated for a supposed breakpoint τT and the subintervals I0(τ) and I1(τ) up to and

after the inspected point τT , such that I0(τ)⊔I1(τ) = I. The maximum point among all

such relevant values of τ given Ij will be denoted as τ j = argmax τT ∈Ij
S(τ).

The algorithm starts by examining the maximum point τ for given I. If the maximum point

τ I indicates the existence of a breakpoint in this time period by holding S(τ ∣I) > S(0∣I),
its location informs the earliest possible time point to have a break. A breakpoint is located

at τ∗T ∈ I if the existence of a breakpoint is implied in a given time period I and there is no

breakpoint in either of the intervals up to and after τ∗T .

Detection Algorithm (Main)

Step A. An interval I of the length ∣I∣ = T is given. For any τ ∈ (0,1) such that τT ∈ N,

take the subintervals I0(τ) = [1, τT ] and I1(τ) = [τT + 1, T ], separated by the supposed

breakpoint τT . Calculate S(τ ∣I) for every point τT ∈ [L,T −L] ⊂ I for some L > 0.

Set τ = argmaxτ∈(0,1)S(τ ∣I).
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A1. If S(τ ∣I) < S(0∣I), conclude that there is no breakpoint in I.

A2. If S(τ ∣I) > S(0∣I), move on to the next Step B.

Step B. Set Ĩ1 = [τT + 1, T ] and τ 1 = argmaxτT ∈Ĩ1
S(τ ∣Ĩ1). Inspect the interval Ĩ1.

B1. If S(τ 1∣Ĩ1) < S(0∣Ĩ1), there exists no breakpoint later than τ . Conclude that the

interval I has a single breakpoint at τ̂∗ = τ .

B2. If S(τ 1∣Ĩ1) > S(0∣Ĩ1), inspect Ĩ0 = [1, τ 1T ].

B2-1. If S(τ ∣Ĩ0) < S(0∣Ĩ0), inspect τ 0 = argmaxτT ∈Ĩ′0
S(τ ∣Ĩ0) for Ĩ′0 = [τT, τ 1T ].

B2-1-1. If S(τ 0∣Ĩ0) < S(0∣Ĩ0), conclude no breakpoint in Ĩ0. Repeat the process

from Step B with updated Ĩ1 = [τ 1T + 1, T ].

B2-1-2. If S(τ 0∣Ĩ0) > S(0∣Ĩ0), take τ∗1 = τ 0 and update Ĩ1 = [τ 0T + 1, T ].
Check whether S(τ 1∣Ĩ1) > S(0∣Ĩ1). If it is true, the process repeats from

Step B for the updated Ĩ1 = [τ 1T + 1, T ]. If this is not the case, the process

repeats from Step A for the updated I = [τ 0T + 1, T ].

B2-2. If S(τ ∣Ĩ0) > 0, conclude that the location of the first breakpoint τ∗1 = τ . Repeat

the process from Step B with the updated Ĩ1 = [τ 1T + 1, T ].

Continued from Step B2-1 or Step B2-2, repeat the algorithm by taking new inspected win-

dows to locate the first breakpoint (the case of B2-1-1) or the second or the next breakpoint

(the case of B2-1-2 or B2-2).

We break down the algorithm. A given interval I is concluded to have no breakpoint in Step

A1, following Proposition 1. Step A2 determines the existence of a breakpoint, combining

Propositions 1 and 2, as discussed in the previous subsection. The location of the first break-

point can be concluded by inspecting the later intervals after the early warning points. For

example, in the case of a single breakpoint, the location is the same as one of the early warning

points if the time window after a certain warning point has no breakpoint, as seen in Step B1.

Step B2 primarily considers whether the warning point identified in Step A was too early. If

there is another warning point (τ 1) in the later window I1, it can be the case that either the

previous warning point (τ 0) was too early or there are multiple breakpoints. These cases can be

distinguished by examining the previous window Ĩ0. As a breakpoint in Ĩ0 is also a breakpoint

in I, and Step A guarantees that there is no breakpoint before τ , hence we examine only the

points from τ in Step B2-1. In Step B2-1-1, if S(τ 0∣Ĩ0) < S(0∣Ĩ0), there is no breakpoint

among the points τ ≥ τ , hence no breakpoint in Ĩ0.

If S(τ 0∣Ĩ0) > S(0∣Ĩ0), it indicates a breakpoint in Ĩ0 which is later than τ . The existence of

such τ 0 ≥ τ implies that τ cannot be a breakpoint by Propositions 1 and 2. It also implies that

this location of the breakpoint was missed by the next warning point τ 1. These cases deviate

17



1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

from the asymptotic property of the maximum points (Proposition 2 and Corollary 3). Step

B2-1-2 is necessary only due to the potential presence of a weak factor structure in a smallN,T

environment. We will demonstrate in the next section that the frequency of such occurrences

converges to zero, given the presence of a strong factor structure in the simulations.

The location of τ 0 is a refinement of the previous early warning point τ . Once refined, the

warning point is taken as the breakpoint of Ĩ0 in Step B2-1-2. In principle, the location of

the breakpoint in Ĩ0 can be further refined by re-examining the location of τ 1 subsequently.

However, the total re-inspection of subsequent windows will be an expensive calculation. The

location of the subsequent warning point τ 1 is also re-examined if necessary, but consider-

ing relative positions with the next warning point, not with the previous warning points, to

minimize the number of repeated backward inspections. In the results, the algorithm refines

the location of each warning point at most once. In the simulation, we demonstrate that the

proposed algorithm performs effectively.

As discussed, Step B2-1-2 will unlikely occur with the assumed strong factor structure. If the

condition S(τ ∣Ĩ0) < S(0∣Ĩ0) of Step B2-1 is met, it implies that τ was a too-early warning

point, and it is τ 1 that informs the location closer to the actual breakpoint. The entire process

of recalculation in Steps B2-1-1 and B2-1-2 is unnecessary, as the conclusion reached with or

without re-examination will be the same.

Hence, with an assumed strong factor structure, the proposed algorithm will perform as the

following simplified process:

Detection Algorithm (Simplified)

Step A. An interval I of the length ∣I∣ = T is given. For any τ ∈ (0,1) such that τT ∈ N,

take the subintervals I0(τ) = [1, τT ] and I1(τ) = [τT + 1, T ], separated by the supposed

breakpoint τT . Calculate S(τ ∣I) for every point τT ∈ [L,T −L] ⊂ I for some L > 0.

Set τ = argmaxτ∈(0,1)S(τ ∣I).

A1. If S(τ ∣I) < S(0∣I), conclude that there is no breakpoint existing in I.

A2. If S(τ ∣I) > S(0∣I), move on to the next step B.

Step B. Set Ĩ1 = [τT + 1, T ] and τ 1 = argmaxτT ∈Ĩ1
S(τ ∣Ĩ1). Inspect the interval Ĩ1.

B1. If S(τ 1∣Ĩ1) < S(0), there exists no breakpoint later than τ . Conclude that the interval

I has a single breakpoint at τ̂∗ = τ .

B2. If S(τ 1∣Ĩ1) > S(0), inspect Ĩ0 = [1, τ 1T ].

B2-1. If S(τ ∣Ĩ0) < 0, conclude that there is no breakpoint in Ĩ0.

18



1.4 Simulations

B2-2. If S(τ ∣Ĩ0) > 0, conclude that the location of the first breakpoint τ∗1 = τ .

Continued from Step B2-1 or Step B2-2, repeat the algorithm by taking I = [τ 1T + 1, T ], to

locate the first breakpoint (the case of B2-1) or the second or the next breakpoint (the case of

B2-2).

The reasoning of taking τ∗1 = τ is straightforward. By Proposition 1, there can be no breakpoint

before τ in Ĩ0 or in I. There can be no breakpoint after τ as well, otherwise it contradicts

τ 1 is the earliest point of break in Ĩ1. The repeated algorithm will settle the location of

the consecutive breakpoints. The proposed algorithm with refinement steps performs by

approximating the same line of logic as this simplified version.

1.4 Simulations

We present the results of the detection of single or double breakpoints applying the main

detection algorithm in Section 1.3.3.3. The entire available length of time periods is denoted

as T = ∑j Tj , the sum of the length of all supposed regimes Tj . The cross-sectional dimension

is fixed toN = 100 in any regime. Each regime hasKj = 3 dimension of the factor space. We

assume ft ∼ N(03×1, σ2
fI3), loaded by P0 during the first regime, and ut ∼ N(0N×1, σ2

uIN).
In the following exposition, we fix σ2

u = 2 and vary σ2
f . The seeds of the random signal draw

are fixed for entire 500 trials. The underlying sequence of the factor spaces is fixed as well.

span(P0), span(P1) and span(P2) are constructed from a randomly chosen orthonormal

N ×K0 matrix P0 fixing the distances between two subsequent factor spaces, based on the

distance measure (1.10). The caption numbers of the figures in this section indicate the

corresponding scenarios they represent.

1.4.1 Estimation of Single Breakpoint Locations

We first present how the maximization of the statistics (1.15) performs in the cases of existing

single breakpoints in various relative locations, accompanied by the criteria for the existence of

a breakpoint (1.17). We inspect the stride-1 grid in the window of inspection that consists of 20

time points before and after the true location of the breakpoint (’BP’), [BP − 20,BP + 20].
The following relative locations of the breakpoint are considered:

(a) A breakpoint located centrally atBP = 100, with T0 = 100 and T1 = 100 before and

after the break.

(b) A central breakpoint atBP = 50, with shorter time spans before and after the break,

T0 = 50 and T1 = 50, than case (a).

(c) A breakpoint located on the left side of the entire time window (T ) atBP = 50, with a

shorter time span before (T0 = 50) than after (T1 = 100) the break.
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

(d) A breakpoint located on the right side of the entire time window (T ) at BP = 100,

with a shorter time span after (T1 = 50) than before (T0 = 100) the break.

The table below shows the number of trials that correctly conclude a single breakpoint at the

exact location out of 500 total number of trials. The inspected range of the relative intensity

of the factor signals SN ≡ σ2
f/σ2

u is from 10 to 30. In the application to the high-dimensional

data, we found that the relative strength of the factor signals easily exceeds 10 for regimes

before and after the structural breakpoints of interest.

SN = σ2
f/σ2

u 10 12.5 15 17.5 20 22.5 25 27.5 30

(a) BP = 100, center 37.8 75.2 85 88.2 90.8 93 93.4 94.2 95

(b) BP = 50, center 5.6 15.8 34.2 54.8 70.2 78.4 84 86.4 88

(c) BP = 50, left 14 20.8 36.6 53.6 66 76.4 81.8 85.2 86.6

(d) BP = 100, right 14 42.6 63.2 72.2 78 79.4 81.6 83.4 84.8

Table 1.1: Success rate of detecting a single breakpoint at the exact location

(%, out of 500 trials)

The results for the central breakpoints (a) and (b) in Table 1.1 suggest that the detection scheme

will successfully detect a breakpoint with higher probability when there is a longer duration

of the time window before and after the breakpoint. The detection criteria conclude the

single breakpoint at the exact location for 75% of the trials with relatively less intense factor

signals (SN = 12.5) for scenario (a), where the durations of the before and after regimes are

comparable to the size of the cross-sectionN = 100 as shown in Figure 1.2.

Figure 1.2: (a) BP = 100, T0 = T1 = 100 (SN = 12.5).

The examples for SN over 20 in Figure 1.3 and Figure 1.4 indicate the performance of the

detection for the various scenarios. In particular, when the durations of two regimes are
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1.4 Simulations

asymmetric, having a shorter time span after a break (scenario (d)) performs better than

having a shorter time span before a break (scenario (c)) for cases of low or moderate relative

signal strength of the factors (SN ). Given the lengths of the subsequent regimes, the results

for varying SN for all scenarios indicate that the performance of the detection of a single

breakpoint will improve under the presence of sufficiently intense factor signals.

(a) BP = 100, T0 = T1 = 100. (b) BP = 50, T0 = T1 = 50.

Figure 1.3: Central Breakpoints, SN = 22.5.

(c) BP = 50, T0 = 50, T1 = 100. (d) BP = 100, T0 = 100, T1 = 50.

Figure 1.4: Side Breakpoints, SN = 22.5.

1.4.2 Detection of No Breakpoint

Now, consider the case where there is no breakpoint in the entire window of the length

∣I∣ = 100. The same settings generate the data as in the previous subsection, but the directional

factor loading P is fixed to P0. In this simulation, it is the stride-1 grid in the window [20,80]
inspected, that is, the entire I except the first and last 20 time points. For cases with relatively

weak factor structures SN ≤ 10, the factor space estimation becomes noisy for points closer

to the beginning and end of the inspection windows. We perform the detection by imposing

the maximum number of BPs as simply 1 and we count the number of trials that correctly
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

detected no breakpoint out ofM = 500 trials for each setup. The following Table 1.2 presents

the results from SN > 10.

SN = σ2
f/σ2

u 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

Success Rate 4.4 16.4 35.2 59.2 75.4 88.6 95.6 98.8 99.8 100

Table 1.2: Success rate of concluding No BP

(%, out of 500 trials)

The success rate increases as the SN ratio increases. The performances for different settings of

the maximum BP are identical.

1.4.3 Multiple Breakpoints

Now, let us discuss the result of the detection of multiple breakpoints. Consider two break-

points with different time spans before and after as the following scenarios,

(A) BP1 = 50 andBP2 = 100 in the entire time window of length T = 150.

(B) BP1 = 70 andBP2 = 140 in the entire time window of length T = 210.

Again, the finest grid with stride 1 will be inspected, yet without restricting the window

of inspection in a neighborhood of the true breakpoints. The inspection covers the whole

window except the first and last 20 time points, which is less than 15% of the shortest entire

window length T = 150 of scenario (A). For each scenario, the detection proceeds to find

maximum 5 breakpoints.

Table 1.3 below shows the number of detections across 500 trials counted as successful, based

on the following criteria. First, it should conclude the existence of the correct number of

breakpoints, two. Second, the estimated breakpoints concluded as either the first (out of two

breakpoints) or the second (out of two breakpoints) are located within the neighborhood

[BPι − a,BPι + a] of the true breakpointBPι of radius a, which is 10% of the duration of

one regime; a = 5 in case (A) and a = 7 in case (B). The success rate is reported separately for

each breakpoint and jointly as well. We present the range of the SN from over 10 to over 30

in the following table. The existence of multiple breakpoints undermines the performance of

the detection for relatively low SN . For example, in case (A) with a shorter window size, the

success rate of locating the first or second BP in the target neighborhood is less than 1% when

SN = 10.
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1.4 Simulations

SN = σ2
f/σ2

u 12.5 15 17.5 20 22.5 25 27.5 30 32.5

(A)

(BP1,BP2)
= (50,100)

BP1 2.4 5.6 8.6 16.8 31.2 45 59.2 75.4 84.2

BP2 5.6 7.4 16.2 27.8 45.4 55.6 65.2 77.6 80.4

Joint 1 1.4 5.8 14.4 28.8 43.2 56.6 70.6 76.4

(B)

(BP1,BP2)
= (70,140)

BP1 4.8 4.4 11.4 18.4 40.2 61.4 73 85.4 92.8

BP2 3.2 5.8 15.8 29.2 50.4 67.6 77 85.8 88.6

Joint 1 1.6 7.6 16.2 37.8 59.4 70.2 82.6 87.2

Table 1.3: Success rate of detecting two BPs located in the target neighborhoods

(%, out of 500 trials)

The correct detection rates are higher in case (B), which features a longer duration of subse-

quent regimes. The success rate for case (B) is still higher when we narrow down the target

neighborhood to match that of case (A). Figure 1.5 shows a comparison of the success rates

calculated separately for two breakpoints.

(A) (BP1, BP2) = (50, 100), T = 150. (B) (BP1, BP2) = (70, 140), T = 210.

Figure 1.5: Success rates for the target neighborhoods of radius 5 (separately for each BP)

The success rates of detecting two breakpoints jointly within the target neighborhoods are

shown in Figure 1.6. The results show improved performance in the joint detection where

there is a strong enough factor structure within each regime.
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

Figure 1.6: Joint Success Rates

1.4.4 TheMain to the Simplified Algorithm

As discussed in Section 1.3.3.3, the main algorithm can be simplified. We present how fre-

quently the refinement steps in Step B2-1-2 of the main algorithm were activated out of 500

trials in varying scenarios of breakpoint locations. Note that any steps in the algorithm, in-

cluding Step B2-1-2, can be activated multiple times in each trial during the grid search. The

counts in Figure 1.7 reflect all such multiple activations. It shows that with a stronger factor

structure (higher SN ), the activation of the refinement steps becomes increasingly rare across

all scenarios considered. The main algorithm can be simplified under the assumption of a

strong factor structure.

Figure 1.7: Number of Refinement Steps Activated
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1.5 Applications

1.5 Applications

The proposed method of structural breakpoint estimation will be applied to two different

environments. The first application is to the S&P 500 daily return panel to analyze early

instabilities relevant to the early developments of the global financial crisis. The second

application is to a collection of macroeconomic and financial variables at monthly frequency

introduced in McCracken and Ng, 2016. An EM algorithm (Stock and M. W. Watson, 2002a) is

performed to approximate PCA with missing values.

1.5.1 Instabilities in the StockMarket During the Early Stages

of the Global Financial Crisis

It is widely accepted that the global financial crisis started in mid-2007. We examined the

structural breaks in the correlation structure of the panel of S&P 500 daily returns (log price

differences) from the CRSP database, for the trading days from January 2, 2004 to June 1,

2007. The constituent list is based on July 31, 2007.

//

(02 Jan 2004)

7 Apr 2006

14 Aug 2006

13 Oct 2006

30 Nov 2006 20 Feb 2007

5 Apr 2007

(1 Jun 2007)

Breakpoints

Figure 1.8: Instabilities in 2006 to mid 2007, S&P 500 Panel

The earliest breakpoint is estimated to be in early April of 2006. The locations of the break-

points are consistent with the development of the subprime mortgage crisis behind the eco-

nomic landscape from early 2006, which was still perceived as optimistic at the time. During

the early to mid-2006, the housing price bubble peaked (Phillips and J. Yu, 2011), and the

lowest credit score mortgages showed the fastest growth in the second and third quarters of

2006 (Albanesi et al., 2022). By the end of 2006, precursors of financial market instability

had already emerged, including an increasing delinquency rate of subprime loans reported by

several lenders, such as Ownit, New Century, and Novastar (Mayer et al., 2009). These lenders

subsequently reported losses or filed for bankruptcy between the end of 2006 and early April

2007. Novastar reported "a surprise loss" on February 20, and New Century Financial filed for

Chapter 11 bankruptcy protection on April 3rd, following the timeline sources from Guillén,

2015 and the Joint Economic Committee report of the United States Congress, 2008 (JEC,

2008).
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1.5.2 Structural Breaks in Cross-Variable Correlations among

Macroeconomic and Financial indicators

The data collection first introduced in McCracken and Ng, 2016 is a set of macroeconomic and

financial variables at a monthly frequency. Among the continuously updated data vintages,

we use the vintage of February 2025, which containsN = 126 macro-financial variables from

January 1959 to February 2025. The variables are normalized following various schemes,

reported in detail in the database
4
. Over the entire time span, we found two breakpoints at

1998 December and 2018 December. Although it can only be speculative without further

investigation, we suggest the following possible factors behind these breakpoints.

(Jan 1959)

Dec 1998 Dec 2018

(Feb 2025)

Breakpoints

Figure 1.9: Instabilities in Macro-Financial Variables, 1959 - 2025 February

December 1998 One possible factor of structural break is the repeal of the Glass-Steagall

Act in 1999. The Glass-Steagall legislation, enacted in 1933 after the financial market crash

during the Great Depression, introduced provisions that separated commercial and investment

banking. It came under critical pressure in 1998 during the merger of Travelers Group and

Citicorp (Sherman, 2009). The systemic impact of this repeal has been studied widely before

and after the global financial crisis (for example, Stiroh and Rumble, 2006, Laeven and Levine,

2009, Schmid and Walter, 2009, Acharya et al., 2006, Demirgüç-Kunt and Huizinga, 2010, DeYoung

and Torna, 2013, and Shleifer and Vishny, 2010).

December 2018 There are several potential factors for a structural break around Decem-

ber 2018. One possible speculation relates to the policy shifts in the United States during

President Trump’s first term. The trade war between the U.S. and China began and escalated

throughout 2018, while economic nationalism gained popularity worldwide. The potential

structural impact of these developments has been explored in various studies, including Fajgel-

baum et al., 2020, Amiti et al., 2019, Amiti et al., 2020, Freund et al., 2021, and Dinopoulos et al., 2024.

In both of the empirical exercises, we found that once a breakpoint is detected at a certain

location, the result is not overly sensitive to a reduced number of post-break data points.

Although the proposed detection method is not a fully sequential or online method, it can

enable a semi-real-time application.

4https://www.stlouisfed.org/research/economists/mccracken/fred-databases
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1.6 Concluding Remarks

1.6 Concluding Remarks

We present a novel method for detecting instabilities in cross-correlation structures using a

latent factor model framework. The proposed method is built on an intuitive distance between

the column spaces of the loading matrix. It provides a measure of structural correlation changes

free from the inherent identification issue of latent factor models. The proposed information

criterion and algorithm integrate both the detection and localization of structural breakpoints.

Our method also provides a framework for identifying the earliest possible point of structural

change.

In applications to a stock return panel and a macro-financial variable collection, our methods

detect early instability points preceding the global financial crisis, as well as major policy shifts

that can reasonably be expected to lead to structural changes, consistent with the historical

developments.
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Appendix to Chapter 1

A.1 Extended Discussion on Covariance Dynamics

and Factor Space Change

A.1.1 Section 1.2.1

Properties 1. Assume the decomposability (1.3) is guaranteed. P is invariant under any rank

preserving change of Σf = E[ftft
′].

Proof. Let f̊t be a stationaryK− dimensional process with E[̊ft̊ft
′] = IK . First, we emphasize

that any possible Σf – K(K + 1)/2−dimensional object – is fully parametrized by two

operations:D ∶ f̊t z→Df̊t for any diagonal matrixD (K−dimension), a variance change from

the hypothetical f̊t, andQ ∶ f̊t z→ Qf̊t for any orthonormal matrix Q (QQ′ = Q′Q = IK ,

K(K − 1)/2 dimension) that is, a correlation structure change from f̊t. Observe that the

object P = PP ′ is invariant under transformation Q due to orthonormality. Moreover,

P = PP ′ is invariant underD as the eigenvector information P is not affected by the change

of the diagonal scales. It implies as well, P is invariant under a change from any Σf ↦ IK .

Second, any change Σf → Σ̃f is a composition of a change Σf ↦ IK and IK ↦ Σ̃f . Then the

arguments we have just made conclude P is invariant under Σf → Σ̃f , as it is invariant under

both parts of the composition.

A.1.2 Section 1.2.2

A.1.2.1 Benchmark Assumptions

This section aims to provide extended comments on the benchmark model Section 1.2.2. We

discuss how the characteristic of covariance dynamics stated in Assumption 4 is aligned with

the hypothesized factor structures in both regimes stated in Assumptions 1 and 2. Especially

the substantiality of the off-diagonal perturbation can be, in fact, proven, although it was

simply stated as an assumption to avoid lengthy extra discussions in the main section.

Let us first recall some facts on the subspace representation to assist our discussion. As em-

ployed in Davis and Kahan, 1970 as well, one of the most popular ways of identifying a linear

space span(Pj) is to identify it by PjPj
′
, the projector operator on the space span(Pj) itself.
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In practice, it is convenient to identify span(Pj) by any chosen column orthonormal basis

Pj (i.e.,Pj
′Pj = IKj

) up to Kj−dimensional orthogonal transformation O; the projector

operator is invariant under any internal rotation done byO ∈ O, such thatPjOO′Pj
′ = PjPj

′

as O′O = OO′ = IKj
. Pj is called a Stiefel matrix and extensively studied; we refer Edelman

et al., 1998 or Chikuse, 2003 for a short or an extensive introduction, respectively.

For a pair of Stiefel matrices P0 and P1, we can decompose P1 into the direction of the

span(P0) and the span(P0)⊥, as in Section 3.2.1 of Chikuse, 2003. AsKj << N , we state for

the cases (i)K1 ≤K0 < N −K0 and (ii)K0 <K1 < N −K0.

Properties 2. [Theorem 3.2.1 (i),(ii) of Chikuse, 2003]

(i) Let K1 ≤ K0 < N − K0. Then there exists Stiefel matrices HK0×K1 and VN×K1 , a

diagonal matrix TK1×K1 with each diagonal element th ∈ (0,1), an orthogonal trans-

formationO ∈ O(K1) such that

P1 = P0HTO
′ + V SO′ (A.20)

where S ≡ (I − T 2)1/2 and P ′0V = 0K0×K1 .

(ii) Let K0 < K1 < N −K0. Then there exists a Stiefel matrix VN×K1 , a diagonal matrix

TK0×K0 with each diagonal element th ∈ (0,1), orthogonal transformations H ∈
O(K0) andO ∈ O(K1) such that,

P1 = P0[H 0K0×(K1−K0)]diag(T,0K0×(K1−K0))O′ + V SO′ (A.21)

where S ≡ diag((I − T 2)1/2, IK1−K0) and P ′0V = 0K0×K1 . (diag(A,B) denotes a

block diagonal matrix with matrices A and B on the diagonal.)

What matters to measure the distance of the factor spaces is the component of P1 – up to

orthogonal transformationO(K1) – that is orthogonal to span(P0). The expressions (A.20)

and (A.21) provide enough to describe the necessary information of factor space dynamics.

In other words, one can derive the expression of the factor space change invariant under the

choice of basis P0 and P1 from (A.20) or (A.21). First, let us note that the original result

Theorem 3.2.1 of Chikuse, 2003 is about the decomposition of a Stiefel matrixP1 on span(P0)
and span(P0)⊥. The results are meant to be universal under the choice of basis P0. For an

arbitrarily chosen basis P0, the second component in (A.20) or (A.21) corresponds to the

projection of P1 on P ⊥0 P
⊥′
0 ≡ I − P0P0

′
, that is, V SO′ = P ⊥0 P ⊥

′

0 P1 = P ⊥0 P ⊥
′

0 V SO
′

where S

is defined respectively for case (i) and (ii). In any cases, P ⊥0 P
⊥′
0 V = V and the expression of V

is invariant of the choice of the regime 0 basis P0.

Besides, (A.20) and (A.21) lead universal results for the decomposition of any column or-

thonormal basis representation P1 of span(P1). If one considers a basis representation
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P̃1 = P1Ō ∈ O(K1), the decompositions will remain fundamentally the same, with Õ ≡
O′Ō ∈ O(K1)multiplied on the right end of the each terms of (A.20) and (A.21). It gives

P ⊥0 P
⊥′
0 P1P1

′P ⊥0 P
⊥′
0 = V S2V ′ which is invariant under this internal symmetryO(K1) as it is

indeed supposed to be as a measure of factor space change.

Hence we can take (A.20) or (A.21) as the model of factor space dynamics. The resulting

dynamics resembles a rotating position vector in Euclidean space, in a sense that there are the

direction of change V and the size of the change S governing the motion from span(P0) to

span(P1). Analogous to the motion of a rotating vector, S captures the information of the

principal angles (Θ) between two subspaces; S = sin Θ, more precisely. Accordingly, T or

diag(T,0K0×(K1−K0)) in (A.20) or (A.21) squares toC ≡ cos Θ = (I − S2)1/2. We refer to

Davis and Kahan, 1970 for an extensive discussion and interpretation.

In a matrix form, (A.20) or (A.21) can be written as follows:

P1 = [P0 P0
⊥]
⎡⎢⎢⎢⎢⎣

H̃CO′

Ṽ SO′

⎤⎥⎥⎥⎥⎦
(A.22)

where Ṽ ≡ P ⊥′0 V , and H̃ ≡H for the case (i) and H̃ ≡ [H 0] for the case (ii). Together with

Assumptions 1 to 3 in the model in Section 1.2.2, it implies that up to o(1) error, the regime 1

covariance matrix will be written in terms of [P0 P0
⊥] basis such that

Σy,1 ≃ [P1 P1
⊥]
⎡⎢⎢⎢⎢⎣

Λ1,1 0K1,N−K1

0N−K1,K1 Λ2,1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

P1
′

P ⊥1
′

⎤⎥⎥⎥⎥⎦

= [P0 P0
⊥]
⎡⎢⎢⎢⎢⎣

H̃CO′ F1

Ṽ SO′ F2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

Λ1,1 0
0′ Λ2,1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

OCH̃ ′ OSṼ ′

F ′1 F ′2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

P0
′

P ⊥0
′

⎤⎥⎥⎥⎥⎦
. (A.23)

where P1
⊥ = [P0 P0

⊥][F ′1 F ′2]′ for some bounded operator F1 and F2. That is, for the

perturbation Z which is assumed to exist in Assumption 4 of Section 1.2.2, its off-diagonal

component P0
′ZP0

⊥
is of sizeO(N) to generate the sizeO(N) dominating eigenvalues in

regime 1 in the P1 direction.

Properties 3. Let the benchmark Assumptions 1 to 3 hold. Assume there exists a perturbation

Z such that Σy,1 = Σy,0 +Z . Then ∥P0
′ZP0

⊥∥F = O(N).

Proof. The upper right block of the off-diagonal perturbation with respect to the P0 basis is

P0
′ZP0

⊥ = H̃CO′Λ1,1OSṼ ′+F1Λ2,1F ′2 from (A.23). Let us denoteA ≡ H̃CO′Λ1,1OSṼ ′

for simplicity. By Assumptions 1 to 3, ∥Λ1,1∥ = O(N) and ∥Λ2,1∥ = O(1). By Triangle

inequality

∥A∥F − ∥F1Λ2,1F
′
2∥F ≤ ∥P0

′ZP0
⊥∥F ≤ ∥A∥F + ∥F1Λ2,1F

′
2∥F . (A.24)
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A.1 Extended Discussion on Covariance Dynamics and Factor Space Change

Observe that

tr(A′A) = tr(Ṽ SO′Λ1,1OC
2O′Λ1,1OSṼ

′) = tr(O′Λ1,1OC
2O′Λ1,1OS

2)

due to the cyclic invariance of the trace operator and the orthonormality of H̃ and Ṽ . It gives

that

min
h
(sin2 θh)tr(O′Λ1,1OC

2O′Λ1,1O) ≤ tr(A′A) ≤max
h
(sin2 θh)tr(O′Λ1,1OC

2O′Λ1,1O),

which leads to

min
h
(sin2 θh)min

k
(λ2

k)tr(C2) ≤ tr(A′A) ≤max
h
(sin2 θh)max

k
(λ2

k)tr(C2),

where λk is the k−th diagonal element of Λ1,1. Under the assumed factor structure of regime

1, mink(λ2
k) and maxk(λ2

k) areO(N2). By Properties 2, minh(sin2 θh) > 0 and tr(C2) > 0.

Hence ∥A∥F = O(N) and so is ∥P0
′ZP0

⊥∥F as in (A.24).

A.1.2.2 Model Extension

The benchmark model in Section 1.2.2 can be extended to allow certain types of non-stationarity

within regimes. The generalized model is stated as follows:

For each j ∈ {0,1}, ytj
is decomposed into common component χtj

and idiosyncratic

component utj
, such that

yt,j = χt,j + ut, for all t ∈ Ij (2.1’)

All processes yt,j , χt,j and ut are centered. ut is allowed to be regime specific as well. We will

impose the following extended assumptions for each j ∈ {0,1}:

Assumption A.1. For any t ∈ Ij , Σy,t,j = Σχ,t,j + Σu,t, where Σχ,t,j = Pt,jΛχ,t,jPt,j
′

satisfies the following:

a. Λχ,t,j = diag(λk
χ,t,j)k=1,...,Kj

, forKj ≪ N non-zero eigenvalues λk
χ,t,j satisfying

inf
t∈Ij

λk
χ,t,j = O(N).

b. Pt,j = PjOt for some orthonormalOt and Pj
′Pj = IKj

.

Assumption A.2. There exists a constant qj ∈ [0,1] such that

cu,j ≡ sup
t∈Ij

max
i=1,...,N

∑
i′=1,...,N

∣cov(uit, ui′t)∣qj = O(1).
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

Assumption A.3. supt∈I0 ∥P0P0′Σu,tP
⊥
0 P

⊥
0
′∥F = o(1).

Assumption A.4. Denote t = tj if t ∈ Ij . For any pair t0 and t1, Σy,t1 = Σy,t0 + Zt0,t1 ,

where

inf
t0,t1
∥P0

′Zt0,t1P0
⊥∥F = O(N).

In a concise version, Assumption A.1 can be rewritten as follows:

Assumption A.1*. Σy,t,j = Σχ,t,j + Σu,t, where Σχ,t,j = PjΛ̃χ,t,jPj
′
, for a symmetric

matrix Λ̃χ,t,j with itsKj ≪ N non-zero eigenvalues λk
χ,t,j satisfying

inf
t∈Ij

λk
χ,t,j = O(N),

and Pj
′Pj = IKj

.

A.2 Proofs

Proposition 1. Assume that there is no breakpoint in I. Then for any τ ∈ (0,1),

Pr (S(τ ; 1) < S(0)) → 1

asN,T →∞.

Proof. We can write d̂(τ) = tr[P̂⊥0 (τ)P̂1(τ)] as

tr[P̂⊥0 P̂1] = tr[P̂⊥0 (P1 − P1 + P̂1)] = tr[(P⊥0 + P0 − P̂0)P1] + tr[(IN − P̂0)(P̂1 − P1)]
= tr[P⊥0P1] + K̂1 −K1 + tr[(P0 − P̂0)P1] + tr[P̂0(P1 − P̂1)], (A.25)

where the dependence in τ omitted for simple exposition.

We only need to examine the latter two terms of (A.25). Without a breakpoint, the first term

tr[P⊥0P1] = 0. Throughout this discussion, K̂j −Kj will be treated as zero by considering

sufficiently large N and T that guarantee the two integers to be the same for an arbitrarily

high probability.

Having no break implies either P1 = P0 or that span(P1) is a strict subspace of span(P0),
hence tr[P⊥0P1] = 0 andK1 <K0. The third term tr[(P0 − P̂0)P1] achieves its maximum

when P1 = P0. That is,

tr[(P0 − P̂0)P1] ≤ tr[(P0 − P̂0)P0] = tr[(IK0 − P̂0)P0] = tr[P̂⊥0P0],
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where the equalities are guaranteed as the projectors are idempotent.

The last term of (A.25) can be rewritten as

tr[P̂0(P1 − P̂1)] = tr[P0(P1 − P̂1)] + tr[(P̂0 − P0)(P1 − P̂1)]. (A.26)

The first term tr[P0(P1 − P̂1)] ≤ tr[P1(P1 − P̂1)] = tr[P̂⊥1P1]: as there is no break,

tr[P0P1] =K1 = tr[P1P1], and (0 ≤)tr[P1P̂1] ≤ tr[P0P̂1].
The second term of (A.26) is bounded as

∣tr[(P̂0 − P0)(P1 − P̂1)]∣ ≤ ∥P̂0 − P0∥F ∥P1 − P̂1∥F ≤ 2(tr[P⊥0 P̂0]tr[P⊥1 P̂1])
1/2
.

The first inequality comes from the Matrix Cauchy-Schwarz Inequality, and the second in-

equality comes as ∥P̂j − Pj∥F =
√

2(tr[P⊥j P̂j])
1/2

. Note that, for large N,T guarantees

K̂j =Kj , tr[P̂⊥j Pj] = tr[P⊥j P̂j]. Hence, combining the above observations, we have

d̂(τ) ≲ max
j

tr[P⊥j P̂j].

Remind that tr[P⊥j P̂j] = ∥P⊥j P̂j∥2F . From now on, let j ≡ argmaxj′tr[P⊥j′P̂j′].
The first inequality of the following expression,

∥P⊥j P̂j∥F ≤
√
Kj∥Σ̂χ,j −Σχ,j∥

λχKj
≤
√
Kj(∥Σ̂χ,j −Σy,j∥ + ∥Σy,j −Σχ,j∥)

λ
Kj
χ

=
√
Kj∥Σ̂sam

j −Σy,j∥
λχ

Kj

+O(1/N), (A.27)

follows the sin Θ theorem (Davis and Kahan, 1970). The theorem guarantees that ∥P⊥j P̂j∥F ≤
∥(Σ̂χ,j −Σχ,j)Pj∥F/∣λ̂Kj+1

χ,j − λKj

χ,j ∣. As the perturbation Σ̂χ,j is of the same rank as that of

Σχ,j , the denominator equals λ
Kj

χ,j . The numerator,

∥(Σ̂χ,j −Σχ,j)Pj∥F = (tr[Pj
′(Σ̂χ,j −Σχ,j)2Pj])

1/2

≤
√
Kj(λmax(Σ̂χ,j −Σχ,j)′(Σ̂χ,j −Σχ,j))

1/2

=
√
Kj∥Σ̂χ,j −Σχ,j∥.

By Assumption 1, λ
Kj

χ,j ≍ N . Then the last part of the line (A.27) follows as ∥Σy,j −Σχ,j∥ =
O(1)by Assumption 2. The first part of the line comes as ∥Σ̂χ,j−Σy,j∥ ≤ ∥Σ̂sam

y,j −Σy,j∥, which

isOp(N
√
(lnN)/Tj) by Assumptions 1,2 and 6 to 10. It gives d̂(τ) = Op((lnN)/Tj).

For any ϵ > 0,

Pr ( ln d̂N,T (τ) < δϵ ln ((lnN)/Tj)) > 1 − ϵ,

33



1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

for some δϵ > 0, for sufficiently largeN,T . As (lnN)/Tj = o(1) under Assumption 11, for

any δ > 0, δϵ ln ((lnN)/Tj) < δ(lnN)/Tj for sufficiently largeN,T . That is, for any ϵ > 0
and any δ > 0,

Pr ( ln d̂N,T (τ) < δ(lnN)/Tj)) > 1 − ϵ, (A.28)

for largeN,T . Observe that, for r ≥ 1, gj ≃ K0(1/Tj + 1/N) lnN for sufficiently largeN ,

which is larger than (lnN)/Tj . For this case, the argument for δ =Kj above is sufficient to

show that ln d̂N,T (τ) < gj asymptotically almost surely.

Recall that Tj ≥ κ̃jN r
for some κ̃j > 0, by Assumption 11 and Tj = κjT for some κj ∈ (0,1).

For r < 1, gj ≃ Kj[(r/Tj) lnN + (1/Tj) ln κ̃j +∆] for sufficiently large N , for ∆ > 0. In

the case κ̃ ≥ 1, the above boundedness (A.28) for δ = rKj guarantees that asymptotically

ln d̂N,T (τ) < gj almost surely. For κ̃ < 1, there exists large enoughN ∈ N such that 1/κ̃j < N r
.

That is, 1/κ̃j = N ϵ̃
for ϵ̃ = (ln(1/κ̃j))/ lnN < r. Take δ = (r − ϵ̃)Kj . Then again the

boundedness (A.28) guarantees that gj ≥ (δ/Tj) lnN is almost surely larger than ln d̂(τ) for

largeN,T . In other words, combining the arguments, for any ϵ > 0, there existNϵ and Tϵ ∈ N
such that

Pr ( ln d̂N,T (τ) < gj) > 1 − ϵ,

for all N ≥ Nϵ and T ≥ Tϵ. Moreover, since K0 = K1 = K without breakpoint, and as

{gj}j∈J and G(0) are decreasing functions in T , −gj′ < −G(0) as Tj′ < T , for any j′ ≠ j.

Hence, Pr ( ln d̂ − g0 − g1 < −G(0)) → 1 in largeN,T limit.

Proposition 2. Assume that there exists a single breakpoint at b∗ = τ∗T for some τ∗ ∈ (0,1)
in the entire time window I of length T . Let τ = argmaxτ∈(0,1)S(τ). Then Pr[τ∗ ≥ τ] → 1
in the largeN,T limit.

Proof. We will show that for any τ > τ∗, Pr[S(τ) < S(τ∗)] → 1 in large N,T limit. It

implies that the maximum point τ ≤ τ∗ asymptotically almost surely.

For some τ > τ∗, one supposed a window I0(τ) = [1, τT ]5 to follow one static factor model

while the true process has a break at τ∗T . In I0(τ), the process follows that

yt =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

P0f0,t + u0,t t ∈ I0,

P1f1,t + u1,t t ∈ I0(τ)/I0 ⊂ I1,
(A.29)

where the windows corresponding to the true regimes are denoted as Ij = Ij(τ∗). The

expression (A.29) takes the natural loading-signal specification (1.2) discussed in Section 1.2.1.

The true factor space basis P1 of regime 1 can be expressed as follows:

P1 = [P0 P0
⊥]
⎡⎢⎢⎢⎢⎣

H̃CO′

Ṽ SO′

⎤⎥⎥⎥⎥⎦
, (A.30)

5
Assume that the one knows the realization of the data is indexed by N, and expect τT ∈ N.
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for some H̃K0×K1 , diagonal matricesCK1×K1 and SK1×K1 , and Ṽ ≡ P ⊥′0 V for some column-

orthonormal matrix VN×K1 such that P0′V = 0. Then (A.29) can be represented as

yt = P (τ)f̃t + ũt = [P0 V ]
⎡⎢⎢⎢⎢⎣

f0,t1t∈I0 + H̃CO′f1,t1t∈I1

SO′f1,t1t∈I1 .

⎤⎥⎥⎥⎥⎦
+ ũt ∀t ∈ I0(τ), (A.31)

where ũt = u0,t1t∈I0 + u1,t1t∈I1 .

The wrongly included regime 1 common component (or ft,1 in current specification) becomes

a source of perturbation on the true regime-0 factor signal covariance E[f0,tf0,t
′] = Λχ,0. The

size of perturbation is proportional to α∥Λχ,1∥ where α = E[1t∈I0(τ)/I0]. As ∥E[ũtũt
′]∥ is

bounded as ∥Σu,j∥ bounded, for largeN , the perturbation is substantial enough to identify

the misspecified factor space P0(τ) = P0(τ)P0(τ)′ in population level. Then

tr[P0(τ)⊥P1] = 0, (A.32)

as P0(τ) spanned by the spaces P0 and V ≡ V V ′ (P0(τ) = P0⊕V) whose composition

generates P1 = P1(τ). In other words, the supposed next regime I1(τ) = [τT + 1, T ] shows

no new directional information compared to I0(τ).
In the sample level, similar as discussed in the proof of Proposition 1, d̂(τ) is composed of the

factor space estimation errors of I0(τ) and I1(τ) supposed by τ . The size of the overall errors

will be dominated by the errors in I0(τ), where the actual process contains mixed factor spaces.

The dominating error will be of orderOp(
√
(lnN)/(τ − τ∗)T ) and it is again dominated by

g0(τ), by a similar argument as in Proposition 1. Then ln d̂(τ) − g0(τ) < 0 and decreases to

negative infinity asymptotically almost surely as the errors converge to zero. Compared to this

side, lnd(τ∗)−g0 inS(τ∗ side converges to a fixed value lnd(τ∗) asymptotically. Furthermore,

for large N,T , −g1(τ) < −g1(τ∗) as K̂1(τ) = K1 = K̂1(τ∗) and T1(τ) < T1(= T1(τ∗)).
Hence Pr[S(τ) < S(τ∗)] → 1.

Corollary 3. Assume that there exists a breakpoint at b∗ = τ∗T for some τ∗ ∈ (0,1) in the

entire time window I of length T . Let τ = argmaxτ∈(0,1)S(τ). Then Pr[τ∗ ≥ τ] → 1 in large

N,T limit.

Proof. Let {τ∗j }j=1,...,J be J breakpoints separating regimes j = 0, . . . , J . In the largeN,T

limit, the penalty terms converge to zero, and mixed factor spaces are identifiable. Hence, it is

sufficient to compare the size of the true distances. Consider two windows I0 and I1(τ∗1 ), up

to and after the first breakpoint τ∗1 . The distance betweenP0 and the mixed factor space in

I1(τ∗1 ) is d(τ∗1 ) = tr[P⊥0 ⊕J
j=1Pj]. In comparison, consider τ ∈ (τ∗1 , τ∗2 ] and corresponding

windows I0(τ) and I1(τ) segregated by τ , for example. The distance between the mixed

factor spaces in I0(τ) and I1(τ) can be written as d(τ) = tr[P0(τ)⊥⊕J
j=2Pj], as there is no
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1 Estimating Points of Structural Correlation Instabilities with Latent Factor Models

additional directional information from the mixed factor space P0(τ) to P1 as in Proposition

2. Then d(τ∗1 ) > d(τ) for any τ ∈ (τ∗1 , τ∗2 ].
This applies to τ in any location. Let τ ∈ (τ∗j , τ∗j+1] for some j = 1, . . . , J . Then the distance

between the mixed factor space d(τ) presents the following inequalities:

d(τ) = tr[P0(τ)⊥
J

⊕
j=j+1
Pj] ≤ tr[P⊥0

J

⊕
j=j+1
Pj] < tr[P⊥0

J

⊕
j=1
Pj] = d(τ∗1 ).

The first inequality holds as the argument within the trace operator d(τ) extracts the compo-

nents of⊕J
j=j+1Pj orthogonal to all directional information of P0(τ), which is larger than

that of P0 in the second information. In other words, P0(τ)⊥ is a smaller space than P⊥0 . The

second inequality holds as the size of components orthogonal to P0 strictly increases as the

space to be projected becomes strictly enlarged. Unless the factor spaces {Pj}j=j+1,...,J are

complete recurrence of {Pj}j∈0,1,...,J (Assumption 12), the strict inequality holds. Therefore,

the maximum point gives S(τ) ≥ S(τ1∗) is almost surely equals to or precedes τ∗1 .
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2 Systemic Influence in

Structural Breaks: Granular

Time Series Detection

2.1 Introduction

Modern socio-economic systems experience crises of varying scales. The origins of crises can

differ. Some crises can be considered originating locally, such as the bankruptcy of Lehman

Brothers for the global financial crisis, and some crises can originate globally, such as the

COVID-19 pandemic. Regardless, the fluctuations from different individual entities of a

system have different implications for crisis development. In particular, idiosyncratic volatilities

of key entities – such as big firms or major financial institutions – are not diversified and

propagate throughout the entire system (Acemoglu, Carvalho, et al., 2012, Baqaee, 2018, Gaubert

and Itskhoki, 2021) by influencing the existing network of relationships (Acemoglu and Tahbaz-

Salehi, 2020, Taschereau-Dumouchel, 2019, Heipertz et al., 2019). The pioneering work of Gabaix,

2011 termed an economic system under the systemic influence of such entities as a granular
economy. We thus label these individuals granular units, and aim to detect them from a large

panel.

Understanding micro-originated volatility transmission is crucial in the context of systemic risk,

as it can trigger or amplify system-wide instabilities, potentially causing or deepening crises.

However, the true mechanism of the volatility transmission can be complex. Approaches to

fully model and analyze the true mechanism can often be time- or data-intensive, making them

suboptimal for timely crisis signaling. Hence, instead, our aim is to propose an early detection

framework for systemic risk that is agnostic to the likely unknown transmission mechanism,

and straightforward to implement.

We consider a panel with a large number of cross-sectional units for a single economic variable,

such as stock returns. In a system represented by panel data, without presuming the true

propagation mechanism, a change in the cross-correlation structure remains identifiable and

can empirically indicate ongoing volatility transmission from the individual (idiosyncratic) level

to the system level. Therefore, we focus on a large break in the system cross-correlation structure

and identify the individual units contributing most to this structural break as the systemic
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

risk components. In application to daily stock return data across historical economic crises,

our detection framework demonstrates the potential for real-time application by identifying

likely key actors – such as Lehman Brothers – from the early stages of each crisis.

This project makes three key contributions. First, it provides a novel, straightforward analysis

of the second-moment effects from the micro level to the system level. Implementation is also

straightforward, utilizing well-established methods of principal component analysis (PCA).

Second, our framework operates on a clear and conservative definition of systemic influence: a

micro-level effect is deemed systemic if it substantially contributes to system-wide instability

(structural breaks). This definition minimizes debates about whether certain individual units’

influences are truly system-wide. Finally, we establish a clear connection between a standard

latent factor model and a network model. From this perspective, our criterion of detection

identifies individuals who shape overall equilibrium actions through an underlying latent

network.

From a methodological standpoint, we model system covariance dynamics agnostically, em-

ploying a standard approximate latent factor model, a prominent workhorse in the field of

macroeconomics and finance (e.g., Ross, 1976, Chamberlain and Rothschild, 1983, Stock and M. W.

Watson, 2002b, Stock and M. W. Watson, 2002a, and Bernanke et al., 2005). In this model, the

cross-correlation structure is governed by a small number of latent common factor signals and

their loadings – the transmission rule of how the common factors are transmitted and affect

all cross-sectional units. While common factors are macro-level and detached from micro-level

characteristics, the transmission rule – encoded in the loadings – can still communicate with

the micro-level. Idiosyncratic fluctuations of important units can reshape the underlying

microstructure through which the common factors are transmitted to the entire units of the

system. Hence, we further specify system-wide instabilities of our focus as a large break in the

transmission rule. Granular units will be the main contributors to this structural break.

Our framework introduces a technical innovation to disentangle the dynamics of the transmis-

sion rule from those of the latent common factor signals – an inherently non-trivial task due

to their assumed latent nature. In technical terms, we represent the transmission rule by the

column space of the factor loading (the factor space in our terminology) whose dynamics are

straightforwardly identifiable by standard methods (PCA) and remain robust to the potential

dynamics of the latent common factor signals. While more abstract initially, this approach

facilitates a more straightforward second-moment-level analysis. Through this approach, the

contribution of each unit can be easily analyzed by the first-order effect of their idiosyncratic

second moments on the magnitude of the structural break. This results in a comprehensive

systemic influence measure that captures both the direct and indirect roles of each unit in

transmitting both idiosyncratic and common sources of fluctuations to the entire system.

There are two branches of studies related to the aim and the theme of this project. The first

branch primarily studies group identification via systemic influence in a stationary environ-

ment, e.g., Diebold and Yılmaz, 2014, Basu, Shojaie, et al., 2015, Parker and Sul, 2016, Barigozzi
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and Hallin, 2017, Barigozzi and Brownlees, 2019, Brownlees and Mesters, 2021, Guðmundsson and

Brownlees, 2021, Brownlees, Guðmundsson, et al., 2022. Departing from this literature, this

project focuses on a distribution-changing effect from the "individual" (idiosyncratic) dimen-

sion. The second branch of the studies connects group identity to potentially non-stationary

system-wide changes, e.g., Billio et al., 2012, Bianchi et al., 2019, Basu and Rao, 2021. Modeling and

methods for addressing non-stationarity can be complex in this branch of literature compared

to our proposed framework.

Our detection scheme is applicable when reliable breakpoint information is available, whether

acquired directly or estimated. We introduce a new structural breakpoint estimation method

developed in a separate project. In applications, our granular unit detection scheme effectively

identifies likely sources of well-known economic crises—such as the dot-com bubble and the

2007-2008 financial crisis—from their early stages, implementing our breakpoint estimation

method developed in the first chapter together. Our framework demonstrates the potential for

real-time applications. Points of system-wide instability often precede the major collapses, and

the identification of the granular units remains robust with limited post-break data points.

This paper is organized as follows. In Section 2.2, we recall the model of dynamic system covari-

ance introduced in Chapter 1, incorporating a generic connection to mechanisms of volatility

transmission. Our measure of systemic influence is introduced in Section 2.3, where we also

propose the detection criteria. Section 2.4 details the estimation strategy for constructing the

proposed influence measure, followed by implementation using simulated data. Applications

to daily stock return data, considering both known and unknown structural breakpoints, are

discussed in Section 2.5. Finally, Section 2.6 concludes with closing remarks.

2.2 Structural Breaks in a Systemwith Latent

Factors

Systemic influence can be understood as a factor behind large breaks in the system cross-

correlation structure. Types of idiosyncratic second moments – such as the idiosyncratic

volatilities, the cross-sectional or partial correlations – can represent the individual-originated

sources that contribute to a structural break in the system’s second moments. We aim for a

straightforward analysis of a second-moment to second-moment effect from individual units

to the system without specifying the factors of the system covariance. Such analysis is enabled

by employing the latent factor model as an intrinsic tool for modeling the structure of system

cross-correlations, as we suggest in this section. Additionally, we will discuss how a structural

break, captured by changes in the factor space, has a natural interpretation within the context

of a generic latent network model.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

2.2.1 Covariance Dynamics and Factor Space Changes

Consider a system ofN time series, yt = [y1t, . . . , yNt]′, of a single economic variable, y, of

interest, e.g., sales or stock returns. Assume that there is a single set of H important cross-

sectional units, referred to as the granular units. We aim to identify this set of granular units,

G. For simplicity, we can write yt = [y1∶H,t,yH+1∶N,t]′, where y1∶H,t refers to the values of yt

for the granular units (re-indexed as G = {1, . . . ,H} ⊂ N ), and yH+1∶N,t refers to the values

of the remaining, i.e., the non-granular units.

The system covariance evolves in discrete steps. There are two regimes before and after one

break, respectively: the present (regime 0) and the future (regime 1). Let I0 denote the time

window of the present regime, and I1 the time window of the future regime. We can now

formalize our benchmark model. The modeling shares the major part of the model in the first

chapter.

2.2.1.1 BenchmarkModel and Assumptions

For each j ∈ {0,1}, let yt be decomposed into common component χj,t and idiosyncratic

component ut, such that:

yt = χj,t + ut, where ut = [gt ϵt]′ for all t ∈ Ij. (2.1)

Here, gt denotes idiosyncratic components of the granular units, and ϵt denotes idiosyncratic

components of the non-granular units. Further, yt, χj,t and ut are all mean-zero objects,

specific to regime j. We impose the following assumptions:

Assumption 1. Σy,j = Σχ,j + Σu,j , where Σχ,j = PjΛχ,jPj
′

with Kj ≪ N non-zero

eigenvalues λχ,j,k = O(N) for Λχ,j = diag(λχ,j,k)k=1,...,Kj
, and Pj

′Pj = IKj
.

Assumption 2. There exists a constant qj ∈ [0,1] such that

cu,j ≡ max
i=1,...,N

∑
i′=1,...,N

∣cov(uit, ui′t)∣qj = O(1).

Assumption 3. ∥P0P0′Σu,0P
⊥
0 P

⊥
0
′∥F = o(1).

Assumption 4. Σy,1 = Σy,0 +Z , where ∥P0
′ZP0

⊥∥F = O(N).

The expression (2.1), supported by Assumptions 1 and 2, states that, in each regime, yt is

decomposed into two components: the common component with low dimensional large and

dominant variances and the idiosyncratic component with bounded variances. A system has a

factor structure if it has this decomposability.
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2.2 Structural Breaks in a System with Latent Factors

Assumptions 1 and 2 are standard conditions for the approximate factor model that guarantee

the decomposability. The idiosyncratic components can be correlated but in a bounded

fashion for any size of the cross-sectional dimensionN , as stated in Assumption 2. On the

other hand, the common components prevail no matter how large the system is, following

Assumption 1. Σχ,j = PjΛχ,jPj
′

is the spectral decomposition of the common component

covariance.
1

As captured by the unbounded non-zero eigenvalues of Σχ,j , the size of common

component covariance is not dissipating in largeN limit.
2

The major correlation structure of the system is captured by a small number,Kj , of important

directions {pk
j}k=1,...,Kj

, which load the non-dissipating eigenvalues. If we assume there are

Kj independent signals of strength {λχ,j,k}k=1,...,Kj
, these directions represent how those

signals are distributed to the entireN−dimensional cross-sectional units. When the signals

are unobservable, this directional information
3

is encapsulated by the factor space, as defined

below.

Factor Space. The factor space of regime j is the eigenspace of the common component

covariance Σχ,j inN− dimension, that is,

span(Pj) ≡ Col(Pj) = {
Kj

∑
k=1

rkpk
j ∣ rk ∈ R}. (2.2)

In the next subsection, we review how focusing on the factor space provides a straightforward

way to analyze factor loading dynamics, aligned with the standard specification of the common

component – χj,t = Bjft,j , where ft,j denotes common latent factor signals andBj represents

a static rule of loading the common signals onto the system.
4

Later, in Section 2.4, we will

explain the model estimation using this conventional loading-signal specification as well. For

now, we continue our discussion of the benchmark assumptions for model identification at

the population level, for which a description of the conventional specification is not strictly

necessary.

Under Assumptions 1 and 2 with a perturbation bound result (the sin θ theorem) of Davis

and Kahan, 1970, the eigenspace of theKj− leading eigenvalues of the system covariance Σy,j

is consistent with the factor space at the population level.

Assumption 3 guarantees that Σy,j is asymptotically block diagonal with respect to the factor

space basis. Assumption 4 hypothesizes that the regime-0 covariance experiences a substantial

1
Equivalently, it is the (thin) singular value decomposition of Σχ,j .

2
Although there is a natural explanation – Wang and Fan, 2017 equation (1.1) – the rate is assumed to be

linear in N mainly to simplify the later discussion. This can be easily generalized.

3
Such directional information can be interpreted in terms of network centrality. We will discuss this further

in a later part of the section.

4
The static representation can also allow for a latent dynamic factor signal process with a finite lag under

standard regularity conditions, see Forni et al., 2009.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

perturbation that is off-diagonal with respect to the previous basis [P0 P0
⊥]. Let Pj

⊥
denote

the column augmentation ofN −Kj basis vectors of the space span(Pj)⊥ = {v ∈ RN ∣ v′p =
0, ∀p ∈ span(Pj)}, the orthogonal complement of the factor space span(Pj). Then, up to an

errorE of order o(1) (note that ∥E∥max = maxi,i′ ∣Eii′ ∣ = o(1) by Assumption 3) for large

N , the regime-0 covariance can be written in terms of P0 as

Σy,0 ≃ [P0 P0
⊥]
⎡⎢⎢⎢⎢⎣

Λ1,0 0K0,N−K0

0N−K0,K0 Λ2,0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

P0
′

P ⊥0
′

⎤⎥⎥⎥⎥⎦
. (2.3)

Due to the assumed perturbation, a sizable perturbationP0
′ZP0

⊥
(andP0

⊥′ZP0) will be added

to the initially zero off-diagonal blocks in the expression (2.3). After such a perturbation,

the previous important directions (or a basis of the regime-0 factor space) P0 can no longer

explain the system’s major correlation structure. The new regime will thus admit a new set of

important directions represented by P1 such that

Σy,1 ≃ [P1 P1
⊥]
⎡⎢⎢⎢⎢⎣

Λ1,1 0K1,N−K1

0N−K1,K1 Λ2,1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

P1
′

P ⊥1
′

⎤⎥⎥⎥⎥⎦
, (2.4)

which implies that the factor space has changed from span(P0) to span(P1). As discussed in

the first chapter, the existence of the factor structure in both regimes (Assumptions 1 and 2)

also suggests the type of perturbation characterized in Assumption 4. We refer to Appendix

A.1.2.1 of the first chapter for full discussion.

2.2.1.2 Identifiable Changes in the Unobservable Factor Loadings

Focusing on the factor space (2.2) provides a straightforward way to disentangle a structural

change of the latent transmission rule (the factor loading) from that of the latent signals (the

factors) it carries to the entireN−dimensional system. In the conventional specification,

χj,t = Bjfj,t, (2.5)

the unobservable factor loading Bj and the signals fj,t can be identified up to invertible

linear transformations. In many studies, substantial breaks in the factor loading matrix have

been naturally interpreted as structural changes in the system, reflecting changes in how

common macroeconomic (systematic) factors transmit to the entire system.
5

However, as

both the factor signals and their loadings are unobservable, dynamics of the factor (signal)

5
For instance, breakpoints correspond to important economic events such as the 1979-1980 oil price shock

or the Great Moderation, e.g., in Stock and M. Watson, 2009, Chen et al., 2014, Ma and Su, 2018, and

Baltagi et al., 2021. Banerjee et al., 2008 and Yamamoto, 2016 have provided evidence that consideration of

such breaks is important in forecasting.
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2.2 Structural Breaks in a System with Latent Factors

covariance E[fj,tfj,t
′] cannot be distinguished from that of the transmission rule without

extra restrictions.

In our view, it is the directional information of the transmission rule – the way latent common

factors of unit signal strengths are loaded to the entire units of the system – and its dynamics

that can truly capture the underlying mechanism of volatility transmission. In other words,

the directional information represents the distributive characteristic of the transmission rule,

regardless of the size of the latent factor signals. While the nature of the common factor

factors – including their signal strengths or dynamics – is macro, systematic, or market-level,

detached from micro-level characteristics, the idiosyncratic volatilities of the granular units

may propagate by shifting this distributive characteristic of the transmission rule. In addition,

notably, the dynamics of this directional information of the factor loading can be disentangled

from the latent dynamics of the factor signals.

To clarify this, let us recall the representation. The natural way to capture this directional

information is to take a column-orthonormal representation of the factor loading matrix,

which corresponds to Pj in Assumption 1, up to orthonormal transformations to guarantee

invariance under the unobservability. In other words, due to the latent nature of the factor

signals, the directional information is represented by a (Kj−dimensional) subspace of the

entire N−dimension, the factor space (2.2). It guarantees the necessary invariance, for the

representation of which we take the projector Pj ≡ PjPj
′
. Indeed, any linear space can be

identified by the projector operator that projects any vector onto that space.

A change of the factor space is defined independently from changes in the factor covariance

structure. Note that a structural change in the factor covariance, while keeping the number of

factors constant, will occur in one of the following two types or as a combination of both. The

first type involves a change resulting from a different linear combination of the factors. This is

captured by the eigenvector changes of the factor covariance matrix, which corresponds to

an internal rotation within theKj−dimensional subspace. The factor model should remain

invariant under this type of change as long as the signals are assumed to be latent. The second

type is a change in the factor signal strengths captured by a change in eigenvalues of the factor

covariance. Both of the characteristics can be seen as structural changes in the factor signals

rather than a change in the transmission rule.

Neither the factor space nor its representation,Pj = PjPj
′

is affected by these types of changes.

Projectors remain invariant under the internal rotations – rotations within theKj dimensional

subspace – and the normalization separates out the factor signal strengths. However, the factor

space will be affected by a change in the number of factors, which is conceptually expected.

An introduction or removal of a factor necessitates an emergence or disappearance of specific

pathways of transmission. Hence, the dynamics of the identifiable directional information of

the factor loading matrix, as carried by the factor space, can be disentangled from those of the

factor signal covariance without requiring additional restrictions.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

2.2.2 Interpreting Structural Breaks: Factor space, Network

centrality, and Equilibrium

To provide a more tangible and interesting interpretation of the structural break that is captured

by the factor space change, let us make a slight digression to zoom in on a connection between

the standard factor model and a generic network model.
6

Consider a simple network model

where {yit} are cross-sectionally interconnected by Ω, net of idiosyncratic components during

t ∈ I0, such that

yit − uit = rt +∑
i′

Ωii′(yi′t − ui′t), or equivalently,

yt = (IN −Ω)−11rt + ut = brt + ut, (2.6)

where we assume the invertibility of (IN − Ω). The marginal benefits of exposure to r are

assumed to be αN×1 = 1. The general model with multiple common exposures {rk}k=1,...,K

with corresponding heterogeneous marginal returns {αk ≠ 1}k=1,...,K will be discussed soon.

This class of models can cover broad scenarios of interconnected economic activities. For

instance, yt can be investment returns balanced with a common return r – from a safe asset

investment or a final good demand depending on the context – where Ω can represent mutual

investments through a production network or borrower-lender relationships.

There are conceptual links among the factor model, network centrality, and equilibrium

actions. On the one hand, one can see in the simple case (2.6) of a single common exposure r

with homogeneous marginal returns,

b = (IN −Ω)−11, (2.7)

which equals the Bonacich centrality of the cross-sectional units in the constant network Ω
(Ballester et al., 2006). When the common source of exposure and the network structure Ω are

not observable, one can describe (2.6) by a one-dimensional factor model,

yt = B̃ft + ut,

where the factor loading B̃N×1 amounts to the centrality vector b, and the common factor ft

corresponds to the common source of exposure rt, up to a unknown scaling. From this point

of view, a change of the factor space will be incurred by a structurally substantial change of

the centrality, which is more than just a change in the scaling.

On the other hand, Bonacich centrality is a concept closely related to the equilibrium exposure

to r given the network structure and the marginal returns (Ballester et al., 2006, Galeotti et al.,

2020). With marginal benefits α = [αi]i=1,...,N potentially heterogeneous across i for the

6
Appendix B.2 provides an extended discussion.

44



2.3 Systemic Influence in Structural Breaks

single exposure r, the weighted Bonacich centrality b = [βi]i=1,...,N = (IN −Ω)−1α depicts

the equilibrium actions solving

maxUi(bi) =max [biαi − (1/2)b2
i + bi∑

i′
Ωii′bi′]. (2.8)

In line with this conceptual Bonacich-Nash linkage, the factor space change can be interpreted

as a change in equilibrium actions, and the granular units as the main contributors to the

change in the equilibrium. We discuss this perspective in more detail in Appendix B.2 for

general cases with multiple sources of common exposure {rk} and corresponding marginal

benefits αk
. In a nutshell, the generic model can be written as

yt = [(IN −Ω)−1α1∣⋯ ∣(IN −Ω)−1αK]rt + ut = Brt + ut, (2.9)

where each column of B consists of a weighted Bonacich centrality bk ≡ (IN − Ω)−1αk

capturing the equilibrium actions of exposure to rk. When Ω,{αk} and {rk} are latent and

K0(≤ K) signals of {rk} are strong, (2.9) will be described by the K0 dimensional factor

model yt = B̃N×K0ft + ut, and the factor space carries information of the latent centrality or

the equilibrium actions.

2.3 Systemic Influence in Structural Breaks

For the granular units, idiosyncratic disturbances they experience – whether through their

own volatilities or correlations with other units – can trigger a viable adjustment of existing

relationships, leading to a change in the major cross-correlation structure. Such adjustments

may take time and occur infrequently rather than gradually due to the necessary process

of learning, assessment, and implementation. As a result, these adjustments manifest as

structural breaks in our framework, identified as discrete changes in the factor space, while

remaining agnostic about the exact mechanisms driving them. The systemic importance of

the idiosyncratic disturbances of granular units becomes more apparent through these breaks.

Within a regime, such disturbances may initially appear sparse and weakly correlated, offering

little indication of their potential importance.

The second-moment-to-second-moment effect, from the idiosyncratic dimension to the sys-

tem, can identify the granular units. We propose a straightforward approach to analyze this

effect. First, we show that the idiosyncratic second moments and the concentration matrix

(the partial correlation network) factor the magnitude of the structural break. Subsequently,

the systemic influence of each unit can be evaluated by the first-order effect of its idiosyncratic

second moments on the magnitude of the structural break via a straightforward application

of matrix calculus. In addition, we discuss systemic importance analysis based on the partial
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

correlation network or concentration matrix, comparing it to our approach. Finally, the criteria

for detecting the granular unit will be proposed.

2.3.1 Bridging the Idiosyncratic Dimension and the Structural

Break

The magnitude of the structural break – captured by the change of the factor space – can be

measured using the following metric introduced in Chapter 1 (Section 1.3):

Projection metric (Edelman et al., 1998)

d(span(P0), span(P1)) ≡ tr[P⊥0P1]. (2.10)

It is a distance between two spaces span(P0) and span(P1). To be precise, in (2.10), we take

the square of the original projection metric as the distance measure. Recall that the spaces

are represented by a form of projectors Pj = PjPj
′
, free from any identification issues, as

the expressions PjPj
′

are invariant under any choice of the representation of the column or-

thonormal basis Pj . We use the terms factor space (span(Pj)) and its projector representation

Pj interchangeably.

The idiosyncratic dimension bridges into a change in the common ("systematic") dimension

through the measure (2.10). Under the benchmark model in Section 2.2.1.1, the following

proposition shows that for a given system with a large cross-sectional dimensionN , the size of

the break measured by (2.10) can be expressed as a composition involving the idiosyncratic

covariance. Once translated in this way, the contribution of the idiosyncratic second mo-

ments to the change in the system’s second moments, resulting in the structural break, can be

straightforwardly analyzed by applying matrix calculus.

Proposition 1. Under the benchmark model, for largeN ,

d(span(P0), span(P1)) = tr(Σu,0Σ−1
y,0P1Σ−1

y,0Σu,0) + o(1). (2.11)

The proof is in Appendix B.1. An intuitive argument is as follows. In a large N limit, the

approximate factor model is compatible with PCA representation. For the decomposition

Σy,0 = Σχ,0 +Σu,0, the factor space P0 is close to the first (in descending order of eigenval-

ues)K0− principal eigenspace of Σy,0. The orthogonal directions ofP0 mainly capture the

idiosyncratic covariance,

(IN − P0)Σy,0 ≃ Σu,0.
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Then,

(IN − P0)P1(IN − P0) = (IN − P0)Σy,0Σ−1
y,0P1Σ−1

y,0Σy,0(IN − P0)
≃ Σu,0Σ−1

y,0P1Σ−1
y,0Σu,0.

The expression (2.11) will be utilized to construct a measure of the systemic influence of cross-

sectional units in the next section. To simplify the exposition, in the rest of this section, let us
omit the present regime subscripts 0 (except for the case of the regime-0 factor space or its basis)

unless otherwise stated. That is, expressions such as Σ−1
y , Σu, or any subcollections of their

entries without subscripts will indicate regime-0 objects.

2.3.2 AMeasure of Systemic Influence

An individual unit’s systemic influence can be measured by the contribution of its idiosyncratic

second moments to the factor space change. The most straightforward way to capture this

contribution is through the first-order effect of Σu on the magnitude of the factor space change.

As the idiosyncratic covariance factors the size of the structural break as in (2.11), it is simply

the partial derivative of the expression (2.11) with respect to Σu,

∂Σud(span(P0), span(P1)) = 2Σ−1
y P1Σ−1

y Σu, (2.12)

that captures the contribution. This simple application is enabled by the characteristic of the

trace operator, the summation of the diagonal elements of the matrix products.

The adjusted factor spaceP1 is assumed to have no direct (first-order) effect from a hypothetical

perturbation on Σu. The idiosyncratic disturbances may demand the adjustment of the existing

relationships between some or all cross-sectional units. For example, adjustment of the network

structure Ω, following the conceptual connection from the latent network model in Section

2.2.2. However, the result of the adjustment – the new relationships Ω1 or the corresponding

new factor space P1 – may have a functional dependence on the parameters that enable the

adjustment, for example, the market or bargaining power, information superiority of certain

units or system-wide asymmetries of those, rather than on the idiosyncratic disturbances

that may demand an adjustment. A technical discussion for more general cases continues in

Appendix B.3.

To make a straightforward interpretation of (2.12), let us assume that all idiosyncratic compo-

nents are uncorrelated. As Σu is diagonal, it is only σ2
u,i that matters among the idiosyncratic
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second moments for given unit i. In this case, the share of unit i in the factor space adjustment

is captured by

Ii ≡
1
2∂σ2

u,i
d(span(P0), span(P1)) = [Σ−1

y P1Σ−1
y Σu]

ii
= [σy

i1 ⋯ σy
iN]P1

⎡⎢⎢⎢⎢⎢⎢⎣

σy
1i

⋮
σy

Ni

⎤⎥⎥⎥⎥⎥⎥⎦
σ2

u,i.

The contribution of unit i consists of three types of information. First, the size of the idiosyn-

cratic shock faced by unit i (σ2
u,i) in regime-0. Second, the importance of unit i in terms of

the structure of the partial correlation [Σ−1
y ]i = [(σy

in)n=1,...,N] in regime-0.
7

Finally, how

all other units connected to i through the partial correlation become important to explain

the major cross-correlation structure of the next regime (P1). Together, these three features

convey a full picture of the systemic influence of individuals.

In other words, Ii evaluates the distributive consequence (P1) of the idiosyncratic second

moments (σi
u = [σi1

u , . . . , σ
iN
u ]′, for general cases) through an interconnected structure (Σ−1

y ).

This approach provides a more comprehensive perspective on systemic influence compared

to methods that focus solely on the magnitude of the idiosyncratic volatilities or a network

structure.

For a general structure of the idiosyncratic covariance, we define the contribution of unit i as

a norm of the ith column of (2.12), that is:

Ii ≡
XXXXXXXXXXX

1
2
[∂Σud(span(P0), span(P1))]

i
XXXXXXXXXXX
= ∥Σ−1

y P1Σ−1
y σi

u∥, (2.13)

where σi
u = [σi1

u , . . . , σ
iN
u ]′ acts as the source triggering the structural break.

2.3.2.1 The ConcentrationMatrix Revisited

In a stationary environment, the concentration matrix alone can be utilized for the detection

of granular units. Brownlees and Mesters, 2021 showed that a column norm of the concentration

matrix Σ−1
y can provide a measure of systemic influence in a stationary environment under

a certain type of static factor model.
8

The concentration matrix is a popular object of study

in the literature, as it captures partial correlations among cross-sectional items of stationary

panel data.
9

The granular units identified through the concentration matrix can be seen as

the most central individuals in the stationary network of partial correlations. In contrast,

our proposed modeling assumes a non-stationary environment, where the underlying latent

7
In a stationary environment, the concentration matrix alone can be utilized for the detection of granular

units. We will soon discuss this point before the end of this subsection.

8
This expression does not have subscript because the discussion is independent of the existence of different

regimes.

9
A standard exposition can be found in Pourahmadi, 2013, Chapter 5.
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structure governing the cross-correlations is infrequently adjusting. This is as if the adjustment

was carried out after assessing a situation by learning during a stationary time window.

Such a "slow" adjustment scenario is more adapted to a high-frequency data environment.

In a low-frequency environment, one can assume that the data exhibits a certain static factor

structure that already represents the systemic influence. The observations can be made by

giving enough time to the system to absorb or get affected by the potential systemic influence.

It may not be the case in a high-frequency environment. It can be the case that the effect of

the influence is not realized in each high-frequency observation but is exhibited as a structural

change after some period. From our point of view, this latter behavior provides a chance to

distinguish a factor behind the perceived structure of correlations. Accordingly, the proposed

measure of influence not only involves the partial correlation structure of the current regime

but also considers the changed correlation structure of the next regime, realized through P1 or

P1.

The concentration matrix itself is a form of a partial change of the system covariance as well. By

the very nature of the symmetric operator inversion, the (i, i′)−th component of Σ−1
y equals

(Horn and Johnson, 2013, equation (0.8.2.7))

[Σ−1
y ]ii

′ = 1
det Σy

∂

∂σii′
y

det Σy =
∂

∂σii′
y

ln det Σy. (2.14)

It is the percentage partial change of the size of the dispersion of the system covariance measured

by det Σy = ∏N
i=1 λi

10
, due to a perturbation on σij

y , fixing all other entries of the covariance.

The i−th column norm of the concentration matrix corresponds to the sum of the partial

effects (2.14) due to i across overall i′, for example,

∥Σ−1
y ∥i =

¿
ÁÁÀ N

∑
i′=1
( ∂

∂σii′
y

ln det Σy)
2
.

In this sense, the column norm of the concentration matrix does capture a kind of importance

of each unit’s second moments to the system’s second moments. Assuming a factor structure,

however, there are several aspects it does not capture. First, if there are idiosyncratic shocks

that potentially communicate with the transmission rule of the common factors, their effects

can not be fully captured by the partial derivatives. All other {σjk
y } will change according

to the evolving transmission rule. By keeping them constant, the partial change (2.14) will

miss such an indirect channel that may provide a fuller picture of systemic influence in the

non-stationary environment on which we focus. Second, due to the nature of the determinant

(defined by the eigenvalue information), a measure based on (2.14) does not actively exploit

directional characteristics of the system covariance captured in eigenspaces, which may be

informative under a factor structure.

10det Σy captures the volume of the image of the system covariance as an operator.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

It is worth noting that the focus of current literature has been on the concentration matrix

of the residual covariance (Σ−1
u ) as well, to capture a conditional partial correlation structure

of a system (e.g., Dahlhaus, 2000, Eichler, 2012, Bianchi et al., 2019, and Barigozzi and Brownlees,

2019). It can represent a contemporaneous dependence conditional on the common factor

dimension. When the conditions are changing, for example, due to a regime change represented

by a change in the factor loading, a disparity between the conditional contemporaneous de-

pendence in different regimes can be important and informative, as mentioned, e.g., in Bianchi

et al., 2019 and Massacci, 2021. The way we perceive it is that such a change of condition will be

informative for recognizing a group of systemic individuals.

We will now establish criteria for granular unit detection utilizing the proposed influence

measure.

2.3.3 Criteria for Detecting Granular Units

We have discussed how systemic influence can be evaluated through the contributions of the

idiosyncratic second moments to changes of the factor space. Granular units are naturally

characterized as those that present the largest contributions. This provides the criterion for

membership in G, the set of granular units. What remains is to establish a criterion for the size

of G. To complete the detection criteria, we will utilize a comprehensive feature of the factor

space dynamics.

Recall that granular units are those capable of altering existing relationships in ways that induce

major changes in system correlations. The adjustment can be seen as changes of equilibrium

exposures to common sources or in network centrality, given a network representing the

existing relationships or the within-regime cross-sectional correlations, as discussed in Section

2.2.2.

When a granular unit adjusts, it induces a reconfiguration of the entire equilibrium actions

of all units. For multiple common sources of exposure, {rk}, the equilibrium actions (bk
N×1)

can be defined for each rk. If the equilibrium actions change forH distinct common sources,

we assume there areH granular units. Distinct granular units can be found responsible for

changes in equilibrium exposure to each distinct common source. In its latent counterpart –

involving the unobservable network, common sources, and potentially unit-specific marginal

returns on these sources – this assumption will be framed as a feature of the factor space

change, as follows.

Assumption 5. The number of granular units corresponds to the number of independent

directions of a change of the factor space. That is,

H = rank(P⊥0P1). (2.15)
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2.3 Systemic Influence in Structural Breaks

A geometric feature of the factor space dynamics illuminates this assumption. Under the

benchmark model introduced in Section 2.2.1.1, the dynamics are conceptualized as a form

of rotation of the regime-0 factor space to the regime-1 factor space.
11

If the factor spaces

have a fixed dimension 1, the dynamics will be represented solely by a vector P0, which, when

rotated in a certain direction (say V, the velocity) yields another vector P1 inN−dimensional

space. Similarly, the motion of a multi-dimensional subspace is described by a collection of

rotations of itsK−basis vectors, each rotating in a specific direction. The velocity also becomes

a multidimensional object, represented as a collection of the directions for change.

x1

x2

x3

P0

P1

V
Figure 2.1: A rotating 1−dimensional factor

space in N = 3 dimension. P0
(P1) represents a basis of the regime

0 factor space span(P0) (span(P1),
resp.).

(All vectors representing directional in-

formation (P0,P1, and V ) have their

lengths normalized to 1.)

Let us recall that, as in the argument inside the trace of (2.10), the change of the factor space is

measured by the component of P1 that is perpendicular to span(P0), or P0. The directional

information of this component equals exactly the velocity. The number of independent

directions of change, or the rank of V , is a crucial characteristic determining the factor space

dynamics, just as important as the overall magnitude of the change (2.10), which is employed

to construct the criterion for membership detection. We assume that the number of granular

units is equal to the number of directions constituting the velocity V . The factor space evolves

as if each important unit selects an independent direction of change.

The choice of this velocity is the true latent source of factor space dynamics, which remains

almost entirely model-free in our approach. Although we remain agnostic about the true

process behind the directional choice, the rank of V , or the rank of the change, can be deduced

as long as we have any factor space representations, P0 and P1.

2.3.3.1 Detection Criteria

We can now summarize the criteria for detecting the size (how many granular units there are)

and the membership (which the granular units are) of the set of granular units. The statement

of the criteria has been assigned a new subsection number for ease of future reference.

Number of Granular Units H = rank(P⊥0P1).

11
Refer to Appendix A.1.2.1 for a detailed discussion.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

Membership of the set of Granular Units The set G of granular units consists of

H cross-sectional units which present the highest column norms,

Ii ≡
XXXXXXXXXXX

1
2
[∂Σud(span(P0), span(P1))]

i
XXXXXXXXXXX
= ∥Σ−1

y P1Σ−1
y σi

u∥, (2.13)

where Σ−1
y is the regime-0 concentration matrix and σu

i = [σi1
u , . . . , σ

iN
u ]′ is the i−th column

of the regime-0 idiosyncratic covariance.

The sample analogue of (2.13) will be utilized in practice. In Appendix B.4, we provide a more

detailed explanation of the geometric aspects of the detection criteria.

2.4 Estimation

The proposed detection scheme exploits a structural break, characterized as a change of the

factor space. Although detecting the breakpoint is necessary in principle, the main focus of

our discussion, presented in the first section, is on the case where the breakpoints are known.

We also address the estimation of breakpoints in the second section. The systematic analysis

of cases involving unknown breakpoints will be explored in detail in a separate project.

2.4.1 Estimationwith a Known Breakpoint

Assume that we know one break point that separates two windows of the present and future

regimes, I0 and I1. The length of each regime is given as ∣Ij ∣ = κjT , for some constant

κj ∈ (0,1), for the entire time period T . The sample analogue of the proposed influence

measure,

Îi = ∥Σ̂−1
y,0P̂1P̂1

′Σ̂−1
y,0σ̂

i
u,0∥, (2.16)

consists of the i− th column σ̂i
u,0 of idiosyncratic covariance matrix Σ̂u,0, the concentration

matrix Σ̂−1
y,0 of the present regime, and the factor space in future P̂1P̂1

′
.
12

The dimensions of

the factor spaces in both windows also need to be estimated during the procedure. Consistent

estimations of these objects have been studied extensively. We mainly adopt the estimation

procedures proposed in Fan et al., 2013, which provide consistent estimations of the factor

space, the concentration matrix, and the idiosyncratic covariance simultaneously. Classical

studies Stock and M. W. Watson, 2002b, Bai and Ng, 2002 are also closely related. For a complete

exposition, we refer to the original papers.

Recall from the benchmark model in Section 2.2.1.1 that we have Tj data for regime-j, follow-

ing

yt,j = χj,t + ut,j, for t ∈ Ij, (2.1)

12
Recall that this is the projector representation of the factor space span(P̂1).
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where Σχ,j = PjΛχ,jPj
′

has all nonzeroKj eigenvalues diverging at the rateO(N) (Assump-

tion 1). For optimal access to the references mentioned above, we explain the estimation

procedures in accordance with the standard specification of the low-rank part χj,t,

χj,t = Bjft,j, for t ∈ Ij, (2.5)

whereBj denotes the factor loading matrix fixed within regime for givenN , and ft,j denotes

Kj factor signals. By augmenting the Tj data in columns, the data Yj of the given regime is

represented as anN by Tj matrix,

Yj = BjFj +Uj, (2.17)

where Fj is a Kj × Tj matrix of factors and Uj is an N × Tj matrix of idiosyncratic errors.

Under this specification, the benchmark model in Section 2.2.1.1 can be conditioned onBj to

absorb the linearly growing eigenvalues of Σχ,j , while var(ft,j) remains finite. The contents

of the following Assumptions 6 to 11 closely resemble Assumptions 1 to 4 of Fan et al., 2013,

Section 3.

Assumption 6. For each j ∈ {0,1}, Bj
′Bj/N → Dj as N → ∞ for some full Kj−rank

diagonal matrixDj .

Assumption 7. For each j ∈ {0,1}, (ft,j,ut,j) is stationary, E[ft,j] = E[ut,j] = 0, and

E[fktuit] = 0 for all i ∈ N and k = 1, . . . ,Kj .

There are additional distributional assumptions on ft and ut: exponential tail behaviors (As-

sumption 8), a strong mixing condition (Assumption 9), and appropriate moment conditions

(Assumption 10). For Assumption 9, denote the σ− fields

FL2
L1
≡ σ({(ft,ut) ∣ t ∈ [L1, L2]})

and let the mixing coefficient be

α(T ) ≡ sup
ℓ∈Z

sup
A∈Fℓ

−∞
,B∈F∞

ℓ+T

∣Pr(A ∩B) −Pr(A)Pr(B)∣. (2.18)

Assumption 8. There exist constants r1, r2, b1, b2 > 0 such that for all j ∈ {0,1}, for any

s > 0, i ∈ N and k = 1, . . . ,Kj ,

sup
t∈Ij

Pr(∣uit,j ∣ > s) ≤ exp{−s/b1}r1 ,

sup
t∈Ij

Pr(∣fkt,j ∣ > s) ≤ exp{−s/b2}r2 .
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

Assumption 9. There existCr > 0 and r3 > 0 such that 3r−1
1 +(3/2)r−1

2 +r−1
3 > 1, satisfying

α(T ) < exp(−CrT r3) for all T ∈ Z+.

Assumption 10. There existsC > 0 such that, for all j ∈ {0,1}, for any i ∈ N , s, t ∈ Ij ,

(a) ∥bi,j∥max < C , for the i−th row vector bi,j ofBj .

(b) E[(N−1/2{us,j
′ut,j −E[us,j

′ut,j]})
4] < C ,

(c) E[∥N−1/2B′jut,j∥4] < C .

Assumption 11. ln(N) = o(T γ/6) for γ−1 ≡ 3r−1
1 + (3/2)r−1

2 + r−1
3 + 1, and T = o(N2).

The assumption of strict stationarity in Fan et al., 2013 (Assumption 2(a)) can be relaxed. The

weak stationarity with uniform tail behaviors is sufficient to apply Berstein’s inequality in

Merlevède et al., 2011 (Theorem 1), by which the necessary results in Fan et al., 2013 are produced

to guarantee consistency. The strong mixing condition is on the entire time period combining

regimes. The rate of N and T is assumed to guarantee consistency, following the original

paper.

Under Assumptions 1-2 in Section 2.2.1.1 and Assumptions 6-11 above, first, the dimension

of the factor space in each regime can be consistently estimated following Bai and Ng, 2002. A

consistent estimate K̂j of the factor space dimension minimizes the following information

criteria

ICKj
= lnV (Kj) +Kjg(N,Tj), (2.19)

where V (Kj) = tr(UjUj
′)/NTj . The penalty function g(N,T ) for any given size (N,T )

of the cross-sectional and time dimensions needs to converge to zero slower than the rate

(min{N,T})−1
(Theorem 2, Bai and Ng, 2002). The same asymptotic property is required by

the given regularity conditions based on Fan et al., 2013. We employ the following functions

g(N,T ) = N + T
NT

ln [ NT
N + T ] or g(N,T ) = N + T

NT
ln[min{N,T}], (2.20)

introduced in Bai and Ng, 2002 and adopted in Fan et al., 2013.

Second, after the consistent estimation of the factor space dimension, the common compo-

nent χj,t is estimated by projecting Yj on the Kj−leading principal subspace of the sam-

ple covariance Σ̂sam

y,j = YjYj
′/Tj , or on that of the right Gram-matrix Σ̂N

y,j = Yj
′Yj/N .

For P̂j = [ê1
j ∣ . . . ∣ê

Kj

j ], orthonormalized Kj−leading eigenvectors {êk
j}k=1,...,Kj

of Σ̂sam

y,j ,

χ̂j = P̂jP̂j
′Yj by augmenting the time dimension of χ̂j,t column-wise. For the cross-sectional

dimension N > Tj , utilizing Kj−leading eigenvectors P̂Tj
of Tj × Tj matrix Yj

′Yj/N can

be computationally efficient (Stock and M. W. Watson, 2002b, Bai and Ng, 2002). In this case,
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2.4 Estimation

χ̂j = YjP̂Tj
P̂Tj

′
. Those are standard and identical methods under the presence of a small

number of unobservable factorsK ≪ N .

Third, the factor space information is fully captured by the eigenvectors P̂j = [ê1
j ∣ . . . ∣ê

Kj

j ]
of the sample covariance matrix. Note that the estimated common component covariance

is Σ̂χ,j = χ̂jχ̂j
′/T = P̂jΛ̂Kj

P̂j
′
, the spectral decomposition of the sample covariance up to

Kjth eigenvalue and the corresponding eigenspace, regardless of which method estimates

χ̂j in the second task. The leadingKj− principal subspace span(P̂j) of Σ̂sam

y,j deviates from

span(Pj) by op(1) mainly due to the following reasons: ∥Σ̂χ,j − Σχ,j∥ = op(N) (due to

Lemma 4 of Fan et al., 2013), the factor prevalence with the rateO(N) (Assumption 1 of 2.2.1.1

and Assumption 6), and because the common component covariance Σχ,j is estimated by

Σ̂χ,j of the same rank. We explain in detail the contributions of these terms in Appendix B.1.

Fourth, Fan et al., 2013 introduced a thresholding method (’POET’) to consistently estimate

the idiosyncratic covariance under the above set of conditions. The thresholding parameter

needs to be gauged with the sparsity parameter cu,j and qj of Σu,j to secure consistency. Recall

from Assumption 2 that cu,j ≡ maxi=1,...,N ∑i′=1,...,N ∣cov(uit,j, ui′t,j)∣qj = O(1) for some

constant qj ∈ [0,1]. The empirical correlation estimator of i, i′ ∈ N – the time average of the

product of i−th and i′−th residuals ûi,j and ûi′,j – will be adaptively thresholded proportional

to

ωT,j ≡ 1/
√
N +
√
(lnN)/Tj, (2.21)

where cu,jωT,j
1−qj = o(1). Under our simple benchmark assumption cu,j = O(1), it is

sufficient to have ωT,j = o(1) for consistency of the idiosyncratic covariance. Assumptions 9

and 11 assure this rate as γ < 1/2 and Tj is a fixed portion of the entire T .

Fifth, it is also proven in the same paper that the estimates of idiosyncratic covariance Σ̂u,j

and the common component covariance estimator Σ̂χ,j = Γ̂χ,jΓ̂χ,j
′

can be plugged into the

Sherman-Morrison-Woodbury formula

Σ̂−1
y,j ≡ Σ̂−1

u,j − Σ̂−1
u,jΓ̂χ,j(IK + Γ̂′χ,jΣ̂−1

u,jΓ̂χ,j)
−1Γ̂′χ,jΣ̂−1

u,j, (2.22)

where Γ̂χ,j = P̂jΛ̂1/2
Kj

, to give a consistent estimation of the concentration matrix of yt,j . The

rate ∥Σ̂−1
y,j −Σ−1

y,j∥ = ∥Σ̂u,j −Σu,j∥ = Op(cu,jωT,j
1−q).

Finally, the number of granular unitsH ≡ rank(W ) forW ≡ P ⊥0 P ⊥
′

0 P1P1
′

can be decided by

the number of nonzero eigenvalues of its sample analogue

Ŵ ≡ P̂ ⊥0 P̂ ⊥
′

0 P̂1P̂1.

Although numerous sophisticated methods can be applied, in applications, a check on the

eigenvalue gap through the scree plot of the matrix Ŵ will be the most uncomplicated yet

acceptable procedure.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

Ranking Consistency of the InfluenceMeasure

The proposed measure Ii ≡ ∥Σ−1
y,0P1P1

′Σ−1
y,0σ

i
u,0∥ is a norm of each column of

I ≡ Σ−1
y,0P1P1

′Σ−1
y,0Σu,0. (2.23)

The membership detection based on ranking {Ii}i∈N can be proven to be valid by showing

consistency of the ranking of {Îi}i∈N between the granular and the non-granular units. The

consistency can be proven in a similar way as in Brownlees and Mesters, 2021, exploiting the

consistency of I estimation.

Define event Υ, where the estimated influence measures are indeed higher for the granular

units than those for the non-granular units, that is,

Υ ≡ {∥Îg∥ > ∥Îi∥ ∣ g ∈ G, i ∈ Gc}. (2.24)

Proposition 2. Under the Assumptions 1-2 in Section2.2.1.1 and 6-11, event Υ holds asymp-

totically almost surely.

The proof is left to Appendix B.1.

2.4.2 Simulation

This section contains the simulation results for the granular unit detection. The simulation

for granular unit detection presents higher success rates in identifying true granular groups as

those with larger gaps in their systemic influence relative to non-granular units.

Consider a system of N = 100 cross-sectional units in two regimes (J = 2). Each regime

(j = 0,1) has Tj = 100 data, both withK = 3 dimension of the factor space. Assume that the

breakpoint at T1 = 100 is known.

The regime change amounts to a change of factor space span(P0) to span(P1). P0 is a ran-

domly chosen orthonormalN ×K matrix whose column space equals the regime-0 factor

space span(P0). We assume ft ∼ N(0K×1,Σχ = σ2
χIK) and loaded by P0 during the first

regime, and ut ∼ N(0N×1,Σu = σ2
uIN). It is further assumed that Σχ and Σu are fixed across

regimes, with σχ = 5 and σu =
√

2. That is, for any j ∈ {0,1},

yt = Pjft + ut for t ∈ Ij.

The regime-1 factor space basisP1 is chosen so that combined with Σ−1
y,0, the resulting span(P1)

implies a particular set G of three units as the set of granular units based on the measure

Ii ≡ ∥Σ−1
y,0P1P1

′Σ−1
y,0σ

i
u,0∥ in equation (2.13). We present 48 different sets G of granular units
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(and the corresponding choices of P1), while keeping the distance d(span(P0), span(P1)) ≡
tr[P⊥0P1] in (2.10) the same. Distinct choices of the P1 point in various directions and span

different three-dimensional subspaces within the entireN = 100 dimension. The different

factor space dynamics – and the corresponding groups G or span(P1) – present different in-

fluence gaps between the granular units and the non-granular units. The groups are numbered

by their rankings of the influence gap measured as the ratio of IH and IH+1 in descending

order.

Let us detail the construction of the sample granular groups. The collection is first randomly

chosen among the groups with the influence gap (≡ IH/IH+1) in the range (1.10,2.03) and

the average group influence ĪG ≡ (∑H
g=1 Ig)/H > 0.1. By the design of the influence measure,

some units can appear much more frequently in many different groups than other units. As

discussed in Section 2.3.2, the units that have a relatively high centrality in regime-0 based on

Σ−1
y,0 can appear as granular units in many different scenarios of factor space change; such as,

for example, the units (65,64,47) that are the top 3 of the highest column norms of Σ−1
y,0 by

2-norm. Besides, due to the homogeneous and diagonal Σu in our setup, those who have more

intense loads of the change P1P1
′

from P0P0
′

will also appear as granular units, for example,

the units (1,22,63).
The group collection has been adjusted to encompass more than half of all 100 units in the

group membership. The membership list of the 48 different groups is presented in Table 2.1

below.

Group Identities by IH/IH+1 ranking

1 [43 92 13] 13 [43 63 96] 25 [21 63 18] 37 [22 55 3]

2 [79 65 1] 14 [100 90 29] 26 [79 65 5] 38 [7 65 84]

3 [47 57 1] 15 [22 77 64] 27 [12 57 29] 39 [63 57 62]

4 [77 47 42] 16 [59 81 65] 28 [47 77 96] 40 [63 21 90]

5 [68 73 69] 17 [73 88 68] 29 [47 17 96] 41 [9 10 90]

6 [22 65 25] 18 [99 85 1] 30 [13 22 81] 42 [63 62 55]

7 [22 88 59] 19 [21 17 7] 31 [1 57 16] 43 [6 29 8]

8 [23 63 66] 20 [45 57 16] 32 [17 45 16] 44 [13 73 20]

9 [79 45 59] 21 [79 88 5] 33 [69 67 64] 45 [10 12 9]

10 [79 77 11] 22 [1 9 6] 34 [23 7 20] 46 [56 11 60]

11 [23 44 5] 23 [56 7 60] 35 [13 7 81] 47 [11 36 5]

12 [42 69 1] 24 [92 47 5] 36 [22 75 25] 48 [6 69 59]

Table 2.1: Sample collection of granular groups

The sample analogue Îi = ∥Σ̂−1
y,0P̂1P̂1

′Σ̂−1
y,0σ̂

i
u,0∥ is constructed following the estimation

methods discussed in Section 2.4.1. We repeat the processM = 500 times for each group G
and count the number of successful detection of the true membership of G. A detection is

considered successful only when it detects all three members correctly, while correct detection

of only some of the members of G is considered a failure. The random seeds for the draws of f
and u are the same across the different sets of true granular units.

Figure 2.2 presents the results of this simulation exercise.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

Figure 2.2: Success Rate of the Granular Unit Detection

(by the influence Gap, IH/IH+1)

The rate of successful detection overall presents the anticipated decreasing trend as the influence

of the granular units becomes less distinguished compared to non-granular units. In this trial,

if the least essential granular unit is still 40% more influential than the non-granular units, the

rate of successful detection of the granular units is higher than 72.2%.

The average group influence ĪG ≡ (∑H
g=1 Ig)/H does explain some fluctuations. For example,

groups [22 88 59] and [79 45 59] show the earliest drops in success rate while being in

ranking 7 and 9 by the influence gap (IH/IH+1), respectively. Those groups only come as the

ranking 29th and the 45th in terms of the average group influence. On the contrary, groups

[63 21 90] and [10 20 19] that show the latest peaks in ranking the 40th and the 45th by the

influence gap will come earlier as the 15th and the 26th by the ranking of the average group

influence (ĪG). A relatively strong systemic influence exerted collectively by the granular units

contributes to improved detection performance.

2.5 Applications

As long as there is reasonable information about a structural break, our method can be applied

to screen for potential key players governing the dynamics of the second-moment structure of

the system. We apply the proposed detection scheme for granular units from Section 2.3.3.1

and the breakpoint estimation method from the first chapter to a panel of the daily S&P 100

return (log price differences), utilizing the data shared in Barigozzi and Hallin, 2017.
13

The data

contains daily closing prices ofN = 90 constituents of S&P 100 index traded from the period

January 03, 2000 to September 30, 2013. We focus our analysis on the historical periods

of the dot-com bubble burst (2000-2001) and the global financial crisis (2007-2008). The

proposed granular detection scheme finds reasonable potential key actors from the early stages

13
The data can be retrieved at http://wileyonlinelibrary.com/journal/rss-datasets.
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of the crisis, featuring our own breakpoint estimation. The results will be discussed as well for

extended panels, which also include notable companies that were delisted during or shortly

after each crisis period. Especially for the period 2007-2008, the inclusion of the missing units

substantially affects the breakpoint and, hence, the result of the granular unit detection.

Two studies provide reference points for comparison regarding granular unit detections and

structural breakpoint dates. The primary objective of this exposition is to demonstrate the

robustness of our granular detection results across deviating breakpoint dates. For structural

breakpoints, we reference the common component breakpoint dates in Barigozzi, Cho, et

al., 2018 (’BCF2018’) to compare with our estimated breakpoint dates. BCF2018 studied

breakpoint estimation of the common and idiosyncratic components and applied the method

to daily S&P 100 return data (differences of the log daily closing prices) of N = 88 stocks

traded from January 04, 2000, to August 10, 2016. We assume that the result of the common

component breakpoints for the periods of interest (the years 2000 - 2001 and 2007 - 2008) in

BCF2018 are not affected by minor differences in the datasets due to the potential delisting of

constituents during the period from September 30, 2013, to August 10, 2016.
14

Breakpoints

estimated using our method utilizing the data Barigozzi and Hallin, 2017 show overall similarity

with the common component breakpoints reported in BCF2018.

For granular unit detection, the method of Brownlees and Mesters, 2021 will be the benchmark.

The comparison will focus on membership detection. Let us recall the granular unit detection

criteria in Section 2.3.3.1:

Detection of the set of Granular units (Section 2.3.3.1) The set Ĝ of granular

units consists of Ĥ = rank(P̂⊥0 P̂1) cross-sectional units with the highest column norms,

Îi = ∥Σ̂−1
y,0P̂1P̂1

′Σ̂−1
y,0σ̂

i
u,0∥.

The benchmark reference for membership detection (Brownlees and Mesters, 2021) is based

on the Ĥ−highest column norms ∥[Σ̂−1
y ]i]∥,15

, analyzed for both separate and combined

regimes. The construction of the measures Îi and ∥[Σ̂−1
y,j]i]∥ follows the procedure described

in Section 2.4.1. For breakpoints provided by Barigozzi, Cho, et al., 2018 or estimated using our

methods, the granular units detected through our proposed method are better interpreted as

the potential key sources within the historical context of each crisis.

14
From S&P 500 constituent list – the historical S&P 100 constituent list is licensed and was not available

– in CRSP data (through WRDS), we found only DELL was delisted among the 90 stocks of Barigozzi and

Hallin, 2017 during the period from September 30, 2013, to August 10, 2016.

15[Σ̂−1
y ]i denotes the i−th column of Σ̂−1

y .
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2.5.1 Dot-Com Bubble

Figure 2.3 below summarizes the results of the granular unit detection based on the proposed

criteria 2.3.3.1, applied to breakpoints obtained from our own estimations (indicated in blue)

and from BCF2018 (indicated in black).

(03 Jan.2000) 06 Mar.2000 02 Oct.2000 15 Dec.2000 27 Mar.2001

06 Mar.2000 11 May.2000 12 Oct.2000 26 Apr.2001

eBay
Apple

[Breakpoint 1]

Amazon
Qualcomm

[Breakpoint 2]

EMC

Qualcomm

Amazon

Apple, Capital One EMC,Amazon,Qualcomm

BPs from own methods

BPs from BCF2018

Figure 2.3: Granular Units in Dot-com bubble, based on Îi

Overall, the detected granular units based on the estimated influence measure Îi are major

players in e-commerce (eBay or Amazon) or big tech companies (Apple, Qualcomm, EMC),

which are the reasonable key contributors in the onset of the dot-com bubble burst. The

breakpoints of different resources mildly deviate; however, the detected granular units are

not very sensitive to such deviations. The identity of the detected granular units is also not

highly sensitive to the length of the post-break window. For instance, for the first breakpoint,

eBay remains the top granular unit even when the post-break window is reduced to 20 days or

shorter.

For comparison, Table 2.2 presents the results based on the concentration matrix for the

windows before and after breakpoints 1 and 2.

I0 ∶ Jan 3, 2000 - Mar 6 I1 ∶ Mar 7 - Oct 2, 2000 I2 ∶ Oct 3 - Dec 15, 2001

Simons Property Group ExxonMobil Simons Property Group

General Electric Chevron Citigroup

Table 2.2: Granular Units in Dot-com bubble, based on ∥[Σ̂−1
y,j]i]∥

The detected granular units span the financial, industrial, and energy sectors and do not exhibit

clear connections to the context of the dot-com bubble burst. When combining I0 and I1

(I0 ∪ I1) or I1 and I2 (I1 ∪ I2), the granular units identified include companies in the energy

sector, such as ExxonMobil, Chevron, and ConocoPhillips. For the windows before and after

the latest breakpoint (December 15), companies in similar sectors—industrial, finance, or

energy—were also identified, as shown in the earlier windows presented in Table 2.2.

For the period surrounding the dot-com crash, the breakpoints and detected granular units do

not change substantially when adding notable missing entities like Enron, Yahoo, WorldCom,
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or Global Crossing to the panel. The most significant change occurs at the first breakpoint

(March 6), which shifts 10 days earlier; however, eBay remains the top granular unit.

2.5.2 2007-2008 Financial Crisis

The proposed granular unit detection identified notable companies in the financial sector at the

given or estimated breakpoints. Our breakpoint estimation method detected a breakpoint in

September 2008, coinciding with the historical peak of the global financial crisis, which aligns

with the breakpoint found in BCF2018. The granular units at the September breakpoint are

nearly identical across both sets of dates. In addition, our own estimation points to an earlier

breakpoint in July 2008, which identified another set of notable financial institutions—Bank

of America, Wells Fargo, and AIG—as the granular units.

//

16 Apr.2008 08 Jul.2008 9 Sep.2008 10 Nov.2008

20 Jul.2007 13 Sep.2008 11 Dec.2008

Bank of America
Wells Fargo

AIG
[Breakpoint 1]

Morgan Stanley
AIG

Goldman Sachs
Simons Property Group

[Breakpoint 2]

Morgan Stanley,AIG

Citigroup,Goldman Sachs

Simons Property Group

BPs from own methods

BPs from BCF2018

Figure 2.4: Granular Units in 2008 Financial Crisis, based on Îi

The concentration matrix identifies companies in various sectors as granular units, as shown

below for the top three granular units (the year ’2008’ is omitted in the first row of Table

2.3). The sectors are distributed across the healthcare, utilities, consumer discretionary, and

energy for the separate windows. For the combined windows, companies in the industrial and

telecommunications sectors are also included.

I0 ∶ Apr 16 - Jul 7 I1 ∶ Jul 8 - Sep 8 I2 ∶ Sep 9 - Nov 10

Johnson & Johnson Allstate McDonald’s

Baxter Eli Lilly and Company The Walt Disney Company

Southern Company Johnson & Johnson Chevron

Table 2.3: Granular Units in the Global Financial Crisis, based on ∥[Σ̂−1
y,j]i]∥

Although the proposed granular unit detection captures relevant units in the context of the

financial crisis during this period, some notable companies are missing in the current analysis,

such as Lehman Brothers, Bear Stearns, Merrill Lynch, Washington Mutual, and General

Motors. We examine earlier periods – 2006 to early 2008 – preceding and including the onset

of the global financial crisis. The cross-sectional dimension is extended toN = 95 by including
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

the initially missing constituents. The following Figure 2.5 presents the result of the detected

breakpoints and the top granular units corresponding to each break from 2006 to early 2008.

Note that Bear Stearns was delisted after May 30, 2008.

27 Apr.2006 15 Feb.2008 28 Mar.2008

(2 Sep.2004) (30 May.2008)

Lehman Brothers Bear Stearns Washington Mutual

BPs from own methods

Figure 2.5: Top Granular Units from 2006 to early 2008, based on Îi

The breakpoints occurred in late April 2006, as well as in February and March 2008. Lehman

Brothers was the top granular unit at the breakpoint on April 27, 2006, during a period when

the housing market prices peaked and financial risk in the subprime mortgage market began

to escalate (Phillips and J. Yu, 2011, Albanesi et al., 2022). Bear Stearns was the top granular unit

at the breakpoint on February 15, a month before its collapse on March 16, 2008. Washington

Mutual, the parent company of the largest savings and loan association at the time, was the

top granular unit at the March 28, 2008 breakpoint. It had already been the second most

important granular unit next to Lehman Brothers at the April 27, 2006 breakpoint – years

ahead of its collapse in September 2008 alongside Lehman Brothers. The identity of the

granular units remains stable, even when the length of the post-break data is reduced or when

there are slight changes in breakpoint locations.

The membership detection is based on the collective feature of systemic influence, as discussed

in Section 2.3.2. The detected granular units do not necessarily exhibit the largest changes in

their idiosyncratic volatility or correlations with other units. For the dot-com bubble period,

nearly all of the detected granular units are far outside the Top 10 for idiosyncratic covariance

change before and after the considered breakpoints, based on the column norm. Only Apple

was within the Top 10, as it was ranked the 9th. In the case of the financial crisis, Bank of

America, AIG, and Morgan Stanley are outside the Top 10, and none of the detected granular

units are within the Top 3. The chosen granular units are not necessarily those that had the

highest loadings of the common factors after the break, either. For instance, after the break

during the dot-com crash, common factors loaded more heavily on Texas Instruments than on

Qualcomm. Similarly, during the financial crisis, companies in the Energy (e.g., NOV, APC,

OXY) or Materials (e.g., FCX) sectors had higher loadings than Goldman Sachs or Simons

Property Group.

Through this application, we found that the proposed criteria and influence measure effectively

capture reasonable potential sources of the known crises. Our method can be seen as providing

a fairly conservative measure of systemic influence. By identifying individual-level effects

during considerable system-wide breaks, our approach minimizes the debate about whether

the influence of certain individuals is truly system-wide. Furthermore, while the detection
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scheme is feasible after a break has occurred, the results show that the proposed method

provides timely information about probable risk components at the early stages of each crisis.

The detected instability points precede the major collapses of the crises, and the detected

granular units are not overly sensitive to the length of the post-break data window.

Note that the assumption of a stationary factor structure underlying the concentration matrix-

based measure becomes less plausible in a high-frequency data environment. A more ap-

propriate comparison could be made with detection methods that model the dynamics of

correlations, such as those described in Basu and Rao, 2021 using a network model. However,

our approach retains the advantage of simplicity compared to methods that involve the explicit

modeling of a dynamic network of correlations.

2.6 Concluding Remarks

In socio-economic systems, micro-originated volatility translations can drive system-wide

instabilities and further potential crises. We propose a novel detection scheme that directly

incorporates system-wide instabilities and the identification of their main contributors in a

panel. It is agnostic about the true volatility transmission mechanism yet provides a more

straightforward analysis of the second-moment to second-moment effect from the micro-level

to the system level compared to existing studies to the best of our knowledge. Our proposed

method is straightforward to implement, utilizing the well-established theory of factor models

and principal component analysis (PCA). Additionally, we provide insights into interpreting

the latent factor model as a network model. Applied to daily stock return data, our scheme

successfully identified plausible sources of well-known economic crises at relatively early stages,

demonstrating its potential for real-time application.

The proposed granular unit detection scheme can have extended applications. While this

paper interprets cross-sectional units as individual entities, such as firms or banks, in principle,

the units can represent any collection of time-varying variables. For example, by including

both real and financial variables, the detection scheme could identify which types of variables

contribute most to system-wide instabilities.

Another potential extension relates to the literature on granular instrumental variables (IV).

In Gabaix and Koijen, 2021, the optimal weighting of idiosyncratic shocks for constructing

granular IV is orthogonal to the factor loading. As discussed in Appendix B.4, these orthog-

onal directions in the factor loading represent the evolution of the factor space. A realized

structural break can reveal the actual weight of idiosyncratic shocks, which may provide a

clearer understanding of the true characteristics of granularity. While it is often natural to

consider large actors as the most significant based on their size, size alone may not fully capture

the fundamental characteristics driving their systemic importance. We plan to explore these

extensions in future research.
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Appendix to Chapter 2

B.1 Proofs

For a simple exposition, let us omit all the subscript ’0’ for the present regime.

Section 2.3

Proposition 1. Under the model assumptions, for largeN ,

d(span(P0), span(P1)) = tr(Σu,0Σ−1
y,0P1P1

′Σ−1
y,0Σu,0) + o(1). (2.11)

Proof.

d(span(P ), span(P1)) = tr(P⊥P⊥′P1P1
′P⊥P⊥

′) = tr(P⊥P⊥′ΣyΣ−1
y P1P1

′Σ−1
y ΣyP⊥P⊥

′)

As Σy = Σχ + Σu where the low dimensional component has orthogonal decomposition

Σχ = PΣfP ′,

tr(P⊥P⊥′ΣyΣ−1
y P1P1

′Σ−1
y ΣyP⊥P⊥

′) = tr(P⊥P⊥′ΣuΣ−1
y P1P1

′Σ−1
y ΣuP⊥P⊥

′)

= tr(ΣuΣ−1
y P1P1

′Σ−1
y ΣuP⊥P⊥

′)

by the cyclic invariance of the trace. As P⊥P⊥
′ = IN − PP ′,

d(span(P ), span(P1)) = tr(ΣuΣ−1
y P1P1

′Σ−1
y Σu)−tr(ΣuΣ−1

y P1P1
′Σ−1

y ΣuPP
′). (B.25)

The last term of (B.25) equals

tr(P1
′Σ−1

y ΣuPP
′ΣuΣ−1

y P1) = tr[Σ−1
y ΣuPP

′ΣuΣ−1
y ∣ span(P1)],

the partial trace confining the domain of the quadratic operation of Σ−1
y ΣuPP ′ΣuΣ−1

y to

v ∈ span(P1). That is, it is defined for any orthonormal basis {vk}k=1,...,K1 of span(P1),

tr[Σ−1
y ΣuPP

′ΣuΣ−1
y ∣ span(P1)] ≡

K1

∑
k=1

v′kΣ−1
y ΣuPP

′ΣuΣ−1
y vk.
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It is bounded by the whole trace, as tr(Σ−1
y ΣuPP ′ΣuΣ−1

y ) ≥ ∑K1
κ=1 λκ for the eigenvalues

{λκ} of Σ−1
y ΣuPP ′ΣuΣ−1

y in descending order
16

, and the summation of the firstK1 eigen-

values are the supremum of the partial trace confined to all possible subspaces V of dimension

K1 in the entireN dimension (Tao, 2023 Proposition 1.3.4):

K1

∑
κ=1

λκ = sup
V, dim(V )=K1

tr[Σ−1
y ΣuPP

′ΣuΣ−1
y ∣V ].

Now we focus on tr[Σ−1
y ΣuPP ′ΣuΣ−1

y ]. Let P̃ be a column-augmented orthonormal basis

of the principle subspace corresponding to the K largest eigenvalues of Σy. As the eigen-

vectors are invariant under the matrix inversion, Σ−1
y has the orthogonal spectral decom-

position with respect to P̃ , such that Σ−1
y = P̃ P̃ ′Σ−1

y P̃ P̃
′ + P̃⊥P̃⊥′Σ−1

y P̃⊥P̃⊥
′(= P̃ Λ̃1P̃ ′ +

P̃⊥Λ̃2P̃⊥′). Accordingly, tr[Σ−1
y ΣuPP ′ΣuΣ−1

y ]( =∶ 1 ) can be decomposed as follows:

1 = tr[Σ−1
y P̃ P̃

′ΣuP̃ P̃
′PP ′P̃ P̃ ′ΣuP̃ P̃

′Σ−1
y ] + 2tr[Σ−1

y P̃ P̃
′ΣuP̃⊥P̃⊥

′PP ′P̃ P̃ ′ΣuP̃ P̃
′Σ−1

y ]
+ 2tr[Σ−1

y P̃⊥P̃⊥
′ΣuP̃⊥P̃⊥

′PP ′P̃ P̃ ′ΣuP̃⊥P̃⊥
′Σ−1

y ] + tr[Σ−1
y P̃ P̃

′ΣuP̃⊥P̃⊥
′PP ′P̃⊥P̃⊥

′ΣuP̃ P̃
′Σ−1

y ]
+ tr[Σ−1

y P̃⊥P̃⊥
′ΣuP̃⊥P̃⊥

′PP ′P̃⊥P̃⊥
′ΣuP̃⊥P̃⊥

′Σ−1
y ] + tr[Σ−1

y P̃⊥P̃⊥
′ΣuP̃ P̃

′PP ′P̃ P̃ ′ΣuP̃⊥P̃⊥
′Σ−1

y ],

since any terms involving P̃ P̃ ′Σ−2
y P̃⊥P̃⊥

′
after a cyclic transformation of the argument of the

trace operation vanish as Σ−2
y shares the same basis of the spectral decomposition as Σ−1

y .

Let us number the six terms of 1 as 1 -1 to 1 -6. The following properties will be re-

peatedly employed to give a bound on each term, mainly jointly applied with the matrix

Cauchy-Schwarz inequality (stated below) on products of positive semidefinite matrices and

the trace cyclicity.

Properties 1.

(a) tr[P̃ ′Σ2
uP̃ ] ≤K∥Σ2

u∥ = O(1), by Assumption 2.

(b) tr[P̃ P̃ ′Σ−2
y P̃ P̃

′] ≤K∥Λ̃2
1∥ = o(1), by Assumption 1.

(c) ∥P̃⊥P̃⊥′PP ′∥2F = O(N−2) by The sinθ Theorem (Davis and Kahan, 1970) with As-

sumptions 1 and 2.

(d) ∥P̃⊥P̃⊥′ΣuP̃ P̃ ′∥2F = O(N−2), by Assumptions 1-3, and the above property (c).

Matrix Cauchy-Schwarz Inequality Let
∗

denote the Hermitian operator (the trans-

pose of the complex conjugation). For any complex (or real) matricesA,B of the same sizes, the

16λκ ≥ 0,∀κ = 1, . . . , N as the eigenvalues of a product of positive semidefinite matrices.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

trace operation tr(B∗A)(= tr(A∗B)) defines an inner product (the Frobenius inner product,
Horn and Johnson, 2013 (5.2.7))

⟨A,B⟩
F
≡ tr(B∗A)(= tr(B′A) for real matrices).

Hence, it equips an inner product on the space of complex (or real) matrices of the same sizes.

The Cauchy-Schwarz inequality ⟨A,B⟩2
F
≤ ⟨A,A⟩

F
⟨B,B⟩

F
is naturally inherited on this

inner product space. That is, for the case of the space of real matrices of the same sizes,

∣tr(A′B)∣ ≤ [tr(A′A)]1/2[tr(B′B)]1/2(= ∥A∥F ∥B∥F ). (B.26)

(it implies that the trace is submultiplicative on positive semidefinite matrices.)

A term-by-term inspection of 1 follows.

1 -1: tr[Σ−1
y P̃ P̃

′ΣuP̃ P̃ ′PP ′P̃ P̃ ′ΣuP̃ P̃ ′Σ−1
y ] = tr[ΣuP̃ P̃ ′PP ′P̃ P̃ ′ΣuP̃ P̃ ′Σ−2

y P̃ P̃
′]

due to the cyclicity. As the trace is submultiplicative on positive semidefinite matrices, it is

bounded as

tr[ΣuP̃ P̃
′PP ′P̃ P̃ ′ΣuP̃ P̃

′Σ−2
y P̃ P̃

′] ≤ tr[ΣuP̃ P̃
′PP ′P̃ P̃ ′Σu]tr[P̃ P̃ ′Σ−2

y P̃ P̃
′] = o(1),

since tr[ΣuP̃ P̃ ′PP ′P̃ P̃ ′Σu] = tr[P̃ ′Σ2
uP̃ ∣ span(P )] ≤ tr[P̃ ′Σ2

uP̃ ] = O(1) by (a), and

tr[P̃ P̃ ′Σ−2
y P̃ P̃

′] = o(1) by (b).

1 -2: tr[Σ−1
y P̃ P̃

′ΣuP̃⊥P̃⊥′PP ′P̃ P̃ ′ΣuP̃ P̃ ′Σ−1
y ] = tr[ΣuP̃⊥P̃⊥′PP ′P̃ P̃ ′ΣuP̃ P̃ ′Σ−2

y P̃ P̃
′]

due to the cyclicity. Let us denoteA ∶= ΣuP̃⊥P̃⊥′PP ′P̃ P̃ ′Σu. By the Cauchy-Schwarz (B.26),

tr[ΣuP̃⊥P̃⊥
′PP ′P̃ P̃ ′ΣuP̃ P̃

′Σ−2
y P̃ P̃

′] ≤ [tr(A′A)]1/2tr(P̃ P̃ ′Σ−2
y P̃ P̃

′). (B.27)

Let us observe that, by the cyclicity and the submultiplicativity of the trace,

tr(A′A) = tr(ΣuP̃ P̃
′PP ′P̃⊥P̃⊥

′Σ2
uP̃⊥P̃⊥

′PP ′P̃ P̃ ′Σu)
≤ tr[PP ′P̃⊥P̃⊥′Σ2

uP̃⊥P̃⊥
′PP ′]tr(P̃ P̃ ′Σ2

uP̃ P̃
′). (B.28)

The last component tr(P̃ P̃ ′Σ2
uP̃ P̃

′) = O(1) by (a). The other part,

tr[PP ′P̃⊥P̃⊥′Σ2
uP̃⊥P̃⊥

′PP ′] ≤ ∥PP ′P̃⊥P̃⊥′∥2F tr(Σ2
u) = O(N−1) = o(1), (B.29)
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since ∥PP ′P̃⊥P̃⊥′∥2F = O(N−2) by (c) and tr(Σ2
u) ≤ N∥Σ2

u∥ = O(N) by Assumption 2.

Hence tr(A′A) = o(1) in (B.28). As the last component in (B.27), tr(P̃ P̃ ′Σ−2
y P̃ P̃

′) = o(1)
by (b), 1 -2 (up to the factor 2) is bounded by o(1).

1 -3: By the cyclicity, the orthonormality P̃⊥′P̃⊥ = IN−K , and (B.26), 1 -3 is bounded (up

to the factor 2) such as

tr[Σ−1
y P̃⊥P̃⊥

′ΣuP̃⊥P̃⊥
′PP ′P̃ P̃ ′ΣuP̃⊥P̃⊥

′P̃⊥P̃⊥
′Σ−1

y ] ≤ [tr(B′B)]1/2tr(P̃⊥P̃⊥′Σ−2
y P̃⊥P̃⊥

′),
(B.30)

whereB ∶= ΣuP̃⊥P̃⊥′PP ′P̃ P̃ ′ΣuP̃⊥P̃⊥′. Then due to (B.29) above and (d),

tr(B′B) = tr[P̃⊥P̃⊥′ΣuP̃ P̃
′PP ′P̃⊥P̃⊥

′Σ2
uP̃⊥P̃⊥

′PP ′P̃ P̃ ′ΣuP̃⊥P̃⊥
′]

≤ tr[PP ′P̃⊥P̃⊥′Σ2
uP̃⊥P̃⊥

′PP ′]∥P̃ P̃ ′ΣuP̃⊥P̃⊥
′∥2F = O(N−3).

Alongside with tr(P̃⊥P̃⊥′Σ−2
y P̃⊥P̃⊥

′) ≤ (N −K)∥Σ−2
y ∥ = O(N −K), (B.30) gives an o(1)

bound.

1 -4: By the trace cyclicity and the submultiplicativity, (B.29), and (b),

tr[Σ−1
y P̃ P̃

′ΣuP̃⊥P̃⊥
′PP ′P̃⊥P̃⊥

′ΣuP̃ P̃
′Σ−1

y ] + tr[ΣuP̃⊥P̃⊥
′PP ′P̃⊥P̃⊥

′ΣuP̃ P̃
′Σ−2

y P̃ P̃
′]

≤ tr[ΣuP̃⊥P̃⊥
′PP ′P̃⊥P̃⊥

′Σu]tr[P̃ P̃ ′Σ−2
y P̃ P̃

′]
= tr[PP ′P̃⊥P̃⊥′Σ2

uP̃⊥P̃⊥
′PP ′]tr[P̃ P̃ ′Σ−2

y P̃ P̃
′] = o(1),

1 -5: By the trace cyclicity and the submultiplicativity and (c),

tr[Σ−1
y P̃⊥P̃⊥

′ΣuP̃⊥P̃⊥
′PP ′P̃⊥P̃⊥

′ΣuP̃⊥P̃⊥
′Σ−1

y ]
≤ tr[P̃⊥P̃⊥′PP ′P̃⊥P̃⊥′]tr[ΣuP̃⊥P̃⊥

′Σ−2
y P̃⊥P̃⊥

′Σu] = O(N−2)tr[ΣuP̃⊥P̃⊥
′Σ−2

y P̃⊥P̃⊥
′Σu].
(B.31)

Again by the cyclicity, tr[ΣuP̃⊥P̃⊥′Σ−2
y P̃⊥P̃⊥

′Σu] = tr[P̃⊥′Σ−2
y P̃⊥P̃⊥

′Σ2
uP̃⊥]

≤ tr[Σ−2
y P̃⊥P̃⊥

′Σ2
u ∣ span(P̃⊥)] ≤ tr[Σ−2

y P̃⊥P̃⊥
′Σ2

u] ≤ (N−K)∥Σ2
uΣ−2

y ∥ = O(N−K),which

completes an o(1) bound in (B.31).

1 -6: Due to the cyclicity, the submultiplicativity, and (d),

tr[Σ−1
y P̃⊥P̃⊥

′ΣuP̃ P̃
′PP ′P̃ P̃ ′ΣuP̃⊥P̃⊥

′Σ−1
y ] ≤ tr[P̃⊥P̃⊥′ΣuP̃ P̃

′PP ′P̃ P̃ ′ΣuP̃⊥P̃⊥
′]tr[Σ−2

y ]
= tr[P̃ P̃ ′ΣuP̃⊥P̃⊥

′ΣuP̃ P̃
′ ∣ span(P )]O(N) ≤ ∥P̃ P̃ ′ΣuP̃⊥P̃⊥

′∥2FO(N) = O(N−2)O(N) = o(1).
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Therefore, 1 ∶= tr[Σ−1
y ΣuPP ′ΣuΣ−1

y ] = o(1) and

d(span(P ), span(P1)) = tr(ΣuΣ−1
y P1P1

′Σ−1
y Σu) + o(1). (2.11)

Section 2.4.1

Standard procedures of Factor Loading Estimation

Let

Y = BF +U (2.17)

under Assumptions 1-2, 6-10 in Sections 2.2.1.1 and 2.4.1. The discussion is for any given, fixed

regime, omitting the regime index j. Standard
17

procedures of estimating factor loading are as

follows: First,B can be estimated by B̂ =
√
NP̂N , where P̂N is the column augmentation of

K− dominant orthonormal eigenvectors of the sample covariance matrix (1/T )Y Y ′. Second,

it can be estimated by B̃ = (1/
√
T )Y P̂T , for P̂T the column augmentation ofK− dominant

eigenvectors of (1/N)Y ′Y .

The columns of B̃ span the same space as theK− dominant eigenvectors of (1/T )Y Y ′: There

exists diagonal matrix ΣK
N of theK− largest eigenvalues of (1/N)Y ′Y such that the rankK

linear combination B̃((N/T )ΣK
N)−1/2

of the columns of B̃ gives

((N/T )ΣK
N)−1/2B̃′(1/T )Y Y ′B̃((N/T )ΣK

N)−1/2

= (N/T )(ΣK
N)−1/2P̂ ′T (1/N)(Y ′Y )(1/N)(Y ′Y )P̂T (ΣK

N)−1/2 = (N/T )ΣK
N = ΣK

T

which is the diagonal matrix ofK− largest eigenvalues of (1/T )Y Y ′. Hence, the resulting

(factor) spaces spanned by B̂ (or P̂N ) and B̃ are identical.

The Kj− Principal Subspace Consistency The leading Kj− principal subspace

span(P̂j) of Σ̂sam

y,j or Σ̂χ,j = Σ̂Kj

y,j , the spectral decomposition of Σ̂sam

y,j up to Kj , deviates

from span(Pj) by op(1), by Y. Yu et al., 2015:

Measured by the projector metric d(span(P̂j), span(Pj)) ≡ ∥P⊥j P̂j∥2F , where

∥P⊥j P̂j∥F ≲ ∥Σ̂χ,j −Σχ,j∥/λKj

χ,j ≤ (∥Σ̂χ,j −ΣKj

y,j∥ + ∥Σu,j∥)/λKj

χ,j = op(1), (B.32)

for ΣKj

y,j the spectral decomposition of Σy,j up toKj . The numerator comes by the triangle

inequality ∥Σ̂χ,j −Σχ,j∥ ≤ ∥Σ̂χ,j −ΣKj

y,j∥ + ∥Σ
Kj

y,j −Σχ,j∥. The latter is bounded by ∥Σu,j∥,
the source of the population level deviation. The denominator ∣λ̂Kj+1

χ,j − λKj

χ,j ∣ = λ
Kj

χ,j as Σ̂χ,j

17
Following in many classical studies such as Bai and Ng, 2002, Stock and M. W. Watson, 2002b.
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has the same rank as Σχ,j . As ∥Σ̂χ,j −ΣKj

y,j∥ ≲ ∥Σ̂sam

y,j −Σy,j∥ = op(N) (due to Lemma 4 of

Fan et al., 2013) and λ
Kj

χ,j = O(N), d(span(P̂j), span(Pj)) = op(1).

Proposition 2. Under the Assumptions 1-2 in Section 2.2.1.1 and 6-11 in Section 2.4.1, the

event

Υ ≡ {∥Îg∥ > ∥Îi∥ ∣ g ∈ G, i ∈ Gc} (2.24)

holds asymptotically almost surely.

Proof. We first prove the following claim for any matrix norm ∥ ⋅ ∥:

Claim: ∥Î − I∥ = op(1) for I ≡ ∥Σ−1
y P1P1

′Σ−1
y Σu∥ and Îi = ∥Σ̂−1

y P̂1P̂1
′Σ̂−1

y Σ̂u∥ follow-

ing the estimation procedure in Section 2.4.1 for ωT,j = o(1).
Proof of the Claim: Observe that, by simply adding and subtracting terms,

Î − I = (Σ̂−1
y −Σ−1

y )(P̂1P̂1
′ − P1P1

′)Σ̂−1
y (Σ̂u −Σu) + (Σ̂−1

y −Σ−1
y )(P̂1P̂1

′ − P1P1
′)Σ̂−1

y Σu

+ (Σ̂−1
y −Σ−1

y )P1P1
′Σ̂−1

y (Σ̂u −Σu) + (Σ̂−1
y −Σ−1

y )P1P1
′Σ̂−1

y Σu

+Σ−1
y (P̂1P̂1

′ − P1P1
′)Σ̂−1

y (Σ̂u −Σu) +Σ−1
y (P̂1P̂1

′ − P1P1
′)Σ̂−1

y Σu

+Σ−1
y P1P1

′Σ̂−1
y (Σ̂u −Σu) +Σ−1

y P1P1
′(Σ̂−1

y −Σ−1
y )Σu.

By the triangle inequality,

∥Î − I∥ ≤ ∥Σ̂−1
y −Σ−1

y ∥∥P̂1P̂1
′ − P1P1

′∥∥Σ−1
y ∥∥Σ̂u −Σu∥

+ ∥Σ̂−1
y −Σ−1

y ∥∥P̂1P̂1
′ − P1P1

′∥op(1)∥Σ̂u −Σu∥
+ ∥Σ̂−1

y −Σ−1
y ∥∥P̂1P̂1

′ − P1P1
′∥∥Σ−1

y ∥∥Σu∥ + ∥Σ̂−1
y −Σ−1

y ∥∥P̂1P̂1
′ − P1P1

′∥op(1)∥Σu∥
+ ∥Σ̂−1

y −Σ−1
y ∥∥P1P1

′∥∥Σ−1
y ∥∥Σ̂u −Σu∥ + ∥Σ̂−1

y −Σ−1
y ∥∥P1P1

′∥op(1)∥Σ̂u −Σu∥
+ ∥Σ̂−1

y −Σ−1
y ∥∥P1P1

′∥∥Σ−1
y ∥∥Σu∥ + ∥Σ̂−1

y −Σ−1
y ∥∥P1P1

′∥op(1)∥Σu∥
+ ∥Σ−1

y ∥2∥P̂1P̂1
′ − P1P1

′∥∥Σ̂u −Σu∥ + ∥Σ−1
y ∥∥P̂1P̂1

′ − P1P1
′∥op(1)∥Σ̂u −Σu∥

+ ∥Σ−1
y ∥2∥P̂1P̂1

′ − P1P1
′∥∥Σu∥ + ∥Σ−1

y ∥∥P̂1P̂1
′ − P1P1

′∥op(1)∥Σu∥
+ ∥Σ−1

y ∥2∥P1P1
′∥∥Σ̂u −Σu∥ + ∥Σ−1

y ∥∥P1P1
′∥op(1)∥Σ̂u −Σu∥

+ ∥Σ−1
y ∥∥P1P1

′∥∥Σ̂−1
y −Σ−1

y ∥∥Σu∥(≡X). (B.33)

The random variableX(=XN,T ) corresponding to the whole expression on the right side of

the inequality in (B.33) is op(1) as each term is a multiplication of op(1) andO(1) under the

benchmark assumptions and the estimation procedure in Section 2.4.1: First, ∥Σ̂−1
y −Σ−1

y ∥ =
∥Σ̂u − Σu∥ = op(1), as stochastically bounded as Op(cu,0ω

1−q0
T,0 ) for cu,0ω

1−q0
T,0 = o(1). Sec-

ond, ∥P̂1P̂1
′ − P1P1

′∥ ≤ ∥P̂1P̂1
′ − P̃1P̃ ′1∥ + ∥P̃1P̃ ′1 − P1P1

′∥ where P̃1P̃ ′1 the K1 principal

subspace of Σy,1. By the sin θ theorem of Davis and Kahan, 1970, ∥P̂1P̂1
′ − P̃1P̃ ′1∥ = op(1)

as ∥Σ̂χ,1 − ΣK1
y,1∥ = op(N), λK1

χ,1 = O(N) and Σ̂χ,1 is rank K1. By the same theorem,
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∥P̃1P̃ ′1 −P1P1
′∥ = o(1) as ∥Σu,1∥ is bounded by Assumption 2. It makes ∥P̂1P̂1

′ −P1P1
′∥ =

Op(1/N +
√

ln(N)/T1) again op(1) under the assumptions. ∥Σ−1
y ∥ and ∥Σu∥ are assumed to

beO(1) in the benchmark model, and the operator norm of a projector ∥P1P1
′∥ = 1. Hence,

X = Op((cu,0ω
1−q0
T,0 ) ∨ (1/N +

√
ln(N)/T1)) = op(1).

As Pr(XN,T < δ) ≤ Pr (∥Î − I∥ < δ) for any δ > 0, ∥Î − I∥ = op(1).

The remaining part of the proof of the main statement can proceed the same as the proof of

Corollary 1 in Brownlees and Mesters, 2021. First, for any i ∈ N , we know that ∣∥Îi∥ − ∥Ii∥∣ ≤
∥Î − I∥ = op(1). Second, the probability of the complement of the event Υ is

Pr(Υc) ≲ N max
g∈G,i∈Gc

max
ℓ=g,i

Pr (∣∥Îl∥ − ∥Il∥∣ > δgi),

where δgi ≡ (∥Ig∥ − ∥Ii∥)/2 > 0 for any g ∈ G and i ∈ Gc
(page 8 of the Web-Appendix of

Brownlees and Mesters, 2021). As ∣∥Îi∥ − ∥Ii∥∣ = op(1), for any ϵ = o(Nγ) for γ < −1,

Pr (∣∥Îl∥ − ∥Il∥∣ > δgi) < ϵ

for sufficiently largeN,T . Hence Pr(Υc) = o(1), that is, Pr(Υ) → 1 asN →∞.

B.2 ANetwork-based Interpretation of Latent

FactorModels

Let us consider a system ofN individual series yt = [y1t, . . . , yNt]′. During a time window

I0, the cross-sectional items are interconnected by a constant relationship Ω and experience

minor idiosyncratic fluctuations uit. The interconnections can arise due to mutual invest-

ments (including buyer-seller relationships) or borrower-lender relationships or implying an

indirect manifestation of holding similar investment portfolios. Assume, for simplicity, that

the interconnected performances are balanced with one common source of exposure, r. It can

be a final good demand or a common return from a safe investment. That is, for t ∈ I0,

yit − uit = rt +∑
j

Ωii′(yi′t − ui′t), or equivalently,

yt = (IN −Ω)−11rt + ut = brt + ut. (2.6)

Note that, in this example of a single common exposure,

b ≡ (IN −Ω)−11,
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B.2 A Network-based Interpretation of Latent Factor Models

which equals the Bonacich centrality of the cross-sectional items in the constant network Ω.

When the common source of exposure and the interconnected structure Ω are not observable,

one can describe (2.6) by a one-dimensional latent factor model,

yt = B̃ft + ut

where the factor loading B̃ amounts to the centrality vector b, up to unknown scalings.

The idiosyncratic errors {uit} can capture any individual unit-specific disturbances. For

example, for a panel of firms, such disturbances can be caused by a sudden reputation or

leadership change in a single or group of companies, which can be seen as a change in the value

of organizational capital. One can think of the Enron scandal during the dot-com bubble

in 2000 and the ownership change of Twitter(X) in 2022, all able to cause fluctuations in

sales or stock returns of certain units. Besides, as a given system ofN cross-section units rarely

includes all relevant economic agents in relation, any disruption of a relationship of i to an

entity outside of the system in consideration will be captured as an idiosyncratic error.

For the granular units, idiosyncratic disturbances can trigger a viable adjustment of the internal

relationships represented by Ω. For example, a bank or a firm can perceive idiosyncratic

volatilities of their own (or around) as a subjective risk factor of mutual investment. If they

make an assessment that the expected disturbances are above a certain level, they can try to

adjust their investment portfolio to absorb or mitigate the potential risk.
18

As granular units

adjust relationships around, Ω is altered, and naturally, all the coefficients of the centrality

vector b change, not trivially, such as a mere change of the scaling. It will be perceived as a

change of the one-dimensional factor space to another, say P1. The one-dimensional factor

model based on (2.6) has just provided insight into an observable characteristic of the granular

units while staying agnostic without specifying the exact mechanism for how the idiosyncratic

disturbances can bridge in the factor space adjustment.

The next regime centrality, say b1, or its counterpart B̃1 or P1 under unobservability, does

not necessarily have a direct functional dependence on the idiosyncratic second moments

that may trigger the adjustment. The actual adjustment of linkages, hence the coefficients

of b1 or P1 can depend on parameters indicating the capability of the adjustment – such

as market or bargaining power, or information superiority of some units, or system-wide

asymmetry of those – rather than the idiosyncratic second moments indicating the demand of

an adjustment.

In the most simplified example below, where we assume the common exposure variance is a

large constant compared to hypothetically homogeneous idiosyncratic variances, the suggested

influence measure detects an individual i to have a system-wide importance if it adjusts its

centrality the most.

18
In a financial network, it could be assumed to keep the leverage level the same as the perceived value at risk.

e.g., Mazzarisi et al., 2019.
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Example 1. Let yt = brt + ut, where cov(ut) = IN during I0. Assume that var(rt) =
σ2

r ≫ 1 is constant regardless of the regime. It gives Σy = σ2
rbb′ + I and Σ−1

y = IN −
σ2bb′/(1 + σ2

rb′b). Then the i−th column norm Ii = ∥Σ−1
y b1b1

′Σ−1
y σi

u∥ is the largest if

[bi,1 −
σ2

rb1
′b

1 + σ2
rb′b

bi]
2

is the largest. As b1
′b is a scalar common to all i, it implies that the one that changes its

centrality the most is the systemic individual. It aligns with our view that a centrality change

in any direction is a manifestation of network structure change, which is a result of strategic

decisions. In some sense, an adjustment could indicate one’s relative vulnerability. However,

in any case, it will be better considered as a potential risk component of a given system.
19

Now, let us consider general cases with multiple (K) sources of common exposure:

yit − uit = ∑
k

αikrk,t +∑
j

Ωij(yjt − ujt), or,

yt = (IN −Ω)−1Art +ut = [(IN −Ω)−1α1∣⋯ ∣(IN −Ω)−1αK]rt +ut = Brt +ut, (B.34)

where a nonnegative matrix of marginal benefitsANK = [αik], whose k−th column is αk
. As

Ω,A and rt are latent, and the {rk} are strong, it will be described by the K− dimensional

factor model yt = P ft + ut. Each column of B consists of a weighted Bonacich centrality

bk ≡ (IN −Ω)−1αk
(Ballester et al., 2006). It can be seen as an equilibrium action of exposure

to rk of a simple game (Ballester et al., 2006, Galeotti et al., 2020)

maxUk
i (bik) =max [bikαik − (1/2)b2

ik + bik∑
j

Ωijbjk] for allk

where the payoff from action is correlated to the others’ action through Ω, and marginal

benefits are given as αik.

For the point on our criteria of the number of granular units, if one tries to adjust their action,

it will affect all others’ equilibrium action as for each rk, the actions depend on others’ action.

Hence, we take the number of common sources whose equilibrium is adjusted as a conservative

measure of the number of systemic individuals. Note that the true number of the common

source can be larger than the number of latent factors or the dimension of the factor space, as

only a subset of {rk} gives strong enough signals. If there is a significant adjustment in the

19
The exact extension of this interpretation can be made only in restrictive scenarios in general cases with

multiple sources of exposures – we will discuss soon; for example, where the N agents are partitioned into K
different groups {Gk} by different common exposures, (αik = 1i∈Gk

) and the group does not change across

regimes. In this particular case, the systemic individuals are the ones with the largest centrality change in each

group. In general cases, we will have an interpretation in terms of weighted centrality or equilibrium actions of a

game of exposures. We will soon discuss this.
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equilibrium for a week {rk} can be seen as an advert of a new factor.

In the following simplified example, the influence measure gives individuals with the largest

changes in action as the granular units, with an additional consideration of how the exposures

for different sources are overall correlated.

Example 2. Let yt = Brt+ut, where cov(ut) = IN during I0. Let cov(rt) = σ2
rIK overall

time, for σ2
r ≫ 1. Then Σy = σ2

rBB
′ + IN and Σ−1

y = IN − σ2
rB(IK + σ2

rB
′B)−1B′. The

i−th column norm Ii = ∥Σ−1
y B1B1

′Σ−1
y σi

u∥ is the largest if

∑
k

[bk
i,1 − σ2

rbk
1
′
B(IK + σ2

rB
′B)−1bi]

2

is the largest. Further, letB′B = IK to simplify interpretation. The measure of the change of

individual’s action for k−th source of exposure has an extra consideration on how regime1

action of all bk
1 is correlated to regime 0 actions bκ

0 for all κ, captured by bk
1
′
B. That us, a

player i’s regime 1 action for each k−th exposure bk
i,1 is compared to its own action for all κ in

the regime 0 (bi) weighted by the overall similarity of actions across regimes. The change in

one’s action will be depreciated if actions across regimes overall correlate in the same direction

as the individual change. If the chosen action of i is co-moving with most of all others, the

resulting magnitude of change will get a penalty.

In general cases, the measure and interpretation of individuals’ importance are based on their

actions. It is the combination of an underlying network and marginal benefits on direct

exposures to {rk}. Those factors are jointly determining the correlation structure among

cross-sectional items. Our criterion of detection parallels to identify individuals changing the

most of their actions, net of the overall comovement of actions.

We close this discussion by presenting the following example, where the change of actions can

be visualized as a change in the underlying network.

Example 2.a Let N = 100 and K = 3. Assume ut ∼ N(0,2IN), and ft ∼ N(0,25IK)
for all t. We consider, for simplicity, a case whereN agents can be partitioned intoK groups

regarding the direct exposure to different source rk
. For instance, let theN byK matrixA of

the direct exposure coefficients be given as
20

A =
⎡⎢⎢⎢⎢⎢⎢⎣

0 0 120

130 0 0
0 150 0

⎤⎥⎥⎥⎥⎥⎥⎦
, (B.35)

20
Or it can be AOK for any orthogonal transformationOK
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where 1m denotes a length m column vector of ones. It is additionally assumed to be fixed

across regimes. Then the units of individuals (nodes) 3,22, and 55 are the most important in

the following change of underlying network structure, from left to right of Figure B.1:

(a) Ω (b) Ω1

Figure B.1

In this example, by fixingA in the form (B.35), the change in action bi coincides with changes

of importance in propagating the effect of its direct exposure(to some rk
) to all. The graphical

description of degree centrality can broadly capture the latter due to the setup of A. The

importance of node 22 is revealed by substantially gaining centrality. That of node 55 is the

opposite, by substantially losing centrality. Node 3 is counted as important as its centrality

spreads to a collection of nodes that were not connected previously.

B.3 ANote on the First Order Effect

It was the partial derivative of the expression

d(span(P0), span(P1)) ≃ tr[ΣuΣ−1
y P1Σ−1

y Σu] (2.11’)

that enabled the measure (2.13) in Section 2.3.2. Mechanically, what we analyze is the first-

order effect on the distance, which depends both on the initial state P0 and the new state P1.

When we considered the first-order effect of Σu on this expression, P1 was fixed as given as it

does not have a direct effect (the first order effect) from a perturbation of Σu. A perturbation

of Σu effectively implies a perturbation on the initial state of the system,P0. It is a hypothetical

perturbation on the decomposition structure of the regime-0 system covariance into the

common and idiosyncratic covariance, fixing the summation. The granular units have the

largest contributions through the state perturbation.

In general cases, the analysis based on the partial effect (2.12) can still provide a measure of

systemic influence by assuming the direction (sign) of the potential direct effect on the regime-1

factor space is the same as that of the initial state perturbation due to the perturbation on the
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granular units. Let us discuss this in detail for the cases where P1 has a direct dependence on

Σu. Due to the cyclic invariance of the trace operator, the partial derivative gives the first-order

effect of σi
u as

I̊i ≡
XXXXXXXXXXX

1
2
[∂Σud(span(P0), span(P1))]

i
XXXXXXXXXXX
= ∥Σ−1

y P1Σ−1
y σi

u +∆i∥, (B.36)

where

∆i ≡
N

∑
ℓ,m

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂[P1]ℓm

∂σi1
u

⋮
∂[P1]ℓm

∂σiN
u

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[Σ−1
y Σ2

uΣ−1
y ]mℓ

. (B.37)

The ∆ in (B.36) is infeasible to identify without a specific model of P1 with respect to Σu.

We assume that the second term ∆ is aligned with the first term in (B.36) for the granular

units and misaligned for the others. That is, the direction of the potential direct effect on the

regime-1 factor space is the same as that of the initial state perturbation due to σg
u.

Assumption D. Denote Ii ≡ ∥Σ−1
y P1Σ−1

y σi
u∥ for any i ∈ N . Let us assume the following:

a) sgn[Σ−1
y P1Σ−1

y σg
u]m = sgn(∆

g
m) for allm ∈ N for g ∈ G.

b) sgn[Σ−1
y P1Σ−1

y σi
u]m = −sgn(∆

i
m) for allm ∈ N for i ∉ G.

c) Ig > Im for all g ∈ G andm ∉ G.

Then I̊g ≥ Ig > Ii ≥ I̊i for any g ∈ G and i ∉ G, and we detect the granular units by ranking

{Ii}i∈N instead of {I̊i}i∈N .

B.4 A Geometrical Interpretation on the Detection

Criteria

The proposed scheme of detection based on the partial effect of σi
u in (2.13) can be explained

from a more geometrical point of view aligned with the discussion in Section 2.3.3 and

Appendix A.1.2.1. One can be interested in possible geometrical modeling supporting the

detection scheme, in addition to the interpretations already presented in Section 2.2.2, Section

2.3, and Appendix B.2.

Let us start by reviewing the geometrical features of the factor space change and the benchmark

criteria 2.3.3.1. As discussed mainly in Section 2.3.3 and Appendix A.1.2.1, the factor space dy-

namics can be seen as a rotation inN−dimensional space, which is determined by two types of

information: directions of change of the basis vectorsVN×H , and angles Θ = diag(θ1, . . . , θH)
capturing how far the basis vectors rotate to the chosen directions. For any h = 1, . . . ,H ,

θh ∈ [0, π/2] to describe identifiable rotations.
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2 Systemic Influence in Structural Breaks: Granular Time Series Detection

As the factor space is a multi-dimensional object, its change is also multi-dimensional by nature,

which requires several different types of information to represent it: the shape (which can be

captured by directional information V ), the dimension (H), and the magnitude (Θ). The

distance measure itself (2.10) gives a gross aggregation after taking the trace. It captures only

one type of information about the change – the overall magnitude – erasing any directional and

dimensional information. We can see this point with the help of the discussion in Appendix

A.1.2.1 as

d(span(P0), span(P1)) ≡ tr[P ⊥0 P ⊥
′

0 P1P1
′P ⊥0 P

⊥′
0 ] = tr(V sin2 ΘV ′) =

H

∑
h=1

sin2 θh (2.10’)

where sin Θ = diag(sin θ1,⋯, sin θH) is the realized principal angles θh between two sub-

spaces represented by P0P0
′

and P1P1
′
.

This is one of the reasons why we propose a detection scheme by modeling the argument inside
the trace operator defining the distance measure (2.10). By doing so, our detection criteria

2.3.3.1 utilize all three types of information representing the change of the factor space. It is

important to capture the full characteristics of the factor space change in our proceedings.

Especially, the directional information can provide a valuable factor to explain individual

shares in the magnitude of the factor space change.

To have a closer look at this point, first recall the discussion on the directional information

of the factor space change in Section 2.3.3. As in the paragraph above Assumption 5, what

matters to capture the change of the factor space is the component of P1P1
′

perpendicular to

P0P0
′
, whose directional information amounts to V . The V is, approximately in largeN , a

choice of a sizeH subcollection of the eigenvectors of Σ−1
y corresponding toN −K largest

eigenvalues – in other words, the smallestN −K eigenvalues of Σy.
21

Let V = P̃N×H by column-augmenting a chosen set of eigenvectors {p̃h}h=1,...,H of Σ−1
y ,

and denote Λ̃−1
y the diagonal matrix of the eigenvalues of Σ−1

y corresponding to the chosen

eigenvectors. Combined with the discussion in Appendix A.1.2.1, the proposed influence

measure (2.13) can be written as

Ii = ∥Σ−1
y P1P1

′Σ−1
y σi

u∥ = ∥Σ−1
y V DV

′Σ−1
y V

′σi
u∥ = ∥V Λ̃−1

y DΛ̃−1
y V

′σi
u∥( = ∥V D̃V ′σi

u∥)
(2.13’)

whereD ≡ sin2 Θ̃, for Θ̃ denoting the distance perturbed due to the first-order effect of Σu.

That is, the directional information plays a crucial role in explaining how the magnitude of the

factor space change sin2 Θ̃ is decomposed into the individual shares; Ii measures the length

of a weighted (by D̃ ≡ Λ̃−1
y DΛ̃−1

y ) projection of σi
u on the directions V represents. We can

clearly see that the membership detection employs two types of information: the directional

and the magnitude, based on the measure {Ii}. The dimensional information determines the

21
More precisely, the chosen V V ′ is a subspace of the N −K principal subspace of Σ−1

y .
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number of granular units. Hence, all three types of information are utilized for granular unit

detection in criteria 2.3.3.1.
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3 General Instabilities in

Networked Systems and Early

Warnings

3.1 Introduction

A system of interest is often intertwined. The interconnected structure captures a defining

characteristic of a system ofN agents or nodes in many different fields, including economics,

finance, and engineering. Various types of network models provide essential descriptions of

these linked structures within.

The configuration of interconnectedness can result from layers of different types of inter-

actions. The true characteristics of the most relevant network structure may not be readily

known. From this perspective, studies have been conducted to extract network structures from

data assumed to be defined on an unknown or unobservable network. The cross-correlation

structure of network-supported data can be exploited to estimate the underlying latent net-

work.

As the network structure captures the essence of a given system, instabilities in this structure

can indicate important structural changes. Early detection of such instabilities is crucial for

preparedness and resilience against potential crises, anomalies, or attacks. However, method-

ologically, capturing instabilities in latent structure is a non-trivial task. In the previous

chapters, we discussed how a popular method, latent factor models and PCA, can provide a

minimalist framework for this task, considering discrete and deterministic structural changes.

In this chapter, we further discuss the conceptual link between latent factor models and net-

work models, considering more general instabilities in the underlying interconnected structure.

More languages and tools to incorporate general instabilities will be explored, with the aim of

designing an early warning framework for large structural instabilities in latent networks.

The contribution of this chapter is to bridge diverse research domains. We design a new,

intuitive early warning framework that incorporates a broad range of instabilities, grounded

in the resulting integrated insights. First, we provide a conceptual link between two important

modeling schemes: network models and latent factor models, addressing a broad class of

instabilities. Second, our discussion also brings together classical approaches in factor analysis
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and distributional approaches to multi-dimensional geometric objects. This joint perspective

offers an intuitive interpretation of factor structure analysis and a popular sequential early

detection scheme based on cumulative sum methods.

This chapter consists of the following sections. In Section 3.2, we recall and summarize the

conceptual link between network models and factor models introduced in Chapter 2. Section

3.3 extends this interaction between network models and latent factor models to a general

class of instabilities in the networked structure. In Section 3.4, we bring together various ap-

proaches facilitating analysis of structural changes and design a new early warning framework

for large structural instabilities. Section 3.5 concludes.

3.2 Unobservable Networks and Latent Factor

Models

In this section, we recall the duality between unobservable network models and latent factor

models introduced in Chapter 2. The resulting model with a dual representation as a network

or a factor model will be called a network-factor model. This modeling can provide a means

to define and analyze structural breaks in a networked system, leveraging well-established

language and tools from factor models.

3.2.1 Static LatentNetwork−FactorModel

Consider a system of N individual series yt = [y1t, . . . , yNt]′. During a time window I0,

the cross-sectional units – the nodes of a network, representing different agents or different

variables – are interconnected by a constant relationship Ω and experience minor idiosyncratic

fluctuations uit. Interconnections can arise for various reasons. They can be due to mutual

investments (including buyer-seller relationships) or borrower-lender relationships, or may

imply an indirect manifestation of holding similar investment portfolios, or a shared ownership

structure. The true characteristics of the relationships can be unknown or unobservable.

Assume, for the moment and for simplicity, that the interconnected performances are balanced

with one common source of exposure, r. It can be a final good demand or a common return

from a safe investment, whose genuine characteristic can again be unknown or unobservable.

The marginal benefit from the exposure is simply assumed to be 1 for the simplest exposition.

For given Ω and r, the networked system can be written as follows, for t ∈ I0,

yit − uit = rt +∑
i′

Ωii′(yi′t − ui′t), or equivalently,

yt = (IN −Ω)−11rt + ut = brt + ut. (3.1)
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Note that, in this example of a single common exposure with homogeneous unit marginal

benefits,

b ≡ (IN −Ω)−11,

which equals the Bonacich centrality of the cross-sectional items in the constant network Ω.

When the common source of exposure and the interconnected structure Ω are not observable,

one can describe (3.1) by a one-dimensional latent factor model,

yt = B̃ft + ut

where the factor loading B̃ amounts to the centrality vector b, up to an unknown scaling.

For general cases with multiple (K) sources of common exposure, we can represent the system

as

yit − uit = ∑
k

αikrk,t +∑
j

Ωij(yjt − ujt), or,

yt = (IN −Ω)−1Art + ut = [(IN −Ω)−1α1∣⋯ ∣(IN −Ω)−1αK]rt + ut = Brt + ut, (3.2)

whereANK = [αik] is a non-negative matrix of marginal benefits whose k−th column is αk
.

Each column ofB consists of a weighted Bonacich centrality bk ≡ (IN −Ω)−1αk
(Ballester

et al., 2006). It can be seen as an equilibrium action of exposure to rk of a simple game (Ballester

et al., 2006, Galeotti et al., 2020)

maxUk
i (bik) =max [bikαik − (1/2)b2

ik + bik∑
j

Ωijbjk] for all k = 1, . . . ,K (3.3)

where the payoff from action is correlated to the others’ action through Ω, and marginal

benefits are given as αik.

As Ω,A and rt are latent, and the {rk} are strong, it can be described by theK− dimensional

factor model

yt = B̃ft + ut. (3.4)

3.2.2 ChangingNetworks and Structural Breaks in Latent

FactorModel

The underlying network and the resulting networked actions can change for various reasons.

For example, idiosyncratic disturbances experienced by important economic agents can trigger

a viable adjustment of the internal relationships represented by Ω. As a more detailed example,

a bank or firm can perceive the idiosyncratic volatilities of its own (or its adjacent entities)

as a subjective risk factor in mutual investment. If it assesses that the expected disturbances

exceed a certain level, it can attempt to adjust its investment portfolio to absorb or mitigate
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the potential risk.
1

As important nodes adjust neighboring relationships substantially, Ω is altered. Naturally,

all the centrality vectors (bk
, in model (3.2)) can change, which can be interpreted as major

changes in equilibrium actions, as presented in (3.3). We take such a substantial change

in centrality as a structural change in a networked system. Through the conceptual linkage

introduced in the previous section, (3.1) to (3.3), such a change will be captured by large breaks

in factor loading. Moreover, even if the characteristics of the underlying network is unknown

or unobservable, such a structural change can still be captured by instabilities in factor space,

in the language of the latent factor model. It is the column space of the factor loading, which

can capture instabilities in factor loading while being free from inherent identification issues

of latent factor models. We refer to the previous chapters for a full explanation.

The previous chapters mainly consider discrete changes in factor space, which can serve as a

benchmark. We have also briefly discussed that the discrete change model in Chapter 1 can

be extended to allow broader scenarios of small perturbations within one regime. However,

the coverage of a discrete change type model is still restrictive in interpreting instabilities in

networked systems. In the next section, we extend the duality between network and factor

models, to account for more general types of instabilities.

3.3 LatentNetwork-FactorModel with

Instabilities

Recall the simple 1-dimensional model with a general marginal benefit vector α,

yt = (IN −Ω)−1αrt + ut = brt + ut. (3.5)

The (weighted) Bonacich centrality bi = [(IN − Ω)−1α]i of unit i is determined by the

networked marginal benefits through the Leontieff inverse as follows:

[(IN −Ω)−1α]i = ∑
j∈N
∑

ℓ

πi←j,ℓαj.

Here, πi←j,ℓ represents the sum of all paths of length ℓ from unit j to unit i, such that

πi←j,ℓ ≡ ∑
(j1,...,jℓ−1)

Ωij1Ωj1j2⋯Ωjℓ−1j, (3.6)

1
In a financial network, it could be assumed to keep the leverage level the same as the perceived value at risk,

e.g., Mazzarisi et al., 2019.
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where the summation runs over all collections of nodes that constitute a path of length ℓ

from j to i. This implies that the propagation of the source of common exposure (rt) in (3.5)

follows

yit = ∑
j∈N
∑

ℓ

πi←j,ℓαjrt + ϵit.

In the above expression, the propagation through any path of length ℓ is instantaneous, and

the underlying network structure is fixed during the transmission. This can be seen as a con-

sequence of having an equilibrium given a fixed network. However, it can be a restrictive

scenario to expect to be realized, especially in high-frequency observations. In this section, we

first introduce an extended network-factor model that incorporates general changes in inter-

connectedness and review existing approaches that address structural changes in a networked

system.

3.3.1 FactorModel Representation of ChangingNetworks

Let yit be a realized performance of an economic activity at time t for unit i considered

previously. A (net) return of the economic activity (e.g., investment) is intertwined with all

others’ returns in a lagged manner:

yit − ϵit = ∑
k

αikxkt +∑
j

LΩij,tL(yjt − ϵjt), (3.7)

whereLΩij,t ≡ Ωij[t, t− 1], broadening the concept of a lag operator, indicates a relation of i

and j during the window t − 1 and t. Here, xt = [xkt]k=1,...,K represents common sources

of exposure. A = [αik]i∈N ,k=1,...,K captures individuals’ marginal benefits to the common

exposure. The expression (3.7) can be written in a matrix form as

yt = (IN −LΩtL)−1Axt + ϵt = Bt(L)xt + ϵt. (3.8)

Parallel to the Leontief inverse, (IN − LΩtL)−1
captures the (infinite) summation of all

time-affected paths from j to i of any length. That is,

yit = ∑
j∈N
∑

ℓ

πt,i←j,ℓL
ℓ(ajxt) + ϵit

whereN is the set of individuals and aj is the j-th row ofA. Here πt,i←j,ℓ denotes the sum of

all paths of length ℓ from j to i lasting until time t from time t − ℓ,

πt,i←j,ℓ ≡ ∑
(j1,...,jℓ−1)

(Ωij1Ωj1j2⋯Ωjℓ−1j)[t, t − ℓ],

where the summation runs over all collections of nodes that constitute the existing paths

of length ℓ from j to i. The time-specific references within the parentheses are omitted for
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3.3 Latent Network-Factor Model with Instabilities

simplicity. That is, the path components are allowed to be time-specific; Ωjh−1jh
= Ωjh−1jh

[t−
(h − 1), t − h], Ωij1 = Ωij1[t, t − 1] and Ωjℓ−1j = Ωjℓ−1j[t − (ℓ − 1), t − ℓ].
If only those {agxt} of a certain set of individual units g ∈ G, for ∣G∣ < ∞ are important to

the transmission,

yit = ∑
g∈G
∑

ℓ

πt,i←g,ℓL
ℓ(agxt) + ϵit for all i ∈ N (3.9)

assuming that∑∞ℓ=1 πt,i←g,ℓLℓ
exists for every pair (i, g) ∈ N × G. We simply consider cases

where there is no path lasting more than a few lags. More precisely, it is only up to the maximum

lagM that matters, regardless of t. Assume further that {aj} are constant, and denote,

πa
t,i←j,ℓ ≡ ∑

(j1,...,jℓ−1)
(Ωij1Ωj1j2⋯Ωjℓ−1j)aj.

The transmission will be effectively represented as

yt = Πt(L)xt + ϵt, (3.10)

where Πt(L) is anN ×K matrix of lag polynomials generated by πa
t,i←j,ℓ. It corresponds to

the description of dynamic factor models of observable or latent versions depending on the

observability of xt. The latent version can have a reduced representation by assuming all lags

of xt are strong factors as follows:

yt = Πtft + ϵt (= χt + ϵt), (3.11)

where Πt is N × KM factor loading matrix consisting of the coefficients πa
t,i←j,ℓ of ma-

trix polynomial in (3.10). It captures the pathways of transmittingKM number of factors

ft ≡ [Lℓ(xt)]ℓ=1,...,M . This aspect of reduced representations is discussed in the dynamic

factor models literature, such as Forni et al., 2009. A factor model can similarly represent the

cases with time-varying marginal benefits by taking [agxt]g∈G or their lags as the factors.
2

We take the reduced representation (3.11) as the benchmark in further discussion. The transmis-

sion rule Πt is changing as the paths or the path component edges Ωij can adjust throughout

time.

Once a networked system is mapped into a factor model, such as in (3.4) or (3.11), well-

established methods in the factor model literature can be used to analyze its structural instabili-

ties. In the next subsection, we briefly discuss existing approaches to analyzing factor structure

instabilities. The focus is on the instabilities in the factor loading Πt or its column space (the

2
See Appendix C.1.
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factor space) that captures changes in the transmission rule due to perturbations of a latent

network structure.

3.3.2 Instabilities in Factor Structure: Discrete vs.

Continuous

As discussed in the previous chapters, the latent factor model is essentially a modeling of

the system covariance matrix. The decomposition of the common component (χt) and the

idiosyncratic component (ϵt),

yt = χt + ϵt,

is guaranteed by conditioning on the system covariance:

Σy = Σχ +Σu. (3.12)

We call the properties of the system covariance that guarantee such additive decomposition

as factor structure. Instabilities in a factor structure and instabilities in a factor model are

interchangeable expressions.

There have been numerous studies on structural instabilities in factor models. Large breaks

in factor structure, especially in the factor loading, have been analyzed and interpreted in

relation to structural changes or crises in economic or financial systems. Instabilities in latent

factor structures correspond to changes in cross-correlation structures, as discussed in the

previous chapters. Cross-correlations have been used to identify latent interconnectedness

by containing rich information about the underlying linkages among variables or channels

of spillovers among the cross-sectional units. Instabilities in the correlation structure have

been widely studied using various methods, including factor models, which naturally imply

changes in the underlying network.

In those streams of research on structural instabilities, structural changes are primarily con-

sidered to occur either at discrete points in time or gradually in a continuous manner. The

majority of approaches take the former stance, differing in their considerations of deterministic

or random locations of breakpoints. The previous two chapters considered discrete, determin-

istic change points. Although it is most popular to assume a static factor model within one

regime, when the method focuses on factor space changes — changes in the column space of

the factor loading matrix — it can accommodate perturbations of the factor loading matrix

itself. It can also allow for certain types of non-stationarity in factor signals and idiosyncratic

components within a single regime. This is mainly because small perturbations do not affect

the factor structure decomposition or factor space. We discuss in detail in the next section.

Among the methods for analyzing discrete, probabilistic changes, Markov-switching-type

models are one of the most popular approaches. In the most popular forms of modeling, the
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number of different regimes is assumed to be small and fixed. In this literature, regimes often

represent recurring macroeconomic regimes defined by aggregate economic activities or mon-

etary policy, or financial regimes, such as bull or bear markets, depending on the applications.

The modeling can be extended to cover an infinite number of regimes as well.

The approaches for continuous changes often operate within a major framework of local

stationarity. For example, one can assume that the potential network adjustments occur slowly

and gradually in the model discussed in the previous subsection. Then it leads the model to

be locally stationary. Following Dahlhaus, 2012, we express the (3.10) in terms of a local time

variable u ≡ t/T for T as the size of the whole time domain:

yu = Πu(L)xu + ϵu, (3.10)

where L should be interpreted as the infinitesimal time translation operator at the local time

point u as T →∞.

The discrete or continuous types of changes can be two extremes, but pragmatic models of

instabilities. Discrete changes can be restrictive scenarios. However, this class of scenarios

provides the simplest description of structural breaks, leading to straightforward analysis and

interpretation of "breakpoints" in time. Continuous types of changes can be more illustrative

of a system’s dynamics. However, the concept of breaks or large changes becomes less straight-

forward, alongside the methods of analysis.

Our aim is to design models and methods that incorporate general instabilities in the factor

structure to provide early warnings of structural changes in a system. For the most straightfor-

ward construction and interpretation of such methods, we focus on deterministic or random

breaks at discrete time points. In the next section, we explore new directions and perspectives

in relation to existing methods of early detection and factor structure analysis.

3.4 EarlyWarnings of Structural Changes in a

Networked System

When broader types of changes are allowed in the factor structure—particularly in the factor

space representing the underlying variation of a latent network—it becomes necessary to

distinguish between "small" perturbations and "large" or structural instabilities.

To be precise, we will classify variations in the factor structure into three categories. The

first category consists of perturbations, the most restrictive type of change. These are always

considered "small" variations, as they preserve the factor space. The second category is small
instabilities, involving minor changes of the factor space. The final category is large instabilities
that incur considerable changes of factor space. This last type of variation indicates structural

changes in a networked system and can be a precursor to a potential crisis. Developing a
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method to provide early warning of such changes can be of practical importance.

In the next subsection, we begin by characterizing the first category – small perturbations. In

subsequent sections, we propose a method for providing early warnings of structural changes,

closely related to existing methods of analysis in latent factor models.

3.4.1 Small Perturbations in Factor Structure

In Section 3.3.1, we represent perturbations of a latent network structure by instabilities

in the factor loading matrix Πt through a latent factor model. By the nature of this latent

model, instabilities in the factor loading matrix are not distinguished from those in the factor

signal covariance when the number of factors is fixed. The column space of the factor loading

(Pt ≡ span(Πt), the factor space) is an object introduced to capture instabilities in the factor

loading matrix that are robust to potential instabilities in latent factors. That is, any change

in the factor loading that is robust to changes in the latent factor signal covariance will be

captured by a change of the factor space. We refer to the previous chapters for a detailed

discussion.

A large change in the factor space indicates a considerable change in the transmission rule,

or a structural change in a networked system. On the contrary, any variations in the factor

structure that do not affect the factor space can be considered small perturbations.
We assume an interval I0 in which a mean-zero process yt presents the following small pertur-

bations in the factor structure.

For t ∈ I0, yt and Σy,t = Et[ytyt
′] satisfy the following properties:

Assumption 1. For any t ∈ I0, yt = χt + ϵt for mean-zero processes χt and ϵt.

Assumption 2. For any t ∈ I0, Σy,t = Σχ,t + Σϵ,t, where Σχ,t = PtΛχ,tPt
′

satisfies the

following:

a. Λχ,t = diag(λk
χ,t)k=1,...,K , forK ≪ N non-zero eigenvalues λk

χ,t satisfying

inf
t∈I0

λk
χ,t ≍ O(N).

b. Pt = P0Ot for some orthonormalOt and P0′P0 = IK .

Assumption 3. There exists a constant q ∈ [0,1] such that

cϵ ≡ sup
t∈I0

max
i=1,...,N

∑
i′=1,...,N

∣cov(ϵit, ϵi′t)∣q = O(1).

Assumption 1 states that yt can be decomposed into two parts, χt and ϵt. We consider the pro-

cesses χt and ϵt uncorrelated, presenting the additive decomposition at the system covariance

level as in Assumption 2. Certain types of non-stationarity are allowed at the covariance level.
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The covariance of χt can vary as long as its eigenspaces P0 = P0P0′ = PtPt
′

remain fixed and

the eigenvalues are large relative to the cross-sectional dimensionN , as stated in Assumptions

2a and 2b.

Recall that, although the classical specification of a loading-factor model, such as χt = Πtft,

provides motivational interpretations, latent factor models can be fully stated at the level of

second moments. It does not require further specification of the low-dimensional component,

especially when the purpose of modeling does not aim to identify the factor loading matrix

and factor signals separately. If such a specification – χt = Πtft – is made, the fixed eigenspace

P0 is identical to the column space of the factor loading matrix span(Πt), as discussed in the

previous chapters. That is, Assumption 2 implies that the factor loading (Πt) can vary, but

in a way that does not alter its column space. The covariance of ϵt can also vary, as long as it

is sparse, as in Assumption 3. Hence, at the population level, regardless of the characterized

perturbations, the low-dimensional component χt or Σχ,t captures the dense structure of the

covariance of yt, distinguished from the remaining small and sparse component ϵt or Σϵ,t.

We assume that yt follows the non-stationary process described by Assumptions 1 to 3 in a

certain period I0. After this time period, the factor space may present a more general form

of instabilities. These can still be small instabilities, deviating slightly from P0, or they can

be large deviations from P0, indicating a structural change. In the following subsections, we

discuss language and tools for describing and analyzing these general factor space instabilities.

3.4.2 Optimal Factor Space and Residual Probability

One way to describe more general types of instabilities of factor spaces is through a distri-

bution. There is a class of distributions named von Mises-Fisher or Matrix Bingham or

Langevin (Chikuse, 2003), which describes distributions of subspaces or projectors. We in-

troduce one example within this class of distributions: subspaces P of dimensionK can be

distributed with probability proportional to exp[−tr(P⊥Σχ)], for some rank K symmet-

ric matrix Σχ = PKΛPK
′
. The mode Pm

K of the distribution corresponds to the projector

PKPK
′
, which represents the column space of the topK− eigenvectors of Σχ corresponding

to the non-zero eigenvalues.

Although the literature on those subspace distributions is not frequently discussed in the

literature on factor models, this probabilistic idea can interact with a very popular method in

factor model estimation introduced in Bai and Ng, 2002. Recall that the object tr(P⊥Y Y ′)
for Y Y ′ = ∑t∈I ytyt

′
is the major component of the information criteria to determine the

optimal factor space in I in this line of methods. The optimal factor space P̂K of dimension

K , of the process yt during I solves minPK
tr(P⊥Y Y ′)/(NT ) under a penalization.

The underlying idea of this classical method is as follows. Assume a single static factor model

over a time period I. Recall that the topK-eigenspace, corresponding to the largestK eigen-
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values of the sample covariance, consistently approximates the topK-eigenspace of the cross-

covariance Σy, for largeN,T , under standard regularization conditions. ThisK-eigenspace

of Σy approximates the factor space, i.e., the topK-eigenspace of Σχ at the population level

in the largeN limit. Hence, searching forK such that the topK-eigenspace PK minimizes

the error, or the projection residual tr(P⊥Y Y ′), solves the optimal factor space of yt.

In terms of the subspace distribution, the procedure to solve minPK
[tr(P⊥Y Y ′)/(NT )]

corresponds to finding the mode of a subspace distribution, maximizing the probability

exp[−tr(P⊥Y Y ′)/(NT )]. In other words, the estimated factor space PK in the classical

approach is the mode estimator P̂ of a subspace distribution given the sample YNT .

In a distributional approach, the expression exp[tr(P⊥Σ)] can be interpreted as a residual

probability of P given the directional characteristic of Σ. In this interpretation, the mode PK

is minimizing the residual probability by maximizing exp[−tr(P⊥Σ)].
The probability of having a substantial change after I0 can be measured in relation to this

concept of residual probability. Recall that yt is assumed to experience small perturbations in

its factor structure as described in Section 3.4.1 in a certain period I0. After this time period,

there can be more general instabilities in the factor space. We denote any time window after

this historical period I0 as I.

In relation to the classical method of Bai and Ng, 2002 discussed above, it is not surprising that

the following expression can measure the difference of a factor structure after a certain period

I0:

(1/NT )tr(P⊥0 Y Y ′), (3.13)

whereP0 captures the factor space in I0 andY Y ′ = ∑t∈I ytyt
′
. The underlying idea of finding

the optimal factor space can be extended and reinterpreted in terms of the residual probability.

If there are only small instabilities in the factor structure of I compared to that of I0, the

residual probability will be small. AsP0 will be closely aligned with the dominant directionsP1

– corresponding to the largest eigenvalues, whose number is likely the same as the dimension

of P0 – of Y Y ′ (normalization factors do not affect the directional properties), only a small

residuals are left after netting out the projected component P0Y Y ′. A large value of the

tr(P⊥0 Y Y ′) indicates a likelihood of substantial structural changes.

In practice, we consider the object tr(P̂⊥0 Y Y ′)where P̂0 is an approximation of the factor

space of I0, combined with the sample Y from I, collected after I0.

In the next subsection, we design a cumulative sum (CUSUM) type early warning framework

for large instabilities. The construction will have a natural interpretation in terms of the

probability of change we introduced.
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3.4.3 Probability of Structural Changes and EarlyWarnings

The Cumulative Sum (CUSUM) method is one of the most popular ways of detecting emerg-

ing changes and providing early warnings. In particular, once the historical observations in

I0 are given, subsequent observations yt after I0 can be examined sequentially, or online, to

provide a warning of a change point as quickly as possible. The online methods are designed

to examine each point of the available data sequentially at the moment it becomes available.

This branch of methods deviates from offline methods, which aim to identify changes retro-

spectively (Xie et al., 2021) by examining the entire available past time window.

Consider a process

yt = Ptft + ϵt = χt + ϵt, for t ∈ I (3.14)

where Pt ≡ span(Pt) is realized following certain dynamics or distribution. We allow a broad

class of factor space fluctuations, whose realization is independent of those of ft or ϵt. For

example, it can jump to P1 and stay fixed, presenting a discrete type of change discussed

in previous chapters. Or, it can be randomly realized following a von Mises-Fisher type of

distribution, for example, where the probability of realizing particular directions Pt can be

proportional to exp[−tr(P⊥t Σχ)] for some matrix parameter Σχ.

In the most classical CUSUM method, the distributions of the process (yt) before and after are

assumed to be known. The detection procedure relies on the cumulative sum of log-likelihood

ratios: ST = ∑T
t=1 ℓ(yt), providing the optimal stopping point T such that

T ≡ inf {T ≥ 1∣
T

∑
t=1
ℓ(t) > Ψ}

for some pre-set threshold level Ψ > 0. As the requirement of the known distribution is highly

restrictive, numerous variations have been developed to be distribution-free. Assume that the

procedure aims to provide a warning for state 1. An intuitive and important qualification of

the CUSUM score ℓt = ℓ(yt) is that it is expected to be positive when yt is in state 1, and

negative otherwise.

We suggest the following quantity to be the base of the CUSUM score,

Lt ≡ tr(P̂⊥0 ytyt
′)/N, (3.15)

which is closely related to the classical measure introduced in the above-discussed Bai and Ng,

2002. This measure has been employed across various fields; for example, in Jiao et al., 2018, a

study on the early detection of subspace change points with applications in human motion

change detection.

The historical period I0 can be heuristically determined by reasonable information or can be

estimated from available historical data by offline detection methods, such as our study in
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3 General Instabilities in Networked Systems and Early Warnings

Chapter 1.

We aim to assign a score ℓt derived fromLt, to be positive in expectation if yt is in a state of

"large" instabilities and negative in expectation otherwise. In this presentation, the state of

"large" instabilities will be defined heuristically based on the properties of the most restrictive

state, small perturbations. Assume that the upcoming observations have the following finite

moments:

Assumption 4. m0 ≡ E supt∈I(ft
′ft)/N = O(1) andm1 ≡ E supt∈I(ϵt

′ϵt)/N = O(1).

Then we can observe the following:

Proposition 1. Under Assumption 4,

E[Lt] ≤ cmax {E[tr(P̂⊥0PtPt
′)], (E[tr(P̂⊥0PtPt

′)])1/2} +m1, (3.16)

for c =m0 + 2√m0m1.

Let us first examine the most restrictive case: yt experiences only a small perturbation in its

factor structure compared to that of I0, and span(Pt) = P0. In this case,E[Lt] in (3.16) is

dominated by the estimation errors of P̂0 during the pre-period I0. We denote

ψ0 ≡ c0 max {E[tr(P̂⊥0P0)], (E[tr(P̂⊥0P0)])
1/2} +m0

1,

where c0
andm0

1 indicate the corresponding values for the state of small perturbations. These

terms c0
and m0

1 become feasible to estimate by the information from I0. Denote the I0

estimation error as g0 = E[tr(P̂⊥0P0)]. 3
That is, by setting

ℓt ≡ Lt − ĉg0 − m̂1,

we will have E[ℓt] < 0 for the state of small perturbations.

Intuitively, E[Lt] increases as yt is in a state where the Pt = PtPt
′

deviates far from P0. A

simple approach is to define a "large" deviation such that E[Lt] becomes larger than ψ0. In

this way, by construction, E[ℓt] > 0 for the states of large instabilities. Now, we summarize

the design of this procedure.

3
An upper bound can be found as the penalty terms of g0 of Bai and Ng, 2002, under the extended

regularity conditions in Chapter 1.
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3.5 Concluding Remarks

EarlyWarning Framework for Large Instabilities Let I0 be a given historical

time window. For each t ≥ 1 of a sequential observation, set a score

ℓt = Lt − ψ0.

A warning for a structural instability is provided at the time

T ≡ inf {T ≥ 1∣
T

∑
t=1
ℓ(t) > Ψ} (3.17)

for some threshold Ψ.

The average of the resulting cumulative sum (1/T )∑T
t=1 ℓ(t) is (1/T )∑T

t=1 tr(P̂⊥0 ytyt
′)/N =

tr(P̂⊥0 Y Y ′)/(NT ), the residual probability up to a penalty term. Hence, following the

discussion in Section 3.4.2, the cumulative sum criterion (3.17) aims to provide a warning as

soon as the probability of a structural change given the sample exceeds a certain threshold.

3.5 Concluding Remarks

Network and factor models are two important techniques for analyzing interconnected systems.

An interconnected system can naturally have a dual representation through our network-factor

model. This modeling can assist in analyzing instabilities in latent network structures using

various tools of factor analysis. Diverse approaches can be integrated to facilitate the analysis

of broad types of instabilities in latent structures. We design a new early warning framework

for structural changes that accommodates a broad range of instabilities in the underlying

network. The framework can be of practical importance for various systems represented by

network-supported data, where the underlying structure is unknown or unobservable.
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Appendix to Chapter 3

C.1 Further discussions onNetwork−FactorModel

In Section 3.3.1, assume that only those {agxt} of a certain set of individual units g ∈ G, for

∣G∣ < ∞ are important to the transmission,

yit = ∑
g∈G
∑

ℓ

πt,i←g,ℓL
ℓ(agxt) + ϵit for all i ∈ N . (3.9)

The cases when the marginal benefits are time-varying, can be similarly represented as a factor

model. Taking f̃G,t ≡ [agxt]g∈G of size ∣G∣ × 1, (3.9) is written as

yt = Π̃t,N←G(L)f̃G,t + ϵt, (3.10)

where Π̃t,N←G(L) is a N × ∣G∣ matrix of lag polynomials. Assume that all lags of f̃G,t =
[agxt]g∈G are strong factors, it also allows the following reduced expression:

yt = Πt,N←GfG,t + ϵt, (3.11)

where Πt,N←G isN × ∣GM ∣ factor loading matrix consisting of the coeffiecients πt,i←g,ℓ with

∣G∣M number of factors fG,t ≡ [Lℓ(agxt)]g∈G,ℓ=1,...,M .

C.2 Proof

Proposition 1. Under Assumption 4,

E[Lt] ≤ cmax {E[tr(P̂⊥0PtPt
′)], (E[tr(P̂⊥0PtPt

′)])1/2} +m1, (3.16)

for c =m0 + 2√m0m1.

Proof. Observe that

tr(P̂⊥0 ytyt
′) = tr(P̂⊥0 (Ptft+ϵt)(Ptft+ϵt)′) = tr(Pt

′P̂⊥0Ptftft
′)+2tr(Pt

′P̂⊥0 ϵtft
′)+tr(P̂⊥0 ϵtϵt

′).
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C.2 Proof

The trace operator is sub-multiplicative following the (matrix) Cauchy-Schwarz inequality,

which gives

tr(P̂⊥0 ytyt
′) ≤
√

tr((ft
′ft)2)

√
tr(Pt

′P̂⊥0PtPt
′P̂⊥0Pt) + 2

√
tr(P̂⊥0PtPt

′)
√

tr(ftϵt
′ϵtft

′)

+ tr(P̂⊥0 ϵtϵt
′) ≤ (ft

′ft)tr(P̂⊥0PtPt
′) + 2

√
(ϵt
′ϵt)(ft

′ft)
√

tr(P̂⊥0PtPt
′) + ϵt

′ϵt,

as tr(A2) ≤ (tr(A))2 for a positive semi-definite matrixA, with basic properties (e.g., cyclic

invariance) of the trace operator. Further inequalities are implied

Lt ≡ tr(P̂⊥0 ytyt
′)/N ≤ ( sup

t∈I1
(ft
′ft)/N)tr(P̂⊥0PtPt

′)

+ 2
√
(sup

t∈I1
(ft
′ft)/N)(sup

t∈I1
(ϵt
′ϵt)/N

√
tr(P̂⊥0PtPt

′) + sup
t∈I1
(ϵt
′ϵt)/N,

under Assumption 4. Then it leads to (3.16), due to the concavity of the square root function

for Jensen’s inequality.
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