
Information Systems 135 (2026) 102584 

A
0

 

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is  

Comprehensive characterization of concept drifts in process mining
Alexander Kraus a,∗, Han van der Aa b
a Data and Web Science Group, University of Mannheim, B6 26, 68159 Mannheim, Germany
b Faculty of Computer Science, University of Vienna, Währinger Str. 29, 1090 Vienna, Austria

A R T I C L E  I N F O

Keywords:
Process mining
Concept drift detection
Drift characterization

 A B S T R A C T

Business processes are subject to changes due to the dynamic environments in which they are executed. These 
process changes can lead to concept drifts, which are situations when the characteristics of a business process 
have undergone significant changes, resulting in event logs that contain data on different versions of a process. 
The accuracy and usefulness of process mining results derived from such event logs may be compromised 
because they rely on historical data that no longer reflects the current process behavior, or because the 
results do not distinguish between different process versions. Therefore, concept drift detection in process 
mining aims to identify drifts recorded in an event log by detecting when they occurred, localizing process 
modifications, and characterizing how they manifest over time. This paper focuses on the latter task, i.e., drift 
characterization, which seeks to understand whether changes unfolded suddenly or gradually and if they form 
complex patterns like incremental or recurring drifts. However, current solutions for automatically detecting 
concept drifts from event logs lack comprehensive characterization capabilities. Instead, they mainly focus on 
drift detection and characterization of isolated process changes. This leads to an incomplete understanding of 
more complex concept drifts, like incremental and recurring drifts, when several process changes are inter-
connected. This paper overcomes such limitations by introducing an improved taxonomy for characterizing 
concept drifts and a three-step framework that provides an automatic characterization of concept drifts 
from event logs. We evaluated our framework through elaborate evaluation experiments conducted using a 
large collection of synthetic event logs. The results highlight the effectiveness and accuracy of our proposed 
framework and show that it outperforms state-of-the-art techniques.
1. Introduction

Information systems that support the execution of business pro-
cesses often generate data in the form of event logs [1]. These logs 
contain sequences of events that describe the execution of process 
instances over a specific period of time. They are valuable sources of 
information for operational analysis, as they describe various aspects of 
the process, including the activities conducted, their timing, the people 
involved, and other relevant process details. Process mining uses these 
event logs to facilitate a wide range of analytical inquiries [2]. Organi-
zations can leverage event logs and process mining to extract valuable 
insights, make informed decisions, and optimize their processes by 
constructing process models, verifying execution against specifications, 
and creating simulation, prediction, and recommendation models.

Crucially, business processes are subject to change over time due 
to various internal and external factors, such as organizational ad-
justments, process enhancements, policy updates, and technological 
advancements. These changes can introduce concept drifts, which are 

∗ Corresponding author.
E-mail addresses: alexander.kraus@uni-mannheim.de (A. Kraus), han.van.der.aa@univie.ac.at (H. van der Aa).

situations when the characteristics of a business process have under-
gone significant changes [3] during the period when process execution 
data has been recorded, resulting in event logs that contain information 
on different versions of a process. The presence of such drifts in event 
logs can have a detrimental impact on the accuracy and usefulness 
of process mining results as these will be (partially) based on his-
torical data that no longer represents the current process. Therefore, 
to avoid incorrect or even misleading process mining results, concept 
drift detection aims to identify and characterize concept drifts from 
event logs, striving to understand how a recorded process evolved over 
time. To achieve this, concept drift detection addresses the following 
three key tasks [4]: (1) drift detection, which involves detecting when 
drifts occurred, (2) drift localization, which aims to describe what was 
modified in the process, and (3) drift characterization, which considers 
how drifts manifest themselves over time. In this paper, we particularly 
focus on the latter task, i.e., drift characterization, which seeks to 
understand how drifts in event logs unfold over time, i.e., whether they 
https://doi.org/10.1016/j.is.2025.102584
Received 31 October 2023; Received in revised form 17 June 2025; Accepted 5 Ju
vailable online 19 July 2025 
306-4379/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar
ly 2025

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/is
https://www.elsevier.com/locate/is
mailto:alexander.kraus@uni-mannheim.de
mailto:han.van.der.aa@univie.ac.at
https://doi.org/10.1016/j.is.2025.102584
https://doi.org/10.1016/j.is.2025.102584
http://creativecommons.org/licenses/by/4.0/


A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
occur suddenly or gradually, and whether or not changes jointly form 
more complex patterns in the form of incremental or recurring drifts.

Despite numerous proposed solutions to automatically detect con-
cept drifts [5], none of the existing techniques can comprehensively 
characterize drifts in event logs [6]. Specifically, most existing tech-
niques focus on detecting isolated process changes that lead to sudden 
drifts [7–14], with few others also differentiating between sudden and 
gradual ones [4,15–17]. These techniques thus only provide a partial 
picture of detected concept drifts since they cannot recognize inter-
relations between process changes, which lead to more complex drifts 
in the form of incremental and recurring drifts. However, in many 
process mining tasks, ignoring such complex drifts can lead to mis-
leading results. For instance, applying existing concept drift detection 
techniques on a process may reveal that it went through a considerable 
amount of changes, each leading to possibly different process versions 
that should be analyzed separately. However, by considering the inter-
relations of these changes, it may become clear that this process is in 
fact subject to a seasonal pattern in which just two process versions 
alternate. Subsequent analyses can then target each of these versions 
individually. Similarly, performance analysis may be biased if the event 
data includes an incremental drift. In this case, proper performance 
analysis should separately consider recorded process behavior before 
the incremental drift and after it, while disregarding intermediate 
behavior that occurs during the period of the incremental drift. As a 
result, the state of the art provides only incomplete insights into the 
actual evolution of business processes over time.

This paper addresses this limitation through two contributions. 
First, we propose an improved taxonomy that can be used as a basis 
for the comprehensive characterization of concept drifts, since we 
recognize that existing works are not just limited in their scope, but 
are actually grounded on imprecise and incomplete definitions. Second, 
we propose a three-step framework that automatically characterizes 
detected drifts in a comprehensive manner, following our proposed 
taxonomy. Our framework starts with the detection of isolated change 
points in the event log, marking significant shifts in process behavior. 
Next, using our change type detection algorithm, we identify actual 
process changes and categorize them as sudden or gradual. Finally, 
we determine concept drifts and their types from the detected process 
changes using our change inter-relation detection algorithm. Conducted 
evaluation experiments show the accuracy of the developed framework 
and its algorithms compared to state-of-the-art techniques.

In the remainder, Section 2 provides an introduction to the concept 
drift characterization, current limitations, and our improved taxonomy. 
Section 3 explains our framework steps and proposed algorithms. Our 
evaluation results are summarized in Section 4. Finally, we conclude in 
Section 5.

2. Concept drift characterization: Current limitations and im-
proved taxonomy

This section proposes a new taxonomy for the comprehensive char-
acterization of concept drifts in process mining, which overcomes the 
limitations of existing definitions and can be used to accurately reflect 
the scope (and limits) of existing concept drift detection techniques. 
To achieve this, we first introduce preliminaries in Section 2.1. In 
Section 2.2, we examine the current taxonomy used to characterize con-
cept drifts, along with its limitations, which are detailed in Section 2.3. 
Then, we presents our proposed, improved taxonomy in Section 2.4, 
which we use as a foundation in Section 2.5 to provide an overview of 
previous work on concept drift detection and characterization.

2.1. Preliminaries

Business process. A business process is a set of activities and constraints 
between them that are performed within an organizational and techni-
cal environment to realize a business goals [18]. Business processes are 
2 
often visualized using a specific process modeling language. For exam-
ple, Fig.  1 presents a simple business process model created using the 
Business Process Model and Notation (BPMN) [19], a widely recognized 
standard for business process modeling. Focusing on the control-flow 
of a business process, this model features a start event labeled ‘‘Order 
received’’, five business process activities, and an end event marked 
‘‘Order dispatched.’’ The activities are carried out in sequence, with a 
single decision point that allows for a choice between two activities 
following the first process activity.

Fig. 1. Example of a business process model.

Event log. An event log 𝐿 is a collection of events recorded by a 
process-aware information system during process execution. Each event 
𝑒 ∈ 𝐿 is represented as a tuple with at least three attributes 𝑒 ∶=
(caseID, activity, timestamps), where caseID is the unique identifier for 
the executed case, activity indicates the executed process activity, and 
timestamps denotes the event moment. Table  1 presents a snapshot 
of an event log generated from the execution of the business process 
illustrated in Fig.  1. In addition to the attributes caseID, timestamp, 
and activity, the event log also records additional attributes such as 
resource information and cost.

Table 1
Example of an event log.
 Case ID Timestamp Activity Resource Cost

 1 29-12-2010 14:17 Order received Susana 0  
 1 30-12-2010 11:02 Print component plan Mike 50  
 1 31-12-2010 10:06 Obtain from warehouse Sue 200  
 1 05-01-2011 15:12 Assemble parts Mike 100  
 1 06-01-2011 11:18 Final inspection Sara 200  
 1 07-01-2011 10:00 Order dispatched Sara 80  
 2 30-12-2010 15:34 Order received Susana 0  
 2 30-12-2010 11:32 Print component plan Mike 50  
 2 30-12-2010 12:12 Order components Mike 100  
 2 30-12-2010 14:16 Assemble parts Pete 400  
 2 05-01-2011 11:22 Final inspection Sara 200  
 2 06-01-2011 11:33 Order dispatched Sara 80  
 . . . . . . . . . . . . …  

Trace. A trace 𝜎 is a sequence of events from 𝐿 with the same caseID, 
ordered by their timestamps. We denote 𝛴𝐿 as the ordered collection 
of traces, arranged according to the timestamp of their first event. 
Based on this ordering, each trace is assigned a trace index 𝑖 ∈  with 
 ∶= [1,2,… , |𝛴𝐿|], s.t., 𝜎𝑖 denotes the 𝑖th trace in 𝛴𝐿.
Behavioral representation. A behavioral representation of a process is 
a set of defined behavioral relations and their support (e.g., frequency) 
that characterize a process based on data from an event log 𝐿. A 
commonly used type of behavioral representation in process mining is 
the directly-follows relation [20], which captures the frequency with 
which two activities are observed to immediately succeed one another 
within the same case. For example, using the two cases shown in 
Table  1, we can derive the following directly-follows relations with 
abbreviated activity names: (𝑂𝑅 → 𝑃𝐶𝑃 ): 2, (𝑃𝐶𝑃 → 𝑂𝑓𝑊 ): 1, 
(𝑂𝑓𝑊 → 𝐴𝑃 ): 1, (𝐴𝑃 → 𝐹𝐼): 2, (𝑃𝐶𝑃 → 𝑂𝐶): 1, (𝑂𝐶 → 𝐴𝑃 ): 1, (𝐹𝐼 →

𝑂𝐷): 2. Other behavioral representations, such as eventually-follows 
relations [20], 𝛼-relations [20], behavioral profiles [21], or declarative 
process constraints [22], are also frequently applied to capture different 
aspects of process behavior.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Fig. 2. Example of a concept drift.
2.2. Status quo taxonomy

This section provides a brief overview of concept drift detection and 
the current definitions (i.e., the status quo taxonomy) used to categorize 
and understand different types of concept drifts in process mining, 
which is provided by Bose et al. [4].

In the context of process mining, a concept drift refers to a situation 
in which a process is changing while being analyzed [4], which happens 
when an event log contains data stemming from different process 
versions. Although the literature does not provide a precise definition, a 
process version can be characterized by the process model that governs 
its execution. In the absence of an explicit model, a version can also be 
derived from an event log using some behavioral abstraction, such as a 
directly-follows relation. Two process versions are considered distinct 
if their underlying models or behavioral representations differ, for 
example, due to the addition or removal of activities, or changes in the 
order of their execution. Fig.  2 illustrates an example of a concept drift. 
In this example, the original process version is replaced with the new 
one that rejects the order if its components have not been pre-produced.

Concept drift detection aims to identify such changes based on event 
logs to obtain a comprehensive understanding of the overall evolution 
of a process over time. To achieve this, concept drift detection addresses 
the following key tasks [4]: (i) drift detection, which involves detecting 
when drifts occurred, (ii) drift localization, which aims to describe the 
process perspective(s) (control-flow, data, time, and data) affected by 
and specific modifications made to the process during a drift, and (iii)
drift characterization, which considers how drifts manifest themselves 
over time (e.g., suddenly versus gradually).

Fig. 3. Concept drift types.
Source: Adapted from [4].

Our work primarily focuses on this latter task, i.e., change char-
acterization, since this is, at best, only partially covered by existing 
works (see Section 2.5). In the taxonomy by Bose et al. [4], change 
characterization primarily focuses on classifying drifts into one of four
drift types [4], which are illustrated in Fig.  3:

1. A sudden drift occurs when a current process version is entirely 
replaced by a new one at a specific moment, and the new one 
takes over all ongoing cases [4]. This type of drift can occur in 
emergencies or when new regulations must be followed [6].

2. A gradual drift occurs when a current process version is replaced 
by a new one, and both versions coexist during a transition pe-
riod [4]. Throughout this transition period, an increasing num-
ber of process instances begin to follow the new process version 
until the point at which the new version operates exclusively.

3. An incremental drift occurs when a current process version is 
replaced by a new one via smaller incremental changes [4]. For 
instance, this drift type occurs in organizations implementing 
3 
successive business process quality improvements as part of a 
larger initiative.

4. A recurring drift occurs when a set of process versions reappear 
after some time [4]. Recurring drifts can occur in two forms: 
periodic and non-periodic. Periodic drifts follow seasonal pat-
terns, such as reduced demand and resource needs during the 
summer holidays, whereas non-periodic drifts stem from changes 
that do not recur according to predetermined times, but rather 
from other conditions, such as a change in a process that is 
implemented when the workload is too high.

Other aspects, such as momentary and permanent changes [4] or 
multi-order dynamics [15], are sometimes used for drift characteriza-
tion but have received comparatively less attention and study.

2.3. Limitation of the status quo taxonomy

The aforementioned status quo taxonomy has several key limita-
tions that hinder its usefulness when aiming to properly characterize 
concept drifts:
L1: Non-exclusive drift type classification. The four drift types de-
fined by Bose et al. [4] are not mutually exclusive because they 
encompass two different levels of granularity. Specifically, sudden and 
gradual drifts characterize how individual process changes manifest 
themselves, whereas incremental and recurring drifts connect several 
process changes to each other. As a result, a single concept drift can 
be an incremental or recurring drift, but consist of individual sudden 
or gradual (or both) changes, as visualized in Fig.  4.1 Due to this 
limitation, drifts cannot be properly characterized when using the 
existing four drift types, since we either lose information at the high 
level, i.e., how changes are connected, or at the low level, i.e., if indi-
vidual changes in a recurring or incremental drift occurred suddenly or 
gradually.

Fig. 4. Incremental and recurring drifts can consist of sudden and gradual drifts, 
leading to non-exclusive classification (L1).

L2: Imprecise definition of incremental drifts. The definition of 
incremental drifts is imprecise, which means that it is not always 
possible to deterministically assign a drift type to specific observations. 
Specifically, the existing definition does not specify what makes a 
change incremental and, therefore, cannot be used to differentiate 
between a series of unrelated, relatively small drifts and a single, 
incremental drift, as, e.g., visualized in Fig.  5.

1 Note that Bose et al. [4] indeed remark on this aspect, but it is not picked 
up by subsequent works.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Fig. 5. Minor changes can form an incremental drift, but also a sequence of independent sudden and gradual drifts (L2).
L3: Incomplete definition of recurring drifts. Finally, the definition 
of recurring drifts is incomplete (and imprecise) because it does not 
align with the examples that are used to illustrate these drifts, essen-
tially making the definition too narrow. For example, the definition, 
which requires a set of process versions to reappear, would exclude 
situations in which a single process version reappears every so often 
(whether periodically or not), as, e.g., visualized in case (c) of Fig.  6. 
In addition, if there are two recurring drifts in an event log, e.g., as 
depicted in case (d) of the figure, then the existing definition would 
classify them as a single recurring drift, whereas it would be more 
precise to state that there are two recurring drifts, one involving 
versions 𝑣1 and 𝑣2 and another involving 𝑣3 and 𝑣4.

Fig. 6. Examples of recurring drifts that either align with the status quo definition (a, 
b) or deviate from it (c, d) (L3)..

Due to these limitations, concept drift characterization has mainly 
centered on detecting isolated process changes and their types (sudden 
vs. gradual), overlooking more ‘‘complex’’ drifts, like recurring and 
incremental drift types, especially those involving lower-level sudden 
and gradual changes (see Section 2.5 for an overview).

2.4. A new concept drift characterization taxonomy

To overcome current limitations, we propose a new taxonomy to 
achieve a more clear and comprehensive characterization of concept 
drifts. The novelty of our taxonomy lies in its distinction between sim-
ple and complex drifts and its recognition that any change that forms 
or is part of a drift can be either sudden or gradual. In this manner, it 
overcomes the limitations observed in the status quo taxonomy.

In the following, we explain our taxonomy, visualized in Fig.  7, in 
detail, and discuss how it addresses the identified limitations.

2.4.1. Key concepts of the new taxonomy
As shown in Fig.  7, a central concept in our taxonomy is a process 

change. We formalize the concept of process change and its character-
istics as follows:
Process Change. A process change 𝑐 is a modification of a business 
process that is characterized by a tuple: 
𝑐 ∶= (𝑡, 𝑝𝑠𝑡𝑎𝑟𝑡, 𝑝𝑒𝑛𝑑 , 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑣𝑛𝑒𝑥𝑡), (1)

where:

• 𝑡 ∈ {‘‘sudden", ‘‘gradual"} is the process change type that de-
scribes how a process change occurred, i.e., suddenly or gradu-
ally,
4 
• 𝑝𝑠𝑡𝑎𝑟𝑡 ∈  and 𝑝𝑒𝑛𝑑 ∈  are change points that denote the start and 
end moments of a process change in 𝐿. They are represented by 
trace indices from  = [1,2,… , |𝛴𝐿|], which indicate correspond-
ing traces after which the behavior of recent process executions 
deviates significantly from prior behavior [16]. In the case of 
a sudden change type, both change points take the same value: 
𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑝𝑒𝑛𝑑 , whereas in gradual cases, they differ.

• 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and 𝑣𝑛𝑒𝑥𝑡 are process versions before and after the pro-
cess change. A process version is a variant of a business process, 
defined by a specific set of activities and their underlying rela-
tions. It is characterized by a behavioral abstraction used to derive 
the version from an event log and is associated with a defined 
start and end point that mark the period during which the version 
was active.

We use 𝐶 ∶= ⟨𝑐1,… , 𝑐𝑁 ⟩ to denote a sequence of all process changes 
ordered by 𝑝𝑠𝑡𝑎𝑟𝑡 that are present in 𝐿.

From the behavioral representations of the process versions asso-
ciated with a process change, we can extract further essential char-
acteristics for drift characterization and other concept drift detection 
tasks:

• Change Severity determines how much a process changed, which 
can be used, e.g., to detect minor changes when searching for 
incremental drifts. It can be computed using a function that takes 
the behavioral representation of old and new process versions 
as input and produces a value in the range (0, 1). Values closer 
to 0 indicate low severity, while values closer to 1 signify high 
severity.

• Change Localization identifies specific process modifications when 
comparing old and new process versions. This information is valu-
able to address the task of localization changes in concept drift 
detection. Depending on the behavioral representation, change 
localization can be quantified by examining sets of behavioral 
relations or patterns that are removed, introduced, or modified.

• Change Perspective reveals the affected process perspectives:
control-flow, time, resource, and data. This determination aligns 
with the concept of perspective of change, as discussed by Bose 
et al. [4], and relies on the selected behavioral representation 
techniques.

One or more connected process changes constitute a concept drift, 
which we formalize as follows:
Concept drift. A concept drift 𝑑 is a modification of a business process 
that is characterized by a tuple: 
𝑑 ∶= (𝑑𝑟𝑖𝑓 𝑡𝑇 𝑦𝑝𝑒, 𝐶), (2)

where 𝑑𝑟𝑖𝑓 𝑡𝑇 𝑦𝑝𝑒 ∈ {‘‘sudden", ‘‘gradual", ‘‘incremental", ‘‘recurring"}
and 𝐶 ∶=

⟨

𝑐𝑖, 𝑐𝑖+1,… , 𝑐𝑗
⟩

, 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁 is a subsequence of 𝐶. 
Depending on the number of process changes, each drift is categorized 
into two groups, each consisting of two distinct drift types:

• A simple drift is a drift that consists of a single standalone 
process change, i.e., |𝐶| = 1:



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Fig. 7. Our taxonomy for concept drift characterization.
– A sudden drift is given in the case of a sudden change type.
– A gradual drift is given in the case of a gradual change type.

• A complex drift is a drift that consists of two or more connected 
process changes, i.e., |𝐶| > 1:

– An incremental drift is given by a consecutive sequence 
of at least two process changes with low change severity 
that adheres to the same process transformation initiative 
(business driver).

– A recurring drift is defined as a collection of process changes 
that introduce one or more process versions, forming a 
pattern that recurs at least once.

A drift collection 𝐷 ∶= {𝑑1,… , 𝑑𝐾} is a set, consisting of 𝐾 ≥ 1
concept drifts.

Given the aforementioned concepts, the objective of concept drift 
characterization is to establish a drift collection 𝐷 from an event log 𝐿, 
such that 𝐷 provides a comprehensive characterization of the concept 
drifts contained in 𝐿 according to the taxonomy of Fig.  7.

2.4.2. Benefits of the new taxonomy
Our taxonomy jointly addresses the limitations of the status quo 

taxonomy. First, our taxonomy addresses the first limitation (L1) by 
introducing a mutually exclusive classification of drift types that is 
based on a process change as a building block for any concept drift 
and the number of process changes that belong to a drift (simple and 
complex drifts). Complex drifts (recurring and incremental), by defini-
tion, consist of several process changes, where each process change can 
happen suddenly or gradually, resolving the issues depicted in Fig.  4.

We improve the definitions of recurring and incremental drift types, 
addressing limitations L2 and L3 by specifying how process changes 
should be related and form complex drifts. In the case of an incremental 
drift, the proposed notion of a shared business drive, like a BPM 
initiative to improve the average lead time of a business process, 
introduces a clear manner to differentiate an incremental drift from 
a sequence of standalone disconnected process changes. It also opens 
5 
new opportunities for how incremental drifts can be detected, i.e., the 
necessary condition of at least two consecutive process changes with 
low severity can be extended with further conditions or restrictions. 
For instance, an additional condition could be related to time, i.e., a 
sequence of process changes should occur within a certain period, or 
they should be close in terms of change localization (i.e., which parts 
of a process are changed). In the case of recurring drifts, our definition 
of a recurring drift as a pattern of one or more process versions that 
reappear at least one time covers all possible recurring drift instances, 
including those depicted in Fig.  6.

2.5. Related work

In this section, we discuss existing concept drift detection tech-
niques in light of our taxonomy, specifically showing their coverage of 
the different change and drift types. Given the scope of the addressed 
problem, we focus on offline detection techniques that use event logs 
as input and yield information about the type of change or drift as 
output. We exclude online concept drift detection techniques that rely 
on event streams from consideration, as this problem setting introduces 
additional constraints and limitations (such as increased computational 
overhead, real-time processing requirements, and the need for continu-
ous monitoring) that make direct comparisons with our framework and 
other offline techniques unreasonable.

Table  2 provides an overview of the scope and automation level 
of existing drift detection and characterization techniques. Since es-
tablishing the problem and importance of concept drift detection in 
process mining more than a decade ago [23], various techniques have 
been proposed to detect and characterize them, as highlighted in recent 
literature reviews [5,6]. However, the majority of existing techniques 
detect change points in an event log, aiming to identify a moment 
when a process behavior significantly changes [7–15]. In terms of drift 
characterization, they do not contribute to the understanding of the 
underlying drift types.
Table 2
Classification of different concept drift detection and characterization techniques according to our taxonomy.
 Technique Change point detection Change type detection Drift type detection
 Simple drifts Complex drifts
 Sudden Gradual Incremental Recurring

 Various works [7–14] □□  
 Bose et al. [4] □□ □ □ □  
 Martushev et al. [15] □□ □ □ □  
 Maaradji et al. [16] □□ □□ □□ □□  
 Yeshchenko et al. [17] □□ □ □□ (□) (□) (□)  
 Our work □□ □□ □□ □□ □□ □□  
‘‘□□‘‘ - automated, ‘‘□’’ - semi-automated, ‘‘(□)" - non-automated.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Fig. 8. The outcome of the state-of-the-art concept drift detection techniques (b and c) cannot comprehensively characterize a complex concept drift (a).
Change type detection. When it comes to detecting not only process 
change points but also process change types, there are two techniques 
that distinguish between gradual and sudden changes:

Bose et al. [4] introduced concept drift detection in process mining 
and presented a method for automatically detecting process change 
types. Their approach uses statistical testing of feature vectors. How-
ever, users should indicate which change type should be searched for, 
i.e., the techniques can only detect sudden or gradual drifts, not both. 
The method lacks automation, requiring user manual feature selection, 
assuming prior knowledge of drift characteristics. Additionally, testing 
all possible activity combinations can also be computationally demand-
ing. Finally, users must specify a window size for drift detection, 
potentially missing some drift occurrences. To address the window 
size limitation, Martushev et al. [15] introduced adaptive window-
ing, which automatically adjusts the window size when searching for 
drifts. However, this approach requires users to define minimum and 
maximum window size parameters as upper and lower boundaries for 
automated window adaptation. Given the mentioned constraints, both 
techniques have limited capability in detecting process change types, 
especially in an automated manner.

The work by Maaradji et al. [16] introduced an alternative tech-
nique for change type detection, addressing the limitations of Bose’s 
technique. Their method offers an automated and statistically grounded 
solution for identifying both sudden and gradual process change types, 
representing the current state of the art in simple drift detection. 
Their approach involves a two-step process: initially, it detects change 
points to identify sudden drifts (see Fig.  11), and then it employs 
postprocessing on the output of the sudden drift detection algorithm to 
detect gradual drifts. Specifically, they analyze the behavior within the 
intervals between two change points by statistically assessing whether 
it exhibits a mixture of behavior distributions before and after these 
points [16]. However, this distribution-based method has a signifi-
cant drawback. In situations where noise is present in an event log, 
particularly concerning gradual drift detection, their approach experi-
ences a notable decrease in detection accuracy, as demonstrated in our 
evaluation (Section 4).
Drift type detection. Change type detection techniques can only detect 
simple drifts. Therefore, their usefulness in practice is notably limited 
when it comes to drift characterization since event logs might include 
complex drifts, which is apriori unknown. These techniques do not 
consider the inter-relations between process changes, leading to a 
collection of simple drifts if the underlying drift in an event log is 
complex. We demonstrate it using an exemplary concept drift scenario 
with two drifts: a complex drift of incremental type followed by a 
simple drift of gradual type, depicted in Fig.  8(a). The incremental drift 
consists of three process changes: two sudden drifts at the change points 
𝑝1 and 𝑝4, and a gradual change between 𝑝2 and 𝑝3. Fig.  8(b) shows 
the detected change points using the technique by Maaradji et al. [16]. 
Given the output, it is impossible to conclude that the first four change 
points belong to an incremental drift and the last one is an independent 
gradual drift.
6 
The comprehensive detection and characterization of drift types 
requires techniques that can simultaneously detect simple and com-
plex drifts. The Visual Drift Detection (VDD) technique, introduced by 
Yeshchenko at el. [17], represents the current state of the art. VDD 
uses concepts like temporal logic, Declare constraints [24], and time 
series analysis. It groups similar declarative behavioral constraints and 
automatically identifies change points. The system provides visual aids 
such as the Drift Map, Drift Charts, and a directly-follows graph. While 
these visualizations effectively localize change points, it has a signifi-
cant limitation. The process of identifying simple gradual and complex 
drifts is not automated and depends on a user’s visual interpretation. 
As a result, recognizing complex drift types or several different drifts 
within the same event log can be challenging and subjective, limiting 
the ability to characterize drift types and the overall process evolution. 
Fig.  8(c) shows the Drift Map, the main output of the VDD technique, 
for the same concept drift scenario in Fig.  8(a). Given the visualization, 
it is impossible to see if detected change points belong to a complex 
or form a sequence of simple drifts. In our evaluation (Section 4), we 
further demonstrate these limitations and compare the VDD approach 
to our work.

Overall, it is thus clear that the comprehensive detection and char-
acterization of concept drifts has not yet been properly addressed. Our 
framework, described next, overcomes this.

3. Concept drift detection and characterization framework

This section presents our framework for detecting and character-
izing simple and complex concept drifts. Section 3.1 introduces the 
framework at a high level, while Section 3.2–3.4 describe its main steps 
in detail.

3.1. Framework overview

Fig.  9 outlines our proposed framework at a high level, detailing its 
input, main steps, and output.

Fig. 9. Overview of the main steps of our framework.

Framework input. Our framework takes as input an event log 𝐿. 
We use 𝛴𝐿 to refer to the set of traces of 𝐿, where each trace 𝜎 ∈
𝛴𝐿 represents a sequence of events from 𝐿 with the same case ID, 
ordered by their timestamps. Finally, we use 𝑝𝑓𝑖𝑟𝑠𝑡 and 𝑝𝑙𝑎𝑠𝑡 as time 
points, respectively, corresponding to the timestamps of the first and 
last events in 𝐿.
Framework structure. Our framework consists of three key steps. 
Step 1 focuses on the detection of change points in log 𝐿, for which a 
range of existing state-of-the-art techniques can be employed. In Step 2, 



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
our framework turns the sequence of detected change points into a se-
quence of process changes by differentiating between individual points 
that correspond to sudden changes and pairs of consecutive change 
points that indicate a gradual process change. Lastly, in Step 3, we 
conduct change inter-relation analysis to establish connections between 
the detected process changes, yielding a collection 𝐷 of simple and 
complex drifts.
Framework output. Our framework’s output is a collection 𝐷 of 
identified simple and complex drifts, following the definitions in Sec-
tion 2.4. Each identified drift is thus associated with a drift type and 
corresponding process changes, including process change types and the 
associated change points, providing a comprehensive characterization 
of the drifts in an event log.

3.2. Step 1: Change point detection

The first step of our framework identifies the moments in an event 
log when process behavior changes, resulting in a sequence of detected 
change points and the corresponding time windows, as illustrated in 
Fig.  10. This step can be instantiated with any existing technique for 
change point detection in an event log, as this problem is the most ex-
tensively addressed task in concept drift detection, unlike other aspects 
of our framework, as demonstrated in Section 2.5. Additionally, recent 
work by Adams et al. [3] underscores the effectiveness of some of 
these techniques, which we also test and compare in our experimental 
evaluation in Section 4.

Fig. 10. Outcome of the first framework step: change points are detected using an 
existing change point detection technique, splitting the time frame of an event log into 
time windows.

Once Step 1 is instantiated using any existing change point detection 
technique, we obtain a sequence of detected change points, which we 
represent as 𝑃 ∶= ⟨𝑝1,… , 𝑝𝑁 ⟩. These change points split the time frame 
of log 𝐿 into a sequence of 𝑁 + 1 time windows 𝑊 ∶= ⟨𝑤0,… , 𝑤𝑁 ⟩, 
where 𝑤0 represents the time window from 𝑝𝑓𝑖𝑟𝑠𝑡 to 𝑝1, and 𝑤𝑁
corresponds to the time window from 𝑝𝑁  to 𝑝𝑙𝑎𝑠𝑡. Fig.  10 shows the 
outcome of the first framework step, assuming an event log with six 
process change points (our running example for this section).

Note that our framework terminates after the first step if 𝑃  does not 
contain any change points; otherwise, the framework continues with 
the next step to reveal process changes from detected change points.

3.3. Step 2: Change type classification

The second step of our framework turns the sequence of detected 
change points into a sequence of sudden and gradual process changes. 
As illustrated in Fig.  11, this involves differentiating between two cases:

1. Situations where the behavior that follows a change point 𝑝𝑖
(i.e., during window 𝑤𝑖) corresponds to a distinct process ver-
sion, signaling that a sudden change occurred at point 𝑝𝑖;

Fig. 11. The main idea of the change type classification step.
7 
2. Situations where the behavior in 𝑤𝑖 reflects a mix of the behavior 
that occurred before 𝑝𝑖 (i.e., in window 𝑤𝑖−1) and the behavior 
that happens after the next change point 𝑝𝑖+1 (i.e., window 𝑤𝑖+1). 
This indicates that the behavior observed in window 𝑤𝑖 does not 
correspond to a distinct process version. Rather, it corresponds 
to a transition period in which the previous process version 𝑣𝑖
is shifted out and the new one 𝑣𝑖+1 is introduced, signifying a 
gradual process change that starts at 𝑝𝑖 and ends at 𝑝𝑖+1.

Fig. 12. Outcome of the second framework step: each change point 𝑝𝑖 is associated 
with a process change.

To operationalize this idea, we have developed a change type classi-
fication technique, presented in Algorithm 1. It determines if a change 
point belongs to a sudden or gradual process change by considering the 
evolution of the process behavior before and after the detected change 
points. It takes an event log 𝐿 and a sequence of change points 𝑃 , 
as input and generates a corresponding sequence of 𝑁 ≤ |𝑃 | process 
changes 𝐶 = ⟨𝑐1,… , 𝑐𝑁 ⟩ as output. Following our definition of a 
process change in Section 2.4.1, each process change is associated with 
a change type (‘‘sudden’’ or ‘‘gradual’’), two corresponding start and 
end change points (𝑝𝑠𝑡𝑎𝑟𝑡 and 𝑝𝑒𝑛𝑑), and two process versions (𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
and 𝑣𝑛𝑒𝑥𝑡). For our running example, the output of this step is shown 
in Fig.  12, which shows that six detected change points describe four 
process changes.

Next, we explain the main parts of Algorithm 1: behavioral repre-
sentation and change point classification.
Algorithm 1 Change Type Classification
Input: Event log 𝐿, sequence of change points 𝑃 = ⟨𝑝1,… , 𝑝𝑁 ⟩

Parameter: Trend percentile 𝛼
Output: Sequence of process changes 𝐶 = ⟨𝑐1,… , 𝑐𝑁 ⟩

1: procedure ChangeTypeClassification(𝐿, 𝑃 , 𝛼)
2:  𝑊 =

⟨

𝑤0,… , 𝑤
|𝑃 |

⟩

← computeWindows(𝐿, 𝑃 )
3:  𝑇 ←

⟨

𝑡1,… , 𝑡
|𝑃 |

⟩ with 𝑡𝑖 = ⊥ for all 𝑖 in [1, |𝑃 |]
4:   ← getBehavioralMatrix(𝐿, 𝑃 )
5:  for 𝑖 ∈ [1, |𝑃 | − 1] do 
6:  if 𝑡𝑖 = ⊥ then
7:  𝑤𝑒𝑖𝑔𝑡ℎ𝑠 ← 0, 𝑤𝑒𝑖𝑔𝑡ℎ𝑔 ← 0
8:  for 𝑏 ∈ .relations do
9:  𝑟𝑜𝑐𝑏,1 ← rateOfChange(𝑏,𝑤𝑖−1, 𝑤𝑖)
10:  𝑟𝑜𝑐𝑏,2 ← rateOfChange(𝑏,𝑤𝑖, 𝑤𝑖+1)
11:  𝑡𝑟𝑒𝑛𝑑𝑏 ← classifyTrend(𝑟𝑜𝑐𝑏,1, 𝑟𝑜𝑐𝑏,2, 𝛼)
12:  if 𝑡𝑟𝑒𝑛𝑑𝑏 = ‘‘sudden’’  then
13:  𝑤𝑒𝑖𝑔𝑡ℎ𝑠 += calcWeight(𝑏, [𝑤𝑖−1, 𝑤𝑖, 𝑤𝑖+1])
14:  else if 𝑡𝑟𝑒𝑛𝑑𝑏 = ‘‘gradual’’ then
15:  𝑤𝑒𝑖𝑔𝑡ℎ𝑔 += calWeight(𝑏, [𝑤𝑖−1, 𝑤𝑖, 𝑤𝑖+1])

16:  if 𝑤𝑒𝑖𝑔𝑡ℎ𝑔 > 𝑤𝑒𝑖𝑔𝑡ℎ𝑠 then
17:  𝑡𝑖 ← gradual𝑠𝑡𝑎𝑟𝑡, 𝑡𝑖+1 ← gradual𝑒𝑛𝑑
18:  else
19:  𝑡𝑖 ← ‘‘sudden"
20:  if 𝑡

|𝑃 | = ⊥ then
21:  𝑡

|𝑃 | ← ‘‘sudden"
22:  𝐶 = ⟨𝑐1,… , 𝑐𝑁 ⟩ ← setProcessChanges(𝑃 , 𝑇 ,)
23:  return 𝐶
Behavioral representation. Our algorithm first computes a behavioral 
representation to characterize the recorded process behavior during 



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
the time windows between detected change points. In our framework, 
we use directly-follows relations [20] observed within a specified time 
window, a widely used behavioral representation in process mining 
for concept drift detection [5]. It involves counting the frequency with 
which two activities are observed to directly follow one another within 
a single case. However, it is important to note that our algorithm’s 
choice of behavioral representation is flexible, provided that it yields 
a numeric frequency distribution over a predefined set of relations or 
patterns across the windows. Therefore, it can also cover other types of 
relations (e.g., eventually follows), sets of relation types, such as those 
of a behavioral profile [21], or declarative process constraints [22].

To derive a behavioral representation, our algorithm takes an event 
log 𝐿 with the sequence of detected change points 𝑃  as input and 
then computes a behavioral matrix, denoted as . The behavior matrix 
consists of columns .windows that correspond to the time windows and 
rows .relations that correspond to the behavioral relations. Each cell 
[𝑏,𝑤] of the behavioral matrix corresponds to the relative frequency 
of a relation 𝑏 (e.g., a directly-follows relation between two activities) 
for a window 𝑤 (line 4). To calculate such a relative frequency, our 
algorithm first identifies the set of traces 𝛴𝑤 ⊆ 𝛴𝐿 that started during 
that window (according to the timestamp of the trace’s first event).2 
The algorithm then counts how often relation 𝑏 is observed in 𝛴𝑤, 
e.g., how often we observe that an activity 𝑥 is directly followed by 
activity 𝑦 in these traces, and divides that count by the number of traces 
in 𝛴𝑤, yielding [𝑏,𝑤].

Fig.  13 illustrates the steps for constructing a behavioral matrix 
in a simplified example. In this example, an event log containing 
three change points is first converted into absolute frequencies for 
each time window, assuming four distinct relations across all recorded 
traces. These absolute frequencies are then transformed into relative 
frequencies, producing the final behavioral matrix.
Change point classification. Using the obtained behavioral represen-
tation, our algorithm next iteratively goes over the change points in 𝑃
to classify them. For each index 𝑖 ∈ [1, |𝑃 |−1], the algorithm considers a 
situation such as previously illustrated in Fig.  11. Specifically, it consid-
ers the behavior observed during window 𝑤𝑖, in light of the behavior 
observed for its preceding (𝑤𝑖−1) and succeeding (𝑤𝑖+1) windows, in 
order to determine if a change point 𝑝𝑖 corresponds to a sudden change 
or to a gradual start, i.e., the first change point in a gradual process 
change from 𝑝𝑖 to 𝑝𝑖+1.

To decide between these two options, the algorithm first consid-
ers each behavioral relation surrounding point 𝑝𝑖 individually before 
classifying 𝑝𝑖 as being a sudden or gradual start point:

Relation-level classification. Given a change point 𝑝𝑖, our algorithm 
determines for each behavioral relation 𝑏 ∈ .relations if it was involved 
in the changes of points 𝑝𝑖 and 𝑝𝑖+1, and, if so, if 𝑏 changed in a sudden 
or a gradual manner.

2 The choice to compute a behavioral matrix according to the traces that 
start during 𝑤 follows existing work on concept drift detection (cf. [3]) and 
is based on the assumption that the process version of a trace is fixed when 
it starts. If this assumption does not hold, the behavioral matrix  should, 
instead, be computed according to the events observed during 𝑤.
8 
To achieve this, we calculate the rates of change (𝑟𝑜𝑐) [25] of 
relation 𝑏 when moving from time window 𝑤𝑖−1 to 𝑤𝑖, denoted as 𝑟𝑜𝑐𝑏,1, 
and from 𝑤𝑖 to 𝑤𝑖+1, denoted as 𝑟𝑜𝑐𝑏,2 (lines 9–10). For this, we use 
the following function (See Box  I): In Eq.  (3), the first case captures 
the usual computation of a rate of change, according to established 
definitions [25]. The second and third cases avoid division by zero 
errors, setting the change rate of a relation 𝑏 to 100% if it appears in 
𝑤𝑖 but not in 𝑤𝑖−1 (second case) and to 0% if it appears in neither 𝑤𝑖
or 𝑤𝑖−1 (third case).

Next to these change rates, we also consider a trend percentile 𝛼, 
which we use to determine if a change rate falls within the normal 
variance in a process or if it is part of an actual process change. 
Specifically, we consider the rates of change of all behavioral relations 
across all pairs of successive windows, i.e., the distribution of rates 
of change for a particular log. Given this distribution, we consider 
𝑟𝑜𝑐 to be significant (i.e., a true process change) if it is lower than 
the value of the bottom percentile 𝑉𝛼 (a significant decrease in the 
frequency of a relation) or greater than the value of the top percentile 
𝑉1−𝛼 (a significant increase) of all rates of change, otherwise, i.e., if 
𝑟𝑜𝑐 ∈ [𝑉𝛼 , 𝑉1−𝛼], it is considered to be part of the normal behavioral 
variation.

Given the change rates 𝑟𝑜𝑐𝑏,1 and 𝑟𝑜𝑐𝑏,2, and the trend percentile 𝛼, 
we then classify the trend of relation 𝑏 for this particular change point 
using the following function (line 11) (see Box  II): 

This function classifies the relation 𝑏 as unchanged when both 𝑟𝑜𝑐𝑏,1
and 𝑟𝑜𝑐𝑏,2 represent normal behavioral variation. If 𝑟𝑜𝑐𝑏,1 and 𝑟𝑜𝑐𝑏,2
indicate shifts in the same direction (both positive or both negative) 
with at least one reflecting a significant increase or decrease, then 𝑏 is 
classified as a gradual change. Finally, the change is classified as sudden
in all other cases.

Change point-level classification. Next, the algorithm classifies the 
change point as either sudden or as gradual start by considering the 
relevance of the identified trend types per relation. Specifically, given 
a relation 𝑏 and a change point 𝑝𝑖, the algorithm assigns a weight to 
that relation. This weight is determined as the average of the relative 
frequencies of 𝑏 in windows 𝑤𝑖−1, 𝑤𝑖, and 𝑤𝑖+1 divided by the sum 
of all averaged relative frequencies of other relations. Using these 
weights, our algorithm categorizes the change point as gradual start if 
the cumulative weight of identified relations exceeds that of sudden; 
otherwise, it is labeled as a sudden (lines 12–19).

Note that if a point 𝑝𝑖 is classified as a gradual start point, its 
successor, 𝑝𝑖+1 is then immediately classified as a corresponding gradual 
end (see the illustration in Fig.  11). Furthermore, if the last change 
point has not been assigned a type yet when completing the iteration, 
which happens when |𝑃 | = 1 or when the type of the second last change 
point is sudden, then the last change point is classified as sudden (line 
21).

Fig.  14 illustrate the change point-level classification using the 
behavior matrix depicted in Fig.  13. We consider the first three columns 
of the behavior matrix to decide whether 𝑐1 is a sudden process change 
or is the start point of a gradual process change. For this, we calculate 
the corresponding 𝑟𝑜𝑐𝑏,1 and 𝑟𝑜𝑐𝑏,2 for each relation 𝑏. Assuming a trend 
percentile of 𝛼 = 3, we get upper and lower percentiles for 𝑟𝑜𝑐 of 77 and 
−31, respectively. Given these percentiles, the variations of 𝑟𝑜𝑐  and 
𝑏,1
Fig. 13. Example of a behavioral matrix obtained from an event log.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
𝚛𝚊𝚝𝚎𝙾𝚏𝙲𝚑𝚊𝚗𝚐𝚎(𝑏,𝑤𝑖−1, 𝑤𝑖) ∶=

⎧

⎪

⎨

⎪

⎩

([𝑏,𝑤𝑖]∕[𝑏,𝑤𝑖−1] − 1) ∗ 100, if [𝑏,𝑤𝑖−1] > 0,
100, if [𝑏,𝑤𝑖−1] = 0 and [𝑏,𝑤𝑖] > 0,
0, if [𝑏,𝑤𝑖−1] = 0 and [𝑏,𝑤𝑖] = 0.

(3)

Box I. 
𝚌𝚕𝚊𝚜𝚜𝚒𝚏𝚢𝚃𝚛𝚎𝚗𝚍(𝑟𝑜𝑐𝑏,1, 𝑟𝑜𝑐𝑏,2, 𝛼) ∶=

⎧

⎪

⎨

⎪

⎩

𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑, if 𝑟𝑜𝑐𝑏,1 ∈ [𝑉𝛼 , 𝑉1−𝛼] and 𝑟𝑜𝑐𝑏,2 ∈ [𝑉𝛼 , 𝑉1−𝛼],
𝑔𝑟𝑎𝑑𝑢𝑎𝑙𝑐ℎ𝑎𝑛𝑔𝑒, if 𝚜𝚒𝚐𝚗(𝑟𝑜𝑐𝑏,1) = 𝚜𝚒𝚐𝚗(𝑟𝑜𝑐𝑏,2) and 𝑟𝑜𝑐𝑏,1 ∉ [𝑉𝛼 , 𝑉1−𝛼] ∨ 𝑟𝑜𝑐𝑏,2 ∉ [𝑉𝛼 , 𝑉1−𝛼],
𝑠𝑢𝑑𝑑𝑒𝑛𝑐ℎ𝑎𝑛𝑔𝑒, otherwise.

(4)

Box II. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

𝑟𝑜𝑐𝑏,2 are classified into ‘‘normal’’ or ‘‘significant’’ and then for each
relation a trend is defined according to Eq.  (4). Finally, the weights
are accumulated according to the trends. Since the total number of
relation weights that belong to a sudden change (0.19) is greater than
for gradual (0.0), the change point 𝑐1 is classified as sudden. Following
the same procedure, the change point 𝑐2 is classified as a gradual start,
therefore, the change point 𝑐3 is a gradual end point. Overall, the
three change points form two process changes: sudden (𝑐1) and gradual
(𝑐2 and 𝑐3). Finally, the algorithm establishes a sequence of detected
process changes 𝐶 based on the change points, their classifications,
and the behavioral matrix (line 22). Specifically, if a change point 𝑝𝑖 is
classified as a sudden change, then the algorithm generates a process
change instance 𝑐 ∶= (𝑠𝑢𝑑𝑑𝑒𝑛, 𝑝𝑖, 𝑝𝑖, 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑣𝑛𝑒𝑥𝑡), where 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and
𝑣𝑛𝑒𝑥𝑡 corresponding to the behavioral representation recorded in  for
the time windows preceding and following 𝑝𝑖, respectively. Otherwise,
if two consecutive change points 𝑝𝑖 and 𝑝𝑖+1 are classified as gradual
start and gradual end, then the algorithm creates a process change
instance 𝑐 ∶= (𝑔𝑟𝑎𝑑𝑢𝑎𝑙, 𝑝𝑖, 𝑝𝑖+1, 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑣𝑛𝑒𝑥𝑡). Here, 𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and 𝑣𝑛𝑒𝑥𝑡
correspond to the behavioral representation recorded in  for the time
windows 𝑤𝑖−1 and 𝑤𝑖+1, respectively.

3.4. Step 3: Change inter-relation analysis

In the final step, our framework analyzes connections among the de-
tected process changes to recognize a collection of simple and complex
drifts as output. We illustrate this output in Fig.  15, which shows that
the four process changes of our running example form three concept
drifts. Specifically, the gradual process change 𝑐1 does not connect to
other changes and is therefore classified as a simple drift. By contrast,
changes 𝑐2 and 𝑐3 have been recognized to jointly form an incremental
drift. Finally, since change 𝑐4 leads to a previously observed process
version (𝑣 ), this represents a recurring drift in the process.
1

9 
To operationalize this step, we have developed a change inter-
relation detection algorithm outlined in Algorithm 2. The algorithm
takes the sequence of changes 𝐶 stemming from the previous steps as
input and evaluates relationships between the changes by comparing
behavioral similarities of associated process versions. It produces a
collection of concept drifts 𝐷 as output, where process changes are
connected, forming complex drifts, or independent, representing simple
drifts. The main part of our algorithm focuses on detecting complex
drifts since simple drifts automatically remain after larger, complex
drifts have been detected. To identify complex drifts, our algorithm
begins by searching for recurring drifts and then turns to incremental
ones. The search for recurring drifts takes priority over incremental
ones because it relies on a stronger condition regarding the similarity
between different process versions.

Next, we describe Algorithm 2 following its key components: re-
curring drift detection, incremental drift detection, and simple drift
detection. Recurring drift detection. Algorithm 2 detects recurring
process changes by looking for process changes that lead to highly
similar process behavior.

To do this, our algorithm starts by initializing a collection 𝑟𝑒𝑐 to
store sets of process changes that lead to instances of the same process
version (line 2). Since also the initial process version in 𝑤0 can reoccur
(see e.g., Fig.  15), we establish a dummy change 𝑐0, corresponding
to a sudden change that appears at the start of the event log, i.e., at
point 𝑝𝑓𝑖𝑟𝑠𝑡 (line 3). Afterwards, the algorithm iterates over all process
changes, including 𝑐0 (line 4). For any change 𝑐𝑖 that is not yet part of
a recurring drift, the algorithm checks if there is any indirect successor
𝑐𝑗 that leads to process behavior highly similar to the version following
𝑐𝑖, while ensuring that 𝑐𝑗−1 is not part of a recurring drift. (line 8). If
that is the case, it is recognized that 𝑐𝑗 is recurring with respect to 𝑐𝑖.

Here, the function isRecurringChange quantifies the similarity
between the two process versions 𝑐 .𝑣𝑛𝑒𝑥𝑡 and 𝑐 .𝑣𝑛𝑒𝑥𝑡. If the similarity
𝑖 𝑗  
Fig. 14. Example of change point-level classification based on the behavior matrix.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Algorithm 2 Change Inter-Relation Detection
Input: Sequence of process changes 𝐶 = ⟨𝑐1,… , 𝑐𝑀 ⟩

Parameter: Thresholds for recurring and incremental behavioral 
similarity 𝜃𝑟𝑒𝑐 and 𝜃𝑖𝑛𝑐
Output: Collection of detected drifts 𝐷
1: procedure ChangeInterRelationDetection(𝐶, 𝜃𝑟𝑒𝑐 , 𝜃𝑖𝑛𝑐)

⊳ Recurring drift detection
2:  𝑟𝑒𝑐 ← {}
3:  𝑐0 ∶= (𝑠𝑢𝑑𝑑𝑒𝑛, 𝑝𝑓𝑖𝑟𝑠𝑡, 𝑝𝑓𝑖𝑟𝑠𝑡, ⊥, 𝑐1.𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
4:  for 𝑐𝑖 in ⟨𝑐0, 𝑐1,… , 𝑐𝑀 ⟩ do 
5:  if 𝑐𝑖 ∉

⋃

𝑠∈𝑟𝑒𝑐
𝑠 then 

6:  𝑠𝑟𝑒𝑐 ← {𝑐𝑖}
7:  for 𝑐𝑗 in 

⟨

𝑐𝑖+2,… , 𝑐𝑀
⟩ do 

8:  if 𝑐𝑗−1 ∉ 𝑠𝑟𝑒𝑐 ∧ isRecurringChange(𝑐𝑗 , 𝜃𝑟𝑒𝑐 ) then 
9:  𝑠𝑟𝑒𝑐 .add(𝑐𝑗 )
10:  if |𝑠𝑟𝑒𝑐 | > 1 then 
11:  𝑟𝑒𝑐 .add(𝑠𝑟𝑒𝑐 )
12:  𝐷𝑟𝑒𝑐 ← detectRecurringPatterns(𝑟𝑒𝑐 )

⊳ Incremental drift detection
13:   𝑖𝑛𝑐 ← {}, 𝑠𝑖𝑛𝑐 ← ⟨⟩

14:  for 𝑐𝑖 in 𝐶 do 
15:  if 𝑐𝑖 ∉

⋃

𝑠∈𝑟𝑒𝑐
𝑠 ∧ isMinorChange(𝑐𝑖, 𝜃𝑖𝑛𝑐 ) then 

16:  𝑠𝑖𝑛𝑐 .extend(𝑐𝑖) 
17:  else
18:  if |𝑠𝑖𝑛𝑐 | > 1 then 
19:   𝑖𝑛𝑐 .add(𝑠𝑖𝑛𝑐 )
20:  𝑠𝑖𝑛𝑐 ← {}
21:  𝐷𝑖𝑛𝑐 ← detectIncrementalPatterns( 𝑖𝑛𝑐 )
22:  𝐷𝑠𝑖𝑚𝑝𝑙𝑒 ← detectSimpleDrifts(𝐶,𝐷𝑟𝑒𝑐 , 𝐷𝑖𝑛𝑐 )
23:  𝐷 ∶= 𝐷𝑠𝑖𝑚𝑝𝑙𝑒 ∪𝐷𝑟𝑒𝑐 ∪𝐷𝑖𝑛𝑐

24:  return 𝐷

is above a threshold 𝜃𝑟𝑒𝑐 , then the process change 𝑐𝑗 is considered 
to be a recurring change with respect to 𝑐𝑖. The function isRecur-
ringChange can be operationalized using any measure that quantifies 
the similarity between two frequency distributions (over behavioral 
relations, i.e., the behavioral representation of two windows or pro-
cess versions), such as the cosine similarity, a vector-based similarity 
measure, or the Earth mover’s distance, which quantifies the distance 
between distributions, both of which are commonly applied in process 
mining settings [8,26]. As a default option, we use cosine similarity, 
which demonstrates higher sensitivity in detecting added and removed 
behavioral relationships and achieved the best overall drift detection 
results in our evaluation. Recurring changes are collected in a previ-
ously instantiated set 𝑠𝑟𝑒𝑐 (line 9). Note that our algorithm ensures that 
𝑠𝑟𝑒𝑐 will never contain consecutive process changes, as recurring process 
version instances correspond to process changes that are separated by 
at least one other process change. Any set 𝑠𝑟𝑒𝑐 that contains more than 
one process change, i.e., any set that actually forms a recurring drift, 
is added to the set of recurring drifts 𝑟𝑒𝑐 (lines 10–11).
10 
Finally, the set 𝑟𝑒𝑐 is turned into a set of recurring drifts 𝐷𝑟𝑒𝑐

(line 12). To do this, our algorithm looks for sequences of consecutive 
changes in the sets of 𝑆𝑟𝑒𝑐 that repeat two or more process versions in 
a particular order. Examples of this are seen in Fig.  6, where case (a) 
shows versions 𝑣1 and 𝑣2 in an alternating pattern, whereas case (b) 
shows a repetition of a larger sequence ⟨𝑣1, 𝑣2, 𝑣3⟩. In both cases, the 
sets that form these larger patterns are combined into a single recurring 
drift, whereas any set in 𝑟𝑒𝑐 that does not form a larger pattern is 
turned into a recurring drift by itself, as, e.g., seen for the {𝑐0, 𝑐4} in 
Fig.  15.

To illustrate the idea of the recurring drift detection component of 
our change inter-relation detection algorithm, we present an example 
shown in Fig.  16. This example includes a behavior matrix corre-
sponding to the scenario in Fig.  15, along with the matrix displaying 
the cosine similarity between behavioral representations of different 
process versions across various windows.3 Since the process changes 
𝑐1 and 𝑐3 are of a gradual type, the windows 𝑤2 and 𝑤5 represent 
transition periods between two different process versions and, there-
fore, are excluded from consideration. From this similarity matrix, we 
can observe how the behavior of process versions before and after 
each change point compares to one another. Assuming 𝜃𝑟𝑒𝑐 = 0.95, the 
algorithm detects that the similarity between the process version in 𝑤1
and the process version in 𝑤7 (i.e., after 𝑐4) is 0.99, which exceeds the 
threshold of 𝜃𝑟𝑒𝑐 (see Point 1 in the figure). As a result, the process 
change 𝑐4, along with 𝑐0, is identified as a recurring drift.
Incremental drift detection. After recurring change detection, we 
start with the detection of incremental changes by identifying se-
quences of minor consecutive process changes in the sequence 𝐶.

To do this, we start by initializing a collection  𝑖𝑛𝑐 to store se-
quences of consecutive incremental process changes (line 13). For each 
process change 𝑐𝑖 in 𝐶 that is not already part of detected recurring 
drifts, the algorithm checks if 𝑐𝑖 is a minor change (lines 14–15). 
The underlying function, isMinorChange considers a change to be 
minor if the behavioral similarity between 𝑐𝑖.𝑣𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and 𝑐𝑖.𝑣𝑛𝑒𝑥𝑡 is 
above the threshold 𝜃𝑖𝑛𝑐 (using the same similarity measure as used 
for recurring drifts). If 𝑐𝑖 is indeed a minor change, we add it to the 
current sequence 𝑠𝑖𝑛𝑐 (line 16) and continue with the following process 
change. If 𝑐𝑖 is not minor (or was already part of a recurring change), 
we add the sequence of minor changes observed so far, 𝑠𝑖𝑛𝑐 , to the set 
of incremental sequences, provided that 𝑠𝑖𝑛𝑐 contains more than one 
change (lines 18–19). Then, after resetting 𝑠𝑟𝑒𝑐 (line 20), we continue 
with the next process change.

To illustrate the idea of the incremental drift detection component, 
we again use the example in Fig.  16. Since process changes 𝑐0 and 𝑐4
are identified as changes of a recurring drift, we need to only consider 
the remaining process changes and look for a sequence of at least 
two process changes with a minor change severity. Assuming 𝜃𝑖𝑛𝑐 =
0.85, a minor process change is given if the similarity between the 
process version before and after the process change is above 𝜃𝑖𝑛𝑐 . In 

3 Our algorithm performs similarity analysis by iterating over a sequence 
of detected process changes. For clarity, however, we consider the matrix as 
a whole to provide a more straightforward explanation.
Fig. 15. Outcome of the final framework step: every process change is either linked with other changes, creating a complex drift, or exists independently as a simple drift.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Fig. 16. Example of change inter-relation detection using a behavioral matrix.
our example, among the remaining process changes 𝑐1, 𝑐2, and 𝑐3, both 
𝑐2 and 𝑐3 exhibit similarity values above the incremental threshold of 
0.85 (see Point 2 in the figure). Therefore, these changes constitute an 
incremental drift.

In the end, the algorithm converts the set  𝑖𝑛𝑐 into a collection 
of incremental drifts 𝐷𝑟𝑒𝑐 (line 21), where each detected sequence 
of consecutive minor process changes within  𝑖𝑛𝑐 is turned into an 
incremental drift.
Simple drift establishment. After identifying complex drifts, the algo-
rithm establishes a set of simple drifts (line 22) by turning any process 
change in 𝐶 that is not part of a recurring or incremental drift into 
a stand-alone, simple drift, resulting in a set 𝐷𝑠𝑖𝑚𝑝𝑙𝑒. In our example, 
shown in Fig.  16, the only remaining process change is the gradual 
process change 𝑐2. Since it is not part of a complex drift, it is classified 
as a simple drift.
Framework output. Finally, the algorithm returns the collection of 
detected drifts 𝐷 given by the union of the detected simple, recurring, 
and incremental drifts (line 23).

Our framework thus identifies both simple and complex drifts in 
accordance with the taxonomy presented in Fig.  7, specifying their 
drift types along with the associated process changes, distinguishing be-
tween sudden and gradual process changes. In this way, our framework 
supports the comprehensive detection and characterization of concept 
drifts from event logs.

4. Evaluation

This section describes the evaluation experiments we conducted to 
test the ability of our framework to detect different types of concept 
drifts recorded in event logs. Section 4.1 describes the data collection 
used for this purpose and Section 4.2 presents the general evaluation 
setup. Afterwards, Sections 4.3–4.5 describe the quantitative exper-
imental results per framework step, whereas Section 4.6 presents a 
qualitative comparison of our work to a state-of-the-art technique. 
To ensure reproducibility, we have made the data collection, imple-
mentation, configurations, and raw results accessible in our public 
repository.4

4.1. Data collection

To evaluate our work, we require a collection of event logs that 
contain known (i.e., gold-standard) concept drifts of all types. Since 
a publicly available collection does not exist, we generated synthetic 
datasets using CDLG [27], a flexible tool that produces event logs with 
known concept drifts. We used CDLG to generate a dataset of 100 event 
logs. Each log is derived from a randomly generated process tree using 
PTandLogGenerator [28], which is then modified by a sequence of one 
to three randomly generated drifts, of different types.

4 Project repository: https://gitlab.uni-mannheim.de/processanalytics/
concept-drift-characterization.
11 
Table 3
PTandLogGenerator settings used to create process trees with varying complexity.
 PTandLogGenerator parameter Process tree complexity
 Type Name Simple Middle Complex 
 Number of activities Minimum 6 14 20  
 Mode 9 18 25  
 Maximum 12 20 30  
 Control-flow Sequence 0.70 0.25 0.25  
 probabilities Choice 0.10 0.30 0.30  
 Parallel 0.15 0.25 0.25  
 Loop 0.05 0.20 0.20  

To generate a diverse set of scenarios for concept drift detection, 
we varied two factors during log generation. First, we created the 
initial process trees with three levels of complexity: simple, middle, 
and complex. Table  3 shows the key parameter settings, such as the 
number of activities and the probabilities of control-flow operators, 
used in PTandLogGenerator for each complexity level. Examples of 
generated process trees for simple and complex cases are shown in Fig. 
17. Second, we also varied the characteristics of the drifts, including 
their severity and distribution over the timeline of the event log.5 The 
complete set of parameters used to generate this dataset, along with 
the initial and modified process trees and the event logs themselves, is 
available in our repository.

Table  4 provides an overview of the base dataset that contains 100 
event logs. The logs contain a total of 198 drifts, i.e., 38 logs with 1 
drift, 26 logs with 2 drifts, and 36 logs with 3 drifts. Simple sudden and 
gradual drifts involve a single process change, whereas complex recur-
ring and incremental drifts comprise three process changes, resulting in 
a total of 426 process changes. Each process change can occur suddenly, 
resulting in a single change point, or gradually, resulting in two change 
points (gradual start and end), leading to 651 change points in total.

Table 4
Characteristics of the drifts in our base dataset consisting of 100 event logs.
 Drift
type

Nr. of
drifts

Nr. of process
changes

Change points
  Total  Sudden Gradual start Gradual end 
 Sudden 35 35 35 35 – –  
 Gradual 49 49 98 – 49 49  
 Incremental 58 174 263 85 89 89  
 Recurring 56 168 255 81 87 87  
 Total 198 426 651 201 225 225  

To evaluate the robustness of our detection framework, we gen-
erated two variations of the base dataset by introducing noise into 
the event logs Specifically, we use an existing noise-insertion tech-
nique [29] that randomly inserts, removes, and swaps events in a 

5 We intentionally excluded logs with only a single sudden drift, as these 
contain just one change point and therefore do not represent a classification 
problem.

https://gitlab.uni-mannheim.de/processanalytics/concept-drift-characterization
https://gitlab.uni-mannheim.de/processanalytics/concept-drift-characterization


A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Fig. 17. Examples of initial process trees of different complexity levels.
fraction of the traces in an event log, obtaining datasets with 20% and 
40% noisy traces (with all other characteristics, such as the number 
of drifts and change points, the same as depicted in Table  4). Conse-
quently, the data collection used in our evaluation consists of 600 event 
logs.

4.2. General setup

Framework implementation. We used Python 3 to implement a pro-
totype of our framework, which is publicly available through the afore-
mentioned project repository. Our implementation uses the PM4Py [30] 
library to handle event logs and the python library Pandas6 for data 
processing steps.
Framework configurations. Step 1 of our framework can be instanti-
ated using any of a range of existing change point detection techniques. 
Therefore, in Section 4.3, we evaluate existing techniques on our data 
collection and select the one with the best accuracy for the remaining 
experiments. In Step 2, to build a behavioral matrix, we rely on 
directly-follows relations over the control flow perspective to obtain 
behavioral representations of the process execution for each window. 
In particular, we extract all directly-follows relations from each trace 
and allocate them to the window containing the first event in the trace. 
Finally, in Step 3, we use cosine similarity to compare the behavioral 
similarity between windows in the behavioral matrix when performing 
incremental and recurring change analyses.

In our algorithms, we set the hyperparameters as follows: the trend 
percentile is 𝛼 = 3, the incremental threshold is 𝜃𝑖𝑛𝑐 = 0.80, and 
the recurring threshold is 𝜃𝑟𝑒𝑐 = 0.95. We determined these hy-
perparameters by testing a range of options: 𝛼 ∈ [1,2,3,4,5,10], 
𝜃𝑖𝑛𝑐 ∈ [0.5,0.1,… ,0.4], and 𝜃𝑟𝑒𝑐 ∈ [0.50,0.55,… ,0.95] and selecting 
the combination that yielded the best average score, as reported in 
Experiment 3.2 (see Section 4.5) using an additional data collection for 
fine-tuning. This data collection was obtained using the same method 
as the evaluation dataset and exhibits similar concept drifts and noise 
levels.
Evaluation measures. To evaluate our framework’s accuracy, we com-
pare the detected change points, drifts, and drift types against those 
in the gold standard using precision, recall, and F1-score. Below, we 

6 Available at https://pandas.pydata.org.
12 
provide a general representation of these measures since their specific 
operationalization differs per experiment.

Precision measures how many detected change points or drifts are 
correct based on their alignment with the gold standard. It is given as 
the ratio of true positive detection over the total number of true positive 
and false positive detections: 

Precision = True Positives
True Positives + False Positives (5)

Recall measures the fraction of gold standard changes or drifts that 
are detected by our framework. It is given as the ratio of true positive 
detections over the total number of true positive and false negative 
detections: 

Recall = True Positives
True Positives + False Negatives . (6)

Finally, the F1-score is the harmonic mean of precision and recall: 

F1-score = 2 × Precision × Recall
Precision + Recall . (7)

Depending on the experimental setup, we use additional measures 
that aggregate the results, such as the weighted F1-score, which consid-
ers all drift types or change points and their respective support (number 
of instances).

4.3. Step 1: Change point detection

This section discusses experiments conducted to test the perfor-
mance of various existing techniques that can be used to instantiate 
Step 1 of our framework, which detects change points in a given event 
log.

4.3.1. Experimental setup
The first step of our framework relies on existing solutions for 

change point detection. For this reason, we evaluate existing change 
point detection techniques on our data collection and select the one 
with the best results for the remaining experiments.
Change point detection techniques. We test the same seven change 
point detection techniques used in a recent experimental comparison 
by Adams et al. [3]:

https://pandas.pydata.org


A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Table 5
Optimal parameter configurations for each change point detection technique.
 Technique Parameters  
 ProcessGraphs Window size: 300, max. window size: 400, p-value:0.1  
 EMD Window size: 150, step size: 1  
 Adwin/J Min/max adaptive window: 200/700, p-value: 0.4, step size: 20 
 Rinv Minimum relation invariance distance: 600, epsilon: 180  
 Lcdd Window size complete/detection: 400/400, stable period: 5  
 Bose/J Window size: 150, step size: 2  
 ProDrift Window size: 400, step size: 2  

1. ProcessGraphs: Seeliger et al. [7] derives process graph features 
from an event log with the corresponding edge and node fre-
quencies, using a sliding window to extract features. Change 
points are recognized if p-values from a statistical test fall below 
a threshold.

2. EMD: Brockhoff et al. [8] use sliding windows where each trace 
becomes a local multi-activity feature. Earth Mover’s Distance 
measures distribution differences between different windows. 
Change points are identified as local maxima in a graph.

3. Adwin/J: Martjushev et al. [15] address window size limitations 
in Bose et al. [4]. They introduce an adaptive window size, using 
recursive hypothesis tests on smaller windows near low p-values 
for precise drift location. High p-values lead to adaptive window 
growth, enabling segment skipping.

4. Rinv: Zheng et al. [9] propose drift detection using a boolean 
relation matrix. Matrix entries show direct and eventual activity 
relations within cases. Drifts are identified by change point 
candidates. These are clustered using DBSCAN, with final change 
points found based on minimal centroid distance.

5. Lcdd: Lin et al. [10] detect drifts by monitoring changes in 
directly-follows relations. They use two windows: a static com-
plete window and a sliding detection window. The complete 
window size is determined based on local directly-follows com-
pleteness, ensuring all relations of the active process are in-
cluded. A drift is reported when the two windows diverge con-
cerning a directly-follows relation.

6. Bose/J: Bose et al. [4] propose activity pair-based features. Using 
a fixed sliding window, features are extracted locally or globally. 
Their importance is assessed using J-measure, which quantifies 
the goodness of a rule. Then, populations are compared us-
ing non-parametric tests, and drifts are identified based on the 
resulting p-values.

7. ProDrift: Maaradji et al. [16] convert traces to partial orders 
of activities (called ‘‘runs’’). Runs emerge from ordered traces, 
handling concurrent activities. Using sliding windows, run pop-
ulations are extracted and then compared using statistical tests.

To identify the optimal parameter configuration for each technique, 
we employ the experimental framework [3]. This framework tests 
these techniques with different parameter options and reports various 
evaluation measures. Based on the best F1-score, we select the best 
parameter configuration for each technique, depicted in Table  5.
Evaluation measures. We use precision, recall, and F1-score intro-
duced in Eq.  (5) to Eq.  (7). In this experiment, a true positive is 
recorded if a detected change point is correctly assigned to a gold-
standard change point. To achieve this optimal assignment, we solve 
a linear program proposed by Adams et al. [3]. This program finds the 
best match between detected and actual change points (both are given 
via trace ID, i.e., the ordinal number of a trace in the log following 
the change), minimizing the total distance in terms of the number 
of traces between them. In contrast to Adams et al. who use a fixed 
absolute deviation of 200 traces, we use a relative accepted deviation
between the detected and the actual change point. This relative accep-
tance deviation ensures a fair accuracy analysis for our data collection 
containing event logs with significant differences in the number of 
13 
traces. In our evaluation, we consider relative acceptable deviation of 
1%, 5%, and 10% and discuss results obtained for a relative acceptable 
deviation of 5%.7 For all assignments, we identify a true positive when 
the distance between the detected change point and the gold-standard 
change point is less than or equal to 5% of the total number of traces 
in the log. Otherwise, the detected change points are classified as a 
false positive detection. The sum of false negatives and true positives 
(the denominator in the recall calculation) equals the total number of 
gold-standard change points.

4.3.2. Results
We present the evaluation results of the change point detection 

techniques, highlighting overall performance and the impact of noise, 
various change patterns, and different levels of change severity.
Overall performance. Table  6 provides an overview of the evaluation 
results. In terms of overall performance, we can distinguish three 
clear groups. The first group consists of two techniques demonstrating 
top performance: ProcessGraphs and EMD. ProcessGraphs is the best 
performer, with an average F1-score of approximately 0.70 across all 
datasets, while EMD also shows good performance but achieves a 
slightly lower average F1-score of 0.67. In the second group, we find
Adwin/J, Rinv, and Lcdd, attaining average F1-scores between 0.53 and 
0.58. Lastly, the third group encompasses Bose/J and ProDrift, with 
average F1-scores of 0.31–0.33.
Noise impact. Regarding robustness to noise, ProcessGraphs, EMD,
Adwin/J, and Bose/J maintain stable evaluation measures across noise 
levels, while Rinv, ProDrift, and Lcdd achieve lower accuracy for the 
noisy logs. Specifically, Rinv’s F1-score drops by close to 50% between 
the dataset without noise and those with 20% noisy traces (from 0.78 
to 0.41). However, additional noise does not noticeably impact its 
performance further. By contrast, ProDrift experiences a substantial 
performance decline, with an 80% drop in F1-score when 20% noise is 
introduced (from 0.71 to 0.16), followed by an additional 70% decrease 
for the logs with 40% noise (from 0.16 to 0.05). The significant drop 
in performance is primarily due to a decline in recall when noise is 
introduced, decreasing to 0.09 at 20% noise and further to 0.02 at 
40% noise. However, precision remains consistently high, exceeding 
0.90. Lcdd also appears highly sensitive to noise, often detecting non-
existent changes in its results. Its precision is consistently low, while 
recall increases significantly for the noisy logs, reaching up to 0.95. 
Interestingly, both ProcessGraphs and Bose/J exhibit an increase in 
precision as noise levels rise.
Change pattern impact. In addition to the noise impact, we assess the 
accuracy of change point detection techniques across different change 
patterns. We consider 6 different change patterns that are derived from 
three basic process changes and any combination of them: insertion of 
new activities (⊕), deletion of existing activities (⊖), and relocation 
of activities (⇔). Based on all correctly detected change points, we 
compute recall for each change pattern. As false positives do not 
correspond to any specific change pattern, we report precision as an 
overall measure per technique.

Table  7 shows the evaluation results for different change patterns, 
revealing two main findings. First, detection capabilities vary across 
techniques for different change patterns. For example, Lcdd achieves 
the highest overall recall of 0.82, showing the best performance for 
basic process changes. However, ProcessGraphs demonstrates superior 
change point detection accuracy for complex patterns, outperforming

7 Our repository also contains results for other relative acceptable devia-
tions. This choice is based on empirical justification. Given the characteristics 
of the data and the capabilities of the applied techniques, a relative acceptable 
deviation of 5% allows for effective differentiation in performance. When the 
deviation is set below 5%, the evaluation values are too low, as none of the 
techniques can detect changes at that level. In contrast, deviations above 5% 
lead to high values, as all techniques detect changes, making it harder to 
distinguish their performance.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Table 6
Performance of the change point detection techniques across logs with different noise levels. Bold numbers indicate the best 
score for the particular column.
 Technique Logs without noise Logs with 20% noise Logs with 40% noise Average F1  
 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score  
 ProcessGraphs 0.63 0.74 0.68 0.66 0.76 0.71 0.68 0.72 0.70 0.70  
 EMD 0.71 0.67 0.69 0.67 0.65 0.66 0.68 0.66 0.67 0.67  
 Adwin/J 0.84 0.45 0.59 0.84 0.44 0.58 0.85 0.43 0.57 0.58  
 Rinv 0.72 0.87 0.78 0.57 0.32 0.41 0.49 0.37 0.42 0.54  
 Lcdd 0.57 0.63 0.60 0.34 0.95 0.50 0.35 0.88 0.50 0.53  
 Bose/J 0.52 0.23 0.32 0.64 0.23 0.34 0.66 0.22 0.33 0.33  
 ProDrift 0.99 0.55 0.71 0.89 0.09 0.16 1.00 0.02 0.05 0.31  
Lcdd’s recall in 3 out of 4 cases. Second, the complexity of the change 
pattern impacts detection accuracy differently among techniques. For 
some techniques, accuracy improves with complex patterns that involve 
combinations of two or three basic process changes, while for others, 
accuracy declines as complexity increases. For instance, ProcessGraphs,
EMD, Lcdd, and ProDrift show improved performance with complex 
patterns, with recall increasing by up to 30 percentage points (as 
observed for ProcessGraphs) compared to their average recall on simpler 
patterns with only one change type. Conversely, other techniques expe-
rience a drop in recall, indicating challenges in detecting more complex 
process changes.
Change severity impact.

To complement the analysis of change pattern impact, we assess 
the effect of change severity on detection accuracy. To do this, we 
assign each change point a severity level, defined as the percentage 
of behavioral alteration following a process change. This percentage 
is calculated by comparing the gold-standard process trees before and 
after a process change. Specifically, we generate all possible traces 
(setting loop sizes to one) and derive directly-follow relationships. 
These sets of relationships are then compared using the Jaccard co-
efficient, a similarity measure between finite sets defined as the ratio 
of the intersection size to the union size of the sample sets [31]. 
Finally, we group the resulting values into five intervals with compa-
rable support. Table  8 presents the obtained evaluation results across 
different levels of change severity. Regarding peak performance, Lccd
achieves the highest recall for change severities up to 50%. However, 
for process changes that lead to extreme behavioral shifts above 50%,
ProcessGraphs surpasses Lccd in performance. When analyzing the im-
pact of change severity on accuracy across techniques, we observe 
that both ProcessGraphs and Rinv demonstrate improved accuracy as 
change severity increases, while the recall for other techniques remains 
relatively stable.

Given these evaluation results, we adopt the ProcessGraphs tech-
nique to instantiate Step 1 of our framework in the remaining experi-
ments (where applicable).

4.4. Step 2: Change type classification

This section discusses experiments conducted to test the perfor-
mance of Step 2 of our framework, which aims to detect if the detected 
change points belong to sudden or gradual process changes.
14 
4.4.1. Experimental setup
Experiments. To comprehensively assess the performance of our frame-
work when it comes to change type classification, we conduct two 
experiments: In Experiment 2.1, we assess the performance of Step 2 
in isolation, which tests how well our change type detection technique 
works when provided with the gold-standard change points as input. 
Afterwards, in Experiment 2.2, we assess the combined performance 
of Steps 1 and 2, i.e., using the change points detected by the Pro-
cessGraphs technique as input for Step 2, which tests how well our 
framework can recognize sudden and gradual changes in general.
Evaluation measures. We use the following measures in the two 
described experiments:

Experiment 2.1 represents a classical classification problem, where 
each change point from the gold standard is classified as either sudden,
gradual start, or gradual end. A true positive is thus recorded if the 
detected change point type is correctly assigned to its gold-standard 
type.

In Experiment 2.2, a true positive is recorded under two conditions: 
(1) the detected change point is correctly assigned to an actual change 
point, with a deviation of less than 5% of the total traces in the event 
log (same as for the evaluation of Step 1), and (2) the detected change 
point type (sudden, gradual start, or gradual end) corresponds to the 
gold standard. Otherwise, it is a false positive.
Baseline. To put the performance of Step 2 of our framework into 
perspective, we compare its accuracy against the ProDrift technique 
proposed by Maaradji et al. [16]. We select this technique as a baseline 
for two reasons: First, it stands out as the only technique that focuses 
on the automated detection of both sudden and gradual drifts, without 
requiring a manual indication of the drift type to be searched (e.g., in 
contrast to Bose/J [4]). Second, this technique uses a similar two-step 
procedure that first detects change points and then aims to detect grad-
ual changes by considering sequences of three consecutive windows 
(see Fig.  11). The technique is conceptually different, though, since 
their second step relies on a statistical test on distributions of partially 
ordered runs within sliding windows of traces, while our framework 
considers individual behavioral patterns.
Baseline implementation. To be able to use ProDrift as a baseline for 
both experiments, we need to decouple its two steps as well, allowing 
us to provide its second step with the gold-standard change points as 
Table 7
Performance of the change point detection techniques across different change patterns.
 Technique Overall Recall (by change patterns)
 Precision Recall ⊕ ⊖ ⇔ ⊕&⊖ ⊕& ⇔ ⊖& ⇔ ⊕&⊖& ⇔ 
 ProcessGraphs 0.65 0.74 0.68 0.73 0.59 0.90 0.88 0.82 0.97  
 EMD 0.69 0.66 0.66 0.69 0.64 0.57 0.66 0.74 0.75  
 Adwin/J 0.84 0.44 0.54 0.51 0.34 0.42 0.25 0.17 0.28  
 Rinv 0.61 0.52 0.56 0.61 0.46 0.52 0.33 0.39 0.30  
 Lcdd 0.38 0.82 0.86 0.73 0.80 0.86 0.87 0.91 0.94  
 Bose/J 0.60 0.23 0.27 0.32 0.14 0.20 0.06 0.00 0.12  
 ProDrift 0.98 0.22 0.21 0.19 0.19 0.25 0.30 0.30 0.32  
 Support 555 537 309 279 138 66 69  
‘‘⊕‘‘- Insertion, ‘‘⊖’’ - Deletion, ‘‘⇔" - Relocation.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Table 8
Performance of the change point detection techniques across change severity levels.
 Technique Overall Recall (by change severity, in %)
 Precision Recall (0,20] (20,30] (30,40] (40,50] (50,100] 
 ProcessGraphs 0.65 0.74 0.71 0.70 0.75 0.78 0.81  
 EMD 0.69 0.66 0.66 0.64 0.71 0.68 0.62  
 Adwin/J 0.84 0.44 0.39 0.41 0.53 0.42 0.49  
 Rinv 0.61 0.52 0.49 0.46 0.52 0.52 0.65  
 Lcdd 0.38 0.82 0.81 0.83 0.78 0.89 0.78  
 Bose/J 0.60 0.23 0.25 0.16 0.21 0.26 0.29  
 ProDrift 0.98 0.22 0.20 0.25 0.24 0.20 0.22  
 Support 468 495 348 312 330  

input. Since its available Java implementation8 does not support this, 
we implemented the second step in Python, following the procedure 
given in the paper [16, Definition 4]. Instead of using the Java-based 
JOptimitzer as the solver for the non-linear program, we use the Opti-
mize module from SciPy9 (version 1.10.0), using BFGS as the selected 
optimization method with the initialization (3, 3).

4.4.2. Results
Experiment 2.1. Table  9 presents the change type classification results 
when using the gold-standard change points as input for Step 2. In 
this table, we compare the accuracy of our second framework step (see 
Algorithm 1) against the baseline across datasets with varying noise 
levels. For each dataset, we report the obtained evaluation measures, 
including overall measures weighted by the support for each type. 
Our framework’s algorithm greatly outperforms the ProDrift baseline, 
showing higher F1-scores for all change types, achieving a weighted 
F1-score of 0.79 for the logs without noise, versus 0.35 of the baseline. 
Our algorithm maintains a balanced precision–recall ratio across dif-
ferent change types. In contrast, the baseline struggles with identifying 
gradual change start and end instances, often mistaking them for 
sudden changes. This is evident in the baseline’s high recall (0.86) and 
low precision (0.36) for sudden changes, along with relatively higher 
precision compared to recall for gradual start and end change types.

The difference between our algorithm and the baseline is even more 
pronounced when considering the datasets with noise. The performance 
of our algorithm even slightly improves for these datasets (from 0.79 
to 0.85 and 0.80), whereas the baseline’s performance further drops 
(from 0.35 to 0.18 and 0.27). A particular issue for the baseline is the 
detection of gradual changes in noisy settings, as, e.g., shown by the 
recall scores of 0.03 and 0.04 for the logs with 20% noise.
Experiment 2.2. Table  10 presents the change type classification re-
sults obtained using the change points detected in Step 1. Similar to 
Table  9, this table provides evaluation measures for different change 
point types across datasets with varying levels of noise. However, 
we compare the joint accuracy of our framework’s Steps 1 and 2 
against both versions of the baseline. First of all, compared to the 
results of Experiment 2.1, the evaluation results indicate a notable drop 
in performance for both techniques: For the logs without noise, our 
framework’s weighted F1-score drops from 0.77 to 0.44, whereas the 
baseline’s performance drops from 0.35 to 0.24. This is because the 
accuracy of change type classification (Step 2) depends on the accuracy 
of change point detection (Step 1). If a change point is not detected, 
it cannot be classified accurately, and if a change point is incorrectly 
detected, it also leads to classification errors. Therefore, if the quality 
of available change point detection techniques improves, the quality of 
our framework’s subsequent steps will follow.

Despite the performance drop, it is important to note that our 
framework consistently outperforms the baseline in precision, recall, 

8 Available at http://apromore.org/platform/tools.
9 Available at https://docs.scipy.org/doc/scipy/.
15 
and F1-score across all change types. Furthermore, the results remain 
robust in the presence of noise. Notably, the Python-based implemen-
tation of the baseline struggles to identify gradual drifts when noise 
is present. To verify that this is not due to an implementation error, 
we provide evaluation results for the baseline using the existing Java-
based tool. Using run-based configurations with adaptive window size, 
the obtained results for sudden process changes align with our Python-
based implementation (including the change point detection accuracy 
of Step 1 corresponding to the results in Table  6). However, the Java-
based implementation still struggles to detect gradual process changes, 
which is consistent with our Python-based results.

4.5. Step 3: Change inter-relation analysis

This section discusses experiments conducted to test the perfor-
mance of Step 3 of our framework, which goal is to detect concept drifts 
and determine their drift types from identified process changes.

4.5.1. Experimental setup
Experiments. To demonstrate the accuracy of the framework’s step, 
we conduct two experiments similar to the experiments in Section 4.4. 
In Experiment 3.1, we assume 100% accuracy of the first and second 
framework steps to measure the unbiased accuracy of Step 3. Then, in
Experiment 3.2, we assume 100% accuracy only of the first framework 
step (since this is based on existing work) to evaluate the joint accuracy 
of Steps 2 and 3, thus evaluating how well our framework can detect 
simple and complex drifts based on detected change points.
Evaluation measures. For both experiments, we consider evaluation 
measures at two levels. First, we assess drift type detection accuracy at 
the change-point level, for which we check if change points are assigned 
to the right drift type (i.e., sudden, gradual, incremental, or recurring). 
Second, we assess accuracy at the drift level, for which we check if 
change points have been grouped together into drifts (of the right type).

Change-point level. To assess drift type detection accuracy at a 
change-point level, we consider a multi-class classification problem, 
where each change point is classified into one of four drift types: 
sudden, gradual, incremental, and recurring. We record a true positive 
if the detected drift type of a change point is correct given the gold 
standard; otherwise, it is a false positive for the detected type and a 
false negative for the gold-standard type. Note that we here report on 
weighted precision, recall, and F1-score, to account for imbalances in 
the dataset.

Drift level. Assessing drift type detection accuracy at a drift level 
is more complex than at a change-point level, since, in this case, it 
involves the (possible) assignment of multiple change points to a single 
drift, which must also be of the right type. Therefore, we consider a 
drift to be correctly detected (i.e., a true positive) if it has the right drift 
type and contains the right set of associated change points. If the drift 
type is correct, but the set of detected change points differs, we use the
Jaccard similarity to quantify to what degree the set of change points 
is correct. The Jaccard similarity is calculated by dividing the number 
of change points in both the actual and detected drifts by the number 
of observations in either set. For example, if a detected incremental 
drift 𝑑 includes three change points {𝑐1, 𝑐2, 𝑐3}, while the gold standard 
specifies four change points {𝑐1, 𝑐2, 𝑐3, 𝑐4}, 𝑑 is considered to be a 0.75 
true positive. A drift is considered a false positive if its type is incorrect 
or if the Jaccard similarity is 0. The denominator in recall, representing 
the sum of true positive and false negative detections for each drift 
type, is determined by the total number of drifts that type in the gold 
standard.

Note that this assessment requires us to establish an alignment 
between the sets of detected and actual (gold-standard) drifts, i.e., de-
termining which gold-standard drift corresponds to a detected drift, if 
any. This task is equivalent to solving the two-dimensional rectangular 
assignment problem [32], a well-known problem in operations research. 

http://apromore.org/platform/tools
https://docs.scipy.org/doc/scipy/


A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Table 9
Results of Experiment 2.1: Change type classification using gold-standard change points as input.
 Technique Type Supp. Logs without noise Logs with 20% noise Logs with 40% noise
 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 
 
Framework 
Step 2

Sudden 201 0.63 0.85 0.72 0.76 0.79 0.77 0.75 0.73 0.74  
 Gradual start 225 0.88 0.75 0.81 0.88 0.87 0.87 0.82 0.83 0.83  
 Gradual end 225 0.89 0.76 0.82 0.89 0.88 0.88 0.83 0.84 0.83  
 Overall (weighted) 0.81 0.78 0.79 0.85 0.84 0.85 0.80 0.80 0.80  
 ProDrift
Step 2 
(baseline)

Sudden 201 0.36 0.86 0.50 0.31 0.92 0.46 0.31 0.85 0.46  
 Gradual start 225 0.55 0.20 0.29 0.30 0.03 0.06 0.51 0.12 0.19  
 Gradual end 225 0.49 0.18 0.26 0.35 0.04 0.06 0.53 0.12 0.20  
 Overall (weighted) 0.47 0.40 0.35 0.32 0.31 0.18 0.46 0.34 0.27  
Table 10
Results of Experiment 2.2: Change type classification using change points from Step 1 as input.
 Technique Type Supp. Logs without noise Logs with 20% noise Logs with 40% noise
 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 
 
Framework 
Steps 1–2

Sudden 201 0.27 0.41 0.32 0.29 0.42 0.35 0.31 0.39 0.35  
 Gradual start 225 0.50 0.51 0.50 0.46 0.48 0.47 0.44 0.43 0.44  
 Gradual end 225 0.49 0.48 0.49 0.46 0.46 0.46 0.44 0.43 0.43  
 Overall (weighted) 0.42 0.47 0.44 0.41 0.45 0.43 0.40 0.42 0.40  
 ProDrift
Python-
based 
(baseline) 

Sudden 201 0.45 0.60 0.51 0.56 0.21 0.30 0.52 0.05 0.10  
 Gradual start 225 0.57 0.13 0.22 0.00 0.00 0.00 0.00 0.00 0.00  
 Gradual end 225 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00  
 Overall (weighted) 0.34 0.23 0.24 0.17 0.07 0.09 0.16 0.02 0.03  
 ProDrift
Java-based 
(baseline)

Sudden 201 0.41 0.66 0.50 0.00 0.00 0.00 0.00 0.00 0.00  
 Gradual start 225 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
 Gradual end 225 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
 Overall (weighted) 0.13 0.20 0.16 0.00 0.00 0.00 0.00 0.00 0.00  
The goal of this assignment is to efficiently distribute a pool of re-
sources (such as individuals or employees) among a limited set of tasks, 
with the aim of minimizing the total associated cost matrix. In our case, 
the detected drifts serve as resources, and the actual drifts represent the 
tasks. The cost matrix is derived from the Jaccard similarity (with a 
negative sign) between pairs of drifts. We solve this problem using the 
Jonker-Volgenant algorithm [33], implemented in the Python library
scipy.optimize.

4.5.2. Results
Experiment 3.1. Table  11 presents the evaluation results of Experiment 
3.1 for both measurement levels.

The results at the change-point level show that our framework 
performs well, achieving an average weighted F1-score of about 0.84 
across all datasets. The results also show our framework’s robustness to 
noise, maintaining consistent performance across all noise levels.

With respect to drift types, there are some drift-specific findings. 
We achieve good accuracy for gradual drifts with precision and recall 
consistently remains at approximately 0.78 and 0.86, respectively. The 
detection of recurring drifts yields a perfect recall of 0.98 and a preci-
sion close to 0.90. Notably, sudden drift detection displays relatively 
lower precision, but remains consistently high in recall. In contrast, 
detecting incremental drifts reveals an opposing trend, indicating that 
incremental changes are occasionally mistaken for sudden ones. This is 
closely related to the problem of differentiating a sequence of simple 
drifts from an incremental drift, as illustrated in Fig.  5. Following our 
definition of a concept drift in Section 2.4.1, our algorithm considers 
the two necessary conditions for detecting incremental drifts: (1) a 
sequence of at least two consecutive process changes with (2) low 
change severity. Improving detection accuracy can be achieved by 
introducing additional criteria to assess whether or not process changes 
are part of the same transformation initiative, indicating they belong to 
the same incremental drifts.

At the drift level, the overall detection accuracy drops by about 
8%pt. (from 0.84 to 0.76) compared to the change level. This decline 
relates to complex drifts (recurring and incremental) since the accuracy 
16 
for simple drifts remains the same. This aligns with expectations, as 
complex drifts involve multiple process changes, making them more 
prone to misidentification at the drift level.

The decline in detection accuracy in recurring drifts is the primary 
factor contributing to the overall accuracy drop. The average recall over 
all datasets drops by about 18%pt. (from 0.98 to 0.80). Given the high 
recall at the change level, this suggests that recurring change points 
are occasionally assigned to the wrong recurring drifts. Consequently, 
precision also drops by about 7%pt. Another contributing factor is 
the drop of around 3%pt. in recall for incremental drifts. This can be 
attributed to the detection challenge between simple and incremental 
drifts.
Experiment 3.2. Table  12 presents the evaluation results of Experiment 
3.2 for both measurement levels.

The results on the change-point level show solid performance with 
an average weighted F1-score of about 0.79 across all datasets. The 
results remain robust to noise, ensuring a stable performance across all 
noise levels.

Compared to the previous experiment, the overall accuracy drops 
by about 5%pt (from 0.84 to 0.79), caused by errors from the change 
type classification algorithm (Step 2). The primary factor contributing 
to the decline in performance is the decrease in accuracy in simple drift 
detection. Specifically, we observe an average F1-score drop of about 
12%pt. for gradual and about 8%pt. for sudden drifts across all datasets. 
This is anticipated, as simple drift detection relies on the identified 
change type from Step 2. If there is an error in identifying the change 
type, it follows that the corresponding drift type will be inaccurately 
determined. The errors in Step 2 also impact the accuracy of complex 
drift detection; however, the drop for recurring and incremental drift 
types is below 5%pt.

At the drift level, the average F1-score drops by 10%pt. compared to 
the change-level evaluation. The main drivers and their contributions 
are proportional to what we observe in Experiment 3.1.

Overall, our algorithms proposed for Steps 2 and 3 demonstrate 
their effectiveness at detecting drift types, with clearly evident noise 
resilience, since they maintain consistent results across different noise 



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Table 11
Results of Experiment 3.1: Drift type detection accuracy using gold-standard change points and types (Steps 1-2).
 Drift type Support Logs without noise Logs with 20% noise Logs with 40% noise
 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 
 Change-point level   
 Sudden 35 0.46 0.91 0.62 0.46 0.89 0.61 0.46 0.89 0.60  
 Gradual 98 0.78 0.86 0.82 0.78 0.86 0.82 0.78 0.86 0.82  
 Incremental 263 0.93 0.69 0.79 0.93 0.68 0.79 0.93 0.67 0.78  
 Recurring 255 0.90 0.98 0.94 0.89 0.98 0.93 0.88 0.98 0.93  
 Overall (weighted) 0.87 0.84 0.85 0.87 0.84 0.84 0.86 0.83 0.83  
 Drift level   
 Sudden 35 0.46 0.91 0.62 0.46 0.89 0.61 0.46 0.89 0.60  
 Gradual 49 0.78 0.86 0.82 0.78 0.86 0.82 0.78 0.86 0.82  
 Incremental 58 0.93 0.66 0.77 0.93 0.65 0.76 0.92 0.63 0.75  
 Recurring 56 0.83 0.79 0.81 0.82 0.81 0.82 0.81 0.81 0.81  
 Overall (weighted) 0.78 0.79 0.77 0.78 0.79 0.77 0.77 0.78 0.76  
Table 12
Results of Experiment 3.2: Drift type detection accuracy using gold-standard change points (Step 1) as input.
 Drift type Support Logs without noise Logs with 20% noise Logs with 40% noise
 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score 
 Change-point level   
 Sudden 35 0.35 0.77 0.48 0.44 0.77 0.56 0.45 0.71 0.55  
 Gradual 98 0.68 0.66 0.67 0.64 0.78 0.70 0.69 0.76 0.72  
 Incremental 263 0.87 0.61 0.72 0.90 0.64 0.75 0.89 0.69 0.78  
 Recurring 255 0.84 0.97 0.90 0.87 0.96 0.91 0.88 0.98 0.92  
 Overall (weighted) 0.80 0.77 0.77 0.82 0.79 0.80 0.83 0.81 0.81  
 Drift level   
 Sudden 35 0.35 0.77 0.48 0.44 0.77 0.56 0.45 0.71 0.55  
 Gradual 49 0.70 0.66 0.68 0.64 0.78 0.70 0.70 0.76 0.73  
 Incremental 58 0.85 0.57 0.68 0.88 0.60 0.71 0.88 0.61 0.72  
 Recurring 56 0.75 0.75 0.75 0.78 0.77 0.77 0.81 0.78 0.80  
 Overall (weighted) 0.70 0.68 0.66 0.71 0.72 0.70 0.74 0.71 0.72  
levels. In addition, our evaluation at the drift level highlights the 
challenges in accurately detecting and distinguishing complex drifts.

4.6. Steps 1–3: Comparison with the baseline

In this section, we apply all three steps of our framework and 
highlight the advantages of the obtained results compared to the state-
of-the-art solution.

4.6.1. Experimental setup
Baseline and configurations. We use the Visual Drift Detection (VDD) 
technique [17] as the state-of-the-art technique. It can detect simple 
and complex drift types from an event log and is the only (partially) 
comparable solution (see Section 2.5), although the approach is not 
automated. In our experiments, we use the online version of the VDD 
technique10 with the suggested default parameters: window size 300, 
slide size 150, cut threshold 300.
Experiment. The VDD technique is not fully automated, requiring a 
user’s interpretation of visualizations for complex drift detection. This 
makes automated comparisons infeasible. Therefore, we illustrate our 
framework’s advantages by comparing results for a specific event log 
from our data collection (i.e., log number 90, with 20% noise). The 
selected log contains 64,594 events, 9169 traces, 1237 trace variants, 
and 8 distinct activities. The left-hand side of Table  13 shows that the 
log contains 8 change points that jointly form 5 changes and 3 drifts. 
Specifically, there are individual sudden and gradual drifts and a larger 
incremental drift, which encompasses 3 changes and 5 change points.

10 Available online through the URL https://yesanton.github.io/Process-
Drift-Visualization-With-Declare/client/build/.
17 
4.6.2. Results
Our framework. In Table  13, the right-hand side displays the outcomes 
of our framework. The first framework step accurately identifies 7 out 
of 8 change points, with one false positive (identifying a non-existent 
change point) and one false negative (not recognizing an actual change 
point), resulting in a F1-score of 0.88. The change type detection step 
identifies 1 out of 2 sudden change types, with one false negative 
detection, and successfully identifies 2 out of 3 gradual start/end 
changes, with also one false positive detection. This leads to a weighted 
F1-score of 0.67. The errors in the classification of change types appear 
primarily due to the errors in the previous step. In the final detection 
step, all change points are correctly assigned to their corresponding 
drift types, except for the first two, which together form a simple 
gradual drift, leading to the weighted F1-score of 0.58 (evaluated at 
the change level).
Baseline. Fig.  18 presents a primary outcome of the baseline technique, 
i.e., the Drift Map, Drift Charts, and autocorrelation plots with further 
measures that are used to support visual analysis. The Drift Map (Fig. 
18(a)) shows over 525 detected behavioral rules (y-axis), organized 
into 55 behavioral clusters (indicated by horizontal dashed white lines). 
Within each cluster, white vertical lines indicate change points, while 
black vertical dashed lines highlight global change points spanning 
over all clusters. The Drift Charts (Fig.  18(b) depicts a drift chart for 
a selected cluster) categorize drifts, helping to determine if drifts exist, 
their patterns over time, and the stability or drift in behavior. Finally, 
Fig.  18(c) depicts autocorrelation, to detect recurring drifts, and erratic 
measure to differentiate, for instance, gradual drift from incremental.

Next, we use VDD to try to obtain the same types of insights 
provided by our framework’s three steps:
Step 1: Change point detection. The baseline identifies a total of 6 
change points. The change points 𝑝1, 𝑝2, 𝑝3, and 𝑝6 align with the 
gold standard, while the remaining 𝑝4 and 𝑝5 are within the gradual 
transition phases. Unfortunately, the figure does not allow for a precise 

https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/
https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/


A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
Table 13
Actual concept drift information for the event log 90 with 20% noise vs. detected drift information using our framework.
 Gold standard Detected drift information (our framework)
 Change pointa Change type Drift type Change pointa change type Drift type  
 1042 gradual start gradual (+) 1429 (+) gradual start (–) incremental  
 1748 gradual end gradual (+) 1879 (+) gradual end (–) incremental  
 (–) 2593 (–) gradual start (–) incremental  
 2855 sudden incremental (+) 2989 (–) gradual end (+) incremental 
 4089 gradual start incremental (+) 4195 (–) sudden (+) incremental 
 4623 gradual end incremental  
 5847 gradual start incremental (+) 5976 (+) gradual start (+) incremental 
 6623 gradual end incremental (+) 6694 (+) gradual end (+) incremental 
 7991 sudden sudden (+) 7947 (+) sudden (+) sudden  
a We use trace ID to indicate the change point in a log.
assessment of whether 𝑝4 and 𝑝5 adhere to the accepted deviation of 
5% from the log size. Consequently, our estimation of the accuracy in 
the change point detection step yields a precision range of 0.67 to 1.00 
and a recall range of 0.50 to 0.75, depending on whether or not the 
change points 𝑝4 and 𝑝5 are considered correct. This results in an F1-
score spanning from 0.57 to 0.86 with an average value of 0.71. Even 
in the best-case scenario (F1-score of 0.86), the performance is below 
the accuracy of our framework’s Step 1.
Step 2: Change type classification. Regarding process change detection, 
the baseline does not automatically distinguish between gradual and 
sudden process changes. However, by visualizing different behavioral 
clusters, we can identify when detected change points suggest a gradual 
process change. For example, multiple clusters between the first and 
second change points indicate a gradual shift in certain behavioral 
patterns. Thus, we can conclude that the baseline correctly identified 
the first gradual process change, the second sudden process change, 
and the final sudden process changes. However, change points 𝑝4 and 
𝑝5 are misclassified as sudden process changes due to an error in 
the change point detection step. Overall, VDD thus leads to a perfect 
recall and precision of 0.50 for sudden process changes, with perfect 
precision and 0.33 recall for gradual process changes, resulting in 
a total weighted F1-score of 0.54. This result is 13%pt. below the 
accuracy of our framework’s Step 2, which, furthermore, does not rely 
on manual interpretation of various visualizations.
Step 3: Change inter-relation detection. The identification of drifts and 
their drift types using VDD is highly challenging. The tool’s visualiza-
tion of clusters does not differentiate between affected behavioral rules 
that relate to different drifts. Therefore, based on the Drift Map and 
Drift Charts, it is not feasible to understand the big picture, i.e., that 
the first two change points as well as the last one are simple drifts that 
do not belong to the incremental drift in between. Moreover, some visu-
alized clusters indicate a recurring drift pattern, though such patterns 
18 
are not present in the gold standard. Therefore, drawing conclusions 
about the overall drift scenario, in terms of exact simple and complex 
drifts, remains speculative.
Overall insights. In summary, the VDD technique visualizes and lo-
cates change points well, but understanding the different types of 
process changes and their relationships, and determining if they form a 
single incremental drift or a set of unrelated drifts, is still difficult. Con-
sequently, achieving a complete understanding of the overall concept 
drift is not feasible, even with manual effort. In contrast, our proposed 
framework enables an automated detection of drifts and achieves bet-
ter results for all three steps compared to the baselines. Therefore, 
our framework provides an important step towards automated and 
comprehensive detection of concept drifts from event logs.

5. Conclusion

In this paper, we contribute to the more comprehensive charac-
terization of concept drifts recorded in event logs by introducing an 
improved drift type characterization taxonomy and presenting a three-
step framework for the automated detection of drift types.

Our improved drift type classification taxonomy classifies drifts 
into simple and complex ones, relying on process changes and their 
properties as the core elements of concept drifts. Our taxonomy ad-
dresses existing inconsistencies by providing an exclusive drift type 
classification. Our taxonomy enhances the detection and evaluation of 
concept drifts, especially complex drifts with inter-connected process 
changes. Following our taxonomy, we proposed an automated, three-
step framework for the comprehensive detection and characterization 
of concept drifts. Our experiments demonstrated that our change type 
and change inter-relation detection algorithms used in Steps 2 and 3 
provide accurate results, offering a more comprehensive understanding 
Fig. 18. The output of the VDD technique.



A. Kraus and H. van der Aa Information Systems 135 (2026) 102584 
of drift types and the overall evolution of the process compared to 
state-of-the-art solutions.

In future work, we plan to enhance our framework in several di-
rections. First, we aim to refine the change point detection step, which 
significantly influences the overall framework accuracy. Our evaluation 
of existing change point detection techniques revealed a need for a 
more precise approach to detect change points that correspond to 
sudden, gradual start and end points, especially, in the presence of 
noise. Second, we plan to improve the identification of incremental 
drifts by considering additional aspects, like change localization and 
time aspects, that can improve detection accuracy. Finally, we see the 
potential to expand this framework with drift localization information 
that, based on identified drifts and process versions, goes beyond 
localization for individual change points.

CRediT authorship contribution statement

Alexander Kraus: Writing – review & editing, Writing – original 
draft, Validation, Conceptualization. Han van der Aa: Writing – review 
& editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

The implementation, experimental details, obtained raw results, and 
data are available through the repository linked in Section 4.

References

[1] M. Dumas, M. La Rosa, J. Mendling, H.A. Reijers, et al., Fundamentals of Business 
Process Management, vol. 2, Springer, 2018, http://dx.doi.org/10.1007/978-3-
662-56509-4.

[2] W. van der Aalst, Process Mining: Data Science in Action, Process Mining, 
Springer, 2016, http://dx.doi.org/10.1007/978-3-662-49851-4_1.

[3] J.N. Adams, C. Pitsch, T. Brockhoff, W. van der Aalst, An experimental evaluation 
of process concept drift detection, Proceedings of the VLDB Endowment 16 (8) 
(2023) 1856–1869, http://dx.doi.org/10.14778/3594512.3594517.

[4] R.J.C. Bose, W. Van Der Aalst, I. Žliobaitė, M. Pechenizkiy, Dealing with concept 
drifts in process mining, Transactions on Neural Networks and Learning Systems 
25 (1) (2013) 154–171, http://dx.doi.org/10.1109/TNNLS.2013.2278313.

[5] G. Elkhawaga, M. Abuelkheir, S.I. Barakat, A.M. Riad, M. Reichert, CONDA-PM: 
a systematic review and framework for concept drift analysis in process mining, 
Algorithms 13 (7) (2020) 161, http://dx.doi.org/10.3390/a13070161.

[6] D.M.V. Sato, S.C. De Freitas, J.P. Barddal, E.E. Scalabrin, A survey on concept 
drift in process mining, ACM Computing Surveys 54 (9) (2021) 1–38, http:
//dx.doi.org/10.1145/3472752.

[7] A. Seeliger, T. Nolle, M. Mühlhäuser, Detecting concept drift in processes using 
graph metrics on process graphs, in: Proceedings of the 9th Conference on 
Subject-Oriented Business Process Management, vol. 9, ACM, 2017, pp. 1–10, 
http://dx.doi.org/10.1145/3040565.3040566.

[8] T. Brockhoff, M.S. Uysal, W. van der Aalst, Time-aware concept drift detection 
using the earth mover’s distance, in: Proceedigns of the 2nd International 
Conference on Process Mining, IEEE, 2020, pp. 33–40, http://dx.doi.org/10.
1109/ICPM49681.2020.00016.

[9] C. Zheng, L. Wen, J. Wang, Detecting process concept drifts from event logs, 
Springer, 2017, pp. 524–542, http://dx.doi.org/10.1007/978-3-319-69462-7_33.

[10] L. Lin, L. Wen, L. Lin, J. Pei, H. Yang, LCDD: detecting business process drifts 
based on local completeness, IEEE Transactions on Services Computing 15 (4) 
(2020) 2086–2099, http://dx.doi.org/10.1109/TSC.2020.3032787.

[11] H. Nguyen, M. Dumas, M. La Rosa, A.H. ter Hofstede, Multi-perspective compar-
ison of business process variants based on event logs, in: Conceptual Modeling: 
37th International Conference, ER 2018, Xi’an, China, October 22–25, 2018, 
Proceedings 37, Springer, pp. 449–459, http://dx.doi.org/10.1007/978-3-030-
00847-5_32.
19 
[12] B. Hompes, J.C. Buijs, W. van der Aalst, P.M. Dixit, J. Buurman, Detecting 
changes in process behavior using comparative case clustering, in: CEUR Work-
shop Proceedings of the 5th International Symposium on Data-Driven Process 
Discovery and Analysis, Springer, 2015, pp. 54–75, http://dx.doi.org/10.1007/
978-3-319-53435-0_3.

[13] A. Bolt, W.M. van der Aalst, M. De Leoni, Finding process variants in event 
logs, in: On the Move to Meaningful Internet Systems. OTM 2017 Conferences, 
Springer, 2017, pp. 45–52, http://dx.doi.org/10.1007/978-3-319-69462-7_4.

[14] X. Lu, D. Fahland, F.J. van den Biggelaar, W. van der Aalst, Detecting devi-
ating behaviors without models, in: Business Process Management Workshops, 
Springer, 2016, pp. 126–139, http://dx.doi.org/10.1007/978-3-319-42887-1_11.

[15] J. Martjushev, R.J.C. Bose, W. Van Der Aalst, Change point detection and dealing 
with gradual and multi-order dynamics in process mining, in: Proceedings of the 
14th International Conference on Business Informatics Research, Springer, 2015, 
pp. 161–178, http://dx.doi.org/10.1007/978-3-319-21915-8_11.

[16] A. Maaradji, M. Dumas, M. La Rosa, A. Ostovar, Detecting sudden and gradual 
drifts in business processes from execution traces, IEEE Transactions on Knowl-
edge and Data Engineering 29 (10) (2017) 2140–2154, http://dx.doi.org/10.
1109/TKDE.2017.2720601.

[17] A. Yeshchenko, C. Di Ciccio, J. Mendling, A. Polyvyanyy, Visual drift detection 
for event sequence data of business processes, IEEE Transactions on Visualization 
and Computer Graphics 28 (8) (2021) 3050–3068, http://dx.doi.org/10.1109/
TVCG.2021.3050071.

[18] M. Weske, Business process management architectures, in: Business Process 
Management: Concepts, Languages, Architectures, Springer Berlin Heidelberg, 
Berlin, Heidelberg, ISBN: 978-3-642-28616-2, 2012, pp. 333–371, http://dx.doi.
org/10.1007/978-3-642-28616-2_7.

[19] Object Management Group, Business Process Model and Notation (BPMN), 
Version 2.0.2, (formal/2013-12-09) Object Management Group, 2014, https:
//www.omg.org/spec/BPMN/2.0.2/, Available online.

[20] W. van der Aalst, T. Weijters, L. Maruster, Workflow mining: discovering process 
models from event logs, IEEE Transactions on Knowledge and Data Engineering 
16 (9) (2004) 1128–1142, http://dx.doi.org/10.1109/TKDE.2004.47.

[21] S. Smirnov, M. Weidlich, J. Mendling, Business process model abstraction based 
on synthesis from well-structured behavioral profiles, International Journal of 
Cooperative Information Systems 21 (01) (2012) 55–83, http://dx.doi.org/10.
1142/S0218843012400035.

[22] W. van Der Aalst, M. Pesic, H. Schonenberg, Declarative workflows: Balancing 
between flexibility and support, Computer Science - Research and Development 
23 (2009) 99–113, http://dx.doi.org/10.1007/s00450-009-0057-9.

[23] W. Van Der Aalst, A. Adriansyah, A.K.A. De Medeiros, F. Arcieri, T. Baier, T. 
Blickle, J.C. Bose, P. Van Den Brand, R. Brandtjen, J. Buijs, et al., Process 
mining manifesto, in: International Conference on Business Process Management, 
Springer, 2011, pp. 169–194, http://dx.doi.org/10.1007/978-3-642-28108-2_19.

[24] C.D. Ciccio, M. Mecella, On the discovery of declarative control flows for artful 
processes, ACM Transactions on Management Information Systems 5 (4) (2015) 
1–37, http://dx.doi.org/10.1145/2629447.

[25] D. Curran-Everett, C.L. Williams, Explorations in statistics: the analysis of change, 
Advances in Physiology Education 39 (2) (2015) 49–54, http://dx.doi.org/10.
1152/advan.00018.2015.

[26] F. Rösel, S.A. Fahrenkog-Petersen, H. van der Aa, M. Weidlich, A distance 
measure for privacy-preserving process mining based on feature learning, in: 
International Conference on Business Process Management, Springer, 2021, pp. 
73–85, http://dx.doi.org/10.1007/978-3-030-94343-1_6.

[27] J. Grimm, A. Kraus, H. van der Aa, CDLG: A tool for the generation of event logs 
with concept drifts, in: Workshop Proceedings of the International Conference 
on Business Process Management, vol. 3216, CEUR-WS, 2022, pp. 92–96, URL 
https://ceur-ws.org/Vol-3216/paper_241.pdf, 

[28] T. Jouck, B. Depaire, PTandLogGenerator: a generator for artificial event data, 
in: L. Azevedo, C. Cabanillas (Eds.), in: Proceedings of the BPM Demo Track 
2016, Co-Located with the 14th International Conference on Business Process 
Management (BPM 2016), Vol. 1789, CEUR Workshop Proceedings, Rio de 
Janeiro, Brazil, 2016, pp. 23–27, URL https://ceur-ws.org/Vol-1789/.

[29] H. van der Aa, A. Rebmann, H. Leopold, Natural language-based detection of 
semantic execution anomalies in event logs, Information Systems 102 (2021) 
101824, http://dx.doi.org/10.1016/j.is.2021.101824.

[30] A. Berti, S. van Zelst, D. Schuster, PM4Py: a process mining library for python, 
Software Impacts 17 (2023) 100556, http://dx.doi.org/10.1016/j.simpa.2023.
100556.

[31] N.C. Chung, B. Miasojedow, M. Startek, A. Gambin, Jaccard/tanimoto similarity 
test and estimation methods for biological presence-absence data, Bioinformatics 
20 (15) (2019) 644, http://dx.doi.org/10.1186/s12859-019-3118-5.

[32] J. Bijsterbosch, A. Volgenant, Solving the rectangular assignment problem and 
applications, Annals of Operations Research 181 (2010) 443–462, http://dx.doi.
org/10.1007/s10479-010-0757-3.

[33] D.F. Crouse, On implementing 2D rectangular assignment algorithms, IEEE 
Transactions on Aerospace and Electronic Systems 52 (4) (2016) 1679–1696, 
http://dx.doi.org/10.1109/TAES.2016.140952.

http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-662-56509-4
http://dx.doi.org/10.1007/978-3-662-49851-4_1
http://dx.doi.org/10.14778/3594512.3594517
http://dx.doi.org/10.1109/TNNLS.2013.2278313
http://dx.doi.org/10.3390/a13070161
http://dx.doi.org/10.1145/3472752
http://dx.doi.org/10.1145/3472752
http://dx.doi.org/10.1145/3472752
http://dx.doi.org/10.1145/3040565.3040566
http://dx.doi.org/10.1109/ICPM49681.2020.00016
http://dx.doi.org/10.1109/ICPM49681.2020.00016
http://dx.doi.org/10.1109/ICPM49681.2020.00016
http://dx.doi.org/10.1007/978-3-319-69462-7_33
http://dx.doi.org/10.1109/TSC.2020.3032787
http://dx.doi.org/10.1007/978-3-030-00847-5_32
http://dx.doi.org/10.1007/978-3-030-00847-5_32
http://dx.doi.org/10.1007/978-3-030-00847-5_32
http://dx.doi.org/10.1007/978-3-319-53435-0_3
http://dx.doi.org/10.1007/978-3-319-53435-0_3
http://dx.doi.org/10.1007/978-3-319-53435-0_3
http://dx.doi.org/10.1007/978-3-319-69462-7_4
http://dx.doi.org/10.1007/978-3-319-42887-1_11
http://dx.doi.org/10.1007/978-3-319-21915-8_11
http://dx.doi.org/10.1109/TKDE.2017.2720601
http://dx.doi.org/10.1109/TKDE.2017.2720601
http://dx.doi.org/10.1109/TKDE.2017.2720601
http://dx.doi.org/10.1109/TVCG.2021.3050071
http://dx.doi.org/10.1109/TVCG.2021.3050071
http://dx.doi.org/10.1109/TVCG.2021.3050071
http://dx.doi.org/10.1007/978-3-642-28616-2_7
http://dx.doi.org/10.1007/978-3-642-28616-2_7
http://dx.doi.org/10.1007/978-3-642-28616-2_7
https://www.omg.org/spec/BPMN/2.0.2/
https://www.omg.org/spec/BPMN/2.0.2/
https://www.omg.org/spec/BPMN/2.0.2/
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1142/S0218843012400035
http://dx.doi.org/10.1142/S0218843012400035
http://dx.doi.org/10.1142/S0218843012400035
http://dx.doi.org/10.1007/s00450-009-0057-9
http://dx.doi.org/10.1007/978-3-642-28108-2_19
http://dx.doi.org/10.1145/2629447
http://dx.doi.org/10.1152/advan.00018.2015
http://dx.doi.org/10.1152/advan.00018.2015
http://dx.doi.org/10.1152/advan.00018.2015
http://dx.doi.org/10.1007/978-3-030-94343-1_6
https://ceur-ws.org/Vol-3216/paper_241.pdf
https://ceur-ws.org/Vol-1789/
http://dx.doi.org/10.1016/j.is.2021.101824
http://dx.doi.org/10.1016/j.simpa.2023.100556
http://dx.doi.org/10.1016/j.simpa.2023.100556
http://dx.doi.org/10.1016/j.simpa.2023.100556
http://dx.doi.org/10.1186/s12859-019-3118-5
http://dx.doi.org/10.1007/s10479-010-0757-3
http://dx.doi.org/10.1007/s10479-010-0757-3
http://dx.doi.org/10.1007/s10479-010-0757-3
http://dx.doi.org/10.1109/TAES.2016.140952

	Comprehensive characterization of concept drifts in process mining
	Introduction
	Concept Drift Characterization: Current Limitations and Improved Taxonomy
	Preliminaries
	Status Quo Taxonomy
	Limitation of the Status Quo Taxonomy
	A New Concept Drift Characterization Taxonomy
	Key Concepts of the New Taxonomy
	Benefits of the New Taxonomy

	Related Work

	Concept Drift Detection and Characterization Framework
	Framework overview
	Step 1: Change point detection
	Step 2: Change type classification
	Step 3: Change Inter-Relation Analysis

	Evaluation
	Data Collection
	General Setup
	Step 1: Change Point Detection
	Experimental Setup
	Results

	Step 2: Change Type Classification
	Experimental Setup
	Results

	Step 3: Change Inter-Relation Analysis
	Experimental Setup
	Results

	Steps 1–3: Comparison with the Baseline
	Experimental setup
	Results


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


