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Functional differential equations
driven by càdlàg rough paths*
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Abstract

The existence of unique solutions is established for rough differential equations (RDEs)
with path-dependent coefficients and driven by càdlàg rough paths. Moreover, it is
shown that the associated solution map, also known as Itô–Lyons map, is locally
Lipschitz continuous. These results are then applied to various classes of rough
differential equations, such as controlled RDEs and RDEs with delay, as well as
to stochastic differential equations with delay. To that end, a joint rough path is
constructed for a càdlàg martingale and its delayed version, that corresponds to
stochastic Itô integration.
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1 Introduction

Stochastic functional differential equations, also known as stochastic delay differen-
tial equations, are a natural generalization of stochastic ordinary differential equations,
allowing for path-dependent coefficients which may depend on past values of the gen-
erated random dynamics. Since numerous real-world phenomena show evidence of a
dependence on the past as well as a stochastic behaviour, stochastic functional differ-
ential equations serve as mathematical models in many areas ranging from biology to
finance. For classical introductions to stochastic functional differential equations we
refer, e.g., to [33, 35].

*A. P. Kwossek and D. J. Prömel gratefully acknowledge financial support by the Baden-Württemberg Stiftung.
†University of Vienna, Austria.
E-mail: anna.paula.kwossek@univie.ac.at
‡University of Mannheim, Germany.
E-mail: neuenkirch@uni-mannheim.de
§University of Mannheim, Germany.
E-mail: proemel@uni-mannheim.de

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/25-EJP1381
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2403.17573
mailto:anna.paula.kwossek@univie.ac.at
mailto:neuenkirch@uni-mannheim.de
mailto:proemel@uni-mannheim.de


Rough functional differential equations

A deterministic approach to stochastic differential equations is provided by rough
path theory, initiated by Lyons [31]. Originally designed to treat stochastic ordinary
differential equations, it has been extended in various directions, for instance, allowing
to deal with stochastic Volterra equations [17], reflected stochastic differential equa-
tions [1], stochastic inclusion equations [10], and different classes of stochastic partial
differential equations [27, 13]. These rough path approaches contributed many novel
insights to the study of the aforementioned equations, such as, but not limited to, new
well-posedness and stability results. Comprehensive introductions to rough path theory
can be found, e.g., in [32, 21].

In the present paper, we study rough functional differential equations (RFDEs)

Yt = yt +

∫ t

0

bs(Y ) ds+

∫ t

0

σs(Y ) dXs, t ∈ [0, T ], (1.1)

where the driving signal X is a càdlàg p-rough path for p ∈ (2, 3), the initial condition y is
a given controlled path, and the coefficients b, σ are non-anticipative functionals, mapping
a controlled path to a controlled path. Assuming a quadratic growth and a Lipschitz-type
condition on the path-dependent coefficients b, σ, which both are formulated on the space
of controlled paths, we establish the existence of a unique solution to the RFDE (2.2). To
that end, we rely on the theory of càdlàg rough paths, as introduced by Friz, Shekhar
and Zhang [22, 24], as well as Banach’s fixed point theorem. Moreover, we show that
the solution map, also known as Itô–Lyons map, mapping the input (initial condition,
coefficients, driving signal) of an RFDE to its solution, is locally Lipschitz continuous
with respect to suitable distances on the associated spaces of coefficients, controlled
paths and rough paths. Let us remark that the continuity of the Itô–Lyons map is one of
the most fundamental insights of rough path theory, with many applications to stochastic
differential equations, cf. e.g. [21].

The presented results on rough functional differential equations provide a unifying
theory, recovering and extending various previous results on different classes of rough
differential equations with path-dependent coefficients. Indeed, we deduce the existence
of unique solutions as well as the local Lipschitz continuity of the Itô–Lyons map for
classical rough differential equations (RDEs), controlled RDEs, RDEs with discrete time
dependence and RDEs with constant/variable delay, that are all driven by càdlàg p-rough
paths for p ∈ (2, 3).

In the existing literature, there are several different approaches to deal with rough
functional differential equations driven by continuous rough paths. Since the theory of
(continuous) rough paths works nicely for infinite dimensional Banach spaces, RDEs with
path-dependent coefficients can be treated as Banach space-valued RDEs, see e.g. [9],
which requires the coefficients to be Fréchet differentiable and, thus, excludes some
interesting examples. Existence, uniqueness and stability results are established by
Neuenkirch, Nourdin and Tindel [36] for RDEs with constant delay. The existence of
a solution is proven by Ananova [7] for RDEs with path-dependent coefficients, which
are assumed to be Dupire differentiable [19], and by Aida [2] for RDEs with coefficients
containing path-dependent bounded variation terms. The latter two approaches rely
on Schauder’s fixed point theorem. Another exemplary class of RFDEs are reflected
rough differential equations, see e.g. [1, 16], which, in general, do not possess a unique
solution, see [26].

Most applications of rough path theory to stochastic differential equations (SDEs)
crucially rely on the construction of suitable (random) rough paths. To apply the
developed theory on RFDEs to Itô SDEs with constant delay, we show that a càdlàg
martingale together with its delayed version can be lifted to a random rough path in the
spirit of stochastic Itô integration. The key challenge to obtain the “delayed” rough path
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Rough functional differential equations

is that a martingale together with its delayed version is, in general, not a martingale itself,
thus preventing the direct use of stochastic Itô integration. For related constructions
of random rough paths above fractional Brownian motions we refer to [36, 42, 12, 15].
Consequently, one can apply the continuity of the Itô–Lyons map to derive pathwise
stability results for stochastic differential equations with constant delay, which plays an
important role in many applications, see e.g. [8]. In particular, the map y 7→ Y , mapping
the initial condition y to the associated solution Y of an SDE with constant delay, is
continuous on the space of controlled paths. This resolves an old observation, pointed
out by Mohammed [34], about the non-continuity of the flow of stochastic differential
equations with delay, for which the initial condition is in fact an initial path.

Organization of the paper: In Section 2 we provide existence, uniqueness and con-
tinuity results for rough functional differential equations. In Section 3 we prove that
various classes of rough differential equations are covered by the presented results on
rough functional differential equations. In Section 4 we establish the existence of the Itô
rough path lift of delayed martingales and discuss applications to stochastic differential
equations with delay. Appendix A contains some auxiliary estimates for rough integrals.

2 Existence, uniqueness and continuity

Before treating rough functional differential equations (RFDEs), we recall the neces-
sary definitions and some essentials from the theory of càdlàg rough paths, as introduced
by Friz and Shekhar [22] and Friz and Zhang [24]. The theory of càdlàg rough paths
extends the classical rough path theory, allowing to deal with many stochastic pro-
cesses with jumps [14], and has numerous applications, e.g., in probability theory [25],
numerical analysis [24] and mathematical finance [6].

2.1 Essentials on rough path theory

Throughout, let T > 0 be a fixed finite time horizon. Let∆T := {(s, t) ∈ [0, T ]2 : s ≤ t}
be the standard 2-simplex. A function w : ∆T → [0,∞) is called a control function if it is
superadditive, in the sense that w(s, u) + w(u, t) ≤ w(s, t) for all 0 ≤ s ≤ u ≤ t ≤ T . We
write w(s, t−) := limu↑t w(s, u) if s < t, and w(s, t−) := 0 if s = t.

Whenever (B, ‖ · ‖) is a normed space and f, g : B → R are two functions on B,
we shall write f . g or f ≤ Cg to mean that there exists a constant C > 0 such
that f(x) ≤ Cg(x) for all x ∈ B. The constant C may depend on the normed space,
e.g. through its dimension or regularity parameters, and, if we want to emphasize the
dependence of the constant C on some particular variables, say α1, . . . , αn, then we will
write .α1,...,αn

or C = Cα1,...,αn
. Unless otherwise stated, the dependence of the implicit

constants on the variables is locally bounded; that is, if α1 ∈ A1, . . . , αn ∈ An, where
A1, . . . , An are compact subsets of the range of α1, . . . , αn respectively, then we have that
supα1∈A1,...,αn∈An

Cα1,...,αn
< ∞.

For two vector spaces, the space of linear maps from E1 → E2 is denoted by L(E1;E2);
and we write Ck

b = Ck
b (R

m;L(Rd;Rn)) for the space of k-times differentiable (in the
Fréchet sense) functions f : Rm → L(Rd;Rn) such that f and all its derivatives up to
order k are continuous and bounded. We equip this space with the norm

‖f‖Ck
b
:= ‖f‖∞ + ‖Df‖∞ + · · ·+ ‖Dkf‖∞,

where Drf denotes the r-th order derivative of f , and ‖ · ‖∞ denotes the supremum norm
on the corresponding spaces of operators.

For a normed space (E, | · |), let D([0, T ];E) be the set of càdlàg (right-continuous
with left-limits) paths from [0, T ] to E. For p ≥ 1, the p-variation of a path X ∈ D([0, T ];E)
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Rough functional differential equations

is given by

‖X‖p := ‖X‖p,[0,T ] with ‖X‖p,[s,t] :=
(

sup
P⊂[s,t]

∑
[u,v]∈P

|Xv −Xu|p
) 1

p

, (s, t) ∈ ∆T ,

where the supremum is taken over all possible partitions P of the interval [s, t]. We recall
that, given a path X, we have that ‖X‖p < ∞ if and only if there exists a control function
w such that1

sup
(u,v)∈∆T

|Xv −Xu|p

w(u, v)
< ∞.

We write Dp = Dp([0, T ];E) for the space of paths X ∈ D([0, T ];E) which satisfy ‖X‖p <

∞. Moreover, for a path X ∈ D([0, T ];Rd), we will often use the shorthand notation:

Xs,t := Xt −Xs and Xt− := lim
u↑t

Xu, for (s, t) ∈ ∆T .

For p > 2 and a two-parameter function X : ∆T → E, we similarly define

‖X‖ p
2
:= ‖X‖ p

2 ,[0,T ] with ‖X‖ p
2 ,[s,t]

:=

(
sup

P⊂[s,t]

∑
[u,v]∈P

|Xu,v|
p
2

) 2
p

, (s, t) ∈ ∆T .

We write D
p
2
2 = D

p
2
2 (∆T ;E) for the space of all functions X : ∆T → E which satisfy

‖X‖ p
2
< ∞, and are such that the maps s 7→ Xs,t for fixed t, and t 7→ Xs,t for fixed s, are

both càdlàg.
For p ∈ (2, 3), a pair X = (X,X) is called a càdlàg p-rough path over Rd if

(i) X ∈ Dp([0, T ];Rd) and X ∈ D
p
2
2 (∆T ;R

d×d), and

(ii) Chen’s relation: Xs,t = Xs,u +Xu,t +Xs,u ⊗Xu,t holds for all 0 ≤ s ≤ u ≤ t ≤ T ,

where ⊗ denotes the usual tensor product. In component form then, condition (ii) states
that Xij

s,t = X
ij
s,u +Xij

u,t +Xi
s,uX

j
u,t for every i and j. We will denote the space of càdlàg

p-rough paths by Dp = Dp([0, T ];Rd). On the space Dp([0, T ];Rd), we use the natural
seminorm

‖X‖p := ‖X‖p,[0,T ] with ‖X‖p,[s,t] := ‖X‖p,[s,t] + ‖X‖ p
2 ,[s,t]

for (s, t) ∈ ∆T , and the induced distance

‖X; X̃‖p := ‖X; X̃‖p,[0,T ] with ‖X; X̃‖p,[s,t] := ‖X − X̃‖p,[s,t] + ‖X− X̃‖ p
2 ,[s,t]

,

for (s, t) ∈ ∆T .
Let p ∈ (2, 3), and X ∈ Dp([0, T ];Rd). We say that a pair (Y, Y ′) is a controlled path

(with respect to X), if

Y ∈ Dp([0, T ];E), Y ′ ∈ Dp([0, T ];L(Rd;E)), and RY ∈ D
p
2
2 (∆T ;E),

where RY is defined by

Ys,t = Y ′
sXs,t +RY

s,t for all (s, t) ∈ ∆T .

We write Vp
X = Vp

X([0, T ];E) for the space of E-valued controlled paths, which becomes
a Banach space when equipped with the norm (Y, Y ) 7→ |Y0|+ ‖Y, Y ′‖X,p, where

‖Y, Y ′‖X,p := ‖Y, Y ′‖X,p,[0,T ] with ‖Y, Y ′‖X,p,[s,t] := |Y ′
s |+ ‖Y ′‖p,[s,t] + ‖RY ‖ p

2 ,[s,t]

1Here and throughout, we adopt the convention that 0
0
:= 0.
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Rough functional differential equations

for (s, t) ∈ ∆T . We point out that, by definition, for (s, t) ∈ ∆T ,

|Ys,t| ≤ |Y ′
s ||Xs,t|+ |RY

s,t| and |Y ′
t | ≤ |Y ′

0 |+ |Y ′
0,t|,

which implies that

‖Y ‖p ≤ Cp(‖Y ′‖∞‖X‖p + ‖RY ‖ p
2
) and ‖Y ′‖∞ ≤ |Y ′

0 |+ ‖Y ′‖p,

where ‖Y ′‖∞ := supt∈[0,T ] |Y ′
t | denotes the supremum seminorm of the path Y ′.

Given X, X̃ ∈ Dp, we further introduce the standard “distance”

‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p := ‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p,[0,T ]

with
‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p,[s,t] := |Y ′

s − Ỹ ′
s |+ ‖Y ′ − Ỹ ′‖p,[s,t] + ‖RY −RỸ ‖ p

2 ,[s,t]

for (s, t) ∈ ∆T , whenever (Y, Y ′) ∈ Vp
X , (Ỹ , Ỹ ′) ∈ Vp

X̃
. Note that Vp

X and Vp

X̃
are, in

general, different Banach spaces; if X = X̃, we write ‖· ; ·‖X,p,[s,t].
Given p ∈ (2, 3), X = (X,X) ∈ Dp([0, T ];Rd) and (Y, Y ′) ∈ Vp

X([0, T ];L(Rd;Rk)), the
(forward) rough integral∫ t

s

Yr dXr := lim
|P|→0

∑
[u,v]∈P

(YuXu,v + Y ′
uXu,v), (s, t) ∈ ∆T , (2.1)

exists (in the classical mesh Riemann–Stieltjes sense), where the limit is taken along
any sequence of partitions (Pn)n∈N of the interval [s, t] such that |Pn| → 0 as n → ∞.
More precisely, in writing the product YuXu,v, we apply the operator Yu ∈ L(Rd;Rk)

onto Xu,v ∈ Rd; and in writing the product Y ′
uXu,v, we use the natural identification of

L(Rd;L(Rd;Rk)) with L(Rd ⊗Rd;Rk). The rough integral comes with the estimate∣∣∣∣ ∫ t

s

Yr dXr − YsXs,t − Y ′
sXs,t

∣∣∣∣ ≤ C
(
‖RY ‖ p

2 ,[s,t)
‖X‖p,[s,t] + ‖Y ′‖p,[s,t)‖X‖ p

2 ,[s,t]

)
for some constant C depending only on p; see [24, Proposition 2.6], where

‖Y ′‖p,[s,t) := sup
u<t

‖Y ′‖p,[s,u] and ‖RY ‖ p
2 ,[s,t)

:= sup
u<t

‖RY ‖ p
2 ,[s,u]

.

The estimate implies that (
∫ ·
0
Yr dXr, Y ) ∈ Vp

X([0, T ];Rk) is a controlled path with respect
to X, see also [24, Remark 2.8].

For details on the construction of the rough integral with respect to càdlàg p-rough
paths and its properties, we refer to [22, 24], and we provide some auxiliary estimates
for the rough integral in Appendix A.

Let us now consider the rough functional differential equation (RFDE)

Yt = yt +

∫ t

0

Fs(Y ) dXs, t ∈ [0, T ], (2.2)

where X ∈ Dp([0, T ];Rd) is a càdlàg p-rough path for p ∈ (2, 3), (y, y′) ∈ Vp
X([0, T ];Rk) is

a given controlled path with respect to X and further, where (F, F ′) : Vp
X([0, T ];Rk) →

Vp
X([0, T ];L(Rd;Rk)) is a non-anticipative functional, i.e.

(i) (F·(Y ), F ′
· (Y, Y

′)) ∈ Vp
X([0, T ];L(Rd;Rk)),

(ii) (Ft(Y ), F ′
t (Y, Y

′)) = (Ft(Y·∧t), F
′
t (Y·∧t, Y

′
·∧t)) for all t ∈ [0, T ],

for every (Y, Y ′) ∈ Vp
X([0, T ];Rk). The integral in (2.2) is defined as a (forward) rough

integral, see (2.1) for its definition. Note that the RFDE (1.1) can be re-written in the
form of (2.2), using a standard time-extension of the driving rough path.
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2.2 Existence and uniqueness

To prove the existence of a unique solution to the rough functional differential
equation (2.2), we postulate a quadratic growth and a Lipschitz-type condition on the
path-dependent coefficient (F, F ′), formulated on the associated path spaces. While
a Lipschitz-type condition is expected, the quadratic growth condition appears to be
natural in the presented context of (second order) controlled paths, which corresponds
to a Taylor expansion with quadratic remainder term.

Assumption 2.1. LetX ∈ Dp([0, T ];Rd) be given. For everyK > 0, there exist constants
CF > 0, which depends on p and the functional F , and CF,K,X > 0, which additionally
depends on K and X, such that the map

(F, F ′) : Vp
X([0, T ];Rk) → Vp

X([0, T ];L(Rd;Rk))

satisfy, for all (Y, Y ′), (Ỹ , Ỹ ′) ∈ Vp
X , and every 0 ≤ s < t ≤ T ,

(i) the growth conditions:

|Ft(Y )| ≤ CF ,

|Ft−,t(Y )| ≤ CF (1 + ‖Y ‖p,[s,t) + |Yt−,t|),
‖F (Y )‖p,[s,t] ≤ CF (1 + (|Y ′

s |+ ‖Y ′‖p,[s,t])‖X‖p,[s,t] + ‖RY ‖ p
2 ,[s,t]

), and

‖F (Y ), F ′(Y, Y ′)‖X,p,[s,t] ≤ CF (1 + ‖Y, Y ′‖X,p,[s,t])
2(1 + ‖X‖p,[s,t])2;

(ii) the Lipschitz conditions:

‖F (Y )− F (Ỹ )‖p,[s,t] ≤ CF,K,X(|Ys − Ỹs|+ ‖Y − Ỹ ‖p,[s,t]), and

‖F (Y ), F ′(Y, Y ′);F (Ỹ ), F ′(Ỹ , Ỹ ′)‖X,p,[s,t]

≤ CF,K,X(|Ys − Ỹs|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,p,[s,t]),

if ‖Y, Y ′‖X,p,[s,t], ‖Ỹ , Ỹ ′‖X,p,[s,t] ≤ K.

Remark 2.2. The growth and Lipschitz conditions in Assumption 2.1 are formulated in
terms of both the p-variation of Y and the controlled path norm (Y, Y ′) 7→ |Y0|+‖Y, Y ′‖X,p

on the space Vp
X of controlled paths (Y, Y

′
). To deduce the existence of a unique

solution to the RFDE (2.2) under a growth and Lipschitz conditions formulated only
in terms of the controlled path norm seems to be far from being obvious. Moreover,
notice that the common examples of RDEs with path-dependent coefficients do satisfy
Assumption 2.1, see Section 3 below, demonstrating that Assumption 2.1 is, indeed, a
natural generalization of the conditions on the coefficients postulated in the existing
literature.

Based on Assumption 2.1, we obtain the following global existence and uniqueness
result for rough functional differential equations.

Theorem 2.3. Let X ∈ Dp([0, T ];Rd) be a càdlàg p-rough path for p ∈ (2, 3), and
(y, y′) ∈ Vp

X([0, T ];Rk) be a given controlled path with respect to X. Suppose that
the non-anticipative functional (F, F ′) : Vp

X([0, T ];Rk) → Vp
X([0, T ];L(Rd;Rk)) satisfies

Assumption 2.1 given X. Then, there exists a unique solution to the rough functional dif-
ferential equation (2.2), i.e. there exists a unique controlled path (Y, Y ′) ∈ Vp

X([0, T ];Rk),
with Y ′ = y′ + F (Y ), such that

Yt = yt +

∫ t

0

Fs(Y ) dXs, t ∈ [0, T ].

Moreover, there exists a componentwise non-decreasing function Kp : [0,∞)3 → [0,∞)

such that
‖Y, Y ′‖X,p ≤ Kp(‖y, y′‖X,p, CF , ‖X‖p).
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The proof relies on a fixed point approach using Banach’s fixed point theorem.

Proof. Step 1: Local solution. We may assume that

‖X‖p ≤ 1 and ‖y′‖p + ‖Ry‖ p
2
≤ 1.

For t ∈ (0, T ], we define the map Mt : Vp
X([0, t];Rk) → Vp

X([0, t];Rk) by

(Y, Y ′) 7→ (Z,Z ′) := Mt(Y, Y
′) :=

(
y· +

∫ ·

0

Fs(Y ) dXs, y
′
· + F·(Y )

)
,

noting that Mt(Y, Y
′) is a controlled path with respect to X as Vp

X is a Banach space,
and introduce the subset of controlled paths

Bt :=

{
(Y, Y ′) ∈ Vp

X([0, t];Rk) :
(Y0, Y

′
0) = (y0, y

′
0 + F0(y)),

‖(Y − y)′‖p,[0,t] ≤ 4CF , ‖RY −Ry‖ p
2 ,[0,t]

≤ 1

}
,

which is a complete set as a closed subset of Vp
X([0, t];Rk), cf. [24, Section 3.2].

Invariance. For any (Y, Y ′) ∈ Bt, we have that

‖(Z − y)′‖p,[0,t] = ‖F (Y )‖p,[0,t]
≤ CF (1 + (|Y ′

0 |+ ‖Y ′‖p,[0,t])‖X‖p,[0,t] + ‖RY ‖ p
2 ,[0,t]

)

≤ CF + CF (|Y ′
0 |+ ‖Y ′‖p,[0,t])‖X‖p,[0,t] + CF ‖RY−y‖ p

2 ,[0,t]
+ CF ‖Ry‖ p

2 ,[0,t]

≤ CF (1 + |Y ′
0 |+ ‖Y ′‖p,[0,t])‖X‖p,[0,t] + 3CF ,

since (F, F ′) satisfies Assumption 2.1 (i), and by the local estimate for rough integration,
see Lemma A.1,

‖RZ −Ry‖ p
2 ,[0,t]

= ‖R
∫ ·
0
F (Y )dX‖ p

2 ,[0,t]

. CF (1 + ‖Y, Y ′‖X,p,[0,t])
2(1 + ‖X‖p,[0,t])2‖X‖p,[0,t],

where the implicit multiplicative constant depends only on p. Hence, for t = t1 sufficiently
small we obtain that Bt1 is invariant under Mt1 . Note that t1 depends on p, |y′0|, CF and
‖X‖p.

Contraction. Let (Y, Y ′), (Ỹ , Ỹ ′) ∈ Bt for some t ∈ (0, t1], that is, setting K :=

5(1 + ‖y, y′‖X,p + CF ), it holds that ‖Y, Y ′‖X,p,[0,t], ‖Ỹ , Ỹ ′‖X,p,[0,t] ≤ K. We have that

‖Z ′ − Z̃ ′‖p,[0,t] = ‖F (Y )− F (Ỹ )‖p,[0,t]
≤ CF,K,X‖Y − Ỹ ‖p,[0,t]
.p CF,K,X(‖Y ′ − Ỹ ′‖p,[0,t]‖X‖p,[0,t] + ‖RY −RỸ ‖ p

2 ,[0,t]
).

Further, due to Assumption 2.1 (ii) and Lemma A.2, it holds that

‖RZ −RZ̃‖ p
2 ,[0,t]

= ‖R
∫ ·
0
F (Y )dX−

∫ ·
0
F (Ỹ )dX‖ p

2 ,[0,t]

. CF,K,X‖Y, Y ′; Ỹ , Ỹ ′‖X,p,[0,t]‖X‖p,[0,t],

where the implicit multiplicative constant depends on p and ‖X‖p. Defining an equivalent
norm on Vp

X by

‖Y, Y ′‖(δ)X,p,[0,t] := |Y ′
0 |+ ‖Y ′‖p,[0,t] + δ‖RY ‖ p

2 ,[0,t]
, for δ ≥ 1,
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we then deduce that

‖Z − Z̃, Z ′ − Z̃ ′‖(δ)X,p,[0,t]

. CF,K,X(‖Y ′ − Ỹ ′‖p,[0,t]‖X‖p,[0,t] + ‖RY −RỸ ‖ p
2 ,[0,t]

)

+ δCF,K,X(‖Y ′ − Ỹ ′‖p,[0,t] + ‖RY −RỸ ‖ p
2 ,[0,t]

)‖X‖p,[0,t]

. CF,K,X(1 + δ)‖X‖p,[0,t]‖Y ′ − Ỹ ′‖p,[0,t] + CF,K,X(1 + δ‖X‖p,[0,t])‖RY −RỸ ‖ p
2 ,[0,t]

. CF,K,X

(
(1 + δ)‖X‖p,[0,t] ∨

1 + δ‖X‖p,[0,t]
δ

)
‖Y − Ỹ , Y ′ − Ỹ ′‖(δ)X,p,[0,t],

where the implicit multiplicative constant depends on p and ‖X‖p. Hence, we can choose
δ sufficiently large and t = t2 ≤ t1 sufficiently small such that

CF,K,X

(
(1 + δ)‖X‖p,[0,t2] ∨

1 + δ‖X‖p,[0,t2]
δ

)
≤ 1,

where the left-hand side is up to a multiplicative constant which depends on p and ‖X‖p.
It follows that Mt2 is a contraction on the subset of controlled paths (Bt2 , ‖ · ‖

(δ)
X,p,[0,t2]

).
Hence, by Banach’s fixed point theorem, there exists a unique fixed point of the mapMt2 ,
which is the unique solution of the RFDE (2.2) over the time interval [0, t2].

Step 2: Global solution. Let w : ∆T → [0,∞) be the right-continuous control function
given by

w(s, t) := ‖X‖pp,[s,t] + ‖X‖
p
2
p
2 ,[s,t]

, (s, t) ∈ ∆T .

We infer from Step 1 that there exists a constant γ > 0, which depends on p, ‖y, y′‖X,p,
CF , CF,K,X and ‖X‖p, such that the local solution (Y, Y ′) established above exists on any
interval [s, t] such that w(s, t) ≤ γ, given any initial condition ξ ∈ Vp

X with |ξ′s| ≤ ‖y, y′‖X,p.
By [24, Lemma 1.5], there exists a partition P = {0 = τ0 < τ1 < · · · < τN = T} of

[0, T ], such that w(τi, τi+1−) < γ for every i = 0, 1, . . . , N − 1. We can then define the
solution (Y, Y ′) on each of the half-intervals [τi, τi+1). Given the solutions on [τi, τi+1),
the values Yτi+1 at the right end-point of the interval are uniquely determined by the
jumps of X at time τi+1. More precisely, let y0;· = y·, and define yi, i = 1, . . . , N − 1, by

yi;t = yt + Yτi− − yτi− + Fτi−(Y )Xτi−,τi + F ′
τi−(Y, Y

′)Xτi−,τi , t ∈ [τi, τi+1).

We note that |y′i,τi | = |y′i| ≤ ‖y, y′‖X,p. Given the initial condition (yi, y
′
i) ∈ Vp

X , we obtain
the solution (Y, Y ′) on [τi, τi+1), i = 0, 1, . . . , N − 1. By pasting the solutions on each of
these subintervals together, with YT = yN ;T , we obtain a unique global solution (Y, Y ′)

of the RFDE (2.2) on the interval [0, T ].
Step 3: A priori estimate. It remains to show the existence of a componentwise

non-decreasing function Kp : [0,∞)3 → [0,∞) such that

‖Y, Y ′‖X,p ≤ Kp(‖y, y′‖X,p, CF , ‖X‖p).

Analogously to Step 2, we can obtain a partition P = {0 = τ0 < τ1 < · · · < τN = T} and
define the solution (Y, Y ′) on each of the half-intervals [τi, τi+1), i = 0, 1, . . . , N − 1. We
recall the definition of Bt and note that the defining estimates also hold in terms of y
since the p-variation is invariant under additive shifts, thus, ‖yi‖p,[τi,τi+1) = ‖y‖p,[τi,τi+1)

and ‖Ryi‖ p
2 ,[τi,τi+1) = ‖Ry‖ p

2 ,[τi,τi+1). It therefore holds that

‖Y ′‖p,[τi,τi+1) ≤ 4CF + ‖y′‖p,[τi,τi+1) (2.3)

as well as
‖RY ‖ p

2 ,[τi,τi+1) ≤ 1 + ‖Ry‖ p
2 ,[τi,τi+1) (2.4)
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for all i = 0, . . . , N − 1. Here, N depends on p, ‖y, y′‖X,p, CF , CF,K,X , ‖X‖p and is, for p
fixed, non-decreasing in the other variables. Observe that

Yt−,t = yt−,t +

(∫ ·

0

Fs(Y ) dXs

)
t−,t

= yt−,t + Ft−(Y )Xt−,t + F ′
t−(Y, Y

′)Xt−,t,

for any t ∈ (0, T ], so we have

RY
t−,t = Ry

t−,t + F ′
t−(Y, Y

′)Xt−,t.

This yields

|RY
τi+1−,τi+1

| ≤ ‖Ry‖p,[τi,τi+1] + (|F ′
τi(Y, Y

′)|+ ‖F ′(Y, Y ′)‖p,[τi,τi+1))|Xτi+1−,τi+1 |.

Now, we use Assumption 2.1 (i), i.e.

|F ′
τi(Y, Y

′)|+ ‖F ′(Y, Y ′)‖p,[τi,τi+1) ≤ CF (1 + ‖Y, Y ′‖X,p,[τi,τi+1))
2(1 + ‖X‖p,[τi,τi+1))

2.

Since
‖Y, Y ′‖X,p,[τi,τi+1) ≤ |y′τi |+ |Fτi(Y )|+ ‖Y ′‖p,[τi,τi+1) + ‖RY ‖ p

2 ,[τi,τi+1),

It follows from Assumption 2.1 (i), (2.3) and (2.4) that

‖Y, Y ′‖X,p,[τi,τi+1) ≤ |y′τi |+ 5(1 + CF ) + ‖y′‖p,[τi,τi+1) + ‖Ry‖ p
2 ,[τi,τi+1).

Consequently, there exists a componentwise non-decreasing polynomial Q(R)
p : [0,∞)3 →

[0,∞) such that

|RY
τi+1−,τi+1

| ≤ Q(R)
p (‖y, y′‖X,p,[τi,τi+1], CF , ‖X‖p,[τi,τi+1])

as well as

‖RY ‖ p
2 ,[τi,τi+1] ≤ 1 + ‖Ry‖ p

2 ,[τi,τi+1] +Q(R)
p (‖y, y′‖X,p,[τi,τi+1], CF , ‖X‖p,[τi,τi+1])

for all i = 0, . . . , N − 1. Moreover, since

Y ′
t−,t = y′t−,t + Ft−,t(Y ),

for any t ∈ (0, T ], we have

|Y ′
τi+1−,τi+1

| ≤ ‖y′‖p,[τi,τi+1] + |Fτi+1−,τi+1
(Y )|.

By Assumption 2.1 (i), it holds that

|Fτi+1−,τi+1
(Y )| ≤ CF (1 + ‖Y ‖p,[τi,τi+1) + |Yτi+1−,τi+1

|),

thus, we need to control the jump of Y at τi+1. For this, note that

|Yτi+1−,τi+1
|

≤ |yτi+1−,τi+1
|+ |Fτi+1−(Y )||Xτi+1−,τi+1

|+ |F ′
τi+1−(Y )||Xτi+1−,τi+1

|

≤ |yτi+1−,τi+1
|+ (|Fτi(Y )|+ ‖F (Y )‖p,[τi,τi+1))|Xτi+1−,τi+1

|
+ (|F ′

τi(Y, Y
′)|+ ‖F ′(Y, Y ′)‖p,[τi,τi+1))|Xτi+1−,τi+1

|
≤ ‖y, y′‖p,[τi,τi+1] + (CF + CF (1 + (|Y ′

τi |+ ‖Y ′‖ p
2 ,[τi,τi+1))‖X‖p,[τi,τi+1]

+ ‖RY ‖ p
2 ,[τi,τi+1))‖X‖p,[τi,τi+1]

+ CF (1 + ‖Y, Y ′‖p,[τi,τi+1))
2(1 + ‖X‖p,[τi,τi+1])

2‖X‖ p
2 ,[τi,τi+1].
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Using (2.3) and (2.4), we can now conclude that there exist componentwise non-

decreasing polynomials Q(Y,J)
p , Q

(Y ′)
p : [0,∞)3 → [0,∞) such that

|Fτi+1−,τi+1
(Y )| ≤ Q(Y,J)

p (‖y, y′‖X,p,[τi,τi+1], CF , ‖X‖p,[τi,τi+1])

as well as

‖Y ′‖p,[τi,τi+1] ≤ Q(Y ′)
p (‖y, y′‖X,p,[τi,τi+1], CF , ‖X‖p,[τi,τi+1]).

Combining these estimates, we obtain that

|Y ′
0 |+ ‖Y ′‖p + ‖RY ‖ p

2
≤ Kp(‖y, y′‖X,p, CF , ‖X‖p),

which is the assertion.

2.3 Continuity of the Itô–Lyons map

A fundamental contribution of the theory of rough paths is the insight that the solution
map, mapping the input (initial condition, coefficients, driving rough path, . . . ) of a rough
differential equation to its solution, is continuous with respect to suitable distances on
the spaces of controlled paths as well as of rough paths, see e.g. [21]. In the context of
rough differential equations, this solution map is also known as Itô–Lyons map. In the
next theorem we present the local Lipschitz continuity of the Itô–Lyons map for rough
functional differential equations, based on the following assumption.

Assumption 2.4. Let X, X̃ ∈ Dp([0, T ];Rd) be given. For (G,G′) ∈ {(F, F ′), (F̃ , F̃ ′)} and
Z ∈ {X, X̃} we have: For every K > 0, there exist constants CG > 0, which depends on
p and the functional G, and CG,K,X,X̃ > 0, which additionally depends on K, X, X̃ such
that the maps

(G,G′) : Vp
Z([0, T ];R

k) → Vp
Z([0, T ];L(R

d;Rk))

satisfy, for all (Y, Y ′) ∈ Vp
X , (Ỹ , Ỹ ′) ∈ Vp

X̃
, and every 0 ≤ s < t ≤ T ,

(i) the growth conditions:

|Gt(Y )| ≤ CG,

|Gt−,t(Y )| ≤ CG(1 + ‖Y ‖p,[s,t) + |Yt−,t|),
‖G(Y )‖p,[s,t] ≤ CG(1 + (|Y ′

s |+ ‖Y ′‖p,[s,t])‖Z‖p,[s,t] + ‖RY ‖ p
2 ,[s,t]

), and

‖G(Y ), G′(Y, Y ′)‖Z,p,[s,t] ≤ CG(1 + ‖Y, Y ′‖Z,p,[s,t])
2(1 + ‖Z‖p,[s,t])2;

(ii) the Lipschitz conditions:

‖G(Y )−G(Ỹ )‖p,[s,t] ≤ CF,K,X,X̃(|Ys − Ỹs|+ ‖Y − Ỹ ‖p,[s,t]), and

‖G(Y ), G′(Y, Y ′);G(Ỹ ), G′(Ỹ , Ỹ ′)‖X,X̃,p,[s,t]

≤ CG,K,X,X̃(|Ys − Ỹs|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p,[s,t] + ‖X − X̃‖p,[s,t]),

if ‖Y, Y ′‖X,p,[s,t], ‖Ỹ , Ỹ ′‖X̃,p,[s,t] ≤ K.
Moreover, there exists a constant CF−F̃ > 0, which depends on p and the functionals

F − F̃ , such that

|(F − F̃ )t(Y )| ≤ CF−F̃ ,

|(F − F̃ )t−,t(Y )| ≤ CF−F̃ (1 + ‖Y ‖p,[s,t) + |Yt−,t|),
‖(F − F̃ )(Y )‖p,[s,t] ≤ CF−F̃ (1 + (|Y ′

s |+ ‖Y ′‖p,[s,t])‖X‖p,[s,t] + ‖RY ‖ p
2 ,[s,t]

), and

‖(F − F̃ )(Y ), (F ′ − F̃ ′)(Y, Y ′)‖X,p,[s,t] ≤ CF−F̃ (1 + ‖Y, Y ′‖X,p,[s,t])
2(1 + ‖X‖p,[s,t])2.
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Theorem 2.5. Let X, X̃ ∈ Dp([0, T ];Rd) be càdlàg p-rough paths for p ∈ (2, 3), (y, y′) ∈
Vp
X([0, T ];Rk), (ỹ, ỹ′) ∈ Vp

X̃
([0, T ];Rk) be given controlled paths with respect to X and

X̃, respectively. Suppose that the non-anticipative functionals (F, F ′), (F̃ , F̃ ′) satisfy
Assumption 2.4 given X, X̃.

Let (Y, Y ) ∈ Vp
X([0, T ];Rk) be the solution given by Theorem 2.3 to the rough func-

tional differential equation (2.2), and (Ỹ , Ỹ ′) ∈ Vp

X̃
([0, T ];Rk) be the solution to the

rough functional differential equation (2.2) driven by X̃ with initial condition (ỹ, ỹ′) and
functional (F̃ , F̃ ′), and suppose that ‖Y, Y ′‖X,p, ‖Ỹ , Ỹ ′‖X̃,p ≤ K, for some K > 0. Then,
we have the estimate

|Y0 − Ỹ0|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p

. |y0 − ỹ0|+ |F0(y)− F̃0(ỹ)|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p + CF−F̃ + ‖X; X̃‖p,

where the implicit multiplicative constant depends on p, CF ∨ CF̃ , CF,K,X,X̃ ∨ CF̃ ,K,X,X̃ ,

K, ‖X‖p and ‖X̃‖p.

Proof. Step 1: Local estimate. Let (Y, Y ′) ∈ Vp
X([0, T ];Rk), (Ỹ , Ỹ ′) ∈ Vp

X̃
([0, T ];Rk) be

the global solutions to the RFDE (2.2), with data ((y, y′), (F, F ′),X), ((ỹ, ỹ′), (F̃ , F̃ ′), X̃),
respectively, see Theorem 2.3. Let t ∈ (0, T ]. Without loss of generality assume that
CF̃ ≤ CF , CF̃ ,K,X,X̃ ≤ CF,K,X,X̃ . As

‖Y − Ỹ ‖p,[0,t] ≤ (|Y ′
0 − Ỹ ′

0 |+ ‖Y ′ − Ỹ ′‖p,[0,t])‖X‖p,[0,t] + (|Ỹ ′
0 |+ ‖Ỹ ′‖p,[0,t])‖X − X̃‖p,[0,t],

Assumption 2.4 gives that

‖F (Y )− F̃ (Ỹ )‖p,[0,t]
≤ ‖F (Y )− F (Ỹ )‖p,[0,t] + ‖(F − F̃ )(Ỹ )‖p,[0,t]
≤ CF,K,X,X̃(|Y0 − Ỹ0|+ ‖Y − Ỹ ‖p,[0,t])

+ CF−F̃ (1 + (|Ỹ ′
0 |+ ‖Ỹ ′‖p,[0,t])‖X‖p,[0,t] + ‖RỸ ‖ p

2 ,[0,t]
)

.p CF,K,X,X̃(|Y0 − Ỹ0|+ (|Y ′
0 − Ỹ ′

0 |+ ‖Y ′ − Ỹ ′‖p,[0,t])(‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t]))

+ CF,K,X,X̃‖Ry −Rỹ‖ p
2 ,[0,t]

+ CF,K,X,X̃‖R
∫ ·
0
F (Y )dX−

∫ ·
0
F̃ (Ỹ )dX̃‖ p

2 ,[0,t]

+ CF,K,X,X̃‖X − X̃‖p,[0,t] + CF−F̃ (1 +K)(1 + ‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t]).

Further, by Lemma A.1 and Lemma A.2 we have that

‖R
∫ ·
0
F (Y )dX−

∫ ·
0
F̃ (Ỹ )dX̃‖ p

2 ,[0,t]

≤ ‖R
∫ ·
0
F (Y )dX−

∫ ·
0
F (Ỹ )dX̃‖ p

2 ,[0,t]
+ ‖R

∫ ·
0
(F−F̃ )(Ỹ )dX̃‖ p

2 ,[0,t]

. CF,K,X,X̃(|Y0 − Ỹ0|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p,[0,t] + ‖X − X̃‖p,[0,t])(‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t])

+ CF (1 +K)2(1 + ‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t])2‖X; X̃‖p,[0,t]
+ CF−F̃ (1 +K)2(1 + ‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t])2(‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t]),

where the implicit multiplicative constant depends on p, ‖X‖p and ‖X̃‖p. Combining the
results, we get that

‖Y ′ − Ỹ ′‖p,[0,t] + ‖RY −RỸ ‖ p
2 ,[0,t]

≤ ‖y′ − ỹ′‖p,[0,t] + ‖F (Y )− F̃ (Ỹ )‖p,[0,t]
+ ‖Ry −Rỹ‖ p

2 ,[0,t]
+ ‖R

∫ ·
0
F (Y )dX−

∫ ·
0
F̃ (Ỹ )dX̃‖ p

2 ,[0,t]

≤ C1(‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t])(‖Y ′ − Ỹ ′‖p,[0,t] + ‖RY −RỸ ‖ p
2 ,[0,t]

)

+ C2(|Y0 − Ỹ0|+ |F0(Y )− F̃0(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p,[0,t] + CF−F̃ + ‖X; X̃‖p,[0,t])
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for some constants C1 > 0, which depends on p, CF,K,X,X̃ , ‖X‖p and ‖X̃‖p, and C2 > 1,
which depends additionally on CF and K. Hence, we can choose t sufficiently small such
that C1(‖X‖p,[0,t] ∨ ‖X̃‖p,[0,t]) ≤ 1

2 , which implies that

‖Y ′ − Ỹ ′‖p,[0,t] + ‖RY −RỸ ‖ p
2 ,[0,t]

. |Y0 − Ỹ0|+ |F0(Y )− F̃0(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p,[0,t] + CF−F̃ + ‖X; X̃‖p,[0,t].
(2.5)

Step 2: Global estimate. Recall the right-continuous control function w : ∆T → [0,∞)

given by

w(s, t) := ‖X‖pp,[s,t] + ‖X‖
p
2
p
2 ,[s,t]

, (s, t) ∈ ∆T ,

as introduced in the proof of Theorem 2.3, and let w̃(s, t) := ‖X̃‖pp,[s,t] + ‖X̃‖
p
2
p
2 ,[s,t]

,

(s, t) ∈ ∆T . We infer from Step 1 that there exists a constant γ > 0, which depends on
p, CF,K,X,X̃ , ‖X‖p and ‖X̃‖p, such that on any interval [s, t] with w(s, t) ∨ w̃(s, t) ≤ γ the
local solutions satisfy an estimate of the form (2.5).

Let c(s, t) := w(s, t) + w̃(s, t), (s, t) ∈ ∆T . Since c is right-continuous, there exists a
partition P = {0 = t0 < · · · < tN = T} of [0, T ], such that

c(ti, ti+1−) = γ, or c(ti, ti+1−) < γ and c(ti, ti+1−) + c(ti+1−, ti+1) ≥ γ,

for every i = 0, 1, . . . , N − 1. Since w and w̃ and, thus, c is superadditive, we have that

Nγ ≤
N−1∑
i=0

c(ti, ti+1−) + c(ti+1−, ti+1) ≤ c(0, T ).

Therefore, the number of partition points N may be bounded by a constant depending
only on γ, w(0, T ) and w̃(0, T ). Thus, in this step, we may combine the local estimates
on each of the subintervals [ti, ti+1), together with simple estimates on the jumps at the
end-points of these subintervals, which we aim to derive, to obtain the global estimate.
More precisely, by Step 1, we have the local estimate

‖Y ′ − Ỹ ′‖p,[ti,ti+1) + ‖RY −RỸ ‖ p
2 ,[ti,ti+1)

. |Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ |y′ti − ỹ′ti |
+ ‖y′ − ỹ′‖p,[ti,ti+1) + ‖Ry −Rỹ‖ p

2 ,[ti,ti+1) + CF−F̃ + ‖X; X̃‖p,[ti,ti+1),

(2.6)

for i = 0, . . . , N−1, where the implicit multiplicative constant depends on p and CF,K,X,X̃ ,

CF , K, ‖X‖p, ‖X̃‖p, but not on the index i. So, it remains to bound

|Y ′
ti+1−,ti+1

− Ỹ ′
ti+1−,ti+1

|+ |RY
ti+1−,ti+1

−RỸ
ti+1−,ti+1

|

to extend the previous estimate to [ti, ti+1].
We note that (

∫ ·
0
Fs(Y ) dXs)t−,t = Ft−(Y )Xt−,t + F ′

t−(Y, Y
′)Xt−,t, that is, with Yt−,t =

yt−,t + (
∫ ·
0
Fs(Y ) dXs)t−,t, it follows that Y ′

t−,t = y′t−,t + Ft−,t(Y ) and RY
t−,t = Ry

t−,t +

F ′
t−(Y, Y

′)Xt−,t, for t ∈ (0, T ]. Given the assumptions, we then have

‖Y ′ − Ỹ ′‖p,[ti,ti+1] + ‖RY −RỸ ‖ p
2 ,[ti,ti+1]

≤ ‖Y ′ − Ỹ ′‖p,[ti,ti+1) + ‖RY −RỸ ‖ p
2 ,[ti,ti+1)

+ |Y ′
ti+1−,ti+1

− Ỹ ′
ti+1−,ti+1

|+ |RY
ti+1−,ti+1

−RỸ
ti+1−,ti+1

|

. |Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p,[ti,ti+1]
+ CF−F̃ + ‖X; X̃‖p,[ti,ti+1],

(2.7)

EJP 30 (2025), paper 117.
Page 12/32

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1381
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rough functional differential equations

where the implicit multiplicative constant depends on p, CF , CF,K,X,X̃ , K, ‖X‖p and

‖X̃‖p, and not on the index i. Here, we used Assumption 2.4 and the estimate (2.6) to
derive that

|(RY
ti+1−,ti+1

−RỸ
ti+1−,ti+1

)− (Ry
ti+1−,ti+1

−Rỹ
ti+1−,ti+1

)|

≤ |F ′
ti+1−(Y, Y

′)Xti+1−,ti+1 − F̃ ′
ti+1−(Ỹ , Ỹ ′)X̃ti+1−,ti+1 |

≤ |F ′
ti+1−(Y, Y

′)− F̃ ′
ti+1−(Ỹ , Ỹ ′)||Xti+1−,ti+1

|+ |F̃ ′
ti+1−(Ỹ , Ỹ ′)||Xti+1−,ti+1

− X̃ti+1−,ti+1
|

≤ (|F ′
ti(Y, Y

′)− F̃ ′
ti(Ỹ , Ỹ )|+ ‖F ′(Y, Y ′)− F̃ ′(Ỹ , Ỹ ′)‖p,[ti,ti+1))‖X‖ p

2 ,[ti,ti+1]

+ (|F̃ ′
ti(Ỹ , Ỹ ′)|+ ‖F̃ ′(Ỹ , Ỹ ′)‖p,[ti,ti+1))‖X− X̃‖ p

2 ,[ti,ti+1]

. |Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖X,p,[ti,ti+1) + CF−F̃ + ‖X; X̃‖p,[ti,ti+1],

and

|(Y ′
ti+1−,ti+1

− Ỹ ′
ti+1−,ti+1

)− (y′ti+1−,ti+1
− ỹ′ti+1−,ti+1

)|

= |Fti+1−,ti+1
(Y )− F̃ti+1−,ti+1

(Ỹ )|
≤ |(F − F̃ )ti+1−,ti+1

(Y )|+ |F̃ti+1−,ti+1
(Y )− F̃ti+1−,ti+1

(Ỹ )|
≤ CF−F̃ (1 + (|Y ′

ti |+ ‖Y ′‖p,[ti,ti+1])‖X‖p,[ti,ti+1] + ‖RY ‖ p
2 ,[ti,ti+1])

+ CF,K,X,X̃(|Yti − Ỹti |+ ‖Y − Ỹ ‖p,[ti,ti+1) + |Yti+1−,ti+1 − Ỹti+1−,ti+1 |)

. |Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖X,p,[ti,ti+1) + CF−F̃ + ‖X; X̃‖p,[ti,ti+1],

where the implicit multiplicative constant depends on p, CF , CF,K,X,X̃ , K and ‖X‖p
∨ ‖X̃‖p, and not on the index i.

Now, we need to control the term |Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ |y′ti − ỹ′ti |. For this,
we note that

|Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ |y′ti − ỹ′ti |
≤ |Yti−1 − Ỹti−1 |+ |Fti−1(Y )− F̃ti−1(Ỹ )|+ |y′ti−1

− ỹ′ti−1
|

+ ‖Y − Ỹ ‖p,[ti−1,ti] + ‖F (Y )− F̃ (Ỹ )‖p,[ti−1,ti] + ‖y′ − ỹ′‖p,[ti−1,ti]

. |Yti−1
− Ỹti−1

|+ |Fti−1
(Y )− F̃ti−1

(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p,[ti−1,ti]

+ CF−F̃ + ‖X; X̃‖p,[ti−1,ti]

+ ‖Y ′ − Ỹ ′‖p,[ti−1,ti] + ‖RY −RỸ ‖ p
2 ,[ti−1,ti],

where the implicit multiplicative constant depends on p, CF , CF,K,X,X̃ , K, ‖X‖p and

‖X̃‖p, and not on the index i; thus applying the estimate (2.7) for i− 1 gives that

|Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ |y′ti − ỹ′ti |
. |Yti−1 − Ỹti−1 |+ |Fti−1(Y )− F̃ti−1(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p,[ti−1,ti]

+ CF−F̃ + ‖X; X̃‖p,[ti−1,ti].

Iteratively, we obtain for any i = 1, . . . , N that

|Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ |y′ti − ỹ′ti |
. |y0 − ỹ0|+ |F0(y)− F̃0(ỹ)|+ |y′0 − ỹ′0|

+

i−1∑
j=0

(
‖y′ − ỹ′‖p,[tj ,tj+1] + ‖Ry −Rỹ‖ p

2 ,[tj ,tj+1] + CF−F̃ + ‖X; X̃‖p,[tj ,tj+1]

)
,
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that is,

(|Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ |y′ti − ỹ′ti |)
p

. (|y0 − ỹ0|+ |F0(y)− F̃0(ỹ)|+ |y′0 − ỹ′0|+NCF−F̃ )
p

+

i−1∑
j=0

(
‖y′ − ỹ′‖pp,[tj ,tj+1]

+ ‖Ry −Rỹ‖pp
2 ,[tj ,tj+1]

+ ‖X; X̃‖pp,[tj ,tj+1]

)
.

This implies that

|Yti − Ỹti |+ |Fti(Y )− F̃ti(Ỹ )|+ |y′ti − ỹ′ti |
. |y0 − ỹ0|+ |F0(y)− F̃0(ỹ)|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p + CF−F̃ + ‖X; X̃‖p,

which is the desired control.
If we plug this into (2.7), it follows that

‖Y ′ − Ỹ ′‖p,[ti,ti+1] + ‖RY −RỸ ‖ p
2 ,[ti,ti+1]

. |y0 − ỹ0|+ |F0(y)− F̃0(ỹ)|+ ‖y, y′; ỹ, ỹ′‖X,X̃,p + CF−F̃ + ‖X; X̃‖p.

Since ‖·‖p,[0,T ] ≤ N
∑N−1

i=0 ‖·‖p,[ti,ti+1] for any p ≥ 1, see e.g. [3, Lemma A.1], the estimate
finally follows.

3 Examples of RFDEs

The general framework of rough functional differential equations, presented in
Section 2, allows to treat various classes of rough differential equations. In this section,
some exemplary rough functional differential equations are discussed, aiming to develop
the main conceptional ideas and demonstrating the scope of RFDEs rather than pushing
for the most general results.

3.1 Classical RDEs

Let us start with the classical rough differential equation (RDE)

Yt = y0 +

∫ t

0

f(Ys) dXs, t ∈ [0, T ], (3.1)

where y0 ∈ Rk, f ∈ C3
b (R

k;L(Rd;Rk)) and X ∈ Dp([0, T ];Rd) for p ∈ (2, 3). While the
existence and uniqueness of solutions to the RDE (3.1) driven by a continuous rough path
and the continuity of the solution map were first proven by Lyons [31], the analogous
results for RDEs driven by càdlàg rough paths were more recently obtained by Friz and
Zhang [24]. As an application of Theorem 2.3 and Theorem 2.5, one can recover these
results, demonstrating that Assumption 2.1 and 2.4 are, indeed, natural generalizations
of the classical assumptions of the coefficients of a rough differential equation. Further-
more, note that Corollary 3.1 presents the continuity of the solution map with respect to
the controlled path norm, which slightly generalizes [24, Theorem 3.8].

Corollary 3.1. (i) If f ∈ C3
b (R

k;L(Rd;Rk)), there exists a unique solution to the
RDE (3.1). Moreover, there exists a non-decreasing function Kp : [0,∞)2 → [0,∞)

such that
‖Y, Y ′‖X,p ≤ Kp(‖f‖C2

b
, ‖X‖p).

(ii) Let (Y, Y ′) ∈ Vp
X([0, T ];Rk) be the unique solution to the RDE (3.1). Moreover, let

ỹ0 ∈ Rk, f̃ ∈ C3
b (R

k;L(Rd;Rk)), X̃ ∈ Dp([0, T ];Rd) with corresponding solution
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(Ỹ , Ỹ ′) ∈ Vp

X̃
([0, T ];Rd), and suppose that ‖Y, Y ′‖X,p, ‖Ỹ , Ỹ ′‖X̃,p ≤ K, for some

K > 0. Then, we have the estimate

|Y0 − Ỹ0|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p . |y0 − ỹ0|+ ‖f − f̃‖C2
b
+ ‖X; X̃‖p,

where the implicit multiplicative constant depends on p, ‖f‖C3
b
∨ ‖f̃‖C3

b
, K, ‖X‖p

and ‖X̃‖p.
In order to apply the existence and uniqueness result presented in Theorem 2.3, and

also the continuity result presented in Theorem 2.5, we need to check that the vector
field f in the RDE (3.1) satisfies Assumption 2.1 and 2.4. This is the content of the next
lemma, which we formulate slightly more general, with regard to the dimensions of the
underlying spaces, for later use.

Lemma 3.2. Let f ∈ C3
b (R

m;L(Rd;Rk)) and X, X̃ ∈ Dp([0, T ];Rd). The non-anticipative
functional

(F, F ′) : Vp
X([0, T ];Rm) → Vp

X([0, T ];L(Rd;Rk)), (F (Y ), F ′(Y, Y ′)) := (f(Y ),Df(Y )Y ′),

satisfies Assumption 2.4 (i) and (ii), and, in particular, Assumption 2.1, given X, X̃.

Proof. Since the proof is fairly standard, we provide only a sketch of a proof, following,
e.g., the proofs of [24, Lemma 3.5, Lemma 3.6, Lemma 3.7].

Fix (s, t) ∈ ∆T and let (Y, Y ′) ∈ Vp
X , (Ỹ , Ỹ ′) ∈ Vp

X̃
.

Growth conditions. It is clear that |Ft(Y )| ≤ ‖f‖C2
b
, and it follows from the Lipschitz

continuity of f that

|Ft−,t(Y )| ≤ ‖F (Y )‖p,[s,t] ≤ ‖f‖C2
b
‖Y ‖p,[s,t].

We now note that ‖Y ‖p,[s,t] ≤ ‖Y ‖p,[s,t) + |Yt−,t| as well as ‖Y ‖p,[s,t] ≤ Cp(1 + (|Y ′
s | +

‖Y ′‖p,[s,t]) · ‖X‖p,[s,t] + ‖RY ‖ p
2 ,[s,t]

). Further, it holds that

|F ′
s(Y, Y

′)|+ ‖F ′(Y, Y ′)‖p,[s,t] = |Df(Ys)Y
′
s |+ ‖Df(Y )Y ′‖p,[s,t]

≤ ‖f‖C2
b
(|Y ′

s |+ ‖Y ′‖p,[s,t])(1 + ‖Y ‖p,[s,t])

.p ‖f‖C2
b
(|Y ′

s |+ ‖Y ′‖p,[s,t])(1 + (|Y ′
s |+ ‖Y ′‖p,[s,t])‖X‖p,[s,t] + ‖RY ‖ p

2 ,[s,t]
)

.p ‖f‖C2
b
(1 + ‖Y, Y ′‖X,p,[s,t])(1 + ‖X‖p,[s,t])

and by Taylor’s expansion,

R
F (Y )
s,t = R

f(Y )
s,t = f(Yt)− f(Ys)−Df(Ys)Ys,t +Df(Ys)R

Y
s,t

=
1

2
D2f(Ys + λYs,t)Y

2
s,t +Df(Ys)R

Y
s,t,

with λ ∈ [0, 1], which implies that

‖RF (Y )‖ p
2 ,[s,t]

= ‖Rf(Y )‖ p
2 ,[s,t]

≤ ‖f‖C2
b
(‖Y ‖2p,[s,t] + ‖RY ‖ p

2 ,[s,t]
)

.p ‖f‖C2
b
(((|Y ′

s |+ ‖Y ′‖p,[s,t])‖X‖p,[s,t] + ‖RY ‖ p
2 ,[s,t]

)2 + ‖RY ‖ p
2 ,[s,t]

)

.p ‖f‖C2
b
(1 + ‖Y, Y ′‖X,p,[s,t])

2(1 + ‖X‖p,[s,t])2.

Assumption 2.4 (i) therefore holds with some constant CF = ‖f‖C2
b
up to a multiplicative

constant which depends on p.
Lipschitz conditions. Fix K > 0 and assume that ‖Y, Y ′‖X,p,[s,t], ‖Ỹ , Ỹ ′‖X̃,p,[s,t] ≤ K.

The proofs work verbatim as the proofs of [24, Lemma 3.1 and Lemma 3.7]. The constant
CF,K,X,X̃ depends on p and ‖f‖C3

b
, K, ‖X‖p and ‖X̃‖p.
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Proof of Corollary 3.1. (i) The existence and uniqueness of the solution follows immedi-
ately from Lemma 3.2 and Theorem 2.3. For the a priori estimate, note that ‖y, y′‖X,p = 0

and CF .p ‖f‖C2
b
.

(ii) To apply the continuity result presented in Theorem 2.5, we need to ensure that
the functionals satisfy the required assumptions. For (F, F ′), (F̃ , F̃ ′), this is given in
Lemma 3.2, and further,

(F − F̃ , (F − F̃ )′) : Vp
X([0, T ];Rk) → Vp

X([0, T ];L(Rd;Rk)),

((F − F̃ )(Y ), (F − F̃ )′(Y, Y ′)) := (f(Y )− f̃(Y ),Df(Y )Y ′ −Df̃(Y )Y ′),

satisfies the corresponding estimates in Assumption 2.4, since C3
b is a vector space. Thus

we have, CF−F̃ .p ‖f − f̃‖C2
b
.

3.2 Controlled RDEs

Motivated by pathwise stochastic control, see e.g. [18, 4], and robust stochastic
filtering, see e.g. [3], as well as analogously to controlled stochastic differential equations,
see e.g. [38], we consider the controlled rough differential equation

Yt = yt +

∫ t

0

f(αs, Ys) dXs, t ∈ [0, T ], (3.2)

where X ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ Vp
X([0, T ];Rk), f ∈ C3

b (R
k+e;L(Rd;Rk)),

and (α, α′) ∈ Vp
X([0, T ];Re) is a fixed controlled path, with e ∈ N. In case of continuous

rough paths and controls α of finite p
2 -variation, controlled RDEs were treated in [3,

Theorem 2.3]. The following corollary provides an existence, uniqueness and continuity
result for controlled RDEs driven by càdlàg p-rough paths and with controls α, which
are only required to be controlled paths.

Corollary 3.3. (i) If f ∈ C3
b (R

k+e;L(Rd;Rk)) and (α, α′) ∈ Vp
X([0, T ];Re), then there

exists a unique solution to the controlled rough differential equation (3.2). More-
over, there exists a componentwise non-decreasing function Kp : [0,∞)5 → [0,∞)

such that

‖Y, Y ′‖X,p ≤ Kp(‖f‖C2
b
, ‖y, y′‖X,p, ‖α‖p, ‖α, α′‖X,p, ‖X‖p).

(ii) Let (Y, Y ′) ∈ Vp
X([0, T ];Rk) be the unique solution to the controlled rough differ-

ential equation (3.2). Moreover, let (ỹ, ỹ′) ∈ Vp
X([0, T ];Rk), (α̃, α̃′) ∈ Vp

X([0, T ];Re),
f̃ ∈ C3

b (R
k+e;L(Rd;Rk)), with corresponding solution (Ỹ , Ỹ ′) ∈ Vp

X([0, T ];Rk), and
suppose that ‖Y, Y ′‖X,p, ‖Ỹ , Ỹ ′‖X,p ≤ K, for some K > 0. Then, we have the
estimate

|Y0 − Ỹ0|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,p

. |y0 − ỹ0|+ ‖y, y′; ỹ, ỹ′‖X,p + ‖f − f̃‖C2
b
+ |α0 − α̃0|+ ‖α, α′; α̃, α̃‖X,p,

where the implicit multiplicative constant depends on p, ‖f‖C3
b
∨ ‖f̃‖C3

b
, ‖α, α′‖X,p,

‖α̃, α̃′‖X,p, K, and ‖X‖p.
In order to apply the existence and uniqueness result presented in Theorem 2.3, and

also the continuity result in Theorem 2.5, we need to check that the vector field in the
RDE (3.2) satisfies Assumption 2.4. This is the content of the next lemma. Note that
it will be sufficient to check Assumption 2.4 (ii) for X = X̃, since we do not establish
stability results with respect to the driving rough path in this subsection. (This also
applies to the following subsections.)
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Lemma 3.4. Let f ∈ C3
b (R

k+e;L(Rd;Rk)) and X ∈ Dp([0, T ];Rd) for p ∈ (2, 3). Further,
let (α, α′) ∈ Vp

X([0, T ];Re). The non-anticipative functional

(F, F ′) : Vp
X([0, T ];Rk) → Vp

X([0, T ];L(Rd;Rk)),

(F (Y ), F ′(Y, Y ′)) := (f((α, Y )),Df((α, Y ))(α′, Y ′)),

satisfies Assumption 2.4 given X = X̃.

Proof. Fix (s, t) ∈ ∆T and let (Y, Y ′) ∈ Vp
X . It is clear that |Ft(Y )| ≤ ‖f‖C2

b
, and we note

that

|Ft−,t(Y )| ≤ ‖F (Y )‖p,[s,t] = ‖f((α, Y ))‖p,[s,t]
≤ ‖f‖C2

b
‖(α, Y )‖p,[s,t]

≤ ‖f‖C2
b
(1 + ‖α‖p,[s,t])(1 + ‖Y ‖|p,[s,t]),

and it holds that ‖Y ‖p,[s,t] ≤ ‖Y ‖p,[s,t) + |Yt−,t| as well as ‖Y ‖p,[s,t] ≤ Cp(1 + (|Y ′
s | +

‖Y ′‖p,[s,t]) · ‖X‖p,[s,t] + ‖RY ‖ p
2 ,[s,t]

). Applying Lemma 3.2 to the enlarged controlled path
((α, Y ), (α′, Y ′)), it follows that

‖F (Y ), F ′(Y, Y ′)‖X,p,[s,t]

. ‖f‖C2
b
(1 + |(α′

s, Y
′
s )|+ ‖(α′, Y ′)‖p,[s,t] + ‖R(α,Y )‖ p

2 ,[s,t]
)2(1 + ‖X‖p,[s,t])2

. ‖f‖C2
b
(1 + ‖α, α′‖X,p)

2(1 + ‖Y, Y ′‖X,p,[s,t])
2(1 + ‖X‖p,[s,t])2.

The growth conditions thus hold with constant CF = ‖f‖C2
b
up to a multiplicative

constant, which depends on p, ‖α‖p and ‖α, α′‖X,p.
Proceeding as in the proof of Lemma 3.2, we can show the Lipschitz conditions,

observing that

|(α, Y )s − (α, Ỹ )s|+ ‖(α, Y )− (α, Ỹ )‖p,[s,t] = |Ys − Ỹs|+ ‖Y − Ỹ ‖p,[s,t]

and
‖(α, Y ), (α′, Y ′); (α, Ỹ ), (α′, Ỹ ′)‖X,p = ‖Y, Y ′; Ỹ , Ỹ ′‖X,p,

and similarly for each summand of the norm, so the Lipschitz conditions hold with
constant CF,K,X,X , which depends on p, ‖f‖C3

b
, K, for K > 0, ‖α, α′‖X,p, and ‖X‖p.

Proof of Corollary 3.3. (i) The existence and uniqueness of the solution follows im-
mediately from Lemma 3.4 and Theorem 2.3. For the a priori estimate, note that
CF .p ‖f‖C2

b
(1 + ‖α‖p + ‖α, α′‖X,p)

2.
(ii) To apply the continuity result presented in Theorem 2.5, we need to ensure that

the functionals satisfy the required assumptions. For (F, F ′), (F̃ , F̃ ′), this is given in
Lemma 3.4. Analogously, since f − f̃ ∈ C3

b , we note that for

(Y, Y ′) 7→ ((f − f̃)((α, Y )),D(f − f̃)((α, Y ))(α′, Y ′))

the growth conditions hold with constant equal to ‖f − f̃‖C2
b
up to a multiplicative

constant which depends on p, ‖α‖p and ‖α, α′‖X,p. Further, it follows from the proofs
of [24, Lemma 3.1 and Lemma 3.5] that the growth conditions hold for

(Y, Y ′) 7→ (f((α, Y ))− f((α̃, Y )),Df((α, Y ))(α′, Y ′)−Df((α̃, Y ))(α̃′, Y ′))

with constant equal to |α0−α̃0|+‖α−α̃‖p+‖α, α′; α̃, α̃′‖X,p up to a multiplicative constant
which depends on p, ‖f‖C3

b
, ‖α‖p, ‖α̃‖p, ‖α, α′‖X,p, ‖α̃, α̃′‖X,p.
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This implies that

(F − F̃ , F ′ − F̃ ′) : Vp
X([0, T ];Rk) → Vp

X([0, T ];L(Rd;Rk)),

((F − F̃ )(Y ), (F − F̃ )′(Y, Y ′))

:= (f((α, Y ))− f̃((α̃, Y )),Df((α, Y ))(α′, Y ′)−Df̃((α̃, Y ))(α̃′, Y ′)),

satisfies the corresponding estimates in Assumption 2.4 with

CF−F̃ = ‖f − f̃‖C2
b
+ |α0 − α̃0|+ ‖α− α̃‖p + ‖α, α′; α̃, α̃′‖X,p

up to a multiplicative constant, which depends on p, ‖f‖C3
b
∨‖f̃‖C3

b
, ‖α‖p, ‖α̃‖p, ‖α, α′‖X,p,

‖α̃, α̃′‖X,p.

3.3 RDEs with discrete time dependence

Let us consider the rough differential equation with discrete time dependence

Yt = yt +

∫ t

0

f(Ys, Ys∧r1 , . . . Ys∧r`) dXs, t ∈ [0, T ], (3.3)

whereX ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ Vp
X([0, T ];Rk), f ∈ C3

b (R
k(`+1);L(Rd;Rk)),

and r1 < · · · < r` be given time points in [0, T ], with ` ∈ N. For continuous rough paths
as driving signals, the existence (without uniqueness) of a solution to the RDE (3.3) was
proven in [7, Example 4.2 and Theorem 4.4]. The next proposition provides an existence,
uniqueness and continuity result for RDEs with discrete time dependence driven by
càdlàg p-rough paths.

Proposition 3.5. (i) In the above setting, there exists a unique solution to the RDE
with discrete time dependence (3.3). Moreover, there exists a componentwise
non-decreasing function Kp : N× [0,∞)3 → [0,∞) such that

‖Y, Y ′‖X,p ≤ Kp(`, ‖f‖C2
b
, ‖y, y′‖X,p, ‖X‖p).

(ii) Let (Y, Y ′) ∈ Vp
X([0, T ];Rk) be the unique solution to the RDE with time discrete

dependence (3.3). Moreover, let (ỹ, ỹ′) ∈ Vp
X([0, T ];Rk) with corresponding solution

(Ỹ , Ỹ ′) ∈ Vp
X([0, T ];Rk), and suppose that ‖Y, Y ′‖X,p, ‖Ỹ , Ỹ ′‖X,p ≤ K, for some

K > 0. Then, we have the estimate

|Y0 − Ỹ0|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,p . |y0 − ỹ0|+ ‖y, y′; ỹ, ỹ′‖X,p,

where the implicit multiplicative constant depends on p, `, ‖f‖C3
b
, K, and ‖X‖p.

Proof. (i) On the interval [0, r1], we extend the vector field f to map into the space of
controlled paths by setting

(F, F ′) : Vp
X([0, r1];R

k) → Vp
X([0, r1];L(Rd;Rk)), (F (Y ), F ′(Y, Y ′)) := (f(Ȳ ),Df(Ȳ )Ȳ ′),

with (Ȳ , Ȳ ′) = ((Y, Y, . . . , Y ), (Y ′, Y ′, . . . , Y ′)) ∈ Vp
X([0, T ];Rk(`+1)). It follows analogously

to Lemma 3.2 that the functional satisfies Assumption 2.4 (i) and (ii) with constants
depending additionally on `, that is, CF = ‖f‖C2

b
up to a multiplicative constant, which

depends on p and `, and CF,K,X,X depends on p, `, ‖f‖C3
b
, K, for K > 0, and ‖X‖p.

Note that it is sufficient to check Assumption 2.4 (ii) for X = X̃. We can thus apply
Theorem 2.3 to show that there exists a unique solution to the RDE (3.3) on the interval
[0, r1). We now aim to solve the RDE (3.3) iteratively on the subintervals [ri, ri+1),
i = 1, . . . , `, with r`+1 = T . Given the solution on [ri−1, ri), with r0 = 0, the value Yri is
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determined by the jump of X at time ri. We therefore consider (yi, y′i) ∈ Vp
X([ri, ri+1];R

k),
where

yi;t = yt + Yri− − yri− + Fri−(Y )Xri−,ri + F ′
ri−(Y, Y

′)Xri−,ri , t ∈ [ri, ri+1],

for every i = 1, . . . , `, and (αi, α
′
i) ∈ Vp

X([ri, ri+1];R
ik) be a fixed controlled path, with

αi,t = (Yr1 , . . . , Yri), t ∈ [ri, ri+1). We set

(F, F ′) : Vp
X([ri, ri+1];R

k) → Vp
X([ri, ri+1];L(Rd;Rk)),

(F (Y ), F ′(Y, Y ′)) = (f((Y, αi, Y, . . . , Y )),Df((Y, αi, Y, . . . , Y ))(Y ′, α′
i, Y

′, . . . , Y ′))

for i = 1, . . . , `− 1, and

(F (Y ), F ′(Y, Y ′)) = (f((Y, α`)),Df((Y, α`))(Y
′, α′

`)),

for i = `. Analogously to Lemma 3.4, we can show that the functional satisfies Assump-
tion 2.4 (i) and (ii) with constants depending additionally on `, that is CF = ‖f‖C2

b
up

to a multiplicative constant, which depends on p and `, see the definition of (αi, α
′
i) ∈

Vp
X([ri, ri+1]), and CF,K,X,X depends on p, `, ‖f‖C3

b
, K, for K > 0, and ‖X‖p. Note that

it is again sufficient to check Assumption 2.4 (ii) for X = X̃. We can thus again apply
Theorem 2.3 to show that there exists a unique solution to the RDE (3.3) on the interval
[ri, ri+1), that is

Yt = yi;t +

∫ t

ri

Fs(Y ) dXs, t ∈ [ri, ri+1),

for every i = 1, . . . , `. Then, by pasting the solutions on each of these subintervals
together, we obtain a unique global solution Y , which holds over the entire interval [0, T ].

The a priori estimate follows by iteratively combining the a priori estimate of Corol-
lary 3.3, noting that αi,t = (Yr1 , . . . , Yri), t ∈ [ri, ri+1), for i = 1, . . . , `.

(ii) Local estimate on [0, r1]. To apply the continuity result presented in Theorem 2.5
on the subinterval [0, r1], we need to ensure that the functionals satisfy the required
assumptions.

For (F, F ′), this is shown in the proof of (i), and as we aim to obtain continuity of the
solution map as a function of the initial condition (y, y′), not the vector field f , on the
interval [0, r1] we may consider (F, F ′) = (F̃ , F̃ ′), so, (F − F̃ , F ′ − F̃ ′) = 0. Theorem 2.5
now gives that

‖Y ′ − Ỹ ′‖p,[0,r1] + ‖RY −RỸ ‖p,[0,r1] . |y0 − ỹ0|+ ‖y, y′; ỹ, ỹ′‖X,p,[0,r1],

where the implicit multiplicative constant depends on p, `, ‖f‖C3
b
, K, and ‖X‖p.

Local estimate on [ri, ri+1], i = 1, . . . , `. To apply the continuity result presented in
Theorem 2.5, we need to ensure that the functionals satisfy the required assumptions.
For (F, F ′), (F̃ , F̃ ′), this is shown in the proof of (i), and for (F − F̃ , F ′ − F̃ ′), in the proof
of Corollary 3.3 (ii), where the constant CF−F̃ depends additionally on `. Theorem 2.5
then implies that

‖Y ′ − Ỹ ′‖p,[ri,ri+1] + ‖RY −RỸ ‖p,[ri,ri+1] . |Yri − Ỹri |+ ‖y, y′; ỹ, ỹ′‖X,p,[ri,ri+1],

where the implicit multiplicative depends on p, ‖f‖C3
b
, K and ‖X‖p, see the definition of

(αi, α
′
i), (α̃i, α̃

′
i) ∈ Vp

X([ri, ri+1];R
ik), (yi, y′i), (ỹi, ỹ

′
i) ∈ Vp

X([ri, ri+1];R
k).

Global estimate. Using the methods of the proof of Theorem 2.5, and applying the
local estimates on the subintervals [ri, ri+1], i = 0, 1, . . . , `, one can then derive that

‖Y ′ − Ỹ ′‖p + ‖RY −RỸ ‖ p
2
. |y0 − ỹ0|+ ‖y, y′; ỹ, ỹ′‖X,p,

which implies the estimate.
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3.4 RDEs with constant delay

Maybe the most prominent example of rough functional differential equations are
RDEs with constant delay, cf. e.g. [20, 36, 12, 15, 11]. In the present subsection we
consider the delayed rough differential equation

Yt = yt +

∫ t

0

f(Ys, Ys−r1 , . . . , Ys−r`) dXs, t ∈ [0, T ], (3.4)

whereX ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ Vp
X([0, T ];Rk), f ∈ C3

b (R
k(`+1);L(Rd;Rk)),

and constant delays 0 < r1 < · · · < r` with ` ∈ N. To give a rigorous mathematical mean-
ing to the RDE (3.4), we follow the approach of Neuenkirch, Nourdin and Tindel [36]:
we assume that the driving rough path X is of the form

Xt = (Zt, Zt−r1 , . . . , Zt−r`), t ∈ [0, T ],

for a path Z ∈ Dp([−r`, T ];R
e) with d = e(` + 1). We extend the vector field f to map

into the space of controlled paths by setting

(F (Y ), F ′(Y, Y ′)) := (f((Y, α)),Df((Y, α))(Y ′, α′)),

for (α, α′) ∈ Vp
X([0, T ];Rk`), where

α = (α1, . . . , α`) with αj,t :=

{
Yt−rj , t ∈ [rj , T ]

Yj;t, t ∈ [0, rj)
, (3.5)

for fixed controlled paths (Yj , Y
′
j ) ∈ Vp

Z·−rj
([0, T ];Rk) and every j = 1, . . . , `. This includes

the natural case Yj = ξ·−rj for an initial path ξ ∈ Vp
Z([−r`, T ];R

k).
Note that the postulated form of the rough path X is essential to ensure the

well-posedness of the rough integral appearing in (3.4) and the extension of the so-
lution Y to the interval [−r`, 0] is a standard and necessary way to give a meaning to
f(Ys, Ys−r1 , . . . , Ys−r`) on the entire interval [0, T ].

For delayed RDEs of the form (3.4) driven by α-Hölder continuous rough paths,
existence, uniqueness and continuity of the Itô–Lyons map were first proven in [36] for
α ∈ ( 13 ,

1
2 ). These results were extended in [42] to α-Hölder continuous rough paths

for α ∈ ( 14 ,
1
3 ). A paracontrolled distribution approach to RDEs with constant delay can

be found in [39]. Based on the general results of Section 2, we can derive the follow
proposition.

Proposition 3.6. (i) In the above setting, there exists a unique solution to the delayed
RDE (3.4). Moreover, there exists a componentwise non-decreasing function
Kp : N× [0,∞)4 → [0,∞) such that

‖Y, Y ′‖X,p ≤ Kp

(
`, ‖f‖C2

b
, ‖y, y′‖X,p,

∑̀
j=1

‖Yj , Y
′
j ‖Z·−rj

,p, ‖X‖p
)
.

(ii) Let (Y, Y ′) ∈ Vp
X([0, T ];Rk) be the unique solution to the rough differential equation

with constant delay (3.4). Moreover, consider (ỹ, ỹ′) ∈ Vp
X([0, T ];Rk), and fixed con-

trolled paths (Ỹj , Ỹ
′
j ) ∈ Vp

Z·−rj
([0, T ];Rk), j = 1, . . . , `, with corresponding solution

(Ỹ , Ỹ ′) ∈ Vp
X([0, T ];Rk).

Suppose that ‖Y, Y ′‖X,p, ‖Ỹ , Ỹ ′‖X,p ≤ K, for some K > 0, and that ‖Yj‖p, ‖Ỹj‖p,
‖Yj , Yj‖X,p, ‖Ỹj , Ỹ

′
j ‖X,p ≤ L, for some L > 0, j = 1, . . . , `. Then, we have the
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estimate

|Y0 − Ỹ0|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,p

. |y0 − ỹ0|+ ‖y, y′; ỹ, ỹ′‖X,p +
∑̀
j=1

|Yj;0 − Ỹj;0|+
∑̀
j=1

‖Yj , Y
′
j ; Ỹj , Ỹ

′
j ‖Z·−rj

,p,

where the implicit multiplicative constant depends on p, `, r1, T , ‖f‖C3
b
, K, L, and

‖X‖p.

Proof. (i) The existence and uniqueness of the solution follows by iteratively applying
Corollary 3.3 (i) to intervals of the length r1.

More precisely, we consider the functional

(F, F ′) : Vp
X([0, r1];R

k) → Vp
X([0, r1];L(Rd;Rk)),

for (α, α′) ∈ Vp
X([0, r1];R

k`) given by (3.5), and apply Corollary 3.3 (i) to show that there
exists a unique solution to the RDE (3.4) on the interval [0, r1).

We now aim to solve the RDE (3.4) iteratively on the subintervals [ir1, (i + 1)r1],
i = 1, . . . , N − 1, assuming that T = Nr1 for some N ∈ N. Given the solution on
[(i − 1)r1, ir1), the value Yir1 is determined by the jump of X on ir1. We therefore
consider (yi, y′i) ∈ Vp

X([ir1, (i+ 1)r1];R
k), where

yi;t = yt + Yir1− − yir1− + Fir1−(Y )Xir1−,ir1 + F ′
ir1−(Y, Y

′)Xir1−,ir1 , t ∈ [ir1, (i+ 1)r1],

for every i = 1, . . . , N − 1, and

(F, F ′) : Vp
X([ir1, (i+ 1)r1];R

k) → Vp
X([ir1, (i+ 1)r1];L(Rd;Rk)),

for (α, α′) ∈ Vp
X([ir1, (i + 1)r1];R

k`) given by (3.5). We again apply Corollary 3.3 (i) to
show that there exists a unique solution to the RDE (3.4) on the interval [ir1, (i+ 1)r1),
that is

Yt = yi;t +

∫ t

ir1

Fs(Y ) dXs, t ∈ [ir1, (i+ 1)r1)

for every i = 1, . . . , N − 1. Then, by pasting solutions on each of these subintervals
together, we obtain a unique global solution Y to the RDE (3.4), which holds over the
interval [0, T ].

The a priori estimate follows by iteratively combining the a priori estimate of Corol-
lary 3.3, and by the definition of α in (3.5).

(ii) Local estimate on [ir1, (i+ 1)r1], i = 0, . . . , N − 1. To apply the continuity result
presented in Theorem 2.5 on the subintervals [ir1, (i + 1)r1], we need to ensure that
the functionals satisfy the required assumptions. This is given for (F, F ′), (F̃ , F̃ ′) in
Lemma 3.4, and for (F − F̃ , F ′ − F̃ ′) we refer to the proof of Corollary 3.3 (ii), and write
CF−F̃ ,i for the corresponding constant. By Theorem 2.5, it then holds the estimate

‖Y ′ − Ỹ ′‖p,[ir1,(i+1)r1] + ‖RY −RỸ ‖ p
2 ,[ir1,(i+1)r1]

. |Yir1 − Ỹir1 |+ |Fir1(Y )− F̃ir1(Ỹ )|+ ‖y, y′; ỹ, ỹ′‖p,[ir1,(i+1)r1] + CF−F̃ ,i

. |y0 − ỹ0|+ ‖y, y′; ỹ, ỹ′‖X,p +
∑̀
j=1

|Yj;0 − Ỹj;0|+ ‖Yj , Y
′
j ; Ỹj , Ỹ

′
j ‖Z·−rj

,p

+ ‖Y ′ − Ỹ ′‖p,[0,ir1] + ‖RY −RỸ ‖ p
2 ,[0,ir1]

,

where the implicit multiplicative constant depends on p, `, ‖f‖C2
b
, K, L, and ‖X‖p, see

the definition of (α, α′), (α̃, α̃′) ∈ Vp
X([0, T ];Rk`).

Global estimate. Iteratively applying the local estimates and, as before, using that
‖ · ‖p ≤ N

∑N−1
i=0 ‖ · ‖p,[ir1,(i+1)r1], one can then derive the estimate.
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3.5 RDEs with variable delay

Rough differential equations with variable delay represent a slight generalization of
RDEs with constant delay. More precisely, let us consider the rough differential equation
with variable delay

Yt = yt +

∫ t

0

f(Ys, Ys−η(s)) dXs, t ∈ [0, T ], (3.6)

where X ∈ Dp([0, T ];Rd) for p ∈ (2, 3), (y, y′) ∈ Vp
X([0, T ];Rk), f ∈ C3

b (R
2k;L(Rd;Rk)),

and η(·) be a bounded continuous function with η(t) ≥ ε, t ∈ [0, T ], for some ε > 0, and
η̄ = sup{η(t)− t : t ∈ [0, T ]}. We assume that the driving rough path X is of the form

Xt = (Zt, Zt−η(t)), t ∈ [0, T ],

for a path Z ∈ Dp([−η̄, T ];Re) with d = 2e. We extend the vector field f into the space of
controlled paths by setting

(F, F ′) : Vp
X([0, T ];Rk) → Vp

X([0, T ];L(Rd;Rk)),

(F (Y ), F ′(Y, Y ′)) = (f((Y, α)),Df((Y, α))(Y ′, α′)),

for (α, α′) ∈ Vp
X([0, T ];Rk), where

αt :=

{
Yt−η(t), t ≥ η(t)

Yη;t, t < η(t)
,

for some fixed controlled path (Yη, Y
′
η) ∈ Vp

Z·−η(·)
([0, T ];Rk).

Corollary 3.7. (i) In the above setting, there exists a unique solution to the delayed
RDE (3.6). Moreover, there exists a componentwise non-decreasing function
Kp : (0,∞)× [0,∞)4 → [0,∞) such that

‖Y, Y ′‖X,p ≤ Kp(ε
−1, ‖f‖C2

b
, ‖y, y′‖X,p, ‖Yη, Y

′
η‖X,p, ‖X‖p).

(ii) Let (Y, Y ′) ∈ Vp
X([0, T ];Rk) be the unique solution to the RDE with variable de-

lay (3.6). Moreover, consider (ỹ, ỹ′) ∈ Vp
X([0, T ];Rk), and a fixed controlled path

(Ỹη, Ỹ
′
η) ∈ Vp

Z·−η(·)
([0, T ];Rk) with corresponding solution (Ỹ , Ỹ ′) ∈ Vp

X([0, T ];Rk).

Suppose that ‖Y, Y ′‖X,p, ‖Ỹ , Ỹ ′‖X,p ≤ K, for some K > 0, and ‖Yη, Yη‖X,p,
‖Ỹη, Ỹ

′
η‖X,p ≤ L, for some L > 0. Then, we have the estimate

|Y0 − Ỹ0|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,p

. |y0 − ỹ0|+ ‖y, y′; ỹ, ỹ′‖X,p + |Yη;0 − Ỹη;0|+ ‖Yη, Y
′
η ; Ỹη, Ỹ

′
η‖Z·−η(·),p,

where the implicit multiplicative constant depends on p, ε, T , η, ‖f‖C3
b
, K, L, and

‖X‖p.

Proof. (i) The existence and uniqueness of the solution follows by iteratively applying
Corollary 3.3 (i) to intervals of the length ε, see the proof of Proposition 3.6 (i). The a
priori estimate follows analogously.

(ii) The continuity of the solution map follows analogously to Proposition 3.6 (ii).

EJP 30 (2025), paper 117.
Page 22/32

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1381
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rough functional differential equations

4 Application to stochastic differential equations with delay

One main application of rough path theory is a pathwise and robust approach to
stochastic differential equations, see e.g. [21]. In this section we show how a càdlàg
martingale and its delayed version can be lifted to a joint random rough path in the spirit
of stochastic Itô integration. Consequently, this allows to apply the results on rough
functional differential equations, provided in Section 2, to Itô stochastic differential
equations (SDEs) with constant delay.

Throughout the entire section, let us consider constant delays 0 < r1 < · · · < r` with
` ∈ N, and let (Ω,F ,P) be a probability space with a complete and right-continuous
filtration (Ft)t∈[−r`,T ]. Let Z = (Zt)t∈[−r`,T ] be an e-dimensional square-integrable càdlàg
martingale that is defined on (Ω,F ,P), with Zt = 0 for t < 0. The space of all square-
integrable random variables on (Ω,F ,P) is denoted by L2 and equipped with the standard
L2-norm.

4.1 Delayed martingales as rough paths

The aim of this subsection is to construct a random rough path above the stochastic
process X = (Xt)t∈[0,T ], defined as

Xt := (Zt, Zt−r1 , . . . , Zt−r`), t ∈ [0, T ],

in the spirit of stochastic Itô integration. Recall that, for a martingale (St)t∈[0,T ] (or,

more generally, for a semimartingale (St)t∈[0,T ]), the stochastic Itô integral
∫ t

0
ϕs dSs

can be defined whenever (ϕt)t∈[0,T ] is a stochastic process with left-continuous sample
paths with right-limits, which is adapted to the augmented filtration generated by
(St)t∈[0,T ]. For a comprehensive introduction to stochastic integration see, e.g., [40]. In

the following, when writing a stochastic integral, like
∫ t

0
ϕs dSs, we will always implicitly

refer to the augmented filtration generated by (St)t∈[0,T ] if not explicitly stated otherwise.
To construct a random rough path above the stochastic process X = (Xt)t∈[0,T ], the

main challenge is to establish the existence of the random integral
∫ t

0
Zt−rj1

dZt−rj2
for j1 < j2 since (Zt−rj1

)t∈[0,T ] is, in general, not adapted to the augmented filtration
generated by (Zt−rj2

)t∈[0,T ].
As a first step to construct a random rough path above the stochastic process X,

in the next lemma, we derive the existence of an auxiliary process, inspired by the
quadratic co-variation of martingales.

Lemma 4.1. Let Z = (Zt)t∈[−r`,T ] be an e-dimensional square-integrable càdlàg mar-
tingale that is defined on (Ω,F ,P), with Zt = 0 for t < 0. Then, for i1, i2 = 1, . . . , e,
j1, j2 = 0, . . . , `, j1 6= j2, we have

E

[
sup

t∈[0,T ]

∣∣∣Nn−1∑
k=0

Zi1
tnk∧t−rj1 ,t

n
k+1∧t−rj1

Zi2
tnk∧t−rj2 ,t

n
k+1∧t−rj2

−
∑
s≤t

∆sZ
i1
·−rj1

∆sZ
i2
·−rj2

∣∣∣2] −→ 0

along any sequence of partitions Pn = {0 = tn0 < tn1 < · · · < tnNn
= T}, n ∈ N, of the

interval [0, T ] with vanishing mesh size, so that |Pn| → 0 as n → ∞. Here, we write
∆tH = Ht−,t, with Ht− = lims↑t Hs, for the jump of a stochastic process H at time t.

We define the stochastic process

[Zi1
·−rj1

, Zi2
·−rj2

]t :=
∑
s≤t

∆sZ
i1
·−rj1

∆sZ
i2
·−rj2

, t ∈ [0, T ].

This process is càdlàg and has P-almost surely finite p
2 -variation, that is, [Z

i1
·−rj1

, Zi2
·−rj2

] ∈
D

p
2 ([0, T ];R) P-almost surely.
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Rough functional differential equations

Proof. We assume w.l.o.g. that j1 = 0, and write r = rj2 , and M = Zi1 , M̃ = Zi2 . For
n ∈ N, we define

Hn
t :=

Nn−1∑
k=0

M̃tnk−r,tnk+1−r1(tnk ,t
n
k+1]

(t), t ∈ [0, T ],

and note that for |Pn| < r, Hn is indeed a simple predictable process, see [40, Chapter II].
The Itô integral is then given by∫ t

0

Hn
s dMs =

Nn−1∑
k=0

M̃tnk∧t−r,tnk+1∧t−rMtnk∧t,tnk+1∧t.

We now aim to show that

E

[ ∫ T

0

(Hn
s −Hs)

2 d[M ]s

]
→ 0, as n → ∞, (4.1)

where H := ∆·M̃·−r, and [·] denotes the quadratic variation. Using the localizing
sequence τm = T ∧ inf{t : |M̃t| ≥ m}, m ∈ N, and replacing Hn by Hn

·∧τm and H by
H·∧τm , we may assume that the integrand is uniformly bounded, so that we can apply
the dominated convergence theorem. Since Hn → H converges pointwise as n → ∞,
this shows (4.1).

By [28, Chapter I.4], it follows that

E

[
sup

t∈[0,T ]

∣∣∣ ∫ t

0

Hn
s dMs −

∫ t

0

Hs dMs

∣∣∣2] → 0

as n → ∞, thus uniformly in L2, and as∫ t

0

Hs dMs =
∑
s≤t

∆sM̃·−r∆sM,

this implies the convergence result. Further,

4[M, M̃·−r] =
∑
s≤·

(∆sM +∆sM̃·−r)
2 −

∑
s≤·

(∆sM −∆sM̃·−r)
2

has càdlàg sample paths of finite 1-variation, as both terms on the right hand side
are monotonically increasing, which implies that [M, M̃·−r] has P-almost surely finite
p
2 -variation, and concludes the proof.

Proposition 4.2. Let p ∈ (2, 3), and let Z = (Zt)t∈[−r,T ] be an e-dimensional square-
integrable càdlàg martingale that is defined on (Ω,F ,P), with Zt = 0 for t < 0. We set
X = (Z,Z·−r1 , . . . , Z·−r`). Then, X can be lifted to a random rough path, by defining
X = (X,X) ∈ Dp([0, T ];Rd), P-almost surely, with d = e(`+ 1), where

X
ij
s,t :=

∫ t

s

Xi
u− dXj

u −Xi
sX

j
s,t :=

∫ t

0

Xi
u− dXj

u −
∫ s

0

Xi
u− dXj

u −Xi
sX

j
s,t,

for i, j = 1, . . . , d with i = j and i > j such that Xi = Zi1
·−rj1

, Xj = Zi2
·−rj2

with i1, i2 =

0, . . . , e, j1, j2 = 0, . . . , `, j1 > j2, and else

X
ji
s,t = −Xij

s,t +Xi
s,tX

j
s,t − [Xi, Xj ]s,t

for any (s, t) ∈ ∆T , and where the integration is defined as a stochastic Itô integral, and
[Xi, Xj ] is defined in Lemma 4.1.
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Remark 4.3. The stochastic integral
∫ t

0
Zi1
u−rj1−

dZi2
u−rj2

can be defined using classical

stochastic Itô integration if j1 > j2. Indeed, the stochastic process (Zi2
t−rj2

)t∈[0,T ] is a

martingale and the stochastic process (Zi1
t−rj1

)t∈[0,T ] is predictable, both with respect to
the filtration (Ft−rj2

)t∈[0,T ] with Ft := {Ω, ∅} for t < 0.

Further, for i ≥ j, we have that Xij
s,t :=

∫ t

0
Xi

u− dXj
u −

∫ s

0
Xi

u− dXj
u − Xi

sX
j
s,t =∫ t

s
Xi

s,u− dXj
u

=
∫ t

s

∫ u−
s

dXi
r dX

j
u, that is, X

ij
s,t coincides with the 2-fold iterated integral, for (s, t) ∈ ∆T .

Proof of Proposition 4.2. First, by definition Chen’s relation does hold: Let 0 ≤ s ≤ v ≤
t ≤ T . Then, we have that

Xii
s,v +X

ii
v,t +Xi

s,vX
i
v,t

=

∫ t

s

Xi
u− dXi

u −Xi
sX

i
s,v −Xi

vX
i
v,t +Xi

s,vX
i
v,t

=

∫ t

s

Xi
u− dXi

u −Xi
sX

i
s,t

= Xii
s,t,

similarly for Xij , and

Xji
s,v +X

ji
v,t +Xj

s,vX
i
v,t

= −Xij
s,v +Xi

s,vX
j
s,v − [Xi, Xj ]s,v −Xij

v,t +Xi
v,tX

j
v,t − [Xi, Xj ]v,t +Xj

s,vX
i
v,t

= −Xij
s,t +Xi

s,vX
j
v,t +Xi

s,vX
j
s,v +Xi

v,tX
j
v,t +Xi

v,tX
j
s,v − [Xi, Xj ]s,t

= −Xij
s,t +Xi

s,tX
j
s,t − [Xi, Xj ]s,t

= Xji
s,t.

Further, Z has P-almost surely finite p-variation, see e.g. [29], hence X ∈ Dp([0, T ];Rd)

P-almost surely. Since the maps s 7→ Xs,t for fixed t, and t 7→ Xs,t for fixed s are both
càdlàg, it thus remains to show that ‖X‖ p

2
< ∞ P-almost surely.

We define the dyadic stopping times (τnk )n,k∈N by

tn0 := 0, τnk+1 := inf{t ≥ τnk : |Xt −Xτn
k
| ≥ 2−n} ∧ T.

For t ∈ [0, T ] and n ∈ N we introduce the dyadic approximation

Xn
t :=

∞∑
k=0

Xτn
k
1(τn

k ,τn
k+1]

(t) and

∫ t

0

Xi,n
r dXj

r :=

∞∑
k=0

Xi
τn
k
Xj

τn
k ∧t,τn

k+1∧t,

for i = j or i 6= j such that Xi = Zi1
·−rj1

, Xj = Zi2
·−rj2

for i1, i2 = 1, . . . , e, j1, j2 = 0, . . . , `,
j1 > j2.

We now show that for almost every ω ∈ Ω, for every t ∈ [0, T ] and for every ε ∈ (0, 1),
there exists a constant C = C(ω, ε) such that for all n ∈ N, we have∣∣∣∣( ∫ t

0

Xi,n
u dXj

u −
∫ t

0

Xi
u dX

j
u

)
(ω)

∣∣∣∣ ≤ C2−n(1−ε). (4.2)

Applying the Burkholder–Davis–Gundy inequality, we have that

E

[(
sup

t∈[0,T ]

∫ t

0

(Xi,n
u −Xi

u) dX
j
u

)2]
. E

[ ∫ T

0

(Xi,n
u −Xi

u)
2 d[Xj ]u

]
. 2−2n, n ∈ N,
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where the implicit multiplicative constant depends on the quadratic variation [Xj ] of Xj .
Combining this with Chebyshev’s inequality, we obtain for any ε ∈ (0, 1) that

P

(∣∣∣∣ ∫ t

0

(Xi,n
u −Xi

u) dX
j
u

∣∣∣∣ ≥ 2−n(1−ε)

)
. 22n(1−ε)2−2n = 2−nε.

So by the Borel–Cantelli lemma, we have that

sup
t∈[0,T ]

(∫ t

0

Xi,n
u dXj

u −
∫ t

0

Xi
u dX

j
u

)
. 2−n(1−ε),

where the implicit multiplicative constant is a random variable which does not depend
on n, which shows (4.2). Proceeding as in the proof of [30, Theorem 3.1], we can show
that ‖Xij‖ p

2
< ∞ P-almost surely. Further, let i 6= j as above, then we have for any

(s, t) ∈ ∆T that

|Xji
s,t|

p
2 . ‖Xij‖

p
2
p
2 ,[s,t]

+ ‖X‖pp,[s,t] + ‖[Xi, Xj ]‖
p
2
p
2 ,[s,t]

.

Lemma 4.1 then ensures that ‖Xji‖ p
2
< ∞ P-almost surely.

Remark 4.4. For a fractional Brownian motion with Hurst index H and its delayed ver-
sion a joint rough path was constructed in [36] based on the Russo–Vallois integral [41],
assuming that H > 1

3 . This construction was generalized in [42] allowing for H > 1
4 . A

related construction of a delayed rough path above a fractional Brownian motion can be
found in [12]. For a standard Brownian motion a delayed rough path was also defined
in [15] based on stochastic Itô integration. While the delayed rough path provided in
Proposition 4.2 corresponds to stochastic Itô integration, see Proposition 4.5 below,
the aforementioned constructions of delayed rough paths above (fractional) Brownian
motion correspond to Stratonovich integration.

4.2 SDEs with delay as random RDEs

Let us consider the SDE with constant delay

Yt = y0 +

∫ t

0

f(Ys−, Ys−r1−, . . . , Ys−r`−) dZs, t ∈ [0, T ],

Yt = yt, t ∈ [−r`, 0),

(4.3)

where y ∈ D
p
2 ([−r`, T ];R

k), f ∈ C3
b (R

k(`+1);L(Re;Rk)), with d = e(`+1), and the integral
is defined as a stochastic Itô integral. For a comprehensive introduction to stochastic Itô
integration and SDEs we refer, e.g., to the textbook [40]. It is known that the SDE (4.3)
possesses a unique (strong) solution, see e.g. [40, Chapter V, Theorem 7]. It turns out
that the solutions to the SDE (4.3) and to the RDE (3.4) driven by the random rough path
X = (X,X), with X as defined in Proposition 4.2, coincide P-almost surely.

Proposition 4.5. Let p ∈ (2, 3), and let Z = (Zt)t∈[−r,T ] be an e-dimensional square-
integrable càdlàg martingale, that is defined on (Ω,F ,P), with Zt = 0 for t < 0. We set
X := (Z,Z·−r1 , . . . , Z·−r`), and let X = (X,X) be the random rough path, with X defined
as in Proposition 4.2.

(i) Let (V, V ′) be an adapted stochastic process such that V takes values in L(Re;Rk)

and, identifying V with its extension (by zero) to take values in L(Rd;Rk), we
assume that (V (ω), V ′(ω)) ∈ Vp

X(ω) for almost every ω ∈ Ω. Then, the rough integral
exists and coincides P-almost surely with the stochastic Itô integral, that is∫ T

0

Vu dXu =

∫ T

0

Vu− dZu, P-almost surely.
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(ii) The solution of the SDE (4.3) with coefficient f and driven by X, and the solution
of the RDE (3.4) with coefficient f0 and driven by X, coincide P-almost surely, if f0
be the extension (by zero) of f to a function taking values in L(Rd;Rk).

Proof. (i) Step 1. [22, Theorem 31] gives that∫ T

0

Vu dXu = lim
|P|→0

∑
(s,t)∈P

(VsXs,t + V ′
sXs,t),

where the limit is taken over any sequence of partitions P of the interval [0, T ] with mesh
size |P| → 0, and it is known that

∑
(s,t)∈P

VsXs,t →
∫ T

0

Vu− dZu,

in probability as |P| → 0, noting that VsXs,t = VsZs,t by definition of V , see e.g. [40,
Chapter II, Theorem 21], therefore the convergence holds P-almost surely, possibly
along some subsequence.

Step 2. We are left to show that

lim
|P|→0

∑
(s,t)∈P

V ′
sXs,t = 0, (4.4)

P-almost surely, along some subsequence. It suffices to show that for i, j = 1, . . . , d,

sup
τ∈[0,T ]

∣∣∣ ∑
(s,t)∈P∩[0,τ ]

X
ij
s,t

∣∣∣ → 0, as |P| → 0, (4.5)

in probability, which then implies P-almost sure convergence, along some subsequence:
if V ′ is P-almost surely piecewise constant, then (4.5) implies (4.4). Otherwise, for any
ε > 0, there exists a suitable piecewise constant approximation V ′,ε of V ′ such that

‖V ′ − V ′,ε‖∞ ≤ ε,

P-almost surely, see [5, Proposition B.1]. By a standard interpolation argument (e.g. [23,
Proposition 5.5]), it follows, for any q > p, that

‖V ′ − V ′,ε‖q ≤ ‖V ′ − V ′,ε‖
p
q
p ‖V ′ − V ′,ε‖1−

p
q

∞ ≤ Cε1−
p
q ,

P-almost surely, where the implicit multiplicative constant C is a random variable which
does depend only on p, q and ‖V ′‖p. Using [43, (5.1)], we obtain that∣∣∣ ∑

(s,t)∈P

V ′
sXs,t −

∑
(s,t)∈P

V ′,ε
s Xs,t

∣∣∣ ≤ (
1 + ζ

(1
q
+

2

p

))
‖V ′ − V ′,ε‖q‖X‖ p

2
≤ Cε1−

p
q ,

P-almost surely for any partition P, where the implicit multiplicative constant C is a
random variable which does depend only on p, q, ‖V ′‖p and ‖X‖ p

2
. Consequently, if

lim
|P|→0

∑
(s,t)∈P

V ′,ε
s Xs,t = 0,

holds P-almost surely, then so does (4.4), and it suffices to show (4.5).
Step 3. From here on, for the proof of (4.5), we consider the sequence of partitions

Pn = {0 = tn0 < tn1 < . . . < tnNn
= T}, n ∈ N, of the interval [0, T ] with vanishing mesh

size, so that |Pn| → 0 as n → ∞. Moreover, let i ≥ j.

EJP 30 (2025), paper 117.
Page 27/32

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1381
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rough functional differential equations

Recall that

X
ij
tnk ,t

n
k+1

=

∫ tnk+1

tnk

Xi
tnk ,u−

dXj
u, k = 0, . . . , Nn − 1.

Thus, the Burkholder–Davis–Gundy inequality gives that

E

[
sup

τ∈[0,T ]

∣∣∣ ∑
(s,t)∈Pn∩[0,τ ]

X
ij
s,t

∣∣∣2] . E

[ ∫ T

0

|Xi
u|Pn ,u−|2 d[Xj ]u

]
,

where we write t|Pn := max{tnk ∈ Pn : tnk ≤ t}, t ∈ [0, T ]. Proceeding as in the proof
of [25, Lemma 6.1], one can then show that

E

[ ∫ T

0

|Xi
u|Pn ,u−|2 d[Xj ]u

]
→ 0, as n → ∞,

which gives (4.5).
Therefore, by definition and Lemma 4.1 it holds that

Nn−1∑
k=0

X
ji
tnk ,t

n
k+1

= −
Nn−1∑
k=0

X
ij
tnk ,t

n
k+1

+Xi
tnk ,t

n
k+1

Xj
tnk ,t

n
k+1

− [Xi, Xj ]tnk ,tnk+1

= −
Nn−1∑
k=0

X
ij
tnk ,t

n
k+1

+

Nn−1∑
k=0

Xi
tnk ,t

n
k+1

Xj
tnk ,t

n
k+1

−
∑
s≤T

∆sX
i∆sX

j

→ 0,

as n → ∞, where the convergence holds uniformly in probability, which then concludes
the proof.

(ii) Let Y be the solution of the rough differential equation (3.4) driven by the random
rough path X = (X,X), see Proposition 3.6 (i). We note that the assumption on (V, V ′)

in (i) does fit into this setting, where (V (ω), V ′(ω)) = (F (Y (ω)), F ′(Y (ω), Y ′(ω)) for some
functional F , see Section 3.4. As the rough and Itô integral do coincide P-almost surely
by (i), we infer that Y is also a solution of the SDE (4.3), which has a unique solution (by
e.g. [40, Chapter V, Theorem 7]).

Remark 4.6. As a consequence of Proposition 3.6 and Proposition 4.5 (ii), one can apply
the continuity of the Itô–Lyons map (Theorem 2.5) to derive pathwise stability results
for stochastic differential equations with delay like (4.3). In particular, the map y 7→ Y ,
mapping the initial path y to the associated solution Y of the SDE (4.3), is continuous
on the space of controlled paths, which resolves an old observation, pointed out by
Mohammed [34], about the non-continuity of the flow of stochastic differential equations
with delay. The latter is a consequence of the discontinuity of stochastic integration
when using an unsuitable topology for the integrands.

Remark 4.7. While we considered square-integrable martingales and the associated
stochastic differential equations with constant delay in this section, the presented results
can be generalized in a fairly straightforward manner to:

(i) càdlàg local martingales using standard localization arguments;
(ii) càdlàg semimartingales using the classical estimates for Young integrals, see e.g.

[24, Proposition 2.4] and [30, Theorem 3.1], to show that one can suitably lift X to
a random rough path with additional Young integrals;

(iii) Young semimartingales (also known as semimartingales in the sense of Norvaiša
[37]), i.e. Z = M + ϕ, for some martingale M and some càdlàg adapted process ϕ
with ϕ(ω) ∈ Dq([0, T ];Re) for almost every ω ∈ Ω, for some q ∈ [1, 2);

(iv) SDEs/RDEs with variable delay of the form (3.6), as long as η is assumed to be
bounded with η(t) ≥ ε, t ∈ [0, T ], for some ε > 0.
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A Local estimates for rough integration

The following local estimates are needed to prove the existence and uniqueness result
in Theorem 2.3, and the continuity result in Theorem 2.5.

Lemma A.1. Let X ∈ Dp([0, T ];Rd) for p ∈ (2, 3) and (Y, Y ′) ∈ Vp
X([0, T ];Rk). Sup-

pose that the non-anticipative functional (F, F ′) : Vp
X([0, T ];Rk) → Vp

X([0, T ];L(Rd;Rk))

satisfies Assumption 2.1 (i) with some constant CF . Then, we have the local estimate

‖R
∫ ·
0
F (Y )dX‖ p

2 ,[s,t]
. CF (1 + ‖Y, Y ′‖X,p,[s,t])

2(1 + ‖X‖p,[s,t])2‖X‖p,[s,t],

for all (s, t) ∈ ∆T , where the implicit multiplicative constant depends only on p.

Proof. Let (V, V ′) ∈ Vp
X([0, T ];L(Rd;Rk)), and set Ξu,v := VuXu,v + V ′

uXu,v and δΞu,r,v :=

Ξu,v − Ξu,r − Ξr,v for s ≤ u < r < v ≤ t. Here, strictly speaking, in writing V ′
uXu,v, we

use the canonical identification of L(Rd;L(Rd;Rk)) with L(Rd ⊗Rd;Rk). We note that∣∣∣R∫ ·
0
V dX

u,v

∣∣∣ ≤ ∣∣∣ ∫ v

u

Vr dXr − Ξu,v

∣∣∣+ |V ′
u||Xu,v|

≤
∣∣∣ ∫ v

u

Vr dXr − Ξu,v

∣∣∣+ (|V ′
s |+ ‖V ′‖p,[s,t])|Xu,v|.

Using Chen’s relation, one can show that

−δΞu,r,v = RV
u,rXr,v + V ′

u,rXr,v,

which gives that

|δΞu,r,v|
≤ ‖RV ‖ p

2 ,[u,r]
‖X‖p,[r,v] + ‖V ′‖p,[u,r]‖X‖ p

2 ,[r,v]

= w1,1(u, r)
2
pw2,1(r, v)

1
p + w1,2(u, r)

1
pw2,2(r, v)

2
p ,

where w1,1(s, t) := ‖RV ‖
p
2
p
2 ,[s,t]

, w2,1(s, t) := ‖X‖pp,[s,t], w1,2(s, t) := ‖V ′‖pp,[s,t], w2,2(s, t) :=

‖X‖
p
2
p
2 ,[s,t]

, (s, t) ∈ ∆T , are control functions and 1
p + 2

p > 1. It then follows from the

generalized sewing lemma, see [24, Theorem 2.5], that

‖R
∫ ·
0
V dX‖ p

2 ,[s,t]

. (‖RV ‖ p
2 ,[s,t]

‖X‖p,[s,t] + ‖V ′‖p,[s,t]‖X‖ p
2 ,[s,t]

+ (|V ′
s |+ ‖V ′‖p,[s,t])‖X‖ p

2 ,[s,t]
)

. ‖V, V ′‖X,p,[s,t]‖X‖p,[s,t],

where the implicit multiplicative constant depends only on p. Using Assumption 2.1 (i),
we therefore obtain the estimate for (V, V ′) = (F (Y ), F ′(Y, Y ′)).

Lemma A.2. For p ∈ (2, 3), suppose X, X̃ ∈ Dp([0, T ];Rd), (Y, Y ′) ∈ Vp
X([0, T ];Rk),

(Ỹ , Ỹ ′) ∈ Vp

X̃
([0, T ];Rk), and that the non-anticipative functional (F, F ′) : Vp

X([0, T ];Rk) →
Vp
X([0, T ];L(Rd;Rk)) satisfies Assumption 2.4 (i) and (ii) given X, X̃. Then, we have the

local estimate

‖R
∫ ·
0
F (Y )dX −R

∫ ·
0
F (Ỹ )dX̃‖ p

2 ,[s,t]

. CF,K,X,X̃(|Ys − Ỹs|+ ‖Y, Y ′; Ỹ , Ỹ ′‖X,X̃,p,[s,t] + ‖X − X̃‖p,[s,t])(‖X‖p,[s,t] ∨ ‖X̃‖p,[s,t])

+ CF (1 +K)2(1 + ‖X‖p,[s,t] ∨ ‖X̃‖p,[s,t])2‖X; X̃‖p,[s,t]

for all (s, t) ∈ ∆T , if ‖Y, Y ′‖X,p,[s,t], ‖Ỹ , Ỹ ′‖X̃,p,[s,t] ≤ K, for some K > 0, where the

implicit multiplicative constant depends on p, ‖X‖p and ‖X̃‖p.
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Proof. It follows from [24, Lemma 3.4] that for any (V, V ′) ∈ Vp
X , (Ṽ , Ṽ ′) ∈ Vp

X̃
,

‖R
∫ ·
0
V dX −R

∫ ·
0
Ṽ dX̃‖ p

2 ,[s,t]

.p (1 + ‖X‖p,[s,t] + ‖X̃‖p,[s,t])(‖V, V ′; Ṽ , Ṽ ′‖X,X̃,p,[s,t]‖X‖p,[s,t]
+ ‖Ṽ , Ṽ ′‖X̃,p,[s,t]‖X; X̃‖p,[s,t])

. ‖V, V ′; Ṽ , Ṽ ′‖X,X̃,p,[s,t]‖X‖p,[s,t] + ‖Ṽ , Ṽ ′‖X̃,p,[s,t]‖X; X̃‖p,[s,t],

where the implicit multiplicative constant depends on p, ‖X‖p and ‖X̃‖p. For (V, V ′) =

(F (Y ), F ′(Y, Y ′)), (Ṽ , Ṽ ′) = (F (Ỹ ), F ′(Ỹ , Ỹ ′)), using Assumption 2.4 (ii), we therefore
obtain the estimate.
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