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Abstract: We prove an existence result for the steady-state flow of gas mixtures in networks. The
model is based on the physical principles of the isothermal Euler equations, coupling conditions for
the flow and pressure, and the mixing of incoming flows at the nodes. The state equation is based on
a convex combination of the ideal gas equations of state for natural gas and hydrogen. We analyze the
mathematical properties of the model, allowing us to prove the existence of solutions for tree-shaped
networks and networks with a cycle. Numerical examples illustrate the challenges involved, when
extending our approach to general network topologies.
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Nomenclature

Graph and Network Notation

G = (V, E) Directed, connected graph with the nodes 𝑣 ∈ V and edges 𝑒 ∈ E

Gflow = (V, Eflow) Graph with the edges corresponding to the flow direction

(C, EC) Subgraph of G that only the cycle of the graph G

(P, EP) Subgraph of G that contains only the path between two nodes

(P(𝑣), EP(𝑣)) Path from a supply node 𝑣0 to an arbitrary node 𝑣

(P(𝑣, 𝑤), EP(𝑣,𝑤)) Path from a node 𝑣 to a node 𝑤
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𝑓 (𝑒) ∈ V Foot or start node of edge 𝑒

ℎ(𝑒) ∈ V Head or end node of edge 𝑒

𝑤𝑒 = 𝑤𝑒 (𝑣) ∈ V Node of edge 𝑒 that is not 𝑣 ∈ { 𝑓 (𝑒), ℎ(𝑒)}

V<0 ⊆ V Set of supply nodes

V≥0 ⊆ V Set of demand nodes

E+(𝑣) ⊆ E Set of incoming edges of node 𝑣

E−(𝑣) ⊆ E Set of outgoing edges of node 𝑣

E(𝑣) ⊆ E Set of edges incident to node 𝑣

𝐴 ∈ R|V|×|E| Incidence matrix of a graph G with entries 𝑎(𝑣, 𝑒)

𝐴−𝑣 ∈ R|V|−1×|E| The incidence matrix but without row 𝑣

a𝑣 ∈ R|E | Row 𝑣 of the incidence matrix 𝐴

𝐴P ∈ R|P |×|EP | Incidence matrix of the subgraph (P, EP)

Variables of the Gas Flow Model

𝜌NG,𝑒 Density of natural gas in pipe 𝑒

𝜌H2,𝑒 Density of hydrogen in pipe 𝑒

𝜌𝑒 Density of gas mixture in pipe 𝑒

𝑞NG,𝑒 Flow of natural gas in pipe 𝑒

𝑞H2,𝑒 Flow of hydrogen in pipe 𝑒

𝑞𝑒 Flow of gas mixture in pipe 𝑒

q ∈ R|E | Flow vector with entries 𝑞𝑒

qP ∈ R|EP | Flow vector on the subgraph (P, EP) with entries 𝑞𝑒

𝜂𝑒 Mass fraction of hydrogen along pipe 𝑒

η ∈ R|E | Composition vector with entries 𝜂𝑒

𝜂𝑣 Mass fraction of hydrogen at node 𝑣

𝑝𝑒 Pressure in the gas mixture in pipe 𝑒

𝑝𝑣 Pressure in the gas mixture at node 𝑣

p ∈ R|V| Nodal pressure vector with entries 𝑝𝑣

𝜋𝑒 = 𝑝2
𝑒 Potential along pipe 𝑒

𝜋𝑣 = 𝑝2
𝑣 Potential at node 𝑣

Networks and Heterogeneous Media Volume 20, Issue 3, 903–937.



905

π ∈ R|V| Nodal potential vector with entries 𝜋𝑣

π−𝑣 ∈ R|V|−1 Nodal potential vector without entry 𝜋𝑣

𝑏𝑣 Load of the node 𝑣

b ∈ R|V| Load vector with entries 𝑏𝑣

bP ∈ R|P | Modified load vector on the subgraph (P, EP) with entries 𝑏P𝑣

𝜁𝑣 Mass fraction of the supply at node 𝑣

𝜎2
NG Sound speed in natural gas

𝜎2
H2

Sound speed in hydrogen

𝑅𝑆,NG Specific gas constant for natural gas

𝑅𝑆,H2 Specific gas constant for hydrogen

𝑇 Gas temperature

𝐿𝑒 Pipe length of pipe 𝑒

𝐷𝑒, 𝐷 Diameter of pipe 𝑒

𝜆Fr Friction factor

Cut Graph and the Existence Result

G𝑐 = (V𝑐, E𝑐) Cut graph corresponding to graph G and the cut edge 𝑒𝑐

𝑣cl, 𝑣cr ∈ V𝑐 New nodes generated by cutting the edge 𝑒𝑐

𝑒cl, 𝑒cr ∈ E𝑐 New edges generated by cutting the edge 𝑒𝑐

𝑐 Superscript to indicated that variables correspond to the cut graph G𝑐

𝜆 Flow through the cut edge 𝑒𝑐

𝜇 Mass fraction through the cut edge 𝑒𝑐

𝐻𝑝 (𝜆, 𝜇) Difference between the squared pressure at 𝑣cl and 𝑣cr

𝐻𝜂 (𝜆, 𝜇) Difference between the mass fraction at 𝑣cl and at 𝑣cr

𝜇𝜂 (𝜆) Root curve of 𝐻𝜂 such that 𝐻𝜂 (𝜆, 𝜇𝜂 (𝜆)) = 0

𝑔(𝜆) = 𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)) Restriction of 𝐻𝑝 to the root curve 𝜇𝜂

𝛾𝑒 Root of the flow 𝑞𝑐𝑒 on the cut graph 𝐺𝑐 with respect to 𝜆 for 𝑒 ∈ EC \ {𝑒𝑐}

𝛾min Minimum of all roots 𝛾𝑒

𝛾max Maximum of all roots 𝛾𝑒
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1. Introduction

The transition to renewable energy is one of the most intensely discussed topics in science, and
hydrogen is a key element that is expected to play an increasingly important role in the global energy
mix. Hydrogen offers numerous advantages. Firstly, it is a clean energy source that can be produced
using renewable energy sources such as wind and solar power, and its combustion results only in water
and heat [1, 2]. Secondly, hydrogen can be utilized to decarbonize sectors that are difficult to electrify,
such as heavy industry [1, 2]. Lastly, hydrogen serves as an energy carrier, making it a valuable resource
for energy storage [2, 3]. Given these benefits, there is no doubt that hydrogen will play an important
role in the near future.

However, the transition to renewable energies necessitates not only an appreciation of hydrogen’s
clean-energy potential but also a deep understanding of how to integrate it into current energy systems.
Even if hydrogen transport networks are planned all over the world (cf. [4] for Europe, [5] for Asia,
and [6] for the United States), hydrogen is far from completely replacing natural gas as energy source.
One key strategy to reduce the use of natural gas as energy source as well as to significantly lower the
amount of emitted greenhouse gases is the blending of hydrogen into natural gas networks.

A rigorous mathematical understanding of the hydrogen-natural gas blending processes is essential
for the efficiency and safety of existing pipeline networks. In comparison with the transport of pure
hydrogen, the complexity lies in the modeling and understanding of the mixing of two gases. While the
transport of pure hydrogen as well as pure natural gas in pipeline networks can be modeled by isothermal
Euler equations, cf. [7–9], a different approach is needed for the modeling of gas mixtures. Since
natural gas has been and still is widely used as an energy source almost all over the world, researchers
can rely on well-established regulations for natural gas networks and extensive research in this area.
In [10], the authors discuss the stationary states of the isothermal Euler equations, and in [11], the
existence of unique stationary states was shown on arbitrary graphs. In [7, 12], the authors analyze the
transient model and discuss solutions to Riemann problems on arbitrary graphs including appropriate
coupling conditions at the nodes, that is, conservation of mass and pressure continuity. Furthermore,
the existence of semi-global Lipschitz continuous solutions of isothermal Euler equations on a network
with compatible coupling conditions was shown in [13], based on a fixed-point iteration along the
characteristic curves for Lipschitz continuous initial and boundary conditions. While the modeling
of gas networks usually relies on one-dimensional consideration along pipes, we also emphasise that
network models for flows in two space dimensions are available, see, for instance, [14–16].

However, applying the isothermal Euler equations for both hydrogen and natural gas in the same
pipeline does not consider collisions of molecules of different types, which leads to adulterated
results [17]. On the basis of an analysis of chemically reacting fluid mixtures in [18, 19], we consider
a model for the flow of a natural gas and hydrogen mixture under perfect mixing conditions (i.e., both
gases have the same velocity and temperature). In a pipe with length 𝐿 > 0, for
(𝑡, 𝑥) ∈ [0, 𝑡final] × [0, 𝐿], the mixing model is given by

𝜕𝑡 𝜌NG(𝑡, 𝑥) + 𝜕𝑥 𝑞NG(𝑡, 𝑥) = 0, (1.1a)
𝜕𝑡 𝜌H2 (𝑡, 𝑥) + 𝜕𝑥 𝑞H2 (𝑡, 𝑥) = 0, (1.1b)

𝜕𝑡 𝑞(𝑡, 𝑥) + 𝜕𝑥

[
𝑝(𝜌NG(𝑡, 𝑥), 𝜌H2 (𝑡, 𝑥)) +

𝑞2(𝑡, 𝑥)
𝜌(𝑡, 𝑥)

]
= −𝜆Fr

2𝐷
𝑞(𝑡, 𝑥) |𝑞(𝑡, 𝑥) |

𝜌(𝑡, 𝑥) , (1.1c)
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where 𝜌NG and 𝜌H2 are the densities of natural gas and hydrogen, respectively; 𝑞NG and 𝑞H2 are the
flows of natural gas and hydrogen, respectively; and 𝜌 = 𝜌NG + 𝜌H2 and 𝑞 = 𝑞NG + 𝑞H2 are the density
and the flow of the mixing, respectively. 𝜆Fr > 0 is the pipe friction coefficient and 𝐷 > 0 the pipe
diameter. The pressure 𝑝(𝜌NG, 𝜌H2) of the mixture depends on the densities of the gases. It is given
by a state equation for the gas mixture, derived, for example, in [20] for a mixture of ideal gases and
in [21] for a mixture of real gases. The latter also assumes non-isothermal dynamics.

The mixing model (1.1) in networks also includes coupling conditions at the network junctions. For
the transport of natural gas in networks, depending on the physical properties of the gas, conservation
of mass and continuity of pressure are common choices, cf. [11, 22–24]. In [12], the authors give an
overview about the coupling conditions for models of natural gas transport in networks. In the mixing
model (1.1), we also consider perfect mixing at the nodes, which implies that the outgoing hydrogen
concentration is equal to the average weighted by the flow of all ingoing concentrations.

For long-time-horizon planning of gas networks, dynamic models are often replaced by static
models that represent the steady states, cf. [10, 11, 17, 22, 24]. Simulation results for models based
on Eq (1.1) and the corresponding steady-state models were presented, for example, in [17, 25, 26].
Considering natural gas and hydrogen as ideal gases, in [27], the authors present a well-posedness
result of Eq (1.1) under the assumption that the hydrogen concentration is sufficiently low. To our
best knowledge, neither the existence of steady states for the mixing model (1.1) nor steady states for
the mixing on networks has been theoretically analyzed yet. The only result that fits into this line
of research is that for tree-shaped networks, steady-state solutions are unique if they exist (cf. [17]).
However, proving uniqueness becomes more complex for networks with cycles, since the monotonicity
of the pressure, which guarantees the uniqueness for pure natural gas transport, is unclear a priori due
to the mixing.

In this paper, we present an explicit solution of the steady states of Eq (1.1). Further, we analyze
the existence and uniqueness of steady states for the hydrogen-blended natural gas flow in networks.
We discuss tree-shaped pipeline networks as well as networks that contain cycles. For pure gas flow,
the existence and uniqueness of steady states was analyzed in [11] for ideal gases and in [28] for real
gases. In the case of gas mixtures, the gas composition in a pipeline depends on the direction of the
flow, which leads to discontinuities in the mixing model if the graph contains cycles. Thus, due to
the discontinuity, the strategy applied in [11, 28] to show the existence and uniqueness of steady states
cannot be applied for gas mixtures. We present a novel existence result for the steady states of the
mixing model for networks with a cycle. The result is based on a cutting edge approach, such that
the existence of a solution is shown in the resulting tree-shaped network with new supply and demand
nodes. The main challenge arises from the discontinuities in the gas composition at the new supply and
demand nodes, highlighting the increased complexity compared to pure natural gas networks, where
such discontinuities do not occur.

The article is structured as follows: First, we introduce and motivate the gas flow model for
mixtures in networks in Section 2. We show that certain properties of the gas flow of a single gas
also hold for the mixture model. In Section 3, we establish the existence of steady-state solutions for
tree-shaped networks and networks with a single cycle. Finally, in Section 4, we present a numerical
study on the extension of our approach to networks with arbitrary cycles and on the uniqueness of
the solutions.
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2. The model equations in networks

In this section, we derive a steady-state model for the hydrogen-blended natural gas flow in pipeline
networks. We further define suitable boundary and coupling conditions for the flow, the pressure, and
the composition of the gas mixture at the junctions of the network.

Let G = (V, E) be a connected, directed graph with a set of nodesV and a set of edges E ⊆ V×V.
Each edge 𝑒 represents a pipe of length 𝐿𝑒, and each node 𝑣 represents a network junction. Let V<0
be the set of inflow (supply) nodes where gas enters the network, and let V≥0 be the set of outflow
(demand) nodes where gas leaves the network. We have V = V<0 ∪ V≥0 with V<0 ∩ V≥0 = ∅. For
every node 𝑣 ∈ V, the sets of incoming and outgoing edges are given by

E−(𝑣) B {𝑒 ∈ E | 𝑒 = (•, 𝑣)} and E+(𝑣) B {𝑒 ∈ E | 𝑒 = (𝑣, •)},

respectively. For an edge 𝑒 ∈ E−(𝑣), the node 𝑣 is their head or end node, and for an edge 𝑒 ∈ E+(𝑣),
the node 𝑣 ∈ V is their foot or start node. The set E(𝑣) = E−(𝑣) ∪ E+(𝑣) contains all edges connected
to node 𝑣. In the following, we denote the head of an edge by ℎ(𝑒) and the foot of an edge by 𝑓 (𝑒), i.e.,
we have

𝑒 = (𝑣, 𝑤) ⇔ 𝑓 (𝑒) = 𝑣 and ℎ(𝑒) = 𝑤.

Further, let 𝐴 ∈ R|V|×|E| be the node edge incidence matrix, whose entries are defined by

𝑎(𝑣, 𝑒) B

−1, if 𝑣 = 𝑓 (𝑒), i.e., 𝑣 is the start node of 𝑒,
1, if 𝑣 = ℎ(𝑒), i.e., 𝑣 is the end node of 𝑒,
0, otherwise.

(2.1)

2.1. The isothermal Euler equations for mixtures

For the flow of hydrogen-blended natural gas through a pipeline 𝑒 ∈ E, we consider the stationary
states corresponding to the transient model (1.1). Since the gas velocity is small compared with the
speed of sound, the term 𝑞2

𝑒/𝜌𝑒 in the transient model (1.1) is neglectable (see, e.g., [8, 11]). Thus, the
subsonic steady-state hydrogen blended gas flow model is given by

𝜕𝑥𝑞NG,𝑒 (𝑥) = 0, for 𝑥 ∈ [0, 𝐿𝑒] (2.2a)
𝜕𝑥𝑞H2,𝑒 (𝑥) = 0, for 𝑥 ∈ [0, 𝐿𝑒] (2.2b)

𝜕𝑥 𝑝𝑒 (𝜌NG,𝑒 (𝑥), 𝜌H2,𝑒 (𝑥)) = −𝜆Fr
2𝐷

𝑞𝑒 (𝑥) |𝑞𝑒 (𝑥) |
𝜌𝑒 (𝑥)

, for 𝑥 ∈ [0, 𝐿𝑒] (2.2c)

where 𝜌NG,𝑒 and 𝜌H2,𝑒 denote the density, and 𝑞NG,𝑒 and 𝑞H2,𝑒 the flow of natural gas and hydrogen
along the pipe, respectively. The constant 𝜆Fr > 0 denotes the pipe friction, and 𝐷 is the diameter
of the pipe. For the reader’s convenience, we assume the same friction and diameter for every pipe.
Moreover, 𝜌𝑒 is the density, 𝑞𝑒 is the flow, 𝜂𝑒 is the composition, and 𝑝𝑒 is the pressure of the gas
mixture along the pipe 𝑒 ∈ E. These quantities are defined as

𝜌𝑒 (𝑥) = 𝜌H2,𝑒 (𝑥) + 𝜌NG,𝑒 (𝑥), 𝑞𝑒 (𝑥) = 𝑞H2,𝑒 (𝑥) + 𝑞NG,𝑒 (𝑥), 𝜂𝑒 (𝑥) =
𝑞H2,𝑒 (𝑥)
𝑞𝑒 (𝑥)

=
𝜌H2,𝑒 (𝑥)
𝜌𝑒 (𝑥)

,
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while the latter holds due to the perfect mixing assumption, i.e., both gases have the same velocity.
Considering ideal gases, the state equation for the gas mixture is given by a convex combination of the
state equations of the single gases [20]; i.e., we have

𝑝𝑒 (𝜌NG,𝑒 (𝑥), 𝜌H2,𝑒 (𝑥)) =
[
𝜂𝑒 (𝑥)𝜎2

H2
+ (1 − 𝜂𝑒 (𝑥))𝜎2

NG
]
𝜌𝑒 (𝑥), (2.3)

where 𝜎2
H2

= 𝑅𝑆,H2 𝑇 is the speed of sound in hydrogen and 𝜎2
NG = 𝑅𝑆,NG 𝑇 is the speed of sound in

natural gas. Moreover, 𝑅𝑆,H2 and 𝑅𝑆,NG are the specific gas constants of hydrogen and natural gas,
respectively, and 𝑇 is the temperature of the gas. Then, the solution to the mixture model (2.2) is
given by

𝑞NG,𝑒 (𝑥) = const, 𝑞H2,𝑒 (𝑥) = const, (2.4a)

𝑝2
𝑒 (𝑥) = 𝑝2

𝑒 (0) −
𝜆Fr
𝐷

(
𝜂𝑒𝜎

2
H2

+ (1 − 𝜂𝑒)𝜎2
NG

)
𝑞𝑒 |𝑞𝑒 |𝑥. (2.4b)

The flows of hydrogen and natural gas are constant along the pipe and the pressure profile is
uniquely defined by the pressure at the beginning and the end of the pipe.
Remark 2.1. If the right-hand-side of Eq (2.4b) is non-negative for all 𝑥 ∈ [0, 𝐿𝑒], the pressure profile
is given by

𝑝𝑒 (𝑥) =
√︂

𝑝2
𝑒 (0) −

𝜆Fr
𝐷

(
𝜂𝑒𝜎

2
H2

+ (1 − 𝜂𝑒)𝜎2
NG

)
𝑞𝑒 |𝑞𝑒 |𝑥.

This is true when the initial pressure 𝑝𝑒 (0) is larger than a critical threshold 𝑝crit,𝑒 or when the
pipes are shorter than a critical length 𝐿crit,𝑒. Otherwise, the pressure profile 𝑝𝑒 (𝑥) is undefined in R.
For a given pipe length 𝐿𝑒, the critical pressure is given by:

𝑝crit,𝑒 =

√︄
max

{
0,

𝜆Fr
𝐷

(
𝜂𝑒𝜎

2
H2

+ (1 − 𝜂𝑒)𝜎2
NG

)
𝑞𝑒 |𝑞𝑒 |𝐿𝑒

}
, (2.5)

and for a given initial pressure, the critical length, in the case that 𝑞𝑒 > 0, is given by:

𝐿crit,𝑒 =
𝑝2
𝑒 (0)

𝜆Fr
𝐷

(
𝜂𝑒𝜎

2
H2

+ (1 − 𝜂𝑒)𝜎2
NG

)
𝑞2
𝑒

. (2.6)

If 𝑞𝑒 ≤ 0, there is no restriction on the pipe length as the gas flows from the end 𝑥 = 𝐿𝑒 to the
beginning 𝑥 = 0 of the pipe, i.e., we have 𝑝𝑒 (𝐿𝑒) ≥ 𝑝𝑒 (0) ≥ 0.

Introducing the potential 𝜋𝑒 = 𝑝2
𝑒 allows us to express Eq (2.4) in terms of 𝜋𝑒. The mixture

model (2.2) has a solution in terms of 𝜋𝑒 that is independent of the boundary data. In the case where
𝜋𝑒 ≥ 0, the pressure profile is given by 𝑝𝑒 (𝑥) =

√︁
𝜋𝑒 (𝑥). Otherwise, the corresponding pressure is

physically infeasible, making such solutions, including the boundary data, physically irrelevant. For
better readability, we omit the dependence of the variable 𝑥 in the following.

Networks and Heterogeneous Media Volume 20, Issue 3, 903–937.
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2.2. Boundary and coupling conditions for the nodes

As gas enters or leaves the network at the nodes, we introduce the load vector b ∈ R|V| given by

𝑏𝑣

{
< 0 if 𝑣 ∈ V<0, which means 𝑣 is a supply node,
≥ 0 if 𝑣 ∈ V≥0, which means 𝑣 is a demand node.

(2.7)

The case 𝑏𝑣 = 0 implies, that gas is neither injected nor withdrawn from node 𝑣. For the boundary
conditions, let the loads 𝑏𝑣 be given at each node 𝑣 ∈ V and let the supply compositions 𝜁𝑣 be given
at every supply node 𝑣 ∈ V<0. Furthermore, let the pressure 𝑝∗ be given at an arbitrary yet fixed node
𝑣∗ ∈ V, i.e., we set 𝑝𝑣∗ = 𝑝∗.

For the coupling conditions, we make three assumptions to describe the gas flow across nodes.
Firstly, the mass of the mixture and the mass of the individual gases are conserved. Secondly, the gas
mixes perfectly and instantaneously. Lastly, the pressure is continuous across a node.

The first assumption, the conservation of mass at a node 𝑣 ∈ V means that the amount of gas
entering node 𝑣 must be equal to the amount of gas leaving node 𝑣, including the supply and demand
of the node, respectively; i.e., we have ∑︁

𝑒∈E− (𝑣)
𝑞𝑒 −

∑︁
𝑒∈E+ (𝑣)

𝑞𝑒 = 𝑏𝑣 .

Using the incidence matrix 𝐴 defined in Eq (2.1), the conservation of mass of the mixture at all
nodes 𝑣 ∈ V is given by∑︁

𝑒∈E(𝑣)
𝑎(𝑣, 𝑒)𝑞𝑒 = 𝑏𝑣 for all 𝑣 ∈ V ⇔ 𝐴q = b, (2.8)

where q ∈ R|E | is the vector of (constant) flows at the edges.
Remark 2.2. Due to the conservation of mass and the definition of the incidence matrix 𝐴, the loads 𝑏𝑣
must sum up to zero, i.e., we have ∑︁

𝑣∈V
𝑏𝑣 = 0. (2.9)

Hence, it is sufficient to provide the loads 𝑏𝑣 for |V| −1 nodes, as the missing load is automatically
determined by Eq (2.9).

ηv

𝜂
𝑒1 , 𝑞

𝑒1

𝜂 𝑒2
, 𝑞 𝑒

2

𝜂𝑒3
= ηv,

𝑞 𝑒3

𝜂
𝑒4 = ηv , 𝑞

𝑒4

bv < 0, ζv

ηv =
incoming hydrogen

incoming gas
=
𝜂𝑒1𝑞𝑒1 + 𝜂𝑒2𝑞𝑒2 + ζvbv

𝑞𝑒1 + 𝑞𝑒2 + bv

ηv

𝜂
𝑒1 , 𝑞

𝑒1

𝜂 𝑒2
, 𝑞 𝑒

2

𝜂𝑒3
= ηv,

𝑞 𝑒3

𝜂
𝑒4 = ηv , 𝑞

𝑒4

bv ≥ 0, ηv

ηv =
incoming hydrogen

incoming gas
=
𝜂𝑒1𝑞𝑒1 + 𝜂𝑒2𝑞𝑒2

𝑞𝑒1 + 𝑞𝑒2

Figure 1. The mixing of gas for a supply node (left) and a demand node (right). The supply
and demand of a node can be seen as an invisible pipe with a fixed flow.
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Next, we discuss perfect mixing at the nodes, which implies that the incoming gas compositions
at a node 𝑣 are weighted by the respective incoming flows and then averaged. Thus, the composition of
all outgoing flows is equal. Hence, we define the nodal composition 𝜂𝑣 of the gas at a node 𝑣 ∈ V by

𝜂𝑣 =
incoming hydrogen

outgoing gas
=

incoming hydrogen
incoming gas

,

while the latter holds due to the conservation of mass. In Figure 1, we provide an example how to
compute the nodal composition for a supply and a demand node.

As the flow direction might differ from the edge orientation, it is unclear a priori, which pipes
transport incoming gas and which pipes transport outgoing gas. However, we can use the incidence
matrix to determine whether a given flow 𝑞𝑒 of an edge 𝑒 ∈ E(𝑣) is directed towards or away from the
node 𝑣:

𝑎(𝑣, 𝑒) 𝑞𝑒 ≥ 0 ⇔ Gas in pipe 𝑒 flows towards node 𝑣.

𝑎(𝑣, 𝑒) 𝑞𝑒 ≤ 0 ⇔ Gas in pipe 𝑒 flows away from 𝑣.
(2.10)

𝑣 𝑤
𝑒 = (𝑣, 𝑤)

flow 𝑞𝑒

𝑣 𝑤
𝑒 = (𝑤, 𝑣)

flow 𝑞𝑒

(a) The flow 𝑞𝑒 is directed into a node 𝑣, i.e., an inflow, if
and only if 𝑎(𝑣, 𝑒)𝑞𝑒 ≥ 0.

𝑣 𝑤
𝑒 = (𝑣, 𝑤)

flow 𝑞𝑒

𝑣 𝑤
𝑒 = (𝑤, 𝑣)

flow 𝑞𝑒

(b) The flow 𝑞𝑒 is directed away from a node 𝑣, i.e., an
outflow, if and only if 𝑎(𝑣, 𝑒)𝑞𝑒 ≤ 0.

Figure 2. The four possible relations between flow and edge direction, cf. Eq (2.10).

We provide a visualization of the condition (2.10) in Figure 2. For a number 𝛼, we define
𝛼+ = max{𝛼, 0} and 𝛼− = max{−𝛼, 0}. Then, the nodal composition 𝜂𝑣 is given by

𝜂𝑣 =

∑
𝑒∈E(𝑣) 𝜂𝑒 ·

(
𝑎(𝑣, 𝑒)𝑞𝑒

)+ + 𝜁𝑣𝑏
−
𝑣∑

𝑒∈E(𝑣)
(
𝑎(𝑣, 𝑒)𝑞𝑒

)+ + 𝑏−𝑣
, (2.11)

where 𝜂𝑒 is the composition in pipe 𝑒. There is an explicit relation between the nodal composition 𝜂𝑣

and the composition in pipe 𝜂𝑒, since the nodal composition 𝜂𝑣 is transferred to all pipes 𝑒 ∈ E(𝑣)
transporting outgoing gas. More specifically, we have

𝜂𝑒 =

{
𝜂 𝑓 (𝑒) if 𝑞𝑒 ≥ 0,
𝜂ℎ(𝑒) if 𝑞𝑒 < 0,

for all 𝑒 ∈ E, (2.12)

which means that the composition 𝜂𝑒 is always given by the upstream nodal composition. Eq (2.12)
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allows us to express Eq (2.11) fully in terms of nodal compositions, that is,

𝜂𝑣 =

∑
𝑒∈E(𝑣) 𝜂𝑤𝑒

(𝑎(𝑣, 𝑒)𝑞𝑒)+ + 𝜁𝑣𝑏
−
𝑣∑

𝑒∈E(𝑣) (𝑎(𝑣, 𝑒)𝑞𝑒)+ + 𝑏−𝑣
where 𝑤𝑒 =

{
𝑓 (𝑒), if 𝑣 = ℎ(𝑒),
ℎ(𝑒), if 𝑣 = 𝑓 (𝑒).

Lastly, we discuss the continuity of the pressure across a node. This means that all nodes 𝑣 ∈ V
and all incident edges 𝑒, 𝑒 ∈ E(𝑣) satisfy

𝑝𝑒 (𝑥𝑒) = 𝑝𝑒 (𝑥𝑒) where 𝑥𝑒 =

{
0, 𝑒 ∈ E−(𝑣),
𝐿𝑒, 𝑒 ∈ E+(𝑣).

As the pressure change along a pipe is defined by Eq (2.4), we ensure the continuity of the pressure
across a node by introducing the nodal pressure 𝑝𝑣 for each node 𝑣. Then, Eq (2.4) is given by

𝑝2
ℎ(𝑒) − 𝑝2

𝑓 (𝑒) = −𝜆Fr
𝐷

(
𝜂𝑒𝜎

2
H2

+ (1 − 𝜂𝑒)𝜎2
NG

)
𝑞𝑒 |𝑞𝑒 |𝐿𝑒 for all 𝑒 ∈ E .

As the composition 𝜂𝑒 on an edge is discontinuous in 𝑞𝑒 = 0 (cf. Eq (2.12)), the pressure 𝑝𝑒 is
discontinuous in 𝑞𝑒 = 0 as well. However, for the transport of a single gas, the pressure continuously
depends on the nodal pressure and on the gas flow; e.g., [28, 29]. Since the continuity is crucial for
our further analysis, we express the pressure change in terms of the nodal composition instead of the
composition at the edges. First, we have

𝜂𝑒𝜎
2
H2

+ (1 − 𝜂𝑒)𝜎2
NG =

1
2

(
|𝑞𝑒 |
𝑞𝑒

+ 1
)
𝜎(𝜂 𝑓 (𝑒)) −

1
2

(
|𝑞𝑒 |
𝑞𝑒

− 1
)
𝜎(𝜂ℎ(𝑒)) for 𝑒 ∈ E,

where 𝜎(𝜂𝑣) B 𝜂𝑣𝜎
2
H2

+ (1 − 𝜂𝑣)𝜎2
NG for 𝑣 ∈ V. Then, for each edge 𝑒 ∈ E, we define

𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒) B −𝜆Fr
𝐷

𝐿𝑒

[
1
2

(
|𝑞𝑒 |
𝑞𝑒

+ 1
)
𝜎(𝜂 𝑓 (𝑒)) −

1
2

(
|𝑞𝑒 |
𝑞𝑒

− 1
)
𝜎(𝜂ℎ(𝑒))

]
, (2.13)

which allows us to derive an expression for the pressure change along a pipe in terms of the nodal
compositions with removable singularity

𝑝2
ℎ(𝑒) − 𝑝2

𝑓 (𝑒) = 𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒)𝑞𝑒 |𝑞𝑒 | for all 𝑒 ∈ E . (2.14)

2.3. The full model on graphs

The full steady-state model for gas mixtures consists of the pressure change along the pipes, the
pressure continuity at the nodes, the conservation of mass at the nodes, the mixing of the gases at the
nodes, and suitable boundary conditions. For each node 𝑣 ∈ V, let a load 𝑏𝑣 be given with

∑
𝑣∈V 𝑏𝑣 = 0.

Further, let the supply compositions 𝜁𝑣 be given at each supply node 𝑣 ∈ V<0, let a nodal pressure
𝑝𝑣∗ = 𝑝∗ be given at an arbitrary node 𝑣∗ ∈ V. For these boundary conditions, the gas mixture model
is given by
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𝑝2
ℎ(𝑒) − 𝑝2

𝑓 (𝑒) = 𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒)𝑞𝑒 |𝑞𝑒 | for all 𝑒 = ( 𝑓 (𝑒), ℎ(𝑒)) ∈ E, (2.15a)

𝐴q = b for all 𝑣 ∈ V, (2.15b)

𝜂𝑣 =

∑
𝑒∈E(𝑣) 𝜂𝑒 · (𝑎(𝑣, 𝑒)𝑞𝑒)+ + 𝜁𝑣𝑏

−
𝑣∑

𝑒∈E(𝑣) (𝑎(𝑣, 𝑒)𝑞𝑒)+ + 𝑏−𝑣
for all 𝑣 ∈ V . (2.15c)

Remark 2.3. As in Remark 2.1, we introduce the nodal potential 𝜋𝑣 = 𝑝2
𝑣 and solve the mixing

model (2.15) in the variables (𝜋𝑣, 𝑞𝑒, 𝜂𝑣). If 𝜋𝑣 ≥ 0, the nodal pressures 𝑝𝑣 are given by the roots of
the nodal potential, which strongly depends on the boundary data, c.f., Remark 2.1. Hence, we will
discuss both the existence of nodal potentials and the existence of nodal pressures.

2.4. Properties of the gas flow

Considering single-gas transport, the gas cannot flow in cycles without compressor stations [11].
This also holds for gas mixtures and is essential for showing the existence of solutions for the mixture
model (2.15). We prove this by determining the pressure change along a path, since a cycle is a path
with identical start and end.

Lemma 2.4 (Pressure change along a path). Let G = (V, E) be a graph and let (P, EP) be a path from
𝑣0 to 𝑣𝑘 where P = {𝑣0, . . . , 𝑣𝑘 }. The set EP contains the edges connecting two consecutive nodes 𝑣𝑖
and 𝑣𝑖+1. Then the pressure change along the path is given by

𝑝2
𝑣𝑘
− 𝑝2

𝑣0 =
∑︁
𝑒∈EP

𝜎̃(𝜂ℎ(𝑒) , 𝜂 𝑓 (𝑒) , 𝑞𝑒)𝑎(𝑣𝑒, 𝑒)𝑞𝑒 |𝑎(𝑣𝑒, 𝑒)𝑞𝑒 |,

where 𝑣𝑒 is the node of edge 𝑒 that is closer to the start node 𝑣0 of the path, i.e., 𝑣𝑒 = 𝑓 (𝑒) if 𝑒 = (𝑣𝑖, 𝑣𝑖+1)
and 𝑣𝑒 = ℎ(𝑒) if 𝑒 = (𝑣𝑖+1, 𝑣𝑖).

Proof. We rewrite the pressure change between two consecutive nodes 𝑣𝑖 and 𝑣𝑖+1 of the path, i.e., the
pressure change along the pipe connecting 𝑣𝑖 and 𝑣𝑖+1:

𝑝2
𝑣𝑖+1 =

{
𝑝2
𝑣𝑖
− 𝜎̃(𝜂𝑣𝑖 , 𝜂𝑣𝑖+1 , 𝑞𝑒)𝑞𝑒 |𝑞𝑒 |, if 𝑒 = (𝑣𝑖, 𝑣𝑖+1)

𝑝2
𝑣𝑖
+ 𝜎̃(𝜂𝑣𝑖+1 , 𝜂𝑣𝑖 , 𝑞𝑒)𝑞𝑒 |𝑞𝑒 |, if 𝑒 = (𝑣𝑖+1, 𝑣𝑖)

=

{
𝑝2
𝑣𝑖
+ 𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒)𝑎(𝑣𝑖, 𝑒)𝑞𝑒 |𝑎(𝑣𝑖, 𝑒)𝑞𝑒 |, if 𝑒 = (𝑣𝑖, 𝑣𝑖+1)

𝑝2
𝑣𝑖
+ 𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒)𝑎(𝑣𝑖+1, 𝑒)𝑞𝑒 |𝑎(𝑣𝑖+1, 𝑒)𝑞𝑒 |, if 𝑒 = (𝑣𝑖+1, 𝑣𝑖)

= 𝑝2
𝑣𝑖
+ 𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒)𝑎(𝑣𝑒, 𝑒)𝑞𝑒 |𝑎(𝑣𝑒, 𝑒)𝑞𝑒 |.

Then, the claim follows by an induction over the path length |EP |.

Gas flowing in a cycle means that the gas always flows either away from or into the node when
traversing through the cycle, starting from an arbitrary, designated start node. Thus, we use Eq (2.10)
to characterize circular flows and obtain the following corollary.
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Corollary 2.5. Let G = (V, E) be a graph. Then a solution to the gas flow model (2.15) cannot contain
circular flows, i.e., there is no cycle (C, EC) satisfying one of the following two conditions:

(i) 𝑎(𝑣𝑒, 𝑒) 𝑞𝑒 ≥ 0 for all 𝑒 ∈ EC and 𝑎(𝑣𝑒, 𝑒) 𝑞𝑒 > 0 for at least one 𝑒 ∈ EC ,

(ii) 𝑎(𝑣𝑒, 𝑒) 𝑞𝑒 ≤ 0 for all 𝑒 ∈ EC and 𝑎(𝑣𝑒, 𝑒) 𝑞𝑒 < 0 for at least one 𝑒 ∈ EC ,

where 𝑣𝑒 ∈ V is incident to 𝑒 and the node closest to the start node while ignoring the start-end edge
(cf. Lemma 2.4).

Proof. We use proof by contradiction to show the first case (i). A cycle (C, EC) is a path with identical
start and end. Thus, applying Lemma 2.4 yields:

0 = 𝑝2
𝑣𝑘
− 𝑝2

𝑣0 =
∑︁
𝑒∈EC

𝜎̃
(
𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒

)︸                 ︷︷                 ︸
≥0

𝑎(𝑣𝑒, 𝑒)𝑞𝑒︸      ︷︷      ︸
≥0

|𝑎(𝑣𝑒, 𝑒)𝑞𝑒 |︸        ︷︷        ︸
≥0

(∗)
> 0,

which is a contradiction. The strict inequality (∗) holds because there is at least one edge 𝑒 ∈ EC
satisfying 𝑎(𝑣𝑒, 𝑒)𝑞𝑒 > 0. The proof for the second case (ii) follows analogously, and the corollary
is proven.

3. The existence and uniqueness of steady states in networks

In this section, we prove the existence of steady states for the mixture model (2.15) on networks.
The idea follows [28, 29], where the authors prove the existence of steady states on networks for the gas
flow model for a single gas. Their proof is based on induction over the number of cycles in a graph. To
apply the induction assumption, they cut an edge of a cycle to obtain a graph with one cycle less than
the original one.

Thus, we first show the existence and uniqueness of solutions of the mixture model (2.15) on
tree-shaped networks, i.e., a network with no cycles, and establish the existence of steady states for
networks with cycles afterwards.

3.1. Steady states on tree-shaped networks

The existence and uniqueness of steady states for tree-shaped networks is similar to the single
gas problem, as the argument only relies on the fact, that for trees, the flow on the network is fully
determined by the loads 𝑏𝑣. However, the mixing model additionally contains the equation for the
mixing at the nodes.

Since the nodal composition 𝜂𝑣 is given by the ratio of incoming hydrogen and incoming mixed
gas (cf. Eq (2.15c)), we can compute the composition 𝜂𝑣 at a node 𝑣, if we know its incoming flows
and their compositions. As the network is tree-shaped, we can sort the nodes such that gas always flows
from nodes early in the ordering to nodes later in the ordering, which allows us to compute the nodal
compositions 𝜂𝑣 in an inductive manner. Such an ordering of the nodes is called a topological ordering
of a graph.

Definition 3.1 (Topological ordering [30]). Let G = (V, E) be a tree-shaped graph. Then a topological
ordering sorts the nodes of the graph into a sequence in which, for each directed edge (𝑣, 𝑤), the start
node 𝑣 appears before the end node 𝑤 (c.f., Figure 3 for a visualization).
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𝑣0 𝑣4

𝑣1

𝑣5

𝑣7

𝑣6 𝑣2

𝑣3

𝑣0

𝑣4

𝑣1

𝑣5

𝑣6

𝑣7

𝑣2

𝑣3

Figure 3. A directed acyclic graph (left) and a topological ordering of its nodes (right).

To compute the compositions 𝜂𝑣 for fixed flows 𝑞𝑒, we require a topological ordering of the graph
Gflow = (V, Eflow), which has the same nodes as G but edges according to the flow direction, i.e., its
edges are defined by

(𝑣, 𝑤) ∈ Eflow :⇔
{
(𝑣, 𝑤) ∈ E, if 𝑞𝑒 ≥ 0,
(𝑤, 𝑣) ∈ E, if 𝑞𝑒 < 0.

(3.1)

A topological ordering of the graph G, based on its original edge orientations, does not necessarily
reflect the actual direction of gas flow, since flow can oppose the edge orientation. As a result, gas may
flow from nodes later in the ordering to nodes that are earlier, which is not desirable for analysis. In
contrast, a topological ordering of the flow-oriented graph Gflow, where the edges are aligned with the
actual direction of flow, ensures that gas consistently flows from earlier to later nodes in the ordering.

Note that the graph Gflow emerges from the original graph G by flipping edges where the flow and
edge direction differ. Hence, the graph Gflow depends on the flow 𝑞𝑒 on the edges.
Remark 3.2. The graph Gflow is tree-shaped because it has the same edges as G up to a change in the
edge orientation and thus, by [30, Proposition 2.1.3], a topological ordering of the nodes of Gflow exists.

The next lemma states the existence of a solution for the mixing Eq (2.15c) for given flows 𝑞𝑒 on
a network:

Lemma 3.3 (Existence of the composition). Let G = (V, E) be a graph and let 𝑞𝑒 be the flows at
the edges satisfying mass conservation (cf. Eq (2.15b)). Then the mixing Eq (2.15c) has at least one
solution 𝜂𝑣.

Proof. The graph Gflow = (V, Eflow) is acyclic. Thus, a topological ordering of the nodes of Gflow
exists, and we can compute the nodal compositions 𝜂𝑣 by induction over the position 𝑘 in the topological
ordering.

The composition 𝜂𝑣 for the node at position 𝑘 = 1 is given by the boundary data, since the first
node in a topological ordering is a supply node, i.e., 𝑏𝑣 < 0, where 𝑎(𝑣, 𝑒)𝑞𝑒 ≤ 0 for all 𝑒 ∈ E(𝑣), and
thus 𝜂𝑣 = 𝜁𝑣.
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Assume, that all nodal compositions up to position 𝑘 have been determined. Then we compute
the composition of the node at position 𝑘 + 1 by

𝜂𝑣 =

∑
𝑒∈E(𝑣) 𝜂𝑒 · (𝑎(𝑣, 𝑒)𝑞𝑒)+ + 𝜁𝑣𝑏

−
𝑣∑

𝑒∈E(𝑣) (𝑎(𝑣, 𝑒)𝑞𝑒)+ + 𝑏−𝑣
.

The incoming flow, i.e., edges with (𝑎(𝑣, 𝑒)𝑞𝑒)+ ≠ 0, is given only by the previous nodes in the
ordering; otherwise an edge whose end point is before its start point in the ordering exists, which is a
contradiction to the definition of a topological order. Thus, the composition for the node at position
𝑘 + 1 can be computed and the lemma is proven.

The proof of the existence of a solution relies on a topological ordering of the nodes. Even though
the topological ordering is, in general, non-unique, we can show the uniqueness of the composition in
the following lemma.

Lemma 3.4 (Uniqueness of the composition). Let G = (V, E) be a tree-shaped graph and let 𝑞𝑒 be an
flows at the edges satisfying the mass conservation (cf. Eq (2.15b)). Then the solution 𝜂𝑣 of the mixing
Eq (2.15c) is unique.

Proof. The claim follows directly from the proof by contradiction in [17, Theorem 1]. Considering a
non-unique solution, tracing back to a supply node, where the composition is given by fixed boundary
data, yields a contradiction.

Finally, we prove the existence and uniqueness of a solution of the steady-state gas flow model (2.15)
for tree-shaped networks.

Theorem 3.5 (Existence of solutions for tree-shaped networks). Let G = (V, E) be a tree-shaped
network. Then there are unique vectors (π, q, η) ∈ R|V| × R|E | × [0, 1] |V| satisfying the mixture
model (2.15) with π = p2. If π ≥ 0, then (p, q, η) ∈ R|V| × R|E | × [0, 1] |V| is the unique solution of the
mixture model (2.15) with p =

√
π.

Proof. As the network G is tree-shaped, the incidence matrix 𝐴 has full column rank [31, Lemma 2.2],
and thus the flow equation 𝐴q = b has a unique solution if and only if∑︁

𝑣∈V
𝑏𝑣 = 0.

Since this holds by assumption, the flow equation has a unique solution q that only depends on
the loads and the topology of the tree. Hence, by Lemmas 3.3 and 3.4, the mixing Eq (2.15c) has a
unique solution.

Together with the fixed nodal pressure 𝑝𝑣 at the node 𝑣∗ and the relation 𝜋𝑣 = 𝑝2
𝑣 , we rewrite

Eq (2.15a), which describes the pressure change along the pipes, using the incidence matrix. This
yields the linear system

𝐴⊤π = σ̃(η, q) with 𝜋𝑣∗ = 𝜋∗ = (𝑝∗)2 (3.2a)
⇔ 𝐴⊤

−𝑣∗π−𝑣∗ = σ̃(η, q) − 𝜋∗a𝑣∗︸              ︷︷              ︸
fully determined

, (3.2b)
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where 𝐴−𝑣∗ and π−𝑣∗ are the incidence matrix 𝐴 and the vector π, but without the row and entry
corresponding to 𝑣∗, respectively; a𝑣∗ denotes the row of 𝐴 corresponding to 𝑣∗. Moreover, the function
σ̃ is the vector value with the entries

[σ̃(η, q)]𝑒 = 𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒),

where 𝜎̃ is defined in Eq (2.13). Then we obtain the nodal potentials 𝜋𝑣 by solving the linear
system (3.2b), as the right side of this linear system is fully determined by the topology of the tree,
the flow 𝑞𝑒, the composition 𝜂𝑒 on the edges, and the given nodal pressure at node 𝑣∗. Moreover, the
square matrix 𝐴⊤

−𝑣∗ is regular, cf. [32], which completes the proof.

Note that Theorem 3.5 only guarantees the existence of the nodal potentials π ∈ R|V|, but not
necessarily the existence of the nodal pressures p ∈ R|V|. For a single edge, the critical pressure and
the critical length defined in Eqs (2.5) and (2.6) guarantee the existence of the nodal pressure at the end
of the pipe. For networks, the existence of nodal pressures strongly depends on the graph topology.
However, for tree-shaped networks, the flow is given a priori by the solution of 𝐴q = b, which allows
us to provide sufficient conditions for the existence of nodal pressures. For a tree with a single supply
node, we can formulate the following lemma.

Lemma 3.6. Let G = (V, E) be a tree-shaped graph with a single supply node 𝑣0, where the flow
direction meets the edge orientation for every edge 𝑒 ∈ E. Let (P(𝑣), EP(𝑣)) be the unique path from
𝑣0 to an arbitrary node 𝑣 ∈ V. Assume that the condition

𝑝2
𝑣∗ ≥ 𝜆Fr

𝐷

(
𝜁𝑣0𝜎

2
H2

+ (1 − 𝜁𝑣0)𝜎2
NG

) 
∑︁

𝑒∈EP(𝑤)

𝑞2
𝑒𝐿𝑒 −

∑︁
𝑒∈EP(𝑣∗ )

𝑞2
𝑒𝐿𝑒

 ,
holds for all nodes 𝑤 ∈ V with E+(𝑤) = ∅, then unique nodal pressures p ∈ R|V| exist.

The statement of Lemma 3.6 is both sufficient and necessary. It is based on following the
pressure change from the only supply node 𝑣0 to any end node. Note that even if G does not satisfy
the compatibility between the flow direction and the edge orientation, Eq (3.6) holds for the graph
Gflow = (V, Eflow) defined in Eq (3.1).

Proof of Lemma 3.6. We apply Lemma 2.4 to determine the pressure change between the supply node
𝑣0 and the node 𝑣∗, where the pressure is given through boundary data:

𝑝2
𝑣0 = 𝑝2

𝑣∗ −
∑︁

𝑒∈EP(𝑣∗ )

𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒)𝑞𝑒 |𝑞𝑒 |.

Due to graph being tree-structured with only a single supply node, the composition at every edge
is equal to the supply composition 𝜁𝑣0 and the flow direction given a priori meets the edge orientation
for every edge, and thus we can replace 𝜂𝑒 by 𝜁𝑣0 and 𝑞𝑒 |𝑞𝑒 | by 𝑞2

𝑒 and obtain

𝑝2
𝑣0 = 𝑝2

𝑣∗ +
𝜆Fr
𝐷

(
𝜁𝑣0𝜎

2
H2

+ (1 − 𝜁𝑣0)𝜎2
NG

) ∑︁
𝑒∈EP(𝑣∗ )

𝑞2
𝑒𝐿𝑒 . (3.3)
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As the pressure profiles are decreasing along every path, it is sufficient to consider only the end
nodes of the graph, i.e., the nodes without outgoing edges. Using Lemma 2.4 again together with
Eq (3.3), we can express the pressure at a node 𝑤 ∈ V with E+(𝑤) = ∅ by

𝑝2
𝑤 = 𝑝2

𝑣0 −
𝜆Fr
𝐷

(
𝜁𝑣0𝜎

2
H2

+ (1 − 𝜁𝑣0)𝜎2
NG

) ∑︁
𝑒∈EP(𝑤)

𝑞2
𝑒𝐿𝑒,

= 𝑝2
𝑣∗ +

𝜆Fr
𝐷

(
𝜁𝑣0𝜎

2
H2

+ (1 − 𝜁𝑣0)𝜎2
NG

) ∑︁
𝑒∈EP(𝑣∗ )

𝑞2
𝑒𝐿𝑒

− 𝜆Fr
𝐷

(
𝜁𝑣0𝜎

2
H2

+ (1 − 𝜁𝑣0)𝜎2
NG

) ∑︁
𝑒∈EP(𝑤)

𝑞2
𝑒𝐿𝑒 .

The nodal pressure 𝑝𝑤 exists, if 𝑝2
𝑤 is non-negative, which is the case if and only if

𝑝2
𝑣∗ ≥ 𝜆Fr

𝐷

(
𝜁𝑣0𝜎

2
H2

+ (1 − 𝜁𝑣0)𝜎2
NG

) 
∑︁

𝑒∈EP(𝑣∗ )

𝑞2
𝑒𝐿𝑒 −

∑︁
𝑒∈EP(𝑤)

𝑞2
𝑒𝐿𝑒

 .
For tree-shaped graphs with an arbitrary number of supply nodes, we can neither replace 𝜂𝑒 by 𝜁𝑣0

nor replace 𝑞𝑒 |𝑞𝑒 | by 𝑞2
𝑒. However, we can formulate a sufficient condition.

Corollary 3.7. Let G = (V, E) be a tree-shaped graph, where the flow direction meets the edge
orientation for every edge 𝑒 ∈ E, and let (P(𝑣, 𝑤), EP(𝑣,𝑤)) be the unique path from node 𝑣 to node 𝑤.
Further, set 𝜁 := max{𝜁𝑣 | 𝑣 ∈ V<0} if 𝜎H2 ≥ 𝜎NG and 𝜁 := min{𝜁𝑣 | 𝑣 ∈ V<0} if 𝜎H2 < 𝜎NG. If

𝑝2
𝑣∗ ≥ 𝜆Fr

𝐷

(
𝜁𝜎2

H2
+ (1 − 𝜁)𝜎2

NG

) [ ∑︁
𝑒∈EP(𝑣,𝑤)

𝑞𝑒 |𝑞𝑒 |𝐿𝑒 −
∑︁

𝑒∈EP(𝑣,𝑣∗ )

𝑞𝑒 |𝑞𝑒 |𝐿𝑒

]
,

for all 𝑣 ∈ V<0 and for all 𝑤 ∈ V with E+(𝑤) = ∅, then unique nodal pressures p ∈ R|V| exist.

As in Lemma 3.6, even if G does not satisfy the compatibility between the flow direction and the
edge orientation, Eq (3.7) holds for the graph Gflow = (V, Eflow) defined in Eq (3.1).

3.2. Steady states in networks with one cycle

In this section, we discuss the existence of solutions to the mixture model (2.15) for networks with
cycles. In particular, we prove the main result of Theorem 3.8, namely the existence of solutions for
networks with a single cycle. Moreover, we also comment on whether the result extends to networks
with active elements such as compressors.

Theorem 3.8 (Existence of solutions for networks with one cycle). Let G = (V, E) be a graph with
exactly one cycle. Then at least one tuple of vectors (π, q, η) ∈ R|V| ×R|E | × [0, 1] |V| exists with π = p2

satisfying the mixture model (2.15). If π ≥ 0, then (p, q, η) ∈ R|V| ×R|E | × [0, 1] |V| is a solution of the
mixture model (2.15) with p =

√
π.

Before we delve into the proof of Theorem 3.8, we discuss the sufficient conditions under which we
can recover the nodal pressures 𝑝𝑣 from the nodal potentials 𝜋𝑣. As for tree-shaped graphs, Theorem 3.8
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only guarantees the existence of nodal potentials π ∈ R|V|, but not necessarily the existence of nodal
pressures p ∈ R|V|. In contrast to tree-shaped graphs, we do not know the flows on the edges a priori,
which makes it rather difficult to state sufficient conditions for the existence of nodal pressures. This
problem is well-known in mathematics. In [33, Proposition 4], the authors present bounds on the nodal
potentials as necessary conditions for a single gas flow model. In [11, 13], the authors state an existence
result for the single gas model with sufficiently short pipes without also specifying the maximal pipe
length. However, to state sufficient conditions for the existence of nodal pressures, we exploit the idea
of Corollary 3.7 and follow the paths in the graph, considering the maximal possible pressure loss. The
maximal possible flow 𝑞max on an edge is given by the sum of all outflows as follows:

𝑞𝑒 ≤ 𝑞max :=
∑︁

𝑣∈V≥0

𝑏𝑣 for all 𝑒 ∈ E .

Since the paths between two arbitrary nodes 𝑣, 𝑤 ∈ V might not be unique anymore, we define

P(𝑣, 𝑤) B
(
(P1(𝑣, 𝑤), E𝑃1 (𝑣,𝑤)), · · · , (P𝑑 (𝑣, 𝑤), E𝑃𝑑 (𝑣,𝑤))

)
,

as the set of all cycle-free paths from 𝑣 ∈ V to 𝑤 ∈ V. The number 𝑑 of paths connecting the two
nodes depends on 𝑣 and 𝑤. As in Corollary 3.7, we set 𝜁 := max{𝜁𝑣 | 𝑣 ∈ V<0} if 𝜎H2 ≥ 𝜎NG, and
𝜁 := min{𝜁𝑣 | 𝑣 ∈ V<0} if 𝜎H2 < 𝜎NG. Thus we have

|𝜎̃(𝜂 𝑓 (𝑒) , 𝜂ℎ(𝑒) , 𝑞𝑒) | ≤
𝜆Fr
𝐷

(
𝜁𝜎2

H2
+ (1 − 𝜁)𝜎2

NG

)
𝐿𝑒 .

With that, we can state the following sufficient condition for the existence of nodal pressures.

Corollary 3.9. Let G = (V, E) be a graph with a single cycle. Assume that the following condition
holds for all 𝑤 ∈ V with E+(𝑤) = ∅ and 𝑖 = 1, · · · , 𝑑:

𝑝2
𝑣∗ ≥ 𝜆Fr

𝐷

(
𝜁𝜎2

H2
+ (1 − 𝜁)𝜎2

NG

) ∑︁
𝑒∈EP𝑖 (𝑣∗ ,𝑤)

𝑞2
max𝐿𝑒 .

Then the nodal pressures p ∈ R|V| exist.

The following corollary provides a weaker sufficient condition that is easier to verify:

Corollary 3.10. Let the assumptions of Corollary 3.9 be satisfied. Furthermore, assume that the
following conditions holds:

𝑝2
𝑣∗ ≥

𝜆Fr
𝐷

(
𝜁𝜎2

H2
+ (1 − 𝜁)𝜎2

NG

)
|E | 𝑞2

max max
𝑒∈E

𝐿𝑒 .

Then the nodal pressures p ∈ R|V| exist.

In [34], the authors discuss the difference between a mathematical and a feasible (resp. physical)
solution. They state that even if a solution in terms of negative nodal potentials (resp. complex nodal
pressures) exists, the given boundary data does not provide a feasible solution, i.e., the solution does
not meet physical properties. Thus, numerically, it is always beneficial to compute the nodal potentials
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first, since they always exist.

Next, we discuss the proof of Theorem 3.8. The key idea to prove the existence of nodal potentials
is to cut an edge of the cycle, which results in a tree-shaped network, for which we know that a unique
solution exists (Theorem 3.5). The cut creates two new nodes that require boundary data, for which
we introduce two parameters. As our aim is to show that the mixture model (2.15) admits a solution,
we derive additional constraints that a solution for the cut networks must satisfy, in order to also be a
solution to the original network, and prove that there are parameters that satisfy these constraints.

Before we prove Theorem 3.8, we derive an equivalent characterization of the solvability of the
mixture model (2.15). At the end of this section, we appy this characterization to conclude that the
mixture model (2.15) admits at least one solution. We start by introducing the notion of a cut graph to
formalize the process of cutting the edges of a graph.

Definition 3.11 (Cut graph, cf. [28, 29]). Let G be a graph and let 𝑒𝑐 = ( 𝑓 (𝑒𝑐), ℎ(𝑒𝑐)) be an edge of
G. Then the so-called cut graph G𝑐 = (V𝑐, E𝑐) of G with respect to 𝑒𝑐 is defined by

V𝑐 = V ∪ {𝑣cl, 𝑣cr}, E𝑐 = (E \ {𝑒𝑐}) ∪ {𝑒cl, 𝑒cr},

where the nodes 𝑣cl, 𝑣cr ∉ V are generated by cutting the edge 𝑒𝑐 which splits into the two new edges
𝑒cl = ( 𝑓 (𝑒𝑐), 𝑣cl) and 𝑒cr = (𝑣cr, ℎ(𝑒𝑐)), see Figure 4 for a visualization.

𝑣0 𝑣4

𝑣1𝑣5

𝑣7

𝑣6 𝑣2

𝑣3

𝑣0 𝑣4

𝑣1𝑣5

𝑣7

𝑣6 𝑣2

𝑣3

𝑣cl

𝑣cr

Figure 4. A graph with a single circle (left) and the resulting cut graph when cutting the blue
edge (right).

Since our goal is to find solutions to the mixture model on the cut graph G𝑐 that are also solutions
to the original graph G, we assume that the boundary data for all old nodes 𝑣 ∈ V remains the same.
At the new nodes 𝑣 ∈ {𝑣cl, 𝑣cr}, a solution for the cut graph G𝑐 – indicated by the superscript 𝑐 – must
satisfy three conditions, in order to be a solution for the original graph G as well:

(c.i) 𝑏𝑐𝑣cl
= −𝑏𝑐𝑣cr , (c.ii) 𝜂𝑐𝑣cl

= 𝜂𝑐𝑣cr , (c.iii) 𝑝𝑐𝑣cl
= 𝑝𝑐𝑣cr .

The first condition (c.i) guarantees that the amount of gas leaving the node 𝑣cl is equal to the amount
of gas entering the node 𝑣cr. One can also think of this condition as an invisible pipe connecting the
nodes 𝑣cl and 𝑣cr, ensuring that the gas flow through the cut is constant. The condition (c.ii) and the
condition (c.iii) ensure that the composition and the pressure are constant through the cut, respectively.
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Next, we introduce appropriate boundary data for the newly introduced nodes 𝑣cl and 𝑣cr to
guarantee that the problem on the cut graph is well-defined and to ensure that the condition (c.i) is
always satisfied. Therefore, we introduce the parameter 𝜆 ∈ R and we set

𝑏𝑐𝑣cl
= 𝜆 and 𝑏𝑐𝑣cr = −𝜆.

Further, we introduce a second parameter 𝜇 ∈ [0, 1] to model the composition of the supply at the
nodes 𝑣cl and 𝑣cr depending on the sign of 𝜆. Then, the full boundary data for the gas flow model on
the cut graph is given by

𝑝𝑐𝑣∗ = 𝑝∗, 𝑏𝑐𝑣 =


𝑏𝑣, 𝑣 ∈ V,

−𝜆, 𝑣 = 𝑣cr,

𝜆, 𝑣 = 𝑣cl,

and 𝜁 𝑐𝑣 =


𝜁𝑣, 𝑣 ∈ V<0,

𝜇, 𝑣 = 𝑣cr and 𝜆 ≤ 0,
𝜇, 𝑣 = 𝑣cl and 𝜆 > 0.

We also have to set the length, diameter, and friction factor of the edges 𝑒 ∈ {𝑒cl, 𝑒cr} generated
by the cut. We set the edge length to half the length of the cut edge 𝑒𝑐, i.e., we have 𝐿𝑒 = 1

2𝐿𝑒𝑐 for
𝑒 ∈ {𝑒cl, 𝑒cr}. Since we assume that all edges have the same diameter and the same friction factor, this
property transfers to the two new edges.

We rewrite the condition of constant composition and constant pressure through the cut by using
the following functions:

𝐻𝑝 : R × [0, 1] → R, 𝐻𝑝 (𝜆, 𝜇) = 𝑝𝑐𝑣cr (𝜆, 𝜇)
2 − 𝑝𝑐𝑣cl

(𝜆, 𝜇)2 (3.4a)
𝐻𝜂 : R × [0, 1] → R, 𝐻𝜂 (𝜆, 𝜇) = 𝜂𝑐𝑣cr (𝜆, 𝜇) − 𝜂𝑐𝑣cl

(𝜆, 𝜇), (3.4b)

which measure the difference between the pressure and the composition at the new nodes, respectively.
Then the task of finding the parameters 𝜆 and 𝜇, which satisfy the constraints (c.i)–(c.iii), becomes:

Find (𝜆, 𝜇) ∈ R × [0, 1] such that 𝐻𝑝 (𝜆, 𝜇) = 0 and 𝐻𝜂 (𝜆, 𝜇) = 0,

which means we have to find a common root of 𝐻𝑝 and 𝐻𝜂. With this derivation, we obtain an equivalent
characterization for the solvability of the steady-state gas flow model (2.15), which we summarize in
the following lemma.

Lemma 3.12. Let G = (V, E) be a graph. Then the following holds:

has a solution.
The gas flow model (2.15) ⇔ have a common root.

The functions 𝐻𝑝 and 𝐻𝜂

Proof. Assume that the steady-state gas flow model (2.15) has a solution 𝑝𝑣, 𝑞𝑒, 𝜂𝑣, and let 𝑒𝑐 be the
cut edge. Then, by the definition of 𝐻𝑝 and 𝐻𝜂, these two functions have the following common root:

𝜆∗ = 𝑞𝑒𝑐 and 𝜇∗ =

{
𝜂 𝑓 (𝑒𝑐) , if 𝑞𝑒𝑐 ≥ 0,
𝜂ℎ(𝑒𝑐) , if 𝑞𝑒𝑐 < 0.

Now suppose that 𝐻𝑝 and 𝐻𝜂 have a common root (𝜆∗, 𝜇∗). We then recover a solution to the gas
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flow model (2.15) by setting

𝑞𝑒 =

{
𝑞𝑐𝑒 (𝜆∗, 𝜇∗), 𝑒 ∈ E \ {𝑒𝑐},
𝜆∗, 𝑒 = 𝑒𝑐,

𝜂𝑣 = 𝜂𝑐𝑣 (𝜆∗, 𝜇∗), 𝜋𝑣 = 𝜋𝑐𝑣 (𝜆∗, 𝜇∗).

If 𝜋𝑣 ≥ 0 for all 𝑣 ∈ V, we obtain a solution for the nodal pressures by setting 𝑝𝑣 =
√
𝜋𝑣.

In case the functions 𝐻𝑝 and 𝐻𝜂 have a common root, the solvability of the mixture model (2.15),
i.e., Theorem 3.8, follows immediately from Lemma 3.12. Therefore, our next goal is to show that the
functions 𝐻𝑝 and 𝐻𝜂 have a common root.

Lemma 3.13. Let G = (V, E) be a directed graph with one cycle and let 𝑒𝑐 ∈ E be an edge within the
cycle. Further, let G𝑐 be the cut graph obtained by cutting the edge 𝑒𝑐. Then a tuple (𝜆∗, 𝜇∗) ∈ R×[0, 1]
exists such that

𝐻𝑝 (𝜆∗, 𝜇∗) = 0 and 𝐻𝜂 (𝜆∗, 𝜇∗) = 0,

where the functions 𝐻𝑝 and 𝐻𝜂 are defined in Equation (3.4), i.e., these two functions have at least one
common root.

Before proceeding with the proof of Lemma 3.13, we briefly highlight the additional challenges
posed by gas mixtures compared with a single gas. In the case of a single gas, the function 𝐻𝜂 and the
variable 𝜇 disappear as the composition of the gas remains constant. The problem reduces to showing
that 𝐻𝑝 (𝜆) has a (unique) root. This is comparatively straightforward: In [29], the authors prove that 𝐻𝑝

is continuous and strictly monotone, which implies the existence of a unique root with the intermediate
value theorem.

For gas mixtures, the boundary data includes not only the load but also the supply composition if
the node is a supply node. In particular, at the nodes 𝑣cl and 𝑣cr, the supply composition is switched on
or off when 𝜆 switches its sign. This discontinuous behavior, along with the need to solve a nonlinear
system rather than a single scalar equation, complicates the task of establishing the continuity of 𝐻𝑝

for gas mixtures. Furthermore, the variable composition complicates proving strict monotonicity. As
a result, we prove only the existence of a solution, not its uniqueness. We discuss the challenges with
respect to monotonicity in Section 4.

Our approach to show the existence is to reduce the non-linear system to a scalar problem by
solving 𝐻𝜂 (𝜆, 𝜇) = 0 for 𝜇 = 𝜇(𝜆). Then, the idea to prove Lemma 3.13 is as follows:

(i) For a fixed 𝜆, we show that the function 𝐻𝜂 admits a unique root 𝜇𝜂 (𝜆), which means that
𝐻𝜂 (𝜆, 𝜇𝜂 (𝜆)) = 0 holds.

(ii) We restrict the function 𝐻𝑝 to the root curve 𝜇𝜂 (𝜆) resulting in the scalar function 𝑔(𝜆) =

𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)). We then apply the intermediate value theorem to the function 𝑔 to show that it
admits at least one root, i.e., we have to show that

(a) the function 𝑔 is continuous, and

(b) values 𝜆− and 𝜆+ exist such that 𝑔(𝜆−) ≤ 0 and 𝑔(𝜆+) ≥ 0.
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In Figure 5, we provide an overview of the intermediate results required and group them into two
categories corresponding to the two steps of the proof. In the following, we postpone the detailed proof
to show the intermediate results first.

For fixed 𝜆 ∈ R the function
𝐻𝜂 (𝜆, 𝜇) has a unique root 𝜇𝜂 (𝜆).

• Lemma 3.17 • Lemma 3.20

The function 𝑔 = 𝐻𝑝 (·, 𝜇𝜂 (·))
is continuous.

• Corollary 3.15 • Lemma 3.16
• Lemma 3.18 • Lemma 3.21

There exit values 𝜆± such that
𝑔(𝜆−) ≤ 0 and 𝑔(𝜆+) ≥ 0.

• Lemma 3.14 • Lemma 3.19

Apply the intermediate value theorem to 𝑔(𝜆) = 𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)).
Lemma 3.13

𝐻𝑝 and 𝐻𝜂 have a common root

Step (i) Step (ii)

Figure 5. Overview and dependence of the intermediate results to show Lemma 3.13.

To show the two intermediate steps of the proof, we analyze the properties of the nodal composition
𝜂𝑐𝑣 and the flow 𝑞𝑐𝑒 on the edges, because both functions, 𝐻𝑝 and 𝐻𝜂, can be written in terms of 𝜂𝑐𝑣
and 𝑞𝑐𝑒. For the function 𝐻𝜂, this holds by definition. The function 𝐻𝑝 describes the pressure change
between the node 𝑣cl and the node 𝑣cr. Hence, we apply Lemma 2.4 to express 𝐻𝑝 in terms of 𝜂𝑐𝑣 and
𝑞𝑐𝑒, which results in

𝐻𝑝 (𝜆, 𝜇) =
∑︁
𝑒∈EP

𝜎̃(𝜂𝑐
𝑓 (𝑒) (𝜆, 𝜇), 𝜂

𝑐
ℎ(𝑒) (𝜆, 𝜇), 𝑞

𝑐
𝑒 (𝜆))𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 (𝜆) |𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 (𝜆) |, (3.5)

where EP ⊆ E𝑐 is the set of edges that belong to the path connecting 𝑣cl and 𝑣cr, and 𝑣𝑒 denotes the
node of edge 𝑒 that is closer to the start node of the path.

Thus, besides analyzing the properties of the flow 𝑞𝑐𝑒 and the nodal composition 𝜂𝑐𝑣, we also show
how these properties transfer to the functions 𝐻𝑝 and 𝐻𝜂, and how they contribute to the proof of
Lemma 3.13.

3.2.1. Properties of the flow and the nodal composition

We start with showing that the flow 𝑞𝑐𝑒 on the edges of the former cycle of the network depends
linearly on 𝜆, as this property is essential to ensure that the function 𝐻𝜂 admits a unique root, and that
the function 𝜆 ↦→ 𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)) satisfies the requirements on the intermediate value theorem.

Lemma 3.14. Let G = (V, E) be a graph with one cycle and let 𝑒𝑐 ∈ E be the cut edge within the cycle
(C, EC). Assume that 𝜆 and 𝜇 are fixed. Then the flow 𝑞𝑐𝑒 on the cut graph G𝑐 depends linearly on 𝜆

and can be written as

𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 (𝜆) = 𝛾𝑒 − 𝜆 for all 𝑒 ∈ (EC \ {𝑒𝑐}) ∪ {𝑒cl, 𝑒cr},

where the constants 𝛾𝑒 depend only on the load 𝑏𝑣, and 𝑣𝑒 is the node of the edge 𝑒 that is closer to the
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node 𝑣cr (cf., Lemma 2.4 for the definition of 𝑣𝑒).

Proof. Since G has only one cycle, the cut graph G𝑐 is tree-shaped. Thus, a unique path connecting 𝑣cl
and 𝑣cr exists, which forms a connected subgraph (P, EP) of G𝑐 with

P = C ∪ {𝑣cl, 𝑣cr} and EP = EC \ {𝑒𝑐} ∪ {𝑒cl, 𝑒cr}. (3.6)

Without loss of generality, we assume that the path starts at 𝑣cr and ends at 𝑣cl. Analogous to the
proof of [29, Theorem 1], each edge 𝑒 ∉ EP is part of a sub-tree of G𝑐 with one node in P. As the loads
𝑏𝑐𝑣 are fixed and independent of 𝜆 for 𝑣 ∉ {𝑣cl, 𝑣cr}, the flow 𝑞𝑐𝑒 on these edges is uniquely determined
and independent of 𝜆.

For the edges 𝑒 ∈ EP , the mass conservation Eq (2.15b) yields the linear system 𝐴PqP = bP ,
where 𝐴P is the incidence matrix of the subgraph of the path, qP is the flow vector, and bP isthe vector
of adjusted loads. Since 𝐴P is lower triangular, we apply forward substitution to solve the linear system,
cf. [29, Theorem 1]:

𝑎𝑐 (𝑣𝑖, 𝑒𝑖)𝑞𝑐𝑒𝑖 =
𝑖∑︁

𝑘=1
𝑏P𝑣𝑘 with 𝑏P𝑣 B 𝑏𝑐𝑣 −

∑︁
𝑒∈E(𝑣)\EP

𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒 for 𝑣 ∈ P .

The numbering of the nodes indicates the order in which they are traversed by the path, i.e.,
𝑣1 = 𝑣cr and 𝑣𝑝 = 𝑣cl with 𝑝 = |P |. An edge 𝑒𝑖 connects the nodes 𝑣𝑖 and 𝑣𝑖+1. As the path starts at
node 𝑣1 = 𝑣cr, we have 𝑎𝑐 (𝑣1, 𝑒1)𝑞𝑐𝑒1 = 𝑏P𝑣1 = −𝜆. Further, the redefined loads 𝑏P𝑣 are independent of 𝜆
for 𝑣 ∉ {𝑣1 = 𝑣cl, 𝑣𝑝 = 𝑣cr}, which leads to

𝑎𝑐 (𝑣𝑖, 𝑒𝑖)𝑞𝑐𝑒𝑖 = −𝜆 +
𝑖∑︁

𝑘=2

𝑏𝑣𝑘 −
∑︁

𝑒∈E(𝑣𝑘)\EP

𝑎(𝑣𝑘 , 𝑒)𝑞𝑐𝑒
︸                                     ︷︷                                     ︸

C𝛾𝑒𝑖 which is independent of 𝜆

for 𝑖 = 1, . . . 𝑝 − 1

⇔ 𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 = 𝛾𝑒 − 𝜆 for 𝑒 ∈ EP = (EC \ {𝑒𝑐}) ∪ {𝑒cl, 𝑒cr}.

Given this representation of 𝑞𝑐𝑒 on the edges of the former cycle, along with the fact that the flow
is independent of 𝜆 on all the remaining edges, the continuity of the flow in 𝜆 follows immediately.

Corollary 3.15 (Continuity of the flow). Let the requirements of Lemma 3.14 be satisfied. Then the
flow 𝑞𝑐𝑒 on the cut graph G𝑐 is continuous in 𝜆 for all edges 𝑒 ∈ E𝑐.

Proof. The claim follows directly from the proof of Lemma 3.14 as 𝑞𝑐𝑒 is independent of 𝜆 if 𝑒 ∉

EC ∪ {𝑒cl, 𝑒cr} and linear in 𝜆 if 𝑒 ∈ EC ∪ {𝑒cl, 𝑒cr}.

The continuity of 𝑞𝑐𝑒 with respect to 𝜆 enables us to establish the continuity of the nodal
compositions 𝜂𝑐𝑣. However, the interpretation of the nodes 𝑣cl and 𝑣cr as the supply or demand nodes
depends on the sign of 𝜆: for 𝜆 > 0, 𝑣cl is a demand node and 𝑣cr is a supply node, while for 𝜆 < 0,
their roles are reversed. This sign change can be likened to a supply station that suddenly becomes a
consumer, which implies a discontinuity in composition at 𝜆 = 0.
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Lemma 3.16 (Continuity of the composition with respect to 𝜆). Let G be a graph with a single cycle,
𝑒𝑐 ∈ E be an edge belonging to the cycle, and G𝑐 is the resulting cut graph. Assume that 𝜇 ∈ [0, 1] is
arbitrary, yet fixed. Then

(i) The nodal compositions 𝜂𝑐𝑣 are continuous for 𝜆 ∈ R \ {0}.

(ii) The nodal compositions 𝜂𝑐𝑣 are also continuous in 𝜆 = 0 for the nodes 𝑣 ∈ V \ {𝑣cl, 𝑣cr}.
Proof. We prove the claim by using the concept of a topological ordering to traverse through the nodes
of G𝑐. The graph G𝑐

flow has the same nodes as the cut graph G𝑐 but its edges align with the flow
direction. Further, the graph G𝑐

flow is tree-structured and thus has a topological order of its nodes.
The flow along the path between the nodes 𝑣cl and 𝑣cr only changes when 𝜆 changes because the

cut graph G𝑐 is tree-shaped. Lemma 3.14 allows us to determine flow direction of an edge belonging
to this path depending on 𝜆, as well as at which value of 𝜆 the flow of an edge becomes zero. We sort
these roots in ascending order as follows:

𝛾min = 𝛾̃1 < · · · < 𝛾̃|EP | = 𝛾max where {𝛾𝑒 | 𝑒 ∈ EP} = {𝛾̃𝑖 | 𝑖 = 1, . . . , |EP |}.

Then, for a fixed 𝑖, the flow directions are the same for all 𝜆 ∈ (𝛾̃𝑖, 𝛾̃𝑖+1). Thus, the topological
ordering differs for each subinterval (𝛾̃𝑖, 𝛾̃𝑖+1) as the flow directions depend on 𝜆. Now, we show the
continuity of 𝜂𝑐𝑣 with respect to 𝜆 on (𝛾̃𝑖, 𝛾̃𝑖+1) by induction over the position 𝑘 in the topological
ordering for a fixed yet arbitrary index 𝑖 ∈ {1, . . . , |EP |}.

The first node 𝑣 in the ordering has to be a supply node where the composition is given through
the boundary data, i.e., 𝜂𝑐𝑣 = 𝜁 𝑐𝑣 is constant and hence is continuous in 𝜆.

In the induction step, we assume that all compositions up to position 𝑘 are continuous on the
subinterval and that 𝑣 is the node at position 𝑘 + 1. Then the composition 𝜂𝑐𝑣 is given by

𝜂𝑐𝑣 =

∑
𝑒∈E(𝑣) 𝜂

𝑐
𝑤𝑒

(
𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒

)+ + 𝜁 𝑐𝑣 (𝑏𝑐𝑣)−∑
𝑒∈E(𝑣) (𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒)+ + (𝑏𝑐𝑣)−

where 𝑤𝑒 =

{
𝑓 (𝑒), if 𝑣 = ℎ(𝑒),
ℎ(𝑒), if 𝑣 = 𝑓 (𝑒).

Because the topological ordering is based on the graph with edges in the flow direction, the inflow
comes from nodes previous in the ordering. Thus, by the induction assumption, we know that the
compositions 𝜂𝑐𝑤𝑒

and the flows 𝑞𝑐𝑒 are continuous on the subinterval, and since 𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒 ≠ 0 by
definition of the subinterval, we also never divide by zero. Hence, the compositions 𝜂𝑐𝑣 are continuous
for 𝜆 ≠ 𝛾̃𝑖. The continuity for the intervals (−∞, 𝛾̃0) and (𝛾̃|EP |,∞) follows analogously.

It remains to prove the continuity in 𝜆 = 𝛾̃𝑖. Let 𝑒 ∈ E be an edge with 𝑞𝑒 (𝛾̃𝑖) = 0. Then, the
continuity of 𝜂𝑐𝑣 in 𝜆 = 𝛾̃𝑖 follows directly for nodes 𝑣 that are not incident to 𝑒. For nodes that are
incident to 𝑒, two cases occur, as follows:

(i) 𝑎𝑐 (𝑣, 𝑒)𝑞𝑐
𝑒
< 0 for 𝜆 < 𝛾̃𝑖 ⇒ 𝑎𝑐 (𝑣, 𝑒)𝑞𝑐

𝑒
> 0 for 𝜆 > 𝛾̃𝑖, and

(ii) 𝑎𝑐 (𝑣, 𝑒)𝑞𝑐
𝑒
> 0 for 𝜆 < 𝛾̃𝑖 ⇒ 𝑎𝑐 (𝑣, 𝑒)𝑞𝑐

𝑒
< 0 for 𝜆 > 𝛾̃𝑖.

We first demonstrate how to handle case (i). Let 𝑣 be a node that is incident to 𝑒; then the
following holds:

lim
𝜆→𝛾̃𝑖−

𝜂𝑐𝑣 (𝜆, 𝜇) = lim
𝜆→𝛾̃𝑖−

∑
𝑒∈E(𝑣)\{𝑒} 𝜂

𝑐
𝑤𝑒

(
𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒

)+ + 𝜁 𝑐𝑣 (𝑏𝑐𝑣)−∑
𝑒∈E(𝑣)\{𝑒} (𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒)+ (𝑏𝑐𝑣)−
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=

∑
𝑒∈E(𝑣)\{𝑒} 𝜂

𝑐
𝑤𝑒

(
𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒

)+ + 𝜁 𝑐𝑣 (𝑏𝑐𝑣)−∑
𝑒∈E(𝑣)\{𝑒} (𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒)+ + (𝑏𝑐𝑣)−

= lim
𝜆→𝛾̃𝑖+

∑
𝑒∈E(𝑣) 𝜂

𝑐
𝑤𝑒

(
𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒

)+ + 𝜁 𝑐𝑣 (𝑏𝑐𝑣)−∑
𝑒∈E(𝑣) (𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒)+ + (𝑏𝑐𝑣)−

= lim
𝜆→𝛾̃𝑖+

𝜂𝑐𝑣 (𝜆, 𝜇),

which proves the continuity of 𝜂𝑐𝑣 for 𝑣 ∈ V \ {𝑣cl, 𝑣cr}. Notice, that the nodes 𝑣cr and 𝑣cl lead to a
special case, since both nodes are boundary nodes and their load 𝑏𝑐𝑣 can change depending on the value
of 𝜆. In particular, both nodes can switch between being the supply and demand node when 𝜆 switches
its sign. Hence, the compositions 𝜂𝑐𝑣 are discontinuous in 𝜆 = 0 in general for 𝑣 ∈ {𝑣cl, 𝑣cr}. Case (ii)
is analogous to case (i).

The continuity of the composition with respect to 𝜇 follows from the fact that each nodal
composition 𝜂𝑣 is either independent of 𝜇 or depends linearly on it.

Lemma 3.17 (Continuity of the composition with respect to 𝜇). Let G be a graph with a single cycle,
𝑒𝑐 ∈ E be an edge belonging to the cycle, and G𝑐 be the resulting cut graph. Moreover, let 𝑢 ∈ V𝑐

<0 be
a supply node with the supply composition 𝜁 𝑐𝑢 and let 𝑞𝑐𝑒 be a flow on the network satisfying Eq (2.15b).
Then for every node 𝑣 ∈ V𝑐, one of the following two cases apply:

(i) The nodal composition 𝜂𝑐𝑣 depends linearly on 𝜁 𝑐𝑢 .

(ii) The nodal composition 𝜂𝑐𝑣 is independent of 𝜁 𝑐𝑢 .

Further, the nodal compositions are well-defined, meaning that 𝜂𝑐𝑣 ∈ [0, 1] for all 𝑣 ∈ V𝑐, if the
boundary data satisfy 𝜁 𝑐𝑣 ∈ [0, 1] for every supply node 𝑣 ∈ V𝑐

<0.

Proof. A topological ordering of the nodes of G𝑐
flow exists since we cut the only cycle of G and we can

prove the claim by induction over the position 𝑘 in the ordering.
The node at position 𝑘 = 1 must be a supply node where 𝑏𝑐𝑣 < 0 holds. Therefore, 𝜂𝑐𝑣 is given

directly by the boundary data, which implies that 𝜂𝑣 is independent of 𝜁 𝑐𝑢 if 𝑣 ≠ 𝑢 and is linear in 𝜁 𝑐𝑢 if
𝑣 = 𝑢. By choice of the boundary data, we have 𝜂𝑐𝑣 ∈ [0, 1].

Now, assume that the claim holds for all nodes up to position 𝑘 in the ordering. Let 𝑣 be the node
at position 𝑘 +1. Then two cases can apply: (a) 𝑣 is a supply node, or (b) 𝑣 is not. Case (a) is analogous
to the case 𝑘 = 1. In Case (b), the composition can be computed by

𝜂𝑐𝑣 =

∑
𝑒∈E(𝑣) 𝜂

𝑐
𝑤𝑒

(
𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒

)+ + 𝜁 𝑐𝑣 (𝑏𝑐𝑣)−∑
𝑒∈E(𝑣) (𝑎𝑐 (𝑣, 𝑒)𝑞𝑐𝑒)+ + (𝑏𝑐𝑣)−

where 𝑤𝑒 =

{
𝑓 (𝑒), if 𝑣 = ℎ(𝑒),
ℎ(𝑒), if 𝑣 = 𝑓 (𝑒).

As the gas flows from nodes early in the ordering to nodes later in the ordering, we know, by the
induction assumption, that the compositions 𝜂𝑐𝑤𝑒

are linear or independent of 𝜁 𝑐𝑤 and 𝜂𝑐𝑤𝑒
∈ [0, 1].

3.2.2. Properties of the functions 𝐻𝑝 and 𝐻𝜂

The next step is to extend the results for the flow 𝑞𝑐𝑒 and composition 𝜂𝑐𝑣 to the functions 𝐻𝑝 and
𝐻𝜂, since both functions depend on these variables, cf., Eqs (3.4) and (3.5). First, we show that the
function 𝐻𝑝 is continuous in 𝜆 and 𝜇 as the flow and the composition are continuous too.
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Lemma 3.18 (Properties of 𝐻𝑝). The function 𝐻𝑝 : R × [0, 1] → R is

(i) linear in 𝜇 and hence, continuous and monotone in 𝜇,

(ii) continuous in 𝜆, and

(iii) constant in 𝜇 if 𝜆 = 0.

Proof. The function 𝐻𝑝 describes the pressure change along the path connecting the nodes 𝑣cl and 𝑣cr.
Hence, we apply Lemma 2.4 to obtain an alternative expression of 𝐻𝑝 as follows:

𝐻𝑝 (𝜆, 𝜇) =
∑︁
𝑒∈EP

𝜎̃(𝜂𝑐
𝑓 (𝑒) (𝜆, 𝜇), 𝜂

𝑐
ℎ(𝑒) (𝜆, 𝜇), 𝑞

𝑐
𝑒 (𝜆))𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 (𝜆) |𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 (𝜆) |,

where 𝑣𝑒 is the node of the edge 𝑒 that is closer to node 𝑣cl. Since the cut graph G𝑐 is tree-shaped,
the flow 𝑞𝑐𝑒 is fully determined by the loads 𝑏𝑐𝑣. Thus, the flow 𝑞𝑐𝑒 along the edges only depends on the
parameter 𝜆 but not on the parameter 𝜇.

(i) The linearity of 𝐻𝑝 with respect to 𝜇 follows directly from the linearity of the composition 𝜂𝑣 with
respect to 𝜇; cf., Lemma 3.17.

(ii) The argument to show the continuity with respect to 𝜆 is similar. The continuity in 𝜆 ≠ 0
follows from the continuity of the flow (Corollary 3.15) and the continuity of the composition
(Lemma 3.16). In order to also prove the continuity in 𝜆 = 0, we rewrite the function 𝐻𝑝 as

𝐻𝑝 (𝜆, 𝜇) =
∑︁
𝑒∈EP

𝑒≠𝑒cl,𝑒cr

𝜎̃(𝜂𝑐
𝑓 (𝑒) (𝜆, 𝜇), 𝜂

𝑐
ℎ(𝑒) (𝜆, 𝜇), 𝑞

𝑐
𝑒 (𝜆))𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 (𝜆) |𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 (𝜆) |

︸                                                                                          ︷︷                                                                                          ︸
continuous in 𝜆=0 by Corollary 3.15 and Lemma 3.16

+ 𝜎̃(𝜂𝑐𝑣cr (𝜆), 𝜂
𝑐
ℎ(𝑒cr) (𝜆, 𝜇), 𝜆)𝜆 |𝜆 | + 𝜎̃(𝜂𝑐

𝑓 (𝑒cl) (𝜆, 𝜇), 𝜂
𝑐
𝑣cl
(𝜆), 𝜆)𝜆 |𝜆 |︸                                                                               ︷︷                                                                               ︸

𝜂𝑐𝑣cl and 𝜂𝑐𝑣cr are in general discontinuous in 𝜆=0

.

Although the compositions 𝜂𝑐𝑣cl
and 𝜂𝑐𝑣cr are discontinuous at 𝜆 = 0 by Lemma 3.16, the function

𝐻𝑝 is continuous at 𝜆 = 0 because terms of the form 𝜎̃(𝜂𝑐
𝑓 (𝑒) , 𝜂

𝑐
ℎ(𝑒) , 𝜆)𝜆 |𝜆 | are continuous at 𝜆 = 0

even if the compositions 𝜂𝑐
𝑓 (𝑒) and 𝜂𝑐

ℎ(𝑒) are not. This is because the function 𝜎̃ is bounded from
above, which leads to����𝜎̃(𝜂𝑐

𝑓 (𝑒) , 𝜂
𝑐
ℎ(𝑒) , 𝜆)𝜆 |𝜆 |

���� ≤ 𝜆Fr𝐿𝑒

𝐷
max{𝜎2

H2
, 𝜎2

NG}𝜆
2 −→ 0 for 𝜆 −→ 0.

Hence, the discontinuity vanishes for 𝜆 = 0 and 𝐻𝑝 is continuous at every 𝜆.

(iii) Finally, we prove that 𝐻𝑝 is constant in 𝜇 if 𝜆 = 0. As the flow is fully determined by the loads,
the dependence on the parameter 𝜇 is given by the mixing equation, specifically, through the term
𝜇𝜆2 when computing the nodal composition 𝜂𝑐𝑣. Hence, if 𝜆 = 0, the nodal compositions are
independent of 𝜇 and we get 𝐻𝑝 (0, 𝜇) ≡ const.
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Next, we identify for which values of 𝜆 the flow is either directed from node 𝑣cl to node 𝑣cr or vice
versa. As the function 𝐻𝑝 describes the pressure change along the path connecting 𝑣cl and 𝑣cr, this
allows us to determine the sign of 𝐻𝑝 for these values of 𝜆.

Lemma 3.19 (Unidirectional flow). Assume that the requirements of Lemma 3.14 are satisfied and
define 𝛾min = min𝑒∈C\{𝑒𝑐} 𝛾𝑒 and 𝛾max = max𝑒∈C\{𝑒𝑐} 𝛾𝑒. Then:

(i) The gas flows from 𝑣cr to 𝑣cl if and only if 𝜆 ≥ 𝛾max, which implies 𝐻𝑝 (𝜆, 𝜇) ≥ 0.

(ii) The gas flows from 𝑣cl to 𝑣cr if and only if 𝜆 ≤ 𝛾min, which implies 𝐻𝑝 (𝜆, 𝜇) ≤ 0.

Proof. Since the requirements of Lemma 3.14 are satisfied, the cut graph G𝑐 is tree-shaped and thus
there is only one path connecting the nodes 𝑣cl and 𝑣cr. Consider the subgraph of G𝑐 that forms the
path between 𝑣cr and 𝑣cl, which we denote by

(P, EP) where P = C ∪ {𝑣cl, 𝑣cr} and EP = (EC \ {𝑒𝑐}) ∪ {𝑒cl, 𝑒cr}.

We assume, without loss of generality, that the path starts at 𝑣cr and ends at 𝑣cl. Then the flow
directed from 𝑣cr to 𝑣cl translates into 𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 ≤ 0 and the flow with the opposite direction translates
into 𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 ≥ 0 for all 𝑒 ∈ EP . Consider the first case. Then, by Lemma 3.14, we get

𝑎𝑐 (𝑣𝑒, 𝑒)𝑞𝑐𝑒 = 𝛾𝑒 − 𝜆 ≤ 𝛾𝑒 − 𝛾max ≤ 0 for all 𝑒 ∈ EP ⇔ 𝜆 ≥ 𝜆max,

which means that the gas flows from node 𝑣cr to node 𝑣cl. The node 𝑣𝑒 is the node of the edge 𝑒 which
is closer to node 𝑣cr. We now apply Lemma 2.4, which yields

𝐻𝑝 (𝜆, 𝜇) = 𝑝𝑐𝑣cr (𝜆, 𝜇)
2 − 𝑝𝑐𝑣cl

(𝜆, 𝜇)2 ≥ 0.

The second case follows analogously.

From Lemma 3.17, we know that the composition 𝜂𝑐𝑣 depends linearly on 𝜇. As the function 𝐻𝜂 is
the difference between two nodal compositions, it is clear that it also depends linearly on 𝜇. We exploit
this linearity in the next lemma to prove that 𝐻𝜂 has a unique root.

Lemma 3.20 (Root curves of 𝐻𝜂). The function 𝐻𝜂 : R × [0, 1] with

𝐻𝜂 (𝜆, 𝜇) = 𝜂𝑐𝑣cr (𝜆, 𝜇) − 𝜂𝑐𝑣cl
(𝜆, 𝜇),

is linear in 𝜇. Furthermore, for a fixed 𝜆, the function 𝐻𝜂 admits a unique root 𝜇𝜂 (𝜆). For 𝜆 ∈
[𝛾min, 𝛾max] the root is given by:

𝜇𝜂 (𝜆) =
{
𝜂𝑐𝑣cr (𝜆), 𝜆 < 0,
𝜂𝑐𝑣cl

(𝜆), 𝜆 ≥ 0.

Proof. The linearity of 𝐻𝜂 for a fixed 𝜆 follows immediately from Lemma 3.17. Due to the linearity,
it is also clear that 𝐻𝜂 (𝜆, 𝜇) = 0 has a unique solution for a fixed 𝜆. The goal now is to determine the
explicit solution to this equation for 𝜆 ∈ [𝛾min, 𝛾max]. We distinguish among four cases:
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(i) 𝜆 = 𝛾min, (ii) 𝜆 ∈ (𝛾min, 0), (iii) 𝜆 ∈ [0, 𝛾max), (iv) 𝜆 = 𝛾max.

First, we consider the case of 𝜆 ∈ [0, 𝛾max). In this case, we know that 𝑣cr is a supply node with
the composition 𝜂𝑐𝑣cr = 𝜇 and that 𝑣cl is a demand node with the composition 𝜂𝑐𝑣cl

(𝜆, 𝜇) due to the sign
of 𝜆. Then, the composition 𝜂𝑐𝑣cl

is independent of 𝜇.
Considering the opposite, the flow along the path connecting 𝑣cr and 𝑣cl must be directed from 𝑣cr

to 𝑣cl, which contradicts the assumption 𝜆 ≤ 𝛾max due to Lemma 3.19. Thus, we determine the root of
𝐻𝜂 for a fixed 𝜆 as follows:

𝐻𝜂 (𝜆, 𝜇) = 0 ⇔ 𝜇 − 𝜂𝑐𝑣cl
(𝜆) = 0 ⇔ 𝜇𝜂 (𝜆) = 𝜂𝑐𝑣cl

(𝜆).

The case 𝜆 ∈ (𝛾min, 0) follows analogously.
Next, we consider the case 𝜆 = 𝛾max. Then the flow of at least one of the edges of the path

connecting 𝑣cr and 𝑣cl is zero. Furthermore, 𝑎(𝑣𝑒, 𝑒)𝑞𝑐𝑒 ≤ 0 holds for all edges 𝑒 of the path. In this
scenario, no flow from node 𝑣cr can reach node 𝑣cl, since at least one edge along the path has a flow of
zero, even though technically the flow is directed from 𝑣cr to 𝑣cl. Thus, the composition 𝜂𝑐𝑣cl

is again
independent of 𝜇 and we can compute the root as for the case where 𝜆 ∈ [0, 𝛾max). Again, the case
𝜆 = 𝛾min follows analogously.

The structure of the root curve 𝜇𝜂 of 𝐻𝜂 for 𝜆 ∈ [𝛾min, 𝛾max] allows us to directly show its
continuity, since the root curve is given by the nodal composition either of the node 𝑣cl or of the node
𝑣cr, depending on the sign of 𝜆.

Lemma 3.21 (Continuity of the root curve 𝜇𝜂). The root curve 𝜇𝜂 : [𝛾min, 𝛾max] → [0, 1] defined in
Lemma 3.20 is continuous in 𝜆 ∈ [𝛾min, 𝛾max] \ 0.

Proof. The claim follows directly from Lemma 3.16.

Finally, we are equipped to prove that the two functions 𝐻𝑝 and 𝐻𝜂 have a common root
(Lemma 3.13). We recall the structure of the idea of the proof and indicate where the results from
Sections 3.2.1 and 3.2.2 come into play.

(i) For a fixed 𝜆, Lemma 3.20 shows that the function 𝐻𝜂 has a unique root 𝜇𝜂 (𝜆).

(ii) We then restrict the function 𝐻𝑝 to the root curve 𝜇𝜂 (𝜆) and apply the intermediate value theorem
to the restricted function 𝑔(𝜆) = 𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)), which requires the following

(a) the function 𝑔 is continuous (Lemmas 3.18 and 3.21), and
(b) the values 𝜆− and 𝜆+ exist such that 𝑔(𝜆−) ≤ 0 and 𝑔(𝜆+) ≥ 0 (Lemma 3.19).

In the following, we provide the detailed proof of Lemma 3.13.

Proof of Lemma 3.13. We distinguish between two cases: The case where 𝜆 = 0 lies in the interior of
[𝛾min, 𝛾max], and the case where 𝜆 = 0 lies on the boundary of the interval.

First, we consider the case where 𝜆 = 0 lies in the interior of [𝛾min, 𝛾max]. From Lemma 3.20, it
follows that the equation 𝐻𝜂 (𝜆, 𝜇𝜂 (𝜆)) = 0 has a unique solution 𝜇𝜂 (𝜆) for a fixed 𝜆 ∈ [𝛾min, 𝛾max].
The idea of the proof is now to use the root curve 𝜇𝜂 to define an auxiliary function

𝑔 : [𝛾min, 𝛾max] → R, 𝑔(𝜆) = 𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)),
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and show that 𝑔 has at least one root in [𝛾min, 𝛾max] by applying the intermediate value theorem. Once
we have a root 𝜆∗ of 𝑔, we set 𝜇∗ = 𝜇𝜂 (𝜆∗). The remaining part is to verify the requirements of the
intermediate value theorem.

(a) 𝑔 is continuous on [𝛾min, 𝛾max], (b) 𝑔(𝛾min) ≤ 0 and 𝑔(𝛾max) ≥ 0.

We start by proving the continuity of 𝑔. From Lemma 3.21, it follows that the root curve 𝜇𝜂 is
continuous on [𝛾min, 𝛾max] \ {0}. Furthermore, we know that 𝐻𝑝 is continuous (Lemma 3.18), which
immediately provides the continuity of 𝑔 for 𝜆 ≠ 0. Thus, it remains to show the continuity of 𝑔 in
𝜆 = 0. Recall that from Lemma 3.18, it also follows that 𝐻𝑝 (0, ·) is constant, i.e., 𝛼 ∈ R exists such
that 𝐻𝑝 (0, 𝜇) = 𝛼 for all 𝜇 ∈ [0, 1] which leads to:

lim
𝜆→0−

𝑔(𝜆) = lim
𝜆→0−

𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)) = 𝐻𝑝 (0, lim
𝜆→0−

𝜇𝜂 (𝜆)) = 𝛼

𝛼 = 𝐻𝑝 (0, lim
𝜆→0+

𝜇𝜂 (𝜆)) = lim
𝜆→0+

𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)) = lim
𝜆→0+

𝑔(𝜆).

After we have established the continuity of 𝑔, Requirement (b) follows immediately from
Lemma 3.19, which completes the proof for this case.

Next, we consider the case where 𝜆 = 0 lies on the boundary of [𝛾min, 𝛾max]. Then either 𝛾min = 0
or 𝛾max = 0. Let us assume that 𝛾min = 0, as the other case follows analogously. Since 𝐻𝑝 is continuous
on [𝛾min, 𝛾max] and constant in 𝜆 = 0, an 𝜀 > 0 independent of 𝜇 exists such that

sign(𝐻𝑝 (0, 𝜇)) = sign(𝐻𝑝 (𝜀, 𝜇)).

Hence, we can apply the same argument to the interval [𝜀, 𝛾max] as that for the case where 𝜆 = 0
lies in the interior of the interval [𝛾min, 𝛾max].

After we have proved Lemma 3.13, we automatically find that the mixture model (2.15) has at
least one solution, which proves our main result, Theorem 3.8.

Proof of Theorem 3.8. Due to Lemma 3.12, the solvability of the mixture model (2.15) is equivalent to
the functions 𝐻𝑝 and 𝐻𝜂 having at least one common root, which follows from Lemma 3.13 and thus
proves the claim.

Remark 3.22. So far, we have considered (passive) networks with at most one cycle, but the
argumentation can also be applied to networks with active elements such as compressors, as long as
they are not parallel to the edges or within cycles. Furthermore, the compressor ratio must be
independent of the composition and flow.

For tree-shaped networks, the flows 𝑞𝑒 and the compositions 𝜂𝑣 are uniquely determined by the
conservation of mass and the mixing at the nodes, regardless of whether the network contains active
elements or not. Thus, a solution for the nodal potentials 𝜋𝑣 exists and it is also unique for networks
with compressors. To prove the existence of a solution for single-cycle networks, we use the function
𝐻𝑝. For networks with one cycle and compressors outside of the cycle, the structure of 𝐻𝑝 is the same
as in Eq (3.5). Therefore, proving the existence of solutions is identical to proving Theorem 3.8. If
the compressors are inside the cycle, the compressor ratios enter the function 𝐻𝑝, i.e., some summands
are multiplied by the compressor ratios. Which summands are affected depends on the position of the
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compressors in the cut cycle. As the compressor ratios are constant, again, the idea of the proof of
Theorem 3.8 still applies.

4. Discussion on uniqueness and multiple cycles

After establishing the existence of steady states, we discuss theoretical limitations in this section.
On the one hand, we present an idea of how the proof can be extended to networks with multiple cycles,
while also highlighting the difficulties that arise compared with networks with one cycle. On the other
hand, we address the question of unique solutions and emphasize the challenges in proving uniqueness
for systems involving gas mixtures compared with a single gas.

4.1. Existence of solutions for networks with multiple cycles

So far, we have restricted our theoretical investigation to networks with at most one cycle, and
we did not consider networks with multiple cycles. To prove the existence of nodal potentials for
networks with multiple cycles, we employ an induction argument on the number of cycles in the
network. In Section 3.2, we have presented the first induction step, going from networks without
cycles to networks with one cycle. However, networks with multiple cycles pose new challenges when
performing induction, since the cut graph of such networks is no longer tree-shaped.

One consequence is that the flow 𝑞𝑐𝑒 on the edges of the cut graph is not fully determined by the
loads 𝑏𝑐𝑣, i.e., it also depends on the supply composition 𝜁 𝑐𝑣 and the fixed pressure 𝑝∗. As the flow 𝑞𝑐𝑒
now depends on both parameters 𝜆 and 𝜇, the composition 𝜂𝑐𝑣 at a node 𝑣 becomes non-linear in 𝜇.
The function 𝐻𝜂 inherits the non-linearity and it becomes unclear whether the equation 𝐻𝜂 (𝜆, 𝜇) = 0
admits a (unique) solution for every 𝜆 ∈ R.

We illustrate this non-linearity in Figure 6 for the network shown in Figure 4 but with an additional
edge connecting the nodes 𝑣5 and 𝑣7, i.e., the cut edge. The boundary data are given in Table 1. In
Figure 6, we plot the composition 𝜂𝑐𝑣4 as a function of 𝜇 for different values of 𝜆, clearly showing the
nonlinear dependence on 𝜇. Thus, the analysis of the non-linearity and its influence on the solvability
of 𝐻𝜂 (𝜆, 𝜇) = 0 remains as a subject for future research.
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Figure 6. The nodal composition 𝜂𝑐𝑣4 (𝜆, 𝜇) as a function of 𝜇 for different values of 𝜆. The
value of 𝜆 is encoded by the color bar.
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Table 1. Boundary data at the nodes.

Supply Demand Pressure
Composition Load
𝜁𝑣0 =

3
4 𝑏𝑣0 = 4 𝑏𝑣2 = −2

𝑝𝑣0 = 𝑝∗ = 60
𝜁𝑣1 =

1
4 𝑏𝑣1 = 4 𝑏𝑣3 = −6

Despite the non-linearity, we can still solve the mixture model (2.15) numerically, e.g., with the
Levenberg–Marquardt method, which allows us to compute the functions 𝐻𝑝 and 𝐻𝜂 for a fixed example
and analyze their properties. On the basis of the same network configuration and boundary conditions
as for Figure 6, we display both functions 𝐻𝑝 and 𝐻𝜂 in Figure 7.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

10
-3

Figure 7. The functions 𝐻𝜂 (𝜆, 𝜇) (left) and 𝐻𝑝 (𝜆, 𝜇) (right) for a network with two cycles.
The black dot is the common root (𝜆∗, 𝜇∗), and the black line the root curve 𝜇𝜂 (𝜆).

Consistent with the behavior described in Lemma 3.16, we observe that the function 𝐻𝜂 is
discontinuous at 𝜆 = 0 for all 𝜇 ∈ [0, 1]. Furthermore, in analogy to Lemma 3.19, the function 𝐻𝑝 has
opposite signs for 𝜆 = −8 and 𝜆 = 8. Figure 7, also shows the root curve 𝜇𝜂 of the function 𝐻𝜂, defined
as the level set 𝐻𝜂 (𝜆, 𝜇) = 0, which indicates that 𝐻𝜂 (𝜆, 𝜇) = 0 has a unique solution for a fixed 𝜆, cf.,
Lemma 3.20. We also observe that the root curve 𝜇𝜂 is discontinuous at 𝜆 = 0, which is analogous to
Lemma 3.21 for networks with one cycle. Python’s “get path()” function for contour plots allows us to
extract the coordinates of a level set. Thus, we can evaluate 𝐻𝑝 along the root curve 𝜇𝜂, which results in
the scalar function 𝑔(𝜆) = 𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)). Then Figure 8(b) reveals that the function 𝑔 is continuous in
𝜆 = 0 despite the discontinuity of the root curve 𝜇𝜂. Furthermore, we observe that 𝑔 increases strictly
monotonically with a unique root 𝜆∗, implying that the solution of the mixture model (2.15) is unique,
cf. Lemma 3.12.

In summary, numerical experiments suggest that the idea of the proof of Theorem 3.8 also applies
to networks with multiple cycles. However, to successfully extend the proof, we need to prove rigorously
that 𝐻𝜂 (𝜆, 𝜇) = 0 admits a unique solution for these types of networks, which remains an open question.
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4.2. Uniqueness of steady states

We have established unique steady states for gas mixtures only for tree-shaped networks, cf.,
Theorem 3.5. In contrast, for single gas flow, the uniqueness holds even for general networks, as shown
in [29, Theorem 1], raising the question whether this can be extended to gas mixtures.

Our previous analysis in Section 4.1 indicates that for networks with two cycles, the steady states
are also unique. We also performed the same numerical experiment for the network in Figure 4 with
only one cycle and the boundary data in Table 1. In Figure 8(a), we provide the resulting function 𝐻𝑝

restricted to the corresponding root curve 𝜇𝜂, which supports our previous observations. However, since
we consider the mixture of two gases, our model has an additional equation, the mixing equation, and an
additional variable, namely the mass fraction, which makes the proof of uniqueness more challenging.
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Figure 8. The function 𝐻𝑝 restricted to the root curve 𝜇𝜂 (𝜆), resulting in 𝑔(𝜆) =

𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)).

The single gas result relies on the monotonicity properties of the flow 𝑞𝑐𝑒 and the pressure 𝑝𝑐𝑒. The
pressure increases with increasing nodal pressure and decreases with rising flow (cf. [29, Lemma 2]),
while the flow increases with 𝜆 (cf. [29, Corollary 2]).

We prove that 𝐻𝑝 is strictly increasing in 𝜆 by traversing from node 𝑣cr to node 𝑣cl, while applying
Eq (2.4) and the “partial” monotonicity of the pressure and the flow. Since the authors consider only a
single gas, 𝜇 and 𝐻𝜂 do not appear in their analysis. Similar monotonicity properties hold for pressure
and flow in the two-gas case, but establishing them with respect to 𝜆 requires additional information
about the inflow and its effect on the mass fraction. Unlike for the pressure and flow, the monotonicity
depends on the specific values of the composition of the gases, which becomes evident even for a
simple example: Consider a node 𝑣 with two incoming pipes 𝑒1 and 𝑒2 and one outgoing pipe 𝑒3, where
𝑞𝑒𝑖 > 0 for 𝑖 = 1, 2, 3. Then, the nodal mass fraction at 𝑣 is given by:

𝜂𝑣 =
𝜂𝑒1𝑞𝑒1 + 𝜂𝑒2𝑞𝑒2

𝑞𝑒1 + 𝑞𝑒2

⇒ 𝜕𝜂𝑒1
𝜂𝑣 = −

(
𝜂𝑒2 − 𝜂𝑒1

)
𝑞𝑒2(

𝑞𝑒1 + 𝑞𝑒2

)2 .

Hence, 𝜂𝑣 increases with 𝜂𝑒1 if 𝜂𝑒1 ≥ 𝜂𝑒2 , and decreases otherwise. Thus, we lack a “uniform”
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monotonicity behavior, which leaves us unable to prove the monotonicity of 𝐻𝑝 as of now. Nevertheless,
numerical experiments, cf. Figure 8, suggest that 𝐻𝑝 (𝜆, 𝜇𝜂 (𝜆)) is monotonically increasing, making
the uniqueness of steady states subject to future research.

5. Conclusions

In this paper, we have analyzed the steady-state problem of hydrogen-blended natural gas transport
in pipeline networks. We have clarified the differences from pure natural gas transport and discussed the
existence and uniqueness of solutions in networks. For tree-shaped networks, we can compute unique
flows by the conservation of mass a priori, which guarantees the existence of a (unique) solution. For
networks that include a cycle, we have applied an edge-cutting approach in order to show the existence
of a solution. Cutting an edge in the cycle results in a tree-shaped graph with two new nodes and edges,
and two additional coupling equations. We have shown that an admissible solution on the cut network
exists, which also meets the two additional coupling equations. This implies the existence of a solution
for the graph with a cycle.

The uniqueness of a solution for tree-structured networks follows by the fact that the flow direction
is given a priori and thus, it is also clear a priori which node determines the composition on an edge.
For networks including cycles, the composition of the gas on the edges in the cycle depends on the
flow direction, leading to discontinuities in the mixing condition as discussed in Section 3.2. A natural
extension of this work includes analyzing the discontinuities and thus also the uniqueness of a solution
on networks with a cycle.

Additionally, considering optimization problems that involve hydrogen blends offers a valuable
direction for future research. Such problems could explore the optimal blending ratios, operational
settings, or cost efficiencies while ensuring safety and regulatory standards. Even though the simulation
and numerical optimization results presented in [17, 20, 35–38] are promising, the research on the
theoretical analysis of optimization problems that involve hydrogen-blended natural gas transport is
still very limited.
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