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Abstract

The convergence of the first-order Euler scheme and
an approximative variant thereof, along with conver-
gence rates, are established for rough differential equa-
tions driven by cadlag paths satisfying a suitable crite-
rion, namely the so-called Property (RIE), along time
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discretizations with vanishing mesh size. This prop-
erty is then verified for almost all sample paths of
Brownian motion, Itd processes, Lévy processes, and
general cadlag semimartingales, as well as the driving
signals of both mixed and rough stochastic differen-

tial equations, relative to various time discretizations.
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1 | INTRODUCTION

Stochastic differential equations (SDEs) serve as models for dynamical systems that evolve ran-
domly in time, and are fundamental mathematical objects, essential to numerous applications in
finance, engineering, biology, and beyond. In a fairly general form, an SDE is given by
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t t
Y, =y + / b(s,Y,)ds + / o(s,Y,)dX,, te0,T], 1.1)
0 0

where y, € R¥ is the initial condition, b : [0,T] X R¥ - R¥ and o : [0, T] x R¥ — R**? are coef-
ficients, and the driving signal X = (X;);¢[o 1 is @ d-dimensional stochastic process that models
the random noise affecting the system.

Assuming that X is a cadlag semimartingale, such as a Brownian motion or a Lévy process,
and the coefficients b, o are suitably regular, it is well known that (1.1) is well posed as an 1t6 SDE.
Thatis, fot o(s,Y,) dX, can be defined as a stochastic It6 integral, and the equation admits a unique
adapted solutionY = (Yt)te[O,T]; see, for example, [36]. Unfortunately, such SDEs, including many
of those which appear in practical applications, can rarely be solved explicitly, which has led to
a vast literature on various numerical approximations of the solutions to SDEs; see, for example,
[29].

One of the most common approaches to numerically approximate the solution of an SDE is to
rely on a time-discretized modification of the equation. This type of discretization is implemented
in particular by the Euler scheme (also called the Euler-Maruyama scheme) and its higher order
variants. For the SDE (1.1), the (first-order) Euler approximation is defined by

Yi=yo+ Y bULYR), —th+ Y (e, Y1) Xy = Xpn), (1.2)
it <t ! it <t !

for t € [0,T], along a sequence of partitions P" ={0 = 7 < (] < - <ty =T} Higher order
Euler approximations, such as the Milstein scheme, introduce additional hi?gher order correction
terms in the approximation (1.2), which often involve iterated integrals of the driving signal X. In
general, the numerical calculation of the approximation Y" is carried out path by path, motivating
a pathwise convergence analysis of the Euler scheme and its higher order variants. Indeed, it is
well known that, for SDEs driven by Brownian motion, the (higher-order) Euler approximations
converge pathwise; see, for example, [7, 23, 27, 28, 39].

A fully pathwise solution theory for SDEs like (1.1) is provided by the theory of rough paths; see,
for example, [17, 21]. Loosely speaking, in our context, a rough path is pair X = (X, X), consisting
of a deterministic cadlag R9-valued path X, and a two-parameter cadlag R%d yalued function X,
which satisfy certain analytic and algebraic conditions. We will work with cadlag rough paths with
finite p-variation, in the regime with p € (2, 3), which includes in particular almost any sample
path of a general semimartingale X, in which case the corresponding rough path X = (X, X) is
given by X, = [S[(X _ —X,) ® dX, via stochastic integration.

Replacing the stochastic driving signal X in (1.1) by a (deterministic) rough path X = (X, X),
we obtain a so-called rough differential equation (RDE). Assuming sufficient regularity of the
coefficients b, o, the RDE (1.1) driven by a given cadlag rough path X = (X, X) is well posed, in the
sense that /Ot o(s,Y,)dX, is defined as a rough integral, and the equation admits a unique solution
Y = (Y,)iejo,r); see [22]. Moreover, if the rough path is, say, the It lift of a semimartingale X, then
the solution of the resulting random RDE is consistent with the solution of the corresponding SDE
driven by X. Both interpretations of the equation are thus essentially equivalent. Furthermore, in
contrast to classical SDE theory, rough path theory is not limited to the semimartingale setting,
and it comes with powerful pathwise stability estimates.

Rough path theory is intrinsically linked to the numerical approximation of SDEs — see, for
example, [4, 12] — and provides a transparent explanation for the pathwise convergence of higher
order Euler approximations and their modifications; see, for example, [14, 20-22, 32]. More pre-
cisely, the existence of a rough path lift of the driving signal is a sufficient condition for the
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pathwise convergence of higher order Euler schemes for RDEs, thus implying pathwise conver-
gence for the corresponding SDEs driven by, for example, semimartingales. However, the pathwise
convergence of the first-order Euler scheme — the most prominent numerical scheme for differ-
ential equations — cannot be explained by the rough path lift of the driving signal. Moreover, in
general, an Euler approximation cannot converge to the solution of an RDE driven by an arbi-
trary rough path, for at least two reasons: First, the Euler approximation for an SDE driven by a
fractional Brownian motion with Hurst index H < % fails to converge (see, e.g., [14]), and second,
while the rough path lift X = (X, X) of a path X is not unique, leading to potentially multiple solu-
tions of the RDE, the Euler approximation Y" as defined in (1.2) is independent of the choice of
rough path, and can thus only converge to at most one such solution.

In the present paper, we clarify the gap between rough and SDEs from the perspective of numer-
ical approximation, by establishing the convergence of the first-order Euler scheme for RDEs
driven by Ito-type rough path lifts. More precisely, in Theorem 2.3, we obtain convergence in
p-variation of the Euler scheme for RDEs driven by cadlag paths satisfying a suitable criterion
— namely the so-called Property (RIE) — relative to a sequence of partitions with vanishing
mesh size.

Property (RIE) was first introduced in [35] and [2], motivated by applications in mathemati-
cal finance under model uncertainty. While, strictly speaking, it is a condition on a cadlag path
X:[0,T] -~ R4, it always ensures the existence of an It6-type rough path lift X = (X, X), allow-
ing one to treat (1.1) as an RDE. Using this fact, we will show that Property (RIE) is a sufficient
condition on the sample paths of a stochastic driving signal to guarantee the convergence of the
first-order Euler scheme for the corresponding SDE. We note, in particular, that the Euler scheme
converges surely on the set where the stochastic driving signal satisfies Property (RIE), which is a
stronger statement compared to the earlier results in [7, 23, 27, 28, 39], in which the set on which
the Euler scheme converges can depend on the coefficients b, 0. A criterion for Holder continuous
rough paths, related to Property (RIE), was previously introduced by Davie [12], which also allows
one to obtain convergence of the Euler scheme for RDEs, and will be discussed in more detail in
Remark 2.4.

Exploiting the continuity results of rough path theory, in Theorem 2.3, we derive a precise error
estimate in p-variation for the Euler approximation of RDEs with respect to the discretization
error of the driving signal. The convergence rate is expressed transparently, in terms of the mesh
size of the approximating partition, and the approximation error of the discretized signal and
of its rough path lift. We also obtain an error estimate for the Euler approximation with respect
to pathwise perturbations of the driving signal; see Proposition 2.13. This latter perturbation is
motivated by so-called approximate Euler schemes for SDEs driven by jump processes; see, for
example, [13, 25, 38]. For instance, approximate Euler schemes are used for Lévy-driven SDEs,
since the increments of Lévy processes cannot always be simulated, and thus the increments of
the driving Lévy process need to be approximated by random variables with known distributions.

To obtain pathwise convergence of the Euler scheme in p-variation for an SDE, it is then suffi-
cient to verify that the associated stochastic driving signal of the equation satisfies Property (RIE),
almost surely, relative to a sequence of partitions; see Sections 3 and 4. Unsurprisingly, we find that
the more regular the driving signal is, the more general the sequence of partitions may be chosen.
Indeed, while the sample paths of a Brownian motion satisfy Property (RIE), almost surely, rela-
tive to sequences of partitions whose mesh size can converge to zero very slowly, the sample paths
of more general It0 processes satisfy Property (RIE), almost surely, relative to sequences of parti-
tions whose mesh size is of order 27". For stochastic processes with jumps, such as Lévy processes
or general cadlag semimartingales, one needs to ensure that the jump times are exhausted by the
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sequence of partitions, which is a necessary condition, for both the Euler scheme to converge
pathwise, and for Property (RIE) to be satisfied by the driving signal.

The presented pathwise analysis of the first-order Euler approximation is not limited to SDEs
in a semimartingale setting. As examples, we consider mixed SDEs driven by both Brownian
motion and fractional Brownian motion with Hurst index H > %, as in, for example, [33, 41], as
well as rough SDEs, which are differential equations driven by both a rough path and a Brow-
nian motion; see [18]. The latter equations are of interest, for example, in the context of robust
stochastic filtering; see [11, 15].

Organization of the paper: In Section 2, we prove the convergence of the Euler scheme for
RDEs assuming that the driving paths satisfy Property (RIE). In Sections 3 and 4, we provide
various examples of stochastic processes that satisfy Property (RIE) along suitable sequences of
partitions, making the established convergence analysis applicable to the corresponding SDEs,
and derive associated convergence rates.

2 | THE EULER SCHEME FOR ROUGH DIFFERENTIAL EQUATIONS

In this section, we study convergence of the (first-order) Euler scheme for RDEs, which does not
rely on the Lévy area of the path, and is known to converge pathwise for certain classes of SDEs.
Before treating the Euler scheme, we will first recall some essentials from the theory of cadlag
rough paths, as introduced in [19, 22].

2.1 | Essentials on rough path theory

A partition P of an interval [s, t] is a finite set of points between and including the points s and ¢,
thatis, P = {s = uy < u; < --- < uy = t}for some N € N, and its mesh size is denoted by |P| :=
max{|u; . —u;| : i=0,..,N—1}. Asequence (P"),cy of partitions is said to be nested, if P"* C
Prtlforalln € N.

Throughout, we let T > 0 be a fixed finite time horizon. We let Ay :={(s,t) € [0,T]* : s <
t} denote the standard 2-simplex. A function w: A, — [0, o0) is called a control function if it is
superadditive, in the sense that w(s, u) + w(u, t) < w(s, t)forall0 < s < u < t < T. For two vectors
x =0, x%),y =0, ..., %) € RY, we use the usual tensor product

.....

Whenever (B, || - ||) is a normed space and f,g: B — R are two functions on B, we shall write
f S gor f <Cg to mean that there exists a constant C > 0 such that f(x) < Cg(x) for all x €
B. The constant C may depend on the normed space, for example, through its dimension or
regularity parameters.

The space of linear maps from R¢ — R” is denoted by £(R%;R"), and we write, for exam-
ple, C’b‘(IRm;E(IRd; R™)) for the space of k-times differentiable (in the Fréchet sense) functions
f: R™ - L£(R%;R") such that f and all its derivatives up to order k are continuous and bounded.
We equip this space with the norm

Ifller 2= lleo + IDSflleo + - + ID* £l o5

where D" f denotes the rth order derivative of f, and || - ||, denotes the supremum norm on the
corresponding spaces of operators.

TTT'0T/10P/L0Y 3| 1M ARe1q 1 [Bu1JUO"00SUReWPUO /Sy WO1) PapeojumMoq ‘€ 'S20Z ‘0SLL697T

N Aq 26202 swf

5UBD17 SUOLILLOD BANES1D 3|gel|dde auy Aq pausenob ae sapiLe YO ‘8sn Jo sajni Joy Ariq17auljuQ 481 UO (SUOTIPUOI-PUe-SLB) WD A3 | IM AReId 1[pUI|UO//SANY) SUORIPUOD pUe WS | 8U) 89S *[G202Z/60/ST ] U0 Arid1T auljuQ AS|IA PUIO|



THE EULER SCHEME FOR RDES AND SDES | 50f51

For a normed space (E, | - |), we let D([0, T]; E) denote the set of cadlag (right continuous with
left limits) paths from [0, T] to E. For X € D([0, T]; E), the supremum norm of the path X is given
by

XNl = sup |X;],
tel0,T]

and, for p > 1, the p-variation of the path X is given by

)
X1, = Xl with (X = ( sip Y X, -X,07 ), (0 €A,
Pclst fyplepr

where the supremum is taken over all possible partitions P of the interval [s, t]. We recall that,
given a path X, we have that || X||, < oo if and only if there exists a control function w such that'

X —X |P
(w,v)EAL w(u,v)
We write DP = DP([0,T];E) for the space of paths X € D([0,T]; E) that satisfy IX1l, < oo.
Moreover, for a path X € D([0, T]; R4), we will often use the shorthand notation:

X=X, —X; and X, I=Li;I}Xu, for (s,t) € Ay.

For r > 1 and a two-parameter function X : A; — E, we similarly define

Il 2= IXlljor)  with ||xnr,[s,t]:=<sup > |xu,u|’), (5.1) € Ag.
lepr

PC[S,t] [u’v

We write D, = D)(Ar; E) for the space of all functions X : Ay — E that satisfy [|X||, < oo, and are
such that the maps s — X, for fixed ¢, and ¢ = X, for fixed s, are both cadlag.
For p € [2,3), a pair X = (X, X) is called a cadlag p-rough path over R¢ if

P
(i) X € DP([0,T];RY) and X € D} (Ap; R*?), and
(ii) Chen’srelation: X, = X;,, + X, + X, ® X, , holdsforall0 < s <u <t <T.

In component form, condition (ii) states that Xls] = X;Ju + X;j’t + Xé’uX i ’t foreveryiand j. We will

denote the space of cadlag p-rough paths by D? = DP([0, T]; R%). On the space DP([0, T]; R%), we
use the natural seminorm

Xl = IXllpjor)  With Xl 2= IXTp s+ 1X 2 g
for (s,t) € Ay, and the induced distance
IRl := 1X:Rllpjor)  With XXl = 1X = Kllppon + X =Kl gy, @D

whenever X = (X, X),X = (X, X) € DP([0, T]; R?).

f Here and throughout, we adopt the convention that g :=0.
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Let p€(2,3), q €[p,o) and re[§,2) such that %+%>1 and %+$:%. Let X €

DP([0,T]; RY). We say that a pair (Y, Y”) is a controlled path (with respect to X), if
Y e DP([0,T];E), Y' e DI(|o, T];E(Rd;E)), and RY € D;(AT;E),
where RY is defined by
Y, =YX, +R], forall (s,t) € Ar.

We write v)‘g’r = V;’r([o, T1;E) for the space of E-valued controlled paths, which becomes a
Banach space when equipped with the norm

(Y, Y") = 1Yol +1Y0] + 1Y llg o) + IRV Il fo)-

Remark 2.1. The definition of a controlled path adopted here is slightly more general than the
classical definition in, for example, [22], in which one takes g = p and r = %. Allowing these
regularity parameters to take larger values allows us to consider slightly more general integrands
in rough integrals. In particular, this is convenient in Theorem 2.2 below, as otherwise we would

require further restrictions on the regularity of the paths A and H therein.

For paths A € D%, H € D% for q,,q, € [1,2), and a rough path X € DP for p € [2,3), we
consider the RDE:

t t
Y, =y +/ b(H,,Y,)dA +/ o(H,, Y,)dX,, te[0,T]. (2.2)
0 0

Provided that % + qi > 1 and % + qi > 1, the first integral in this equation can be defined as a

1 2
Young integral, while the second integral is defined as a rough integral. For precise definitions,
constructions, and properties of these integrals, we refer to the comprehensive exposition in [22].

Theorem 2.2. Let p€[2,3) and q;,q, €[1,2) such that % + ql >1 and % + ql > 1.
1 2

Let b eCIR™  LRYMRY), o€ CiR™SLRERY),  y,eRF, A eDu([0, TR,

H e D%([0,T];R™), and X =(X,X)e€ DP([0,T];R%). Let re [% Vq;Vq,2) such that

§+%>1, and let q € [p,o) such that %+é:%. Then there exists a unique path

Y € DP([0, T]; R¥) such that the controlled path (Y,o(H,Y)) € V;’r satisfies the RDE (2.2).
Moreover, if y, € Rk, Ae D%, H € D% and X = ()?, X) € DP with corresponding solution Y,
and if | All, 1Al IHI WE L 1K, 11X, < L for some L > 0, then

IY =Y, + IY = Y'||, + IR" = R"|,
_ _ _ _ (2.3)
S |y — Pol + [Hy — Hol + |H — H||, + 1A - A|, + IX: X[,

where the implicit multiplicative constant depends only on p, q,r, ||b| -2, ||o]| -3, and L.
b b

The result of Theorem 2.2 may be considered classical, and will be unsurprising to readers
familiar with RDEs. However, to the best of our knowledge, a proof of the precise statement of the
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theorem does not appear in the existing literature. A sketch of the proof, based on the proof of [1,
Theorem 2.3], is therefore given in Appendix A.

2.2 | Convergence of the Euler scheme
Let us consider the RDE
t t
Y, =y +/ b(s,Y,)ds +/ o(s,Yy)dX,, telo,T], 24)
0 0

where y, € R¥, b € C}[R*1;R), 0 € CJ(RM; L(RERF)) and X = (X, X) € DP([0,T];R?) is
the driving cadlag p-rough path for p € [2,3). Given a sequence of partitions P" = {0 =t <
t} <-- <ty =T}n €N, the Euler approximation Y" corresponding to the RDE (2.4) along the
partition P" is given by

=y, + Z b(t" Y )(tl+1 ) + Z o(t", Y" Xin =X, (2.5)
i: t +1<t
fort € [0,T].

Itis a classical result in the numerical analysis of SDEs that, if the driving signal is, for example,
a Brownian motion, then the Euler scheme (often also called the Euler-Maruyama scheme) con-
verges pathwise; see, for example, [28]. On the other hand, it is known that in general the Euler
scheme cannot converge if the driving signal is an arbitrary rough path, since the corresponding
Euler scheme for SDEs driven by fractional Brownian motion fails to converge; see [14] for a more
detailed discussion on this observation.

Moreover, since the extension of a path X to a rough path X = (X, X) is not unique, and the
Euler approximation Y" defined in (2.5) is independent of X, the sequence (Y"), <y cannot con-
verge to the solution of a general RDE. Thus, in order to ensure the convergence of the Euler
scheme, it is necessary to identify the “correct” rough path lift X as the driving signal for the
RDE (2.4). A suitable resolution to this is provided by the so-called Property (RIE), as introduced
in [35] and [2].

Property (RIE). Let p € (2,3) and let P" = {0 =1t7 <t} <-- <ty =T}, n €N, be a sequence
of partitions of the interval [0, T] such that |[P"| — 0 as n — co. For X € D([0, T]; R?), and each
n € N, we define X" : [0,T] — R% by

N,-1
th :XTI{T}(t) + Z thl[t}z',tgﬂ)([)’ te [0, T]
k=0

We assume that

(i) the sequence of paths (X"), oy converges uniformly to X asn — oo,
(ii) the Riemann sums

/ X" ® dX, Z Xin ® Xpniun nt

converge uniformly as n — oo to a limit, which we denote by fot X, ®dX,,t €[0,T], and
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(iii) there exists a control function w such that

% yn 4
| /z” Xu ® qu _Xt]’(' ®th'(’,zﬁ|2
sup +sup sup L — <1 (2.6)
(s,)EAT w(s,t)  nen 0<k<t<N, w(tk,tf

X, 1P

5

We say that a path X € D([0, T]; RY) satisfies Property (RIE) relative to p and (P"),,cn» if ps
(P™),en and X together satisfy Property (RIE).

Itis known that, if a path X € D([0, T]; R?) satisfies Property (RIE), then X extends canonically
to a rough path X = (X, X) € DP([0, T]; R%), where the lift X is defined by

t
Xy 1= / X, ®dX, - X, (X, - X,),  (s,t) €A, (2.7)
N

with /' X, ® dX,, := f; X, ® dX, — /; X, ® dX,,, and the existence of the integral [, X, ® dX,,
is ensured by condition (ii) of Property (RIE); see [2, Lemma 2.13]. When assuming Property
(RIE) for a path X, we will always work with the rough path X = (X, X) defined via (2.7), and
note that X = (X, X) corresponds to the Itd rough path lift of a stochastic process, since the “iter-
ated integral” X is given as a limit of left-point Riemann sums, analogously to the stochastic It6
integral.

Postulating Property (RIE) for the driving signal of an RDE ensures that the (first-order) Euler
approximation converges to the solution of the equation, as stated precisely in the next theorem.

Theorem 2.3. Suppose that X : [0,T] — R satisfies Property (RIE) relative to some p € (2,3) and
a sequence of partitions (P"),,cy, and let X be the canonical rough path lift of X, as defined in (2.7).
Let Y be the solution to the RDE (2.4) driven by X, and let Y" be the Euler approximation defined in
(2.5). Then,

||Y”—Y||p/ — 0 as n — oo,

forany p’ € (p,3), and the rate of convergence is determined by the estimate

p
1=

_1 1-L ' '
IY" =Yl S 1P+ IX" = Xl ” +H/ XZ@qu—/ x,dx,| 7, @8
0 0

e8]

which holds for any q € (1,2) such that % + é > 1, where the implicit multiplicative constant

dependsonlyon p, p’,q, ||b ||CZ, llollcs, T, 1X,| and w(0, T), where w is the control function for which
b

(2.6) holds.

Note that Property (RIE) implies that each of the terms on the right-hand side of (2.8) tends to
ZEero as n — oo.

Remark 2.4. In [12], A. M. Davie observed that, under suitable conditions, the first-order Euler
scheme along equidistant partitions converges to the solution of a given RDE. More precisely,
forpe(2,3)and o := %, let X = (X, X) be an a-Hélder continuous rough path, so that | X ,| <

[t —s|* and X, | S [t — s|?* for (s,t) € A, such that, for some g € (1 — «, 2a), there exists a
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THE EULER SCHEME FOR RDES AND SDES 9 of 51

constant C > 0 such that

‘-1

D Xjnsnn| < CE — k)P R
=k

whenever h > 0and 0 < k < ¢ are integers such that #h < T. Under this condition on the driving
signal X, [12, Theorem 7.1] states that the Euler approximations Y", as defined in (2.5), converge
uniformly to the solution Y of the RDE (2.4) along the equidistant partitions (7)) ,cy, Where P[, =

%T :i=0,1,...,n}. Note that Davie’s condition implies Property (RIE) — see [35, Appendix B] —
and is thus less general, even in the case of Holder continuous rough paths.

Remark 2.5. Since the “iterated integrals” appearing in the definition of a rough path (and in,
for example, higher order Euler schemes) are often numerically difficult to simulate, various
approaches have been developed to avoid the direct involvement of iterated integrals in the approx-
imation of stochastic and RDEs. For instance, [14] introduced a simplified Milstein scheme for
SDEs driven by fractional Brownian motion, where the iterated integrals are replaced by products
of the increments of the driving process. Using this idea, simplified Runge-Kutta methods for dif-
ferential equations driven by general (continuous) rough paths were investigated in [37]; see also
[24].

The rest of this subsection is devoted to the proof of Theorem 2.3, which first requires us to
establish some auxiliary results.

In the following, we will always assume that X : [0, T] — R satisfies Property (RIE) relative to
some p € (2,3) and a sequence of partitions (P"),cy. As the piecewise constant approximation
X" (as defined in Property (RIE)) has finite 1-variation, it possesses a canonical rough path lift
X" = (X", X") € DP([0,T]; RY), with X" given by

t
X’;,[ :=/ X2u®dX;’, (s,t) € Ap, (2.9)
N

where the integral is defined as a classical limit of left-point Riemann sums. Note that, while [22,
Section 5.3] discretizes the rough path X = (X, X) in a piecewise constant manner, here we instead
discretize the path X and then extend it to a rough path X" = (X", X") via (2.9).

As a first step toward the proof of Theorem 2.3, we establish the convergence of the rough
paths (X"),cy to the rough path X in a suitable rough path distance. For this purpose, we need
two auxiliary lemmas.

Lemma 2.6. Suppose that X : [0,T] — RY satisfies Property (RIE) relative to some p € (2,3) and
a sequence of partitions (P"),,cn. Then, we have the estimate

t
Xsn,u ® dX,, — X,

N

’

sup X", — Xyl < 20X |l IX" = X[l + sup
(s,t)eAr (s,H)eAr

where X" and X were defined in (2.9) and (2.7), respectively. In particular, we have that

X" — X uniformlyas n — oo.
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10 of 51 | ALLAN ET AL.

Proof. Since

|x?,t - Xs,t| < X

>

t
+ / ngu®qu — Xy
N

t
n
/ Xs,u
S

and the limit in condition (ii) of Property (RIE) holds uniformly, it is enough to prove that the
function given by

t
=X, = / @dxu:/xgu@gd(xn—X)u
N
satisfies

sup AT, | < 2lX o IX" = Xl - (2.10)
(s,H)eAr

Ifr/<s<t< +1 for some k, then X[ =thr{1’tlr{1 = 0 for every u € [s,t), so that A, =0.
Otherw1se, let k, be the smallest k such that tl'cl € (s, 1), and let k; be the largest such k. It is
straightforward to see that the triplet (X" — X, X", A") satisfies Chen’s relation:

A?J = A?,u + AZ’[ +X§fu X" —X)y,,

for all s < u < t, from which it follows that

n o _ AR n n X" n_ n n _
As,t - As,t]’('() + At,’:o t;{'l + Az" t s,z,’jo ® X X)tgo’tgl + Xs,t}’{’1 ® X X)IZI £
As we already observed, we have that A’;t = Afn .= = 0. In fact, we also have that
ko ky’
bl e
n — n n — n n
Ay o= [ XD, ®AX"=X), = D Xp @A -X),
0’ k1 Yo ko i=ky 71 ko
(2.11)
ky—1 k-1
l+1 n
= o Xy @A =X), = D Xy 1 ® X" =X = 0.
i=ky /1 i=ky

Since (X" _X)tZ = (X" —X)tZ =0, we simply obtain A}, =X", ® (X}' - X,), from which
0 1

st"

(2.10) follows. O

Lemma 2.7. Suppose that X : [0,T] — R satisfies Property (RIE) relative to some p € (2,3) and
a sequence of partitions (P™), <. Let w be the control function with respect to which X satisfies the
inequality (2.6). Then, there exists a constant C, which depends only on p, such that

2
IX"l2 < Cw(0,T)? (2.12)
2

for every n € N, where X" was defined in (2.9).

TTT'0T/10P/L0Y 3| 1M ARe1q 1 [Bu1JUO"00SUReWPUO /Sy WO1) PapeojumMoq ‘€ 'S20Z ‘0SLL697T

N Aq 26202 swf

5UBD17 SUOLILLOD BANES1D 3|gel|dde auy Aq pausenob ae sapiLe YO ‘8sn Jo sajni Joy Ariq17auljuQ 481 UO (SUOTIPUOI-PUe-SLB) WD A3 | IM AReId 1[pUI|UO//SANY) SUORIPUOD pUe WS | 8U) 89S *[G202Z/60/ST ] U0 Arid1T auljuQ AS|IA PUIO|



THE EULER SCHEME FOR RDES AND SDES | 11 of 51

Proof. Letn €N, and let (s,1) € Ap. If tf) <s <t <t for some k, then X = th m =0 for
every u € [s,t), so that X” =0. Otherw1$e let k, be the smallest k such that t" € (s, t) and let k,
be the largest such k. It is stralghtforward to see that (X", X") satisfies Chen’s relatlon

no _ n n n
Xs,t - Xs,u + Xu,t +Xs,u ®Xu,t

for all s < u < t, from which it follows that

n __ n n n n n
Xs Xst" +X;{' Ay +Xrg t+Xst" ®X;; t}'{‘ +Xst}'{‘ ®Xt" )t
0 1 0
As we have already seen, we have that X;’[ = X" .= 0. Recalling the calculation in (2.11), we
L) k1
note that
t;{‘l t;(’l
XP .= X" ®dX]! = X" ®dX,,
ko™ kq tn ko’ tn ko’
ko ko

and hence, by the inequality in (2.6), that

p t]’(‘ 2

2 1

X" = dx,, <w(t”,t")<w<t” Lt )
t;{'o,t}'{’l m ko ® = ko> “ky ) ko—1° "ky+1
0
We estimate the remaining terms as
£ p
RX" RX" S |1X" X n + (X" + (X"
n n n n n n n n
S[ko kO [kl St t t S[ko kO kl Stk1 t ky N
p p p p
< |IX X X X
vt | T | T et | T

n n n n n n n n
< w<tk0—1’tko> + w(tko,tkl) + w(tko_l,tkl) + w(t 1 +1)
n n
< 2w(tk tk +1>
Putting this together, we have that
X! |§ <Cw(tf .t}
sttt ko—1’ "k +1

for some constant C. It follows that, for an arbitrary partition P of the interval [0, T], we have the
bound

P ~
Y, X1 <3Cw(o, 1),
[s,t]leP

~ 2
and hence that (2.12) holds with C = (3C)». O
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12 of 51 | ALLAN ET AL.

Using the previous two lemmas, we can now infer the convergence of the rough paths (X"),,cy
to the rough path X.

Lemma 2.8. Suppose thatX : [0,T] — R satisfies Property (RIE) relative to some p € (2,3) and a
sequence of partitions (P™),cn. Let X = (X, X) and X" = (X", X") be the cadlag rough paths defined
via (2.7) and (2.9), respectively. Then, for any p’ > p, we have that

IX:Xll, — 0 a5 n— oo, 213)

with a rate of convergence given by

-5
D

IX% XN,y S IX" = X”oop + sup , (2.14)

(s,t)eAr

/ X;lu®qu _Xs,t

where the implicit multiplicative constant depends only on p, p’,|X,| and w(0,T), where w is the
control function for which (2.6) holds.

Proof. By a standard interpolation estimate (e.g., [21, Proposition 5.5]), it follows, for any p’ > p,
that

2 2
/
IX™ = Xl < IX" = XI5 1X" = X”oo

We similarly have that

p
7

1-2
sup |X;’,t—XM| P,

X" =Xl < IX" =X]|
2 (s,H)eAr

[Nl ’U‘Ivt,

We recall from Lemma 2.6 that

sup |Xg’[ Stl 2”X“oo”Xn X”oo + Sup
(s.)€AT (s,1)€AT

/X"®dX

We have that sup,,¢ ||X”||p < IX1l, and || X||, < 1Xol + X1, < 1Xol + w(0, T)z7 and, by the
lower semicontinuity of the %—variation norm and Lemma 2.7, ||X]||p < liminf,_ o [IX"||r <
2 2

2
sup,en X2 < Cw(0,T)P. Putting this together, we conclude that (2.14) holds. By conditions
2
(i) and (ii) in Property (RIE), the convergence in (2.13) then also follows. O

As a next step toward the proof of Theorem 2.3, we introduce a discretized version of the
RDE (2.4). For this purpose, we define a time discretization path along P" by

N,—1
= Thn(O+ ) Qe (O, t€[0,T], (215)
k=0
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THE EULER SCHEME FOR RDES AND SDES 13 of 51
and consider the RDE
Yt” =Y +/0 b(y;’,Yg)dy? +/0 a(y;’,Y?) dX?, t e[0,T]. (2.16)

Thanks to Lemma 2.8 and the local Lipschitz continuity of the It6—-Lyons map, we obtain the
following proposition.

Proposition 2.9. Suppose that X : [0,T] — R? satisfies Property (RIE) relative to some p € (2,3)
and a sequence of partitions (P"),,cn. Let Y be the solution of the RDE (2.4), and let Y" be the solution
of the RDE (2.16). Then,

IY"-Ylly, — 0 as n— oo, (2.17)

forany p’ € (p, 3), with a rate of convergence given by

U

forany q € (1,2) such that ﬁ + é > 1, where the implicit multiplicative constant depends only on
PP, q, Ibllc2, lolles, T, 1Xo| and w(0, T), where w is the control function for which (2.6) holds.
b b

ﬁ‘h

~ 1-1
IY*" =Yy SIP"" @+ X" - X”oo

Proof. Settingy, :=tfort € [0,T], the RDE (2.4) may be rewritten as

t t
Vo=yot [ b Ydy+ [t v)ax, el
0 0
Hence, by Theorem 2.2, we know that
IT" =Yl S Y™ = 7lly + X XL, (2.18)

for any p’ € (p,3) and any g € [1,2) such that _+ 1 R 1.

Note that y" and y have finite 1-Var1at10n with |ly"ll; =llyll; =T, and |ly" —y|l; = 2T.
Although y” does not converge to y in 1-variation, it is straightforward to see by interpolation
that

1

2 1-2 T
ly" =7llg <Y =717 IY" =7l * = @) |P"| @

for any g > 1. Combining this with the estimate in (2.18) and the result of Lemma 2.8, we infer
the convergence in (2.17), and the estimate

1—

’U\I-m

IT" =Yl S Y™ = 7llg + X" — XIS+ sup
(s,)eAr

ol

/ X;l,u ® qu - Xs,t

11
SIPY e+ I X" — X”oo

O
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14 of 51 | ALLAN ET AL.

Remark 2.10. For a path A € DY([0,T]; Rd) of finite 1-variation, let us consider the controlled
ordinary differential equation (ODE)

t
Z, =z, + / o(z)d4,,  telo,T], (2.19)
0

where the integral is interpreted in the Riemann-Stieltjes sense. It is a classical result that, pro-
vided that o is sufficiently regular, the ODE in (2.19) is well posed, and that the solution map
®: A~ Z is continuous with respect to the 1-variation norm || - ||;. A major insight of the the-
ory of rough paths is that the solution map ® can be extended from the space of smooth paths to
the space €%PV4([0, T]; R%) of continuous geometric rough paths for p € (2, 3); see, for example,
[21]. Of course, the closure of a set containing only continuous paths with respect to p-variation
norms will again only contain continuous paths.

In the current framework of cadlag rough paths, Lemma 2.8 and Proposition 2.9 motivate us to
consider instead the closure of cadlag paths of finite 1-variation. For p € (2, 3), let D%P([0,T]; IRd)
denote the closure of the set

t
{A = (A,A) : AeD'([0,T];R?) and A, :=/ A, ®dA, forall (s,1) € AT}
N

with respect to the rough path distance || -; - || p (as defined in (2.1)), where /St A, ®dA, is
defined as a left-point Riemann-Stieltjes integral. Then, the solution map ® : A — Z extends con-
tinuously to the space D>P([0, T]; R¢) by Theorem 2.2, and every path satisfying Property (RIE)
is in D*P'([0, T]; RY) for p’ € (p, 3) by Lemma 2.8.

Next, we shall verify that the piecewise constant approximation X" of X, as defined in Property
(RIE), itself satisfies Property (RIE) relative to any sequence of partitions (P™),,,cy, that are coarser
than P" and have vanishing mesh size.

Lemma 2.11. Suppose that a path X satisfies Property (RIE) relative to p € (2, 3) and a sequence of
partitions (P™), ey, and let X" be the usual piecewise constant approximation of X along P". Then
the path X" satisfies Property (RIE) relative to p and any sequence of partitions (7’5’”),,1GN such that
P" C P forevery m € N, and |P™| — 0as m — oo.

Proof. We need to verify each of the conditions (i)-(iii) of Property (RIE) along the sequence
of partitions (TJm)meN. Since P" C P™ for every m € N, the piecewise constant approximation
of X" along the partition P™ is simply the path X" itself. Conditions (i) and (ii) thus hold
trivially.
Let w, ,, be the control function given by w, , (s, t) := ||X”||§’[S’t], so that [X{, [P < w (s, t) for
P
all (s,t) € Ay, and similarly, let w, , be the control function given by w,,(s,t) := || X"||; s
, , 2Js,

Let us also write P™ = {0 = ro <ry << rg =T} for each m € N. Then, for any m € N

., using the standard estimate for Young integration (see, e.g., [22,
Proposition 2.4]), we have that

and any0<k<f<ﬁ
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P
2 P

/ X) @AX] — X1 @ X | S WK X0

k’ 2Ky
b P p

S H Y e M !
2k

Thus, condition (iii) holds for X" with the control function w; ,, given by

P
W3 (8, 1) 1= wy ,(s,0) + ||X||1§ w, (s, 1), (s,t) € Ar. .

We are now in a position to complete the proof of Theorem 2.3. For this, we will apply in par-
ticular the result of Theorem B.2, which states that, under Property (RIE), the rough integral can
be obtained as a limit of classical left-point Riemann sums.

Proof of Theorem 2.3. Note that the Euler scheme in (2.5) may be expressed as the solution of the
controlled ODE

t t
YT =y + /0 b YT dy" + /O oG YN AX,  te[0.T], (2.20)

where y" denotes the time discretization path along P" defined in (2.15), and the integrals are
defined as limits of left-point Riemann sums. Recall that ¥" denotes the solution of the RDE in
(2.16), that is,

t t
Tr=yo+ [ b0n TN+ [otn TN telor) o)
0 0

where X" is the canonical rough path lift of X", as constructed in (2.9).
Since X" is piecewise constant, it is clear from the definition of X" that X{, = 0 for any times
< t thatlie in the same subinterval [£}], tZH) of the partition P". Since y" is also constant on each
such subinterval, it follows from the definitions of Young and rough integrals that the solution Y"
of (2.21) is itself also piecewise constant along the partition P".

Let P = {0 = rg <ryt << rg = T}, m € N, be any sequence of partitions with mesh size

m

converging to 0, such that P C P™ for every m € N. By Lemma 2.11, we have that the path X"
satisfies Property (RIE) relative to p and the sequence (P™),,cy. Since y" and Y" are piecewise
constant along the partition P", it is clear that the jump times of the integrand s = o(y7, 17;1) all
belong to P", and thus also belong to the set liminf,,_,  P™. It thus follows from Theorem B.2
that the rough integral [Ot a(yy, Y?) dX? is equal to a limit of left-point Riemann sums along the
sequence (P™),,cn- That is, for any ¢ € [0, T], we have that

¢ N,-1
/ o(yy,Y)dX! = hm Z a(ym,Y:‘m)X:’ AL Al
0

k+1

t
Z S Ty = [ oG TR,
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16 of 51 | ALLAN ET AL.

Since these integrals are equal, it follows that the ODE in (2.20) and the RDE in (2.21) are
consistent, so that Y = Y". The result then follows from Proposition 2.9. O

2.3 | Error bound for an approximate Euler scheme

In general, the Euler scheme (2.5) is not applicable to numerically approximate the solution of
an SDE driven by a general Lévy process — as we will consider in Section 3.3 below — since
the increments of Lévy processes cannot always be simulated. Therefore, to obtain a numerical
approximation of the solution of such a Lévy-driven SDE, one needs to consider approximate
Euler schemes — see, for example, [13, 25, 38] — where the increments of the driving Lévy process
are approximated by random variables with known distributions.

As a pathwise counterpart, we introduce the approximate Euler scheme Y” of the RDE (2.4)
along the partition P", given by

Vi=yo+ X bY@, — )+ Y ol YKy~ Xy, (2.22)
i i

for t € [0, T], with the modified driving signal

o

X =X+o,

where ¢ € DI([0, T]; R?), for some g € [1,2) such that % + é > 1, and, as usual, we write P" =
o=1¢) <t < <tf =T}

While the approximnation error of the Euler scheme (2.5) was only caused by discretizing the
time interval [0, T], the approximate Euler scheme (2.22) produces an additional approximation
error due to taking the modified driving signal X as an input, instead of the actual driving signal
X of the RDE (2.4).

To ensure the convergence of the approximate Euler scheme, we first need to verify that, if the
actual driving signal satisfies Property (RIE), then the same is true for the modified driving signal.

Proposition 2.12. Suppose thatX € D([0, T]; R%) satisfies Property (RIE) relative to some p € (2, 3)
and a sequence of partitions P" ={0 = ¢ <} <. <ty =T} n€N. Letp € DI([0,T]; RY) for

some q € [1,2) such thatl% + % > 1. For each n € N, we define ¢" : [0,T] — R? by

N,-1
ol =orlp(D+ ) Pl (O, tE[0,T], (2.23)
k=0

as the discretization of ¢ along P". Suppose that ||¢" — ¢||; — 0 as n — co. Then the path X=
X + ¢ satisfies Property (RIE) relative to p and (P"),,cn-
Proof. We need to verify the conditions (i)-(iii) of Property (RIE).

(i) Letting X" denote the piecewise constant approximation of X along the partition P", it is
clear that X" = X" + ¢" for each n € N. Since X" converges uniformly to X by Property
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(RIE), and [|¢" — ¢ll; — 0 by assumption, it is clear that X" converges uniformly to X as
n— oo.

(ii) We need to verify that the integral

t
/X”®dX /X”@dX +/X”®dgou /gou®dX +/ o' ® do,,
0

converges as n — oo to the limit

t
0

uniformly in t € [0, T], where the latter three integrals are defined as Young integrals.
Since X satisfies Property (RIE), we have that

o
0

Let p’ > p such that ﬁ + é > 1. By the standard estimate for Young integrals — see, for

— 0 as n — oo.

example, [22, Proposition 2.4] — we have, for all t € [0, T], that

t t
‘/0 Xz®d¢u_'/0 Xu®d§0u

It follows by interpolation (see, e.g., [21, Proposition 5.5]) that

SIX" =Xy liglly-

D
X7 — X1l < IX" = X1 7 xn — - X7

Since X" converges uniformly to X as n — oo, and sup,,cy, [|X"

that

Similarly, for each ¢ € [0, T], it holds that

t t
‘/ ¢Z®qu_/Cpu®qu
0 0

I, < IXIl, < oo, we deduce

— 0 as n — oo.

S lg" = ol IX1l,

and
S le™ = ellglielly

'/ o @ do, — /¢u®d¢u

and, since ||¢" — ¢|l; > 0 as n — oo, we infer the required convergence.
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(iii) We aim to find a control function w such that

"~ ~ P
|y X, ® 4%l

| X 1P

su +sup sup — <1, (2.24)

s.nea; WS, 1) neN o<k<s<N, w(t ,tf)
where

t" t" "

‘2o @dR, = | ‘X ®dx,+ | ‘X% ®d
M T T S R e
k k k

v [ en @ [ o, @dp
k’ t;;‘ k>

n
tk

Let wy be the control function with respect to which X satisfies Property (RIE), and define
moreover the control function wy,, given by w(s, t) = ||qo||g [5.] for (s,t) € Ay.
We have from Property (RIE) that

|Xs,t|p < |Xs,t|p |§0s,t|p

sup S sup ———+ sup ——— <2,
(sneay Wx (S, 1) +wy(s, 1) ™ (snea, Wx(8,8)  (snea, We(s,t)

and that

“xn @dx, |’
Sl X, ® 4%,

sup  sup
neN 0gk<f<N, wx(tlr{l, t;)

=<

By the standard estimate for Young integrals (see, e.g., [22, Proposition 2.4]), for everyn € N
and 0 < k < £ < N, we have

SlS]

P

t p
¢ £
Xn d < Xl’l 2 2
/[n o ® dgul S IXNL o 1912 0
k

P P 1 L
2 2 < no(ny5 no(nyy
< ”X”p,[t,';,t;]”(p”q,[t,’j,t;] S wX(tkytf)2w¢(tk7tf) 1,

and we can similarly obtain

t" g
Con RdX,| <Swy(" t”)%w (34 t”)%
p Pinu uf S Wxlh,1p)2Welly, Ly
k
and
t § p
n n n\g
/t,, Pinu ®dey| Swyty. 7)1
k
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Since p € (2,3) and q € [1,2), we have that % + % > 1 and § > 1, and it follows that the

1 P P
maps (s,t) — wx(s, )2 w(p(s, t)2 and (s,t) — w¢(s, t)¢ are superadditive and thus control
functions. We deduce that (2.24) holds with a control function w of the form

2l P
w(s,t) = C<wX(s, t) + wy(s, £) + wx(s, t)%wgo(s, £)% + wy(s, )9 ) (s,t) € Ap,

where C > 0 is a suitable constant which depends only on p and gq. O

By Proposition 2.12, the modified driving signal X satisfies Property (RIE), and can thus be
canonically lifted to a rough path X = (X,X) € DP([0, T]; RY) via (2.7). By Theorem 2.2, the RDE
(2.4) driven by X has a unique solution ¥, and the approximate Euler scheme ¥" in (2.22) con-
verges to ¥ by Theorem 2.3. We will see an application of this to SDEs driven by Lévy processes
in Section 3.3.

The next proposition provides an error and convergence analysis for the approximate Euler
scheme (2.22) with respect to the solution Y of the RDE (2.4) driven by the rough path X = (X, X)
under Property (RIE).

Proposition 2.13. Suppose that X € D([0, T];R?) satisfies Property (RIE) relative to p € (2,3) and

a sequence of partitions (P™),,cx, and let X be its canonical rough path lift. Let € DI([0, T]; R%) for
some q € (1, 2) such that % + é > 1, let @™ be the piecewise constant approximation of ¢, as defined

in (2.23), and assume that ||¢" — ¢||; = 0 asn — oo. Let Y be the solution of the RDE (2.4) driven
by X, and let Y" be the approximate Euler scheme defined in (2.22). We have the error estimate

A~ 1-1 1-£
19" = Yll,y < L+ IXT, + Il )lely + P78 + (X" = Xl + lle" = 9lle)' 7

(| row- [ now
0 0

for any p’ € (p,3) such that % + % > 1, where the implicit multiplicative constant depends on

-5
p
+IX" = X1y + " — <o||q)

o)

p,p.q, 1bllc2, ol c3s T, 11X 1 oo » ||X||p, [®]l o> ||qo||q and w(0, T), where w is the control function for
b b
which (2.6) holds. In particular, we have that

limsup 77 = Y1,y S (1 + 1XIl, + @l el (2.25)

n—oo
Proof. By Proposition 2.12, we know that the path X = X + g satisfies Property (RIE) relative to p
and (P"),,cx- Let X be the canonical rough path lift of X, and let Y and ¥ be the solutions of the
RDE (2.4) driven by X and X, respectively. It is clear that
19" =Yy <Y =Vl + 1Y = Y]],

By Theorem 2.2, we have the estimate

1Y =Y,y SIX:X],,
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and, by Theorem 2.3, we have that

~ ~ 1-1 -~ ~ 1= DS
197 = Pl S 1PMT + IR R + H/O £

where X" is the piecewise constant approximation of X along P". Since X" = X" + ¢", we can
bound

IX" = Xlloo < I1X" = Xlloo + 19" = llo

As shown in the proof of Proposition 2.12,
|/

0
(| [ wou-

We also note that

+ X" = X1y gl + 19" = @l (XL, + llolly).

oo

t t t
xs,t - Xs,t = / Xs,u ® dqpu + / Ps.u ® qu + / Ps.u ® d¢u
s s s

for (s, t) € Ap, so that, by the standard estimate for Young integrals (see, e.g., [22, Proposition 2.4]),
we obtain

IR0 = Xl S IXNp s 1@ lg s + 11 gy

This implies that, for any partition P of the interval [0, T],

o 4
> IRy =Xul2 s Y (||X||2 ||<o|| D)

[s,t]leP [s,t]leP

1 1
2 2
p
<<[2 ||X||p,[s,t]> < D ||¢||q[3,]> + 2 el

s,tler [s,t]leP [s,t]leP

+lloll?

q,[s,t] q,[s,t]

p P
q

1
2 2 2 p
<< > ||X||§,[s,t]> < > ||<o||q[3,]> +< > ||qo||g,[s,[]> <X liglly + llellg.
[s,t]leP [s,t]leP [s,t]leP

so that [|X — X||» < X1, llelly + ||qo||é. We thus deduce that
2
IR: X < 18 = Xl + IR = X2 S A+ X1, + Igllely,
and combining the estimates above, we obtain the desired error estimate. O
As an immediate consequence of Proposition 2.13, if the modified driving signal X converges

to the driving signal X, then the approximate Euler scheme converges to the solution Y of the
RDE (2.4). This is made precise in the following corollary, which follows from (2.25).
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Corollary 2.14. Recall the setting of Proposition 2.13, and now let Y" be the approximate Euler
scheme of the RDE (2.4) along the partition P", given by

Yi=yo+ D b(t{’,)v’t’;,)(tl.”+l—t{’)+ D a(tf,Yf?)(Xal—Xg,)

poel <t poel <t
fort € [0, T], with the modified driving signal
X" =X +9",

where " € D4([0, T]; RY) for some q € (1,2) such thatll) + 5 > LIf||9"|l, = 0asn — oo, then

I,

IY'=Yll, — 0 as n— o
forany p’ € (p,3) such thatl% + % > 1.

Remark 2.15. In this section, we handled the modified driving signal X + ¢ by considering the
rough path lift XofX =X + ¢, and considering the solution ¥ of the RDE (2.4) driven by X. An
alternative, equally valid approach would be to instead absorb ¢ into the drift of the RDE. The
resulting equation would not strictly speaking be of the form in (2.4), but it would still fall into
the regime of the more general RDE in (2.2), and an error estimate could be obtained using the
stability estimate in Theorem 2.2.

3 | APPLICATIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS

In this section, we apply the deterministic theory developed in Section 2, regarding the Euler
scheme for RDEs, to SDEs. For this purpose, we now let X be a d-dimensional cadlag semi-
martingale, defined on a probability space (Q, 7, P) with a filtration (7)o 1) satisfying the usual
conditions, that is, completeness and right continuity. We consider the SDE

t t
Y, =y +/ b(s,Y,_)ds +/ o(s,Y,_)dX,, t €[0,T], (3.1)
0 0

where y, € R¥, b € CZ(RF1; RF), and o € CJ(R*H; LR RF)), and /o[ o(s,Y,_)dX, is defined
as an It6 integral. For a comprehensive introduction to stochastic It6 integration and SDEs, we
refer, for example, to the textbook [36]. It is well known that the SDE (3.1) possesses a unique
(strong) solution (see, e.g., [36, Chapter V, Theorem 6]), and that the semimartingale X can be
lifted to a random rough path via Itd integration, by defining X = (X, X) € DP([0,T]; Rd), P-a.s.,
for any p € (2, 3), where

t t
X, :=/ X, —X,)® dX, =/ X,_®dX, - X,®X,,, (s0)€A;  (32)
N N

see [31, Proposition 3.4] or [22, Theorem 6.5]. It turns out that, if the semimartingale X satis-
fies Property (RIE) relative to p € (2, 3) and a suitable sequence of partitions (P"), <y, then the
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solutions to the SDE (3.1) and to the RDE (2.4) driven by the random rough path X = (X, X)
coincide P-almost surely.

Lemma 3.1. Let p € (2,3) and let P" = {7}}, n € N, be a sequence of adapted partitions (so that
each T is a stopping time), such that, for almost every w € Q, (P"(w)),ey is a sequence of (finite)
partitions of [0, T | with vanishing mesh size. Let X be a cadlag semimartingale, and suppose that, for
almost every w € Q, the sample path X(w) satisfies Property (RIE) relative to p and (P™()),,en-

(i) The random rough paths X = (X, X), with X defined pathwise via (2.7), and with X defined by
stochastic integration as in (3.2), coincide P-almost surely.

(ii) The solution of the SDE (3.1) driven by X, and the solution of the RDE (2.4) driven by the random
rough path X = (X, X), coincide P-almost surely.

Proof.

(i) By construction, the pathwise rough integral /Ot X, (w) ® dX, (w) constructed via Property
(RIE) is given by the limit as n — oo of left-point Riemann sums:

N,—1
];) Xr]'(’(co)(w) ® XT,’(’(w)/\l,T,’(lH(w)/\t(w)‘ (3'3)

It is known that these Riemann sums also converge uniformly in probability to the It6 integral
fot X,_ ®dX, (see, e.g., [36, Chapter II, Theorem 21]), and the result thus follows from the
(almost sure) uniqueness of limits.

(ii) In the following, we adopt the notation Jy for the set of jump times of a path F, and we write
liminf,_ o P" = Upen Npsm P™-

Let Y be the solution to the RDE (2.4) driven by the random rough path X = (X, X). By the
definition of X in (2.7), it is straightforward to see that X,_, = 0 for every ¢ € (0, T]. It then
follows from the definition of rough integration that the integral ¢ /Ot o(s,Y,)dX; can only
have a jump at the jump times of X, and it follows that the same is true of the solution Y to
the RDE (2.4), that is, Jy C Jx.

Since the piecewise constant approximation X" of X along P" converges uniformly to X
(by condition (i) of Property (RIE)), we have from Proposition B.1 that Jy C liminf,_  P".
Since Jy C Jx, we have that Jy C liminf,_,  P". It then follows from Theorem B.2 that

t Nn_l
o(s,Y.)dX, = lim Zar”,Y X .
’/0 ( s) S et P ( k rI’(‘) rl’{‘/\t,‘rzﬂm

Since these Riemann sums also converge in probability to the It6 integral fot o(s, Y, )dX,
(see, e.g., [36, Chapter II, Theorem 21]), these integrals coincide almost surely. We infer that
Y is also a solution of the SDE (3.1), which has a unique solution (by, e.g., [36, Chapter V,
Theorem 6]). O

As a consequence of Theorem 2.3 and Lemma 3.1, for semimartingales that satisfy Property
(RIE) relative to a sequence of adapted partitions, the Euler scheme (2.5) converges pathwise to
the solution of the SDE (3.1). In the following subsections, we verify Property (RIE) for various
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semimartingales relative to suitable sequences of partitions, and derive the pathwise convergence
rate of the associated Euler scheme with respect to the p-variation norm.

3.1 | Brownian motion

We start with the most prominent example of a semimartingale, by taking X = W to be
a d-dimensional Brownian motion W = (W,),¢[o ] With respect to the underlying filtration

(Ft)te[O,TJ-

Proposition 3.2. Let p € (2,3) and let P" ={0 =t <t] <-- <ty =T} n €N, be a sequence
of equidistant partitions of the interval [0, T], so that, for each n € N, there exists some 7, > 0 such
4

22
thattﬁrl - t? =, foreach0<i < N,.Ifr, " log(n) — 0asn — oo, then, for almost every w € €,
the sample path W (w) satisfies Property (RIE) relative to p and (P"), -

Proof. As stated in Remark 2.4, Davie’s condition implies Property (RIE). While [35, Appendix B]
shows this for the sequence of partitions (PS),,GN, where P{’, = % :i=0,1,..,n}, thatis, 7, =

%, their proof actually holds for any sequence of equidistant partitions of the interval [0, T].
We therefore show the necessary condition proposed in [12], under the assumption that

4
7, "log(n) - 0asn — oo.
More precisely, let W = (W, W) be the It6 Brownian rough path lift of W. Write o : = 1% and let
B € (1 — a, 2ax). We show that, almost surely, there exists a constant C > 0 such that

n n
tm’[m+1

£-1
Y wl o | <c@ - kP,
m=k

foreveryi,j=1,..,d and n € N, whenever 0 < k < ¢ are integers such that ¢, < T.

Step 1. We recall that a (zero mean) random variable Z is said to be sub-Gaussian if its sub-
Gaussian norm [|Z[|, := inf{z >0 : Elexp(Z?/z?)] < 2} is finite. It is well known that the sub-
Gaussian property admits an equivalent formulation; namely, Z is sub-Gaussian if and only if
E[exp(1%2Z?)] < exp(A4%K?) holds for all A such that |1] < 1l< for some K > 0. In this case, we have

|1Z ||¢2 = K up to a multiplicative constant.
We will prove that Wi{1 o M= k,...,Z — 1, are independent sub-Gaussian random variables
m m+%j
ot

First, we note that, by [21, Proposition 13.4], for all m € N, the random variables

with sub-Gaussian norm ||W ||¢,2 = Cm, for some C > 0.

ij
Wt,, i
M’ m+1

n __¢h
tm+1 tm

are independent and identically distributed, with the same distribution as Wé)jl, and that the latter

satisfies [E[exp(n\/\\/gj1 )] < oo for some sufficiently small # > 0, which is equivalent to the Gaussian

tail property, that is, that ||Wf)j1 [l7a < c\/a for all g > 1, where the constant c is independent of g;
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see [21, Lemma A.17]. As a consequence, using the fact that t; 1 t;}’1 =, for all m, and setting
q = 2v, we deduce that

E[|WY |2”] <V, v EN, (3.4)

o z”

for a new constant ¢ > 0 which does not depend on v.
We now aim to show that there exists a constant C > 0 such that

Elexp@*(Wy, ,, )] < exp(CmA%), (35)
for all A such that |1] < =, which then implies that w o gn is sub-Gaussian with norm
L m+1

Wyt o

the Taylor expansion for the exponential function, we get, for A € R, that

||¢ =Cm,, uptoa multlphcatlve constant which we may then absorb into C. Using
2

/12”(th o P o AZVE[(W!]
[E[eXP(/lz(th o )2 =F1+ Z AULS S P Z

)2”]

th t"

V!

By the bound in (3.4) and Stirling’s a pproximation (which implies in particular that v! > (%)V for
all v > 1), we obtain

2 2 S 2 2w _ 1 2 2
E[exp(1 (th o NS+ ;(ecl a2y = et < exp(2ecA®n?),
which is valid provided that
ecA*r 2 % (3.6)

since ﬁ < exp(2x) for x € [0, %]. We then obtain (3.5) by choosing C = 4/2ec, and note that then
(3.6) does indeed hold when |4] <z

Step 2. Let C > 0 be the constant found above, so that ||W ||1,(,2 = Crx,,.. Then Hoeffding’s

o t"

inequality (see, e.g., [40, Theorem 2.6.2]) gives

Cz(f - k)2/3nga
2
T 1w " o M,

3 (f _ k)zﬁ—l
= ZeXp <—W .

m>“m+1

< Z W C(f—k>‘“’ni“> <2exp|-

Sincef>1—a > % we can bound this further by

1 _1
( Z th tn > C(f— k)ﬁﬂ'i[x> < ZeXp <—m> =2n ",
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where we denote y,, = 7,,>~** log(n). Since, by assumption,y,, — 0asn — oo, we have that L1

Vn

-1
for all sufficiently large n € N, and hence that the series );, . n 7= is absolutely convergent. The
desired statement then follows from the Borel-Cantelli lemma. O

Remark 3.3. Proposition 3.2 can be generalized to any sequence of partitions (P"),cy, Which
4

2—

possibly consists of nonequidistant partitions, such that |[P"*|” » log(n) — 0 as n — oo, provided

that there exists a positive number 7 > 0 such that

[P

mingg oy, 16, — 4]

<7

for every n € N. This additional condition requires that the sequence (P"),cy is a “balanced
partition sequence” in the sense of [9].

Remark 3.4. Combining Proposition 3.2 with Lemma 2.8, we infer that the piecewise constant
approximations of a Brownian motion along equidistant partitions converge to its Itd rough path
lift, which, as far as we are aware, is a novel construction of this lift. Existing approximations
of Brownian rough path are all continuous approximations, such as piecewise linear or mollifier
approximations — cf. [21] — which play a crucial role, for example, in the rough path-based proofs
of Wong-Zakai results, support theorems and large deviation principles.

Corollary 3.5. Let p € (2,3) and let P{} ={0= t(’)’ < tf <. <th =T} n €N, with tl.” = % be the
sequence of equidistant partitions with width % of the interval [0, T]. Let Y be the solution of the SDE
(3.1) driven by a Brownian motion W, and let Y" be the corresponding Euler approximation along
P, as defined in (2.5). For any pe(3),qe,2)andB e - i, %)such that% + $ > 1, there
exists a random variable C, which does not depend on n, such that

Z-Ba-45)

-3 - ;
+n P Py, neN. (3.7)

IY" =Yl <Cn™*

Proof. Since |P[}| = %, we have that nglz—% log(n) — 0 as n — oo. Thus, by Proposition 3.2, for
almost every w € Q, the sample path W(w) satisfies Property (RIE) relative to p and (P[),ens
which allows us to apply the result of Theorem 2.3.

Since the sample paths of W are almost surely I%-Hblder continuous, it is easy to see that

1
Wt —W|,5n », nen,

where the implicit multiplicative constant is a random variable that does not depend on n. More-
over, by [35, Appendix B], the left-point Riemann sums along (P}}),cy converge uniformly as

—(2_
n — oo, withrate n G=R fore (11— %, %), that is,

H/.W”®dW —/‘W Qdw G5
o u u o u u

<n p ", neN.

(9
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Hence, by Theorem 2.3, we get that

—1-1 _ln_2 —(2_ _Lr
”Yn—Y”p/ Sn (1 q)+n p(l p/)+n (P ﬁ)(l p/).
Since % <1- % < 8 for p € (2, 3), this gives the rate of convergence in (3.7). O

3.2 | ItoO processes

In this subsection, we let X be an It6 process. More precisely, we suppose that
t t
X, =x, +/ b, dr +/ H,.dw,, te[0,T], (3.8)
0 0

for some x, € R4, and some locally bounded predictable integrands b: Qx[0,T] — R? and
H: Qx[0,T] —» [1(IR'";IRd), where W is an R™-valued Brownian motion. We consider the
sequence of dyadic partitions (P})),ey of [0, T], given by

PLi={0=ty <t} <--<ty, =T} with ¢ :=k2™"T for k=0,1,..,2". (3.9

In the next proposition, we will show that X satisfies Property (RIE) along the sequence of
partitions (P[),en, and establish the rate of convergence of the associated Euler scheme. Note
that, in contrast to the proof of Proposition 3.2, for general Itd processes, we cannot rely on the
concentration of measure inequality for sub-Gaussian distributions.

Proposition 3.6. Let p € (2,3) and let X be an It6 process of the form in (3.8). Let Y be the solution
of the SDE (3.1) driven by X, and let Y™ denote the corresponding Euler approximation, as defined
in (2.5), based on X and the sequence of dyadic partitions (Py) ey

(i) Foralmostevery w € Q, the sample path X (w) satisfies Property (RIE) relative to p and (Py)) ey
(ii) Foranyp' € (p,3)andq € (1,2)such thati + % > 1,andanyc¢ € (0, 1), there exists a random
variable C, which does not depend on n, such that

)

—n(1— 1 1 n1—e)(1-2
||Yn—Y”p/ <C(2 n(1 g (p p’) (1-9)(1 p’)

+27" +2°2 ), neN, (3.10)
and
1
IY" Y|, <C27"G™®, nen. (3.11)

Proof.

(i) By alocalization argument, we may assume that b and H are globally bounded. Let

t t
A, :=/ b, dr and M, :=/ H,dw,
0 0
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for t € [0,T], so that X = x, + A+ M, and recall that we denote the piecewise constant
approximation of X along P[] by

2n—1
X:l = XTIT(t) + kz_;) Xll»;ll[tlr(z’[;l“)(t), te [O, T],

with tZ = k27"T for each k =0, 1,...,2" and n € N. Note that, by the uniform continuity of
the sample paths of X, it is clear that X" converges uniformly to X almost surely as n — 0.

Step 1. In this step, we verify that the sample paths of X are almost surely %-Hﬁlder continuous.

This is a standard application of the Burkholder-Davis-Gundy inequality. Indeed, for any q > 1,
using the boundedness of H, and writing [ -] for quadratic variation, we have that

t q : 1 .
/ Hydw,| | SE /Huqu] <t—slz,
s 0 s,t

1
so that ||[M; — M|l;¢ S |t —s|2. By the Kolmogorov continuity theorem (see, e.g., [21, Theo-
rem A.10]), it follows that E[||M|,.y51] < oo, where || - ||,.;y5 denotes the y-Holder norm, for any

[E“Mt - Mslq] =E l

y € [0, % - é), which, taking q sufficiently large, implies that the sample paths of M are almost
surely L_Hélder continuous. Since A = /0. b, dr with the bounded integrand b, the sample paths
P

of A are Lipschitz continuous, and thus also é-Hﬁlder continuous.

Step 2. In this step, we show that, almost surely, foh X)) ® dX,, converges uniformly to the Ito
integral [, X,, ® dX, as n — 0. For this purpose, we write X" = x, + A" + M", where

-1 M1
A:l = AT]'{T}(t) + Z A[lrcll[tlf’tlfﬂ)(t) and M:l = MTI{T}(t) + Z Mllrcll[tlr(l’tlil+l)(t)’
k=0 k=0

for t € [0,T]. Since X = x, + A + M, we obtain

. . 2
(| o [ now]
0 0 3]

. 2 2
/ (A" - A,) ®dA, ] + [E[ ] (3.12)
0 0

2 2
n [E[ ] " [E[ ]
Using the Burkholder-Davis-Gundy inequality, the fact that [M] = [/, H, dW,] = /; |H,|*dt,
and the boundedness of H, we can bound

|

SE

/ (M" — M,) ® dA,
0

/ (A" - A) ® dM,
0

/ M" — M,) ® dM,
0

2

T
/0 |M}! —Mtlzd[M]t]

/ (M" —M,) ®dM,
0

(9]
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2"—-1 2"—1

/ E[IM? — M,[*]dt = 2/ ElIMy — M, dr<2/ ElI[M], 1] dt

2n—1 2"—1

= / l/ |H, |2 dr] dt < Z/ (t—t”)dt Z(tk+1—t£)2=2_”.

The other terms on the right-hand side of (3.12) can be bounded similarly by 27", up to a constant
that does not depend on n, and we thus have that
2
u :I S 2_"1,
[So]

[E[/O'XZ

for every n € N. By Markov’s inequality, for any ¢ € (0, 1), we then have that

P( /OXZ ; >2‘§“‘€)>

< 2}’!(1—5)[E [
[So]

< 2n(1—€)2—n — pne

o
0

It then follows from the Borel-Cantelli lemma that, almost surely,

|/,
0

for all sufficiently large n, which implies the desired convergence.
Step 3. Lete € (0,1)and p = 2 + w € (2,3). We infer from Step 1 above that the sample
paths of X are almost surely %-H(‘jlder continuous, from which it follows that

<2309 (3.13)

1
X5l S 1t =s]#,

where the implicit multiplicative constant is a random variable that does not depend on s or t.
Proceeding as in the proof of [31, Lemma 3.2], we can show, for any 0 < k < ¢ < 2", and writing
N =¢—k=2"t] —t]|T~", that

" 2 2 2
¢ 1-= = n(1-=) )

; Xy ®dX, —Xpn @ Xpnn| SN |t} —ti|p S27 7 |¢7 — 7] < 272 — 1.
k

_4
I£27" > |t} — 1)/|#0-9), then it follows that

n
XN @AY, — X @ Xon | < |17 — ([T
u® u~ t;{’® tz,t?~|g_k|

tVl
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We will now aim to obtain the same estimate in the case that 27" < It” t”| P(l 9, To this end, let
X denote the second-level component of the 1t6 rough path lift of X, as deflned in (3.2). It follows
from the Kolmogorov criterion for rough paths (see [17, Theorem 3.1]) that

2
Xl S 1t =s]P, (3.14)

where the implicit multiplicative constant is a random variable that does not depend on s or t.
Using the bounds in (3.13) and (3.14), we then have, for all sufficiently large n, that
t
L X ® Xy =Xy @ Xy
tk

" th

14 14 t;
X1 @ dX,, - Xu®dxu+/[n Xy ® dX, — X ® Xy 1o
k

n n
tk tk

2l =

n
5272079 4 -

u + |thf,[;|
o0

S

2
n n|,
S |t/_tk|p

We have thus established that

1]

l”
X" ® dX,, X[n ®th i S =t

te
holdsforall 0 < k < # < 2" and all sufficiently large n. It follows that there exists a random control

function w(s, t) := c|t — s|, for some random variable c, such that

% sn 2
|_/tn X, ® dX,, _Xt]’; ®Xt}'{',t;‘,|2

k
su +sup sup <1
s.neay WS, 1) neN ock<s<an w(ty, t7)

X017

holds almost surely. This means that, for almost every w € Q, the sample path X(w) satisfies
Property (RIE) relative to any p € (2, 3) and the sequence of dyadic partitions (7)) ,en-

(ii) Since the sample paths of X are almost surely %-Hélder continuous (by Step 1 above), it is
straightforward to see that

_n
X" - Xllo S2 2, neN,
and, recalling (3.13), we have that

|/
0

<272079 pen.
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Hence, by Theorem 2.3, we deduce that

1 Lyg-a ~t1—)1-2
-3 (a-£) a-on-5)

IY" =Yl <Y =Y, s27" @ +27 2 ¥ 422

for any p’ € (p,3) and q € (1,2) such that 1% + é > 1, which leads to (3.10). Choosing p
sufficiently close to 2, p’ to 3, and q to % and replacing € by 6¢, then reveals (3.11). O

3.3 | Lévy processes

Let L = (L;);g[o,r) be a d-dimensional Lévy process with characteristics (4, Z, »). In this section,
we shall work under the assumption that fl xl<1 |x]9v(dx) < oo for some q € [1,2).

By the Lévy-Itd decomposition (see, e.g., [3, Theorem 2.4.16]), there exists a Brownian motion
W with covariance matrix 2, and an independent Poisson random measure g on [0, T] X (R9 \ {0})
with compensator v, such that L = W + ¢, where

@ =At + / x u(t,dx) + / x (u(t,dx) — tv(dx)), te[0,T]. (3.15)
[x|>1

|x|<1

Since f|x|<1 |x]9v(dx) < o0, we have that p(w) € D([0,T];R?) for almost every w € Q; see [3,
Theorem 2.4.25] and [8, Théoréme IIIb].

Let (P})),en be the dyadic partitions of [0,T], as defined in (3.9). For each n € N, we also let
J"={t €(0,T] : |Ag,| = 27"}, where Ap, = ¢, — ¢,_ denotes the jump of ¢ at time ¢, and we let

Pl =PruJ". (3.16)

We will consider (P}'),ey as our sequence of adapted partitions, noting in particular that, for
almost every w € Q, (P/'(w)),en is @ nested sequence of (finite) partitions with vanishing mesh
size, and that {t € (0,T] : L,_(®) # L, (@)} € UpenP}H(w).

Remark 3.7. In order to obtain pointwise convergence of an Euler scheme, it is necessary that the
jump times of the driving signal belong to the partitions used to construct the discretization, a
fact that follows immediately from Proposition B.1, necessitating the inclusion of the jump times
(™), above.

Proposition 3.8. Let L be a d-dimensional Lévy process with characteristics (4,%,v), and assume
that /|x|<1 [x]9v(dx) < oo for some q € [1,2). Let p € (2, 3) such thatllJ + % > 1. Let Y be the solu-
tion to the SDE (3.1) driven by L, and let Y" be the corresponding Euler approximation along P, as
defined in (2.5).

(i) For almost every w € Q, the sample path L(w) satisfies Property (RIE) relative to p and
(Pl (@) nen-
(ii) Forany p’ € (p,3) and q' € (q,2) such that 1% + & > 1, any y € (0, 11)), and any § € (0,1 —

%1), there exists a random variable C, which does not depend on n, such that
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_n(1—L _nl_ _n(i_1 — _49y 1P
||Y"—Y||p/<C<2 M=) L TG 4 ) )y p’), nen.

To prove this statement, we need the following lemma.

Lemma 3.9. Let p € (2,3), let W be a d-dimensional Brownian motion with covariance matrix X,
and let (P}') ey be the sequence of adapted partitions defined in (3.16). For almost every w € Q, the
sample path W (w) satisfies Property (RIE) relative to p and (P}'(®)),en-

Proof. We need to verify each of the conditions (i)-(iii) in Property (RIE).

®

(i)

(iii)

Since the sample paths of W are uniformly continuous on the compact interval [0, T], it is
straightforward to see that W"(w) — W(w) uniformly as n — oo for almost every w € Q,
where W" denotes the piecewise constant approximation of W along P}

It follows from the Kolmogorov continuity criterion that the sample paths of Brownian

motion are almost surely %—Hélder continuous, and that the Holder constant [|W]|1 ;. has

p
finite moments of all orders (see, e.g., [6, Theorem A.1]). Applying the Burkholder-Davis—
Gundy inequality, we then have that

. . 2 T
[E[ / WL‘®qu—/ w,®dw,| |<SE / |W{’—Wt|2dt]
0 0 00 0
5 T2 5 _m
< n <
< [E[uwul_Hm/0 PRI de| SELWIR 1277
p p
Lety € (0, %) ande =1-— % +2ye(1- %, 1). By Markov’s inequality, we infer that
’ ' n _2n _
P< / WZ ® qu _/ Wu ® qu > 2‘5(1—5)) s 277 +n(1—e) — 2—2ny.
0 0 [
By the Borel-Cantelli lemma, we then have that, almost surely,
' ’ -
H/O W' ® dw, —/0 W, ®dw,| <272079 (3.17)
o0

for all sufficiently large n. It follows that ( fo. W’ ® dW,)(w) converges uniformly to
(fo' W, ® dW,)(w) as n — oo for almost every w € Q.

Let p =2+ =402

continuous, it follows that

€ (2,3). Since the sample paths of W are almost surely %-Hblder

Wi ° St —sl,

where the implicit multiplicative constant is a random variable that does not depend on s or
t. Proceeding as in the proof of [31, Lemma 3.2], we can show, for any 0 < k < ¢, and writing
N = ¢ — k, we can show that
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tn
W, ®dw, — —Win @ Win i <N' P|t"—t"|
[”

2
P

where {0 = ¢ <] < ---}are the partition points of P}'(w) for some (here fixed) w € Q. Using
| - | here to denote the cardinality of a set, we note that the number N can be bounded by

N < |PR@) N (@, 2] + WM @) n @ 2l < 2P T e =t +27 ) |Ag (@)
te]”(w)n(lﬁ,t;

S 20y -l + 2"‘qllco(w)llq < 2"Pe(ty, 1)),

t" t"]

where c is the control function defined by c(s,t) := |t — s| + ||g0(cu)||2 [5.] for (s,t) € Ap. If

_4
27 > c(tZ, t;})P(l—@, this implies that

t" 2
¢ 5 2
/[n Wi ® AW, = Win @ Wi in| S 2Pt 1) < et ) ~msP _ NGNALE
k

4
In the case that 27" < c(tZ, t;})P(HL we can follow the same argument as in Step 3 of the
proof of part (i) of Proposition 3.6 (using in particular the bound in (3.17)) to obtain again
that

z" 2
Wn 039 dW th 024 th n < C(t t;)P,

fe
where, as usual, the implicit multiplicative constant depends on w, but not on n.

It follows that there exists a random control function w such that

If,n W' Q dw, — th®th[n|2

Wi 1P i
S + sup sup <1
(s,)EAT w(s,t)  nen ogk<? w(s, )

holds almost surely. O
Proof of Proposition 3.8. Let W be a Brownian motion with covariance matrix %, and let ¢ be the
process defined in (3.15), so that L = W + ¢. Asusual, we let L, W", and ¢" denote the piecewise

constant approximations of L, W, and ¢, respectively, along the adapted partition P;'.
Recalling (3.15), we see that we can write ¢ = 7 + &, where

= At+ / xu(t,dx) — t/ xv(dx) (3.18)
[x[z27" 27ng|x|<1

and

& 1= /|x|<2n x (u(t,dx) — tv(dx)).
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Let " and " denote the piecewise constant approximations of 7 and £ along P;". Recalling how
the adapted partition 7/ was defined in (3.16), we note that, when estimating the difference 7" —
7, we may ignore all jumps of size greater than 27", and may thus ignore the first integral on the
right-hand side of (3.18). We then have that

7" =1l < 20TIA] + 2T / x| v(dx)
27ng|x|<1

(3.19)
<27'T|A| + 27D / |x]9v(dx) < 272D,

27ng]x|<1

Writing (-) for the predictable quadratic variation, we have (see, e.g., [26, Chapter 2,
Theorem 1.33]) that

E[(€),] < T /

[x|<2—n

|x]?v(dx) < 2_"(2_‘1)T/ [x]|9v(dx).

|x|<2—n

Since this quantity is finite, the process & is a square integrable martingale, and in particular
E[[€]r] = E[(§)r], where [-] denotes the usual quadratic variation. By the Burkholder-Davis—
Gundy inequality, we then have that

E[IIE12] S El[E]r] = E[(€)7] $ 2739, (3.20)

Note that, for any a > 0, if ||£]|, < % then ||§" — &||, < a. It follows that, for any § € (0,1 —
1)
2 bl

P(IE" ~ Elleo > 27) < P(E I > 2717,
By Markov’s inequality and the bound in (3.20), we see that
P(1E" = &l > 270) 5 22774729,
and the Borel-Cantelli lemma then implies that, almost surely,
6" — &l S 277, (3.21)

where the implicit multiplicative constant is a random variable that does not depend on n. It
follows from (3.19) and (3.21) that

" — @llo S 27 (3.22)

Let p’ €(p,3) and ¢’ € (g,2) such that §+ % > 1. Using interpolation, the fact that
sup,en 19"l < ll@llg> and the bound in (3.22), we have that, almost surely,

q q
o 1-5 —n5(1—%)

-5
o™ = @llg < lle" =@l " 6" =@l S llg" —plls © 2 (3.23)

N Aq 26202 SW(/ZTTT0T/10p/L00"A8| 1M AReiq) U UO"O0SUTRWIPUO//ScY WOy pepeojumod °€ ‘G202 ‘0SLL69YT

5UBD17 SUOLILLOD BANES1D 3|gel|dde auy Aq pausenob ae sapiLe YO ‘8sn Jo sajni Joy Ariq17auljuQ 481 UO (SUOTIPUOI-PUe-SLB) WD A3 | IM AReId 1[pUI|UO//SANY) SUORIPUOD pUe WS | 8U) 89S *[G202Z/60/ST ] U0 Arid1T auljuQ AS|IA PUIO|



34 of 51 | ALLAN ET AL.

We also have from Lemma 3.9 that, for almost every w € Q, the sample path W(w) satisfies Prop-
erty (RIE) relative to p and (P}'(@)),en- Thus, by Proposition 2.12, for almost every w € €, the
sample path L(w) satisfies Property (RIE) relative to p and (P"(w)),,cn, Which establishes part (i).

Since the sample paths of W are almost surely %—Hdlder continuous, it is straightforward to see
that

IW" =Wl $2 7,

where the implicit multiplicative constant depends on the (random) Hoélder constant of the path.
Since L = W + ¢, we have that

IL" = Llloo S IW" = Wlig + ll9" = @l S 277 +27".
We recall from (3.17) that

<2309 _ G

/0W3®dwu—/owu®dwu

o]

foranyy € (0, %). We obtained a bound for ||¢" — ¢||s in (3.23), and an analogous argument also
shows that

p p
1-= —n(-

1-£ b 1
7 7 = _,)
W' =Wy <IIW"'=Wl, " IW" =W, SIW"'=Wl," $2 "7 /.

Using the standard estimate for Young integrals (see, e.g., [22, Proposition 2.4]), similarly to the
proof of Proposition 2.12, we then obtain

H/ LZ®dLu—/Lu®dLu
0 0 oo

5”/ WZ@qu—/Wu@)qu
0 0

+ W =Wy llelly + 19" = el AW, + llell,)

)

1 1.1y _sq 4
<27"GT 4G p a0y,

Hence, by Theorem 2.3, we establish the estimate in part (ii). [
In the following remark, we briefly discuss a-stable Lévy processes.

Remark 3.10. Suppose now that L is an a-stable Lévy process for some « € (0, 2]. That is, for all
a > 0, there exists ¢ € R? such that

d 1
(Lap)iejor) = (@ Ly + ct)gpor)s

d
where we write X = Y to mean that X and Y have the same distribution; see, for example, [10,
Proposition 3.15]. We now distinguish two cases:
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In the case when o = 2, L is a-stable if and only if it is Gaussian, that is, its characteristics
are given by (4, Z, 0); see, for example, [10, Proposition 3.15]. It can thus be decomposed into the
sum of a Brownian motion W with covariance matrix X, and a linear drift term: L, = W, + At, for
t € [0,T]. In this case, the SDE (3.1) driven by L can therefore be reformulated as an SDE driven
by W by simply absorbing the linear drift term At into the drift of the SDE, and the resulting
equation can then be treated as in Corollary 3.5.

In the case when a € (0, 2), L is a-stable if and only if its characteristics are given by (4,0, v)
(i.e., L = ¢ for some ¢ of the form in (3.15)), and there exists a finite measure p on S, a unit sphere
on RY, such that

0 d
we = [ [ 100 e

for all Borel sets B on RY; see, for example, [10, Proposition 3.15].

We then have that /I xl<1 [x]9v(dx) < oo for q > «a, and in particular that almost all sample paths
of L are of finite g-variation for g € (a,2) if « € [1,2), and are of finite 1-variation if & < 1. This
then fits into the setting of Proposition 3.8, and, since there is no Gaussian term, the resulting
error estimate for the associated Euler scheme reduces to

IY" =Y, < c(z‘”(l‘q_l’> + 2‘”5(1‘%(1‘?)), nen,

Of course, in this case, it is not necessary to utilize the rough path framework, since the inte-
gral /Ot o(s,Y,_)dL, in (3.1) can be defined as a pathwise Young integral, and by discretizing this
integral, one could derive pathwise results using stability estimates for Young integrals.

3.4 | Cadlag semimartingales

In this section, we consider the case when X is a general cadlag semimartingale. As noted in
Remark 3.7, to hope for pointwise convergence of the Euler scheme, we need to ensure that the
sequence of partitions exhausts all the jump times of X. With this in mind, for each n € N, we
introduce the stopping times (7)) enugop such that 7 = 0, and

re=inf{t >7) lt—-1_ | +1X; _Xfﬁ_ll >27"AT, k eN. (3.24)

We then define a sequence of adapted partitions (Py) ey by
Py ={r; : k e NU{0}}.

Note that, for almost every w € Q, (Pg(w)),ey is @ sequence of (finite) partitions with vanishing
mesh size. The next result verifies that X satisfies Property (RIE) relative to any p € (2,3) and
(P¢)nen» and establishes the rate of convergence of the associated Euler scheme.

Proposition 3.11. Let p € (2,3), and let X be a d-dimensional cadlag semimartingale. Let Y be the
solution of the SDE (3.1) driven by X, and let Y" be the corresponding Euler approximation along
P)"(, as defined in (2.5).
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(i) For almost every w € Q, the sample path X(w) satisfies Property (RIE) relative to p and
(Pg(@))pen-

(ii) Foranyp' € (p,3)andq € (1,2)such thati + % > 1,andanyc € (0, 1), there exists a random
variable C, which does not depend on n, such that

_n(1-1 —n(l—e)(1-2
IY" =¥,y <c@ ™0 427" e, (3.25)
and
1
IY"=Y|; <C27"G™®, nen. (3.26)

Proof.

(i) The proof is just a slight modification of the proof of [2, Proposition 4.1], and is therefore
omitted here for brevity. It is actually slightly easier, as here we do not require the sequence
of partitions to be nested, and the sequence of stopping times in (3.24) is constructed to ensure
that the mesh size vanishes, even if X exhibits intervals of constancy.

(ii) By the definition of the partition PZ, it is clear that

IX" = Xl <27

By an application of the Burkholder-Davis—-Gundy inequality and the Borel-Cantelli lemma,
as in the proof of [31, Proposition 3.4], one can show that

/ X" @dx, - / X, ® quH <271-9 peN,
0 0 IS

where the implicit multiplicative constant is a random variable that does not depend on n.
It thus follows from Theorem 2.3 that

_n(1-1
IY" = Ylls < IY" =Y, 2777 42

-n(1-5) + 2—n(1—£)(1—§)’
which leads to (3.25). Choosing p sufficiently close to 2, p’ to 3, and g to % and replacing ¢ by
3¢, then reveals (3.26). O

4 | APPLICATIONS TO DIFFERENTIAL EQUATIONS DRIVEN BY
NON-SEMIMARTINGALES

While in the previous section, we considered SDEs driven by various classes of semimartingales,
like the general theory of rough paths, the deterministic theory developed in Section 2 is not lim-
ited to the semimartingale framework. In this section, we investigate Property (RIE) in the context
of “mixed” and “rough” SDEs. The main insight is again that the random driving signals of these
equations do, indeed, satisfy Property (RIE), and thus, the pathwise convergence results regarding
the Euler scheme, as presented in Theorem 2.3 and Proposition 2.13, are applicable.

Further examples of stochastic processes that fulfill Property (RIE) almost surely include p-
semimartingales (also known as Young semimartingales) in the sense of Norvai$a [34], as well
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as typical price paths in the sense of Vovk, relative to suitable sequences of adapted partitions.
The pathwise convergence of the Euler scheme is thus immediately applicable to differential
equations driven by such p-semimartingales [30] and typical price paths [5].

4.1 | Mixed stochastic differential equations

Differential equations driven by both a Brownian motion as well as a fractional Brownian motion
with Hurst parameter H > % are classical objects in stochastic analysis; see, for example, [33, 41].
More precisely, a “mixed” stochastic differential equation (mixed SDE) is given by

t t t
Y, =Y +/ b(s,Y,)ds +/ 0,05, Y,)dW, +/ 0,(8,Yy) de, t €[0,T], (4.1)
0 0 0

where b € C;(RF1;RK), o) € CRRM L(RT;RY)), 0, € CHRMY L(RE;RY)) and y, € RE.
Here, W is a d;-dimensional standard Brownian motion, and wWH is a d,-dimensional fractional
Brownian motion with Hurst parameter H > % which are independent and both defined on a
filtered probability space (Q, F, (F;);e[o], P) satisfying the usual conditions.

The mixed SDE (4.1) lies outside the semimartingale framework, but there are various ways to
provide a rigorous meaning to its solution. Here, we consider the mixed SDE (4.1) as a random
RDE, driven by the It6 rough path lift of (W, W), the existence of which follows from Lemma 4.1
below. In particular, it then follows from Theorem 2.2 that there exists a unique solution Y to (4.1).

Lemma 4.1. Let W be a standard Brownian motion, and let WH be a fractional Brownian motion
with Hurst parameter H € (%, 1). Let p € (2, 3) such that % +H>1andlet P" ={0 = t(’)‘ <t <
- < tl’\’]n =T}, n € N, be a sequence of equidistant partitions of the interval [0, T}, so that, for each

-4
n € N, there exists some 7, > 0 such that t' | —t! = m, foreach 0 <i <N,. If 7, P log(n) - 0
as n — oo, then, for almost every w € Q, the sample path (W (w), WH (w)) satisfies Property (RIE)
relative to p and (P"),,en-

Proof. We first note that the process (W, 0) satisfies the hypotheses of Theorem 3.2, and thus that
almost all of its sample paths satisfy Property (RIE) relative to p and (P"),,cy- Let Il{ <g<q <2

such that % + ? > 1. Since i < H, it is well known that the sample paths of (0, WH) are almost
surely é-Hélder continuous, and hence that ||[W|| g < 00. Writing WH™ for the usual piecewise
constant approximation of W along P", we have by interpolation that

1-4 kA 1-4
W — Wi, < (W —wh g wihn - w8 < pwin —wi ¥ — o

as n — oo. The result then follows by applying Proposition 2.12 to (W, 0) + (0, W). O

Of course, since here we consider Hurst parameters H > % the trajectories of WH have in
particular finite g-variation for any g € (%,2), so we could alternatively define the integral

fot 0,(s,Yy) de in (4.1) as a pathwise Young integral, and by discretizing this integral one could
in principle derive analogous pathwise convergence results; cf. Remark 2.15.
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4.2 | Rough stochastic differential equations

Rough stochastic differential equations (rough SDEs) are differential equations driven by both a
rough path and a semimartingale. These equations first appeared in the context of robust stochas-
tic filtering — see [11, 15] — and were recently studied in a general form in [18]. In this section, we
will adapt the setting of [15], which allows to treat Holder continuous rough paths and Brownian
motion as driving signals.

Welet7 : [0,T] — R< be a deterministic path that is %-H(’)’lder continuous for some p € (2, 3),
and which satisfies Property (RIE) relative to p and the dyadic partitions (P}),cn, as defined in
(3.9). We write n = (n', %) for the canonical rough path lift of 7, with 5? defined as in (2.7), so
that ni[ = f; N5 @ dn, for each (s, 1) € Ap. We also let W be an R®-valued Brownian motion.
For vector fields a € Ci(Rk; RK), b e Cg(IRk; L(RYRF))and e € C;(Rk; £(R¢; R¥)), and an initial
value y, € R¥, we then consider the rough SDE

t t t
Y, =Y +/0 a(Yy)ds +/o b(Y,)dn, +/0 c(Yy)dw, t €[0,T]. (4.2)

To give a rigorous meaning to the rough SDE (4.2), following the method introduced in [15], we
need to construct a suitable joint rough path lift A(w) above the R%*¢-valued path (5, W(w)) for
almost every w € Q. Indeed, the (pathwise) unique solution to the random RDE

t t
Y, =90+ / a(v,)ds + / (b,e)Y)dA, e[0Tl
0 0

is then defined to be the solution to the rough SDE (4.2).

To construct the It6 rough path lift of (, W), we need the existence of the quadratic covariation
of 7 and W along the dyadic partitions. More precisely, writing P} = {0 = ¢ < ¢} < - <}, =T}
with tZ = k27"T, we need to establish that, for almost every w € Q, the limit

(n, W(w)), := nh_,n.}o 1;) 77{]'(‘/\[,!;(‘“/\[ ® WtZAt,tZ+lAt(w) (4.3)

exists and holds uniformly for ¢t € [0, T].

Lemmad4.2. Leta € (0,1],letn : [0,T] - R be an a-Holder continuous deterministic path, and let
W be a one-dimensional Brownian motion. Then, for almost every w € Q, the quadratic covariation
of 1 and W(w) along the dyadic partitions, in the sense of (4.3), exists, and satisfies (n, W(w)); = 0
forallt € [0,T].

Proof. We consider the discrete-time martingale givenby t — Y, . o <t i 1Wf" o fort € PJ,
+

for some fixed n € N. By the Burkholder-Davis-Gundy 1nequa11ty, we have that

2
2n—1 2n—-1
— _4n
B 2 e, W, <El2<’7tzrzﬂ G, ]— 2 Oy Y60 = 1)
o0

k+1\

2”
Z (tk+1 tn)1+2a < (2 nT)Zoc Z (tk+1 _ tll;l) < y—2na
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For any € € (0, 1), we then have, by Markov’s inequality, that

—na(l—e) —2nae
P Z ngn W n > 27 <2
e, b tk b ~ ’

k+1\ ©

and the Borel-Cantelli lemma then implies that

Z 7)[;1 i th n S 2_"“(1_5),

e ket
e S o

where the implicit multiplicative constant is a random variable that does not depend on n.

Foragivent € [0,T] and n € N, let k, be such that ¢t € [t” t{(‘ +1] Since 7 is a-Holder contin-

uous, and the sample paths of W are almost surely B-Holder continuous for any § € (0, %), we
have that

_ sna+f —n(a+p)
|77tZ0,tWr;jo,z| S tko) S2 .

‘We thus have the bound

-1

n n < z nin nin + n W
Z Nenaee?, At t ALER A S . Nenen tk o |77tk0,t tko,tl
ke tk+1\

< 2—nc¢(1—£) + 2—n(o¢+ﬁ)’

where the implicit multiplicative constant is a random variable that does not depend on ¢ or n. It
follows that, almost surely,

2"—1

Z’?t"/\tz" At t"/\tt}’: at — 0 as n — oo,

uniformly for ¢t € [0, T]. O

It is shown in [15, Theorem 1], with integrals defined in the Stratonovich sense, that an analo-
gous object to the process A described in (4.4) below provides a geometric rough path lift of (n, W).
In the next theorem, we establish that A is the It6 rough path lift of (, W), and, moreover, that
it may be obtained as the canonical lift via Property (RIE), thus making our convergence analysis
of the Euler scheme applicable to the rough SDE (4.2).

Theorem 4.3. Let p € (2,3). Letn be a %-H()'lder continuous R-valued path that satisfies Prop-
erty (RIE) relative to p and the sequence of dyadic partitions (Pp) ey, and write ) = (n*, %) for the

canonical rough path lift of 1, so that n* = 7, and nst f Nsu @ dn,, defined as in (2.7), for every
(s,t) € Ap. Let W be an Ré-valued Brownian motion, and write W = (W, W) for the It0 rough path
lift of W, so that Wy, = fst W, ® AW, defined as an It integral, for every (s,t) € Ar.
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For any p' € (p,3) and almost every w € Q, the R%*°-valued path (n, W(w)) satisfies Property
(RIE) relative to p" and (P}}) e

Moreover, for almost every w € Q, the canonical rough path lift A(w) = (Al (w), A%(w)) € R¥+¢ @
R(d+e)xd+e) of (n. W (w)) (constructed via Property (RIE) as in (2.7)) is given by Al (w) = (1, W (w)),
and

2 _ n?,t fst ns,u ® qu)

S,t < t T (44)
Ws,t ® 77s,z - (/s 77s,u ® qu) Ws,t

forevery (s,t) € Ay, where fst N5 ® AW, is defined as an It6 integral, and ()T denotes matrix trans-
position.

Proof. Let p’ € (p,3). It follows from the Kolmogorov criterion for rough paths (see [17,
Theorem 3.1]) that, for almost every w € Q,

([ o)

and moreover, that A(w) = (Al(w), A%(w)) is a i,-Htilder continuous rough path. We will show

2

S |t—s|? forall (s,t) € Ap, (4.5)

that (5, W(w)) satisfies Property (RIE), and that the associated canonical rough path is indeed
given by A(w).

Step 1. As usual, we let " and W" denote the piecewise constant approximations of 7 and W,
respectively, along P[. By assumption, 7 satisfies Property (RIE) relative to p and (P}),en- By
Proposition 3.2 (or Proposition 3.6), for almost every w € Q, the sample path W(w) also satisfies
Property (RIE) relative to p and (P}),.en-

It follows from the first condition in Property (RIE) for # and W(w) that, for almost every w €
Q,

0", W'(w)) — (n, W(w)) uniformlyas n — oo,
so that this condition also holds for the pair (n, W(w)). Moreover, it follows from the second condi-

tion in Property (RIE) that fo. 7, ® dn,, converges uniformly to /o. 7, ® dn,, and, for almost every
w € Q, that (f; W ® dW,)(w) converges uniformly to ([, W, ® dW,)(w).

By the Burkholder-Davis-Gundy inequality, and the observation that ||n" — ||, S 2 7, we

have that
. . T
[E[/n3®qu—/nu®qu / n5s — 1, |° du
0 0 0

Foranye € (1 — %, 1), it then follows from Markov’s inequality that

P(H/ nZ®qu—/nu®qu
0 0

2

2n
] SE S2 v,

o)

> 23(”)> < 2",
[se]
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The Borel-Cantelli lemma then implies that, for almost every w € Q,

”(/O’nmdwu—/o‘nu@dwu)(w)

for all n € N, and, in particular, that ( fo. 7 @ dW,,)(w) converges uniformly to ( fo‘ 7, @ AW, )(w)
asn — oo.

Let us write P;) = {0 = ¢} <t} <. <t}, =T}forn €N, where tZ = k27"T. It is straightfor-
ward to verify that, for any t € [0, T],

< 27309 (4.6)

(9]

t t T
Wz®m=/0 W{Z®dnu+</0 77;’®qu> +(W, )},

where, by Lemma 4.2, the discrete quadratic variation (W, n)}! := in::)l Wt]’; ALLE AL ® DALy At
almost surely converges uniformly to (W,n), = 0 as n — co. We then see that, for almost every

w€E Q,

t t U
/ WZ(OJ) Qdn, — Wiw)®n, — </ Nu ® qu) (@)
0 0

asn — oo, uniformlyin ¢ € [0, T]. We have thus established that, for almost every w € Q, the path
(n, W(w)) also satisfies the second condition of Property (RIE), and moreover, that the resulting
canonical rough path is indeed given by (4.4).

Step 2. It remains to show that (7, W(w)) satisfies the third condition of Property (RIE) relative
to p’ and (P}}) pen-

Since 7 satisfies Property (RIE) relative to p and (P[),e, there exists a control function w
such that

7

- :
175, 1? I/[n 7, ® dn, — 77:,'(1 ® 77[,’(',[;|2
- ; +sup sup £ T <1, 4.7)
(s,H)eAr wr)(sa ) neN 0gk<£2n wn( K’ f)

which implies that the same inequality also holds with p replaced by p’ (possibly with a different
control function, but without loss of generality, we may assume that w, remains valid for p).
Similarly, since for almost every w € Q, the sample path W (w) satisfies Property (RIE) relative to
p (and therefore also to p) and (P}}),,c» there exists a control function ¢ such that

t" o
W (@) Iy Wi ® AW, =Wy ® Wi (@) 2
\ +sup sup — <L (4.8)
(s,H)eAr C(S, t) neN ogk<£<2n C(tk’ t/)

Step 3. Let 8 € (0, %). Since 7 is %-Hélder continuous, and the sample paths of W are almost
surely 3-Holder continuous, we have that

1

L1+8
QW +1nn QW — QW = QW S et =t P

mt{il Hotf 77tin ot nt{l—l t{l—l’tin+1| |y)linfl’tin tin’tinﬂl S| i+1 l—ll
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foranyi =1,...,N, — 1, where the implicit multiplicative constant is a random variable, and we
can follow the proof of [31, Lemma 3.2] to deduce that, for almost any fixed w € Q, forany k < #,
and writing N = 7 — k = 2"t} — ]|T~,

t 12 2 an?)
</t 77{}®qu>(60)—7%;; ®Wunm(@)| SN 2tz —tile 527 °llty =],

k
where 2 = 1 + .
pPp

4
Lete e (1— %, D.If27" > |17 — 1| 70-9), then

t " n_ o l-s(1-2)
" n, ® AW, J(w) — Nen ® Wt,’jt;l(w) S, —g | et el
k

4
p(1—e)
to % -1= % + 23 — 1. By then choosing 3 close to %, we can make this value arbitrarily close to %

By choosing ¢ close to 1 — %, we can make the above exponent 1 — a- %) arbitrarily close

from below. In particular, by making suitable choices of € and 3, we can ensure that 1 — o 14 = a-
3) = % and we obtain
P’ D
7 2
/ 77;1 ®dW, J(w) — Nen ® th,t;(w) S Il‘Z - tZ' . (4.9)
[Yl
k

_4
We will now aim to obtain the same estimate in the case that 27" < |t;} — tZ | P0-2)  with € chosen
as above. Recalling (4.5) and (4.6), we have that

i
’(/ 773 ® qu)(w) - Ut; ® Wt;;‘,t;(w)’
tn

k

" " th
= </fn;1®qu>(w)_ (/”nu®dwu)(w)+ </’nu®qu>(w)—’7r;:®Wt;:,t;(‘°)
0 o 0
. . t;
</ meaw- [ nu®dw><w> AT TR
0 0 i

: 2
272079 g

<2

(s

2
o

n n
Sl =g 9.

Combining this with (4.9), we conclude that

" 4
|(f[£,f 7]Z ® dW,)(w) — 77[; ® W[Z,[;(w)l 2

VA
=

sup sup (4.10)

neN ogk</<2n C(w)lt; - t;{’|

for a suitable random variable C.
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Step 4. Forany n € Nand 0 < k < Z < 2", it is straightforward to verify that

th -1

2 _ ‘ E
|77t1’{‘,t;| = 2/1" 77:%, -dn, + lz |77t" e 15
i =

2
where - denotes the Euclidean inner product. It follows from (4.7) that |77:£,z; 12 < w,?(tl';, t;) r" and
that

g
| fol My A0l 2

sup sup S
neN ogk<£<2n w*)(t;’ t;
from which we then have that

/

i
|Z |77t A 1] 2
sup  sup

neN 0gk<s2n 77( k’ t?) ~

The same argument holds for the sample paths of W, and since

-1 -1 -1

W S 2 W 1P+ X I 1P
2 Wi, @y, |5 2 W P+ 2 In |
i=k i=k i=k

we deduce that

M

-1
| 2k Wt” o ®7)zl” tl"1| <1 @
sup sup <1 .
neN osk<e<an Wy, t7) + et ty

2

By the Holder continuity of » and W, it is clear that |W,lr;’t; ® nt;{z,t?l |7 — 1P P" so that

?

(W e en ® 77t,’(',t2| 2

sup  sup Sl (4.12)
n n
neN 0gk</g2n It/ - tkl

Foranyn € Nand 0 < k < £ < 2", it is straightforward to verify that

t" t"

T
th o (024 Nen gn = th ® d??u + 771" ® qu + E W[." t." 0% Nengn
k¢ k¢ [;: P [Z L = i+

i+l

Recalling (4.10), (4.11), and (4.12), we thus have that

Iftn ®dnul E

sup sup <1
neN 0gk<£2n ( k’t;)
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for a suitable random control function . Combining this with (4.7), (4.8), and (4.10), we conclude
that, for almost every w € Q, the path (5, W(w)) indeed satisfies the third condition of Property
(RIE). 0

Remark 4.4. A joint rough path lift of (, W) is constructed in [15, Section 2] that allows (4.2) to
be treated as a rough Stratonovich SDE. Since the construction of the joint lift A above is based
on a piecewise constant approximation, as in Property (RIE), rather than on linear interpolations
as considered in [15], Theorem 4.3 provides a joint It6-type rough path lift of (y, W), and thus, an
It6 interpretation of the rough SDE (4.2), consistent with that in [18].

APPENDIX A: PROOF OF THEOREM 2.2
Proof of Theorem 2.2. Step 1. Let L > 0 such that ||Al|,, [|Hl,, IX|l, < L, and let w : Az — [0, 00)
be the right-continuous control function given by

r r p
w(s,6) = AN + IHI o+ IX]

+ ||X|| for (s,t) € Ar.

Nl't; [SYist

psls,t]

-
=,

For t € (0,T], we define the map M, : V' ([0,1];R¥) - VL' ([0,];RF) by
MY, Y = (yo + [ batvyda+ [ ot v ax, e, Y)>,
0 0

and, for § > 1, introduce the subset of controlled paths

B = { (v, Y) € VE (10, LR : (Yo, Y}) = G, oo, 3, 1Y, YD) <1,

where

)
Y, Y1), 2= 1Y g 0. + SIRY Iy o0

Applying standard estimates for Young and rough integrals (e.g., [22, Proposition 2.4 and
Lemma 3.6]), for any (Y,Y’) € Bga)’ we deduce that

[
1M YOS, < o5+ 8QAlL o + IHIL o0 + 1Ko, ),

for a constant C; > % which depends only on p,q,r, [|b|-2, lo|l3, and L. Let § = §; := 2Cq, so
b b
that

MY, YDIEY, < 3+ 230,07 +w(, 07 +w(0, 7).

By the right continuity of w, we can then take ¢ = ¢; sufficiently small such that

(61

”Mtl(Y Y/)”er X L

and we have that Bgfl) is invariant under M, .
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Step 2. Let (Y,Y"),(Y,Y") € Bg‘s), for some (new) § > 1 and ¢t € (0, t;]. Applying standard esti-
mates for Young and rough integrals (e.g., [22, Proposition 2.4, Lemma 3.1 and Lemma 3.7]), we
deduce that

IM(Y,Y") = M(T, 7))

X,q.r

<Co(IRY = RVl o, + 81 = llg o1 + IRV = RVl o, DUAIL o1 + Xl 0. )

where C, > % depends only on p,q,r, [|bl|c2, llo]l-3 and L. Let § = §, := 2C, > 1, so that
b b

= v (6
IM, (Y, Y") = MU(T, TG

52 v
< SIRY =RV o,

~ & 1 1 2
+2C5UY" = V' llg o, + IR = RV [l 0, D((0, )7 + w(0, ) + w(0,1)7).

Again by the right continuity of w, we then take ¢t = t, < t; sufficiently small such that

~ o~ ) 1 ~ 5 +1 &
1M, (YY) = M (T IO < SIY = Pl o) + =5 IR =RVl o

6, +1
<22

N _ (T o1y (62)
50 =TI,

from which it follows that M, is a contraction on the Banach space (Bffl), Il - II§?2q)r). The fixed
point of this map is the unique solution of the RDE (2.2) over the time interval [0, ¢,].
Step 3. Nowlet A € D%, H € D%, X = (X,X) € DP and 3, € R", such that || A||,., || H ||, X[, <

L. By considering instead the control function w given by

p
— p 2
5, 0) = AN gy + IHI g + 1K g I
~ ~ Sip _ P
r r
A g+ I g IR g + IR o for (50 € 8,

it follows from the above that there exist unique solutions (Y,Y’) € Vg’r([o, t,;Rand (Y,Y") €
V}q?’r([O, 61 RK) of the RDE (2.2), with data (A, H, X, ¥o) and (4,H,X, ¥o), respectively, over a suf-
ficiently small time interval [0, t,]. Standard estimates for Young and rough integrals (e.g., [22,
Proposition 2.4, Lemma 3.1 and Lemma 3.7]) imply, after some calculation, that for any § > 1 and
t €(0,t,],

IY" =¥ llg 0.1 + SIR" = R¥ Il o,
< C3(Iyo = Fol + 1Ho = Hol + I1H = Hllp o, + IR =R I o,

+ 5(”14 - ler,[O,t] + ”X;Xllp,[o,t])
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+8(1yo = Fol + [Ho = Hol + 1H = Hll, o + 1Y = 'llg o, + IR = RVl o)
X(”A”r,[o,t] + ”X”p,[OJ]))’

where C; > 0 depends only on p, gq,r, ||b|| -2, ||loll-3 and L. Let § = §; := C5 + 1, so that
b b

1Y =Y Nlg 0.1 + IRY =Rl [0,
< Cs(lyo — Yol + [Hy — Hol + |\ H — Hl|,.[o,. + 85(I|A _gl|r,[0,t] + ||X;)~(||p,[o,t])

+83(1y0 = Jol + 1Ho = Hol + IH = Hll, o, + 1Y = ¥ llg 0. + IRY = RVl 0,)
1 1 2
X(w(0,)r +w(0,t)r + w(0,t)r )>.

By taking t = t5 < t, sufficiently small, we deduce that

1Y = Y061 + 1Y =Y N0 + IRY =R Ml jo.,)
(A1)
< C4<|yo — Yol + |Hy — Hy| + ||H _H“r,[O,t3] + 14 _A”r,[O,t3] + ||X;X||p,[0,[3])’

for a new constant Cy, still depending only on p, q,7, ||b|| 2, ||o|| 3, and L.
b b

Step 4. We infer from the above that there exists a constant £ > 0, which depends only on
P, 4.7, |Ibllc2, lloll o3, and L, such that, given initial values Yy, Y, € R¥, the local solutions (Y, Y”)
b b

and (Y, Y") established above exist on any interval [s, t] such that w(s, t) < €. Moreover, these local
solutions satisfy an estimate on this interval of the form in (Al).

By [22, Lemma 1.5], there exists a partition P ={0=1t,<t; <:- <ty =T}, such that
w(t;, t;,—) < € for every i = 0,1,...,N — 1. We can then define the solutions (Y,Y”) and (Y, Y")
on each of the half-open intervals [£;, f;,,). Given the solutions on [t;,#;,,), the values Y, and
th at the right end point of the interval are uniquely determined by the jumps of A, A, X and X
at time t; ;. We thus deduce the existence of unique solutions (Y, Y”) and (Y,Y") of the RDE on
the entire interval [0, T].

Since w is superadditive, we have that

w(ty, ty—) +w(ty—, t) +w(ty, t,—) + - +Fwty_;, ty—) + wlty—, ty) <w(0,T).

It is then straightforward to see that the partition 7 may be chosen such that the number of par-
tition points in 7 may be bounded by a constant depending only on € and w(0, T). Thus, we may
combine the local estimates in (A1) on each of the subintervals, together with simple estimates on
the jumps at the end points of these subintervals, to obtain the global estimate in (2.3). O

APPENDIX B: THE CONVERGENCE OF PIECEWISE CONSTANT APPROXIMATIONS
In the following, we adopt the notation

liminf P" := U ﬂ pr

meN n>m
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for the times ¢ € [0, T] which, as n — o0, eventually belong to all subsequent partitions in the
sequence (P"), <. The following proposition generalizes the result of [2, Proposition 2.14] so that
the sequence of partitions is no longer assumed to be nested.

Proposition B.1. Let P" = {0 =t} <t <-- <ty =T} n €N, be a sequence of partitions with
vanishing mesh size, so that |P"| - 0asn — oo. Let F : [0,T] = RY be a cadlag path, and let

N,—1
F[n = FTI{T}(t) + Z F[;I[IZ’[ZH)(’:)’ te [O, T],
k=0

be the piecewise constant approximation of F along P". Let
Jp :={te(0,T] : F,_ #F}

be the set of jump times of F. The following are equivalent:

(i) Jp Climinf,_  P",
(ii) the sequence (F™), < converges pointwise to F,
(iii) the sequence (F"),cy converges uniformly to F.

Proof. We first show that conditions (i) and (ii) are equivalent. To this end, suppose that J C
liminf, ,  P"andlett € (0,T]. Ift € Jp, then there exists m > 1 such thatt € P" foralln > m.
In this case, we then have that F}! = F, foralln > m.Ift & Jp, then F is continuous at time ¢, and,
since the mesh size |P"| — 0, it follows that F[” — F,asn — oo.

Now suppose instead that there existsa t € Jp such that ¢ ¢ liminf,_,  P". Then there exists a
subsequence (n;) ¢y such that F tn ! - F,_as j — oo.Since F,_ # F,, it follows that F/' - F,. This
establishes the equivalence of (i) and (ii).

Since (iii) clearly implies (ii), it only remains to show that (ii) implies (iii). By [16, Theorem 3.3],
it is enough to show that the family of paths {F" : n € N} is equiregulated in the sense of [16,
Definition 3.1]. That is, we need to show that, for every t € (0,T] and ¢ > 0, there exists a u €
[0,¢) such that |F — F} | < ¢ for every s € (u, ) and every n € N, and moreover, that for every
t €[0,T)and € > 0, there exists a u € (¢, T] such that |F — F}!| < ¢ for every s € (¢, u) and every
neN.

Step 1. Let t € (0,T] and € > 0. Since the left limit F,_ exists, there exists § > 0 with t — § > 0,
such that

|F,—F,_| < % forall se(t—3,0).

Since |P"| — 0 as n — oo, there exists an m € N such that, for every n > m, there exists a
partition point ¢}’ € P" such thatt -6 <t <t — g.

Let
u '=max<<t—é t> N U P”)
. 2’ b
n<m

where here we define max(@) :=t — g.
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Take any s € (u,t) and any n € N. Let i = max{k : t;‘ < s} and j = max{k : tg < t}, so that
Fl = Fyn and F! = Ft;z.

If n > m, then there exists a point tZ € P"suchthatt —6 < t]’{‘ <t-— g < u < s, and it follows
that tl.”, t;l € (t —4,t). If instead n < m, and if there exists a partition point tl’{‘ e(t— g, t), then
t— g < t,’z < u < s, and it again follows that tlf“, t;‘ € (t — 4, t). In either case, we then have that

3
2

€
|F{ —F|= |Ftl" _Ft;‘| < |le” —F_|+ |Fz;’ —F_| < z"‘ =¢.
The remaining case is when n < m but (t — g, t) N P" = @. In this case, the path F" is constant

on the interval [t — g, t) and, since s € (t — g, t), we have that F! = F" .

In each case, we have that |F]! — F}' | <¢foralls € (u,t) and alln € N.

Step 2. Lett € (Jp U{0}) \ {T} and ¢ > 0. Since F is right-continuous, there exists a § > 0 with
t +3d < T,such that

|Fy—F;| <¢€ forall se |t t+9).

Since condition (ii) implies condition (i), we know that ¢ € liminf,,_, , P", so that there exists an
m € Nsuch thatt e n,.,, P". Let

U= min((t,t+5)ﬂ U Pn>,

n<m

nzm

where here we define min(@) :=t + 8.

Take any s € (t,u), and any n € N. Let i = max{k : tZ < s}, so that F! = Fin.

If n > m, then ¢t € P", so F|' = F, and, moreover, { < tl." <s<u<t+d, 86 that in particular
t! € [t,t + 5), and hence

|F? = FJ| = |Fjp = F/| <.
If n < m, then there does not exist any partition point ¢;' € (¢,u) N P". It follows that the path F"
is constant on the interval [¢, u), so that, in particular, F = F}".
In each case, we have that |F! — F{'| < ¢ forall s € (t,u) and all n € N.
Step 3. Let t € (0,T) \ Jr and ¢ > 0. Since F is continuous at time ¢, there exists a § > 0 with
O0<t—dandt+ & <T,such that
|FS—Ft|<§ forall se(t—46,t+9).

Since |P"| — 0asn — oo, there exists an m € N such that, for every n > m, there exists a partition
point #;’ € P" such thatt — & <t <t.Let

U ;= min <(t,t+5)n U P”),
n<m

where here we define min(@) :=t + 6.
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Take any s € (t,u) and any n € N. Let i = max{k : t,’z < s} and j = max{k : tZ < t}, so that
Fl = Fyn and F' = Ft;u.

If n > m, then there exists a point tZ € P" such that tZ € (t — 4,t), and it follows that t;“, t}“ €
(t—48,t+9),so that

|an—F[n|=|Fz!“_Ft’!|<|Ft,"_Fz|+|Fz’.’_Ft|<E+E=E-
i j i j 2 2
If n < m, then there does not exist any partition point ¢;’ € (¢,u) N P". It follows that the path F"
is constant on the interval [t, u), so that, in particular, F :‘ =F [’
In each case, we have that |[F! — F}'| < eforalls € (¢,u)and alln € N. It follows that the family
of paths {F" : n € N} is indeed equiregulated. O

Theorem B.2. Let p € (2,3),q € [p,o)andr € [B 2)suchtha1.‘l + l > 1and % + cl] = l and
lee Pt ={0=1ty <t} <-- <ty =T}n€N, beasequence of pamtlons with vanishing mesh size.

Suppose thatX satzsﬁes Property (RIE) relative to p and (P"),,cn, and let X be the canonical rough
path lift of X, as constructed in (2.7). Let (F,F') € V; be a controlled path with respect to X, and
suppose that J; C liminf,_,  P", where Jp is the set of jump times of F. Then the rough integral of
(F, F") against X is given by

N,—-1
/F dX = lim Ft"Xt"/\tt" /\t’
0

n—oo

where the convergence is uniformin t € [0,T].

The previous theorem generalizes the result of [2, Theorem 2.15] so that the sequence of par-
titions is no longer assumed to be nested. The proof of Theorem B.2 follows the proof of [2,
Theorem 2.15] almost verbatim. The only difference is that, rather than using [2, Proposition 2.14]
to establish the uniform convergence of F" to F, we can instead use Proposition B.1 (which does
not require the sequence of partitions to be nested).
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