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Abstract
The convergence of the first-order Euler scheme and
an approximative variant thereof, along with conver-
gence rates, are established for rough differential equa-
tions driven by càdlàg paths satisfying a suitable crite-
rion, namely the so-called Property (RIE), along time
discretizations with vanishing mesh size. This prop-
erty is then verified for almost all sample paths of
Brownian motion, Itô processes, Lévy processes, and
general càdlàg semimartingales, as well as the driving
signals of both mixed and rough stochastic differen-
tial equations, relative to various time discretizations.
Consequently, we obtain pathwise convergence in 𝑝-
variation of the Euler–Maruyama scheme for stochastic
differential equations driven by these processes.
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1 INTRODUCTION

Stochastic differential equations (SDEs) serve as models for dynamical systems that evolve ran-
domly in time, and are fundamental mathematical objects, essential to numerous applications in
finance, engineering, biology, and beyond. In a fairly general form, an SDE is given by
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𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝑠, 𝑌𝑠) d𝑠 + ∫

𝑡

0
𝜎(𝑠, 𝑌𝑠) d𝑋𝑠, 𝑡 ∈ [0, 𝑇], (1.1)

where 𝑦0 ∈ ℝ𝑘 is the initial condition, 𝑏∶ [0, 𝑇] × ℝ𝑘 → ℝ𝑘 and 𝜎∶ [0, 𝑇] × ℝ𝑘 → ℝ𝑘×𝑑 are coef-
ficients, and the driving signal 𝑋 = (𝑋𝑡)𝑡∈[0,𝑇] is a 𝑑-dimensional stochastic process that models
the random noise affecting the system.
Assuming that 𝑋 is a càdlàg semimartingale, such as a Brownian motion or a Lévy process,

and the coefficients 𝑏, 𝜎 are suitably regular, it is well known that (1.1) is well posed as an Itô SDE.
That is, ∫ 𝑡0 𝜎(𝑠, 𝑌𝑠) d𝑋𝑠 can be defined as a stochastic Itô integral, and the equation admits a unique
adapted solution𝑌 = (𝑌𝑡)𝑡∈[0,𝑇]; see, for example, [36].Unfortunately, such SDEs, includingmany
of those which appear in practical applications, can rarely be solved explicitly, which has led to
a vast literature on various numerical approximations of the solutions to SDEs; see, for example,
[29].
One of the most common approaches to numerically approximate the solution of an SDE is to

rely on a time-discretizedmodification of the equation. This type of discretization is implemented
in particular by the Euler scheme (also called the Euler–Maruyama scheme) and its higher order
variants. For the SDE (1.1), the (first-order) Euler approximation is defined by

𝑌𝑛𝑡 = 𝑦0 +
∑

𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝑏(𝑡𝑛
𝑖
, 𝑌𝑛
𝑡𝑛
𝑖

)(𝑡𝑛
𝑖+1
− 𝑡𝑛
𝑖
) +

∑
𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝜎(𝑡𝑛
𝑖
, 𝑌𝑛
𝑡𝑛
𝑖

)(𝑋𝑡𝑛
𝑖+1
− 𝑋𝑡𝑛

𝑖
), (1.2)

for 𝑡 ∈ [0, 𝑇], along a sequence of partitions 𝑛 = {0 = 𝑡𝑛
0
< 𝑡𝑛
1
< ⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}. Higher order

Euler approximations, such as the Milstein scheme, introduce additional higher order correction
terms in the approximation (1.2), which often involve iterated integrals of the driving signal 𝑋. In
general, the numerical calculation of the approximation𝑌𝑛 is carried out path by path,motivating
a pathwise convergence analysis of the Euler scheme and its higher order variants. Indeed, it is
well known that, for SDEs driven by Brownian motion, the (higher-order) Euler approximations
converge pathwise; see, for example, [7, 23, 27, 28, 39].
A fully pathwise solution theory for SDEs like (1.1) is provided by the theory of rough paths; see,

for example, [17, 21]. Loosely speaking, in our context, a rough path is pair 𝐗 = (𝑋,𝕏), consisting
of a deterministic càdlàg ℝ𝑑-valued path 𝑋, and a two-parameter càdlàg ℝ𝑑×𝑑-valued function 𝕏,
which satisfy certain analytic and algebraic conditions.Wewill workwith càdlàg rough pathswith
finite 𝑝-variation, in the regime with 𝑝 ∈ (2, 3), which includes in particular almost any sample
path of a general semimartingale 𝑋, in which case the corresponding rough path 𝐗 = (𝑋,𝕏) is
given by 𝕏𝑠,𝑡 = ∫ 𝑡𝑠 (𝑋𝑟− − 𝑋𝑠) ⊗ d𝑋𝑟 via stochastic integration.
Replacing the stochastic driving signal 𝑋 in (1.1) by a (deterministic) rough path 𝐗 = (𝑋,𝕏),

we obtain a so-called rough differential equation (RDE). Assuming sufficient regularity of the
coefficients 𝑏, 𝜎, the RDE (1.1) driven by a given càdlàg rough path𝐗 = (𝑋,𝕏) is well posed, in the
sense that ∫ 𝑡0 𝜎(𝑠, 𝑌𝑠) d𝐗𝑠 is defined as a rough integral, and the equation admits a unique solution
𝑌 = (𝑌𝑡)𝑡∈[0,𝑇]; see [22]. Moreover, if the rough path is, say, the Itô lift of a semimartingale𝑋, then
the solution of the resulting randomRDE is consistent with the solution of the corresponding SDE
driven by 𝑋. Both interpretations of the equation are thus essentially equivalent. Furthermore, in
contrast to classical SDE theory, rough path theory is not limited to the semimartingale setting,
and it comes with powerful pathwise stability estimates.
Rough path theory is intrinsically linked to the numerical approximation of SDEs — see, for

example, [4, 12]— and provides a transparent explanation for the pathwise convergence of higher
order Euler approximations and their modifications; see, for example, [14, 20–22, 32]. More pre-
cisely, the existence of a rough path lift of the driving signal is a sufficient condition for the
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THE EULER SCHEME FOR RDES AND SDES 3 of 51

pathwise convergence of higher order Euler schemes for RDEs, thus implying pathwise conver-
gence for the corresponding SDEs driven by, for example, semimartingales.However, the pathwise
convergence of the first-order Euler scheme— the most prominent numerical scheme for differ-
ential equations — cannot be explained by the rough path lift of the driving signal. Moreover, in
general, an Euler approximation cannot converge to the solution of an RDE driven by an arbi-
trary rough path, for at least two reasons: First, the Euler approximation for an SDE driven by a
fractional Brownian motion with Hurst index𝐻 < 1

2
fails to converge (see, e.g., [14]), and second,

while the rough path lift𝐗 = (𝑋,𝕏) of a path𝑋 is not unique, leading to potentially multiple solu-
tions of the RDE, the Euler approximation 𝑌𝑛 as defined in (1.2) is independent of the choice of
rough path, and can thus only converge to at most one such solution.
In the present paper, we clarify the gap between rough and SDEs from the perspective of numer-

ical approximation, by establishing the convergence of the first-order Euler scheme for RDEs
driven by Itô-type rough path lifts. More precisely, in Theorem 2.3, we obtain convergence in
𝑝-variation of the Euler scheme for RDEs driven by càdlàg paths satisfying a suitable criterion
— namely the so-called Property (RIE) — relative to a sequence of partitions with vanishing
mesh size.
Property (RIE) was first introduced in [35] and [2], motivated by applications in mathemati-

cal finance under model uncertainty. While, strictly speaking, it is a condition on a càdlàg path
𝑋∶ [0, 𝑇] → ℝ𝑑, it always ensures the existence of an Itô-type rough path lift 𝐗 = (𝑋,𝕏), allow-
ing one to treat (1.1) as an RDE. Using this fact, we will show that Property (RIE) is a sufficient
condition on the sample paths of a stochastic driving signal to guarantee the convergence of the
first-order Euler scheme for the corresponding SDE.We note, in particular, that the Euler scheme
converges surely on the set where the stochastic driving signal satisfies Property (RIE), which is a
stronger statement compared to the earlier results in [7, 23, 27, 28, 39], in which the set on which
the Euler scheme converges can depend on the coefficients 𝑏, 𝜎. A criterion forHölder continuous
rough paths, related to Property (RIE), was previously introduced by Davie [12], which also allows
one to obtain convergence of the Euler scheme for RDEs, and will be discussed in more detail in
Remark 2.4.
Exploiting the continuity results of rough path theory, in Theorem 2.3, we derive a precise error

estimate in 𝑝-variation for the Euler approximation of RDEs with respect to the discretization
error of the driving signal. The convergence rate is expressed transparently, in terms of the mesh
size of the approximating partition, and the approximation error of the discretized signal and
of its rough path lift. We also obtain an error estimate for the Euler approximation with respect
to pathwise perturbations of the driving signal; see Proposition 2.13. This latter perturbation is
motivated by so-called approximate Euler schemes for SDEs driven by jump processes; see, for
example, [13, 25, 38]. For instance, approximate Euler schemes are used for Lévy-driven SDEs,
since the increments of Lévy processes cannot always be simulated, and thus the increments of
the driving Lévy process need to be approximated by random variables with known distributions.
To obtain pathwise convergence of the Euler scheme in 𝑝-variation for an SDE, it is then suffi-

cient to verify that the associated stochastic driving signal of the equation satisfies Property (RIE),
almost surely, relative to a sequence of partitions; see Sections 3 and 4.Unsurprisingly, we find that
the more regular the driving signal is, the more general the sequence of partitions may be chosen.
Indeed, while the sample paths of a Brownian motion satisfy Property (RIE), almost surely, rela-
tive to sequences of partitions whosemesh size can converge to zero very slowly, the sample paths
of more general Itô processes satisfy Property (RIE), almost surely, relative to sequences of parti-
tions whosemesh size is of order 2−𝑛. For stochastic processes with jumps, such as Lévy processes
or general càdlàg semimartingales, one needs to ensure that the jump times are exhausted by the
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4 of 51 ALLAN et al.

sequence of partitions, which is a necessary condition, for both the Euler scheme to converge
pathwise, and for Property (RIE) to be satisfied by the driving signal.
The presented pathwise analysis of the first-order Euler approximation is not limited to SDEs

in a semimartingale setting. As examples, we consider mixed SDEs driven by both Brownian
motion and fractional Brownian motion with Hurst index 𝐻 > 1

2
, as in, for example, [33, 41], as

well as rough SDEs, which are differential equations driven by both a rough path and a Brow-
nian motion; see [18]. The latter equations are of interest, for example, in the context of robust
stochastic filtering; see [11, 15].
Organization of the paper: In Section 2, we prove the convergence of the Euler scheme for

RDEs assuming that the driving paths satisfy Property (RIE). In Sections 3 and 4, we provide
various examples of stochastic processes that satisfy Property (RIE) along suitable sequences of
partitions, making the established convergence analysis applicable to the corresponding SDEs,
and derive associated convergence rates.

2 THE EULER SCHEME FOR ROUGH DIFFERENTIAL EQUATIONS

In this section, we study convergence of the (first-order) Euler scheme for RDEs, which does not
rely on the Lévy area of the path, and is known to converge pathwise for certain classes of SDEs.
Before treating the Euler scheme, we will first recall some essentials from the theory of càdlàg
rough paths, as introduced in [19, 22].

2.1 Essentials on rough path theory

A partition  of an interval [𝑠, 𝑡] is a finite set of points between and including the points 𝑠 and 𝑡,
that is,  = {𝑠 = 𝑢0 < 𝑢1 < ⋯ < 𝑢𝑁 = 𝑡} for some 𝑁 ∈ ℕ, and its mesh size is denoted by || ∶=
max{|𝑢𝑖+1 − 𝑢𝑖| ∶ 𝑖 = 0,… ,𝑁 − 1}. A sequence (𝑛)𝑛∈ℕ of partitions is said to be nested, if 𝑛 ⊂𝑛+1 for all 𝑛 ∈ ℕ.
Throughout, we let 𝑇 > 0 be a fixed finite time horizon. We let Δ𝑇 ∶= {(𝑠, 𝑡) ∈ [0, 𝑇]2 ∶ 𝑠 ⩽

𝑡} denote the standard 2-simplex. A function 𝑤∶ Δ𝑇 → [0,∞) is called a control function if it is
superadditive, in the sense that𝑤(𝑠, 𝑢) + 𝑤(𝑢, 𝑡) ⩽ 𝑤(𝑠, 𝑡) for all 0 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡 ⩽ 𝑇. For two vectors
𝑥 = (𝑥1, … , 𝑥𝑑), 𝑦 = (𝑦1, … , 𝑦𝑑) ∈ ℝ𝑑, we use the usual tensor product

𝑥 ⊗ 𝑦 ∶= (𝑥𝑖𝑦𝑗)𝑖,𝑗=1,…,𝑑 ∈ ℝ
𝑑×𝑑.

Whenever (𝐵, ‖ ⋅ ‖) is a normed space and 𝑓, g ∶ 𝐵 → ℝ are two functions on 𝐵, we shall write
𝑓 ≲ g or 𝑓 ⩽ 𝐶g to mean that there exists a constant 𝐶 > 0 such that 𝑓(𝑥) ⩽ 𝐶g(𝑥) for all 𝑥 ∈
𝐵. The constant 𝐶 may depend on the normed space, for example, through its dimension or
regularity parameters.
The space of linear maps from ℝ𝑑 → ℝ𝑛 is denoted by (ℝ𝑑; ℝ𝑛), and we write, for exam-

ple, 𝐶𝑘
𝑏
(ℝ𝑚;(ℝ𝑑; ℝ𝑛)) for the space of 𝑘-times differentiable (in the Fréchet sense) functions

𝑓∶ ℝ𝑚 → (ℝ𝑑; ℝ𝑛) such that 𝑓 and all its derivatives up to order 𝑘 are continuous and bounded.
We equip this space with the norm

‖𝑓‖𝐶𝑘
𝑏
∶= ‖𝑓‖∞ + ‖D𝑓‖∞ +⋯ + ‖D𝑘𝑓‖∞,

where D𝑟𝑓 denotes the 𝑟th order derivative of 𝑓, and ‖ ⋅ ‖∞ denotes the supremum norm on the
corresponding spaces of operators.
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THE EULER SCHEME FOR RDES AND SDES 5 of 51

For a normed space (𝐸, | ⋅ |), we let 𝐷([0, 𝑇]; 𝐸) denote the set of càdlàg (right continuous with
left limits) paths from [0, 𝑇] to 𝐸. For𝑋 ∈ 𝐷([0, 𝑇]; 𝐸), the supremum norm of the path𝑋 is given
by ‖𝑋‖∞ ∶= sup

𝑡∈[0,𝑇]
|𝑋𝑡|,

and, for 𝑝 ⩾ 1, the 𝑝-variation of the path 𝑋 is given by

‖𝑋‖𝑝 ∶= ‖𝑋‖𝑝,[0,𝑇] with ‖𝑋‖𝑝,[𝑠,𝑡] ∶= ( sup⊂[𝑠,𝑡]
∑
[𝑢,𝑣]∈

|𝑋𝑣 − 𝑋𝑢|𝑝)
1
𝑝

, (𝑠, 𝑡) ∈ Δ𝑇,

where the supremum is taken over all possible partitions  of the interval [𝑠, 𝑡]. We recall that,
given a path𝑋, we have that ‖𝑋‖𝑝 < ∞ if and only if there exists a control function𝑤 such that†

sup
(𝑢,𝑣)∈Δ𝑇

|𝑋𝑣 − 𝑋𝑢|𝑝
𝑤(𝑢, 𝑣)

< ∞.

We write 𝐷𝑝 = 𝐷𝑝([0, 𝑇]; 𝐸) for the space of paths 𝑋 ∈ 𝐷([0, 𝑇]; 𝐸) that satisfy ‖𝑋‖𝑝 < ∞.
Moreover, for a path 𝑋 ∈ 𝐷([0, 𝑇]; ℝ𝑑), we will often use the shorthand notation:

𝑋𝑠,𝑡 ∶= 𝑋𝑡 − 𝑋𝑠 and 𝑋𝑡− ∶= lim
𝑢↗𝑡
𝑋𝑢, for (𝑠, 𝑡) ∈ Δ𝑇.

For 𝑟 ⩾ 1 and a two-parameter function 𝕏∶ Δ𝑇 → 𝐸, we similarly define

‖𝕏‖𝑟 ∶= ‖𝕏‖𝑟,[0,𝑇] with ‖𝕏‖𝑟,[𝑠,𝑡] ∶= ( sup⊂[𝑠,𝑡]
∑
[𝑢,𝑣]∈

|𝕏𝑢,𝑣|𝑟)
1
𝑟

, (𝑠, 𝑡) ∈ Δ𝑇.

Wewrite𝐷𝑟
2
= 𝐷𝑟

2
(Δ𝑇; 𝐸) for the space of all functions𝕏∶ Δ𝑇 → 𝐸 that satisfy ‖𝕏‖𝑟 < ∞, and are

such that the maps 𝑠 ↦ 𝕏𝑠,𝑡 for fixed 𝑡, and 𝑡 ↦ 𝕏𝑠,𝑡 for fixed 𝑠, are both càdlàg.
For 𝑝 ∈ [2, 3), a pair 𝐗 = (𝑋,𝕏) is called a càdlàg 𝑝-rough path over ℝ𝑑 if

(i) 𝑋 ∈ 𝐷𝑝([0, 𝑇]; ℝ𝑑) and 𝕏 ∈ 𝐷
𝑝

2

2
(Δ𝑇; ℝ

𝑑×𝑑), and
(ii) Chen’s relation: 𝕏𝑠,𝑡 = 𝕏𝑠,𝑢 + 𝕏𝑢,𝑡 + 𝑋𝑠,𝑢 ⊗ 𝑋𝑢,𝑡 holds for all 0 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡 ⩽ 𝑇.

In component form, condition (ii) states that𝕏𝑖𝑗𝑠,𝑡 = 𝕏
𝑖𝑗
𝑠,𝑢 + 𝕏

𝑖𝑗
𝑢,𝑡 + 𝑋

𝑖
𝑠,𝑢𝑋

𝑗
𝑢,𝑡 for every 𝑖 and 𝑗.Wewill

denote the space of càdlàg 𝑝-rough paths by𝑝 = 𝑝([0, 𝑇]; ℝ𝑑). On the space𝑝([0, 𝑇]; ℝ𝑑), we
use the natural seminorm

‖𝐗‖𝑝 ∶= ‖𝐗‖𝑝,[0,𝑇] with ‖𝐗‖𝑝,[𝑠,𝑡] ∶= ‖𝑋‖𝑝,[𝑠,𝑡] + ‖𝕏‖ 𝑝
2
,[𝑠,𝑡]

for (𝑠, 𝑡) ∈ Δ𝑇 , and the induced distance

‖𝐗; 𝐗̃‖𝑝 ∶= ‖𝐗; 𝐗̃‖𝑝,[0,𝑇] with ‖𝐗; 𝐗̃‖𝑝,[𝑠,𝑡] ∶= ‖𝑋 − 𝑋‖𝑝,[𝑠,𝑡] + ‖𝕏 − 𝕏̃‖ 𝑝
2
,[𝑠,𝑡], (2.1)

whenever 𝐗 = (𝑋,𝕏), 𝐗̃ = (𝑋, 𝕏̃) ∈ 𝑝([0, 𝑇]; ℝ𝑑).
†Here and throughout, we adopt the convention that 0

0
∶= 0.
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6 of 51 ALLAN et al.

Let 𝑝 ∈ [2, 3), 𝑞 ∈ [𝑝,∞) and 𝑟 ∈ [𝑝
2
, 2) such that 1

𝑝
+ 1
𝑟
> 1 and 1

𝑝
+ 1
𝑞
= 1
𝑟
. Let 𝑋 ∈

𝐷𝑝([0, 𝑇]; ℝ𝑑). We say that a pair (𝑌, 𝑌′) is a controlled path (with respect to 𝑋), if

𝑌 ∈ 𝐷𝑝([0, 𝑇]; 𝐸), 𝑌′ ∈ 𝐷𝑞([0, 𝑇];(ℝ𝑑; 𝐸)), and 𝑅𝑌 ∈ 𝐷𝑟2(Δ𝑇; 𝐸),

where 𝑅𝑌 is defined by

𝑌𝑠,𝑡 = 𝑌
′
𝑠𝑋𝑠,𝑡 + 𝑅

𝑌
𝑠,𝑡 for all (𝑠, 𝑡) ∈ Δ𝑇.

We write 𝑞,𝑟
𝑋
= 𝑞,𝑟

𝑋
([0, 𝑇]; 𝐸) for the space of 𝐸-valued controlled paths, which becomes a

Banach space when equipped with the norm

(𝑌, 𝑌′) ↦ |𝑌0| + |𝑌′0| + ‖𝑌′‖𝑞,[0,𝑇] + ‖𝑅𝑌‖𝑟,[0,𝑇].
Remark 2.1. The definition of a controlled path adopted here is slightly more general than the
classical definition in, for example, [22], in which one takes 𝑞 = 𝑝 and 𝑟 = 𝑝

2
. Allowing these

regularity parameters to take larger values allows us to consider slightly more general integrands
in rough integrals. In particular, this is convenient in Theorem 2.2 below, as otherwise we would
require further restrictions on the regularity of the paths 𝐴 and𝐻 therein.

For paths 𝐴 ∈ 𝐷𝑞1 , 𝐻 ∈ 𝐷𝑞2 for 𝑞1, 𝑞2 ∈ [1, 2), and a rough path 𝐗 ∈ 𝑝 for 𝑝 ∈ [2, 3), we
consider the RDE:

𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝐻𝑠, 𝑌𝑠) d𝐴𝑠 + ∫

𝑡

0
𝜎(𝐻𝑠, 𝑌𝑠) d𝐗𝑠, 𝑡 ∈ [0, 𝑇]. (2.2)

Provided that 1
𝑝
+ 1

𝑞1
> 1 and 1

𝑝
+ 1

𝑞2
> 1, the first integral in this equation can be defined as a

Young integral, while the second integral is defined as a rough integral. For precise definitions,
constructions, and properties of these integrals, we refer to the comprehensive exposition in [22].

Theorem 2.2. Let 𝑝 ∈ [2, 3) and 𝑞1, 𝑞2 ∈ [1, 2) such that 1

𝑝
+ 1

𝑞1
> 1 and 1

𝑝
+ 1

𝑞2
> 1.

Let 𝑏 ∈ 𝐶2
𝑏
(ℝ𝑚+𝑘;(ℝ𝑛; ℝ𝑘)), 𝜎 ∈ 𝐶3

𝑏
(ℝ𝑚+𝑘;(ℝ𝑑; ℝ𝑘)), 𝑦0 ∈ ℝ

𝑘 , 𝐴 ∈ 𝐷𝑞1([0, 𝑇]; ℝ𝑛),
𝐻 ∈ 𝐷𝑞2([0, 𝑇]; ℝ𝑚), and 𝐗 = (𝑋,𝕏) ∈ 𝑝([0, 𝑇]; ℝ𝑑). Let 𝑟 ∈ [𝑝

2
∨ 𝑞1 ∨ 𝑞2, 2) such that

1

𝑝
+ 1
𝑟
> 1, and let 𝑞 ∈ [𝑝,∞) such that 1

𝑝
+ 1
𝑞
= 1
𝑟
. Then there exists a unique path

𝑌 ∈ 𝐷𝑝([0, 𝑇]; ℝ𝑘) such that the controlled path (𝑌, 𝜎(𝐻, 𝑌)) ∈ 𝑞,𝑟
𝑋

satisfies the RDE (2.2).
Moreover, if 𝑦0 ∈ ℝ𝑘 , 𝐴 ∈ 𝐷𝑞1 , 𝐻̃ ∈ 𝐷𝑞2 and 𝐗̃ = (𝑋, 𝕏̃) ∈ 𝑝 with corresponding solution 𝑌,

and if ‖𝐴‖𝑟, ‖𝐴‖𝑟, ‖𝐻‖𝑟, ‖𝐻̃‖𝑟, ‖𝐗‖𝑝, ‖𝐗̃‖𝑝 ⩽ 𝐿 for some 𝐿 > 0, then
‖𝑌 − 𝑌‖𝑝 + ‖𝑌′ − 𝑌′‖𝑞 + ‖𝑅𝑌 − 𝑅𝑌‖𝑟
≲ |𝑦0 − 𝑦0| + |𝐻0 − 𝐻̃0| + ‖𝐻 − 𝐻̃‖𝑟 + ‖𝐴 − 𝐴‖𝑟 + ‖𝐗; 𝐗̃‖𝑝, (2.3)

where the implicit multiplicative constant depends only on 𝑝, 𝑞, 𝑟, ‖𝑏‖𝐶2
𝑏
, ‖𝜎‖𝐶3

𝑏
, and 𝐿.

The result of Theorem 2.2 may be considered classical, and will be unsurprising to readers
familiar with RDEs. However, to the best of our knowledge, a proof of the precise statement of the
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THE EULER SCHEME FOR RDES AND SDES 7 of 51

theorem does not appear in the existing literature. A sketch of the proof, based on the proof of [1,
Theorem 2.3], is therefore given in Appendix A.

2.2 Convergence of the Euler scheme

Let us consider the RDE

𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝑠, 𝑌𝑠) d𝑠 + ∫

𝑡

0
𝜎(𝑠, 𝑌𝑠) d𝐗𝑠, 𝑡 ∈ [0, 𝑇], (2.4)

where 𝑦0 ∈ ℝ𝑘, 𝑏 ∈ 𝐶2𝑏(ℝ
𝑘+1; ℝ𝑘), 𝜎 ∈ 𝐶3

𝑏
(ℝ𝑘+1;(ℝ𝑑; ℝ𝑘)) and 𝐗 = (𝑋,𝕏) ∈ 𝑝([0, 𝑇]; ℝ𝑑) is

the driving càdlàg 𝑝-rough path for 𝑝 ∈ [2, 3). Given a sequence of partitions 𝑛 = {0 = 𝑡𝑛
0
<

𝑡𝑛
1
< ⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ, the Euler approximation 𝑌𝑛 corresponding to the RDE (2.4) along the

partition 𝑛 is given by
𝑌𝑛𝑡 = 𝑦0 +

∑
𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝑏(𝑡𝑛
𝑖
, 𝑌𝑛
𝑡𝑛
𝑖

)(𝑡𝑛
𝑖+1
− 𝑡𝑛
𝑖
) +

∑
𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝜎(𝑡𝑛
𝑖
, 𝑌𝑛
𝑡𝑛
𝑖

)(𝑋𝑡𝑛
𝑖+1
− 𝑋𝑡𝑛

𝑖
), (2.5)

for 𝑡 ∈ [0, 𝑇].
It is a classical result in the numerical analysis of SDEs that, if the driving signal is, for example,

a Brownian motion, then the Euler scheme (often also called the Euler–Maruyama scheme) con-
verges pathwise; see, for example, [28]. On the other hand, it is known that in general the Euler
scheme cannot converge if the driving signal is an arbitrary rough path, since the corresponding
Euler scheme for SDEs driven by fractional Brownianmotion fails to converge; see [14] for a more
detailed discussion on this observation.
Moreover, since the extension of a path 𝑋 to a rough path 𝐗 = (𝑋,𝕏) is not unique, and the

Euler approximation 𝑌𝑛 defined in (2.5) is independent of 𝕏, the sequence (𝑌𝑛)𝑛∈ℕ cannot con-
verge to the solution of a general RDE. Thus, in order to ensure the convergence of the Euler
scheme, it is necessary to identify the “correct” rough path lift 𝐗 as the driving signal for the
RDE (2.4). A suitable resolution to this is provided by the so-called Property (RIE), as introduced
in [35] and [2].

Property (RIE). Let 𝑝 ∈ (2, 3) and let 𝑛 = {0 = 𝑡𝑛
0
< 𝑡𝑛
1
<⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ, be a sequence

of partitions of the interval [0, 𝑇] such that |𝑛|→ 0 as 𝑛 → ∞. For 𝑋 ∈ 𝐷([0, 𝑇]; ℝ𝑑), and each
𝑛 ∈ ℕ, we define 𝑋𝑛 ∶ [0, 𝑇] → ℝ𝑑 by

𝑋𝑛𝑡 = 𝑋𝑇𝟏{𝑇}(𝑡) +

𝑁𝑛−1∑
𝑘=0

𝑋𝑡𝑛
𝑘
𝟏[𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)(𝑡), 𝑡 ∈ [0, 𝑇].

We assume that

(i) the sequence of paths (𝑋𝑛)𝑛∈ℕ converges uniformly to 𝑋 as 𝑛 → ∞,
(ii) the Riemann sums

∫
𝑡

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 ∶=

𝑁𝑛−1∑
𝑘=0

𝑋𝑡𝑛
𝑘
⊗ 𝑋𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡

converge uniformly as 𝑛 → ∞ to a limit, which we denote by ∫ 𝑡0 𝑋𝑢 ⊗ d𝑋𝑢, 𝑡 ∈ [0, 𝑇], and
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8 of 51 ALLAN et al.

(iii) there exists a control function 𝑤 such that

sup
(𝑠,𝑡)∈Δ𝑇

|𝑋𝑠,𝑡|𝑝
𝑤(𝑠, 𝑡)

+ sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽𝑁𝑛

| ∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝑋𝑛𝑢 ⊗ d𝑋𝑢 − 𝑋𝑡𝑛𝑘
⊗ 𝑋𝑡𝑛

𝑘
,𝑡𝑛
𝓁
| 𝑝2

𝑤(𝑡𝑛
𝑘
, 𝑡𝑛𝓁)

⩽ 1. (2.6)

We say that a path 𝑋 ∈ 𝐷([0, 𝑇]; ℝ𝑑) satisfies Property (RIE) relative to 𝑝 and (𝑛)𝑛∈ℕ, if 𝑝,
(𝑛)𝑛∈ℕ and 𝑋 together satisfy Property (RIE).
It is known that, if a path𝑋 ∈ 𝐷([0, 𝑇]; ℝ𝑑) satisfies Property (RIE), then𝑋 extends canonically

to a rough path 𝐗 = (𝑋,𝕏) ∈ 𝑝([0, 𝑇]; ℝ𝑑), where the lift 𝕏 is defined by

𝕏𝑠,𝑡 ∶= ∫
𝑡

𝑠
𝑋𝑢 ⊗ d𝑋𝑢 − 𝑋𝑠 ⊗ (𝑋𝑡 − 𝑋𝑠), (𝑠, 𝑡) ∈ Δ𝑇, (2.7)

with ∫ 𝑡𝑠 𝑋𝑢 ⊗ d𝑋𝑢 ∶= ∫ 𝑡0 𝑋𝑢 ⊗ d𝑋𝑢 − ∫ 𝑠0 𝑋𝑢 ⊗ d𝑋𝑢, and the existence of the integral ∫ 𝑡0 𝑋𝑢 ⊗ d𝑋𝑢
is ensured by condition (ii) of Property (RIE); see [2, Lemma 2.13]. When assuming Property
(RIE) for a path 𝑋, we will always work with the rough path 𝐗 = (𝑋,𝕏) defined via (2.7), and
note that 𝐗 = (𝑋,𝕏) corresponds to the Itô rough path lift of a stochastic process, since the “iter-
ated integral” 𝕏 is given as a limit of left-point Riemann sums, analogously to the stochastic Itô
integral.
Postulating Property (RIE) for the driving signal of an RDE ensures that the (first-order) Euler

approximation converges to the solution of the equation, as stated precisely in the next theorem.

Theorem 2.3. Suppose that𝑋∶ [0, 𝑇] → ℝ𝑑 satisfies Property (RIE) relative to some 𝑝 ∈ (2, 3) and
a sequence of partitions (𝑛)𝑛∈ℕ, and let 𝐗 be the canonical rough path lift of 𝑋, as defined in (2.7).
Let 𝑌 be the solution to the RDE (2.4) driven by 𝐗, and let 𝑌𝑛 be the Euler approximation defined in
(2.5). Then,

‖𝑌𝑛 − 𝑌‖𝑝′ ⟶ 0 as 𝑛 ⟶ ∞,

for any 𝑝′ ∈ (𝑝, 3), and the rate of convergence is determined by the estimate

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ |𝑛|1− 1𝑞 + ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ +
‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖1−
𝑝

𝑝′

∞
, (2.8)

which holds for any 𝑞 ∈ (1, 2) such that 1
𝑝′
+ 1
𝑞
> 1, where the implicit multiplicative constant

depends only on𝑝, 𝑝′, 𝑞, ‖𝑏‖𝐶2
𝑏
, ‖𝜎‖𝐶3

𝑏
, 𝑇, |𝑋0| and𝑤(0, 𝑇), where𝑤 is the control function for which

(2.6) holds.

Note that Property (RIE) implies that each of the terms on the right-hand side of (2.8) tends to
zero as 𝑛 → ∞.

Remark 2.4. In [12], A. M. Davie observed that, under suitable conditions, the first-order Euler
scheme along equidistant partitions converges to the solution of a given RDE. More precisely,
for 𝑝 ∈ (2, 3) and 𝛼 ∶= 1

𝑝
, let 𝐗 = (𝑋,𝕏) be an 𝛼-Hölder continuous rough path, so that |𝑋𝑠,𝑡| ≲|𝑡 − 𝑠|𝛼 and |𝕏𝑠,𝑡| ≲ |𝑡 − 𝑠|2𝛼 for (𝑠, 𝑡) ∈ Δ𝑇 , such that, for some 𝛽 ∈ (1 − 𝛼, 2𝛼), there exists a
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THE EULER SCHEME FOR RDES AND SDES 9 of 51

constant 𝐶 > 0 such that ||||||
𝓁−1∑
𝑗=𝑘

𝕏𝑗ℎ,(𝑗+1)ℎ

|||||| ⩽ 𝐶(𝓁 − 𝑘)𝛽ℎ2𝛼
whenever ℎ > 0 and 0 ⩽ 𝑘 < 𝓁 are integers such that 𝓁ℎ ⩽ 𝑇. Under this condition on the driving
signal 𝐗, [12, Theorem 7.1] states that the Euler approximations 𝑌𝑛, as defined in (2.5), converge
uniformly to the solution𝑌 of the RDE (2.4) along the equidistant partitions (𝑛U)𝑛∈ℕ, where𝑛𝑈 =
{ 𝑖𝑇
𝑛
∶ 𝑖 = 0, 1, … , 𝑛}. Note that Davie’s condition implies Property (RIE)— see [35, Appendix B]—

and is thus less general, even in the case of Hölder continuous rough paths.

Remark 2.5. Since the “iterated integrals” appearing in the definition of a rough path (and in,
for example, higher order Euler schemes) are often numerically difficult to simulate, various
approaches have beendeveloped to avoid the direct involvement of iterated integrals in the approx-
imation of stochastic and RDEs. For instance, [14] introduced a simplified Milstein scheme for
SDEs driven by fractional Brownianmotion, where the iterated integrals are replaced by products
of the increments of the driving process. Using this idea, simplified Runge–Kutta methods for dif-
ferential equations driven by general (continuous) rough paths were investigated in [37]; see also
[24].

The rest of this subsection is devoted to the proof of Theorem 2.3, which first requires us to
establish some auxiliary results.
In the following, we will always assume that𝑋∶ [0, 𝑇] → ℝ𝑑 satisfies Property (RIE) relative to

some 𝑝 ∈ (2, 3) and a sequence of partitions (𝑛)𝑛∈ℕ. As the piecewise constant approximation
𝑋𝑛 (as defined in Property (RIE)) has finite 1-variation, it possesses a canonical rough path lift
𝐗𝑛 = (𝑋𝑛, 𝕏𝑛) ∈ 𝑝([0, 𝑇]; ℝ𝑑), with 𝕏𝑛 given by

𝕏𝑛𝑠,𝑡 ∶= ∫
𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋

𝑛
𝑢 , (𝑠, 𝑡) ∈ Δ𝑇, (2.9)

where the integral is defined as a classical limit of left-point Riemann sums. Note that, while [22,
Section 5.3] discretizes the rough path𝐗 = (𝑋,𝕏) in a piecewise constantmanner, herewe instead
discretize the path 𝑋 and then extend it to a rough path 𝐗𝑛 = (𝑋𝑛, 𝕏𝑛) via (2.9).
As a first step toward the proof of Theorem 2.3, we establish the convergence of the rough

paths (𝐗𝑛)𝑛∈ℕ to the rough path 𝐗 in a suitable rough path distance. For this purpose, we need
two auxiliary lemmas.

Lemma 2.6. Suppose that 𝑋∶ [0, 𝑇] → ℝ𝑑 satisfies Property (RIE) relative to some 𝑝 ∈ (2, 3) and
a sequence of partitions (𝑛)𝑛∈ℕ. Then, we have the estimate

sup
(𝑠,𝑡)∈Δ𝑇

|𝕏𝑛𝑠,𝑡 − 𝕏𝑠,𝑡| ⩽ 2‖𝑋‖∞‖𝑋𝑛 − 𝑋‖∞ + sup
(𝑠,𝑡)∈Δ𝑇

|||||∫
𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋𝑢 − 𝕏𝑠,𝑡

||||| ,
where 𝕏𝑛 and 𝕏 were defined in (2.9) and (2.7), respectively. In particular, we have that

𝕏𝑛 ⟶ 𝕏 uniformly as 𝑛 ⟶ ∞.
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10 of 51 ALLAN et al.

Proof. Since

|𝕏𝑛𝑠,𝑡 − 𝕏𝑠,𝑡| ⩽ |||||𝕏𝑛𝑠,𝑡 − ∫
𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋𝑢

||||| +
|||||∫

𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋𝑢 − 𝕏𝑠,𝑡

||||| ,
and the limit in condition (ii) of Property (RIE) holds uniformly, it is enough to prove that the
function given by

Λ𝑛𝑠,𝑡 ∶= 𝕏
𝑛
𝑠,𝑡 − ∫

𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋𝑢 = ∫

𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d(𝑋

𝑛 − 𝑋)𝑢

satisfies

sup
(𝑠,𝑡)∈Δ𝑇

|Λ𝑛𝑠,𝑡| ⩽ 2‖𝑋‖∞‖𝑋𝑛 − 𝑋‖∞. (2.10)

If 𝑡𝑛
𝑘
⩽ 𝑠 < 𝑡 ⩽ 𝑡𝑛

𝑘+1
for some 𝑘, then 𝑋𝑛𝑠,𝑢 = 𝑋𝑡𝑛𝑘 ,𝑡𝑛𝑘 = 0 for every 𝑢 ∈ [𝑠, 𝑡), so that Λ𝑛𝑠,𝑡 = 0.

Otherwise, let 𝑘0 be the smallest 𝑘 such that 𝑡𝑛
𝑘
∈ (𝑠, 𝑡), and let 𝑘1 be the largest such 𝑘. It is

straightforward to see that the triplet (𝑋𝑛 − 𝑋,𝑋𝑛, Λ𝑛) satisfies Chen’s relation:

Λ𝑛𝑠,𝑡 = Λ
𝑛
𝑠,𝑢 + Λ

𝑛
𝑢,𝑡 + 𝑋

𝑛
𝑠,𝑢 ⊗ (𝑋

𝑛 − 𝑋)𝑢,𝑡

for all 𝑠 ⩽ 𝑢 ⩽ 𝑡, from which it follows that

Λ𝑛𝑠,𝑡 = Λ
𝑛
𝑠,𝑡𝑛
𝑘0

+ Λ𝑛
𝑡𝑛
𝑘0
,𝑡𝑛
𝑘1

+ Λ𝑛
𝑡𝑛
𝑘1
,𝑡
+ 𝑋𝑛

𝑠,𝑡𝑛
𝑘0

⊗ (𝑋𝑛 − 𝑋)𝑡𝑛
𝑘0
,𝑡𝑛
𝑘1

+ 𝑋𝑛
𝑠,𝑡𝑛
𝑘1

⊗ (𝑋𝑛 − 𝑋)𝑡𝑛
𝑘1
,𝑡.

As we already observed, we have that Λ𝑛
𝑠,𝑡𝑛
𝑘0

= Λ𝑛
𝑡𝑛
𝑘1
,𝑡
= 0. In fact, we also have that

Λ𝑛
𝑡𝑛
𝑘0
,𝑡𝑛
𝑘1

= ∫
𝑡𝑛
𝑘1

𝑡𝑛
𝑘0

𝑋𝑛
𝑡𝑛
𝑘0
,𝑢
⊗ d(𝑋𝑛 − 𝑋)𝑢 =

𝑘1−1∑
𝑖=𝑘0

∫
𝑡𝑛
𝑖+1

𝑡𝑛
𝑖

𝑋𝑛
𝑡𝑛
𝑘0
,𝑢
⊗ d(𝑋𝑛 − 𝑋)𝑢

=

𝑘1−1∑
𝑖=𝑘0

∫
𝑡𝑛
𝑖+1

𝑡𝑛
𝑖

𝑋𝑡𝑛
𝑘0
,𝑡𝑛
𝑖
⊗ d(𝑋𝑛 − 𝑋)𝑢 =

𝑘1−1∑
𝑖=𝑘0

𝑋𝑡𝑛
𝑘0
,𝑡𝑛
𝑖
⊗ (𝑋𝑛 − 𝑋)𝑡𝑛

𝑖
,𝑡𝑛
𝑖+1
= 0.

(2.11)

Since (𝑋𝑛 − 𝑋)𝑡𝑛
𝑘0

= (𝑋𝑛 − 𝑋)𝑡𝑛
𝑘1

= 0, we simply obtain Λ𝑛𝑠,𝑡 = 𝑋
𝑛
𝑠,𝑡𝑛
𝑘1

⊗ (𝑋𝑛𝑡 − 𝑋𝑡), from which

(2.10) follows. □

Lemma 2.7. Suppose that 𝑋∶ [0, 𝑇] → ℝ𝑑 satisfies Property (RIE) relative to some 𝑝 ∈ (2, 3) and
a sequence of partitions (𝑛)𝑛∈ℕ. Let 𝑤 be the control function with respect to which 𝑋 satisfies the
inequality (2.6). Then, there exists a constant 𝐶, which depends only on 𝑝, such that

‖𝕏𝑛‖ 𝑝
2
⩽ 𝐶𝑤(0, 𝑇)

2
𝑝 (2.12)

for every 𝑛 ∈ ℕ, where 𝕏𝑛 was defined in (2.9).
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THE EULER SCHEME FOR RDES AND SDES 11 of 51

Proof. Let 𝑛 ∈ ℕ, and let (𝑠, 𝑡) ∈ Δ𝑇 . If 𝑡𝑛𝑘 ⩽ 𝑠 < 𝑡 ⩽ 𝑡
𝑛
𝑘+1

for some 𝑘, then 𝑋𝑛𝑠,𝑢 = 𝑋𝑡𝑛𝑘 ,𝑡𝑛𝑘 = 0 for
every 𝑢 ∈ [𝑠, 𝑡), so that𝕏𝑛𝑠,𝑡 = 0. Otherwise, let 𝑘0 be the smallest 𝑘 such that 𝑡

𝑛
𝑘
∈ (𝑠, 𝑡), and let 𝑘1

be the largest such 𝑘. It is straightforward to see that (𝑋𝑛, 𝕏𝑛) satisfies Chen’s relation:

𝕏𝑛𝑠,𝑡 = 𝕏
𝑛
𝑠,𝑢 + 𝕏

𝑛
𝑢,𝑡 + 𝑋

𝑛
𝑠,𝑢 ⊗ 𝑋

𝑛
𝑢,𝑡

for all 𝑠 ⩽ 𝑢 ⩽ 𝑡, from which it follows that

𝕏𝑛𝑠,𝑡 = 𝕏
𝑛
𝑠,𝑡𝑛
𝑘0

+ 𝕏𝑛
𝑡𝑛
𝑘0
,𝑡𝑛
𝑘1

+ 𝕏𝑛
𝑡𝑛
𝑘1
,𝑡
+ 𝑋𝑛

𝑠,𝑡𝑛
𝑘0

⊗ 𝑋𝑛
𝑡𝑛
𝑘0
,𝑡𝑛
𝑘1

+ 𝑋𝑛
𝑠,𝑡𝑛
𝑘1

⊗ 𝑋𝑛
𝑡𝑛
𝑘1
,𝑡
.

As we have already seen, we have that 𝕏𝑛
𝑠,𝑡𝑛
𝑘0

= 𝕏𝑛
𝑡𝑛
𝑘1
,𝑡
= 0. Recalling the calculation in (2.11), we

note that

𝕏𝑛
𝑡𝑛
𝑘0
,𝑡𝑛
𝑘1

= ∫
𝑡𝑛
𝑘1

𝑡𝑛
𝑘0

𝑋𝑛
𝑡𝑛
𝑘0
,𝑢
⊗ d𝑋𝑛𝑢 = ∫

𝑡𝑛
𝑘1

𝑡𝑛
𝑘0

𝑋𝑛
𝑡𝑛
𝑘0
,𝑢
⊗ d𝑋𝑢,

and hence, by the inequality in (2.6), that

||||𝕏𝑛𝑡𝑛𝑘0 ,𝑡𝑛𝑘1 ||||
𝑝

2
=

||||||∫
𝑡𝑛
𝑘1

𝑡𝑛
𝑘0

𝑋𝑛
𝑡𝑛
𝑘0
,𝑢
⊗ d𝑋𝑢

||||||
𝑝

2

⩽ 𝑤
(
𝑡𝑛
𝑘0
, 𝑡𝑛
𝑘1

)
⩽ 𝑤

(
𝑡𝑛
𝑘0−1
, 𝑡𝑛
𝑘1+1

)
.

We estimate the remaining terms as

||||𝑋𝑛𝑠,𝑡𝑛𝑘0 ⊗ 𝑋𝑛𝑡𝑛𝑘0 ,𝑡𝑛𝑘1 ||||
𝑝

2
+
||||𝑋𝑛𝑠,𝑡𝑛𝑘1 ⊗ 𝑋𝑛𝑡𝑛𝑘1 ,𝑡||||

𝑝

2
≲
||||𝑋𝑛𝑠,𝑡𝑛𝑘0 ||||

𝑝

+
||||𝑋𝑛𝑡𝑛𝑘0 ,𝑡𝑛𝑘1 ||||

𝑝

+
||||𝑋𝑛𝑠,𝑡𝑛𝑘1 ||||

𝑝

+
||||𝑋𝑛𝑡𝑛𝑘1 ,𝑡||||

𝑝

⩽
||||𝑋𝑡𝑛𝑘0−1,𝑡𝑛𝑘0 ||||𝑝 + ||||𝑋𝑡𝑛𝑘0 ,𝑡𝑛𝑘1 ||||𝑝 + ||||𝑋𝑡𝑛𝑘0−1,𝑡𝑛𝑘1 ||||𝑝 + ||||𝑋𝑡𝑛𝑘1 ,𝑡𝑛𝑘1+1 ||||𝑝

⩽ 𝑤
(
𝑡𝑛
𝑘0−1
, 𝑡𝑛
𝑘0

)
+ 𝑤

(
𝑡𝑛
𝑘0
, 𝑡𝑛
𝑘1

)
+ 𝑤

(
𝑡𝑛
𝑘0−1
, 𝑡𝑛
𝑘1

)
+ 𝑤

(
𝑡𝑛
𝑘1
, 𝑡𝑛
𝑘1+1

)
⩽ 2𝑤

(
𝑡𝑛
𝑘0−1
, 𝑡𝑛
𝑘1+1

)
.

Putting this together, we have that

|𝕏𝑛𝑠,𝑡| 𝑝2 ⩽ 𝐶𝑤(𝑡𝑛𝑘0−1, 𝑡𝑛𝑘1+1)
for some constant 𝐶. It follows that, for an arbitrary partition  of the interval [0, 𝑇], we have the
bound ∑

[𝑠,𝑡]∈
|𝕏𝑛𝑠,𝑡| 𝑝2 ⩽ 3𝐶𝑤(0, 𝑇),

and hence that (2.12) holds with 𝐶 = (3𝐶)
2
𝑝 . □
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12 of 51 ALLAN et al.

Using the previous two lemmas, we can now infer the convergence of the rough paths (𝐗𝑛)𝑛∈ℕ
to the rough path 𝐗.

Lemma 2.8. Suppose that𝑋∶ [0, 𝑇] → ℝ𝑑 satisfies Property (RIE) relative to some 𝑝 ∈ (2, 3) and a
sequence of partitions (𝑛)𝑛∈ℕ. Let𝐗 = (𝑋,𝕏) and𝐗𝑛 = (𝑋𝑛, 𝕏𝑛) be the càdlàg rough paths defined
via (2.7) and (2.9), respectively. Then, for any 𝑝′ > 𝑝, we have that

‖𝐗𝑛;𝐗‖𝑝′ ⟶ 0 as 𝑛 ⟶ ∞, (2.13)

with a rate of convergence given by

‖𝐗𝑛;𝐗‖𝑝′ ≲ ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ + sup
(𝑠,𝑡)∈Δ𝑇

|||||∫
𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋𝑢 − 𝕏𝑠,𝑡

|||||
1−

𝑝

𝑝′

, (2.14)

where the implicit multiplicative constant depends only on 𝑝, 𝑝′, |𝑋0| and 𝑤(0, 𝑇), where 𝑤 is the
control function for which (2.6) holds.

Proof. By a standard interpolation estimate (e.g., [21, Proposition 5.5]), it follows, for any 𝑝′ > 𝑝,
that

‖𝑋𝑛 − 𝑋‖𝑝′ ⩽ ‖𝑋𝑛 − 𝑋‖ 𝑝𝑝′𝑝 ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ .

We similarly have that

‖𝕏𝑛 − 𝕏‖ 𝑝′
2

⩽ ‖𝕏𝑛 − 𝕏‖ 𝑝𝑝′𝑝
2

sup
(𝑠,𝑡)∈Δ𝑇

|𝕏𝑛𝑠,𝑡 − 𝕏𝑠,𝑡|1− 𝑝𝑝′ .
We recall from Lemma 2.6 that

sup
(𝑠,𝑡)∈Δ𝑇

|𝕏𝑛𝑠,𝑡 − 𝕏𝑠,𝑡| ⩽ 2‖𝑋‖∞‖𝑋𝑛 − 𝑋‖∞ + sup
(𝑠,𝑡)∈Δ𝑇

|||||∫
𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋𝑢 − 𝕏𝑠,𝑡

||||| .
We have that sup𝑛∈ℕ ‖𝑋𝑛‖𝑝 ⩽ ‖𝑋‖𝑝 and ‖𝑋‖∞ ⩽ |𝑋0| + ‖𝑋‖𝑝 ⩽ |𝑋0| + 𝑤(0, 𝑇) 1𝑝 , and, by the
lower semicontinuity of the 𝑝

2
-variation norm and Lemma 2.7, ‖𝕏‖ 𝑝

2
⩽ lim inf𝑛→∞ ‖𝕏𝑛‖ 𝑝

2
⩽

sup𝑛∈ℕ ‖𝕏𝑛‖ 𝑝
2
⩽ 𝐶𝑤(0, 𝑇)

2
𝑝 . Putting this together, we conclude that (2.14) holds. By conditions

(i) and (ii) in Property (RIE), the convergence in (2.13) then also follows. □

As a next step toward the proof of Theorem 2.3, we introduce a discretized version of the
RDE (2.4). For this purpose, we define a time discretization path along 𝑛 by

𝛾𝑛𝑡 ∶= 𝑇𝟏{𝑇}(𝑡) +

𝑁𝑛−1∑
𝑘=0

𝑡𝑛
𝑘
𝟏[𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)(𝑡), 𝑡 ∈ [0, 𝑇], (2.15)
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THE EULER SCHEME FOR RDES AND SDES 13 of 51

and consider the RDE

𝑌𝑛𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝛾

𝑛
𝑠 + ∫

𝑡

0
𝜎(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝐗

𝑛
𝑠 , 𝑡 ∈ [0, 𝑇]. (2.16)

Thanks to Lemma 2.8 and the local Lipschitz continuity of the Itô–Lyons map, we obtain the
following proposition.

Proposition 2.9. Suppose that 𝑋∶ [0, 𝑇] → ℝ𝑑 satisfies Property (RIE) relative to some 𝑝 ∈ (2, 3)
and a sequence of partitions (𝑛)𝑛∈ℕ. Let𝑌 be the solution of the RDE (2.4), and let𝑌𝑛 be the solution
of the RDE (2.16). Then,

‖𝑌𝑛 − 𝑌‖𝑝′ ⟶ 0 as 𝑛 ⟶ ∞, (2.17)

for any 𝑝′ ∈ (𝑝, 3), with a rate of convergence given by

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ |𝑛|1− 1𝑞 + ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ +
‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖1−
𝑝

𝑝′

∞

,

for any 𝑞 ∈ (1, 2) such that 1
𝑝′
+ 1
𝑞
> 1, where the implicit multiplicative constant depends only on

𝑝, 𝑝′, 𝑞, ‖𝑏‖𝐶2
𝑏
, ‖𝜎‖𝐶3

𝑏
, 𝑇, |𝑋0| and 𝑤(0, 𝑇), where 𝑤 is the control function for which (2.6) holds.

Proof. Setting 𝛾𝑡 ∶= 𝑡 for 𝑡 ∈ [0, 𝑇], the RDE (2.4) may be rewritten as

𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝛾𝑠, 𝑌𝑠) d𝛾𝑠 + ∫

𝑡

0
𝜎(𝛾𝑠, 𝑌𝑠) d𝐗𝑠, 𝑡 ∈ [0, 𝑇].

Hence, by Theorem 2.2, we know that

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ ‖𝛾𝑛 − 𝛾‖𝑞 + ‖𝐗𝑛;𝐗‖𝑝′ (2.18)

for any 𝑝′ ∈ (𝑝, 3) and any 𝑞 ∈ [1, 2) such that 1
𝑝′
+ 1
𝑞
> 1.

Note that 𝛾𝑛 and 𝛾 have finite 1-variation, with ‖𝛾𝑛‖1 = ‖𝛾‖1 = 𝑇, and ‖𝛾𝑛 − 𝛾‖1 = 2𝑇.
Although 𝛾𝑛 does not converge to 𝛾 in 1-variation, it is straightforward to see by interpolation
that

‖𝛾𝑛 − 𝛾‖𝑞 ⩽ ‖𝛾𝑛 − 𝛾‖ 1𝑞1 ‖𝛾𝑛 − 𝛾‖1− 1𝑞∞ = (2𝑇)
1
𝑞 |𝑛|1− 1𝑞

for any 𝑞 > 1. Combining this with the estimate in (2.18) and the result of Lemma 2.8, we infer
the convergence in (2.17), and the estimate

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ ‖𝛾𝑛 − 𝛾‖𝑞 + ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ + sup
(𝑠,𝑡)∈Δ𝑇

|||||∫
𝑡

𝑠
𝑋𝑛𝑠,𝑢 ⊗ d𝑋𝑢 − 𝕏𝑠,𝑡

|||||
1−

𝑝

𝑝′

≲ |𝑛|1− 1𝑞 + ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ +
‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖1−
𝑝

𝑝′

∞

.
□
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14 of 51 ALLAN et al.

Remark 2.10. For a path 𝐴 ∈ 𝐷1([0, 𝑇]; ℝ𝑑) of finite 1-variation, let us consider the controlled
ordinary differential equation (ODE)

𝑍𝑡 = 𝑧0 + ∫
𝑡

0
𝜎(𝑍𝑠) d𝐴𝑠, 𝑡 ∈ [0, 𝑇], (2.19)

where the integral is interpreted in the Riemann–Stieltjes sense. It is a classical result that, pro-
vided that 𝜎 is sufficiently regular, the ODE in (2.19) is well posed, and that the solution map
Φ∶ 𝐴 ↦ 𝑍 is continuous with respect to the 1-variation norm ‖ ⋅ ‖1. A major insight of the the-
ory of rough paths is that the solution map Φ can be extended from the space of smooth paths to
the space𝒞0,𝑝-var([0, 𝑇]; ℝ𝑑) of continuous geometric rough paths for 𝑝 ∈ (2, 3); see, for example,
[21]. Of course, the closure of a set containing only continuous paths with respect to 𝑝-variation
norms will again only contain continuous paths.
In the current framework of càdlàg rough paths, Lemma 2.8 and Proposition 2.9 motivate us to

consider instead the closure of càdlàg paths of finite 1-variation. For 𝑝 ∈ (2, 3), let0,𝑝([0, 𝑇]; ℝ𝑑)
denote the closure of the set{

𝐀 = (𝐴,𝔸) ∶ 𝐴 ∈ 𝐷1([0, 𝑇]; ℝ𝑑) and 𝔸𝑠,𝑡 ∶= ∫
𝑡

𝑠
𝐴𝑠,𝑢 ⊗ d𝐴𝑢 for all (𝑠, 𝑡) ∈ Δ𝑇

}
with respect to the rough path distance ‖ ⋅ ; ⋅ ‖𝑝 (as defined in (2.1)), where ∫ 𝑡𝑠 𝐴𝑠,𝑢 ⊗ d𝐴𝑢 is
defined as a left-point Riemann–Stieltjes integral. Then, the solutionmapΦ∶ 𝐴 ↦ 𝑍 extends con-
tinuously to the space 0,𝑝([0, 𝑇]; ℝ𝑑) by Theorem 2.2, and every path satisfying Property (RIE)
is in0,𝑝′ ([0, 𝑇]; ℝ𝑑) for 𝑝′ ∈ (𝑝, 3) by Lemma 2.8.
Next, we shall verify that the piecewise constant approximation𝑋𝑛 of𝑋, as defined in Property

(RIE), itself satisfies Property (RIE) relative to any sequence of partitions (̃𝑚)𝑚∈ℕ that are coarser
than 𝑛 and have vanishing mesh size.
Lemma 2.11. Suppose that a path𝑋 satisfies Property (RIE) relative to 𝑝 ∈ (2, 3) and a sequence of
partitions (𝑛)𝑛∈ℕ, and let 𝑋𝑛 be the usual piecewise constant approximation of 𝑋 along 𝑛. Then
the path 𝑋𝑛 satisfies Property (RIE) relative to 𝑝 and any sequence of partitions (̃𝑚)𝑚∈ℕ such that𝑛 ⊆ ̃𝑚 for every𝑚 ∈ ℕ, and |̃𝑚|→ 0 as𝑚 → ∞.
Proof. We need to verify each of the conditions (i)–(iii) of Property (RIE) along the sequence
of partitions (̃𝑚)𝑚∈ℕ. Since 𝑛 ⊆ ̃𝑚 for every 𝑚 ∈ ℕ, the piecewise constant approximation
of 𝑋𝑛 along the partition ̃𝑚 is simply the path 𝑋𝑛 itself. Conditions (i) and (ii) thus hold
trivially.
Let 𝑤1,𝑛 be the control function given by 𝑤1,𝑛(𝑠, 𝑡) ∶= ‖𝑋𝑛‖𝑝𝑝,[𝑠,𝑡], so that |𝑋𝑛𝑠,𝑡|𝑝 ⩽ 𝑤1,𝑛(𝑠, 𝑡) for

all (𝑠, 𝑡) ∈ Δ𝑇 , and similarly, let 𝑤2,𝑛 be the control function given by 𝑤2,𝑛(𝑠, 𝑡) ∶= ‖𝑋𝑛‖ 𝑝2𝑝
2
,[𝑠,𝑡]

.

Let us also write ̃𝑚 = {0 = 𝑟𝑚
0
< 𝑟𝑚
1
< ⋯ < 𝑟𝑚

𝑁̃𝑚
= 𝑇} for each 𝑚 ∈ ℕ. Then, for any 𝑚 ∈ ℕ

and any 0 ⩽ 𝑘 < 𝓁 ⩽ 𝑁̃𝑚, using the standard estimate for Young integration (see, e.g., [22,
Proposition 2.4]), we have that
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THE EULER SCHEME FOR RDES AND SDES 15 of 51

||||||∫
𝑟𝑚
𝓁

𝑟𝑚
𝑘

𝑋𝑛𝑢 ⊗ d𝑋
𝑛
𝑢 − 𝑋

𝑛
𝑟𝑚
𝑘

⊗ 𝑋𝑛
𝑟𝑚
𝑘
,𝑟𝑚
𝓁

||||||
𝑝

2

≲ ‖𝑋𝑛‖ 𝑝2
𝑝,[𝑟𝑚

𝑘
,𝑟𝑚
𝓁
]
‖𝑋𝑛‖ 𝑝2𝑝

2
,[𝑟𝑚
𝑘
,𝑟𝑚
𝓁
]

⩽ ‖𝑋𝑛‖ 𝑝2𝑝 ‖𝑋𝑛‖ 𝑝2𝑝
2
,[𝑟𝑚
𝑘
,𝑟𝑚
𝓁
]
⩽ ‖𝑋‖ 𝑝2𝑝 𝑤2,𝑛(𝑟𝑚𝑘 , 𝑟𝑚𝓁 ).

Thus, condition (iii) holds for 𝑋𝑛 with the control function 𝑤3,𝑛, given by

𝑤3,𝑛(𝑠, 𝑡) ∶= 𝑤1,𝑛(𝑠, 𝑡) + ‖𝑋‖ 𝑝2𝑝 𝑤2,𝑛(𝑠, 𝑡), (𝑠, 𝑡) ∈ Δ𝑇. □

We are now in a position to complete the proof of Theorem 2.3. For this, we will apply in par-
ticular the result of Theorem B.2, which states that, under Property (RIE), the rough integral can
be obtained as a limit of classical left-point Riemann sums.

Proof of Theorem 2.3. Note that the Euler scheme in (2.5) may be expressed as the solution of the
controlled ODE

𝑌𝑛𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝛾

𝑛
𝑠 + ∫

𝑡

0
𝜎(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝑋

𝑛
𝑠 , 𝑡 ∈ [0, 𝑇], (2.20)

where 𝛾𝑛 denotes the time discretization path along 𝑛 defined in (2.15), and the integrals are
defined as limits of left-point Riemann sums. Recall that 𝑌𝑛 denotes the solution of the RDE in
(2.16), that is,

𝑌𝑛𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝛾

𝑛
𝑠 + ∫

𝑡

0
𝜎(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝐗

𝑛
𝑠 , 𝑡 ∈ [0, 𝑇], (2.21)

where 𝐗𝑛 is the canonical rough path lift of 𝑋𝑛, as constructed in (2.9).
Since 𝑋𝑛 is piecewise constant, it is clear from the definition of 𝕏𝑛 that 𝕏𝑛𝑠,𝑡 = 0 for any times

𝑠 ⩽ 𝑡 that lie in the same subinterval [𝑡𝑛
𝑘
, 𝑡𝑛
𝑘+1
) of the partition𝑛. Since 𝛾𝑛 is also constant on each

such subinterval, it follows from the definitions of Young and rough integrals that the solution𝑌𝑛
of (2.21) is itself also piecewise constant along the partition 𝑛.
Let ̃𝑚 = {0 = 𝑟𝑚

0
< 𝑟𝑚
1
<⋯ < 𝑟𝑚

𝑁̃𝑚
= 𝑇},𝑚 ∈ ℕ, be any sequence of partitions with mesh size

converging to 0, such that 𝑛 ⊆ ̃𝑚 for every 𝑚 ∈ ℕ. By Lemma 2.11, we have that the path 𝑋𝑛
satisfies Property (RIE) relative to 𝑝 and the sequence (̃𝑚)𝑚∈ℕ. Since 𝛾𝑛 and 𝑌𝑛 are piecewise
constant along the partition 𝑛, it is clear that the jump times of the integrand 𝑠 ↦ 𝜎(𝛾𝑛𝑠 , 𝑌𝑛𝑠 ) all
belong to 𝑛, and thus also belong to the set lim inf𝑚→∞ ̃𝑚. It thus follows from Theorem B.2
that the rough integral ∫ 𝑡0 𝜎(𝛾𝑛𝑠 , 𝑌𝑛𝑠 ) d𝐗𝑛𝑠 is equal to a limit of left-point Riemann sums along the
sequence (̃𝑚)𝑚∈ℕ. That is, for any 𝑡 ∈ [0, 𝑇], we have that

∫
𝑡

0
𝜎(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝐗

𝑛
𝑠 = lim𝑚→∞

𝑁̃𝑚−1∑
𝑘=0

𝜎(𝛾𝑛
𝑟𝑚
𝑘

, 𝑌𝑛
𝑟𝑚
𝑘

)𝑋𝑛
𝑟𝑚
𝑘
∧𝑡,𝑟𝑚

𝑘+1
∧𝑡

=

𝑁𝑛−1∑
𝑘=0

𝜎(𝛾𝑛
𝑡𝑛
𝑘

, 𝑌𝑛
𝑡𝑛
𝑘

)𝑋𝑛
𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡
= ∫

𝑡

0
𝜎(𝛾𝑛𝑠 , 𝑌

𝑛
𝑠 ) d𝑋

𝑛
𝑠 .
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16 of 51 ALLAN et al.

Since these integrals are equal, it follows that the ODE in (2.20) and the RDE in (2.21) are
consistent, so that 𝑌𝑛 = 𝑌𝑛. The result then follows from Proposition 2.9. □

2.3 Error bound for an approximate Euler scheme

In general, the Euler scheme (2.5) is not applicable to numerically approximate the solution of
an SDE driven by a general Lévy process — as we will consider in Section 3.3 below — since
the increments of Lévy processes cannot always be simulated. Therefore, to obtain a numerical
approximation of the solution of such a Lévy-driven SDE, one needs to consider approximate
Euler schemes— see, for example, [13, 25, 38]—where the increments of the driving Lévy process
are approximated by random variables with known distributions.
As a pathwise counterpart, we introduce the approximate Euler scheme 𝑌𝑛 of the RDE (2.4)

along the partition 𝑛, given by
𝑌𝑛𝑡 = 𝑦0 +

∑
𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝑏(𝑡𝑛
𝑖
, 𝑌𝑛
𝑡𝑛
𝑖

)(𝑡𝑛
𝑖+1
− 𝑡𝑛
𝑖
) +

∑
𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝜎(𝑡𝑛
𝑖
, 𝑌𝑛
𝑡𝑛
𝑖

)(𝑋𝑡𝑛
𝑖+1
− 𝑋𝑡𝑛

𝑖
), (2.22)

for 𝑡 ∈ [0, 𝑇], with the modified driving signal

𝑋 ∶= 𝑋 + 𝜑,

where 𝜑 ∈ 𝐷𝑞([0, 𝑇]; ℝ𝑑), for some 𝑞 ∈ [1, 2) such that 1
𝑝
+ 1
𝑞
> 1, and, as usual, we write 𝑛 =

{0 = 𝑡𝑛
0
< 𝑡𝑛
1
< ⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}.

While the approximation error of the Euler scheme (2.5) was only caused by discretizing the
time interval [0, 𝑇], the approximate Euler scheme (2.22) produces an additional approximation
error due to taking the modified driving signal 𝑋 as an input, instead of the actual driving signal
𝑋 of the RDE (2.4).
To ensure the convergence of the approximate Euler scheme, we first need to verify that, if the

actual driving signal satisfies Property (RIE), then the same is true for themodified driving signal.

Proposition 2.12. Suppose that𝑋 ∈ 𝐷([0, 𝑇]; ℝ𝑑) satisfies Property (RIE) relative to some𝑝 ∈ (2, 3)
and a sequence of partitions 𝑛 = {0 = 𝑡𝑛

0
< 𝑡𝑛
1
<⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ. Let 𝜑 ∈ 𝐷𝑞([0, 𝑇]; ℝ𝑑) for

some 𝑞 ∈ [1, 2) such that 1
𝑝
+ 1
𝑞
> 1. For each 𝑛 ∈ ℕ, we define 𝜑𝑛 ∶ [0, 𝑇] → ℝ𝑑 by

𝜑𝑛𝑡 = 𝜑𝑇𝟏{𝑇}(𝑡) +

𝑁𝑛−1∑
𝑘=0

𝜑𝑡𝑛
𝑘
𝟏[𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)(𝑡), 𝑡 ∈ [0, 𝑇], (2.23)

as the discretization of 𝜑 along 𝑛. Suppose that ‖𝜑𝑛 − 𝜑‖𝑞 → 0 as 𝑛 → ∞. Then the path 𝑋 =
𝑋 + 𝜑 satisfies Property (RIE) relative to 𝑝 and (𝑛)𝑛∈ℕ.
Proof. We need to verify the conditions (i)–(iii) of Property (RIE).

(i) Letting 𝑋𝑛 denote the piecewise constant approximation of 𝑋 along the partition 𝑛, it is
clear that 𝑋𝑛 = 𝑋𝑛 + 𝜑𝑛 for each 𝑛 ∈ ℕ. Since 𝑋𝑛 converges uniformly to 𝑋 by Property
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THE EULER SCHEME FOR RDES AND SDES 17 of 51

(RIE), and ‖𝜑𝑛 − 𝜑‖𝑞 → 0 by assumption, it is clear that 𝑋𝑛 converges uniformly to 𝑋 as
𝑛 → ∞.

(ii) We need to verify that the integral

∫
𝑡

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 = ∫

𝑡

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 + ∫

𝑡

0
𝑋𝑛𝑢 ⊗ d𝜑𝑢 + ∫

𝑡

0
𝜑𝑛𝑢 ⊗ d𝑋𝑢 + ∫

𝑡

0
𝜑𝑛𝑢 ⊗ d𝜑𝑢,

converges as 𝑛 → ∞ to the limit

∫
𝑡

0
𝑋𝑢 ⊗ d𝑋𝑢 ∶= ∫

𝑡

0
𝑋𝑢 ⊗ d𝑋𝑢 + ∫

𝑡

0
𝑋𝑢 ⊗ d𝜑𝑢 + ∫

𝑡

0
𝜑𝑢 ⊗ d𝑋𝑢 + ∫

𝑡

0
𝜑𝑢 ⊗ d𝜑𝑢,

uniformly in 𝑡 ∈ [0, 𝑇], where the latter three integrals are defined as Young integrals.
Since 𝑋 satisfies Property (RIE), we have that

‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞ ⟶ 0 as 𝑛 ⟶ ∞.

Let 𝑝′ > 𝑝 such that 1
𝑝′
+ 1
𝑞
> 1. By the standard estimate for Young integrals — see, for

example, [22, Proposition 2.4] — we have, for all 𝑡 ∈ [0, 𝑇], that

|||||∫
𝑡

0
𝑋𝑛𝑢 ⊗ d𝜑𝑢 − ∫

𝑡

0
𝑋𝑢 ⊗ d𝜑𝑢

||||| ≲ ‖𝑋𝑛 − 𝑋‖𝑝′‖𝜑‖𝑞.
It follows by interpolation (see, e.g., [21, Proposition 5.5]) that

‖𝑋𝑛 − 𝑋‖𝑝′ ⩽ ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ ‖𝑋𝑛 − 𝑋‖ 𝑝𝑝′𝑝 .
Since 𝑋𝑛 converges uniformly to 𝑋 as 𝑛 → ∞, and sup𝑛∈ℕ ‖𝑋𝑛‖𝑝 ⩽ ‖𝑋‖𝑝 < ∞, we deduce
that

‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝜑𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝜑𝑢

‖‖‖‖∞ ⟶ 0 as 𝑛 ⟶ ∞.

Similarly, for each 𝑡 ∈ [0, 𝑇], it holds that

|||||∫
𝑡

0
𝜑𝑛𝑢 ⊗ d𝑋𝑢 − ∫

𝑡

0
𝜑𝑢 ⊗ d𝑋𝑢

||||| ≲ ‖𝜑𝑛 − 𝜑‖𝑞‖𝑋‖𝑝,
and |||||∫

𝑡

0
𝜑𝑛𝑢 ⊗ d𝜑𝑢 − ∫

𝑡

0
𝜑𝑢 ⊗ d𝜑𝑢

||||| ≲ ‖𝜑𝑛 − 𝜑‖𝑞‖𝜑‖𝑞,
and, since ‖𝜑𝑛 − 𝜑‖𝑞 → 0 as 𝑛 → ∞, we infer the required convergence.
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18 of 51 ALLAN et al.

(iii) We aim to find a control function 𝑤 such that

sup
(𝑠,𝑡)∈Δ𝑇

|𝑋𝑠,𝑡|𝑝
𝑤(𝑠, 𝑡)

+ sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽𝑁𝑛

| ∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝑋𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝑋𝑢| 𝑝2

𝑤(𝑡𝑛
𝑘
, 𝑡𝑛𝓁)

⩽ 1, (2.24)

where

∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝑋𝑢 = ∫

𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝑋𝑢 + ∫

𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝜑𝑢

+ ∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜑𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝑋𝑢 + ∫

𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜑𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝜑𝑢.

Let𝑤𝑋 be the control function with respect to which𝑋 satisfies Property (RIE), and define
moreover the control function 𝑤𝜑, given by 𝑤𝜑(𝑠, 𝑡) = ‖𝜑‖𝑞𝑞,[𝑠,𝑡] for (𝑠, 𝑡) ∈ Δ𝑇 .
We have from Property (RIE) that

sup
(𝑠,𝑡)∈Δ𝑇

|𝑋𝑠,𝑡|𝑝
𝑤𝑋(𝑠, 𝑡) + 𝑤𝜑(𝑠, 𝑡)

≲ sup
(𝑠,𝑡)∈Δ𝑇

|𝑋𝑠,𝑡|𝑝
𝑤𝑋(𝑠, 𝑡)

+ sup
(𝑠,𝑡)∈Δ𝑇

|𝜑𝑠,𝑡|𝑝
𝑤𝜑(𝑠, 𝑡)

⩽ 2,

and that

sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽𝑁𝑛

||||∫ 𝑡𝑛𝓁𝑡𝑛𝑘 𝑋𝑛𝑡𝑛𝑘 ,𝑢 ⊗ d𝑋𝑢||||
𝑝

2

𝑤𝑋(𝑡
𝑛
𝑘
, 𝑡𝑛𝓁)

⩽ 1.

By the standard estimate for Young integrals (see, e.g., [22, Proposition 2.4]), for every 𝑛 ∈ ℕ
and 0 ⩽ 𝑘 < 𝓁 ⩽ 𝑁𝑛, we have

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝜑𝑢

||||||
𝑝

2

≲ ‖𝑋𝑛‖ 𝑝2
𝑝,[𝑡𝑛

𝑘
,𝑡𝑛
𝓁
]
‖𝜑‖ 𝑝2

𝑞,[𝑡𝑛
𝑘
,𝑡𝑛
𝓁
]

⩽ ‖𝑋‖ 𝑝2
𝑝,[𝑡𝑛

𝑘
,𝑡𝑛
𝓁
]
‖𝜑‖ 𝑝2

𝑞,[𝑡𝑛
𝑘
,𝑡𝑛
𝓁
]
⩽ 𝑤𝑋(𝑡

𝑛
𝑘
, 𝑡𝑛𝓁)

1
2 𝑤𝜑(𝑡

𝑛
𝑘
, 𝑡𝑛𝓁)

𝑝

2𝑞 ,

and we can similarly obtain

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜑𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝑋𝑢

||||||
𝑝

2

≲ 𝑤𝑋(𝑡
𝑛
𝑘
, 𝑡𝑛𝓁)

1
2 𝑤𝜑(𝑡

𝑛
𝑘
, 𝑡𝑛𝓁)

𝑝

2𝑞

and

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜑𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝜑𝑢

||||||
𝑝

2

≲ 𝑤𝜑(𝑡
𝑛
𝑘
, 𝑡𝑛𝓁)

𝑝

𝑞 .
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THE EULER SCHEME FOR RDES AND SDES 19 of 51

Since 𝑝 ∈ (2, 3) and 𝑞 ∈ [1, 2), we have that 1
2
+
𝑝

2𝑞
> 1 and 𝑝

𝑞
> 1, and it follows that the

maps (𝑠, 𝑡) ↦ 𝑤𝑋(𝑠, 𝑡)
1
2 𝑤𝜑(𝑠, 𝑡)

𝑝

2𝑞 and (𝑠, 𝑡) ↦ 𝑤𝜑(𝑠, 𝑡)
𝑝

𝑞 are superadditive and thus control
functions. We deduce that (2.24) holds with a control function 𝑤 of the form

𝑤(𝑠, 𝑡) = 𝐶

(
𝑤𝑋(𝑠, 𝑡) + 𝑤𝜑(𝑠, 𝑡) + 𝑤𝑋(𝑠, 𝑡)

1
2 𝑤𝜑(𝑠, 𝑡)

𝑝

2𝑞 + 𝑤𝜑(𝑠, 𝑡)
𝑝

𝑞

)
, (𝑠, 𝑡) ∈ Δ𝑇,

where 𝐶 > 0 is a suitable constant which depends only on 𝑝 and 𝑞. □

By Proposition 2.12, the modified driving signal 𝑋 satisfies Property (RIE), and can thus be
canonically lifted to a rough path 𝐗̂ = (𝑋, 𝕏̂) ∈ 𝑝([0, 𝑇]; ℝ𝑑) via (2.7). By Theorem 2.2, the RDE
(2.4) driven by 𝐗̂ has a unique solution 𝑌, and the approximate Euler scheme 𝑌𝑛 in (2.22) con-
verges to 𝑌 by Theorem 2.3. We will see an application of this to SDEs driven by Lévy processes
in Section 3.3.
The next proposition provides an error and convergence analysis for the approximate Euler

scheme (2.22) with respect to the solution 𝑌 of the RDE (2.4) driven by the rough path𝐗 = (𝑋,𝕏)
under Property (RIE).

Proposition 2.13. Suppose that𝑋 ∈ 𝐷([0, 𝑇]; ℝ𝑑) satisfies Property (RIE) relative to 𝑝 ∈ (2, 3) and
a sequence of partitions (𝑛)𝑛∈ℕ, and let𝐗 be its canonical rough path lift. Let𝜑 ∈ 𝐷𝑞([0, 𝑇]; ℝ𝑑) for
some 𝑞 ∈ (1, 2) such that 1

𝑝
+ 1
𝑞
> 1, let 𝜑𝑛 be the piecewise constant approximation of 𝜑, as defined

in (2.23), and assume that ‖𝜑𝑛 − 𝜑‖𝑞 → 0 as 𝑛 → ∞. Let 𝑌 be the solution of the RDE (2.4) driven
by 𝐗, and let 𝑌𝑛 be the approximate Euler scheme defined in (2.22). We have the error estimate

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ (1 + ‖𝑋‖𝑝 + ‖𝜑‖𝑞)‖𝜑‖𝑞 + |𝑛|1− 1𝑞 + (‖𝑋𝑛 − 𝑋‖∞ + ‖𝜑𝑛 − 𝜑‖∞)1− 𝑝𝑝′
+

(‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞ + ‖𝑋𝑛 − 𝑋‖𝑝′ + ‖𝜑𝑛 − 𝜑‖𝑞
)1− 𝑝

𝑝′

for any 𝑝′ ∈ (𝑝, 3) such that 1
𝑝′
+ 1
𝑞
> 1, where the implicit multiplicative constant depends on

𝑝, 𝑝′, 𝑞, ‖𝑏‖𝐶2
𝑏
, ‖𝜎‖𝐶3

𝑏
, 𝑇, ‖𝑋‖∞, ‖𝐗‖𝑝, ‖𝜑‖∞, ‖𝜑‖𝑞 and 𝑤(0, 𝑇), where 𝑤 is the control function for

which (2.6) holds. In particular, we have that

lim sup
𝑛→∞

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ (1 + ‖𝑋‖𝑝 + ‖𝜑‖𝑞)‖𝜑‖𝑞. (2.25)

Proof. By Proposition 2.12, we know that the path 𝑋 = 𝑋 + 𝜑 satisfies Property (RIE) relative to 𝑝
and (𝑛)𝑛∈ℕ. Let 𝐗̂ be the canonical rough path lift of 𝑋, and let 𝑌 and 𝑌 be the solutions of the
RDE (2.4) driven by 𝐗 and 𝐗̂, respectively. It is clear that

‖𝑌𝑛 − 𝑌‖𝑝′ ⩽ ‖𝑌𝑛 − 𝑌‖𝑝′ + ‖𝑌 − 𝑌‖𝑝′ .
By Theorem 2.2, we have the estimate

‖𝑌 − 𝑌‖𝑝′ ≲ ‖𝐗̂; 𝐗‖𝑝′ ,
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20 of 51 ALLAN et al.

and, by Theorem 2.3, we have that

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ |𝑛|1− 1𝑞 + ‖𝑋𝑛 − 𝑋‖1− 𝑝𝑝′∞ +
‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖1−
𝑝

𝑝′

∞

,

where 𝑋𝑛 is the piecewise constant approximation of 𝑋 along 𝑛. Since 𝑋𝑛 = 𝑋𝑛 + 𝜑𝑛, we can
bound ‖𝑋𝑛 − 𝑋‖∞ ⩽ ‖𝑋𝑛 − 𝑋‖∞ + ‖𝜑𝑛 − 𝜑‖∞.
As shown in the proof of Proposition 2.12,

‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞
≲
‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞ + ‖𝑋𝑛 − 𝑋‖𝑝′‖𝜑‖𝑞 + ‖𝜑𝑛 − 𝜑‖𝑞(‖𝑋‖𝑝 + ‖𝜑‖𝑞).
We also note that

𝕏̂𝑠,𝑡 − 𝕏𝑠,𝑡 = ∫
𝑡

𝑠
𝑋𝑠,𝑢 ⊗ d𝜑𝑢 + ∫

𝑡

𝑠
𝜑𝑠,𝑢 ⊗ d𝑋𝑢 + ∫

𝑡

𝑠
𝜑𝑠,𝑢 ⊗ d𝜑𝑢

for (𝑠, 𝑡) ∈ Δ𝑇 , so that, by the standard estimate for Young integrals (see, e.g., [22, Proposition 2.4]),
we obtain |𝕏̂𝑠,𝑡 − 𝕏𝑠,𝑡| ≲ ‖𝑋‖𝑝,[𝑠,𝑡]‖𝜑‖𝑞,[𝑠,𝑡] + ‖𝜑‖2𝑞,[𝑠,𝑡].
This implies that, for any partition  of the interval [0, 𝑇],

∑
[𝑠,𝑡]∈

|𝕏̂𝑠,𝑡 − 𝕏𝑠,𝑡| 𝑝2 ≲ ∑
[𝑠,𝑡]∈

(‖𝑋‖ 𝑝2
𝑝,[𝑠,𝑡]

‖𝜑‖ 𝑝2
𝑞,[𝑠,𝑡]

+ ‖𝜑‖𝑝
𝑞,[𝑠,𝑡]

)

⩽

( ∑
[𝑠,𝑡]∈

‖𝑋‖𝑝
𝑝,[𝑠,𝑡]

)1
2
( ∑
[𝑠,𝑡]∈

‖𝜑‖𝑝
𝑞,[𝑠,𝑡]

)1
2

+
∑
[𝑠,𝑡]∈

‖𝜑‖𝑝
𝑞,[𝑠,𝑡]

⩽

( ∑
[𝑠,𝑡]∈

‖𝑋‖𝑝
𝑝,[𝑠,𝑡]

)1
2
( ∑
[𝑠,𝑡]∈

‖𝜑‖𝑞
𝑞,[𝑠,𝑡]

)𝑝
2𝑞

+

( ∑
[𝑠,𝑡]∈

‖𝜑‖𝑞
𝑞,[𝑠,𝑡]

)𝑝
𝑞

⩽ ‖𝑋‖ 𝑝2𝑝 ‖𝜑‖ 𝑝2𝑞 + ‖𝜑‖𝑝𝑞 ,
so that ‖𝕏̂ − 𝕏‖ 𝑝

2
≲ ‖𝑋‖𝑝‖𝜑‖𝑞 + ‖𝜑‖2𝑞. We thus deduce that
‖𝐗̂; 𝐗‖𝑝′ ⩽ ‖𝑋 − 𝑋‖𝑝 + ‖𝕏̂ − 𝕏‖ 𝑝

2
≲ (1 + ‖𝑋‖𝑝 + ‖𝜑‖𝑞)‖𝜑‖𝑞,

and combining the estimates above, we obtain the desired error estimate. □

As an immediate consequence of Proposition 2.13, if the modified driving signal 𝑋 converges
to the driving signal 𝑋, then the approximate Euler scheme converges to the solution 𝑌 of the
RDE (2.4). This is made precise in the following corollary, which follows from (2.25).
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THE EULER SCHEME FOR RDES AND SDES 21 of 51

Corollary 2.14. Recall the setting of Proposition 2.13, and now let 𝑌̌𝑛 be the approximate Euler
scheme of the RDE (2.4) along the partition 𝑛, given by

𝑌̌𝑛𝑡 = 𝑦0 +
∑

𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝑏(𝑡𝑛𝑖 , 𝑌̌
𝑛
𝑡𝑛
𝑖

)(𝑡𝑛𝑖+1 − 𝑡
𝑛
𝑖 ) +

∑
𝑖 ∶ 𝑡𝑛
𝑖+1
⩽𝑡

𝜎(𝑡𝑛𝑖 , 𝑌̌
𝑛
𝑡𝑛
𝑖

)(𝑋̌𝑛
𝑡𝑛
𝑖+1

− 𝑋̌𝑛
𝑡𝑛
𝑖

)

for 𝑡 ∈ [0, 𝑇], with the modified driving signal

𝑋̌𝑛 ∶= 𝑋 + 𝜓𝑛,

where 𝜓𝑛 ∈ 𝐷𝑞([0, 𝑇]; ℝ𝑑) for some 𝑞 ∈ (1, 2) such that 1
𝑝
+ 1
𝑞
> 1. If ‖𝜓𝑛‖𝑞 → 0 as 𝑛 → ∞, then

‖𝑌̌𝑛 − 𝑌‖𝑝′ ⟶ 0 as 𝑛 ⟶ ∞

for any 𝑝′ ∈ (𝑝, 3) such that 1
𝑝′
+ 1
𝑞
> 1.

Remark 2.15. In this section, we handled the modified driving signal 𝑋 + 𝜑 by considering the
rough path lift 𝐗̂ of 𝑋 = 𝑋 + 𝜑, and considering the solution 𝑌 of the RDE (2.4) driven by 𝐗̂. An
alternative, equally valid approach would be to instead absorb 𝜑 into the drift of the RDE. The
resulting equation would not strictly speaking be of the form in (2.4), but it would still fall into
the regime of the more general RDE in (2.2), and an error estimate could be obtained using the
stability estimate in Theorem 2.2.

3 APPLICATIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS

In this section, we apply the deterministic theory developed in Section 2, regarding the Euler
scheme for RDEs, to SDEs. For this purpose, we now let 𝑋 be a 𝑑-dimensional càdlàg semi-
martingale, defined on a probability space (Ω, , ℙ)with a filtration (𝑡)𝑡∈[0,𝑇] satisfying the usual
conditions, that is, completeness and right continuity. We consider the SDE

𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝑠, 𝑌𝑠−) d𝑠 + ∫

𝑡

0
𝜎(𝑠, 𝑌𝑠−) d𝑋𝑠, 𝑡 ∈ [0, 𝑇], (3.1)

where 𝑦0 ∈ ℝ𝑘, 𝑏 ∈ 𝐶2𝑏(ℝ
𝑘+1; ℝ𝑘), and 𝜎 ∈ 𝐶3

𝑏
(ℝ𝑘+1;(ℝ𝑑; ℝ𝑘)), and ∫ 𝑡0 𝜎(𝑠, 𝑌𝑠−) d𝑋𝑠 is defined

as an Itô integral. For a comprehensive introduction to stochastic Itô integration and SDEs, we
refer, for example, to the textbook [36]. It is well known that the SDE (3.1) possesses a unique
(strong) solution (see, e.g., [36, Chapter V, Theorem 6]), and that the semimartingale 𝑋 can be
lifted to a random rough path via Itô integration, by defining 𝐗 = (𝑋,𝕏) ∈ 𝑝([0, 𝑇]; ℝ𝑑), ℙ-a.s.,
for any 𝑝 ∈ (2, 3), where

𝕏𝑠,𝑡 ∶= ∫
𝑡

𝑠
(𝑋𝑟− − 𝑋𝑠) ⊗ d𝑋𝑟 = ∫

𝑡

𝑠
𝑋𝑟− ⊗ d𝑋𝑟 − 𝑋𝑠 ⊗ 𝑋𝑠,𝑡, (𝑠, 𝑡) ∈ Δ𝑇; (3.2)

see [31, Proposition 3.4] or [22, Theorem 6.5]. It turns out that, if the semimartingale 𝑋 satis-
fies Property (RIE) relative to 𝑝 ∈ (2, 3) and a suitable sequence of partitions (𝑛)𝑛∈ℕ, then the
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22 of 51 ALLAN et al.

solutions to the SDE (3.1) and to the RDE (2.4) driven by the random rough path 𝐗 = (𝑋,𝕏)
coincide ℙ-almost surely.

Lemma 3.1. Let 𝑝 ∈ (2, 3) and let 𝑛 = {𝜏𝑛
𝑘
}, 𝑛 ∈ ℕ, be a sequence of adapted partitions (so that

each 𝜏𝑛
𝑘
is a stopping time), such that, for almost every 𝜔 ∈ Ω, (𝑛(𝜔))𝑛∈ℕ is a sequence of (finite)

partitions of [0, 𝑇]with vanishingmesh size. Let𝑋 be a càdlàg semimartingale, and suppose that, for
almost every 𝜔 ∈ Ω, the sample path 𝑋(𝜔) satisfies Property (RIE) relative to 𝑝 and (𝑛(𝜔))𝑛∈ℕ.
(i) The random rough paths 𝐗 = (𝑋,𝕏), with 𝕏 defined pathwise via (2.7), and with 𝕏 defined by

stochastic integration as in (3.2), coincide ℙ-almost surely.
(ii) The solution of the SDE (3.1) driven by𝑋, and the solution of the RDE (2.4) driven by the random

rough path 𝐗 = (𝑋,𝕏), coincide ℙ-almost surely.

Proof.

(i) By construction, the pathwise rough integral ∫ 𝑡0 𝑋𝑢(𝜔) ⊗ d𝑋𝑢(𝜔) constructed via Property
(RIE) is given by the limit as 𝑛 → ∞ of left-point Riemann sums:

𝑁𝑛−1∑
𝑘=0

𝑋𝜏𝑛
𝑘
(𝜔)(𝜔) ⊗ 𝑋𝜏𝑛

𝑘
(𝜔)∧𝑡,𝜏𝑛

𝑘+1
(𝜔)∧𝑡(𝜔). (3.3)

It is known that these Riemann sums also converge uniformly in probability to the Itô integral
∫ 𝑡0 𝑋𝑢− ⊗ d𝑋𝑢 (see, e.g., [36, Chapter II, Theorem 21]), and the result thus follows from the
(almost sure) uniqueness of limits.

(ii) In the following, we adopt the notation 𝐽𝐹 for the set of jump times of a path 𝐹, and we write
lim inf𝑛→∞ 𝑛 ∶= ⋃𝑚∈ℕ ⋂𝑛⩾𝑚 𝑛.
Let 𝑌 be the solution to the RDE (2.4) driven by the random rough path𝐗 = (𝑋,𝕏). By the

definition of 𝕏 in (2.7), it is straightforward to see that 𝕏𝑡−,𝑡 = 0 for every 𝑡 ∈ (0, 𝑇]. It then
follows from the definition of rough integration that the integral 𝑡 ↦ ∫ 𝑡0 𝜎(𝑠, 𝑌𝑠) d𝐗𝑠 can only
have a jump at the jump times of 𝑋, and it follows that the same is true of the solution 𝑌 to
the RDE (2.4), that is, 𝐽𝑌 ⊆ 𝐽𝑋 .
Since the piecewise constant approximation 𝑋𝑛 of 𝑋 along 𝑛 converges uniformly to 𝑋

(by condition (i) of Property (RIE)), we have from Proposition B.1 that 𝐽𝑋 ⊆ lim inf𝑛→∞ 𝑛.
Since 𝐽𝑌 ⊆ 𝐽𝑋 , we have that 𝐽𝑌 ⊆ lim inf𝑛→∞ 𝑛. It then follows from Theorem B.2 that

∫
𝑡

0
𝜎(𝑠, 𝑌𝑠) d𝐗𝑠 = lim𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝜎(𝜏𝑛
𝑘
, 𝑌𝜏𝑛

𝑘
)𝑋𝜏𝑛

𝑘
∧𝑡,𝜏𝑛

𝑘+1
∧𝑡.

Since these Riemann sums also converge in probability to the Itô integral ∫ 𝑡0 𝜎(𝑠, 𝑌𝑠−) d𝑋𝑠
(see, e.g., [36, Chapter II, Theorem 21]), these integrals coincide almost surely. We infer that
𝑌 is also a solution of the SDE (3.1), which has a unique solution (by, e.g., [36, Chapter V,
Theorem 6]). □

As a consequence of Theorem 2.3 and Lemma 3.1, for semimartingales that satisfy Property
(RIE) relative to a sequence of adapted partitions, the Euler scheme (2.5) converges pathwise to
the solution of the SDE (3.1). In the following subsections, we verify Property (RIE) for various
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THE EULER SCHEME FOR RDES AND SDES 23 of 51

semimartingales relative to suitable sequences of partitions, and derive the pathwise convergence
rate of the associated Euler scheme with respect to the 𝑝-variation norm.

3.1 Brownian motion

We start with the most prominent example of a semimartingale, by taking 𝑋 = 𝑊 to be
a 𝑑-dimensional Brownian motion 𝑊 = (𝑊𝑡)𝑡∈[0,𝑇] with respect to the underlying filtration
(𝑡)𝑡∈[0,𝑇].
Proposition 3.2. Let 𝑝 ∈ (2, 3) and let 𝑛 = {0 = 𝑡𝑛

0
< 𝑡𝑛
1
< ⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ, be a sequence

of equidistant partitions of the interval [0, 𝑇], so that, for each 𝑛 ∈ ℕ, there exists some 𝜋𝑛 > 0 such

that 𝑡𝑛
𝑖+1
− 𝑡𝑛
𝑖
= 𝜋𝑛 for each 0 ⩽ 𝑖 < 𝑁𝑛. If𝜋

2− 4
𝑝

𝑛 log(𝑛) → 0 as 𝑛 → ∞, then, for almost every𝜔 ∈ Ω,
the sample path𝑊(𝜔) satisfies Property (RIE) relative to 𝑝 and (𝑛)𝑛∈ℕ.
Proof. As stated in Remark 2.4, Davie’s condition implies Property (RIE). While [35, Appendix B]
shows this for the sequence of partitions (𝑛

𝑈
)𝑛∈ℕ, where 𝑛𝑈 = { 𝑖𝑇𝑛 ∶ 𝑖 = 0, 1, … , 𝑛}, that is, 𝜋𝑛 =

𝑇

𝑛
, their proof actually holds for any sequence of equidistant partitions of the interval [0, 𝑇].

We therefore show the necessary condition proposed in [12], under the assumption that

𝜋
2− 4
𝑝

𝑛 log(𝑛) → 0 as 𝑛 → ∞.
More precisely, let𝐖 = (𝑊,𝕎) be the Itô Brownian rough path lift of𝑊. Write 𝛼 ∶= 1

𝑝
and let

𝛽 ∈ (1 − 𝛼, 2𝛼). We show that, almost surely, there exists a constant 𝐶 > 0 such that

||||||
𝓁−1∑
𝑚=𝑘

𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

|||||| ⩽ 𝐶(𝓁 − 𝑘)𝛽𝜋2𝛼𝑛 ,
for every 𝑖, 𝑗 = 1, … , 𝑑 and 𝑛 ∈ ℕ, whenever 0 < 𝑘 < 𝓁 are integers such that 𝓁𝜋𝑛 ⩽ 𝑇.
Step 1. We recall that a (zero mean) random variable 𝑍 is said to be sub-Gaussian if its sub-

Gaussian norm ‖𝑍‖𝜓2 ∶= inf {𝑧 > 0 ∶ 𝔼[exp(𝑍2∕𝑧2)] ⩽ 2} is finite. It is well known that the sub-
Gaussian property admits an equivalent formulation; namely, 𝑍 is sub-Gaussian if and only if
𝔼[exp(𝜆2𝑍2)] ⩽ exp(𝜆2𝐾2) holds for all 𝜆 such that |𝜆| ⩽ 1

𝐾
, for some 𝐾 > 0. In this case, we have‖𝑍‖𝜓2 = 𝐾 up to a multiplicative constant.

We will prove that𝕎𝑖𝑗
𝑡𝑛𝑚,𝑡

𝑛
𝑚+1

,𝑚 = 𝑘,… ,𝓁 − 1, are independent sub-Gaussian random variables

with sub-Gaussian norm ‖𝕎𝑖𝑗
𝑡𝑛𝑚,𝑡

𝑛
𝑚+1

‖𝜓2 = 𝐶𝜋𝑛 for some 𝐶 > 0.
First, we note that, by [21, Proposition 13.4], for all𝑚 ∈ ℕ, the random variables

𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

𝑡𝑛
𝑚+1
− 𝑡𝑛𝑚

are independent and identically distributed, with the same distribution as𝕎𝑖𝑗
0,1
, and that the latter

satisfies 𝔼[exp(𝜂𝕎𝑖𝑗
0,1
)] < ∞ for some sufficiently small 𝜂 > 0, which is equivalent to the Gaussian

tail property, that is, that ‖𝕎𝑖𝑗
0,1
‖𝐿𝑞 ⩽ 𝑐√𝑞 for all 𝑞 ⩾ 1, where the constant 𝑐 is independent of 𝑞;
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24 of 51 ALLAN et al.

see [21, Lemma A.17]. As a consequence, using the fact that 𝑡𝑛
𝑚+1
− 𝑡𝑛𝑚 = 𝜋𝑛 for all𝑚, and setting

𝑞 = 2𝜈, we deduce that

𝔼[|𝕎𝑖𝑗
𝑡𝑛𝑚,𝑡

𝑛
𝑚+1

|2𝜈] ⩽ 𝑐𝜈𝜈𝜈𝜋2𝜈𝑛 , 𝜈 ∈ ℕ, (3.4)

for a new constant 𝑐 > 0 which does not depend on 𝜈.
We now aim to show that there exists a constant 𝐶 > 0 such that

𝔼[exp(𝜆2(𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

)2)] ⩽ exp(𝐶2𝜋2𝑛𝜆
2), (3.5)

for all 𝜆 such that |𝜆| ⩽ 1

𝐶𝜋𝑛
, which then implies that 𝕎𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

is sub-Gaussian with norm‖𝕎𝑖𝑗
𝑡𝑛𝑚,𝑡

𝑛
𝑚+1

‖𝜓2 = 𝐶𝜋𝑛, up to a multiplicative constant which we may then absorb into 𝐶. Using
the Taylor expansion for the exponential function, we get, for 𝜆 ∈ ℝ, that

𝔼[exp(𝜆2(𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

)2)] = 𝔼

⎡⎢⎢⎢⎣1 +
∞∑
𝜈=1

𝜆2𝜈(𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

)2𝜈

𝜈!

⎤⎥⎥⎥⎦ = 1 +
∞∑
𝜈=1

𝜆2𝜈𝔼[(𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

)2𝜈]

𝜈!
.

By the bound in (3.4) and Stirling’s a pproximation (which implies in particular that 𝜈! ⩾ (𝜈
𝑒
)𝜈 for

all 𝜈 ⩾ 1), we obtain

𝔼[exp(𝜆2(𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

)2)] ⩽ 1 +

∞∑
𝜈=1

(𝑒𝑐𝜆2𝜋2𝑛)
𝜈 =

1

1 − 𝑒𝑐𝜆2𝜋2𝑛
⩽ exp(2𝑒𝑐𝜆2𝜋2𝑛),

which is valid provided that

𝑒𝑐𝜆2𝜋2𝑛 ⩽
1

2
, (3.6)

since 1

1−𝑥
⩽ exp(2𝑥) for 𝑥 ∈ [0, 1

2
]. We then obtain (3.5) by choosing𝐶 =

√
2𝑒𝑐, and note that then

(3.6) does indeed hold when |𝜆| ⩽ 1

𝐶𝜋𝑛
.

Step 2. Let 𝐶 > 0 be the constant found above, so that ‖𝕎𝑖𝑗
𝑡𝑛𝑚,𝑡

𝑛
𝑚+1

‖𝜓2 = 𝐶𝜋𝑛. Then Hoeffding’s
inequality (see, e.g., [40, Theorem 2.6.2]) gives

ℙ

(||||||
𝓁−1∑
𝑚=𝑘

𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

|||||| ⩾ 𝐶(𝓁 − 𝑘)𝛽𝜋2𝛼𝑛
)
⩽ 2 exp

⎛⎜⎜⎜⎝−
𝐶2(𝓁 − 𝑘)2𝛽𝜋4𝛼𝑛∑𝓁−1
𝑚=𝑘 ‖𝕎𝑖𝑗𝑡𝑛𝑚,𝑡𝑛𝑚+1‖2𝜓2

⎞⎟⎟⎟⎠
= 2 exp

(
−
(𝓁 − 𝑘)2𝛽−1

𝜋𝑛
2−4𝛼

)
.

Since 𝛽 > 1 − 𝛼 > 1
2
, we can bound this further by

ℙ

(||||||
𝓁−1∑
𝑚=𝑘

𝕎
𝑖𝑗

𝑡𝑛𝑚,𝑡
𝑛
𝑚+1

|||||| ⩾ 𝐶(𝓁 − 𝑘)𝛽𝜋2𝛼𝑛
)
⩽ 2 exp

(
−

1

𝜋𝑛
2−4𝛼

)
= 2𝑛

− 1
𝛾𝑛 ,
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THE EULER SCHEME FOR RDES AND SDES 25 of 51

wherewe denote 𝛾𝑛 = 𝜋𝑛2−4𝛼 log(𝑛). Since, by assumption, 𝛾𝑛 → 0 as𝑛 → ∞, we have that
1

𝛾𝑛
> 1

for all sufficiently large 𝑛 ∈ ℕ, and hence that the series
∑
𝑛∈ℕ 𝑛

− 1
𝛾𝑛 is absolutely convergent. The

desired statement then follows from the Borel–Cantelli lemma. □

Remark 3.3. Proposition 3.2 can be generalized to any sequence of partitions (𝑛)𝑛∈ℕ, which
possibly consists of nonequidistant partitions, such that |𝑛|2− 4𝑝 log(𝑛) → 0 as 𝑛 → ∞, provided
that there exists a positive number 𝜂 > 0 such that

|𝑛|
min0⩽𝑘<𝑁𝑛 |𝑡𝑛𝑘+1 − 𝑡𝑛𝑘 | ⩽ 𝜂

for every 𝑛 ∈ ℕ. This additional condition requires that the sequence (𝑛)𝑛∈ℕ is a “balanced
partition sequence” in the sense of [9].

Remark 3.4. Combining Proposition 3.2 with Lemma 2.8, we infer that the piecewise constant
approximations of a Brownian motion along equidistant partitions converge to its Itô rough path
lift, which, as far as we are aware, is a novel construction of this lift. Existing approximations
of Brownian rough path are all continuous approximations, such as piecewise linear or mollifier
approximations—cf. [21]—which play a crucial role, for example, in the rough path-based proofs
of Wong–Zakai results, support theorems and large deviation principles.

Corollary 3.5. Let 𝑝 ∈ (2, 3) and let𝑛
𝑈
= {0 = 𝑡𝑛

0
< 𝑡𝑛
1
<⋯ < 𝑡𝑛𝑛 = 𝑇}, 𝑛 ∈ ℕ, with 𝑡

𝑛
𝑖
= 𝑖𝑇
𝑛
, be the

sequence of equidistant partitions with width 𝑇
𝑛
of the interval [0, 𝑇]. Let𝑌 be the solution of the SDE

(3.1) driven by a Brownian motion𝑊, and let 𝑌𝑛 be the corresponding Euler approximation along
𝑛
𝑈
, as defined in (2.5). For any𝑝′ ∈ (𝑝, 3), 𝑞 ∈ (1, 2) and 𝛽 ∈ (1 − 1

𝑝
, 2
𝑝
) such that 1

𝑝′
+ 1
𝑞
> 1, there

exists a random variable 𝐶, which does not depend on 𝑛, such that

‖𝑌𝑛 − 𝑌‖𝑝′ ⩽ 𝐶(𝑛−(1− 1𝑞 ) + 𝑛−( 2𝑝 −𝛽)(1− 𝑝𝑝′ )), 𝑛 ∈ ℕ. (3.7)

Proof. Since |𝑛
𝑈
| = 𝑇

𝑛
, we have that |𝑛

𝑈
|2− 4𝑝 log(𝑛) → 0 as 𝑛 → ∞. Thus, by Proposition 3.2, for

almost every 𝜔 ∈ Ω, the sample path 𝑊(𝜔) satisfies Property (RIE) relative to 𝑝 and (𝑛
𝑈
)𝑛∈ℕ,

which allows us to apply the result of Theorem 2.3.
Since the sample paths of𝑊 are almost surely 1

𝑝
-Hölder continuous, it is easy to see that

‖𝑊𝑛 −𝑊‖∞ ≲ 𝑛− 1𝑝 , 𝑛 ∈ ℕ,

where the implicit multiplicative constant is a random variable that does not depend on 𝑛. More-
over, by [35, Appendix B], the left-point Riemann sums along (𝑛

𝑈
)𝑛∈ℕ converge uniformly as

𝑛 → ∞, with rate 𝑛−(
2
𝑝
−𝛽) for 𝛽 ∈ (1 − 1

𝑝
, 2
𝑝
), that is,

‖‖‖‖∫ ⋅

0
𝑊𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝑊𝑢 ⊗ d𝑊𝑢

‖‖‖‖∞ ≲ 𝑛−( 2𝑝 −𝛽), 𝑛 ∈ ℕ.
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26 of 51 ALLAN et al.

Hence, by Theorem 2.3, we get that

‖𝑌𝑛 − 𝑌‖𝑝′ ≲ 𝑛−(1− 1𝑞 ) + 𝑛− 1𝑝 (1− 𝑝𝑝′ ) + 𝑛−( 2𝑝 −𝛽)(1− 𝑝𝑝′ ).
Since 1

𝑝
< 1 − 1

𝑝
< 𝛽 for 𝑝 ∈ (2, 3), this gives the rate of convergence in (3.7). □

3.2 Itô processes

In this subsection, we let 𝑋 be an Itô process. More precisely, we suppose that

𝑋𝑡 = 𝑥0 + ∫
𝑡

0
𝑏𝑟 d𝑟 + ∫

𝑡

0
𝐻𝑟 d𝑊𝑟, 𝑡 ∈ [0, 𝑇], (3.8)

for some 𝑥0 ∈ ℝ𝑑, and some locally bounded predictable integrands 𝑏∶ Ω × [0, 𝑇] → ℝ𝑑 and
𝐻∶ Ω × [0, 𝑇] → (ℝ𝑚;ℝ𝑑), where 𝑊 is an ℝ𝑚-valued Brownian motion. We consider the
sequence of dyadic partitions (𝑛

𝐷
)𝑛∈ℕ of [0, 𝑇], given by

𝑛𝐷 ∶= {0 = 𝑡𝑛0 < 𝑡𝑛1 <⋯ < 𝑡𝑛2𝑛 = 𝑇} with 𝑡𝑛
𝑘
∶= 𝑘2−𝑛𝑇 for 𝑘 = 0, 1, … , 2𝑛. (3.9)

In the next proposition, we will show that 𝑋 satisfies Property (RIE) along the sequence of
partitions (𝑛

𝐷
)𝑛∈ℕ, and establish the rate of convergence of the associated Euler scheme. Note

that, in contrast to the proof of Proposition 3.2, for general Itô processes, we cannot rely on the
concentration of measure inequality for sub-Gaussian distributions.

Proposition 3.6. Let 𝑝 ∈ (2, 3) and let𝑋 be an Itô process of the form in (3.8). Let 𝑌 be the solution
of the SDE (3.1) driven by 𝑋, and let 𝑌𝑛 denote the corresponding Euler approximation, as defined
in (2.5), based on 𝑋 and the sequence of dyadic partitions (𝑛

𝐷
)𝑛∈ℕ.

(i) For almost every𝜔 ∈ Ω, the sample path𝑋(𝜔) satisfies Property (RIE) relative to𝑝 and (𝑛
𝐷
)𝑛∈ℕ.

(ii) For any𝑝′ ∈ (𝑝, 3)and 𝑞 ∈ (1, 2) such that 1
𝑝′
+ 1
𝑞
> 1, andany 𝜀 ∈ (0, 1), there exists a random

variable 𝐶, which does not depend on 𝑛, such that

‖𝑌𝑛 − 𝑌‖𝑝′ ⩽ 𝐶(2−𝑛(1− 1𝑞 ) + 2−𝑛( 1𝑝 − 1𝑝′ ) + 2−𝑛2 (1−𝜀)(1− 𝑝𝑝′ )), 𝑛 ∈ ℕ, (3.10)

and

‖𝑌𝑛 − 𝑌‖3 ⩽ 𝐶2−𝑛( 16−𝜀), 𝑛 ∈ ℕ. (3.11)

Proof.

(i) By a localization argument, we may assume that 𝑏 and𝐻 are globally bounded. Let

𝐴𝑡 ∶= ∫
𝑡

0
𝑏𝑟 d𝑟 and 𝑀𝑡 ∶= ∫

𝑡

0
𝐻𝑟 d𝑊𝑟
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THE EULER SCHEME FOR RDES AND SDES 27 of 51

for 𝑡 ∈ [0, 𝑇], so that 𝑋 = 𝑥0 + 𝐴 +𝑀, and recall that we denote the piecewise constant
approximation of 𝑋 along 𝑛

𝐷
by

𝑋𝑛𝑡 = 𝑋𝑇𝟏𝑇(𝑡) +

2𝑛−1∑
𝑘=0

𝑋𝑡𝑛
𝑘
𝟏[𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)(𝑡), 𝑡 ∈ [0, 𝑇],

with 𝑡𝑛
𝑘
= 𝑘2−𝑛𝑇 for each 𝑘 = 0, 1, … , 2𝑛 and 𝑛 ∈ ℕ. Note that, by the uniform continuity of

the sample paths of 𝑋, it is clear that 𝑋𝑛 converges uniformly to 𝑋 almost surely as 𝑛 → ∞.

Step 1. In this step, we verify that the sample paths of𝑋 are almost surely 1
𝑝
-Hölder continuous.

This is a standard application of the Burkholder–Davis–Gundy inequality. Indeed, for any 𝑞 ⩾ 1,
using the boundedness of𝐻, and writing [⋅] for quadratic variation, we have that

𝔼[|𝑀𝑡 −𝑀𝑠|𝑞] = 𝔼[|||||∫
𝑡

𝑠
𝐻𝑢 d𝑊𝑢

|||||
𝑞
]
≲ 𝔼

[[
∫

⋅

0
𝐻𝑢 d𝑊𝑢

] 𝑞
2

𝑠,𝑡

]
≲ |𝑡 − 𝑠| 𝑞2 ,

so that ‖𝑀𝑡 −𝑀𝑠‖𝐿𝑞 ≲ |𝑡 − 𝑠| 12 . By the Kolmogorov continuity theorem (see, e.g., [21, Theo-
rem A.10]), it follows that 𝔼[‖𝑀‖𝛾-Höl] < ∞, where ‖ ⋅ ‖𝛾-Höl denotes the 𝛾-Hölder norm, for any
𝛾 ∈ [0, 1

2
− 1
𝑞
), which, taking 𝑞 sufficiently large, implies that the sample paths of 𝑀 are almost

surely 1
𝑝
-Hölder continuous. Since 𝐴 = ∫ ⋅

0 𝑏𝑟 d𝑟 with the bounded integrand 𝑏, the sample paths

of 𝐴 are Lipschitz continuous, and thus also 1
𝑝
-Hölder continuous.

Step 2. In this step, we show that, almost surely, ∫ ⋅
0 𝑋

𝑛
𝑢 ⊗ d𝑋𝑢 converges uniformly to the Itô

integral ∫ ⋅
0 𝑋𝑢 ⊗ d𝑋𝑢 as 𝑛 → ∞. For this purpose, we write 𝑋

𝑛 = 𝑥0 + 𝐴
𝑛 +𝑀𝑛, where

𝐴𝑛𝑡 ∶= 𝐴𝑇𝟏{𝑇}(𝑡) +

2𝑛−1∑
𝑘=0

𝐴𝑡𝑛
𝑘
𝟏[𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)(𝑡) and 𝑀𝑛𝑡 ∶= 𝑀𝑇𝟏{𝑇}(𝑡) +

2𝑛−1∑
𝑘=0

𝑀𝑡𝑛
𝑘
𝟏[𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)(𝑡),

for 𝑡 ∈ [0, 𝑇]. Since 𝑋 = 𝑥0 + 𝐴 +𝑀, we obtain

𝔼

[‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖2∞
]

≲ 𝔼

[‖‖‖‖∫ ⋅

0
(𝐴𝑛𝑢 − 𝐴𝑢) ⊗ d𝐴𝑢

‖‖‖‖2∞
]
+ 𝔼

[‖‖‖‖∫ ⋅

0
(𝑀𝑛𝑢 −𝑀𝑢) ⊗ d𝐴𝑢

‖‖‖‖2∞
]

+ 𝔼

[‖‖‖‖∫ ⋅

0
(𝐴𝑛𝑢 − 𝐴𝑢) ⊗ d𝑀𝑢

‖‖‖‖2∞
]
+ 𝔼

[‖‖‖‖∫ ⋅

0
(𝑀𝑛𝑢 −𝑀𝑢) ⊗ d𝑀𝑢

‖‖‖‖2∞
]
.

(3.12)

Using the Burkholder–Davis–Gundy inequality, the fact that [𝑀] = [∫ ⋅
0 𝐻𝑡 d𝑊𝑡] = ∫ ⋅

0 |𝐻𝑡|2 d𝑡,
and the boundedness of𝐻, we can bound

𝔼

[‖‖‖‖∫ ⋅

0
(𝑀𝑛𝑢 −𝑀𝑢) ⊗ d𝑀𝑢

‖‖‖‖2∞
]
≲ 𝔼

[
∫
𝑇

0
|𝑀𝑛𝑡 −𝑀𝑡|2 d[𝑀]𝑡]
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28 of 51 ALLAN et al.

≲ ∫
𝑇

0
𝔼[|𝑀𝑛𝑡 −𝑀𝑡|2] d𝑡 = 2𝑛−1∑

𝑘=0
∫
𝑡𝑛
𝑘+1

𝑡𝑛
𝑘

𝔼[|𝑀𝑡𝑛
𝑘
− 𝑀𝑡|2] d𝑡 ≲ 2𝑛−1∑

𝑘=0
∫
𝑡𝑛
𝑘+1

𝑡𝑛
𝑘

𝔼[|[𝑀]𝑡𝑛
𝑘
,𝑡|] d𝑡

=

2𝑛−1∑
𝑘=0

∫
𝑡𝑛
𝑘+1

𝑡𝑛
𝑘

𝔼

[
∫
𝑡

𝑡𝑛
𝑘

|𝐻𝑟|2 d𝑟] d𝑡 ≲ 2𝑛−1∑
𝑘=0

∫
𝑡𝑛
𝑘+1

𝑡𝑛
𝑘

(𝑡 − 𝑡𝑛
𝑘
) d𝑡 ⩽

2𝑛−1∑
𝑘=0

(𝑡𝑛
𝑘+1
− 𝑡𝑛
𝑘
)2 = 2−𝑛.

The other terms on the right-hand side of (3.12) can be bounded similarly by 2−𝑛, up to a constant
that does not depend on 𝑛, and we thus have that

𝔼

[‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖2∞
]
≲ 2−𝑛,

for every 𝑛 ∈ ℕ. By Markov’s inequality, for any 𝜀 ∈ (0, 1), we then have that

ℙ

(‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞ ⩾ 2−𝑛2 (1−𝜀)
)

⩽ 2𝑛(1−𝜀)𝔼

[‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖2∞
]
≲ 2𝑛(1−𝜀)2−𝑛 = 2−𝑛𝜀.

It then follows from the Borel–Cantelli lemma that, almost surely,

‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞ < 2−𝑛2 (1−𝜀) (3.13)

for all sufficiently large 𝑛, which implies the desired convergence.
Step 3. Let 𝜀 ∈ (0, 1) and 𝜌 = 2 + (1−𝜀)(𝑝−2)

4
∈ (2, 3). We infer from Step 1 above that the sample

paths of 𝑋 are almost surely 1
𝜌
-Hölder continuous, from which it follows that

|𝑋𝑠,𝑡| ≲ |𝑡 − 𝑠| 1𝜌 ,
where the implicit multiplicative constant is a random variable that does not depend on 𝑠 or 𝑡.
Proceeding as in the proof of [31, Lemma 3.2], we can show, for any 0 ⩽ 𝑘 < 𝓁 ⩽ 2𝑛, and writing
𝑁 = 𝓁 − 𝑘 = 2𝑛|𝑡𝑛𝓁 − 𝑡𝑛𝑘 |𝑇−1, that||||||∫

𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛𝑢 ⊗ d𝑋𝑢 − 𝑋𝑡𝑛𝑘
⊗ 𝑋𝑡𝑛

𝑘
,𝑡𝑛
𝓁

|||||| ≲ 𝑁
1− 2
𝜌 |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝜌 ≲ 2𝑛(1− 2𝜌 )|𝑡𝑛𝓁 − 𝑡𝑛𝑘 | ⩽ 2𝑛(𝜌−2)|𝑡𝑛𝓁 − 𝑡𝑛𝑘 |.

If 2−𝑛 ⩾ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 4
𝑝(1−𝜀) , then it follows that

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛𝑢 ⊗ d𝑋𝑢 − 𝑋𝑡𝑛𝑘
⊗ 𝑋𝑡𝑛

𝑘
,𝑡𝑛
𝓁

|||||| ≲ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 |
1− 4
𝑝(1−𝜀)

(𝜌−2)
= |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝑝 .
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THE EULER SCHEME FOR RDES AND SDES 29 of 51

Wewill now aim to obtain the same estimate in the case that 2−𝑛 < |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 4
𝑝(1−𝜀) . To this end, let

𝕏 denote the second-level component of the Itô rough path lift of 𝑋, as defined in (3.2). It follows
from the Kolmogorov criterion for rough paths (see [17, Theorem 3.1]) that

|𝕏𝑠,𝑡| ≲ |𝑡 − 𝑠| 2𝑝 , (3.14)

where the implicit multiplicative constant is a random variable that does not depend on 𝑠 or 𝑡.
Using the bounds in (3.13) and (3.14), we then have, for all sufficiently large 𝑛, that||||||∫

𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛𝑢 ⊗ d𝑋𝑢 − 𝑋𝑡𝑛𝑘
⊗ 𝑋𝑡𝑛

𝑘
,𝑡𝑛
𝓁

||||||
=

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑢 ⊗ d𝑋𝑢 + ∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑢 ⊗ d𝑋𝑢 − 𝑋𝑡𝑛
𝑘
⊗ 𝑋𝑡𝑛

𝑘
,𝑡𝑛
𝓁

||||||
⩽ 2

‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞ + |𝕏𝑡𝑛𝑘 ,𝑡𝑛𝓁 |
≲ 2−

𝑛
2
(1−𝜀) + |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝑝

≲ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝑝 .
We have thus established that

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑋𝑛𝑢 ⊗ d𝑋𝑢 − 𝑋𝑡𝑛𝑘
⊗ 𝑋𝑡𝑛

𝑘
,𝑡𝑛
𝓁

||||||
𝑝

2

≲ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 |
holds for all 0 ⩽ 𝑘 < 𝓁 ⩽ 2𝑛 and all sufficiently large𝑛. It follows that there exists a randomcontrol
function 𝑤(𝑠, 𝑡) ∶= 𝑐|𝑡 − 𝑠|, for some random variable 𝑐, such that

sup
(𝑠,𝑡)∈Δ𝑇

|𝑋𝑠,𝑡|𝑝
𝑤(𝑠, 𝑡)

+ sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

| ∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝑋𝑛𝑢 ⊗ d𝑋𝑢 − 𝑋𝑡𝑛𝑘
⊗ 𝑋𝑡𝑛

𝑘
,𝑡𝑛
𝓁
| 𝑝2

𝑤(𝑡𝑛
𝑘
, 𝑡𝑛𝓁)

⩽ 1

holds almost surely. This means that, for almost every 𝜔 ∈ Ω, the sample path 𝑋(𝜔) satisfies
Property (RIE) relative to any 𝑝 ∈ (2, 3) and the sequence of dyadic partitions (𝑛

𝐷
)𝑛∈ℕ.

(ii) Since the sample paths of 𝑋 are almost surely 1
𝑝
-Hölder continuous (by Step 1 above), it is

straightforward to see that

‖𝑋𝑛 − 𝑋‖∞ ≲ 2−𝑛𝑝 , 𝑛 ∈ ℕ,

and, recalling (3.13), we have that

‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢 ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢 ⊗ d𝑋𝑢

‖‖‖‖∞ ≲ 2−𝑛2 (1−𝜀), 𝑛 ∈ ℕ.
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30 of 51 ALLAN et al.

Hence, by Theorem 2.3, we deduce that

‖𝑌𝑛 − 𝑌‖3 ⩽ ‖𝑌𝑛 − 𝑌‖𝑝′ ≲ 2−𝑛(1− 1𝑞 ) + 2− 𝑛𝑝 (1− 𝑝𝑝′ ) + 2−𝑛2 (1−𝜀)(1− 𝑝𝑝′ ),
for any 𝑝′ ∈ (𝑝, 3) and 𝑞 ∈ (1, 2) such that 1

𝑝′
+ 1
𝑞
> 1, which leads to (3.10). Choosing 𝑝

sufficiently close to 2, 𝑝′ to 3, and 𝑞 to 3
2
, and replacing 𝜀 by 6𝜀, then reveals (3.11). □

3.3 Lévy processes

Let 𝐿 = (𝐿𝑡)𝑡∈[0,𝑇] be a 𝑑-dimensional Lévy process with characteristics (𝜆, Σ, 𝜈). In this section,
we shall work under the assumption that ∫|𝑥|<1 |𝑥|𝑞 𝜈(d𝑥) < ∞ for some 𝑞 ∈ [1, 2).
By the Lévy–Itô decomposition (see, e.g., [3, Theorem 2.4.16]), there exists a Brownian motion

𝑊with covariancematrixΣ, and an independent Poisson randommeasure𝜇 on [0, 𝑇] × (ℝ𝑑 ⧵ {0})
with compensator 𝜈, such that 𝐿 = 𝑊 + 𝜑, where

𝜑𝑡 = 𝜆𝑡 + ∫|𝑥|⩾1 𝑥𝜇(𝑡, d𝑥) + ∫|𝑥|<1 𝑥 (𝜇(𝑡, d𝑥) − 𝑡𝜈(d𝑥)), 𝑡 ∈ [0, 𝑇]. (3.15)

Since ∫|𝑥|<1 |𝑥|𝑞 𝜈(d𝑥) < ∞, we have that 𝜑(𝜔) ∈ 𝐷𝑞([0, 𝑇]; ℝ𝑑) for almost every 𝜔 ∈ Ω; see [3,
Theorem 2.4.25] and [8, Théorème IIIb].
Let (𝑛

𝐷
)𝑛∈ℕ be the dyadic partitions of [0, 𝑇], as defined in (3.9). For each 𝑛 ∈ ℕ, we also let

𝐽𝑛 = {𝑡 ∈ (0, 𝑇] ∶ |Δ𝜑𝑡| ⩾ 2−𝑛}, whereΔ𝜑𝑡 = 𝜑𝑡 − 𝜑𝑡− denotes the jump of 𝜑 at time 𝑡, and we let
𝑛𝐿 = 𝑛𝐷 ∪ 𝐽𝑛. (3.16)

We will consider (𝑛
𝐿
)𝑛∈ℕ as our sequence of adapted partitions, noting in particular that, for

almost every 𝜔 ∈ Ω, (𝑛
𝐿
(𝜔))𝑛∈ℕ is a nested sequence of (finite) partitions with vanishing mesh

size, and that {𝑡 ∈ (0, 𝑇] ∶ 𝐿𝑡−(𝜔) ≠ 𝐿𝑡(𝜔)} ⊆ ∪𝑛∈ℕ𝑛𝐿 (𝜔).
Remark 3.7. In order to obtain pointwise convergence of an Euler scheme, it is necessary that the
jump times of the driving signal belong to the partitions used to construct the discretization, a
fact that follows immediately from Proposition B.1, necessitating the inclusion of the jump times
(𝐽𝑛)𝑛∈ℕ above.

Proposition 3.8. Let 𝐿 be a 𝑑-dimensional Lévy process with characteristics (𝜆, Σ, 𝜈), and assume
that ∫|𝑥|<1 |𝑥|𝑞 𝜈(d𝑥) < ∞ for some 𝑞 ∈ [1, 2). Let 𝑝 ∈ (2, 3) such that 1

𝑝
+ 1
𝑞
> 1. Let 𝑌 be the solu-

tion to the SDE (3.1) driven by 𝐿, and let 𝑌𝑛 be the corresponding Euler approximation along 𝑛
𝐿
, as

defined in (2.5).

(i) For almost every 𝜔 ∈ Ω, the sample path 𝐿(𝜔) satisfies Property (RIE) relative to 𝑝 and
(𝑛
𝐿
(𝜔))𝑛∈ℕ.

(ii) For any 𝑝′ ∈ (𝑝, 3) and 𝑞′ ∈ (𝑞, 2) such that 1
𝑝′
+ 1

𝑞′
> 1, any 𝛾 ∈ (0, 1

𝑝
), and any 𝛿 ∈ (0, 1 −

𝑞

2
), there exists a random variable 𝐶, which does not depend on 𝑛, such that
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THE EULER SCHEME FOR RDES AND SDES 31 of 51

‖𝑌𝑛 − 𝑌‖𝑝′ ⩽ 𝐶(2−𝑛(1− 1𝑞′ ) + (2−𝑛( 1𝑝 −𝛾) + 2−𝑛( 1𝑝 − 1𝑝′ ) + 2−𝑛𝛿(1− 𝑞𝑞′ ))1− 𝑝𝑝′), 𝑛 ∈ ℕ.

To prove this statement, we need the following lemma.

Lemma 3.9. Let 𝑝 ∈ (2, 3), let𝑊 be a 𝑑-dimensional Brownian motion with covariance matrix Σ,
and let (𝑛

𝐿
)𝑛∈ℕ be the sequence of adapted partitions defined in (3.16). For almost every 𝜔 ∈ Ω, the

sample path𝑊(𝜔) satisfies Property (RIE) relative to 𝑝 and (𝑛
𝐿
(𝜔))𝑛∈ℕ.

Proof. We need to verify each of the conditions (i)–(iii) in Property (RIE).

(i) Since the sample paths of𝑊 are uniformly continuous on the compact interval [0, 𝑇], it is
straightforward to see that 𝑊𝑛(𝜔) → 𝑊(𝜔) uniformly as 𝑛 → ∞ for almost every 𝜔 ∈ Ω,
where𝑊𝑛 denotes the piecewise constant approximation of𝑊 along 𝑛

𝐿
.

(ii) It follows from the Kolmogorov continuity criterion that the sample paths of Brownian
motion are almost surely 1

𝑝
-Hölder continuous, and that the Hölder constant ‖𝑊‖ 1

𝑝
-Höl has

finite moments of all orders (see, e.g., [6, Theorem A.1]). Applying the Burkholder–Davis–
Gundy inequality, we then have that

𝔼

[‖‖‖‖∫ ⋅

0
𝑊𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝑊𝑢 ⊗ d𝑊𝑢

‖‖‖‖2∞
]
≲ 𝔼

[
∫
𝑇

0
|𝑊𝑛𝑡 −𝑊𝑡|2 d𝑡]

⩽ 𝔼

[‖𝑊‖21
𝑝
-Höl ∫

𝑇

0
|𝑛𝐿 | 2𝑝 d𝑡] ≲ 𝔼[‖𝑊‖21

𝑝
-Höl
]2
− 2𝑛
𝑝 .

Let 𝛾 ∈ (0, 1
𝑝
) and 𝜀 = 1 − 2

𝑝
+ 2𝛾 ∈ (1 − 2

𝑝
, 1). By Markov’s inequality, we infer that

ℙ

(‖‖‖‖∫ ⋅

0
𝑊𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝑊𝑢 ⊗ d𝑊𝑢

‖‖‖‖∞ ⩾ 2−𝑛2 (1−𝜀)
)
≲ 2

−2𝑛
𝑝
+𝑛(1−𝜀)

= 2−2𝑛𝛾.

By the Borel–Cantelli lemma, we then have that, almost surely,

‖‖‖‖∫ ⋅

0
𝑊𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝑊𝑢 ⊗ d𝑊𝑢

‖‖‖‖∞ < 2−𝑛2 (1−𝜀) (3.17)

for all sufficiently large 𝑛. It follows that (∫ ⋅
0 𝑊

𝑛
𝑢 ⊗ d𝑊𝑢)(𝜔) converges uniformly to

(∫ ⋅
0 𝑊𝑢 ⊗ d𝑊𝑢)(𝜔) as 𝑛 → ∞ for almost every 𝜔 ∈ Ω.

(iii) Let 𝜌 = 2 + (1−𝜀)(𝑝−2)
4

∈ (2, 3). Since the sample paths of 𝑊 are almost surely 1

𝜌
-Hölder

continuous, it follows that

|𝑊𝑠,𝑡|𝜌 ≲ |𝑡 − 𝑠|,
where the implicit multiplicative constant is a random variable that does not depend on 𝑠 or
𝑡. Proceeding as in the proof of [31, Lemma 3.2], we can show, for any 0 ⩽ 𝑘 < 𝓁, and writing
𝑁 = 𝓁 − 𝑘, we can show that
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32 of 51 ALLAN et al.

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑊𝑛𝑢 ⊗ d𝑊𝑢 −𝑊𝑡𝑛𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁

|||||| ≲ 𝑁
1− 2
𝜌 |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝜌 ,

where {0 = 𝑡𝑛
0
< 𝑡𝑛
1
< ⋯} are the partition points of𝑛

𝐿
(𝜔) for some (here fixed)𝜔 ∈ Ω. Using| ⋅ | here to denote the cardinality of a set, we note that the number 𝑁 can be bounded by

𝑁 ⩽ |𝑛𝐷(𝜔) ∩ (𝑡𝑛𝑘 , 𝑡𝑛𝓁]| + |𝐽𝑛(𝜔) ∩ (𝑡𝑛𝑘 , 𝑡𝑛𝓁]| ⩽ 2𝑛𝑇−1|𝑡𝑛𝓁 − 𝑡𝑛𝑘 | + 2𝑛𝑞 ∑
𝑡∈𝐽𝑛(𝜔)∩(𝑡𝑛

𝑘
,𝑡𝑛
𝓁
]

|Δ𝜑𝑡(𝜔)|𝑞
≲ 2𝑛|𝑡𝑛𝓁 − 𝑡𝑛𝑘 | + 2𝑛𝑞‖𝜑(𝜔)‖𝑞𝑞,[𝑡𝑛

𝑘
,𝑡𝑛
𝓁
]
⩽ 2𝑛𝜌𝑐(𝑡𝑛

𝑘
, 𝑡𝑛𝓁),

where 𝑐 is the control function defined by 𝑐(𝑠, 𝑡) ∶= |𝑡 − 𝑠| + ‖𝜑(𝜔)‖𝑞
𝑞,[𝑠,𝑡]

for (𝑠, 𝑡) ∈ Δ𝑇 . If

2−𝑛 ⩾ 𝑐(𝑡𝑛
𝑘
, 𝑡𝑛𝓁)

4
𝑝(1−𝜀) , this implies that

||||||∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑊𝑛𝑢 ⊗ d𝑊𝑢 −𝑊𝑡𝑛𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁

|||||| ≲ 2𝑛(𝜌−2)𝑐(𝑡𝑛𝑘 , 𝑡𝑛𝓁) ⩽ 𝑐(𝑡𝑛𝑘 , 𝑡𝑛𝓁)
1− 4
𝑝(1−𝜀)

(𝜌−2)
= 𝑐(𝑡𝑛

𝑘
, 𝑡𝑛𝓁)

2
𝑝 .

In the case that 2−𝑛 < 𝑐(𝑡𝑛
𝑘
, 𝑡𝑛𝓁)

4
𝑝(1−𝜀) , we can follow the same argument as in Step 3 of the

proof of part (i) of Proposition 3.6 (using in particular the bound in (3.17)) to obtain again
that ||||||∫

𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑊𝑛𝑢 ⊗ d𝑊𝑢 −𝑊𝑡𝑛𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁

|||||| ≲ 𝑐(𝑡𝑛𝑘 , 𝑡𝑛𝓁)
2
𝑝 ,

where, as usual, the implicit multiplicative constant depends on 𝜔, but not on 𝑛.
It follows that there exists a random control function 𝑤 such that

sup
(𝑠,𝑡)∈Δ𝑇

|𝑊𝑠,𝑡|𝑝
𝑤(𝑠, 𝑡)

+ sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁

| ∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝑊𝑛𝑢 ⊗ d𝑊𝑢 −𝑊𝑡𝑛𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
| 𝑝2

𝑤(𝑠, 𝑡)
⩽ 1

holds almost surely. □

Proof of Proposition 3.8. Let𝑊 be a Brownian motion with covariance matrix Σ, and let 𝜑 be the
process defined in (3.15), so that 𝐿 = 𝑊 + 𝜑. As usual, we let 𝐿𝑛,𝑊𝑛, and 𝜑𝑛 denote the piecewise
constant approximations of 𝐿,𝑊, and 𝜑, respectively, along the adapted partition 𝑛

𝐿
.

Recalling (3.15), we see that we can write 𝜑 = 𝜂 + 𝜉, where

𝜂𝑡 ∶= 𝜆𝑡 + ∫|𝑥|⩾2−𝑛 𝑥𝜇(𝑡, d𝑥) − 𝑡 ∫2−𝑛⩽|𝑥|<1 𝑥𝜈(d𝑥) (3.18)

and

𝜉𝑡 ∶= ∫|𝑥|<2−𝑛 𝑥 (𝜇(𝑡, d𝑥) − 𝑡𝜈(d𝑥)).
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THE EULER SCHEME FOR RDES AND SDES 33 of 51

Let 𝜂𝑛 and 𝜉𝑛 denote the piecewise constant approximations of 𝜂 and 𝜉 along 𝑛
𝐿
. Recalling how

the adapted partition 𝑛
𝐿
was defined in (3.16), we note that, when estimating the difference 𝜂𝑛 −

𝜂, we may ignore all jumps of size greater than 2−𝑛, and may thus ignore the first integral on the
right-hand side of (3.18). We then have that

‖𝜂𝑛 − 𝜂‖∞ ⩽ 2−𝑛𝑇|𝜆| + 2−𝑛𝑇 ∫2−𝑛⩽|𝑥|<1 |𝑥|𝜈(d𝑥)
⩽ 2−𝑛𝑇|𝜆| + 2−𝑛(2−𝑞)𝑇 ∫2−𝑛⩽|𝑥|<1 |𝑥|𝑞 𝜈(d𝑥) ≲ 2−𝑛(2−𝑞).

(3.19)

Writing ⟨⋅⟩ for the predictable quadratic variation, we have (see, e.g., [26, Chapter 2,
Theorem 1.33]) that

𝔼[⟨𝜉⟩𝑇] ⩽ 𝑇 ∫|𝑥|<2−𝑛 |𝑥|2 𝜈(d𝑥) ⩽ 2−𝑛(2−𝑞)𝑇 ∫|𝑥|<2−𝑛 |𝑥|𝑞 𝜈(d𝑥).
Since this quantity is finite, the process 𝜉 is a square integrable martingale, and in particular
𝔼[[𝜉]𝑇] = 𝔼[⟨𝜉⟩𝑇], where [⋅] denotes the usual quadratic variation. By the Burkholder–Davis–
Gundy inequality, we then have that

𝔼[‖𝜉‖2∞] ≲ 𝔼[[𝜉]𝑇] = 𝔼[⟨𝜉⟩𝑇] ≲ 2−𝑛(2−𝑞). (3.20)

Note that, for any 𝑎 > 0, if ‖𝜉‖∞ < 𝑎2 , then ‖𝜉𝑛 − 𝜉‖∞ < 𝑎. It follows that, for any 𝛿 ∈ (0, 1 −
𝑞

2
),

ℙ(‖𝜉𝑛 − 𝜉‖∞ ⩾ 2−𝑛𝛿) ⩽ ℙ(‖𝜉‖∞ ⩾ 2−1−𝑛𝛿).
By Markov’s inequality and the bound in (3.20), we see that

ℙ(‖𝜉𝑛 − 𝜉‖∞ ⩾ 2−𝑛𝛿) ≲ 22−𝑛(2−𝑞−2𝛿),
and the Borel–Cantelli lemma then implies that, almost surely,

‖𝜉𝑛 − 𝜉‖∞ ≲ 2−𝑛𝛿, (3.21)

where the implicit multiplicative constant is a random variable that does not depend on 𝑛. It
follows from (3.19) and (3.21) that

‖𝜑𝑛 − 𝜑‖∞ ≲ 2−𝑛𝛿. (3.22)

Let 𝑝′ ∈ (𝑝, 3) and 𝑞′ ∈ (𝑞, 2) such that 1

𝑝′
+ 1

𝑞′
> 1. Using interpolation, the fact that

sup𝑛∈ℕ ‖𝜑𝑛‖𝑞 ⩽ ‖𝜑‖𝑞, and the bound in (3.22), we have that, almost surely,
‖𝜑𝑛 − 𝜑‖𝑞′ ⩽ ‖𝜑𝑛 − 𝜑‖1− 𝑞𝑞′∞ ‖𝜑𝑛 − 𝜑‖ 𝑞𝑞′𝑞 ≲ ‖𝜑𝑛 − 𝜑‖1− 𝑞𝑞′∞ ≲ 2

−𝑛𝛿(1−
𝑞

𝑞′
)
. (3.23)
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34 of 51 ALLAN et al.

We also have from Lemma 3.9 that, for almost every 𝜔 ∈ Ω, the sample path𝑊(𝜔) satisfies Prop-
erty (RIE) relative to 𝑝 and (𝑛

𝐿
(𝜔))𝑛∈ℕ. Thus, by Proposition 2.12, for almost every 𝜔 ∈ Ω, the

sample path 𝐿(𝜔) satisfies Property (RIE) relative to 𝑝 and (𝑛(𝜔))𝑛∈ℕ, which establishes part (i).
Since the sample paths of𝑊 are almost surely 1

𝑝
-Hölder continuous, it is straightforward to see

that

‖𝑊𝑛 −𝑊‖∞ ≲ 2−𝑛𝑝 ,
where the implicit multiplicative constant depends on the (random) Hölder constant of the path.
Since 𝐿 = 𝑊 + 𝜑, we have that

‖𝐿𝑛 − 𝐿‖∞ ⩽ ‖𝑊𝑛 −𝑊‖∞ + ‖𝜑𝑛 − 𝜑‖∞ ≲ 2−𝑛𝑝 + 2−𝑛𝛿.
We recall from (3.17) that

‖‖‖‖∫ ⋅

0
𝑊𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝑊𝑢 ⊗ d𝑊𝑢

‖‖‖‖∞ ≲ 2−𝑛2 (1−𝜀) = 2−𝑛( 1𝑝 −𝛾)
for any 𝛾 ∈ (0, 1

𝑝
). We obtained a bound for ‖𝜑𝑛 − 𝜑‖𝑞′ in (3.23), and an analogous argument also

shows that

‖𝑊𝑛 −𝑊‖𝑝′ ⩽ ‖𝑊𝑛 −𝑊‖1− 𝑝𝑝′∞ ‖𝑊𝑛 −𝑊‖ 𝑝𝑝′𝑝 ≲ ‖𝑊𝑛 −𝑊‖1− 𝑝𝑝′∞ ≲ 2
−𝑛( 1

𝑝
− 1
𝑝′
)
.

Using the standard estimate for Young integrals (see, e.g., [22, Proposition 2.4]), similarly to the
proof of Proposition 2.12, we then obtain

‖‖‖‖∫ ⋅

0
𝐿𝑛𝑢 ⊗ d𝐿𝑢 − ∫

⋅

0
𝐿𝑢 ⊗ d𝐿𝑢

‖‖‖‖∞
≲
‖‖‖‖∫ ⋅

0
𝑊𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝑊𝑢 ⊗ d𝑊𝑢

‖‖‖‖∞ + ‖𝑊𝑛 −𝑊‖𝑝′‖𝜑‖𝑞 + ‖𝜑𝑛 − 𝜑‖𝑞′ (‖𝑊‖𝑝 + ‖𝜑‖𝑞)
≲ 2

−𝑛( 1
𝑝
−𝛾)
+ 2

−𝑛( 1
𝑝
− 1
𝑝′
)
+ 2

−𝑛𝛿(1−
𝑞

𝑞′
)
.

Hence, by Theorem 2.3, we establish the estimate in part (ii). □

In the following remark, we briefly discuss 𝛼-stable Lévy processes.

Remark 3.10. Suppose now that 𝐿 is an 𝛼-stable Lévy process for some 𝛼 ∈ (0, 2]. That is, for all
𝑎 > 0, there exists 𝑐 ∈ ℝ𝑑 such that

(𝐿𝑎𝑡)𝑡∈[0,𝑇]
𝑑
= (𝑎

1
𝛼 𝐿𝑡 + 𝑐𝑡)𝑡∈[0,𝑇],

where we write 𝑋
𝑑
= 𝑌 to mean that 𝑋 and 𝑌 have the same distribution; see, for example, [10,

Proposition 3.15]. We now distinguish two cases:
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THE EULER SCHEME FOR RDES AND SDES 35 of 51

In the case when 𝛼 = 2, 𝐿 is 𝛼-stable if and only if it is Gaussian, that is, its characteristics
are given by (𝜆, Σ, 0); see, for example, [10, Proposition 3.15]. It can thus be decomposed into the
sum of a Brownian motion𝑊 with covariance matrix Σ, and a linear drift term: 𝐿𝑡 = 𝑊𝑡 + 𝜆𝑡, for
𝑡 ∈ [0, 𝑇]. In this case, the SDE (3.1) driven by 𝐿 can therefore be reformulated as an SDE driven
by 𝑊 by simply absorbing the linear drift term 𝜆𝑡 into the drift of the SDE, and the resulting
equation can then be treated as in Corollary 3.5.
In the case when 𝛼 ∈ (0, 2), 𝐿 is 𝛼-stable if and only if its characteristics are given by (𝜆, 0, 𝜈)

(i.e., 𝐿 = 𝜑 for some 𝜑 of the form in (3.15)), and there exists a finite measure 𝜌 on 𝑆, a unit sphere
on ℝ𝑑, such that

𝜈(𝐵) = ∫𝑆 ∫
∞

0
𝟏𝐵(𝑟𝜉)

d𝑟

𝑟1+𝛼
𝜌(d𝜉)

for all Borel sets 𝐵 on ℝ𝑑; see, for example, [10, Proposition 3.15].
We thenhave that ∫|𝑥|<1 |𝑥|𝑞 𝜈(d𝑥) < ∞ for 𝑞 > 𝛼, and in particular that almost all sample paths

of 𝐿 are of finite 𝑞-variation for 𝑞 ∈ (𝛼, 2) if 𝛼 ∈ [1, 2), and are of finite 1-variation if 𝛼 < 1. This
then fits into the setting of Proposition 3.8, and, since there is no Gaussian term, the resulting
error estimate for the associated Euler scheme reduces to

‖𝑌𝑛 − 𝑌‖𝑝′ ⩽ 𝐶(2−𝑛(1− 1𝑞′ ) + 2−𝑛𝛿(1− 𝑞𝑞′ )(1− 𝑝𝑝′ )), 𝑛 ∈ ℕ,

Of course, in this case, it is not necessary to utilize the rough path framework, since the inte-
gral ∫ 𝑡0 𝜎(𝑠, 𝑌𝑠−) d𝐿𝑠 in (3.1) can be defined as a pathwise Young integral, and by discretizing this
integral, one could derive pathwise results using stability estimates for Young integrals.

3.4 Càdlàg semimartingales

In this section, we consider the case when 𝑋 is a general càdlàg semimartingale. As noted in
Remark 3.7, to hope for pointwise convergence of the Euler scheme, we need to ensure that the
sequence of partitions exhausts all the jump times of 𝑋. With this in mind, for each 𝑛 ∈ ℕ, we
introduce the stopping times (𝜏𝑛

𝑘
)𝑘∈ℕ∪{0}, such that 𝜏𝑛0 = 0, and

𝜏𝑛
𝑘
= inf {𝑡 > 𝜏𝑛

𝑘−1
∶ |𝑡 − 𝜏𝑛

𝑘−1
| + |𝑋𝑡 − 𝑋𝜏𝑛

𝑘−1
| ⩾ 2−𝑛} ∧ 𝑇, 𝑘 ∈ ℕ. (3.24)

We then define a sequence of adapted partitions (𝑛
𝑋
)𝑛∈ℕ by

𝑛𝑋 = {𝜏𝑛𝑘 ∶ 𝑘 ∈ ℕ ∪ {0}}.
Note that, for almost every 𝜔 ∈ Ω, (𝑛

𝑋
(𝜔))𝑛∈ℕ is a sequence of (finite) partitions with vanishing

mesh size. The next result verifies that 𝑋 satisfies Property (RIE) relative to any 𝑝 ∈ (2, 3) and
(𝑛
𝑋
)𝑛∈ℕ, and establishes the rate of convergence of the associated Euler scheme.

Proposition 3.11. Let 𝑝 ∈ (2, 3), and let𝑋 be a 𝑑-dimensional càdlàg semimartingale. Let𝑌 be the
solution of the SDE (3.1) driven by 𝑋, and let 𝑌𝑛 be the corresponding Euler approximation along
𝑛
𝑋
, as defined in (2.5).
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36 of 51 ALLAN et al.

(i) For almost every 𝜔 ∈ Ω, the sample path 𝑋(𝜔) satisfies Property (RIE) relative to 𝑝 and
(𝑛
𝑋
(𝜔))𝑛∈ℕ.

(ii) For any𝑝′ ∈ (𝑝, 3)and 𝑞 ∈ (1, 2) such that 1
𝑝′
+ 1
𝑞
> 1, andany 𝜀 ∈ (0, 1), there exists a random

variable 𝐶, which does not depend on 𝑛, such that

‖𝑌𝑛 − 𝑌‖𝑝′ ⩽ 𝐶(2−𝑛(1− 1𝑞 ) + 2−𝑛(1−𝜀)(1− 𝑝𝑝′ )), 𝑛 ∈ ℕ, (3.25)

and

‖𝑌𝑛 − 𝑌‖3 ⩽ 𝐶2−𝑛( 13−𝜀), 𝑛 ∈ ℕ. (3.26)

Proof.

(i) The proof is just a slight modification of the proof of [2, Proposition 4.1], and is therefore
omitted here for brevity. It is actually slightly easier, as here we do not require the sequence
of partitions to be nested, and the sequence of stopping times in (3.24) is constructed to ensure
that the mesh size vanishes, even if 𝑋 exhibits intervals of constancy.

(ii) By the definition of the partition 𝑛
𝑋
, it is clear that

‖𝑋𝑛 − 𝑋‖∞ ⩽ 2−𝑛.
By an application of the Burkholder–Davis–Gundy inequality and the Borel–Cantelli lemma,
as in the proof of [31, Proposition 3.4], one can show that

‖‖‖‖∫ ⋅

0
𝑋𝑛𝑢− ⊗ d𝑋𝑢 − ∫

⋅

0
𝑋𝑢− ⊗ d𝑋𝑢

‖‖‖‖∞ ≲ 2−𝑛(1−𝜀), 𝑛 ∈ ℕ,

where the implicit multiplicative constant is a random variable that does not depend on 𝑛.
It thus follows from Theorem 2.3 that

‖𝑌𝑛 − 𝑌‖3 ⩽ ‖𝑌𝑛 − 𝑌‖𝑝′ ≲ 2−𝑛(1− 1𝑞 ) + 2−𝑛(1− 𝑝𝑝′ ) + 2−𝑛(1−𝜀)(1− 𝑝𝑝′ ),
which leads to (3.25). Choosing 𝑝 sufficiently close to 2, 𝑝′ to 3, and 𝑞 to 3

2
, and replacing 𝜀 by

3𝜀, then reveals (3.26). □

4 APPLICATIONS TO DIFFERENTIAL EQUATIONS DRIVEN BY
NON-SEMIMARTINGALES

While in the previous section, we considered SDEs driven by various classes of semimartingales,
like the general theory of rough paths, the deterministic theory developed in Section 2 is not lim-
ited to the semimartingale framework. In this section, we investigate Property (RIE) in the context
of “mixed” and “rough” SDEs. The main insight is again that the random driving signals of these
equations do, indeed, satisfy Property (RIE), and thus, the pathwise convergence results regarding
the Euler scheme, as presented in Theorem 2.3 and Proposition 2.13, are applicable.
Further examples of stochastic processes that fulfill Property (RIE) almost surely include 𝑝-

semimartingales (also known as Young semimartingales) in the sense of Norvaiša [34], as well
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THE EULER SCHEME FOR RDES AND SDES 37 of 51

as typical price paths in the sense of Vovk, relative to suitable sequences of adapted partitions.
The pathwise convergence of the Euler scheme is thus immediately applicable to differential
equations driven by such 𝑝-semimartingales [30] and typical price paths [5].

4.1 Mixed stochastic differential equations

Differential equations driven by both a Brownian motion as well as a fractional Brownian motion
with Hurst parameter𝐻 > 1

2
are classical objects in stochastic analysis; see, for example, [33, 41].

More precisely, a “mixed” stochastic differential equation (mixed SDE) is given by

𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑏(𝑠, 𝑌𝑠) d𝑠 + ∫

𝑡

0
𝜎1(𝑠, 𝑌𝑠) d𝑊𝑠 + ∫

𝑡

0
𝜎2(𝑠, 𝑌𝑠) d𝑊

𝐻
𝑠 , 𝑡 ∈ [0, 𝑇], (4.1)

where 𝑏 ∈ 𝐶2
𝑏
(ℝ𝑘+1; ℝ𝑘), 𝜎1 ∈ 𝐶3𝑏(ℝ

𝑘+1;(ℝ𝑑1 ; ℝ𝑘)), 𝜎2 ∈ 𝐶3𝑏(ℝ𝑘+1;(ℝ𝑑2 ; ℝ𝑘)) and 𝑦0 ∈ ℝ𝑘.
Here,𝑊 is a 𝑑1-dimensional standard Brownian motion, and𝑊𝐻 is a 𝑑2-dimensional fractional
Brownian motion with Hurst parameter 𝐻 > 1

2
, which are independent and both defined on a

filtered probability space (Ω, , (𝑡)𝑡∈[0,𝑇], ℙ) satisfying the usual conditions.
The mixed SDE (4.1) lies outside the semimartingale framework, but there are various ways to

provide a rigorous meaning to its solution. Here, we consider the mixed SDE (4.1) as a random
RDE, driven by the Itô rough path lift of (𝑊,𝑊𝐻), the existence of which follows from Lemma 4.1
below. In particular, it then follows fromTheorem 2.2 that there exists a unique solution𝑌 to (4.1).

Lemma 4.1. Let𝑊 be a standard Brownian motion, and let𝑊𝐻 be a fractional Brownian motion
with Hurst parameter 𝐻 ∈ (1

2
, 1). Let 𝑝 ∈ (2, 3) such that 1

𝑝
+ 𝐻 > 1, and let 𝑛 = {0 = 𝑡𝑛

0
< 𝑡𝑛
1
<

⋯ < 𝑡𝑛
𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ, be a sequence of equidistant partitions of the interval [0, 𝑇], so that, for each

𝑛 ∈ ℕ, there exists some 𝜋𝑛 > 0 such that 𝑡𝑛𝑖+1 − 𝑡
𝑛
𝑖
= 𝜋𝑛 for each 0 ⩽ 𝑖 < 𝑁𝑛. If 𝜋

2− 4
𝑝

𝑛 log(𝑛) → 0

as 𝑛 → ∞, then, for almost every 𝜔 ∈ Ω, the sample path (𝑊(𝜔),𝑊𝐻(𝜔)) satisfies Property (RIE)
relative to 𝑝 and (𝑛)𝑛∈ℕ.
Proof. We first note that the process (𝑊, 0) satisfies the hypotheses of Theorem 3.2, and thus that
almost all of its sample paths satisfy Property (RIE) relative to 𝑝 and (𝑛)𝑛∈ℕ. Let 1𝐻 < 𝑞 < 𝑞′ < 2
such that 1

𝑝
+ 1

𝑞′
> 1. Since 1

𝑞
< 𝐻, it is well known that the sample paths of (0,𝑊𝐻) are almost

surely 1
𝑞
-Hölder continuous, and hence that ‖𝑊𝐻‖𝑞 < ∞. Writing𝑊𝐻,𝑛 for the usual piecewise

constant approximation of𝑊𝐻 along 𝑛, we have by interpolation that

‖𝑊𝐻,𝑛 −𝑊𝐻‖𝑞′ ⩽ ‖𝑊𝐻,𝑛 −𝑊𝐻‖1− 𝑞𝑞′∞ ‖𝑊𝐻,𝑛 −𝑊𝐻‖ 𝑞𝑞′𝑞 ≲ ‖𝑊𝐻,𝑛 −𝑊𝐻‖1− 𝑞𝑞′∞ ⟶ 0

as 𝑛 → ∞. The result then follows by applying Proposition 2.12 to (𝑊, 0) + (0,𝑊𝐻). □

Of course, since here we consider Hurst parameters 𝐻 > 1
2
, the trajectories of 𝑊𝐻 have in

particular finite 𝑞-variation for any 𝑞 ∈ ( 1
𝐻
, 2), so we could alternatively define the integral

∫ 𝑡0 𝜎2(𝑠, 𝑌𝑠) d𝑊𝐻𝑠 in (4.1) as a pathwise Young integral, and by discretizing this integral one could
in principle derive analogous pathwise convergence results; cf. Remark 2.15.
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38 of 51 ALLAN et al.

4.2 Rough stochastic differential equations

Rough stochastic differential equations (rough SDEs) are differential equations driven by both a
rough path and a semimartingale. These equations first appeared in the context of robust stochas-
tic filtering— see [11, 15]— and were recently studied in a general form in [18]. In this section, we
will adapt the setting of [15], which allows to treat Hölder continuous rough paths and Brownian
motion as driving signals.
We let 𝜂∶ [0, 𝑇] → ℝ𝑑 be a deterministic path that is 1

𝑝
-Hölder continuous for some 𝑝 ∈ (2, 3),

and which satisfies Property (RIE) relative to 𝑝 and the dyadic partitions (𝑛
𝐷
)𝑛∈ℕ, as defined in

(3.9). We write 𝜼 = (𝜼1, 𝜼2) for the canonical rough path lift of 𝜂, with 𝜼2 defined as in (2.7), so
that 𝜼2𝑠,𝑡 = ∫ 𝑡𝑠 𝜂𝑠,𝑢 ⊗ d𝜂𝑢 for each (𝑠, 𝑡) ∈ Δ𝑇 . We also let 𝑊 be an ℝ𝑒-valued Brownian motion.
For vector fields 𝑎 ∈ 𝐶2

𝑏
(ℝ𝑘; ℝ𝑘), 𝑏 ∈ 𝐶3

𝑏
(ℝ𝑘;(ℝ𝑑; ℝ𝑘)) and 𝑐 ∈ 𝐶3

𝑏
(ℝ𝑘;(ℝ𝑒; ℝ𝑘)), and an initial

value 𝑦0 ∈ ℝ𝑘, we then consider the rough SDE

𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑎(𝑌𝑠) d𝑠 + ∫

𝑡

0
𝑏(𝑌𝑠) d𝜼𝑠 + ∫

𝑡

0
𝑐(𝑌𝑠) d𝑊𝑠, 𝑡 ∈ [0, 𝑇]. (4.2)

To give a rigorous meaning to the rough SDE (4.2), following the method introduced in [15], we
need to construct a suitable joint rough path lift 𝚲(𝜔) above the ℝ𝑑+𝑒-valued path (𝜂,𝑊(𝜔)) for
almost every 𝜔 ∈ Ω. Indeed, the (pathwise) unique solution to the random RDE

𝑌𝑡 = 𝑦0 + ∫
𝑡

0
𝑎(𝑌𝑠) d𝑠 + ∫

𝑡

0
(𝑏, 𝑐)(𝑌𝑠) d𝚲𝑠, 𝑡 ∈ [0, 𝑇],

is then defined to be the solution to the rough SDE (4.2).
To construct the Itô rough path lift of (𝜂,𝑊), we need the existence of the quadratic covariation

of 𝜂 and𝑊 along the dyadic partitions. More precisely, writing𝑛
𝐷
= {0 = 𝑡𝑛

0
< 𝑡𝑛
1
<⋯ < 𝑡𝑛

2𝑛
= 𝑇}

with 𝑡𝑛
𝑘
= 𝑘2−𝑛𝑇, we need to establish that, for almost every 𝜔 ∈ Ω, the limit

⟨𝜂,𝑊(𝜔)⟩𝑡 ∶= lim𝑛→∞ 2
𝑛−1∑
𝑘=0

𝜂𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 ⊗𝑊𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡(𝜔) (4.3)

exists and holds uniformly for 𝑡 ∈ [0, 𝑇].

Lemma4.2. Let𝛼 ∈ (0, 1], let 𝜂∶ [0, 𝑇] → ℝ be an𝛼-Hölder continuous deterministic path, and let
𝑊 be a one-dimensional Brownianmotion. Then, for almost every 𝜔 ∈ Ω, the quadratic covariation
of 𝜂 and𝑊(𝜔) along the dyadic partitions, in the sense of (4.3), exists, and satisfies ⟨𝜂,𝑊(𝜔)⟩𝑡 = 0
for all 𝑡 ∈ [0, 𝑇].

Proof. Weconsider the discrete-timemartingale given by 𝑡 ↦
∑
𝑘 ∶ 𝑡𝑛

𝑘+1
⩽𝑡 𝜂𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1
𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1

for 𝑡 ∈ 𝑛
𝐷
,

for some fixed 𝑛 ∈ ℕ. By the Burkholder–Davis–Gundy inequality, we have that

𝔼

⎡⎢⎢⎢⎣
‖‖‖‖‖‖‖

∑
𝑘 ∶ 𝑡𝑛

𝑘+1
⩽⋅

𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1

‖‖‖‖‖‖‖
2

∞

⎤⎥⎥⎥⎦ ≲ 𝔼
[
2𝑛−1∑
𝑘=0

(𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1
)2

]
=

2𝑛−1∑
𝑘=0

(𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)2(𝑡𝑛

𝑘+1
− 𝑡𝑛
𝑘
)

≲

2𝑛−1∑
𝑘=0

(𝑡𝑛
𝑘+1
− 𝑡𝑛
𝑘
)1+2𝛼 ≲ (2−𝑛𝑇)2𝛼

2𝑛−1∑
𝑘=0

(𝑡𝑛
𝑘+1
− 𝑡𝑛
𝑘
) ≲ 2−2𝑛𝛼.

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70297 by U

niversitatsbibliothek, W
iley O

nline L
ibrary on [15/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



THE EULER SCHEME FOR RDES AND SDES 39 of 51

For any 𝜀 ∈ (0, 1), we then have, by Markov’s inequality, that

ℙ

⎛⎜⎜⎝
‖‖‖‖‖‖‖

∑
𝑘 ∶ 𝑡𝑛

𝑘+1
⩽⋅

𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1

‖‖‖‖‖‖‖∞ ⩾ 2
−𝑛𝛼(1−𝜀)

⎞⎟⎟⎠ ≲ 2−2𝑛𝛼𝜀,
and the Borel–Cantelli lemma then implies that

‖‖‖‖‖‖‖
∑

𝑘 ∶ 𝑡𝑛
𝑘+1
⩽⋅

𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1

‖‖‖‖‖‖‖∞ ≲ 2
−𝑛𝛼(1−𝜀),

where the implicit multiplicative constant is a random variable that does not depend on 𝑛.
For a given 𝑡 ∈ [0, 𝑇] and 𝑛 ∈ ℕ, let 𝑘0 be such that 𝑡 ∈ [𝑡𝑛𝑘0 , 𝑡

𝑛
𝑘0+1
]. Since 𝜂 is 𝛼-Hölder contin-

uous, and the sample paths of 𝑊 are almost surely 𝛽-Hölder continuous for any 𝛽 ∈ (0, 1
2
), we

have that

|𝜂𝑡𝑛
𝑘0
,𝑡𝑊𝑡𝑛

𝑘0
,𝑡| ≲ (𝑡 − 𝑡𝑛𝑘0)𝛼+𝛽 ≲ 2−𝑛(𝛼+𝛽).

We thus have the bound

||||||
2𝑛−1∑
𝑘=0

𝜂𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡𝑊𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡

|||||| ⩽
|||||||
∑

𝑘 ∶ 𝑡𝑛
𝑘+1
⩽𝑡

𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝑘+1

||||||| + |𝜂𝑡𝑛𝑘0 ,𝑡𝑊𝑡𝑛𝑘0 ,𝑡|
≲ 2−𝑛𝛼(1−𝜀) + 2−𝑛(𝛼+𝛽),

where the implicit multiplicative constant is a random variable that does not depend on 𝑡 or 𝑛. It
follows that, almost surely,

2𝑛−1∑
𝑘=0

𝜂𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡𝑊𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡 ⟶ 0 as 𝑛 ⟶ ∞,

uniformly for 𝑡 ∈ [0, 𝑇]. □

It is shown in [15, Theorem 1], with integrals defined in the Stratonovich sense, that an analo-
gous object to the process𝚲 described in (4.4) below provides a geometric rough path lift of (𝜂,𝑊).
In the next theorem, we establish that 𝚲 is the Itô rough path lift of (𝜂,𝑊), and, moreover, that
it may be obtained as the canonical lift via Property (RIE), thus making our convergence analysis
of the Euler scheme applicable to the rough SDE (4.2).

Theorem 4.3. Let 𝑝 ∈ (2, 3). Let 𝜂 be a 1
𝑝
-Hölder continuous ℝ𝑑-valued path that satisfies Prop-

erty (RIE) relative to 𝑝 and the sequence of dyadic partitions (𝑛
𝐷
)𝑛∈ℕ, and write 𝜼 = (𝜼1, 𝜼2) for the

canonical rough path lift of 𝜂, so that 𝜼1 = 𝜂, and 𝜼2𝑠,𝑡 = ∫ 𝑡𝑠 𝜂𝑠,𝑢 ⊗ d𝜂𝑢, defined as in (2.7), for every
(𝑠, 𝑡) ∈ Δ𝑇 . Let𝑊 be an ℝ𝑒-valued Brownian motion, and write𝐖 = (𝑊,𝕎) for the Itô rough path
lift of𝑊, so that𝕎𝑠,𝑡 = ∫ 𝑡𝑠 𝑊𝑠,𝑢 ⊗ d𝑊𝑢, defined as an Itô integral, for every (𝑠, 𝑡) ∈ Δ𝑇 .
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40 of 51 ALLAN et al.

For any 𝑝′ ∈ (𝑝, 3) and almost every 𝜔 ∈ Ω, the ℝ𝑑+𝑒-valued path (𝜂,𝑊(𝜔)) satisfies Property
(RIE) relative to 𝑝′ and (𝑛

𝐷
)𝑛∈ℕ.

Moreover, for almost every𝜔 ∈ Ω, the canonical rough path lift𝚲(𝜔) = (𝚲1(𝜔), 𝚲2(𝜔)) ∈ ℝ𝑑+𝑒 ⊕
ℝ(𝑑+𝑒)×(𝑑+𝑒) of (𝜂,𝑊(𝜔)) (constructed via Property (RIE) as in (2.7)) is given by𝚲1(𝜔) = (𝜂,𝑊(𝜔)),
and

𝚲2𝑠,𝑡 =

(
𝜼2𝑠,𝑡 ∫ 𝑡𝑠 𝜂𝑠,𝑢 ⊗ d𝑊𝑢

𝑊𝑠,𝑡 ⊗ 𝜂𝑠,𝑡 − (∫ 𝑡𝑠 𝜂𝑠,𝑢 ⊗ d𝑊𝑢)⊤ 𝕎𝑠,𝑡

)
(4.4)

for every (𝑠, 𝑡) ∈ Δ𝑇 , where ∫ 𝑡𝑠 𝜂𝑠,𝑢 ⊗ d𝑊𝑢 is defined as an Itô integral, and (⋅)⊤ denotesmatrix trans-
position.

Proof. Let 𝑝′ ∈ (𝑝, 3). It follows from the Kolmogorov criterion for rough paths (see [17,
Theorem 3.1]) that, for almost every 𝜔 ∈ Ω,

|||||
(
∫
𝑡

𝑠
𝜂𝑠,𝑢 ⊗ d𝑊𝑢

)
(𝜔)

||||| ≲ |𝑡 − 𝑠|
2

𝑝′ for all (𝑠, 𝑡) ∈ Δ𝑇, (4.5)

and moreover, that 𝚲(𝜔) = (𝚲1(𝜔), 𝚲2(𝜔)) is a 1

𝑝′
-Hölder continuous rough path. We will show

that (𝜂,𝑊(𝜔)) satisfies Property (RIE), and that the associated canonical rough path is indeed
given by 𝚲(𝜔).
Step 1. As usual, we let 𝜂𝑛 and𝑊𝑛 denote the piecewise constant approximations of 𝜂 and𝑊,

respectively, along 𝑛
𝐷
. By assumption, 𝜂 satisfies Property (RIE) relative to 𝑝 and (𝑛

𝐷
)𝑛∈ℕ. By

Proposition 3.2 (or Proposition 3.6), for almost every 𝜔 ∈ Ω, the sample path𝑊(𝜔) also satisfies
Property (RIE) relative to 𝑝 and (𝑛

𝐷
)𝑛∈ℕ.

It follows from the first condition in Property (RIE) for 𝜂 and𝑊(𝜔) that, for almost every 𝜔 ∈
Ω,

(𝜂𝑛,𝑊𝑛(𝜔)) ⟶ (𝜂,𝑊(𝜔)) uniformly as 𝑛 ⟶ ∞,

so that this condition also holds for the pair (𝜂,𝑊(𝜔)). Moreover, it follows from the second condi-
tion in Property (RIE) that ∫ ⋅

0 𝜂
𝑛
𝑢 ⊗ d𝜂𝑢 converges uniformly to ∫ ⋅

0 𝜂𝑢 ⊗ d𝜂𝑢, and, for almost every
𝜔 ∈ Ω, that (∫ ⋅

0 𝑊
𝑛
𝑢 ⊗ d𝑊𝑢)(𝜔) converges uniformly to (∫ ⋅

0 𝑊𝑢 ⊗ d𝑊𝑢)(𝜔).

By the Burkholder–Davis–Gundy inequality, and the observation that ‖𝜂𝑛 − 𝜂‖∞ ≲ 2−𝑛𝑝 , we
have that

𝔼

[‖‖‖‖∫ ⋅

0
𝜂𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝜂𝑢 ⊗ d𝑊𝑢

‖‖‖‖2∞
]
≲ 𝔼

[
∫
𝑇

0
|𝜂𝑛𝑢 − 𝜂𝑢|2 d𝑢] ≲ 2−2𝑛𝑝 .

For any 𝜀 ∈ (1 − 2
𝑝
, 1), it then follows from Markov’s inequality that

ℙ

(‖‖‖‖∫ ⋅

0
𝜂𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝜂𝑢 ⊗ d𝑊𝑢

‖‖‖‖∞ ⩾ 2−𝑛2 (1−𝜀)
)
≲ 2

𝑛(1− 2
𝑝
−𝜀)
.
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THE EULER SCHEME FOR RDES AND SDES 41 of 51

The Borel–Cantelli lemma then implies that, for almost every 𝜔 ∈ Ω,

‖‖‖‖‖
(
∫

⋅

0
𝜂𝑛𝑢 ⊗ d𝑊𝑢 − ∫

⋅

0
𝜂𝑢 ⊗ d𝑊𝑢

)
(𝜔)

‖‖‖‖‖∞ ≲ 2−
𝑛
2
(1−𝜀) (4.6)

for all 𝑛 ∈ ℕ, and, in particular, that (∫ ⋅
0 𝜂
𝑛
𝑢 ⊗ d𝑊𝑢)(𝜔) converges uniformly to (∫ ⋅

0 𝜂𝑢 ⊗ d𝑊𝑢)(𝜔)

as 𝑛 → ∞.
Let us write 𝑛

𝐷
= {0 = 𝑡𝑛

0
< 𝑡𝑛
1
< ⋯ < 𝑡𝑛

2𝑛
= 𝑇} for 𝑛 ∈ ℕ, where 𝑡𝑛

𝑘
= 𝑘2−𝑛𝑇. It is straightfor-

ward to verify that, for any 𝑡 ∈ [0, 𝑇],

𝑊𝑡 ⊗ 𝜂𝑡 = ∫
𝑡

0
𝑊𝑛𝑢 ⊗ d𝜂𝑢 +

(
∫
𝑡

0
𝜂𝑛𝑢 ⊗ d𝑊𝑢

)⊤
+ ⟨𝑊,𝜂⟩𝑛𝑡 ,

where, by Lemma4.2, the discrete quadratic variation ⟨𝑊,𝜂⟩𝑛𝑡 ∶= ∑2𝑛−1𝑘=0 𝑊𝑡𝑛𝑘∧𝑡,𝑡
𝑛
𝑘+1
∧𝑡 ⊗ 𝜂𝑡𝑛

𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡

almost surely converges uniformly to ⟨𝑊,𝜂⟩𝑡 = 0 as 𝑛 → ∞. We then see that, for almost every
𝜔 ∈ Ω,

∫
𝑡

0
𝑊𝑛𝑢(𝜔) ⊗ d𝜂𝑢 ⟶ 𝑊𝑡(𝜔) ⊗ 𝜂𝑡 −

(
∫
𝑡

0
𝜂𝑢 ⊗ d𝑊𝑢

)⊤
(𝜔)

as 𝑛 → ∞, uniformly in 𝑡 ∈ [0, 𝑇]. We have thus established that, for almost every𝜔 ∈ Ω, the path
(𝜂,𝑊(𝜔)) also satisfies the second condition of Property (RIE), and moreover, that the resulting
canonical rough path is indeed given by (4.4).
Step 2. It remains to show that (𝜂,𝑊(𝜔)) satisfies the third condition of Property (RIE) relative

to 𝑝′ and (𝑛
𝐷
)𝑛∈ℕ.

Since 𝜂 satisfies Property (RIE) relative to 𝑝 and (𝑛
𝐷
)𝑛∈ℕ, there exists a control function 𝑤𝜂

such that

sup
(𝑠,𝑡)∈Δ𝑇

|𝜂𝑠,𝑡|𝑝
𝑤𝜂(𝑠, 𝑡)

+ sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

| ∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝜂𝑛𝑢 ⊗ d𝜂𝑢 − 𝜂𝑡𝑛𝑘
⊗ 𝜂𝑡𝑛

𝑘
,𝑡𝑛
𝓁
| 𝑝2

𝑤𝜂(𝑡
𝑛
𝑘
, 𝑡𝑛𝓁)

⩽ 1, (4.7)

which implies that the same inequality also holds with 𝑝 replaced by 𝑝′ (possibly with a different
control function, but without loss of generality, we may assume that 𝑤𝜂 remains valid for 𝑝′).
Similarly, since for almost every 𝜔 ∈ Ω, the sample path𝑊(𝜔) satisfies Property (RIE) relative to
𝑝 (and therefore also to 𝑝′) and (𝑛

𝐷
)𝑛∈ℕ, there exists a control function 𝑐 such that

sup
(𝑠,𝑡)∈Δ𝑇

|𝑊𝑠,𝑡(𝜔)|𝑝′
𝑐(𝑠, 𝑡)

+ sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

|(∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝑊𝑛𝑢 ⊗ d𝑊𝑢 −𝑊𝑡𝑛𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
)(𝜔)| 𝑝′2

𝑐(𝑡𝑛
𝑘
, 𝑡𝑛𝓁)

⩽ 1. (4.8)

Step 3. Let 𝛽 ∈ (0, 1
2
). Since 𝜂 is 1

𝑝
-Hölder continuous, and the sample paths of𝑊 are almost

surely 𝛽-Hölder continuous, we have that

|𝜂𝑡𝑛
𝑖−1
⊗𝑊𝑡𝑛

𝑖−1
,𝑡𝑛
𝑖
+ 𝜂𝑡𝑛

𝑖
⊗𝑊𝑡𝑛

𝑖
,𝑡𝑛
𝑖+1
− 𝜂𝑡𝑛

𝑖−1
⊗𝑊𝑡𝑛

𝑖−1
,𝑡𝑛
𝑖+1
| = |𝜂𝑡𝑛

𝑖−1
,𝑡𝑛
𝑖
⊗𝑊𝑡𝑛

𝑖
,𝑡𝑛
𝑖+1
| ≲ |𝑡𝑛𝑖+1 − 𝑡𝑛𝑖−1| 1𝑝 +𝛽
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42 of 51 ALLAN et al.

for any 𝑖 = 1, … ,𝑁𝑛 − 1, where the implicit multiplicative constant is a random variable, and we
can follow the proof of [31, Lemma 3.2] to deduce that, for almost any fixed 𝜔 ∈ Ω, for any 𝑘 < 𝓁,
and writing 𝑁 = 𝓁 − 𝑘 = 2𝑛|𝑡𝑛𝓁 − 𝑡𝑛𝑘 |𝑇−1,||||||

(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑛𝑢 ⊗ d𝑊𝑢

)
(𝜔) − 𝜂𝑡𝑛

𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
(𝜔)

|||||| ≲ 𝑁
1− 2
𝜌 |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝜌 ≲ 2𝑛(1− 2𝜌 )|𝑡𝑛𝓁 − 𝑡𝑛𝑘 |,

where 2
𝜌
= 1

𝑝
+ 𝛽.

Let 𝜀 ∈ (1 − 2
𝑝
, 1). If 2−𝑛 ⩾ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 4

𝑝(1−𝜀) , then

||||||
(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑛𝑢 ⊗ d𝑊𝑢

)
(𝜔) − 𝜂𝑡𝑛

𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
(𝜔)

|||||| ≲ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 |
1− 4
𝑝(1−𝜀)

(1− 2
𝜌
)
.

By choosing 𝜀 close to 1 − 2
𝑝
, we can make the above exponent 1 − 4

𝑝(1−𝜀)
(1 − 2

𝜌
) arbitrarily close

to 4
𝜌
− 1 = 2

𝑝
+ 2𝛽 − 1. By then choosing 𝛽 close to 1

2
, we canmake this value arbitrarily close to 2

𝑝

from below. In particular, bymaking suitable choices of 𝜀 and 𝛽, we can ensure that 1 − 4

𝑝(1−𝜀)
(1 −

2

𝜌
) = 2

𝑝′
, and we obtain||||||

(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑛𝑢 ⊗ d𝑊𝑢

)
(𝜔) − 𝜂𝑡𝑛

𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
(𝜔)

|||||| ≲ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 |
2

𝑝′ . (4.9)

Wewill now aim to obtain the same estimate in the case that 2−𝑛 < |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 4
𝑝(1−𝜀) , with 𝜀 chosen

as above. Recalling (4.5) and (4.6), we have that

||||
(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑛𝑢 ⊗ d𝑊𝑢

)
(𝜔) − 𝜂𝑡𝑛

𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
(𝜔)

||||
=

||||||
(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑛𝑢 ⊗ d𝑊𝑢

)
(𝜔) −

(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑢 ⊗ d𝑊𝑢

)
(𝜔) +

(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑢 ⊗ d𝑊𝑢

)
(𝜔) − 𝜂𝑡𝑛

𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
(𝜔)

||||||
⩽ 2

‖‖‖‖‖
(
∫

⋅

0
𝜂𝑛𝑢 ⊗ d𝑊 − ∫

⋅

0
𝜂𝑢 ⊗ d𝑊

)
(𝜔)

‖‖‖‖‖∞ +
||||||
(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑡𝑛
𝑘
,𝑢 ⊗ d𝑊𝑢

)
(𝜔)

||||||
≲ 2−

𝑛
2
(1−𝜀) + |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝑝′

≲ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝑝′ .
Combining this with (4.9), we conclude that

sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

|(∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝜂𝑛𝑢 ⊗ d𝑊𝑢)(𝜔) − 𝜂𝑡𝑛𝑘
⊗𝑊𝑡𝑛

𝑘
,𝑡𝑛
𝓁
(𝜔)| 𝑝′2

𝐶(𝜔)|𝑡𝑛𝓁 − 𝑡𝑛𝑘 | ⩽ 1, (4.10)

for a suitable random variable 𝐶.
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THE EULER SCHEME FOR RDES AND SDES 43 of 51

Step 4. For any 𝑛 ∈ ℕ and 0 ⩽ 𝑘 < 𝓁 ⩽ 2𝑛, it is straightforward to verify that

|𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝓁
|2 = 2∫ 𝑡𝑛

𝓁

𝑡𝑛
𝑘

𝜂𝑛
𝑡𝑛
𝑘
,𝑢
⋅ d𝜂𝑢 +

𝓁−1∑
𝑖=𝑘

|𝜂𝑡𝑛
𝑖
,𝑡𝑛
𝑖+1
|2,

where ⋅ denotes the Euclidean inner product. It follows from (4.7) that |𝜂𝑡𝑛
𝑘
,𝑡𝑛
𝓁
|2 ≲ 𝑤𝜂(𝑡𝑛𝑘 , 𝑡𝑛𝓁) 2𝑝′ , and

that

sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

| ∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝜂𝑛
𝑡𝑛
𝑘
,𝑢
⋅ d𝜂𝑢| 𝑝′2

𝑤𝜂(𝑡
𝑛
𝑘
, 𝑡𝑛𝓁)

≲ 1,

from which we then have that

sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

|∑𝓁−1
𝑖=𝑘 |𝜂𝑡𝑛𝑖 ,𝑡𝑛𝑖+1 |2| 𝑝′2
𝑤𝜂(𝑡

𝑛
𝑘
, 𝑡𝑛𝓁)

≲ 1.

The same argument holds for the sample paths of𝑊, and since

||||||
𝓁−1∑
𝑖=𝑘

𝑊𝑡𝑛
𝑖
,𝑡𝑛
𝑖+1
⊗ 𝜂𝑡𝑛

𝑖
,𝑡𝑛
𝑖+1

|||||| ≲
𝓁−1∑
𝑖=𝑘

|𝑊𝑡𝑛
𝑖
,𝑡𝑛
𝑖+1
|2 + 𝓁−1∑

𝑖=𝑘

|𝜂𝑡𝑛
𝑖
,𝑡𝑛
𝑖+1
|2,

we deduce that

sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

|∑𝓁−1
𝑖=𝑘 𝑊𝑡𝑛𝑖 ,𝑡

𝑛
𝑖+1
⊗ 𝜂𝑡𝑛

𝑖
,𝑡𝑛
𝑖+1
| 𝑝′2

𝑤𝜂(𝑡
𝑛
𝑘
, 𝑡𝑛𝓁) + 𝑐(𝑡

𝑛
𝑘
, 𝑡𝑛𝓁)

≲ 1. (4.11)

By the Hölder continuity of 𝜂 and𝑊, it is clear that |𝑊𝑡𝑛
𝑘
,𝑡𝑛
𝓁
⊗ 𝜂𝑡𝑛

𝑘
,𝑡𝑛
𝓁
| ≲ |𝑡𝑛𝓁 − 𝑡𝑛𝑘 | 2𝑝′ , so that

sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

|𝑊𝑡𝑛
𝑘
,𝑡𝑛
𝓁
⊗ 𝜂𝑡𝑛

𝑘
,𝑡𝑛
𝓁
| 𝑝′2|𝑡𝑛𝓁 − 𝑡𝑛𝑘 | ≲ 1. (4.12)

For any 𝑛 ∈ ℕ and 0 ⩽ 𝑘 < 𝓁 ⩽ 2𝑛, it is straightforward to verify that

𝑊𝑡𝑛
𝑘
,𝑡𝑛
𝓁
⊗ 𝜂𝑡𝑛

𝑘
,𝑡𝑛
𝓁
= ∫

𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝑊𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝜂𝑢 +

(
∫
𝑡𝑛
𝓁

𝑡𝑛
𝑘

𝜂𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝑊𝑢

)⊤
+

𝓁−1∑
𝑖=𝑘

𝑊𝑡𝑛
𝑖
,𝑡𝑛
𝑖+1
⊗ 𝜂𝑡𝑛

𝑖
,𝑡𝑛
𝑖+1
.

Recalling (4.10), (4.11), and (4.12), we thus have that

sup
𝑛∈ℕ

sup
0⩽𝑘<𝓁⩽2𝑛

| ∫ 𝑡𝑛𝓁
𝑡𝑛
𝑘

𝑊𝑛
𝑡𝑛
𝑘
,𝑢
⊗ d𝜂𝑢| 𝑝′2

𝑤̂(𝑡𝑛
𝑘
, 𝑡𝑛𝓁)

⩽ 1
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44 of 51 ALLAN et al.

for a suitable random control function 𝑤̂. Combining this with (4.7), (4.8), and (4.10), we conclude
that, for almost every 𝜔 ∈ Ω, the path (𝜂,𝑊(𝜔)) indeed satisfies the third condition of Property
(RIE). □

Remark 4.4. A joint rough path lift of (𝜂,𝑊) is constructed in [15, Section 2] that allows (4.2) to
be treated as a rough Stratonovich SDE. Since the construction of the joint lift 𝚲 above is based
on a piecewise constant approximation, as in Property (RIE), rather than on linear interpolations
as considered in [15], Theorem 4.3 provides a joint Itô-type rough path lift of (𝜂,𝑊), and thus, an
Itô interpretation of the rough SDE (4.2), consistent with that in [18].

APPENDIX A: PROOF OF THEOREM 2.2
Proof of Theorem 2.2. Step 1. Let 𝐿 > 0 such that ‖𝐴‖𝑟, ‖𝐻‖𝑟, ‖𝐗‖𝑝 ⩽ 𝐿, and let 𝑤∶ Δ𝑇 → [0,∞)
be the right-continuous control function given by

𝑤(𝑠, 𝑡) = ‖𝐴‖𝑟
𝑟,[𝑠,𝑡]

+ ‖𝐻‖𝑟
𝑟,[𝑠,𝑡]

+ ‖𝑋‖𝑝
𝑝,[𝑠,𝑡]

+ ‖𝕏‖ 𝑝2𝑝
2
,[𝑠,𝑡]
, for (𝑠, 𝑡) ∈ Δ𝑇.

For 𝑡 ∈ (0, 𝑇], we define the map𝑡 ∶ 𝑞,𝑟𝑋 ([0, 𝑡]; ℝ𝑘) → 𝑞,𝑟
𝑋
([0, 𝑡]; ℝ𝑘) by

𝑡(𝑌, 𝑌
′) =

(
𝑦0 + ∫

⋅

0
𝑏(𝐻𝑠, 𝑌𝑠) d𝐴𝑠 + ∫

⋅

0
𝜎(𝐻𝑠, 𝑌𝑠) d𝐗𝑠, 𝜎(𝐻, 𝑌)

)
,

and, for 𝛿 ⩾ 1, introduce the subset of controlled paths

(𝛿)𝑡 =
{
(𝑌, 𝑌′) ∈ 𝑞,𝑟

𝑋
([0, 𝑡]; ℝ𝑘) ∶ (𝑌0, 𝑌

′
0) = (𝑦0, 𝜎(𝐻0, 𝑦0)), ‖𝑌,𝑌′‖(𝛿)𝑋,𝑞,𝑟 ⩽ 1} ,

where

‖𝑌,𝑌′‖(𝛿)
𝑋,𝑞,𝑟

∶= ‖𝑌′‖𝑞,[0,𝑡] + 𝛿‖𝑅𝑌‖𝑟,[0,𝑡].
Applying standard estimates for Young and rough integrals (e.g., [22, Proposition 2.4 and

Lemma 3.6]), for any (𝑌, 𝑌′) ∈ (𝛿)𝑡 , we deduce that

‖𝑡(𝑌, 𝑌
′)‖(𝛿)
𝑋,𝑞,𝑟

⩽ 𝐶1

(
1

𝛿
+ 𝛿(‖𝐴‖𝑟,[0,𝑡] + ‖𝐻‖𝑟,[0,𝑡] + ‖𝐗‖𝑝,[0,𝑡])),

for a constant 𝐶1 ⩾
1

2
which depends only on 𝑝, 𝑞, 𝑟, ‖𝑏‖𝐶2

𝑏
, ‖𝜎‖𝐶3

𝑏
, and 𝐿. Let 𝛿 = 𝛿1 ∶= 2𝐶1, so

that

‖𝑡(𝑌, 𝑌
′)‖(𝛿1)
𝑋,𝑞,𝑟

⩽
1

2
+ 2𝐶21(2𝑤(0, 𝑡)

1
𝑟 + 𝑤(0, 𝑡)

1
𝑝 + 𝑤(0, 𝑡)

2
𝑝 ).

By the right continuity of 𝑤, we can then take 𝑡 = 𝑡1 sufficiently small such that

‖𝑡1
(𝑌, 𝑌′)‖(𝛿1)

𝑋,𝑞,𝑟
⩽ 1,

and we have that (𝛿1)𝑡1 is invariant under𝑡1
.
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THE EULER SCHEME FOR RDES AND SDES 45 of 51

Step 2. Let (𝑌, 𝑌′), (𝑌, 𝑌′) ∈ (𝛿)𝑡 , for some (new) 𝛿 ⩾ 1 and 𝑡 ∈ (0, 𝑡1]. Applying standard esti-
mates for Young and rough integrals (e.g., [22, Proposition 2.4, Lemma 3.1 and Lemma 3.7]), we
deduce that

‖𝑡(𝑌, 𝑌
′) −𝑡(𝑌, 𝑌

′)‖(𝛿)
𝑋,𝑞,𝑟

⩽ 𝐶2

(‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡] + 𝛿(‖𝑌′ − 𝑌′‖𝑞,[0,𝑡] + ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡])(‖𝐴‖𝑟,[0,𝑡] + ‖𝐗‖𝑝,[0,𝑡])),
where 𝐶2 >

1

2
depends only on 𝑝, 𝑞, 𝑟, ‖𝑏‖𝐶2

𝑏
, ‖𝜎‖𝐶3

𝑏
and 𝐿. Let 𝛿 = 𝛿2 ∶= 2𝐶2 > 1, so that

‖𝑡(𝑌, 𝑌
′) −𝑡(𝑌, 𝑌

′)‖(𝛿2)
𝑋,𝑞,𝑟

⩽
𝛿2
2
‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡]

+ 2𝐶22(‖𝑌′ − 𝑌′‖𝑞,[0,𝑡] + ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡])(𝑤(0, 𝑡) 1𝑟 + 𝑤(0, 𝑡) 1𝑝 + 𝑤(0, 𝑡) 2𝑝 ).
Again by the right continuity of 𝑤, we then take 𝑡 = 𝑡2 ⩽ 𝑡1 sufficiently small such that

‖𝑡2
(𝑌, 𝑌′) −𝑡2

(𝑌, 𝑌′)‖(𝛿2)
𝑋,𝑞,𝑟

⩽
1

2
‖𝑌′ − 𝑌′‖𝑞,[0,𝑡2] + 𝛿2 + 12 ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡2]

⩽
𝛿2 + 1

2𝛿2
‖(𝑌, 𝑌′) − (𝑌, 𝑌′)‖(𝛿2)

𝑋,𝑞,𝑟
,

from which it follows that𝑡2
is a contraction on the Banach space ((𝛿1)𝑡2 , ‖ ⋅ ‖(𝛿2)𝑋,𝑞,𝑟). The fixed

point of this map is the unique solution of the RDE (2.2) over the time interval [0, 𝑡2].
Step 3.Now let𝐴 ∈ 𝐷𝑞1 , 𝐻̃ ∈ 𝐷𝑞2 , 𝐗̃ = (𝑋, 𝕏̃) ∈ 𝑝 and 𝑦0 ∈ ℝ𝑛, such that ‖𝐴‖𝑟, ‖𝐻̃‖𝑟, ‖𝐗̃‖𝑝 ⩽

𝐿. By considering instead the control function 𝑤 given by

𝑤(𝑠, 𝑡) = ‖𝐴‖𝑟
𝑟,[𝑠,𝑡]

+ ‖𝐻‖𝑟
𝑟,[𝑠,𝑡]

+ ‖𝑋‖𝑝
𝑝,[𝑠,𝑡]

+ ‖𝕏‖ 𝑝2𝑝
2
,[𝑠,𝑡]

+ ‖𝐴‖𝑟
𝑟,[𝑠,𝑡]

+ ‖𝐻̃‖𝑟
𝑟,[𝑠,𝑡]

+ ‖𝑋‖𝑝
𝑝,[𝑠,𝑡]

+ ‖𝕏̃‖ 𝑝2𝑝
2
,[𝑠,𝑡]
, for (𝑠, 𝑡) ∈ Δ𝑇,

it follows from the above that there exist unique solutions (𝑌, 𝑌′) ∈ 𝑞,𝑟
𝑋
([0, 𝑡2]; ℝ

𝑘) and (𝑌, 𝑌′) ∈
𝑞,𝑟
𝑋
([0, 𝑡2]; ℝ

𝑘) of the RDE (2.2), with data (𝐴,𝐻,𝐗, 𝑦0) and (𝐴, 𝐻̃, 𝐗̃, 𝑦0), respectively, over a suf-
ficiently small time interval [0, 𝑡2]. Standard estimates for Young and rough integrals (e.g., [22,
Proposition 2.4, Lemma 3.1 and Lemma 3.7]) imply, after some calculation, that for any 𝛿 ⩾ 1 and
𝑡 ∈ (0, 𝑡2],

‖𝑌′ − 𝑌′‖𝑞,[0,𝑡] + 𝛿‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡]
⩽ 𝐶3

(|𝑦0 − 𝑦0| + |𝐻0 − 𝐻̃0| + ‖𝐻 − 𝐻̃‖𝑟,[0,𝑡] + ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡]
+ 𝛿(‖𝐴 − 𝐴‖𝑟,[0,𝑡] + ‖𝐗; 𝐗̃‖𝑝,[0,𝑡])
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46 of 51 ALLAN et al.

+ 𝛿(|𝑦0 − 𝑦0| + |𝐻0 − 𝐻̃0| + ‖𝐻 − 𝐻̃‖𝑟,[0,𝑡] + ‖𝑌′ − 𝑌′‖𝑞,[0,𝑡] + ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡])
×(‖𝐴‖𝑟,[0,𝑡] + ‖𝐗‖𝑝,[0,𝑡])),

where 𝐶3 > 0 depends only on 𝑝, 𝑞, 𝑟, ‖𝑏‖𝐶2
𝑏
, ‖𝜎‖𝐶3

𝑏
and 𝐿. Let 𝛿 = 𝛿3 ∶= 𝐶3 + 1, so that

‖𝑌′ − 𝑌′‖𝑞,[0,𝑡] + ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡]
⩽ 𝐶3

(|𝑦0 − 𝑦0| + |𝐻0 − 𝐻̃0| + ‖𝐻 − 𝐻̃‖𝑟,[0,𝑡] + 𝛿3(‖𝐴 − 𝐴‖𝑟,[0,𝑡] + ‖𝐗; 𝐗̃‖𝑝,[0,𝑡])
+ 𝛿3(|𝑦0 − 𝑦0| + |𝐻0 − 𝐻̃0| + ‖𝐻 − 𝐻̃‖𝑟,[0,𝑡] + ‖𝑌′ − 𝑌′‖𝑞,[0,𝑡] + ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡])
×(𝑤(0, 𝑡)

1
𝑟 + 𝑤(0, 𝑡)

1
𝑝 + 𝑤(0, 𝑡)

2
𝑝 )

)
.

By taking 𝑡 = 𝑡3 ⩽ 𝑡2 sufficiently small, we deduce that

‖𝑌 − 𝑌‖𝑝,[0,𝑡3] + ‖𝑌′ − 𝑌′‖𝑞,[0,𝑡3] + ‖𝑅𝑌 − 𝑅𝑌‖𝑟,[0,𝑡3]
⩽ 𝐶4

(|𝑦0 − 𝑦0| + |𝐻0 − 𝐻̃0| + ‖𝐻 − 𝐻̃‖𝑟,[0,𝑡3] + ‖𝐴 − 𝐴‖𝑟,[0,𝑡3] + ‖𝐗; 𝐗̃‖𝑝,[0,𝑡3]), (A.1)

for a new constant 𝐶4, still depending only on 𝑝, 𝑞, 𝑟, ‖𝑏‖𝐶2
𝑏
, ‖𝜎‖𝐶3

𝑏
, and 𝐿.

Step 4. We infer from the above that there exists a constant 𝜀 > 0, which depends only on
𝑝, 𝑞, 𝑟, ‖𝑏‖𝐶2

𝑏
, ‖𝜎‖𝐶3

𝑏
, and 𝐿, such that, given initial values 𝑌𝑠, 𝑌𝑠 ∈ ℝ𝑘, the local solutions (𝑌, 𝑌′)

and (𝑌, 𝑌′) established above exist on any interval [𝑠, 𝑡] such that𝑤(𝑠, 𝑡) ⩽ 𝜀. Moreover, these local
solutions satisfy an estimate on this interval of the form in (A1).
By [22, Lemma 1.5], there exists a partition  = {0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇}, such that

𝑤(𝑡𝑖, 𝑡𝑖+1−) < 𝜀 for every 𝑖 = 0, 1, … ,𝑁 − 1. We can then define the solutions (𝑌, 𝑌′) and (𝑌, 𝑌′)
on each of the half-open intervals [𝑡𝑖, 𝑡𝑖+1). Given the solutions on [𝑡𝑖, 𝑡𝑖+1), the values 𝑌𝑡𝑖+1 and
𝑌𝑡𝑖+1 at the right end point of the interval are uniquely determined by the jumps of 𝐴,𝐴,𝐗 and 𝐗̃
at time 𝑡𝑖+1. We thus deduce the existence of unique solutions (𝑌, 𝑌′) and (𝑌, 𝑌′) of the RDE on
the entire interval [0, 𝑇].
Since 𝑤 is superadditive, we have that

𝑤(𝑡0, 𝑡1−) + 𝑤(𝑡1−, 𝑡1) + 𝑤(𝑡1, 𝑡2−) +⋯ + 𝑤(𝑡𝑁−1, 𝑡𝑁−) + 𝑤(𝑡𝑁−, 𝑡𝑁) ⩽ 𝑤(0, 𝑇).

It is then straightforward to see that the partition  may be chosen such that the number of par-
tition points in  may be bounded by a constant depending only on 𝜀 and 𝑤(0, 𝑇). Thus, we may
combine the local estimates in (A1) on each of the subintervals, together with simple estimates on
the jumps at the end points of these subintervals, to obtain the global estimate in (2.3). □

APPENDIX B: THE CONVERGENCE OF PIECEWISE CONSTANT APPROXIMATIONS
In the following, we adopt the notation

lim inf
𝑛→∞

𝑛 ∶= ⋃
𝑚∈ℕ

⋂
𝑛≥𝑚

𝑛
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THE EULER SCHEME FOR RDES AND SDES 47 of 51

for the times 𝑡 ∈ [0, 𝑇] which, as 𝑛 → ∞, eventually belong to all subsequent partitions in the
sequence (𝑛)𝑛∈ℕ. The following proposition generalizes the result of [2, Proposition 2.14] so that
the sequence of partitions is no longer assumed to be nested.

Proposition B.1. Let 𝑛 = {0 = 𝑡𝑛
0
< 𝑡𝑛
1
< ⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ, be a sequence of partitions with

vanishing mesh size, so that |𝑛|→ 0 as 𝑛 → ∞. Let 𝐹∶ [0, 𝑇] → ℝ𝑑 be a càdlàg path, and let
𝐹𝑛𝑡 = 𝐹𝑇𝟏{𝑇}(𝑡) +

𝑁𝑛−1∑
𝑘=0

𝐹𝑡𝑛
𝑘
𝟏[𝑡𝑛
𝑘
,𝑡𝑛
𝑘+1
)(𝑡), 𝑡 ∈ [0, 𝑇],

be the piecewise constant approximation of 𝐹 along 𝑛. Let
𝐽𝐹 ∶= {𝑡 ∈ (0, 𝑇] ∶ 𝐹𝑡− ≠ 𝐹𝑡}

be the set of jump times of 𝐹. The following are equivalent:

(i) 𝐽𝐹 ⊆ lim inf𝑛→∞ 𝑛,
(ii) the sequence (𝐹𝑛)𝑛∈ℕ converges pointwise to 𝐹,
(iii) the sequence (𝐹𝑛)𝑛∈ℕ converges uniformly to 𝐹.

Proof. We first show that conditions (i) and (ii) are equivalent. To this end, suppose that 𝐽𝐹 ⊆
lim inf𝑛→∞ 𝑛 and let 𝑡 ∈ (0, 𝑇]. If 𝑡 ∈ 𝐽𝐹 , then there exists𝑚 ⩾ 1 such that 𝑡 ∈ 𝑛 for all 𝑛 ⩾ 𝑚.
In this case, we then have that 𝐹𝑛𝑡 = 𝐹𝑡 for all 𝑛 ⩾ 𝑚. If 𝑡 ∉ 𝐽𝐹 , then 𝐹 is continuous at time 𝑡, and,
since the mesh size |𝑛|→ 0, it follows that 𝐹𝑛𝑡 → 𝐹𝑡 as 𝑛 → ∞.
Now suppose instead that there exists a 𝑡 ∈ 𝐽𝐹 such that 𝑡 ∉ lim inf𝑛→∞ 𝑛. Then there exists a

subsequence (𝑛𝑗)𝑗∈ℕ such that 𝐹
𝑛𝑗
𝑡 → 𝐹𝑡− as 𝑗 → ∞. Since 𝐹𝑡− ≠ 𝐹𝑡, it follows that 𝐹𝑛𝑡 ↛ 𝐹𝑡. This

establishes the equivalence of (i) and (ii).
Since (iii) clearly implies (ii), it only remains to show that (ii) implies (iii). By [16, Theorem 3.3],

it is enough to show that the family of paths {𝐹𝑛 ∶ 𝑛 ∈ ℕ} is equiregulated in the sense of [16,
Definition 3.1]. That is, we need to show that, for every 𝑡 ∈ (0, 𝑇] and 𝜀 > 0, there exists a 𝑢 ∈
[0, 𝑡) such that |𝐹𝑛𝑠 − 𝐹𝑛𝑡−| < 𝜀 for every 𝑠 ∈ (𝑢, 𝑡) and every 𝑛 ∈ ℕ, and moreover, that for every
𝑡 ∈ [0, 𝑇) and 𝜀 > 0, there exists a 𝑢 ∈ (𝑡, 𝑇] such that |𝐹𝑛𝑠 − 𝐹𝑛𝑡 | < 𝜀 for every 𝑠 ∈ (𝑡, 𝑢) and every
𝑛 ∈ ℕ.
Step 1. Let 𝑡 ∈ (0, 𝑇] and 𝜀 > 0. Since the left limit 𝐹𝑡− exists, there exists 𝛿 > 0 with 𝑡 − 𝛿 > 0,

such that

|𝐹𝑠 − 𝐹𝑡−| < 𝜀2 for all 𝑠 ∈ (𝑡 − 𝛿, 𝑡).

Since |𝑛|→ 0 as 𝑛 → ∞, there exists an 𝑚 ∈ ℕ such that, for every 𝑛 ⩾ 𝑚, there exists a
partition point 𝑡𝑛

𝑘
∈ 𝑛 such that 𝑡 − 𝛿 < 𝑡𝑛

𝑘
< 𝑡 − 𝛿

2
.

Let

𝑢 ∶= max

((
𝑡 −
𝛿

2
, 𝑡

)
∩
⋃
𝑛<𝑚

𝑛
)
,

where here we definemax(∅) ∶= 𝑡 − 𝛿
2
.
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48 of 51 ALLAN et al.

Take any 𝑠 ∈ (𝑢, 𝑡) and any 𝑛 ∈ ℕ. Let 𝑖 = max{𝑘 ∶ 𝑡𝑛
𝑘
⩽ 𝑠} and 𝑗 = max{𝑘 ∶ 𝑡𝑛

𝑘
< 𝑡}, so that

𝐹𝑛𝑠 = 𝐹𝑡𝑛𝑖
and 𝐹𝑛𝑡− = 𝐹𝑡𝑛𝑗 .

If 𝑛 ⩾ 𝑚, then there exists a point 𝑡𝑛
𝑘
∈ 𝑛 such that 𝑡 − 𝛿 < 𝑡𝑛

𝑘
< 𝑡 − 𝛿

2
⩽ 𝑢 < 𝑠, and it follows

that 𝑡𝑛
𝑖
, 𝑡𝑛
𝑗
∈ (𝑡 − 𝛿, 𝑡). If instead 𝑛 < 𝑚, and if there exists a partition point 𝑡𝑛

𝑘
∈ (𝑡 − 𝛿

2
, 𝑡), then

𝑡 − 𝛿
2
< 𝑡𝑛
𝑘
⩽ 𝑢 < 𝑠, and it again follows that 𝑡𝑛

𝑖
, 𝑡𝑛
𝑗
∈ (𝑡 − 𝛿, 𝑡). In either case, we then have that

|𝐹𝑛𝑠 − 𝐹𝑛𝑡−| = |𝐹𝑡𝑛𝑖 − 𝐹𝑡𝑛𝑗 | ⩽ |𝐹𝑡𝑛𝑖 − 𝐹𝑡−| + |𝐹𝑡𝑛𝑗 − 𝐹𝑡−| < 𝜀2 + 𝜀2 = 𝜀.
The remaining case is when 𝑛 < 𝑚 but (𝑡 − 𝛿

2
, 𝑡) ∩ 𝑛 = ∅. In this case, the path 𝐹𝑛 is constant

on the interval [𝑡 − 𝛿
2
, 𝑡) and, since 𝑠 ∈ (𝑡 − 𝛿

2
, 𝑡), we have that 𝐹𝑛𝑠 = 𝐹

𝑛
𝑡−.

In each case, we have that |𝐹𝑛𝑠 − 𝐹𝑛𝑡−| < 𝜀 for all 𝑠 ∈ (𝑢, 𝑡) and all 𝑛 ∈ ℕ.
Step 2. Let 𝑡 ∈ (𝐽𝐹 ∪ {0}) ⧵ {𝑇} and 𝜀 > 0. Since 𝐹 is right-continuous, there exists a 𝛿 > 0 with

𝑡 + 𝛿 < 𝑇, such that |𝐹𝑠 − 𝐹𝑡| < 𝜀 for all 𝑠 ∈ [𝑡, 𝑡 + 𝛿).

Since condition (ii) implies condition (i), we know that 𝑡 ∈ lim inf𝑛→∞ 𝑛, so that there exists an
𝑚 ∈ ℕ such that 𝑡 ∈ ∩𝑛⩾𝑚𝑛. Let

𝑢 ∶= min

(
(𝑡, 𝑡 + 𝛿) ∩

⋃
𝑛<𝑚

𝑛
)
,

where here we definemin(∅) ∶= 𝑡 + 𝛿.
Take any 𝑠 ∈ (𝑡, 𝑢), and any 𝑛 ∈ ℕ. Let 𝑖 = max{𝑘 ∶ 𝑡𝑛

𝑘
⩽ 𝑠}, so that 𝐹𝑛𝑠 = 𝐹𝑡𝑛𝑖 .

If 𝑛 ⩾ 𝑚, then 𝑡 ∈ 𝑛, so 𝐹𝑛𝑡 = 𝐹𝑡 and, moreover, 𝑡 ⩽ 𝑡𝑛𝑖 ⩽ 𝑠 < 𝑢 ⩽ 𝑡 + 𝛿, so that in particular
𝑡𝑛
𝑖
∈ [𝑡, 𝑡 + 𝛿), and hence

|𝐹𝑛𝑠 − 𝐹𝑛𝑡 | = |𝐹𝑡𝑛𝑖 − 𝐹𝑡| < 𝜀.
If 𝑛 < 𝑚, then there does not exist any partition point 𝑡𝑛

𝑘
∈ (𝑡, 𝑢) ∩ 𝑛. It follows that the path 𝐹𝑛

is constant on the interval [𝑡, 𝑢), so that, in particular, 𝐹𝑛𝑠 = 𝐹
𝑛
𝑡 .

In each case, we have that |𝐹𝑛𝑠 − 𝐹𝑛𝑡 | < 𝜀 for all 𝑠 ∈ (𝑡, 𝑢) and all 𝑛 ∈ ℕ.
Step 3. Let 𝑡 ∈ (0, 𝑇) ⧵ 𝐽𝐹 and 𝜀 > 0. Since 𝐹 is continuous at time 𝑡, there exists a 𝛿 > 0 with

0 < 𝑡 − 𝛿 and 𝑡 + 𝛿 < 𝑇, such that

|𝐹𝑠 − 𝐹𝑡| < 𝜀2 for all 𝑠 ∈ (𝑡 − 𝛿, 𝑡 + 𝛿).

Since |𝑛|→ 0 as 𝑛 → ∞, there exists an𝑚 ∈ ℕ such that, for every 𝑛 ⩾ 𝑚, there exists a partition
point 𝑡𝑛

𝑘
∈ 𝑛 such that 𝑡 − 𝛿 < 𝑡𝑛

𝑘
< 𝑡. Let

𝑢 ∶= min

(
(𝑡, 𝑡 + 𝛿) ∩

⋃
𝑛<𝑚

𝑛
)
,

where here we definemin(∅) ∶= 𝑡 + 𝛿.
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Take any 𝑠 ∈ (𝑡, 𝑢) and any 𝑛 ∈ ℕ. Let 𝑖 = max{𝑘 ∶ 𝑡𝑛
𝑘
⩽ 𝑠} and 𝑗 = max{𝑘 ∶ 𝑡𝑛

𝑘
⩽ 𝑡}, so that

𝐹𝑛𝑠 = 𝐹𝑡𝑛𝑖
and 𝐹𝑛𝑡 = 𝐹𝑡𝑛𝑗 .

If 𝑛 ⩾ 𝑚, then there exists a point 𝑡𝑛
𝑘
∈ 𝑛 such that 𝑡𝑛

𝑘
∈ (𝑡 − 𝛿, 𝑡), and it follows that 𝑡𝑛

𝑖
, 𝑡𝑛
𝑗
∈

(𝑡 − 𝛿, 𝑡 + 𝛿), so that

|𝐹𝑛𝑠 − 𝐹𝑛𝑡 | = |𝐹𝑡𝑛𝑖 − 𝐹𝑡𝑛𝑗 | ⩽ |𝐹𝑡𝑛𝑖 − 𝐹𝑡| + |𝐹𝑡𝑛𝑗 − 𝐹𝑡| < 𝜀2 + 𝜀2 = 𝜀.
If 𝑛 < 𝑚, then there does not exist any partition point 𝑡𝑛

𝑘
∈ (𝑡, 𝑢) ∩ 𝑛. It follows that the path 𝐹𝑛

is constant on the interval [𝑡, 𝑢), so that, in particular, 𝐹𝑛𝑠 = 𝐹
𝑛
𝑡 .

In each case, we have that |𝐹𝑛𝑠 − 𝐹𝑛𝑡 | < 𝜀 for all 𝑠 ∈ (𝑡, 𝑢) and all 𝑛 ∈ ℕ. It follows that the family
of paths {𝐹𝑛 ∶ 𝑛 ∈ ℕ} is indeed equiregulated. □

Theorem B.2. Let 𝑝 ∈ (2, 3), 𝑞 ∈ [𝑝,∞) and 𝑟 ∈ [𝑝
2
, 2) such that 1

𝑝
+ 1
𝑟
> 1 and 1

𝑝
+ 1
𝑞
= 1
𝑟
, and

let 𝑛 = {0 = 𝑡𝑛
0
< 𝑡𝑛
1
<⋯ < 𝑡𝑛

𝑁𝑛
= 𝑇}, 𝑛 ∈ ℕ, be a sequence of partitions with vanishing mesh size.

Suppose that 𝑋 satisfies Property (RIE) relative to 𝑝 and (𝑛)𝑛∈ℕ, and let 𝐗 be the canonical rough
path lift of 𝑋, as constructed in (2.7). Let (𝐹, 𝐹′) ∈ 𝑞,𝑟

𝑋
be a controlled path with respect to 𝑋, and

suppose that 𝐽𝐹 ⊆ lim inf𝑛→∞ 𝑛, where 𝐽𝐹 is the set of jump times of 𝐹. Then the rough integral of
(𝐹, 𝐹′) against 𝐗 is given by

∫
𝑡

0
𝐹𝑢 d𝐗𝑢 = lim𝑛→∞

𝑁𝑛−1∑
𝑘=0

𝐹𝑡𝑛
𝑘
𝑋𝑡𝑛
𝑘
∧𝑡,𝑡𝑛

𝑘+1
∧𝑡,

where the convergence is uniform in 𝑡 ∈ [0, 𝑇].

The previous theorem generalizes the result of [2, Theorem 2.15] so that the sequence of par-
titions is no longer assumed to be nested. The proof of Theorem B.2 follows the proof of [2,
Theorem 2.15] almost verbatim. The only difference is that, rather than using [2, Proposition 2.14]
to establish the uniform convergence of 𝐹𝑛 to 𝐹, we can instead use Proposition B.1 (which does
not require the sequence of partitions to be nested).
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