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Abstract

The accuracy of our inferences from rating-scale items can be improved with IRTree models, which consider heuristic
response strategies like response styles (RS). IRTree models break down ordinal responses into pseudo-items (nodes), each
representing a distinct decision-making process. These nodes are then modeled using an item response model. In the case of
four-point items, a response is split into two nodes: 1) response direction, where the trait influences the overall agreement
with items, and 2) response extremity, where both the trait and extreme RS (ERS) impact the choice of relative (dis)agreement
categories. However, traditional models, despite addressing RS effects, assume that all respondents follow an identical response
strategy, where the selection of relative (dis)agreement categories is influenced by the trait and ERS to the same degree for
all respondents. Given that respondents may vary in the extent to which they adopt heuristic-driven strategies (e.g., fatigue,
motivation, expertise), this assumption of homogeneous response processes is unlikely to be satisfied, potentially leading to
inaccurate inferences. To accommodate different response strategies, we introduce the mixture IRTree model (MixTree). In
MixTree, participants are assigned to different latent classes, each associated with distinct response processes. Based on their
class memberships, varying weights are assigned to individuals’ trait and ERS scores. Additionally, MixTree simultaneously
examines extraneous variables to explore sources of heterogeneity. A simulation study validates the MixTree’s performance
in recovering classes and model parameters. Empirical data analysis identifies two latent classes, one linked to a trait-driven
and the other to RS-driven mechanisms.

Keywords Response processes - Heterogeneity - Response styles - Item response theory - Mixture modeling

Introduction

Questionnaires with rating-scale items are frequently used
in psychological and educational research to measure unob-
servable constructs as they provide first-hand information
in a cost- and time-efficient way. Although they provide
researchers with efficiency, it is expected that respondents
need to go through a four-step cognitive process to pro-
vide a response to each item (Tourangeau et al., 2000).
These four steps include comprehension of the item con-

< Omer Emre Can Alagoz
alagoez @uni-mannheim.de

Department of Psychology, University of Mannheim, L 13
15, 68161 Mannheim, Germany

2 National Board of Medical Examiners (NBME), Philadelphia,
USA

tent, searching and retrieving the relevant information from
memory, integration and synthesis of the retrieved informa-
tion into a judgement, and finally, mapping this judgement
to the response option that is perceived as the most suitable.

A successful completion of all four steps is referred to
as optimizing, a strategy where respondents spend adequate
cognitive effort to provide the most accurate response accord-
ing to their substantive trait level (Krosnick, 1991; Krosnick
& Alwin, 1987). However, some respondents may complete
some of the steps only superficially or even skip them to
preserve their cognitive resources, which is referred to as sat-
isficing strategy (Krosnick, 1991; Krosnick & Alwin, 1987).
Satisficing can develop over the course of a questionnaire
(Merhof & Meiser, 2023) with the fatigue effect, but can
also be adopted at the beginning of a questionnaire when,
for instance, respondents are unmotivated, not rewarded for
their participation, or were frequently administered question-
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naires before (e.g., university students due to convenience
sampling).

Satisficing and optimizing strategies are sometimes per-
ceived as mutually exclusive categories, with respondents
either fully engaging with the cognitive response process
or opt for minimal participation. In contrast, these strate-
gies were argued to exist on a continuum (Krosnick, 1991;
Roberts et al., 2019; Tourangeau, 2018), suggesting that
engagement of respondents differ gradually. Furthermore,
several individual factors were suggested to affect where on
this satisficing—optimizing continuum a respondent stands,
such as cognitive abilities, motivation (Krosnick, 1991,
1999), experience with the trait being measured (Tourangeau,
2018), the need for cognition (Cacioppo & Petty, 1982), or
personality traits (Sturgis & Brunton-Smith, 2023).

Respondents with high levels of satisficing employ alter-
native response strategies to alleviate the cognitive burden of
responding, including the use of response styles (RS; Roberts
et al., 2019). RS refer to systematic tendencies towards
choosing specific response categories, irrespective of the item
content (Baumgartner & Steenkamp, 2001; Paulhus, 1991;
Podsakoff et al., 2003). For instance, extreme RS (ERS) is
the tendency towards choosing extreme categories regardless
of the actual content of the question. Indeed, using RS can
significantly reduce the cognitive effort, as it is a systematic
and consistent strategy (both within and between question-
naires; Wetzel et al., 2013; 2016), requiring no processing of
content-relevant information from items.

Respondents may adopt RS when they allocate less (or no)
effort to any of the four steps in the response process (Roberts,
2016). If the comprehension step is given less weight, respon-
dents may anchor their response to the general theme of the
questionnaire and avoid fine-tuning their category choices
for their substantive trait levels. Similarly, a reduced effort in
the retrieval step may result in limited information about the
item-specific aspect of the trait (Weber & Johnson, 2006),
which opens up space for heuristic strategies like RS and
results in an inability to make detailed judgements. Even if
the retrieval step was executed, factors such as fatigue or lack
of motivation may interfere with their integration and synthe-
sis at the third step. Finally, regardless of whether the previous
steps were successfully executed, unfamiliarity with rating
scale items, high number of response options, and inability
to make sense of category labels may cause reduced effort
or failure in distinguishing response categories (Blasius &
Thiessen, 2012; Krosnick & Alwin, 1987; Krosnick et al.,
2002). Hence, an observed response may reflect more than
the underlying trait level if the cognitive processes involve
heuristic strategies, and modeling such strategies is crucial
for the validity of statistical inferences.
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Modeling individual differences
in the use of RS

Modeling RS effects has always been of interest as they
distort the true category choices of respondents (Van Vaeren-
bergh & Thomas, 2013). When not controlled for, RS bias
the trait (or sum) scores, item estimates (Bolt & Johnson,
2009), factor structures (D’Urso et al., 2023), correlations
between traits (Bockenholt & Meiser, 2017; von Davier
& Khorramdel, 2013; Khorramdel & von Davier, 2014),
and comparative tests between groups of interest (Cheung
& Rensvold, 2000; Ulitzsch et al., 2024). In such cases,
researchers face a crucial threat to the validity of their statis-
tical inferences about the measured trait.

There are various psychometric models for modeling RS
effects from different frameworks, such as confirmatory fac-
tor analysis or latent class analysis models, but here we focus
on Item Response Theory (IRT) models (see Henninger &
Meiser, 2020a; 2020b, for an overview of different models).
Within the IRT framework, the item response tree (IRTree)
model family is widely used for accounting RS effects (Bock-
enholt, 2012; De Boeck & Partchev, 2012; Jeon & De Boeck,
2016). IRTree models consider a response as a product of
several decision-making processes and associate different
decisions with different factors, usually the response direc-
tion with the trait and relative category choices with both
the trait and RS factors (Bockenholt & Meiser, 2017; Khor-
ramdel & von Davier, 2014; Meiser et al., 2019). Individual
differences in content-irrelevant response tendencies are then
captured with RS factor scores, such as a higher ERS score
increases the probability of choosing an extreme category
over non-extreme categories.

Traditional IRTree models, however, have a major disad-
vantage. Although they account for individual differences
in category tendencies, they overlook the differences in
response strategies. That is, individuals may put different
relative weights on the trait and RS factors while execut-
ing the cognitive steps due to the reasons explained before.
However, IRTree models assume that the weights given to
the trait and RS factors are homogeneous in the entire pop-
ulation, implying an identical response strategy across all
respondents. In other words, IRTree models assume that all
respondents make relative category choices by utilizing the
trait and RS factors to the same extent.

There are several models proposed for capturing differ-
ences in response strategies. Tijmstra et al. (2018) proposed
amixture item response model to capture two types of respon-
dents, those who make trait-based responses for all categories
and those who additionally employ a midscale RS (MRS;
tendency towards the middle category). Kim and Bolt (2021)
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proposed a mixture IRTree model to disentangle respondents,
who give purely trait-based responses and those who partially
use ERS in their response strategy. Recently, Alagoz and
Meiser (2024) proposed a mixture IRTree model that differ-
entiates four types of response strategies, namely a strategy
based consistently on the trait factor (no RS), and other strate-
gies that additionally use ERS, MRS, or both ERS and MRS.

All these models indeed detected noticeable proportions
of different strategies in empirical data. However, they all dif-
ferentiate respondents based on whether they use the relevant
RS or not in a binary fashion. From the satisficing framework
described before, they assume that there are satisficers and
optimizers in the sample, and that satisficing and optimizing
are binary outcomes. Because the extent of satisficing can
differ between respondents, the reality might be more com-
plex than binary classifications of respondents into one of the
two strategies.

To remedy the binary view in previous research, here we
propose a mixture IRTree (MixTree) model that captures
latent subpopulations of respondents who gradually differ
in their response strategies. More specifically, the MixTree
model allows for latent subpopulations where the weights
assigned to the trait and RS in the cognitive response process
can differ. In other words, MixTree can capture respon-
dents who show different levels of satisficing. Furthermore,
the MixTree model further allows researchers to model the
predictors of class memberships (such as demographics or
process data), which can unravel sources of heterogeneity.

The proposed MixTree model also serves as a general
framework that captures the previous mixture models pro-
posed by Alagdz and Meiser (2024) and Kim and Bolt (2021)
as its special cases. That is, by fixing the weights of the trait
or relevant RS, these previous models can be expressed with
the MixTree model. Furthermore, the MixTree model offers
various extensions that expand to modeling of other heuris-
tics, such as acquiescence RS or effortless responding, which
are discussed in the Discussion section.

In the next section, we describe the new MixTree model,
then we present a simulation study to assess model perfor-
mance regarding classifications and parameter recovery, and,
finally, we illustrate the model with an empirical example.

IRTree models

IRTree models consider a response as a product of several
decision-making processes (i.e., nodes). Each decision usu-
ally has a binary outcome, and the rating responses are then
decomposed into pseudo-items representing the outcomes of
decisions. These pseudo-items can be analyzed with an item
response model (e.g., 2-PL) to disentangle factors affecting
each decision.

Fig.1 IRTree structure for four-point rating scale items

The Non-Mixture IRTree Model

IRTree models are often used in separating the trait from
RS effects. In the case of four-point rating scale items, as
illustrated in Fig. 1, respondents make two decisions until
they respond to an item !. The first decision (y}) is about the
response direction. Respondents either take the disagreement
(yf = 0) or the agreement (y;" = 1) direction. Given the
response direction, respondents decide whether they strongly
(dis)agree (y; = 0 or y; = 1) or just (dis)agree (y; = 1 or
y; = 0). The full set of pseudo-item coding for each original
response is provided in Table 1.

To model the direction decision, one can employ a
unidimensional 2-PL model, where the substantive trait
determines the response direction. To model the extremity
decisions, one can employ multidimensional 2-PL models,
where the decision is made based on both the substantive
trait and ERS factor (Meiser et al., 2019). Specifically, let
pe{l,.., p,., N}denotearespondent, j € {1, ..., j, .., J}
denote an item, and g~! denote the inverse logit function.
Then the probability of observing a response vector Yp of
length J is the product of the item-specific decision proba-
bilities across J items:

J
1—y¥ . *
POYp) = [ POT,) x POE, T x P37, O

j=1
J .
TG i oo )

j=1

! Depending on the number of response categories used, the structure
and the types of RS we can account for changes. See Alag6z and Meiser
(2024) for five-point rating scale items and Debelak et al. (2024) for
six-point rating scale items.
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Table 1 Pseudo-item decomposition for four-point rating scale items

Pseudo-items Ordinal response Traditional IRTree MixTree
ko * —
! 2 3 4 PO =1 PO =11X=0)
yij 0 0 1 1 gil (a;tratf)ep + ﬂlj) gil(a;tralt)ep + ﬂlj)
y;pj 0 1 _ _ gil(a;trait)wjgp _ a(ers) np + /321') gil(a;trait)chep _ aﬁm) np + /32jc)
y;pj _ _ 0 1 g—l(a;Irait)a)jgp + Ol(ers)np +B3)) g—l(a;tmit)wjrep + aﬁer.r)np + Bsje)

Note.’-’ denotes missing-by-design, as a respondent who agrees (disagrees) with the item does not make the extreme decision on the disagreement

(agreement) side

i (=y7,7)
g7 (33 [0l w6y —aIny By )

_ i O7,))
g l(y;pj I:a;tratt)wjep +a(ers)np +ﬁ3j:|> 12 ) (1)

In Eq. 1, ayrai’) is the factor loading of the trait 6, and

B1; is the intercept term at the response direction node. At
this node, a higher trait score 6 increases the probability of
agreeing with the item content. In the extreme decision nodes
y5 and yj, w; are the proportionality constants for the fac-
tor loading of the trait relative to the direction node (Alagoz
& Meiser, 2024; Quirk & Kern, 2023). Therefore, the w;
constant implies that the trait plays a role in the extreme cat-
egory choices to an extent that is proportional to its effect
at the response direction node. Therefore, w; < 1 (w; > 1)
implies that the effect of trait is weaker (stronger) for specific
category decisions than for the response direction decision.
Then ") denotes the factor loading of the ERS factor 7 at
both extreme decision nodes. For a constant 1, higher 6 scores
increase the probability of higher categories ("2" instead of
"1" for the disagreement direction and "4" instead "3" for
the agreement direction). For a constant 6, higher n scores
increase the probability of extreme categories ("1" instead
of "2" and "4" instead of "3" given the response direction).
Finally, B>; and B3; are the intercept terms at the extreme
decision nodes. Note that the ERS factor loading () is
specified as item-invariant as the definition of RS suggests
that such tendencies are independent of the item content.
However, item features, such as length, complexity, or word-
ing, may cause less engagement for a specific item. In order
to comply with this theoretical basis, the proportionality con-
stant is specified item-specific to allow for varying relative
strengths of the trait and RS in the item-specific nodes.

As is clear from Eq. 1, the common IRTree approach
strictly assumes that a single response strategy is adopted
by all respondents. Assuming equal variances for the trait

2

and ERS factors (002 = o, = 1; as assumed by many

for metric identification), a;_trait)wj and ") quantify the
relative impact of the trait and ERS factor on the category
choices, respectively, and are identical for all respondents.

Given there is heterogeneity in response strategies, such as

@ Springer

between-person differences in the relative weights associated
with the trait and ERS, the traditional IRTree approach would
fail to account for it.

The Mixture IRTree (MixTree) Model

In case of heterogeneous response strategies, a mixture model
can be used for accommodating different subpopulations and
for estimating class-specific parameters. Below, we describe
the MixTree model. Let X be a discrete latent variable with
realization ¢ € {1, ...,c, ..., C}. Then the probability of
observing a response vector Yy, of length J given a covariate
vector Zp of length K is the weighted sum of the product
of class- and item-specific decision probabilities across J
items:

C J
P(YplZp) = ) P(X =c|Zp) [ | PGT,;1X = )%
c=1 j=1

vk 3k
P35, IX =0 1 P IX = i)

ﬁ (g_l (yi"pj [aE”“i’)ep + ﬂlj]) X

j=1

C
= Tpe
c=1

_ i . a=y7,.)
g 1 (y;pj [a;trazt)wjngp _ a‘(‘crs)np +ﬁ2jc]) Ipi’ o
(% [ Grain (ers) O7p)
4 (y3pj I:aj chgp +oe np+ :33jc:|)

@)

The response direction node (y}) is specified class-
invariant, implying that all respondents show at least some
engagement with the item to the same extent to assess their
stance on a binary level (disagree vs. agree). This assump-
tion is in line with the satisficing framework that respondents
do not respond randomly but minimize their effort to pro-
vide a good-enough response (see Discussion for potential
model extension to account for non-effortful responding in
case of a full disengagement from the response process). Fur-
thermore, this invariance assumption also ensures that the
MixTree model captures heterogeneity only in how specific
categories are selected rather than changes in the nature of
the substantive trait.
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At the extremity decision nodes (y; and y3), we let the
proportionality constant w ;. be class-specific, which then
allows respondents to base their decisions on the trait to
varying degrees. Similarly, the ERS factor loading aée”) is
also made class-specific, implying that respondents can make
use of their heuristic strategies to varying degrees. Finally,
node intercepts B and B3 . are also made class-specific to
capture between-class differences in the overall tendency to
avoid extreme disagreement and choose extreme agreement
categories.

Furthermore, the term P (X = c|Z,) implies that the class
probabilities of respondents can be predicted by the covari-
ates, allowing us to understand potential sources of the found
heterogeneity. Such effects (null or substantial), can be cap-
tured by means of multinomial logistic regressions. Further
details are provided in the “Estimation” section, where we
describe the three-step maximum likelihood (ML) approach
to estimate the MixTree model.

Given the scales of the latent variables are fixed via set-
ting class-invariant expectations and a variance-covariance
matrix, as explained later in the “Estimation” section, the
class-specific parameters offer a valuable comparison within-
and between-classes regarding the relative impact of the trait
and ERS factors on specific decision processes. Since the
latent variances of € and n are equally fixed at "1", the loading
parameters (a;’ml Dw;.)and (&) related to the proportion
of variance that can be attributed to each factor. Therefore,
within a class, the loadings of the trait (oe;m”t)w jc) and ERS

(aéer‘y)) can be compared to see whether and which factor
explains larger variance in the decision outcomes compared
to the other factor. Between classes, the trait factor load-
ings can be directly compared as the trait is linked between
classes with the invariant first node across classes, but the
ERS factor is not linked in such a way and a direct com-
parison would be invalid. However, the inferences for the
within-class differences can be compared across classes to
understand if the relative impact of the trait and ERS dif-
fers between classes. That is, one can compare if the relative
impact of the trait and ERS on response decisions is different
between classes. For example, if one observe (« yra”)w je) is
greater than (aée”)) in one class and the other way around
in the other class, the conclusion would be that the former
class is associated with trait-dominated and the latter class
is associated with a heuristic-dominated response strategy.
Therefore, relative weights of the trait and ERS that are cap-
tured by factor loadings can help us interpret whether either
of both play a greater role in fine-grained category choices
given the response direction in different classes. A hypo-
thetical example given in the next section and the empirical
illustration in Section “Empirical illustration: Baron-Cohen’s
systemizing quotient test” illustrate this feature of the Mix-
Tree model.

Hypothetical example

Let us illustrate an example scenario where there are
three subpopulations, each of which is following a dif-
ferent response strategy. The first subpopulation follows a
satisficing-dominated strategy, the second follows a balanced
strategy, and the third follows an optimizing-dominated
strategy. For illustrative purposes, we focus on only one hypo-
thetical item. For brevity, assume that all node intercepts for
each subpopulation are zero (81 = B2 = B3 = 0) and the
trait loading a"%/") of the item is one.

In the satisficing-dominated strategy, respondents mainly
make use of the ERS factor, thus the proportionality constant
w1 is 0.25 and the ERS factor loading otle”) is 0.75. In the
balanced strategy, respondents make use of the trait and ERS
factor to the same extent, resulting in both w, and &y equal
to 0.5. Finally, in the optimizing strategy, respondents mainly
use the trait for deciding on their specific category decisions,
thus w3 equals 0.75 and agm) equals 0.25.2

Figure 2 shows probabilities of endorsing extreme deci-
sion nodes for the different classes as a function of trait
scores 6 and ERS scores 7. In the satisficing-dominated strat-
egy, extreme decision probabilities are strongly affected by
the ERS factor as a reflection of the high ac(.e”) parameter
applying in this class (see between-columns trajectories). In
contrast, the effect of the trait is less pronounced in line with
the low w,. parameter (see within-column trajectories). For
the optimizing-dominated strategy, the opposite pattern is
observed. For a constant trait score, extreme decision proba-
bilities remain almost the same for different ERS scores as the
ERS loading is very low, whereas a higher trait score strongly
decreases the probability of the extreme disagreement choice
and increases the probability of the extreme agreement choice
for all levels of ERS, reflecting the high @, parameter. Lastly,
in the balanced strategy, both the trait and ERS factor affect
the probabilities to a similar extent in line with the specified
a'") and w, parameters.

Ignoring the heterogeneity for such populations would
result in biased decision probabilities, whereas the proposed
MixTree would successfully differentiate the class-specific

2 The chosen parameter values for the weights of 0 and 7 compensate
each otherin eachclass (i.e., add up to one). Such compensation between
the trait and ERS loadings is a simplifying assumption only for the
hypothetical example and not a requirement in the MixTree approach.
It can be the case that class-specific parameters are proportional between
classes, for example, &' = {0.6, 0.3} and w;. = {0.9, 0.45}. Then,
both classes follow a similar strategy regarding the relative weighting
of 6 and n. That is, within each class, the trait has a higher weight, thus
influences the response strategy more than the ERS. Yet, in the second
class, neither the trait nor the ERS explains the variance in extremity
decisions considerably. Then, one can infer that the response strategy
is either dominated by factors that are not accounted for in the model,
or subjects respond more in line with effortless responding so that the
trait or ERS cannot explain the variance (see Ulitzsch et al., 2024).
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Fig.2 Class-specific extreme decision node probabilities as a function of trait and ERS scores for a hypothetical case, where 1 = B2,
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probabilities by also providing correct item estimates for each
class.

Estimation

Step 1 We implemented a three-step procedure to estimate
the mixture model and the latent regression model capturing
covariate effects on class memberships (Vermunt, 2010). In
the first step, proportions of the latent classes 7. and the item
parameters of the MixTree are estimated by maximizing the
following log-likelihood. The trait and ERS factor scores are
then obtained using the expected a posteriori method. Note
that in this step, the class proportions are not conditional on
the covariates; thus the components of the mixture model are
estimated without considering the covariate effects.

N
10g Lyrep1 = »_ log P(Yp)

p=1
N C

= Zlog(Z P(X =c) x (€)
p=1

c=1

J
[Trot,ix=0
j=1

1—y¥ . pE
x PO, 1X = 0 V) 5 P, IX = c)’lp-f)

Step 2 The second step involves using the parameter esti-
mates from the first step to calculate posterior class mem-
bership probabilities for the respondents. Additionally, we
calculate classification error probabilities as well. The latter
will be needed in the third step when estimating the covariate
effects on class memberships. Applying the Bayes’ rule, the
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0
C]

ek

0
¢=3 (Optimizing-dom.)

Bic = 0,

posterior class membership probabilities of respondent p can
be obtained as follows:

fe x P(Yp|X = ¢)
S A x P(YplX =)

P(X:C|Yp):7%pc: (4)

Next, we use the modal assignment rule to assign respon-
dents to latent classes. The modal assignment rule simply
refers to assigning respondents to the class for which they
have the largest posterior membership probability:

wp = argmax(fp1, ..., Tpc)

For example, if we were to fit a two class MixTree model
and obtain posterior class probabilities such as 7,4 =
{0.75, 0.25}3, then w, would be "1", indicating the person is
assigned to the first class.

Naturally, as we are operating with estimates rather than
true parameter values, there is a chance of misclassification.
For the hypothetical case above, we assigned a respondent to
the first class, but there was still a chance that the respondent
belonged to the second class with a probability of 0.25. That
is, we may assign a respondent to the class ¢ where the true
class of the respondent is ¢. As the true class is not known
to us, we can only calculate the probability of classification
errors. Since X = ¢ denotes the true class, we use w p = k
to indicate a respondent’s assigned class membership, where

3 Throughout the text, a + subscript is used to indicate the entire column
or row of a matrix
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ke {l,..,c, .., C}. Then, the classification error probabili-
ties are calculated as follows and collected in C x C matrix:

1 &L P(X =c|Yp) x P(wp = k|Yp)

PUUP:le:C):NpZ::I P(X =c¢)

&)

In this C x C matrix, the off-diagonal elements ¢ # k
denote classification errors, and the diagonal elements ¢ = k
denote the classification accuracy. The total proportion of
classification errors can easily be obtained as follows (Ver-
munt, 2010):

C
Y P(X=0)) Pw,=kX=c)
c c#k

Step 3 In the third step, we investigate the effects of covari-
ates on class memberships. It can be achieved by means of a
multinomial logistic regression parametrization, as denoted
in Eq. 6.

eXp (VOC + Zszl Vthpt)

P (X =clZp) = — .
Zc:l €xp (VOC + thl Vtczpt)

(6)

Here yy. is the intercept parameter for class c. The slope
parameter y;. is then the effect of covariate z; on the prob-
ability of belonging to class c. As true class memberships
are unknown to us, a naive approach would be to replace
P(X = ¢) with the assigned class memberships w,, and
regress them on the covariate variables.

However, this approach may result in biased parameter
estimates as well as inflated standard errors (Bakk et al., 2013,
2014; Bakk & Kuha, 2021; Vermunt, 2010). The reason is that
we work with estimates from the MixTree model to calculate
posterior class probabilities rather than true parameter values.
Related, the class assignments contain some classification
error. Therefore, replacing P(X = ¢) with w, incorporates
further uncertainty in the estimation.

As a remedy, Vermunt (2010) proposed using the clas-
sification errors to account for the uncertainty in class
assignments as given in Eq. 7:

P(w, = k|Zp) = P(X = c|Zp) x P(w, =k|X = c)
@)

The term P (X = c|Zyp) already appeared in Eq. 6, and the
term P(w, = k|X = c) is the classification (error) probabil-
ities that appeared in Eq. 5. We can see Eq. 7 as a basic latent
class model, where covariates are treated as indicators of the
true class memberships, class proportions are conditioned on
the covariate variables via a multinomial logistic regression

model, and classification error probabilities are treated as
fixed conditional response probabilities that weigh and cor-
rect for the association between P (X = c¢) and Zp. Readers
interested in further details of the procedure are referred to
Vermunt (2010), Bakk et al. (2013, 2014), and Alagdz and
Vermunt (2022).

All of the above steps can easily be conducted in the R
software. In this study, the estimation of the MixTree model
with no covariates, which is the first step, is conducted with
the *mirt’ package.

Model selection

The model selection procedure for the mixture models plays
an important role for two reasons. First, we want to detect
whether heterogeneity exists or not. Second, if we find evi-
dence that heterogeneity may exist (i.e., in the case when
the model with one-class is not favored) we want to find the
correct class enumeration (i.e., number of latent classes). For
this reason, we computed several model selection criteria as
follows:

AIC = —2log Lyep1 + 2 x ni (Akaike, 1974)
BIC = —21log Lgep1 +log N x ny (Schwarz, 1978)

C
HBIC = =210 Lyjep) + g, 10g(N) + Y ng, log(meN) (Zhao et al., 2015)
c=1
Above ny is the total number of freely estimated parameters,
which is the sum of freely estimated class-invariant parame-
ters ny, and freely estimated class-specific parameters ng, :

ng = ng, + Nk,

ne, =2xJ+1+(C—1

ng, =Cx@BxJ+1)

Simulation study

We conducted an extensive simulation study to investigate
the performance of the MixTree model for the recovery of
parameters under different numbers of classes, different class
sizes, different numbers of items and sample sizes, and vary-
ing covariate effects. We also investigated how the separation
between classes or the correlation between the trait and ERS
affects the performance. In addition to investigating bias in
parameter estimates, we explored how different information
criteria perform in model selection and class enumeration.
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Design

We use a hypothetical population where respondents can
follow one of three types of response strategies. Each of
these strategies refers to nodes two and three thus to gradual
decision within (dis)agreement categories similar to those
implemented in Kim and Bolt (2021). The first strategy is a
satisficing-dominated process where respondents mainly use
ERS while deciding on their category choices. The second
strategy involves similarly weighted use of the trait and ERS,
and the last one is an optimizing-dominated strategy where
the trait is weighted dominantly in the response strategy.
First, we manipulated the number of classes at three levels,
C = {1, 2, 3}. Second, we manipulated the size of classes for
each level of C (see Table 2). Third, we manipulated the num-
ber of items and respondents at two levels, J = {10, 20, 30}
and N = {1000, 2000, 3000}. We fixed the number of covari-
ates at T = 3. We were also interested in the recovery of
covariate effects for different effect sizes. We investigated
the recovery by setting different effect sizes for each covari-
ate rather than manipulating them at the between-conditions
levels. Specifically, the first covariate has a strong effect on
class membership, the second one has a weak effect, and the
third one has no effect on class memberships (see Table 3).
The trait and the ERS factor were sampled from a multivari-
ate normal distribution, where their means were fixed at zero,
variances were fixed at 1, but their correlations were either
zero or 0.30. Finally, for C > 1, we manipulated the separa-
tion between classes to be low (Rezntmpy ~ 0.20), medium
(RZ,1,0py ~ 0.40) or high (RZ,,,. = 0.70). For each cell
of the simulation design, we generated 200 data sets, result-
ingin7 x 3 x 3 x 2 x 3 x 200 = 75600 data sets from a
mixture population and 3 x 3 x 3 x 2 x 1 x 200 = 10, 800

Table 2 Number of classes (C) and respective class size conditions

C 41 42 43
1 1 0 0
0 1 0
0 0 1
2 0.5 0.5 0
0.5 0 0.5
0 0.5 0.5
3 0.33 0.33 0.33
0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

Note. Class probabilities were obtained by plugging in covariate data
and regression parameters in Eq. 6. The covariate data is randomly
sampled in each simulation replication, causing small deviations (%
0.05 to £ 0.10) from the presented values
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Table 3 Covariate effects for three equal classes condition

Parameters Classes

1 (ref) 2 3
Y0 0 -0.372 -0.372
Y1 0 -1.00 1.00
V2 0 0.50 -0.50
Y3 0 0 0

Note. For conditions with two classes, the last column was removed and
the remaining parameters were used

. The slope parameters were kept constant and the intercept parameters
were manipulated to obtain different class sizes in Table 2

data sets from a non-mixture population, together, 86, 400
data sets to be analyzed.

Below, we describe the data generation process along with
the choice of parameter values.

1 T=3 number of covariates, Z,, were sampled for N
100

0,(010
001

2 For C > 1 conditions, the fixed y parameters and the
covariates Z , were plugged in Eq. 6 to calculate class
membership probabilities 7,4 for each respondent p.

3 The true class membership for each respondent was
drawn from a multinomial distribution using the class
membership probabilities 7.

4 The trait and ERS scores were sampled at each replica-

number of respondents from ~ MV N

tion from MV N { 0, i T , where o is "0" or "0.30"
depending on the correlation level of the simulation
design.

5 The class-invariant item parameters at the first node,
ozym”) and B j, were sampled at each replication from
U (0.5, 1.25) and N (0, 1).

6 The class-specific item parameters at the second and third
nodes are sampled from the distributions presented in
Table 4, depending on the separation level of the simula-
tion design.

7 By plugging the sampled person and item parameters
into the MixTree model equation, we calculated the cat-
egory probabilities per person and item. Then the actual
responses were sampled from a multinomial distribution,
resulting in N x J data matrix.

8 The N x J data matrix was decomposed into pseudo-
items by following the rules in Table 1, resultingin N x3J
data matrix to be fit with the MixTree model.

9 For C = 1 conditions, the first step was also applied,
meaning that three covariates were sampled from the
same multivariate normal distribution. However, they
were not associated with class memberships as in the
second and third steps. Therefore, the class memberships
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Table 4 The distributions that were used in sampling item parameters for the class-specific parameters at nodes two and three based on the class

separation levels

Parameter Separation Classes
1 (Satisficing-dominated) 2 (Balanced) 3 (Optimizing-dominated)
Wje Low wjz —U(0,0.1) U(0.5,0.7) wjz +U(0, 0.1)
Medium wj2 —U(0.2,0.3) U(0.5,0.7) wj> +U(0.2,0.3)
High wjz —U(0.4,0.5) U(0.5,0.7) wj2 +U(0.4,0.5)
alr” Low o™ +U(0,0.1) U(0.5, 0.7) ™ ~U(0,0.1)
Medium o +U(0.2,0.3) U(0.5, 0.7) o™ ~U(0.2,0.3)
High o™ +U(04, 0.5) U(0.5, 0.7) o™ ~U(0.4,0.5)
Brjec Low B2j2 + N(0, 0.25) N, 1) B2+ N(0, 0.25)
Medium B2j2 +N(0, 0.75) N, 1) B2j2+ N(0, 0.75)
High B2j2 +N(0, 1.5) N, 1) B2j2+ N(O, 1.5)
Bsje Low B3j2 +N(0, 0.25) N, 1) B3 j2+ N(0, 0.25)
Medium B3j2 + N(0, 0.75) N, 1) B3j2+ N(0, 0.75)
High B3j2 +N(0, 1.5) N, 1) B3j2+ N(O, 1.5)
Notes:

1. The terms added to the intercept parameters for the first and third classes are used to control class separation, i.e., the degree of distinction
between the response models of each class. The specific standard deviation parameters for the normal distributions were determined through a pilot
study, in which we explored which values yielded the desired R? entropy levels

2. Since the added terms for the intercepts in the first and third class may cause extreme values, we further truncated the intercept terms so that they

stay between the range of -3 and 3

3. We draw different item parameters at each simulation replication from the distributions given in the table so that the simulation study is highly
generalizable as it captures a broad range of potential parameter values and their combinations
4. The choice for distribution of the w,. parameter was informed by empirical findings from previous studies (Alagéz & Meiser, 2024; Meiser et

al., 2019). Then, aﬁ”” is sampled to reflect the chosen response strategies. The empirical findings later showed that our choices were in line with

the empirical data set.

were not sampled by calculating probabilities but rather
fixed to "1", "2", or "3" depending on the class propor-
tion condition presented in Table 2. Then, steps 4 to 8
were followed, with one difference. That is, only the mid-
dle rows (i.e., medium separation) were used since class
separation does not apply in single-class populations.

The steps above were repeated to generate 86,400 data
sets in total. We fitted three models to each generated data
set, by increasing the estimated latent classes from one to
three, the MixTree-1 (i.e., the traditional single-class IRTree),
MixTree-2, MixTree-3, respectively. For the estimation in
the simulation study, we used four random starts to fit the
MixTree-1 and eight random starts to fit the MixTree-2 and
MixTree-3 models. We then proceeded with the solution
that resulted in the largest log Lysep1. We then examined
whether the label-switching phenomenon occurred. Since
the likelihood is invariant to class labels, label assign-
ments can be switched arbitrarily across estimation runs
with different starting values. When label switching was
detected, we realigned the estimated class labels to match
the true label ordering used in the data-generating process,
enabling meaningful comparisons in subsequent analyses.
Such realignment is unnecessary in empirical applications,

where the true class ordering is unknown and thus no direct
comparison is required. Finally, note that the MixTree model
does not restrict the total number of latent classes or does not
predefine any latent class as optimizers or satisficers. Unlike
in Alagdz and Meiser (2024); Kim and Bolt (2021); Tijmstra
etal. (2018), all item parameters are freely estimated and the
number of classes can be determined via model selection pro-
cedure. Therefore, for the empirical data analysis, one can fit
even larger number of classes and should interpret the class
definitions post hoc.

Results

In this section, we present the results of the simulation study.
We merged the levels of the correlation condition as the
results were indifferent for when the correlation between the
trait and ERS was zero and when it was 0.30 4. Furthermore,

4 We also found no convergence problems in neither o (8, ) = 0 nor
o(0,n) = 0.3 conditions, and the mean duration of estimation was
almost the same. With a higher level of correlation, such problems may
occur, but our choice for the parameter value was based on empirical
findings (Alagoz & Meiser, 2024; Bockenholt & Meiser, 2017; Merhof
& Meiser, 2024; Merhof et al., 2024). Furthermore, the information on
6 that the class-invariant first node brings in the estimation may have
facilitated the parameter recovery regardless of the correlation level.
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we also merged class proportion levels given a number of
class for brevity and to facilitate the interpretation. We used
mean bias and root mean squared error (RMSE) to assess
parameter recovery. Specifically, mean bias is investigated
to see if there is a systematic under- or over-estimation of a
parameter, whereas RMSE is used to assess the accuracy of
estimates while taking the uncertainty into account.

A

where, A,p is the parameter of interest at a replication, A,
is the point estimate of parameter A at the same replication.

Model selection

Figure 3 presents the model selection performance of the
AIC, BIC, and HBIC criteria across varying sample sizes (N),
test lengths (J), and class separations (S). Overall, the results

Nrep
Bias — 1 3 A demonstrate that the AIC outperformed BIC and HBIC in
tas = ( rep — rep) . o -
Nyep repel correctly identifying the true number of latent classes, par-
ticularly when class separation and test length were adequate.
The results reveal that class separation was a key factor
| Nrep influencing model selection accuracy. In the low separa-
RMSE = N Z (Arep — )Wp)2 tion condition, the latent classes overlapped substantially,
"€P rep=1 resulting in similar measurement models across classes and
S=Low S=Medium S=High
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0.75 1
0.50 1
0.25 1
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o L
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Fig.3 The proportion of correctly selected model among MixTree-1, MixTree-2, and MixTree-3 across different sample sizes (N), test lengths (J),
class separations (S), and class proportions. The dashed line is the reference point for 0.80
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reducing the ability of the MixTree model to distinguish
between classes. Under these conditions, all criteria failed
to correctly identify the number of classes regardless of the
test length.

In the medium separation condition, a clearer pattern
emerged. When C=1, indicating homogeneity in the popula-
tion, all criteria successfully rejected the need for additional
classes across test lengths and sample sizes (note that C=1
condition is always presented under medium separation, as
there cannot be class separation for a single-class popula-
tion). For conditions with C=2, the AIC showed consistently
high accuracy, with correct model selection rates exceed-
ing 0.80 in most cases, except under the shortest test (i.e.,
J=10) and smallest sample size (N=1000) conditions. In con-
trast, the BIC and HBIC required larger sample sizes and
longer tests to achieve comparable accuracy, with perfor-
mance improving only under conditions of N=2000 or larger
and J=20 or longer. When C=3, the AIC maintained reason-
able accuracy given a large sample size and long test, but BIC
and HBIC continued to perform poorly regardless of sample
size or test length.

In the high separation condition, all criteria performed
well in identifying the correct model when C=2 across most
test lengths and sample sizes, highlighting the robustness of
the criteria when classes are well separated. For C=3, the AIC
continued to demonstrate high accuracy across most condi-
tions except under the shortest test length (J=10) condition. In
comparison, BIC and HBIC required the longest test length
(J=30) and the largest sample size (N=3000) to successfully
detect the three-class structure, indicating that these criteria
are more sensitive to increased sample size and test length
under conditions of high separation.

In summary, the AIC outperformed both BIC and HBIC
in accurately detecting heterogeneity and identifying the cor-
rect number of latent classes, particularly under realistic
conditions of moderate class separation and sufficient test
length. Given the limitations observed for BIC and HBIC in
conditions of low separation or short tests, we recommend
that researchers use AIC as the primary criterion for model
selection when conducting analyses with MixTree. However,
especially when class separation is low or test length is lim-
ited, researchers should consider supplementing AIC-based
selection with the R2 statistic to assess model selection.

entropy

Classification

We wanted to ensure that the MixTree performs well for
classifying respondents in their true latent class. To assess
the recovery of class assignments, we calculated the hit rate
(HR) as the proportion of respondents who were assigned to
their true classes.

As is seen in Fig. 4, the MixTree performed well in class
assignments when the class separation was not low or test

length was not short. For the effect of class separation, we
found that the classification accuracy was highest when class
separation was medium or high, with hit rates spanning from
0.75 to 0.95 for C > 1 and approaching 0.75 for C=1 as a
function of test length. Under low separation, the classifica-
tion accuracy was substantially reduced as shown by lower
hit rates around 0.50 across all test length, sample size condi-
tions for both MixTree-2 and MixTree-3 models. This finding
highlights that increased separation between latent classes is
critical for achieving high classification accuracy, especially
when the test length is limited.

We also found that the discrepancy between the population
and model complexity affected the classification perfor-
mance. Specifically, when the true population structure is
relatively homogeneous than the fitted MixTree model (e.g.,
fitting MixTree-3 in a population with one or two classes),
the simpler MixTree-2 model outperformed the MixTree-
3 model in classification accuracy. The added complexity
of MixTree-3, with an extra latent class, led to increased
classification uncertainty due to the capture of noise in the
additional class. This effect was particularly pronounced in
shorter tests or with low separation but was mitigated as test
length increased, suggesting that longer tests may reduce
the noise and provide additional information that helps more
complex models in classification. As we also implemented
in the Empirical Illustration, one can conduct further tech-
niques such as cross-validation to ensure that the emerged
classes carry substantive information rather than noise.

The sample size condition had only a negligible positive
effect on classification. The correlation between factors did
not make a difference in the performance, so they are merged
in Fig. 4.

In summary, the MixTree models demonstrate strong clas-
sification performance under realistic conditions, provided
that the class separation is not low and the test length is
sufficient. Researchers are recommended to pay attention to
separation between classes and their test’s length when inter-
preting class assignments. To prevent the risk of overfitting,
which may cause discrepancy between true and fitted com-
plexity, particularly when aiming to use class assignments in
further analyses, it is recommended to apply multiple random
starts and stricter convergence criteria in the expectation-
maximization (EM) algorithm. Additionally, model selection
results indicate that the AIC generally safeguards against
under- or overfitting, except in extreme cases with very short
tests and low separation.

Recovery of item parameters
Class invariant item parameters In Fig. 5, we present the
mean bias and RMSE of the class-invariant parameters at

the first node, namely, a&lmm and B; averaged across J.
The scales on the y-axis for bias range from -0.05 to 0.05,
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implying that there is only a very small amount of bias in the
parameter estimates across all conditions.

Specifically, when we investigate the left panel of the top
half, we see that a MixTree model with more than one class,
usually recovers the trait loadings at the first node with-
out being affected by the class separation, test length, and
sample size conditions. When falsely fitted to a mixture pop-
ulation, the MixTree-1 resulted in slightly increased bias in
the /") parameter.

In the bottom half, the RMSE values are generally small
and very similar across conditions. The only exception is
when the class separation is high, where fitting a MixTree-1

@ Springer

model to a more complex population leads to increased
RMSE values, implying lower accuracy of the ayra”) esti-
mates. Otherwise, the RMSE were found to decrease as the
test length, sample size, and class separation increase.

On the right panel of the top half of the figure, we see
that the bias in the intercepts were consistently almost zero
across all conditions and different MixTree models. It is an
expected result as it is generally easier to recover intercept
parameters with even very small sample sizes.

In the bottom half, we see a similar pattern as in the
trait factor loadings. That is, fitting MixTree-1 to a more
complex population led to slightly increased RMSE values.
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Furthermore, with an increasing test length, sample size, and
class separation, the RMSE values consistently decreased.

Class-specific item parameters In Fig. 6, we present the
results for the class-specific item parameters at nodes two
and three. Specifically, we present the average bias in esti-
mates obtained with MixTree-1 to -3 across different sample
sizes (N), test lengths (J), and true number of classes (C).

wjc: On the left-most panel of the top half, we present the
bias in proportionality constants averaged across items. As in
other cases, class separation was the most prominent factor
affecting the recovery, which was followed by test length.
More specifically, under low class separation, proportionality
constants were over-estimated, but the extent of bias seemed
to diminish as mainly with increasing test length but also
slightly with increasing sample size. The same pattern was
also observed for the medium and high separation conditions,
but the overall bias was much lower than in the low class
separation condition.

On the left-most panel of the bottom half, we present the
RMSE values for w;.. The RMSE values were the largest
for the smallest test length and lowest separation condition.
Furthermore, they were overall very small, also when com-
pared to the other class-specific parameters, likely because
the class-invariant involvement of the trait across classes,
which improves the information regarding all trait-relevant
parameters.

B2jc and B3jc: On the middle panel of the top half, we
present the bias in the class-specific intercept terms averaged
across items and nodes (i.e., 823 in Fig. 6), for which we
did not observe any salient over- or under-estimation. That is,
as in the class-invariant intercept parameter of node one, all
class-specific intercept parameters were recovered without
any bias in all conditions that we considered.

When the RMSE values on the bottom-half are investi-
gated, we see rather high values for the lowest test length,
sample size, and separation conditions. Yet, the accuracy of
estimates improves drastically as the test length, sample size,
and class separation increases.

aﬁ””: On the right-most panel, we provide the bias of
the class-specific ERS factor loading estimates. We found
almost the same pattern as the results for the proportion-
ality constants with one difference, that is, the ERS factor
loading was associated with negative bias, meaning under-
estimation. This under-estimation was most visible in the
low class separation. However, under all separation condi-
tions, the negative bias greatly reduced as the test length and
sample size increased.

On the bottom half, we present the RMSE values. We
found a similar pattern as for other parameters. That is,
the lowest test length, sample size, and class separation
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conditions yield the largest RMSE values, but it decreases
significantly with a longer test, larger sample size, and higher
class separation.

Person parameters

Figures 7 and 8 show the recovery of trait (9) and ERS
n scores using MixTree models with varying numbers of
classes (1, 2, or 3) under different simulation conditions:
true number of classes, class separation (S), sample size (N),
and test length (J). The three columns of panels depict mean
bias, root mean squared error (RMSE), and mean estimated
standard error (SE) across simulation conditions. The latter,
mean estimated standard error, is calculated in order to eval-
uate the precision of estimated factor scores.

Recovery of the trait scores @ The first three row of the top
panel present the mean bias in trait score estimates sepa-
rately for each class, where the bias was averaged across
the members of each class. The first row demonstrates the
bias for respondents in the satisficing-dominated class, where
respondents put less weight on the trait than the ERS factor
in their response strategies, the second row for those who
used both the trait and ERS to a similar extend, and the third
row for the optimizing-dominated strategy, where the trait
played a stronger role than the ERS in the response strategies.
In almost all conditions, we found near-zero bias in the trait
scores with an exception under the high separation condi-
tion. Under high separation, some conditions showed a slight
under- or over-estimation of trait scores by the MixTree-1
model. However, given that the mean bias for these condi-
tions were ranging between -0.01 and 0.01 (note the scale of
the y-axis), we consider them negligible and do not interpret
any further.

In the middle panel, we present the RMSE values, again,
for each class separately. Similar to the bias results, we found
that all models yielded similar RMSE values regardless of
the condition and the true number of classes in the popula-
tion, except the high separation condition. Under high class
separation, we found that MixTree-1 yielded slightly higher
RMSE for each class than MixTree-2 and MixTree-3 when
the population consisted of more than one class.

In the bottom panel, we present the results for the mean
estimated standard errors separately for each class. Again,
the mean SE estimates were comparable between all Mix-
Tree models under all conditions but the high separation.
When class separation was high, the MixTree-1 model, in
comparison with MixTree-2 and -3 models, reported the SE
of trait scores in optimizing-dominated class slightly larger
and in satisficing-dominated class slightly smaller.
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Fig. 6 Bias and RMSE of class-specific parameter estimates of wjc, af.m) and fo3. at the second and third node obtained with MixTree-1 to -3
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Recovery of the ERS scores 5: At the top panel, we present
the results for the mean bias of ERS score estimates sepa-
rately for each class and averaged across respondents within
each class. The first row is the subset of respondents who
belong to the satisficing-dominated strategy class, where the
relative weight of the ERS was greater than the trait. The
results show consistent underestimation of ERS scores by all
MixTree models. However, the bias was even larger for the
MixTree-1 model under C > 1 conditions, and it got even
larger with the increasing class separation. Under C = 1
condition, however, all three models yielded ignorable bias.
Furthermore, the results suggest neither the test lengths nor
the sample size had a substantial effect on the bias in ERS
score estimates.

The second row is the subset of respondents who belong
to the balanced strategy class, where the trait and ERS were
roughly equally weighted. For respondents belonging to the
balanced class, we found only ignorable bias (i.e., near-zero)
in the ERS scores across all test length, separation, and sam-
ple size conditions.

The third row is the subset of respondents who belong
to optimizing-dominated strategy class, where the ERS had
less weight than the trait. For those respondents, we found
the opposite pattern of the first class. That is, the ERS scores
were systematically over-estimated across all conditions, but
the extent of over-estimation increased further with a higher
class separation.

In the middle panel, we present the RMSE values of the
ERS scores, again, for each class separately. As the figure
suggests, the RMSE values were consistent across differ-
ent classes, but slightly increased for the MixTree-1 model
under C > 1 and high class separation conditions, imply-
ing the poor performance due to unaccounted heterogeneity,
whereas MixTree-2 and MixTree3 yielded smaller RMSE
values under these conditions.

Finally, the bottom panel presents the results regarding
the estimated standard errors for the ERS score estimates
averaged across N respondents. When there was no hetero-
geneity (C = 1) or the class separation was low, all MixTree
models yielded similar mean SE of trait scores. However,
under a heterogeneous population (C > 1) with medium
to high separation, MixTree-1 yielded the mean SE higher
for satisficing-dominated class and lower for optimizing-
dominated class than MixTree-2 and -3. For the balanced
strategy class, the mean estimated SE were comparable.

In conclusion, when a traditional IRTree model was fit
in a population where sub-populations use qualitatively dif-
ferent response strategies, it did not result in a systematic
under- or over-estimation of trait scores, but the RMSE val-
ues and mean estimated SEs implied worse accuracy. The
reason for the good recovery of the trait scores with all Mix-
Tree models, regardless of the population heterogeneity is the

@ Springer

class-invariant first node, making the model gather adequate
information about the trait regardless of a potential model
misspecification at the later class-specific nodes.

We found, however, that the ERS scores recovered poorly
by the MixTree-1 model if the population consisted of
multiple classes. Specifically, respondents who placed less
weight on the ERS factor in their response strategy (i.e.,
optimizing-dominated class) had their ERS scores over-
estimated, while those who placed greater weight on the
ERS(.e., satisficing-dominated class) had their trait scores
underestimated. Notably, no systematic bias was observed
for the balanced class. These findings suggest that MixTree-
1 produced parameter estimates that were averaged across
all sub-populations, causing the ERS estimates to shrink
towards mean of all classes. Furthermore, although this unac-
counted heterogeneity was reflected as increased precision of
ERS score estimates (i.e., smaller SE) for respondents in the
optimizing-dominated class, it was reflected as reduced pre-
cision (i.e., larger SE) for those in the satisficing-dominated
class. That is, the MixTree-1 model reported a higher preci-
sion for substantially under-estimated ERS scores.

Recovery of covariate effects

The overall performance of the MixTree regarding the
recovery of covariate effects was very good except for the
extremely difficult conditions (see Figs. 9 and 10). More
specifically, there were two general patterns for the recovery
performance. First, the bias and RMSE of covariate effect
estimates tended to increase with stronger covariate effects.
This trend aligns with the well-known phenomenon of sepa-
ration bias in multinomial logistic regression, where a large
covariate effect leads to high separation between outcome
categories. This high separation means that certain predictor
values can almost perfectly predict outcome categories, akin
to a steep sigmoid curve where a cutoff yields near-perfect
category separation (see Albert & Anderson, 1984; Lesaffre
& Albert, 1989; Zorn, 2005, for further details). This phe-
nomenon often inflates standard errors and introduces bias
into the estimates.

Second, a lower class separation also led to increased bias
and RMSE of covariate effect estimates. Under low separa-
tion conditions, classes became more indistinct, leading to
reduced accuracy in the MixTree’s posterior class member-
ship probabilities. This, in turn, affected the performance
of covariate effect estimation, as the model struggled to
distinguish between latent classes and make accurate clas-
sifications.

When we investigate the results regarding the separation
in more details, we see that the mean bias was almost equal to
the true parameter value in the low class separation condition.
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Fig.9 Bias in estimates of covariate effects by the MixTree-2 and MixTree-3 models across different sample sizes (N), test lengths (J), separation

levels (S), and number of classes (C)

This finding implies that despite the non-zero true values
used in data generation, classes were extremely similar to
each other that the impact of covariates in generating class
memberships has disappeared. In other words, despite using
non-zero effect sizes, the similarity between classes caused
them to be practically zero.

Third, we found that, except under low class separation,
increasing the test length reduced the bias remarkably. In the
cases of medium separation, there was still a slight over- or
under-estimation, but it can be considered negligible with a
large enough sample size (N > 1000) and long enough test
length (J > 10).

Fourth, the RMSE results show another important factor
determining the recovery performance, the model complex-
ity. As the number of fitted class increases, the RMSE values
increase as well. This is rather an expected result, as the
increased model complexity increases the ambiguity with
the additional classes. This, in return, reduces the accuracy
in the class probabilities and class assignments as shown in
the results for classifications. However, such adverse effect
of model complexity diminishes with the increasing sample
size and test length, showing the importance of having an
adequate number of items and persons in the data set for
fitting the MixTree model.

Empirical illustration: Baron-Cohen’s
systemizing quotient test

The Empathizing and Systemizing Quotients Test (E-S Test)
measures individuals’ empathic thinking and systemic think-
ing abilities (Baron-Cohen et al., 2003; Baron-Cohen &
Wheelwright, 2004). Empathic thinking refers to communi-
cation skills and social interaction types such as understand-
ing other’s perspectives, constructive conflict resolutions,
and compassionate decision-making strategies, whereas sys-
temic thinking skills are more relevant for understanding
of systems, recognition of patterns, and analyzing rules and
guides. The empathizing and systemizing subscores obtained
from the E-S Test are then compared to investigate individ-
uals’ differences in thinking styles, and even sometimes to
examine Autism Spectrum Disorders (Baron-Cohen et al.,
2003). As our aim is only to illustrate the MixTree model,
we focus on the systemizing part of the test.

For our analysis, we use the open-access data set obtained
from Open Psychometrics’. The data set contains responses
from a total of 13.256 individuals to 60 items measuring
systemizing abilities (Cronbach’s ¢ = 0.90). We randomly

5 https://openpsychometrics.org/_rawdata/
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chose a subset of 20 items with varying item-total correlations
between 0.35 and 0.71 (M = 0.52, SD = 0.11), resulting
in Cronbach’s « of 0.89.

Model selection We fit the MixTree model with one to
four classes. According to the AIC and BIC, the best bal-
ance between model fit and complexity was achieved by the
MixTree-4 and MixTree-3, respectively (Table 5). However,
first, the difference between information criteria values is
very small given the number of freely estimated parame-
ters and the sample size. Second, R?,,, opy Values show only
negligible improvement with the increasing number of fitted
classes, which may be hinting at over-fitting for MixTree-3
and MixTree-4 models. Third, we investigated the probabil-
ity of classification accuracy across classes (i.e., mean of the
diagonal elements of Eq. 5) and found it 0.81 for MixTree-2,
0.72 for MixTree-3, and 0.66 for MixTree-4. This finding
implies that the added classes incorporate large ambiguity
and were likely capturing some noise in the data. Given the
suspicion of overfitting, we investigated the absolute fit by
means of K-folds cross-validation, which is sensitive to over-
fitting and can help us understand if the additional classes do
not contain substantive information but rather capture noise.

@ Springer

K-Folds cross-validation We implemented a K-folds cross-
validation procedure with 5 folds, such that we partitioned
the data set into five independent training and test samples.
We fitted a MixTree model with one to four number of classes
in both partitions independently and compared their results
according to some metrics.

First, we wanted to check if the estimated item parameters
were similar in both training and test partitions. Therefore, we
calculated the correlation and mean distance between item
estimates obtained from training and test data sets. Second,
we compared if the trait and ERS factor scores estimates
and class membership probabilities are similar between when

Table 5 The AIC, BIC, number of estimated parameters, reduction in
entropy, and estimated class sizes for the fitted MixTree model with
number of classes from one (C=1) to four (C=4)

T4l T2 43 T4

C AIC BIC () Riuiropy

1 597551 598315 102 - 1 - - -

2 594719 595947 164 0.41 0.53 047 - -

3 593963 595656 226 0.42 035 029 036 -

4 593854 596001 288 0.42 023 024 031 022
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we use the estimates obtained from test model fit for the
test data set and when we use the estimates obtained from
the training model fit for the test data set. Finally, we also
compared the overlap between class assignments between the
two cases. We calculated the mean overlap and also Cohen’s
« coefficient (Table 6).

The similarity between the item estimates obtained from
the training and test partitions was the highest for the
MixTree-2 model. The average correlation between the
training and test partitions across five folds was 0.880
(SD=0.097), and the average distance between the parti-
tions across five folds was 0.003 (SD=0.028). These values
indicate high consistency, as compared to the MixTree-3
and MixTree-4 models, which demonstrated lower average
correlations of 0.815 (SD=0.078) and 0.787 (SD=0.041),
respectively, and slightly higher mean distances of -0.036
(SD=0.045) for MixTree-3 and -0.039 (SD=0.036) for
MixTree-4.

For the trait factor, we observed almost a perfect corre-
lation for the MixTree-2 model (Mean=0.999, SD=0.001).
The MixTree-3 and MixTree-4 models also performed well,

with mean correlations of 0.996 (SD=0.001) and 0.997
(SD=0.001), respectively, though they displayed slightly
higher mean distances (MixTree-3: Mean=0.066, SD=0.006;
MixTree-4: Mean=0.061, SD=0.002).

The deviation between the partitions becomes more salient
with regard to the ERS score estimates. The MixTree-2 model
demonstrated high consistency, with an average correlation
of 0.997 (SD=0.001) and a mean absolute distance of 0.050
(SD=0.006), whereas the MixTree-3 and MixTree-4 models
displayed correlations of 0.962 and 0.972, respectively, and
greater mean distances of 0.17 (SD = 0.016) and 0.161 (SD
= 0.017). These results suggest that the MixTree-2 model
shows better consistency of the ERS factor scores between
training and test partitions across 5 folds.

Class assignment consistency was assessed using the
mean overlap and Cohen’s «. For MixTree-2, the average
overlap (Hit) was 0.902 (SD=0.022), with a Cohen’s « of
0.800 (SD=0.041), indicating substantial agreement in class
probabilities and assignments across folds. The MixTree-3
and MixTree-4 models had lower levels of overlap (0.297
and 0.467, respectively) and « values (0.268 and 0.065,

Table 6 Comparison of item, person, and classification similarities across 5 K-folds

K Fold Items Factors Classification.
Trait ERS
Cor. Dist. Cor. |Dist.| Cor. |Dist. | Cor Hit Cohen’s «

MixTree-2

1 0.985 0.035 0.999 0.048 0.997 0.052 0.94 0911 0.815
2 0.81 0.026 0.999 0.056 0.996 0.067 0.937 0.871 0.753
3 0.988 0.002 0.999 0.03 0.997 0.058 0.957 0.929 0.857
4 0.816 -0.018 0.999 0.043 0.996 0.06 0.916 0.89 0.782
5 0.801 -0.03 0.999 0.038 0.996 0.054 0.945 0.908 0.772
Mean 0.880 0.003 0.999 0.04 0.996 0.05 0.939 0.902 0.800
SD 0.097 0.028 0.001 0.01 0.001 0.006 0.015 0.022 0.041
MixTree-3

1 0.691 0.035 0.997 0.06 0.962 0.185 0.23 0.343 0.386
2 0.824 -0.083 0.995 0.075 0.96 0.18 0.39 0.356 0.208
3 0.892 -0.027 0.995 0.068 0.976 0.143 0.466 0.259 0.182
4 0.797 -0.039 0.997 0.062 0.965 0.176 0.41 0.253 0.253
5 0.869 -0.066 0.996 0.067 0.962 0.168 0.439 0.276 0.311
Mean 0.815 -0.036 0.996 0.066 0.965 0.17 0.387 0.297 0.268
SD 0.078 0.045 0.001 0.006 0.006 0.016 0.09 0.048 0.082
MixTree-4

1 0.734 0.019 0.997 0.059 0.972 0.156 -0.099 0.768 0.112
2 0.823 -0.063 0.996 0.061 0.963 0.19 -0.114 0.764 0.070
3 0.755 -0.049 0.997 0.059 0.97 0.154 0.422 0.211 0.001
4 0.798 -0.029 0.996 0.064 0.968 0.145 0.478 0.291 0.117
5 0.825 -0.072 0.997 0.06 0.966 0.159 0.472 0.300 0.027
Mean 0.787 -0.039 0.997 0.061 0.968 0.161 0.317 0.467 0.065
SD 0.041 0.036 0.001 0.002 0.003 0.017 0.193 0.275 0.051
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respectively), indicating that class probabilities and class
assignments were very divergent between when the test par-
ticipants were classified with training estimates and when
they were classified with the test estimates.

In summary, based on the similar information criteria and
Rzntmpy values across MixTree-2 to MixTree-4, and based
on the superior performance of the MixTree-2 model in the
K-Folds cross-validation, we concluded that the more parsi-
monious MixTree-2 model should be selected.

Class-specific model parameters In the top panel of Fig. 11,
we present the contribution of the ERS factor (left-most; i.e.,
aim)) and trait (right-most; i.e., ayrait)a) je) in the deci-
sions regarding extremity nodes. Moreover, in the middle,
we present the class- and item-specific proportionality con-
stants wj¢. In all figures, there is a clear difference between
classes. First, we see in Class 1 that the total effect of trait
captured with oeym”)a) jc is greater the effect of ERS factor
on category choices. In Class 2, we see the opposite pattern,

where the ERS factor loading is greater than the effect of sub-

stantive trait on extreme category choices. All together, Class
1 is in line with a trait-dominated strategy, whereas Class
2 is more in line with a heuristic-dominated strategy. Sec-
ond, we see that the proportionality constants were greater
in Class 1 than in Class 2, implying that the trait involves
more strongly in extreme category choices in Class 1 than in
Class 2. Moreover, most estimates were smaller than 1 in both
classes, implying that as previous research found (Alagoz &
Meiser, 2024; Meiser et al., 2019), the trait involvement in
the extremity decisions was weaker than the direction deci-
sion. Third, when we investigate the actual contribution of the
trait in extremity decisions (i.e., the multiplication of the trait
loadings at the first node and proportionality constants), we
see a clearer divergence of classes from each other. That is,
the term aym”)a)jc was much larger in Class 1 than in Class
2, implying that the trait played a stronger role in specific
category choices in Class 1 than in Class 2.

As previously discussed, one advantage of the Mix-
Tree model is all person parameters have the same scale
across classes through the class-invariant (co)variance matrix,

c=1 c=2
2.54
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Fig. 11 Parameter estimates of the second and third nodes obtained by
MixTree-2 models. The fop panel presents point estimates of the class-
and item-specific proportionality constants . and class-specific ERS
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allowing us to interpret the class-specific loadings very flex-
ibly. For Class 1, we see that the ERS factor loading is
mostly smaller than the trait factor loadings, meaning that the
response processes in this class were more heavily affected
by the trait of interest rather than the ERS factor. For Class 2,
we see the opposite pattern. That is, the ERS factor loading
is mostly larger than the trait factor loadings, meaning that
the decision-making processes of respondents in this class
were affected by ERS more heavily than the trait.

Since the scale identification involved setting latent means
zero for all person parameters in all classes, we can also inter-
pret the class-specific node intercepts comparatively. On the
bottom panel of Fig. 11, we see no clear difference in the
intercept terms B2 and B3 ;. between classes. This finding
means that both classes did not differ in the overall propen-
sity of choosing category 2 over / and category 4 over 3
(see the tree structure in Fig. 1). A more substantive inter-
pretation is that solely looking at the category frequencies or
using mixture 1PL alike models (see Bockenholt & Meiser,
2017) might not be able to capture heterogeneity in response
processes.

In conclusion, the two latent classes that we detected are
associated with distinct response processes. Class 1 is asso-
ciated with the stronger use of the trait in their response
processes, whereas Class 2 is associated with heavier impact
of the heuristic factor ERS. Referring back to the distinction
that Krosnick (1991) made, Class 1 is more in line with an
optimizing-dominated strategy and Class 2 with a satisficing-
dominating strategy.

Covariate effects To have a better understanding of what
factors might be affecting such differences in response
processes, we further analyzed covariate effects on class
membership as described in the third step of the estimation
procedure. The data set contains two external variables that
could be used in the analysis: gender (O=male, 1=female) and
age. While keeping the original coding of the gender variable,
we standardized the age variable to facilitate the estimation
and interpretation. We fitted four regression models. One
without any covariates, one with only the gender variable,
one with only the age variable, and one with both variables.
The information criteria (AIC, BIC) and likelihood-ratio
tests suggested that both variables have significant effects
(Table 7).

The results suggest that being female is associated with a
higher probability of belonging to Class 2. In other words,
females are more likely to follow a response process that is
ERS-dominated. Regarding age, we found that older ages
have a higher probability of belonging to Class 2, where
the response process is ERS-dominated. Yet, these analyses
were done on exploratory-basis and require a more structured

Table 7 Covariate effects

Parameters Class 2 SE [95% CI]
Intercept -0.31 0.03 [-0.36, -0.26]
Gender 0.74 0.03 [0.67, 0.80]
Age 0.26 0.08 [0.09, 0.42]

Note: The reference group of the categorical gender variable is "male".
SE: Standard Error. CI: Confidence Interval. Class 1 is specified as the
reference group in the logistic regression analysis

investigation in the future, but it is not in the main goals of
the present study.

In conclusion, we found two classes of remarkable sizes
in the empirical data set: one with a stronger influence of
the trait and one associated with a stronger influence of ERS
on extreme category choices. For the overall propensity to
choose extreme categories, the class-specific intercepts indi-
cated no clear difference between classes. Finally, we found
that females are more likely to follow a satisficing-dominated
strategy and males are more likely to follow an optimizing-
dominated strategy. Finally, the older the respondents are,
the more likely it is that they follow a satisficing-dominated
strategy.

Conclusion

Under an ideal scenario, individuals would respond to ques-
tionnaire items based solely on their trait levels by, for
example, following the four-step cognitive response pro-
cess (comprehension, retrieval, integration, and mapping),
referred to as optimizing strategy (Tourangeau et al., 2000).
Each of these steps demands a considerable amount of cog-
nitive effort. Therefore, when faced with the challenges such
as lack of motivation, fatigue, comprehension issues, or
unfamiliarity with construct/response scale, respondents may
resort to heuristic processes to reduce their efforts, referred
to as satisficing strategy (Krosnick, 1991). In such cases, the
trait is no longer the sole determinant of the response, but
additional factors like RS, or in most extreme cases effort-
less responding, come into play. Neglecting these heuristic
response processes and exclusively modeling the trait can
have significant effects on the measurement validity and sub-
sequent inferences about the construct.

Several psychometric models were proposed to detect and
correct for RS effects, such as IRTrees. However, these mod-
els assume that a single measurement model including RS
factors hold for all respondents. There are two implications
of this assumption. First, all respondents adopt a satisficing
strategy. Second, the degree of satisficing is the same for all
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respondents through modeling a single set of traits and RS
factor loadings. Both of these implications are ungrounded
as several studies using discrete mixture models found evi-
dence that there are subpopulations of optimizers, who use
only the trait, and satisficers, who additionally employ RS
in their response strategies (Alagoz & Meiser, 2024; Kim &
Bolt, 2021; Tijmstra et al., 2018).

It is rather constraining to consider satisficing and opti-
mizing as binary outcomes. The mixture models men-
tioned above use a confirmatory approach with predefined
latent classes, where there is only the trait determining the
responses to capture optimizers, and where there is addi-
tional RS factors to capture satisficers. However, the factors
interrupting the four-step process may not be the same for
all respondents and may not have the same severity. That is,
while some respondents are extremely tired and skip several
steps, some others can be only slightly tired to go through
all steps but with less effort, and some others may be fully
engaged and execute all steps with full attention. Thus, a
more flexible mixture approach is needed that accommodates
gradual degrees of satisficing and optimizing, respectively.

The proposed MixTree model addresses all the problems
mentioned above. First, by having the mixture components,
we do not put the strict assumption that all respondents follow
a single response strategy. Moreover, in contrast to previous
mixture models, the MixTree does not fix any factor load-
ings at zero in any class. Thereby, we do not enforce that
respondents follow either a satisficing or an optimizing strat-
egy, but respondents can put different weights to the trait
and ERS factor that are not pre-determined. Respondents can
thus also follow a balanced strategy, and any combination of
the response strategies can be detected. The MixTree model
also investigates the external variables that may predict class
memberships, allowing further insights on the differential
use of trait and ERS factors.

The simulation study showed great performance of the
MixTree model in recovering class sizes, class memberships,
and covariate effects in different class sizes, class separa-
tion, trait-ERS correlation, test lengths conditions, except
for the shortest test length (J=10) and lowest class separation
(R2.,.. py)- Furthermore, the MixTree can recover item and
person parameters with minimal error. We also found that
under realistic conditions, the AIC proved itself as a use-
ful tool for determining the number of classes, especially in
cases with smaller sample sizes. Yet, such decisions should
be aided with the R, ,, opy Statistic, substantive interpretation
of class definitions, and an absolute fit investigation with, for
example, K-folds cross-validation methods.

When one does not account for existing heterogeneity by
fitting one class or fewer than the true number of classes,
class-specific item parameters and ERS factor scores were
recovered with bias. Meanwhile, the trait scores showed
minimal error as the class-invariant first node provides suf-
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ficient information even with fewer than the true number of
classes. Yet, the measure of precision for the person parame-
ters was somewhat off when heterogeneity was not accounted
for adequately. These findings show that under-enumeration
of classes may result in biased estimates, whereas over-
enumeration is mostly unproblematic for the estimation part,
but it may make the interpretation of classes more difficult.

Although the single-class IRTree model can yield accu-
rate trait estimates in heterogeneous populations, primarily
because the first node is shared across all classes and captures
the bulk of trait-related variance, the core contribution of
the MixTree model lies beyond trait estimation. Specifically,
MixTree allows us to empirically model and test whether
individuals differ in how they arrive at their responses.
Traditional IRTree models account for response styles but
assume homogeneity in response strategies across individu-
als. In contrast, MixTree introduces latent classes that reflect
qualitatively distinct response strategies (e.g., trait-based vs.
heuristic-based), drawing on theoretical insights from the sat-
isficing literature. Thus, the primary value of MixTree is not
simply in improving trait scores, but in uncovering meaning-
ful individual differences in response processes that standard
models cannot capture.

Following the simulation study, we illustrated with empir-
ical data that respondents indeed follow different response
strategies. We found two sub-populations of respondents,
one associated with stronger influence of the trait on extreme
decisions than the ERS factor and one with stronger influence
of the ERS factor than the substantive trait. The difference
between the classes was noticeable as the average trait load-
ings across items (1.18) were higher than the ERS loading
(0.75) in the former class, whereas the ERS factor had a
stronger impact (1.25) than the substantive trait (0.73) in
the latter class. The first class, by having stronger trait load-
ings than the ERS loading, can be considered more in the
optimizing direction, whereas the second class, by having a
stronger ERS loading than the trait loadings, is towards the
satisficing direction. The cross-validation held via K-folds
with five folds revealed a great overlap of item, person, and
class parameter estimates across five different pairs of train-
ing and test subsets, whereas for MixTree models with higher
number of classes, the training and test data metrics showed
mismatch that points at potential overfitting in these cases.

We also illustrated how class predictors can be included
in the model. We found that, in this specific empirical illus-
tration, being female and having an older age increases the
probability of following an ERS-dominated strategy. When
available, different types of predictors, especially process
data (e.g., response times) can be used for validating or gain-
ing more insights about the classes (e.g., Khorramdel et al.,
219).

The present approach extends previous models such that it
does not enforce specific response strategies through fixing
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some factor loadings to zero or by limiting the number of
classes beforehand. Moreover, previous models predefined
two latent classes, representing the optimizers and the satis-
ficers (Alagdz & Meiser, 2024; Kim & Bolt, 2021; Tijmstra
et al., 2018). The MixTree, on the other hand, does not pre-
define any response strategy or force respondents to belong
to any of the pre-fixed number of classes, but it is capable
of capturing more gradual differences in the response strate-
gies between latent classes, not necessarily as optimizers or
satisficers. As is shown in our illustration, respondents can
still make use of the trait in the satisficing and ERS in the
optimizing strategy to a substantial degree.

Naturally, our work has some limitations that future
research should address. First, we assumed that all respon-
dents comprehend the items to the same extent by having a
class-invariant response direction node. However, the Mix-
Tree model can be adjusted to investigate many scenarios.
In extreme cases, it may be the case that some respon-
dents skip the comprehension step, which may result in the
(dis)acquiescence RS (i.e., tendency to choose (dis)agreement
categories). In such cases, one can further incorporate the
acquiescence RS factor in the response direction node with
class-specific weights of the trait and RS. Alternatively, the
MixTree can be used to capture effortless responding by
keeping the first node unidimensional with the substantive
trait but with class-specific factor loadings, which would then
capture overall attentiveness of the respondents. For instance,
weak trait loadings would imply that the trait does not play a
significant role in the entire response process, and the respon-
dents rather engage in random or non-effortfull responding
(Ulitzsch et al., 2024, 2022). Additionally, response biases
such as socially desirable responding is also found to be
qualitatively different between subpopulations (Seitz et al.,
in press), which could be of interest to incorporate in the
MixTree approach. Related to the discussion point of good
recovery performance of trait scores with the single-class
IRTree model in heterogeneous populations, such model
extensions would further highlight the need for accounting
for heterogeneity to debias the trait scores and loadings.

Second, the class separation conditions were generated
by using rather arbitrary values of R2,,, opy Values, since our
study is the first to our knowledge that investigates such
an entropy-reduction measure in the mixture modeling of
response process heterogeneity. It is possible that our choices
for the low separation condition was way lower than the real-
ity. However, with investigating three levels of separation, we
covered a wide range and those who apply the MixTree may
take these values as a reference.

Third, to keep the MixTree as parsimonious as possible,
we modeled the ERS factor loading aﬁ”” as item-invariant.
This decision was not arbitrary and is based on the theories

regarding the RS. More specifically, RS are by definition
independent of the item-content, and they should not be item-
specific. However, some external factors, such as item length
or wording can make some items more prone to heuristic
strategies. However, one can easily extend the model Mix-
Tree to contain a class- and item-specific aﬁ.ecrs), but this
specific issue was not our primary goal and therefore future
studies can test this specific assumption.

Fourth, we only considered continuous and uncorrelated
covariates. However, as the measurement and structural
model are estimated separately via a three-step ML approach
(Vermunt, 2010), the results of the previous studies investi-
gating specific settings of the structural model on the recovery
of covariate effects would apply to the MixTree model as well
(Alagoz & Vermunt, 2022; Bakk et al., 2013, 2014; Bakk &
Kuha, 2021).

Fifth, the presented version of the MixTree can handle
only four-point rating scale items, and thus the ERS factor.
Yet, it can easily be extended to six-point rating scale items
and to model also MRS. For five-point rating scale items,
we refer readers to Alagéz and Meiser (2024), where they
demonstrate how to include trait, ERS, and MRS effects with
odd numbers of categories.

And finally, not necessarily a limitation, the simulation
results suggested that the MixTree needs longer tests than
ten items, larger sample size than 1000, and a higher class
separation than Rgn,mpy = 0.20 to show satisfactory perfor-
mance.

In conclusion, we introduced the MixTree approach for
disentangling different response mechanisms in rating scale
data. With an extensive simulation study, we depicted the
wide range of capabilities of the MixTree model in detecting
heterogeneity regarding response strategies, such as accurate
classification of respondents, recovery of class-specific item
and person parameters with minimal biases, and accurately
recovering covariate effects on class membership. As illus-
trated with an empirical data set, the MixTree can provide
a deeper insight on how individuals differ in the way they
respond compared to other models in the literature, and can be
of great use for psychometricians and applied researchers in
expanding our knowledge on behavioral aspects of respond-
ing in questionnaires.
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