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Abstract

Recent advancements in deep learning have highlighted the importance of probabilistic
scoring within attention mechanisms and model predictions, significantly impacting tasks
in computer vision and natural language processing. Neural probabilistic scoring refers
to the process of computing normalized relevance scores based on hidden features of a
neural network - often via softmax - that sum to one and reflect the relative importance of
different tokens or features, without necessarily representing true probability distributions.
Traditional reliance on softmax-based attention and output distributions can constrain
model capacity and reliability. Its unimodal nature restricts capturing sparse, multi-modal
patterns and reduces robustness to signal noise. Additionally, permutation invariance in
scoring disrupts spatial and structural information, hindering performance on tasks with
complex geometry or topology. This thesis addresses these limitations by introducing
novel methodologies that refine probabilistic scoring in both the attention and output
layers, aiming to enhance the performance and scalability of machine learning models
across vision and language tasks.

In the first block, the work reimagines attention mechanisms. Central to this is Multi-
Max, a novel softmax alternative that achieves an improved balance between sparsity and
multi-modality in the output distribution, enabling the attention mechanism to simul-
taneously focus on multiple relevant contexts while maintaining resilience to irrelevant
entries. In the vision domain, Sp-ViT introduces learnable 2D spatial priors into Vision
Transformers, enhancing the model’s ability to capture spatial relationships and improv-
ing performance in image classification tasks. For structured data, the work proposes
Hypergraph Transformer to tackle skeleton-based action recognition, with hypergraph
attention and a positional encoding based on graph distances as its core components. The
work further extends the positional encoding with topological encoding, which successfully
incorporates more comprehensive structural information through topological descriptors
beyond graph representation.

The second block focuses on output probabilistic scoring to improve model reliability for
both discriminative and generative models. During training, MaxSup regularizes classifiers’
output by mitigating the overconfidence in erroneous predictions and representation
collapse in label smoothing, leading to more reliable predictions and more powerful
feature representations. At inference, sampling-based decoding strategies modulate output
distributions to improve LLMs’ output, balancing diversity and coherence in open-ended
text generation. Together, MaxSup and LLM Sampling provide a unified framework for
output probabilistic scoring, ensuring reliability and quality in both classification and
generative tasks.
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Zusammenfassung

Jüngste Fortschritte im Deep Learning haben die Bedeutung probabilistischer Bewertungen
innerhalb von Aufmerksamkeitsmechanismen und Modellvorhersagen hervorgehoben, die
Aufgaben in der Computer Vision und der Verarbeitung natürlicher Sprache maßgeblich
beeinflussen. Unter neuronaler probabilistischer Bewertung versteht man den Prozess
der Berechnung normalisierter Relevanzwerte – oft über Softmax – auf Basis versteckter
Merkmale eines neuronalen Netzwerks, die sich zu eins summieren und die relative Be-
deutung verschiedener Token oder Merkmale widerspiegeln, ohne dabei notwendigerweise
echte Wahrscheinlichkeitsverteilungen darzustellen. Die traditionelle Abhängigkeit von
Softmax-basierten Aufmerksamkeits- und Ausgabeverteilungen kann die Modellkapaz-
ität und Zuverlässigkeit einschränken. Ihre unimodale Natur behindert die Erfassung
sparsamer, multimodaler Muster und verringert die Robustheit gegenüber Störsignalen.
Darüber hinaus führt Permutationsinvarianz in der Bewertung zur Vernachlässigung
räumlicher und struktureller Informationen, was die Leistung bei Aufgaben mit komplexer
Geometrie oder Topologie beeinträchtigt. Diese Arbeit begegnet diesen Einschränkungen
durch die Einführung neuer Methoden, die die probabilistische Bewertung sowohl in der
Aufmerksamkeits- als auch in der Ausgabeschicht verfeinern, mit dem Ziel, die Leistung
und Skalierbarkeit von Modellen des maschinellen Lernens in Aufgaben der Bild- und
Sprachverarbeitung zu verbessern.

Im ersten Teil wird der Aufmerksamkeitsmechanismus neu gedacht. Im Zentrum steht
MultiMax, eine neuartige Alternative zu Softmax, die ein verbessertes Gleichgewicht
zwischen Sparsität und Multimodalität in der Ausgabeverteilung erreicht und es dem
Aufmerksamkeitsmechanismus ermöglicht, gleichzeitig auf mehrere relevante Kontexte
zu fokussieren, während er gegenüber irrelevanten Einträgen robust bleibt. Im Bereich
der Bildverarbeitung führt Sp-ViT lernbare zweidimensionale räumliche Prioren in Vi-
sion Transformers ein, wodurch das Modell räumliche Beziehungen besser erfassen kann
und die Leistung bei Bildklassifizierungsaufgaben verbessert wird. Für strukturierte
Daten schlägt die Arbeit den Hypergraph Transformer zur Erkennung skelettbasierter
Aktionen vor, dessen Kernkomponenten eine Hypergraphen-Aufmerksamkeit sowie eine
Positionskodierung basierend auf Graph-Distanzen sind. Darüber hinaus wird die Position-
skodierung durch eine topologische Kodierung erweitert, welche umfassendere strukturelle
Informationen über topologische Deskriptoren jenseits der klassischen Graphdarstellung
integriert.

Der zweite Teil konzentriert sich auf die probabilistische Bewertung der Ausgaben, um
die Zuverlässigkeit von Modellen sowohl im diskriminativen als auch im generativen Bereich
zu verbessern. Während des Trainings reguliert MaxSup die Ausgabe von Klassifikatoren,
indem es übermäßiges Vertrauen in fehlerhafte Vorhersagen und den Zusammenbruch
der Repräsentation durch Label Smoothing reduziert. Dies führt zu zuverlässigeren
Vorhersagen und ausdrucksstärkeren Merkmalsrepräsentationen. Beim Inferenzprozess
modulieren Sampling-basierte Dekodierungsstrategien die Ausgabeverteilungen, um die
Generierung offener Texte durch große Sprachmodelle (LLMs) zu verbessern – mit einem
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ausgewogenen Verhältnis von Vielfalt und Kohärenz. Zusammen bilden MaxSup und LLM
Sampling einen einheitlichen Rahmen für die probabilistische Bewertung von Ausgaben, der
Zuverlässigkeit und Qualität in Klassifikations- und Generierungsaufgaben gleichermaßen
gewährleistet.
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Declaration on the Use of Language
Models

During the preparation of this dissertation, the language model ChatGPT (developed by
OpenAI) was used exclusively to assist with language polishing and improving readability.
All scientific content, including the development of ideas, methods, results, and conclusions,
was independently created and verified by the author. The tool was employed solely for
stylistic and linguistic enhancement and did not influence the scientific substance of the
work.
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Chapter I.

Introduction

Deep learning [133] has revolutionized both computer vision [63, 126, 96, 24] and natural
language processing [2, 224, 57]. Central to many of these advances are neural probabilistic
scoring techniques, which compute normalized relevance or predictive scores based on
hidden features of a neural network — often implemented via the Softmax function —
to represent the importance of input elements or the likelihood of output classes. These
mechanisms govern both attention layers [224] —where normalized scores determine
contextual relevance—and output layers—where predictive distributions guide decisions
and generation. However, these distributional approaches exhibit inherent limitations,
particularly in adapting to structured data and aligning with real-world risk profiles.

While Softmax-based attention has provided a practical and widely adopted foundation,
its limitations are increasingly apparent. As a smooth approximation to Argmax function,
Softmax often struggles to balance sparsity and multi-modality in its generated scores
[35, 174]. Moreover, attention mechanism naturally disrupts valuable spatial or structural
information [201] due to its permutation equivalent formulation. In computer vision,
for instance, Vision Transformers (ViTs) [63, 221] typically rely on hand-crafted one-
dimensional positional encodings [201, 50], which constrain their ability to model the rich
two-dimensional spatial relationships essential for understanding geometric structures.
Similarly, in structured data tasks such as skeleton-based action recognition [249, 176],
standard attention mechanisms and graph convolutional networks (GCNs) face challenges
in capturing higher-order joint interactions and preserving the inherent topology of skeletal
representations.

To address these challenges in attention mechanisms, this thesis presents several novel
approaches. The Sp-ViT model [282] introduces learnable 2D spatial priors for Vision
Transformers, enabling the model to capture richer geometric relationships and improve
performance in vision tasks that require precise spatial understanding. Meanwhile, the
MultiMax method [279] reimagines attention learning by extending the pareto frontier of
the trade-off between sparsity and multi-modality, overcoming the limitations of traditional
Softmax-based attention mechanisms. Additionally, the Hypergraph Transformer [278]
and BlockGCN [283] tackle the challenge of skeleton-based action recognition by model-
ing higher-order inter-joint relationships and offering topology-aware graph convolution
methods, respectively. These contributions address key limitations in structured data,
ensuring better preservation of spatial and topological information in complex tasks like
action recognition.

Despite advancements in attention mechanisms, optimizing output probabilistic scoring
remains a challenge. For classifier outputs, regularization [216, 129, 287] is necessary to
prevent overconfidence and improve the reliability of predictions. While label smoothing
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Chapter I. Introduction

has been commonly adopted for this purpose via soft targets, it is shown to cause
representation collapse [161], reduced transfer performance [127], and over-confidence in
the erroneous prediction [284]. In generative tasks, such as open-ended text generation [70,
156], the situation is further complicated—directly sampling from the Softmax distribution
may yield low-quality outputs, while greedy decoding and especially beam search often
result in repetitive or overly predictable outputs [70, 108]. Striking the right balance
between diversity and quality in these generative tasks is crucial; an improper sampling
strategy can lead to incoherent or insufficiently varied text. These challenges underscore
the need for more refined techniques to regulate output distributions, ensuring that model
outputs are accurate and reliable, as well as diverse for generative models.

To address these challenges in output probabilistic scoring, this thesis introduces
two novel approaches. MaxSup [281] is a new regularization technique that mitigates
overconfidence in erroneous prediction and representation collapse in label smoothing. By
penalizing the top-1 logit instead of the ground-truth logit, MaxSup uniformly applies
regularization to both correct and incorrect predictions, leading to improved calibration
and enhanced feature robustness. The second contribution [280] offers a systematic
framework for selecting optimal sampling methods and parameters in large language
models. By considering the trade-off between diversity and risk at each decoding step,
this work facilitates adaptive decoding strategies to improve the quality and diversity
of the generated text. Together, these contributions provide robust solutions for output
probabilistic scoring, ensuring that both classifier outputs and generative model predictions
are more reliable and aligned with real-world expectations.

This thesis is organized into two parts, each addressing key limitations in neural
probabilistic scoring. Part One focuses on enhancing attention mechanisms by improving
their expressiveness and structural alignment across different data modalities. It begins
with Chapter III, which introduces MultiMax, a novel attention formulation that balances
sparsity and multi-modality more effectively than Softmax. Chapter IV presents Sp-
ViT, a Vision Transformer architecture augmented with learnable 2D spatial priors for
improved geometric modeling. Chapters V and VI further explore structural modeling
in skeleton-based action recognition: Hypergraph Transformer introduces higher-order
attention over joints and structural encoding based on graph distances, while BlockGCN
extends structural encoding beyond connectivity by leveraging topological descriptors
that capture higher-order skeletal structures. Part Two shifts focus to output probabilistic
scoring, addressing limitations in classification reliability and generative diversity. Chapter
VII proposes MaxSup, a regularization method that mitigates over-confidence in erroneous
predictions by eliminating the error amplification term in label smoothing, and is also
shown to alleviate representation collapse. Chapter VIII presents a systematic framework
for evaluating decoding methods and recommending their associated hyperparameters for
large language models, balancing diversity and risk through adaptive sampling strategies.

1. Contribution Overview

In this thesis, we propose several contributions aimed at advancing probabilistic scoring
techniques in both the attention and output layers across a variety of data modalities. An
overview of each chapter’s key contributions is provided in Table I.1, while the following
sections present these contributions in greater detail.
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1. Contribution Overview

Table I.1.: Thesis structure and key contributions under the unified probabilistic scoring
framework.

Probabilistic Scoring in Neural Networks

Part One: Enhancing Attention Scoring Part Two: Improving Output Scoring

Chapter III: MultiMax [279]
Balances sparsity and multi-modality in at-
tention scores beyond Softmax limitations
for image classification and language mod-
eling.

Chapter VII: MaxSup [281]
Regularizes top-1 logits to mitigate over-
confidence and representation collapse in
label smoothing for image classification.

Chapter IV: Sp-ViT [282]
Enhances Vision Transformer with learn-
able 2D spatial priors for richer geometric
modeling, while retaining the global recep-
tive field.

Chapter VIII: Decoding Framework [280]
Systematically evaluates the sampling
strategies of Large Language Models and
recommends their hyperparameters to bal-
ance diversity and risk for open-ended text
generation.

Chapters V & VI: Hypergraph Transformer
[278] & BlockGCN [283]
[278] models higher-order joint relationships
with hypergraph attention and incorporates
structural encoding based on graph dis-
tances for skeleton-based action recognition.
[283] extends the structural encoding with
topological analysis beyond connectivity.

1.1. Improving the Trade-Off between Sparsity and Multi-Modality in
Attention

Background: The Softmax function is a fundamental component in modern machine
learning, particularly within attention mechanisms [224], where it transforms input vectors
into probabilistic scores. As a differentiable approximation of the Argmax operation, the
entropy of the Softmax distribution is controlled by a scale factor, called temperature.
We reveal that the expressivity of Softmax is severely limited by the trade-off between the
sharpness and flatness of Softmax scores. For attention layers, a small temperature will
cause relevant positions except the peak to be overlooked, whereas a large temperature
will cause the distraction of attention on irrelevant keys. Sparse Softmax alternatives like
Sparsemax [174] have been proposed to promote sparsity by assigning zero weights to less
relevant inputs. However, these approaches are shown to further sacrifice the model’s
capacity to capture multiple relevant contexts simultaneously [35].

Contributions: To address this fundamental trade-off, we propose MultiMax [279] in
Chapter III, which adopts a piecewise differentiable function that adaptively modulates
attention distributions based on the input value range. Its piecewise differentiable nature
ensures stable gradient-based optimization, facilitating seamless integration into existing
models. MultiMax proves to extend the pareto frontier of the balance between sparsity
and multi-modality compared to traditional SoftMax and its variants, leading to improved
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Chapter I. Introduction

expressivity. Furthermore, it serves as a drop-in replacement for SoftMax, requiring no
additional loss functions or significant architectural changes. Equipped with MultiMax,
attention layers are shown to suppress irrelevant entries effectively while maintaining
the ability to attend to multiple significant inputs concurrently. Empirical evaluations
demonstrate that MultiMax enhances performance across various domains, including
image classification, language modeling, and machine translation.

As the first author of [279], Yuxuan Zhou proposed the idea, derived all the proofs,
implemented the code, conducted all the experiments, and served as the main writer of
the paper. This paper is published at ICML 2024 and the code can be found at Github
Repository.

1.2. Incorporating Geometric Prior into Attention for Image Modeling
Background: Vision Transformers (ViTs) [147, 63, 221] have recently achieved remarkable
success in image classification tasks and established state-of-the-art results on the ImageNet
benchmark. Compared to Convolutional Neural Networks (CNNs) [133, 96], they enjoy
the merit of larger model capacity thanks to the global receptive field at each layer,
but also suffer from slower convergence and potential overfitting, especially in low-data
regimes, due to the lack of inherent spatial inductive biases. This deficiency arises because
standard ViTs treat image patches as sequences, disregarding the two-dimensional spatial
relationships crucial for understanding visual content. Positional embeddings are directly
inherited from language transformers [224, 201, 98], which are in one-dimensional form
and not tailored for capturing the complex structural patterns in images.

Contributions: To address these challenges, we introduce SP-ViT [282] in Chapter IV,
with Spatial Prior-enhanced Self-Attention (SP-SA) as the core component, a novel mech-
anism that incorporates learnable 2D Spatial Priors (SPs) into the attention computation.
Unlike fixed windows in CNNs, these spatial priors are learned during training, allowing
the model to focus on relevant spatial relationships automatically, without imposing a
preference for any hard-coded region in advance. This approach enhances the model’s
ability to capture local and global spatial dependencies, leading to improved performance
in image classification tasks. Our proposed SPs are beneficial for general vision tasks. SPs
are are compatible with various input sizes, as they are derived from relative coordinates
between each pair of patches instead of their absolute positions.

As the first author of [282], Yuxuan Zhou proposed the idea, implemented the code except
for the visualization using Transformer Explainability, conducted all the experiments, and
served as the main writer of the paper. This paper is published at BMVC 2022 and the
code can be found at Github Repository.

1.3. Incorporating Structural Prior into Attention for Skeleton-Based
Action Recognition

Background: Skeleton-based action recognition [249, 208, 176] requires modeling the
human body’s structural relationships to understand complex movements. Recent methods
often treat joints and their natural connections as nodes and edges of a graph, and
employ a GCN [125] on such a predefined graph to learn joint interactions. Since
then, GCNs have become the de facto standard of choice for skeleton-based action
recognition. In GCNs, the adjacency matrix defining joint connections is fixed after
training, which can lead to suboptimal representations, as the learned adjacency matrix
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1. Contribution Overview

may not accurately reflect the unique joint co-occurrences in different actions. Therefore,
State-of-the-art GCNs [42, 38] heavily rely on attention mechanisms to relax the restriction
of the fixed topology. Nevertheless, the performance gains are accompanied by increased
complexity and computational overhead. Recent studies [176, 207] have attempted to
adopt Transformers for this task, but their performance still lags far behind that of
GCNs. We reveal that the permutation equivalent attention operation is agnostic to the
bone connectivity between human body joints, and simple positional embeddings are
incapable of capturing the complex structural information of skeleton data. Furthermore,
both GCNs and Graph Transformers have a common limitation of assuming pairwise
joint relationship, which overlooks the higher-order dependencies, which are beneficial for
complex action understanding.

Contributions: To address these limitations, we propose the Hypergraph Transformer
[278] in Chapter V, which is built on Hypergraph Self-Attention (HyperSA), a novel self-
attention mechanism that models higher-order kinematic dependencies by incorporating
hyperedges connecting multiple joints. This approach captures intricate joint interactions
beyond pairwise connections. Additionally, the model incorporates a relative positional
encoding based on graph distances to retain connectivity information during training,
allowing the model to adaptively incorporate the unique structural information of skeletal
graph. The resulting Hyperformer model outperforms existing methods on benchmarks like
NTU RGB+D and Northwestern-UCLA datasets, demonstrating superior accuracy and
efficiency in action recognition tasks. This advancement provides a more comprehensive
understanding of human actions by capturing complex joint interactions and preserving
skeletal connectivity.

As the first author of [278], Yuxuan Zhou proposed the core idea, implemented the
codebase, conducted all experiments, and served as the primary author of the manuscript.
The paper has received approximately 100 citations to date and has been followed up
by a diverse range of works across multiple domains [34, 184, 160]. The accompanying
implementation is available at the GitHub repository, which has also garnered around 100
stars.

In addition to the graph distance encoding, we further propose a novel topological
encoding method in Chapter VI, which integrates topological descriptors [68, 271] into
the latent representation. This design enables the model to capture higher-order skeletal
topology beyond connectivity, providing a more holistic understanding of self-organizing
dynamics. Equipped with our proposed topological encoding, the GCN is shown to
eliminate the need for additional attention mechanisms and hypergraph modeling, while
still capturing complex skeletal relationships. Moreover, we introduce BlockGC, a novel
Graph Convolution layers with block-diagonal weight matrix. Our complete model,
termed BlockGCN [283], outperforms existing approaches across all categories, achieving
state-of-the-art results with significantly fewer parameters and lower computational cost.

As the first author of [283], Yuxuan Zhou proposed the central idea, implemented the
majority of the codebase (excluding the topological encoding components), conducted all
experiments apart from those related to topological encoding, and served as the lead writer
of the manuscript. The paper is published at CVPR 2024 and has received approximately
70 citations to date and has inspired follow-up research across diverse domains [148,
143]. The implementation is publicly available at the GitHub repository, which has also
attracted around 100 stars.
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1.4. Overcoming the Error-Enhancement Defect in Label Smoothing for
Image Classifiers

Background: Despite advancements in attention mechanisms, optimizing output proba-
bilistic scoring remains a challenge. For classifier outputs, regularization [216, 129, 287]
is necessary to prevent overconfidence and improve the reliability of predictions. Label
Smoothing (LS), a widely adopted technique, aims to address this by assigning soft targets
to ground-truth labels, thereby preventing the model from becoming overly confident.
However, recent findings challenge this conventional wisdom. LS has been shown to cause
a collapse in feature representation [161], degrade transfer learning performance [127],
and, paradoxically, reinforce incorrect predictions with high confidence [284].

Contributions: To address these issues, we propose MaxSup [281] in Chapter VII,
a novel regularization strategy that penalizes the top-1 predicted logit instead of the
ground-truth logit, regardless of correctness. This key design eliminates the reliance on
label knowledge during regularization and applies consistent penalty to both correct and
incorrect predictions. A central contribution of this work is the discovery that the conven-
tional LS formulation introduces an “error-enhancing” term, which inadvertently penalizes
the ground-truth logit even when the model’s prediction is incorrect. MaxSup avoids this
issue entirely by shifting the regularization focus to the model’s own top-1 prediction,
thereby preserving more discriminative feature representations and significantly improving
prediction calibration. Empirical evaluations across diverse benchmarks demonstrate that
MaxSup not only outperforms LS in classification performance, but also enhances feature
diversity and transferability.

As the first author of [281], Yuxuan Zhou proposed the core idea, derived all theoretical
results except for the gradient analysis component, and implemented the majority of the
codebase—excluding parts related to online label smoothing [263] and feature visualization
[161]. He conducted all experiments except for the convolutional neural network–based
classification comparisons and feature representation analyses, and served as the primary
author of the manuscript. The paper was accepted as an Oral presentation at NeurIPS
2025. The accompanying code is available at the GitHub repository.

1.5. Balancing Diversity and Risk in Sampling-Based Decoding for
Large Language Models

Background: In generative tasks, such as open-ended text generation [70, 156], additional
challenges arise. Sampling directly from the Softmax distribution can produce incoherent
outputs, while deterministic decoding strategies like greedy decoding or beam search often
lead to repetitive or overly conservative results [108]. Achieving the right balance between
diversity and coherence in generated text requires more refined sampling strategies that
account for both model confidence and the specific risk profile of the task.

Contributions: This work introduces a systematic framework [280] in Chapter VIII for
the comprehensive comparison of existing sampling methods for large language models
[108, 285, 104, 14], and provides practical user guidelines for parameter selection. To
this end, parameter selection is guided by the expected trade-off between diversity and
coherence in generated text, as estimated using our proposed context-preserving prefix tree.
Since each decoding method requires a specific parameter setting to attain a desired level
of coherence, we compare methods at equivalent points along their respective trade-off
curves. The evaluation results are no longer independent of parameter tuning, thus
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2. Publications

enabling a robust and fair comparison. Furthermore, the provided guidance on parameter
selection helps users balance exploration and exploitation during inference, resulting in
responses that are both diverse and contextually appropriate.

As the first author of [280], Yuxuan Zhou proposed the core idea, implemented the
complete codebase, conducted all experiments, and served as the primary author of the
manuscript. The paper was accepted to the ACL 2025 Main Proceedings and has inspired
follow-up research [7], as well as contributed to the development of a new sampling-based
decoding approach [164]. The accompanying implementation is publicly available at the
GitHub repository.

2. Publications
The following first-authored papers contribute to this thesis:

• [278] Zhou, Y., Cheng, Z.-Q., Li, C., Fang, Y., Geng, Y., Xie, X., & Keuper, M.
(2022). Hypergraph Transformer for Skeleton-Based Action Recognition. arXiv
preprint arXiv:2211.09590.

• [279] Zhou, Y., Fritz, M., & Keuper, M. (2024). MultiMax: Sparse and Multi-Modal
Attention Learning. 41st International Conference on Machine Learning (ICML
2024).

• [280] Zhou, Y., Keuper, M., & Fritz, M. (2024). Balancing Diversity and Risk in
LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text
Generation. Proceedings of the Association for Computational Linguistics (ACL
2025).

• [281] Zhou, Y., Li, H., Cheng, Z.-Q., Yan, X., Fritz, M., & Keuper, M. (2025).
MaxSup: Overcoming Representation Collapse in Label Smoothing. 39th Annual
Conference on Neural Information Processing Systems (NeurIPS 2025 Oral).

• [282] Zhou, Y., Xiang, W., Li, C., Wang, B., Wei, X., Zhang, L., Keuper, M. and
Hua, X. (2022). SP-ViT: Learning 2D Spatial Priors for Vision Transformers. 33rd
British Machine Vision Conference (BMVC 2022).

• [283] Zhou, Y., Yan, X., Cheng, Z.-Q., Yan, Y., Dai, Q., & Hua, X.-S. (2024).
BlockGCN: Redefine Topology Awareness for Skeleton-Based Action Recognition.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR 2024).
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Chapter II.

Background

Before formally introducing our work, we review the key technical foundations relevant to
this thesis. A central theme of this work is the concept of neural probabilistic scoring—the
mechanism by which neural networks assign likelihoods or confidence over input relevance
or output predictions. This concept plays a critical role in a wide range of deep learning
systems. In particular, the probabilistic scoring performed in attention mechanisms and
output layers has proven to be both a cornerstone of recent successes—such as image and
action recognition [63, 221, 8], as well as large language models [223, 2, 118]. The attention
mechanism computes context-dependent relevance between tokens, patches, or nodes via
a normalized score distribution, while the output layer uses a softmax distribution to
model predictive uncertainty over discrete outputs. These components are not only central
to the success of large language models and vision transformers, but also represent key
bottlenecks in expressiveness, structural modeling, and output reliability.

Transformers serve as a natural foundation for this investigation due to their centrality in
modern deep learning and their remarkable generality: they provide a unified architecture
that can be seamlessly applied across diverse data modalities, including sequences, grids,
and graphs. This modality-agnostic design enables attention-based models to adapt to
natural language [156, 151], images [54], and structured motion data such as human
skeletons[144], using a shared set of principles for learning relationships and making
predictions.

This thesis investigates and proposes improvements to both of these mechanisms.
Specifically, we study the limitations of the softmax attention formulation and its impact
on contextual modeling in both discriminative [96] and generative models [223]. We
also address challenges in the output layer—ranging from label smoothing [216] in image
classification to sampling-based decoding [108, 70, 14, 154, 104] in open-ended text
generation [156, 70]—where current probabilistic approaches often struggle to balance
efficacy and reliability. Applications of our work span language, image, and skeleton
data modalities, where the trade-off between sparsity and multi-modality in the softmax
distribution, as well as lack of structural awareness or sampling robustness motivate the
need for more expressive probabilistic scoring.

We begin by reviewing the Transformer architecture and its applications across different
data modalities, followed by a discussion on label smoothing and its impact on output
reliability, as well as the limitations of sampling-based decoding strategies in language
models.
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Figure II.1.: Transformer architecture with repeated encoder and decoder layers.

1. Transformer Fundamentals
The Transformer model was first introduced by Vaswani et al. [224] for natural language
processing tasks such as machine translation [18], and has since revolutionized deep
learning, with remarkable achievements in a wider range of areas such as computer
vision and graph-based modeling. A key factor behind its widespread success is its
modality-agnostic architecture: the same core building blocks—attention mechanisms and
feed-forward layers—can be applied with minimal modification to sequential, spatial, and
structured data alike, offering a unified framework across diverse learning domains.

Compared to CNNs, which heavily exploit local correlations between neighboring
pixels through inductive biases, transformers are designed with minimal hard-coded prior
knowledge. While they typically converge more slowly, transformers can achieve higher
representational capacity when trained on sufficiently large datasets. The scalability of
transformer underpins many of the recent advances in deep learning [126, 2, 179].

Attention The core component of the transformer model is the scaled dot-product
attention:

Attention(Q, K, V ) = softmax
(

QK⊤
√

dk

)
V, (II.1)

where Q, K, and V are the query, key, and value matrices respectively, and dk is the
key dimension.
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Multi-Head Attention To enhance the model’s ability to capture information from
different representation subspaces, the Transformer employs multi-head attention, which
runs several self-attention mechanisms (or “heads”) in parallel:

MultiHead(Q, K, V ) = Concat(head1, . . . , headh)W O, (II.2)

where each head is computed as:

headi = Attention(QW Q
i , KW K

i , V W V
i ), (II.3)

with learnable projection matrices W Q
i , W K

i , W V
i , and W O.

Masked Multi-Head Attention In autoregressive generation tasks such as language
modeling, a variant called masked multi-head attention is used to prevent the model from
attending to future tokens. This is implemented via a masking matrix M :

MaskedAttention(Q, K, V ) = softmax
(

QK⊤
√

dk

+ M

)
V, (II.4)

where M assigns −∞ to positions corresponding to future tokens, ensuring causal decoding.

Positional Encoding Since the attention mechanism is inherently permutation equivalent,
the Transformer must inject positional information to preserve sequence order. This is
done using positional encodings added to the input embeddings:

PE(pos,2i) = sin
(

pos

100002i/dmodel

)
, (II.5)

PE(pos,2i+1) = cos
(

pos

100002i/dmodel

)
, (II.6)

where pos is the token position and i is the dimension index. These sinusoidal encodings
allow generalization to longer sequences. Alternatively, learnable positional embeddings
are often used in practice. Follow-up works also found that relative positional encodings
[201, 147] outperform absolute positional encodings, because of their larger capacity to
capture spatial relations.

As shown in Figure II.1, each Transformer layer consists of this multi-head attention
mechanism followed by a position-wise feed-forward network, with both sublayers wrapped
in residual connections and layer normalization [11]. The overall Transformer model is
constructed by stacking multiple such layers, enabling the network to capture increasingly
abstract and hierarchical representations across the input sequence.

1.1. Transformer Architectures
Encoder-Only Models These architectures encode the entire input into contextual
representations in parallel, making them suitable for classification and representation
learning tasks (e.g., BERT [56], ViT[63], and MAE[95]). They are commonly used in
vision and skeleton-based action recognition.

Decoder-Only Models These models generate output tokens autoregressively by attend-
ing only to previously generated tokens. They are widely used in language modeling and
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text generation tasks (e.g., GPT series). Masked attention ensures that predictions are
conditioned solely on prior context.

Encoder-Decoder Models This is the original Transformer architecture, comprising an
encoder that processes the input and a decoder that generates output while attending
to the encoder’s representation. Although encoder-decoder models such as T5 [182]
and BART [135] continue to show strong performance in tasks like summarization and
translation, and have been widely studied, they have become less dominant in large-
scale pretrained systems, where decoder-only architectures [2, 223] are favored for their
simplicity and scalability in autoregressive generation.

1.2. Applications
Language Modeling Decoder-only models generate text by predicting the next token
given previous context, as shown in Figure II.2. These are the basis for large language
models (LLMs).

The Ġcat Ġwalks

Transformer Decoder Block

h1 h2 h3

Ġcat Ġwalks Ġacross

Figure II.2.: Decoder-only Transformer for autoregressive language modeling with subword
tokenization. The prefix "The cat walks" is given as input and they are first reorganized
as tokens, e.g., the whitespace after "The" and the word "cat" are regarded as a single
token "Ġcat". The model predicts the next token at each position.

Image Classification In Vision Transformers (ViTs), images are transformed into a
format compatible with transformers by dividing them into smaller patches, as shown in
Figure II.3. The procedure is as follows:

• Dividing the Image into Patches: To align with the input format of transformers,
the image is divided into smaller, non-overlapping patches, typically of size 16x16
pixels. Each patch is treated as a token in the sequence, analogous to how words or
subwords are tokenized in natural language processing.

• Flattening the Patches: After dividing the image into patches, each patch is flattened
into a 1D vector. This vector serves as the input token for the transformer model,
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1. Transformer Fundamentals

Figure II.3.: Illustration of Vision Transformer (Figure from [63]).

creating a sequence of tokens that represent the entire image. These tokens are then
passed through the model in a similar manner to tokenized words in text.

While this tokenization procedure effectively transforms the image into a sequence
that the transformer model can process, the spatial relationship between the patches is
lost during the flattening process. Although positional encodings are added to attempt
to capture spatial information, this method does not fully preserve the complex spatial
relationships between patches, which may limit the model’s ability to understand fine-
grained spatial patterns.

Skeleton-Based Action Recognition This involves classifying human actions based on
sequences of joint positions, representing the human skeleton. As shown in Figure II.4, the
input is represented as a spatio-temporal graph G = (V, E), where nodes represent joints
and edges represent spatial or temporal links. Given a sequence X = {x1, . . . , xT} with
xt ∈ RJ×d (for J joints and feature dimension d), the spatial and temporal relationships
are often modeled in an alternating fashion, as the temporal dimension often contains
redundancy and entails heavy computational costs. Despite efforts to adapt Transformers
for skeleton-based action recognition [176, 207], these models still fall short of the state-of-
the-art performance achieved by GCNs or hybrid approaches. A major limitation is the
scarcity of labeled data in this domain, which constrains the scalability and generalization
of Transformer models. In this context, effectively incorporating the complex skeletal
topology into Transformer architectures remains a critical challenge.
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Legend:
H = Head
N = Neck
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LE/RE = Left/Right Elbow
LW/RW = Left/Right Wrist
LH/RH = Left/Right Hip
LK/RK = Left/Right Knee
LF/RF = Left/Right Foot

Figure II.4.: Illustration of Human skeleton data, where each joint location is recorded by
a 3D coordinate.

2. Sampling-Based Decoding Methods
Sampling-based decoding techniques [108, 70] offer alternatives to traditional deterministic
decoding methods like greedy search and beam search [75]. These techniques allow for
more diversity and creativity in generating text by introducing randomness into the token
selection process. In contrast to greedy decoding, which picks the most probable token at
each step, and beam search, which keeps track of multiple hypotheses and evaluates a
fixed number of the most probable sequences, sampling methods explore a broader set
of possible continuations. This results in less repetitive and potentially more interesting
output. However, sampling introduces its own set of challenges, such as balancing diversity
and coherence in the generated text.
Limitations of Greedy and Beam Search Greedy decoding selects the most probable
token at each time step, resulting in deterministic outputs. Beam search, on the other
hand, maintains multiple hypotheses to approximate the most probable overall sequence.
However, despite its broader search space, beam search often converges on similar high-
probability paths and tends to produce degenerate text — including repetitive loops and
incoherent outputs [234, 155].
Truncation Sampling Techniques Truncation sampling methods are designed to focus
on a limited set of candidate tokens by cutting off those with lower probabilities. By
truncating the distribution, the model avoids selecting tokens that are highly unlikely,
thereby improving both the efficiency and quality of the generated text. Truncation
restricts the number of choices at each step, balancing the need for diversity in the
generated output with the need for coherence and relevance.

Most of the truncation sampling methods fall under a general truncation scheme:

PTrunc(xt | x<t) =


Pθ(x|x<t)

Zx<t
if x ∈ Ax<t ,

0 otherwise,
(II.7)
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2. Sampling-Based Decoding Methods

where Ax<t is the allowed set of tokens at time step t, defined according to a truncation
strategy (e.g., Top-k, Top-p). Pθ(x | x<t) is the base model probability, and Zx<t =∑

x∈Ax<t
Pθ(x | x<t) is the normalizing constant to ensure the probabilities sum to 1 over

the allowable set.
Two common strategies that instantiate this general framework are Top-k and Top-p

sampling:

Top-k Sampling In Top-k sampling, the allowable set Ax<t consists of the k most
probable tokens under the model’s distribution at each time step:

ATop-k
x<t = Top-k(Pθ(x | x<t)). (II.8)

Top-p (Nucleus) Sampling In Top-p sampling, the allowable set includes the smallest
number of tokens whose cumulative probability exceeds a threshold p:

ATop-p
x<t

=

x ∈ V

∣∣∣∣∣∣
∑

x′∈ranked-prefix(x)
Pθ(x′ | x<t) ≤ p

 , (II.9)

where ranked-prefix(x) denotes the set of tokens with probability greater than or equal
to that of x, i.e., all tokens ranked higher than or equal to x in descending order of
Pθ(· | x<t).

More advanced adaptive sampling methods, such as typical sampling [154] and Mirostat
[14], aim to improve the trade-off between coherence and diversity by dynamically adjusting
the allowed set. Typical sampling filters tokens based on how close their information content
(negative log-probability) is to the expected entropy of the distribution, encouraging
outputs that are statistically "typical" rather than overly generic or rare. Mirostat, on
the other hand, maintains a target level of surprise (measured in bits) by continuously
adjusting internal parameters to regulate the entropy of generated text. While these
methods are shown to produce more coherent and contextually appropriate outputs, it
can be difficult in practice to choose the most suitable method and, more importantly, to
determine the appropriate hyperparameters (e.g., entropy targets or typicality thresholds)
that align with specific generation goals. As a result, these challenges have hindered the
widespread adoption of advanced sampling techniques in practical applications.
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Part One: Probabilistic Scoring in
Attention
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Attention mechanisms have become fundamental components in modern machine
learning architectures, enabling models to selectively focus on relevant parts of the
input and thereby capture complex dependencies efficiently. Their success across diverse
domains—ranging from natural language processing to computer vision—hinges on their
ability to dynamically weight inputs based on context. However, the most widely used
form, Softmax attention, exhibits inherent limitations that constrain its effectiveness.

Softmax attention struggles with the trade-off between sparsity and multi-modality, often
failing to capture multiple relevant inputs simultaneously. As a smooth approximation
of argmax, it inherently promotes unimodal distributions, which tend to highlight a
single dominant input while suppressing others, even when multiple are semantically
important — a limitation particularly problematic in domains like vision and language
where attending to multiple contextual regions or tokens is necessary. Attempts to
adjust the temperature to control focus reveal a fundamental trade-off: lowering the
temperature sharpens the distribution, enhancing focus but suppressing secondary modes;
increasing it allows for more distributed attention but at the cost of amplifying noise
and reducing selectivity. Moreover, its permutation-invariant nature disregards crucial
spatial or structural relationships in data, limiting its effectiveness in domains like vision
and structured action recognition, where understanding relative position, continuity, and
hierarchical organization is essential for modeling complex patterns and behaviors.

To address these limitations, we examine alternative attention formulations that aim
to overcome the unimodal bias, improve robustness to noise, and incorporate structural
inductive biases better suited for tasks requiring multi-context awareness.
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Chapter III.

Improving the Trade-Off between
Sparsity and Multi-Modality in Attention

Attention mechanisms are central to modern deep learning in NLP and computer vision,
selectively weighting inputs to balance focus and flexibility. However, Softmax-based
attention faces a fundamental trade-off between sparsity—sharply attending to few in-
puts—and multi-modality—capturing multiple relevant signals—limiting expressivity and
robustness.

The content of this chapter corresponds to our established work [279], which introduces
MultiMax, a novel probabilistic scoring function that extends the Pareto frontier between
sparsity and multi-modality. MultiMax adaptively balances these competing objectives,
enabling attention to capture multiple important contexts without losing sharpness. It
serves as a drop-in Softmax replacement that improves expressivity and robustness,
constituting a key contribution of this thesis.

1. Introduction
The SoftMax has remained in wide use in modern machine learning methods and finds
its application in a variety of algorithms such as multi-class classification [133, 87, 17],
attention mechanisms [224, 225, 12, 82] and reinforcement learning [215, 188, 237]. It
can be regarded as a differentiable approximation of the Argmax operation and projects
the input onto the probability simplex, which allocates most of the probability mass to
large entries. From the perspective of optimization, the SoftMax function allows for a
reasonable trade-off between exploitation and exploration [236], i.e., important positions
are emphasized while every position has a chance of being explored. This trade-off can be
controlled by a scale factor, which is often referred to as temperature.

However, the expressivity of SoftMax is severely limited by the following dilemma: a
high temperature leads to over-smoothing and reduces the efficiency of the optimization,
whereas a small temperature collapses multi-modality and makes training unstable. In
attention layers for example, a small temperature will cause relevant positions except the
peak to be overlooked, whereas a large temperature will “waste" a non-negligible portion
of attention on irrelevant keys. Therefore, temperature is often set to one by default in
attention layer. As shown later, such a compromise also results in the recently observed
over-smoothing issue in both vision [85, 229] and language [206] transformers. Moreover,
transformer-based Large Language Models are shown to be prone to the interference of
irrelevant context [205, 117], which is also highly related to the portion of attention on
irrelevant tokens [235].
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(a) SoftMax output depends on the temperature,
which we show by the color coding from dark
blue (low temperature) to red (high tempera-
ture). Sparse SoftMax variants collapse multi-
modality, while MultiMax successfully produces
approximately sparse and multi-modal distribu-
tions.

(b) SoftMax and its sparse extensions
are limited by the trade-off between
sparsity and multi-modality, which is
improved by our MultiMax.

Figure III.1.: We evaluate SoftMax, SparseMax, EntMax, EvSoftMax and MultiMax (using
the parameters of a hidden layer MultiMax trained on ImageNet directly) functions on a
series of example input points v ∈ R3 and project the resulting distribution on a simplex
∆2. Informally, the interior of the simplex stands for trimodal distributions, the edges
constitute the set of bimodal distributions, and the vertices are unimodal distributions.
Notably, the above figures highlight the advantage of MultiMax’s multi-modality. EntMax,
Sparsemax and SoftMax with small temperature (blue colored line) yield a (quasi) uni-
modal distribution, which ignore the second largest entry. In contrary, SoftMax with
higher temperatures (green and orange colored line) fails to ignore the negative entry.

To overcome the issue, previous works have proposed sparse SoftMax alternatives, which
allow to completely ignore small entries below a threshold. These sparse SoftMax variants
have been studied in diverse contexts, e.g., generative modeling [35], output activations of
multi-class classifiers, and/or attention mechanisms [174, 152, 92].

However, such methods often suffer from poor gradient signal, which leads to instability
during training. Moreover, the number of non-sparse dimensions is often treated as
empirically selected hyperparameter.

In contrast to sparsity, multi-modality has been less discussed in the previous studies.
Since attention is not supposed to be exclusive in most cases, the vanilla SoftMax, as
an approximation of Argmax, does not easily comply with multi-modality. The sparse
alternatives [152, 174, 131] to SoftMax have even a larger tendency to not preserve the
multi-modality of distributions [115].

In this chapter, we propose MultiMax as an alternative to SoftMax. MultiMax allows
for learning when to emphasize sparsity and when to emphasize multi-modality, offering a
flexible trade-off between both. At the same time, it remains piecewise differentiable such
as to allow for stable gradient-based optimization.

Specifically, MultiMax extends the traditional SoftMax by a preceding parameterized
function that enables to learn distinct temperature values for particular input value ranges
separately. Used within a self-attention mechanism, this facilitates for example to learn
particularly low temperatures that induce sparsity for low input value ranges, i.e. unrelated
tokens can be ignored, while learning high temperatures for higher input value ranges,
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i.e. several related tokens can share the attention in a multi-modal way. The improved
multi-modality and sparsity brought by MultiMax is demonstrated in Fig. III.1. MultiMax
is able to serve as a drop-in replacement of SoftMax in any applications and adapt to an
appropriate form via training.

After a theoretic analysis, we show empirically that MultiMax can improve the attention
mechanism and is an effective classifier output activation as well. MultiMax consistently
improves over SoftMax baselines in a wide range of tasks, with an increase of 0.6%
classification accuracy on ImageNet, an improve of 0.7 in perplexity for language modeling
on WikiText-103, and a gain of 0.3 in BLEU score for English to German translation on
WISLT-2014.

The contributions of this chapter are as follows:

• We generate insights in the trade-off between sparsity and multi-modality in SoftMax.
• We propose MultiMax – an alternative to SoftMax with better and learnable tradeoffs

between both, multi-modality and sparsity.
• We show advantageous properties of MultiMax theoretically and demonstrate perfor-

mance improvements on diverse tasks ranging from image classification over language
modeling to machine translation.

2. Related Work
We organize the related work by first discussing related SoftMax alternatives afterwards
more broadly approaches that have aimed to improve attention mechanism as well as
prevent oversmoothing.
SoftMax alternatives. In previous work, huge efforts have been made to pursue sparsity.
Sparsemax [152] and its generalization EntMax-α [174] are sparse SoftMax variants
through thresholding the output probability. Although the hyperparameter α is supposed
to control the degree of sparsity, the functions lack full support for α > 1. Another variant,
in principle similar to EntMax-1.5, with control of the sparsity is Sparsehourglass [131].
As output activation of a classifier, these approaches require alternative losses to enable
gradient-based optimization. Yet, this can cause slow convergence and training instability
as well as an additional approximation error. Ev-SoftMax [35] additionally reveals that
these sparse SoftMax variants could harm multi-modality. It achieves sparsification by
zeroing out input entries smaller than average and provides a training-time modification
strategy to enable gradient-based training. This is indeed similar to the broadly adopted
top-k selection of SoftMax output, e.g., in attention layers of vision [230, 270] and
language [92] transformers. In contrast, our MultiMax achieves sparsity and improved
multi-modality at the same time without extra hyperparameters. It has also full support
and thus is a drop-in replacement of SoftMax in any context.
Anti-oversmoothing approaches. Over-smoothing refers to the issue that the represen-
tations of different tokens tend to become more similar as layer depth increases. This
problem is observed in both vision [229, 85] and language transformers [206]. Patch
Diversification [229] combines three regularization losses to explicitly encourage diversity
in patch representations. AttnScale [229] decomposes a self-attention block into low-pass
and high-pass components, and rescales the high-pass component of the self-attention
matrix. While these remedies have been proposed, the reason behind lacks in-depth
discussion. Notably, [206] has attempted an analysis by relating self-attention matrix to
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adjacent matrix of a graph. Their claim of post-normalization being the root cause has led
to further discussion, as they stick to post-normalization in the end and pre-normalization
empirically performs no better than post-normalization [100]. We find that the over-
smoothing problem is indeed is comparable to over-smoothing problem in GCNs [33, 167],
and strongly related to the inevitable amount of attention assigned to irrelevant tokens.
The identity of each token degrades rapidly due to the repetitive attention operations.
As shown in the studies of GCNs, sparsification [187, 94, 272] is a direct and effective
solution.
Attention mechanism A vast amount of efforts have been invested in proposing new
or improving the existing attention mechanisms [224, 225, 12, 82]. [124] successfully
incorporated richer structural distributions into attention networks via graph encodings.
[165] introduced a new framework for sparse and structured attention with a smoothed
max operator, which can be regarded as a generalization of softmax and sparsemax. [55]
considered variational attention networks as alternatives to soft and hard attention for
better learning latent variable alignment models. [153] suggested to adopt sparse attention
to selectively focus on relevant sentences in the document context for improved neural
machine translation. [262] explored the feasibility of specifying rule-based patterns to
sparsify encoder outputs for improved decoding efficiency. While these approaches mainly
focus on improving sparsity, our MultiMax improves both multi-modality and sparsity at
the same time. Moreover, MultiMax is a universal alternative to the SoftMax function,
which is not limited to the application in the attention mechanism.

3. Background, Metrics, and Analysis
In this section, we state the challenge of sparsity-multi-modality trade offs in reweighting
functions such as softmax. Based on metrics to measure these quantities, we provide a
theoretical analysis that shows the tension between those two goals in previous formula-
tions.

3.1. Background
SoftMax is the most widely adopted reweighting function in machine learning and is
formulated as follows:

Definition 3.1. Let ∆K−1 = {p ∈ RK
≥0|⊮T p = 1} be the K − 1 dimensional simplex.

SoftMax maps a vector x ∈ RK with K ∈ Z+ to a proper distribution in ∆K−1:

ϕSoftMax(x)i = etxi∑K
k=1 etxk

, (III.1)

where 1
t

controls the entropy of the generated distribution and is often referred to as
“temperature”. The exponential term makes the distribution concentrated on the largest
entries, which reflects the selective nature of for example the attention mechanism or
multi-class classification.

3.2. Sparsity and Multi-Modality Trade-off
Although sparsity seems to be easily acquired by decreasing the temperature, we find that
the gain of increased sparsity comes at a cost in practice. We exemplify such an issue by
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Table III.1.: Classification accuracy on ImageNet1K using Deit-small baseline with Global
Avarege Pooling (GAP) and classification token (CLS) respectively.

Model Head Temperature 1
t

0.1 0.5 1 2 10 trainable

Deit-small CLS 5.1 79.9 79.9 80.0 79.5 79.7
GAP 4.7 80.3 80.4 80.0 79.9 80.2

comparing the classification performance of a transformer on ImageNet1K with different
SoftMax temperatures in Table III.1. As shown in the table, tuning temperature is tedious
and brings no obvious advantage. Moreover, a small temperature typically provides poor
learning signal and can hamper training stability, as suggested by the low accuracy for
temperature 0.1. For a better understanding of the inefficacy of temperature tuning, we
follow-up with a brief theoretical study to show that the temperature tuning of SoftMax
function is indeed limited by an inherent trade-off between sparsity and multi-modality.

To enable a precise analysis on the trade-off between multi-modality and sparsity, we
need to define appropriate quantitative metrics for these two properties of reweighting
functions.

Quantifying Multi-Modality and Sparsity of Reweighting Functions

For multi-modality and sparsity, the probabilities close to peak and zero are with no doubt
the most relevant, respectively. And such relevance equivalently transfers to the largest
and smallest input entries, since the studied reweighting (activation) functions should be
monotonically non-decreasing [76, 77]. For simplification, we omit the trivial case when
two entries are equal, since they remain equal after any valid function.

To quantitatively compare the multi-modality of the distributions generated by different
reweighting functions ϕ w.r.t. a given input x, we propose the following metric M(x):

Definition 3.2. Without loss of generality, let xmax be the largest entry and xmax > xn > ϵ,
where ϵ could be any reasonable threshold for a entry to be considered relevant and N is
the counts of such entries. The Multi-Modality Metric is given by:

M(x) = 1− 1
N

N∑
ϵ<xn<xmax

(ϕ(x)max − ϕ(x)n), (III.2)

Intuitively, this metric captures the average difference between the reweighted relevant
entries ϕ(x)n ∀xn > ϵ and the maximum ϕ(x)max. The average distance would be close
to 0, if all output entries are about the same (maximum multi-modality). In order to
make it a large=better metric, we subtract it from 1.

Analogously, we build a Sparsity Metric for the reweighting functions upon the common
−L1

ϵ sparsity metric for vectors [113], which calculates the negative sum of entries smaller
than ϵ. Although sparse or non-sparse is a binary status, a smooth metric is desired to
additionally consider values close to zero (i.e. approximately sparse). Moreover, we would
like to take the non-linear nature of such sparsity into account, i.e., above a reasonably
small threshold, a large portion of the range from 0 to 1 is supposed to be non-sparse. In
this case, a non-linear scaling (especially an approximation of a step function) helps to
better reflect the actual degree of sparsity. Thus, we define the sparsity metric as follows:
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Definition 3.3.
S(x) = 1

L

L∑
xl<ϵ

exp (s− ϕ(x)l

s
− 1), (III.3)

where s ∈ [0, 1] can be any reference value for a non-linear scaling of the sparsity score
and L is the counts of entries smaller than ϵ. For example, the probability of the smallest
entry xmin after SoftMax (SoftMax

t=1
(x)min) can be chosen as a reasonable reference value.

Together with the exponential term, S(x) results in a smooth approximation of a step
function, with the output range normalized to [0, 1], where larger values indicate stronger
degrees of sparsity. Having defined the two metrics, we are able to prove there exists a
trade-off between them.

Proofing the Trade-off

Lemma 3.4. S(§) is monotonically decreasing w.r.t. ϕ(x)l. (See Appendix 2 for the proof.)

This can be easily proved by checking the partial derivative. Similar proof can be done
for the following:

Proposition 3.5. For a given input x, the following statements hold w.r.t. temperature t.

(i) Multi-modality of SoftMax is monotonically increasing.

(ii) Sparsity of SoftMax is monotonically decreasing for ϵ ≤ ∥x∥1
K

.

(See Appendix 2 for the proof.)

It is clear that we could increase either multi-modality or sparsity by simply varying
temperature, but at the cost of decreasing the other. As a remedy, we suggest a piece-
wise modulation scheme, which modulates small and large entries via two corresponding
temperatures independently.

4. MultiMax
Based on our insights in the trade-off between sparsity and multi-modality in SoftMax,
we propose MultiMax that reconciles those two objectives in a learnable formulation. We
start by defining MultiMax that introduces two temperature terms that control for sparsity
and multi-modality respectively. We analyze improved properties that are achieved by
this formulation and finally extend the concept to higher order polynomials and beyond
attention mechanisms.

The following sections will provide a theorectic analysis of MultiMax, starting with its
first-order form.

4.1. First-order MultiMax
Definition 4.1. Let b and d be two control parameters. We apply two corresponding
temperatures tb and td only to the entries smaller than b and larger than d, respectively.
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We construct a piece-wise linear function σ to modulate the SoftMax input x, which
defines the proposed MultiMax:

ϕMultiMax(x)i = exp (σ(xi))∑K
k=1 exp (σ(xk))

, where

σ(x) = x + (1− tb)Max(b− x, 0)︸ ︷︷ ︸
term(1)

+ (td − 1)Max(x− d, 0)︸ ︷︷ ︸
term(2)

,
(III.4)

We call the above function the first-order MultiMax function and we will generalize it to
a higher-order version towards the end of this section. For now, the first-order MultiMax
has an intuitive interpretation:

σ(x) =


tbx + (1− tb)b x < b

x b ≤ x ≤ d

tdx + (1− td)d x > d

, (III.5)

where the bias terms (1− tb)b and (1− td)d guarantees continuity of the modulator, e.g.,
lim

x→b−
σ(x) = lim

x→b+
σ(x) = b. To guarantee differentiability, subgradients can be defined for

the turning points, e.g., dσ(x)/dx = 1 at x = b, please refer to [19] for more details. For
tb > 1 and 0 < td < 1, we could prove that MultiMax achieve a better balance between
multi-modality and sparsity than SoftMax. Intuitively, a large tb pushes small entries
closer to zero, while a small td reduces the gap between large entries. Therefore, the
output distribution is modulated to exhibit higher sparsity as well as multi-modality.

To disclose the mechanism behind, we first study the impact of modulating only the
small entries on the output distribution. Then we show that additionally modulating the
large entries increases multi-modality further.

(a) Input point [-2, x]. (b) Input point [2, x].

Figure III.2.: Illustration of different reweighting functions in the two-dimensional case.
It can be seen clearly that MultiMax weigh the entries at small and large value ranges
in a different manner, thus it does not suffer from the trade-off between sparse and
multi-modal.
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Figure III.3.: The learned modulator functions σ (Eq. (III.6)) at each layer, comparing to
identity mapping of the SoftMax input x (dashed black line). All layers except for the
first two converge to a form that is consistent to our analysis, i.e., low temperature (steep
slope) for small entries and high temperature (flat slope) for large entries.

4.2. Improved Pareto Efficiency
Improving sparsity With the above defined metrics, we show that adding term (1) alone
(denoted by MultiMax-l), i.e., modulating smaller entries, already leads to a better Pareto
Optimality [22] regarding sparsity and multi-modality than SoftMax.

Proposition 4.2. The following properties hold for tb > 1.

(i) MultiMax-l generates sparser distribution than SoftMax with temperature 1.
(ii) MultiMax-l achieves better multi-modality than SoftMax with temperature 1.

(See Appendix 2 for the proof.)

From the above analysis, we could see that MultiMax-l has higher Pareto Efficiency
than SoftMax: MultiMax-l with tb > 1 has both better sparsity and multi-modality
than Softmax with temperature 1 (Proposition 3.5), and Softmax can not improve both
properties at the same time by changing temperature (Proposition 4.2).
Enhancing multi-modality further As shown in Proposition 4.3, including the modulation
of larger entries further enhances multi-modality while retaining better sparsity than
SoftMax.

Proposition 4.3. The following properties hold for td < 1 and tb > 1:

(i) MultiMax can achieve better sparsity than SoftMax with temperature 1.
(ii) MultiMax can achieve better multi-modality than MultiMax-l.

(See Appendix 2 for the proof.)

4.3. Generalization
Generalization to other activations

Piece-wise linear activation functions are widely adopted in modern machine learning
algorithms, e.g., ReLU [4], Leaky ReLU [150] and PReLU [97]. Although MultiMax
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focuses on a different purpose, it can seen from Eq. (III.4) that the modulator/rectifier
function σ of MultiMax is a generalization of these activation functions. For example, if
b = d = 0, td = 1 and tb = 0, then σ is reduced to ReLU. For the rest, it can be shown
easily in a similar way.

Generalization to higher-order polynomials

So far, it has been shown that higher Pareto Efficiency can be realized with a piece-wise
linear modulation function, which belongs to the family of first-order polynomials. To
obtain smoother transitions at turning points and larger capacity, second-order terms are
included in our final formulation of MultiMax:

σ(x) = x +
N∑

n=1
(1− tbn)Max(bn − x, 0)n︸ ︷︷ ︸

term(1)

+ (tdn − 1)Max(x− dn, 0)n︸ ︷︷ ︸
term(2)

, (III.6)

where n ranges from 1 to 2. We don’t include higher orders beyond the second, because it
proves to be sufficient in practice. We show in the ablation Section 5.3 that the extra
nonlinearities brought by the second-order terms benefit the learning of the modulation
scheme, in analogy to the previous study on activation functions [102, 45, 69].

As shown in Fig. III.1b, the output of SoftMax with varied temperatures forms a
trajectory and converges to sparsemax as temperature approaches 0. EntMax-α stays
close to the trajectory with α = 1.5, and is indeed equivalent to softmax or SparseMax
when α = 1 or 2. MultiMax achieves, in the example, an otherwise non-reachable trade-off,
with values close to the simplex that vary in two out of three possible modes. For a less
complex illustration, we also provide the comparison with other reweighting functions
with 2D inputs in Fig. III.2, in which case SoftMax is equivalent to Sigmoid. While other
approaches handle small and large entries equally, MultiMax provides an input-adaptive
reweigthing scheme.

We show in Fig. III.3 the learned modulator function of deit-small on ImageNet and
compare it to the original input x (dashed black line) when used in attention layers. The
learned functions at most layers (except the first two) conforms to our analysis: steeper
slope for small entries (below the dashed black line on the left side means temperature
smaller than 1) and flatter slope for large entries (below the dashed black line on the
right side means temperature larger than 1). This conforms to our theoretical analysis
that small entries should be suppressed with smaller temperature and large entries should
be pushed closer with large temperature. Moreover, it is noteworthy that the need for
sparsity increases as the layer goes deeper, according to the learned curves.

Generalization beyond Attention

As shown in the above analysis, the proposed MultiMax not only generalizes SoftMax,
but also achieves a better Pareto optimality w.r.t. sparsity and multi-modality with
appropriate parameterization. Due to its fully parameterized formulation, it is learnable
and adaptable to any scenario where a reweighting function is required. Since the need for
the degree of multi-modality and sparsity may vary among different applications, we do
not explicitly constrain any of the parameters and optimize them jointly with the model.
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Table III.2.: Comparing to Deit [221] baseline and anti-over-smoothing methods on
ImageNet-1k by replacing SoftMax with MultiMax in the attention and/or output layers.
* denotes that results are not strictly comparable: these methods rely on a different
training setup. For example, additional training epochs are adopted by both works,
talking-head [202] and a higher drop-path [110] rate are applied together with Patch
Diversification.

Model Method Parameters Epochs Modulation Acc. (%)Output Attention

Deit-tiny SoftMax 5M 300 N/A N/A 72.8
MultiMax 300 ✓ ✓ 73.4

Deit-small

Softmax

22M

300 N/A N/A 80.4
Top-k [230] 300 ✓ N/A 80.6

Ev-SoftMax [35] 300 - ✓ 80.0

MultiMax
300 ✓ - 80.7
300 - ✓ 80.7
300 ✓ ✓ 81.0

Deit-base SoftMax 86M 300 N/A N/A 82.1
MultiMax 300 ✓ ✓ 82.6

Deit-small

Patch Diversification [86] 400 N/A N/A 81.2*
AttnScale [229] 500 ✓ N/A 80.9*

MultiMax 400 ✓ ✓ 81.2
500 ✓ ✓ 81.3

4.4. Computational Efficiency
The extra computation of MultiMax is negligible for modern machine learning algorithms:
As shown in Eq. (III.4), the total amount of additional parameters for a 12 layer Trans-
former with 2nd-order MultiMax is just 8× 12 = 96, because each order only contains
4 parameters, including tb, td, b and d. Moreover, the modulation function σ(x) merely
consists of cheap element-wise operations, i.e., multiplication with tb and td, subtraction
with b and d, two Max operations, addition of the two terms at each order as well as a
residual addition. Thus a second-order MultiMax requires 7× 2 + 1 = 15 extra Floating
Point Operations (FLOPs) for a univariant input. For Deit-small model with input length
of 256, hidden dimension of 384 and 12 layers, replacing MultiMax with SoftMax in all
attention layers leads to 0.0168G extra FLOPs, i.e. only 0.37% of the original model’s
4.6G FLOPs.

In practice, customized layers often run much slower than the highly optimized built-in
Pytorch layers. The performance gap between theory and practice is mainly because the
PyTorch framework is eagerly evaluated and thus brings additional memory access time
and kernel launch time, please refer to this page 1 for more details. Thus a native Pytorch
implementation of MultiMax increases the training time of Deit-small on ImageNet by
about 40% (0.19 s/iteration vs 0.26 s/iteration), while the increase in inference time is
negligible (less than 2%). However, we are able to achieve a reduction from 40% (native
Pytorch implementation) to only about 10% increase of training time (0.21 s/iteration)
by implementing the Max operator with 0 as built-in ReLU function and applying
torch.jit.script decorator to fuse the remaining elementwise operations of our MultiMax,

1https://residentmario.github.io/pytorch-training-performance-guide/jit.html
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following the documentation 2. Notably, a fully optimized implementation of MultiMax
in C++ or CUDA as done with Pytorch built-in layers might further reduce the gap.

5. Experiments
In this section, we replace SoftMax with MultiMax in different baselines and apply
them to the corresponding tasks, including image classification on ImageNet1K, langauge
modeling on Wiki-Text-103 corpus and machine translation on IWSLT-2014 corpus.
Experimental results demonstrate consistent improvement with MultiMax, without any
extra changes, e.g. hyperparameters or architecture. Moreover, we provide additional
insights and demonstrate that advantagesous properties, including reduced over-smoothing
(Section 5.2) and improved sparsity & multi-modality (Section 5.2), are achieved.

5.1. Benchmarking
ImageNet1K Classification

For classification, we train the widely adopted Deit [221] from scratch on ImageNet1K
as baseline. Following the same training setup, we train Deit by only replacing the
SoftMax function with our MultiMax, in the attention layers and/or output layer for a
fair comparison. For training, we closely follow the training settings provided in [221] and
train all the models for 300 epochs. Following the more recent works [44, 147], we also
adopt Global Average Pooling (GAP) instead of using Class Token (CLT) as classification
head. While class token causes discrepancy in attention [222] and breaks translation
invariance [44], GAP avoids this problem and improves the accuracy.

The results in Table III.2 show a consistent improvement by using MultiMax for both
attention and output activation layers. Although those sparse SoftMax variants work well
for Machine Translation tasks, most of them have issues with Deit models. Ev-SoftMax
decreases the performance when used in attention layers and the training does not converge
(accuracy below 10%) when used in the output layer. For the inferior performance of
Ev-SoftMax, we hypothesize that less sparsity is required for the attention among image
patches than for language tokens, and zeroing out the entries smaller than average might
be too aggressive. For the unstable training, their simple training-time modification might
not be sufficient. The alternative losses provided by Sparse SoftMax and EntMax-1.5
require integer labels, thus are not compatible with the widely adopted label smoothing
technique in vision transformers. Training instability issues are also encountered when
using SparseMax in attention layers only. Therefore, we excluded them for the image
classification task.

Language Modeling

We test the effectiveness of our MultiMax further on the Language Modeling task on
WikiText-103 [156] using a 6-layer Transformer Decoder with 156M parameters. The
implementation is based on the official fairseq repository3 and the training setup is kept
as default, i.e., 5e−4 learning rate with a maximum of 2048 tokens per GPU for 50k
iterations on 4 GPUs. The results of the baseline transformer using SoftMax attention

2https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html
3https://github.com/facebookresearch/fairseq
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and our MultiMax are shown in Table III.3. We again observe a consistent improvement
by applying MultiMax in the output activation for this task.

Table III.3.: Evaluation of the performance on WikiText-103 language modeling task by
test perplexity.

Method Attention Output Perplexity ↓

SoftMax - - 29.4
Top-k [92] ✓ N/A 29.1

MultiMax ✓ - 29.0
✓ ✓ 28.7

Table III.4.: Comparing to other SoftMax variants using two different baseline settings
(see Section 5.1 for more details) on IWSLT 2014 English to German Translation task.

SoftMax SparseMax EntMax-1.5 EvSoftMax MultiMax

34.4 ± 0.07 28.7 ± 0.16 34.6±0.09 34.7 ± 0.06 34.7 ± 0.07

Machine Translation

Following previous approaches, we also evaluate our method on the task of machine
translation. We train a 38M 12-layer Transformer baseline with encoder-decoder (6 layers
each) architecture [224] from scratch on the IWSLT2014 German to English dataset [27],
following the training setup provided in the fairseq repository (Footnote 3). Under the
same setting, we also train the transformer with our MultiMax in replacement of SoftMax
in the attention layers, following the common setup in previous work. The single best
checkpoint and a beam size of 5 is adopted. The detokenized SacreBLEU [177] scores
(mean and standard deviation) of 3 runs are compared in Table III.4. MultiMax performs
on par with EvSoftMax and is slightly better than EntMax-1.5 for this task.

(a) Softmax Deit-small (b) MultiMax Deit-small

Figure III.4.: Patch similarities for each layer and at different epochs. Darker color denotes
the patch similarities at a larger training epoch.
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5.2. Empirical Studies and Insights
In this section, we empirically verify the positive impact of MultiMax on the over-smoothing
issue, as well as the improvement on multi-modality and sparsity in the attention scores
of Deit-small trained on ImageNet1K.

Analysis on Over-smoothing

To validate the efficacy of our MultiMax on preventing over-smoothing, we adopt the Patch
Similarity [86] or Mean Average Distance (MAD) [33] metric to compare transformers
using SoftMax and MultiMax on ImageNet1K. The numbers are shown in Fig. III.4. It
can be observed that patch similarity increases as the depth grows for SoftMax attention
during the entire training, whereas the patch similarity converges to a much lower level
for MultiMax attention in deeper layers. We attribute this to the undesirable amount
of attention assigned to irrelevant tokens which contributes the over-smoothing issue in
Transformers. Moreover, it also showcases the flexibility of MultiMax’s parameterized
formulation, which can encourage exploration in the early stage and shift the distribution
gradually towards higher sparsity as the training progresses. We have also examined the
increased discrepancy between single layer attention and accumulated roll-out attention
[1], which further indicates the strong connection between non-sparse SoftMax attention
and the over-smoothing issue. Please refer to Appendix 4 for more details.

Analysis on Sparsity and Multi-modality

Figure III.5.: Histograms of the attention scores at each layer. MultiMax attention is
distributed towards both ends: small scores are pushed closer to zero and more scores lie
above 0.1.

In this section, we empirically evaluate the impact of using our MultiMax on the sparsity
of attention scores. To achieve this, we evaluate the trained model on 1000 images and
collect the attention scores at each layer.

47



Chapter III. Improving the Trade-Off between Sparsity and Multi-Modality in Attention

As shown in Fig. III.5 in a log-log histogram, the attention scores of MultiMax are
distributed more towards both ends of the score range, i.e., extremely small values near
zero and large values between 0.1 and 1. In comparison, the attention scores of SoftMax
are concentrated in the region in between, which corresponds to the bumps in the figure.
Note that the number of counts are drawn at logarithmic scale, thus a small bump indeed
indicates a large amount of counts. Notably, MultiMax attention behaves differently in the
first two layers, which actually shows the flexibility of learning: the need for multi-modality
or sparsity varies with varying context. Thus it can be a disadvantage to manually define
the trade-off in advance. We also visualize the cumulative distribution of these attention
scores in Appendix 3, which also indicates a stronger sparsity achieved by MultiMax.

5.3. Ablation
To study the effect of each design component of our MultiMax independently, we conduct
experiments using Deit-small as the baseline on ImageNet1K for ablation, as shown in
Table III.5. Since the language modeling and image classification tasks are computationally
heavy, we report the result of a single run with the seed unchanged for all these experiments,
as commonly done for ImageNet models.

Table III.5.: Impact of each MultiMax component.
Config term (1) term (2) second order Acc

1 - - - 80.4
2 ✓ - - 80.6
3 ✓ ✓ 80.7
4 ✓ ✓ ✓ 81.0

To further validate the statistical significance of these results, we additionally conduct
experiments using Deit-small with GAP on ImageNet1K and the results are recorded in
Table III.6. Comparing to the relatively small standard deviation, the improvement of
using MultiMax is reliable.

Table III.6.: Multiple runs with random seeds using Deit-small on ImageNet1k. MultiMax
shows consistent improvement over SoftMax.

Method Runs Mean Std1 2 3

SoftMax 80.4 80.3 80.3 80.3 0.05
MultiMax 81.0 80.8 80.7 80.8 0.12

5.4. Attention Visualization
As Transformer models [224, 147, 278, 282, 226] stack a number of attention layers and
aggregates the information repetitively, the attention scores at a single layer do not reflect
the true information flow. To evaluate the impact on the classification more directly,
we employ the well-established Grad-CAM [195] to qualitatively evaluate the impact on
the model’s decision making. We additionally provide single layer attention scores in
Appendix 3 for reference.
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Figure III.6.: Grad-CAM of Deit-small using SoftMax (top row) and MultiMax (bottom
row). The MultiMax attention maps are better localized on the objects and are close to
zero in most background regions, indicating sparsity at the attention level.

6. Conclusion
In this chapter, we formalize, analyze, and evaluate the sparsity and multi-modality
trade-off of SoftMax and proposed MultiMax as a remedy for tension between these two
desirable objectives. Through both experimental evaluation and analysis, we validated that
MultiMax successfully learns to achieve higher multi-modality and sparsity at the same
time. Although we have already demonstrated the benefits of MultiMax in attention layers
and output activation of a classifier and a generative model across a wide range of tasks, we
believe it has an even broader range of applications, such as in value networks and policy
gradient for reinforcement learning as well as the learning of categorical distributions with
Gumbel Softmax [116].
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Chapter IV.

Incorporating Geometric Prior into
Attention for Image Modeling

Computer vision poses challenging tasks due to its rich hierarchical spatial structures
and intricate data dependencies, making it an ideal domain to push the boundaries of
neural probabilistic scoring within attention mechanisms. Vision Transformers (ViTs)
leverage flexible self-attention to capture complex content relationships but often converge
more slowly than CNNs, which benefit from fixed spatial inductive biases that enhance
convergence and generalization, particularly in low-data regimes. However, these hard-
coded priors in CNNs can restrict model capacity and flexibility when large-scale datasets
are available.

Building on our prior work [282], this chapter introduces learnable Spatial Priors (SPs)
via Spatial Prior–enhanced Self-Attention (SP-SA). This enables ViTs to automatically
discover diverse spatial relations during training, combining inductive biases with the
adaptability of transformers without restricting attention to local windows.

Our SP-ViT achieves state-of-the-art ImageNet performance without extra data, ad-
vancing this thesis on neural probabilistic scoring by integrating geometric priors into
flexible attention mechanisms—improving convergence, generalization, and expressivity
across data regimes.

1. Introduction
Transformers [224] have recently achieved exciting results in image classification [63, 147,
256, 93, 32, 221, 62, 222, 120, 48], after dominating in natural language processing (NLP)
[58, 146, 20]. At the heart of transformer lies the so-called self-attention mechanism, which
captures the content relations between all pairs of input tokens and focuses on related
pairs selectively. Self-attention is more flexible in comparison to convolution, which is
hard-coded to capture local dependencies exclusively. This can possibly equip transformer
models with larger capacity and greater potential for computer vision tasks. As reported
in recent works, transformers outperform Convolutional Neural Networks (CNNs), when
pretrained on large dataset [63], facilitated with knowledge distillation [221] or pseudo
labels [120] from pretrained CNNs.

Nevertheless, CNNs generalize better and converge faster than Vision Transform-
ers (ViT). This suggests that certain types of inductive biases employed in convolution
can still be beneficial to vision tasks. Not surprisingly, many recent studies [147, 62, 255,
49, 256, 239, 88, 221, 48] propose to incorporate convolutional inductive biases into ViTs
in different ways. The effectiveness of convolution relies on the fact that neighboring
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Figure IV.1.: ImageNet-1K top-1 accuracy of our proposed SP-ViT and state-of-the-art
ViTs. The models shown are all trained on 224× 224 resolution, ↑ denotes that models
are fine-tuned on a higher resolution. Note that we exclude models pretrained on extra
data or larger resolution than 224× 224 for a fair comparison.

pixels of natural images are highly correlated, but there may exist other highly correlated
contents outside the local receptive field of a convolutional filter. Therefore, we propose to
make use of a variety of inductive biases simultaneously, just as humans do, e.g., if we see
a part of a horizontal object, we naturally look along its direction instead of restricting
our sight within a local area.

In this chapter, we introduce a novel family of inductive biases named Spatial Priors
(SPs) into ViTs via an extension of vanilla self-attention (SA), called Spatial Prior–enhanced
Self-Attention (SP-SA). SP-SA highlights a certain group of 2D spatial relations at each
attention head based on the relative position of key and query patches. Since the
construction and validation of appropriate spatial priors are extremely laborious, we
introduce the idea of learnable spatial priors. More specifically, we only impose the
weak prior knowledge to the model that different relative distances should be treated
differently. Yet we do not force the model to favor any kind of spatial relation, e.g.,
neither local nor non-local. Effective spatial priors (SPs) are supposed to be discovered
by the model itself in the training stage. For this purpose, SPs are represented by a
family of mathematical functions which map the relative coordinates to abstracted scores,
called spatial relation functions. To search for desirable spatial relation functions, we
parameterize these functions by neural networks and optimize them jointly with ViTs.
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Figure IV.2.: (a) Convolutional inductive biases proposed for ViTs: axial self-attention in
CSWin-Transformer [62] and shifted local self-attention in Swin-Transformer [147]. (b)
Our Spatial Priors (SPs) are learned by our model automatically. The learned SPs assign
different scores for different spatial relations. Given a certain SP, attention is forced to
be within high-score regions. Our SP-SA handles different types of spatial relations in a
complementary manner, e.g., SPs which focus on local and non-local relations are both
learned.

Thereby, the model can learn spatial priors similar to the ones induced in convolutions, as
well as spatial relationships over larger distances. Examples for learned SPs are shown in
Fig. IV.2(b). Diverse complementary patterns are presented in different attention heads,
so that different types of spatial relations are handled individually.

As a matter of fact, convolutional inductive biases can be seen as a special kind of spatial
priors: they first divide coordinate spatial relations into two categories, i.e., ones focusing
on the local neighborhood and ones focusing on non-local regions. Then they learn priors
of the local neighborhoods and ignore the non-local relations. For comparison, some of
the existing approaches to combine such convolutional biases with ViTs are illustrated in
Fig. IV.2(a).

In summary, we make the following contributions:

• We propose a family of inductive biases for ViTs that focus on different types of
spatial relations, called Spatial Priors (SP). SPs generalize convolutional inductive
biases to both local and non-local correlations. Parameterized with neural networks,
SPs are automatically learned during training, w/o preference for any hard-coded
region.

• We propose SP-SA, a novel self-attention variant that automatically learns beneficial
spatial inductive biases. Built on SP-SA, we construct a ViT variant called SP-ViT.
SP-ViTs establish state-of-the-art results on the ImageNet Benchmark w/o extra
data.

• Our SPs are compatible with various input sizes, as they are derived from relative
coordinates . SP-ViTs also demonstrate improved classification performance over
the baseline model when fine-tuned on higher resolution.
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Figure IV.3.: Visualization of the learned 2D SPs, content scores and the enhanced
attention. The input image is shown in the bottom-left and the query patch is marked in
red. Different SPs are learned, including horizontal and vertical (head 2 and 3), non-local
(head 1), as well as cross-shaped (head 4). The attention scores at each head are obtained
within the context of a certain type of spatial relations. The original attention is distracted
by background objects, whereas our Spatial Priors help the model to focus on the object
of interest.

2. Related Work
Vision Transformers Recently, Dosovitskiy et al. [63] showed that purely attention-based
transformers can achieve state-of-the-art performance in image classification, when pre-
trained on large-scale datasets. Since then, a vast amount of efforts have been made
to improve ViTs. Some works [120, 85] find it effective to add additional losses or
regularization terms, while others propose new patch embedding blocks [93] or scale-up
methods [222, 273]. [147, 62, 269, 231] propose to utilize multi-scale information, where
local attention are is adopted to reduce the overall computation. It is noteworthy that
an cross-shaped 2D structure, similar to the design in CSWin-Transformer [62], is also
learned by our model.
Inductive Biases for ViTs ViTs’ performance degrades rapidly with a reduced amount of
training data. To alleviate this issue, many studies focus on emphasizing local correlations
by introducing a convolutional inductive bias into ViTs, either by restricting SA to
local windows [183, 147, 62], combining vanilla transformers with implicit or explicit
convolutional operations [255, 49, 256, 239, 88, 44], knowledge distillation [221], or
convolutional initialization [48]. Our work also incorporates inductive biases into ViTs,
but they are not locally restricted and are automatically learned by the model. Indeed,
as shown in Fig. IV.2(b), patterns that focus solely on local or remote regions are both
present in the learned SPs.
Relative Spatial Information Transformers are by their very nature permutation equivalent,
thus extra spatial information is often supplied to better handle ordered input data.
Besides the common absolute positional embedding, the relative spatial information is also
considered in Swin-Transformer [147] by an trainable bias term called relative positional
bias. ConViT [48] also introduces a function based on coordinates relative to force the
attention to be within a local region. In comparison to ViTs, using relative positional
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information is more common in NLP transformers. The relative positional embedding
[201] is built on the distances between tokens and has been improved in XL-Net [251] and
DEBERTA [99]. It can be extended to 2D for ViTs with little effort, and is proved to be
effective in [240]. The essential difference of our method is the focus on various learned
spatial relations at each head, which proves to be beneficial in Section 4.3.

3. Method

3.1. Spatial Prior-enhanced Self-Attention
Motivated by the observation that certain inductive biases on spatial relations can
be beneficial to transformers, we propose an extension of self-attention enhanced by
a combination of learned 2D Spatial Priors (SPs), called Spatial Prior–enhanced Self-
Attention (SP-SA). Each SP Ω ∈ RN×N forms a specific spatial context for computing
attention scores A ∈ RN×N , and it is derived from coordinate spatial relations between
input tokens, i.e. relative positions between the key and query patches for ViTs. Thus an
SP has exactly the same form of attention scores and we can simply integrate it in the
equation of vanilla SA [224] by multiplicative interaction:

Aij = exp(eij · Ωij)∑n
k=1 exp(eik · Ωik) , (IV.1)

with

eij =
(x⃗⊤

i WQ)(x⃗⊤
j WK)⊤

√
dz

, (IV.2)

where x⃗i and x⃗j are the ith and jth input tokens.

Learnable 2D Spatial Priors

Taking query patch i as the reference point, we can obtain a relative coordinate r⃗ij ∈ R2

for image patch j. Then we employ a shared mapping fp for all query and key patch pairs,
named spatial relation function:

Ωij = fp(r⃗ij), (IV.3)

the outputs together form the so-called 2D SP Matrix Ω.
To enable the model to learn desirable inductive biases automatically, we employ

Multilayer Perceptron (MLP) to parameterize the mapping from 2D relative coordinates
to Ω. Thereby, we allow Ω to learn a weighting for the attention scores for query x⃗i and
key x⃗j which depends solely on their relative coordinates and is applied in a non-linear way,
i.e. before the softmax. We extend SP-SA to its multi-head version by adding a unique
network to each head. This design follows the same motivation as multi-head self-attention
and assumes that a combination of different SPs should boost the performance.

3.2. Relation to Other Methods
In the following, we discuss the relation of SP-SA to the most related work.
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Figure IV.4.: The schema of SP-ViT. SP-SA can be used as a drop-in replacement for
the vanilla SA layer at a range of depths. Because the classification token does not have
a valid 2D relative coordinate, it is simply concatenated with the hidden representation
after the last SP-SA layer. FFN: feedforward network (2 linear layers separated by a
GeLU activation).

Relation to Local Windows The square and cross-shaped windows used in [147, 62] can
be seen as a special form of our proposed spatial relation functions in practice:

fp(r⃗ij) =


1, if ∥(r⃗ij − ∆⃗)⊙ (a, b)∥∞ <= 1

or ∥(r⃗ij − ∆⃗)⊙ (b, a)∥∞ <= 1,

0, else
(IV.4)

where ∆⃗, a and b control the shift, window width and height respectively. If a = b, it
generates a square window, otherwise it results in a cross-shaped window. Both works
only adopt some hard-coded patterns for the whole network, while our method proposes
to benefit from a variety of beneficial 2D structures.
Relation to PSA The Positional Self-Attention (PSA) proposed in [48] can also be regarded
as a manually designed family of spatial relation functions:

fp(r⃗ij) = α(∥(∆x, ∆y)∥2 − ∥r⃗ij − (∆x, ∆y)∥2), (IV.5)

where the parameters ∆x and ∆y are specially initialized to approximate convolution
effect.

Note that their main contribution is the so-called local/convolutional initialization,
which restricts the number of heads to the square of integer numbers, and the initial
values of both α and ∆⃗ require extra hyperparameter tuning. In order to compare with
their method, we adopt a ViT baseline with 9 heads for ablation analysis as in [48].
Relation to Relative Positional Embeddings Shaw et al. [201] introduce the so-called
1D Relative Positional Embedding (RPE) for transformers to take relative distances into
account:

Aij =
exp(eij + (x⃗iWQ)Trij

)∑n
k=1 exp(eik + (x⃗iWQ)Trij

) , (IV.6)

where T is a learnable embedding table from which the RPE is taken. Then it interacts
multiplicatively with the query. If extended to 2D, it is equivalent to applying a linear
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transformation to one-hot representations of relative distances. For one-hot representations,
the magnitude of distances is neglected, while this is not the case for relative coordinates.

The main difference of our approach to all previous methods is the combination of
complementary spatial priors at each layer. As shown in Table 6, performance drops form
83.6% to 82.1% with the same spatial priors per layer. In addition, we can see in Figure
2(b) that different spatial foci (local and non-local) are learned for each layer. With such
spatial foci, our model is less distracted by noises w.r.t. a certain context. For example, as
discussed in Section 4.1, our SP-ViT shows a significantly diminished class activation in
background regions compared to DeiT. We also confirmed experimentally that our SP-SA
outperforms these methods, see Table IV.3.

4. Experiments
We first provide an experimental evaluation of the proposed SP-SA in the context of image
classification on the ImageNet-1k dataset and show that SP-ViTs achieve state-of-the-art
results for training without extra data. Further, we provide an extensive ablation study
to analyze the impact of all proposed model details.

Table IV.1.: Comparing to state-of-the-art models trained on ImageNet-1k 224 × 224
resolution. Models are by default trained and tested on 224×224 resolution if not specified.
↑ plus size denotes the model is trained on 224× 224 resolution then fine-tuned and tested
on size× size resolution. The performance of LV-ViT-L trained on 224× 224 resolution is
not available in [120]. And LV-ViT-L trained on 288× 288 resolution has a lower accuracy
of 85.3%.

Network Top-1 (%) Parameters FLOPs

DeiT-S [221] 79.9 22M 4.6B
CaiT-XS-24 [222] 82.0 27M 5.4B
LV-ViT-S [120] 83.3 26M 6.6B
Our SP-ViT-S 83.9 26M 6.6B

DeiT-B [221] 81.8 86M 17.5B
Swin-B [147] 83.3 88M 15.4B
CaiT-S-24 [222] 83.5 47M 9.4B
LV-ViT-M [120] 84.1 56M 12.7B
Our SP-ViT-M 84.9 56M 12.7B

CaiT-M-24 [222] 84.7 186M 36.0B
Our SP-ViT-L 85.5 150M 34.7B

LV-ViT-S↑384 [120] 84.4 26M 22.2B
SP-ViT-S↑384 85.1 26M 22.2B

CaiT-S-24↑384 [222] 85.1 47M 32.2B
LV-ViT-M↑384 [120] 85.4 56M 42.2B
Our SP-ViT-M↑384 86.0 56M 42.2B

CaiT-M-24↑384 [222] 85.8 186M 116.1B
Our SP-ViT-L↑384 86.3 150M 110.6B
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Figure IV.5.: Visualization using Transformer Explainability [31]. The second row are
results of DeiT baseline w/o SP layers. The Last row are results of SP-ViT. Our SP-ViT
generate results with more focus on areas of interests and less distraction from background.

4.1. Image Classification on ImageNet-1K
Settings All models for ImageNet-1K classification are trained on a single machine node
with 8 Tesla V100 GPUs. Our code is based on DeiT [221]. To obtain our SP-ViT, we
replace the vanilla SA layers of the baseline with SP-SA till the last 2 layers and follow
the training settings in [120] (with Token Labeling). We keep the vanilla SA in the last 2
layers, based on the ablation analysis conducted on a fraction of ImageNet, please refer to
the Appendix for more details. When fine-tuning on higher resolution (indicated by ↑384
in Table IV.1), we set batch size to 512, learning rate to 5e-6, weight decay to 1e-8 and
we fine-tune the model for 30 epochs.

Comparing to State-of-the-Art Models We compare our SP-ViT (based on LV-ViT)
with other recent ViTs in Table IV.1. Within all groups of comparable model sizes, SP-ViT
outperforms competing models. Our best result of 86.3% is achieved with SP-ViT-L↑384.
It outperforms all previous models with about only 150M parameters as compared to 271M
parameters of the second best CaiT-M-36↑384. Also note that our smaller SP-ViT-M↑384
already achieves 86.0% accuracy, on par with CaiT-M-36↑384 while reducing parameters
from 271M to 56M (by a factor of about 4.8).

Qualitative results We present visualizations of target class activation maps using the
recent technique [31] in Figure IV.5 to showcase the behavior of SP-ViT. While the DeiT
model only shows class activations on small parts of the target class regions, for example
on the head of the “Lorikeet", the fur of the “Egyptian cat" or the jaw of the “American
alligator", the proposed SP-ViT model shows class activations on wider target class regions.
Thereby, it follows well class specific image regions such as the pointy ears as well as the
tail of the “Egyptian cat", and the dogs’ ears in the “Bull mastiff" class. The “Alligator
lizard" example as well as the “American alligator" further show a significantly diminished
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class activation in background regions compared to DeiT. In summary, we make two
observations: 1) The results generated by SP-ViT focus more on areas of target class
objects comparing to DeiT. In “Lorikeet", “Bull mastiff", “Egyptian cat" and “American
alligator", SP-ViT’s activation maps clearly have a better coverage of target class; 2) The
distraction by background is better suppressed, e.g. in “Alligator lizard", resulting in a
cleaner activation map.

4.2. Semantic Segmentation
Following [120] and [147], we utilize UperNet as our base framework and our SP-Vit
trained ImageNet1K as the backbone to perform semantic segmentation on ADE20K. We
adopt the same training setup as [13] and [15] and obtain 49.8 mIoU, which improves the
result of LV-ViT-S by 1.2 mIoU. This shows that our proposed SPs benefit downstream
tasks as well.

Table IV.2.: Performance of our proposed SP-ViT in the downstream semantic segmentation
task. SP-ViT improves over its baseline on both single-scale (SS) and multi-scale (MS)
setups on the validation set.

Method mIoU (SS) P.Acc. (SS) mIoU (MS) P.Acc. (MS)

LV-ViT-S 47.9 82.6 48.6 83.1
SP-ViT-S 49.0 83.0 49.8 83.4

4.3. Ablation Analysis
For ablation, we employ a small DeiT model as the baseline with 12 layers, 9 heads and
432 embedded dimensions. The choice of head numbers is simply for a fair comparison
with other methods, because Positional Self-Attention (PSA) introduced by d’Ascoli et al.
[48] requires such specific numbers (square of integer numbers) of heads. Due to limited
available computation resources, we train all model variants on the first 100 classes of
ImageNet-1K called ImageNet-100 for 300 epochs, following the setup in [48]. In this
section, we simply take the accuracy at the last epoch for all models. This should be a
fair comparison, since we adopt the same hyperparameters for different models without
tuning. For all experiments in this section, we train the models on 4 NVIDIA P100 GPUs
and adopt a batch size of 256. The rest of settings are kept the same as DeiT’s w/o
knowledge distillation in [221].

Comparing to Related Approaches SP-SA Additive is obtained by replacing the multi-
plication in Eq. (IV.1) with a summation. It is more comparable to other methods which
also employ additive interaction between spatial information and content scores. As shown
in Table IV.3, our SP-SA has much higher Top-1 accuracy than all previous methods.
The advantage of our SP-SA can be largely credited to the combination of different spatial
foci at each head, see Section 4.3. As opposed to our method, the Relative Positional Bias
[147] directly adds a univariate bias term to the content score before applying softmax,
and the bias term is taken from a parameter table based on the relative coordinates.
Adding such a bias term is a straightforward idea to include relative spatial information,
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Table IV.3.: Comparing to SA with Relative Positional Bias [147], Positional SA[48], SA
with the 2D extension of Relative Positional Embedding (RPE) [201] as well as a more
advanced version proposed in DEBERTA [99] on ImageNet-100.

Method Top-1 acc (%)

2D RPE [201] 79.9
Improved 2D RPE [99] 82.8
Relative Positional Bias [147] 81.3
Positional Self-Attention [48] 82.5
SP-SA Additive 83.5
SP-SA 83.6

but it is neither based on the idea of nor capable of learning complex 2D spatial priors, as
reflected in Table IV.3.

We have also compared SP-SA to Positional Self-Attention [48] with hand-crafted spatial
relation function. Our method delivers better performance, which shows that the effort in
such a manual design process can be saved by our learnable SP.

Table IV.4.: The effect of unique Spatial Priors (SPs) per head. This setting performs
best.

SP-SA Top-1 (%)
shared SP 82.6
unique SPs per layer 82.1
unique SPs per layer&head (default) 83.6

Single vs Multiple Spatial Priors To validate the benefit of combining various learned
SPs, we compare SP-SA to two variants: one only adopting a single SP for each layer, the
other learning the same SP for the whole network. As shown in Table IV.4, a shared SP
for the whole network provides better results than a single SP for each layer. However,
the proposed setting with a unique SP per layer&head performs best, providing evidence
of the benefit of combining different SPs.

5. Conclusion
In this chapter, we introduce a variant of self-attention (SA) named Spatial Prior-enhanced
Self-Attention (SP-SA) to facilitate vision transformers with automatically learned spatial
priors. Based on the SP-SA, we further proposed SP-ViT and experimentally demonstrate
the effectiveness of our method. Our proposed SP-ViTs establish state-of-the-art results
for models trained on ImageNet-1K only. For example, SP-ViT-M achieves a 0.8% higher
accuracy comparing to the previous state-of-the-art LV-ViT-M. We hope that our powerful
SP-SA can stimulate more studies on designing appropriate inductive biases for ViTs.
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Chapter V.

Incorporating Structural Prior into
Attention for Skeleton-Based Action
Recognition

Skeleton-based action recognition offers a compact, robust representation of human motion
that is less sensitive to environmental changes, making it ideal for real-world applications.
Its graph-structured data naturally aligns with neural probabilistic modeling, enabling
the integration of structural priors into attention mechanisms. While GCNs use fixed
skeletal connectivity, their limited flexibility motivates more adaptive models. This chapter
advances the thesis by enhancing neural probabilistic scoring with attention models that
flexibly encode structural priors, improving performance and generalization.

Building on our prior work [278], this chapter introduces Hypergraph Self-Attention
(HyperSA), which incorporates structural priors into transformers by using a novel relative
positional encoding based on graph distances, as well as modeling higher-order joint
groupings through hypergraphs. This approach enables the model to learn complex
joint co-occurrences beyond pairwise relations, enhancing representational power without
sacrificing efficiency.

Our Hyperformer achieves state-of-the-art accuracy and efficiency on skeleton-based
action benchmarks, contributing to the thesis on neural probabilistic scoring by integrating
structural priors into flexible attention models—advancing the balance between inductive
bias and model capacity for structured data domains.

1. Introduction
Skeleton-based human action recognition has attracted increasing attention due to its
computational efficiency and robustness to environmental variations and camera viewpoints.
One of the key advantages of skeleton-based action recognition is that body keypoints can
be easily acquired using sensors [268] or reliable pose estimation algorithms [23]. This
offers a more reliable alternative to RGB or depth-based methods, making it a promising
solution for various real-world applications.

Graph Convolution Networks (GCNs) have been widely used for modeling off-grid
data. To our knowledge, Yan et al. [249] were the first to treat joints and their natural
connections as nodes and edges of a graph, and employ a GCN [125] on such a predefined
graph to learn joint interactions. Since then, GCNs have become the de facto standard of
choice for skeleton-based action recognition. To further capture the interactions between
physically unconnected joints, state-of-the-art GCNs [42, 38, 252, 208, 210, 211] adopt
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a learnable topology which merely uses the physical connections for initialization. Even
so, they still need to rely on attention mechanisms to relax the restriction of the fixed
topology, which is the key to their improved performances.

Skeletal Graph

Learned Partition
Hypergraph

Joint-to-hyperedge Attention

Joint-to-joint Attention

Figure V.1.: Illustration of our proposed HyperSA using a frame from the action class
“Clapping Hands". HyperSA accommodates the additional high-order relations besides
the skeletal interconnections.

Given these facts, it is natural to question whether a purely attention-based Transformer
model would be a better candidate for skeleton-based action recognition. However, current
research [176, 207] has shown that the performance of such models is far from satisfactory.
This can be attributed to the fact that the formulation of the vanilla Transformer ignores
the unique characteristics of skeleton data, i.e., the permutation equivalent attention
operation is agnostic to the bone connectivity between human body joints. To address
this issue, absolute positional embeddings have been used [224, 63, 221] , but they still
lack the necessary structural information. In contrast, relative positional embeddings have
been shown to be more effective for Transformers in various tasks, involving language [201,
50, 98], vision [147, 282, 240], and graph data [254, 277]. To incorporate the information
of the bone connectivity, we also introduce a powerful relative positional embedding based
on graph distance. Our embedding retains the information of skeletal structure during
the entire training process, whereas GCNs merely use it for initialization.

Moreover, we reveal an underlying issue of graph models for this task in general. For
human actions, each type of body joint has a unique physical functionality. As a result,
certain re-occurring groups of body joints are often involved in specific actions, such as
the subconscious hand movement for maintaining balance. Vanilla attention is incapable
of capturing these underlying relationships that are independent from joint coordinates
and go beyond pair-wise interactions. To compensate for this, we employ the concept of
hypergraph [274, 71, 13] to accommodate the higher-order relations of body joints. With
the hypergraph representation, we propose a novel variant of Self-Attention (SA) called
Hypergraph Self-Attention (HyperSA), which considers both pair-wise and high-order
relations. Given a partition of the human body joints into different groups, a representation
of each group is derived based on its assigned joints. The group representation is then
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linearly transformed and multiplied with joint queries, allowing joint-to-group interactions
in addition to the vanilla joint-to-joint SA. Though HyperSA works well with empirical
partitions, we additionally propose an approach to search the optimal partition strategy
automatically, further improving its performance.

At the same time, Transformers spend a large portion of capacity on intra-token
modeling via feed-forward layers. While this is important for complex tokens such as
image patches or word embeddings, we analyze that such an expensive step is unnecessary
for joint coordinates which are merely three-dimensional. This implies that the modeling
of inter-token relations, or the so-called joint co-occurrences, is the key to successful
action recognition. We thus suggest removing MLP layers for computation and memory
reduction, and show in Section 5.3 that MLP layers are indeed negligible. This leads to a
lightweight Transformer which is comparable to GCNs in model size and computation
cost.

Our main contributions can be summarized as follows:

• We propose to incorporate the structural information of human skeleton into Trans-
former via a relative positional embedding based on graph distance, leveraging the
gap between Transformer and state-of-the-art hybrid models.

• We devise a novel extension of Self-Attention (SA) called Hypergraph Self-Attention
(HyperSA). To our best knowledge, HyperSA is the first attention varaint on
hypergraph for skeleton-based action recognition.

• The resulting model, termed as Hyperformer, is the first Transformer which beats
state-of-the-art models w.r.t. both efficiency and accuracy.

2. Related work
In this section, we highlight the most related work to ours regarding the spectacle of
method and application.

2.1. Representation of skeleton data
Graph Representation Graph is the most prevalent choice for representing non-euclidean
data and human skeleton can be naturally represented as graph. Comparing to other graph
models [247, 84, 225], the Graph Convolutional Network (GCN) proposed by Kipf [125]
is widely adopted for action recognition due to its simplicity and thus higher resistance
to overfitting. Transformers have also achieved great performance in a variety of graph
learning tasks [258, 254], although they often requires much higher computation budget.
Hypergraph Representation In real-world scenarios, relationships could go beyond pair-
wise associations. Hypergraph further considers higher-order correlations among data.
Although hypergraphs can be modeled as a graph approximately via techniques such
as clique expansion[274], such approximations fail to capture higher-order relationships
in the data and result in unreliable performance [43, 140]. This motivates the study of
learning on hypergraphs [101, 264, 71, 248]. Attention-based hypergraph models have also
been proposed for multi-modal learning [123] and inductive text classification [61]. Our
HyperSA is the first hypergraph attention designed for skeleton-based action recognition.
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2.2. Skeleton-based action recognition

In early years, RNNs [64, 266] have been a popular choice to tackle the problem of
skeleton-based human action recognition. The application of CNNs for this task [122,
145] is also well-studied. Nevertheless, the spatial interactions between joints are ignored
in the above methods, and GCNs have become a more common choice in this field, by
modelling the spatial configurations as graphs.

GCN-based approaches Yan [249] first introduced GCN [125] to model the joint
correlations and demonstrated its effectiveness for action recognition. However, the
limitation of assuming a fixed topology according to the natural connections is identified
later, and most follow-up works adopt a learnable topology for action recognition. Many
among them [40, 208, 38, 252] also employ attention or similar mechanisms to produce
a data-dependent component of the topology (analogous to Graph Attention Networks
[225]), boosting GCN’s performance further.

Transformer-based approaches Attempts to tackle this problem with Transformers have
been made recently. They mainly focus on handling the challenge brought by the extra
temporal dimension. [176] propose a two-stream model consisting of spatial and temporal
Self-Attention for modeling intra- and inter-frame correlations, respectively. Instead,
[207] employ a Transformer which models the spatial and temporal dimension in an
alternate fashion. Nevertheless, none of them achieved comparable results to state-of-the-
art GCN-based approaches. Our work is the first to reveal the reason behind, i.e., vanilla
Transformers fails to exploit the special characteristics of skeleton data, including high-
order joint relations and skeletal connectivity. Notably, later work [228] proposes another
extension of attention to hypergraph, which is shown to be inferior to our HyperSA.

3. Preliminaries
In this section, we recap the definition of Self-Attention and hypergraphs.

3.1. Self-Attention

Given an input sequence in the form of X = (x⃗1, ..., x⃗n), each token x⃗i is first projected
into Key k⃗i , Query q⃗i and Value v⃗i triplets. Then the so-called attention score Aij between
two tokens is obtained by applying a softmax function to the dot product of q⃗i and k⃗j

[224]:
Aij = q⃗i · k⃗⊤

j , (V.1)

the final output at each position is computed as the weighted sum of all Values:

y⃗i =
n∑

j=1
Aij v⃗j. (V.2)

An extension called Multi-Head Self-Attention (MHSA) is often adopted by Transformers
in practice. It divides the channel dimension into subgroups and apply Self-Attention to
each subgroup in parallel to learn different kinds of inter-dependencies. For simplicity, we
omit the notation of MHSA in this chapter.
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3.2. Hypergraph representation

Unlike standard graph edges, a hyperedge in a hypergraph connects two or more vertices.
An unweighted hypergraph is defined as H = (V , E), which consists of a vertex set V and
a hyperedge set E . The hypergraph H can be denoted by a |V| × |E| incidence matrix H,
with entries defined as follows:

hv,e =
{

1, if v ∈ e

0, if v /∈ e
(V.3)

The degree of a node v ∈ V is defined as d(v) = ∑
e∈E hv,e, and the degree of a hyperedge

e ∈ E is defined as d(e) = ∑
v∈V hv,e. The degree matrices De and Dv are constructed by

setting all the edge degrees and all the vertex degrees as their diagonal entries, respectively.
In this chapter, we consider the special case of d(v) = 1 for all vertices, i.e. , body joints

are divided into |E| disjoint subsets, which is efficient in practice. Notably, the incidence
matrix H is equivalent to a partition matrix in this case. Each row is a one hot vector
denoting the group to which each joint belongs.

× 𝐿

Output 𝑌

Softmax

𝑄𝐾!

𝑉

𝐾 𝑄

𝑄𝑅∅
! 𝑄𝐸#$%! 𝜇⃗𝐸#$%!

Linear

Global Avg. 
Pooling

Temporal Conv

HyperSA

Joint-to-Joint K-Hop RPE Joint-to-Hyperdge Attentive Bias

HyperSA

Input 𝑋

MatMul

SoftMax

𝑡! 𝑡"𝑡#

𝐸#$%

K-Hop RPE 𝑅∅ 𝜖ℝ𝒱×𝒱×'

Incidence Matrix𝐻(𝜖 ℝℰ×𝒱

0 1
0 0
1 0
0 0
0 0

0
0
0
1
0

𝑒!
𝑒#
𝑒"
𝑒*
𝑒+

𝜈! 𝜈# 𝜈#+

𝐶
∅(𝑖, 𝑗) = 1 … K

1
0
0
0
0
𝜈#*

Bone 
Connectivity

𝑣!
𝑣#

𝑣#*
𝑣#+

𝑒!
𝑒#
𝑒"
𝑒*
𝑒+

Hyperedge Feature 
𝐸 ∈ ℝℰ×'

Augmented Hyperedge 
Feature 𝐸,-. ∈ ℝ𝒱×'

𝐷/0!𝐻(𝑋𝑊/ 𝐻𝐸

𝐾

Embedding Table R 𝜖 ℝ1×'

…

𝑣 !

𝑣#+
𝑣 ! 𝑣 #+…

Hyperedge

Spatial 
Module

Temporal 
Module

Figure V.2.: Model architecture overview and illustration of our proposed HyperSA layer.

4. Method

As analyzed in Section 1, multiple specific joints often move cooperatively in an action,
i.e., there are inherent higher-order relations beyond the pair-wise relation. Therefore,
we propose to introduce the prior information of the intrinsic hyper connections into
vanilla Self-Attention. Specifically, a novel Hypergraph Self-Attention (HyperSA) layer
is introduced, which makes Transformers aware of extra higher-order relations shared by
a subset of joints connected to each hyperedge.
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4.1. Deriving the hyperedge feature
Given an incidence matrix H, we propose an effective approach to obtain the feature
representation for each subset of joints connected to a hyperedge. Let C denote the
number of feature dimensions, individual joint features X ∈ R|V|×C are first aggregated
into subset representations E ∈ R|E|×C by the following rule:

E = D−1
e H⊤XWe, (V.4)

where:

• The product of incidence matrix H and input X essentially sums up the belonging
joint features of each subset.

• The inverse degree matrix of hyperedges are multiplied for the purpose of normaliza-
tion.

• The projection matrix We ∈ RC×C further transforms the features of each hyperedge
to obtain their final representations.

Then we construct an augmented hyperedge representation Eaug ∈ R|V|×C by assigning
hyperedge representations to the position of each associated joint:

Eaug = HD−1
e H⊤XWe. (V.5)

4.2. Encoding human skeleton structure
Human body joints are naturally connected with bones and form, together with the latter,
a bio-mechanical model. In such a mechanical system, the movement of each joint in an
action is strongly influenced by their connectivities. Therefore, it is beneficial to take the
structural information of human skeleton into account.

Analogous to the established Relative Positional Embedding (RPE) for image [240]
and language [98, 201] Transformer, we propose a powerful k-Hop Relative Positional
Embedding Rij ∈ RC , which is indexed from a learnable parameter table by the Shortest
Path Distance (SPD) between the ith and jth joints. In comparison to the learnable scalar
spatial encoding in [254], it has larger capacity and interacts with the query additionally.

4.3. Hypergraph Self-Attention
With the obtained hyperedge representation and skeleton topology encoding, we now
define our Hypergraph Self-Attention as follows:

Aij = q⃗i · k⃗⊤
j︸ ︷︷ ︸

(a)

+ q⃗i · E⊤
aug,j︸ ︷︷ ︸

(b)

+ q⃗i ·R⊤
ϕ(i,j)︸ ︷︷ ︸

(c)

+ u⃗ · E⊤
aug,j︸ ︷︷ ︸

(d)

,
(V.6)

where u⃗ ∈ RC is a learnable static key regardless of the query position.

• Term (a) alone is the vanilla SA, which represents joint-to-joint attention.
• Term (b) computes the joint-to-hyperedge attention between the ith query and the

corresponding hyperedge of the jth key.
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• Term (c) is the term for injecting the structural information of human skeleton with
k-Hop Relative Positional Embedding.

• Term (d) is intended for calculating the attentive bias of different hyperedges
independent of the query position. It assigns the same amount of attention to each
joint connected to a certain hyperedge.

Note that terms (a) and (b) can be combined by distributive law and require merely
an extra step of matrix addition. Moreover, term (d) has O(|V|C2) complexity and thus
requires negligible computation in comparison to term (a).
Relational Bias Transformers assume the input tokens to be homogeneous, whereas human
body joints are inherently heterogeneous, e.g., each physical joint plays a unique role
and thus has different relations to others. Taking the heterogeneity of the skeleton data
into account, we propose to represent the inherent relation of each joint pair as a scalar
trainable parameter Bij, called Relational Bias (RB). It is added to the attention scores
before aggregating the global information:

y⃗i =
n∑

j=1
(Aij + Bij)v⃗j, (V.7)

4.4. Partition strategy

(a) Empirical parti-
tion a.

(b) Empirical parti-
tion b.

(c) Learned parti-
tion a.

(d) Learned parti-
tion b.

Figure V.3.: Visualization of the empirical and learned partitions. Different node colors
stand for different subgroups for each partition strategy.

Empirically, human skeletons could be divided into a number of body parts, which
have been well studied in previous work [218, 111, 211]. We experimentally show that
our Hyperformer with empirical partitions yields excellent performance. However, finding
an optimal empirical partition strategy is laborious and the optimal partition strategy is
restricted to a certain skeleton with a fixed number of recorded joints. In this chapter, we
also provide an approach to automate the search process for an effective partition strategy.

To make the partition matrix learnable, we parameterize and relax the binary partition
matrix to its continuous version by applying a softmax along its column axis:

H̃ = {h̃ve = exp(hve)∑|E|
e=1 exp(hve)

; i = 1...|V|, j = 1...|E|}. (V.8)

67



Chapter V. Incorporating Structural Prior into Attention for Skeleton-Based Action Recognition

The problem of finding an optimal discrete partition matrix H is thus reduced to learning
an optimal continuous partition matrix H̃, which can be optimized jointly with Transformer
parameters.

At the end of the optimization, a discrete partition matrix can be obtained by applying
an argmax operation along each row of H̃:

H = argmax(H̃). (V.9)

Note that a number of different proposals can be easily acquired by varying the initialization
of H̃. We experimentally show that all the proposals prove to be reasonable. Interestingly,
all the learned proposals are symmetric as shown in Fig. V.3, indicating that symmetry is
an important aspect of inherent joint relations.

Frame t

Frame t+1

Fram t+3

Fram t+2

Summed Attention 

query

Stand straight and swing the hands

query

Joint-to-joint Joint-to-distance Joint-to-group Attentive bias

Bend the knees and lean forward 

Figure V.4.: Visualization of the attention scores for the action class "Jump Up". The
directed edges represent the attention weights w.r.t. the query joint of left wrist and range
from light orange to dark red with the increase of the weights. The black edges stand
for the bones and the joints are assigned different colors according to their connected
hyperedges as in Fig. V.3 (c).

4.5. Model architecture
We first revisit the architectural design of Transformers for skeleton data. Then we built
our Hyperformer based on our analysis. HyperSA is employed for spatial modeling of each
frame and a lightweight convolutional module is adopted for temporal modeling, following
the design of state-of-the-art models [42, 38] in this field.
Spatial Modeling We apply Layer Normalization (LN) before the multi-head HyperSA and
add a residual connection to the output, following the standard Transformer architecture
[224]. Based on our analysis in Section 1, we further remove the Multi-Layer-Perceptron
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(MLP) layers. To introduce non-linearity, a ReLU layer is added after each block of spatial
and temporal modeling modules instead.
Temporal Modeling To model the temporal correlation of the human pose, we adopt the
Multi-Scale Temporal Convolution (MS-TC) module [38, 149, 42] for our final model. This
module contains three convolution branches with a 1 × 1 convolution to reduce channel
dimension, followed by different combinations of kernel sizes and dilations. The outputs
of convolution branches are concatenated.

Hyperformer is constructed by stacking HyperSA and Temporal Convolution layers
alternately as follows:

z(l) = HyperSA(LN(z(l−1))) + z(l−1) (V.10)
z(l) = TemporalConv(LN(z(l))) + z(l−1) (V.11)
z(l) = ReLU(z(l)) (V.12)

5. Experiments
In this section, we first compare our Hyperformer to state-of-the-art approaches on
skeleton-based human action recognition benchmarks and show the superior performance
of our model. Then we conduct an ablation study for a deeper understanding of our
proposed HyperSA. Finally, we evaluate our approach qualitatively by visualizing each
component of HyperSA.

5.1. Experimental settings
Datasets

We evaluate our proposed Hyperformer on three commonly adopted public datasets
NTU-RGB+D [198], NTU-RGB+D120 [144] and Northwestern-UCLA [227] which are
briefly introduced in the following.
NTU RGB+D [198] is a widely used dataset for skeleton-based human action recognition.
There are two benchmarks for evaluation including Cross-Subject (X-Sub) and Cross-View
(X-View) settings. For X-Sub, the training and test sets come from two disjoint sets of
20 subjects each. For X-View, the training set contains 37920 samples captured by the
camera views 2 and 3, and the test set includes 18960 sequences captured by camera view
1.
NTU RGB+D 120 [144] is an extension of NTURGB+D dataset with additional skeleton
sequences over 60 additional action classes. It is currently the largest available dataset
with 3D joint annotations for human action recognition and contains 32 setups, each of
which represents a different location and background.
Northwestern-UCLA [227] dataset is recorded by three Kinect sensors from different
viewpoints. It includes 1494 video sequences of 10 action categories.

Implementation details

All experiments are conducted with the PyTorch [171] deep learning library. We train the
model for a total number of 140 epochs with standard cross-entropy loss. The learning
rate is initialized to 0.025 and reduced at 110 and 120 epochs by 0.1, basically following
the strategy in [42]. For NTU RGB+D and NTU RGB+D 120, the batch size is set to 64,
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each sample is resized to 64 frames, and we adopt the code of [267] for data pre-processing.
For Northwestern-UCLA, we use a batch size of 16, and follow the data pre-processing in
[41, 38]. Our code is based on the official implementations of [221], [38] and [267]. We
employ a model with a total number of 10 layers and 216 hidden channel dimensions for
all the experiments.

Table V.1.: Action classification performance on the NTU RGB+D and NTU RGB+D
120 dataset. Following the common setup, we report results using 4 modalities for a fair
comparison. We denote the methods that are not directly comparable with * (rely on
additional supervision signal or change the standard input data) and mark the methods
of which the code is unavailable for reproduction with gray. Please refer to Section 5.2 for
more details. InfoGCN [42] reports their results by ensembling 6 modalities, so we use
our reproduced results using 4 modalities for a fair comparison.
Category Methods Model Type Loss Modalities Parameters FLOPs NTU RGB+D 60 NTU RGB+D 120

X-Sub(%) X-View(%) X-Sub(%) X-Set(%)

Model

Shift-GCN [41] GCN

Cross-Entropy loss

J+B+JM+BM 2.8M 10.0G 90.7 96.5 85.9 87.6
DC-GCN+ADG [40] GCN J+B+JM+BM 4.9M 25.7G 90.8 96.6 86.5 88.1
MS-G3D [149] GCN J+B+JM+BM 2.8M 48.8G 91.5 96.2 86.9 88.4
MST-GCN [39] GCN J+B+JM+BM 12.0M 408.7G 91.5 96.6 87.5 88.8
EfficientGCN-B4 [210] Hybrid J+B+JM+BM 2.0M 15.2G 91.7 95.7 88.3 89.1
CTR-GCN [38] Hybrid J+B+JM+BM 1.5M 11.2G 92.4 96.4 88.9 90.4
ST-TR [176] Transformer J+B+JM+BM 12.1M 259.4G 89.9 96.1 82.7 84.7
DSTA [207] Transformer J+B+JM+BM 4.1M 64.7G 91.5 96.4 86.6 89.0
3Mformer (3rd-order) [228] Transformer - J+B+JM+BM 2.1M 35.5G 91.3 97.0 87.5 89.7
Hyperformer Transformer J+B+JM+BM 2.6M 14.8G 92.9 96.5 89.9 91.3

Training
InfoGCN* [42] Hybird + MMD losses J+B+JM+BM 1.6M - 92.3* 96.5* 89.2* 90.6*
CTR-GCN* [112] Hybrid + Graph Contrastive Learning J+B+JM+BM 1.5M - 93.1* 97.0* 89.5* 91.0*
CTR-GCN* [243] Hybrid + Language Supervised Training J+B+JM+BM 1.5M - 92.9* 97.0* 89.9* 91.1*
InfoGCN* [42] Hybird + MMD losses J 1.6M - 89.4* 95.2* 84.2* 86.3*
CTR-GCN [38] Hybrid J 1.5M 11.2G 89.8 94.8 84.9 86.7
Hyperformer Transformer J 2.6M 14.8G 90.7(+0.9) 95.1(+0.3) 86.6(+1.7) 88.0(+1.3)

Table V.2.: Action classification performance on the Northwestern-UCLA dataset.
Type Methods Acc (%)

CNN VA-CNN (aug.) [265] 90.7
Ta-CNN [246] 96.1

GCN 4s-shift-GCN [41] 94.6
DC-GCN+ADG [40] 95.3

Hybrid CTR-GCN [38] 96.5
InfoGCN [42] (*with MMD losses) 96.6*

Transformer Hyperformer 96.7

5.2. Comparison with state-of-the-art approaches
Following most recent state-of-the-art approaches [41, 252, 38, 39], we adopt a multi-
stream fusion strategy, i.e., there are 4 streams which take different modalities including
joint, bone, joint motion and bone motion as input respectively. Joint modality refers
to the original skeleton coordinates; bone modality represents the differential of spatial
coordinates; joint motion and bone motion modalities use the differential on temporal
dimension of joint and bone modalities, respectively. The softmax scores of 4 streams are
added to obtain the fused score.

The comparison on the three datasets is shown in Table V.1 and Table V.2, respectively.
As shown in Table V.1, our model reaches state-of-the-art results on all benchmarks,

70



5. Experiments

except the Cross-View Setup of NTU RGB+D dataset. For Cross-View bencharmk, our
Hyperformer performs slightly worse than DC-GCN [40] and MST-GCN [39]. Nevertheless,
these models have much larger sizes and computation budgets. The methods which rely
on additional losses are also not directly comparable. For example, InfoGCN [42] relies on
two additional MMD loss terms and a number of associated hyperparameters, including
loss coefficients, noise ratio and z prior gain. Language Supervised Training relies on
pretrained LLMs (GPT-3&CLIP) to leverage the correlations between lables for extra
supervision. NTU RGB+D 120 is a more challenging dataset, on which the results of
previous Transformer-based approaches are not satisfying. On the contrary, our model
achieves the best results among all model categories. This conforms to the findings
that attention mechanism benefits more from a large amount of data than Convolution
[63, 221]. It is noteworthy that later work 3Mformer [228] proposes another kind of
High-order Attention, but achieves inferior performance comparing to our Hyperformer
and is computationally heavier. Moreover, their code is unavailable for reproduction.
The Northwestern-UCLA dataset is particularly challenging since it contains much fewer
training samples, making it even harder for Transformer-based models to compete. With
the prior knowledge of bone connectivity and underlying high-order relations of joints,
our Hyperformer still yields state-of-the-art results in such a low-data regime.

5.3. Ablation study
In this section, we revisit the role of MLP layers for this task and compare Hyperformer
with the vanilla Transformer to show the effectiveness of our proposed model. We also
analyze the contribution of each component of our HyperSA. In addition, we compare our
learned partition strategy with empirical ones to show its effectiveness. For the ablation
study, all experiments are conducted on the X-sub benchmark of NTU RGB+D using the
joint modality as input only.

The design of Hyperformer

Before replacing standard SA layers with our HyperSA, we removed the MLP layers based
on the results in Table V.3. As can be seen, our HyperSA layers contribute most to
the final performance, with an significant improvement of 2.8% absolute accuracy. The
MS-TC module further improves over vanilla TC by 0.4%. In Table V.3, it can be seen
that our Hyperformer achieves significantly higher accuracy than the vanilla baseline with
fewer parameters thanks to the listed design choices. We provide more detailed results in
Table V.4, validating the effectiveness of each individual HyperSA components.

Table V.3.: Constructing Hyperformer from the baseline. Note that the MS-TC module
in our final model has fewer parameters than vanilla Temporal Convolution (TC) due to
the dimension reduction via 1x1 convolutions, see Fig. V.2

Model Parameters FLOPs Acc(%)
SA + MLP + TC 7.2M 25.6G 88.3
SA + TC 3.6M 14.1G 87.5
HyperSA + TC 4.1M 16.7G 90.3
HyperSA + MS-TC 2.6M 14.8G 90.7
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Table V.4.: The effectiveness of the HyperSA components.
Model Acc(%)
SA + TC 87.5
SA + TC + Joint-to-hyperedge attn 89.6
SA + TC + K-Hop RPE 89.5
SA + TC + Hyperedge Attentive Bias 89.6
Full HyperSA + TC 90.3

Effect of different partition strategies

Table V.5.: The effect of different partition strategies
Partition Strategy Acc(%)
Body Parts 90.5
Upper and Lower Body 90.4
Learned a 90.7
Learned b 90.7

In Table V.5, we compared empirical partitions (see Fig. V.3) to the learned partitions.
Note that we obtain different partition proposals when the model is trained with different
seeds. All proposals prove to be effective. Overall, Hyperformer delivers stable performance
and achieves the best result with a learned partition using the approach described in
Section 4.4.

5.4. Qualitative results

In order to showcase the effectiveness of our approach, we visualize the attention scores of
HyperSA and the four decomposed terms in Eq. (V.6) at the first layer in Fig. V.4. More
specifically, we draw the attention scores w.r.t. the query joint of left wrist for two single
frames respectively. The directed edges represent the attention weights and range from
light orange to dark red as attention score increases. The black edges stand for the bones
and the joints are assigned different colors according to their connected hyperedges.

At Frame t, the person stands straight and starts to swing the hands, preparing to jump
up. The joint-to-joint attention is distracted by a large number of joints, whereas the
joint-to-group attention concentrates on the upper body. As the sum of the four terms,
the final attention reasonably focuses on the hands and neck.

At Frame t+2, the person bends the knees and leans the upper body forward to squeeze
the leg muscles. Although the joint-to-joint attention is successfully attached to the feet
and waist, the knees and heels are less valued. This incomplete and unstable attention is
unavoidable due to the pairwise mechanism. However, our joint-to-group attention solves
this issue by exploiting the underlying group relation.
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6. Conclusion
In this chapter, we successfully incorporate the information of skeletal structure into
Transformer by proposing a relative positional embedding based on graph distance. This is
a more elegant solution than previous hybrid models. Moreover, we identified a limitation
of graph models for the task of skeleton-based action recognition, i.e., high-order joint
relations are ignored. Therefore, we propose a novel HyperSA layer to make Transformers
aware of these inherent relations. The resulting Hyperformer is the first Transformer that
establishes the state-of-the-art performance.
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Chapter VI.

Extending the Structural Prior with
Topological Analysis beyond Connectivity

This chapter extends the structural encoding approach introduced previously by incor-
porating topological features derived from persistent homology. While earlier methods
focused on capturing joint connectivity through graph distances, we now extract stable,
multi-scale topological summaries that reflect invariant structural patterns in skeletal data.
This shift moves beyond local connectivity to more global, shape-informed representations.

Building on our published work [283], we integrate these topological priors into Graph
Convolutional Networks for action recognition, achieving state-of-the-art results in skeleton-
based tasks. The findings demonstrate that our topological encoding offers a more
expressive representation than traditional connectivity-based priors.

1. Introduction
Skeleton-based action recognition has undergone a significant transformation, driven by
the need for computational efficiency and adaptability to varying environmental conditions,
particularly in fields such as medical applications. Early pioneering efforts predominantly
utilized Recurrent Neural Networks (RNNs) [64, 212, 266] and Convolutional Neural
Networks (CNNs) [122, 145], extracting features or pseudo-images from human joint data
to make predictions. Despite reasonable performance, these approaches were inherently
constrained in modeling the intricate inter-dependencies between joints, which is crucial
for fine-grained action recognition.

Graph Convolutional Networks (GCNs) [52, 125, 193] have the potential to learn the
topology, but they fail to fully exploit the inherent skeletal structure due to two key
limitations: (1) The topology is initialized based on physical connections, but this vital
knowledge decays during training, limiting the retention of skeletal information. (2)
The single static topology struggles to capture diverse joint relationships that emerge
across complex actions. Therefore, while the graph modeling of GCNs is better suited to
handle skeletal data than CNNs or RNNs, they have difficulty fully capturing the intricate
multi-scale relationships within the human topology, which are crucial for sophisticated
skeleton-based action recognition.

Moreover, the single static graph topology in GCNs has limited expressivity to en-
capsulate the multi-scale semantic relationships that emerge through the hierarchical
representation learning process. Recent advanced methods have sought to mitigate this
issue by incorporating learnable topologies with impressive adaptability (e.g., [38, 40]).
However, as evidenced by empirical analysis, such techniques still tend to lose valuable
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Figure VI.1.: Performance vs. Model Size on NTU RGB+D 120 Cross-Subject. Our
BlockGCN improves over previous methods w.r.t. both performance and efficiency. [Best
viewed zoomed in]
topological knowledge acquired from the physical connections during network training.
While learnable topologies provide modeling flexibility, vital inductive biases from the
inherent skeletal topology are not effectively retained. The enriched semantics captured in
the optimized topology tend to deviate from the underlying physical connections, leading
to detrimental topological knowledge forgetting.

To remedy the topology fading issue, we propose a novel Topological Encoding approach
that represents the skeletal structure through relative distances between joint pairs on
the skeletal graph (Sec.3.2). This enables a more robust characterization of the physical
connections. Complementing this static encoding, we introduce an action-specific scheme
using persistent homology analysis – the resulting topological descriptor provides vital
insights into the skeletal dynamics across actions (Sec.3.2). Furthermore, we demonstrate
the redundancy in existing GCNs for multi-relational modeling (Sec. 3.1). To capture
substantial joint relationship variations across complex actions, current state-of-the-art
GCNs widely adopt ensemble convolutions and attention mechanisms, at the cost of
increased computation. To further address this inefficiency, we propose BlockGC, a
significant refinement to the standard Graph Convolution (Sec. 3.3). BlockGC proves to
be highly effective and efficient for multi-relational reasoning, reducing parameters by
over 40% while elevating performance beyond original GCNs. The key contributions of
the work presented in this chapter are summarized as three-fold:

(i) Identifying and restoring the overlooked skeletal topology in advanced GCNs via
novel topological encoding schemes. This includes a static encoding using graph
distances to retain bone connectivity and a dynamic encoding based on persistent
homology to capture action-specific topology.
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(a) Skeletal information is lost after training.
Darker color is larger weight.

(b) Ensemble of GCs (default choice of SOTA
models).

Figure VI.2.: We reveal the remaining issues of previous GCNs, namely "catastrophic
forgetting" of skeletal topology with learnable topology (see Fig. VI.2a) and inefficient
modeling of multi-relational joint co-occurrences (see Fig. VI.2b).

(ii) Devising BlockGC, an efficient and powerful graph convolutional block that reduces
parameters by over 40% while elevating modeling capabilities beyond original GCNs,
enabled by its block diagonal weight matrix.

(iii) Establishing new state-of-the-art performance on standard benchmarks without
reliance on extra supervision or attention. Our method demonstrates consistent
improvements averaging over 0.8% in accuracy against previous best-performing
approaches.

2. Related Work
2.1. Skeleton-based Action Recognition
Early approaches to skeleton-based action recognition relied on Recurrent Neural Networks
(RNNs) due to their ability to handle temporal dependencies [64, 212, 266]. Convolutional
Neural Networks (CNNs) were also employed, but they were found to be less effective
in explicitly capturing spatial interactions among body joints [122, 145]. Consequently,
the focus shifted to Graph Convolutional Networks (GCNs), which extend convolution
operations to non-Euclidean spaces and enable the explicit modeling of joint spatial
configurations [84, 247]. In the following, we primarily focus on these graph-based models
as they more comprehensively capture spatial relationships.

2.2. GCNs for Skeleton-based Action Recognition
Graph Convolutional Networks (GCNs) have significantly impacted skeleton-based action
recognition. We discuss previous GCNs in terms of the following aspects:
Adjacency Matrix: The choice of adjacency matrix in GCNs is crucial. Early works, such as
[249], used a fixed topology based on bone connectivity, demonstrating the effectiveness of
GCNs in action recognition. However, this rigid topology has inherent limitations. Recent
approaches have explored learnable adjacency matrices to capture relationships between
physically connected and disconnected joints [38, 40, 42, 78, 149, 208, 210, 242, 172, 178].
Our work builds on this idea and addresses the Catastrophic Forgetting associated with
learnable adjacency matrices, proposing a method to preserve bone connectivity.
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Multi-relational Modeling Methods Complexity Parameters

Vanilla GC (Baseline) O(|V|d2) d2 + |V|2
Ensemble of GCs O(K|V|d2) Kd2 + K|V|2
Ensemble of Adjacency Matrices O(|V|d2) d2 + K|V|2

Proposed BlockGC O( |V|d2

K ) d2

K + K|V|2

Table VI.1.: Comparison of different approaches for multi-relational modeling. We denote
the number of body joints, the number of hidden dimensions, and the number of group-
s/ensembles with |V|, d and K respectively, where d is much larger than V . Our BlockGC
has the least complexity and parameters but achieves the best performance.

Relative Positional Encodings: Relative positional information has proven important
in various domains, including Natural Language Processing [50, 98, 201] and Computer
Vision [240, 282, 147, 138, 139]. While relative positional encoding has been demonstrated
to be beneficial for Transformers on graph data [254], its significance for GCNs, especially
in the field of skeleton-based action recognition, remains unexplored. Our work aims to
fill this gap by proposing a novel method for relative positional encoding that preserves
the essential topological invariances in skeleton data.
Multi-Relational Modeling: Capturing multiple semantic relations with a single adjacency
matrix is challenging. Previous studies have proposed strategies to overcome this limitation.
One approach is the ensemble of GCs, as employed by Yan et al. [249], where three parallel
GCs at each layer are intended to operate on different partitions of joints according to their
distances to a reference node. However, we observed that each adjacency matrix tends to
become fully connected after learning, rendering the handcrafted partitions ineffective.
This setup is equivalent to ensembling multiple GCs at each layer, a technique adopted
in subsequent works [38, 40, 42, 149, 208, 249, 267]. Moreover, DecouplingGCN [40]
uses multiple adjacency matrices and a shared weight matrix for different feature subsets,
improving efficiency but reducing expressiveness.

Another approach is attention-based adaptation, as employed in recent works [38, 42,
78, 208, 278], which incorporate attention mechanisms or similar techniques to create a
data-dependent component of the topology, similar to Graph Attention Networks [225] and
Graphormer [254]. This approach allows for the dynamic adjustment of joint connections
based on relevance but is computationally heavy and requires extensive data for optimal
performance. In contrast to the above-mentioned approaches, our proposed BlockGC
enables the full power of multi-relational modeling by assigning a unique subset of weights
to each feature group, while being the most efficient thanks to its sparse convolution
weight matrix.

3. Method
In this section, we initially compare Graph Convolutional Networks (GCNs) that utilize
learnable adjacency matrices with Fully Connected Networks (FCNs). Through a com-
bination of theoretical and experimental analyses, we identify two primary challenges:
1) catastrophic forgetting of skeletal topology and 2) inefficient multi-relational mod-
eling(Sec. 3.1). To combat these limitations, we introduce a series of enhancements:
1) Topology Encoding aimed at retaining key skeleton properties (Sec. 3.2), and 2) an
enhanced graph convolution, termed BlockGC, designed to capture the implicit relations
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within joints at minimum cost (Sec. 3.3). The above innovations lead to the core building
block of our Model, as shown in (see Fig. VI.4a).

3.1. Problem Formulation
Within the realm of skeleton-based action recognition, the skeletal topology is inherently
defined as a graph GS = (V , E), where the vertices V represent the body’s joints, and the
edges E illustrate the connections between joints through bones. As a result, nearly all
cutting-edge methods [38, 40, 149, 208, 210, 242] consistently adopt the graph convolution
proposed by by [125], due to its simplicity and strong resistance to over-fitting:

H(l) = σ(A(l)H(l−1)W (l)) , (VI.1)

where A(l) ∈ R|V|×|V| is the adjacency matrix employed for spatial aggregation, H(l) ∈
R|V|×T ×d symbolizes the hidden representation, and W (l) ∈ Rd×d is the weight matrix
utilized for feature projection. Here, |V|, T , and d denote the number of joints, frames,
and hidden features, respectively. σ is the non-linear ReLU activation function, and the
superscript l indicates the layer number. Despite GCNs seeming adept at learning human
skeleton characteristics effectively, our experimental validation shows that this is not
entirely the case. To sum up, there are two main issues in existing GCNs, which will be
analyzed below.
P1: Catastrophic Forgetting of skeletal topology: Prior research can generally be catego-
rized into two groups: one [249] where the adjacency matrix is fixed to portray the skeleton
topology, and the other [38, 40, 42, 208] where the adjacency matrix is optimized during
training via gradient backpropagation1. Despite these advancements, GCNs (Eq. VI.1)
have been observed to struggle with accurate recognition of complex actions [40]. We
hypothesize that this performance bottleneck is related to the adjacency matrix A, as it
"catastrophically forgets" the skeleton topology during training. Our goal is to validate
this hypothesis through both theoretical and experimental approaches.

Theoretically, Graph Convolution with a learnable adjacency matrix can be interpreted
as a fully connected layer with a weight matrix Wspatial ∈ R|V|×|V|. In this light, GCNs
resemble ResMLP [220] and MLP-Mixer [219], which belong to a special type of Fully-
Connected-Networks (FCNs) for image classification. Similarly, GCNs with a learnable
adjacency matrix suffer from catastrophic forgetting [169] as FCNs during training,
resulting in the inability to preserve the original topological representation in the adjacency
matrix A, see Fig. VI.2a.

From an experimental perspective, we have rigorously confirmed the catastrophic
forgetting of skeleton topology (Table VII.1). Our results demonstrate that GCNs’
performance remains similar irrespective of the initialization states, suggesting that
existing GCNs entirely fail to maintain the topological skeleton in the adjacency matrix
A.

To validate our analysis that the information of bone connectivity is lost after training.
We also examined the learned weights of adjacency matrices at each layer of the GCN
baseline model. The statistics are provided in Fig. VI.3. As shown in the figure, the
learned adjacency matrices are totally different from each other at each layer, although
they are all initialized according to the bone connections.

1For details, please refer to related work.
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(a) Mean of A. (b) Std of A. (c) Bone connections.

Figure VI.3.: The statistics (mean and standard deviation) of the learned adjacency
matrices of GCN (Darker colors stand for larger weights). It can be seen that the learned
weights vary dramatically among different layers and deviate far from the bone connections,
which are used for initialization at the beginning of training.

P2: Inefficient multi-relational modeling: The interactions between joints are action-
dependent. For instance, during running, the movement of hands and feet primarily serves
to maintain balance, whereas when removing shoes, hands and feet interact more directly
and play a dominant role. Therefore, it is clear that a single adjacency matrix A in a
classic GCN (Eq. VI.1) cannot capture more than one type of interaction.

To overcome this issue, previous work has proposed the use of a layer-wise ensemble of
GCs or adjacency matrices (see Fig. VI.2b) and attention-based adaptation. For ensembles
of GCs, both parameters and computation increase linearly with the number of ensembles,
causing the model to become excessively large with many ensembles and to suffer from
over-fitting. As a result, the number of ensembles is typically limited to three.

For the ensemble of adjacency matrices [40] and attention-based adaptation [38, 42], a
single weight matrix is applied across the entire feature dimension, which constrains the
modeling capacity. Furthermore, our experimental results demonstrate that a significant
portion of the weight matrix is redundant (see Table VI.6).

3.2. Topological Encoding
GCNs with trainable adjacency matrices A tend to become insensitive to the underlying
skeletal topology, i.e., the bone connections, after training. However, incorporating bone
connections is beneficial as they convey substantial information about the action being
performed, such as how the bone connections physically constrain joint movements. To
address this issue, we introduce a method termed Topological Encoding, which efficiently
preserves such static information during training. Additionally, we consider the dynamic
topological features of the input pose sequence through persistent homology analysis,
which further illustrates the self-organizing dynamics in each action class. These two
complementary modules provide rich skeleton descriptions to enhance the representation
ability of GCNs. Theoretical explanations and intuitive descriptions of the persistent
homology analysis are provided in the supplementary material for further reference.

Static Topological Encoding

Bones connect the joints of the human body, physically restricting each joint’s movement
during an action. It is crucial to integrate this bone connectivity information to accurately
recognize the action. We propose a Static Topological Encoding to describe the skeletal
connection. This method encodes the relative distance between two joints on the skeletal
graph GS, using different distance measures such as Shortest Path Distance (SPD) or
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(a) Illustration of our proposed BlockGC (right) with Topological Encodings (left). Topology
Encodings preserve the information of skeletal structure, while BlockGC enables multi-relational
modeling, at the same time slashing the redundant convolution weights, thanks to its design of
a block diagonal weight matrix. ⊗ denotes matrix multiplication.

(b) Model architecture of our BlockGCN. L denotes the number of stacked layers.

Figure VI.4.: Visualization of our proposed approach.

distance in a level structure [59]. We adopt SPD for our final model due to its simplicity.

Bij = edi,j
with

di,j = min
P ∈Paths(GS)

{|P |, P1 = vi, P|P | = vj} , (VI.2)

where P1 and P|P | indicate the first and last vertex on the path P , and the weight parameter
Bij is retrieved from a trainable parameter table E = {eindex} and then assigned to each
joint pair according to their shortest path distances di,j through bone connections, as shown
in Fig. VI.4a. In this way, only the embedding weights, instead of adjacency matrices, are
optimized during training, ensuring that the bone connectivity information represented by
joint distances is preserved. The learned static topological encoding is shown in Fig. VI.5.
By incorporating the Static Topological Encoding, our model effectively captures the
essential structural information of the skeleton, leading to improved action recognition
performance.

Dynamic Topological Encoding

The algebraic topology tool of persistent homology [68] was proposed to extract char-
acteristics of topological objects of connected components and cycles of graph persist
across multiple scales [5], showing to be efficient in graph representation extraction [271,
186]. By encoding graphs into simplicial complexes, novel descriptors are exposed, which
include essential information on action-specific dynamics.

Given an input pose sequence, a weighted dynamic graph GD is composed by using
skeleton joints as nodes and the Euclidean distance between each joint pair as weights
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(a) Layer 1. (b) Layer 2. (c) Layer 3.

Figure VI.5.: The learned Static Topological Encoding. It shows that the learned weights
are diverse and adapted to different levels of semantics at each layer.

denoted by wij. The key idea for persistent homology analysis is that we consider the
filtration of Gϵ1

D ⊆ Gϵ2
D ⊆ . . .Gϵm

D = G instead of a single object of GD. With K representing
the abstract simplicial complexes for each graph and Ki = Gϵi

D (in which i = 1, 2, . . . , m
denotes one of the subgraph or subcomplex), the graph filtration is defined as:

∅ = K0 ⊆ K1 ⊆ K2 . . . ,⊆ Km = K (VI.3)

We apply Vietoris-Rips complex [5] to build simplicial complexes from the graphs due to
its computational advantages. Through the graph filtration construction, the birth-death
barcodes of different topological objects are extracted as summaries of the graph topology.
The corresponding persistence diagram of the barcodes is presented as a multi-set in
R2 of {D0

1,D0
2, . . . ,D0

p} in which D0
i = {(b0

i , d0
i )} and k means the number of connected

components (here the superscript 0 denotes the 0-dimensional homology named connected
components, while 1-dimensional homology for cycles). As shown in Fig. VI.6, the obtained
barcodes reveal clear inter-action similarities and intra-action differences.

Figure VI.6.: Barcodes of “brush hair" (top) and “shake hands" (bottom). Large Inter-
action similarities and intra-action differences can be observed among different samples in
each group.

Then we adopt the differentiable vectorization [106] Ψ0 : {D0
1,D0

2, . . . ,D0
p} → R|V|×d′

on the barcodes, and project the obtained representation to GCN hidden layers’ feature
space through a mapping fθ : R|V|×d′ → R|V|×d at each layer:

C = fθ

(
Ψ0

(
D0

1,D0
2, . . . ,D0

p

))
, (VI.4)
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where fθ is parameterized by a linear layer. The procedure is depicted in Fig. VI.4a. This
encoding is input-dependent and hence termed “dynamic”.

Finally, we add the obtained static and dynamic topological encoding to the adjacency
matrix and hidden feature at each layer (the superscript (l) denotes the layer number),
respectively, to obtain the final formulation of spatial aggregation:

H(l) = σ((A(l) + B(l))(H(l−1) + C(l))W (l)). (VI.5)

3.3. Efficient Multi-Relational Modeling
Joint co-occurrences inherently involve multiple relations, as discussed in Section 3.1,
which necessitate modeling various semantics. A single adjacency matrix is insufficient
to handle such complexity. Previous approaches, detailed in Section 2, have limitations
in computational efficiency or theoretical constraints, preventing the full potential of
GCNs from being realized. To overcome this, we propose BlockGC, which allows efficient
modeling of different high-level semantics. Our proposed BlockGC not only reduces
computation and parameters but also proves to be more effective than previous methods.

As illustrated in Fig. VI.4a (top right), the feature dimension is first divided into K
groups, and then spatial aggregation and feature projection are applied in parallel within
each kth group. The corresponding formula is as follows:

H(l) = σ(

 (A1 + B1)(H(l−1)
1 + C

(l−1)
1 )

. . .

(AK + BK)(H(l−1)
K + C

(l−1)
k )


 W

(l)
1

. . .

W
(l)
K

) (VI.6)

where Hk ∈ R|V|×T ×d/K and Wk ∈ Rd/K×d/K . {Wk, k = 1, ..., K} are arranged as a block
diagonal matrix, leading to parameter reduction and making the projected feature groups
independent from each other. This is a desired property, as each group is intended to
model a kind of semantics that are also independent from each other. Thanks to the
decoupled feature projection, our method enables GCN the full power for multi-relational
modeling. Compared to DecouplingGCN [40] and attention-based adaptation of adjacency
matrix, our BlockGC not only significantly reduces parameters and computation (BlockGC
O( |V|d2

K
), GC O(|V|d2), Decoupling GC O(|V|d2)), but also leads to improved performance.

3.4. Model Architecture
We built our final model, named BlockGCN, based on the above-described Topological
Encodings and BlockGC. To model the temporal correlation of the skeleton sequences,
we employ the multi-scale temporal convolution module [38, 42, 149]. It consists of three
convolution branches with a 1 × 1 convolution for dimension reduction and different
combinations of kernel sizes and dilations. The outputs of convolution branches are
concatenated as the final output.

The final model is constructed by stacking our BlockGC and the multi-scale temporal
convolution modules alternately 10 times as shown in Fig. VI.4b (the Topological Encodings
are omitted for simplification). The final output of our model is produced by applying
a global pooling operation over both the joint and temporal dimensions, followed by a
softmax operation over the class dimension.
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Table VI.2.: Action classification performance on the NTU RGB+D and NTU RGB+D
120 dataset. Following the common setup, we report results using 4 modalities for a fair
comparison. We denote the methods that are not directly comparable with * (rely on
additional supervision signal or change the standard input data) and mark the methods
of which the code is unavailable for reproduction with gray. Please refer to Section 4.2 for
more details. InfoGCN [42] reports their results by ensembling 6 modalities, so we use
the reproduced results using 4 modalities by [112] for a fair comparison. In this table, we
also omit the results without publicly available code for reproduction.
Methods Publication Category Extra Loss/Data Modalities Parameters FLOPs NTU RGB+D 60 NTU RGB+D 120 NW-UCLAX-Sub(%) X-View(%) X-Sub(%) X-Set(%)
DC-GCN+ADG [40] ECCV 2020 GCN J+B+JM+BM 4.9M 1.83G 90.8 96.6 86.5 88.1 95.3
MS-G3D [149] CVPR 2020 GCN J+B+JM+BM 2.8M 5.22G 91.5 96.2 86.9 88.4 -
MST-GCN [39] AAAI 2021 GCN J+B+JM+BM 12.0M - 91.5 96.6 87.5 88.8 -
CTR-GCN [38] ICCV 2021 Hybrid J+B+JM+BM 1.5M 1.97G 92.4 96.4 88.9 90.4 96.5
EfficientGCN-B4 [210] TPAMI 2022 Hybrid J+B+JM+BM 2.0M 15.2G 91.7 95.7 88.3 89.1 -
InfoGCN [42] CVPR 2022 Hybrid J+B+JM+BM 1.6M 1.84G 92.3 96.7 89.2 90.7 96.6
FR Head [275] CVPR 2023 Hybrid J+B+JM+BM 2.0M - 92.8 96.8 89.5 90.9 96.8
BlockGCN GCN J+B+JM+BM 1.3M 1.63G 93.1 97.0 90.3 91.5 96.9
CTR-GCN* [243] ICCV 2023 Hybrid + Language Supervison J+B+JM+BM - - 92.9* 97.0* 89.9* 91.1* 97.2*
HDGCN* [134] ICCV 2023 Hybrid Without Motion Modality J+B+J’+B’ 1.7M 1.77G 93.0* 97.0* 89.8* 91.2* 96.9*
InfoGCN [42] CVPR 2022 Hybrid J 1.6M 1.84G 89.8 95.2 85.1 86.3 -
HDGCN [134] ICCV 2023 Hybrid J 1.7M 1.77G - - 85.7 87.3 -
FR Head [275] CVPR 2023 Hybrid J 2.0M - 90.3 95.3 85.5 87.3 -
BlockGCN GCN J 1.3M↓0.7 1.63G 90.9↑0.6 95.4↑0.1 86.9↑1.4 88.2↑0.9 95.5

4. Experiments
In this section, we comprehensively evaluate our proposed BlockGCN on standard bench-
marks for skeleton-based action recognition. Our empirical results showcase that our
model exceeds the performance of existing state-of-the-art methods. Furthermore, we
present an intricate analysis exploring the significance of topological information within
GCN-based models for action recognition. We also carried out an ablation study to
assess the efficacy of our novel Topological Encodings and BlockGC. Remarkably, we
employ the standard cross-entropy loss in all our experiments to ensure an impartial
assessment of our architecture and to uphold direct comparability with prior works. We
gauge the performance of our BlockGCN on three widely-used benchmark datasets for
skeleton-based human action recognition: NTU RGB+D [198], NTU RGB+D 120 [144],
and Northwestern-UCLA [227].

4.1. Implementation Details
Our implementation is mainly based on a Tesla V100 GPU. The model was optimized via
Stochastic Gradient Descent (SGD) with Nesterov momentum set at 0.9 and a weight
decay of 0.0004 for NTU RGB+D and NTU RGB+D 120, and 0.0002 for Northwestern-
UCLA. Our experiments employed cross-entropy loss and initiated the learning rate at
0.05, reducing it by a factor of 10 at epochs 110 and 120. For NTU RGB+D and NTU
RGB+D 120, we opted for a batch size of 64 and resized each sample to 64 frames. For
Northwestern-UCLA, we selected a batch size of 16. Our implementation builds upon the
official code [38] and our training setup follows the strategy used in [42, 38].

4.2. Comparison with State-of-the-art
To establish a fair comparison, we employed the commonly accepted 4-Stream fusion
approach in our experiments. In particular, we input four different modalities: Joint,
Bone, Joint Motion, and Bone Motion. The joint and bone modalities denote the original
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Table VI.3.: Ablation on the adjacency matrix initialization. Note that SkeletonGCL [112]
proposes a novel framework for training GCNs with additional contrastive loss.

Model
Initialization

Bone
Connection

Identity
Matrix

All
Ones

Kaiming
Uniform [97]

DecouplingGCN [40] 82.0 81.9 81.7 82.1
SkeletonGCL [112] 84.4 84.3 84.8 84.3
CTRGCN [38] 84.9 85.0 84.8 84.8

skeleton coordinates and their derivatives with respect to bone connectivity, respectively.
The joint and bone motion modalities compute the temporal differential of the joint and
bone modalities. Subsequently, we amalgamate the predicted scores of each stream to
produce the final fused results. For a fair evaluation, we only consider the results of
previous methods (e.g., InfoGCN [42], HDGCN [134]) that utilize four modalities.

We compare our BlockGCN with state-of-the-art methods on NTU RGB+D, NTU
RGB+D 120, and Northwestern-UCLA in Table VI.2. It is noteworthy that the recently
published works [65, 243, 134] are not directly comparable to our method. PoseC3D [65]
achieves improved results by incorporating additional RGB input, but this necessitates
significant computational overhead. GAP [243] relies on pre-trained LLMs (GPT-3&CLIP)
to leverage the correlations between labels for extra supervision. HDGCN [134] replaces
the weaker motion modalities with their hand-crafted modalities, which contributes a
lot to their final results. As can be seen in the results using joint modality alone, the
performance of HDGCN [134] is indeed on par with FR Head [275].

Our BlockGCN establishes new state-of-the-art performance on the common benchmarks,
showing an improvement of 0.5% accuracy on average over the previous state-of-the-art
FR Head [275]. Notably, this is achieved with 35% fewer parameters. The performance
gaps seem mild for all recent approaches mainly because the reported results use an
ensemble of 4 modalities. The actual improvement of our method is remarkable (0.8%)
when using the single joint modality alone.

4.3. Ablation Analysis
We delve into an experimental evaluation of the effectiveness of each component of our
method. All ablation studies are carried out on the X-sub benchmark of NTU RGB+D
120, utilizing a single joint modality, if not specified. We initiate the study by examining
the impact of different initializations for the adjacency matrix.
Implications of Adjacency Matrix Initialization: We scrutinize various strategies for
initializing the adjacency matrix, ranging from special initialization leveraging physical
connections as adopted by previous work, to more topology-agnostic approaches. For
this experiment, we engage three different GCNs, as shown in Table VI.3. Our results
suggest that simply initializing the adjacency matrix based on physical connections does
not suffice to exploit the skeletal topology effectively, thereby inspiring our proposed
Topological Encodings to preserve such information.
Effectiveness of Individual Components: We enhance the vanilla GCN baseline by sup-
planting the vanilla GC with our BlockGC layers and incorporating the topological
encodings. Our BlockGC substantially reduces the parameters by 43% (0.9M), while
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Table VI.4.: Ablation on BlockGC and Topological Encodings using vanilla GCN as the
baseline. PE denotes the learnable absolute positional embedding [42] added to the input
pose sequence before the first layer of our network.

GC BlockGC PE Encoding Params Acc(%)dynamic static

✓ - - - - 2.1M 85.2
- ✓ - - - 1.2M (-0.9M) 85.8
- ✓ ✓ - - 1.2M 86.0
- ✓ ✓ - ✓ 1.2M 86.2
- ✓ ✓ ✓ - 1.3M (+0.1M) 86.7
- ✓ ✓ ✓ ✓ 1.3M 86.9

simultaneously improving the performance. The introduction of dynamic topological
encoding marginally increases the parameter count but significantly bolsters performance
by 0.7%. By integrating our BlockGC with both topological encodings, we outperform
the baseline model by 1.7%, while concurrently reducing the parameters by approximately
38% as listed in Table VI.4.
Shared vs. Feature-wise Encodings: In comparison to a shared encoding for all feature
dimensions, feature-wise encoding provides a larger capacity at the expense of an increase in
parameters. For our static topological encoding, given the simplicity of the graph distance
(discrete and one-dimensional), a shared encoding is adequate. Consequently, we simply
employ a shared static topological encoding. In contrast, Euclidean distance is continuous
and spans three dimensions, necessitating a larger capacity to retain such information. As
demonstrated in Table VI.5, the effectiveness of shared dynamic topological encoding is
restricted.

Table VI.5.: Feature-wise vs. shared Encoding.

Toplogical Encoding Encoding Dimension Acc(%)shared feature-wise

Dynamic ✓ - 86.5
- ✓ 86.9

Static ✓ - 86.9
- ✓ 86.7

Contrasting BlockGC with DecouplingGC: We pit our BlockGC against DecouplingGC
[40] in Table VI.6. As analyzed in Table VI.1, DecouplingGC is essentially using an
ensemble of adjacency matrices, which has theoretically larger complexity and more
parameters than our BlockGC. Here, we validate the parameter reduction and performance
improvement of BlockGC through experiments. Notably, the count of spatial weight
parameters inversely correlates with the number of groups, while the number of adjacency
matrices increases concurrently. As a result, our BlockGCs with varying groups possess a
similar number of parameters. BlockGC significantly trims down the parameters compared
to vanilla GC by almost half (43%), yet it still attains a substantial improvement against the
baseline (approximately 0.6%). This result is noteworthy as it highlights the redundancy
in the extensive parameters in the convolution weight matrix for feature projection and
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corroborates our analysis in Section 3.3 that the decoupling of features across different
groups is a beneficial attribute.

Table VI.6.: BlockGC vs. DecouplingGC [40].
Layer Groups Parameters Acc(%)

Vanilla GC (Baseline) 1 2.1M 85.2
4 2.1M 85.5

DecouplingGC 8 2.2M 85.6
16 2.3M 85.4

BlockGC (ours)
4 1.2M 85.7
8 1.2M (-0.9M) 85.8
16 1.2M 85.6

Numbers of Inserted Topological Encoding: We study the effectiveness of the number
of layers that are integrated with our topological encoding, and the results are shown in
Table VI.7. It shows that repetitively providing the topological information of the input
pose sequence to the hidden layers benefits the classification performance.

Table VI.7.: Number of inserted lay-
ers.

Layers Acc. (%)

0 86.0
1 86.4
5 86.7
10 86.9

Table VI.8.: Impacts of Barcodes’ Vectorization Fea-
ture Size.

Dimension Parameters Acc. (%)

32 1.26M 86.5
64 1.32M 86.9
128 1.44M 86.4

Barcodes’ Vectorization Feature Size: We evaluate the impacts for the dimension of the
Barcode vectorization feature (namely d′ as the output of Ψ(·)) (see Table VI.8). The
performance improves with increased dimension, and decreases again with the dimension
of 128. Therefore, we adopt 64 as the size of the vectorization feature vector.

5. Discussion
Broader Impact. Skeleton-based action recognition is computationally more efficient
compared to video-based action recognition and therefore finds its application in a broad
range of real-world scenarios with limited resources. Additionally, skeleton data erases
the identities of human subjects, such that there’s a special advantage regarding privacy
protection, e.g., for medical purposes and violent intent detection.
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Part II.

Part Two: Probabilistic Scoring in
Prediction

89





Accurate and reliable probabilistic scoring at the output layer is fundamental to both
discriminative and generative models. In classification tasks, the widespread use of
Softmax combined with cross-entropy loss has become a standard paradigm, providing
a normalized predictive distribution over classes. While effective, this approach often
leads to overconfident predictions and poor calibration. To mitigate overconfidence,
label smoothing has been widely adopted by assigning soft targets. However, despite its
popularity, label smoothing suffers from representation collapse and the reinforcement of
erroneous predictions with unjustified confidence.

To address these challenges, we propose a novel regularization strategy designed to
reduce overconfidence in erroneous predictions and preserve feature diversity, thereby
improving classification performance and transferability.

Beyond classification, probabilistic scoring plays a crucial role in generative tasks such
as open-ended text generation. Direct sampling from the Softmax distribution risks
producing low-quality outputs, while deterministic decoding methods like greedy decoding
or beam search often yield repetitive or overly predictable results. Balancing diversity
and coherence in generated outputs remains a fundamental challenge.

In this context, the thesis presents a systematic framework for the fair evaluation of
various adaptive sampling methods in large language models. This evaluation compares
their inherent capacities to balance diversity and risk, independent of parameter tuning.
Based on these insights, practical guidelines are provided to assist users in selecting suitable
sampling methods and parameter settings, making these approaches more accessible and
effective in practice.
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Chapter VII.

Overcoming the Error-Enhancement
Defect in Label Smoothing for Image
Classifiers

This chapter contributes to the overarching goal of this thesis—advancing neural prob-
abilistic scoring—by tackling a fundamental challenge in discriminative classification.
Whereas earlier chapters focused on enhancing representation learning through improved
attention mechanisms, here we investigate how training targets influence model confidence
and the structure of learned features.

Label Smoothing (LS) is widely used to improve model calibration and accuracy.
However, it can unintentionally encourage overconfidence in misclassified samples and
lead to overly compressed intra-class features, limiting generalization and transferability.

To address these issues, we introduce Max Suppression (MaxSup), a novel regularization
technique that retains the beneficial effects of LS while removing its error-enhancement
component. MaxSup promotes richer intra-class variation and more robust feature repre-
sentations, resulting in improved classification accuracy and downstream task performance.

By exposing and rectifying the hidden pitfalls of LS, this chapter provides a crucial
advancement toward principled probabilistic scoring methods that enhance both predictive
reliability and the quality of learned representations.

1. Introduction

Figure VII.1.: Comparison of Label Smoothing (LS) and MaxSup. Left: MaxSup miti-
gates the intra-class compression induced by LS while preserving inter-class separability.
Right: Grad-CAM visualizations show that MaxSup more effectively highlights class-
discriminative regions than LS.

Multi-class classification [189, 132] conventionally relies on one-hot labels, implicitly
treating each class as if it were completely orthogonal to every other. In reality, however,
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classes often share low-level attributes [260, 209] or exhibit high-level semantic similari-
ties [36, 253, 166], which makes the strict orthogonality assumption overly simplistic. This
mismatch can lead to over-confident classifiers, ultimately reducing generalization [91].

To address overconfidence, Szegedy et al. [216] introduced Label Smoothing (LS),
blending a uniform distribution with the hard label to reduce the model’s certainty in
the target class. LS has become a mainstay in both image recognition [96, 221, 147, 282]
and neural machine translation [80, 6], often improving accuracy and calibration [161].
However, studies have also revealed that LS can produce overly tight clusters in the feature
space [127, 191, 245], thereby lowering intra-class diversity and harming transferability [72].
Meanwhile, Zhu et al. [284] reported that LS inadvertently increases confidence in incorrect
predictions, though the exact cause remained unclear.

In this chapter, we show that LS’s training objective inherently contains an error-
enhancement term that amplifies misclassified predictions, thus causing overconfident
errors and tighter feature clusters (Section 3.1, Table VII.1). Extending Zhu et al. [284], we
define “overconfidence” in terms of the network’s top-1 prediction rather than calibration-
based criteria. Our analysis further demonstrates that penalizing the ground-truth logit in
misclassifications compresses the feature space, reducing intra-class variation (Table VII.2),
as corroborated by Grad-CAM visualizations (Fig. VII.3).

To overcome these limitations, we propose Max Suppression (MaxSup), which retains
LS’s desirable regularization effect while eliminating its error-enhancement component.
Rather than penalizing the ground-truth logit, MaxSup penalizes the largest logit, thus
providing consistent regularization regardless of prediction correctness. By preventing
ground-truth suppression during misclassification, MaxSup preserves richer intra-class
variation and improves inter-class separability. As illustrated in Figure VII.1, this alleviates
the compression and attentional shortcomings introduced by LS, leading to more robust
feature representations. Extensive experiments on both image classification and semantic
segmentation confirm that MaxSup not only alleviates intra-class collapse but also boosts
final accuracy, enhances generalization, and strengthens transfer performance.

Our contributions are summarized as follows:
• We present a logit-level analysis of Label Smoothing that unearths an ‘error-

enhancement” term, revealing how LS inadvertently reinforces overconfidence in
misclassified samples.

• We propose Max Suppression (MaxSup), which preserves LS’s desired regularization
while removing its detrimental error-enhancement component, thereby reducing intra-
class compression and boosting both classification and downstream task performance.

2. Related Work
We survey regularization techniques before focusing on Label Smoothing (LS) and high-
lighting how MaxSup differs.

2.1. Regularization
Regularization enhances the generalization of deep neural networks by limiting model
complexity through various strategies. Classical approaches such as ℓ2 [129] and ℓ1 [287]
regularization constrain large or sparse weights, respectively, while Dropout [213] randomly
deactivates neurons to prevent feature co-adaptation. Among loss-based methods, Label
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Smoothing (LS) [216] redistributes probability mass away from the ground-truth class,
improving both accuracy and calibration [161]. Variants like Online Label Smoothing
(OLS) [263] and Zipf Label Smoothing (Zipf-LS) [141] adapt LS by considering the model’s
evolving predictions, yet they still fail to address the fundamental issue that arises when the
ground-truth logit is not maximal (Section 3.1, Table VII.1). Other loss-based regularizers,
such as Confidence Penalty [173] and Logit Penalty [51], target different aspects of the
output distribution. Confidence Penalty discourages overconfident predictions, whereas
Logit Penalty minimizes the global ℓ2-norm of logits to improve feature separability [127].
However, Logit Penalty can reduce intra-class variation, impairing transfer learning
(Section 4).

Our MaxSup approach MaxSup diverges from these methods by selectively penalizing
only the top-1 logit (zmax) rather than the ground-truth logit (zgt). Unlike LS-based
techniques, which can exacerbate errors by excessively shrinking zgt for misclassified
samples, MaxSup uniformly applies regularization to all predictions, regardless of correct-
ness. Consequently, it effectively sidesteps the error-enhancement issue, preserves richer
intra-class diversity (Table VII.2), and sustains robust transfer performance across various
datasets and architectures (Table VII.3).

2.2. Studies on Label Smoothing
Label Smoothing (LS) has also been extensively examined in the context of knowledge
distillation. Yuan et al. [257] showed that LS can act as a proxy for distillation, while
Shen et al. [203] explored its role within teacher–student frameworks. Chandrasegaran
et al. [29] further demonstrated that a low-temperature, LS-trained teacher can improve
distillation performance. Meanwhile, Kornblith et al. [127] found that LS tightens class
clusters in feature space, reducing transfer performance. From a Neural Collapse (NC)
perspective [276, 90], LS drives the model toward rigid feature clusters, a phenomenon
measured by Xu and Liu [245] via a variability metric.

Comparison with existing LS techniques Our primary objective is to mitigate the
error-enhancement effect. Instead of refining a smoothed label, as in OLS or Zipf-LS,
MaxSup directly penalizes the highest logit zmax. This simple yet effective modification
ensures uniform regularization even when zgt is not the top logit, thereby maintaining
greater intra-class diversity and avoiding the performance degradation common to LS-
based approaches (Section 3.2). Additionally, MaxSup integrates seamlessly with standard
training pipelines, requiring no extra computational overhead beyond simply replacing LS.

3. Max Suppression Regularization (MaxSup)
We first partition the training objective into two components: the standard Cross-Entropy
(CE) loss and a regularization term introduced by Label Smoothing (LS). By expressing
LS in terms of logits (Theorem 3.3), we isolate two key factors: a regularization term that
controls overconfidence and an error-enhancement term that enlarges the gap between the
ground-truth logit zgt and any higher logits (Corollary 3.4, Equation (VII.5)), ultimately
degrading performance. To address these shortcomings, we propose Max Suppression
Regularization (MaxSup), which applies the penalty to the largest logit zmax rather
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than to zgt (Equation (VII.8), Section 3.2). This shift delivers consistent regularization
for both correct and incorrect predictions, preserves intra-class variation, and bolsters
inter-class separability. Consequently, MaxSup mitigates the representation collapse found
in LS, attains superior ImageNet-1K accuracy (Table VII.1), and improves transferability
(Table VII.2, Table VII.3). The following sections elaborate on MaxSup’s formulation and
its integration into the overall training pipeline.

3.1. Revisiting Label Smoothing
Label Smoothing (LS) is a regularization technique designed to reduce overconfidence by
softening the target distribution. Rather than assigning probability 1 to the ground-truth
class and 0 to all others, LS redistributes a fraction α of the probability uniformly across
all classes:

Definition 3.1. For a classification task with K classes, LS converts a one-hot label y ∈ RK

into a soft label s ∈ RK :
sk = (1− α)yk + α

K
, (VII.1)

where yk = 1{k=gt} denotes the ground-truth class. The smoothing factor α ∈ [0, 1]
reduces the confidence assigned to the ground-truth class and distributes α

K
to other

classes uniformly, thereby mitigating overfitting, enhancing robustness, and promoting
better generalization.

To clarify the effect of LS on model training, we first decompose the Cross-Entropy
(CE) loss into a standard CE term and an additional LS-induced regularization term:

Lemma 3.2. Decomposition of Cross-Entropy Loss with Soft Labels.

H(s, q) = H(y, q) + LLS, (VII.2)

where
LLS = α

(
H
(

1
K

, q
)
− H(y, q)

)
. (VII.3)

Here, q is the predicted probability vector, H(·) denotes the Cross-Entropy, and 1
K

is the
uniform distribution introduced by LS. This shows that LS adds a regularization term, LLS,
which smooths the output distribution and helps to reduce overfitting. (See Appendix 1 for
a formal proof.)

Building on Lemma 3.2, we next explicitly express LLS at the logit level for further
analysis.

Theorem 3.3. Logit-Level Formulation of Label Smoothing Loss.

LLS = α
(

zgt −
1
K

K∑
k=1

zk

)
, (VII.4)

where zgt is the logit corresponding to the ground-truth class, and 1
K

∑K
k=1 zk is the average

logit. Thus, LS penalizes the gap between zgt and the average logit, encouraging a more
balanced output distribution and reducing overconfidence. (See Appendix 2 for the proof.)
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The behavior of LLS differs depending on whether zgt is already the maximum logit.
Specifically, depending on whether the prediction is correct (zgt = zmax) or incorrect
(zgt ̸= zmax), we can decompose LLS into two parts:

Corollary 3.4. Decomposition of Label Smoothing Loss.

LLS = α

K

∑
zm<zgt

(
zgt − zm

)
︸ ︷︷ ︸

Regularization

+ α

K

∑
zn>zgt

(
zgt − zn

)
︸ ︷︷ ︸

Error-Enhancement

, (VII.5)

where M and N are the numbers of logits below and above zgt, respectively (M +N = K−1).
Note that the error-enhancement term vanishes when zgt = zmax.

(i) Regularization: Penalizes the gap between zgt and any smaller logits, thereby moder-
ating overconfidence.

(ii) Error-Enhancement: Penalizes the gap between zgt and larger logits, inadvertently
increasing overconfidence in incorrect predictions.

Although LS aims to combat overfitting by reducing prediction confidence, its error-
enhancement component can be detrimental for misclassified samples, as it widens the
gap between the ground-truth logit zgt and the incorrect top logit. Concretely:

(i) Correct Predictions (zgt = zmax): The error-enhancement term is zero, and the
regularization term effectively reduces overconfidence by shrinking the gap between
zgt and any smaller logits.

(ii) Incorrect Predictions (zgt ̸= zmax): LS introduces two potential issues:
• Error-Enhancement: Increases the gap between zgt and larger logits, reinforcing

overconfidence in incorrect predictions.
• Inconsistent Regularization: The regularization term lowers zgt yet does not

penalize zmax, which further impairs learning.
These issues with LS on misclassified samples have also been observed in prior work [241].
By precisely identifying these two components (regularization vs. error-enhancement), we
can design a more targeted solution.

Ablation Study on LS Components To gauge the influence of each LS component, we
conduct an ablation study on ImageNet-1K using a DeiT-Small model [221] without Mixup
or CutMix. As shown in Table VII.1, LS’s gains arise solely from the regularization term,
whereas the error-enhancement term degrades performance. In contrast, our proposed Max
Suppression Regularization (MaxSup) omits the error-enhancement effect and achieves
higher accuracy by retaining the beneficial regularization. From Table VII.1, it is evident
that LS’s overall accuracy boost is exclusively attributed to the regularization compo-
nent, whereas error-enhancement consistently degrades performance (73.63% or 73.69%).
Removing the error-enhancement term while keeping only the regularization improves
accuracy slightly (75.98% vs. 75.91%). Finally, by avoiding error-enhancement entirely
and preserving the helpful regularization, MaxSup achieves 76.12% accuracy—surpassing
LS. This result underscores that MaxSup directly addresses LS’s primary shortcoming by
consistently applying the intended regularization even when the model’s top-1 prediction
is incorrect.
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Table VII.1.: Ablation on LS components using DeiT-Small on ImageNet-1K (without
CutMix or Mixup). “Regularization” denotes penalizing logits smaller than zgt; “Error-
Enhancement” penalizes logits larger than zgt. MaxSup removes error-enhancement while
retaining regularization.

Method Formulation Accuracy

Baseline – 74.21

+ Label Smoothing
α
K

∑
zm<zgt

(zgt − zm) 75.91+ α
K

∑
zn>zgt

(zgt − zn)
+ Regularization α

M

∑
zm<zgt

(zgt − zm) 75.98
+ Error-Enhancement α

N

∑
zn>zgt

(zgt − zn) 73.63
+ Error-Enhancement α (zgt − zmax) 73.69

+ MaxSup α
(
zmax − 1

K

∑K
k=1 zk

)
76.12

3.2. Max Suppression Regularization

Label Smoothing (LS) suffers from two main limitations: inconsistent regularization and
error amplification. As discussed in Section 3.1 and illustrated in Table VII.1, LS penalizes
the ground-truth logit zgt even for misclassified examples, thereby unnecessarily widening
the gap between zgt and the incorrect top-1 logit. To address these critical shortcomings,
we propose Max Suppression Regularization (MaxSup), which explicitly penalizes the
largest logit zmax rather than zgt. This crucial shift ensures uniform regularization across
both correct and misclassified samples, effectively eliminating the error-amplification issue
seen in LS (Table VII.1), and preserving the integrity of the ground-truth logit for more
stable and robust learning performance.

Definition 3.5. Max Suppression Regularization
We define the Cross-Entropy loss with MaxSup as follows:

H(s, q)︸ ︷︷ ︸
CE with Soft Labels

= H(y, q)︸ ︷︷ ︸
CE with Hard Labels

+ LMaxSup︸ ︷︷ ︸
Max Suppression Loss

, (VII.6)

where
LMaxSup = α

(
H
(

1
K

, q
)
− H(y′, q)

)
, (VII.7)

and
y′

k = 1{
k=arg max(q)

},

so that y′
k = 1 identifies the model’s top-1 prediction and y′

k = 0 otherwise. Here,
H
(

1
K

, q
)

encourages a uniform output distribution to mitigate overconfidence, while
H(y′, q) penalizes the current top-1 logit. By shifting the penalty from zgt (the ground-
truth logit) to zmax (the highest logit), MaxSup avoids unduly suppressing zgt when the
model misclassifies, thus overcoming Label Smoothing’s principal shortcoming.
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Logit-Level Formulation of MaxSup Building on the logit-level perspective introduced
for LS in Section 3.1, we can express LMaxSup as:

LMaxSup = α
(

zmax − 1
K

K∑
k=1

zk

)
, (VII.8)

where zmax = maxk{zk} is the largest (top-1) logit, and 1
K

∑K
k=1 zk is the mean logit. Unlike

LS, which penalizes the ground-truth logit zgt and may worsen errors in misclassified
samples, MaxSup shifts the highest logit uniformly, thus providing consistent regularization
for both correct and incorrect predictions. As shown in Table VII.1, this approach
eliminates LS’s error-amplification issue while preserving the intended overconfidence
suppression.

Comparison with Label Smoothing MaxSup fundamentally differs from LS in handling
correct and incorrect predictions. When zgt = zmax, both LS and MaxSup similarly reduce
overconfidence. However, when zgt ̸= zmax, LS continues to shrink zgt, widening the
gap with the incorrect logit, whereas MaxSup penalizes zmax, preserving zgt from undue
suppression. As illustrated in Figure VII.3, this allows the model to recover from mistakes
more effectively and avoid reinforcing incorrect predictions.

Gradient Analysis To understand MaxSup’s optimization dynamics, we compute its
gradients with respect to each logit zk. Specifically,

∂LMaxSup

∂zk

=

α
(

1− 1
K

)
, if k = arg max(q),

− α
K

, otherwise.
(VII.9)

Thus, the top-1 logit zmax is reduced by α
(
1− 1

K

)
, while all other logits increase slightly by

α
K

. In misclassified cases, the ground-truth logit zgt is therefore spared from penalization,
thereby avoiding the error-amplification issue seen in LS. For completeness, Appendix A
provides a full derivation of these gradients, and Figure VII.2 compares the resulting logit
distributions under different regularizers.

Behavior Across Different Samples MaxSup applies a dynamic penalty that depends
on the model’s current predictions. For high-confidence, correctly classified examples, it
behaves similarly to LS by reducing overconfidence, thus effectively mitigating overfitting.
In contrast, for misclassified or uncertain samples, MaxSup specifically suppresses the
incorrect top-1 logit, further safeguarding the ground-truth logit zgt. This selective strategy
preserves an accurate representation of the true class while actively discouraging the
propagation of errors. As shown in Section 5.1 and Table VII.5, this promotes more robust
decision boundaries and ultimately leads to stronger generalization performance.

Theoretical Insights and Practical Benefits MaxSup provides both theoretical and
practical advantages compared to LS. Whereas LS applies a uniform penalty to the
ground-truth logit regardless of correctness, MaxSup focuses on penalizing only the
most confident logit zmax. This dynamic adjustment prevents error accumulation in
misclassifications, thereby ensuring more stable convergence. As a result, MaxSup achieves
stronger generalization, exhibits greater robustness to label noise, and performs well on
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Table VII.2.: Metrics for feature representation quality using ResNet-50 trained on
ImageNet-1K. We report intra-class variation (d̄within) and inter-class separability (R2),
both of which benefit from higher values. Although all methods reduce d̄within relative to
the baseline, MaxSup preserves the most within-class diversity.

Method d̄within ↑ R2 ↑

Train Val Train Val

Baseline 0.3114 0.3313 0.4025 0.4451
LS 0.2632 0.2543 0.4690 0.4611
OLS 0.2707 0.2820 0.5943 0.5708
Zipf’s 0.2611 0.2932 0.5522 0.4790
MaxSup 0.2926 0.2998 0.5188 0.4972
Logit Penalty 0.2840 0.3144 0.6448 0.6024

challenging datasets. Moreover, as shown in Section 4, MaxSup preserves higher intra-class
diversity, which substantially improves transfer learning performance (Table VII.3) and
yields more interpretable activation maps (Figure VII.3).

4. Analysis of MaxSup’s Learning Benefits

MaxSup simultaneously promotes inter-class separability and intra-class variation, both
essential for robust classification and effective feature transfer. In this section, we explore
how MaxSup achieves these objectives and contrast its effectiveness with alternative
regularization methods.

4.1. Intra-Class Variation and Transferability

As noted in Section 3.1, Label Smoothing (LS) primarily restricts overconfidence when
the ground-truth class is correctly predicted, inadvertently causing error enhancement for
misclassified samples. This selective penalty can overly compress intra-class diversity. In
contrast, MaxSup uniformly penalizes the top-1 logit in both correct and incorrect cases,
eliminating LS’s error-enhancement component and thus preserving more fine-grained
distinctions within each class. Table VII.2 compares intra-class variation d̄within and
inter-class separability R2 [127] for a ResNet-50 model trained on ImageNet-1K. Although
all regularization strategies reduce d̄within relative to the baseline, MaxSup shows the
smallest reduction, implying stronger retention of within-class variability—often correlated
with improved generalization and transferability. The benefits of this richer intra-class
structure appear clearly in Table VII.3, where linear transfer performance on CIFAR-10
is reported. Although LS and Logit Penalty improve ImageNet accuracy, they diminish
transfer accuracy by over-suppressing informative features. In contrast, MaxSup preserves
transfer performance near that of the baseline, suggesting it retains crucial, discriminative
features that generalize effectively to downstream tasks.
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Table VII.3.: Validation performance on CIFAR-10 with a linear probe using l2-regularized
multinomial logistic regression. Although Label Smoothing and Logit Penalty improve
ImageNet accuracy, they substantially degrade transfer accuracy compared to MaxSup.

Method Linear Transfer Acc.

Baseline 0.8143
Label Smoothing 0.7458
Logit Penalty [51] 0.7242
MaxSup 0.8102

Figure VII.2.: Logit density plots under three different regularization strategies: MaxSup,
Logit Penalty, and standard Cross Entropy. Logit Penalty induces a narrower logit
distribution, reflecting excessive shrinkage that reduces intra-class variation. By contrast,
MaxSup preserves a broader range of logits and thus richer representations.

4.2. Impact of Logit Regularization
Different regularization methods impose distinct constraints on the logit space, thereby
shaping the model’s representational capacity [127]. Among these approaches, Logit
Penalty and MaxSup both act directly on logits but differ fundamentally in how they
apply regularization. Logit Penalty operates by minimizing the ℓ2-norm of the entire
logit vector, causing a global reduction in logit magnitudes that often induces sparsity.
This uniform shrinkage can limit intra-class variation, thereby weakening the model’s
ability to transfer features to downstream tasks. In contrast, MaxSup targets only the
largest (top-1) logit, nudging it closer to the average logit. By selectively penalizing only
the most confident prediction, MaxSup avoids universal shrinkage and preserves richer
intra-class diversity, a property crucial for effective transferability. Figure VII.2 illustrates
the distribution of logits under various regularizers. Logit Penalty yields a narrower
logit range, reflecting excessive sparsity and aligning with its lower transfer performance
(Table VII.3). By comparison, MaxSup maintains broader logit distributions, thereby
retaining the fine-grained feature distinctions needed to excel on downstream tasks.

5. Experiments

5.1. Evaluation on ImageNet Classification
In this section, we assess the effectiveness of MaxSup on ImageNet-1K, comparing its
performance against standard Label Smoothing and related variants.
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Experiment Setup

Model Training Configurations We conduct extensive experiments with both CNN
and Transformer models, including the ResNet family [96], MobileNetV2 [190], and
DeiT-Small [221], all thoroughly evaluated on the large-scale ImageNet dataset [128] for
comprehensive performance analysis.

For ResNet Series models, we train for 200 epochs using stochastic gradient descent
(SGD) with momentum 0.9, a weight decay of 1× 10−4, and a batch size of 2048. The
initial learning rate is set to 0.85 and scheduled via cosine annealing.1 We also evaluate
ResNet-based CNNs on CIFAR-100. Here, we use an initial learning rate of 0.1, reducing
it by a factor of 5 at the 60th, 120th, and 160th epochs. We train for 200 epochs with a
batch size of 128, weight decay of 5× 10−4, and Nesterov momentum set to 0.9. For DeiT-
Small, we employ the official implementation and train from scratch without knowledge
distillation. Although the original DeiT paper emphasizes distillation, we exclude it to
provide a clearer, unbiased assessment of MaxSup’s contributions. We also omit CutMix
and Mixup to retain the same optimization objective.

Hyperparameters for Compared Methods We compare Max Suppression Regularization
against multiple Label Smoothing variants, including Zipf Label Smoothing [141] and
Online Label Smoothing [263]. When official implementations are available, we use them
directly; otherwise, we follow the respective papers’ descriptions closely to ensure fair
comparisons. All training hyperparameters are kept identical to those of the baseline
models, except for algorithm-specific settings and necessary adjustments. Additionally, we
employ a linearly increasing α scheduler, which generally benefits training and stability;
see Appendix 6 for details. This scheduler is applied to both MaxSup and standard Label
Smoothing by default to maintain consistency.

Experiment Results

ConvNet Comparison Table VII.4 summarizes the performance of MaxSup alongside
various smoothing and self-distillation methods on both ImageNet and CIFAR-100. Across
all tested convolutional architectures, MaxSup achieves the highest accuracy among
label smoothing–based regularizers. By contrast, OLS [263] and Zipf-LS [141] yield less
consistent gains, suggesting their reported empirical benefits may depend heavily on
specific training schedules. In our reproductions of OLS and Zipf-LS, we follow the
authors’ original codebases and method-specific hyperparameters but do not adopt their
complete training recipes. For example, the OLS paper uses a step learning-rate scheduler
over 250 epochs with an initial rate of 0.1, while Zipf-LS trains for 100 epochs under a
separate set of hyperparameters. Our results underscore the robustness of MaxSup across
different training setups, in contrast to the more scheme-dependent improvements noted
for OLS and Zipf-LS.

DeiT Comparison Table VII.5 compares various regularization techniques for DeiT-Small
on ImageNet. MaxSup achieves an accuracy of 76.49%, surpassing Label Smoothing by
0.41 percentage points. Label Smoothing variants such as Zipf’s and OLS yield only
marginally higher or comparable performance relative to standard LS, suggesting that

1Additional training hyperparameters follow the FFCV training scripts in https://github.com/
libffcv/ffcv. See Appendix 5 for further details on training setups.
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Table VII.4.: Comparison of classic convolutional neural networks on ImageNet and
CIFAR-100. Results are reported as “mean ± std” (percentage). Bold entries highlight
the best performance; underlined entries mark the second best. (Methods with ∗ denote
code adaptations from official repositories; see text for details.)
Method ImageNet CIFAR-100

ResNet-18 ResNet-50 ResNet-101 MobileNetV2 ResNet-18 ResNet-50 ResNet-101 MobileNetV2

Baseline 69.09±0.12 76.41±0.10 75.96±0.18 71.40±0.12 76.16±0.18 78.69±0.16 79.11±0.21 68.06±0.06
Label Smoothing 69.54±0.15 76.91±0.11 77.37±0.15 71.61±0.09 77.05±0.17 78.88±0.13 79.19±0.25 69.65±0.08
Zipf-LS∗ 69.31±0.12 76.73±0.17 76.91±0.11 71.16±0.15 76.21±0.12 78.75±0.21 79.15±0.18 69.39±0.08
OLS∗ 69.45±0.15 77.23±0.21 77.71±0.17 71.63±0.11 77.33±0.15 78.79±0.12 79.25±0.15 68.91±0.11
MaxSup 69.96±0.13 77.69±0.07 78.18±0.12 72.08±0.17 77.82±0.15 79.15±0.13 79.41±0.19 69.88±0.07
Logit Penalty 68.48±0.10 76.73±0.10 77.20±0.15 71.13±0.10 76.41±0.15 78.90±0.16 78.89±0.21 69.46±0.08

Table VII.5.: Accuracy (%) comparison on DeiT-Small [221] using different Label Smooth-
ing variants. Results are reported as “mean ± std”; parentheses indicate absolute
improvement over the baseline.

Method Accuracy (Mean) Std

Baseline 74.39 0.19
Label Smoothing 76.08 (+1.69) 0.16
Zipf-LS 75.89 (+1.50) 0.26
OLS 76.16 (+1.77) 0.18
MaxSup 76.49 (+2.10) 0.12

these approaches may be less effective for vision transformer architectures—potentially
due to their reliance on extensive data augmentation schemes. In contrast, MaxSup
consistently outperforms both standard LS and its variants, indicating its stronger ability
to enhance feature representations without additional data manipulations. These findings
underscore MaxSup’s robustness across distinct model architectures, especially in settings
where other regularization methods show limited effectiveness.

Table VII.6.: Semantic segmentation results on the ADE20K validation set. Models
are pretrained on ImageNet-1K and then fine-tuned with UperNet [244] for enhanced
performance. We report mean Intersection over Union (mIoU) under multi-scale (MS)
testing for comprehensive evaluation.

Backbone Method mIoU (MS)

DeiT-Small [221]
Baseline 42.1

Label Smoothing 42.4 (+0.3)
MaxSup 42.8 (+0.7)

5.2. Evaluation on Semantic Segmentation
To further assess the transferability of MaxSup to downstream tasks, we evaluate its perfor-
mance on semantic segmentation using the MMSegmentation framework.2 Specifically, we
employ the UperNet architecture [244] with a DeiT-Small backbone, trained on ADE20K.
We compare backbones trained with Label Smoothing and MaxSup (on ImageNet-1K)
against a baseline, following the same setup as in Section 5.1. During fine-tuning, all

2https://github.com/open-mmlab/mmsegmentation
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Figure VII.3.: Class activation maps generated by Grad-CAM [196] for DeiT-Small models trained with
MaxSup (2nd row), Label Smoothing (3rd row), and a standard Baseline (4th row). The first row shows
the original images. Compared with Label Smoothing, MaxSup more effectively suppresses distractions
from non-target objects and preserves key features of the target class, thereby reducing instances in which
the model partially or completely focuses on irrelevant regions.

models use a standard cross-entropy loss. As shown in Table VII.6, MaxSup achieves a
mean Intersection over Union (mIoU) of 42.8%, surpassing the 42.4% obtained with Label
Smoothing. These findings further highlight the improved feature representations afforded
by MaxSup in downstream tasks such as semantic segmentation.

5.3. Visualization via Class Activation Maps
To assess how MaxSup influences model decision-making relative to Label Smoothing (LS),
we employ Gradient-weighted Class Activation Mapping (Grad-CAM) [196]. Grad-CAM
produces class-discriminative localization maps that highlight the regions most relevant
to each classification decision.

We conduct comprehensive experiments on the DeiT-Small model under three distinct
training setups: MaxSup (second row), Label Smoothing (third row), and standard
Cross-Entropy (CE) as a baseline (fourth row). As illustrated in Figure VII.3, MaxSup-
trained models exhibit a distinct advantage in effectively mitigating distractions caused
by non-target salient objects in the background (e.g., a pole in the ‘Bird’ image, a tube
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in the ‘Goldfish’ image, and a cap in the ‘House Finch’ image). By contrast, LS-trained
models often lose focus or erroneously attend to background objects, further reflecting the
detrimental influence of LS’s Error-Enhancement term and its impact on feature learning
(Please see Figures VII.3).

Moreover, MaxSup preserves a wider range of relevant object features, as evidenced in
the ‘Shark’ and ‘Monkey’ examples, where LS-trained models fail to capture key details
(fins and tails). These observations align with the analysis in Appendix 7, underscoring
that MaxSup better retains rich intra-class information. Consequently, MaxSup-trained
models yield more accurate and reliable classifications by leveraging these detailed feature
representations.

6. Conclusion
In this chapter, we carefully examined the root causes of Label Smoothing’s (LS) short-
comings and introduced Max Suppression Regularization (MaxSup) as a targeted remedy.
Our analysis shows that LS can unintentionally promote overconfidence in misclassified
samples by applying insufficient regularization to erroneous top-1 logits. In contrast,
MaxSup effectively addresses this by consistently penalizing the most confident logit,
regardless of prediction correctness. Through extensive experiments and in-depth analy-
ses, we demonstrate that MaxSup not only improves accuracy but also preserves richer
intra-class variation and significantly enhances inter-class separability. Consequently,
models trained with MaxSup capture finer-grained information about individual samples,
ultimately leading to stronger transfer learning capabilities. Class activation maps further
reveal that MaxSup directs model attention more accurately toward salient parts of target
objects, effectively mitigating distractions from background elements.

Limitations & Future Work
Although our findings validate MaxSup’s effectiveness, several directions merit further in-
vestigation. Prior work [161] shows that teachers trained with LS can degrade performance
in Knowledge Distillation [105], and Guo et al. [90] suggests LS accelerates convergence
via conditioning number analysis. Future research could explore MaxSup’s impact on
Knowledge Distillation workflows and its influence on training convergence. Additionally,
recent studies [214, 81] indicate that ℓ2 regularization biases final layer features and
weights toward lower-rank solutions than those typically associated with neural collapse.
Investigating how MaxSup interacts with these low-rank biases and whether it leads to
similarly optimal or novel solutions is another intriguing avenue for future work.
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Chapter VIII.

Balancing Diversity and Risk in
Sampling-Based Decoding for Large
Language Models

This chapter advances the thesis’s investigation into neural probabilistic scoring by shifting
focus to the output generation stage of large language models. While the preceding chapter
examined how training objectives affect confidence calibration and feature structure in
classification, this chapter tackles the challenge of balancing diversity and coherence in
generative models.

Decoding strategies for language generation often face a trade-off: increasing diversity
can lead to incoherence, while enforcing coherence tends to reduce creativity. Moreover,
tuning sampling parameters is computationally expensive and sensitive, making reliable
evaluation difficult. To address these issues, we introduce a novel evaluation framework
based on a context-aware prefix tree that enables robust assessment of sampling methods’
adaptability to the true data distribution, providing insights that are less sensitive to
hyperparameter choices.

This framework facilitates principled comparison of different sampling techniques and
reveals their practical strengths and limitations. By bridging probabilistic scoring methods
from discriminative classifiers to generative language models, this chapter contributes
critical insights and guidelines for reliable and diverse text generation.

1. Introduction
Large Language Models (LLMs) [2, 223, 118, 217] have demonstrated exceptional per-
formance across a variety of applications, and the reliability of decoding strategies has
become a critical concern. Previous works have revealed that likelihood-maximization
such as beam search [70, 108, 234, 155] produces degenerate text which contains repetitive
loops and incoherent context, particularly in open-ended tasks. Therefore, sampling-based
decoding strategies, e.g., Top-p [108] and Top-k sampling [180, 70], have been widely
adopted. The balance between diversity and quality of the generated text could be
adjusted by tuning the temperature and truncation position to some extend, but requires
non-trivial trial and error.

Recent studies [14, 285, 104, 154] proposed adaptive tail truncation mechanisms based
on different criteria or assumptions, which maintain an allowed set of tokens with a flexible
size according to the given prefix. To validate the effectiveness of a sampling method, they
are often compared through extrinsic evaluation based on open-ended text generation
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Figure VIII.1.: N-gram models tend to overestimate the data support size given a prefix
(marked by a red line) due to limited window size (marked with a blue window).

applications. For example, story generation [70] and document continuation [156]. Various
metrics [234, 154, 175, 79] have been adopted to consider different aspects of the generated
text.

We reveal two underlying issues in the current evaluation, which hinder the assessment
of a method’s significance in real-world applications:

• The improvement of one method over another might be simply due to a better tuned
parameter for the targeted task: the performance of sampling methods is sensitive
to their parameters, and parameter sweep is often operated on a extremely sparse
grid due to the high computation cost. This is especially problematic considering
the non-linear dependency between performance and parameters.

• Users are agnostic to the optimal parameters in real-world applications: Practically
speaking, users often pick parameters based on their own need for the compromise
between diversity and quality, after a few tryouts. There exists no universal optimal
paramters in different scenarios and users are agnostic to the optimal parameters for
their own tasks.

The above issues exactly indicate the need for an evaluation that allows for estimating
the theoretical capacity of a truncation sampling method (how well it adapts to the
variation in data supports given different prefixes), independent of hyperparamter tuning.
Moreover, the second issue additionally highlights the need to identify the sweet spots of
existing sampling methods, which could serve as a user guideline for practitioners.

In light of the above analysis, we propose a systematic way to assess the inherent
adaptability of a sampling method. First, we rearrange Wikipedia-English 1 data into a
word-level prefix tree, known as a Trie [74, 83]. It is noteworthy that a n-gram Trie [121]
tends to overestimate the data support size given a prefix [15], as shown in Figure VIII.1.
In a similar spirit to [60], we construct the prefix tree with only sentence-starting n-grams
to preserve full sentence context, called Context-Preserving Trie (CP-Trie).

Given the CP-Trie, we are able to estimate the theoretical capacity of a sampling
method, by examining the amount of tokens within and out of the data support with
varying truncation parameter values. As shown in Figure VIII.2, the truncation positions,
which exactly cover the full data supports, vary drastically given different prefixes and
Top-k sampling could be regarded as a baseline method with zero adaptability. Therefore,
an adaptive truncation method is supposed to better follow such a variation, so that
improved diversity can be achieved without harming the quality.

In summary, our contributions are as follows:
1https://dumps.wikimedia.org/
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Figure VIII.2.: Histogram of the estimated optimal truncation values for gpt2-xl, which
achieve exactly full recall of data support given different prefixes.

• We establish an intrinsic evaluation benchmark based on the collected CP-Trie,
which allows for estimating the theoretical capacity of different sampling methods
via thoroughly designed diversity and stability metrics.

• We conduct a comprehensive comparison of existing sampling approaches, which
serves as a guideline for choosing a method and its parameter in real-world applica-
tions.

• We reveal that sampling-based decoding methods are underestimated in the existing
study [204] due to the difficulty in parameter selection, highlighting the merit of our
evaluation protocol.

2. Related Work
In this section, we summarize recent sampling decoding strategies, along with common
benchmarks and metrics for open-ended text generation.

2.1. Sampling-based Decoding Methods
Vanilla sampling suffers from the risk of obtaining incoherent tokens; thus, truncation of
the tail distribution has been heavily discussed, e.g., Top-k [180, 70] and Top-p sampling
[108]. However, a fixed k or p is problematic when considering the high dynamic range
of next reasonable tokens, as pointed out in more recent studies on adaptive sampling
methods: Mirostat [14] is proposed based on Zipf statistics and the assumption of a steady
perplexity during generation. Hewitt, Manning, and Liang [104] introduce η-sampling
which dismisses the tokens with low probabilities in the tail of the predicted distribution
based on absolute and relative thresholds. Locally Typical Sampling [154] assumes that
the generated text should retain a similar entropy rate to that of human-generated text.
Adaptive Decoding [285] proposes to keep the entropy of the truncated distribution close
to the original entropy. Although these approaches have been demonstrated to be effective,
their performance is highly dependent on the curated truncation parameters and the
limited exemplar text.
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2.2. Evaluation of Sampling-based Decoding
Common benchmarks include story generation with WritingPrompts dataset [70], docu-
ment continuation with WikiText-103 dataset [156] and abstractive summarization on the
CNN/DAILYMAIL dataset [162]. These benchmarks suffer from the problem of limited
exemplar text, which fails to capture the diverse nature of human language.
Statistical metrics are mostly based on n-gram statistics and focus on a single aspect,
such as Repetition [234], Diversity [154], Semantic coherence [79], Zipf’s coefficient [108]
(Unigram rank-frequency) and Self-BLEU [286].
Exemplar-based metrics dominate the evaluation of sampling-based decoding methods.
As observed by Fan, Lewis, and Dauphin [70] and Holtzman et al. [108], lower perplexity
of the generated text does not necessarily indicate better quality. And Holtzman et al.
[108] suggested that the perplexity of the generated text should be close to that of the
human text. MAUVE [175] takes the trade-off between precision and recall into account,
by comparing the learnt distribution from a text generation model to the distribution of
human-written text using divergence frontiers. Shi et al. [204] provides a comprehensive
evaluation on a large collection of tasks, mostly relying on exemplar-based metrics.
However, we reveal that such evaluation is affected by the biases in the curated parameters
and limited exemplar text, and our evaluation method is shown to alleviate such an issue.

3. Revisiting Truncation Sampling
We begin by revisiting the formulation of truncation sampling, followed by identifying the
unresolved challenges in evaluating truncation sampling methods.

3.1. Problem Formulation
Definition 3.1.

Ptrunc(xt|x<t) =

Pθ(xt|x<t)/Zx<t x ∈ Ax<t

0 o.w.,
(VIII.1)

where Ax<t ∈ V denotes the allowed set of candidate next tokens at the tth position,
given a sequence of tokens x<t = {x0, ..., xt−1} as prefix. Zx<t = ∑

x∈Ax<t
Pθ(xt|x<t) is

the renormalization term.

Given the Context-Preserving Trie of a reference dataset, we can compute the estimate
of the optimal allowed set as follows :

Definition 3.2. Let Ax<t,θ
be the allowed set after truncation given the prefix x<t. The

approximated optimal allowed set A∗
x<t

corresponds to the allowed set with the minimum
size, while covering the full data support for the tth token Dx<t based on the Trie. It is
the solution to the following objective function:

A∗
x<t

= min
θ
|Ax<t,θ

|

s.t. Dx<t ⊆ Ax<t,θ
.

(VIII.2)

Note that the above definition is designed to exclude the risk of obtaining OOD tokens
before the cutoff [73], because such type of risk is unsolvable by truncation and is rather
determined by the capacity of the trained LLMs. However, such risk is less severe compared
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to that introduced by inappropriate truncation, since LLMs exhibit a significant capability
in predicting the next token [223, 2, 118, 217] and most OOD samples reside in the tail
distribution.

3.2. Remaining Issues
We reveal three major issues in the evaluation of truncation sampling. We first summarize
the problem of directly using probability as quality metric, then show that the choice of
truncation parameter has a significant impact on the evaluation.
Unreliable Probability The probabilities of both the predicted and empirical distribution
are not reliable for reflecting the quality of a text.

• Higher likelihood does not necessarily imply higher quality of the generated text [70,
108, 163, 233].

• Word frequencies are average statistics across various topics, and the optimal proba-
bilities or ranking of each next token is ill-posed.

• Empirical distribution suffers from the sparsity issue [200, 136, 121] of the N-gram
models.

Parameter Sensitivity We highlight the complexity and biases in parameter selection: Top-
k and Top-p have constant upper bounds, i.e., the vocabulary size |V| and 1, respectively.
In contrast, the upper bounds of η-sampling and adaptive sampling are dependent on
LLM’s predicted distribution, because they truncate the tail distribution based on the
likelihood of tokens and the slope of Min-Max scaled entropy, respectively. The importance
of identifying the effective ranges of such parameters is also reflected in the authors’ choice
of numeral digit for their parameters. For example, ∆Conf is set to 0.0005 in Zhu et al.
[285] and ϵ is chosen from 0.0001, 0.0009 and etc in Hewitt, Manning, and Liang [104]. In
comparison, the adopted p values for Top-p sampling are merely two digits after zero, such
as 0.95. This shows the significance of identifying the sweet spots of different sampling
methods.

4. Method
In this section, we derive our metrics for evaluating different sampling-based decoding
strategies. The metrics are carefully designed to address the issues discussed in Section 3.2.

4.1. Probability-Independent Metrics
To circumvent the unreliable probability issue, we merely check whether the predicted
next token is in or out of the data support. Specifically, we define Recall and Risk to
quantify diversity and quality of a sampling method on a single node of CP-Trie:

Definition 4.1.

Recallθ,t = Minimum
(
|Ax<t,θ

|
|A∗

x<t
|

, 1
)

(VIII.3)

Riskθ,t = Maximum
(
|Ax<t,θ

|
|A∗

x<t
|
− 1, 0

)
(VIII.4)
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Ax<t,θ is dependent on the parameter selection for truncation, e.g., k value in Top-k
sampling. When the allowed set is smaller than the approximated optimal allowed set
after truncation, Recall is smaller than one and Risk is regarded as zero. With further
increased size of the allowed set, Recall reaches one but Risk emerges. Since the sizes of
reasonable sets vary drastically for different prefixes, it is not possible to always retain the
approximated optimal allowed set with a predefined parameter. In this case, we reveal
that the adaptability w.r.t. the varying size of data support of a sampling method indeed
determines its effectiveness in real-world application.

More importantly, our evaluation does not rely on the empirical probability, which is
biased and inaccurate due to limited dataset size or context window size. However, the
tokens which appear in the dataset could be confidently regarded as reasonable, regardless
of their actual probabilities. In addition, considering that temperature could change the
flatness of distribution arbitrarily, we adopt ratio of token counts instead of probability
mass to make the evaluation independent of temperature tuning and exemplar text. For
a detailed discussion with supporting examples, please refer to Appendix 2.

4.2. Tuning-Independent Evaluation
To eliminate the huge impact of Parameter Sensitivity issue on fair evaluation, we adopt
Average Recall (AR) at an average Risk and Risk Standard Error (RSE) at an average
Risk to quantify diversity and stability of a sampling method across N nodes of CP-Trie,
respectively:

Definition 4.2.

ARRisk−0.1 = 1
N

N∑
i=1

Recall(i)θ,t

RSERisk−0.1 = 1
N

√∑N
i=1(Risk(i)

θ,t − 1
N

∑N
i=1 Risk(i)

θ,t)2

s.t. 1
N

N∑
i=1

Risk(i)
θ,t = 0.1,

(VIII.5)

where the superscript (i) denotes the ith node in the evaluation set of nodes on the prefix
tree. Analogously, a family of critical values such as ARRisk−0.5 can be easily defined.

Since θ is now determined by the given average Risk, the diversity metric reflects the
genuine capacity of a sampling method regardless of parameter tuning. This allows for
a fair comparison of different sampling methods, especially considering their drastically
different effective ranges, as mentioned in Section 1 and Section 3.2.

5. Experiment
In this section, we conduct evaluation of existing sampling-based decoding approaches on
our collected EnWiki CP-Trie dataset. We aim to estimate the inherent adaptability of
sampling-based methods and the results could be used as references for the application of
LLMs in open-ended tasks.
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The: 
119714/5866531

The first: 
8463/67903

The film: 
1666/53919

The first two: 
888/2796

The first is: 
529/2165

The film was: 
834/13924

The film is: 
532/6042

The first two are: 
106/132
The first two are: 
92/131

The first is the: 
413/478
The first is a: 
260/306

The film was shot: 
62/1524

The film was a: 
206/1220

The film is about: 
123/731
The first is a: 
287/722

Figure VIII.3.: Illustration of the EnWiki CP-Trie. For brevity, only two child nodes
are shown at each depth. The number at the left side of the slash symbol refers to the
branching factor at the current node, and the number at the right side refers to the total
number of leaves of the sub-tree with the current node as the root node.

5.1. Data Collection
We construct our Trie data based on the English subset of Wikipedia dataset, named
EnWiki CP-Trie. As shown in Figure VIII.3, all possible words that appear after a given
prefix in the dataset are treated as child nodes, with their preceding word regarded as the
parent node. Starting from "Begin of Sequence" and collecting the child nodes recursively,
we are able to transform the full dataset into a single prefix tree. We elaborate the main
design choices in the following:
Basic Unit. It is possible to split the datasets into articles, paragraphs, sentences or
n-grams. Constructing a tree based on articles or paragraphs may require more data
than the training data of LLMs to guarantee an adequate number of branches (because
LLMs lean to interpolate), whereas the construction based on n-grams suffers from poor
contextual information and is heavily biased towards common tuplets of n tokens regardless
of the context. Therefore, we adopt sentence as the basic unit, which guarantees a coherent
context at sentence-level and requires much fewer data than training. It is noteworthy
that a n-gram Trie [121] tends to overestimate the data support size given a prefix [15],
due to the loss of information outside the contextual window, as shown in Figure VIII.1.
Filtering. To avoid invalid words or rare proper names which are unreasonable for the
model to predict, we exclude the sentences containing such words by checking their presence
in the WORD LIST dataset, which is available on the website 2. It contains 354986 words
in total and explicitly excludes proper names and compound words. Section titles are also
excluded, which are often incomplete sentences with poor contextual information.
Statistics. Wikipedia-English dataset contains 6, 458, 670 articles, which result in EnWiki
CP-Trie with 31, 557, 359 leaves, see Figure VIII.4.
Storage. The prefix tree is implemented as a nested dictionary and saved in JSON format.
Since each lookup at any depth has constant complexity, the retrieval is highly efficient.
Moreover, the dictionary is easily extendable if extra data are needed for a more accurate
estimation of the full data support.

2word-list dataset homepage
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Figure VIII.4.: The total number of leaves on the CP-Trie against the total number of
processed articles.

5.2. Evaluation Setup
Baselines. Our evaluation includes Top-k sampling [180, 70], Top-p sampling [108],
η-sampling [104], Adaptive sampling [285] and Mirostat [14] into comparison.
Evaluation Data. To guarantee a tight lower bound of the ideal data support given
different prefixes, we first sort the sub-nodes according to their total number of leaves at
each depth, then we select the top 10 sub-trees with different sentence starting tokens for
evaluation. Moreover, we keep the top 2 child nodes at each depth till depth 6, since the
empirical data support becomes less adequate at large depth. This results in an evaluation
set of 593 prefixes with varying lengths in total.
Evaluation Metrics. We measure the improvement in diversity via the increase of Average
Recall(AR) at an average Risk, and the improvement of the stability at each decoding
step in the auto-regressive process via the decrease of Risk Standard Error (RSE) at an
average Risk. We adopt AR and RSE at average Risks of 1, 5 and 15 for comparison,
representing low, medium, and high-risk regions, respectively.
LLMs. To ensure that the conclusion generalizes to different models, we adopt Llama
[223, 66] family, Mistral [118, 119] family and GPT-2-XL [181] for comparison.
Tokenization. Since different LLMs are trained with different encoding methods, the
evaluation has to be independent of the encoding methods. We solve this issue by
constructing the CP-Trie with either a word or punctuation. For example, if the predicted
next token corresponds to “sec", which is a part of the in-distribution word "section", then
we regard this as a correct prediction. The second part “tion" is regarded as a hidden
child node and is skipped in the evaluation.
Parameter Search. We apply grid search to determine the corresponding parameters
of different sampling methods for each average Risk. To address the highly non-linear
dependency between the sampling methods and their truncation parameters, we employ
an efficient coarse-to-fine grid search strategy: the number of grids is initially set to 2000.
If a parameter results in an average Risk within ±0.1 of the target value, it is considered
a feasible solution. Otherwise, an additional grid search is performed within a smaller
interval until a feasible solution is found, based on the initial search results. The grids are
determined using Llama3-70B and are applied consistently across all models. As shown
in Table F.2, almost all the deviations in the average Risks are much smaller than 0.1,
demonstrating the robustness of our strategy.
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Implementation. Our implementation mainly relies on Pytorch [170], HuggingFace [238]
and OpenAI API 3 library. We implement a truncation sampling method ourselves if the
official implementation is unavailable. For all methods, the minimum size of the allowed
set is set to 1 to prevent breaking the sampling process.

5.3. Comparison at Different Average Risks

In this section, we conduct a comprehensive study of different truncation sampling methods
at different average Risks. As discussed in Section 4.2, this allows for a fair comparison
which is independent of parameter tuning. Moreover, we provide the corresponding
parameters for each truncation sampling method at different average Risks, which could
serve as a user reference for these methods.

As can be seen in Table VIII.1, different truncation sampling methods are compared at
the average Risk of 1, 5, and 15 respectively. As discussed in Section 4.1, our defined risk
and recall metrics explicitly exclude the source of risk induced by a LLM’s capacity by
design, thus similar parameter values correspond to the same risk level for most sampling
methods across various model types and sizes. This exactly showcases the advantage of
our evaluation being tuning-independent and sustainable to the rapid update of LLMs.
Among the evaluated methods, Eta-sampling [104] is sensitive to the changes of model
type and size, which might hinder its practical significance especially at a low risk level.

Regarding diversity, i.e., the average recall at the same average Risk, Adaptive sampling
[285] and Mirostat [14] are the best and second performers, which consistently outperform
the Top-k baseline by a considerable margin. Top-p mostly exhibits inferior recall
comparing to the Top-k baseline, so does Eta-sampling at the average Risk of 1. As for
the stability represented by standard error of Risks, Top-k sampling reaches the best
scores in most cases. In comparison, Adaptive sampling and Mirostat deliver comparable
standard error of risks to Top-k sampling, whereas Top-p sampling and Eta-sampling are
again inferior. Considering both diversity and stability, Adaptive sampling and Mirostat
are the top 2 adaptive methods to be recommended, whereas Top-p sampling shall be the
last two methods to be considered.

3https://pypi.org/project/openai/
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Model Method Avg. Risk 1 Avg. Risk 5 Avg. Risk 15
Parameter RSE ↓ AR ↑ Parameter RSE ↓ AR ↑ Parameter RSE ↓ AR ↑

G
PT

2-
X

L Adaptive 9.5e-4 0.006 0.252 1.1e-4 0.679 0.339 2.5e-05 2.241 0.413
Mirostat 4.425 0.005 0.236 5.9475 0.717 0.326 6.76 2.501 0.401

Top-k 15 0.006 0.220 64 0.613 0.290 184 1.781 0.340
Eta 0.318 0.013 0.198 0.011 1.484 0.301 0.001 4.261 0.404

Top-p 0.5705 0.015 0.170 0.746 2.129 0.240 0.8555 6.210 0.338

Ll
am

a-
2-

7b Adaptive 1.1e-3 0.154 0.257 1.4e-4 0.856 0.364 3.1e-5 2.966 0.470
Mirostat 4.253 0.133 0.236 5.82 0.650 0.349 6.628 2.286 0.474

Top-k 14 0.126 0.226 61 0.587 0.296 177 1.722 0.369
Eta 0.512 0.563 0.192 0.023 2.599 0.297 0.002 6.531 0.407

Top-p 0.54 0.529 0.156 0.7665 2.331 0.254 0.9 6.208 0.400

Ll
am

a-
2-

70
b Adaptive 0.0011 0.142 0.269 1.2e-4 0.796 0.374 2.3e-5 2.697 0.485

Mirostat 4.16 0.135 0.238 5.7875 0.684 0.353 6.67 2.125 0.478
Top-k 14 0.128 0.232 60 0.583 0.307 174 1.712 0.375
Eta 0.092 0.304 0.236 0.003 1.590 0.378 2.1e-4 4.243 0.510

Top-p 0.6535 0.475 0.189 0.8465 2.136 0.316 0.9395 5.522 0.468

Ll
am

a-
3-

8B Adaptive 1.1e-3 0.167 0.260 1.7e-4 0.787 0.343 3.7e-5 2.685 0.418
Mirostat 4.24 0.139 0.230 5.8175 0.804 0.318 6.693 2.630 0.393

Top-k 14 0.128 0.228 59 0.576 0.290 172 1.701 0.346
Eta 0.673 0.445 0.181 0.029 2.112 0.271 0.002 6.009 0.373

Top-p 0.5395 0.451 0.154 0.736 2.061 0.224 0.855 5.770 0.326

Ll
am

a-
3-

70
B Adaptive 1.1e-3 0.137 0.263 1.4e-4 0.787 0.353 3.16e-5 2.778 0.424

Mirostat 4.21 0.138 0.230 5.91 0.708 0.332 6.84 2.193 0.417
Top-k 14 0.127 0.230 60 0.581 0.295 173 1.695 0.352
Eta 0.37 0.137 0.263 0.014 2.231 0.295 0.001 6.265 0.398

Top-p 0.5695 0.502 0.158 0.758 2.386 0.237 0.8705 6.685 0.332

M
ix

tr
al

-7
B Adaptive 0.00105 0.152 0.260 1.2e-4 0.809 0.364 2.2e-5 2.757 0.466

Mirostat 4.1825 0.141 0.236 5.8125 0.721 0.345 6.71 2.213 0.468
Top-k 14 0.126 0.224 62 0.596 0.297 181 1.759 0.364
Eta 0.075 0.307 0.243 0.003 1.542 0.368 1.96e-4 4.712 0.505

Top-p 0.6565 0.539 0.194 0.8375 2.476 0.303 0.9315 6.315 0.447

M
ix

tr
al

-8
x7

B Adaptive 0.00105 0.148 0.265 1.1e-4 0.798 0.372 2.1e-5 2.802 0.476
Mirostat 4.2775 0.143 0.238 5.845 0.710 0.346 6.6875 2.213 0.461

Top-k 15 0.134 0.229 63 0.598 0.301 183 1.757 0.366
Eta 0.087 0.335 0.241 0.003 1.822 0.375 2.15e-4 4.922 0.506

Top-p 0.6505 0.535 0.192 0.8375 2.423 0.303 0.9325 6.139 0.456

Table VIII.1.: Risk Standard Error (RSE, indicating stability) and Average Recall (AR,
indicating diversity) of different truncation sampling methods at different average Risks
using different models. The corresponding parameter of each method at an average risk
level is also provided. The best and worst scores are marked in bold and underlined,
respectively. For more detailed results, please refer to Appendix 1.

We also show in Figure VIII.5 that larger models of the same family have higher average
recall at the same risk level comparing to the smaller ones. This conforms to the fact
that larger models better captures the human text distribution. Please note that our
metrics does not allow a direct comparison between different model families, mainly due
to their different vocabulary sizes and tokenizers, e.g., Llama-3 has a 128,256 vocabulary
size, while Llama-2 has only 32, 000 vocabulary size. Moreover, our metrics also explicitly
exclude the source of risk within the optimal allowed set, which is heavily dependent on a
LLM’s capacity.
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(a) Llama-2 family. (b) Llama-3 family. (c) Mistral family

Figure VIII.5.: Comparing the average Recalls at given average Risks using different model
sizes.

Methods Mean(std) Accuracy ↑
Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Greedy 0.338

Naïve 0.421(0.004)

Top-k 0.401(0.010) 0.436(0.008) 0.421(0.010)
Top-p 0.355(0.013) 0.378(0.011) 0.389(0.012)
Adaptive 0.395(0.012) 0.424(0.011) 0.421(0.009)
Eta 0.388(0.005) 0.401(0.013) 0.413(0.026)
Mirostat 0.413(0.010) 0.425(0.013) 0.425(0.009)

Table VIII.2.: Evaluation on the TruthfulQA benchmark under the open-ended generation
setup. Naive sampling refers to sampling without truncation. The best and worst scores are
marked in bold and underlined, respectively. For more details, please refer to Appendix 1.

5.4. Validation on TruthfulQA Benchmark

Although our evaluation protocol is grounded by the thorough design process with
reasonable simplifications, we would like to verify its effectiveness in the real-world
scenario using the TruthfulQA Benchmark [142]. The evaluation results using gpt2-xl are
shown in Section 5.3. For all the methods other than greedy decoding, we run 3 times at
each average risk level and report the mean and standard deviation (parenthetical value).

It can be observed that greedy decoding falls far behind sampling-based decoding strate-
gies, which conforms to the issue of likelihood-oriented decoding discussed in Section 1,
as well as the findings in recent studies [46, 232, 233, 204]. All the truncation sampling
methods at the low risk level achieves lower accuracy comparing to Naive sampling, due to
the over-truncation of the decoding paths. At the average risk level of 5, all the truncation
sampling methods slightly improve their own accuracy. Top-k sampling, Adaptive sampling
and Mirostat also reach comparable or slightly higher accuracy in comparison to Naive
sampling. However, further increased average risk level (means improved average recall
and thus diversity) does not benefit the performance on TruthfulQA, which is plausible.
Moreover, there exists a even stronger correlation between Risk SE (Standard Error of
Risks) and TruthfulQA accuracy, validating the importance of stability when evaluating
an adaptive decoding method. The strong correlation between TruthfulQA accuracy and
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(a) Correlation at Avg. Risk 1:
−0.87

(b) Correlation at Avg. Risk 5:
−0.92

(c) Correlation at Avg. Risk
15: −0.94

(d) Correlation at Avg. Risk 1:
0.83

(e) Correlation at Avg. Risk 5:
0.83

(f) Correlation at Avg. Risk 15:
0.50

Figure VIII.6.: The scatter plots of TruthfulQA accuracy against risk standard error (first row) and recall
mean (second row) at different average Risks.

our proposed average recall as well as standard error of risks at different average Risks
validate the soundness and effectiveness of our evaluation method.

6. Revisiting Existing Evaluation
In this section, we revisit the recent study [204] by comparing sampling-based decoding
methods at the same average Risks. We adopt the official implementation of Shi et al. [204].
Following their setups, we adopt Llama-2-7B on MBPP [10], HumanEval [10] and GSM8K
[46] to evaluate coding and math problem solving performance. Mean and standard
deviation for three runs are reported in Table VIII.3, Table VIII.4 and Table VIII.5,
respectively.

For all the three tasks, Mirostat does not perform well in general, probably because it is
based on the Zipf-law of natural language and thus not suitable for code and math tasks.
Notably, our greedy decoding baseline achieves significantly lower result than reported by
Shi et al. [204] on HumanEval. Our results should be plausible, because the instruction
tuned Llama-2-7B only achieves 7.9 according to Meta-Llama Github4 .

While their study concludes that deterministic methods outperform sampling methods
across most tasks, our evaluation reveals that sampling methods are indeed underestimated.
In contrast to the conclusion in Shi et al. [204], all the sampling-based decoding methods
could achieve better performance than greedy decoding on HumanEval in Table VIII.4.
In addition, Top-p and eta sampling also beat greedy decoding at a low average Risk
on GSM8K in Table VIII.5. This observation underscores the challenges in parameter
selection for sampling-based decoding, which is effectively addressed by our method.

4 https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
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7. Conclusion

Methods Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Top-k 19.70 (0.50) 21.00 (2.30) 20.50 (0.30)
Top-p 21.50 (1.30) 21.10 (0.40) 21.70 (0.70)

Mirostat 9.50 (0.30) 8.80 (2.00) 8.80 (0.40)
Eta 22.10 (0.70) 19.10 (0.40) 19.70 (0.40)

Greedy 24.00

Table VIII.3.: Pass@1 accuracy on MBPP. It is consistent to the observation by Shi et al.
[204] that sampling methods are inferior to greedy decoding.

Methods Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Top-k 5.68 (2.00) 5.08 (1.52) 6.50 (0.76)
Top-p 3.46 (1.05) 5.89 (0.76) 6.52 (2.43)

Mirostat 3.25 (0.76) 4.27 (1.00) 4.68 (0.58)
Eta 2.64 (2.01) 6.91 (1.04) 6.10 (1.32)

Greedy 2.44

Table VIII.4.: Pass@1 accuracy on HumanEval. Sampling methods perform better with
higher average Recalls and Risks.

Methods Avg. Risk 1 Avg. Risk 5 Avg. Risk 15

Top-k 7.56 (5.39) 11.90 (0.80) 11.73 (0.57)
Top-p 14.13 (0.47) 8.72 (6.18) 11.67 (0.11)

Mirostat 5.46 (0.47) 5.74 (0.64) 3.46 (2.10)
Eta 13.72 (0.46) 8.42 (5.54) 11.22 (0.75)

Greedy 13.19

Table VIII.5.: Accuracy on GSM8K. Top-p and eta sampling outperforms greedy decoding
at an average Risk of 1.

7. Conclusion
In this chapter, we propose an evaluation protocol to assess the trade-off between diversity
and quality of truncation sampling methods for open-ended text generation. Our evaluation
enjoys the merit of being independent of parameter tuning for the curated tasks. The
evaluation results also serve as a user reference for different downstream tasks.
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Chapter IX.

Conclusion and Outlook

1. Conclusion
This thesis explored the limitations of traditional neural probabilistic scoring techniques
in both the attention and output layers of deep learning models, proposing novel methods
that enhance expressiveness, reliability, and structural alignment in vision and language
tasks. Softmax-based scoring, while foundational, tends to produce unimodal distributions,
constraining its ability to model complex, multi-peaked attention patterns. This limitation
is particularly pronounced when increasing the temperature to promote diversity, as higher
temperatures can introduce noise and instability into the model’s predictions. To address
this, Chapter III introduced Multimax as a more flexible alternative, enabling richer,
multi-modal attention distributions while maintaining stability in both attention and
prediction layers.

To overcome the structural shortcomings of permutation-invariant attention, the thesis
presented Hyperformer in Chapter V and SP-ViT in Chapter IV, which inject learned
structural priors into self-attention. Hyperformer extends attention to hypergraphs and
uses graph distance–based positional encoding to capture connectivity priors—edges
and hyperedges—enabling the model to reason over higher-order relationships. SP-
ViT incorporates a learnable 2D spatial prior, granting the model inductive bias for
spatial patterns and improving performance on vision tasks. Together, these approaches
yield a more expressive and robust attention mechanism capable of modeling complex
dependencies.

In output generation, techniques like temperature scaling, label smoothing, and sampling-
based decoding adjust the softmax distribution to enhance stability and generalization.
Despite their utility, each has drawbacks: temperature scaling can amplify noise; la-
bel smoothing may induce overconfidence in wrong predictions and collapse intra-class
variation; and fixed sampling schemes can either overly restrict diversity or introduce
incoherence. To address these issues, MaxSup was introduced in Chapter VII to correct
label smoothing’s two core flaws—overconfidence and feature collapse—thereby improving
calibration and preserving intra-class diversity. Finally, Chapter VIII offers a systematic
guideline for balancing diversity and risk during decoding of Large Language Models,
providing practical rules for open-ended text generation where creative variation and
coherence must be tightly managed.

Overall, the contributions of this thesis advance neural probabilistic scoring by:

• Multimax: extending attention capacity beyond unimodal softmax.
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• Hyperformer, BlockGCN and SP-ViT: embedding structural and spatial priors into
attention.

• MaxSup: refining output regularization to avoid overconfidence and feature collapse.
• LLM-Sampling: establishing a risk-aware, diversity-controlled decoding framework.

By unifying adaptive scoring in attention (MultiMax, Hyperformer, BlockGCN, SP-ViT)
with principled output modulation (MaxSup, LLM-Sampling), this work establishes a
cohesive paradigm of neural probabilistic modeling—treating probability distributions as
first-class design elements across both perception and generation.

While the methods proposed in this thesis demonstrate consistent improvements across
a range of vision and language tasks, the scale of the models and datasets studied has been
constrained by available computational resources. Consequently, the full potential of these
approaches—particularly in large-scale or more heterogeneous settings—remains to be
fully explored. Moreover, the tasks evaluated thus far cover only a subset of the broader
application space these methods are designed to address. These limitations highlight the
need for future work to investigate scalability, generalizability, and broader applicability.
The following section outlines several promising directions for extending and building
upon this work.

2. Outlook
Building on our suite of neural probabilistic scoring approaches for both the attention
and output layers, several promising directions emerge for future research.

One key avenue is scaling up both models and datasets to better understand how our
methods perform in large-scale settings. While resource constraints have limited such
exploration within the academic context, this line of investigation could be highly valuable
for industrial applications. It remains to be seen whether the gains observed in our current
experiments will persist, diminish, or even amplify as scale increases. However, we are
optimistic given that our methods have been deliberately designed to be as generic and
adaptable as possible, for several reasons:

• Hypergraph self-attention and structural encodings in Chapters V and VI extend
standard self-attention and positional encoding mechanisms by incorporating addi-
tional structural information in a learnable form. This design inherently provides
greater modeling capacity compared to their vanilla counterparts. While the reliance
on prior information becomes less critical as dataset size and model capacity increase,
our methods continue to offer efficiency gains in the learning process—without com-
promising expressiveness—thanks to their general and trainable nature. In contrast,
hard-coded priors such as local convolutional windows are effective in low-data
regimes but often prove overly restrictive for large-scale training.

• As improved generalizations to SoftMax and Label Smoothing, the advantages
of MultiMax in Chapter III and MaxSup in Chapter VII in enhancing learning
have been demonstrated both theoretically and empirically, making them broadly
applicable across neural network architectures. These methods are among the most
promising approaches not only for accelerating convergence but also for significantly
extending the representational capacity of models. Importantly, they are particularly
well-suited for foundation models, which follow a pretraining–fine-tuning paradigm
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and are expected to generalize well to downstream tasks. In such settings, the
benefits of improved representation learning offered by MultiMax and MaxSup are
especially evident—going beyond mere improvements in classification accuracy or
reductions in language modeling perplexity reported in our paper. We anticipate
future research will explore the application of MultiMax to large language models
(LLMs), potentially yielding improvements across multiple dimensions. For instance,
LLMs are often prone to incorporating irrelevant contextual information into their
latent representations, a known limitation of the standard attention mechanism [235].
MultiMax, with its enhanced sparsity compared to SoftMax, is expected to mitigate
this issue by enabling more focused and interpretable attention patterns.

• The llm-sampling work in Chapter VIII also benefits from scaling up both datasets
and models. With sufficiently large datasets, we can construct a Trie structure
that closely approximates the ideal data support. This has two key advantages: it
enhances the accuracy of both our evaluation and hyperparameter recommendations,
and it enables broader applications—such as the development of more sophisticated
adaptive sampling methods beyond truncation [73]. Furthermore, increasing model
capacity improves the alignment between model predictions and the empirical
distribution, making truncation-based adaptive sampling methods more robust. As
a result, evaluation outcomes and hyperparameter recommendation become even
more reliable.

Another promising direction is to apply our proposed approaches beyond the specific
tasks explored in this thesis. As noted earlier, our methods are intentionally designed
to be as generic as possible, and are therefore not limited to the studied applications.
We believe they have the potential to benefit a wide range of tasks and anticipate that
future research will adopt and extend our methods to address diverse problems. More
specifically, we highlight the following considerations:

• MultiMax is not limited to attention layers. As a drop-in replacement for SoftMax,
it can be applied to any task where SoftMax is used—provided that the optimization
process can learn the appropriate parameters. For example, in our study, replacing
SoftMax with MultiMax in the output layer also led to performance gains. A partic-
ularly promising application is reinforcement learning, where effectively balancing
exploration and exploitation [215] is essential. For instance, recent advances in
test-time scaling of LLMs [168, 89] heavily rely on post-training via reinforcement
learning, especially policy optimization algorithms such as PPO and GRPO [194,
199]. Replacing the Softmax in the policy network’s output layer with MultiMax is
expected to enhance this balance, potentially leading to more efficient exploration
strategies and better overall performance.

• The Hypergraph Self-Attention and Structural Encodings in Hyperformer and Block-
GCN are not limited to skeleton-based action recognition. Owing to their generic and
learnable design, both methods effectively capture high-order structural information,
making them applicable to a wide range of graph learning tasks. For instance,
Hyperformer’s Hypergraph Self-Attention has demonstrated effectiveness in 3D pose
estimation [34], video understanding [184], and multi-behavior recommendation
[160]. Similarly, BlockGCN’s topological encoding has been successfully adapted for
multivariate time-series anomaly detection [148].
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• The systematic study on the impact of parameter tuning in LLM-Sampling extends
beyond merely evaluating and providing user guidance for sampling-based decoding
methods. It can also be applied to other parameter-sensitive challenges and to the
development of new decoding strategies for large language models (LLMs). For
example, Arias et al. [7] have expanded our evaluation framework to encompass
deterministic decoding methods, while Nguyen et al. [164] have proposed a novel
adaptive sampling approach inspired by our benchmark.

In summary, this thesis lays a unified foundation for rethinking probabilistic scoring in
neural networks, emphasizing flexibility, structural awareness, and practical scalability.
By treating scoring functions not as fixed components but as carefully designed, learnable
function families—grounded in theoretical analysis—we have opened new avenues for
enhancing both attention mechanisms and output generation across a wide range of
tasks. As models and datasets continue to grow in complexity and scale, we expect our
contributions to serve not only as practical tools but also as conceptual building blocks
for the next generation of adaptive and interpretable AI systems. We look forward to
seeing these ideas further explored and expanded in future research.
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Appendix A.

Improving the Trade-Off between
Sparsity and Multi-Modality in Attention

In this section, we provide the supplementary materials for Chapter III.

1. Lemmas
In the following, we provide the lemmas which will be used for our later proofs.

Lemma 1.1. The following inequalities hold:

xi > txi + (1− t)b, ∀xi < b and ∀ t > 1
xi < txi + (1− t)b, ∀xi > b and ∀ t > 1
xi < txi + (1− t)b, ∀xi < b and ∀ t < 1
xi > txi + (1− t)b, ∀xi > b and ∀ t < 1

(See Appendix 2 for the proof.)

Lemma 1.2. The following inequality holds ∀ ϵ ≤ 1
L

(
L∑

xl<b
Xl − lnL) and ∀ t > 1:

L∑
xl<b

et(xl−xi) ≥
L∑

xl<b

exl−xi

(See Appendix 2 for the proof.)

2. Proofs
In the following, we provide the proofs for all the lemmas and propositions in our paper.

Proof of Lemma 3.4
∂S(x)
∂ϕ(x)l

= −1
s

exp (s− ϕ(x)l

s
− 1). ∀ s > 0 ⇒ −1

s
< 0. Since the exponential term is

always positive, we have ∂S(x)
∂ϕ(x)l

< 0, ∀ϕ(x)l.
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Appendix A. Improving the Trade-Off between Sparsity and Multi-Modality in Attention

Proof of Proposition 3.5

Proof. Statement 1

from Eq. (III.1) and Definition 3.2

∂M(x)
∂t

= (xmax − xn)exn−xmax
t

t2∑K
k=1 e

xk−xmax
t

+
(1− e

xn−xmax
t )∑K

k=1
xmax−xk

t2 e
xk−xmax

t

(∑K
k=1 e

xk−xmax
t )2

since xn − xmax < 0, we have 0 < e
xn−xmax

t < 1

⇒ ∂M(x)
∂t

> 0 holds ∀ t

Proof. Statement 2
from Eq. (III.1)

∂ϕ(x)l

∂t
=
∑K

k=1(xk − xl)e
xk−xl

t

t2(∑K
k=1 e

xk−xl
t )2

from Chebyshev’s sum inequality

K∑
k=1

(xk − xl)e
xk−xl

t >
1
K

K∑
k=1

(xk − xl)
K∑

k=1
e

xk−xl
t

since xl < ϵ ≤ ∥x∥1
K

, we have ∑K
k=1(xk − xl) ≥ 0

⇒
∂ϕ(x)l

∂t
> 0

from Lemma 3.4

⇒ ∂S(x)
∂t

= ∂S(x)
∂ϕ(x)l

∂ϕ(x)l

∂t
< 0

Proof of Lemma 1.1

From basic laws of algebra, x− tx− (1− t)b = (1− t)(x− b). For t > 1 and x < b, we
have (1− t)(x− b) > 0⇒ x > tx + (1− t)b, and vice versa.

Proof of Lemma 1.2

150



2. Proofs

since exl > 0, from Hoelder’s inequality, we have

L∑
xl<b

exl−xi =
L∑

xl<b

∣∣∣exl−xi

∣∣∣1 · 1
≤

L∑
xl<b

(
(
∣∣∣exl−xi)

∣∣∣)t
) 1

t ·
(

L∑
l=1

1
t

t−1

)1− 1
t

raise both sides to the power of t and multiply by L1−t

⇒ L1−t(
L∑

xl<b

e(xl−xi))t ≤
L∑

xl<b

et(xl−xi)

the above inequality holds if

L∑
xl<b

exl−xi ≤ L1−t(
L∑

xl<b

e(xl−xi))t

take the natural log on both sides

ln
L∑

xl<b

exl−xi ≤ (1− t)lnL + tln
L∑

xl<b

exl−xi

⇒ lnL ≤ ln
L∑

xl<b

e(xl−xi)

since ex is convex and xi < ϵ

L∑
xl<b

e(xl−xi) ≥ e

L∑
xl<b

(xl−xi)
≥ e

L∑
xl<b

(xl−ϵ)

the condition is satisfied for ϵ ≤ 1
L

(
L∑

xl<b
xl − lnL)

Proof of Proposition 4.2

When only term (1) is considered, Eq. (III.5) is reduced to:

σ(x) =
{

tbx + (1− tb)b x < b

x x ≥ b
, (A.1)

and we obtain:

ϕMultiMax-l(x)i =


etbxl+(1−tb)b∑L

xl<b etbxl+(1−tb)b +∑N
xn≥b exn

xl < b

exn∑L
xl<b etbxl+(1−tb)b +∑N

xn≥b exn
xl ≥ b

, (A.2)
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where L and N denote the number of entries smaller than or greater than b and L+N = K.

Proof. Statement 1

from Eq. (A.2), ∀xi < ϵ ≤ b, eliminate the numerator

ϕMultiMax-l(x)i = 1
L∑

xl<b
etb(xl−xi) +

N∑
xn≥b

exn−(tbxi+(1−tb)b)

substitute tbxi + (1 − tb)b with xi at lower right and
L∑

xl<b
etb(xl−xi) at lower left, from

Lemma 1.1 and Lemma 1.2

≤ 1
L∑

xl<b
exl−xi) +

N∑
xn≥b

exn−xi

⇒ ϕMultiMax-l(x)i < ϕSoftMax(x)i

Proof. Statement 2

Eliminate exi , from Eq. (A.2), ∀xi > xj > b

mMultiMax-l = 1− 1− e(xj−xi)

L∑
xl<b

etbxl+(1−tb)b−xi +
N∑

xn≥b
e(xn−xi)

substitute (1− tb)b− xi with −tbxi, from Lemma 1.1

> 1− 1− e(xj−xi)

L∑
xl<b

etb(xl−xi) +
N∑

xn≥b
e(xn−xi)

substitute
L∑

xl<b
etb(xl−xi) with

L∑
xl<b

exl−xi , from Lemma 1.2 ∀ ϵ ≤ 1
L

(
L∑

xl<b
xl − lnL)

> 1− 1− e(xj−xi)

L∑
xl<b

exl−xi +
N∑

xn≥b
e(xn−xi)

=MSoftMax
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2. Proofs

Proof of Proposition 4.3

Combine Eq. (III.5) with SoftMax, we obtain:

ϕMultiMax(x)i =



etbxi+(1−tb)b

L∑
xl<b

eσ(xl) +
M∑

b≤xm≤d
exm +

N∑
xn>d

eσ(xn)
xi < b

exi

L∑
xl<b

eσ(xl) +
M∑

b≤xm≤d
exm +

N∑
xn>d

eσ(xn)
b ≤ xi ≤ d

etdxi+(1−td)d

L∑
xl<b

eσ(xl) +
M∑

b≤xm≤d
exm +

N∑
xn>d

eσ(xn)
xi > d

, (A.3)

where L, M and N denote the number of entries belonging to different ranges and
L + M + N = K.

Proof. Statement 1

from Eq. (A.3), ∀xi < ϵ, eliminate the numerator, then substitute xi + (1− tb)b with tbxi,
from Lemma 1.1

< 1/(
L∑

xl<b

etb(xl−xi) +
M∑

b≤xm≤d

exm−xi +
N∑

xn>d

etdxn+(1−td)d−tbxi−(1−tb)b)

from Lemma 1.2, if ϵ ≤ 1
M

(
M∑

xm<b
Xm − lnM)

< 1/(
L∑

xl<b

exl−xi +
M∑

b≤xm≤d

exm−xi +
N∑

xn>d

etdxn+(1−td)d−tbxi−(1−tb)b)

if
N∑

xn>d
etdxn+(1−td)d−tbxi−(1−tb)b >

N∑
xn>d

exn−xi

⇒ϕMultiMax(x)i < ϕSoftMax(x)i

This is satisfied when tdxn + (1− td)d− tbxi − (1− tb)b > xn − xi holds ∀xn, which can
be reduced to

xi < b− 1− td

tb − 1 (xn − d)

where xn ≥ d, td < 1 and tb > 1, and this is satisfied for

⇒ ϵ ≤ b− 1− td

tb − 1 (xn − d)

Proof. Statement 2
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Figure A.1.: Attention scores of SoftMax (left) and MultiMax(right) at the input and
hidden layers (1st, 5th and 10th) w.r.t query 34. The query lies on the shark fin and is
marked with red square. We see, from left to right, are attention scores of 6 heads for
each method, where blue refers to low attention score and red indicates a high attention
score. MultiMax attention is better localized while allowing for multiple modes.

from Eq. (A.3), ∀xi < ϵ, eliminate the numerator

mMultiMax = 1− (1− etd(xj−xi))/
( L∑

xl<b

eσ(xl)−tdxi−(1−td)d)

+
M∑

b≤xm≤d

exm−tdxi−(1−td)d +
N∑

xn>d

etd(xn−xi)
)

since xj − xi < 1 and td < 1, we have etd(xj−xi) > exj−xi , also substitute tdxi + (1− td)d
with tx, from Lemma 1.1

>
1− exj−xi

L∑
xl<b

etbxl+(1−tb)b−xi +
M∑

b≤xm≤d
exm−xi +

N∑
xn>d

etd(xn−xi)

⇒MMultiMax(x) >MMultiMax-l(x)

3. More visualizations
In the following, we provide additional visualizations for a more comprehensive qualitative
comparison between SoftMax and our proposed MultiMax.

Single layer attention scores

As mentioned in Section 5.2, single layer attention scores Fig. A.1 are not informative for
human beings, due to the complex interaction of information in deep transformer models.

Cumulative distribution of attention scores

We could calculate the cumulative distribution for each layer, i.e., the portion of attention
scores smaller than a threshold as the thresholds increases. The result is shown in
Fig. A.2. It can be seen that for most of the layers, MultiMax results in a sparser attention
distribution, i.e., a large portion of attention scores are closer to zero comparing to SoftMax
attention. Notably, the first two layers’ attention distributions have a smaller degree of
sparsity comparing to SoftMax. This shows that a smoother distribution is desired in
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4. Connection between sparsification and over-smoothing

Layers tb1 td1 tb2 td2 b1 d1 b2 d2

1 1.8347933 2.815388 0.9864913 0.68440557 1.185235 -1.208543 -2.1076407 1.9158255
2 1.9773115 1.9971638 0.985555 0.74650276 -0.8580209 0.02481092 -0.49835142 1.9772723
3 -1.1411996 1.4711196 1.9901285 0.8758977 0.18852632 2.8039892 2.9608543 1.0462786
4 0.6694808 1.206692 1.8682657 0.93786246 3.4023566 -1.5490056 2.500237 0.986331
5 0.8902384 1.5881691 1.8920481 0.72857785 2.5070796 -1.1942928 1.8854694 1.2248528
6 0.6015882 0.87738 2.818536 0.96271396 2.6490533 0.8454426 1.6205754 0.89434063
7 0.8023207 1.2427123 3.040797 0.84531546 2.6984618 1.2127148 1.2652112 1.2134424
8 0.64486825 0.79173684 2.5263662 0.968745 3.0230901 0.62191963 1.6307493 1.6259384
9 0.5796288 0.6852025 3.500835 0.99119073 2.675157 0.68776745 1.3239485 1.5808712
10 0.54873073 0.8240905 3.5563424 0.9692498 2.176066 0.39797062 0.9276044 1.5223614
11 0.38645744 0.6951747 4.0935583 0.9958999 1.6583583 0.29572898 0.77263904 2.9975116
12 0.16383016 0.25565386 3.2074118 0.99102634 1.6852132 -0.04795134 0.9796309 2.1836245

Table A.1.: MultiMax parameters of Deit-small trained on ImageNet.

Layers tb1 td1 tb2 td2 b1 d1 b2 d2

1 0.6467285 0.7980957 0.98324585 0.9649048 0.7475586 -0.87939453 0.3395996 -0.14501953
2 0.69018555 0.8063965 0.98350525 0.9720764 0.25073242 0.15991211 0.2956543 -0.17687988
3 0.8557129 0.79797363 0.98939514 0.9855194 -0.12609863 0.06817627 0.14794922 -0.14428711
4 0.9662781 0.83569336 1.0231781 1.0240021 -0.07574463 0.8510742 -0.13220215 0.27368164
5 0.9260864 0.9187622 0.98670197 1.039093 -0.5239258 0.51416016 0.23999023 0.09521484
6 1.1514893 1.152832 0.98441315 1.0156403 0.1751709 0.05374146 -0.13269043 -0.08825684

Table A.2.: MultiMax parameters of the 6-layer Language Transformer trained on WikiText-
103.

these two layers, as an optimized result of the training. This conforms to the observation
in the previous studies that common low-level features in the shallow layers are shared
across image patches [192]. A sparse attention has a high risk of information lost.

Figure A.2.: Cumulative distribution of the attention scores at each layer.

4. Connection between sparsification and over-smoothing
As shown by [1], information originating from different input tokens gets increasingly
mixed in deeper layers, and the information flow can be estimated by taking the attention
weights out and multiplying them sequentially. Such a matrix multiplication makes the
identity of each token fades exponentially, which relates to the over-smoothing problem
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Figure A.3.: Comparing the discrepancy between rollout attention score and single layer
attention score for SoftMax and MultiMax.

in GCNs [167]. Considering the information exchange across different attention heads,
we take the the mean attention score over all heads out for multiplication, following the
rollout technique [1]. In Fig. A.3, the discrepancy between the single layer and average
accumulated SoftMax attention scores keeps increasing in the deeper layers. And the
comparison shows a much less accumulated error for our MultiMax attention.

5. The learned parameters of MultiMax
In this section, we provide the learned parameters of MultiMax for reference. There
are differences and similarities between the learned modulation functions of vision and
language transformers, which could be observed after plotting the curves as shown in
Fig. A.4.:

• Similarly, the need for sparsity increases as the layer goes deeper, but much less
sparsity are needed in general for the language transformer compring to vision
transformer, according to the learned parameters.

• As opposed to vision transformer, stronger multi-modality is needed at shallower
layers of the language transformer.
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5. The learned parameters of MultiMax

Figure A.4.: The learned modulator functions σ (Eq. (III.6)) at each layer of the 6-layer
language transformer trained on WikiText-103, comparing to identity mapping of the
SoftMax input x (dashed black line).
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Appendix B.

Incorporating Geometric Prior into
Attention for Image Modeling

In this section, we provide the supplementary materials for Chapter IV.

1. Experiment on CIFAR100
We have run additional experiments on CIFAR100 following the setup in DeiT [221] but
w/o pretraining on ImageNet1K.
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Figure B.1.: Training SP-ViT (DeiT [221] as baseline) on CIFAR100.

2. Numbers of Substituted SA Layers
We first investigate how the model performance is affected by the number of SP-SA layers.
The layers are substituted from bottom to top and a classification token is inserted after
the last SP-SA layer. It is shown in Fig. B.2a that substituting a number of SA layers
with SP-SA results in improved accuracy comparing to DeiT baseline (0 layer). In general,
the performance improves as more layers are substituted. For a model with 12 layers, the
best performance is achieved when 10 layers are substituted. When substituting all but
the last SA layer with SP-SA, the performance drops slightly. We hypothesize that when
the classification token is only involved in the last layer, the class-specific features are not
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Figure B.2.: Accuracy(%) of SP-ViT on ImageNet-100 with different numbers of SP-SA
layers. Fig. B.2a and Fig. B.2b show consistent improvements of our SP-ViT over DeiT
Baselines with a total number of 12 and 16 layers respectively.

Sub. layers Cls token insertion layers Top-1 (%)

0 0 77.6
0 10 81.7
10 10 83.3

0 Global Average Pooling 79.5
12 Global Average Pooling 81.7

Table B.1.: Eliminate the effect of inserting the class token at later layers on ImageNet-100.

adequately extracted. We further investigated a deeper model in Fig. B.2b, and found the
similar trend. The best performance is achieved when the first to the penultimate layer
are substituted. As discussed in the main text, we add the classification token directly
after SP-SA layers because it has no valid 2D relative coordinate. To exclude the influence
of inserting it at deeper layers instead of the first, we conduct a further comparison in
Table B.1.

3. More Experiment Details
We show in Tab. B.2 the default hyperparameters for training our SP-ViT on ImageNet-1K
based on DeiT and LV-ViT respectively. All hyperparameter settings follow the baselines’
except that for DeiT-based SP-ViTs we adopt a smaller learning rate.

For our SP-ViT trained on ImageNet-1K, we further adopt the Conditional Positional
Encoding (CPE) [44], which is found to be effective as shown in Table B.3.

4. Python Implementation
We also list our Pytorch implementation of SP-SA List. 1 SP-SA can be easily integrated
into any existing vision transformer models by directly replacing a number of SA layers.
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5. More Visualization

Base Config. DeiT LV-ViT
Supervision Standard Token labeling
SP-SA layers 10 10
Epoch 300 300
Optimizer AdamW AdamW
Batch size 1024 1024
LR 2.5e− 4 · batch size

512 1e− 3 · batch size
640

LR decay cosine cosine
Weight decay 0.05 0.05
Warmup epochs 5 5
Label smoothing ϵ 0.1 0.1
Stoch. Depth 0.1 0.1
Repeated Aug ✓ -
RandAug 9/0.5 9/0.5
Mixup prob. 0.8 -
Erasing prob. 0.25 0.25

Table B.2.: Default hyperparameters for our SP-ViTs on ImageNet-1K.

Model CPE [44] Top-1 (%)

SP-ViT-S - 83.7
✓ 83.9

SP-ViT-M - 84.7
✓ 84.9

SP-ViT-L - 85.3
✓ 85.5

Table B.3.: Effect of Conditional Positional Encoding [44] on ImageNet-1K.

Calculating the relative coordinates to query patches is trival, so this part of code is not
included for simplicity. Note that the insertion of classification token should be moved
after SP-SA layers, as mentioned in the main text.

5. More Visualization
We provide more examples of learned Spatial Priors (SP) by our SP-ViT based on
DeiT-Small and trained on ImageNet-1K in Fig. B.3 and Fig. B.4.
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Listing 1 SP-SA SP-SA.py
1 import torch
2 from torch import nn
3
4 class SP_SA(nn. Module ):
5 def __init__ (self , dim , num_heads =8, qk_scale =None , attn_drop

=0., proj_drop =0., rel_indices =None , ** kwargs ):
6 super (). __init__ ()
7 self. num_heads = num_heads
8 self.dim = dim
9 head_dim = dim // num_heads

10 self. scale = qk_scale or head_dim ** -0.5
11 self.v = nn. Linear (dim , dim , bias=False)
12 self.qk = nn. Linear (dim , dim * 2, bias=False)
13 self.w1 = nn. Linear (2, dim , bias=True)
14 self.w2 = nn. Parameter (torch.zeros(dim , 1))
15 self.b2 = nn. Parameter (torch.ones( num_heads ))
16
17 self. attn_drop = nn. Dropout ( attn_drop )
18 self.proj = nn. Linear (dim , dim)
19 self. proj_drop = nn. Dropout ( proj_drop )
20 self.act = nn.ReLU ()
21 self. rel_indices = rel_indices
22
23 def forward (self , x):
24 B, N, C = x.shape
25 attn = self. get_attention (x)
26
27 v = self.v(x). reshape (B, N, self.num_heads , C // self.

num_heads ). permute (0, 2, 1, 3)
28 x = (attn @ v). transpose (1, 2). reshape (B, N, C)
29 x = self.proj(x)
30 x = self. proj_drop (x)
31 return x
32
33 def get_attention (self , x):
34 B, N, C = x.shape
35
36 # Calculating Patch Score
37 qk = self.qk(x). reshape (B, N, 2, self.num_heads , C // self.

num_heads ). permute (2, 0, 3, 1, 4)
38 q, k = qk[0], qk [1]
39 patch_score = (q @ k. transpose (-2, -1)) * self.scale
40
41 # Calculating Spatial Prior
42 sp_hidden = self.w1(self. rel_indices ).view (1, N, N, self.

num_heads , self.dim // self. num_heads )
43 sp = torch. einsum (’nm ,hijnm ->hijn ’, (self.w2.view(self.

num_heads , -1), self.act( sp_hidden ))) + self.b2
44 sp = sp. repeat (B, 1, 1, 1)
45
46 enhanced_attention = ( patch_score * sp. permute (0, 3, 1, 2)).

softmax (dim =-1)
47 attn = self. attn_drop ( enhanced_attention )
48 return attn
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5. More Visualization

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Spatial Priors Content Scores Enhanced Attention

Query (121!"Patch)

Input Sample

Figure B.3.: More Visualization of the learned 2D SPs, content scores and the enhanced
attention of layer 1-6 for the 121th query patch.
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Layer 7

Layer 8

Layer 9

Layer 10

Layer 11

Layer 12

Spatial Priors Content Scores Enhanced Attention

Query (121!"Patch)

Input Sample

Figure B.4.: More Visualization of the learned 2D SPs, content scores and the enhanced
attention of layer 7-12 for the 121th query patch. Note that layer 11 and 12 are vanilla SA
layers, thus no spatial priors are existed.
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Appendix C.

Incorporating Structural Prior into
Attention for Skeleton-Based Action
Recognition

In this section, we provide the supplementary materials for Chapter V.

1. More experiment details
We show in Table C.1 the default hyperparameters for training our Hyperformer on
NTU RGB+D, NTU RGB+D 120 and Northwestern-UCLA datasets. We train the same
10-layer model with a total number of 216 channel dimensions for all the experiments in
our paper.

Table C.1.: Default hyperparameters for our Hyperformer on NTU RGB+D, NTU RGB+D
120 and Northwestern-UCLA.

Config. NTU RGB+D and NTU RGB+D 120 Northwestern-UCLA
random choose False True
random rotation True False
window size 64 52
weight decay 4e-4 0
base lr 2.5e-2 2.5e-2
lr decay rate 0.1 0.1
lr decay epoch 110, 120 110 120
warm up epoch 5 5
batch size 64 16
num. epochs 140 150
optimizer Nesterov Accelerated Gradient Nesterov Accelerated Gradient

2. More experiment results
In the following, we provide additional experiment results in detail to further support the
effectiveness of our proposed Hyperformer.
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Accuracy using single modalities

The performance of our Hyperformer trained on joint modality only is also remarkable.
We provide the experiment results for each modality on different benchmarks in detail,
see Tab. 2.

Modality Model Size NTU-RGB+D 120 NTU-RGB+D NW-UCLA(%)X-Sub(%) X-Set(%) X-Sub(%) X-View(%)

Joint

2.6M

86.6 88.0 90.7 95.1 94.4
Bone 88.0 89.0 91.2 95.2 94.6
Motion 81.8 83.9 88.5 93.3 93.3
Bone Motion 82.2 83.5 88.5 92.6 92.7

Ensembled 89.9 91.3 92.9 96.5 96.7

Table C.2.: Classification accuracy of our Hyperformer using different modalities on the
NTU RGB+D, NTU RGB+D 120 and Northwestern-UCLA dataset.

Effect of randomness

Table C.3.: Effect of randomness.

Methods NTU RGB+D 60 NTU RGB+D 120
X-Sub X-View X-Sub X-Set

Ours Hyperformer
90.7 95.1 86.6 88.0
90.7 95.0 86.3 88.1
90.6 95.2 86.6 88.2

mean (std) 90.67 (0.08) 95.10 (0.08) 86.5 (0.14) 88.10 (0.08)

To check the effect of randomness, we run our model on NTU-RGB+D 60&120 using
joint modality three times and report the results in Appendix 2. It can be seen that
the standard deviations are relatively small (below 0.2%) and our model delivers stable
performance.

More comparison using joint modality only

We compare to more methods using joint modality only in Table 4 and Hyperformer
performs the best on the most challenging NTU120 when fairly compared. HD-GCN
ensembles 6 modalities and removes the weaker motion modalities to achieve the reported
results. LST and InfoGCN rely on additional training losses and require intricate tuning
of the associated hyperparameters. However, Hyperformer still outperforms them by a
large margin, as shown in Table C.4.

The effect of additional losses

No performance improvement is observed after training our model with additional MMD
losses [Chi et al. 2022]. Therefore, we further validate the effectiveness of MMD losses
[Chi et al. 2022], but they are found to be useless, as shown in Table C.5.
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Table C.4.: Performance of recent methods using joint modality only. We denote the
methods that are not directly comparable with * (rely on additional supervision signal)

States Methods NTU RGB+D 60 NTU RGB+D 120
X-Sub X-View X-Sub X-Set

SOTA

MST-GCN (Chen et al. 2021) 89.0 95.1 82.8 84.5
InfoGCN* (Chi et al. 2022) 89.4* 95.2* 84.2* 86.3*
LST* (Xiang et al. 2022) 90.2* 95.6* 85.5* 87.0*
HD-GCN (Lee et al. 2021) - - 85.7 87.3

Ours Hyperformer 90.7 95.1 86.6 88.0

Table C.5.: The reported and reproduced results of InfoGCN on NTU RGB+D 60 X-Sub.
* denotes the results with MMD losses.

Modality Joint Bone Joint Vel. Bone Vel. 4S

InfoGCN [Chi et al., 2022] 89.8* 90.6* 88.9* 88.6* 92.7*
InfoGCN ([Huang et al.] reproduced) 89.4* 90.6* - - 92.3*
InfoGCN (our reproduced) 89.5* 90.5* 88.6* 88.3* 92.3*
InfoGCN (our reproduced) 89.6 90.3 88.7 88.3 92.4

3. Python implementation
We list our Pytorch implementation of HyperSA layer in Listing 2. For simplicity, we
omit the code for initialization.
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Listing 2 HyperSA.py
1 import torch
2 from torch import nn
3 class HyperSA (nn. Module ):
4 def __init__ (self , dim_in , dim , num_heads =9, qkv_bias =False , H=

None , qk_scale =None , hops=None , num_point =25):
5 ’’’
6 :param H: Incidence Matrix
7 :param hops: Shortest Path Distance (SPD)
8 ’’’
9 super (). __init__ ()

10 self. num_heads = num_heads
11 self.dim = dim
12 head_dim = dim // num_heads
13 self. scale = qk_scale or head_dim ** -0.5
14 self. num_point = num_point
15 self. rpe_table = nn. Parameter (torch.zeros (( hops.max ()+1, dim

)))
16 self.u = nn. Parameter (torch.zeros(num_heads , head_dim ))
17 self. relational_bias = nn. Parameter (torch.stack ([ torch.eye(

num_point ]) for _ in range( num_heads )], dim =0) ,
requires_grad =True)

18 self.qkv = nn. Conv2d (dim_in , dim * 3, 1, bias= qkv_bias )
19 self.proj = nn. Conv2d (dim , dim , 1)
20 self. e_proj = nn. Conv2d (dim_in , dim , 1, bias=False)
21 self.H = H
22
23 def forward (self , x, joint_label , groups , pe):
24 N, C, T, V = x.shape
25 qkv = self.qkv(x). reshape (N, 3, self.num_heads , self.dim //

self.num_heads , T, V). permute (1, 0, 4, 2, 5, 3)
26 q, k, v = qkv [0], qkv [1], qkv [2]
27 # Deriving hyperedge representation
28 e = x@self .H/torch.sum(self.H, dim =0, keepdim =True)
29 e = self. e_proj (e)
30 e_aug = e@self .H. transpose (0, 1)
31 e_aug = e_aug. reshape (N, self.num_heads , self.dim // self.

num_heads , T, V). permute (0, 3, 1, 4, 2)
32 pos_emb = self. rpe_table [self.hops]
33 r = pos_emb .view(V, V, self.num_heads , self.dim // self.

num_heads )
34 a = q @ k. transpose (-2, -1)
35 b = torch. einsum ("bthnc , nmhc ->bthnm", q, r)
36 c = torch. einsum ("bthnc , bthmc ->bthnm", q, e_aug)
37 d = torch. einsum ("hc , bthmc ->bthm", self.u, e_aug). unsqueeze

(-2)
38 attn = (a + b + c + d) * self.scale
39 attn = attn. softmax (dim =-1)
40 x = (attn + self. relational_bias ) @ v
41 x = x. transpose (3, 4). reshape (N, T, -1, V). transpose (1, 2)
42 x = self.proj(x)
43 return x
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Appendix D.

Extending the Structural Prior with
Topological Analysis beyond Connectivity

In this section, we provide the supplementary materials for Chapter VI.

1. Supplementary Material Structure
This supplementary material provides additional technical explanations and experimental
validations to support and expand upon the main text of our work. The contents are
organized as follows:

(i) Detailed elaboration of the dynamic topological encoding scheme, Appendix 2.
(1) Definition and illustration of essential terms and concepts, Appendix 2.1.
(2) Theoretical foundation and methodology of persistent homology analysis for

graph-structured data, Appendix 2.2.
(3) Comprehensive explanation of the adopted vectorization representation strategy,

Appendix 2.3.
(ii) In-depth discussion of the hyperparameter settings and optimization of BlockGCN,

Appendix 3.
(iii) Extended experimental validations and analysis, Appendix 4.

(1) Evaluation and comparison of single modality performance, Appendix 4.1.
(2) Investigation of the impact of different graph distance metrics on model perfor-

mance, Appendix 4.2.
(3) Visual exploration and interpretation of the learned feature representations,

Appendix 4.4.

2. Technical Preliminaries
2.1. Fundamentals of Algebraic Topology
Topological data analysis (TDA) [197] leverages algebraic topology tools, such as persistent
homology [68], to extract topological features, including connected components and cycles,
from graph data that persist across multiple scales [5]. These topological descriptors
have been shown to be effective representations for graph classification tasks [271, 186].
Furthermore, integrating these topological features with deep learning architectures has
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achieved significant success in enhancing the representational power of the models [271,
261, 159, 109, 53, 250]. In this section, we first introduce the core notations and concepts,
followed by a general description of persistent homology analysis for graph data, and finally
present a toy demonstration for intuitive understanding. For more detailed descriptions
and formal illustrations of these techniques, we refer the reader to the corresponding
literature in computational topology and topological data analysis [30, 67, 103].
Simplicial Complex: A simplicial complex is composed of simplices of different dimensions,
such as vertices (0-simplices), edges (1-simplices), triangles (2-simplices), and tetrahedra
(3-simplices). Given a k-simplex denoted as σ = [v0, ..., vk], deleting one of its vertices vi

results in a (k − 1)-simplex [v0, . . . , v̂i, . . . , vk] (v̂i denotes the deleted vertex), which is
called the i-th face of σ. A simplicial complex K is defined as a set of simplices of varying
dimensions that satisfies the following conditions:

(i) Any face τ of a simplex σ ∈ K is also in K (i.e., τ ∈ K).

(ii) If σ1, σ2 ∈ K and σ1 ∩ σ2 ̸= ∅, then σ1 ∩ σ2 is a face of both σ1 and σ2.

A graph G is a simplicial complex K consisting only of vertices (0-simplices) and edges
(1-simplices).
Boundary Map: Given a simplicial complex K, consider the vector space Cκ(K) generated
with Z2 (the field with two elements). The boundary map is denoted as ∂κ : Cκ(K)→
Cκ−1(K). For a k-simplex σ = [v0, . . . , vk) ∈ K], the boundary map is defined as:

∂κ(σ) :=
k∑

i=0
(v0, . . . , vi−1, vi+1, . . . , vk) (D.1)

In other words, each vertex vi of the simplex is omitted once. The boundary operator ∂ is
a homomorphism between the simplicial chain groups, providing a precise way to define
connectivity [109].
Homology: Homology theory employs commutative algebra tools to study topological
features, such as connected components (κ = 0) and cycles (κ = 1) in a graph [67], using
the boundary operator. The κ-th homology group Hκ(K) of a simplicial complex K is
defined as the quotient group:

Hκ(K) := ker∂κ/im∂κ+1 (D.2)

The elements in ker(∂κ) and im(∂κ+1) are called κ-cycles and κ-boundaries, respectively.
The resulting homology groups Hκ(K) are topological invariants that remain unchanged
under homeomorphisms and encode intrinsic information [103].
Betti Numbers: Betti numbers, defined as the ranks of the homology groups, serve as
simpler invariants for classifying topological spaces. For Hκ(K), the 0-th Betti number
β0 = rankH0(K) represents the number of connected components, while the 1-st Betti
number β1 = rankH1(K) represents the number of cycles when κ = 0 and κ = 1,
respectively. However, these counting-based topological summaries are too coarse to
capture the complexity of graph structures. To address this limitation, a persistent version
of homology-based topological invariant analysis is proposed, as described in the following
section.
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Figure D.1.: A graph filtration with ϵ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (from left to right): (a) the
persistence barcodes of connected components (up) and cycles (down); (b) corresponding
persistent diagram of connected components (red disk) and cycles (blue triangle).[Best
viewed in zoom and color]

2.2. Persistent Homology Analysis for Graphs

In this subsection, we provide an overview of the persistent homology analysis for graphs,
followed by an intuitive demonstration using a 5-node graph example. We then introduce
the key notations and concepts for further reference.
Intuitive Demonstration: Consider an undirected graph G = (V , E) with a vertex set V
and an edge set E ⊆ V × V. Given a threshold value ϵ, we can obtain a series of graphs
by setting the edge weights w

(ϵ)
ij to 1 if w

(ϵ)
ij > ϵ, and 0 otherwise. Treating the graph

G as a simplicial complex K, we generate a sequence of simplicial complexes, termed as
a filtration, {Ki}m

i=0, where ∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K, by increasing the threshold
value ϵ. As the filtration parameter increases, more edges are removed from the graph. In
extreme cases, when ϵ→ −∞, the graph becomes complete, and when ϵ→∞, the graph
reduces to a vertex set V . For each sub-complex, we record the topological invariants, such
as connected components and cycles, to describe the graph structure. During this filtration
process, each topological object (i.e., homology) may appear at a specific ϵi and disappear
at another value ϵj. The interval {ϵi, ϵj} is called its persistence. Persistent homology
analysis captures the global structure of graphs by recording these paired filtration values
in the nested sequence. Persistence barcodes and persistence diagrams are used to represent
the paired set {(b(0)

i , d
(0)
i )}n

i=1, where D(0)
i = (b(0)

i , d
(0)
i ) and b

(0)
i , d

(0)
i ∈ {ϵ0, ϵ1, . . . , ϵk} for

connected components, and superscripts equal to 1 for cycles.
Figure D.1 presents an intuitive demonstration of a 5-node graph filtration with threshold

values ϵ = 0, 1, . . . , 9. As ϵ increases from 0 to 9, edges gradually appear, forming different
combinations of connected components and cycles. For example, when ϵ increases from 0
to 1, the number of connected components decreases from 5 to 4 as one edge emerges.
When ϵ increases from 2 to 3, a cycle appears and persists until ϵ = 9. Through this
counting and recording process, the geometrical structure of a weighted graph is explored
globally.
Persistent Homology: Given a filtration of K denoted as {Ki}m

i=0, we have a corresponding
sequence of chain complexes Cκ(Ki). The concept of homology groups is extended from
Hi

κ(K) := ker∂i
κ/im∂i

κ+1 (dependent on a single simplicial complex Ki) to its persistent
version (from Ki to Kj) as:

Hi,j
κ (K) := ker∂i

κ/(im∂j
κ+1 ∩ ker∂i

κ) (D.3)
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Table D.1.: Default Hyperparameters for BlockGCN on NTU RGB+D, NTU RGB+D
120, and Northwestern-UCLA.

Config. NTU RGB+D 60 and 120 NW-UCLA

random choose False True
random rotation True False
window size 64 52
weight decay 4e-4 3e-4
base lr 0.05 0.05
lr decay rate 0.1 0.1
lr decay epoch 110, 120 90 100
warm up epoch 5 5
batch size 64 16
num. epochs 140 120
optimizer Nesterov Accelerated Gradient Nesterov Accelerated Gradient

The ranks of all the homology groups βi,j
κ = Hi,j

κ (K) (namely the κ-th persistent Betti
numbers) capture the number of homological features of dimensionality κ (e.g., connected
components for κ = 0, cycles for κ = 1, etc.) that persist from i to (at least) j [106].
Persistence Barcodes of Filtration: For simplification, we use R2 of {D(0)

1 ,D(0)
2 , . . . ,D(0)

p },
where D(0)

i = {(b(0)
i , d

(0)
i )}, to denote the barcodes extracted from K. Formally, the

filtration sequence of K can be defined using a vertex filter function f : V → R with
the filtration values ϵ1 < ϵ2 · · · ϵm, where ϵi ∈ {f(v) : {v} ∈ K}. With function f , the
filtration of K is:

Kf,0 = ∅, Kf,i = {σ ∈ K : max
v∈σ

f(v) ≤ ϵi} (D.4)

for 1 ≤ i ≤ m. Then, for the filtration of K and homology dimension κ (κ = 0, 1 in
this work), we obtain the persistence barcode representation {D(0)

i }m
i=1 = {(b(0)

i , d
(0)
i )}m

i=1,
which we denote as B.

2.3. Vectorization Representation

The inconsistency of using persistence barcodes {(b(0)
i , d

(0)
i )}m

i=1 in machine learning tasks
has led to the development of various vectorization approaches, including statistical
analysis [158, 16], kernel methods [137, 185, 130, 37, 25], distance metrics [157, 47], and
Rd elements [21, 3, 28, 9, 114].

Recently, learning-based techniques have been proposed to facilitate the integration of
such graph descriptions into modern deep learning architectures by introducing learnable
weights for each barcode [106, 109]. Typical embedding functions include the rational hat
function [106], point transformation-based techniques [26], and the DeepSets approach
[259] adopted in [109].

For computational efficiency and ease of implementation, we employ the rational hat
function, as described in [106], for vectorization extraction due to its differentiability and
expressive power in representing graphs. Mathematically, the barcode coordinate function
maps a barcode in B to a real value by aggregating the points in the persistence diagram
via a weighted sum:

Ψ : B→ R B →
∑

(b,d)∈B
s(b, d) (D.5)
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Table D.2.: Classification Accuracy (%) of BlockGCN using Different Modalities on NTU
RGB+D, NTU RGB+D 120, and Northwestern-UCLA Dataset.

Modality NTU-RGB+D NTU-RGB+D 120 NW-UCLAX-Sub X-View X-Sub X-Set

Joint 90.9 95.4 86.9 88.2 95.5
Bone 91.3 95.3 88.1 89.3 93.3
Motion 88.7 93.3 82.7 84.6 92.9
Bone Motion 88.3 92.6 83.0 84.8 88.8

Ensembled 93.1 97.0 90.3 91.5 96.9

where s : R2 → R is a differentiable function that vanishes on the diagonal of R2. The
rational hat structure element from [107] is defined as:

p ∈ B p→ 1
1 + ∥p− c∥1

− 1
1 + ||r| − ∥p− c∥1|

(D.6)

where c ∈ R2 and r ∈ R are learnable parameters. This function evaluates the "centrality"
of each point p ∈ B with respect to a learned center c and a learned shift/radius r.

In our implementation, we adopt the modified version of the rational hat function
provided in the Pytorch-topological1 library, which is based on the original implementation
by [106]. This vectorization approach allows us to transform the persistence barcodes
into fixed-length feature vectors that can be readily integrated with deep learning models,
such as the BlockGCN architecture used in our work. By learning the parameters of the
rational hat function, we can adaptively capture the most informative topological features
for the given graph classification task, enhancing the expressive power and discriminative
capability of our model.

3. Hyperparameter Settings
In this section, we provide the default hyperparameter settings used for training our
BlockGCN model on the NTU RGB+D, NTU RGB+D 120, and Northwestern-UCLA
datasets. Throughout our experiments, we consistently train a 10-layer BlockGCN with
a maximum channel dimension of 256. Table D.1 presents the default hyperparameters
for our BlockGCN model on these datasets. These hyperparameter settings have been
carefully tuned to achieve optimal performance on each dataset while maintaining a
balance between model complexity and computational efficiency. By using consistent
hyperparameter settings across all experiments, we ensure a fair comparison and evaluation
of our BlockGCN model’s performance on different datasets and modalities.

4. Extended Experimental Results
In this section, we present additional experimental results to provide a more comprehensive
evaluation of our BlockGCN model’s performance on various datasets and modalities.

1https://pypi.org/project/torch-topological/
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4.1. Single Modality Performance
To gain further insights into the contribution of each modality to the overall performance of
our BlockGCN model, we conduct experiments training the model on each single modality
separately. Table D.2 provides detailed results of our BlockGCN’s performance on each
modality for the different benchmark datasets. These results demonstrate the effectiveness
of our BlockGCN model in learning discriminative features from individual modalities,
such as skeleton, RGB, depth, and infrared data. By examining the performance on
each modality, we can identify the strengths and weaknesses of our model in capturing
modality-specific information and guide future research efforts towards improving the
fusion of multi-modal features. The single modality performance also serves as a baseline
for evaluating the benefit of multi-modal fusion in our BlockGCN model. By comparing
the results of single modality training with those of multi-modal fusion, we can quantify
the synergistic effect of combining complementary information from different modalities
to enhance the overall recognition accuracy.

4.2. Selection of Graph Distance for Static Topological Encoding
In the main text, we discuss the use of relative distances between joint pairs on the
graph to symbolize graph topology. Theoretically, any proper graph distance can serve
this purpose. In our work, we investigate two common graph distances for our Static
Topological Encoding: the shortest path distance and the distance in the level structure
[59]. Table D.3 compares these two distances. Interestingly, both distances lead to an
equivalent improvement, suggesting that they fundamentally convey the same information,
i.e., bone connectivity. To streamline our approach, we default to employing the shortest
path distance.

The choice of graph distance for Static Topological Encoding is an important consid-
eration, as it directly influences the model’s ability to capture the intrinsic topology of
the skeleton graph. By comparing the performance of different graph distances, we can
identify the most informative and computationally efficient representation for encoding
the graph topology. The equivalent improvement observed when using either the shortest
path distance or the distance in the level structure indicates that both distances effectively
capture the essential connectivity information of the skeleton graph. This finding simplifies
the implementation of our Static Topological Encoding, as we can focus on using the
shortest path distance without compromising the model’s performance.

Table D.3.: Comparing different graph distances for our Static Topological Encoding.
Graph Distance Acc(%)

shortest path distance level difference

- - 86.7
✓ - 86.9
- ✓ 86.9

4.3. Choice of Simplicial Complex
In addition to the graph distance, we also explore the choice of simplicial complex for
persistent homology analysis used in our dynamic topological encoding. Table D.4 shows
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the comparison between two commonly used simplicial complexes: the Vietoris-Rips
Complex and the Cubical Complex. The results indicate that using the Cubical Complex
leads to a slight decrease of 0.2% in accuracy and significantly longer run time compared to
the Vietoris-Rips Complex. Based on these findings, we adopt the Vietoris-Rips Complex
for our dynamic topological encoding.

The choice of simplicial complex is crucial for efficient and effective persistent homology
analysis. The Vietoris-Rips Complex, which is based on pairwise distances between points,
provides a good balance between topological expressiveness and computational efficiency.
On the other hand, the Cubical Complex, which is based on a cubical grid, may introduce
additional computational overhead without providing significant benefits in terms of
accuracy. By selecting the Vietoris-Rips Complex for our dynamic topological encoding,
we ensure that our model can efficiently capture the evolving topological features of the
skeleton graph over time, while maintaining high recognition accuracy.

Table D.4.: Comparing different simplicial complices.
Vietoris–Rips Complex Cubical Complex Acc(%)

✓ - 86.9
- ✓ 86.7

4.4. Visualization of Learned Representations
To gain further insights into the learned representations of our BlockGCN model, we
provide additional visualizations of the Static Topological Encodings and the learned
adjacency matrices.

Figure D.2 presents more examples of the learned Static Topological Encodings, show-
casing the model’s ability to capture the intrinsic topology of the skeleton graph. These
visualizations illustrate how our model learns to encode the relative distances between
joint pairs, effectively representing the connectivity information of the skeleton.

Figure D.3 visualizes the learned adjacency matrices of our BlockGCN model. These
matrices represent the learned graph structure and the strength of connections between
different joints. By examining these visualizations, we can gain insights into how our
model adapts the graph structure to better capture the dependencies and relationships
between joints for action recognition. The visualizations of the learned Static Topological
Encodings and adjacency matrices provide a qualitative assessment of our BlockGCN
model’s learning process.

175



Appendix D. Extending the Structural Prior with Topological Analysis beyond Connectivity

(a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4. (e) Layer 5.

(f) Layer 6. (g) Layer 7. (h) Layer 8. (i) Layer 9. (j) Layer 10.

Figure D.2.: The learned Static Topological Encodings of our BlockGCN at each layer.
It can be seen that the learned weights are diverse and adapted to different levels of
semantics.

(a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4. (e) Layer 5.

(f) Layer 6. (g) Layer 7. (h) Layer 8. (i) Layer 9. (j) Layer 10.

Figure D.3.: The learned adjacency matrices of the GCN baseline model at each layer
(Darker colors stand for larger weights). It can be seen that the learned weights vary
dramatically among different layers and deviate far from the bone connections, which are
used for initialization.
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Overcoming the Error-Enhancement
Defect in Label Smoothing for Image
Classifiers

In this section, we provide the supplementary materials for Chapter VII.

1. Proof of Lemma 3.2
Proof. We aim to demonstrate the validity of Lemma 3.2, which states:

H(s, q) = H(y, q) + LLS (E.1)

where LLS = α
(
H
(

1
K

, q
)
−H(y, q)

)
Let us proceed with the proof:
We begin by expressing the cross-entropy H(s, q):

H(s, q) = −
K∑

k=1
sk log qk (E.2)

In the context of label smoothing, sk is defined as:

sk = (1− α)yk + α

K
(E.3)

where α is the smoothing parameter, yk is the original label, and K is the number of
classes.

Substituting this expression for sk into the cross-entropy formula:

H(s, q) = −
K∑

k=1

(
(1− α)yk + α

K

)
log qk (E.4)

Expanding the sum:

H(s, q) = −(1− α)
K∑

k=1
yk log qk −

α

K

K∑
k=1

log qk (E.5)

We recognize that the first term is equivalent to (1− α)H(y, q), and the second term
to αH( 1

K
, q). Thus:
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H(s, q) = (1− α)H(y, q) + αH
( 1

K
, q
)

(E.6)

Rearranging the terms:

H(s, q) = H(y, q) + α
(

H
( 1

K
, q
)
−H(y, q)

)
(E.7)

We can now identify H(y, q) as the original cross-entropy loss, and define the label
smoothing loss as:

LLS = α
(
H
(

1
K

, q
)
−H(y, q)

)
.

Therefore, we have demonstrated that:

H(s, q) = H(y, q) + LLS (E.8)

with LLS as defined in the lemma. It is noteworthy that the original cross-entropy loss
H(y, q) remains unweighted by α in this decomposition, which is consistent with the
statement in Lemma 3.2

2. Proof of Theorem 3.3
Proof. We aim to prove the equation:

LLS = α(zgt −
1
K

K∑
k=1

zk) (E.9)

Let s be the smoothed label vector and q be the predicted probability vector. We start
with the cross-entropy between s and q:

H(s, q) = −
K∑

k=1
sk log qk (E.10)

With label smoothing, sk = (1− α)yk + α
K

, where y is the one-hot ground truth vector
and α is the smoothing parameter. Substituting this:

H(s, q) = −
K∑

k=1
[(1− α)yk + α

K
] log qk (E.11)

Expanding:

H(s, q) = −(1− α)
K∑

k=1
yk log qk −

α

K

K∑
k=1

log qk (E.12)

Since y is a one-hot vector, ∑K
k=1 yk log qk = log qgt, where gt is the index of the ground

truth class:

H(s, q) = −(1− α) log qgt −
α

K

K∑
k=1

log qk (E.13)

Using the softmax function, qk = ezk∑K

j=1 ezj
, we can express log qk in terms of logits:
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log qk = zk − log(
K∑

j=1
ezj ) (E.14)

Substituting this into our expression:

H(s, q) =− (1− α)[zgt − log(
K∑

j=1
ezj )]

− α

K

K∑
k=1

[zk − log(
K∑

j=1
ezj )]

=− (1− α)zgt + (1− α) log(
K∑

j=1
ezj )

− α

K

K∑
k=1

zk + α log(
K∑

j=1
ezj )

=− (1− α)zgt −
α

K

K∑
k=1

zk + log(
K∑

j=1
ezj )

(E.15)

Rearranging:

H(s, q) = −zgt + log(
K∑

j=1
ezj ) + α[zgt −

1
K

K∑
k=1

zk] (E.16)

We can identify:

• H(y, q) = −zgt + log(∑K
j=1 ezj ) (cross-entropy for one-hot vector y)

• LLS = α[zgt − 1
K

∑K
k=1 zk]

Thus, we have proven:
H(s, q) = H(y, q) + LLS (E.17)

Due to the broad usage of CutMix and Mixup in the training recipe of modern Neural
Networks, we additionally take their impact into account together with Label Smoothing.
Now we additionally prove the case with Cutmix and Mixup:

L′
LS = α((λzgt1 + (1− λ)zgt2)−

1
K

K∑
k=1

zk) (E.18)

With Cutmix and Mixup, the smoothed label becomes:

sk = (1− α)(λyk1 + (1− λ)yk2) + α

K
(E.19)

where yk1 and yk2 are one-hot vectors for the two ground truth classes from mixing, and
λ is the mixing ratio.

Starting with the cross-entropy:
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H(s, q) = −
K∑

k=1
sk log qk (E.20)

= −
K∑

k=1
[(1− α)(λyk1 + (1− λ)yk2) + α

K
] log qk (E.21)

= −(1− α)
K∑

k=1
(λyk1 + (1− λ)yk2) log qk −

α

K

K∑
k=1

log qk (E.22)

Since yk1 and yk2 are one-hot vectors:

H(s, q) = −(1− α)(λ log qgt1 + (1− λ) log qgt2)−
α

K

K∑
k=1

log qk (E.23)

where gt1 and gt2 are the indices of the two ground truth classes.
Using qk = ezk∑K

j=1 ezj
, we express in terms of logits:

H(s, q) = −(1− α)[λ(zgt1 − log(
K∑

j=1
ezj )) + (1− λ)(zgt2 − log(

K∑
j=1

ezj ))] (E.24)

− α

K

K∑
k=1

[zk − log(
K∑

j=1
ezj )] (E.25)

Simplifying:

H(s, q) = −(1− α)[λzgt1 + (1− λ)zgt2] + (1− α) log(
K∑

j=1
ezj ) (E.26)

− α

K

K∑
k=1

zk + α log(
K∑

j=1
ezj ) (E.27)

= −(1− α)[λzgt1 + (1− λ)zgt2]−
α

K

K∑
k=1

zk + log(
K∑

j=1
ezj ) (E.28)

Rearranging:

H(s, q) = −[λzgt1 + (1− λ)zgt2] + log(
K∑

j=1
ezj ) (E.29)

+ α[λzgt1 + (1− λ)zgt2 −
1
K

K∑
k=1

zk] (E.30)

We can identify:

• H(y′, q) = −[λzgt1 + (1− λ)zgt2] + log(∑K
j=1 ezj ) (cross-entropy for mixed label y′)

• L′
LS = α[λzgt1 + (1− λ)zgt2 − 1

K

∑K
k=1 zk]
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Thus, we have proven:
H(s, q) = H(y′, q) + L′

LS (E.31)

This completes the proof for both cases of Theorem 3.3.

3. Gradient Analysis
In the following, we provide gradient analysis to further support the effectiveness of our
proposed MaxSup method.

New Objective Function

The Cross Entropy with Max Suppression is defined as:

LMaxSup,t(x, y) = H
(

yk + α

K
− α · 1k=argmax(q), qS

t (x)
)

where H(·, ·) denotes the cross-entropy function.
The gradient of the loss with respect to the logit zi for each class i is derived as:

∂MaxSup,t
i = yt,i − yi −

α

K
+ α · 1i=argmax(q)

We analyze this gradient under two scenarios:
Scenario 1: Model makes correct prediction

In this case, Max Suppression is equivalent to Label Smoothing. When the model
correctly predicts the target class (argmax(q) = GT), the gradients are:

• For the target class (GT): ∂MaxSup,t
GT = qt,GT −

(
1− α

(
1− 1

K

))
• For non-target classes: ∂MaxSup,t

i = qt,i − α
K

Scenario 2: Model makes wrong prediction
When the model incorrectly predicts the most confident class (argmax(q) ̸= GT), the

gradients are:

• For the target class (GT): ∂MaxSup,t
GT = qt,GT −

(
1 + α

K

)
• For non-target classes (not most confident): ∂MaxSup,t

i = qt,i − α
K

• For the most confident non-target class: ∂MaxSup,t
i = qt,i + α

(
1− 1

K

)
The Max Suppression regularization technique implements a sophisticated gradient

redistribution strategy, particularly effective when the model misclassifies samples. When
the model’s prediction (argmax(q)) differs from the ground truth (GT), the gradient
for the incorrectly predicted class is increased by α(1 − 1

K
), resulting in ∂MaxSup,t

argmax(q) =
qt,argmax(q) + α(1− 1

K
). Simultaneously, the gradient for the true class is decreased by α

K
,

giving ∂MaxSup,t
GT = qt,GT−(1+ α

K
), while for all other classes, the gradient is slightly reduced

by α
K

: ∂MaxSup,t
i = qt,i − α

K
. This redistribution adds a substantial positive gradient to the

misclassified class while slightly reducing the gradients for other classes. The magnitude
of this adjustment, controlled by the hyperparameter α, effectively penalizes overconfident
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errors and encourages the model to focus on challenging examples. By amplifying the
learning signal for misclassifications, Max Suppression regularization promotes more robust
learning from difficult or ambiguous samples.

Algorithm 1 Gradient Descent with Max Suppression (MaxSup)
Require: Training set D = {(x(i), y(i))}Ni=1; learning rate η; number of iterations T ; smoothing

parameter α; a neural network fθ(·); batch size B; total classes K.
1: Initialize network weights θ (e.g., randomly).
2: for t = 1 to T do

// Each iteration processes mini-batches of size B.
3: for each mini-batch {(x(j), y(j))}Bj=1 in D do
4: Compute logits: z(j) ← fθ(x(j)) for each sample in the batch
5: Compute predicted probabilities: q(j) ← softmax(z(j))
6: Compute cross-entropy loss:

LCE ←
1
B

B∑
j=1

H
(
y(j), q(j))

7: // MaxSup component: penalize the top-1 logit
8: For each sample j:

z(j)
max = max

k∈{1,...,K}
z

(j)
k , z̄(j) = 1

K

K∑
k=1

z
(j)
k

LMaxSup ←
1
B

B∑
j=1

[
z(j)

max − z̄(j)]
9: Total loss:

L ← LCE + α LMaxSup

10: Update parameters:
θ ← θ − η∇θ L

11: end for
12: end for

4. Pseudo Code
Algorithm 1 presents pseudo code illustrating gradient descent with Max Suppression
(MaxSup). The main difference from standard Label Smoothing lies in penalizing the
highest logit rather than the ground-truth logit.

5. Robustness Under Different Training Recipes
We assess MaxSup’s robustness by testing it under a modified training recipe that reduces
total training time and alters the learning rate schedule. This setup models scenarios
where extensive training is impractical due to limited resources.

Concretely, we adopt the TorchVision V1 Weight strategy, reducing the total number
of epochs to 90 and replacing the cosine annealing schedule with a step learning-rate
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scheduler (step size = 30). We also set the initial learning rate to 0.1 and use a batch
size of 512. This streamlined recipe aims to reach reasonable accuracy within a shorter
duration.

As reported in Table E.1, MaxSup continues to deliver strong performance across
multiple convolutional architectures, generally surpassing Label Smoothing and its variants.
Although all methods see a performance decline in this constrained regime, MaxSup
remains among the top performers, reinforcing its effectiveness across diverse training
conditions.

Table E.1.: Performance comparison on ImageNet for various convolutional neural network
architectures. Results are presented as “mean ± std” (percentage). Bold and underlined
entries indicate best and second-best, respectively. (∗: implementation details adapted
from the official repositories.)

Method ResNet-18 ResNet-50 ResNet-101 MobileNetV2

Baseline 69.11±0.12 76.44±0.10 76.00±0.18 71.42±0.12
Label Smoothing 69.38±0.19 76.65±0.11 77.01±0.15 71.40±0.09
Zipf-LS∗ 69.43±0.13 76.89±0.17 76.91±0.14 71.24±0.16
OLS∗ 69.45±0.15 76.81±0.21 77.12±0.17 71.29±0.11
MaxSup 69.59±0.13 77.08±0.07 77.33±0.12 71.59±0.17
Logit Penalty 66.97±0.11 74.21±0.16 75.17±0.12 70.249±0.14

6. Increasing Smoothing Weight Schedule
Building on the intuition that a model’s confidence naturally grows as training progresses,
we propose a linearly increasing schedule for the smoothing parameter α. Concretely, α is
gradually raised from an initial value (e.g., 0.1) to a higher value (e.g., 0.2) by the end of
training. This schedule aims to counteract the model’s increasing overconfidence, ensuring
that regularization remains appropriately scaled throughout.

Experimental Evidence As shown in Table E.2, both Label Smoothing and MaxSup
benefit from this α scheduler. For Label Smoothing, accuracy improves from 75.91%
to 76.16%, while MaxSup sees a more pronounced gain, from 76.12% to 76.58%. This
greater improvement for MaxSup (+0.46%) compared to Label Smoothing (+0.25%)
corroborates our claim that MaxSup successfully addresses the inconsistent regularization
and error-enhancement issues of Label Smoothing during misclassifications.

Table E.2.: Effect of an α scheduler on model performance. Here, t and T denote the
current and total epochs, respectively. The baseline model does not involve any label
smoothing parameter (α).

Configuration Formulation α = 0.1 α = 0.1 + 0.1 t
T Remarks

Baseline – 74.21 74.21 α not used
LS α

(
zgt − 1

K

∑
k zk

)
75.91 76.16

MaxSup α
(
zmax − 1

K

∑
k zk

)
76.12 76.58
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7. Visualization of the Learned Feature Space
To illustrate the differences between Max Suppression Regularization and Label Smoothing,
we follow the projection technique of Müller, Kornblith, and Hinton [161]. Specifically,
we select three semantically related classes and construct an orthonormal basis for the
plane intersecting their class templates in feature space. We then project each sample’s
penultimate-layer activation vector onto this plane. To ensure the visual clarity of the
resulting plots, we randomly sample 80 images from the training or validation set for each
of the three classes.

Selection Criteria We choose these classes according to two main considerations:

(i) Semantic Similarity. We pick three classes that are visually and semantically close.
(ii) Confusion. We identify a class that the Label Smoothing (LS)–trained model

frequently misclassifies and select two additional classes involved in those misclas-
sifications (Fig. E.1c, Fig. E.2c). Conversely, we also examine a scenario where a
class under Max Suppression is confused with others, highlighting key differences
(Fig. E.1d, Fig. E.2d).
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(a) Semantically Similar Classes
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(b) Semantically Similar Classes
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(c) Confusing Classes (LS)
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(d) Confusing Classes (MaxSup)

Figure E.1.: Visualization of penultimate-layer activations from DeiT-Small (trained with CutMix and Mixup) on the
ImageNet validation set. The top row shows embeddings for a MaxSup-trained model, and the bottom row shows embeddings
for a Label Smoothing (LS)–trained model. In each subfigure, classes are either semantically similar or confusingly labeled.
Compared to LS, MaxSup yields more pronounced inter-class separability and richer intra-class diversity, suggesting stronger
representation and classification performance.

Observations As shown in Figures E.1 and E.2, models trained with Max Suppression
exhibit:

• Enhanced inter-class separability. Distinct classes occupy more clearly separated
regions, aligning with improved classification performance.
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(a) Semantically Similar Classes
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(b) Semantically Similar Classes
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(c) Confusing Classes (LS)
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(d) Confusing Classes (MaxSup)

Figure E.2.: Visualization of the penultimate-layer activations for DeiT-Small (trained with CutMix and Mixup) on
selected ImageNet classes. The top row shows results for a MaxSup-trained model; the bottom row shows Label Smoothing
(LS). In (a,b), the model must distinguish semantically similar classes (e.g., Saluki vs. Grey Fox; Tow Truck vs. Pickup),
while (c,d) involve confusing categories (e.g., Jean vs. Shoe Shop, Stinkhorn vs. related objects). Compared to LS, MaxSup
yields both improved inter-class separability and richer intra-class variation, indicating more robust representation learning.

• Greater intra-class variation. Instances within a single class are not overly com-
pressed, indicating a richer representation of subtle differences.

For instance, images of Schipperke dogs can differ markedly in viewpoint, lighting,
background, or partial occlusions. Max Suppression preserves such intra-class nuances in
the feature space, enabling the semantic distances to visually related classes (e.g., Saluki,
Grey Fox, or Belgian Sheepdog) to dynamically adjust for each image. Consequently, Max
Suppression provides a more flexible, fine-grained representation that facilitates better
class discrimination.

Table E.3.: Feature representation metrics for a ResNet-50 model trained on ImageNet-
1K, reported on both Training and Validation sets. We measure intra-class variation
(d̄within) and overall average distance (d̄total). Inter-class separability (R2) is calculated as
R2 = 1− d̄within

d̄total
. Higher values (↑) of d̄within and R2 are preferred.

Method d̄within ↑ d̄total R2 ↑

Train Val Train Val Train Val

Baseline 0.24114 0.24313 0.5212 0.5949 0.4025 0.4451
LS 0.2632 0.2543 0.4862 0.4718 0.4690 0.4611
OLS 0.2707 0.2820 0.6672 0.6570 0.5943 0.5708
Zipf’s 0.2611 0.2932 0.5813 0.5628 0.5522 0.4790
MaxSup 0.2926 (+0.03) 0.2998 (+0.05) 0.6081 (+0.12) 0.5962 (+0.12) 0.5188 (+0.05) 0.4972 (+0.04)
Logit Penalty 0.2840 0.24144 0.7996 0.7909 0.6448 0.6024
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Appendix F.

Balancing Diversity and Risk in
Sampling-Based Decoding for Large
Language Models

In this section, we provide the supplementary materials for Chapter VIII.

1. Complete Record of the Experiment Runs

Methods
Evaluation Runs Mean/Std

Run 1 at average Risks Run 2 at average Risks Run 3 at average Risks average Risks
1 5 15 1 5 15 1 5 15 1 5 15

Greedy Decoding 0.338
Naive Sampling 0.420 0.426 0.416 0.421(0.004)
Top-k Sampling 0.412 0.447 0.410 0.389 0.432 0.435 0.402 0.428 0.419 0.401(0.010) 0.436(0.008) 0.421(0.010)
Top-p Sampling 0.337 0.370 0.382 0.367 0.393 0.379 0.362 0.370 0.405 0.355(0.013) 0.378(0.011) 0.389(0.012)
Adaptive Sampling 0.403 0.416 0.433 0.403 0.416 0.419 0.378 0.440 0.411 0.395(0.012) 0.424(0.011) 0.421(0.009)
Eta Sampling 0.395 0.419 0.442 0.387 0.394 0.419 0.382 0.389 0.379 0.388(0.005) 0.401(0.013) 0.413(0.026)
Mirostat 0.424 0.417 0.430 0.399 0.443 0.433 0.415 0.414 0.412 0.413(0.010) 0.425(0.013) 0.425(0.009)

Table F.1.: Evaluation on the TruthfulQA benchmark. Since the GPT-3 API is no longer
available, we use the by the authors recommended BLEURT accuracy for comparison
under the open-ended generation setup.

The scores of the individual runs on TruthfulQA benchmark are recorded in Table F.1,
and the means and standard errors of recalls and risks at all average Risks are listed
in Table F.2. Note that due to a fixed amount of computation budget, we search the
corresponding parameter value for each truncation sampling method till the average risk
is close enough to the predefined value, thus resulting in the variations of the average
risks. However, such variations are negligible given the minor differences.

Although Top-p sampling is indeed also adaptive regarding the truncation position,
we show that Top-p sampling have a inherent limitation. When a larger portion of
the probability mass is concentrated in the first few tokens (this often indicates smaller
entropy), a fixed cumulative probability threshold will cut a longer tail off, and vice versa.
However, there’s merely a weak correlation between the entropy of the LLM’s prediction
and optimal truncation values, see Figure F.1.
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(a) The Pearson’s correlation is 0.24777
for GPT2-XL.

(b) The Pearson’s correlation is 0.24784
for Llama-2-7B.

Figure F.1.: Scatter plots between the entropy values and optimal truncation values.

2. The Advantage of Probability-Independent Metrics
In this section, we explain the practical advantages of our proposed probability-independent
recall and risk metrics. As can be seen in Figure F.2, the empirical distribution aligns
with the by gpt2-xl predicted distribution given the same prefix in general: most of the
tokens which posses high likelihood in the prediction also has a high probability based on
the word frequencies of our collected CP-Trie data. However, there exists two differences:

• Some tokens with high likelihood according to gpt2-xl have much lower probability
according to the empirical distribution. The ranking of each tokens w.r.t. probability
also differ in the two distributions.

• A few tokens which should be reasonable candidates (by manual check) have 0
probability according to the empirical distribution.

For the first issue, as discussed in Section 3.2, there exists no ideal probabilities for each
token, and the discrepancy is not solvable by simply increasing the size of the data. For
example, the "perfect" probabilities of the candidate tokens "with" and "at" are undefined
and could even be regarded as equivalently important for open-ended text generation.

The second difference highlights the reliability of LLMs, i.e., the tokens which are
assigned high likelihoods are in most cases reasonable. Note that we ignore the risk within
the estimated optimal allowed set by design: All the tokens are counted as reasonable
till the last token which has non-zero empirical probability, when they are arranged in a
descending order according to the predicted probabilities. Thus these tokens with zero
probabilities in the empirical distribution will not affect our evaluation of risk, making
our method robust to noises and insufficient data support.
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2. The Advantage of Probability-Independent Metrics

Method GPT2-XL
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 15 1.029 (0.006) 0.220(0.0006) 64 5.040 (0.613) 0.290 (0.017) 184 14.983(1.781) 0.340 (0.018)
Top-p 0.5705 0.999 (0.015) 0.170 (0.0005) 0.746 5.011(2.129) 0.240 (0.015) 0.8555 15.022 (6.210) 0.338 (0.016)

Adaptive 9.5e-4 1.000 (0.006) 0.252 (0.0007) 0.00011 4.997 (0.679) 0.339(0.018) 2.5e-05 14.995 (2.241) 0.413 (0.018)
Eta 0.318 1.000 (0.013) 0.198 (0.0005) 0.011 4.945 (1.484) 0.301 (0.016) 0.001 14.998 (4.261) 0.404 (0.017)

Mirostat 4.425 0.999 (0.005) 0.236 (0.0007) 5.9475 5.001 (0.717) 0.326 (0.018) 6.76 14.982 (2.501) 0.401 (0.018)

Method Llama-2-7b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 0.986 (0.126) 0.226 (0.016) 61 4.987 (0.587) 0.296 (0.017) 177 14.961 (1.722) 0.369 (0.018)
Top-p 0.54 0.999 (0.529) 0.156 (0.012) 0.7665 4.990 (2.331) 0.254 (0.015) 0.9 14.989 (6.208) 0.400 (0.016)

Adaptive 0.0011 1.051 (0.154) 0.257 (0.016) 0.00014 4.991 (0.856) 0.364 (0.017) 3.1e-5 14.995 (2.966) 0.470 (0.017)
Eta 0.512 1.000 (0.563) 0.192 (0.014) 0.023 5.007 (2.599) 0.297 (0.016) 0.002 13.487 (6.531) 0.407 (0.017)

Mirostat 4.253 1.000 (0.133) 0.236 (0.016) 5.82 4.993 (0.650) 0.349 (0.018) 6.628 15.022 (2.286) 0.474 (0.017)

Method Llama-3-8B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.023 (0.128) 0.228 (0.016) 59 4.982 (0.576) 0.290 (0.017) 172 15.025 ( 1.701) 0.346 ( 0.018)
Top-p 0.5395 1.000 (0.451) 0.154 (0.013) 0.736 4.998 (2.061) 0.224 (0.014) 0.855 14.993 ( 5.770) 0.326 ( 0.016)

Adaptive 0.0011 1.133 (0.167) 0.260 (0.017) 0.00017 5.006 (0.787) 0.343 (0.018) 3.7e-5 15.007 ( 2.685) 0.418 ( 0.018)
Eta 0.673 1.000 (0.445) 0.181 (0.014) 0.029 5.009 (2.112) 0.271 (0.016) 0.002 15.012 ( 6.009) 0.373 ( 0.017)

Mirostat 4.24 1.001 (0.139) 0.230 (0.016) 5.8175 5.001 (0.804) 0.318 (0.018) 6.6925 14.996 ( 2.630) 0.393 ( 0.018)

Method Llama-3-70B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.014 ( 0.127) 0.230 ( 0.016) 60 5.038 ( 0.581) 0.295 ( 0.017) 173 15.024 ( 1.695) 0.352 ( 0.018)
Top-p 0.5695 1.001 ( 0.502) 0.158 ( 0.013) 0.758 4.999 ( 2.386) 0.237 ( 0.015) 0.8705 14.960 ( 6.685) 0.332 ( 0.016)

Adaptive 0.0011 1.004 ( 0.137) 0.263 ( 0.017) 0.00014 5.013 ( 0.787) 0.353 ( 0.018) 3.16e-5 14.986 ( 2.778) 0.424 ( 0.018)
Eta 0.37 1.004 ( 0.137) 0.263 ( 0.017 ) 0.014 5.032 ( 2.231) 0.295 ( 0.016) 0.001 15.076 ( 6.265) 0.398 ( 0.018)

Mirostat 4.21 1.001 ( 0.138) 0.230 ( 0.016 ) 5.91 5.001 ( 0.708) 0.332 ( 0.018 6.84 15.021 ( 2.193) 0.417 ( 0.018)

Method Llama-2-70b
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 1.002 ( 0.128) 0.232 ( 0.016 ) 60 4.982 ( 0.583) 0.307 ( 0.017) 174 14.964 ( 1.712) 0.375 ( 0.018)
Top-p 0.6535 0.999 ( 0.475) 0.189 ( 0.013 ) 0.8465 4.988 ( 2.136) 0.316 ( 0.016) 0.9395 15.019 ( 5.522) 0.468 ( 0.016)

Adaptive 0.0011 1.000 ( 0.142) 0.269 ( 0.017 ) 1.2e-4 4.995 ( 0.796) 0.374 ( 0.017) 2.3e-5 15.007 ( 2.697) 0.485 ( 0.017)
Eta 0.092 1.002 ( 0.304) 0.236 ( 0.015 ) 0.003 5.057 ( 1.590) 0.378 ( 0.017) 0.00021 15.001 ( 4.243) 0.510 ( 0.017)

Mirostat 4.16 1.001 ( 0.135) 0.238 ( 0.016 5.7875 5.004 ( 0.684) 0.353 ( 0.018) 6.67 14.991 ( 2.125) 0.478 ( 0.017)

Method Mixtral-8x7B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 15 1.028 ( 0.134) 0.229 ( 0.016) 63 4.978 ( 0.598) 0.301 ( 0.017) 183 14.967 ( 1.757) 0.366 ( 0.018)
Top-p 0.6505 1.000 ( 0.535) 0.192 ( 0.014 ) 0.8375 5.007 ( 2.423) 0.303 ( 0.015) 0.9325 14.966 ( 6.139) 0.456 ( 0.016)

Adaptive 0.00105 1.000 ( 0.148) 0.265 ( 0.017 ) 0.00011 4.994 ( 0.798) 0.372 ( 0.018) 2.1e-5 15.014 ( 2.802) 0.476 ( 0.017)
Eta 0.087 1.001 ( 0.335) 0.241 ( 0.015 ) 0.003 5.061 ( 1.822) 0.375 ( 0.017) 0.000215 14.991 ( 4.922) 0.506 ( 0.017)

Mirostat 4.2775 1.000 ( 0.143) 0.238 ( 0.016) 5.845 4.995 ( 0.710) 0.346 ( 0.018) 6.6875 14.998 ( 2.213) 0.461 ( 0.018)

Method Mistral-7B
Parameter Risk Recall Parameter Risk Recall Parameter Risk Recall

Top-k 14 0.965 ( 0.126) 0.224 ( 0.016) 62 4.968 ( 0.596) 0.297 ( 0.017) 181 15.006 ( 1.759) 0.364 ( 0.018)
Top-p 0.6565 1.001 ( 0.539) 0.194 ( 0.014) 0.8375 4.996 ( 2.476) 0.303 ( 0.016 ) 0.9315 15.038 ( 6.315) 0.447 ( 0.016)

Adaptive 0.00105 1.001 ( 0.152) 0.260 ( 0.016) 0.000115 4.993 ( 0.809) 0.364 ( 0.018) 2.2e-5 14.999 ( 2.757) 0.466 ( 0.017)
Eta 0.075 0.997 ( 0.307) 0.243 ( 0.015) 0.003 4.640 ( 1.542) 0.368 ( 0.017) 0.000196 15.009 ( 4.712) 0.505 ( 0.017)

Mirostat 4.1825 1.000 ( 0.141) 0.236 ( 0.016) 5.8125 4.999 ( 0.721) 0.345 ( 0.018) 6.71 14.978 ( 2.213) 0.468 ( 0.018)

Table F.2.: Critical Parameters of different truncation sampling methods at different
average Risks using different models.
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Appendix F. Balancing Diversity and Risk in Sampling-Based Decoding for Large Language
Models

(a) Top 30 by gpt2-xl predicted next candidate
tokens and their corresponding likelihood given
the prefix "The film was"

(b) Top 30 by gpt2-xl predicted next candidate
tokens and their corresponding empirical prob-
ability given the prefix "The film was".

(c) Top 30 by gpt2-xl predicted next candidate
tokens and their corresponding likelihood given
the prefix "The film was shot".

(d) Top 30 by gpt2-xl predicted next candidate
tokens and their corresponding empirical prob-
ability given the prefix "The film was shot".

Figure F.2.: Comparing the probabilities predicted by gpt2-xl and calculated using the
word frequencies based on our collected CP-Trie data.

190


	Introduction
	Contribution Overview
	Publications

	Background
	Transformer Fundamentals
	Sampling-Based Decoding Methods

	Part One: Probabilistic Scoring in Attention
	Improving the Trade-Off between Sparsity and Multi-Modality in Attention
	Introduction
	Related Work
	Background, Metrics, and Analysis
	MultiMax
	Experiments
	Conclusion

	Incorporating Geometric Prior into Attention for Image Modeling
	Introduction
	Related Work
	Method
	Experiments
	Conclusion

	Incorporating Structural Prior into Attention for Skeleton-Based Action Recognition
	Introduction
	Related work
	Preliminaries
	Method
	Experiments
	Conclusion

	Extending the Structural Prior with Topological Analysis beyond Connectivity
	Introduction
	Related Work
	Method
	Experiments
	Discussion


	Part Two: Probabilistic Scoring in Prediction
	Overcoming the Error-Enhancement Defect in Label Smoothing for Image Classifiers
	Introduction
	Related Work
	Max Suppression Regularization (MaxSup)
	Analysis of MaxSup's Learning Benefits
	Experiments
	Conclusion

	Balancing Diversity and Risk in Sampling-Based Decoding for Large Language Models
	Introduction
	Related Work
	Revisiting Truncation Sampling
	Method
	Experiment
	Revisiting Existing Evaluation
	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

	Appendix
	Improving the Trade-Off between Sparsity and Multi-Modality in Attention
	Lemmas
	Proofs
	More visualizations
	Connection between sparsification and over-smoothing
	The learned parameters of MultiMax

	Incorporating Geometric Prior into Attention for Image Modeling
	Experiment on CIFAR100
	Numbers of Substituted SA Layers
	More Experiment Details
	Python Implementation
	More Visualization

	Incorporating Structural Prior into Attention for Skeleton-Based Action Recognition
	More experiment details
	More experiment results
	Python implementation

	Extending the Structural Prior with Topological Analysis beyond Connectivity
	Supplementary Material Structure
	Technical Preliminaries
	Hyperparameter Settings
	Extended Experimental Results

	Overcoming the Error-Enhancement Defect in Label Smoothing for Image Classifiers
	Proof of Lemma 3.2
	Proof of th:cels
	Gradient Analysis
	Pseudo Code
	Robustness Under Different Training Recipes
	Increasing Smoothing Weight Schedule
	Visualization of the Learned Feature Space

	Balancing Diversity and Risk in Sampling-Based Decoding for Large Language Models
	Complete Record of the Experiment Runs
	The Advantage of Probability-Independent Metrics



