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1 Introduction

This dissertation explores how Machine Learning (ML) can help researchers avoid biased
inferences due to low response rates in general population surveys. Low response rates
can, though do not always, cause these survey studies to fail in one of their primary
objectives: making accurate inferences about a population based on a sample. When
survey respondents differ systematically from nonrespondents in regards to the topic of
the study, the resulting sample will be biased toward the characteristics of those who
participate. This effect is called ’nonresponse bias’ (Groves, 2006).
Machine learning, a subfield of computer science, focuses on developing algorithms

that predict outcomes based on historical data. Given this principle, ML algorithms are
a natural choice to learn patterns in survey data and predict individual tendencies to
participate, which, as I shall explain, can in turn be leveraged to address nonresponse bias
in various ways. The contributions of this dissertation, while varied, follow a common
approach: applying ML techniques in novel ways to the challenge of survey nonresponse
and demonstrating how survey practitioners can benefit from adopting these innovative
methods.
Specifically, this work provides survey practitioners with new methods for evaluat-

ing the role of past behavior in predicting future nonresponse behavior (Chapter 2),
making earlier predictions in newly commenced panel surveys (Chapter 3), enhancing
response rates with model-based incentive targeting (Chapter 4), and improving election
predictions (which are often confounded by nonresponse bias) by augmenting poll-based
models with ML (Chapter 5). Chapters 2-4 are about techniques to ameliorate nonre-
sponse bias, Chapter 5 is about a technique for correcting inferences despite the presence
of nonresponse bias.
This introductory chapter provides context for these four studies. This chapter begins

with an introduction to survey research and an explanation of how nonresponse bias
presents a critical contemporary challenge in the field. Next, I introduce the relevant
principles of ML. Then, I combine these two threads to explain why ML has the potential
to alleviate the problem of nonresponse and how it has already been applied to this field.
Finally, I detail the four research papers’ contributions to this broader research agenda.

1.1 Survey Research and Nonresponse Bias

The primary objective of general population surveys is to infer the characteristics of a
given population based on a sample (Groves, 2011a). Surveys can target various kinds
of groups but this dissertation focuses primarily on those designed to study a nationwide
population (hereafter referred to as ”surveys”).

1
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Modern survey methodologies emerged in the 1930s and 1940s (Groves, 2011b). In
this time, researchers such as Neyman (1934) formalized processes that are now standard
means of conducting general population surveys. For example, Neyman (1934) formal-
ized stratified sampling. Also in this period, Likert (1932) introduced the Likert scale,
which helped researchers to systematically measure individuals’ attitudes toward social,
political, and psychological topics. N-point scales like the Likert scale have since become
standard in social surveys. The efficacy of structured surveys was further demonstrated
in 1936 when the first Gallup poll correctly predicted Franklin D. Roosevelt’s victory
in the U.S. presidential election (Gallup and Rae, 1940). Developments like these led
Groves (2011b) to argue that the 1930-40s marked the formalization of modern survey
research. Key methodological principles were established during the period, including
the use of structured questionnaires, standardized sampling methods such as fully ran-
dom, or stratified random sampling, and the calculation of margins of errors around
population-wide inferences.
From the 1930s to the 2020s, nations with established survey institutions have faced a

common problem: declining response rates (Massey and Tourangeau, 2013). High non-
response rates create the possibility for nonresponse bias. Nonresponse bias occurs when
respondents and nonrespondents differ systematically concerning the variables of inter-
est in the study. In such cases, inferences drawn from the sample may be biased toward
the characteristics of the respondents (Groves, 2006). In the following passages, I ex-
amine how declining response rates have exacerbated nonresponse bias in contemporary
surveys and how this dissertation contributes to mitigating these challenges.
Here I shall describe the severity of the response rate problem. Declining response

rates are an issue globally and are unmitigated by the survey mode. In the United
States and Europe, national surveys typically achieved response rates above 70% as
recently as the 1970s. However, by the 2000s, response rates below 40% had become
common (Massey and Tourangeau, 2013). Prominent survey institutions, such as the
Pew Research Center, report a decline in response rates across all telephone surveys,
from 36% in 1997 to just 9% by 2016 (Mitchell, 2017). Dutwin and Buskirk (2021)
examined three other regular telephone surveys and found that only one, the National
Health Interview Survey, maintained response rates above 80% into the 2010s, whereas
others dropped below 20%. Similarly, Williams and Brick (2018) analyzed five U.S.
national-level, face-to-face surveys and found that response rates fell from ranges of
75–95% in 1990 to 60–80% in 2014.
If response rates are declining in both telephone and face-to-face surveys, the trajec-

tory may be even worse for web-based surveys. Daikeler, Bošnjak, and Lozar Manfreda
(2020) studied four mixed-mode surveys conducted between the 1990s and 2010s and
found that the web-based mode, on average, had 12% fewer respondents than the tele-
phone mode. Jabkowski and Cichocki (2024) reviewed three mixed-mode, Europe-wide
studies which fielded surveys regularly between 1999 and 2018. Their analysis concludes
that response rates declined by an average of 4% per decade across all modes. Taken
together, these studies provide substantial evidence that response rates are falling across
survey modes and nations.
The most common explanations for this decline are technological and economic: rising
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wages have made face-to-face interviews unscalable. This was particularly the case as
better job opportunities arose for women, who made up the bulk of the face-to-face in-
terviewing workforce of earlier decades (Groves, 2011b). Face-to-face surveys eventually
gave way to relatively cheaper phone interviews. However, as mobile phones replaced
landlines, it became much more difficult to match a participant’s location to their num-
ber and thereby control geographic stratification (Massey and Tourangeau, 2013; Dutwin
and Buskirk, 2021). As home internet proliferated in the 1990s and 2000s, people be-
came less responsive to telephone and face-to-face surveys (Massey and Tourangeau,
2013). However, from the 1990s to 2020s online surveys had issues that other modes did
not. Firstly, they excluded those without internet literacy or devices (Groves, 2011b).
Secondly, the relatively low cost of fielding a survey led to a saturation of survey invita-
tions, potentially overwhelming the limited pool of the population willing to participate
(Leeper, 2019). Whatever the particulars of the causes of this phenomena, response rates
have fallen globally and across survey modes, with rates below 40% now very common,
and this trend has continued even as recently as 2020 (Jabkowski and Cichocki, 2024).
Here I shall describe the relationship between nonresponse rates and nonresponse bias.

Much research has been conducted on the extent of the problems caused by declining
response rates and potential solutions. Studies such as Groves (2006) formalized the
proposition that low response rates may be benign under certain circumstances. To
understand when and why nonresponse bias would arise as a consequence of high nonre-
sponse rates, it helps to examine the formal definition of nonresponse bias. Intuitively,
nonresponse bias describes the extent to which a given sample-based inference would
deviate from the true population value as a direct consequence of nonresponses. Groves
(2006) formalized this in the following equation 1.1.

NRB(ȳ) = NRR · (ȳr − ȳnr) (1.1)

NRB(ȳ) represents the nonresponse bias of the given variable y mean, NRR is the
nonresponse rate, ȳr is the mean of the variable for respondents, and ȳnr is the mean
of the variable for nonrespondents. Note that ȳnr might practically be impossible to
determine because, by definition, these individuals have not provided survey answers.
I will briefly note that Groves (2006) also proposed an alternative, and very popular,

definition of nonresponse bias which is the correlation of the variable in question with
each individual’s ’response propensity’, which is their probability of responding (Koch
and Blohm, 2016). However, this dissertation does not use this definition because, as
I shall detail below, the validity of those propensity estimates is under scrutiny in this
dissertation, and so to separate the propensity measures from the bias measures, this
research primarily uses the definition in 1.1.
Equation 1.1 has a few implications. Firstly, nonresponse bias is a per-variable phe-

nomena meaning that in the same survey one variable can be very biased and another
not so. Secondly, the severity of the bias is a function of the nonresponse rate as well
as the differences in means of the respondent and nonrespondent subgroups. Intuitively,
this is because sample-based inferences can vary from the true value because respon-
dents and nonrespondents are very dissimilar but this is mitigated by the proportional
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size of the nonresponding share. Therefore, if respondents and nonrespondents tend to
yield a similar distribution of answers to the survey’s questions (the survey variables),
even a sample drawn from a low-responding population can yield accurate inferences.
Conversely, even if there is a substantial difference in ȳ between respondents and nonre-
spondents, if the nonresponse rate is very small, the subsequent bias in the inference of
ȳ will be small. For example, if individuals who choose not to respond to a hypothetical
voter intention survey are more likely to support a given political party relative to those
who respond, then the inferences drawn from that survey will likely under-estimate the
amount of support for that party. However, if the survey was instead about some kind of
health problem that affects supporters of any political party equally, this selective non-
response behavior might not lead to a biased inference because the difference in variable
means between responders and nonresponders is negligible.
Although low response rates might not always lead to nonresponse bias, survey re-

searchers have developed strategies for what to do when this does occur. The most
common solution is ex-post adjustment. Once a sample is collected, researchers typi-
cally check the distribution of the kinds of people who responded against some auxiliary
data about the population’s distribution1. For example, if the researchers are aiming to
study the general U.S. population via a stratified random sample of U.S. residents they
might check that the portion of males aged 50–70 in each sample strata roughly matches
the values in the equivalent strata from the U.S. census. If they do not match, the
researchers can use a weighting procedure (Massey and Tourangeau, 2013; Särndal and
Lundström, 2005). For example, a common implementation of this procedure is model-
based weighting, which estimates each individual’s probability of being in the sample
relative to every other individual in the same strata or population2 and assigns indi-
vidual level weights inversely proportional to that probability (Massey and Tourangeau,
2013; Särndal and Lundström, 2005). Subsequently, more under-represented individuals
will contribute more to the estimated population-wide averages and distributions.
Several studies have demonstrated the efficacy of weighting procedures. For example,

Duffy et al. (2005) found that weighting eliminated differences between face-to-face and
telephone survey results. Iachan et al. (2016) demonstrated how different weighting pro-
cedures could bring the inferences from telephone surveys about obesity into alignment
with results from more comprehensive physical examination-based surveys.
The optimistic perspective on declining response rates is that, as long as nonresponse

is not systematically related to the study variables, inferences should be valid. If such a
relationship exists, weighting can mitigate inaccuracies (Massey and Tourangeau, 2013).
However, in the following passage I describe studies that cast doubt on this optimistic
view.
In practice, low response rates have led to significant errors. In order for researchers to

1Although auxiliary data can serve many purposes, in this dissertation, I am primarily concerned with
auxiliary data’s role in ex-post adjustments.

2This procedure accounts for the estimated probability that an individual was invited (design weights),
responded to the invitation (response propensity weights), and, if the sample still does not align
with auxiliary data such as a census, may also apply additional adjustments to ensure alignment
(calibration weights) (Haziza and Beaumont, 2017).
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adjust biased samples they must anticipate in advance which survey variables to ’weight
by,’ meaning selecting the census variables to use in calibration weights or which pre-
dictor variables to include in their propensity estimation model (Little and Vartivarian,
2003; Kalton and Flores-Cervantes, 2003). Weighting can correct sample inferences when
participants are under-represented along certain dimensions (i.e., age, gender, education)
and those factors meaningfully affect the variables of interest. Thus, survey researchers
must first identify the dimensions along which the sample under-represents the popula-
tion, which is typically only possible with auxiliary data such as a census. Even when
such data are available, it may still be the case that the under-represented dimension is
not captured by variables collected in either the survey or the census (Groves, 2006).
For example, consider a survey about physical exercise habits. If work-related stress

is a driver of both poor exercise routines and survey nonresponse, but neither the cen-
sus nor the survey collects information about stress, then calibrating the sample to align
with census variables such as age and gender will not correct for the under-representation
of high-stress individuals. As a result, this procedure would fail to eliminate the non-
response bias driven by work-related stress. The practical difficulty of identifying ideal
weighting variables was explored in studies such as Kreuter et al. (2009). These re-
searchers examined five large-scale surveys, searching for variables that correlated with
both survey invitation refusal and key study variables. Importantly, these variables
needed to be available even if the invitee did not respond, so the authors relied on aux-
iliary data, for example whether the household address was in a multi-unit complex.
They found very few variables that strongly correlated with both nonresponse behav-
ior and any of the study variables. In one survey, they were able to compare weighted
and unweighted estimates against known population values, showing that variables more
strongly correlated with both nonresponse and the target study variable produced better
weighted estimates. However, the selection range of such useful variables was so limited
that it became clear survey researchers could not reliably identify effective weighting
variables for all outcomes of interest. This finding demonstrates how challenging it
is, even for well-resourced survey studies, to determine and collect effective weighting
variables in practice.
Several incorrect election predictions in the 2010s illustrate how these issues can lead

to highly visible errors, undermining trust in survey research. Elections provide a unique
opportunity to assess nonresponse bias, among other sources of error, in surveys. As
highly publicized events, they allow pollsters to compare sample-based estimates of vot-
ing behaviors against the actual election results. Of course there are other reasons for
electoral polls to mis-predict elections such as the effect of campaigns, world events,
turnout, and swinging voters (Sciarini and Goldberg, 2015). However, as I shall explain
shortly, nonresponse is likely a substantial confounder of survey-based election forecasts.
The 2016 United States presidential election was widely predicted to favor the Democrats

but was won by the Republicans (Kennedy et al., 2018). Similarly, in the 2019 Australian
election, all six major pollsters forecasted a victory for the Labor Party, yet the Liberal-
National Coalition prevailed (Pennay, Misson, and Neiger, 2021). In both cases, pollsters
were aware of nonresponse bias and applied weighting procedures, yet they still produced
inaccurate results because the appropriate weighting variables were not evident until af-
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ter the fact. In the 2016 U.S. election, polls over-represented college-educated voters,
who tended to favor Democrats. Even pollsters who used weighting did not account for
education due to concerns about the reliability of that data (White, 2020; Kennedy et al.,
2018). In the 2019 Australian election, the six leading pollsters applied weighting, but,
in hindsight, used incorrect variables. Pennay, Misson, and Neiger (2021) conducted a
case study of one pollster, demonstrating that weighting by age, geography, and gender
actually increased bias relative to the unweighted estimates, even inverting the predicted
outcome. The challenge of correcting nonresponse bias is further exemplified in Sciarini
and Goldberg (2015), who demonstrate how nonresponse is an issue in post-election sur-
veys which tend to heavily over-represent voters versus nonvoters. If politically engaged
individuals are more likely to respond to post-election surveys, this may also imply that
less-engaged voters (or nonvoters) also tend to avoid pre-election surveys, thereby bias-
ing polls towards more politically active people. Post-election surveys could use turnout
behavior as a weighting variable, but pre-election surveys would need to use turnout
intention which only approximates actual behavior, thereby making it harder for polls
to account for a political engagement-based nonresponse bias. These electoral examples
demonstrate that even when survey researchers are aware of the dangers of nonresponse
bias and exercise precautions, these procedures can fail, particularly when it is difficult
to identify and collect appropriate weighting variables, and the survey inferences can be
incorrect. Furthermore, these errors are only detected at all because there is convenient
comparison data available (the actual election outcome). This implies that similar errors
are possible in other survey studies, but go undetected for want of this kind of validation
data.
Addressing nonresponse bias remains an ongoing challenge for survey methodologists.

This dissertation contributes to this broader research agenda by demonstrating how ma-
chine learning can help alleviate nonresponse bias in surveys. Three of the four papers
in this dissertation focus on propensity modeling. These models are commonly used
in weighting procedures. However, beyond weighting, predicting likely nonrespondents
enables proactive intervention to induce responses from those who would otherwise not
participate. Chapter 2 aims to improve the predictive accuracy of propensity models
in longitudinal studies by better accounting for temporal dependencies. Chapter 3 in-
troduces a novel technique for generating propensity estimates earlier in longitudinal
surveys. Chapter 4 moves beyond predictive modeling, and explores how propensity
estimates can be used to target longitudinal survey participants with various treatments
aimed at retaining low-propensity individuals and what effect this has on bias.
The final paper, Chapter 5, shifts focus from propensity estimates to inference cor-

rection in the presence of nonresponse bias. Given that election mis-predictions in the
2010s were notable examples of the dangers of nonresponse bias, Chapter 5 concerns
Australian voter intention polls. That study demonstrates how, even if polls, weighted
or not, provide biased estimates, machine learning techniques can correct the subsequent
forecasts.
Each paper in this dissertation applies established machine learning techniques to

survey research in novel ways, with the overarching goal of improving nonresponse bias
mitigation. To provide necessary context, the next section introduces key machine learn-
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ing concepts before detailing each paper.

1.2 What is Machine Learning?

Machine learning is a subfield of computer science focused on algorithms that compute
predictions or make decisions based on data without explicit programming for the task
at hand. Instead, the model ’learns’ how to complete the task (James et al., 2013).
This process involves training a model on a dataset, referred to as ’training data,’ to
identify patterns and relationships. Once trained (a.k.a.’fitted’) the model applies this
learning to new data to make predictions or inform decisions. ML encompasses distinct
paradigms, but this dissertation focuses on ’supervised’ machine learning. In supervised
learning, predictions are categorized as either regressions or classifications. Regressors
are models that predict a continuous quantity, while classifiers output the probability
that a given case belongs to a certain class (James et al., 2013). This dissertation is
concerned with predicting whether a given survey invitee will nonrespond (Chapters 2-4)
or with predicting the party that shall win certain electoral seats (Chapter 5) and so
this dissertation is focused on supervised classification machine learning. The technique
is called ’supervised’ because it is trained on data from past cases in which the outcome
to be predicted is already known (labeled) and that is how the model can be fitted to
predict those same outcomes but for new cases where the outcome is not known. In the
example of propensity modeling, one trains the ML models on individuals’ survey data
(age, gender, etc) and their past nonresponse behaviors, to guess if other individuals
profiled by those same variables will nonrespond in their future. Formally, a supervised
learning model can be represented with function 1.2.

ŷ = f(X) (1.2)

where X represents the predictor variables, f is the model, and ŷ is the predicted
outcome. In the example of using supervised classification as a propensity model, ŷ will
be a value between zero and one representing the probability that the given individual
will nonrespond (where 1.0 represents an estimated 100% chance of nonresponse).
Several key observations follow from equation 1.2. Firstly, model performance is typ-

ically evaluated by comparing predictions (ŷ) with actual outcomes (y), using metrics
such as the average amount by which the predicted probability value deviates from the
actual binary outcome value (where 1.0 signifies that the actual outcome was a nonre-
sponse). These kinds of metrics typically measure the extent of the inaccuracy of the
ML model’s predictions, and this is called ’error’ in ML parlance, but is distinct from
’error’ in the context of surveys. Both ’model error’ and ’survey error’ refer to the ex-
tent to which an estimate deviates from an actual value, but each is calculated in very
different ways as shall be elaborated on in this section. Another important consideration
in evaluating an ML model is the baseline against which is it compared. Even imperfect
models can be valuable so long as they improve over available alternatives in the given
context (Hastie, Tibshirani, and Friedman, 2009).



Chapter 1. Introduction 8

Secondly, the predictor variables X are not limited to tabular data like a matrix of
survey invitees and their demographic details. The primary requirement for input data
is that it be represented numerically. X may include diverse formats, such as images
represented as vectors of pixel values (Hastie, Tibshirani, and Friedman, 2009). The fact
that ML models can accommodate complex data structures for X is critical for Chapter
2 where I explore how one can exploit the nature of time series data, that is, a sequence
of matrices of survey invitees by survey variables, which are the time series of repeated
survey waves in longitudinal studies. Chapter 2 illustrates how machine learning models
tailored for time series analysis can uncover insights that only emerge when the order of
events is taken into account.
Now I turn to the f term in equation 1.2. I mentioned that models were trained

on historical data so as to make predictions on new data. There are a wide variety of
algorithms that transform predictors X into predictions ŷ, and I shall describe some
relevant examples shortly. Regardless of the particulars of the algorithm for f , all super-
vised learning algorithms share a common mechanism for training: they derive optimal
model parameters to minimize prediction error. The process for deriving these parame-
ter values can be computationally intensive and so progress in adopting these methods
has been significantly accelerated by advances in hardware (Kingma and Ba, 2014). For
example, neural networks, which I employ in Chapters 2 and 5, use a pseudo-random
process called ’gradient descent’ which requires trialing many different parameter values,
measuring the subsequent error, and repeating until the optimal values are discovered
(Haykin, 1994). Many algorithms have been developed to make this process as efficient
as possible, but it is still a computationally intensive procedure which can involve trialing
many combinations of parameters (Kingma and Ba, 2014).
It is important context for this dissertation that although linear regression and logistic

regression fit the definition of a machine learning model stated above, they are firmly
established techniques in survey research already (Allison, 2009; Särndal and Lundström,
2005; Kern, Klausch, and Kreuter, 2019). Therefore, current research on ML applications
in survey methodology typically aims to explore more sophisticated ML techniques.
Now I turn to examples of the kinds of algorithms that serve the role of the f term in

equation 1.2. Support Vector Machines (SVMs) trial multiple forms for the function f ,
such as polynomial or radial functions, thereby accounting for nonlinear3 relationships
between predictors and outcomes (Boser, Guyon, and Vapnik, 1992). Classification and
Regression Trees (CART) make sequential, threshold-based decisions on predictor values
(decision trees) with the aim of maximizing similarity between cases that are sorted into
the same endpoints of those decision sequences (leaves), thereby automatically capturing
interactions4 and nonlinear relationships (Breiman et al., 1984). ’Ensemble’ methods like
random forests and gradient boosting enhance predictive performance by aggregating
predictions from multiple CARTs (Breiman, 2001; Geurts, Ernst, and Wehenkel, 2006;

3In a simple linear regression, any change in quantity of a given predictor value will correspond to
a constant proportional change in the output value as determined by the variable’s weight, so a
’nonlinear’ relationship is one in which that proportional change can vary over values of the predictor.

4An ’interaction’ effect between predictor variables is where two or more variables have a combined
effect as well as their own individual effects.
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Friedman, 2001). Neural networks, loosely inspired by animal brains, consist of layered
sequences of artificial neurons that apply linear regression functions to model highly
complex relationships in data (Rumelhart, Hinton, and Williams, 1986). Even the basic
logistic regression model can be made more sophisticated with ”penalties” which are
processes that ensure the model’s weights are not too inflated such that a few predictors
dominate the output and other, more subtle predictors are ignored (Le Cessie and Van
Houwelingen, 1992; Tibshirani, 1996).
Given this diversity of options for f , one must decide which to use. Naturally, one could

trial every possible type of model and select the one which yields the least predictive
error. In Chapter 2, 3, and 5, we conduct such studies in which we retrospectively test
how various forms of f would have performed had they been used to make forecasts
at the time. However, there are important nuances to this task that will be critical
background knowledge for this dissertation.
Firstly, one must determine what measure of model error one aims to minimize. There

are numerous ways to calculate prediction error, and selecting the appropriate metric(s)
must suit the specific context. In classification tasks, one is typically concerned with
minimizing incorrect classifications, but there are different types of misclassifications.
For example, if one aims to predict nonrespondents in an upcoming survey to poten-
tially offer them an extra cash incentives, should researchers prioritize minimizing the
number of participants who receive a treatment even though they would have responded
anyway (false positives) or the number of individuals who do not respond but were not
identified as at-risk by the model (false negatives)? For a survey researcher, this decision
would likely depend on factors such as the estimated nonresponse rate and the cost of
the treatment. Often there is a trade-off between these two concerns as one would train
the model to be more strict in categorizing a case as at-risk so as to reduce wasted cash
incentives, but more sensitive to the possibility of risk to avoid letting future nonrespon-
ders go unattended. Thus, the seemingly simple task of selecting the algorithm for f
which yields the least error is complicated by the need to choose an appropriate error
measure and to manage trade-offs between competing concerns. Therefore, each paper
in this dissertation will discuss the appropriate measure of model error in its respective
chapter.
Secondly, the model that achieves the highest accuracy when predicting cases drawn

from the same data as that on which it was trained, might not be the best model
for predicting new cases. This tendency is often a result of ’overfitting,’ meaning the
model learns patterns specific to the training set that do not generalize well to new data
(Singh, Thakur, and Sharma, 2016). To address this issue, one must ensure they select
the model most likely to succeed when applied to new data. The general solution involves
withholding a portion of the data during training and subsequently testing the model
on that withheld data which is called the ’test’ data (James et al., 2013). Therefore,
each paper in this dissertation will incorporate a methodology for separating test and
training data and evaluating multiple models to select the best performer based on its
performance on the holdout data. The goal of this process is to ensure that the models
that appear to perform well in our retrospective predictions will likely perform just as
well when used to make real forecasts.
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Each paper in this dissertation follows this fundamental ML workflow: determining
the target variable to be predicted (e.g., future nonresponse behavior), selecting predic-
tors (e.g., past survey variables), and trialing and comparing a range of candidate models
using carefully designed procedures for test-train data separation and error metric selec-
tion. However, beyond forecasting nonresponse, ML models have additional applications
of interest as follows.
Firstly, when an ML model is well-suited for prediction within a particular domain, it

can be used not only for prediction but also for understanding the mechanisms driving
nonresponse behavior. Interpretable machine learning (Linardatos, Papastefanopoulos,
and Kotsiantis, 2020) is a subfield of ML that focuses on investigating how the model
works to gain deeper insights into the system it represents. This often involves taking a
trained model and examining the impact of various predictors (and their combinations)
on estimated outcomes to perhaps help derive the underlying causal mechanisms. In
Chapter 2, I apply these techniques to understand the role of temporal dependencies in
nonresponse predictions. In the case of Chapter 3, I examine what predictors appear
to be most predictive of nonresponse so as to speculate on the drivers of nonresponse
behavior.
Secondly, Chapter 3 explores applications of ’pre-training’ (Devlin et al., 2019). Pre-

training involves training an ML model on one domain (e.g., a specific longitudinal
survey) and applying it to a different domain (e.g., another longitudinal survey), rather
than merely using it for new cases within the same domain. This technique enables
training a model on one survey and applying it to another without the need to retrain
on the new study. Chapter 3 proposes this technique and explains how it facilitates
earlier predictions in longitudinal studies than would otherwise be possible.

1.3 Machine Learning Applications to Nonresponse

This dissertation concerns the applications of ML to alleviating problems created by
nonresponse in surveys. Much research has already been conducted in this area. Thus,
to contextualize the contributions of my chapters, I provide an overview of this broader
research agenda. This work primarily addresses two areas: Firstly, my research concerns
propensity modeling, regarding both enhancing predictive accuracy and its use in miti-
gating nonresponse problems (Chapters 2-4). Secondly, my research concerns methods
to correct sample inferences given the inevitability of some nonresponse bias (Chapter
5). In this section, I review previous research on applying ML to issues related to survey
nonresponse, focusing particularly on these two applications. The subsequent section
explains how my own papers contribute to this broader research agenda.
Machine learning is a powerful tool for making predictions, and researchers have ex-

plored numerous applications of ML to address the challenges posed by survey nonre-
sponse. Although this dissertation focuses on propensity modeling and inference correc-
tion, there are numerous applications beyond these areas. For instance, if a participant
responds only partially to a survey, ML can be used to impute the missing answers,
thereby yielding a more complete dataset (Prakash et al., 2024). Argyle et al. (2023) em-
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ployed Large Language Models (LLM)5 to accurately estimate how certain demographic
profiles of respondents might have answered certain surveys, although other studies have
shown that this approach is not reliably replicable (Heyde, Haensch, and Wenz, 2025).
Other researchers have sought to mitigate nonresponse by obtaining equivalent data
from more passive sources. For example, researchers have explored the possibility that
if individuals do not respond to surveys but instead post their thoughts on social me-
dia, then mining such data could replace or augment traditional survey data. In this
context, ML could be used to transform raw social media content into population-wide
inferences. However, this approach has yet to be demonstrated as more effective than
conventional surveys, irrespective of nonresponse issues (Alvi et al., 2023; Amaya et al.,
2021; Diaz et al., 2016; Buntain et al., 2016; Amaya et al., 2021). Beyond predicting
nonresponse, ML-based modeling can address other adjacent issues such as checking for
misreporting from unengaged respondents. For example, Bach, Eckman, and Daikeler
(2020) applied a tree-based propensity model to classify low-propensity participants as
“reluctant respondents” in order to investigate their tendency for motivated misreport-
ing, such as speeding through interview questions. Their findings showed no evidence
that low-propensity participants were more likely to engage in such behavior. Taken
together, these studies show the diversity of uses for ML in mitigating nonresponse-
related challenges, however this dissertation focuses primarily on propensity models and
inference corrections.
With respect to propensity modeling, one might assume that the primary application

of ML is to produce more accurate propensity estimates. Research into that possibility
is ongoing, but I argue that there is value in exploring other applications for the propen-
sity estimates that are already available. Logistic regression has traditionally been the
most common algorithm used for propensity models intended for weighting corrections
(Särndal and Lundström, 2005; Kern, Klausch, and Kreuter, 2019; Olson, 2013; Larbi et
al., 2024; Buskirk and Kolenikov, 2015; Tourangeau, Groves, and Redline, 2010; Massey
and Tourangeau, 2013; Dutwin and Buskirk, 2021; Groves and Peytcheva, 2008). Over
the 2010s and 2020s, researchers have examined whether alternative ML algorithms
might provide more accurate predictions of participant nonresponse and, consequently,
improve the accuracy of model-based weighted inferences. The evidence suggests that
while ML models do indeed yield more accurate predictions of nonresponse, that does
not always correspond to an improvement in the accuracy of weighted sample inferences.
This may be because predictive accuracy is only one of many factors that determine the
success of weighting procedures. The variables driving nonresponse, their interactions
with study variables, and the trade-offs between reducing bias in one variable versus
exacerbating it in another may also play crucial roles (Larbi et al., 2024).
Buskirk and Kolenikov (2015) simulated the efficacy of various model-based weight-

ing strategies and found that tree-based models were the most accurate at predicting
future nonresponse, yet often produced less accurate sample-based inferences than ba-
sic logistic regressions. This finding was confirmed in a similar study by Larbi et al.
(2024). This apparent contradiction, better predictions but worse weighted inferences,

5An LLM is a type of ML model that predicts bodies of text given context text as input.
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can be explained by the principle that effective weighting procedures must adjust for
variables correlated with both response propensity and the target survey variables. In
this sense, more accurate propensity estimates may help identify variables that correlate
with actual future response behavior. However, this is only one part of the challenge: a
variable must also be correlated with the study outcomes to be effective for weighting
(Kreuter et al., 2009). Rather than focus on improving nonresponse prediction even
further for the sole purpose of weighting, this dissertation instead explores other uses
for these predictive models.
Given that ML can yield better predictions, if not better weights, survey researchers

have explored many uses for this enhanced prescience. For instance, Phillips et al.
(2023) used logistic regression-based propensity models to estimate the number of survey
invitations needed to meet a specific response quota. Another example comes from Zhang
(2025), who applied linear and tree-based models to estimate the number of call attempts
until an invitee either agrees or refuses to participate, aiding in the estimation of phone
survey costs.
One of the most prominent applications of these ML-based nonresponse predictions

is to inform adaptive survey design (ASD). ASD is a process in which survey managers
adapt survey protocols so that specific types of invitees receive a survey experience
tailored to them, as opposed to the traditional approach of providing the same experience
to everyone. The goal is to more closely align the participation probabilities of under-
and over-represented types of participants (Schouten, Peytchev, and Wagner, 2017).
Many studies in this area have relied on simulation-based approaches to demonstrate
the potential of various ASD implementations (Zhang and Wagner, 2024; Gummer,
2020; Schouten, Cobben, Lundquist, et al., 2016). For example, Watson and Cernat
(2023) employed logit models to estimate propensity before and after a follow-up contact,
and simulated how various ASD strategies could maintain sample size under various
budget constraints for follow-ups. In another study, McCarthy, Wagner, and Sanders
(2017) compared U.S. agricultural survey data against equivalent census benchmarks
to simulate scenarios in which follow-up resources were diverted from high-propensity
to low-propensity cases, examining the consequent effects on response rates and sample
composition.
These simulation studies rely on the assumption that the estimated propensity scores

are accurate, but research on propensity modeling shows that no model is 100% accu-
rate (Kern, Weiß, and Kolb, 2021; Larbi et al., 2024; Buskirk and Kolenikov, 2015).
Therefore, field experiments into how ML can direct ASD targeting are essential. My
coauthors and I shall argue in Chapter 4 that there are too few field experiment studies
that test ASD strategies for survey managers to review these reports and select an ap-
pealing strategy for their own context. An example of one of the few field experiments
available is Beste et al. (2023), who ran a treatment-control experiment in which extra
cash incentives were targeted at low-propensity households and found that this improved
overall response rates.
An important open question in this field is ”what is the best criteria to guide the tar-

geted allocation of ASDs?” For example, how low should a given participant’s propensity
be before it’s desirable to issue an extra cash incentive? Are there other criteria than
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propensity to consider? A simulation study by Watson and Cernat (2023) suggests that
incorporating measures of potential nonresponse bias (Schouten, Cobben, and Bethle-
hem, 2008) in combination with propensity estimates is better than using only propen-
sity scores. The researchers found that this composite approach was better at reducing
sample bias for a given budget for follow-ups.
Taken together, this research on ASD shows that propensity estimates can help sur-

vey research beyond just model-based weighting. Instead, propensity models and ASD
together can potentially help improve the response rates and boost the presence of oth-
erwise under-represented types of participants. With more of these under-represented
persons in the sample, this further enhances the efficacy of weighting as there is then
a greater sample size among this sub-group to better represent this particular type of
participant (Kalton, 2009; Watson and Cernat, 2023).

1.4 This Dissertation’s Contributions to Survey Methodology

Having now reviewed the big picture of ML’s application to nonresponse-related issues, I
will contextualize the contributions of this dissertation’s four papers (two published, one
accepted for publication, one under review, details below; Collins and Kern (2024) and
Collins (2025)). The appended Section Statement of Contributions details each author’s
contributions to each paper.

Chapter 2: Longitudinal Nonresponse Prediction with Time-Series Machine
Learning6

This chapter aims to improve propensity modeling in panel surveys by introducing
novel time-series ML models. Traditional propensity models typically include demo-
graphic predictors (Särndal and Lundström, 2005). In panel surveys, where the same
participants are repeatedly invited, such models can also incorporate past nonresponse
behavior. A common approach is to use each participant’s overall nonresponse rate
across all waves to which they have been invited (Mulder and Kieruj, 2018; Zinn and
Gnambs, 2022; Kocar and Biddle, 2022). However, this method implicitly assumes that
missing a survey wave several years ago is just as indicative of future nonresponse as
missing a more recent one, since each contributes equally to the overall average. In
short, this approach ignores the time-series nature of panel data, treating the order and
recency of events as irrelevant.
Prior research by Kern, Weiß, and Kolb (2021) demonstrated that accounting for the

the time-series nature of panel data can improve predictive performance. Specifically,
that study found that incorporating predictors such as rolling average nonresponse rates
over the past one, two, three, and all waves improved predictive accuracy compared to
using only the overall nonresponse rate.

6Published as: Collins, J. and C. Kern (2024). Longitudinal nonresponse prediction with time series
machine learning. Journal of Survey Statistics and Methodology 13 (1), 128–159. doi: 10.1093/js-
sam/smae037.
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These findings suggest that capturing both recent and more distant past non-response
behavior can yield better predictions. However, using a fixed three-wave rolling average
is arguably arbitrary. Why three waves? Is that optimal for all types of participants?
Can we develop a more principled approach to modeling how prior nonresponse behavior
predicts future nonresponse?
To address these questions, I explored ML techniques designed to model temporal

dependency, which is defined here as accounting for how the sequence of events influences
outcomes, not just the events themselves. For instance, in Kern, Weiß, and Kolb (2021),
nonresponse over the past three waves served as a powerful predictor. In contrast, time-
series models capture nuances such as the difference between a participant who missed
one wave but then responded to the next two versus a participant who missed the most
recent of three waves. Moreover, these models can dynamically determine how many
prior waves are relevant, eliminating the need for arbitrary fixed window sizes (Collins
and Kern, 2024).
The best-performing time-series model that I trialed, the Long Short-Term Memory

(LSTM) network (Hochreiter and Schmidhuber, 1997), did not outperform the tree-
based model from Kern, Weiß, and Kolb (2021), but it did produce comparable results
without relying on manually engineered rolling average predictors. Instead, the LSTM
effectively internalized and learned temporal patterns, essentially creating similar pre-
dictive features automatically. While the three-wave rolling window used in prior work
was derived through trial and error, the LSTM learned such dependencies through its
training process.
Thus, the key contribution of this chapter is demonstrating that LSTM models can

effectively capture temporal dependencies in panel survey nonresponse. For survey re-
searchers, this means that LSTMs can serve as a validation tool: if an LSTM outper-
forms a current model, it suggests that the model may not be sufficiently capturing
the time-dependent nature of nonresponse. This approach provides a concrete method
for assessing whether existing models adequately incorporate both recent and distant
response behaviors.

Chapter 3: Pre-Trained Nonresponse Prediction in Panel Surveys with Ma-
chine Learning7

This chapter presents two notable findings for survey researchers aiming to address
nonresponse issues. First, any predictive modeling effort must consider whether the
method generalizes to new contexts. For example, would a tree-based model that in-
corporates past nonresponse behavior perform well across all panel surveys? Or might
such an approach be more effective in weekly panels than in annual ones? If so, this
would limit the generalizability of lessons learned from a single study to the broader
field of survey research. Therefore, my coauthor and I investigated whether the model-
ing approach described in Chapter 2, developed using the GESIS Panel, would also prove
effective when applied to four other panel datasets. We found that it did generalize well.

7Accepted for publication in Survey Research Methods.
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This finding should interest survey researchers considering converting their propensity
modeling approach from logistic regression to tree-based models because it shows the
predictive technique is ubiquitously effective across a range of contexts.
Second, I introduced a novel possibility: if a given set of predictors and algorithms

performs well across a variety of panels, could it be feasible to pre-train a model? This
would involve training a model on one panel survey and then applying it to a different
panel, expecting good predictive performance despite the model not being trained on
the target panel’s data. Initially, this prospect seemed unlikely for several reasons: pan-
els often differ in scope, recruitment methods, and timing. Moreover, machine learning
models are typically sensitive to differences between training and testing domains. Nev-
ertheless, this study demonstrated that pre-trained models can produce predictions that
are comparable in quality to those generated by models trained on the target panel.
The key advantage of this approach is that it allows researchers to generate response

propensity estimates from the earliest waves of a new panel, without the need to wait
to accumulate training data. This is particularly valuable given that many panels expe-
rience the highest attrition in their initial waves (see Chapter 3).

Chapter 4: Prediction-Based Adaptive Designs for Reducing Attrition Rates
and Bias in Panel Surveys8

Numerous authors have applied ML to propensity modeling. The natural next step is
to leverage participants’ estimated nonresponse risk scores to reduce both nonresponse
rates and bias. Previous studies in this area have typically relied on assumption-driven
simulations to explore how targeting at-risk participants with modified survey proto-
cols, such as additional cash incentives or shortened surveys, might affect outcomes
(Zhang and Wagner, 2024; Gummer, 2020; Watson and Cernat, 2023; Schouten, Cobben,
Lundquist, et al., 2016). These simulations often assume theoretical treatment effects or
treat the outputs of a propensity model as true propensities, despite the fact that these
are merely estimates. Other studies have implemented examples of targeted adaptive
designs, but usually examined only a limited set of intervention strategies (Lynn, 2016;
Zhang and Wagner, 2024; Gummer and Blumenstiel, 2018; Wagner et al., 2012).
This chapter presents a framework for conducting ex-post simulations with minimal as-

sumptions, providing robust evidence for the likely effects of various adaptive survey de-
signs and ML-based targeting strategies (e.g., targeting those most at risk of nonresponse
or those at moderate risk). We describe this process as “minimal-assumptions-based”
because the treatment effects are derived from the actual results of a treatment-control
experiment, rather than being estimated through modeling.
The primary contribution of this chapter is the demonstration of a generalizable frame-

work that survey researchers can adopt. In our empirical demonstration, we offer com-
pelling evidence that certain strategies can reduce nonresponse rates by 1–2 percentage
points. While the effects of these ASD strategies on nonresponse bias were mixed, this
mixed result is to be expected given the variable-specific nature of bias.

8Submitted to Sociological Methods and Research.
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We propose that any panel study can implement this approach to simultaneously eval-
uate a wide range of ASD strategies. Until now, panel managers have relied either on
assumption-heavy simulations or costly one-ASD-at-a-time field experiments to assess
potential ASDs. Our framework enables the evaluation of multiple design options con-
currently, with minimal reliance on assumptions about how these strategies will perform
in practice.

Chapter 5: Predicting Australian Federal Electoral Seats with Machine Learn-
ing9

If the abstract goal of a general population survey is to estimate the distribution of a
given set of variables across a population using a sample, then polls-based forecasting is
an implementation of this abstraction. The objective of polls-based election forecasting is
to estimate voter behavior at the population level, often regarding how these behaviors
are distributed across strata such as geographically contiguous electoral divisions or
states. These estimates typically rely on one or more polls, which are usually surveys of
prospective voters.
As discussed, electoral mispredictions represent highly visible failures of modern survey

practice, often caused by low response rates and challenges in selecting the appropriate
weighting variables. Elections are unique in that they come with an auxiliary dataset
(the actual election outcome) against which researchers can benchmark the accuracy of
their pre-election polls. Of course, this only assists in evaluating errors after the fact.
Since the misforecast of the 2016 U.S. Presidential election, pollsters have worked

diligently to improve polling accuracy. These efforts include varying survey protocols to
better engage reluctant respondents and incorporating additional weighting variables,
particularly education, which was a critical issue in 2016 (Keeter and Kennedy, 2024).
This chapter introduces a complementary technique for adjusting polls-based elec-

tion forecasts, that is, employing ML to learn patterns in the errors between poll-based
predictions and actual outcomes from past elections. These models are then used to
correct polls-based estimates and generate seat-level forecasts. Unlike these other initia-
tives aimed at improving the accuracy of polling inferences, this approach accepts the
presence of survey errors and seeks to account for them to make better predictions. In
essence, this chapter addresses what can be done given the presence of nonresponse bias,
rather than how to reduce it.
In the context of Australian election forecasting, the task is to estimate the electoral

outcomes across seats. The traditional baseline for such forecasts in Australia is a polls-
based model known as the ‘Mackerras Pendulum,’ which is described in detail in Chapter
5. I demonstrate that these pendulum forecasts can be significantly improved by using
them as predictors within an ML model that incorporates additional variables (elec-
toral division level census data, past electoral outcomes, etc) to adjust the pendulum’s
predictions.

9Published as: Collins, John ‘Jack’ (2025). “Predicting Australian federal electoral seats with machine
learning”. In: International Journal of Forecasting. doi: 10.1016/j.ijforecast.2025.02.002.
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2 Longitudinal Nonresponse Prediction
with Time Series Machine Learning

Abstract

Panel surveys are an important tool for social science researchers, but nonresponse
in any panel wave can significantly reduce data quality. Panel managers then attempt
to identify participants who may be at risk of not participating using predictive mod-
els to target interventions before data collection through adaptive designs. Previous
research has shown that these predictions can be improved by accounting for a sam-
ple member’s behavior in past waves. These past behaviors are often operationalized
through rolling average variables that aggregate information over the past two, three,
or all waves, such as each participant’s nonresponse rate. However, it is possible that
this approach is too simple. In this paper, we evaluate models that account for more
nuanced temporal dependency, namely recurrent neural networks (RNNs) and feature-,
interval-, and kernel-based time series classification techniques. We compare these novel
techniques’ performances to more traditional logistic regression and tree-based models
in predicting future panel survey nonresponse. We apply these algorithms to predict
nonresponse in the GESIS Panel, a large-scale, probability-based German longitudinal
study, between 2013 and 2021. Our findings show that RNNs perform similarly to tree-
based approaches, but the RNNs do not require the analyst to create rolling average
variables. More complex feature-, interval-, and kernel-based techniques are not more
effective at classifying future respondents and nonrespondents than RNNs or traditional
logistic regression or tree-based methods. We find that predicting nonresponse of newly
recruited participants is a more difficult task, and basic RNN models and penalized logis-
tic regression performed best in this situation. We conclude that RNNs may be better at
classifying future response propensity than traditional logistic regression and tree-based
approaches when the association between time-varying characteristics and survey par-
ticipation is complex but did not do so in the current analysis when a traditional rolling
averages approach yielded comparable results.

Statement of Significance

Panel survey practitioners increasingly use predictive modeling to anticipate partic-
ipant nonresponse. This paper provides the results from a large-scale application of
a novel set of predictive techniques. Traditional approaches to predicting participant
nonresponse use each participant’s most recent or historical average variable values. An
example variable is the average of a participant’s last three survey satisfaction ratings.
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However, information is lost in that process: perhaps a participant suddenly expresses a
much lower satisfaction than usual as opposed to an overall low average. By aggregating
values over a time range, the information of the sudden drop is lost. The benefit of time
series techniques is that the model can account for this information.
Our results show that this innovation could improve predictive accuracy in the proper

contexts. This research indicates that RNNs could be a useful technique for panel man-
agers developing their own predictive models when temporal dependencies are complex,
but otherwise, rolling average predictors might suffice. Our study also shows the impact
of sample refreshments. When new participants are recruited into a panel, modelers
may predict their nonresponse propensities using data from pre-existing participants.
We find that predicting nonresponse of newly recruited participants is more difficult
than predicting future nonresponse of existing panel members, and basic RNN models
and penalized logistic regression performed best in this situation.

Statements

This study design and analysis was not preregistered.

2.1 Introduction

Panel surveys, also called longitudinal surveys, are an irreplaceable method for data
collection. Panel studies require significantly more operational costs and skilled man-
agement than cross-sectional surveys (Pforr and Schröder, 2016). Because they are a
relatively significant investment and a critical resource to researchers, sources of error
must be controlled as much as possible (Pforr and Schröder, 2016). Adaptive Design
(AD) was developed for panel survey managers to intervene before a survey’s collection
period and reduce nonresponse bias. There are two parts to AD: first, panel managers
identify which participants are at risk of nonresponding, and second, the panel managers
adapt survey protocols to induce those at-risk participants to respond (Chun, Heeringa,
and Schouten, 2018; Coffey, Reist, and Miller, 2020; Groves, 2006; Hoel, Sobel, and
Weiss, 1975; Lynn, 2017; Peytchev, Pratt, and Duprey, 2022; Wagner, 2008). This
paper contributes to exploring more effective approaches to anticipating nonresponse.
In the search for new ways to predict which participants in a panel are at risk of non-

responding, survey research has turned to machine learning (ML). In the ML approach
(see James et al. (2013)), modelers use predictive algorithms that automatically “learn”
how to predict a participant’s likelihood of nonresponding based on data from previous
survey waves. This process is called model training or fitting in ML terminology. For
each participant for whom we input their predictor variables into the model, the output
is the predicted probability that they will nonrespond in the next wave. Modelers do
not know in advance which algorithm will yield the best predictions, so they under-
take broad model comparisons. In this approach, the retrospective prediction quality of
many different algorithms, and many parameterizations of those algorithms, are tested
and compared so that the modeler can select the best one by some quality measurement.
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Previous research has demonstrated that ML can accurately predict participant non-
response. However, this field of study has not progressed beyond trialing various (tra-
ditional) ML models and reporting performance (Behr, Bellgardt, and Rendtel, 2005;
Gummer, Roßmann, and Silber, 2021; Roßmann and Gummer, 2016; Trappmann, Gram-
lich, and Mosthaf, 2015; Uhrig, 2008; Zinn and Gnambs, 2022). An under-researched
matter is how to utilize the temporal nature of panel data. A participant’s likelihood of
nonresponding may be discernible from the timeline of their behavior. For example, a
decline in survey satisfaction or increasing break-off rates might precede disengagement
with the panel. Most studies that consider temporal dependencies when predicting non-
response do so by aggregating past participation behavior or reports to survey questions
over waves (Kern, Weiß, and Kolb, 2021; Kocar and Biddle, 2022; Roßmann and Gum-
mer, 2016; Trappmann, Gramlich, and Mosthaf, 2015; Uhrig, 2008; Zinn and Gnambs,
2022). An example of such a predictor is the rolling average of a survey satisfaction rat-
ing on a five-point scale over the past three waves (Kern, Weiß, and Kolb, 2021; Kocar
and Biddle, 2022).
Predictors such as rolling averages exclude information about the order of events. For

example, if a participant had a period of high survey satisfaction followed by a sudden
drop, this could have the same rolling average value as a participant who always had
a steady medium average satisfaction. Predictive algorithms that discriminate between
these two sequences might yield better predictive performance. Another issue with
rolling average predictors is that the practitioner must select the time range (i.e., average
over three, six, or all waves). Determining the best time range value can only be done
through trial and error, which increases the modeling effort. Also, deriving multiple
rolling averages with different time ranges from the same predictor adds multicollinearity
to the model, which can confound certain models (James et al., 2013).
Time series machine learning models are a broad set of algorithms that can automat-

ically model time series data and, unlike rolling average variables, can account for the
sequence of events. We explore the potential of time series techniques by applying them
to the GESIS Panel. The GESIS Panel is a German general population omnibus survey
that has collected waves of data every two to three months since 2013. We guide our
inquiry through the following research questions.

• Q1: Can time series machine learning techniques account for the sequence of events
in panel data instead of rolling average predictors?

• Q2: Do these techniques outperform traditional models that use rolling average
predictors?

We also address a secondary question in this field. Many long-running panel surveys
conduct periodic sample refreshments, in which new participants are recruited to restore
a diminished sample size to its initial quantity. Therefore, our research question is as
follows:

• Q3: When a machine learning model is trained on panel waves that predate the
refreshment intake, can the model make accurate predictions about fresh partici-
pants, who were not present in the training data?
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To address research questions one and two, we test two sets of novel time series clas-
sification techniques. First, we apply recurrent neural networks (RNNs), specifically
the simple RNN (Rumelhart, Hinton, and Williams, 1986), gated recurrent unit (GRU;
Cho et al. (2014)), and long short-term memory (LSTM; Hochreiter and Schmidhuber
(1997)) techniques. RNNs are machine learning algorithms that make predictions using
time series data, which naturally suits a panel survey. RNN-based models are com-
monly used for tasks such as speech recognition from audio data or language translation
from text sequences (Graves, Mohamed, and Hinton, 2013; Liu et al., 2014). Second,
we investigate kernel-, distance-, and feature-based time series classification algorithms.
These techniques transform time series data into variables that describe the time series
characteristics. Example variables include the frequency of occurrences across binned
value ranges or the highest number of consecutive declines in value over a time series.
These variables are then used as predictors to forecast nonresponse. We expect these ap-
proaches to yield better predictive performance than previous studies that used standard
ML techniques and rolling average predictors.
Regarding research question three, examining the effect of refreshment intakes can tell

us whether a model trained on participants from one recruitment wave can be successfully
applied to individuals from a new intake. We address this question by training our models
on participants from one recruitment wave and then using them to predict participants
from a freshly recruited sample. Then, we compare the prediction performance to models
trained on and applied only to the same set of participants. This comparison allows us
to assess the decline in performance caused by introducing new participants.
In the following sections, we discuss the details of previous research, specifically the

types of ML algorithms already investigated, the predictors used, and the achieved
predictive performances. We then describe the time series algorithms we intend to apply
and why we expect them to outperform these previous approaches.

2.2 Background

2.2.1 Nonresponse Prediction in Previous Research

The most common ML model type used in prior research on nonresponse prediction is
logistic regression (Bach, Eckman, and Daikeler, 2020; Hill et al., 2020; Jacobsen et al.,
2021; Jankowsky, Steger, and Schroeders, 2022; Kern, Weiß, and Kolb, 2021; Kocar
and Biddle, 2022; Lemay, 2009; Lipps, 2007; Lugtig, 2014; Mulder and Kieruj, 2018;
Roßmann and Gummer, 2016; Siegers, Steinhauer, and Dührsen, 2021; Uhrig, 2008;
Voorpostel and Lipps, 2011). One major limitation of logistic regression is its limited
flexibility and, thus, the need for careful model specification. This limitation means that
when the impact of one variable on the outcome is highly non-linear or dependent on
another variable (for example, the impact of income on nonresponse propensity could
be lower for participants over the retirement age), a simple logistic regression will not
account for this dynamic. Models that can automatically account for interaction effects
without the need to explicitly define interaction terms, such as random forests, gradient
boosting, Bayesian additive regression trees (BART), and feed-forward neural networks
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(FNNs), have also been analyzed by previous research on panel nonresponse (Bach,
Eckman, and Daikeler, 2020; Kern, Weiß, and Kolb, 2021; Mulder and Kieruj, 2018;
Zinn and Gnambs, 2022).
Past research predicting nonresponse have used indicators of survey engagement, re-

spondent demographics, paradata, and information about past survey participation be-
haviors. Survey engagement is the extent to which the participant is motivated or com-
mitted to continuing the survey. Examples include survey break-offs, unanswered phone
calls, rejected invitations, self-reported survey satisfaction, and previous nonresponse
(Kern, Weiß, and Kolb, 2021; Kocar and Biddle, 2022; Mulder and Kieruj, 2018; Olson,
2013; Roßmann and Gummer, 2016). Demographic predictors commonly include gender,
age, education level, employment status, and income (Burkam and Lee, 1998; Richter,
Körtner, and Saßenroth, 2014; Uhrig, 2008; Zinn and Gnambs, 2022). Previous studies
have shown that participants who are male, younger, less educated, or unemployed are
more prone to unit nonresponse (Becker, 2017; Kocar and Biddle, 2022).
Many studies have found that paradata can be used to derive useful predictors, in-

cluding indicators of survey engagement or difficulty with completion (Kocar and Biddle,
2022; Olson, 2013; Roßmann and Gummer, 2016; Sarndal and Lundquist, 2014; Stru-
minskaya and Gummer, 2022; Tienda and Koffman, 2021). Examples include survey
completion times, browser type, whether the survey was conducted online or by mail,
and the interviewer’s identity.
Other studies have also used predictors that reflect changes in a characteristic over

time, sometimes called time-varying predictors (Kern, Weiß, and Kolb, 2021; Kocar and
Biddle, 2022). In this approach, we expect to detect signs of participant disengagement
in the trends of their behaviors. For example, a participant with declining self-reported
survey satisfaction may be at risk of attrition. An example predictor is the average
response rate of a participant over the previous three waves, six waves, and so on.
We aim to answer research questions one and two by comparing novel time series

techniques with the approaches of previous studies. However, it is difficult to compare
all studies on predicting nonresponse due to the range of contexts and different metrics
used to report model performance. Many papers that use logistic regression report only
odds ratios, pseudo R2, and robustness results (Hill et al., 2020; Lipps, 2007; Lugtig,
2014; Roßmann and Gummer, 2016; Siegers, Steinhauer, and Dührsen, 2021; Uhrig,
2008). However, this paper aims to build a predictive model, so we seek studies that
publish metrics of predictive performance with which we can make comparisons. In
the context of panel nonresponse, predictive performance is commonly evaluated on the
basis that most of the participants predicted to nonrespond do so (called precision), and
that most of those who nonrespond are correctly identified by the model (called recall).
Another common metric in previous studies is the area under the receiver operator

curve (AUROC), which quantifies how well the model makes trade-offs between yielding
too many false positives (participants predicted to nonrespond but then did not) and too
few true positives (participants predicted to nonrespond who then did so). An AUROC
of 1.0 is a perfect classifier, while an AUROC of 0.5 is the worst possible classifier
(James et al., 2013). Mulder and Kieruj (2018), working with the Longitudinal Internet
Studies for the Social Sciences (LISS) panel, report AUROC scores of 0.65–0.79 after
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implementing logistic regression, neural networks, support vector machine (SVM), and
tree-based models. Of these models, random forest performed the best. Bach, Eckman,
and Daikeler (2020) applied logistic regression and gradient-boosted models to two waves
of the LISS Panel and achieved an AUROC of 0.88–0.89. Kern, Weiß, and Kolb (2021)
applied logistic regression, tree-based models, and gradient-boosted models to the GESIS
Panel (the same survey used in this paper) up to mid-2017 and achieved an AUROC of
0.86–0.89.
Not all studies report their results in AUROC. Zinn and Gnambs (2022) report

that their BART model was 95 to 97% accurate (meaning the portion of correct re-
sponse/nonresponse predictions out of all predictions) across the first five waves of the
National Educational Panel Study (NEPS). However, they do not report the recall, pre-
cision, or AUROC scores. Kocar and Biddle (2022, pp. 17), using the Life in Australia
survey, claim: ”With our models, we could correctly identify 90% (or more) of all non-
respondents (recall = 0.9), but for a high price of about five false positives for one true
positive (precision = 0.17).” Each of these studies provide context for our own results.
Specifically, we expect our own modeling efforts to achieve similar scores when we ap-
ply logistic regression and tree-based models fitted with equivalent predictors. Once we
achieve a successful baseline set of traditional ML models, we can then evaluate the
value added by time-series modeling. We summarize these baseline studies in Table 2.1.

2.2.2 Our Novel Approach: Time Series Models

Recurrent Neural Networks

An RNN is an ML algorithm suited for making predictions based on time-variant data
(Zargar, 2021). Examples include predicting the next word that should appear in an
incomplete sentence based on the preceding word sequence. In the case of predicting non-
response, we could compare RNNs with a traditional model, such as a logistic regression.
Suppose we train a logistic regression model that predicts whether a given participant
will respond in the next wave based only on whether the participant responded in the
current wave. If the participant did not respond, the model would predict that the
participant also would not respond in the next wave. However, before the current wave,
this participant had been extremely reliable. An RNN could account for this partici-
pant’s previous response history and estimate a higher chance that they will respond in
the next wave. In this simplified example, the RNN had access to information that the
traditional model did not.
As previously discussed, the rolling average predictors described above allow tradi-

tional models to include information from multiple past waves. However, the advantage
of the RNNs over traditional models with rolling average predictors is that they can
learn how much to allow past events to influence a prediction. For example, it may be
that the response status from four to five waves ago is less important than the response
status from two to three waves ago, or it may be more or equally important. RNNs can
learn these nuances automatically (DiPietro and Hager, 2020; Graves, Mohamed, and
Hinton, 2013; Kumar et al., 2018; Ribeiro et al., 2020; Salman et al., 2018; Shewalkar,
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Table 2.1: Summary of previous studies predicting panel nonresponse.

Dataset Models Predictors Performance
(worst- to best-
performing
predictions in
any wave)

Reference

LISS Logistic regression, neural
networks, SVM, and
tree-based models

Nonresponse history,
demographics

0.65–0.79
AUROC

Mulder and
Kieruj
(2018)

LISS Logistic regression and
gradient-boosted models

Nonresponse history,
demographics

0.88–0.89
AUROC

Bach,
Eckman,
and Daikeler
(2020)

GESIS
Panel

Logistic regression,
tree-based models, and
gradient-boosted models

Nonresponse history,
demographics, survey
evaluation scores, rolling
average nonresponse history,
rolling average survey
evaluation scores

0.86–0.89
AUROC

Kern, Weiß,
and Kolb
(2021)

Life in
Aus-
tralia

Logistic regression Demographics, nonresponse
history, paradata

0.9 recall, 0.17
precision

Kocar and
Biddle
(2022)

NEPS BART, penalized logistic
regression

Demographics and
education-specific
information such as school
grades and the number of
books at home

95 to 97%
accuracy

Zinn and
Gnambs
(2022)

2018; Wagner, 2008; Zargar, 2021). The details of the differences between traditional
and time series models and the type of data they each use are detailed in Appendix
Sections 2.6.2 and Data Formatting.
In this study, we focus on the most common types of RNNs (Sarker, 2021), which

are the simple RNN, long short-term memory (LSTM), and gated recurrent unit (GRU;
DiPietro and Hager (2020), Shewalkar (2018), and Zargar (2021)). GRUs and LSTMs
are similar algorithms, and researchers typically evaluate both model types to deter-
mine which performs best (Shewalkar, 2018). The benefit of RNN models is that if the
interactions between predictors are complex, neural networks can model these complex
dependencies. Consider the following hypothetical example: high-income participants
may be more likely to respond to a survey. However, the effect is smaller for men than
for women, and the effect size is diminished if the participant increased their income only
recently (because they recently started a new job, for example). In this case, the effect
of one predictor depends on the values of other predictors, including a temporal factor
(the difference is made by the timing of the change in income, not the level). RNNs can
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account for these types of dependencies.
Simple RNNs are known to perform poorly on long time sequences (Kumar et al., 2018;

Shewalkar, 2018). This tendency is because, in some cases, events from the distant past
are essential for a prediction. For example, perhaps nonresponse around the previous
year’s winter holiday season is a good indicator of nonresponse during the coming year’s
break. However, in other scenarios, events from the past may not be so important in
predicting the future. While simple RNNs cannot account for these differences, GRUs
and LSTMs are designed to address this issue (Cho et al., 2014; Hochreiter and Schmid-
huber, 1997). We test simple RNNs as a comparison point for the LSTMs and GRUs to
evaluate the benefits of this more sophisticated handling of long time series. If LSTMs
and GRUs perform substantially better than simple RNNs, this would indicate that
long-term temporal dependencies are important for making accurate nonresponse pre-
dictions. For a detailed description of our architecture for the simple RNN, GRU, and
LSTM, see Appendix Section 2.6.2 (Cho et al., 2014; DiPietro and Hager, 2020; Hochre-
iter and Schmidhuber, 1997; Ribeiro et al., 2020; Rumelhart, Hinton, and Williams,
1986; Shewalkar, 2018; Zargar, 2021).

Time Series Classification Techniques

Time series classification techniques (TSCTs) are diverse techniques for solving time
series classification problems. The TSCTs considered in this paper are of the variety
that convert long-format time series input (participants by waves by predictors) into
a set of statistics describing each participant’s time series (participants by time series
predictors; see Appendix 2.6.3 for details; see Faouzi (2024) for an overview). These
derived predictors are inputted into an ML model, such as a random forest, which
classifies the time series. Unlike simple rolling averages, distinct sequences of events are
distinguished by differences in the descriptive predictors (Abanda, Mori, and Lozano,
2018; Fawaz et al., 2019; Fulcher, 2017; Lubba et al., 2019).
There are many different approaches to time series classification. This study tests one

model type from a variety of techniques as follows.

Feature-Based Methods Feature-based TSCTs transform a time series dataset into a
set of summary statistics that describe that time series (Lubba et al., 2019). To test a
common and successful example of this approach, we use the 22 canonical time-series
characteristics (Catch22) algorithm (Lubba et al., 2019). Catch22 derives 22 descriptive
statistics for each time series variable. An example statistic might be the modal value
for a scaled and binned variable or the length of the longest period of successive incre-
mental decreases in the time series. These descriptive statistics (22 for each time series
variable) are then used as predictors in a classification model. The concept of Catch22
is that these derived predictors describe a time series of any length well enough to have
considerable predictive power. Catch22 is effective in many diverse time series classifi-
cation scenarios (Christ et al., 2018; Fulcher, 2017). However, training times are long
for Catch22 classifiers. Therefore, we only test one classification model. We selected a
random forest with the same parameters as the best-performing random forest model
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in Kern, Weiß, and Kolb (2021). Those parameters are described in Appendix Section
2.6.4.
We expect the feature-based time series approach to outperform the traditional, rolling

average–based approach because the 22 derived predictors should both include and go
beyond the same information revealed by these rolling average predictors.

Interval-Based Methods Interval-based TSCTs are similar to feature-based techniques,
but instead of deriving predictors from the whole time series, they split the series into
intervals and derive the predictors from each interval (Middlehurst, Large, and Bagnall,
2020). This study uses diverse representation canonical interval forest (DrCIF). DrCIF
separates each time series variable by random intervals, transforms each separated time
series with the Catch22 algorithm, and then uses a random forest classifier to make the
final predictions (Middlehurst, Large, and Bagnall, 2020). We compare this model with
Catch22 to examine the value added by the random interval approach. The interval
approach avoids losing information from aggregating the whole time series in one block.
Random intervals are preferable over determined intervals because calculating the op-
timum intervals for the time series by comprehensive search would be computationally
implausible. Instead, random searching is a preferable trade-off between accuracy and
computation time (Middlehurst, Large, and Bagnall, 2020).

Kernel-Based Methods The intuition behind kernel-based techniques is that the time
series of a variable can have a distinctive “shape” that precedes nonresponse (Dempster,
Petitjean, and Webb, 2020). For example, a sudden collapse of survey satisfaction after
a long period of high values can indicate sudden irritation with the survey and therefore
that the participant will nonrespond. In the kernel-based approach, we make 10,000
random time series sequences (called kernels) and then, for each variable, calculate a
similarity score (specifically cosine similarity) between each random time series and the
observed variable’s timelines (see Figure 2.1 for an illustration). For example, a random
time series that we would use in conjunction with participant survey satisfaction values
would be a sequence of random numbers from one to five for the same length as there
are waves in that participant’s time series data. The similarity score is then a number,
with 1 indicating that the two time series are identical and 0 that they are completely
dissimilar. The similarity score between each time series variable and each random time
series is then inputted into a classification model.
This analysis uses a particular implementation of the kernel-based approach called ran-

dom convolutional kernel transform (ROCKET; Dempster, Petitjean, and Webb (2020)).
ROCKET generates 10,000 random kernels, calculates similarity scores with each time
series variable, and then uses these scores as predictors in a logistic regression. This
technique allows the ROCKET model to detect if the “shapes” of certain time series in
certain variables correspond to nonresponse behavior (Dempster, Petitjean, and Webb,
2020).
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Figure 2.1: An example of how the ROCKET algorithm derives a similarity score
between a time series variable and a randomly generated kernel.

2.3 Methodology

We aim to answer research questions one and two by comparing traditional ML models
to the above-mentioned time series modeling techniques. We train and evaluate models
using data from a single, exemplary panel survey: the GESIS Panel (detailed in Sec-
tion 2.3.1). However, we alter the predictors available in the models to compare their
effects. Specifically, we compare the traditional ML models, which use rolling averages
as predictors, to time series models without those predictors. Suppose the time series
models perform equally well with or without the rolling average variables. This outcome
would indicate that the time series algorithms automatically account for the temporal
dependencies without needing precalculated rolling averages. We expect the novel time
series techniques to make superior predictions over the traditional approach due to this
more sophisticated accounting for temporal dependencies.

We seek to answer research question three by examining the effect of sample refresh-
ments. The GESIS Panel recruited an initial sample of roughly 5,000 participants in
2013, which we will call Cohort One. However, the sample diminished over several
years, so new participants were recruited in 2016, which we will call Cohort Two. A
third refreshment sample was recruited in 2018, which we will call Cohort Three. The
effect of these refreshment intakes is that at certain time points, nonresponse prediction
models are trained on participants from one cohort and applied to people from a fresh
cohort. Therefore, these models would predict nonresponse for participants not present
in the training data. It is of practical interest to panel survey practitioners whether mod-
els estimated on past panel participants can make useful predictions when examining
new potential participants for which past panel behavior is not available. To examine
the effect of these refreshment intakes, we fit each model using data from each of the
three cohorts separately and again all together (see Appendix Section 2.6.4). We then
calculate the loss in predictive performance attributable to the introduction of fresh
participants as the difference in AUROC scores when predicting nonresponse of fresh
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participants in comparison to pre-existing participants.

2.3.1 Data

Our data source is the GESIS Panel up to May 2021 (GESIS, 2023). The GESIS Panel,
managed by the German Leibniz Institute for the Social Sciences, is a longitudinal survey
that commenced in October 2013 and continues today (GESIS, 2023). The survey has
two modes: web and mail. Since 2013, roughly 75% of participants have used the web-
based option, and the rest have submitted their responses by mail (Bosnjak et al., 2018;
GESIS, 2023).
The GESIS Panel randomly sampled participants from the German population regis-

ter. Anyone permanently residing in Germany and aged between 18-70 was eligible for
recruitment. For full details of the sampling methodology see (GESIS, 2023).

Variables

Thousands of variables are collected across all GESIS Panel waves. We select variables
that align with previous research: demographics, indicators of survey engagement, and
paradata. We also derive rolling average predictors. A summary of these variables is
provided in Table 2.2 and a full description of all variables in Appendix Table 2.5.
The dependent variable is each participant’s binary outcome for nonresponse in the

next wave (1 = nonresponse). We follow the American Association for Public Opinion
Research (AAPOR) response rate formula RR6, which counts completed and partially
completed submissions as responses. Appendix Table 2.8 indicates the categories that
we consider nonresponses, including the AAPOR response codes (AAPOR, 2016). Over
all waves included in this analysis, the lowest nonresponse rate (1 – RR6) was 6.27%
and the highest was 24.96% (see Figure 2.2). A critical matter about the GESIS Panel
is the procedure for eliminating participants from the panel: participants cease to be
invited to the survey if they either explicitly ask to exit the panel or nonrespond for
three consecutive waves. In either scenario, the participant is sent an exit questionnaire,
at the end of which they can voluntarily re-enter the panel (Bosnjak et al., 2018). This
policy means a given participant can nonrespond in several waves without exiting the
panel. In our analysis, we filter out participants who have exited the panel. This means
that if the data for a participant at a given wave is included in either the training waves,
or the validation wave, then as of that point in time the participant had not yet made
three consecutive nonresponses (or they had, but explicitly asked to re-enter the panel
in their exit survey) or had not explicitly asked to exit.
Figure 2.2 presents the nonresponse rates (defined as the portion of invitations that

yielded a nonresponse) and sample sizes of the GESIS Panel (defined as the count of in-
vitees) by cohort over our study period. After each cohort recruitment, the nonresponse
rates spiked before reaching a relatively stable level. There was a spike in nonresponse
rates in early 2020, likely attributable to the coronavirus disease 2019 (COVID-19) pan-
demic in Europe. Also, as each new cohort was commencing, for the first few waves the
GESIS Panel managers invited participants as they were recruited, rather than wait un-
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til the whole cohort was recruited. The stated reason for this policy was to avoid leaving
early-joining participants without any contact for a long time while cohort recruitment
was finalized. The outcome is that the sample size for each cohort is relatively small in
those early waves (Bosnjak et al., 2018).

Figure 2.2: Timeline of nonresponse rates and sample sizes of the GESIS Panel.

In this analysis, we train our models with only time-variant predictors, only time-
invariant predictors, and again with all predictors. This comparison will reveal whether
time series models make their forecasts by accounting for temporal dependencies in the
time-variant data or just use time-invariant predictors or rolling average predictors like
the baseline models. In that case, the time series techniques do not add value over the
traditional techniques.
Table 2.2 provides an overview of the different predictor sets. Time-variant predictors

include nonresponse or participation mode in a given wave. Time-invariant predictors
include demographic characteristics, because they are updated only periodically. Al-
though rolling average predictors are a type of time-variant predictor, we exclude them
from that category because we want to compare traditional models with rolling average
predictors to time series models without them. See Appendix Table 2.5 for the complete
list of predictor variables.
Note that we commence our analysis from the third survey wave onwards to allow the

“rolling average over the last three waves” predictors to register valid values.
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Table 2.2: Categorization of each predictor into sets.

Predictor Set Type of Predictor Examples

Time-Variant
Predictors

Indicators of survey
engagement

Respondents are asked (translated from
German into English), “How was the
questionnaire?” The scale items are
“Interesting, Diverse, Important for
Science, Long, Difficult, Too Personal,
Overall.”

Paradata These predictors include whether the
survey mode is online or by mail and
whether there are any detected survey
breaks in the online version.

Nonresponse in the
current wave

-

Time-Invariant
Predictors

Demographics These predictors include age, income,
education, and gender.

Recruitment
interviewer
assessments

At the recruitment wave, interviewers
gave a one-to-five scale rating of the
participants’ prior experience with
surveys and how cooperative they were
when interviewed.

Aggregate
Predictors

Rolling average
predictors

For each survey engagement item, we
derive rolling averages for each value
over the previous two, three, and all
waves. We also derive the rolling average
nonresponse rates for each value over the
previous two, three, and all waves.
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2.3.2 Validation

We want to know how well each model performs when applied to the GESIS Panel. For
this objective, we want to simulate what would have been the outcome at each wave
had our models been trained only on data available at that time. To accomplish this,
we use temporal cross-validation (TCV; see Figure 2.3), where we predict for each panel
wave which participants nonrespond, using only data available in all preceding waves
(Hyndman and Athanasopoulos, 2021). This procedure means that at some point, each
wave is both the wave being predicted (the “test” data) and a wave used to train the
predictive model (the “train” data).

Figure 2.3: Diagram of temporal cross-validation. For each wave (X), we aim to predict
a “test” wave using all waves that precede it (the “train” waves).

An important critique of TCV used this way, raised by Jankowsky, Steger, and
Schroeders (2022), is that in the panel, the same participant is most often present in the
training data and in the test data. Furthermore, Kern, Weiß, and Kolb (2021), who also
used TCV, found that prior nonresponse status strongly predicted future nonresponse.
This finding means that, to some extent, predictive performance is inflated because the
models can adapt to the data of the nonrespondents, who go on to repeatedly non-
respond, and also to the respondents who continue to respond. This is of particular
concern given that, across all the GESIS Panel waves included in this study, almost
half of all cases of nonresponse are cases in which the participant also nonresponded
in the preceding wave (12,296 out of 23,456 cases of nonresponse). We use temporal
cross-validation because it accurately simulates how GESIS Panel managers would uti-
lize predictive analysis in practice. Furthermore, we also assess predictive performance
when applying our models to newly recruited participants, providing a robust assess-
ment of model generalizability. Still, we caveat our results with the possibility that our
techniques may yield a lower AUROC when applied to different panels.



Chapter 2. Longitudinal Nonresponse Prediction with Time Series Machine Learning 36

2.3.3 Model Types and Tuning

We compare many different models, and each time we train a model, we vary “model
settings,” i.e., model parameters that affect the fit to the data. This process, called
model tuning, determines the best settings for each model by experimentation. Table
2.3 describes our models and the relevant settings we experiment with. The full details
of the settings we tune are described in Appendix Section 2.6.4.

2.3.4 Predictor Importances

Although many variables are used as predictors in our models, some variables may con-
tribute more to the quality of the predictions than others. To answer research question
one, we want to evaluate whether the RNNs and TSCTs account for temporal depen-
dencies in the data and do not simply rely on the time-invariant predictors. To evaluate
this, we examine whether the time-variant predictors are improving predictions from the
time series models to a greater extent than the traditional models.
To estimate the extent to which the variables most impact the predictions, we use

the permutation feature importance metric (PFI; Altmann et al. (2010)). The typical
process for PFI involves taking a certain predictor, shuffling the values randomly, and
then assessing the model with that single predictor scrambled. This process is repeated
with different random shuffles. The average loss (or gain) in predictive performance
(in our case, AUROC) measures how much that predictor contributed to the prediction
(James et al., 2013).
To adjust this procedure for a time series context, instead of shuffling a given variable

in the test data, we replace it with random values drawn from a normal distribution with
the same mean, standard deviation, minimum, and maximum values as that variable.
Binary predictors are replaced with random binary values with approximately the same
mean value as the corresponding predictor.
Furthermore, the typical PFI procedure will be confounded when many predictors

covary. For example, if a participant nonresponds in a given wave, not only will the
variable for nonresponse show this, but also their survey satisfaction scores will be zero
(i.e., missing, see Appendix Section Data Formatting). This issue means the same
information is present across several predictors. If one covariate is withheld from the
model, the same information will be available through another predictor, leading to an
underestimation of the PFI. We therefore group predictors into blocks and scramble
the entire block so that the underlying information is not available through any other
predictor. However, it is only possible to eliminate covariation partially. For example, we
want to compare the importance of nonresponse history and survey satisfaction scores,
so we must keep them as separate groups although they can covary as described above.
We detail the groups in Appendix Table 2.6.
Calculating PFI requires long computation time, so we limit our analysis to one ex-

ample test wave. We select the wave of August 2019 because it preceded the COVID-19
pandemic waves but was at a time when all cohorts had accumulated several waves. By
choosing this wave, we ensure that the models’ performances are not inhibited by a lack
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Table 2.3: Categorization and description of each model type included in this study.

Category Model Type Description Settings

Traditional
ML
models

Baseline logistic
regression (James
et al., 2013)

This model is a standard logistic
regression used as a baseline.

-

Penalized logistic
regression
(Le Cessie and
Van Houwelingen,
1992; Tibshirani,
1996)

These models are ridge and lasso
penalized logistic regressions.

We vary the type and intensity of
the penalty.

Random forest
(Breiman, 2001;
James et al., 2013)

This model is a popular tree-based
ensemble method. This was the
best-performing model in Kern,
Weiß, and Kolb (2021), who used
the same data as this paper.

To save computation time, we use
the best discovered model
parameters from Kern, Weiß, and
Kolb (2021) and do not tune this
model in our case.

RNNs Simple RNN
(Rumelhart, Hinton,
and Williams, 1986)

This model is a standard RNN as
described in Section 2.2.1.

In each of these RNN models, we
will vary the “width,” which is the
number of neurons in each layer,
and the “depth,” which is the
number of layers in addition to the
single recurrent layer we always
add. Deeper and wider RNNs can
model more complex interactions
(see Appendix Section 2.6.2 for
details; (Salman et al., 2018)).

LSTM (Hochreiter
and Schmidhuber,
1997)

This model is a type of RNN with
functionality for weighting the
effects of information from the far
or recent past. See Appendix
Section 2.6.2 for details.

GRU (Cho et al.,
2014)

This model is similar to an LSTM,
but it is implemented differently.
For comprehensiveness, it is
common practice to evaluate both
GRU and LSTM (Shewalkar 2018;
Zargar 2021). See Appendix Section
2.6.2 for details.

TSCT Catch 22 (Lubba
et al., 2019)

This model derives 22 descriptive
statistics for a given time series and
then uses that information as
predictors in a random forest.

-

DrCIF
(Middlehurst, Large,
and Bagnall, 2020)

This model is similar to Catch 22
but derives the descriptive statistics
for each of a set of random time
intervals.

-

ROCKET
(Dempster,
Petitjean, and
Webb, 2020)

This model implements a technique
involving randomly generated
kernels. See Section Data
Formatting for details.

-
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of training data or by the exceptional circumstances of the pandemic. We repeat each
feature block’s random shuffling four times and present the average loss of AUROC as
the PFI value.

2.4 Results

2.4.1 Prediction Performance

Figures 2.4, 2.5, 2.6, and 2.7 present our main findings. The lines in Figure 2.4 depict
the AUROC score of each model over the timeline of the GESIS Panel waves. Figure
2.4 features a line for each model per cohort disaggregation. The lines are the median
scores across the various model settings and the shaded areas represent the range of best
and worst scores. The vertical lines indicate the waves in which cohorts two and three
entered the panel. The predictions for the cohort-specific model commence from the
wave after each of those cohorts enters the panel, so there is at least one training wave.
In the all predictors set, the models with all cohorts combined each perform within

a relatively narrow AUROC range (maximum variance is GRU at 0.68-0.88; see Figure
2.4). The random forest models achieved an average of 0.857 AUROC over all waves,
which is roughly as successful as in previous studies (0.79-0.88 AUROC, see Table 2.1).
The LSTM and GRU only marginally improved on this score if at all. This narrow
band of scores may have several explanations: First, the models may quickly accumu-
late enough training data to make accurate predictions, and additional data points may
only marginally improve performance. Second, after the first few waves of a new co-
hort, low-propensity participants are filtered out, leaving only consistent respondents
and occasional nonrespondents, which the models can easily predict from their historic
nonresponse rates. The only instances of sudden drops in performance occurs when
the set of waves considered include those during the COVID-19 pandemic. Notably,
the random forest model with all predictors drops in performance the least around the
pandemic.
Regarding research questions one and two, Figure 2.4 shows that the RNN-based mod-

els outperform random forest and logistic regression using only time-variant predictors.
GRU and LSTM perform highly at 0.8 to 0.9 AUROC (excluding COVID-19 waves).
Meanwhile, random forest and logistic regression perform more poorly with only time-
variant data, with an AUROC between 0.7 and 0.8. With only time-invariant predictors
available, most models perform almost equally poorly with an AUROC around 0.65,
except for random forest with scores between 0.65 and 0.8. When all predictors are
available and all cohort groups are included, RNNs and random forest perform roughly
equally well, with random forest performing slightly better, with an AUROC between
0.8 and 0.9.
The TSCTs are present only in the last 12 waves (since December 2018) due to the

much higher computation required to fit these models. However, we can see that they
never outperform either of the other model types, which justifies excluding them from
further investigation given their long processing times.
Regarding research question three, in Figure 2.5 we provide a filtered version of Figure
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Figure 2.4: Timeline of AUROC scores at each wave across the different predictor
groups. Vertical lines indicate the waves in which cohorts two and three entered the
panel.
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2.4 that only shows the two best-performing models (random forest and LSTM) to see the
effect of refreshment intakes more clearly. The vertical lines indicate the waves in which
cohorts two and three entered the panel. The individual cohort predictions commence
from the wave after each of those cohorts enters the panel, so there is at least one training
wave. For example, in 2016, cohort two was recruited. So, the model predicting the first
wave of cohort two was trained on the roughly 5,000 participants from cohort one (of
which only 4,000 remained by that time) but applied to a test set of roughly 4,500
participants (the 4,000 from cohort one and the first 500 fresh participants from cohort
two). We can see that when a new cohort is recruited (indicated by the vertical lines
in Figure 2.5) and all predictors are available in the models, the “all cohorts” line falls
below the line representing the models trained only on a single cohort (excepting the
time-variant random forest). This observation indicates that performance drops when a
model is trained on participants from one cohort but applied to participants from a fresh
cohort. However, the fall is less than 0.03 AUROC, except for LSTM when cohort three
commenced which was roughly 0.07 AUROC. To illustrate the implications of a 0.03
reduction in AUROC, we elaborate upon the example of the random forest model at the
wave when cohort two commenced. In this example, we classify the participants with the
highest 10% nonresponse propensity as likely nonrespondents. The model would then
result in a 39.1% instead of 37.5% false positive rate and a 63.2% instead of 61.7% false
negative rate when forecasting nonresponse of all participants instead of just cohort one.
To investigate this drop further, we evaluate the predictions for the roughly 500 respon-

dents from cohort two and compare them against the forecasts made for the participants
from cohort one who were present in the training data. We repeat this process for co-
hort three (see Figure 2.6). To simplify the role of model settings, we select settings for
each model that yielded the highest AUROC over all waves up until the commencement
of the respective new cohort. When the model predicts participants from cohorts two
and three who have just entered the panel (the waves indicated by the vertical lines in
Figure 2.5), no model is consistently better at predicting fresh participants as opposed
to pre-existing participants, with some caveats as follows. On the commencement of
cohort two the simple RNN, penalized and unpenalized logistic regression models each
performed equally or even slightly better when predicting nonresponse of fresh partic-
ipants. However, at the commencement of cohort three, every model performed worse
when forecasting nonresponse of new participants. The simple RNN (time-variant pre-
dictors) and penalized logistic regression (all predictors) provide the best nonresponse
predictions for fresh participants in both waves. The implication is that fresh partici-
pants and those who have stayed in the panel for several waves behave differently enough
that different models are better suited to each class. This result is of interest to panel
survey managers because it indicates that different models could be employed for fresh
and pre-existing participants.
Figure 2.7 shows the overall average AUROC for each model’s best setting across test

waves by predictor groups. Note that we only average the performance before August
2019 so as to avoid the effect of the COVID-19 pandemic on the averages. The RNNs
perform almost equally well when they use only the time-variant predictors as when they
use all predictors. However, random forest performs much worse when only time-variant
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Figure 2.5: Timeline of AUROC scores of random forest and LSTM models, which
highlight the effect of refreshment intakes. Vertical lines indicate the waves in which
cohorts two and three entered the panel.
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Figure 2.6: AUROC scores of each model when forecasting the next-wave-nonresponse
of newly recruited participants compared to participants who were already in the panel.
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predictors are available. All models perform more poorly when given only time-invariant
predictors. This observation indicates that the RNNs effectively engineer the same in-
formation as the rolling average predictors within the model’s neural network instead
of relying on the practitioner to engineer those predictors manually. This conclusion is
further supported when we examine the PFIs below. ROCKET is an outlier in poor per-
formance, which indicates that the time series data does not have any indicative “shape”
that the kernel-based approach can exploit. The poor performance of models with only
time-invariant predictors indicates the critical improvement made by incorporating in-
dicators of the participant’s recent behavior instead of only the information collected at
the recruitment interview.

Figure 2.7: Overall mean AUROC scores (up to August 2019) for each model’s best
setting.

Our best-performing model results are comparable to those from previous studies.
The random forest with all predictors and the LSTM with only time-variant data are
the best-performing models in this study, with an average AUROC over the 40 waves of
0.857 and 0.856 respectively (see Appendix Table 2.12). The best AUROC scores among
previous studies are between 0.79 and 0.89 (see Table 2.5).
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2.4.2 Permutation Feature Importance

Figure 2.8 shows the average permutation feature importances for each block of pre-
dictors (see Appendix Table 2.6). Note that rolling averages are not included in the
“time-variant predictors” set. We aim to test how each model performs when these
predictors are withheld and the model receives only the unit-level variables instead (i.e.,
survey satisfaction in a single wave instead of the rolling average). When all predictors
are available in the models, the most important predictors for GRU and LSTM models
are those that indicate nonresponse in a current wave, while rolling averages of non-
response history are much less important. Traditional models (logistic regression and
random forest), by contrast, rely upon a mixture of rolling average predictors and the
equivalent wave-specific predictors whenever they are available.
These observations answer research question one: RNNs can adaptively model tempo-

ral dependencies in the data, so RNNs do not strongly benefit from including the rolling
average predictors. However, the comparison of RNNs and traditional models indicates
that the rolling averages accurately reflect the temporal dependency in the GESIS Panel.
A participant’s historic response rate is a good indicator of future nonresponse, and the
rolling averages are sufficient to provide this information.
Although the RNNs can accomplish the same task automatically, the rolling averages

are sufficient to achieve the same result. Therefore, the answer to research question two
is that LSTMs can equal the performance of random forest models with rolling average
predictors but not exceed their performance in the GESIS Panel (0.856 and 0.857 average
AUROC respectively). The best penalized logistic regression model achieved an average
AUROC score of 0.82, so LSTM and GRU did outperform these baseline techniques.

2.5 Discussion

In this paper, we proposed the use of time series machine learning techniques to predict
panel nonresponse. The novel techniques we applied were recurrent neural networks
(simple recurrent neural network, long-short term memory, and gated recurrent unit)
and time series classification techniques (feature-, interval-, and kernel-based methods).
We highlight our main results in Table 2.4. In summary, these novel techniques do

not necessarily outperform baseline models, but some can automatically model temporal
dependencies. Our random forest models, which achieved an average of 0.857 AUROC
over all waves, were roughly as successful as in previous studies (0.79-0.88 AUROC,
see Table 2.1), but the time series models only marginally improved on this score if at
all. However, consider the case in which a modeler has applied rolling averages and
achieved a certain level of predictive performance. How would they determine whether a
more sophisticated accounting for temporal dependencies would improve the predictions?
Our paper demonstrates that RNNs can adapt to temporal dependencies in nonresponse
prediction, so the modeler can use RNNs to check whether their current rolling averages
are sufficient or whether more sophisticated techniques would yield better results. RNNs
are not prohibitively longer to compute than traditional models. When we calculate the
average computation time of each model type, we find that average logistic regression
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Figure 2.8: Block-wise permutational feature importances across each predictor set.



Chapter 2. Longitudinal Nonresponse Prediction with Time Series Machine Learning 46

Table 2.4: A summary of the research questions, the analyses conducted to answer them, and the
main results.

Research Question Analytical Strategy Model Combinations Results

1. Can time series
machine learning
techniques account for
the sequence of events in
panel data instead of
rolling average
predictors?

We compare traditional
ML models with rolling
average predictors to
RNNs and TSCTs
without them.

4,512: 37 uniquely
parameterized models
over 40 waves and three
predictor sets, plus three
TSCTs over 12 waves and
two predictor sets.

RNNs can automatically
account for temporal
dependencies because
they achieve equivalent
performance to random
forest (and exceed logistic
regression) without the
need for rolling average
predictors.

2. Do these techniques
outperform traditional
models that use rolling
average predictors?

We determine which of
the traditional models or
the time series models
make better predictions.

1,516: 10 uniquely
parameterized traditional
models versus 27
uniquely parameterized
RNNs over 40 waves, plus
three TSCTs over 12
waves using all available
predictors.

LSTM and GRU
performed equally as well
as random forest with
rolling average predictors.
Both RNNs outperform
logistic regression with
rolling average predictors.

3. When a machine
learning model is trained
on panel waves that
predate the refreshment
intake, can the model
make accurate
predictions about fresh
participants, who were
not present in the
training data?

We compare predictions
about newly recruited
participants with
predictions about
participants who were
present in the training
data.

13,320: 37 uniquely
parameterized models
across three predictor
sets. We fitted these
models to over four
cohort groupings,
although different cohorts
had different numbers of
waves.

The simple RNN and
penalized logistic
regression models were
best suited to predicting
nonresponse of fresh
participants, while
random forest and LSTM
were better for
pre-existing participants.

and random forest take around ten seconds to fit, and RNNs take around one minute to
fit. TSCTs take between 10 and 20 minutes to fit. Since the use of RNNs for nonresponse
prediction is a key contribution of this paper, we provide a detailed demonstration of how
they are implemented in the replication material (see Appendix Section 2.6.1). Finally,
we tested the effect of sample refreshment on predictive performance. We found that
although random forest and LSTM were the best models for forecasting nonresponse
for the whole panel, Simple RNN (with time-variant predictors) and penalized logistic
regression (with all predictors) were the best at predicting future nonresponse for fresh
participants.
The primary limitation of this research is that we only applied RNNs to a single panel

study. In the case of the GESIS Panel, RNNs were found to equal the performance of
rolling average approaches. There may be other contexts in which RNNs do better or
worse than these traditional approaches. The GESIS Panel fields a survey wave every
two or three months, so the predictive power of participant behavior in preceding waves
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may differ greatly from that of a survey with annual or weekly waves. Also, the GESIS
Panel is a general population survey that collects ample demographic data during the
recruitment phase and periodically updates that information. In contrast, other surveys
target subpopulations, record demographic data more frequently, or perhaps collect fewer
demographic data. For these reasons, temporal dependencies are probably very different
between panels. Nonresponse in a preceding wave likely signifies very different events for
individual panelists in a three-monthly panel survey compared to an annual household
survey. In specific cases, such as panels with more frequent waves, RNNs may be able
to exploit subtle temporal dependencies better than traditional approaches.
Another consequence of our chosen validation method is that we test all model setting

combinations for the entire timeline and present those results. This process could inflate
the apparent predictive performance because, in a real prediction scenario, modelers
would have had to select a specific set of parameters for their model and then use it
without knowing in advance whether other parameters might have performed better.
However, when examining the average AUROC scores across model setting combina-
tions, we find that the choice of settings had little impact (see Appendix Table 2.12).
Regardless of the settings, all LSTM and GRU models achieved similar overall AUROC
scores, and random forest had only one setting in our case. For this reason, little would
have changed if we had altered how our model tunings were handled.
Another limitation of this study is that our time series algorithms are not exhaustive.

For example, we could construct a “wide-format” dataset such that the wave values of
different variables are in separate columns and explore models that account for temporal
dependencies this way (Suresh, Severn, and Ghosh, 2022). There are also more RNN
architectures to explore and other implementations of the feature-, interval-, and kernel-
based techniques (Shewalkar, 2018). This paper covered examples of a broad range
of very different and novel approaches to time series classification, so that the most
promising techniques could be explored more deeply in later research. However, the
range of techniques we have explored is still not exhaustive.
Another limitation of this study is that RNNs can be more difficult to interpret than

logistic regression or random forest. Unlike logistic regression models, which have inter-
pretable predictor coefficients, RNNs do not assign a single effect magnitude to a given
predictor. When trying to understand what factors affect participant nonresponse, it
can be difficult to derive these relationships from RNN models. Random forests also do
not assign a single effect to each predictor, but instead consist of a set of decision trees,
which consist of a sequence of simple logical tests, which may be easier to understand
than the many sets of weights across an RNN’s neurons. It is worth noting that penalized
logistic regression, while not the best performer, still yielded high AUROC scores. It
was also one of the best models for predicting nonresponse of fresh participants. There-
fore, although less predictive, penalized logistic regression may offer practitioners more
value than RNNs and tree-based models in specific settings because of its convenient
interpretability. We nonetheless conclude that novel time series classification techniques
such as RNNs are worth considering when achieving high predictive accuracy in complex
panel settings is the main objective.
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2.6 Appendices

2.6.1 Replication

This project can be replicated by obtaining the dataset, downloading our code, and
placing the data file into the code’s project directory. You will need to contact GESIS
to request access to GESIS Panel data:

GESIS (2023), “GESIS Panel - Standard Edition.” Published: GESIS,
Cologne. ZA5665 Data file Version 44.0.0, https://doi.org/10.4232/1.13931
DOI: 10.4232/1.13931

All code for replication is available at the following link:
https://osf.io/kngdj/?view_only=79dc3aa2d0f947a18a5f95d4ed97c0a0

The demonstration of an RNN implementation is available at the file:

src/RNN Demonstration.ipynb

The data from GESIS may be downloaded as a .zip file. Simply place the .zip file
in the directory '\data\sensitive GESIS raw\' and then follow the instructions in the
README.md file. Note that if you use the same hardware as we specify in the Section
'Hardware, software and Computational Resources', it may take up to three weeks to
run the full project.

Hardware, Software and Computational Resources
The following describes the specifications of the computing resources used in this

project.

• OS: Windows Version 10.0.17763, Build 17763

• Processor: Intel(R) Core (TM) i5-10310U CPU @ 1.70GHz, 2208 MHz, 4 Core(s),
8 Logical

• Installed Physical Memory (RAM): 32 GB

• Total computation time: Up to 21 days to compute all fittings, including the
feature importances.

2.6.2 Model Details

The purpose of this Section is to provide the details, including the equations, of the RNN
architectures used in this paper. For a general overview of RNNs and neural networks
see Shewalkar (2018).
Firstly, all neural networks, including RNNs are composed of networks of nodes and

edges (see Appendix Figure 2.9). Each node (also called a ‘neuron’) represents a func-
tion, which shall be detailed below. Each edge represents a connection whereby the

https://osf.io/kngdj/?view_only=79dc3aa2d0f947a18a5f95d4ed97c0a0
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Figure 2.9: Diagram of example RNN architecture.

output of one node becomes the input to another node. The following process takes
data about participants in a panel survey as input (the precise predictors are detailed
in Section 2.3.1) and outputs the estimated probability that the given participants will
nonrespond in the next wave.

Simple RNN

1) Firstly, let us describe the input for the RNN. This input is a three-dimensional
data format: We have a set of participants, and for each participant, we have sev-
eral waves (although different participants may have a different number of waves)
and in each wave we have a constant set of predictors (i.e., a true/false value for
nonresponse in that wave, their age at the time of that wave, etc).

2) The ‘input layer’ represents the time series predictors which shall be inputted into
the ‘recurrent layer,’ starting from the first wave (t=0). Therefore x1,t=n indicates
the value of predictor x1 (i.e., age at the time of the wave) for wave n. For each
wave, the value of each predictor at that wave is inputted into every node in
the ‘recurrent layer.’ Then, for each recurrent neuron, we calculate its ‘hidden
state value’ for that time step. Each neuron retains its hidden state value, then
the values from the next wave are inputted into the recurrent neurons, and these
values, as well as the hidden state values from the previous time step, are used to
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calculate the updated hidden state value for this new wave. This process repeats
until all time steps have been processed and the output of each recurrent neuron
is the last hidden state value.

The equation for the hidden state value in a recurrent neuron is:

ht=n = α(Whx •Xt=n +Whh • ht=n−1 + βh) (2.1)

Where X is the array of input variables, Whx is a weight array fitted to be multiplied
by X, Whhis a weight array to be multiplied by the hidden state value from the previous
time step (which is 0 as of the first wave) and βh is a bias number with a value determined
by the fitting process. α is an activation function, for example a sigmoid, tanh, or ReLU
function (Shewalkar, 2018). The details of these activation functions are not important
here, but their purpose is to scale the function's output to an output within a certain
range, such as zero to one.

3) The output of the recurrent layer (X) is passed to the neurons in the first ‘dense
layer.’ These neurons do not implement recurrence so the equation for the output
of each neuron in that layer is:

h = α(Wx •X + βh) (2.2)

4) Each value from each neuron in the first dense layer then goes through a ‘dropout
layer,’ which is an array of zeros and ones, the composition of which is determined
by a fitting process. The purpose of the dropout layer is to select specific neurons
from the previous layer to convert their output to zero. This is intended to avoid
overfitting. Overfitting is where an ML model is fitted to perform very well on
data it was trained on but fails to make good predictions on new data (Shewalkar,
2018). The function for the dropout layer is as follows:

Ld = L⊙D (2.3)

Where D is the dropout layer (a binary array), and L is the array of the outputs of
the preceding layer of neurons.

5) We experiment with different numbers of neurons and layers in our architecture
(see Section 2.3.3). If there is more than one dense layer in the network, we repeat
steps three and four for each additional layer.
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6) The final dense-and-dropout layer then sends its output values to the last layer in
the neural network, which is the ‘output layer,’ which consists of only one neuron.
That neuron outputs the final estimated probability of nonresponse in the next
wave as a number between zero and one. Note that σ is a Sigmoid function. which
outputs a value close to zero when its input is significantly negative and a value
close to one when its input is significantly positive. i is the number of neurons in
the layer that precedes the output layer.

y = σ(
i∑

i=1

[W i • xi + βh]) (2.4)

Gated Recurrent Unit (GRU)
The process for the GRU is similar to the simple RNN. However, the simple RNN has

only a single value for Whh in each recurrent neuron, which means each previous event
is attributed the same importance, regardless of whether it occurred far into the past or
not. GRU implements a process to learn how to differently weight events in the distant
or proximate past.

1) In a GRU, the hidden state values of each neuron in the recurrent layer are calcu-
lated with a different process to that of the simple RNN. Before we can calculate
the hidden state value, we must first calculate some component values. These are
called the ‘reset gate,’ ‘update gate,’ and ‘candidate hidden layer’ values, which
are described as follows. Note that many of these functions involve a term for the
hidden state value from the previous wave (ht=n−1) and that for the first wave
(t=0), the value of that term is zero.

2) For each recurrent node, at each time step, we calculate a value called the ‘reset
gate’ (rt=n). The reset gate value will determine how much influence the values
from previous timesteps should have on the output of this node, which in turn will
affect the ultimate output of the GRU model. The formula for the reset gate is:

rt=n = σ (wxr • xt=n + ur • ht=n−1 + βr) (2.5)

3) Where xt=n is the array of predictors from the participant at wave n. wxr and
ur are both arrays of weights derived from a fitting process.

4) We calculate the ‘candidate hidden state’ value (h̃), which is the maximum possible
value of the hidden state value that will be retained by this node at this time step.
The formula is:
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h∼t=n = tanh(wxh∼ • xt=n + w
hh̃
(rt=n ⊙ ht=n−1) + β

h̃
) (2.6)

5) We calculate the ‘update gate’ value (z). The update gate value determines how
much of the value from the current time step should be passed onto the new hidden
state value.

zt=n = σ (wxz • xt=n + uz • ht=n−1 + βz) (2.7)

6) Finally, we calculate the hidden state value. The value of the update gate will be
used to reduce (or leave unchanged if the value is 0) the value of the candidate
hidden state with the following formula.

ht=n = zt=n ⊙ ht=n−1 + (1− zt=n) ⊙ h∼t=n (2.8)

7) Once the very last hidden state value is calculated in the recurrent layer, the output
of the recurrent layer is sent to the first dense layer. The remainder of the process
for the GRU is the same as the simple RNN (steps 3 – 6 in Appendix Section 2.6.2
above).

Long Short-Term Memory (LSTM)
The LSTM is similar to the GRU, but the nodes in the recurrent layer apply a different

algorithm as follows.

1) Calculate the value for the input gate.

it=n = σ(wi • [ht=n−1, xt=n] + βi) (2.9)

2) Calculate the value for the forget gate.

ft=n = σ(wf • [ht=n−1, xt=n] + βf ) (2.10)
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3) Calculate the ‘cell state’ value.

c∼t=n = tanh(wc∼ • [ht=n−1, xt=n] + βc∼) (2.11)

ct=n = ft=n • ct=n−1 + it=n • c∼t=n (2.12)

4) Calculate the hidden state value.

ht=n = σ(wo • [ht=n−1, xt=n] + βo) • tanh(ct=n) (2.13)

5) Just like GRUs and simple RNNs, the final hidden state value calculated for the last
wave is then the output for that recurrent neuron. The remainder of the process
for the LSTM is the same as the simple RNN as per steps 3 - 6 in Appendix Section
2.6.2 above.

2.6.3 Data Details

Additional Information
This section provides additional details about the GESIS Panel data. This includes

detailed descriptions of each predictor and the dependent variable (Appendix Table
2.5); how each predictor was categorized into a block for feature importance analysis
(Appendix Table 2.6); the dates of each wave (Appendix Table 2.7); and the American
Association for Public Opinion Research (AAPOR) response codes which we categorize
as nonresponse (Appendix Table 2.6).

Note that for each variable in Appendix Table 2.5, the original survey questions as
asked at each wave can be traced from the file in the project files ‘./data/results/glossary.csv’
that provides the GESIS question ID for every survey item used to make up each vari-
able. The original question wording can then be found in the codebook provided in the
GESIS data.
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Table 2.5: Description of predictors used in machine learning models. Note that pre-
dictors without a predictor set are included only in the ’all predictors’ predictor set.

Variable Label Type Predictor
Set

Values Description/Comments

Average Nonresponse All
Previous Waves

Continuous - [0,5] Rolling average nonresponse
rate over the current and all
previous waves.

Average Nonresponse
Previous One Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Average Nonresponse
Previous Three Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Cooperation Panel Continuous time
invariant

0..5 This value is inputted by the
recruitment interviewer. A
separate dummy variable flags
missingness. Collected for
cohort one only.

Cooperation Survey Continuous time
invariant

0..5 This value is inputted by the
recruitment interviewer. A
separate dummy variable flags
missingness. Collected for
cohort one only.

Cooperation Wave Continuous time
invariant

0..5 This value is inputted by the
recruitment interviewer. A
separate dummy variable flags
missingness. Collected for
cohort one only.

Social Trust Continuous time
invariant

0..5 Collected at recruitment. A
separate dummy variable flags
missingness. Collected for
cohort one only.

Subjective Well Being Continuous time
invariant

0..5 Collected at recruitment. A
separate dummy variable flags
missingness. Collected for
cohort one only.

Survey Evaluation
Difficult

Continuous time
variant

0..5 0 is nonresponse.

Survey Evaluation
Difficult All Previous
Waves

Continuous - [0,5] Rolling average for all hitherto
waves.

Survey Evaluation
Difficult Previous One
Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Survey Evaluation
Difficult Previous Three
Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Survey Evaluation
Diverse

Continuous time
variant

0..5 0 is nonresponse.

Survey Evaluation
Diverse All Previous
Waves

Continuous - [0,5] Rolling average for all hitherto
waves.

Continued on next page...
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Variable Label Type Predictor
Set

Values Description/Comments

Survey Evaluation
Diverse Previous One
Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Survey Evaluation
Diverse Previous Three
Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Survey Evaluation
Important

Continuous time
variant

0..5 0 is nonresponse.

Survey Evaluation
Important All Previous
Waves

Continuous - [0,5] Rolling average for all hitherto
waves.

Survey Evaluation
Important Previous One
Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Survey Evaluation
Important Previous
Three Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Survey Evaluation
Interesting

Continuous time
variant

0..5 0 is nonresponse.

Survey Evaluation
Interesting All Previous
Waves

Continuous - [0,5] Rolling average for all hitherto
waves.

Survey Evaluation
Interesting Previous One
Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Survey Evaluation
Interesting Previous
Three Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Survey Evaluation Long Continuous time
variant

0..5 0 is nonresponse.

Survey Evaluation Long
All Previous Waves

Continuous - [0,5] Rolling average for all hitherto
waves.

Survey Evaluation Long
Previous One Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Survey Evaluation Long
Previous Three Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Survey Evaluation
Overall

Continuous time
variant

0..5 0 is nonresponse.

Survey Evaluation
Personal

Continuous time
variant

0..5 0 is nonresponse.

Survey Evaluation
Personal All Previous
Waves

Continuous - [0,5] Rolling average for all hitherto
waves.

Survey Evaluation
Personal Previous One
Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Survey Evaluation
Personal Previous Three
Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Continued on next page...
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Variable Label Type Predictor
Set

Values Description/Comments

Survey Satisfaction
Overall All Previous
Waves

Continuous - [0,5] Rolling average for all hitherto
waves.

Survey Satisfaction
Overall Previous One
Waves

Continuous - [0,5] Rolling average of current
wave and the previous wave.

Survey Satisfaction
Overall Previous Three
Waves

Continuous - [0,5] Rolling average of current
wave and the previous three
waves.

Age Categorical time
invariant

17.9 to 31.2,
31.2 to 44.4,
44.4 to 57.6,
57.6 to 70.8,
70.8 to 84.0,
missing

The ages of all participants
were categorized into five bins
plus one bin to indicate
missing value. The lower value
of each bin is exclusive.

Cooperation
Responsiveness

Categorical time
invariant

0,5 Inputted by the recruitment
interviewer. A separate
dummy variable flags
missingness.

Disposition Code Categorical - Missing by
mode,
Nonresponse,
Completed,
Completed
after break,
Suspended

Not included in time variant
predictor set because it
contains mostly the same
information as ‘participation
mode.’

Education Category Categorical time
invariant

College, No
College

Derived from more detailed
categories in the original
GESIS data. A separate
dummy variable flags
missingness.

Email Provided Categorical time
invariant

0,1 A separate dummy variable
flags missingness. Collected
for cohort one only.

Employment Categorical time
invariant

Employed,
Unemployed

Derived from more detailed
categories in the original
GESIS data. A separate
dummy variable flags
missingness.

Household Condition Categorical time
invariant

0,5 Inputted by the recruitment
interviewer. 0 is nonresponse.
A separate dummy variable
flags missingness. Collected
for cohort one only.

Household Income Categorical time
invariant

[< EUR
900/month, >
EUR
5,000/month],
Missing

Continued on next page...
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Variable Label Type Predictor
Set

Values Description/Comments

Household Size Categorical time
invariant

1,2,3,4,5+,
Missing

Household Type Categorical time
invariant

Family House,
Residential,

A separate dummy variable
flags missingness. Collected
for cohort one only.

Large, Missing

Invitation Mode Categorical - Online, Offline Not included in time variant
predictor set because it
contains mostly the same
information as the variable
‘participation mode.’

Job Type Categorical time
invariant

self-employed,
blue-collar,
white-collar,
other, Missing

Derived from more detailed
categories in the original
GESIS data. A separate
dummy variable flags
missingness.

Marital Status Categorical time
invariant

Married,
Single,
Unknown,
Missing

Derived from more detailed
categories in the original
GESIS data.

Participation Mode Categorical time
variant

Online, Offline,
Nonresponse

Personal Income Categorical time
invariant

[< EUR
900/month, >
EUR
5,000/month],
Missing

Phone Provided Categorical time
invariant

0,1 A separate dummy variable
flags missingness. Collected
for cohort one only.

Response Status Categorical - complete, non-
participation,
partial

We use participation mode
rather than response status as
the time variant predictor,
because both contain a
category for nonresponse and
using both introduces
unnecessary multicollinearity.

Sex Categorical time
invariant

Male, Female,
Other

A separate dummy variable
flags missingness.

Social Status Categorical time
invariant

0,5 A separate dummy variable
flags missingness. Collected
for cohort one only.

Survey Break Categorical time
variant

0,1 A separate dummy variable
flags missingness. Note that
this only applies to online
submissions. Postal
submissions (as indicated
participation mode) are always
0.

Continued on next page...
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Variable Label Type Predictor
Set

Values Description/Comments

Survey Experience Categorical time
invariant

0,5 0 is nonresponse. Collected for
cohort one only.

Survey Place Categorical time
variant

Home, Not
Home

A separate dummy variable
flags missingness.

Table 2.6: Matching predictors from Appendix Table 2.5 predictor blocks used in Figure
2.8.

Variable Group

Age (17.934, 31.2] Age

Age (31.2, 44.4] Age

Age (44.4, 57.6] Age

Age (57.6, 70.8] Age

Age (70.8, 84.0] Age

Age Missing Age

Average Nonresponse Last Two Waves Rolling Response Status

Average Nonresponse All Previous Waves Rolling Response Status

Average Nonresponse Last Three Waves Rolling Response Status

Cooperation Panel Cooperation

Cooperation Responsiveness Bad Cooperation

Cooperation Responsiveness Good Cooperation

Cooperation Responsiveness Initially bad, later not
so bad

Cooperation

Cooperation Responsiveness Moderately Cooperation

Cooperation Responsiveness Missing Cooperation

Cooperation Survey Cooperation

Cooperation Wave Cooperation

Disposition Code Completed Response Status

Disposition Code Completed after break Response Status

Disposition Code Missing by Mode Response Status

Disposition Code Suspended Response Status

Disposition Code Unit nonresponse Response Status

Education Category 1.0 Education

Education Category 2.0 Education

Education Category Missing Education

Education Level High Education

Education Level Lower Education

Education Level Medium Education

Education Level Missing Education

Email Provided Don’t have E-Mail address Provided Contact Details

Email Provided Missing Provided Contact Details

Email Provided No Provided Contact Details

Email Provided Not asked Provided Contact Details

Email Provided Yes Provided Contact Details

Employment full time Income and Employment

Employment in training Income and Employment

Employment marginal Income and Employment

Continued on next page...
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Variable Group

Employment Missing Income and Employment

Employment not employed Income and Employment

Employment part time Income and Employment

Household Condition Bad condition Household

Household Condition Good condition Household

Household Condition Missing Household

Household Condition Satisfactory condition Household

Household Condition Very bad condition Household

Household Condition Very good condition Household

Household Income 0.0 Income and Employment

Household Income 1100.0 Income and Employment

Household Income 1300.0 Income and Employment

Household Income 1500.0 Income and Employment

Household Income 1700.0 Income and Employment

Household Income 2000.0 Income and Employment

Household Income 2300.0 Income and Employment

Household Income 2600.0 Income and Employment

Household Income 3200.0 Income and Employment

Household Income 4000.0 Income and Employment

Household Income 5000.0 Income and Employment

Household Income 6000.0 Income and Employment

Household Income 700.0 Income and Employment

Household Income 900.0 Income and Employment

Household Income Missing Income and Employment

Household Size 1.0 Household

Household Size 2.0 Household

Household Size 3.0 Household

Household Size 4.0 Household

Household Size 5.0 Household

Household Size Missing Household

Household Type building big Household

Household Type Missing Household

Household Type One Two Family House Household

Household Type other Household

Household Type Residential Medium Household

Invitation Mode Online Mode

Job Type Employee Income and Employment

Job Type Missing Income and Employment

Job Type Other Income and Employment

Job Type Self-employed Income and Employment

Job Type Worker Income and Employment

Marital Status Married Martial Status

Marital Status Missing Martial Status

Marital Status Single Martial Status

Marital Status Unknown Martial Status

Participation Mode Not participated Response Status

Participation Mode Offline Mode

Participation Mode Online Mode

Personal Income 0.0 Income and Employment

Personal Income 1100.0 Income and Employment

Continued on next page...
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Variable Group

Personal Income 1300.0 Income and Employment

Personal Income 1500.0 Income and Employment

Personal Income 1700.0 Income and Employment

Personal Income 2000.0 Income and Employment

Personal Income 2300.0 Income and Employment

Personal Income 2600.0 Income and Employment

Personal Income 300.0 Income and Employment

Personal Income 3200.0 Income and Employment

Personal Income 4000.0 Income and Employment

Personal Income 500.0 Income and Employment

Personal Income 5000.0 Income and Employment

Personal Income 700.0 Income and Employment

Personal Income 900.0 Income and Employment

Personal Income Missing Income and Employment

Phone Provided Missing Provided Contact Details

Phone Provided No Provided Contact Details

Phone Provided Yes Provided Contact Details

Response Status complete interview Response Status

Response Status nonparticipation Response Status

Response Status partial interview Response Status

Sex Ambiguous answer Sex

Sex Female Sex

Sex Male Sex

Social Status Indistinguishable Income and Employment

Social Status Lower class Income and Employment

Social Status Middle class Income and Employment

Social Status Missing Income and Employment

Social Status Upper class Income and Employment

Social Status Upper middle class Income and Employment

Social Status Working class Income and Employment

Social Trust Social Trust

Subjective Well Being Subjective Well Being

Survey Break Ambiguous answer Response Status

Survey Break Item nonresponse Response Status

Survey Break Missing Response Status

Survey Break No, participated in one piece Response Status

Survey Break Not reached Response Status

Survey Break Unit nonresponse Response Status

Survey Break Yes, I have interrupted participation
for X Minutes.

Response Status

Survey Evaluation Difficult Survey Evaluation

Survey Evaluation Difficult All Previous Waves Rolling Survey Evaluation

Survey Evaluation Difficult Last Two Waves Rolling Survey Evaluation

Survey Evaluation Difficult Last Three Waves Rolling Survey Evaluation

Survey Evaluation Diverse Survey Evaluation

Survey Evaluation Diverse All Previous Waves Rolling Survey Evaluation

Survey Evaluation Diverse Last Two Waves Rolling Survey Evaluation

Survey Evaluation Diverse Last Three Waves Rolling Survey Evaluation

Survey Evaluation Important Survey Evaluation

Survey Evaluation Important All Previous Waves Rolling Survey Evaluation

Continued on next page...
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Variable Group

Survey Evaluation Important Last Two Waves Rolling Survey Evaluation

Survey Evaluation Important Last Three Waves Rolling Survey Evaluation

Survey Evaluation Interesting Survey Evaluation

Survey Evaluation Interesting All Previous Waves Rolling Survey Evaluation

Survey Evaluation Interesting Last Two Waves Rolling Survey Evaluation

Survey Evaluation Interesting Last Three Waves Rolling Survey Evaluation

Survey Evaluation Long Survey Evaluation

Survey Evaluation Long All Previous Waves Rolling Survey Evaluation

Survey Evaluation Long Last Two Waves Rolling Survey Evaluation

Survey Evaluation Long Last Three Waves Rolling Survey Evaluation

Survey Evaluation Overall Survey Evaluation

Survey Evaluation Personal Survey Evaluation

Survey Evaluation Personal All Previous Waves Rolling Survey Evaluation

Survey Evaluation Personal Last Two Waves Rolling Survey Evaluation

Survey Evaluation Personal Last Three Waves Rolling Survey Evaluation

Survey Experience Don’t know Survey Experience

Survey Experience Missing Survey Experience

Survey Experience No Survey Experience

Survey Experience Yes Survey Experience

Survey Place home Survey Place

Survey Place Missing Survey Place

Survey Place not home Survey Place

Survey Satisfaction Overall All Previous Waves Rolling Survey Evaluation

Survey Satisfaction Overall Last Two Waves Rolling Survey Evaluation

Survey Satisfaction Overall Last Three Waves Rolling Survey Evaluation

Table 2.7: Index of waves in the GESIS panel (GESIS 2023). Note that waves a11,
a12, d11, d12, f11, f12 are recruitment waves and are not included in the analysis.

Wave Start End

a11 8-Jun-13 1-Dec-13

a12 26-Jun-13 31-Jan-14

aa 21-Aug-13 14-Oct-13

ab 16-Oct-13 10-Dec-13

ac 11-Dec-13 19-Feb-14

ba 19-Feb-14 15-Apr-14

bb 16-Apr-14 17-Jun-14

bc 18-Jun-14 12-Aug-14

bd 13-Aug-14 14-Oct-14

be 15-Oct-14 16-Dec-14

bf 17-Dec-14 17-Feb-15

ca 18-Feb-15 14-Apr-15

cb 15-Apr-15 16-Jun-15

cc 17-Jun-15 11-Aug-15

cd 12-Aug-15 14-Oct-15

ce 14-Oct-15 15-Dec-15

cf 15-Dec-15 16-Feb-16

d11 2-May-16 23-Sep-16

d12 2-May-16 23-Sep-16

Continued on next page...
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Wave Start End

da 17-Feb-16 19-Apr-16

db 20-Apr-16 14-Jun-16

dc 15-Jun-16 16-Aug-16

dd 17-Aug-16 18-Oct-16

de 19-Oct-16 13-Dec-16

df 14-Dec-16 14-Feb-17

ea 15-Feb-17 18-Apr-17

eb 19-Apr-17 13-Jun-17

ec 14-Jun-17 15-Aug-17

ed 12-Sep-17 23-Sep-17

ee 18-Oct-17 12-Dec-17

ef 13-Dec-17 13-Feb-18

f11 1-Apr-18 1-Sep-18

f12 1-Apr-18 1-Sep-18

fa 14-Feb-18 17-Apr-18

fb 18-Apr-18 12-Jun-18

fc 13-Jun-18 14-Aug-18

fd 15-Aug-18 16-Oct-18

fe 5-Oct-18 11-Dec-18

ff 12-Dec-18 12-Feb-19

ga 13-Feb-19 16-Apr-19

gb 17-Apr-19 11-Jun-19

gc 12-Jun-19 13-Aug-19

gd 14-Aug-19 15-Oct-19

ge 16-Oct-19 10-Dec-19

gf 11-Dec-19 11-Feb-20

hb 20-May-20 7-Jul-20

hc 8-Jul-20 23-Aug-20

hd 26-Aug-20 13-Oct-20

he 14-Oct-20 8-Dec-20

hf 9-Dec-20 9-Feb-21

ia 24-Feb-21 20-Apr-21

ib 26-May-21 20-Jul-21

Table 2.8: How the nonresponse variable is defined. For each invited participant,
GESIS categorizes their response to the invitation in the variable ‘response category.’ If
a given response category is any of the following values, we consider that participant to
have nonresponded in that wave.

AAPOR disposition category
code

AAPOR disposition category label

319 Nothing ever returned

21121 Explicit refusal

3311 Post: Attempted - Addressee not known at place of address

212 Break-off: questionnaire too incomplete to process / break-off or partial
with insufficient information

211211 Explicit refusal with incentive

2112 Known respondent-level refusal

Continued on next page...
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AAPOR disposition category
code

AAPOR disposition category label

211221 Logged on to survey did not complete any items

2113 Blank questionnaire mailed back implicit refusal

33112 Postal box full

21122 Implicit refusal

33114 Email Bouncer: Mailbox unknown

2111 Other person refusal

33115 Email Bouncer: Postbox full

231 Death (including Post: Deceased)

33113 Email Bouncer: Delivery problem

232 Physically or mentally unable/incompetent

332 Post: Moved left no address

21131 Blank questionnaire with incentive returned

2332 Respondent language problem

211212 Explicit refusal no incentive

331 Post: Undeliverable as addressed

3253 Post: No Mail Receptacle

211 Refusal

2113 Blank questionnaire with no incentive returned

391 Returned from an unsampled person

330 Invitation returned undelivered (Email Bouncer)

Data Formatting

Each of the three types of models (traditional, RNNs, and TSCTs) requires different
input data formats. For all models, we first transform the ‘wide’ format of raw GESIS
Panel data to ‘long’ format (see Appendix Figure 2.10).

Figure 2.10: Exemplary diagram of the first stage of transforming raw GESIS Panel
data into the format required for the analysis.

Traditional Models Logistic regression and random forest were given inputs of the



Chapter 2. Longitudinal Nonresponse Prediction with Time Series Machine Learning 64

format shown in Appendix Figure 2.11. Appendix Figure 2.11 shows an example scenario
in which we are creating a model which will predict nonresponse in the sixth wave of
the GESIS survey. We can train the model with predictors drawn from any wave up
to wave four and then use nonresponses in wave five as the training dependent. We
then test how well our fitted model performs by inputting data from wave five and
outputting predictions for the nonresponses in wave six. Those predictions can then be
compared with the actual outcomes in wave six to calculate an AUROC score for model
performance at wave 6.
In the training data, to reduce computation time, we filter out duplicate participants

by including only the row for the participant’s second latest wave (because we use their
latest wave for the dependent variable). In the test data, we include only participants
invited to the wave we are predicting. In the example from Appendix Figure 2.11, the
participant with ID ‘3’ is excluded from the test set because they are not invited to wave
six. Still, participant number three can be included in the training set because they
were present in wave four, so we can use their data up to wave three, and nonresponse
outcome at wave four, to train the model.

Figure 2.11: Diagram of input for the logistic regression and random forest ML models.

RNN The format for the RNNs is similar to that of the traditional models, except
each predictor is a timeline of values instead of a single value. In Appendix Figure
2.12, we can see that the training predictors are three-dimensional: one axis for the
participant, another axis is the variables, and the third axis is the temporal axis. For
example, for the participant with ID ‘2,’ for the variable ‘survey satisfaction,’ the RNN
model would be trained on an array of the values which are the participant's survey
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satisfaction responses for waves four, three, two, and one. In the case of participant 3,
they were only in the panel until wave three (and nonresponded in wave four), so we
received an array of their values for waves three, two, and one. The test data only con-
sists of participants invited to wave six, so every timeline of values would be every wave
each participant had been in up to that point. That timeline would include all survey
waves for a participant recruited from the beginning of the GESIS panel but fewer for
participants from a later cohort. Note that even waves the participant was invited to,
but did not respond to, would still have an entry in the timeline of values.

Figure 2.12: Diagram of example input for the traditional ML models.

Time Series Classification Techniques The format for these models is the same
as that of RNNs but with two exceptions. Firstly, every time series must be the same
length, so where participants in the training set were in fewer waves than others (such
as participant number three), the values of the missing waves are imputed with zeros.
Secondly, the time series in the test data must be the same length as the training waves,
even though one additional wave is available in the test set. Therefore, we exclude the
earliest wave for each time series in the test data to truncate the time series to be the
same length as those in the training set. Appendix Figure 2.13 shows how each TSCT
algorithm converts the three-dimensional input data into a two-dimensional Table which
is then inputted into its component classifier to make the final prediction.
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Figure 2.13: An illustration of how the TSCTs convert the three-dimensional input
back into a two-dimensional input, which is then inputted into traditional classifiers.
Note that the two-dimensional matrices derived here should not be confused with the
long format matrices in Appendix Figures 2.10 and 2.11.
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Missing Values and Scaling
The primary sources of missing values are as follows.

• Participants may refuse to answer a question about their demographics in the
recruitment interview. In these cases, we 'dummy encode' that variable, which
means to convert a categorical variable (i.e., gender is male, female, other, no
answer) into a set of binary variables (i.e., ‘is male,’ ‘is female,’ ‘is missing’). One of
these dummy variables will represent a missing value. If the demographic variable
is continuous (i.e., age) we separate the values into bins to make it categorical, see
Appendix Table 2.5 for details.

• Demographic values are missing in waves other than the recruitment wave and the
periodic waves where these questions are repeated. This is because GESIS only
asks the participant for these details in particular waves, instead of every time.
We fill the missing value with the last known value in these cases.

• Some values are missing because the participant did not respond to the wave. This
affects predictors such as the survey satisfaction questions and whether they took a
break during the survey. The only continuous variables this issue introduces error
into are the survey satisfaction questions, where we input zero for a missing value
(note that when these questions are answered the lowest valid value possible is 1).
Therefore, rolling-averages based on these survey evaluation items could be low
because the respondent was dissatisfied, or because an item was missing, thereby
adding some error into what that variable indicates. This error is mitigated by
using the ‘nonresponse in this wave’ variable as a missingness flag for these survey
evaluation indicators. Categorical predictors are dummy encoded so that they have
a category for missing values.

• The survey break variables only apply to online respondents. In these cases, the
mode variables would indicate the reason for missingness.

• Some values are missing because certain questions were asked in the first cohort re-
cruitment wave, but not in subsequent ones. These are: Household type, household
condition, survey cooperation, social status, social trust, prior survey experience,
flags for not providing contact details. For these features, we provide a missingness
flag.

We scale continuous variables by dividing each element by that variable’s maximum
possible value. This is appropriate because the maximum value is known in advance for
these survey questions, and extreme outliers are therefore not possible. Appendix Table
2.5 indicates which variables are continuous.

2.6.4 Hypertuning Details

This section provides details on the model training procedures. We explain the combi-
nations of all model parameters we experimented with (Appendix Table 2.9); the waves,
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cohort groupings, and predictor sets we repeated these fittings over (Appendix Table
2.10); and the particular case of the TSCT models (Appendix Table 2.11). In total, we
fit 13,392 (72 of which were TSCT) models to predict nonresponse in the subsequent
wave.

Table 2.9: Model settings for each model when predicting nonresponse in the next wave.
For replication purposes, note that all RNNs were fitted with the ‘Adaptive Moment Esti-
mation (ADAM)’ optimization algorithm, all activation functions were sigmoid functions,
and the learning rate was 0.001 (Kingma and Ba, 2017).

Model Type Setting Values Number of
Unique
Settings

Logistic Regression penalty L1, or L2 Regularization, or
No Penalty

9

Optimization solver ‘Liblinear’ for Penalized and
‘Limited Memory Broy-
den–Fletcher–Goldfarb–Shanno
(LBFGS)’ for Unpenalized

Fitting stopping tolerance 01
C (only applies to those
with L1 or L2 penalty)

0.05, 0.1, 1, 1000

Random Forest Number of trees in the
forest

500 1

The function to measure
the quality of a split

Gini impurity

Minimum number of
samples for a split

2

Minimum number of
samples for a leaf

1

Number of predictors
considered at each split

Square root of number of all
predictors

Simple RNN depth 8, 32, 128 9
width 0,1,2
dropout 0.6

LSTM depth 8, 32, 128 9
width 0,1,2
dropout 0.6

GRU depth 8, 32, 128 9
width 0,1,2
dropout 0.6

Total 37
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Table 2.10: Other variables permutated at each model fitting following from Appendix Table 5.

Dimension Parameters Values

Uniquely Parameterized Models See Appendix Table 5 37

Waves per Cohort All cohorts 40
Cohort one 40
Cohort two 26
Cohort three 14

Sub Total 120
Predictor Sets Time-variant predictors only 3

Time-invariant predictors only
All predictors

Total 13,320

Table 2.11: Summary of TSCT model fittings in the project.

Predictors Model Class Waves fitted

All Predictors Catch22 12
DrCIF 12
ROCKET 12

Time Variant Only Catch22 12
DrCIF 12
ROCKET 12

Total 72

2.6.5 Additional Results

Over 13,000 models were fitted for this study. The main text summarizes these results,
and in this appendix section, we provide the precise AUROC values for each model
setting averaged over all waves. These results allow us to precisely measure the rankings
of different settings and examine the impact of hypertuning on model performance.

Table 2.12: AUROC for each model setting when predicting nonresponse in the next
wave. Note that RNNs with ”num layers” = 0 have no layers other than the recurrent
and output layers.

Model Class Features Parameters min max mean std

Random Forest All
Predictors

’max features’:
’sqrt’, ’n
estimators’: 500

0.678 0.890 0.857 0.034

LSTM Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.668 0.895 0.856 0.036

Continued on next page...
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Model Class Features Parameters min max mean std

LSTM Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.673 0.888 0.855 0.036

LSTM Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.611 0.892 0.853 0.045

LSTM Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.673 0.896 0.853 0.035

LSTM Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.639 0.894 0.852 0.040

LSTM Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.684 0.893 0.852 0.035

LSTM Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.654 0.891 0.852 0.038

LSTM Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.668 0.894 0.851 0.037

LSTM Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.658 0.893 0.850 0.041

GRU Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.655 0.893 0.849 0.040

GRU Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.655 0.892 0.849 0.039

GRU Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.656 0.887 0.849 0.039

GRU Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.659 0.891 0.847 0.040

GRU Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.662 0.895 0.847 0.041

Continued on next page...



Chapter 2. Longitudinal Nonresponse Prediction with Time Series Machine Learning 71

Model Class Features Parameters min max mean std

GRU Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.657 0.889 0.847 0.038

GRU Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.652 0.889 0.846 0.041

GRU Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.661 0.888 0.846 0.042

GRU Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.649 0.890 0.846 0.040

LSTM All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.652 0.882 0.843 0.037

LSTM All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.639 0.878 0.842 0.039

LSTM All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.673 0.880 0.842 0.036

Simple RNN Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.676 0.888 0.840 0.036

LSTM All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.660 0.880 0.839 0.038

LSTM All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.613 0.875 0.839 0.044

Simple RNN All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.620 0.878 0.839 0.043

LSTM All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.647 0.879 0.838 0.040

LSTM All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.642 0.883 0.838 0.045

Continued on next page...
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Model Class Features Parameters min max mean std

LSTM All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.645 0.877 0.837 0.040

Simple RNN All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.629 0.878 0.837 0.042

Simple RNN All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.632 0.880 0.837 0.040

Simple RNN Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.559 0.884 0.837 0.060

Simple RNN All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.620 0.874 0.837 0.042

LSTM All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.600 0.878 0.837 0.046

Simple RNN Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.585 0.890 0.837 0.057

Simple RNN All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.670 0.878 0.836 0.039

Simple RNN All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.616 0.876 0.835 0.043

Simple RNN All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.622 0.877 0.834 0.045

Simple RNN All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.588 0.875 0.833 0.047

Simple RNN All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.657 0.875 0.831 0.041

Penalized
Logistic
Regression

All
Predictors

’C’: 1, ’penalty’: ’l1’ 0.651 0.868 0.831 0.033

Continued on next page...
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Model Class Features Parameters min max mean std

GRU All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.659 0.880 0.831 0.040

Simple RNN Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.304 0.892 0.831 0.094

Simple RNN Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.301 0.892 0.829 0.093

Simple RNN Time
Variant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.296 0.894 0.829 0.096

GRU All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.630 0.873 0.829 0.046

GRU All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.633 0.874 0.828 0.045

GRU All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.626 0.873 0.827 0.042

GRU All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.585 0.876 0.827 0.048

Simple RNN Time
Variant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.330 0.892 0.826 0.092

GRU All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.648 0.876 0.826 0.047

GRU All
Predictors

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.653 0.877 0.826 0.040

Simple RNN Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.315 0.884 0.825 0.092

GRU All
Predictors

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.633 0.874 0.824 0.051

Continued on next page...
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Model Class Features Parameters min max mean std

Penalized
Logistic
Regression

All
Predictors

’C’: 0.1, ’penalty’:
’l1’

0.636 0.870 0.824 0.037

Simple RNN Time
Variant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.282 0.890 0.824 0.098

GRU All
Predictors

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.629 0.882 0.823 0.058

Catch22 Time
Variant
Only

0.679 0.873 0.822 0.053

Penalized
Logistic
Regression

All
Predictors

’C’: 1000, ’penalty’:
’l2’

0.644 0.862 0.817 0.037

Penalized
Logistic
Regression

All
Predictors

’C’: 1, ’penalty’: ’l2’ 0.642 0.865 0.817 0.036

Penalized
Logistic
Regression

All
Predictors

’C’: 1000, ’penalty’:
’l1’

0.643 0.859 0.816 0.036

Penalized
Logistic
Regression

All
Predictors

’C’: 0.1, ’penalty’:
’l2’

0.639 0.867 0.813 0.037

Catch22 All
Predictors

0.686 0.858 0.812 0.043

Penalized
Logistic
Regression

All
Predictors

’C’: 0.05, ’penalty’:
’l2’

0.638 0.868 0.811 0.037

Penalized
Logistic
Regression

All
Predictors

’C’: 0.05, ’penalty’:
’l1’

0.620 0.870 0.810 0.039

Baseline
Logistic
Regression

All
Predictors

’penalty’: ’none’ 0.640 0.858 0.809 0.035

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 1, ’penalty’: ’l2’ 0.583 0.823 0.753 0.042

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 1, ’penalty’: ’l1’ 0.580 0.823 0.753 0.042

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 0.1, ’penalty’:
’l2’

0.582 0.823 0.753 0.042

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 1000, ’penalty’:
’l2’

0.583 0.821 0.752 0.042

Continued on next page...
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Model Class Features Parameters min max mean std

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 0.1, ’penalty’:
’l1’

0.575 0.818 0.752 0.043

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 0.05, ’penalty’:
’l2’

0.581 0.821 0.751 0.043

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 0.05, ’penalty’:
’l1’

0.576 0.815 0.751 0.043

Random Forest Time
Invariant
Only

’max features’:
’sqrt’, ’n
estimators’: 500

0.596 0.809 0.750 0.045

Baseline
Logistic
Regression

Time
Variant
Only

’penalty’: ’none’ 0.583 0.821 0.749 0.041

Penalized
Logistic
Regression

Time
Variant
Only

’C’: 1000, ’penalty’:
’l1’

0.382 0.821 0.746 0.068

DrCIF All
Predictors

’time limit in
minutes’: 2.0

0.614 0.773 0.737 0.044

Random Forest Time
Variant
Only

’max features’:
’sqrt’, ’n
estimators’: 500

0.585 0.781 0.728 0.039

DrCIF Time
Variant
Only

’time limit in
minutes’: 2.0

0.601 0.754 0.705 0.049

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 1, ’penalty’: ’l1’ 0.549 0.756 0.680 0.042

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 1000, ’penalty’:
’l2’

0.550 0.754 0.678 0.042

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 1000, ’penalty’:
’l1’

0.550 0.754 0.678 0.043

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 1, ’penalty’: ’l2’ 0.545 0.753 0.677 0.043

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 0.1, ’penalty’:
’l2’

0.544 0.747 0.673 0.042

Baseline
Logistic
Regression

Time
Invariant
Only

’penalty’: ’none’ 0.552 0.748 0.672 0.042

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 0.05, ’penalty’:
’l2’

0.547 0.742 0.669 0.041

LSTM Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.579 0.747 0.667 0.037

Continued on next page...



Chapter 2. Longitudinal Nonresponse Prediction with Time Series Machine Learning 76

Model Class Features Parameters min max mean std

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 0.1, ’penalty’:
’l1’

0.535 0.749 0.664 0.045

LSTM Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.579 0.740 0.664 0.041

LSTM Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.579 0.745 0.664 0.039

LSTM Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.579 0.743 0.663 0.042

Simple RNN Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.573 0.746 0.663 0.038

LSTM Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.566 0.745 0.663 0.040

LSTM Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.553 0.750 0.661 0.046

LSTM Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.559 0.734 0.661 0.044

Simple RNN Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.570 0.745 0.660 0.042

LSTM Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.565 0.741 0.660 0.042

LSTM Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.565 0.745 0.659 0.046

Simple RNN Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.566 0.741 0.659 0.040

Simple RNN Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.561 0.737 0.659 0.038

Continued on next page...



Chapter 2. Longitudinal Nonresponse Prediction with Time Series Machine Learning 77

Model Class Features Parameters min max mean std

Simple RNN Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.525 0.743 0.658 0.043

Simple RNN Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.570 0.742 0.658 0.041

Simple RNN Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.576 0.750 0.657 0.042

Simple RNN Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.567 0.737 0.656 0.042

Simple RNN Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.563 0.745 0.656 0.046

GRU Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.539 0.736 0.650 0.042

Penalized
Logistic
Regression

Time
Invariant
Only

’C’: 0.05, ’penalty’:
’l1’

0.537 0.735 0.647 0.045

GRU Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.545 0.725 0.645 0.044

GRU Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.559 0.727 0.645 0.041

GRU Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.543 0.730 0.644 0.047

GRU Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.541 0.731 0.643 0.048

GRU Time
Invariant
Only

’num layers’: 1,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.539 0.727 0.642 0.042

GRU Time
Invariant
Only

’num layers’: 2,
’recurrent dropout’:
0.6, ’recurrent
units’: 128

0.538 0.733 0.642 0.046

Continued on next page...
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Model Class Features Parameters min max mean std

GRU Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 32

0.546 0.723 0.642 0.042

GRU Time
Invariant
Only

’num layers’: 0,
’recurrent dropout’:
0.6, ’recurrent
units’: 8

0.559 0.740 0.638 0.045

ROCKET All
Predictors

0.528 0.657 0.608 0.033

ROCKET Time
Variant
Only

0.514 0.606 0.562 0.023

2.6.6 PRICSSA Checklist

In this section we present the Preferred Reporting Items for Complex Sample Survey
Analysis (PRICSSA) checklist. This information provides transparency and assists in
replication for the study. The checklist is presented in Appendix Table 2.13.

Table 2.13: PRICSSA Checklist (Seidenberg, Moser, and West, 2023).
PRICSSA item Description Response

1.1 Data collection dates Describe the survey’s data
collection dates (e.g., range) to
provide historical context that
could affect survey responses and
nonresponse.

See Appendix Table 2.7.

1.2 Data collection mode(s) Describe the survey’s data
collection mode(s). Data
collection mode can affect survey
responses (e.g., to sensitive
questions), including nonresponse,
and a survey’s data collection
mode may change over time (e.g.,
during the COVID-19 pandemic).

See Section 2.3.1. Survey is
mixed mode offering web and
mail options. Survey waves are
two to three monthly.

1.3 Target population State the target population the
survey was designed to represent
and describe all weighted
estimates with respect to this
target population.

A detailed description of the
population and sampling method
is found in Section 2.3.1 with a
reference to the full
documentation. The GESIS
panel’s sampling method was to
randomly sample from the
German population register.
Anyone permanently residing in
Germany between the ages of
18-70 was eligible for recruitment.
Participants were interviewed at
their homes to be recruited into
the panel.

Continued on next page...
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PRICSSA item Description Response

1.4 Sample design Describe the survey’s sample
design, including information
about stratification, cluster
sampling, and unequal
probabilities of selection.

A detailed description of the
population and sampling method
is found in Section 2.3.1 with a
reference to the full
documentation. Sampling method
was random selection from
population register of
Germany-residents between 18-70.

1.5 Survey response rate(s) State the survey’s response rate
and how it was calculated.

The definition of nonresponse
based on RR6 and the selection of
AAPOR response type codes is
now provided (Section Validation)
as well as the subsequent
calculation of nonresponse rates
at each wave (Figure 2.2).

2.1 Missingness rates Report rates of missingness for
variables of interest and models,
and describe any methods (if any)
for dealing with missing data
(e.g., multiple imputation).

See Appendix Sections 2.6.3.

2.2 Observation deletion State whether any observations
were deleted from the dataset. If
observations were deleted, provide
a justification. Note: It is best
practice to avoid deleting cases
and use available subpopulation
analysis commands no matter
what variance estimation method
is used.

No individual participant was
removed from the dataset. See
Appendix Section Data
Formatting. which describes a
procedure for using only the
latest wave of data for a given
participant, but this does not
omit the participant from the
analysis.

2.3 Sample sizes Include unweighted sample sizes
for all weighted estimates.

See Figure 2.2. No weighted
estimated used.

2.4 Confidence intervals/standard
errors

Include confidence intervals or
standard errors when reporting
all estimates to inform the
reliability/precision of each
estimate.

In our case, we do no significance
tests but rather provide
probabilistic predictions and the
related goodness-of-fit
information (Sections 2.3 and
2.4).

2.5 Weighting State which analyses were
weighted and specify which
weight variables were used in
analysis.

No sample weighting used.

2.6 Variance estimation Describe the variance estimation
method used in the analysis and
specify which design variables
(e.g., PSU/stratum, replicate
weights) were used.

Not Applicable

2.7 Subpopulation analysis Describe the procedures used for
conducting subpopulation
analyses (e.g., Stata’s “subpop”
command, SAS’s “domain”
command).

Not Applicable

Continued on next page...
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PRICSSA item Description Response

2.8 Suppression rules State whether or not a
suppression rule was followed
(e.g., minimum sample size or
relative standard error).

Not Applicable

2.9 Software and code Report which statistical software
was used, comprehensively
describe data management and
analysis in the manuscript, and
provide all statistical software
code.

See Appendix Section 2.6.1.

2.10 Singleton problem (as
needed)

Taylor Series Linearization
requires at least two PSUs per
stratum for variance estimation.
Sometimes an analysis is being
performed and there is only a
single PSU in a stratum. There
are several possible fixes to this
problem, which should be
detailed if the singleton problem
is encountered.

Not Applicable

2.11 Public/restricted data (as
needed)

If applicable, state whether the
public use or restricted version of
the dataset was analyzed.

See Appendix Section 2.6.1.

2.12 Embedded experiments (as
needed)

If applicable, provide information
about split sample embedded
experiments (e.g., mode of data
collection or varying participant
incentives) and detail whether
experimental factors were
accounted for in the analyses.

Not Applicable
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3 Pre-Trained Nonresponse Prediction in
Panel Surveys with Machine Learning

Abstract

While predictive modeling for unit nonresponse in panel surveys has been explored
in various contexts, it is still under-researched how practitioners can best adopt these
techniques. Currently, practitioners need to wait until they accumulate enough data in
their panel to train and evaluate their own modeling options. This paper presents a novel
“cross-training” technique in which we show that the indicators of nonresponse are so
ubiquitous across studies that it is viable to train a model on one panel study and apply
it to a different one. The practical benefit of this approach is that newly commencing
panels can potentially make better nonresponse predictions in the early waves because
these pre-trained models make use of more data. We demonstrate this technique with
five panel surveys which encompass a variety of survey designs: the Socio-Economic
Panel (SOEP), the German Internet Panel (GIP), the GESIS Panel, the Mannheim
Corona Study (MCS), and the Family Demographic Panel (FREDA). We demonstrate
that nonresponse history and demographics, paired with tree-based modeling methods,
make highly accurate and generalizable predictions across studies, despite differences in
panel design. We show how cross-training can effectively predict nonresponse in early
panel waves where attrition is typically highest.

3.1 Introduction

Panel surveys are an irreplaceable source of data for social scientists. These surveys
require more skilled management and resources than one-time surveys, so sources of error
must be controlled as much as possible (Pforr and Schröder, 2016). Nonresponse is one of
the more severe sources of survey error, and panel survey managers are increasingly under
pressure to ameliorate nonresponse rates (Fuchs, Bossert, and Stukowski, 2013; Luiten,
Hox, and Leeuw, 2020). This paper is exclusively concerned with ‘unit nonresponse,’
that is, when a participant is invited to a panel wave and, for any reason, does not
submit any usable data. This variety of nonresponse is distinct from permanent dropout
from a panel or item nonresponse.
A promising approach to reducing nonresponse bias is the application of predictive

modeling to forecast nonresponse in panel surveys. In this approach, practitioners build
models that output each participant’s estimated nonresponse propensity. These esti-
mates could then help to target the most at-risk participants with interventions aimed
at mitigating their risk of nonresponse (Jacobsen et al., 2021; Jankowsky, Steger, and
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Schroeders, 2022; Kern, Weiß, and Kolb, 2021; Kocar and Biddle, 2022; Mulder and
Kieruj, 2018). Machine Learning (ML) is an approach to predictive modeling. In this
application, data collected about participants in a panel and their nonresponse history
is used to train (i.e., ‘fit’) an ML model to predict future nonresponse behavior based
on historic patterns (Hastie, Tibshirani, and Friedman, 2009; James et al., 2013).
Many research papers have explored this approach to predicting participant nonre-

sponse (Bach, Eckman, and Daikeler, 2020; Cheng, Zamarro, and Orriëns, 2016; JSSAM,
2022; Kern, Klausch, and Kreuter, 2019; Kocar and Biddle, 2022; Mulder and Kieruj,
2018; Olson, 2013; Zinn and Gnambs, 2022). However, most of these papers typically
focus on one specific panel study, train a range of prediction models, and compare the
results obtained for that panel. What is absent in this literature is an understanding of
how well the findings about one panel study transfer to another panel. No two longitudi-
nal studies are alike; they differ widely in their ‘survey design,’ including characteristics
such as the target population, the unit of study (i.e., individuals or household respon-
dents), the mode, topics, and wave frequency. When a particular prediction approach is
highly effective in one survey context, it is still an open question whether that technique
will also be effective in another context.
Practitioners developing a new panel survey and interested in using predictive mod-

eling are left uncertain as to which modeling approach from the literature to adopt.
Practitioners could wait until they accumulate enough survey waves to train various
models on their panel and select the best performer for future use. However, this re-
quires the panel to accumulate many panel waves and potentially lose panelists during
that time. In this paper, we present the possibility of “cross-training,” that is, using
data from pre-existing panels to train a nonresponse prediction model and apply it to a
new panel. Our underlying assumption is that ML models fitted on nonresponse history
and demographic data are consistently effective so that these models can be transported
across different contexts. Therefore, our first guiding research question is as follows.

1. What is the predictive performance of a model trained on one panel but
applied to another study?

Assuming that transporting models is viable, we want to understand when and why
these models can (or cannot) be interchanged between panels. For example, suppose
nonresponse history and demographics like age and income are the key indicators of
nonresponse across many different panels. In that case, it explains how cross-training
would be effective because this predictive process is ubiquitous across contexts. Alterna-
tively, cross-training between panels would likely fail if, for example, nonresponse history
were more predictive in panels with monthly versus annual waves. To understand when
cross-training may or may not be successful, we aim to analyze the consistency of the
efficacy of the algorithms and predictors across different panel contexts. Therefore, our
second research question is as follows.

2. Across different survey contexts, is there a difference in what predictors
and algorithms are effective in predicting nonresponse?
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We test these questions by gathering data from five different panel surveys in Germany,
each with a different survey design: the Socio-Economic Panel (SOEP), the German
Internet Panel (GIP), the GESIS Panel, the Mannheim Corona Study (MCS), and the
Family Demographic Panel (FREDA). These panels were selected to compare common
differences between panel surveys. These studies encompass various sampling methods,
recruitment methods, data collection modes, units of study, and wave frequencies. We
derive equivalent features (i.e., predictors) across all datasets in each survey. For each
dataset, we train a set of models and compare the predictive performance of each model
for predicting nonresponse in each panel. Our study is the first to systematically (cross-
)train and evaluate machine learning models for nonresponse prediction across multiple
panels at scale.
Our study design allows us to identify which differences in survey characteristics cause

certain algorithms to be specifically effective or reduce performance. We also compare
the ‘permutation feature importance’ (PFI; Altmann et al. (2010)), which measures how
much each feature contributes to predictive performance. We then evaluate whether
specific features are always helpful for prediction-making in any context or whether
certain features are more or less powerful under certain contexts.
We propose a process for exploring how ML models can be trained on one panel

and applied to another. However, which algorithms and predictors should we explore?
Furthermore, how would we evaluate them? In the Background section (3.2), we establish
that previous research has most often considered logistic regression or tree-based models
trained on demographic and past-nonresponse behavior data. In the Methods section
(3.3), we introduce how we implement those modeling approaches using data from the
five panel surveys. We also compare and contrast the design characteristics of each
of these five panels. To answer research question one, we introduce a framework for
‘cross-training’ models, that is, training models on one panel’s data and then making
nonresponse predictions in a another panel.
To answer research question two, we examine whether certain predictors are more

or less important in different panels. In the Results section (3.4), we show that cross-
training can accurately predict nonresponse in the second wave of a given panel. The
ubiquity of nonresponse history and demographics as effective predictors explains this
outcome. In the Discussion section (3.5), we consider what these findings should mean
for survey practitioners and the limitations of this research.

3.2 Background

Many studies explore forecasting nonresponse in panel surveys (Bach, Eckman, and
Daikeler, 2020; Hill et al., 2020; Jacobsen et al., 2021; Jankowsky, Steger, and Schroed-
ers, 2022; Kern, Weiß, and Kolb, 2021; Kocar and Biddle, 2022; Kreuter and Jäckle,
2008; Lipps, 2007; Lugtig, 2014; McLauchlan and Schonlau, 2016; Minderop and Weiß,
2023; Mulder and Kieruj, 2018; Plewis and Shlomo, 2017; Roßmann and Gummer, 2016;
Siegers, Steinhauer, and Dührsen, 2021; Uhrig, 2008; Voorpostel and Lipps, 2011). In
this section, we identify that nonresponse history and demographics are often the most



Chapter 3. Pre-Trained Nonresponse Prediction in Panel Surveys with Machine Learning 89

powerful predictors of future nonresponse and that logistic regression and tree-based
models are highly successful in many studies. This paper will take the extra step of
demonstrating that these features and techniques are consistently effective across con-
texts and that this is why our proposed cross-training approach is viable.
For this study, we are only interested in discussing research that aims to predict future

nonresponse instead of explaining it. Also, we are interested in predicting nonresponse
propensity in the next wave, as opposed to other possible prediction units like survival
time (Lemay, 2009). This decision is because those units require more waves to assess
the outcome, and we are interested in models that can be fitted as early as possible to
reflect the survey practitioner’s need for timely forecasts.
Of the previous studies that aimed to predict future unit nonresponse, only one pa-

per evaluated several surveys (although only one was a panel study) and systematically
compared the results: Bach, Eckman, and Daikeler (2020). In this paper, the authors
applied a common set of algorithms across three surveys: the Longitudinal Internet
Studies for the Social Sciences (LISS), the Survey on Free Time (SOFT), and the Em-
ployment and Purchase Behavior in Germany (EPBG). LISS is a household panel survey
with around 5,000 households sampled by geographic clustering across the Netherlands.
LISS recruited households by mail, telephone, or face-to-face interviews. Regular sur-
veys about topics concerning internet usage have been conducted online and monthly
since 2007. SOFT and EPBG are cross-section surveys. SOFT was a 2013, US-based
telephone survey with around 300 household respondents sampled by random selection
of ZIP codes from the postal service registry. EPBG was a 2011 telephone survey of
12,400 Germans sampled from the federal administrative labor force records. Each sur-
vey collected different data, and the researchers used different covariates across the same
set of models. Demographic data was available across all three surveys. The models for
LISS used information about previous nonresponse history, while SOFT and EPBG used
information from the recruitment process, such as the number of missed invitation calls.
The two implemented prediction methods were logistic regression and gradient boosting
(tree-based). The gradient-boosted models performed best, with very high Area Under
Receiver Operator Curve (AUROC1) scores of 0.84 for EPBG, 0.88 for LISS, and 0.94
for SOFT. This study demonstrates the efficacy of tree-based models with demograph-
ics and nonresponse history, yielding 0.88 AUROC when forecasting nonresponse in the
LISS panel.
Zinn and Gnambs (2022) trained models to predict next-wave nonresponse in the

National Educational Panel Study (NEPS). NEPS is a panel survey, with waves running
every six to twelve months, starting in 2009. The sample of over 40,000 German residents
was drawn through cooperation with educational institutions. In each of the six cohorts
recruited since 2009, there is a mixture of newborns, kindergarteners, primary schoolers,
high schoolers, post-high schoolers, and post-tertiary adults. Zinn and Gnambs (2022)
experimented with two models: Bayesian Additive Regression Trees (BART) and logistic

1For a classifier that outputs the probability of a given case belonging to a certain class, AUROC is
a metric that measures the trade-off between sensitivity (true positive rate) and specificity (true
negative rate). AUROC values range from 0 to 1, where 1.0 represents a perfect classifier, and 0.5
represents random guessing (the worst possible classifier).
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regression. Because NEPS is focused on education-related topics, many of the model's
features were substantive information like the number of books a child has at home,
the number of sick days taken, and demographics like migration background and federal
state. Zinn and Gnambs report their results in terms of accuracy (the portion of correct
predictions) as 89-99% for the first five waves of NEPS with both models. This study
is an example of another successful implementation of tree-based and logistic regression
models.
Kocar and Biddle (2022) predicted next-wave nonresponse in the Life in Australia

(LIA) panel survey. LIA has run roughly monthly waves since May 2018. The sample was
recruited by random digit dialing of registered numbers amongst the general Australian
population. Interviews were conducted online. Kocar and Biddle used demographics,
past nonresponse behavior, and online paradata such as browser type and page-click
behavior. Kocar and Biddle fitted these features with a logistic regression model and
achieved a recall score of over 0.9 and a (considerably lower) precision of 0.2. This study
also shows the viability of logistic regression with demographic and past-nonresponse
predictors.
Mulder and Kieruj (2018) predicted next-wave nonresponse in the LISS panel. They

used features such as demographics, past nonresponse, physical/mental health, personal-
ity measures, and incentive sizes. Mulder and Kieruj used these features to build various
prediction models: logistic regression, support vector machines, random forest, gradi-
ent boosted, and neural networks. The resultant Area Under Receiver Operator Curve
(AUROC) scores ranged from 0.65 for the neural network to 0.79 for the random forest.
Kern, Weiß, and Kolb (2021) predicted next-wave nonresponse with the GESIS Panel.

The GESIS Panel is a general German population panel with online/postal options,
and the wave frequency is between two and three months. The authors used demo-
graphics, past nonresponse behavior, and rolling-average nonresponse rates with varying
window sizes (i.e., average nonresponse over the past two waves, three waves, etc.).
These researchers applied these predictors to various models, including logistic regres-
sion, random forest, and extra tree classifiers. Over the GESIS Panel waves from late
2013 to mid-2017, these models achieved average AUROC scores ranging from 0.86 with
penalized logistic regression to 0.89 with random forest.
These studies show that panel study practitioners are interested in predictive modeling

to intervene with at-risk participants preemptively. However, panel studies have different
techniques for alleviating nonresponse bias. Numerous studies analyze the characteris-
tics of responders and nonresponders to evaluate the risk of nonresponse bias and the
effectiveness of nonresponse weights to mitigate such bias. Some examples of this analy-
sis were carried out under the University of Michigan’s Panel Study of Income Dynamics
(PSID) (Fitzgerald, Gottschalk, and Moffitt, 1998) and the United Kingdom’s Under-
standing Society panel (Lynn, Cabrera-Álvarez, and Clarke, 2023). Such explanatory
(rather than predictive) modeling similarly indicates that a core set of individual charac-
teristics can consistently differentiate between responders and nonresponders: Durrant
and Steele (2008) analyze nonresponse in six United Kingdom Government surveys and
report that only selected predictor variables (such as self-employment, household type,
region) exhibit survey-specific effects while many demographic characteristics are impor-
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tant predictors of nonresponse for all six surveys.
This literature review shows that nonresponse history and demographics used in a lo-

gistic regression or tree-based model have often been effective in predicting nonresponse.
Across these studies, AUROC values in the 0.8-0.9 range have been achievable with these
techniques. However, not all implementations were equivalent in that model parameters
varied, and the exact method for deriving each variable differed across studies. This pa-
per aims to apply the same technique to various panels to understand which approaches
are ubiquitously effective.

3.3 Methods

3.3.1 Data

We selected five panel surveys which cover a range of common panel survey designs.
These panels target the general German population but vary widely in other respects.
We have a wide range of maturities, with SOEP being a “traditional” and widely used
panel study commenced in 1984, whereas FREDA is extremely recent, starting in 2021.
The purpose of the surveys varies from FREDA, which is focused on family affairs,
to the GESIS Panel, which is an omnibus survey. MCS is focused on the COVID-19
pandemic. Survey modes have been evolving over the past several decades, with face-to-
face, phone, mail, and online modes all varying in prominence over time. Throughout its
lifetime, SOEP has employed many different survey modes, including face-to-face and
mail, compared to the GESIS Panel and FREDA, which focus on mail and online data
collection. GIP and MCS are entirely online panels. By comparing these surveys, we
evaluate how prediction techniques in one era and with one given study objective can
generalize to another context. In the following sections, we describe each panel in detail
before summarising their similarities and differences in Table 3.1.

The Socio-Economic Panel (SOEP)

The Socio-Economic Panel (SOEP) is a German general-population household survey
(Liebig et al., 2022). SOEP collects data about economic matters, political attitudes,
and psychological factors, among other topics. It has been running annually since 1984.
In this paper, we follow the initial recruitment intake of 15,000 participants, which has
steadily declined to around 2,500 as of 2020 (see Figure (Appendix) 3.5). Over the years,
survey modes have included face-to-face, phone, mail, and online. (German Institute
for Economic Research (DIW Berlin), 2023; Goebel et al., 2019; Siegers, Steinhauer,
and Dührsen, 2021). The initial sampling method selected households by random walks
across geographic regions to provide a representative sample of Germany at the time (i.e.,
pre-reunification). For each household, every resident over the age of 16 was invited to
provide an individual response. Also, a ‘head of household’ provides information about
the whole household. SOEP panelists can exit the survey by explicit request, death, or
moving abroad.
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German Internet Panel (GIP)

The German Internet Panel (GIP) is a general German population survey concerning
politics and economics, among other topics (Blom, Gathmann, and Krieger, 2015; Blom,
Gonzalez Ocanto, et al., 2022). The panel commenced in 2012 and runs waves every
two months. We follow the initial recruitment intake of roughly 1,500 participants (see
Figure (Appendix) 3.5). The survey mode is online only. Initial sampling was based
on geographic stratified clustering, in which regions of roughly equal populations were
selected to be representative of Germany’s distribution of federal states and urbanity.
German residents aged 16 to 75 were eligible to participate. Participants were recruited
by face-to-face interviews, and subsequent waves were conducted online. Households
without sufficient internet or computer access were provided with devices and support.
One issue with GIP data is that the published dataset does not include whether

participants have asked to exit the panel. As a result, we cannot distinguish between
temporary nonresponders and permanent dropouts. In other panels, we can exclude
exited participants and analyze only temporary unit nonresponse. This matter has the
effect of making the apparent GIP active panel size (the number of participants invited
to each wave) stay at roughly 1,500 over time, whereas other panels attrite invitees (see
Figure (Appendix) 3.5).

GESIS Panel

The GESIS Panel is an omnibus survey of the general German population, covering topics
such as politics, time use, and well-being (GESIS, 2023). It commenced in October 2013
and ran in two-monthly waves until February 2021, when the wave frequency became
three-monthly.
We follow the initial recruitment intake, which commenced with roughly 5,000 par-

ticipants and steadily declined to around 2,500 by 2021 (see Figure (Appendix) 3.5).
The survey has two modes: Web (roughly 75%) and mail (Bosnjak et al., 2018; GESIS,
2021; GESIS, 2023). The GESIS Panel’s sampling method randomly selected invitees
from the German population register. The recruitment criteria allowed German resi-
dents between the ages of 18-70 to participate. Recruitment interviews were conducted
face-to-face. Panelists exit the study either by explicit request or by nonresponding to
three consecutive waves.
There is a peculiarity regarding the GESIS Panel’s first two post-recruitment interview

waves (waves 3 and 4). Recruitment took many months, but the Panel managers were
concerned about losing participants if they were not contacted for a long time. Therefore,
only the participants recruited by that time were invited in these early waves. The result
is a substantially smaller sample in those early waves (Bosnjak et al., 2018).

Mannheim Corona Study (MCS)

The Mannheim Corona Study (MCS) was a survey of individuals concerning how COVID-
19 affected the daily lives of the general German population. The panel ran weekly waves
for 16 weeks from 20th March to 10th July 2020. All waves were administered online.
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The same team managed the Mannheim Corona Study as the GIP, and the participants
were a randomly selected subset of GIP participants as of 2020, which was larger than
its initial recruitment size of 1,500 (because of additional intakes in 2014 and 2018).
Therefore, unlike all other surveys in this study, MCS did not start with a typical re-
cruitment survey because the participants had already been recruited (Blom, Cornesse,
et al., 2021). Because the survey only ran for 16 weeks, participants who committed to
the study were invited every week. Cases of requests to exit were minimal, and no data
is available on those requests. Therefore, the apparent sample size of eligible panelists
for MSC, like GIP, stays constant at 4,400 invitees (see Figure (Appendix) 3.5).

The German Family Demography Panel Study (FREDA)

The German Family Demography Panel Study (FREDA) is a panel survey that aims to
study family life and relationships (including singles) in Germany (Bujard et al., 2023).
The waves are annual, consisting of three sub-waves three months apart each year. Start-
ing in 2021, in each subwave, around 38,000 participants were invited to respond. The
modes were online and mail. Initial sampling was random sampling from the population
register. German residents between 18-45 years of age were eligible to participate. As of
this paper, only the first three sub-waves of data have been published (Federal Institute
for Population Research, 2022). Therefore, we can evaluate how predictive techniques
perform when applied to a freshly commenced panel survey. Currently, participants who
completed the first wave are all invited to the second and third wave, so none have yet
exited the panel.

3.3.2 Design Comparison

Table 3.1 summarizes the above panel design aspects. We can see that all panels tar-
get the German population. However, they differ in various aspects: One of the most
substantial differences is the wave frequency, ranging from annual to weekly waves. We
expect that the period between waves would impact the drivers of nonresponse because
the frequency leads to very different commitments of time and discipline. Another im-
portant consideration when comparing panel surveys is the treatment of the recruitment
interviews. Each panel, except for MCS, starts with a recruitment interview, and we
can only access data about those participants who responded because those who did not
participate did not agree to have their data shared. The result is that when predicting
nonresponse in the first post-recruitment wave, the models trained on data from recruit-
ment waves are missing nonresponse history, which we expect to be a very important
predictor. This issue needs to be kept in mind when we review our results.

3.3.3 Modeling Setup

Outcome

The dependent variable that each model aims to predict is each participant’s nonre-
sponse at the next wave in a given panel. We provide the American Association for
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Table 3.1: Comparison of survey designs. F2F: Face-to-Face, HH: Households, I: In-
dividuals.

Characteristic SOEP GIP GESIS Panel MCS FREDA

Started 1984 2012 2013 2020 2021

Modes F2F, Phone,
Post,
Online

Online Online/Post Online Online/Post

Wave Frequency Annual Two
months

Two-three
months

Weekly Three
months

Unit of study HH/I HH/I I I Fam-
ily/singles

Sampling Method Regionally
clustered,
multi-stage
random
samples

Regionally
clustered,
multi-stage
random
samples

Probabilistic
sample of the
German-
speaking
population

Regionally
clustered,
multi-stage
random
samples

Probabilistic
sample of the
German-
resident
population

Recruitment age 16+ 16-75 18-70 16-75 18-49

Recruitment method F2F/Phone F2F F2F F2F Phone/Post

Main Topics Economics,
politics,
psychology

Attitudes,
politics,
economics

Omnibus COVID-19 Family and
relationships

Public Opinion Research (AAPOR) response codes we consider nonresponses in Table
(Appendix) 3.5. Where possible, we aim to follow AAPOR’s definition of nonresponse
‘RR6,’ which includes partial responses, failure to make contact, implicit and explicit
refusal, and the participant’s incapacity or death. However, AAPOR response codes
are only available for the GESIS Panel and FREDA. We attempted to derive similar
response codes for the SOEP, which predates the AAPOR standard and adopted the
system only in later waves. Furthermore, nonresponse in the GIP can only be inferred
based on whether a given participant ID is not present in the wave. MCS records only a
binary ‘participation’ variable, so we cannot infer the specific type of nonresponse. See
Table (Appendix) 3.5 for the data used to derive nonresponse in each panel.
We filter data only to include members of each panel’s first recruitment intake to avoid

any effect of sample refreshment. Finally, each survey wave is given an individual date
to compare panels over time. We date each survey from the start of the data collection
period as many of them do not publish a specific end date of data collection. Figure
(Appendix) 3.6 shows the timeline of nonresponse rates at each wave for each panel we
are analyzing. Nonresponse in GESIS starts high (20-25%) and falls gradually (10%) as
low-propensity participants exit the panel, leaving only “reliable” participants. In GIP
and MCS, participants are never removed from the panel for consecutive nonresponses,
so the subsequent nonresponse rate climbs over time, from 20% to 40% and 18% to 24%,
respectively. SOEP maintains a steady average nonresponse rate between 8-12%, likely
because the managers maintain a target response quota and have a year to meet it.
Nonresponse rates were 41% and 45% across the second and third FREDA waves.
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Predictors

To predict each participant’s propensity of nonresponse in the next wave, we input the
data we have about each participant as of a given wave into an ML algorithm. We
use ‘Temporal Cross-Validation,’ meaning we iterate over waves in which we predict
nonresponse using only data available up until that time (Bergmeir and Beńıtez, 2012;
Kern, Weiß, and Kolb, 2021).
Table 3.2 details the variables we derived from each panel to make predictions. The

predictor variables are selected to cover common types of predictors used in past research
as long as those covariates can be derived from all five panels of our study. Following
previous studies in the literature review, we focus on socio-demographic characteristics
and nonresponse history. To account for the concept of survey fatigue (Lugtig, 2014),
we additionally include a variable for the number of waves each participant has been
invited to thus far. These are variables that all of the panel surveys collect despite
their different topics of focus. For each demographic variable, we also include a binary
variable indicating missingness. Also, the different panels refresh demographic data at
different intervals: GESIS, SOEP, and GIP periodically update demographic data, but
FREDA and MCS have such short running times that these variables are, in practice,
time-invariant in those cases.
Note that we scale (standardize) each continuous variable using only data available

at the time of prediction. This way, our retrospective models are fitted the way they
could have been at the time. Table (Appendix) 3.3 shows the descriptive statistics of
the unscaled predictor variables across all panels.

Prediction algorithms

In this study, we test prominent models representing the main types of classification
algorithms explored in past research.

• Logistic regression. Regression models are often successful when classification
can be made by additively summarising the effects of the covariates. We evaluate
penalized and unpenalized logistic regressions (Le Cessie and Van Houwelingen,
1992; Tibshirani, 1996). Although logistic regression can be specified to account
for feature interactions by deliberately building in interaction terms, we use this
method with only main effects as we use other algorithms that can algorithmically
account for interactions in this study.

• Random forest. Tree-based models are often successful in cases where there are
complex interactions between variables. A random forest is a set (‘ensemble’) of
decision trees tuned to maximize the homogeneity of cases at the endpoint of each
decision path. The final prediction is based on the portion of decision trees that
‘vote’ for each classification (Breiman, 2001; James et al., 2013).

• Gradient Boosted Classifier (GBC). This algorithm is similar to random for-
est, except that trees are built sequentially rather than independently. Compared
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Table 3.2: Predictors derived for each panel

Type Variable Value range Description

Socio-
demographics

Is Married 0, 1 The respondent positively self-identifies
as married.

Age 0 - infinity Derived by the survey date and year of
birth.

Household Size 0 - infinity Count of people residing in the
participant’s residence.

Household Income 0 - infinity Monthly combined income of the
participant’s household in Euros.

Personal Income 0 - infinity Monthly personal income in Euros.
Is Female 0, 1 The participant indicated a ’female’ sex.
Is Unemployed 0, 1 The participant self-identifies as

unemployed. We treat part-time,
full-time, and parental leave as
employment. Unemployment includes
studying, retraining, or being retired.

Response
history

Invited Waves 1 - infinity Count of the number of waves this
respondent had ever been invited to.

Nonresponse This
Wave

0, 1 Indicates if the participant did not
respond in the current wave.

Historic
Nonresponse Rate

0 - 1 The participant’s average nonresponse
rate over all of their invited waves.

to random forests, boosting may achieve better performance when predicting non-
response but needs more careful model tuning because small changes in the en-
semble setup can greatly impact the results (Friedman, 2001; James et al., 2013).

For each algorithm, we repeat the training process with different parameter settings.
This process is a common part of ML modeling, called ‘hyperparameter tuning,’ and
is intended to discover, by experimentation, which parameters (in this context called
‘hyperparameters’ 2) are the best algorithm settings (Feurer and Hutter, 2019). We will
trial parameters as described in Table (Appendix) 3.4. For completeness, we present the
results of all hyperparameter settings.

Model Comparison

We limit the maximum number of preceding waves used in the training set to avoid
long-fitting times and adverse impacts from using training data from too far in the past
to be relevant. Therefore, the maximum number of training waves for all panels is up
to the ten most recent waves for each test wave. For the GESIS Panel, SOEP, and GIP,
we test our models on the second through to the 20th survey wave. This limitation is

2Hyperparameters are constant values in a machine learning algorithm that are set before training.
Examples include the penalty rate in regularized logistic regression or the choice of a homogeneity
measure in a classification tree. Tuning hyperparameters involves repeatedly training the model
with different hyperparameter values and comparing outcomes using a specific performance metric
to select the best settings.
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also to avoid long computation times and also we are concerned with nonresponse in the
earliest stages of a panel. We test our models for MCS on the second through to the
sixteenth wave, which is all available data. For FREDA, we test on the second wave, as
only three waves are currently available. We predict nonresponse in each of the outlined
waves and calculate the AUROC, recall, and precision scores. Recall is the proportion
of positive cases that the model correctly identifies3. Precision is the proportion of
predicted positive cases that are true positives4. AUROC is a value between 0 and 1,
indicating the trade-offs between false positives and false negatives. An AUROC of 0.5
represents the worst possible binary classifier, and 1.0 is the best score.
Further, we compare models through Permutation Feature Importance (PFI)5. PFI

measures how much a given predictor contributes to a model’s predictive performance
(Altmann et al., 2010; Oh, 2022; Saarela and Jauhiainen, 2021). Feature importance
is calculated by taking a trained model and then scrambling each predictor’s values
by randomly shuffling values in that column for each predictor in the test data. That
test data, with a single scrambled predictor, is inputted into the trained model, and
the AUROC score of those predictions is calculated. We repeat this process ten times
for each predictor with a different random shuffle. Each predictor’s PFI is the average
loss in AUROC compared to the original performance in the test dataset. Because
the shuffling neutralized the predictive power of the scrambled predictor, the loss in
AUROC indicates how much predictive performance is contributed by that predictor.
We calculate the PFI for each wave and report the average for each variable across
each panel. However, this method is vulnerable to covariation. That means that when
two predictors are correlated, withholding one predictor will not substantially reduce
AUROC because the same information is still available to the model through the other
covariate. This issue means that correlated predictor pairs will have their relative PFI
understated. When we examine PFI, we must remember that selected pairs of variables
may have their importances understated. Missing value flags, for instance, covary with
nonresponse.

3.3.4 Cross-Training

In this paper, we train models on one panel and then use them to make nonresponse
predictions in another panel. To make the most use of our data, we conduct cross-
training, in which the training panel (i.e., the panel survey used for model training)
both predates and post-dates the test panel. For example, we will show how SOEP data

3I.e., of those who nonrespond in the next wave, recall is the proportion that was correctly predicted.
4I.e., of those who were predicted to nonrespond in the next wave, precision is the proportion that did
so.

5To measure PFI, we take a fitted machine learning model and input a set of cases from the test set to
measure the model’s baseline AUROC scores. Next, we repeatedly input the same cases but shuffle
the values of a given predictor column, effectively removing that feature’s predictive power, and
measure the average AUROC scores with these ”scrambled” test sets. The PFI is then calculated as
the difference between the baseline AUROC score and the average AUROC across these repetitions.
A higher PFI value indicates a greater drop in AUROC score when the given predictor is withheld
from the model.
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from 1985 can predict nonresponse in GIP in 2012 but also apply a model trained on
GIP’s 2012 data to predict nonresponse in SOEP in 1985. We provide two different
methods for deriving the training data, and evaluate both. These two methods are as
follows. Figure 3.1 provides an illustrated example of each method.

Latest Data Available

In this method, for each wave in the test panel (i.e., the panel study used for model
evaluation), we train a model on a fixed number of waves (in our case, five) from the
training panel, which precede the start date of that target wave. For example, the first
wave of the GESIS Panel was administered in 2013. We can train a model on five SOEP
waves from 2007 to 2012 and then use that model to predict nonresponse in the first
GESIS Panel wave in 2013. This method aims to train a model using waves that are
close to the target wave in time because we expect the contexts to be most similar when
they are close together in time.
Note that we can only report results with this method for cases where the training

waves predate the target wave. Therefore, we cannot, for example, predict nonresponse
in the starting waves of SOEP with GESIS Panel data. Instead, we predict later SOEP
waves once data from other panels becomes available. Also, we do not cross-train between
GIP and MCS because they are drawn from a common set of individuals.

Equivalent In Lifecycle

For each wave we predict nonresponse in the target panel, we train a model on all
waves in the training panel available at the equivalent point in the survey’s lifetime.
For example, the fourth GESIS Panel survey wave takes place 12 months after the first
survey wave. We thus can train a model on SOEP data using waves that took place up
to 12 months from the start of SOEP (which would be only the first SOEP wave because
it is an annual survey). Conversely, the third SOEP survey wave takes place 24 months
after the start of SOEP, and we can predict nonresponse in this wave using a model
trained on the 12 GESIS Panel waves that took place within 24 months of the start of
the GESIS Panel. This cross-training approach aims to compare equivalent periods in
the survey’s lifetime by, for example, applying a model trained on the early period of
one panel to the equivalent period of the other panel.

3.4 Results

3.4.1 Model Comparison

We commence our results analysis by establishing a baseline of prediction models’ per-
formances. Figure 3.2 shows the performance results from training each model type with
data of the same panel study, using information available as of each given target wave
starting from the second wave of each survey. In the early waves, AUROC is rather low
(<0.8) across all panels except MCS, the second wave of the SOEP (in which there was
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Figure 3.1: Examples of the two methods for cross-training models. Here, we have
a training and a test panel, each with different lengths of time between waves. In the
’latest data available’ approach, we can train a model using only data available by the
start of the test wave. Because wave four of our training panel was still in its fieldwork
period when the test wave started, we can only use data from up to wave three of the
training panel. In the ‘equivalent in lifecycle’ approach, we calculate that our test wave
commenced 24 months into the panel’s lifetime. Therefore, we train a model on any
data that was available in the training panel within 24 months of its respective lifecycle.
Because wave three of the training panel was still in fieldwork as of 24 months, we use
up to wave two for the training data.
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substantial nonresponse, making it easy to anticipate correctly), and the random forest
models in the GESIS Panel. This limited early performance may be because insufficient
training data had accumulated at that point to build effective models.
In addition, the recruitment waves may be detrimental as training data. Each panel,

except for MCS, starts with a recruitment interview, and the GESIS Panel commences
with a two-stage recruitment (the same participants are interviewed across two recruit-
ment waves). Predicting nonresponse following a recruitment interview is a fundamen-
tally different process than predicting nonresponse from a regular panel wave, and mod-
els trained on the former might not reliably predict the latter. However, once the re-
cruitment waves are over and more training data accumulates, we can see substantial
improvement in AUROC across all panels.
Comparing performance across panels (Figure 3.2), there is a trend that shows higher

prediction performance for panel studies with more frequent panel waves. SOEP, an
annual survey, has an average AUROC of just below 0.8, while GIP and the GESIS
Panel, both two-monthly surveys in this period, are around 0.9 and 0.8, respectively.
MCS, which features weekly surveys, exceeds 0.9. Predicting nonresponse in FREDA,
which, as of writing, has only one recruitment wave and one regular wave for which we
know the dependent variable values, performs poorly at a high score of 0.6.
Each type of model performs equally well. Aside from the results for MCS, however,

tree-based models perform better than logistic regression in the earliest one or two waves
of a panel study. This outcome indicates that flexible models have a slight advantage
in early waves, but in later waves and established panels, main effects models may be
sufficient to achieve good performance. Equivalent figures providing recall and precision
scores are provided in Figures (Appendix) 3.7 and (Appendix) 3.8.
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Figure 3.2: Comparing model performance across panels where each model is trained
using up to 10 preceding waves of the same panel. Auras around the lines are the range
of scores across different hyperparameter values. However, models with different hyper-
parameter settings have such close values that these auras are hardly visible. In the
FREDA survey, we can only predict nonresponse in wave three based on the data from
wave two, with a model trained on wave one. In that wave, all models achieved roughly
0.6 AUROC.
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Figure 3.3: Heatmap comparison of permutation feature importances across panels.



Chapter 3. Pre-Trained Nonresponse Prediction in Panel Surveys with Machine Learning103

Figure 3.3 shows which features were most predictive across different panels. As sur-
vey wave frequency increases (GIP, GESIS Panel, MCS), historic nonresponse becomes
more important for all models. As survey waves become less frequent (SOEP, FREDA),
demographic features become relatively more important. However, nonresponse history
remains important across all models and panels, except for FREDA (because data on
nonresponders in the first recruitment interview is omitted, meaning there is no nonre-
sponse history to exploit in the first training wave).
Survey mode has little impact. GESIS Panel is a mixed mode panel study, while GIP

and MCS are both online-only, yet they all have similar feature importance profiles. Age
is a relevant predictor across all panels, although often more important to random forest
models, indicating that age may have an interactive or non-linear effect. This outcome
corresponds to other research, which shows that very young and very old participants
are particularly at-risk groups for nonresponse (Lipps, 2009).
From this analysis, we can address our second research question. Nonresponse history

and demographics are ubiquitously effective across all of the panels analyzed in this
paper. AUROC scores after the first few waves of data had accumulated converged
across all panels at around 0.75-0.85. Tree-based models are usually better than logistic
regression, but logistic regression is often almost as good and sometimes slightly better.

3.4.2 Model Cross-Training

Figure 3.4 shows the result of training nonresponse prediction models on each of our
five panel studies and applying them to the GESIS Panel. The results of all other cross-
training exercises are detailed in the Appendix section 3.6.3. Except for MCS as the
target panel, all cross-trained models start with low AUROC when applied to predict
next-wave nonresponse in the respective first wave of a different panel, with a high of
0.65 when nonresponse in SOEP is predicted with a model trained on GESIS Panel data
(Figure (Appendix) 3.10). However, when predicting next-wave nonresponse based on
data from the second wave, for all models except those trained on FREDA data, the
performance of the cross-trained models is often the same or better than the baseline
models’ performances (which use training data from the same panel). The results show
that pre-trained models can achieve AUROC values over 0.75. This performance is seen
when nonresponse in the GIP is predicted with models trained on SOEP or GESIS Panel
data (Figure (Appendix) 3.11); when models predict nonresponse in the GESIS Panel
trained on SOEP, GIP or MCS (Figure 3.4); when nonresponse in the MCS is predicted
based on models trained on SOEP or GESIS Panel data (Figure (Appendix) 3.12); or
when nonresponse in FREDA is predicted by models trained on any other panel (Table
(Appendix) 3.7 and (Appendix) 3.8).
Critically, when cross-trained models predict next-wave nonresponse based on the sec-

ond wave of a target panel, using the ‘Latest Data Available’ approach, AUROC was
always the same or higher than the baseline approach. Also, although the baseline ap-
proach could have been conducted in practice, it would have required training the model
as soon as the data collection period ended for a given wave and applied immediately to
the next wave, which is potentially a short time window. The pre-trained model could
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have been ready beforehand, and predictions about participants could have been made
as their responses became available. Using a pre-trained model could be a valuable in-
novation for newly commencing panels. The strong performance of pre-trained models
is likely because they benefit from more training data than the baseline approach.
However, not all cross-training applications are successful. Firstly, using training

data that was available as close as possible to the date of the test wave (‘Latest Data
Available’ method) was much more successful than using the ‘Equivalent in Lifecycle’
method. This result implies a temporal effect, such that training data is more effective
when it is closer by date to the target wave, even when the training data is from a
different panel. Models trained on FREDA data often performed poorly, likely because
of limited training data. Pre-trained tree-based models outperformed logistic regression
models on average across all panels, indicating that flexible models have advantages over
main effect models in this context.
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Figure 3.4: Models trained on other surveys but applied to the GESIS Panel. The
‘Baseline’ subplot shows performance results when models are trained using training data
of the same panel as the target wave. Auras around the lines indicate the range of
performance values across different hyperparameter settings.

3.5 Discussion

This paper presents the first demonstration of ‘cross-training’ for nonresponse prediction
in panel surveys. We show that predictors of nonresponse are so consistently effective
across diverse contexts that it is possible to predict nonresponse effectively in the second
wave of a panel study using models trained with data from a different panel. This finding
is important because a pre-trained model would be available to make predictions sooner
for waves one and two than a panel-specific model, which can only be developed once
the required training data is available. This timeliness can be critical in the early waves
of a panel study, where attrition is often highest.

However, not all applications of cross-training were successful, with some cases per-
forming worse than baseline models and exhibiting low-performance scores. Predicting
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the very first wave with a pre-trained the model was generally unsuccessful. However, in
the second wave, nonresponse can be predicted accurately, with AUROC scores of 0.75
to 0.85, and pre-training can outperform baseline models as they ‘borrow’ training data
from multiple waves of another panel study.
The main limitation of this research is the number of panels we could compare. A

considerable effort is required to process the raw survey data of multiple panels into a
common set of features. Including more panel surveys would risk certain surveys not
collecting all the same features. Another limitation of this study is that each panel we
compare aims to study the general German population. This limitation means we could
not compare the effect of different population frames.
The main contribution of this study has been to show that the processes driving panel

nonresponse can be very similar between panels despite different survey designs. In our
comparisons, only the frequency of survey waves stood out as a factor that influences
nonresponse predictability, such that more frequent panels are more predictable. Overall,
our findings imply that modeling techniques proven effective in one panel should interest
managers of similar panels when deciding their modeling approach. Also, it is possible
to pre-train models on one survey and apply them to another with high predictive
accuracy. This novel technique could allow survey managers to target and intervene
with low-propensity participants in the earliest, most critical waves of a panel study,
thereby reducing attrition.
How should panel managers commencing a new panel make use of pre-trained non-

response models? The suggested method, based on this paper’s results, is as follows.
Firstly, the best type of panel to use as pre-training data is one that targets the same
population of interest. It is also beneficial to use training data that was collected close in
time to the target waves. In such cases, fit the model to predict next-wave nonresponse
using up to five waves that commenced closest to the start date of the new panel. Dur-
ing the first field period of the new panel, the pre-trained model will not make accurate
predictions about who will nonrespond in wave two, so attempting to do this is not rec-
ommended. Instead, during the second field period, as responses come in, the model can
be used to estimate nonresponse propensity for each participant based on their behavior
in the first and second waves.

3.6 Appendices

3.6.1 Software and replication

Code for replication, including instructions on how to import the panel data and run the
code, is available at the following URL and on the website of Survey Research Methods.
Instructions for accessing the necessary data is detailed in the ReadMe.md file in the
replication documents.

https://osf.io/n4y6w/?view_only=18eb6d46900e4c7d84175042072ff1eb

The data used in this study for each panel is referenced in the bibliography and cited as

https://osf.io/n4y6w/?view_only=18eb6d46900e4c7d84175042072ff1eb
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follows: The Socio-Economic Panel (SOEP) (Liebig et al., 2022), German Internet Panel
(GIP) (Blom, Gonzalez Ocanto, et al., 2022), GESIS Panel (GESIS, 2023), Mannheim
Corona Study (MCS) (Blom, Cornesse, et al., 2021), German Family Demography Panel
Study (FREDA) (Bujard et al., 2023).

3.6.2 Supplementary items

This section provides additional details about this study. We provide descriptive statis-
tics about each of the panel survey datasets (Figure (Appendix) 3.5, Figure (Appendix)
3.6, Table (Appendix) 3.3); details about the modeling (Table (Appendix) 3.4), details
about our definition of nonresponse (Table (Appendix) 3.5), a data quality checklist
(Table (Appendix) 3.6); and further results (Figure (Appendix) 3.7, Figure (Appendix)
3.8, Figure (Appendix) 3.9, Figure (Appendix) 3.10, Figure (Appendix) 3.11, Figure
(Appendix) 3.12, Table (Appendix) 3.7, Table (Appendix) 3.8).
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Figure (Appendix) 3.5: Timeline of the number of invited participants for each panel.
Note that we include only those participants who were invited as of the first wave, so
these values do not include any participants recruited since then. FREDA had only
accumulated three waves by the time of this study, and 38,056 individuals were invited
to each wave.



Chapter 3. Pre-Trained Nonresponse Prediction in Panel Surveys with Machine Learning109

Figure (Appendix) 3.6: Timelines of each of the panels. FREDA is not included
because only the first two waves are included in our analysis. The first wave has a
nonresponse rate of zero because no nonrespondent data is retained. Nonresponse rates
were 41% and 45% across the second and third FREDA waves.
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Table (Appendix) 3.3: Distributions of predictive features across each panel

Variable Value SOEP GIP GESIS MCS FREDA

Age mean 46.380 52.058 49.416 51.661 33.418
Age std 18.409 15.605 14.632 15.862 10.161
Age min 0.000 0.000 0.000 0.000 0.000
Age max 102.000 87.000 78.000 85.000 68.000
Household Size mean 2.957 2.530 2.622 2.354 2.897
Household Size std 1.454 1.140 1.152 1.111 1.438
Household Size min 1.000 0.000 0.000 0.000 0.000
Household Size max 17.000 6.000 5.000 6.000 20.000
Household Income mean 1,224.505 2,277.657 1,989.130 2,609.574 999.193
Household Income std 1,658.368 1,784.550 1,624.572 2,043.399 2,765.467
Household Income min 0.000 0.000 0.000 0.000 0.000
Household Income max 29,000.000 7,500.000 6,000.000 7,500.000 250,000.000
Personal Income mean 1,396.277 1,468.971 1,498.441 1,752.576 0.000
Personal Income std 1,491.114 1,309.104 1,149.260 1,391.522 0.000
Personal Income min 0.000 0.000 0.000 0.000 0.000
Personal Income max 51,128.000 7,500.000 5,000.000 7,500.000 0.000
Invited Waves mean 11.984 29.000 20.455 8.000 1.500
Invited Waves std 8.984 16.452 13.529 4.321 0.500
Invited Waves min 1.000 1.000 1.000 1.000 1.000
Invited Waves max 36.000 57.000 48.000 15.000 2.000
Nonresponse This Wave mean 0.084 0.438 0.104 0.218 0.206
Historic Nonresponse Rate mean 0.025 0.330 0.059 0.207 0.103
Historic Nonresponse Rate std 0.081 0.363 0.122 0.315 0.202
Historic Nonresponse Rate min 0.000 0.000 0.000 0.000 0.000
Historic Nonresponse Rate max 0.857 0.982 0.857 1.000 0.500
Is Married mean 0.581 0.101 0.618 0.099 0.124
Missing Is Married mean 0.000 0.005 0.000 0.002 0.000
Sex Female mean 0.511 0.498 0.518 0.486 0.431
Missing Sex Female mean 0.000 0.000 0.000 0.002 0.000
Is Unemployed mean 0.395 0.355 0.305 0.333 0.017
Missing Is Unemployed mean 0.000 0.006 0.001 0.017 0.000
Missing Age mean 0.000 0.000 0.000 0.002 0.022
Missing Household Size mean 0.000 0.007 0.000 0.028 0.020
Missing Household Income mean 0.516 0.227 0.066 0.247 0.752
Missing Personal Income mean 0.232 0.092 0.000 0.067 0.000
Missing Employment Status mean 0.000 0.000 0.000 0.016 0.012
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Table (Appendix) 3.4: Parameters we hypertune in the fitting process. ”N settings”
refers to the number of different settings for each hyperparameter. LBFGS: Limited-
memory Broyden–Fletcher–Goldfarb–Shanno.

Model Type Hyperparameter Values N settings

Logistic Regression

Penalty L1, L2 Regularization,
No Penalty

5
Optimization solver Liblinear for Penalized,

LBFGS for Unpenalized
Fitting stopping tolerance 0.0001
C (applies to penalized) 0.5, 1

Random Forest

Number of trees in the forest 50, 100, 500

3
Function to measure split
quality

Gini impurity

Minimum samples for a split 2
Minimum samples for a leaf 1
Number of features considered
at each split

Square root of all features

Gradient Boosted Classifier

Number of trees in the forest 50, 100, 500

3
Function to measure split
quality

Gini impurity

Minimum samples for a split 2
Minimum samples for a leaf 1
Number of features considered
at each split

Square root of all features
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Table (Appendix) 3.5: For each panel, these are the types of responses or other in-
formation used to define a given case as a nonresponse.

Panel Nonresponse if coded as

SOEP Currently not available
Cannot be found
Explicit Refusal
Currently not available
Cannot be found
Deceased

GIP Implied when no response data for that participant is published

GESIS Panel Nothing ever returned
Explicit refusal
Post: Attempted - Addressee not known at place of address
Break-off: questionnaire too incomplete to process / break-off
or partial with insufficient information
Explicit refusal with incentive
Known respondent-level refusal
Logged on to survey did not complete any items
Blank questionnaire mailed back implicit refusal
Postal box full
Implicit refusal
Email Bouncer: Mailbox unknown
Other person refusal
Email Bouncer: Postbox full
Death (including Post: Deceased)
Email Bouncer: Delivery problem
Physically or mentally unable/incompetent
Post: Moved left no address
Blank questionnaire with incentive returned
Respondent language problem
Explicit refusal no incentive
Post: Undeliverable as addressed
Post: No Mail Receptacle
Refusal
Blank questionnaire with no incentive returned
Returned from an unsampled person
Invitation returned undelivered (Email Bouncer)

MCS Binary response/nonresponse variable

FREDA No response
Moved unknown
Refused
Not surveyable/deceased/permanently ill/not surveyable during
field time
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Table (Appendix) 3.6: PRICSSA Checklist (Seidenberg et al. 2023).
PRICSSA
item

Description Response

1.1 Data col-
lection dates

Describe the survey’s data collection dates (e.g., range)
to provide historical context that could affect survey re-
sponses and nonresponse.

See Figure (Ap-
pendix) 3.5 and
Figure (Appendix)
3.6.

1.2 Data
collection
mode(s)

Describe the survey’s data collection mode(s). Data col-
lection mode can affect survey responses (e.g., to sen-
sitive questions), including nonresponse, and a survey’s
data collection mode may change over time (e.g., during
the COVID-19 pandemic).

See Section 3.3.1.

1.3 Target
population

State the target population the survey was designed to
represent and describe all weighted estimates with re-
spect to this target population.

See Table 3.1 and
Section 3.3.1. We
use only unweighted
data.

1.4 Sample
design

Describe the survey’s sample design, including informa-
tion about stratification, cluster sampling, and unequal
probabilities of selection.

See Table 3.1 and
Section 3.3.1.

1.5 Survey re-
sponse rate(s)

State the survey’s response rate and how it was calcu-
lated.

See Figure (Ap-
pendix) 3.6 and
Table (Appendix)
3.5.

2.1 Missing-
ness rates

Report rates of missingness for variables of interest and
models, and describe any methods (if any) for dealing
with missing data (e.g., multiple imputation).

See Table (Ap-
pendix) 3.3.

2.2 Observa-
tion deletion

State whether any observations were deleted from the
dataset. If observations were deleted, provide a justifi-
cation. Note: It is best practice to avoid deleting cases
and use available subpopulation analysis commands no
matter what variance estimation method is used.

We included only
cases from the first
recruitment wave to
avoid any impact on
model results caused
by the introduction
of fresh participants
to the training data.

2.3 Sample
sizes

Include unweighted sample sizes for all weighted esti-
mates.

See Figure (Ap-
pendix) 3.5.

2.4 Confi-
dence inter-
vals/standard
errors

Include confidence intervals or standard errors when re-
porting all estimates to inform the reliability/precision
of each estimate.

Significance tests are
not applicable to our
models, but instead,
we provide predictive
performance metrics
(See Section 3.4).

2.5 Weighting State which analyses were weighted and specify which
weight variables were used in analysis.

Not applicable.

2.6 Variance
estimation

Describe the variance estimation method used in
the analysis and specify which design variables (e.g.,
PSU/stratum, replicate weights) were used.

Not applicable.

2.7 Subpopu-
lation analysis

Describe the procedures used for conducting subpopu-
lation analyses (e.g., Stata’s “subpop” command, SAS’s
“domain” command).

Not applicable.

2.8 Suppres-
sion rules

State whether or not a suppression rule was followed (e.g.,
minimum sample size or relative standard error).

Not applicable.
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2.9 Software
and code

Report which statistical software was used, comprehen-
sively describe data management and analysis in the
manuscript, and provide all statistical software code.

See Section 3.6.1.

2.10 Singleton
problem (as
needed)

Taylor Series Linearization requires at least two PSUs
per stratum for variance estimation. Sometimes an anal-
ysis is being performed and there is only a single PSU in
a stratum. There are several possible fixes to this prob-
lem, which should be detailed if the singleton problem is
encountered.

Not applicable.

2.11 Pub-
lic/restricted
data (as
needed)

If applicable, state whether the public use or restricted
version of the dataset was analyzed.

See Section 3.6.1.

2.12 Embed-
ded exper-
iments (as
needed)

If applicable, provide information about split sample em-
bedded experiments (e.g., mode of data collection or
varying participant incentives) and detail whether exper-
imental factors were accounted for in the analyses.

Not applicable.
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3.6.3 Additional Results

Figure (Appendix) 3.7: Model performance over time, but with Recall instead of
AUROC.
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Figure (Appendix) 3.8: Model performance over time, but with Precision instead of
AUROC.

Figure (Appendix) 3.9: Performance metrics for the second wave of FREDA for
which we can make predictions with a model trained on the first FEDA wave.
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Figure (Appendix) 3.10: Models trained on other surveys but applied to the SOEP
Panel. The ‘Baseline’ subplot shows performance results when models are trained using
training data of the same panel as the target wave. Auras around the lines indicate the
range of performance values across different hyperparameter settings.
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Figure (Appendix) 3.11: Models trained on other surveys but applied to the GIP
Panel. The ‘Baseline’ subplot shows performance results when models are trained using
training data of the same panel as the target wave. Auras around the lines indicate the
range of performance values across different hyperparameter settings.
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Figure (Appendix) 3.12: Models trained on other surveys but applied to the MCS.
The ‘Baseline’ subplot shows performance results when models are trained using training
data of the same panel as the target wave. Auras around the lines indicate the range of
performance values across different hyperparameter settings.
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Table (Appendix) 3.7: Models trained on other surveys but applied to FREDA Panel.
Part one: Latest Data Available method.

Cross Mode Test Wave Model Class Train Data AUROC

Baseline 7/07/2021 Gradient Boosting Classifier - 0.60
Logistic Regression Penalised - 0.59
Logistic Regression Unpenalised - 0.59
Random Forest Classifier - 0.59

Equivalent In Lifecycle 7/04/2021 Gradient Boosting Classifier GESIS Panel 0.51
GIP 0.49
MCS 0.50
SOEP 0.53

Logistic Regression Penalized GESIS Panel 0.53
GIP 0.52
MCS 0.49
SOEP 0.51

Logistic Regression Unpenalised GESIS Panel 0.49
GIP 0.52
MCS 0.50
SOEP 0.51

Random Forest Classifier GESIS Panel 0.51
GIP 0.51
MCS 0.51
SOEP 0.54

7/07/2021 Gradient Boosting Classifier GESIS Panel 0.87
GIP 0.80
MCS 0.86
SOEP 0.74

Logistic Regression Penalized GESIS Panel 0.88
GIP 0.88
MCS 0.87
SOEP 0.57

Logistic Regression Unpenalised GESIS Panel 0.88
GIP 0.88
MCS 0.87
SOEP 0.53

Random Forest Classifier GESIS Panel 0.87
GIP 0.86
MCS 0.86
SOEP 0.75
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Table (Appendix) 3.8: Models trained on other surveys but applied to FREDA Panel.
Part two: Equivalent In Lifecycle.

Cross Mode Test Wave Model Class Train Data AUROC

Latest Data Available 7/04/2021 Gradient Boosting Classifier GESIS Panel 0.51
GIP 0.51
MCS 0.49
SOEP 0.49

Logistic Regression Penalized GESIS Panel 0.49
GIP 0.51
MCS 0.48
SOEP 0.51

Logistic Regression Unpenalised GESIS Panel 0.49
GIP 0.51
MCS 0.49
SOEP 0.51

Random Forest Classifier GESIS Panel 0.51
GIP 0.53
MCS 0.53
SOEP 0.50

7/07/2021 Gradient Boosting Classifier GESIS Panel 0.87
GIP 0.87
MCS 0.86
SOEP 0.87

Logistic Regression Penalized GESIS Panel 0.86
GIP 0.88
MCS 0.87
SOEP 0.87

Logistic Regression Unpenalised GESIS Panel 0.86
GIP 0.87
MCS 0.87
SOEP 0.87

Random Forest Classifier GESIS Panel 0.87
GIP 0.87
MCS 0.86
SOEP 0.87
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für Nationalökonomie und Statistik 239.2, pp. 345–360.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Sta-
tistical Learning. Springer Series in Statistics. Springer, New York, NY.

Hill, Craig A. et al., eds. (2020). Big Data Meets Survey Science: A Collection of Inno-
vative Methods. 1st ed. Wiley, New Jersey.

Jacobsen, Erin et al. (2021). “Predictors of attrition in a longitudinal population-based
study of aging”. In: International Psychogeriatrics 33.8. Publisher: Cambridge Uni-
versity Press, pp. 767–778.

James, Gareth et al. (2013). An Introduction to Statistical Learning. Vol. 103. Springer
Texts in Statistics. Springer, New York.

Jankowsky, Kristin, Diana Steger, and Ulrich Schroeders (2022). Predicting Lifetime
Suicide Attempts in a Community Sample of Adolescents Using Machine Learning
Algorithms. 2022.

JSSAM (2022). Special Virtual Issue on Nonresponse Rates and Nonresponse Adjust-
ments url: https://academic.oup.com/jssam/pages/special-virtual-issue-
on-nonresponse-rates-and-nonresponse-adjustments.

Kern, Christoph, Thomas Klausch, and Frauke Kreuter (2019). “Tree-based Machine
Learning Methods for Survey Research”. In: Survey research methods 13.1, pp. 73–
93.

Kern, Christoph, Bernd Weiß, and Jan-Philipp Kolb (2021). “Predicting Nonresponse in
Future Waves of a Probability-Based Mixed-Mode Panel with Machine Learning*”.
In: Journal of Survey Statistics and Methodology 11.1, pp. 100–123.

Kocar, Sebastian and Nicholas Biddle (2022). “The power of online panel paradata
to predict unit nonresponse and voluntary attrition in a longitudinal design”. In:
Quality & Quantity.
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4 Prediction-Based Adaptive Designs for
Reducing Attrition Rates and Bias in
Panel Surveys

Abstract

Machine learning-based nonresponse prediction in panel surveys enables targeted pre-
emptive interventions. However, the optimal use of ML predictions in Adaptive Survey
Design (ASD) remains uncertain. Prior research relies on assumption-heavy simulations
or experimental ASDs with limited generalizability. This paper proposes a method that
integrates field experiment results on incentives with ML-based propensity models to
ex-post simulate ASD strategies with minimal assumptions. Using German panel data,
we show that targeting the 15% of lowest-propensity panelists with cash incentives or
a survey module on their preferred topic reduces nonresponse rates by 1-2 percentage
points. Findings on nonresponse bias are mixed, with some variables showing reduced
bias while others remain unchanged or worsen. We present this method as a framework
for panel managers to test the expected outcomes of many ASD options simultaneously
with minimal assumptions. The framework helps select the criteria for targeting partic-
ipants and the change to the survey protocol.

4.1 Introduction

Nonresponse in panel surveys limits the potential of longitudinal analysis and can bias
substantive insights (Groves, 2006). Survey managers can address nonresponse either ex-
post, by applying longitudinal survey weights, or ex-ante, by encouraging low-propensity
participants to respond. Here, we focus on the latter approach. The first step is iden-
tifying panelists likely to nonrespond. Methodological research has demonstrated the
potential of machine learning (ML) models to predict ”wave nonresponse,” which is
when an active panelist is invited to a survey wave but does not participate (Kern,
Weiß, and Kolb, 2021; Koch and Blohm, 2016; Bach, Eckman, and Daikeler, 2020; Mul-
der and Kieruj, 2018; Zinn and Gnambs, 2022; Trappmann, Gramlich, and Mosthaf,
2015; Felderer, Kueck, and Spindler, 2023). Using these predictions, participants at
risk of nonresponse can be identified and, as a second step, targeted by adaptive sur-
vey designs (ASDs) that adjust survey protocols across participant subgroups to reduce
their nonresponse risk (Wagner, 2008; Schouten, Peytchev, and Wagner, 2017). While
combining flexible ML models with ASDs is conceptually promising, critical questions
remain regarding the practical utility of ML predictions in targeting interventions to
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reduce panel nonresponse and bias.
The interplay between prediction quality and an intervention’s treatment effects is

critical to the performance of prediction-based ASDs. Predicted response propensities
estimate each participant’s likelihood of responding, but these are imperfect—some pre-
dicted nonrespondents will respond, and some predicted to respond will not. To build
effective prediction-based ASDs, we are not interested in the model’s accuracy per se,
but in how the resulting predictions can help to select targets for treatment protocols
that lead to reduced nonresponse rates and bias. It is thus crucial to understand whether
certain interventions are more or less effective for (predicted) low-propensity participants
compared to the average participant. If so, greater reductions in nonresponse bias may
be achieved by targeting the most at-risk participants with an intervention that is par-
ticularly effective for them. Alternatively, it may be preferable to target moderately
at-risk participants, assuming that certain interventions could be more effective in that
subgroup and yield higher retention rates. In order to optimally combine nonresponse
predictions with potential interventions, the expected outcomes of these decisions need
to be assessed in advance.
We present a framework for survey researchers seeking to evaluate their options for

prediction-based adaptive survey designs. Specifically, we show how to integrate re-
sults from a survey experiment with an ML-based propensity model to conduct a series
of ex-post simulations, assessing how predicted response propensities could have been
used to target at-risk participants with different interventions. We then systematically
quantify the impact on wave nonresponse rates and bias across a diverse set of survey
variables. This framework is applicable to any panel study and enables evaluating mul-
tiple ASD options simultaneously under realistic conditions, rather than testing a single
intervention at a time.
We advance prior research by (i) demonstrating a principled approach to designing

prediction-based ASDs, (ii) showing how treatment effects can vary across propensity
groups, and (iii) showcasing the effectiveness of allocating treatments based on ML
predictions using German panel data. To that end, we examine a set of interventions
that are widely replicable in panel surveys: varying cash incentives, survey length, and
survey content. By studying the optimal use of predictions for treatment allocation and
selection, we shed light on the “missing link” in developing effective prediction-based
ASDs, i.e. the combination of predictions and treatment decisions.
Our paper is structured as follows. First, we evaluate the state of the research and

present the research questions we aim to address (see Background). Second, we introduce
data and methods that answer these research questions (see Methods). Third, we present
the results (see Results) and end with a discussion on how survey research and practice
can build on these findings (see Discussion).

4.1.1 Background

Panel surveys offer valuable data to study changes in attitudes and behavior within indi-
viduals over time and thus can help uncover causal effects (Allison, 2009; Andreß, Golsch,
and Schmidt, 2013; Lynn, 2009). In contrast to cross-sectional surveys, panel surveys
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have to represent the population of interest over several waves to ensure the validity of
results based on the data. Panel surveys, however, face challenges in selective wave non-
response of panel members, which may result in biased estimates if response propensities
correlate with outcomes of interest (Groves, 2006). Considering these different response
propensities, ASDs adjust survey protocols between different groups of respondents to
reduce the nonresponse bias of a panel (Wagner, 2008; Schouten, Peytchev, and Wagner,
2017). In contrast to traditional survey designs that provide the same survey protocol
for each respondent, participants with varying risks of nonresponse receive different sur-
vey protocols in ASD to align their response probabilities (Gummer, 2020). A successful
ASD has two requirements: (i) correctly predicting those respondents who are at risk
of nonresponse and (ii) effectively allocating a treatment to these respondents that im-
proves their response probabilities.

i. Nonresponse Prediction
Survey practitioners have long employed statistical modeling to estimate each partic-

ipant’s probability of responding to a given survey wave (e.g., Bethlehem, 1988; Trapp-
mann, Gramlich, and Mosthaf, 2015; Roßmann and Gummer, 2016; Kocar and Biddle,
2022). Recent research has adopted ML techniques to improve predictive accuracy.
Numerous studies have successfully employed ML-based nonresponse prediction (Bach,
Eckman, and Daikeler, 2020; Collins and Kern, 2024; Kern, Weiß, and Kolb, 2021; Mul-
der and Kieruj, 2018; Zinn and Gnambs, 2022). For example, Kern, Weiß, and Kolb
(2021) found that a random forest model would predict over half of a given wave’s non-
respondents correctly while yielding only a 20% false positive rate in the GESIS Panel
(which is also used in this study). These authors reported that ML approaches out-
perform traditional and frequently used methods such as logistic regression. While no
prediction model is completely accurate, the degree of predictive performance of the
ML models shows that their predicted response propensities have a degree of validity in
estimating each participant’s true probability to (non)respond. They thus provide value
for targeting adaptive survey designs.

ii. Treatment Allocation
Despite their conceptual appeal, previous research only covers a limited range of pos-

sible Adaptive Survey Design (ASD) implementations. Earlier studies on implementing
ASD are strongly based on simulation studies (Zhang and Wagner, 2024; Gummer, 2020;
Watson and Cernat, 2023; Schouten, Cobben, et al., 2016). For example, Watson and
Cernat (2023) fitted a logit model to estimate both nonresponse propensity and the
change in that propensity after an in-field follow-up using data from an Australian and
United Kingdom-based panel survey. They then used these models to estimate the effect
of different follow-up allocation strategies to evaluate how they could maintain sample
balance even with a lower budget for follow-ups. McCarthy, Wagner, and Sanders (2017)
compared data from an agricultural survey with a corresponding census, allowing them
to know in advance the true population values. The authors simulated scenarios where
response propensity estimates were used to divert follow-up resources away from high-
propensity cases to low-propensity cases and derived the impact on response rates and
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sample composition. Each of these simulation studies prove the concept of various ASD
techniques, but rely on strong assumptions about how they would fare in practice. Wag-
ner (2008) minimized the assumptions in their simulation by using observational data
from existing panels to estimate how call times and modes affected different participants’
response behavior. The study then used simulations to show what the outcome would
have been had these modes and call schedules been targeted to maximize responses. Our
paper goes a step further by executing a field experiment to trial specific interventions
deliberately, as opposed to relying on data that naturally occurs through the normal
operations of a panel.
When it comes to implementing ASD in practice, more knowledge on which treatments

to use and how to use them is required. Experimentation in large-scale population sur-
veys is costly and often conflicts with project goals, as Zhang and Wagner (2024) have
argued. Consequently, empirical studies on the effects of different treatments on different
risk groups are limited, often only comparing a single treatment against a control group.
For instance, Lynn (2016) and Zhang and Wagner (2024) investigated tailored invitation
letters, whereas Gummer and Blumenstiel (2018) and Wagner et al. (2012) tested the
impact of allocating extra interviewer effort to respondents classified as ’high priority’ by
supervisors or the interviewer team. Zhang, West, et al. (2024) conducted a field exper-
iment in which participants from areas with a high Hispanic population were provided
Spanish invitation letters, and households from rural areas or with elderly members were
provided paper surveys. Wagner (2013) fitted models that predicted the best times to
call certain participants and used these to recommend a call list to the telephone inter-
viewers. Beste et al. (2023) targeted the lowest-propensity households with extra cash
incentives and improved their response rates. However, since these studies focus on how
specific ASD implementations fared in practice, they provide only limited guidance on
how to best utilize nonresponse predictions to allocate interventions in prediction-based
ASDs.

iii. Interplay of Propensity and Interventions
Even with overall accurate nonresponse predictions and effective treatments, it remains

an open question how to select the at-risk respondents who should be treated differently
from the remainder of the sample. Researchers must set a threshold of nonresponse risk
at which participants should be targeted and choose the appropriate survey protocol (i.e.,
treatment). Yet, there is a lack of studies investigating the role of different cutoff points
in ASD. Beste et al. (2023) simply used predicted response propensities by targeting
the 50% most at-risk households for extra cash incentives. Some studies explore the use
of expert opinion to allocate extra call attempts or follow-ups. For example, Wagner
et al. (2012) tested a multi-stage process of case prioritization during the field period,
using both propensity models and expert opinions to identify the 50% most at-risk cases.
Similarly, Coffey et al. (2020) tested modifying propensity models with expert opinions
to improve the estimated response propensities.
These experiments show that targeting the most at-risk participants with certain in-

terventions was beneficial, but they did not explore the possibility that other techniques
could perform even better. Simulation studies, although assumption-dependent, allow
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researchers to explore alternative targeting regimes. Watson and Cernat (2023) sim-
ulated various targeting mechanisms, specifically using either the predicted response
propensity, a measure of how much that participant would contribute to nonresponse
bias if they did not participate (R-indicator), or a combination of both. The simulation
showed that by incorporating the R-indicator, the panel could reduce the number of
follow-ups needed to reach a given level of sample balance. In the context of our study,
this would have been equivalent to targeting the 75% highest priority (prioritized based
on estimated propensity and R-indicator) participants with extra follow-ups, as they
reduced the number of follow-ups by 25% by ignoring the lowest-priority participants.
This simulation highlights the value of exploring more possibilities than just targeting
the lowest-propensity participants. One possibility that has not been explored, however,
is targeting participants with a moderate to high risk of nonresponse but not the highest
risk, as the latter group may be most difficult to persuade to stay in the panel. If the
given intervention is significantly less effective on the most at-risk participants but still
effective on moderately at-risk participants, then we might expect a higher response rate
for the same cost of the intervention if we target ASD designs in this way.

iv. Research Questions
Previous research has proposed various methods for accurately predicting nonresponse

in panel studies and explored a range of intervention strategies for balancing response
rates and decreasing nonresponse bias. However, there is limited guidance on how to best
combine these two key ingredients – nonresponse predictions and treatments – to build
effective prediction-based ASDs. Simulation studies prove the conceptual value of ASD
but are too assumptions-dependent to provide certainty about the outcomes of specific
ASD strategies. At the same time, experimenting with ASD can conflict with study
objectives, so survey researchers are rightly cautious about undertaking ASD without
some evidence for the likely outcomes. As a result, ASD research is progressing slowly
despite the need for innovation and actionable insights.
Our study addresses this problem by presenting ex-post simulations that directly draw

from a survey experiment and, therefore, minimize the assumptions in the simulations.
In other words, we base our results on what different groups of actual panelists did after
receiving a specific treatment, rather than inferring what would have happened based on
hypothetical/assumed treatment effects. We argue that this simulation technique allows
us to compare the likely outcomes of a wide variety of prediction-based ASD strategies.
Our approach thereby allows researchers to explicitly model the interplay between ML-
predictions and treatment allocation and how it will impact the performance of different
ASD strategies. For example, if certain interventions are more (or less) effective for low
propensity (i.e., high-risk) participants, then this might affect which group is optimal
to target with interventions for the goal of reducing overall nonresponse. This study,
therefore, provides a rich resource to systematically investigate the possible impact of
different ASD strategies.
We structure our investigation around the following research questions (RQs) that are

situated in the interplay between prediction and treatment allocation:



Chapter 4. Prediction-Based Adaptive Designs for Reducing Attrition Rates and Bias in Panel
Surveys 131

• RQ1. How do treatment effects vary with predicted response propensity? Are
certain treatments more/less effective at specific propensity levels?

• RQ2. Does an adaptive design targeted towards panelists based on their predicted
response propensity decrease nonresponse rates and bias?

• RQ3. What is the optimal threshold for predicted risk to use when deciding which
participants to target with treatments in an prediction-based ASD?

We exemplify how ex-post simulations can be used to answer these questions by drawing
on a survey experiment and prediction models that we developed and implemented in a
German probability-based panel study, the GESIS Panel.

4.2 Methods

We will simulate several scenarios in which ML-based predictions are used to select
which participants should receive a different survey protocol than the rest of the sample
to lower their likelihood of wave nonresponse. These scenarios are derived from data
collected in a randomized treatment-control experiment conducted within the GESIS
Panel. The response propensities were estimated using an ML model trained with data
from earlier waves of the same panel (see Nonresponse Prediction Model).

In this section, we first provide context by describing the details of the GESIS Panel
(see Data). After introducing the panel study, we outline the survey data quality indica-
tors we will evaluate in the simulation scenarios (see Nonresponse Rates and Nonresponse
Bias). Next, we describe the design of our simulation, starting with the two key compo-
nents: the randomized treatment-control experiment (see Experimental Design) and the
ML prediction model (see Nonresponse Prediction Model). Finally, we explain how these
two elements are used together to conduct ex-post simulations that estimate the impact
of various adaptive design strategies on survey data quality (see Analytical Strategy).

4.2.1 Data

The dataset for our paper is the GESIS Panel up to January 2024 (GESIS, 2024), totaling
54 panel waves.
The GESIS Panel is a probability-based omnibus survey that began in October 2013

and ran bi-monthly waves until February 2021, when it switched to quarterly waves. It
operates as a self-administered, mixed-mode survey, allowing participants to choose be-
tween a web-based or paper-based mail format, with approximately 75% of participants
opting for the web-based option and the rest responding by mail (GESIS, 2024). Each
wave’s questionnaire takes up to 25 minutes to complete and includes diverse content
from various social science disciplines. For each wave, respondents receive an uncondi-
tional, prepaid incentive of EUR 5.
The GESIS Panel’s initial sampling method randomly selected invitees from the Ger-

man population register. Residents of Germany aged 18-70 were eligible for recruitment.
Subsequent refreshment samples were based on a piggybacking approach utilizing the
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German General Social Survey (ALLBUS) and the German parts of the International
Social Survey Programme (ISSP). With these refreshments, the target population’s age
range slightly changed, now including the adult population (18+). For more details on
the sampling methodology, we refer readers to the study documentation (GESIS, 2022).
An initial sample of roughly 5,000 participants was recruited in 2013, with subsequent
refreshment samples in 2016, 2018, and 2023 to maintain the total sample size around
5,000 (see Figure 4.1).

Figure 4.1: Timeline of sample sizes, nonresponse rates and recruitment intakes for
the GESIS Panel. Dotted lines mark the commencement of refreshment intakes, and the
solid line marks the wave when the experiment was conducted (see Experimental Design.

4.2.2 Nonresponse Rates and Nonresponse Bias

The indicators of survey data quality we present are (1) wave-level nonresponse rate and
(2) nonresponse bias in specific survey variables of interest, which are discussed below.
The nonresponse rate for a given wave refers to the portion of invited participants

who did not respond within the field period. We follow the RR6 definition (AAPOR,
2016), which counts unusable partial responses as nonresponses. The GESIS Panel stops
inviting participants who have not provided any submission (partial or complete) for
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three consecutive waves. The participants are unaware of this rule (Bosnjak et al., 2018).
The development of nonresponse rates over the course of the GESIS Panel is shown in
Figure 4.1. We can see that nonresponse rates change over time such that nonresponse
rates are high when the panel first commences. Low-propensity participants attrite from
the panel, leading to a reduced sample size, but also lower, stable nonresponse rates. This
pattern continues with the exception of a spike in nonresponses around the COVID-19
pandemic in 2020.
There are several ways to conceptualize nonresponse bias (Koch and Blohm, 2016).

In the following, nonresponse bias is calculated for a given variable at each wave as the
difference between the mean among respondents and nonrespondents (appendix equation
4.3). For robustness, we present alternative measures in the appendix (see appendix
section Additional Results). Because our study draws on panel data, we can use the
participant’s last known value for these calculations, even if they did not respond in a
given wave. Every variable we examine in our study was refreshed roughly once a year
as of the time of the experiment. Therefore, even if we rely on a value from a past wave
to fill in the missing value of a nonrespondent to calculate the nonresponse bias, this
data is almost always no more than one year out of date.
A longitudinal study aims to understand a population’s attitudes and behaviors through

inferences drawn from a sample (Groves, 2011). Therefore, we have selected a range of
variables that cover diverse attitude and behavioral themes as well as some of the socio-
demographics typically used to weight samples. For socio-demographics, we include age,
college education, and (monthly) household income. We also include self-rated physical
health on a six-point scale. For behaviors, we include variables that raise the expectation
that participation might correlate with the given type of behavior, namely, the status
of COVID-19 vaccination (Soeder et al., 2024) and political participation (Gummer and
Blumenstiel, 2018). Note that we collect COVID-19 vaccination status since 2021, but
demographics were collected since 2013 and all other variables since 2014–2015. Political
participation was measured using four items on a five-point scale asking how frequently
the respondent participates in a social movement, political party, labor union, or charity
work. We use the highest value reported among those four items to indicate political
participation. A higher value indicates a higher frequency of participation. This simple
measure assumes all four areas are of equal importance to political participation. For
attitudes, we include a seven-point measure of how serious they feel is the threat of
climate change. A higher value indicates a higher seriousness. We also include how
they rate themselves on an 11-point scale of politically left- or right-wing (1 and 11,
respectively). Details of how these variables are derived, including the original survey
items, are presented in the appendix section Replication.

4.2.3 Experimental Design

Our study uses results from an experiment conducted within the GESIS Panel to simu-
late an adaptive design. This section describes the experiment and how it is used in the
simulation is covered in section Analytical Strategy. During the data collection wave
of August 2023, participants were randomly assigned to either a control group or one
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of three treatment groups. Henceforth, the wave in which the experimental treatments
were administered shall be called wave ”W0,”, the subsequent wave (November 2023)
shall be ”W1” and the previous wave (May 2023) ”W-1.” The experimental groups were
as follows:

Control Group: The control group received the questionnaire for W0 as it would
have been without the field experiment. The questionnaire contained three core (con-
stant) modules on ”Media and Social Networks”, ”Work and Occupation” , and ”Flight
and Immigration” as well as an additional module on ”Political Attitudes and Behav-
ior”. The questionnaire took an average of 19 minutes and 15 seconds to complete. Each
respondent received an unconditional EUR 5.00 incentive.

Shortened Survey: Participants received an abbreviated version of the survey, with
an average completion time of 15 minutes and 47 seconds instead of the control group’s
19 minutes and 15 seconds. The survey was shortened by removing half of the additional
module ”Political Attitudes and Behavior” discussed above.

Interesting Survey Topic: Each survey in the GESIS Panel consists of several core
topic modules, and additional modules that change each wave. For this treatment, we
determined which of those topics in the GESIS omnibus was the most popular overall.
Participants rated their preferences for the variable topics in wave W-1. The most pop-
ular topic was ”Nature and Environment,” which was then selected as the additional
topic in the treatment group in wave W0. Participants in the control group received
a question module on the topic ”Political Attitudes and Behavior” instead (which re-
spondents had rated as less preferred). Both questionnaires were structurally equivalent.

Extra Cash Incentive: Participants in this group received a EUR 20.00 cash in-
centive instead of the control group’s EUR 5.00. All cash incentives are unconditional,
prepaid, and sent directly to the participant with the invitation letter.

4.2.4 Nonresponse Prediction Model

We study adaptive design strategies in which interventions are targeted at participants
based on their predicted risk of nonresponse. Each participant’s risk of nonresponse
in W0 is predicted using a machine learning approach following Kern, Weiß, and Kolb
(2021) and Collins and Kern (2024), in which random forest models provided the highest
predictive accuracy overall across a range of model types. We re-build their random forest
model using past nonresponse behavior and socio-demographic factors to predict each
participant’s probability of response in the next wave using a binary response outcome
(response [1] vs. nonresponse [0]; following RR6 definition) as the prediction target.
We selected these predictors to be comparable to any other panel study that would
typically collect demographic information and record past nonresponse behavior. The
specifications of this model are presented in appendix section Methods Details. Note
that the distribution of the predicted response propensities is skewed towards ”response”
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with a mean value of 93% likely to respond.
We explore two techniques for using the predicted response propensities to target inter-

ventions, and we compare them against a baseline in which interventions were assigned
randomly instead of using ML predictions. By using random assignment, we keep the
portion of the sample that receives an intervention the same, but vary only the manner
in which we select recipients, thereby testing the effect of the targeting mechanism.

Targeting High-Risk Participants: In this scenario, we explore how nonresponse
rates and biases could have been improved by targeting participants with the lowest
likelihood of response. We simulate targeting the lowest 15%, 25%, and 35% of pre-
dicted response propensities.

Targeting Moderate-Risk Participants: Here, we consider what would happen if
we targeted participants with a mild, but not the highest, probability of nonresponse.
Participants at the highest risk may still not respond even after interventions, leading
to an inefficient use of resources. Thus, we target participants with a middle-tier risk,
focusing on the 15%, 25%, and 35% below the wave’s mean response propensity value.

Random Allocation Baseline: Finally, as a baseline, we simulate a targeting regime
where 15%, 25%, and 35% of participants were selected randomly (called ”random al-
location”) and use this to compare the effectiveness of targeted interventions versus
applying treatments without a prediction-based targeting strategy.

4.2.5 Analytical Strategy

This section describes our approach to answering RQ1 by evaluating how the various
treatments interact with the predicted response propensities. Next, we detail our process
for the ex-post simulations that demonstrate the expected outcomes of various adaptive
design strategies (RQ2 and RQ3).

Analyzing the Treatment Effects
To answer RQ1, we evaluate the treatment effects of the interventions described in

section Experimental Design. We study treatment effects concerning differences in the
nonresponse rate in both waves W0 and W1 between the control and treatment group
(see appendix equation 4.1). We examine how treatment impacts nonresponse in both
the same wave that the treatments were administered (W0) and the following wave
(W1) because some treatments may not have an effect until after they are experienced
(for example, a shorter survey might not affect the respondent until after they have
had the experience of completing the survey in less time). We analyze the treatment
effects with logistic regression models predicting the binary nonresponse outcome of each
participant (i.e., wave nonresponse in wave W0 and W1), and the independent variable
is the binary treatment term. The specifications of that model are in appendix section
Methods Details.
We examine the treatment effects specifically among predicted moderate and high-
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risk participants with different threshold values that may be used for targeting (see
Nonresponse Prediction Model), compared to the overall average treatment effect. We
also fit two logistic regression models predicting each participant’s binary nonresponse
outcome (one for wave W0 and another for W1) using treatment status, predicted re-
sponse propensity, and an interaction term between the two as predictor variables. The
coefficient of the interaction term would indicate the rate at which the efficacy of the
treatment increases/decreases by the ML-predicted response propensity.

Figure 4.2: Diagram describing the process for the ex-post simulation of an adaptive
design implementation.

Simulating Adaptive Designs
We address RQ2 and RQ3 through ex-post simulations. Adaptive designs usually use

some fixed threshold to differentiate propensity groups and in most cases treatments
are applied to the “low propensity group.” In our experimental design, however, respon-
dents are randomly allocated to experimental groups, independently from their response
propensity. Thus, our design allows us to create multiple scenarios ex-post, based on dif-
ferent criteria for treatment allocation (i.e., different ways of implementing an adaptive
survey design). Figure 4.2 presents a diagram of how we conduct the simulation. We
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begin with the entire panel as of the experiment wave, W0 (step 1). We randomly divide
the panel into the three treatment groups and one control group for the experiment
described in section Experimental Design (step 2). In our simulation, we randomly split
the control group into two halves (C1 and C2). For each treatment group, we derive
three sub-groups based on the targeting strategies (see Nonresponse Prediction Model)
(step 3): The k% highest risk participants from each treatment group (T |High-Risk), the
k% moderately at-risk (T |Moderate-Risk), and a group of k% randomly selected par-
ticipants (T |Random); given that k is a value of 15%, 25%, or 35%. Next, we simulate
a scenario where the panel survey institution had the capacity to target k% of partici-
pants in the panel with one of the treatments using one of the targeting regimes to select
recipients. We simulate this by taking group C2 and removing the k% highest-risk (or
moderately at-risk, or a random selection) participants and replacing them with one of
the groups (T |High-Risk), (T |Moderate-Risk), or (T |Random) (step 4). For example, in
one simulation, we would derive a sub-sample that is based on C2 except that we replace
the 25% most at-risk members of group C2 with the 25% most at-risk panelists from the
cash-incentive treatment group.
Finally, we compare group C1, which represents the scenario where no intervention

was conducted, with the modified version of C2, which means the scenario where k% of
panelists received a given treatment and were targeted based on one of the strategies
(step 5). By comparing C1 and the modified C2, we derive the nonresponse rates in wave
W0 and W1 and nonresponse biases for the outlined substantive variables in wave W1

(see Nonresponse Rates and Nonresponse Bias). This strategy of selecting and matching
control and treatment groups allows us to study the outcomes of different prediction-
based ASD regimes under highly realistic conditions. We repeat this process for each
treatment group, each targeting regime, and for different values of k. Each permutation
is repeated one hundred times to account for the randomness introduced by splitting the
control group. We then present the average change in nonresponse rates and nonresponse
bias caused by each adaptive design execution.
Finally, we conduct t-tests across the pooled samples’ outcomes to calculate the prob-

ability that the observed 100 simulation outcomes (the change in nonresponse rate or
bias value) could have come from a distribution with a true mean of 0 (meaning the
specific ASD strategy had no effect on bias or nonresponse rate).

Robustness Checks (RC)
To ensure that our simulation results are robust, we trial variations on the design

presented in section Analytical Strategy. These variations are presented in appendix
section Additional Results are as follows:

• RC1. To check if nonresponse bias would accumulate over several waves, we use the
100 repeated simulations as if they were ten sequences of ten waves and then cal-
culate nonresponse bias based on overall responses and nonresponses across those
groups of ten. Specifically, we run 100 simulations as described above. However,
rather than calculating the change in nonresponse rates and biases in each indi-
vidual simulation, we group the simulations into sets of ten. Within each group,
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we pool all participants from their respective C1 and modified C2 conditions, then
calculate the nonresponse rates and biases across the pooled participants. Finally,
we present the distribution of outcomes across the ten groups. This approach
simulates the aggregate bias and nonresponse rates across ten waves, with ten sim-
ulation repetitions, to test whether the accumulation of nonresponses over several
waves affects the outcomes for bias and nonresponse rates.

• RC2. By randomly splitting C into C1 and C2, we may be creating errors by
reducing the sample size. To check if this is substantially affecting the result, we
conduct the simulation so that C1 and C2 are both duplicates of C.

• RC3. In this variation, instead of defining nonresponse bias as mean difference
between respondents and nonrespondents means, we define it as the difference
between the respondents’ mean value and the whole sample’s mean value (i.e., the
variables mean value across all active panelists as of W1).

4.3 Results

This section presents the results of the survey experiment (see Experimental Design)
and, in particular, whether the treatment effects vary between panelists with differ-
ent response propensities (see Survey Experiment Results). Next, we simulate how
those treatment effects can reduce nonresponse bias when employed in an adaptive de-
sign strategy that targets participants based on their predicted response propensity (see
Simulated Adaptive Designs).

4.3.1 Survey Experiment Results

Examining the differences in average nonresponse rates across treatment groups and pre-
dicted risk levels reveals several interesting findings (Figure 4.3). Note that we present
a moderate and high-risk group selected according to the rules defined in section Non-
response Prediction Model with a k value of 25%. Descriptive statistics of both the
treatment and risk groups, including results from other k values, are presented in the
Appendix Table 4.3. Each treatment-control group had 1,213–1,214 participants. In W0,
there were 94 (7.7%) nonresponders in the control group, 97 (8%) in the short survey
treatment group, 85 (7%) in the interesting survey topic treatment group, and 56 (4.6%)
in the extra cash incentive treatment group.
Figure 4.3 shows that the shorter survey does not reduce nonresponse in the unfil-

tered sample in either the experiment or post-experiment wave. In contrast, the extra
cash incentive reduces nonresponse in both W0 (by 3.2 percentage points) and W1 (by
two percentage points). This effect appears to be larger for the lower predicted propen-
sity groups. Finally, the results for the ’interesting survey’ treatment are noteworthy.
Although the treatment effect in the experiment wave is minor, the effect is more pro-
nounced in the subsequent wave, especially for the moderate and high risk groups.
We aim to validate these observations with results from the logistic regressions in

Appendix Table 4.4. The models show that, when considering the whole sample instead
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of the groups filtered by risk (where k = 25%), cash has a significant (p < 0.05) effect
of reducing nonresponse rates in W0 and W1. The interesting survey is effective only
in W1. In all other cases, the effect is not significant. Appendix Table 4.4 shows no
significant effects in any of the high or moderate risk-groups. However, this may be due
to small sample sizes among those risk groups, and so to explore the connection between
treatment effects and propensity further, we examine results from the logistic regressions
with interaction terms, presented in Appendix Table 4.5. These results further support
the efficacy of cash and interesting survey treatments as follows. In W0, the interaction
terms indicate that both the cash incentive and the interesting survey become increas-
ingly effective at reducing nonresponse rates as predicted response propensity decreases
(p < 0.05). In W1, however, the interaction term for interesting survey loses significance,
while the cash incentive still shows a substantial interaction with the predicted response
propensities. The shortened survey is effective at reducing nonresponse rates in W0 as
nonresponse risk increases, but this effect does not persist in W1. These results should
be interpreted cautiously due to the limited number of nonrespondents in the experi-
ment and the small sample size for each treatment-control group. However, the critical
observation is that cash and the interesting survey interventions are, to some extent,
more effective for participants with lower predicted response propensity.
With regard to RQ1, these results suggest that both increased cash incentives and the

interesting survey version are effective interventions. The treatment effect of the cash
incentive appears stronger among higher-risk participants in both the wave in which the
treatment was administered (W0) and the subsequent wave (W1). The shortened survey
version seems to encourage responses in W0 among moderately at-risk participants,
though it is less effective among high-risk participants and may even increase nonresponse
rates in W1. By contrast, the interesting survey appears to be more effective in W1 than
W0 (and more effective as nonresponse risk increases in W0).

4.3.2 Simulated Adaptive Designs

Figures 4.4, 4.5, 4.6, and 4.7 present the distribution of changes in nonresponse rates and
variable-wise biases between the intervention scenario and the no-intervention scenario
(see Analytical Strategy). Note that each adaptive design approach is simulated 100
times to account for the randomness introduced by splitting the control group into C1

and C2, and so the distribution of outcomes represents the uncertainty around a given
ASD outcome. Higher values on the vertical axis indicate that the intervention yielded
an improvement: either nonresponse rates declined by the value on the vertical axis, or
the nonresponse bias fell, meaning that the mean value for nonresponders became closer
to that of responders by the value on the vertical axis. A value below the horizontal zero
line indicates that the intervention increased nonresponse rates or biases, which means
this ASD was worse than doing nothing. Vertical axis values are in their original scale.
The simulations show that in an ASD scenario in which 25% of the lowest predicted

propensity participants (high-risk) were given the interesting survey version in W0, then
in wave W1 the wave nonresponse rate would have been, on average, 6.2% instead of the
(on average) 7.3% yielded from the ’no intervention’ simulated scenarios (see Figure 4.4).
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Figure 4.3: Differences between treatment and control groups in the experiment wave
(August 2023) across risk groups (k=25%).
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Figure 4.4: Changes in nonresponse rates between simulated scenarios with and without
adaptive designs. The range of values comes from repeating the simulation 100 times
to account for the randomness introduced by splitting the control group into C1 and
C2. Positive values indicate improvements in nonresponse rates due to the intervention.
∗p < 0.05.
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Figure 4.5: Changes in nonresponse bias (demographic variables) between simulated
scenarios with and without adaptive designs. The range of values comes from repeating
the simulation 100 times to account for the randomness introduced by splitting the control
group into C1 and C2. Positive values indicate improvements in nonresponse bias due
to the intervention. ∗p < 0.05.
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Figure 4.6: Changes in nonresponse bias (behavioural variables) between simulated sce-
narios with and without adaptive designs. The range of values comes from repeating the
simulation 100 times to account for the randomness introduced by splitting the control
group into C1 and C2. Positive values indicate improvements in nonresponse bias due
to the intervention. ∗p < 0.05.
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Figure 4.7: Changes in nonresponse bias (attitudinal variables) between simulated sce-
narios with and without adaptive designs. The range of values comes from repeating the
simulation 100 times to account for the randomness introduced by splitting the control
group into C1 and C2. Positive values indicate improvements in nonresponse bias due
to the intervention. ∗p < 0.05.
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Notably, the interesting survey version also reduced nonresponse by one percentage point
when targeting just the 15% most at-risk participants, whereas random targeting of 35%
of panelists reduced the nonresponse rate by about 0.5 percentage points. Improvements
can be observed for the ASD with extra cash incentive, which yielded a one percentage
point decrease in nonresponse rates in multiple scenarios (e.g., high-risk group at W0

and W1). In the wave following the ASD implementation (W1), targeting the increased
cash incentive at the 15% most at-risk participants was roughly as effective as targeting
35% of participants randomly. The ASD with a shorter questionnaire, in contrast, did
not substantially reduce nonresponse rates across the different scenarios and showed
opposing effects in some cases.
The results are mixed when examining changes in variable-wise nonresponse bias (see

Figure 4.5, 4.6, and 4.7). When extra cash is applied to highly or moderately at-risk
participants, nonresponse bias for age decreases. Specifically, when k = 15%, the no-
ASD scenario group was 606 participants of which, on average across repeated random
splits of C1 and C2, 47 nonresponded (nonresponse rate = 7.5%), but in the mean ASD
scenario, nonresponse rates were 0.6 percentage points lower (nonresponse rate = 6.9%).
As participants transferred from the (small) nonrespondent to the (large) respondent
subgroup, the result was that the average age of nonresponders increased from 51 to
53, while the average age of responders remained around 58. Therefore, cash incentives
with k = 15% targeted at high-risk participants on average decreased the nonresponse
bias value from 7 to 5 years, which made the variable less biased by two years. Bias
in college education improved with the cash incentive, though household income bias
did not consistently improve under any ASD strategy (see Figure 4.5). Physical health
bias worsened under the same ASD strategies that reduced age bias, possibly because
few participants rated their health below four out of six, making it difficult to reach the
rare participants with poorer health (see Appendix Table 4.3). The panel also includes
few unvaccinated participants (approximately 10%), but targeting the 15% moderately
at-risk participants with the interesting survey lowers the bias for this variable. The
cash incentive consistently reduces bias in the political participation variable, although
only slightly (up to 0.2 on a five-point scale) (see Figure 4.6). No ASD substantially
changes bias in the climate change seriousness variable, and none improves bias in the
left-right political scale variable (see Figure 4.7). While there are clear ASD strategies
that increase overall response rates, there are no particular ASD strategies that always
improve bias across all the variables of interest.
To answer RQ2, although the nonresponse rate was reduced by targeting the interest-

ing survey and the increased cash incentive to a certain percentage of panelists based on
their predicted response propensities, the variable-wise nonresponse bias was not con-
sistently reduced. In answer to RQ3, for a given k value, targeting the most at-risk
participants with cash or an interesting topic was always better than targeting mod-
erately at-risk participants. Higher k values yielded better response rates, although at
a diminishing return. The impact on nonresponse bias across the variables of interest
was mixed, highlighting how different cut-offs and targeting strategies can have different
impacts on nonresponse bias. These result underline the value of a simulation setup as
proposed in our paper to first test the possible outcomes of different ASD designs before
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implementing them.

4.3.3 Robustness Checks

In Appendix Figure 4.9, Appendix Figure 4.10, and Appendix Figure 4.11 we present
RC1, in which we use 100 repeated simulations as if they were ten sequences of ten waves,
calculating nonresponse bias based on overall responses and nonresponses across those
waves. This approach allows us to examine whether the accumulation of nonresponses
over several waves affects bias. We find similar results to those in Simulated Adaptive
Designs, indicating that the passage of time does not affect nonresponse rates or bias in
our simulation application.
Appendix Figure 4.12, Appendix Figure 4.13, Appendix Figure 4.14, and Appendix

Figure 4.15 show RC2, in which we duplicate rather than split the control group (see
Analytical Strategy), with similar results as the main findings.
Appendix Figure 4.16, Appendix Figure 4.17, and Appendix Figure 4.18 show RC3, in

which we define nonresponse bias as the difference between the responder’s mean value
and the whole sample’s mean value. In this lens, we see no improvements to bias in most
indicators except for some ASD strategies on age and college education.
Finally, Appendix Figure 4.19, Appendix Figure 4.20, and Appendix Figure 4.21 show

the same information as the main results Figures, but the y-axis is scaled around each
variable’s respective overall sample mean. This consistency across robustness checks
suggests that changes in the simulation approach do not substantially alter the findings.

4.4 Discussion

Nonresponse is a major challenge for panel surveys, which need to maintain data quality
over several waves to ensure the validity of results based on the data. In order to
reduce biases due to wave nonresponse in panel surveys, adaptive survey designs need
to (i) accurately predict panelists who are at risk of nonresponding and (ii) allocate
treatments that improve those panelists’ response propensities. The success of ASDs
thereby critically depends on the effective use of predictions to target interventions and
thus on understanding the interplay between those two components.
Our ex-post simulation approach allows survey researchers to study the impacts of

different ASD strategies and thus how predictions may be best utilized to target in-
terventions. Importantly, ex-post simulations that are informed by survey experiments
can be used to realistically pre-screen the potential outcomes of various ASD strategies
simultaneously. This overcomes the limitations of both assumptions-heavy synthetic
simulations and single ASD trials that test only one specific ASD strategy at a time.
Our approach instead allows estimating the outcomes of various interventions and tar-
geting mechanisms with regard to response rates and variable-wise bias and to select the
approach that best suits a given study’s objectives.
The survey experiment and ex-post simulations in our paper demonstrate that using

machine learning predictions that identify panel members at risk of nonresponse and
targeting different treatments accordingly can be useful to reduce a panel’s nonresponse
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rate but not necessarily to address nonresponse bias. Prediction-based adaptive designs
for panel surveys may thus be most effective in contexts with high nonresponse rates but
low nonresponse bias. Applying this technique, e.g., after panel refreshment or in new
panels, could encourage panelists with a high risk of nonresponse to respond to survey
invitations.
Our study provides evidence for the interplay between prediction and treatment allo-

cation: it matters which respondents are selected to receive a treatment, which treatment
is used to enhance survey participation, and which treatment is allocated to which re-
spondent group. We show how ex-post simulations, informed by survey experiments,
allow researchers to assess these questions to build effective prediction-based ASDs tai-
lored to their application context. Based on our findings, we encourage future research
on ASDs to not only focus on the prediction or treatment part of ASDs but to take a
comprehensive perspective. This perspective is what is most important for practical im-
plementations of ASD and until now has not received attention by research. Finally, our
findings show that prediction, treatment, and use of predictions to allocate treatments
need to be adjusted to the goal of the ASD, as each decision will impact the ASD’s
performance. In other words, whether the overall nonresponse rate, group-specific non-
response rates, or nonresponse bias (and in which variables), or a combination of these
is the goal of the researchers will require adjustments of the ASD.
Coming to our specific findings, relying on a survey experiment, we showed that

providing a high monetary incentive or an interesting survey, especially to panelists at
risk of nonresponding, increased their response propensity either in the treatment or
the subsequent wave. In contrast, shortening the survey had no effect (RQ1). RQ2
concerns what ASDs were effective and RQ3 concerns which thresholds and targeting
mechanisms were most effective. In that regard, our ex-post simulations suggest that
targeting just 15% of the most at-risk participants with a survey version that aligns with
their expressed interests is as effective as randomly distributing extra cash to 35% of the
sample. Specifically, nonresponse rates were, on average, one percentage point lower in
the wave following this adaptive design compared to what would otherwise have been
the case. Therefore, we suggest reviewing topic popularity or paying a higher monetary
incentive to reduce nonresponse rates. Building on this, we encourage further research
that examines the specifics of enhancing a survey’s interestingness and the associated
trade-offs with substantive research. Our findings suggest that these interventions should
target respondents most at risk of wave nonresponse, in our simulation, the 15% lowest-
propensity.
However, using machine learning predictions to target different treatments was less

useful for reducing nonresponse bias. While the bias decreased for some variables, it
increased for others. This finding aligns with the nature of nonresponse bias; as it is
inherently a variable-specific bias, targeting based on a generic nonresponse prediction
model is unlikely to mitigate biases across a diverse range of substantive variables. Sim-
ply applying the approaches we tested here thus will not remedy all biases due to wave
nonresponse, only for some variables. Researchers should consider their specific vari-
ables of interest and whether they would be positively affected by the adaptive design.
Optimizing the machine learning model to identify panelists at risk of nonresponding
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and who are likely to increase nonresponse bias for specific variables of interest may
reduce the variability. However, even if those respondents are identified, they may react
differently to the chosen treatments. A prediction model that both identifies participants
and assigns the optimal treatment to them may thus help reduce nonresponse bias. We
welcome research that pursues this approach further and discusses trade-offs between
optimizing response rates and response biases in panel surveys.
The limitations of our study yield possibilities for future research. First, we would

welcome replications of the experiment in other panels, especially those with different
panel designs and higher wave nonresponse. Our experiment was conducted in a mature
panel with a high participation rate. Thus, low-propensity panelists had likely already
attrited by this stage in the panel lifecycle, leaving limited room for improvement with
the presented treatments. Second, while we acknowledge that the possibility of conduct-
ing our experiment in a large-scale probability-based panel helps generalize our findings,
the number of low-propensity cases across our experimental groups limited statistical
power for our analyses. In line with this, we welcome implementing different adaptive
survey design strategies in survey practice to analyze their impact on response rates and
bias. Third, we encourage replication of our experiment in other countries as survey
climate and contexts might differ. We especially encourage cross-national studies to
compare treatment effects of different interventions across countries.

4.5 Appendices

4.5.1 Replication

Materials for replicating this study are available at the following URL:

https://osf.io/h8k7u/?view_only=fb329f73a3cd4320bf882bbc21723273

Details of the precise GESIS Panel survey items that are used in each of the variables
presented in this paper are located in:

src\settings\variable_settings.py

4.5.2 Methods Details

This section provides further information about the methodology of this study. This
includes descriptions of the predictors used to fit the ML model (Appendix Table 4.1);
descriptive statistics for the experiment sample sizes (Appendix Table 4.2) and the vari-
ables of interest across risk groups (Appendix Table 4.3); the predictive performance of
the propensity model (Appendix Figure 4.8); the equations for the treatment effects and
the specifications of the logistic regression models used to calculate p-values for treat-
ment effects and the interaction effect between propensity and treatments (Appendix
Table 4.4, Appendix Table 4.5).
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Appendix Figure 4.8
Timeline of Area Under Receiver Operator Curve values for the predictive model across
waves preceding the experiment.

Prediction Model
The propensity model was a random forest model with 100 trees of unlimited depth.

Purity was measured by the Gini criterion. The maximum number of features used in
each tree was the square root of the total number of predictors (Appendix Table 4.1).
The minimum number of cases for a split was two and the minimum number of cases
allowed in a leaf was one. The training data comprised of all cases of each participant-
at-wave for all waves from October 2013 to May 2023. The predictors used to train the
model are described in Appendix Table 4.1.
Measures
The formal definition of treatment effect in this context is as per appendix equation

4.1. The treatment effect is the difference in the mean of the outcome variable (in our
case, nonresponse) between the group that received the treatment and the control group.
We will calculate this treatment effect for both the experiment wave and the wave after
the experiment in case of delayed effects.

E = X̄C − X̄T (4.1)

Logistic Regression Models
We wish to analyze the robustness of any inferences we make about treatment effects.

For this reason, we also conduct a logistic regression to estimate the effect of each
treatment on nonresponse. We then assess the model’s p-values to confirm the statistical
significance of our results. The logistic regression model is unpenalized, without an
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Appendix Table 4.1
Details of the predictors used in the propensity estimation model.

Variable Value Range Description

Sex Female 0, 1 -
Nonresponse This Wave 0, 1 -
Personal Income 0 - Infinity Monthly
Household Income 0 - Infinity Monthly
Is Married 0, 1 -
Household Size 0 - 5 The maximum allowed

response is 5.
Survey Evaluation Interesting 0 - 5 -
Survey Evaluation Diverse 0 - 5 -
Survey Evaluation Important 0 - 5 -
Survey Evaluation Long 0 - 5 -
Survey Evaluation Difficult 0 - 5 -
Survey Evaluation Personal 0 - 5 -
Survey Evaluation Overall 0 - 5 -
Is Unemployed 0, 1 -
Participation Mode Online 0, 1 -
Survey Place Not Home 0, 1 Meaning the participant did

not select the ’at home’ option
for where they filled out the
survey.

Rolling Average Nonresponse
Rate

0 - 1 Average nonresponse rate over
all past invited waves.

Missing Sex Female 0, 1 -
Missing Personal Income 0, 1 -
Missing Household Income 0, 1 -
Missing Is Married 0, 1 -
Missing Age 0, 1 -
Missing Household Size 0, 1 -
Missing Survey Evaluation
Interesting

0, 1 -

Missing Survey Evaluation
Diverse

0, 1 -

Missing Survey Evaluation
Important

0, 1 -

Missing Survey Evaluation
Long

0, 1 -

Missing Survey Evaluation
Difficult

0, 1 -

Missing Survey Evaluation
Personal

0, 1 -

Missing Survey Evaluation
Overall

0, 1 -

Missing Is Unemployed 0, 1 -
Missing Participation Mode
Online

0, 1 -

Missing Survey Place Not
Home

0, 1 -

Age: (17.938 30.4] 0, 1 Indicates that age, derived
from the year of birth and the
survey date, is within this
range.

Age: (30.4 42.8] 0, 1 -
Age: (42.8 55.2] 0, 1 -
Age: (55.2 67.6] 0, 1 -
Age: (67.6 80.0] 0, 1 -
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Appendix Table 4.2
Details of the sample sizes and number of nonrespondents in each group presented in the
main text.

Treatment Group Control Short Interesting Cash

Sample Size Whole Sample 1,213 1,214 1,214 1,214
Moderate Risk 266 304 276 285
High Risk 287 324 300 303

Nonrespondents in W0 Whole Sample 94 97 85 56
Moderate Risk 55 56 54 43
High Risk 55 59 57 44

Nonrespondents in W1 Whole Sample 89 99 65 63
Moderate Risk 43 56 32 37
High Risk 46 59 35 39

Appendix Table 4.3
Descriptive statistics for each risk group across the variables of interest. See Appendix Table
4.2 for details on the number of supports in each group.

Targeting
Strat-
egy

K Metric Age College HH
In-
come

Health Vaccination
Status

Political
Partici-
pation

Climate
Change
Serious

Left-
Right

All - Mean 57.535 0.512 3016.313 4.895 0.914 1.625 5.087 5.527
All - Std 14.408 0.500 1917.967 1.439 0.281 0.932 1.495 1.885
High 0.15 Mean 51.570 0.548 2914.286 4.805 0.882 1.525 4.935 5.283
High 0.15 Std 15.741 0.498 2025.603 1.536 0.323 0.934 1.720 2.035
High 0.25 Mean 52.474 0.557 2898.847 4.837 0.886 1.556 4.960 5.375
High 0.25 Std 15.698 0.497 2020.651 1.505 0.319 0.926 1.657 2.005
High 0.35 Mean 52.647 0.552 2945.733 4.856 0.886 1.576 5.025 5.436
High 0.35 Std 15.562 0.497 2029.174 1.493 0.317 0.935 1.616 1.970
Moderate 0.15 Mean 53.216 0.558 2827.473 4.815 0.887 1.571 4.982 5.471
Moderate 0.15 Std 15.541 0.497 2015.228 1.472 0.316 0.924 1.588 1.943
Moderate 0.25 Mean 52.309 0.556 2884.792 4.828 0.884 1.555 4.974 5.377
Moderate 0.25 Std 15.638 0.497 2011.361 1.505 0.320 0.930 1.656 2.001
Moderate 0.35 Mean 52.309 0.556 2884.792 4.828 0.884 1.555 4.974 5.377
Moderate 0.35 Std 15.638 0.497 2011.361 1.505 0.320 0.930 1.656 2.001
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intercept term and features only a single predictor which is the binary treatment presence
(treatment = 1, control = 0). We fit a logistic regression model for each of the three
treatments. We fit the model with cases only for that respective treatment group and
the control group. The coefficient of the treatment term will allow us to calculate the
odds ratio for the change in nonresponse probability with the treatment. The p-value of
the coefficient will indicate the probability that the observed treatment effect is due to
random chance. In appendix equation 4.2 we fit a logistic regression, but now we include
a term for each participant’s response propensity (R) and the interaction between the
treatment and the propensity (R:T). The coefficient of the interaction term shall indicate
the rate at which the treatment effect varies with the propensity level.

P (Y = 1) =
eR·βR+T ·βT+(R·T )·βR:T

1 + eR·βR+T ·βT+(R·T )·βR:T
(4.2)

The nonresponse bias is given by the absolute difference in means between responders
and nonresponders (appendix equation 4.3)

Nonresponse Bias = |µresponders − µnonresponders| (4.3)

4.5.3 Additional Results

This section provides supplementary results to those presented in the main text. This
includes the outputs of the logistic regression models (Appendix Table 4.4, Appendix
Table 4.5); the mean values for the variables of interest across responder-nonresponder
groups (Appendix Table 4.6); the subsequent nonresponse bias values (Appendix Table
4.7); and the treatment effects (Appendix Table 4.8). The correlation coefficients with
p-value decorators from a Pearson test between the variables of interest and nonresponse
behavior are presented in Appendix Table 4.9. Finally, the results of the variations on
the simulation procedure, which are used as robustness checks, are presented across the
remaining figures in this section.
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Appendix Table 4.4
Details of the treatment effect coefficient in the logistic regression models fitted to each
treatment-control group pair. Models are fitted on nonresponse in both the wave of the
experiment and the wave afterwards. See Appendix Table 4.2 for details on the number of
supports in each group.

Target Treatment Coefficient Odds
Ratio

Standard
Error

P-
Value

K

Experiment Wave Cash Incentive -0.552 0.576 0.174 0.001 Whole Sample
Experiment Wave Cash Incentive -0.343 0.709 0.218 0.116 High Risk
Experiment Wave Cash Incentive -0.356 0.701 0.220 0.106 Moderate Risk
Experiment Wave Interesting

Survey
-0.110 0.896 0.156 0.481 Whole Sample

Experiment Wave Interesting
Survey

-0.053 0.949 0.208 0.800 High Risk

Experiment Wave Interesting
Survey

-0.061 0.941 0.208 0.770 Moderate Risk

Experiment Wave Short Survey 0.033 1.034 0.151 0.826 Whole Sample
Experiment Wave Short Survey -0.145 0.865 0.209 0.488 High Risk
Experiment Wave Short Survey -0.144 0.866 0.212 0.498 Moderate Risk
Post Experiment
Wave

Cash Incentive -0.369 0.691 0.170 0.030 Whole Sample

Post Experiment
Wave

Cash Incentive -0.275 0.760 0.234 0.239 High Risk

Post Experiment
Wave

Cash Incentive -0.231 0.794 0.236 0.327 Moderate Risk

Post Experiment
Wave

Interesting
Survey

-0.336 0.714 0.168 0.046 Whole Sample

Post Experiment
Wave

Interesting
Survey

-0.390 0.677 0.240 0.104 High Risk

Post Experiment
Wave

Interesting
Survey

-0.372 0.689 0.241 0.122 Moderate Risk

Post Experiment
Wave

Short Survey 0.115 1.121 0.152 0.451 Whole Sample

Post Experiment
Wave

Short Survey 0.190 1.209 0.218 0.384 High Risk

Post Experiment
Wave

Short Survey 0.158 1.171 0.223 0.478 Moderate Risk
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Appendix Table 4.5
Coefficients of the logistic regression models which include interaction terms between treat-
ment and predicted response propensities. Models are fitted on nonresponse in both the wave
of the experiment and the wave afterwards. See Appendix Table 4.2 for details on the number
of supports in each group.

Target Treatment Variable Coefficient P-
value

Standard
Error

Odds
Ratio

Experiment Wave Cash Incentive Cash Incentive 1.574 0.001 0.489 4.826
Experiment Wave Cash Incentive Propensity -2.844 0.000 0.126 0.058
Experiment Wave Cash Incentive Cash × Propensity -2.528 0.000 0.604 0.080
Experiment Wave Interesting

Survey
Interesting Survey 1.703 0.001 0.494 5.489

Experiment Wave Interesting
Survey

Propensity -2.844 0.000 0.126 0.058

Experiment Wave Interesting
Survey

Interesting × Propensity -1.993 0.001 0.580 0.136

Experiment Wave Short Survey Short Survey 1.272 0.004 0.438 3.568
Experiment Wave Short Survey Propensity -2.844 0.000 0.126 0.058
Experiment Wave Short Survey Short × Propensity -1.386 0.008 0.520 0.250
Post Experiment
Wave

Cash Incentive Cash Incentive 0.815 0.084 0.471 2.260

Post Experiment
Wave

Cash Incentive Propensity -2.861 0.000 0.127 0.057

Post Experiment
Wave

Cash Incentive Cash × Propensity -1.392 0.014 0.565 0.249

Post Experiment
Wave

Interesting
Survey

Interesting Survey 0.632 0.210 0.504 1.882

Post Experiment
Wave

Interesting
Survey

Propensity -2.861 0.000 0.127 0.057

Post Experiment
Wave

Interesting
Survey

Interesting × Propensity -1.078 0.068 0.591 0.340

Post Experiment
Wave

Short Survey Short Survey 0.688 0.112 0.433 1.990

Post Experiment
Wave

Short Survey Propensity -2.861 0.000 0.127 0.057

Post Experiment
Wave

Short Survey Short × Propensity -0.649 0.203 0.510 0.523
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Appendix Table 4.6
Mean values of the variables of interest. N = 1,214 except for the Control group which
is 1,213.

Variable Nonresponse In Post
Experiment Wave

Cash Control Interesting Short

Age 0.000 57.474 58.221 57.783 57.910
Age 1.000 55.429 52.236 51.831 53.192
College Educated 0.000 0.517 0.499 0.521 0.497
College Educated 1.000 0.492 0.584 0.646 0.525
Household Income 0.000 2997.567 3021.619 3078.764 3023.587
Household Income 1.000 2687.302 2848.315 3435.385 2452.525
Health 0.000 4.861 4.926 4.909 4.902
Health 1.000 4.651 4.809 4.923 4.919
Vaccination Status 0.000 0.922 0.918 0.904 0.914
Vaccination Status 1.000 0.873 0.888 0.908 0.929
Political Participation 0.000 1.632 1.644 1.626 1.611
Political Participation 1.000 1.683 1.517 1.569 1.566
Climate Change Serious 0.000 5.052 5.106 5.130 5.102
Climate Change Serious 1.000 5.159 4.944 4.877 4.848
Left-Right 0.000 5.578 5.628 5.452 5.531
Left-Right 1.000 5.143 5.191 5.231 5.343

Appendix Table 4.7
Nonresponse Bias Values of the Variables of Interest.

Variable Cash Control Interesting Short

Age 2.046 5.985 5.953 4.718
Climate Change Serious -0.107 0.162 0.253 0.254
College Educated 0.025 -0.085 -0.125 -0.028
Health 0.210 0.117 -0.014 -0.017
Household Income 310.266 173.305 -356.620 571.062
Left-Right 0.435 0.437 0.221 0.188
Political Participation -0.051 0.127 0.057 0.045
Vaccination Status 0.049 0.031 -0.003 -0.015

Appendix Table 4.8
Treatment effects for each of the variables of interest.

Variable Interesting Cash Short

Age 0.032 3.939 1.266
Climate Change Serious -0.091 0.269 -0.092
College Educated 0.040 -0.110 -0.057
Health 0.131 -0.093 0.134
Household Income 529.925 -136.961 -397.758
Left-Right 0.216 0.002 0.250
Political Participation 0.071 0.178 0.082
Vaccination Status 0.034 -0.018 0.046
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Appendix Table 4.9
How the substantive survey variables of interest correlate (Pear-
son) with Nonresponse in the Next Wave. ∗p < 0.05 ∗ ∗p < 0.01.
N = 2,428.

Variable Correlation with nonresponse in the next wave

Age -0.14**
Health -0.10**
Left-Right -0.10**
Political Participation -0.08**
Household Income -0.06**
Vaccination Status -0.05**
Climate Change Serious -0.05**
College Educated -0.02**
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Appendix Figure 4.9
Long term changes part one: A variation of the simulation where we simulate a se-
quence of ten waves using the method described to simulate a single wave, We then
calculate variable-wise nonresponse bias for each variable of interest across all re-
sponses/nonresponses across the ten waves. Each sequence of ten waves is repeated
10 times to account for randomness in the simulation. ∗p < 0.05 ∗ ∗p < 0.01.
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Appendix Figure 4.10
Long term changes part two. ∗p < 0.05 ∗ ∗p < 0.01.

Appendix Figure 4.11
Long term changes part three. ∗p < 0.05 ∗ ∗p < 0.01.
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Appendix Figure 4.12
Alternative simulation part one: A variation of the simulation where the control group
was not split, but instead the k% of treated participant replaces the equivalent k% of
control participants according to the targeting strategy. This means that there is only
an element of randomness in the random allocation baselines, ad he outcome of the
ML-based targeting strategies is deterministic. We make 10 repetitions of the random
allocation baseline. because the outcome is no long a distribution, there are no p-values.
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Appendix Figure 4.13
Alternative simulation part two.
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Appendix Figure 4.14
Alternative simulation part three.

Appendix Figure 4.15
Alternative simulation part four.
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Appendix Figure 4.16
Alternative bias measurement part one: Ranges of changes in nonresponse bias values
between simulated scenarios with and without adaptive design. Here, nonreponse bias is
calculated as the difference between the overall sample mean as of the experiment wave
(benchmark value) and the mean of the respondents in the ASD scenario. The y-axis
values in the plot are the amount by which the benchmark value and ’observed’ means
converged due to the ASD. ∗p < 0.05 ∗ ∗p < 0.01.
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Appendix Figure 4.17
Alternative bias measurement part two. ∗p < 0.05 ∗ ∗p < 0.01.

Appendix Figure 4.18
Alternative bias measurement part three. ∗p < 0.05 ∗ ∗p < 0.01.
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Appendix Figure 4.19
Scaled simulation results part one: A revised version of the simulation results in which
every variable has been scaled around the mean so that the y-axis is the number of
standard deviations from the overall variable mean changed due to the given ASD. ∗p <
0.05 ∗ ∗p < 0.01.
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Appendix Figure 4.20
Scaled simulation results part two. ∗p < 0.05 ∗ ∗p < 0.01.

Appendix Figure 4.21
Scaled simulation results part three. ∗p < 0.05 ∗ ∗p < 0.01.
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5 Predicting Australian Federal Electoral
Seats with Machine Learning

Abstract

I expand the international literature on election forecasting with the first application
of machine learning (ML) to the Australian context. I apply these models to five elec-
tions from 2010 to 2022 and compare them against the dominant forecasting tool in
Australia, the Mackerras pendulum. I evaluate these models' accuracy in predicting the
winning party for each electoral seat and estimating the total number of seats won by
each party. Pendulum forecasts corrected with an extra trees model that incorporates
state effects, seat-level unemployment rate, and vote share history, predicts up to 15
additional seats correctly six to three months before each election. The traditional pen-
dulum is increasingly strained by polling errors and a larger crossbench. New modeling
techniques will only emerge through experimentation. This study demonstrates the po-
tential for ML-based election forecasting in Australia and provides a starting point for
further efforts to surpass the pendulum.

5.1 Introduction

Australia’s dominant federal election forecasting model is the Mackerras pendulum
(Mackerras, 1976; Browne, 2022), which predicts the number of seats won by each
major party in the House of Representatives. While there are many variants of this
model, the typical pendulum method calculates the change in the ”two-party preferred”
(TPP) poll1 for each major party since the previous election (also known as the swing).
It assumes a corresponding, uniform change in vote share across all seats relative to the
previous election (Mackerras, 1976). The Australian Broadcasting Corporation’s (ABC)
pendulum has correctly predicted the party which forms government in 17 out of the 20
elections held since 1972, miscalling only 1998, 2010, and 2019 (Goot, 2022; Green, 2019;
Green, 2022; Green, 2016). However, the pendulum has several critical issues. Firstly,
seats held by minor parties (also called crossbenchers) are, by default, always predicted
to stay with their incumbent. This naive assumption led to only small inaccuracies in
the past when minor parties won few seats. However, this changed in 2022, when the
crossbench grew from 6 to 16 seats out of 151 (Green, 2019; Green, 2022). Secondly,
the pendulum relies heavily on accurate polling, which is why the 2019 election was

1This is a poll in which participants are asked to specify only which of the two major parties they
would most prefer and all other parties are ignored.
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miscalled, given a year of unusually large polling errors (Goot, 2021). Thirdly, while the
pendulum successfully predicts the number of seats won by each party, it is imprecise in
predicting the winner of each seat. When a seat changes party, the pendulum predicts
the correct winner less than half the time (Browne, 2022). The pendulum achieves good
seat count accuracy because its opposing misclassifications balance out. The pendulum’s
primary function is to estimate seat count. Seat-level winner prediction is not its in-
tended use. However, the pendulum is still Australia’s leading method for seat outcome
forecasting because nothing has yet been developed that outperforms it (Browne, 2022).
This paper presents machine learning (ML) models that aim to improve over the pen-

dulum in these areas. Specifically, I present ”ML-based synthetic” models (Lewis-Beck
and Dassonneville, 2015). This approach combines historical polls and past electoral
outcomes with economic and demographic predictors (also called fundamentals; for an
overview, see (Hummel and Rothschild, 2014) to fit ML models that predict seat-level
outcomes. As well as adding to the international literature on ML in election forecasting,
I demonstrate a novel technique: correcting pendulum predictions with ML. Firstly, for
the benefit of international readers, I will provide a summary of the Australian electoral
system (Section 5.1.1). Next, I will describe other attempts to improve Australian elec-
toral forecasting and argue that there has yet to be any major improvement over the
pendulum (5.1.2). I will then review the literature on ML-based electoral forecasting
in other democracies and show that this technique has potential and is worth trialing
in Australia (5.1.3). I will close this section by listing the criteria against which I will
evaluate the ML-based electoral models presented in this paper (5.1.4).

5.1.1 The Australian Electoral System

Australia has two parliamentary houses. This paper focuses on the House of Represen-
tatives, which had 150-151 seats in the period of study, which are comprised of roughly
equally populated, geographically contiguous zones. Australia has a multiparty system,
although dominated by two major parties. Government terms are a maximum of three
years, but the sitting government may select the exact election date. In a federal elec-
tion, eligible voters receive a fine if they fail to go to a polling site (but do not necessarily
have to vote), which is why voter turnout is generally above 90% (Australian Electoral
Commission, 2011). Australia has preferential voting, which means that when no can-
didate has a majority in a seat after all first preferences are counted, the least popular
candidate is eliminated. That party’s votes are redistributed according to the second
preferences. This process repeats until a candidate reaches 50% of that seat’s votes
(Australian Electoral Commission, 2019b).

5.1.2 Previous Attempts to Improve Forecasting

The Mackerras pendulum dominates Australian electoral forecasting despite several at-
tempts to outperform it. Researchers have explored logistic regression models that in-
corporate economic indicators and betting markets, finding reasonable predictive perfor-
mance in anticipating the winning party (Greenop-Roberts, 2022; Jackman and Marks,
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1994; Jackman, 2005; Leigh and Wolfers, 2006; Wolfers and Leigh, 2002). Some of these
models successfully predicted the 2010 election-winning party, although they were in-
correct about other elections (Greenop-Roberts, 2022). However, none of this research
has attempted to improve the classification of seat winners. Kefford (2021) interviewed
many campaigners from major Australian parties and learned that they conduct internal
electoral modeling, but the results of these exercises are not public. YouGov conducted
a multilevel regression with poststratification (MRP) model for the 2022 election, which
used a survey of around 18,000 respondents to model the outcome of each federal seat
(YouGov, 2021). The results were released two weeks before election day, but the most
likely outcome (80 seats for the winning Labour Party) was slightly worse than if the
same data had been used in a traditional pendulum (a predicted 79 seats for the Labour
Party, with the actual outcome being 77; (Pack, 2023). The MRP model misclassified
nine seats and counted six more as too close to call (Bowe, 2021a; Bowe, 2021b; Lewis-
Beck and Dassonneville, 2015; Pack, 2023; Rustika, 2021; YouGov, 2021). This paper
will compare that performance with the ML models for the 2022 election, but it is im-
portant to note that the lead time was only two weeks and only for one election, which
limits how well that approach can be compared to this study until the MRP is trialed
in more elections.

5.1.3 ML-Based Electoral Forecasting

I expect ML models to perform better than the pendulum because they can learn from
past elections to correct for historical polling errors and to vary the seat-by-seat effect
of national polls by local features such as the unemployment rate or median income.
Other democracies have trialed ML-based synthetic models for predicting seat-level (or
the equivalent electoral unit) outcomes (Argandoña-Mamani et al., 2024; Fisher, 2016;
Graefe, 2019; Gschwend et al., 2022; Kang and Oh, 2023; Linzer, 2013; Mackerras,
1976; Magalhães, Aguiar-Conraria, and Lewis-Beck, 2012; Montalvo, Papaspiliopoulos,
and Stumpf-Fétizon, 2019; Theis, Hense, and Damrath, 2005; Turgeon and Rennó,
2012; Umeda, 2023). However, few models show consistent predictive accuracy. In
the USA, forecasters predicted 100% of state races in the 2012 federal election, though
with poorer performance in 2016 (Jackman, 2014; Kennedy, Wojcik, and Lazer, 2017;
Linzer, 2013; Wezerek, 2019). In Germany, Munzert (2017) used a novel procedure in
which one regression model made predictions and another corrected anticipated errors.
This system predicted 92% of the 299 districts in the 2013 German federal election.
Gschwend et al. (2022) used a synthetic model that made 96% accurate constituency
predictions in 2017 and 78.6% in 2021, one week from the election (Gschwend, 2017;
Gschwend et al., 2022). The most outstandingly consistent result is from Neunhoeffer
et al. (2020), who used a neural network to estimate the outcomes of the constituency
votes for the 2009, 2013, and 2017 federal elections. This model correctly classified 89%
to 92% of constituencies with a three month lead. In the United Kingdom (UK), the
constituency-level accuracy in predicting the House of Commons varies considerably.
The predictions of uniform swing models were 100% accurate for the elections in 2001
and 2017 but only between 2–52% accurate for the elections from 1987 to 2015 (Murr,
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Stegmaier, and Lewis-Beck, 2021). Synthetic models in the UK also had a highly variable
constituency-level accuracy between 57 and 100% for the elections from 1987 to 2017
(Curtice and Firth, 2008; Fisher, 2016; Murr, Stegmaier, and Lewis-Beck, 2021). These
studies show that seat winner prediction remains challenging worldwide, with few models
attaining consistently satisfactory results over several elections. The neural network
model by Neunhoeffer et al. (2020) demonstrates the most consistently excellent results,
underlining the potential benefits of utilizing ML techniques over swing models.

5.1.4 Evaluation Criteria

This paper explores whether ML-based synthetic electoral modeling can outperform the
Mackerras pendulum in Australia. To this end, I will develop various ML models and
compare them against several versions of the pendulum. Here, I describe my criteria for
evaluating these models against the pendulum.

1. Accuracy for seat counts: Predicting each party’s share of the House of Rep-
resentatives is critical because it informs us which party will rule the country and
whether it will have a majority or minority government. I expect to find an ML
model that will predict seat outcomes more accurately than the pendulum, thereby
predicting seat counts more closely.

2. Accuracy for seat winners: An ML model is better than the pendulum if it
yields fewer misclassifications when predicting which party will win a seat. Greater
accuracy in predicting minor party seats or in anticipating which of the most
contested seats shall change party would be of particular value as these are noted
weaknesses of the pendulum.

3. Consistent accuracy: If a model has high average accuracy over many elections
but is prone to occasionally miscalling some elections very badly, it cannot be
trusted if users cannot anticipate when it will suddenly fail (Gelman et al., 2020;
Rothschild, 2015). The best model may not be the one with the highest average
accuracy but the one that is consistently reasonably accurate.

4. Lead time: The longer in advance of election day a model can predict an outcome,
the more time it affords the contestants to change the outcome (Jennings, Lewis-
Beck, and Wlezien, 2020; Rothschild, 2015). To evaluate this, I test several lead
times to show how each technique would have performed had it been used at that
retrospective inference time (i.e., two months before the election of 2013).

5. Uncertainty calibration: Forecasting models typically output a range of possible
outcomes for an election. Often, no model predicts the exact result. Rather, an
ML model is better than the pendulum if its range of possibilities falls closer to
the actual outcome (Gelman et al., 2020; Xie et al., 2023). Also, models with wide
ranges of possible outcomes are not helpful (i.e., predicting that a party could win
between 50 and 100 seats).
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6. Parsimony: If two models have roughly the same performance, the simpler model
is preferable. ML models are necessarily more complex than pendulum models.
The reliance on historical data adds new sources of potential error (Lewis-Beck,
2005). Therefore, to prefer an ML model over the pendulum, its enhanced perfor-
mance should justify its greater complexity.

5.2 Methods

This paper evaluates how ML models could improve Australian election forecasting over
the pendulum. To achieve this, I will compare a range of ML models and versions of the
pendulum. Additionally, I will explore different sets of predictors to determine which
information, such as economic indicators or polls, is most useful for making accurate
predictions. In this section, I describe the data sources (Section 5.2.1), the ML and
pendulum models, and the process for fitting, evaluating, and comparing these models
(5.2.2).

5.2.1 Data

ML models are trained on data from past elections to predict future ones. The following
section details the predictors and the dependent variable in this study. For a list of all
predictors see Appendix Table 5.6.

Dependent Variable: Seat Winner Party

Australia has a multiparty system, but only one of the two major parties, the Australian
Labor Party (ALP) or the Liberal–National Coalition Party (LNP), has won the vast
majority of federal seats since 1949 (see Figure 5.1). Therefore, I categorize all non-
major parties as ”other party” (OTH) and aim to predict which of the three categories
each seat will fall into at each election.

The Australian Electoral Commission does not conveniently provide detailed data
about election preferences before 2007 (Australian Electoral Commission, 2001; Aus-
tralian Electoral Commission, 2007; Australian Electoral Commission, 2010; Australian
Electoral Commission, 2013; Australian Electoral Commission, 2016; Australian Elec-
toral Commission, 2019a; Australian Electoral Commission, 2022). So, because at least
one election is required for training an ML model, I examine the five elections between
2010 and 2022.

Polling

Polling averages are inputs for ML models and pendulums (see Section Pendulums).
In Australia, many polls on voting intention are conducted every few months, with
frequency increasing as election day approaches. These polls typically fall into two cat-
egories: two-party preferred, where respondents choose between the two major parties,
or multiparty, where respondents indicate their first preference among all parties.
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Figure 5.1: Timeline of election outcomes. The top figure shows Australian federal
elections since 1949. The bottom figure shows only the elections tested in this study.

Although many pollsters operate in Australia, only a few publicly available sources
compile polling data. The website The Poll Bludger has aggregated polling data since
2019 (Bowe, 2023), but for earlier years, I rely on other public sources (PhantomTrend,
2016). Unfortunately, the detailed results of many original polls are not public (Bowe,
2023; PhantomTrend, 2016). I have only basic details for each poll consistently, such as
party-wise percentages, pollster names, and field period dates. Appendix Table 5.7 lists
all data sources. Details such as nonresponse or undecided rates are often unavailable
in these aggregate sources.
When predicting seat-level outcomes, the challenge is that opinion polling is typically

conducted at the state or national level, not the seat level. Although respondents may
provide their postcode (and thus their electoral seat), sample sizes are usually around
1,000, randomly drawn from the entire population, resulting in small sample sizes for
individual seats (Bowe, 2023; PhantomTrend, 2016). Furthermore, aggregated poll re-
sults, not individual respondent data, are consistently available, making it impossible to
disaggregate polls by seat (Bowe, 2023). Pollsters conduct swing seat-specific surveys,
but their results are not consistently publicly available (Goot, 2023). Therefore, for each
seat at each election, I derive features for national and state polling averages over a
rolling four-week window.
To address the lead time criterion, I will refit each model and pendulum using polling

averages available six, three, two, one month(s), and one week before election day. ML
models can utilize both the most recent and the preceding polling averages, allowing
the model to account for temporal trends. For example, an ML model forecasting an
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election two months before election day will use the polling averages two months from
election day as well as three and six months out as predictors.
If state-level polling is available at a given lead time before a given election, then

I also use that four-week average as a predictor for seats in that state (See Appendix
Section 5.5.2). Furthermore, the ML models incorporate polling figures from the previous
election to account for past polling errors. Finally, I include the standard deviation of
each polling average (see Appendix Table 5.6). Figure 5.2 shows the results of each
national poll and the time windows in which I collected the polls to derive an average
value. Appendix Section 5.5.2 provides the equivalent figure at the state level, at which
far fewer polls were taken.
A final consideration regarding this paper’s polling averages is that not all published

pendulum models use a four-week polling aggregate as I have. Other election analysts
select specific polls taken as close as possible to a given lead time or take averages among
a small set of polls (Browne, 2022; Goot, 2023; Green, 2016; Green, 2019; Green, 2022).
This requires intuition on the part of the analyst to select some polls over others. Rather
than selectively filtering polls, which adds an element of retrospective decision-making,
this paper takes the averages as they were available from public, aggregated sources at
the inference time. This may result in this paper’s pendulums deviating from forecasts
conducted by other analysts for the same election.

Figure 5.2: Polling values and the four-week time windows (gray boxes) in which polling
averages are calculated. The black lines indicate an election day.
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Election Tallies

For each election, I use seat-level results from the previous election to make predictions.
Specifically, I consider the highest percentage share of votes each party received before
a winner was declared. I also use a binary indicator to show whether the seat flipped
in the previous election. Previous election tallies are also used to calculate the margins
used in pendulum models (see Section 5.2.2).

State Effects

These predictors indicate the federal state of each seat. These variables allow the ML
models to account for state-level effects, such as how national polling averages correspond
to different vote shares in specific states.

Pendulum Predictions

In some feature sets (see Section Feature Sets), I use seat-level predictions from a TPP
proportional swing model (see Section Pendulums) as inputs for the ML models. The ML
model alters the pendulum’s predictions in these trials by accounting for other variables,
such as socioeconomics or state effects.

Fundamentals

Fundamentals are predictors based on the proposition that voters punish incumbents
for poor economic performance and are reluctant to change the government otherwise
(Hummel and Rothschild, 2014). For this reason, I use macroeconomic variables and
seat-level socioeconomics to estimate each seat’s condition and, consequently, the voting
behavior. Supporters of the fundamental approach to election prediction emphasize that
these variables are theoretically more predictive than polls at long lead times (Hummel
and Rothschild, 2014; Jennings, Lewis-Beck, and Wlezien, 2020; Lewis-Beck, 2005). In
addition to indicators of economic performance, I also include demographics, specifically
each seat’s median age, homeownership rate, and portion of indigenous and overseas-
born population. I include these variables to capture the effect of generational, renter-
landowner, and racial social divides in Australia.
The Australian Bureau of Statistics provides various socioeconomic statistics disag-

gregated at the electoral seat level (Statistics, 2021). These data come from the 2006,
2011, 2016, and 2021 censuses. I use the latest available census figures for each seat
at each election in the dataset. The details of the variables are available in Appendix
Section 5.5.2. I include median income, rent, mortgage payments, share of employment
status, type of job, migrant history, and Indigenous heritage to represent each seat’s
economic and social composition.
In addition to seat-level socioeconomic indicators, I consider national macroeconomic

factors in each election. I use real GDP growth and inflation rates from the year before
the election (which avoids using data that would have been unavailable at the retrospec-
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tive inference time) to estimate how voters feel about the macroeconomy in the run-up
to the election.

Missing Values

Missing values are imputed with zeros. The sources of missing values in the data are as
follows. New seats are created at certain elections due to Australia’s periodic redistrict-
ing. Therefore, no valid values exist regarding the previous election. State-level polling
variables are missing for some time windows (see Appendix Section 5.5.2).

5.2.2 Modeling Setup

I will make retrospective predictions using both pendulums and ML models for each
election from 2010 to 2022, each for six months, three months, two months, one month,
and one week before election day. I selected these time frames based on (Jennings, Lewis-
Beck, and Wlezien, 2020), who concluded in a cross-national study that most accurate
electoral forecasts become valid around two to three months before an election.
For each ML algorithm (Section Machine Learners), I will repeat each trial with dif-

ferent sets of predictors to evaluate the effectiveness of different features. For example,
will a given ML model perform better with only fundamentals or will including polls
improve election forecasts? I explore these combinations to identify the best possible
ML algorithm and predictors.
I will also provide a ”no change” baseline, which predicts that every seat in a given

election will remain with its incumbent. I include this baseline because most seats stay
with their incumbent in any election, and so even this naive model will achieve a certain
level of accuracy. I expect any good model to outperform this baseline. In any baseline
model, if a seat is newly formed after redistricting, the predicted winner is whatever
party leads in national TPP polls.
The following section will first provide details on the different ML algorithms and

pendulums (Sections Machine Learners & Pendulums). Next, I will present the sets of
features which I shall vary to test the value of different types of predictors (see Feature
Sets). Then, I will explain how each ML model is fitted to replicate how predictions
could have been made at the inference time (i.e., two months before the 2019 election)
and how this approach prevents overfitting (see Temporal Cross-Validation and Hyper-
parameters). Additionally, I will describe how I measure uncertainty in each model (see
Uncertainty Calibration). Finally, I will explain how I will use permutation feature im-
portance (PFI; Altmann et al. (2010)) to explain how the most successful ML models
make their predictions (see Model Interpretation).

Machine Learners

Machine learning covers a vast range of diverse algorithms. It would be unfeasible to trial
every possible ML algorithm, so I focus on a set of the most common types according
to a literature review by Singh, Thakur, and Sharma (2016). I trial main effect models,
namely logistic/linear regression, and models that automatically account for interaction
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effects, namely tree-based models. I also include a neural network based on Neunho-
effer et al. (2020) because that method yielded outstanding results (see Section 5.1.3).
Specifically, I experiment with neural network architectures with the same dimensions
as that study (two dense layers of 128 and 64 neurons) and I vary those parameters (see
Appendix Section 5.5.3). The algorithms I have selected are unpenalized and penalized
logistic regression (ULR, PLR), extra trees (ET), gradient boost (GB), and multilayer
perceptron (MLP; a type of neural network). Details of these models are presented in
Appendix Section 5.5.3 I discuss hyperparameters in Section Temporal Cross-Validation
and Hyperparameters.
I trial both classifiers, which predict the probability of victory for each party category

(ALP, LNP, OTH), and regression models, which predict each party’s seat-level vote
share with an uncertainty range. In regression trials, I substitute logistic regression with
linear regression (LR), as the former is only suitable for classification.
Each ML model is trained on tabular data derived from past elections. Each row is

a seat at a given election. The data about each seat are the predictors, which will vary
according to the feature sets described in Section Feature Sets. The dependent variable
for the classifiers is the category of the candidate who wins that seat at that election.
For the regressors, the dependent variable is the vote share won by each party, for which
the largest will be taken as that regressor’s predicted seat winner. I iterate over elections
from 2010 to 2022, each time training the models on data available before inference time
(i.e., three months before the 2022 election).

Pendulums

There are several versions of the pendulum, which I will present for comprehensiveness.
The details of how I calculate the predictions for each pendulum variant are in Appendix
Section 5.5.3. Table 5.1 provides an overview of each variation.

Feature Sets

I aim to compare different ML algorithms and different sets of features to determine the
best approach for forecasting elections. Using all available features can often confound
models (Hastie, Tibshirani, and Friedman, 2009). Instead, I test different sets of features
for each ML model that reflect various forecasting strategies, as detailed in Table 5.2.
To avoid lengthy model fitting times, I only test some possible combinations of sets. I
never test polls-only models, as they offer little improvement over crudely using the TPP
leader. I always include state effects and a variable indicating whether a seat flipped in
the previous election in every feature set to limit the number of permutations to test.
The regressors are trained only on the “polls and fundamentals” set so as to reduce the
number of models fitted and because the results will show that this technique is not
promising enough to warrant deeper investigation (see Section 5.3.1). Appendix Table
5.1 provides the complete list of predictors and their respective feature sets.
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Table 5.1: Summary of pendulum models.

Pendulum variant Description

Two-party preferred
uniform (TPP uniform)

This model is the typical Mackerras pendulum which the ABC uses (Green,
2022). I use the preceding election’s national two-party vote shares and the
target election’s TPP polls to calculate the swing for each major party. I
then assume that each seat’s vote share from the previous election will
change by the same swing. In some seats, this shift in vote share would be
enough to unseat the incumbent party. In this case, the opposing major
party is predicted to take the seat. Seats held by OTH candidates are
assumed to remain with their incumbent. A known flaw in this model is that
it cannot predict a seat held by a major party to be won by an OTH
candidate or vice-versa.

Two-party preferred
proportional (TPP
proportional)

This model is the same as the TPP uniform, except that when a state-level
TPP polling value is available for that particular four week window (there
must be at least one poll published in that period), that value is used to
calculate the swings for seats in that state.

Two-candidate preferred
uniform (TCP uniform)

This variation of the TPP uniform is based on the Reed pendulum proposed
by Resolve Strategic (Reed, 2022). This model aims to better predict seats
won by OTH candidates. It calculates swings for major and minor parties
using multiparty polls instead of TPP. If the swing against an incumbent
party is enough to lose the seat, that seat is predicted to go to the party that
received the second-highest votes in the previous election.

Table 5.2: Summary of feature sets.

Feature set name Description

Fundamentals These are the socioeconomic variables described in Section Fundamentals,
previous election vote shares, and state effects.

Polls and fundamentals The same as the fundamentals set but includes polling averages described in
Section Polling.

Pendulum, polls, and
fundamentals

In this feature set, I also include seat-level predictions from a TPP
proportional pendulum (see Section Pendulums). This approach aims to
improve the pendulum’s predictions by adjusting them based on these
additional variables.

Pendulum and
fundamentals

This feature set excludes polls to test whether those predictors confound
pendulum-based ML models.

Pendulum and polls This feature set excludes fundamentals to test whether those predictors
confound pendulum-based ML models.
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Temporal Cross-Validation and Hyperparameters

To ensure my forecasts reflect out-of-sample estimations as they could have been made
at the time, I use temporal cross-validation (TCV; Bergmeir and Beńıtez (2012)). With
TCV, I predict each seat in each election using models trained on data from all preceding
elections. Each ML model fitting involves selecting hyperparameters (Arnold et al.,
2024). Typically, practitioners train models on data and then validate them on randomly
selected hold-out data to identify the hyperparameter settings expected to perform best
on new data (Hastie, Tibshirani, and Friedman, 2009; James et al., 2013). However, in
this context, validating models against randomly withheld seats from the same elections
as the training set would lead to overfitting those models to those elections. Instead,
I want to select models and their hyperparameters based on how well they can predict
elections that occurred after the training elections (Bergmeir and Beńıtez, 2012). To
do so, I will find the hyperparameter settings for each model with the lowest overall
predictive error (least misclassifications for classifiers and lowest mean absolute error
across vote shares for regressors) when applied to the target (out-of-sample) election. I
then present the outputs of these settings for each model in the Results section and the
outputs for all other settings in the reproduction materials (Appendix Section 5.5.4).
An important aspect of this procedure is that, in the results section, I present the

hyperparameters that performed best, averaged across the elections from 2010 to 2022.
If practitioners had been fitting models at the time, they might have selected the best
hyperparameters known to them at that point. While this procedure identifies the best
models that can be discovered using data from these five elections, it may not perfectly
reflect how modeling would have been conducted at the time in this regard.
Another parameter I explore is the number of elections to include in the training

set. Like any democracy, Australia's political climate changes over time, so data from
the 2007 election might confound models predicting the 2022 election. To evaluate this
effect, I will refit all models using either all previous elections or just the most recent
two as training data. I will then determine which approach yields the highest accuracy
scores. I limit the analysis to the past five or two elections to reduce the number of
model fittings required.

Uncertainty Calibration

This paper will present the uncertainty around each estimated election outcome. Pen-
dulums, classifiers, and regressors handle forecast probabilities differently. For each
model, I will provide the most likely forecast and the range of outcomes within the 95%
most likely scenarios (i.e., the 95% confidence interval (CI)). This section explains how
I calculate these ranges for each model type.
For each seat in the predicted election, each ML classifier model outputs the probability

that a party will win (e.g., an 80% likelihood of the ALP winning the seat of Adelaide
in 2010, 15% for the LNP, and 5% for OTH). These probabilities represent the model's
confidence intervals. For instance, among seats assigned an 80% likelihood of ALP
victory, approximately 80% were won by the ALP in the training data. I simulate a
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hypothetical election for each model, using each seat’s class probabilities as weights. For
example, if a seat has a 20% chance of an ALP victory, it should be predicted to go
to the ALP in 20% of simulations. Due to the computational expense across multiple
models, I simulate 20 elections for each ML classifier. For each simulation, I calculate
the probability of that particular outcome using the model probabilities and discard the
5% least likely outcomes. I then present the range of seat counts and accuracy scores
from the remaining simulations which represent the 95% most likely election results.
Finally, I include a scenario in which the most likely winner of each seat is assumed to
be the winner and present this as the single most likely election result according to that
classifier.
Regressors do not produce probability estimates around their vote share predictions.

Instead, I use bootstrapping, stratified by the three classes, to randomly withhold 10%
of the training data. I create ten randomly bootstrapped variants of the training data,
retrain the model on each one, and take the different forecasts as the uncertainty range
(Thai et al., 2013). I also calculate the result without bootstrapping and include that in
the distribution. I present the 95% confidence interval of classification accuracy scores
and seat shares across these variations. I present the mean seat count and accuracy
score as the most likely outcome.
For the pendulum models, I simulate swing values, assuming polling averages are up

to two standard deviations above and below the mean. This approach accounts for cases
where pollsters published a wide range of values, resulting in greater uncertainty for the
pendulum. I present the pendulum outputs when using the mean polling value as each
pendulum’s most likely predicted outcome.

Model Interpretation

I aim to select the best ML model based on the evaluation criteria (Section 5.1.4) and
understand how it makes predictions and which features are most influential. To do
this, I use permutation feature importance (PFI), which measures how much predictive
accuracy is lost when a given feature is withheld from the model (Altmann et al., 2010).
A well-known issue with PFI is that when two features are correlated (i.e., TPP polls for
ALP and LNP), withholding one does not lower the model’s accuracy because the same
information is available through another predictor. Therefore, I withhold predictors
in blocks of related features to evaluate the importance of these feature blocks rather
than of the individual predictors. Appendix Section 5.5.2. details which features are
categorized into which blocks. I fit the model for this PFI analysis using data available
at three months before election day because I want to know how the model functions at
a substantial lead time. I will not calculate PFI for models other than the best selected
one because PFI requires long calculation times.
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5.3 Results

5.3.1 Comparing Accuracy Scores

This section presents only the models fitted on a maximum of two preceding elections,
because that approach yielded the most accurate results for both seat counts and seat
classifications (see Appendix Section 5.5.4 for full details). Training on a limited number
of past elections improved accuracy for the most accurate model (ET as explained below),
suggesting that distant past elections are unreliable guides for later ones.
Figure 5.3 shows each model’s classification accuracy scores (the portion of correct

classification predictions out of all seats). The error bars represent the range of scores
across the 95% most likely election results according to each model, and the dots rep-
resent each model’s single most likely predicted outcome (see Section Uncertainty Cal-
ibration). Table 5.3 presents a tabular summary of Figure 5.3 for the best-performing
ML model and pendulum (as discussed below). The ML classifiers’ error bars are often
skewed to the left of the most likely outcome. This skewness is because these ML tech-
niques often decrease in accuracy if anything other than the most likely prediction is
fielded, indicating that each probability estimate was well-calibrated, and so deviating
from the most likely class usually leads to misclassification. In other words, for these ML
classifier models, the most likely predicted scenario is usually its most accurate forecast
out of any of the simulated elections (see Section Uncertainty Calibration).
In contrast, the most likely outcome, according to each of the pendulum models, is

often roughly in the middle of their error bars. This distribution is because I estimate the
pendulum’s uncertainty by tilting the polling margins by up to two standard deviations
for or against the incumbent (see Section Uncertainty Calibration). For someone using
a pendulum to predict an election, this would be like sensitivity analyzing how the
pendulum’s forecasts change as they try varying the uniform swing value. Unlike the ML
classifiers, this method for deriving the 95% most probable election outcomes can often
yield more accurate forecasts than the mean polling average available at the inference
time.
In Australia, safe seats rarely change party (which is why the no-change baseline

achieves 87% accuracy on average). Therefore, it is especially critical to predict marginal
seats in Australia. Also, as discussed, predicting crossbench victories is a notable weak-
ness of the pendulum. By comparing ML models with the no-change baseline I can
evaluate performance regarding flip seats. I will examine crossbench seat prediction
in Section 5.3.2. Additionally, Appendix Section 5.5.4 presents the seat classification
accuracies for marginal and crossbench seats. Table 5.3 presents the marginal seat
classification accuracies for the best performing ML and pendulum models (discussed
below).
Before discussing the ML models, I shall first determine which of the baseline models

was the best so as to compare ML models against that technique. In the 2019 and 2022
elections forecasts, the TPP uniform pendulum performed much worse than in previous
elections (roughly 83% accuracy, down from 88% averaged across all lead times). With
more state polls available in those years, the TPP proportional pendulum deviated from
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the TPP uniform pendulum. The proportional model outperformed the uniform model
at six months and one week before the 2019 election (each by roughly 6%) but under-
performed in the forecast one month before the 2022 election (by 5%). The predictions
of the TCP pendulum did not exceed those of the TPP uniform pendulum for the elec-
tions from 2010 to 2016. Overall, TPP proportional is preferable to uniform because it
performed as well or better at a substantial (three month) lead time. It is important to
note that the proportional pendulum will be identical to the uniform pendulum unless
state polls are available.
Regarding the ML models, in any given election, at least one ML model appears

to outperform the TPP proportional pendulum in at least one lead time but rarely
consistently across elections. ET is almost always the better performing algorithm among
any feature set (see Figure 5.3). Tree-based models incorporating fundamental features
outperform the pendulums in 2019, achieving over 90% accuracy on average, however
they perform much worse in elections 2010-2016. Regression models perform better than
the pendulums in 2019 but worse in all other elections, which is why I do not investigate
these techniques further. However, I present the regression outputs versus the actual
vote share results in Appendix Section 5.5.4.
For seat classification accuracy, I evaluate that ET with pendulum, polls, and funda-

mental features performed best overall. This model is consistently roughly as good, or
slightly better than the best pendulum at any election at one month before election day.
This model is also as good or slightly better than the best pendulum at any election
at both six and three months out from each election except for 2013 (see Table 5.3).
The ET model is roughly 10% better than the TPP proportional pendulum from three
months lead time in 2019 and 3% in 2022. With the exception of 2013, ET either equals
or outperforms the pendulum (sometimes by over 10%) when classifying the marginal
seats. This model appears to perform roughly as well as the pendulum, but avoids the
pendulum’s collapses in accuracy in 2019 and 2022.
Figure 5.4 presents the forecasts of seat shares for the ALP, with equivalent figures for

LNP and OTH in Appendix Section 5.5.4. The most consistently accurate model is the
GB algorithm, which incorporates pendulum and polling features. Aside from 2019, this
model’s 95% confidence interval falls within three seats of the actual seat count every
election from three months lead time. Table 5.4 provides a precise comparison of error
scores, showing the values for this GB model, the TPP proportional pendulum, and the
ET model, which performed as the best overall classifier.
An ideal model would outperform the pendulums in both seat count and classification

accuracy, but unfortunately, the ET with all predictors is the best classifier, while the GB
with pendulum and polling predictors is the best seat count forecaster. However, at one
month lead time, the pendulum is only closer to the actual result than the ET model in
2016 (by 12 seats). Furthermore, the ET model never miscalls which major party forms
government as of three months lead: It overestimates ALP’s share in 2010, incorrectly
predicting a majority for the ALP. In 2013 and 2016, ET is far off the seat count but
correctly calls the election for LNP. In 2019, ET forecasts either major party having
a chance of forming minority government, which is much closer to the actual outcome
(a slim two seat majority for LNP) than the proportional pendulum (which predicted
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Figure 5.3: Classification accuracy scores of each ML model and pendulum across every
election and lead time. Note that any variation in the “no change” models is caused by
newly redistricted seats.
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Table 5.3: An abridged set of accuracy scores for the most likely predicted outcome, along with
the lower and upper bounds of the 95% confidence interval (see Section Uncertainty Calibration
for details; refer to Appendix Section 5.5.4 for the complete table). For instance, if the lower
bound accuracy for an ML model is 80%, it indicates that among all accuracy scores generated
from the simulated elections, the value at the 95% confidence interval’s lower bound was 80%.
Also, if a pendulum model shows 90% accuracy at the upper bound, it suggests that when polling
values are adjusted to be two standard deviations higher for the election winning party than the
mean, the pendulum’s classification accuracy reaches 90%.

All Seats Marginal
Seats

Lead
(Months)

Year Model Most
probable
outcome

Lower
bound
(95%
CI)

Upper
bound
(95%
CI)

Most
probable
outcome

Lower
bound
(95%
CI)

Upper
bound
(95%
CI)

1 2010 Extra Trees Classifier 87.33 79.33 87.33 74.58 59.32 74.58
TPP Proportional 84.67 76.67 87.33 67.80 47.46 74.58

2013 Extra Trees Classifier 86.00 71.33 86.00 73.21 53.57 73.21
TPP Proportional 86.00 84.00 87.33 76.79 71.43 80.36

2016 Extra Trees Classifier 86.67 78.00 86.67 78.13 59.38 78.12
TPP Proportional 83.33 80.67 86.67 70.31 64.06 78.12

2019 Extra Trees Classifier 92.05 76.16 92.05 82.76 55.17 82.76
TPP Proportional 82.78 80.13 83.44 58.62 51.72 60.34

2022 Extra Trees Classifier 85.43 75.50 85.43 72.92 54.17 79.17
TPP Proportional 78.15 78.15 78.15 70.83 70.83 70.83

3 2010 Extra Trees Classifier 88.00 78.67 88.00 76.27 62.71 76.27
TPP Proportional 86.67 86.00 87.33 72.88 71.19 74.58

2013 Extra Trees Classifier 85.33 72.00 85.33 71.43 48.21 75.00
TPP Proportional 87.33 84.67 89.33 80.36 75.00 85.71

2016 Extra Trees Classifier 86.67 78.00 86.67 78.13 56.25 78.12
TPP Proportional 85.33 81.33 86.67 75.00 65.63 78.12

2019 Extra Trees Classifier 92.05 77.48 92.05 82.76 55.17 82.76
TPP Proportional 82.78 76.16 91.39 58.62 46.55 81.03

2022 Extra Trees Classifier 85.43 75.50 85.43 72.92 62.50 79.17
TPP Proportional 82.12 79.47 84.11 70.83 70.83 70.83

6 2010 Extra Trees Classifier 88.00 76.00 88.00 76.27 55.93 77.97
TPP Proportional 87.33 84.00 88.00 74.58 66.10 76.27

2013 Extra Trees Classifier 85.33 74.00 85.33 71.43 50.00 78.57
TPP Proportional 88.00 84.67 89.33 82.14 75.00 85.71

2016 Extra Trees Classifier 86.67 77.33 86.67 78.13 62.50 78.12
TPP Proportional 86.00 62.67 86.00 76.56 21.88 76.56

2019 Extra Trees Classifier 92.72 79.47 92.72 84.48 60.34 84.48
TPP Proportional 88.74 88.74 88.74 74.14 74.14 74.14

2022 Extra Trees Classifier 85.43 75.50 87.42 72.92 60.42 77.08
TPP Proportional 84.11 84.11 84.11 68.75 68.75 68.75
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over 90 seats for ALP). In 2022, the ET model predicted a slim minority for ALP which
is very close to the actual two seat majority that eventuated, and a better prediction
than the anticipated 100 ALP seats forecasted by the proportional pendulum. Although
not the most accurate for seat count, the ET model is still correct about which party
forms government, and unlike the more accurate GB model, ET is the better classifier.
Furthermore, GB’s accuracy declines sharply in 2019, whereas the ET model did not,
making it more consistent in that sense. For these reasons, I select this ET model as the
best model to explore more thoroughly in the next section.

5.3.2 Presenting the Best Models

This section details the best models identified in this study. The ET model with the
pendulum, polls, and fundamentals performed roughly as well or much better than
the pendulum in seat classification accuracy three months before each election (Figure
5.3). However, focusing solely on misclassification rates or seat count errors overlooks
important details for evaluating these models. This section compares this ET model with
the TPP proportional pendulum to explore how each method would have predicted each
election differently. I make the comparison at three months before each election which
is the longest lead time at which the ET model reaches or nears maximum classification
accuracy in most election forecasts (see Figure 5.3). I chose the TPP proportional model
for its higher accuracy at this lead time than the other pendulum models (Appendix
Section 5.5.4 presents this analysis using the uniform pendulum instead).
Figure 5.5 shows the confusion matrix for the ET model's and the TPP proportional

pendulum's most likely predictions. The ET model’s classification probabilities against
actual vote shares are presented in Appendix Section 5.5.4. The confusion matrix reveals
that the ET model misclassifies one fewer seat than the TPP proportional pendulum in
2010, one additional seat in 2013, and the same overall number in 2016. Therefore, up
to this point, the ET model has offered no major improvement over the simpler pen-
dulum model. This changed in 2019, when the pendulum misclassifies a substantial 26
seats, whereas the ET model misclassifies only 11. The ET continues to outperform the
pendulum in 2022, where it miscalls 22 seats, compared to the pendulum’s 27. Looking
at the composition of misclassifications, it seems the ET model favors the incumbent
more than the pendulum. Hence, ET gave the LNP better chances of victory than the
pendulum in 2019 and misclassifies in favor of the ruling major party (counting the term
2010-13 as ‘ruled’ by ALP even though they were in minority) in every other election.
Critically, the ET model does not improve over the pendulum in predicting seats won
by OTH parties.
YouGov’s MRP model made only nine misclassifications in 2022, and six were too

close to call (Goot, 2023). Even if I consider all of those seats as failures, the MRP
still beats ET 15 to 22, and so MRP is the better overall seat classifier. MRP also
performs better for seat count predictions, forecasting 80 for ALP, versus the ET’s 71
and an actual result of 77. However, the MRP was released two weeks before election
day, whereas these predictions were made three months before. Also, the actual result of
77 was within the 95% confidence interval for the ET model even at three months from
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Figure 5.4: The count of seats for the ALP as predicted by each model. The dotted line
indicates the actual seat count for that election, and the solid line represents the 76 seats
required to form a majority government.
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Table 5.4: An abridged set of ALP seat count error scores for the most likely predicted outcome,
along with the lower and upper bounds of the 95% confidence interval (see Section Uncertainty
Calibration for details; refer to Appendix Section 5.5.4 for the complete table). For example, an
error of -2 at the lower bound indicates that the actual ALP seat count was two seats higher than
the lowest estimate of seat count within the 95% confidence interval.

Lead
(Months)

Year Feature Set Model

1 2010 Baseline TPP Proportional 18 12 23
Pendulum and Polls Gradient Boosted Classifier −6 −12 1
Pendulum, Polls, and Fundamentals Extra Trees Classifier 10 4 15

2013 Baseline TPP Proportional 15 11 17
Pendulum and Polls Gradient Boosted Classifier 0 −4 5
Pendulum, Polls, and Fundamentals Extra Trees Classifier 13 6 23

2016 Baseline TPP Proportional 4 −6 11
Pendulum and Polls Gradient Boosted Classifier 4 −2 8
Pendulum, Polls, and Fundamentals Extra Trees Classifier −16 −22 −11

2019 Baseline TPP Proportional 14 11 18
Pendulum and Polls Gradient Boosted Classifier 27 24 32
Pendulum, Polls, and Fundamentals Extra Trees Classifier 7 −1 13

2022 Baseline TPP Proportional 29 29 29
Pendulum and Polls Gradient Boosted Classifier −15 −25 −6
Pendulum, Polls, and Fundamentals Extra Trees Classifier −6 −12 2

3 2010 Baseline TPP Proportional −5 −13 0
Pendulum and Polls Gradient Boosted Classifier −8 −12 −3
Pendulum, Polls, and Fundamentals Extra Trees Classifier 10 3 13

2013 Baseline TPP Proportional −5 −16 6
Pendulum and Polls Gradient Boosted Classifier −1 −5 5
Pendulum, Polls, and Fundamentals Extra Trees Classifier 12 5 20

2016 Baseline TPP Proportional −4 −17 8
Pendulum and Polls Gradient Boosted Classifier 2 −5 8
Pendulum, Polls, and Fundamentals Extra Trees Classifier −17 −22 −10

2019 Baseline TPP Proportional 23 8 35
Pendulum and Polls Gradient Boosted Classifier 28 24 32
Pendulum, Polls, and Fundamentals Extra Trees Classifier 7 1 13

2022 Baseline TPP Proportional 21 14 26
Pendulum and Polls Gradient Boosted Classifier −2 −10 4
Pendulum, Polls, and Fundamentals Extra Trees Classifier −5 −10 2

6 2010 Baseline TPP Proportional 11 9 12
Pendulum and Polls Gradient Boosted Classifier −10 −15 −5
Pendulum, Polls, and Fundamentals Extra Trees Classifier 12 4 18

2013 Baseline TPP Proportional −3 −13 6
Pendulum and Polls Gradient Boosted Classifier 0 −5 3
Pendulum, Polls, and Fundamentals Extra Trees Classifier 13 7 21

2016 Baseline TPP Proportional −16 −18 −10
Pendulum and Polls Gradient Boosted Classifier 3 −3 8
Pendulum, Polls, and Fundamentals Extra Trees Classifier −17 −22 −12

2019 Baseline TPP Proportional 14 14 14
Pendulum and Polls Gradient Boosted Classifier 27 24 31
Pendulum, Polls, and Fundamentals Extra Trees Classifier 6 0 15

2022 Baseline TPP Proportional 8 8 8
Pendulum and Polls Gradient Boosted Classifier −8 −17 0
Pendulum, Polls, and Fundamentals Extra Trees Classifier −5 −14 2
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election day 2022 (Figure 5.4). In tight elections like 2010, 2016, 2019, and 2022, better
precision in predicting even two seats can be crucial with sufficient lead time, which the
MRP demonstrated. However, it was only a short lead time and in only one election.

Figure 5.5: Confusion matrices for the best model in this study (ET with all predictors)
versus the best pendulum (TPP proportional). Each model’s most likely predictions were
made three months before election day. For example, the top leftmost number (68) in-
dicates that in 2010, the ET model predicted 68 seats would go to the ALP and did so.
However, the number 11 underneath shows that 11 seats were also predicted to go to the
ALP but were instead won by the LNP.

Permutation Feature Importance

Figure 5.6 shows the permutation feature importance (PFI) for each feature block in
the best-performing ET model. The model primarily relies on the pendulum and each
party’s vote share from the previous election, suggesting that the ET model adjusts
pendulum predictions based on electoral margins. Other factors contribute inconsistently
to predictive accuracy, improving it in some elections while decreasing it in others.
This observation suggests that pruning certain socioeconomic factors might improve
performance. State effects and unemployment rate are the most consistently important
predictors outside of vote shares and pendulum features.
Interestingly, polls have little impact, likely because they are correlated with the

pendulum predictors. However, Figure 5.3 shows that including polls slightly improves
predictions in some cases (e.g., six months before the 2013 election), indicating some
value in incorporating polls.
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Figure 5.6: The PFI of each block of predictors for the best-performing model (ET
with pendulum, polls, and fundamental predictors). Higher positive values indicate that
including the feature block improves accuracy, negative values indicate that withholding
this block improves accuracy.
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5.3.3 Evaluation

Table 5.5 compares the ET model against the evaluation criteria outlined in the Intro-
duction. Based on these criteria, ET appears to be a good technique to continue to
trial in future elections although with caveats. Since 2019, the pendulum has been less
accurate in both seat classification and seat counts. The ET model appears to classify
seats either roughly as well as the pendulum (from 2010 to 2016) or 5-15 seats better
(2019-2022) with a three month lead time. However, seat count error was often higher
than the pendulum. Although ET never miscalled the major party winner, the actual
seat count rarely fell within the 95% confidence interval, meaning the model was too sure
of an incorrect outcome. Another possibility could be to use GB for seat count estima-
tion (accepting that GB may be vulnerable to polling error the same as the pendulum
is) and ET for seat classification.

5.4 Discussion

The Mackerras pendulum has been a reliable predictive model in Australian politics,
accurately forecasting the winning party in all but three elections since 1972. However,
as polling response rates decline and errors increase, the pendulum’s effectiveness may
diminish, particularly if the crossbench expands. This will strain the model because
it relies on accurate polls and is naive about predicting minor party seats. In order
to develop models that outperform the pendulum, it is necessary to experiment with
new approaches. This paper is the first to apply machine learning techniques to the
Australian context, following successful applications in other democracies.
This paper trialed a wide range of algorithms and types of predictors and revealed

two notable models. Firstly, an extra trees classifier with pendulum, polling, and funda-
mental features was the best at classifying seat outcomes, outperforming the pendulum
by 15 seats in 2019 and five in 2022. However, in elections 2010-2016, the ET model
performed roughly as well as the pendulum, which would not have justified adopting
a more complex model as of that time. Secondly, a gradient boosted classifier with
pendulum and polling predictors forecasted seat counts with greater accuracy than the
pendulum in every election from 2010 to 2022 except 2019, in which the pendulum also
performed poorly. Each model achieved this performance as early as three or six months
before election day. If the pendulum continues to perform as poorly as in 2019 and 2022,
then these ML techniques may be very valuable in accurately calling both the overall
winner and that of seat contests. Even an improvement of a few seats could help better
anticipate the outcomes of tight elections like 2010, 2016, 2019, and 2022.
Further improvements can be made to these models. The PFI analysis shows that the

extra trees model corrects pendulum forecasts by factoring in margins, state effects, and
unemployment. Simplifying the model by pruning less impactful features could make it
simpler and more accurate. Another key improvement would be combining the seat count
accuracy of the gradient boosted model with the classification accuracy of the extra trees
model, resulting in a single model that excels at both tasks. This might be achieved by
ensembling the two techniques. Finally, tree-based models are inherently more complex
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Table 5.5: Comparing the best discovered ML model to the evaluation criteria.

Criteria Extra trees with pendulum, polls, and fundamentals

Seat count accuracy
(see Figure 5.4,
Table 5.4, and
Appendix Section
5.5.4).

Taking each model’s most likely predictions at three months’ lead time, ET was
closer to the actual seat share for the major parties than the proportional
pendulum by up to 16 seats in the 2019 and 2022 elections but farther away by
5-13 seats in other elections.

Seat classification
accuracy (see Figure
5.3, Table 5.3, and
Appendix Section
5.5.4).

ET is overall a much better seat classifier than any pendulum model. The worst
performance by ET was one seat additional misclassification than the TPP
proportional pendulum in 2013, but ET misclassified 15 fewer seats in 2019 and
five fewer in 2022. Marginal seat and crossbench seat prediction is a particular
weaknesses of the pendulum. In this regard, ET was a better marginal seat
classifier than the TPP proportional pendulum at every election except 2013 by
up to 24% accuracy (Table 5.3). ET is roughly the same as the pendulum for
predicting crossbench winners.

Consistency ET was consistently either roughly as accurate or better than the pendulum at
classification and never worse at seat count forecasting to the extent that it would
miscall the winning major party. In comparison, the proportional and uniform
pendulum models miscalled 2019.

Lead time In all elections except 2013, ET was equally as or more accurate (classification)
than the pendulum by six months lead time (Figure 5.3). Although less accurate
than the pendulums at seat counting, ET correctly predicted the winning major
party of each election by six months lead time.

Uncertainty
calibration

ET had smaller uncertainty ranges than the pendulum in both seat count and
classification accuracy. However, the actual seat count rarely fell within the 95%
confidence interval of the ET model, meaning the model was over-confident of a
wrong prediction.

Parsimony This ET model required many different kinds of indicators, including polls,
fundamentals, and pendulum predictions. As a result, the model was prone to
losing accuracy due to fitting to features in the training elections that did not
generalize to the test election (Figure 5.6). This indicates that some features could
be pruned from the model to make it simpler and more accurate. The ET model is
much more complex than the TPP pendulum, so it is only justifiable to use this
ML model if the pendulum continues to perform at its 2019-2022 level as opposed
to its higher accuracy scores in 2010-16 (Figures 5.3 and 5.4).
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than pendulum models. Developing a logistic regression model incorporating interaction
and nonlinear effect terms could produce a model as accurate as the tree-based ones but
simpler and easier to interpret.
International electoral forecasters may find value in using machine learning (ML) to

improve uniform swing models rather than building synthetic models based on funda-
mentals, margins, and polls. Incorporating pendulum predictions enhanced the extra
trees model. Even when the pendulum performed poorly (2019-2022), the other features
were sufficient to correct the misclassifications.
A key limitation of this study is that all predictions were retrospective. The true test

of any electoral model is its ability to make prospective forecasts. Although I structured
the modeling to closely simulate how the model would have forecasted at inference
time, I selected the best hyperparameters retrospectively. As a result, there is a risk
that I may have chosen a model that coincidentally performed well over five elections
(and at five lead times each). While consistent performance across all five elections
reduces the likelihood of overfitting, the real test will be applying the extra trees and
gradient boosted models to future elections. Another limitation is the reliance on publicly
available datasets. Pollsters collect rich data, such as undecided rates, nonresponse rates,
and respondent postcodes for geo-location, but this data is rarely made available across
multiple elections and lead times. Novel data sources could be explored, especially if
they help predict swing seats, which are typically the hardest to forecast. Marginal
seat-specific polls often fail to accurately predict swing seats (Goot, 2023) but could still
perhaps improve ML-based forecasts. Another possible source of data could come from
projects such as Evershed and Nicholas (2022), which use social media and news data to
detect and categorize announcements of public works projects targeted at marginal seats
near election time. If these public announcements have an electoral impact, a synthetic
model could exploit this data to anticipate which marginals will flip more precisely.

5.5 Appendices

5.5.1 Replication Material

Reproduction code, including all data used in the modeling, can be found at the following
link. All code originally run in python version 3.10.
https://osf.io/rvc2f/?view_only=a6f7c8360a3d4312ab6681dea0e1500e

5.5.2 Additional Information about the Data

List of Predictors

This section details all predictors used in the study. Note that some predictors do
not have a feature set because they are always included in each model.

https://osf.io/rvc2f/?view_only=a6f7c8360a3d4312ab6681dea0e1500e
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Table 5.6: Details of every variable used in the study.
Feature Set Feature Block Variable Name Values Description

Fundamentals Aboriginal
and, or Torres
Strait Islander
peoples

Aboriginal
and, or Torres
Strait Islander
peoples

[0, 1] The portion of the seat’s
population that identifies as
Aboriginal and, or Torres
Strait Islander.

Blue collar Blue collar [0, 1] The portion of the workforce
in this seat is classified as
“technicians and trades
workers, machinery operators
and drivers, or laborers.

Born overseas Born overseas [0, 1] The portion of the seat’s
population born overseas.

Median age Median age [0, inf) The median age among the
seat’s population.

Pink collar Pink collar [0, 1] The portion of the workforce
in this seat classified as
community and personal
service workers”, clerical and
administrative workers, or
sales workers.

White collar White collar [0, 1] The portion of the workforce
in this seat classified as
managers or professionals.

Unemployment Unemployment [0, 1] The portion of the seat’s
population identified as
unemployed and looking for
work (part-time or full-time)
on the census.

Homeowner Homeowner [0, 1] Portion of the seat’s
population who own their
residence.

Median
monthly
mortgage
repayments ($)

Median
monthly
mortgage
repayments ($)

[0, inf) The median monthly mortgage
repayment among the seat’s
population.

Median weekly
household
income ($)

Median weekly
household
income ($)

[0, inf) The median weekly household
income among the seat’s
population.

Median weekly
rent ($)

Median weekly
rent ($)

[0, inf) The median weekly rent
among the seat’s population.

Economics Real GDP
growth from
the previous
year

(-inf, inf) For example, in 2019, I used
the real GDP growth rate for
2018 as a predictive feature to
estimate voter sentiment
about the macro economy.

Economics Inflation rate
(consumer
prices)
previous year

(-inf, inf) For example, in 2019, I use the
inflation rate of consumer
prices for 2018 as a predictive
feature to estimate voter
sentiment about the macro
economy.

Continued on next page...
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Feature Set Feature Block Variable Name Values Description

- Flipped last
election

Flipped last
election

0, 1 This binary variable is true if
the seat voted out its
incumbent in the previous
election.

- Previous
Election Vote
Share

Highest share
of preferences
previous
election [ALP,
LNP, OTH]

[0, 1] For each party category (ALP,
LNP, or OTH), the maximum
portion of preferences reached
by that party in the previous
election before it was either
eliminated in a
preference-round or a winner
passed 50

Pendulum Pendulum Pendulum
[ALP, LNP,
OTH]

[0, 1] A TPP proportional pendulum
model’s prediction for the
given seat.

Polling Polls National- and
state-level
[ALP, LNP,
OTH] polling
average and
standard
deviation at
[six months,
three months,
two months,
one month, one
week] lead

[0, 1] For each party (ALP, LNP, or
other), their respective polling
average and standard
deviation over all polls
published in the four weeks
ending at the given lead time
before election day. There is a
national- and state-level
version of each variable.

Polls National- and
state-level
[ALP, LNP]
TPP polling
average and
standard
deviation at
[six months,
three months,
two months,
one month, one
week] lead

[0, 1] For each major party (ALP
and LNP), their respective
TPP polling average and
standard deviation over all
polls published in the four
weeks ending at the given lead
time before election day.
There is a national- and
state-level version of each
variable.

- State Effects State [ACT,
NSW, NT,
QLD, SA, VIC,
WA]

[0, 1] Indicates the state or territory
that the given seat is in.
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State Polls

Figure 5.7: State-level polling values and the time window over which the polling ag-
gregates were taken. Black lines show election days.

Economic Indicators

Figure 5.8: Timeline of macroeconomic variables.
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Data Sources

A copy of all original data used in this study are available with the replication ma-
terial (Appendix Section 5.5.1). Those data are drawn from the sources indicated in
Appendix Table 5.7.

Table 5.7: Sources for each variable category.
Category Period Source

Seat-level socioeconomics
(Fundamentals)

2006–2021 Statistics (2021)

Electoral history 2001 Australian Electoral Commission
(2001)

2004 Australian Electoral Commission
(2004)

2007 Australian Electoral Commission
(2007)

2010 Australian Electoral Commission
(2010)

2013 Australian Electoral Commission
(2013)

2016 Australian Electoral Commission
(2016)

2019 Australian Electoral Commission
(2019a)

2022 Australian Electoral Commission
(2022)

Polling 2004 PhantomTrend (2016)
2007 PhantomTrend (2016)
2010 PhantomTrend (2016)
2013 PhantomTrend (2016)
2016 PhantomTrend (2016)
2019 Bowe (2023)
2022 Bowe (2023)

National macroeconomic variables
(fundamentals)

2006–2021 International Monetary Fund
(2024)

5.5.3 Additional Information about the Models

Overview of Machine Learning Models
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Table 5.8: Summary of the selected models in this study and a comparison of their
strengths and weaknesses.
Model Description Strengths Weaknesses

Logistic
regression.

I trial logistic regression
models without penalties
and with lasso and ridge
penalties, which protect
against overfitting
(Le Cessie and
Van Houwelingen, 1992;
Tibshirani, 1996).

Excels when cases can be
classified by summarizing
a set of variables
multiplied by weights.
Successful in a diverse
range of applications and
is easy to interpret.

It can only account for
nonlinearity or
interaction effects if the
modeler specifically
builds the model to
handle these (which I will
not explore in this
study). It may require
large training data to
attain good results and
can be confounded when
predictors are correlated.

Extra trees
classifier

This algorithm is a
tree-based model that is
often successful in cases
where there are complex
interactions between
variables. Extra trees
builds an ensemble of
classification trees that
are tuned to maximize
homogeneity of the leaves
and then takes the
portion of “votes” from
the trees as the
classification
probabilities. Unlike
logistic regression, extra
trees can automatically
account for interaction
effects (Geurts, Ernst,
and Wehenkel, 2006).

Automatically handles
interaction effects. More
robust against overfitting
than neural networks but
more vulnerable than
logistic regressions.

Performance can be slow
as the number of trees
increases. They cannot
handle interaction effects
as complex as neural
networks can.

Gradient boost This algorithm is similar
to extra trees; however,
the ensemble of trees is
built additively,
potentially reducing error
more effectively
(Friedman, 2001).

More robust against
outliers in the data than
extra trees.

Same as an extra trees
model, but it requires
longer fitting times.

Continued on next page...
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Model Description Strengths Weaknesses

Multilayer
perceptron

This algorithm is a type
of neural network.
Neunhoeffer et al. (2020)
successfully applied
neural networks to
seat-level predictions in
Germany, so I evaluate
this same type of
algorithm here (Haykin,
1994).

Highly effective in fitting
to complex interaction
effects.

Long computation times
and vulnerable to
overfitting when
interaction effects are not
sufficiently complex.

Hyperparameters

Table 5.9: Hyperparameter grid.

Model Parameter Values Count

Extra trees Number of estimators 50,100,1000 3
Criterion function for
measuring split quality

’gini, ’entropy’, ’log loss’ 3

Sub total 9

Penalized logistic
regression

Penalty function lasso (L1), ridge (L2) 2

Penalty rate (C) 0.1, 0.5, 1.0, 2.0 4
Sub total 8

Unpenalized logistic
regression

1

Sub total 1

Gradient boost Number of estimators 50, 100, 1000 3
Sub total 3

Multilayer perceptron Number of hidden layers 1, 2 2
Number of neurons in
each layer

64, 128 2

Activation functions in
each neuron

sigmoid, relU, tanh 3

Sub Total 12

Total settings 33

Pendulums

Two-Party Preferred Uniform and Proportional Swing

This is an implementation of the Mackerras pendulum (Mackerras, 1976) used by the
Australian Broadcasting Company (Green, 2016, 2019, 2022) to predict election out-
comes. The algorithm is based on the idea that each seat in an election will shift
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its two-party vote share by similar amounts, clustering around an average (the uniform
swing). Although the actual changes in each seat may vary, they tend to be close enough
to the average that this system will make good predictions. This allows for predicting
the overall number of seats for each major party by estimating the national average
swing. In this implementation, I estimate that swing by taking the two-party vote share
from the previous election as the true TPP (two-party preferred) support at the time of
that election and then using the TPP polling average to estimate the current two-party
support. The estimated swing is the difference between those two numbers.
In this system, if a given seat is held by a non-major party (OTH) before an upcoming

election, then I predict that its incumbent will retain that seat. Therefore, the seats
predicted to be won by OTH parties will always be the same as those held by OTH
parties before the election. If the seat is held by either ALP or LNP, I determine my
predicted outcome for that seat as follows (see Equations 5.1 – 5.2). First, I calculate each
party’s national two-party-preferred vote share (TPV) at each election as the percentage
of total votes that were counted towards that party. If neither of the two major parties
won that seat, I counted only their votes before they were eliminated from the voting
rounds and their preferences were transferred. TPV of each major party will sum up to
100%, but the total number of votes may not equal the number of votes cast because of
the seats won by minor parties. Next, for each election, I calculate the swing for each
party as the national two-party preferred polling average (TPP) minus the TPV from
the previous election. If ALP or LNP held the seat then for each seat at each election if
the incumbent’s margin plus the swing is less than or equal to zero, I predict that the
other major party will win the seat. Otherwise, I predict the incumbent major party
will hold the seat. In the proportional version of this pendulum, if a state TPP poll
value is available, that value is used instead.

SwingParty
2022 = TPPPollingAverageParty

2022 − TPV Party
2019 (5.1)

PartyVictory2022 = SeatMarginParty
2019 +

ˆ
SwingParty

2022 > 0 (5.2)

If the party is OTH, the prediction is OTH. If the incumbent is not the predicted
winner, the other major party is the expected winner.

Two Candidate Vote Uniform Swing (TCV Uniform)

This system is based on the Reed pendulum proposed by Resolve Strategic (Reed, 2022).
This version provides a more sophisticated treatment of minor party seats, which is
becoming more important as non-major parties hold more seats. This system calculates
swing based on the two-candidate votes share (TCV), where I calculate the votes won
by each party in each seat and the votes won by whichever party won the second most



Chapter 5. Predicting Australian Federal Electoral Seats with Machine Learning 201

votes in that seat. All votes for each party category (ALP, LNP, and OTH) are summed
up, and the percentage for each category is calculated. In this system, every vote is
counted in the percentages, and each category's total percentage is 100%. I calculate
each party’s national swing for each election, that party’s polling average minus their
TCV from the previous election. Next, if the incumbent party’s margin plus their party’s
national swing is less than or equal to zero for each seat, I predict the party with the
second most votes in the previous election will win this seat (see Equation 5.3).

Swingparty2022 = PollingAverageParty
2022 − TCV Party

2019 (5.3)

5.5.4 Additional Results

For an expanded version of Table 5.3 which presents the accuracy scores for all models
across all elections and lead times, see the reproduction materials’ file:

output/all models uncertainty summary all and marginal seats.csv

For an expanded version of Table 5.4 which presents the seat count error for all models
across all elections, parties, and lead times, see the reproduction materials’ file:

output/all seat count errors summary.csv

Alternative Training Sizes

Appendix Figures 5.9 and 5.10 show that when the ML models are fitted on all preced-
ing training elections, no single ML model consistently, or in overall average accuracy
at three months lead time, exceeds the pendulum in either classification or seat count
accuracy. For example, ET with pendulum, polls and fundamental predictors now un-
derperforms against (instead of equaling) the proportional pendulum in 2016 at three
months lead time (Appendix Figure 5.9). This is why the main paper presents results
for ML models trained on up to two preceding elections.

Raw Prediction Data

The predictions made by every model for every trial can be found in the replication
material at file location:

output\pickles\raw.pkl
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Figure 5.9: Classification accuracy across models and feature sets when the models are
trained on all elections since 2007 instead of the most recent two.
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Figure 5.10: Seat count accuracy when the models are trained on all elections since
2007 instead of the most recent two.
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Additional Seat Classification Results

Figure 5.11: Classification accuracy across models and feature sets when summarized
only for seats that were won by a minor party.
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Figure 5.12: Classification accuracy across models and feature sets when summarized
only for seats with a pre-election margin less than 6% which is the Australian Electoral
Commission's standard for the ‘marginal’ categorization.
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Additional Seat Count Results

Figure 5.13: The count of seats for the LNP as predicted by each model. The dotted
line indicates the actual seat count for that election, and the solid line represents the 76
seats required to form a majority government.
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Figure 5.14: The count of seats for the minor parties as predicted by each model. The
dotted line indicates the actual seat count for that election, and the solid line represents
the 76 seats required to form a majority government.
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Post-Election Seat Margin versus Vote Share Estimate

For each regression model, at three months before each election, Appendix Figure 5.13
shows the predicted versus actual vote shares for every seat. The variance in predictions
comes from the bootstrapping technique discussed in Section 5.2.2. MLP has very wide
95% confidence intervals whereas other models are relatively consistent. Figure 5.16
shows that OTH vote margins in seats won by the crossbench are typically underesti-
mated by every model.

Figure 5.15: Part 1: A scatter plot showing how each regression model’s predicted versus
actual vote shares. The dotted line indicates where perfect predictions would fall. The
red bars are the 95% confidence interval of each regressor across bootstrapped predictions.
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Figure 5.16: Part 2: A scatter plot showing how each regression model’s predicted versus
actual vote shares. The dotted line indicates where perfect predictions would fall. The
red bars are the 95% confidence interval of each regressor across bootstrapped predictions.

Post-Election Seat Margin versus Classification Certainty

Figure 5.17: A scatterplot showing the ET with pendulum, polls, and fundamentals
model’s classification probability for the ALP versus the actual vote share that the ALP
reached in that election. The horizontal solid line represents a 50% certainty of an ALP
classification, and the vertical line represents 50% of the seat’s votes.
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Figure 5.18: A scatterplot showing the ET with pendulum, polls, and fundamentals
model’s classification probability for a minor party versus the actual vote share that any
minor party reached in that election. The horizontal solid line represents a 50% certainty
of an OTH classification, and the vertical line represents 50% of the seat’s votes.

Uniform Pendulum Confusion Matrices

Figure 5.19: Confusion matrices in which a uniform instead of proportional TPP pen-
dulum was used for the pendulum predictions both as a model and inputs for the ML
models.
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Altmann, André et al. (2010). “Permutation importance: a corrected feature importance
measure”. In: Bioinformatics 26.10, pp. 1340–1347.

Argandoña-Mamani, Alexander et al. (2024). “Predicting Election Results with Machine
Learning—A Review”. In: Proceedings of Eighth International Congress on Infor-
mation and Communication Technology. Ed. by Xin-She Yang et al. Lecture Notes
in Networks and Systems. Springer Nature, Singapore, pp. 989–1001.

Arnold, Christian et al. (2024). “The Role of Hyperparameters in Machine Learning
Models and How to Tune Them”. In: Political Science Research and Methods 12.4,
pp. 841–848.

Australian Electoral Commission (2001).AEC: When: Past Electoral Events url: https:
//results.aec.gov.au/10822/Website/index.html.

— (2004). Election 2004: the official election report and results url: https://results.
aec.gov.au/12246/default.htm.

— (2007). 2007 Federal Election Results url: https://results.aec.gov.au/13745/.
— (2010). Australian Electoral Commission Virtual Tally Room url: https://results.

aec.gov.au/15508/Website/Default.htm.
— (2011). Compulsory voting in Australia. Australian Electoral Commission url: https:

//www.aec.gov.au/About_AEC/publications/voting/.
— (2013). Australian Electoral Commission Virtual Tally Room url: https://results.

aec.gov.au/17496/Website/Default.htm.
— (2016). 2016 Federal Election. Australian Electoral Commission url: https://

results.aec.gov.au/20499/Website/HouseDefault-20499.htm.
— (2019a). 2019 Federal Election. Australian Electoral Commission url: https://

results.aec.gov.au/24310/Website/HouseDefault-24310.htm.
— (2019b). AEC Fact-Sheet. 2019.
— (2022). 2022 Federal Election. Australian Electoral Commission url: https://

results.aec.gov.au/27966/Website/HouseDefault-27966.htm.
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6 Conclusion

Declining response rates imperil the reliability of general population surveys around the
world. The effort to address this issue is a broad undertaking, with many researchers
approaching the problem in different ways. This dissertation represents a set of studies
that each aim to contribute to this endeavor.
Up until the studies that comprise this dissertation, several gaps persisted in this

area of research. Firstly, prior research had established that accounting for the time-
series nature of panel data was helpful in improving propensity modeling, but the best
practices to date required model engineering by trial and error. The time-series models
presented in Chapter 2 demonstrated a tool for automatically learning temporal depen-
dency which is then used to check the sufficiency of other, simpler models. Secondly,
practitioners seeking to adopt an ML-based propensity model from past studies faced a
common problem: they had no way to know what would apply in their own context, as
every panel is different. Chapter 3 shows that tree-based models using demographic and
past nonresponse behavior predictors are consistently effective across diverse panel de-
signs. Therefore, survey researchers can adopt this technique with confidence. Thirdly,
propensity modeling in panel studies faced the difficulty that these models are not ef-
fective until several waves of training data have accumulated, meanwhile participants
are attriting. The pre-trained models demonstrated in Chapter 3 provide a solution.
Fourthly, survey researchers implementing Adaptive Survey Design (ASD) had to rely
on assumptions or limited field experiment reports to estimate how various options might
affect their sample. The framework presented in Chapter 4 offers researchers a way to
test several ASD options at once and gather strong evidence of how those strategies
will affect sample composition and response rates. Finally, if nonresponse is to remain a
persistent issue for the foreseeable future, Chapter 5 presents an example of how ML can
be used to correct inference errors and allow researchers to continue making accurate
predictions despite biased samples.
Taken together, this body of research can be summarized as follows. My coauthors

and I developed tools to improve predictions of unit nonresponse in panel surveys, both
by enhancing accuracy through more sophisticated handling of temporal dependencies
and by enabling more timely forecasts via pre-training. We demonstrated that these
ML-based techniques are highly generalizable, which should encourage broader adoption
among survey researchers. Rather than applying response propensity models to ex-post
weighting, as other researchers have done, we explore their use in an ex-ante solution to
nonresponse bias: ASD. By empowering researchers to better control targeted, adaptive
protocols, we support the achievement of more balanced samples. Finally, given that
nonresponse bias will remain a challenge for the foreseeable future, we propose leveraging
ML to correct sample-based predictions with a demonstrative application to electoral
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forecasting.
What is the eventual goal of this research direction, and what are the next steps to

approach it? In my view, assuming that the general population cannot be induced to
respond to surveys more diligently, the next best outcome is this: samples are balanced
enough, and our understanding of the factors that drive nonresponse is apt enough that
we can ex-post adjust sample inferences effectively and consistently. Ideally, survey man-
agers would be able to rapidly anticipate their sample balance, adjust protocols to induce
typical nonrespondents to participate, and reach samples with a sufficient mix of respon-
dents such that weighting can be sufficiently effective for whatever purpose the study
aims for. ASD, as discussed in Chapter 4, is a core technique for this targeted protocol
adjustment so as to induce more typical nonrespondents to participate. Additionally,
we would ideally have the explanatory modeling capacity to connect the variables we
collect with the causes of nonresponse and thereby weight by the right variables.
I believe that this dissertation has made some progress toward that goal by helping

to mature the practice of ML modeling. Institutions adopt predictive models at various
levels of maturity: first, one proves that a given model has a certain degree of merit
in concept. Next, one typically demonstrates that the model is ready to be adopted in
real conditions. This step typically involves simulating what would have happened if
the model had been used and then assessing the various hypothetical outcomes for error,
cost, ethical concerns, etc, with the goal of showing the safety and benefits of this change
in practice. Finally, the model is adopted in practice and the performance and value
of that model are constantly monitored and it is adjusted (or even decommissioned) as
needed.
In this maturity framework, Chapters 2, 3 and 5 aimed to prove a concept for new

modeling techniques: Time-series models in Chapter 2, pre-trained models in Chapter 3,
and corrected pendulums in Chapter 5. Chapters 3 and 4 fit into the adoption-readiness
step: Chapter 3 demonstrated the consistent success of tree-based propensity models.
Chapter 4 provided a framework for establishing whether a prospective ASD strategy
is fit to be deployed or not. Studies like these help survey managers address various
concerns about a new technique and assist in establishing new practices.
The next step for each of these strands of research is to reach its next level of ma-

turity. Long Short-Term Memory models could be tested in new panel surveys with
the goal of assisting the researchers to discover the optimum way to handle temporal
dependency. Pre-trained models could be applied in real early panel waves. The ASD
options identified in Chapter 4 could be applied in practice to observe how closely the
estimated outcomes match actual outcomes in terms of bias and response rates. This
would be the next logical step in supporting the notion that this framework is suitable
for broader adoption. Finally, the same ML models presented in Chapter 5 should be
applied to the 2025 Australian election. Regardless of the outcome, that study would
establish whether the efficacy of these retrospective predictions carries over to a prospec-
tive application. Taking these logical next steps in each strand of research will bring us
closer to enhancing the control that survey researchers have over their samples and the
accuracy of their inferences.
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