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Abstract
Inverse problems are key issues in several scientific areas, including signal pro-
cessing and medical imaging. Data-driven approaches for inverse problems aim 
for learning model and regularization parameters from observed data samples, and 
investigate their generalization properties when confronted with unseen data. This 
approach dictates a statistical approach to inverse problems, calling for stochastic 
optimization methods. In order to learn model and regularisation parameters simul-
taneously, we develop in this paper a stochastic bilevel optimization approach in 
which the lower level problem represents a variational reconstruction method for-
mulated as a convex non-smooth optimization problem, depending on the observed 
sample. The upper level problem represents the learning task of the regularisation 
parameters. Combining the lower level and the upper level problem leads to a 
stochastic non-smooth and non-convex optimization problem, for which standard 
gradient-based methods are not straightforward to implement. Instead, we develop 
a unified and flexible methodology, building on a derivative-free approach, which 
allows us to solve the bilevel optimization problem only with samples of the objec-
tive function values. We perform a complete complexity analysis of this scheme. 
Numerical results on signal denoising and experimental design demonstrate the 
computational efficiency and the generalization properties of our method.

Keywords  Inverse problems · Data-driven design · Derivative-free optimization · 
Gaussian smoothing

1  Introduction

Bilevel optimization is a very important optimization methodology for solving inverse 
problems [5, 21]. The strength of bilevel optimization is that it allows to endog-
enously learn hyper-parameters, which otherwise would have to be tuned manually. 
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A very prominent instantiation of this is the task of learning regularization param-
eters [30, 32, 35]. A mathematical formulation of this problem is to first define a 
variational reconstruction method involving a data fidelity function x �→ L(K(x), ξ), 
where ξ ∈ Ξ is the observed data, and K : X → D is the forward operator, mapping 
model parameters x to observations in D. We then define the reconstruction operator 
x∗(y, ·) : Ξ → X  as a solution of the optimization problem

	
x∗(y, ξ) ∈ argmin

x∈X
{L(K(x), ξ) + Sy(x)} for all (y, ξ) ∈ Y × Ξ.� (1.1)

The function Sy : X → R ∪ {+∞} is a parameter-dependent regularizer, that avoids 
overfitting and imposes a-priori known structure into the model parameter. Choosing 
this parameter y ∈ Y  a-priori is a severe bottleneck in the effective solution of the 
underlying inverse problem and poses significant practical challenges. Traditionally, 
this problem of hyperparameter tuning has been heuristically solved and generally 
requires a large number of solutions of this variational problem for a pre-defined grid 
of parameter values y. Bilevel optimization replaces this heuristic search procedure 
by a disciplined optimization approach which selects model parameters on par with 
regularization parameters, given the data sample representing the inverse problem. 
However, the bilevel methodology is not only useful for solving the hyperparam-
eter learning problem. It also has a significant impact for other inverse problems in 
which the forward operator itself exhibits a dependence on model parameters. This 
is generically the case in optimal experimental design. In this framework we address 
the question of where and when to take measurements, which variables to include, 
and what experimental conditions should be employed. Mathematically, this leads to 
a forward model Ky  which depends on a vector of design parameters y ∈ Y , which 
have to be chosen before the variational model is solved. Hence, problem (1.1) needs 
to be modified to

	
x∗(y, ξ) ∈ argmin

x∈X
{L(Ky(x), ξ) + Sy(x)} for all (y, ξ) ∈ Y × Ξ.� (1.2)

To obtain a generic set-up for learning selected components of (1.2) from data, 
we adopt a supervised learning approach [2]: We are given random variables 
ξ = (ξ1, ξ2) ∈ Ξ1 × Ξ2 = Ξ, defined on a fixed probability space (Ω, F ,P), where 
the first component contains model parameters, and the second component are the 
observations. This random element lives in some measurable space Ξ with joint dis-
tribution Pξ. Our aim is to learn the model parameters x∗(y, ξ2) (as a function of 
regularization parameters and data), and regularization parameters y∗ ∈ Y  simulta-
neously so that they are optimal given the expected risk defined in terms of the loss 
function and the data. Following [2], this leads to the stochastic bilevel formulation

	

y∗ ∈ argmin
y∈Y

{Eξ[F (x∗(y, ξ2), ξ1)] + r1(y)}

s.t.: x∗(y, ξ2) ∈ argmin
x∈X

{g(x, y, ξ2) + r2(x)}.
� (1.3)
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The upper level objective Eξ[F (x∗(y, ξ2), ξ1)] + r1(y) contains an expectation-
valued part involving a tracking-type function F : X × Ξ1 → R, usually assumed 
to be sufficiently smooth, and a regularizer/penalty function r1(y), i.e.  chosen to 
promote a-priori known structure in the parameter vector. The lower level objective 
g(x, y, ξ2) + r2(x) is a variational model for obtaining model parameters, as a func-
tion of the realized data ξ2 ∈ Ξ2 and the tunable hyperparameter y ∈ Y .

Example 1.1  (Bilevel Learning) The bilevel learning approach for inverse problem is 
a statistical learning methodology to select the regularization parameter based on a 
variational formulation. The unknown parameter and the corresponding observation 
are modeled as jointly distributed random variables (ξ1, ξ2) : Ω → Ξ1 × Ξ2, defined 
as

	 ξ2(ω)≜Ky1ξ1(ω) + Z(ω), ω ∈ Ω,

where Z ∈ L∞(Ω; Ξ2) denotes measurement noise. In this model Ξ1≜X  is the data 
space and Ξ2≜D is the set of observations. The forward operator may depend explic-
itly on a hyperparameter y1 ∈ Y1. In order to build a reconstruction of the unknown 
parameter ξ1(ω) for a fixed ω ∈ Ω, we consider the variational problem

	
min
x∈X

g(x, (y1, y2), ξ2(ω)) + r2(x), g(x, (y1, y2), ξ2(ω)) ≜ L(Ky1(x), ξ2(ω)) + Sy2(x) ,

where L : Ξ2 × Ξ2 → R is a data fidelity function, Sy2 : X → R is a regularization 
function with regularization parameter y2 ∈ Y  and r2(·) is another regularization 
function reflecting a-priori knowledge about the data. The reconstruction highly 
depends on the choice of the hyperparameter vector (y1, y2) ∈ Y ≜ Y1 × Y2, and 
the overall goal in bilevel learning is to choose these hyperparameters based on the 
stochastic bilevel optimization problem (1.3). This approach has been investigated 
in many previous studies (see e.g. [19, 32, 43]). We will provide more details about 
this application in Sect. 8. A typical upper-level objective function in this context is 
F (x, ξ1) = 1

2 ||x − ξ1||2X , and the bilevel problem (1.3) becomes

	

min
y=(y1,y2)

E(ξ1,ξ2)

[
1
2

||x∗(y, ξ2) − ξ1||2X

]
+ r1(y)

s.t.: x∗(y, ξ2) ∈ argmin
x∈X

{L(Ky1(x), ξ2(ω)) + Sy2(x) + r2(x)}.

�

1.1  Challenges and related literature

Directly solving the stochastic bilevel optimization problem (1.3) is challenging for 
at least two reasons: First, in order to solve the upper level problem, we need to know 
a solution of the lower level problem. However, this is just our variational inverse 
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problem, and thus is typically a large-scale optimization problem itself (although 
very often convex). Even if this can entail computational challenges, it can in prin-
ciple be overcome via state-of-the-art convex programming techniques; The second 
challenge that arises is how to optimize the upper level objective function, which is 
only available as an implicit function of the lower level solution mapping x∗(y, ξ). 
This problem becomes even more pronounced when the lower level solution is not 
unique. While non-uniqueness could be dealt with penalty methods (see e.g. [36, 
40]), the presence of stochastic perturbations in the problem data, renders also this 
approach challenging. Instead, in this paper we investigate in detail solution methods 
for settings in which the lower level mapping can be solved up to some accuracy 
at reasonable computational costs, and then use this mapping to construct a simple 
optimization method that avoids delicate issues such as computing gradients, or even 
higher-order information of the upper level objective. Specifically, we make the fol-
lowing standing hypothesis throughout this paper1:

Standing Hypothesis  For all (y, ξ2 ) ∈ Y × Ξ2  the lower level problem

	
min
x∈X

{g(x, y, ξ2) + r2(x)}� (LL)

admits a unique solution x∗(y, ξ2 ), which is a measurable function of the data ξ2 .
Working under this hypothesis, the main remaining question is how to effectively 

solve the upper level problem

	
min
y∈Y

Ψ(y) ≜ Eξ[F (x∗(y, ξ2), ξ1)] + r1(y).� (1.4)

The challenge within this formulation lies in the fact that the first function 
y �→ Eξ[F (x∗(y, ξ2), ξ1)] is expectation-valued (hence hard to evaluate) and in gen-
eral non-smooth and non-convex. The lack of regularity properties makes a direct 
gradient-based approach less qualified, without even talking about the difficulties in 
computing a gradient (aka the hypergradient [20, 29]) of this composite function. 
The key complications arising in this formulation are (i) the dependence of the lower 
level solution x∗(y, ξ2) on the random variable ξ2, (ii) the potential non-smoothness 
of the lower level variational problem, (iii) the non-smoothness of the upper level 
problem. All three complications make any attempt to adapt standard methods for 
solving bilevel optimization problems complicated. One main technical contribution 
of this paper is to construct a practically efficient strategy for solving the stochastic 
bilevel problem (1.3) building on a zeroth-order stochastic oracle model for estimat-
ing the hypergradient, allowing for bias in the random estimator, and inexactness of 
the solution of the lower level problem. Although this setting received a significant 
amount of attention recently, mainly driven from applications in machine learning 
such as meta-learning [45], hyper-parameter optimization [22, 47] and reinforcement 
learning [33], the composite setting embodied in (1.4) is complicating the hypergra-

1 A more precise formulation of this hypothesis will be given in Sect. 3.
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dient estimation task a lot. The survey [39] gives a comprehensive state-of-the-art 
overview.

1.1.1  Stochastic bilevel optimization

 The bilevel instance (1.3) differs from the typical machine learning setting in our 
requirement that the lower level problem needs to be solved for any realization of the 
random variable ξ2. In machine learning, the typically encountered formulation has 
no non-smooth terms and no explicit constraints:

	
min
y∈Rd

ψ(y)≜f(x∗(y), y) s.t.: x∗(y) ∈ argmin
x∈Rn

g(x, y) ,

where f(x, y)≜E[F (x, y, ξ1)] and g(x, y)≜E[G(x, y, ξ2)]. Under strong regularity 
conditions the hyperobjective ψ is smooth enough so that its gradient can be charac-
terized by the implicit function theorem

	∇ψ(y) = ∇yf(x∗(y), y) − ∇2
xyg(x∗(y), y)

[
∇2

xxg(x∗(y), y)
]−1 ∇xf(x∗(y), y).

In the composite non-smooth setting arising in inverse problems, and which is of 
interest in this paper, there is no hope that a similar formula for the hypergradient can 
be defined. For numerical approximation methods departing from this approach, see 
[26, 33].

Recently, [12] propose a stochastic zeroth-order method for a class of stochas-
tic mathematical programs under equilibrium constraints, in which the lower-level 
problem is described by the solution set of a stochastic variational inequality, and the 
upper-level problem is a stochastic unconstrained optimization problem. We extend 
this setting to the non-smooth proximal framework in both the upper and the lower-
level problem. This is a non-trivial extension, since it requires a fundamentally dif-
ferent analysis of the iteration complexity of the method in terms of the prox-gradient 
mapping (cf. (4.12)). Moreover, we provide complexity estimates on the criticality 
measure represented by the prox-gradient mapping via an integrated smoothing and 
zeroth-order optimization scheme, without any a-priori convexity assumptions on the 
hyperobjective.

1.1.2  Zeroth-order stochastic optimization

 The numerical solution of stochastic optimization problems requires the availabil-
ity of a stochastic oracle. In low informational settings such as simulation-based, or 
black-box optimization, an attractive stochastic oracle is one that relies only on noisy 
function queries. Such zeroth-order methods have been studied in the literature under 
the name of derivative-free optimization [10, 48], Bayesian optimization [23], and 
optimization with bandit feedback [8, 18]. Moreover, gradient-free methods received 
a lot of attention within mathematical imaging [19, 20], and scientific computing 
[34, 44], as well as in machine learning and computational statistics [1, 17, 24]. We 
discuss the connection to the most important references in the following.
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[6] performs a detailed comparison of different derivative-free methods based on 
noisy function evaluations, assuming that the noise component is additive and with 
zero mean and bounded range. They established conditions on the gradient estima-
tion errors that guarantee convergence to a neighborhood of the solution. We per-
form a complexity analysis of a derivative free method in which the function values 
are noisy evaluations of the hyperobjective of the bilevel problem (1.3), without a 
uniformly bounded noise assumption. Instead, we only assume standard variance 
bounds in Lp, for some p ≥ 2.

[3] provide an in-depth analysis of zero-order estimators for solving general sto-
chastic optimization problems, using a Frank-Wolfe method, a stochastic proximal 
gradient method, or a higher-order method building on the cubic regularization glo-
balization technique. Their general complexity statements are not immediately trans-
ferable to our problem, since we solve a stochastic bilevel problem, with potentially 
inexact feedback between the upper and the lower level problem. This noisy and 
inexact feedback mechanism leads to an additional bias in the gradient estimator, 
which needs to be carefully balanced in order to prove convergence guarantees of 
the method.

1.2  Main contributions and outline

Our main results can be summarized as follows: 

1.	 Under weak regularity assumption on the hyperobjective 
h(y) = E[F (x∗(y, ξ2), ξ1)] (essentially only Lipschitz continuity), we derive an 
iteration complexity statement in terms of the proximal gradient mapping for the 
Gaussian smoothed objective hη. In particular, we give complexity statements 
assuming that the lower level problem can be solved exactly, or inexactly, with a 
controlled precision in an Lp sense.

2.	 We particularize this result in the convex case to obtain a complexity statement 
in terms of the original objective function optimality gap.

3.	 To relate the complexity statement derived for the smoothed hyperobjective, we 
define a notion for a relaxed stationary point, using a fuzzy version of the Gold-
stein subgradient, originally introduced in [28] for Lipschitz continuous math-
ematical programs. This allows us to transfer the complexity statements derived 
in pervious sections for the smoothed prox-gradient mapping to a criticality mea-
sure involving the Goldstein subgradient.

The remainder of the manuscript is structured as follows. We introduce our nota-
tion and some known results, used in the analysis, in Sect.  2. Section  3 presents 
the formulation of the stochastic bilevel optimization problem with the correspond-
ing assumptions. In Sect.  4, we introduce our proposed zeroth-order optimization 
method. Section 5 begins the convergence analysis in a non-convex setting with a 
fixed smoothing parameter, covering both exact and inexact lower level solutions. 
We then proceed to Sect.  6, where we analyze the convex case and quantify the 
smoothing error. Section 7 addresses the explicit complexity and relaxed stationarity 
for non-convex problems. In Sect. 8, we apply our algorithm to linear inverse prob-
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lems, with a particular focus on imaging. Finally, we conclude the main body of the 
manuscript with a summary in Sect. 9. For clarity, most of the proofs are deferred to 
Appendices A–C.

2  Notation and preliminaries

For a finite dimensional real vector space E , we denote by E∗ its dual space. The value 
of a linear function s ∈ E∗ at point x ∈ E  is denoted by s(x) ≜ ⟨s, x⟩. We endow the 
spaces E  and E∗ with Euclidean norms ||x|| = ⟨Bx, x⟩1/2 and ||s||∗ = ⟨s, B−1s⟩1/2, 
where B = B∗ represents the Riesz isomorphism, i.e. a positive definite linear oper-
ator from E  to E∗. For a subset C ⊂ E  we define the distance of x ∈ E  to C by 
dist (x, C) ≜ infz∈C ||x − z||. The closed ball with center x and radius r > 0 is 
denoted as B(x, r). The convex hull of a set X is denoted as Conv (X). If Ω is a 
topological space, we denote by B(Ω) the Borel σ-algebra. In this paper, we consider 
functions with different levels of smoothness. We say a function h : E → R belongs 
to class C0,0(E) if there exists a constant lip0(h) > 0 such that

	 |h(x1) − h(x2)| ≤ lip0(h) ||x1 − x2|| , ∀x1, x2 ∈ E ,

h belongs to class C1,1(E) if there exists a constant lip1(h) > 0

	 ||∇h(x1) − ∇h(x2)||∗ ≤ lip1(h) ||x1 − x2|| , ∀x1, x2 ∈ E .

For h ∈ C1,1(E), we have the Lipschitz descent Lemma [41, Lemma 1.2.3]

	
h(x2) ≤ h(x1) + ⟨∇h(x1), x2 − x1⟩ + lip1(h)

2
||x2 − x1||2 , ∀x1, x2 ∈ E .� (2.1)

For extended real-valued convex functions h : E → [−∞, ∞], we define its (effec-
tive) domain dom (h) = {y ∈ Y|h(y) < ∞}. The convex subdifferential is the set-
valued mapping ∂h(y) ≜ {v ∈ E∗|h(ỹ) ≥ h(y) + ⟨v, ỹ − y⟩ ∀ỹ ∈ E}. Elements 
of the set ∂h(y) are called subgradients, and the inequality defining the set is called 
the subgradient inequality. A convex function is called proper if it never attains the 
value −∞.

Definition 2.1  Let δ ≥ 0. For a convex function h : E → (−∞, +∞], the δ-subdif-
ferential ∂δh(y) the set of vectors v ∈ E∗ satisfying

	 h(ỹ) ≥ h(y) − δ + ⟨v, ỹ − y⟩ ∀ỹ ∈ E .

Note that the above definition reduces naturally to the convex subdifferential by set-
ting δ = 0.
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Definition 2.2  The proximal operator of a closed convex and proper function 
g : E → (−∞, ∞] is defined by

	
prox g(x) ≜ argmin

u∈E
{g(u) + 1

2
||u − x||2}.� (2.2)

The prox-operator is always 1-Lipschitz (non-expansive) [4]. We also make use of 
the Pythagorean identity on the Euclidean space E  with inner product ⟨B·, ·⟩:

	 2⟨y − u, B(x − y)⟩ = ||x − u||2 − ||x − y||2 − ||y − u||2 .� (2.3)

For p ∈ [1, ∞], let Lp(Ω, F ,P; E) be the set of all random variables for which the 
integral EP [|f |p] ≜

´
Ω |f(ω)|p dP(ω) exists and is finite. This is a Banach space 

with norm |f |p ≜ (EP [|f |p])1/p.

3  Problem formulation

We denote by (X , ||·||X ) and (Y, ||·||Y) finite dimensional Euclidean vector 
spaces, with dual spaces (X ∗, ||·||X ∗), (Y∗, ||·||Y∗). Let (Ω0, A,P0) be a com-
plete probability space, carrying random elements ξ1 ∈ L0(Ω0, A0,P0; Ξ1) 
and ξ2 ∈ L0(Ω0, A0,P0; Ξ2) taking values in a measurable space 
(Ξi, B(Ξi)), i = 1, 2. We define ξ(ω) ≜ (ξ1(ω), ξ2(ω)), and denote the distribution 
of this random element as Pξ ≜ P0 ◦ ξ−1. Accordingly, the marginal distributions are 
defined as Pξ1(A) ≜ Pξ(A × Ξ2) and Pξ2(B) ≜ Pξ(Ξ1 × B) for A ∈ B(Ξ1) and 
B ∈ B(Ξ2), respectively.

Remark 3.1  Throughout this paper we abuse notation in that we do not notationally 
distinguish a random variable ξ from its realization (hitherto also denoted by ξ). We 
belief this common abuse of notation is simplifying the notation and its meaning 
should be clear from the context.

3.1  The hyperobjective program

In problem (1.3), the variable y ∈ Y  (i.e. the learning parameters) is chosen before 
the event ω is realized, whereas x is a decision variable (i.e. the model parameters) 
that is implemented just-in-time, given y ∈ Y  and the realization ξ2(ω) ∈ Ξ. A solu-
tion of the lower-level optimization problems constitutes therefore of a feedback 
mapping x∗(·, ξ2) ∈ L∞(Y; X ), satisfying a measurability property with respect to 
the noise variable:

	 ω �→ x∗(y, ξ2(ω)) ∈ L0(Ω, A0,P0; L∞(Y; X )).
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In particular, by the Doob-Dynkin Lemma, the mapping ω �→ x∗(y, ξ2(ω)) is σ(ξ2)
-measurable, for all y ∈ Y . The following standing assumption shall apply through-
out the paper.

Assumption 1  r1 : Y → (−∞, ∞] is a closed convex and proper function.

Assumption 2  F : X × Ξ1 → R is a Carathéodory function: 

(a)	 ω �→ F (x, ξ1(ω)) is σ(ξ1)-measurable for every x ∈ X ;
(b)	 x �→ F (x, ξ1) is continuous for almost every ξ1 ∈ Ξ1.

Assumption 3  For all x ∈ X , the value EP0 [F (x, ξ1)] is finite. There exists a positive 
valued random variable lip0(F (·, ξ1)) : Ω → (0, ∞) such that |lip0(F (·, ξ1))|1 < ∞, 
and for all x1, x2 ∈ X  it holds that

	 |F (x1, ξ1) − F (x2, ξ1)| ≤ lip0(F (·, ξ1)) ||x1 − x2||X .� (3.1)

Assumption 3 implies that x �→ f(x) ≜ EP0 [F (x, ξ1)] is Lipschitz continuous [46, 
Thm.7.44], with Lipschitz constant lip0(f)≜ |lip0(F (·, ξ1))|1. In particular, the func-
tion x �→ f(x) is measurable.

Assumption 4  r2 : X → (−∞, ∞] is proper, closed and convex. For all y ∈ dom (r1), 
the function x �→ g(x, y, ξ2) is continuously differentiable and convex.

Assumption 5  For all (y, ξ2) ∈ int dom (r1) × Ξ2 the parameterized variational 
inequality

	 Find x ∈ X such that 0 ∈ ∇xg(x, y, ξ2) + ∂r2(x)� (3.2)

has a unique solution x∗(y, ξ2), enjoying the following properties: 

(S.1)	 ω �→ x∗(y, ξ2(ω)) is measurable, uniformly in y ∈ int dom (r1);
(S.2)	 y �→ x∗(y, ξ2) is Lipschitz continuous on int dom (r1), for almost all 

ξ2 ∈ Ξ2.

Our set of assumptions correspond to typical hypothesis that have been used in ora-
cle-based approaches to bilevel problems. Assumption 4 is a structural assumption 
on the data, which reflects the typical structure of variational formulations of inverse 
problems. Assumption 5 are technical assumptions which are needed to carry out 
our derivative-free approach. Measurability (S.1) of the reconstruction is arguably 
a minimal assumption. Lipschitz continuity is a more restrictive assumption, which 
is essentially an a-priori hypothesis on the solution regularity of the lower level 
problem. An important special case where Lipschitz continuity of the reconstruction 
operator is obtained when ∇xg(x, y, ξ) is uniformly Lipschitz and r2 is an indicator 
function of a closed convex set. In this case, Theorem 2B.1 and Corollary 2B.3 of 
[15] establishes the Lipschitz continuity of the reconstruction operator. Another set 
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of transparent conditions is described in Theorem 1 of [19], which considers smooth 
lower level problems. We need this assumption to obtain the Lipschitz property of the 
implicit function y �→ H(y, ξ).

Combining Assumptions 3 and 5, we can define the stochastic hyperobjective

	 H : Y × Ξ → R, (y, ξ) �→ H(y, ξ) ≜ F (x∗(y, ξ2), ξ1).� (3.3)

Note that H(·, ξ) ∈ C0,0(Y). In order to bound the variance of our gradient estimator, 
we need an a-priori assumption on the integrability of the random Lipschitz modulus.

Assumption 6  We assume that |lip0(H(·, ξ))|2 < ∞.

Thanks to the inherited measurability, we can leverage Fubini’s theorem to obtain 
h(y) ≜ EP[H(y, ξ)] =

´
Ξ2

f(x∗(y, w2)) dPξ2(w2). The fact that f ∈ C0,0(Y) com-
bined with (S.2) allows us to conclude h ∈ C0,0(Y).

Absorbing the lower level solution into the upper level, we arrive at the reduced 
formulation of the upper level optimization problem

	
ΨOpt ≜ inf

y∈Y
{Ψ(y) ≜ h(y) + r1(y)},� (3.4)

which is commonly known in bilevel optimization as the hyperobjective optimization 
problem.

3.2  Approximate stationarity conditions

The hyperobjective program (3.4) is a non-convex and non-smooth optimization 
problem, involving a Lipschitz continuous function y �→ h(y), and a convex com-
posite term y �→ r1(y). As is typical in non-convex optimization, our aim is to local-
ize a specific class of approximate stationary points, as we are about to define in 
this section. For a locally Lipschitz function h : Y → R, the generalized directional 
derivative in the sense of Clarke [9] of h at y ∈ Y  in direction u ∈ Y  is defined as

	
h◦(y; u) ≜ lim sup

y′→y,t→0+

h(y′ + tu) − h(y′)
t

.

The Clarke subdifferential of h at y is the set

	 ∂Ch(y) ≜ {s ∈ Y∗|h◦(y, u) ≥ ⟨s, u⟩ ∀u ∈ Y}.

The primary goal of non-smooth non-convex optimization is the search for station-
ary points. A point y ∈ Y  is called (Clarke)-stationary for Ψ = h + r if the inclusion

	 0 ∈ ∂Ch(y) + ∂r1(y)
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is satisfied.

Definition 3.1  Given ε > 0, a point y∗ ∈ Y  is called an ε-stationary point of (3.4) if

	 dist (0, ∂CΨ(y∗)) ≤ ε.� (3.5)

Recently, a series of papers challenged the question whether optimization algorithms 
are able to identify ε-stationary points in finite time. [50] provided a definite nega-
tive answer to this question, by demonstrating that no first-order method is able to 
identify ε-stationary points in finite time. Therefore, we will content ourselves with a 
more modest stationarity notion.

Definition 3.2  ( [28]) For any δ > 0, the Goldstein δ-subdifferential of h at y ∈ Y  is 
the set

	
∂δ
Gh(y) ≜ Conv


 ∪

ỹ∈B(y,δ)

∂Ch(ỹ)


 .� (3.6)

We employ the Goldstein subdifferential for relating the stationarity measures of a 
smoothed auxiliary model, with stationarity with respect to the original problem. As 
such, our proposal of an approximate stationary point combines the definitions of [13, 
14] for stochastic subgradient methods, and [38] for zeroth-order methods.

Definition 3.3  For any (ε, δ) > 0, we call a random variable y∗ ∈ L0(Ω, F ,P; Y) an 
(ε, δ)-stationary point of (1.4) if

	
E

[
dist

(
y∗, {y | dist (0, ∂δ

Gh(y) + ∂r1(y))2 ≤ ε}
)2]

≤ ε.� (3.7)

4  Derivative free randomized proximal gradient method

4.1  Gaussian smoothing of the implicit function

To simplify the notation, we write ||u||Y ≜ ||u||≜
√

⟨Bu, u⟩, given the Riesz map-
ping B = B∗ ≻ 0 from Y  to Y∗. We denote the dimension of the Euclidean space Y  
by n. The n-dimensional Lebesgue measure on (Y, B(Y)) is denoted by LebY , and 
we typically write dy, instead of dLebY(y). We define the Gaussian Lebesgue den-

sity on (Y, B(Y), LebY) as πη(z|y) ≜
√

det(B)
(2π)n/2ηn exp

(
− 1

2η2 ||z − y||2
)

.

Given a function h : Y → R and a positive parameter η > 0, for any η > 0 we 
define the Gaussian smoothing of h as the convolution
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hη(y) ≜ (h ⊛ πη)(y) =

ˆ

Y
h(z)πη(z|y)dz.� (4.1)

Let us introduce an independent probability space (Ω1, A1,P1). We say 
U : (Ω1, A1) → (Y, B(Y)) is a standard Gaussian random variable on Y , denoted 
as U ∼ N(0, Id Y), if P1 ◦ U−1 admits the density π1(·|0) ≡ π on Y  with respect to 
LebY . Via the change of variables z = y + ηu, we can rewrite the above integral as

	
hη(y) =

ˆ

Y
h(y + ηu)π(u)du = EP1 [h(y + ηU)].

For η > 0, the function y �→ hη(y) is differentiable and η > 0 plays the role of a 
smoothing parameter. Using the expression above, we immediately deduce the for-
mula for the gradient (see Appendix A, eq. (A.3)) as

	
∇hη(y) = EP1

[
h(y + ηU)

η
BU

]
= EP1

[
h(y + ηU) − h(y)

η
BU

]
.� (4.2)

Specifically, we leverage upon the work [42], and use the following estimates.2

Lemma 4.1  Let h ∈ C0 ,0 (Y). Then hη ∈ C0 ,0 (Y) and lip0 (hη) ≤ lip0 (h) for all 
η > 0 .

Lemma 4.2  ( [42], Theorem 1) Let h ∈ C0 ,0 (Y) and η > 0 . Then for all y ∈ Y  it 
holds

	 |hη(y) − h(y)| ≤ ηlip0 (h)
√

n .

Lemma 4.3  Let h ∈ C0 ,0 (Y) and η > 0 . Then hη ∈ C1 ,1 (Y) with 
lip1 (hη) =

√
n

η lip0 (h). Moreover, for all y ∈ Y , there holds

	 ||∇hη(y)||2∗ ≤ lip0(h)2(4 + n)2.� (4.3)

In the convex case, we report a classical relation between the gradients of the 
Gaussian smoothed function and the δ-subdifferential.

Lemma 4.4  ( [42], Theorem 2) If h ∈ C0 ,0 (Y) and convex, then, for all y ∈ Y  and 
η > 0 , we have

	 ∇hη(y) ∈ ∂δh(y), forδ = ηlip0(h)
√

n� (4.4)

where ∂δh is the δ-subdifferential (cf. Definition 2.1).

2 For being self-contained, we provide proofs of these facts in Appendix A.
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The next proposition establishes a quantitative connection between the gradients 
of the smoothed function hη and the Goldstein δ-subgradient. This is the key tool to 
relate complexity estimates of the smoothed objective with the original, unsmoothed, 
objective.

Proposition 4.5  ( [38], Theorem 3.6) Let h ∈ C0 ,0 (Y) and D ⊂ Y  a convex compact 
set. Then, for all δ > 0  and for all ε > 0 , it holds that

	 ∇hη(y) ∈ ∂δ
Gh(y) + εBY ∀η ∈ (0 , η̄], ∀y ∈ D.

where BY  denotes the unit ball in 

Y , η̄ ≜ min{1 , δ/Γ}, Γ ≜
[
−nW−1

(
−ν2/n

2πe

)]1/2
 and 

ν ≜ min{ ε
4 lip0 (h) , (2π)n/2 − 1

2 }. W−1  is the negative branch of the Lambert W-
function, i.e. of the inverse of x �→ xex , x ∈ R.

Remark 4.1  Since ν ≤ (2π) n
2 − 1

2 , we have ν
2/n

2πe < 1
e , and hence W−1

(
ν2/n

2πe

)
< −1. 

Thus, Γ ∈ (
√

n, ∞). �

4.2  Zeroth-order gradient estimator of the implicit function

The first step in our construction is the design of a zeroth-order gradient estimator. 
This requires a solution of the lower-level problem. We discuss two different settings. 
First, we consider the case in which the solution of the lower level problem is avail-
able exactly. This is a very common assumption in stochastic bilevel optimization; 
see e.g. [11, 12, 39], as well as [19] for inverse problems. We then relax this assump-
tion by allowing for controllable errors in the lower level solution. This scenario 
is more realistic, but also more challenging since the inexact model introduces an 
additional bias in the stochastic gradient estimator. We account for this additional 
difficulty by presenting two different complexity estimates, one for the exact and one 
for the inexact case, respectively.

4.3  Exact lower level solution

Consider the implicit function h : Y → R given by h(y) = EP[H(y, ·)], where 
H(y, ξ) = F (x∗(y, ξ2), ξ1) is the hyperobjective, defined in (3.3). We have h ∈ C0,0(Y), 
so that its Gaussian smoothing with parameter η > 0 satisfies hη ∈ C1,1(Y). Let u ∈ Y  
represent a direction and δ > 0 a parameter. We define the finite-difference estimator

	
∇̂(u,η)H(y, ξ) ≜ H(y + ηu, ξ) − H(y, ξ)

η
Bu = F (x∗(y + ηu, ξ2), ξ1) − F (x∗(y, ξ2), ξ1)

η
Bu.
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If u(m) = {u1, . . . , um} is an m-tuple of directions in Y  and ξ(m) = {ξ1, . . . , ξm} 
are m-i.i.d copies of the random variable ξ, then we define the random gradient esti-
mator, based on finite differences of the subsampled hyperobjective:

	
Vη(y, u(m), ξ(m)) ≜ 1

m

m∑
i=1

∇̂(ui,η)H(y, ξi).� (4.5)

To realize this estimator on a sufficiently large common probability space, we build 
the typical product space enlargement (Ω, A,P) = (Ω0 × Ω1, A0 ⊗ A1,P0 × P1). 
On this extended setup, we abuse notation and identify the random element ξ and U 
as measurable functions on (Ω, A) by means of the following notational convention:

	 ξ(ω) = ξ(ω0) and U(ω) = U(ω1) ∀ω ∈ Ω.

Let U (m) ≜ (U1, . . . , Um) be an iid random sample of Gaussian Y-valued random 
vectors and ξ(m) ≜ (ξ1, . . . , ξm) an iid sample of ξ, assumed to be independent of 
each other. Define the random estimator

	 V̂η,m(y, ω) ≜ Vη(y, U (m)(ω), ξ(m)(ω)) ∀ω ∈ Ω.� (4.6)

Given a positive smoothing parameter η > 0, we are iteratively solving the stochastic 
composite optimization problem

	

min
y∈Y

Ψη(y) with Ψη(y) ≜ hη(y) + r1(y) and

hη(y) = EP[F (x∗(y + ηU, ξ2), ξ1)].
� (4.7)

In the following, we assume that ΨOpt
η ≜ infy∈Y Ψη(y) > −∞. The smooth part of 

this composite minimization problem is the Gaussian smoothing of the hyperobjec-
tive h, and r1 is a closed convex and proper regularizing term.

4.4  Inexact lower level solution

We now define a relaxation of the stochastic oracle, allowing for computational errors 
in the lower level solution.

Definition 4.6  (Inexact lower level solution) Given p ≥ 2 and β ≥ 0, we call a map-
ping xβ ∈ L∞(Y × Ξ; X ) a β-optimal solution of the lower level problem (LL) if

	
E

[∣∣∣∣xβ(y, ξ) − x∗(y, ξ)
∣∣∣∣p

X

]1/p

≤ β.� (4.8)

Remark 4.2  We note that an inexact solution can readily be obtained by embedding 
our main iteration in a double-loop algorithmic strategy in which the inner loop is 
some fast solver that returns an approximate solution of the lower level problem, for 
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fixed parameters (y, ξ). The exact formulation of such an inner loop solver should 
be adapted to the nature of the lower level optimization problem. We treat the lower-
level problem essentially as an oracle, which can be queried at any position (y, ξ2) 
and returning us some feedback xβ(y, ξ). Hence, we do not need to specify a spe-
cific numerical scheme employed to realize this oracle. However, our approach can 
easily be embedded in a double loop architecture in which an inner loop constructs 
an approximate lower level solution xβ(y, ξ2), and the outer level is our scheme 
(Algorithm 1). Such double-loop structures are a very popular solution strategy in 
stochastic bilevel optimization (cf. [12, 36] and references therein).

Remark 4.3  Inexactness of lower level solutions in bilevel optimization has been 
investigated in [19, 20] in deterministic regimes. Our notion takes into consideration 
the potential noisy nature of the data.

Given the inexact lower level solution mapping, we accordingly define the inexact 
hyperobjective as

	 Hβ(y, ξ) ≜ F (xβ(y, ξ2), ξ1) for all y ∈ Y, (ξ1, ξ2) ∈ Ξ1 × Ξ2.

The resulting biased random gradient estimator is given by

	

∇̂(u,η)H
β(y, ξ) ≜Hβ(y + ηu, ξ) − Hβ(y, ξ)

η

Bu =F (xβ(y + ηu, ξ2), ξ1) − F (xβ(y, ξ2), ξ1)
η

Bu,

and replace the multi-point random gradient estimator by

	
V β

η (y, u(m), ξ(m)) ≜ 1
m

m∑
i=1

∇̂(ui,η)H
β(y, ξi).� (4.9)

As in the exact case, in order to reduce notational clutter, we will adopt the simplified 
notation V̂ β

η,m(y, ω) ≜ V β
η (y, U (m)(ω), ξ(m)(ω)) for the multi-point random gradi-

ent estimator based on the zeroth-order oracle.

4.5  The algorithmic scheme

Since hη ∈ C1,1(Y), we are in the classical proximal-gradient framework, which is 
defined in terms of the fixed point iteration

	 ȳ+ = Tη,t(y) ≜ prox tr1
(y − tB−1∇hη(y)),

where t ∈ [0, ∞) is a step size parameter, η > 0 and y ∈ Y .
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Since we have no direct access to the gradient ∇hη(y), we define a stochastic 
approximation using the operator Pt : Y × Y∗ → Y  defined by

	 Pt(y, v) ≜ prox tr1
(y − tB−1v) ∀(y, v) ∈ Y × Y∗.� (4.10)

Clearly, Pt(y, ∇hη(y)) = Tη,t(y) for y ∈ Y .
Our numerical scheme for solving (1.3) is a derivative-free stochastic implementa-

tion of the proximal-gradient method. The random gradient estimator either employs 
the finite-difference estimator (4.5) (Method ’ExactLL’), or (4.9). The Pseudo-code 
of the resulting scheme DFProxGrad is reported in Algorithm 1.

Algorithm 1  Derivative-free approximate prox-grad algorithm (DFProxGrad)

Remark 4.4  Algorithm DFProxGrad under Method ’ExactLL’ requires numeri-
cal parameters (αk)N−1

k=0  and a batch size sequence (mk)N
k=1. The inexact regime 

requires additionally a user-defined sequence (βk)N−1
k=0  as an additional input, which 

defines the error tolerance of the lower level solution mapping involved in the con-
struction of the estimator V̂k+1. Although our algorithm is defined over a fixed time 
window, the exact instantiation of the parameters (e.g. step size, inexactness of lower 
level solutions and sampling rate) is independent of the terminal time N. Our com-
plexity results Theorem 5.2, Theorem 5.6 and Corollary 5.4, Corollary 5.7 contain 
explicit expressions for these sequences culminating in good complexity bounds. An 
exception is Corollary 6.2, which requires an step-size schedule (αk)N−1

k=0  explicitly 
depending on N. Our theoretical result ensures that the algorithm can be run up to 
time N and then continued without requiring a restart, since the step sizes do not 
depend on N. This stands in contrast to many theoretical guarantees for stochastic 
algorithms, which often rely on fixing a step size depending on N rather than consid-
ering the diminishing step sizes that we employ here.

4.6  Gap functions

In order to derive performance guarantees when running DFProxGrad, we need to 
introduce certain merit functions. The first, and most obvious merit function to use 
would be the observed difference in the objective function values Ψ(yN ) − ΨOpt . 
Since we have no access to Ψ, but rather its smoothed counterpart Ψη, a conceptually 
implementable merit function based on the objective function gap is
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	 ∆η(yN ) ≜ Ψη(yN ) − ΨOpt
η .� (4.11)

However, since the smoothed implicitly defined objective function y �→ Ψη(y) is in 
general non-convex, measuring the distance to the global optimum value is practi-
cally not very relevant. Instead, we are focussing on functions which measure the 
distance to stationarity of points produced by the algorithm.

The prox-gradient mapping is the operator Gη,t : Y → Y  defined by

	
Gη,t(y) ≜ 1

t
(y − Tη,t(y)).� (4.12)

Indeed, thanks to the smoothing, one can show that a small norm of the prox-gradient 
mapping implies that approximate stationarity applies [16].3

The stochastic analogue to the prox-gradient mapping is the random operator 
G̃η,t : Y × Ω → Y ,

	
G̃η,t(y, ω) ≜ 1

t

(
y − Pt(y, V̂η,m(y, ω))

)
.� (4.13)

Note that if r1 = 0, then G̃η,t(y, ω) = V̂η,m(y, ω) for all (y, ω) ∈ Y × Ω. For the 
complexity analysis of the inexact regime, we have to adapt the definition of the 
gradient mapping accordingly to

	
G̃β

η,t(y, ω) ≜ 1
t

(
y − Pt(y, V̂ β

η,m(y, ω))
)

.� (4.14)

4.7  Properties of the gradient estimator with exact lower level solutions

In this section we work out some a-priori error estimates on the random gradient 
estimator (4.5). Whenever convenient, we suppress the dependence on ω, and simply 

write V̂η,m(y) ≡ Vη(y, U (m), ξ(m)). The first Lemma shows that our random estima-
tor is unbiased in terms of the gradient operator of the smoothed function hη.

Lemma 4.7  For all y ∈ Y , we have EP[V̂η,m(y)] = ∇hη(y) and

	
EP

[∣∣∣
∣∣∣V̂η,m(y)

∣∣∣
∣∣∣
2

∗

]
− ∥∇hη(y)∥2

∗ ≤ s2

m
,

where we defined s ≜ (4 + n) |lip0 (H (·, ξ))|2 .

Proof  See Appendix B. � □

3 See Appendix C for a self-contained proof.
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Remark 4.5  We point out that our random estimator V̂η,m(y) is an unbiased estimator 
of the gradient of the smoothed function hη. It is not unbiased with respect to first-
order information of the original function h. Furthermore, the variance of the estima-
tor scales inversely with the batch size m, and scales quadratically with the dimension 
n. We absorb this dependency in the constant s, which will be used throughout our 
derived estimates.

We define the error process

	 ∆Wη,m(y, ω) ≜ V̂η,m(y, ω) − ∇hη(y) ∀(y, ω) ∈ Y × Ω.� (4.15)

An immediate corollary of Lemma 4.7 is that the error process defines essentially a 
martingale difference sequence:

	 EP[∆Wη,m(y)] = 0, and � (4.16)

	
EP

[
||∆Wη,m(y)||2∗

]
= EP

[∣∣∣
∣∣∣V̂η,m(y)

∣∣∣
∣∣∣
2

∗

]
− ||∇hη(y)||2∗ ≤ s2

m
. � (4.17)

Moreover, the error process can be used to estimate the prox-gradient mapping as 
follows:

Lemma 4.8  We have

	 ||Gη,t(y)||2 ≤ 2
∣∣∣∣G̃η,t(y)

∣∣∣∣2 + 2 ||∆Wη,m(y)||2∗ a.s..� (4.18)

Proof  Using the non-expansiveness of the prox-operator, we obtain

	

||Gη,t(y)||2 =
∣∣∣∣
∣∣∣∣
1
t
[y − Pt(y, V̂η,m(y))] + 1

t
[Pt(y, V̂η,m(y)) − Tη,t(y)]

∣∣∣∣
∣∣∣∣
2

≤ 2
∣∣∣∣G̃η,t(y)

∣∣∣∣2 + 2
t2

∣∣∣
∣∣∣Pt(y, V̂η,m(y)) − Tη,t(y)

∣∣∣
∣∣∣
2

≤ 2
∣∣∣∣G̃η,t(y)

∣∣∣∣2 + 2
∣∣∣
∣∣∣B−1(V̂η,m(y) − ∇hη(y))

∣∣∣
∣∣∣
2

= 2
∣∣∣∣G̃η,t(y)

∣∣∣∣2 + 2 ||∆Wη,m(y))||2∗ .

� □

4.8  Properties of the gradient estimator with inexact lower level solutions

The inexactness of the solution of the lower-level problem will have its trace on the 
variance of the random estimator. The bias can be described by means of the follow-
ing error decomposition.
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Lemma 4.9  For all y ∈ Y  and β > 0 , it holds

	

EP

[
V̂ β

η,m(y)
]

=∇hη(y)

+ 1
m

m∑
i=1

EP

[
F (xβ(y + ηU i, ξi), ξi

1) − F (x∗(y + ηU i, ξi), ξi
1)

η
BU i

]
,
�(4.19)

and

	

1
m

m∑
i=1

∣∣∣∣
∣∣∣∣EP

[F (xβ(y + ηU i, ξi), ξi
1) − F (x∗(y + ηU i, ξi

2), ξi
1)

η
BU i

]∣∣∣∣
∣∣∣∣
∗

≤
√

n |lip0(F (·, ξ1)|1
η

EP

[ ∣∣∣∣xβ(y + ηU, ξ2) − x∗(y + ηU, ξ2)
∣∣∣∣p

X

] 1
p

.

� (4.20)

Proof  See Appendix B. � □

Let (yk)k be the stochastic process whose sample paths are generated via Algo-
rithm  1. The natural filtration associated with this process is Fk ≜ σ(y1, . . . , yk). 
Along the sample paths of this process, we can perform the following error decom-
position of the random gradient estimators:

	 V̂ β
k+1 = V̂k+1 − ak+1 + bk+1,� (4.21)

with

	

ak+1 ≜ 1
mk+1

mk+1∑
i=1

F (xβk (yk, ξi
2,k+1), ξi

1,k+1) − F (x∗(yk, ξi
2,k+1), ξi

1,k+1)
η

BU i
k+1,

bk+1 ≜ 1
mk+1

mk+1∑
i=1

F (xβk (yk + ηU i
k+1, ξi

2,k+1), ξi
1,k+1) − F (x∗(yk + ηU i

k+1, ξi
2,k+1), ξi

1,k+1)
η

BU i
k+1 .

Note that E(ak+1|Fk) = 0, and we can derive a bound in L2(P) as the following 
Lemma shows.

Lemma 4.10  Let be p > 2  the exponent from Definition 4.6. There exists a constant 
CF > 0 , such that

	
E

[
||ak+1||2∗ |Fk

]
≤ CF

β2
k

η2 , andE
[
||bk+1||2∗ |Fk

]
≤ CF

β2
k

η2 . � (4.22)

Proof  See Appendix B.3. � □
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5  Complexity analysis for the non-convex case

5.1  Exact lower level solution

We begin our convergence analysis in the non-convex setting, focusing on cases 
where the lower-level problem can be solved exactly. Our first Lemma provides an 
estimate on the per-iteration function progress in terms of the smoothed hyperobjec-
tive Ψη.

Lemma 5.1  Consider the sequence (yk)N
k=0  generated by Algorithm (1) with gradi-

ent estimator (4.5). Then, for all η > 0 , we have

	

Ψη(yk+1) − Ψη(yk) ≤ − αk

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2
(

1 − αklip1(hη)
2

)

+ αk⟨∆Wk+1, Gη,αk
(yk)⟩ + αk ||∆Wk+1||2∗

� (5.1)

for all k = 0 , . . . , N − 1 .

Proof  See Appendix B.4. � □

Set

	
Ek+1 ≜ ||∆Wk+1||2∗ + ⟨∆Wk+1, Gαk

(yk)⟩ and ΨOpt
η ≜ min

y∈Y
Ψη(y).

Summing (5.1) from k = 0, . . . , N − 1, we obtain

	

N−1∑
k=0

αk

(
1 − lip1(hη)αk

2

) ∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2 ≤ Ψη(y1) − Ψη(yN+1)

+
N−1∑
k=0

αkEk+1 ≤ Ψη(y1) − ΨOpt
η +

N−1∑
k=0

αkEk+1.

Let Fk ≜ σ(y0, . . . , yk) denote the natural filtration up to time k of the process, so 
that

	
Ek[Ek+1] ≜ E[Ek+1|Fk] = E[||∆Wk+1||2∗ |Fk] ≤ s2

mk+1
, a.s. .

Therefore, using the law of iterated expectations, we obtain

	
E

[
N−1∑
k=0

αk

(
1 − lip1(hη)αk

2

) ∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2
]

≤ Ψη(y1) − ΨOpt
η +

N−1∑
k=0

αks2

mk+1
.� (5.2)
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This yields our first main result in this paper:

Theorem 5.2  Fix N ∈ N arbitrary and consider step sizes (αk)k≥0  chosen in 
such a way that αk ∈ (0 , 2/lip1 (hη)], with αk < 2/lip1 (hη) for at least one 
k ∈ {0 , . . . , N − 1}. Let (yk)N

k=0  be generated by Algorithm 1 with gradient estimator 
(4.5). On (Ω, F ,P) define an independent random variable κ : Ω → {0 , . . . , N − 1} 
with probability mass function

	
p(k) ≜ P(κ = k) ≜ αk − α2

klip1(hη)/2∑N−1
t=0 (αt − α2

t lip1(hη)/2)
, k ∈ {0, . . . , N − 1}.� (5.3)

Then

	
E

[∣∣∣∣G̃η,ακ(yκ)
∣∣∣∣2]

≤
Ψη(y1) − ΨOpt

η +
∑N−1

k=0
αks2

mk+1∑N−1
t=0 (αt − α2

t lip1(hη)/2)
.� (5.4)

Proof  Using eq. (5.2), together with the observation that

	
E

[∣∣∣∣G̃η,ακ
(yκ)

∣∣∣∣2]
=

N−1∑
k=0

αk − α2
klip1(hη)/2∑N−1

t=0 (αt − α2
t lip1(hη)/2)

E
[∣∣∣∣G̃η,αk

(yk)
∣∣∣∣2]

,

the thesis follows. � □
A few remarks are in order.

Remark 5.1  Due to the ratio αk

mk+1
, there is a trade-off between too aggressive step-

sizes and the size of the mini-batches. In fact, consider an arbitrary step-size rule with 
αk ≤ 1

lip1(hη) . This bound implies lip1(hη)
2 α2

k ≤ 1
2 αk. Therefore, the numerator in 

our complexity bound (5.4) can be simplified to

	
E

[∣∣∣∣G̃η,ακ(yκ)
∣∣∣∣2]

≤
Ψη(y1) − ΨOpt

η +
∑N−1

k=0
αks2

mk+1∑N−1
t=0 (αt/2)

.

Concretely, choosing αk = 2θ
lip1(hη)

√
k+1  with θ ∈ (0, 1/2), and mini-batches 

mk+1 = a
√

k + 1, with a > 0, we can recover the typical O(log(N)/
√

N) com-
plexity estimate for proximal gradient methods. Indeed, such a step size choice yields 
the iteration complexity upper bound

	
E

[∣∣∣∣G̃η,ακ
(yκ)

∣∣∣∣2]
≤

lip1(hη)
β (Ψη(y1) − ΨOpt

η ) + 2s2

a (1 + log(N))
√

N
.

On the contrary, if a constant step size and constant mini-batch estimation strategy 
is adopted, then we see that convergence with respect to our merit function can only 
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happen up to a plateau, a well-known fact when using stochastic approximation [7, 
25]. Specifically, taking constant mini-batches mk+1 = m and constant step-sizes 
αk = 2β

lip1(hη)  for all k ∈ {0, . . . , N − 1} and some β ∈ (0, 1/2), then our complex-
ity bound is readily seen to become

	
E

[∣∣∣∣G̃η,ακ(yκ)
∣∣∣∣2]

≤
lip1(hη)(Ψη(y1) − ΨOpt

η )
β(2 − β)N

+ 2s2

(2 − β)m
.

Remark 5.2  Theorem 5.2 gives a finite-time complexity estimate of the gap function 
evaluated at a randomly chosen iterate. Hence, the complexity bound should be inter-
preted as a criticality measure of an averaged output based on the sequence generated 
by the stochastic process. Such performance estimates in terms of averaged quantities 
are typical in stochastic programming [24, 37].

Our next result is a complexity estimate in terms of the prox-gradient mapping 
involving the deterministic gradient ∇hη , instead of the stochastic approximation.

Corollary 5.3  Under the same assumptions as in Theorem  5.2 we assume addi-
tionally that the step sizes αk  are chosen such that αk ∈ (0 , 2/lip1 (hη)], with 
αk < 2/lip1 (hη) for at least one k ∈ {0 , . . . , N − 1}. Let (yk)N

k=0  be generated 
by Algorithm 1 with gradient estimator (4.5) and let κ : Ω → {0 , . . . , N − 1} be the 
discrete random variable with distribution (5.3). Then,

	
E[||Gη,ακ(yκ)||2] ≤

4(Ψη(y1) − ΨOpt
η )∑N−1

t=0 (2αt − α2
t lip1(hη))

+
∑N−1

k=0
2s2

mk+1
(4αk − α2

klip1(hη))
∑N−1

t=0 (2αt − α2
t lip1(hη))

.� (5.5)

Proof  From Lemma 4.8 we readily obtain

	

αk

2
(1 − αklip1(hη)

2
) ||Gη,αk

(yk)||2 ≤αk(1 − αklip1(hη)
2

)
∣∣∣∣G̃η,αk

(yk)
∣∣∣∣2

+ αk(1 − αklip1(hη)
2

) ||∆Wk+1||2∗ .

Consequently, using (5.4):
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1
2
E[||Gη,ακ

(yκ)||2] = 1
2

N−1∑
k=0

αk − α2
klip1(hη)/2∑N−1

t=0 (αt − α2
t lip1(hη)/2)

E[||Gη,αk
(yk)||2]

≤
N−1∑
k=0

αk − α2
klip1(hη)/2∑N−1

t=0 (αt − α2
t lip1(hη)/2)

E[
∣∣∣∣G̃η,αk

(yk)
∣∣∣∣2]

+
N−1∑
k=0

αk(1 − αklip1(hη)
2 )E[||∆Wk+1||2∗]∑N−1

t=0 (αt − α2
t lip1(hη)/2)

≤
Ψη(y1) − ΨOpt

η +
∑N−1

k=0
αks2

mk+1∑N−1
t=0 (αt − α2

t lip1(hη)/2)
+

N−1∑
k=0

αk(1 − αklip1(hη)
2 ) s2

mk+1∑N−1
t=0 (αt − α2

t lip1(hη)/2)

=
Ψη(y1) − ΨOpt

η∑N−1
t=0 (αt − α2

t lip1(hη)/2)
+

∑N−1
k=0 αk

s2

mk+1
(2 − αklip1(hη)

2 )
∑N−1

t=0 (αt − α2
t lip1(hη)/2)

.

� □

Corollary 5.4  For a time window N ≥ 2 , we choose the step size 
αk = 2θ

lip1 (hη)
√

k+1 , θ ∈ (0 , 1/2 ), k ≥ 0 , and the sampling rate 

mk+1 = a
√

k + 1 , a > 0 . Let (yk)N
k=0  be generated by Algorithm 1 with gradient 

estimator (4.5). Then, we have

	
E[||Gη,ακ(yκ)||2] ≤

2lip1(hη)(Ψη(y1) − ΨOpt
η )

θ
√

N
+

8s2

a (1 + log(N))
√

N
.

The total number of calls to the stochastic oracle and lower level solutions to find a 
point y ∈ Y  such that E[||Gη(y)||2 ] ≤ ε is bounded by O(ε−3 ).

Proof  We start with recalling a simple integral bound. Note that

	

N∑
t=1

1√
t

≥
ˆ N

0

1√
x + 1

dx = 2
√

N + 1 − 2 ≥
√

N

for N ≥ 2. Using this bound, the specific choices for the step sizes and the mini-
batch size, lead to the following inequalities:
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E[||Gη,ακ(yκ)||2] ≤
4(Ψη(y1) − ΨOpt

η )∑N−1
t=0 αt

+
∑N−1

k=0
2s2

mk+1
(4αk − α2

klip1(hη))
∑N−1

t=0 αt

≤
4(Ψη(y1) − ΨOpt

η )∑N−1
t=0 αt

+
∑N−1

k=0
8s2

mk+1
αk∑N−1

t=0 αt

≤
2lip1(hη)(Ψη(y1) − ΨOpt

η )
β

√
N

+
8s2

a (1 + log(N))
√

N
.

Hence, by choosing N ∈ O(ε−2) we ensure that E[||Gη,ακ
(yκ)||2] ∈ O(ε−1). Hence, 

the iteration complexity of the method is bounded by O(ε−2). Now, to bound the 
oracle complexity, note that in each iteration of Algorithm 1 we need mk+1 Gauss-
ian vectors U and the same number of random vectors ξ = (ξ1, ξ2) to construct the 

random vector 
∑mk+1

i=1
H(yk+ηUi

k+1,ξi
k+1)

η BU i
k+1. We therefore have mk+1 calls of 

the stochastic function H(·, ξ) in every single iteration. The total number of calls is 
thus 

∑N−1
k=0 mk+1 = a

∑N
k=1

√
k ≤ 2a

3 N3/2 As N ∈ O(ε−2), the oracle complexity 
is upper bounded by O(ε−3). Similarly, in every iteration we need mk+1 solutions of 
the lower level problem. Hence, by the above computation, the total number of lower 
level solves is bounded by O(ε−3). � □

5.2  Inexact lower level solution

Using this merit function and the definition of the error increment

	∆W β
k+1 ≜ V̂ βk

k+1 − ∇hη(yk) = V̂k+1 − ak+1 + bk+1 − ∇hη(yk) = ∆Wk+1 − ak+1 + bk+1,

we can repeat the one-step analysis of the exact case to obtain the bound

	

Ψη(yk+1) − Ψη(yk) ≤ − αk

(
1 − αklip1(hη)

2

) ∣∣∣∣G̃βk
η,αk

(yk)
∣∣∣∣2

+ αk⟨∆W β
k+1, Gη,αk

(yk)⟩ + αk

∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
.

� (5.6)

Lemma 4.8 generalizes in the inexact case in the following way:

Lemma 5.5  We have

	
||Gη,t(y)||2 ≤ 2

∣∣∣
∣∣∣G̃β

η,t(y)
∣∣∣
∣∣∣
2

+ 2
∣∣∣∣∆W β

η,m(y)
∣∣∣∣2

∗ a.s..� (5.7)

Proof  The assertion follows line by line as in Lemma 4.8 by replacing Vη,m(y) with 
V β

η,m(y). � □

Using this lemma directly in (5.6), we see that for αk ∈ (0, 2/lip1(hη)]
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Ψη(yk+1) − Ψη(yk) ≤ − αk

2

(
1 − αklip1(hη)

2

)
||Gη,αk

(yk)||2

+ αk⟨∆W β
k+1, Gη,αk

(yk)⟩ + αk

∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗

+ αk

(
1 − αklip1(hη)

2

) ∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
.

Applying Young’s inequality of the inner product, we conclude that for arbitrary 
δ > 0

	

Ψη(yk+1) − Ψη(yk) ≤ − αk

2

(
1 − 1

δ
− αklip1(hη)

2

)
||Gη,αk

(yk)||2

+ αk

(
2 + δ

2
− αklip1(hη)

2

) ∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
.

Rearranging this expression and summing both sides from k = 0 to N − 1, we 
remain with

	

N−1∑
k=0

αk

2

(
δ − 1

δ
− αklip1(hη)

2

)
||Gη,αk

(yk)||2 ≤ Ψη(y1) − ΨOpt
η

+
N−1∑
k=0

αk

(
4 + δ

2
− αklip1(hη)

2

) ∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
.

� (5.8)

Since 
∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
≤ 3 ||∆Wk+1||2∗ + 3 ||ak+1||2∗ + 3 ||bk+1||2∗, we can take itera-

tively conditional expectations to obtain the main complexity bound for the inexact 
regime.

Theorem 5.6  Suppose that the step sizes αk  are chosen such that αk ∈ (0 , 2(δ−1)
δlip1 (hη) ], 

with αk < 2(δ−1)
δlip1 (hη)  for at least one k ∈ {1 , . . . , N}. Let (yk)N

k=0  be generated by 
Algorithm  1 with inexact gradient estimator (4.9), δ > 1  and r , s ≥ 1  such that 
2s(r−1)

r = p ≥ 2 , where p is the exponent in Definition 4.6. On (Ω, F ,P) define 
an independent random variable κ : Ω → {0 , . . . , N − 1} with probability mass 
function

	
p(k) = P(κ = k) ≜

αk
δ−1

δ − α2
k lip1 (hη)/2∑N−1

t=0 (αt
δ−1

δ − α2
t lip1 (hη)/2 )

∀k ∈ {0 , . . . , N − 1}.

Let Dk ≜ 3(4+δ)
2

(
s2

mk+1
+ CF

2β2
k

η2

)
 for k = 0 , . . . , N − 1 . Then,
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1
2
E[||Gη,ακ

(yκ)||2] ≤
Ψη(y1) − ΨOpt

η∑N−1
t=0 (αt

δ−1
δ − α2

t lip1(hη)/2)

+
∑N−1

k=0 αkDk∑N−1
t=0 (αt

δ−1
δ − α2

t lip1(hη)/2)
.

� (5.9)

Proof  Starting from (5.8) the proof follows the same lines as the proof of Corol-
lary 5.3. � □

Similarly as in the exact case, we again find a trade-off between aggressive step-
sizes and the size of the mini-batches. However, in the inexact computational model, 
we additionally observe a trade-off between the step-size schedule and the accuracy 
tolerance βk in the lower level problem. In order to ensure convergence, the estimate 
developed in Theorem 5.6 reveals the condition 

∑∞
k=0αkβ2

k < ∞. This observa-
tion allows us to design explicit parameter sequences with interpretable complexity 
bounds. In addition, similarly as in the exact case, we require an upper bound on the 
step-size αk to ensure the divergence of the denominator. These conditions lead to the 
following refined error estimate.

Corollary 5.7  Under the same conditions as in Theorem 5.6, let be δ > 1  and con-
sider a step-size αk ≤ min{δ−1 ,1}

δlip1 (hη) . Let (yk)N
k=0  be generated by Algorithm 1 with 

gradient estimator (4.9). Then

	

1
2
E[||Gη,ακ

(yκ)||2 ] ≤
Ψη(y1 ) − Ψ Opt

η

δ−1
2δ

∑N−1
t=0 αt

+
∑N−1

k=0 αkD( 1
mk+1

+ β2
k )

δ−1
2δ

∑N−1
t=0 αt

,

where D ≜ 3(4+δ)
2 max{s2 , 2

η2 CF}.

Proof  We observe that Dk ≤ D( 1
mk+1

+ β2
k) and with the bound on αk we have

	
αt

δ − 1
δ

− α2
t lip1(hη)/2 ≥ αt(δ − 1)(1

δ
− 1

2δ
) = αt

δ − 1
2δ

.

Combining these estimates with the bound (5.9) verifies the assertion. � □
The constants appearing in the upper complexity bound can be well balanced via a 

judicious choice of δ. For instance, setting δ = 2, the step-size policy αk = 2θ
lip1(hη)

√
k

 

with θ ∈ (0, 1/2), and choosing the sampling rate mk = a
√

k and the accuracy toler-
ance βk = bk− 1

4  with constants a, b > 0, we obtain the overall complexity estimate

	
1
2
E[||Gη,ακ(yκ)||2] ≤

lip1(hη)
θ (Ψη(y1) − ΨOpt

η ) + 2D( 1
a + b2)(1 + log(N))

√
N

,
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which resembles those of the exact oracle case.

6  The convex case with inexact lower level solution

We now turn to the case in which the implicit function h is convex. In this special 
setting, the smoothed function hη is also convex and Lipschitz continuous. By the 
subgradient inequality, we have for all y ∈ Y  and g ∈ ∂h(y)

	 hη(y) = E[h(y + ηU)] ≥ E[h(y) + ⟨g, ηU⟩] = h(y).� (6.1)

Moreover, in the convex case, it holds true that ∇hη(y) always belongs to some δ
-subdifferential of the function h (cf. Lemma 4.4). In this section, we make an addi-
tional boundedness assumption on the bilevel problem.

Assumption 7  The domain dom (r1) is bounded.

Theorem 6.1  Assume that the implicit function y �→ h(y) is convex and Assumption 
7 holds. Assume that the step-size policy (αk)k≥0  satisfies

	
0 < αN−1 ≤ αN−2 ≤ . . . ≤ α1 ≤ 1

lip1(hη)
andαk + αk−1 ≤ 1

lip1(hη)
, forall k = 1, . . . , N − 1.� (6.2)

Let (yk)N
k=0  be generated by Algorithm 1 with gradient estimator (4.9) and let 

κ : Ω → {0 , . . . , N − 1} be an independent random variable, with probability 
mass function

	
p(k) = P(κ = k) ≜ ak

AN
, AN ≜

N−1∑
t=0

at, ak ≜ αk − α2
klip1(hη).� (6.3)

Then, we have

	

E[Ψ(yκ) − ΨOpt] ≤
∑N−1

k=0
α2

k

mk+1
Dk + M

√
CF

η

∑N−1
k=0 akβk + M/2 + α1∆Ψ1

AN

+ η
√

nlip0(h),
� (6.4)

where Dk ≜ 3
(
s2 /2 + β2

k mk+1
η2 CF

)
 and M ≜ supy1 ,y2 ∈ dom (r1 ) ||y1 − y2 ||2 .

Proof  Let y∗ denote a solution of the original problem (3.4). Let (αk)k be a sequence 
of step-sizes, satisfying 0 ≤ αk < 1

lip1(hη) . For η > 0 we then have

	Ψη(yk+1) − Ψη(y∗) = hη(yk+1) − hη(yk) + hη(yk) − hη(y∗) + r1(yk+1) − r1(yk).

Using the descent property (2.1) and the convexity of the smoothed implicit function 
hη, we deduce that
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hη(yk+1) − hη(yk) ≤ ⟨∇hη(yk), yk+1 − yk⟩ + lip1(hη)
2

||yk+1 − yk||2 , and

hη(yk) − hη(y∗) ≤ ⟨∇hη(yk), yk − y∗⟩.

Recall that ∆W β
k+1 = V̂ β

k+1 − ∇hη(yk). Then, we continue from the above with

	

Ψη(yk+1) − Ψη(y∗) ≤⟨∆W β
k+1, yk − yk+1⟩ + lip1(hη)

2
||yk+1 − yk||2

+ ⟨∆W β
k+1, y∗ − yk⟩ + r1(yk+1) − r1(y∗) + ⟨V̂ β

k+1, yk+1 − y∗⟩.

By definition of the point yk+1, we have

	
r1(y∗) ≥ r1(yk+1) + 1

αk
⟨B(yk − yk+1), y∗ − yk+1⟩ − ⟨V̂ β

k+1, y∗ − yk+1⟩.

Combining these two estimates, we can continue with

	

Ψη(yk+1) − Ψη(y∗) ≤ ⟨∆W β
k+1, yk − yk+1⟩ + lip1(hη)

2
||yk+1 − yk||2 + ⟨∆W β

k+1, yk − y∗⟩

+ 1
αk

⟨B(yk − yk+1), yk+1 − y∗⟩

= ⟨∆W β
k+1, yk − yk+1⟩ + lip1(hη)

2
||yk+1 − yk||2 + ⟨∆W β

k+1, y∗ − yk⟩

+ 1
αk

[
1
2

||yk − y∗||2 − 1
2

||yk+1 − yk||2 − 1
2

||yk+1 − y∗||2
]

.

Note that ax − bx2

2 ≤ a2

2b  for all x ≥ 0, implying that

	

⟨∆W β
k+1, yk − yk+1⟩ + lip1(hη)αk − 1

2αk
||yk+1 − yk||2

≤
∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
∗

· ||yk+1 − yk|| + lip1(hη)αk − 1
2αk

||yk+1 − yk||2

≤ αk

2(1 − αklip1(hη))

∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
.

Thus, multiplying both sides in the penultimate display by (αk − α2
klip1(hη)), we 

can continue the bound by

	

(αk − α2
klip1(hη))[Ψη(yk+1) − Ψη(y∗)]

≤ α2
k

2

∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
+ (αk − α2

klip1(hη))⟨∆W β
k+1, y∗ − yk⟩

+ (1 − αklip1(hη))
[

1
2

||yk − y∗||2 − 1
2

||yk+1 − y∗||2
]

.
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Using (6.1), we note that Ψη(yk+1) ≥ Ψ(yk+1). Additionally, Lemma 4.2 yields 
Ψη(y∗) ≥ ΨOpt − ηlip0(h)

√
n. This allows us to bound the objective function gap 

by

	

(αk − α2
klip1(hη))[Ψ(yk+1) − ΨOpt]

≤ (αk − α2
klip1(hη))[Ψη(yk+1) − Ψη(y∗)] + ηlip0(h)

√
n(αk − α2

klip1(hη))

≤ α2
k

2

∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
+ (αk − α2

klip1(hη))⟨∆W β
k+1, y∗ − yk⟩

+ (1 − αklip1(hη))
[

1
2

||yk − y∗||2 − 1
2

||yk+1 − y∗||2
]

+ ηlip0(h)
√

n(αk − α2
klip1(hη)).

To bound the terms on the right-hand side, we first use 
error decomposition (4.21) to bound the first addendum by ∣∣∣
∣∣∣∆W β

k+1

∣∣∣
∣∣∣
2

∗
≤ 3 ||∆Wk+1||2∗ + 3 ||ak+1||2∗ + 3 ||bk+1||2∗, as well as the second adden-

dum ⟨∆W β
k+1, y∗ − yk⟩ = ⟨∆Wk+1, y∗ − yk⟩−⟨ak+1, y∗ − yk⟩ + ⟨bk+1, y∗ − yk⟩. 

Hence, taking conditional expectations on both sides, we continue with

	

Ek

[
(αk − α2

klip1(hη))(Ψ(yk+1) − Ψ(y∗))
]

≤3α2
k

2
s2

mk+1

+ 3α2
k

nβ2
k

η2 CF + Ek

[
(αk − α2

klip1(hη))⟨bk+1, yk − y∗⟩
]

+ (1 − αklip1(hη))Ek

[
1
2

||yk − y∗||2 − 1
2

||yk+1 − y∗||2
]

+ ηlip0(h)
√

n(αk − α2
klip1(hη))

≤3α2
k

2
s2

mk+1
+ 3α2

k

nβ2
k

η2 CF + M(αk − α2
klip1(hη)Ek [||bk+1||∗]

+ (1 − αklip1(hη))Ek

[
1
2

||yk − y∗||2 − 1
2

||yk+1 − y∗||2
]

+ ηlip0(h)
√

n(αk − α2
klip1(hη)),

where the second inequality uses Cauchy-Schwarz and the bound M ≥ ||yk − y∗||2, 
which holds thanks to Assumption 7. Since the step size sequence (αk)k is non-decreas-
ing and satisfies condition (6.2), we can continue to obtain

	

N−1∑
k=0

(1 − αklip1(hη))
(

1
2

||yk − y∗||2 − 1
2

||yk+1 − y∗||2
)

= (1 − α1lip1(hη))1
2

||y1 − y∗||2 +
N∑

k=2

lip1(hη)(αk − αk+1)1
2

||yk+1 − y∗||2

− (1 − lip1(hη)αN )1
2

||yN+1 − y∗||2

≤ (1 − αN lip1(hη))M

2
.
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Next, calling ∆Ψk ≜ Ψ(yk) − ΨOpt and ak ≜ αk − α2
klip1(hη), we deduce that

	

N−1∑
k=0

ak∆Ψk =
N−1∑
k=0

ak∆Ψk+1 +
N−1∑
k=0

ak(∆Ψk − ∆Ψk+1)

and

	

N−1∑
k=0

ak(∆Ψk − ∆Ψk+1) =
N−1∑
k=0

ak∆Ψk −
N−1∑
k=0

ak∆Ψk+1

= a1∆Ψ1 +
N−1∑
k=1

ak∆Ψk −
N−1∑
k=0

ak∆Ψk+1

≤ a1∆Ψ1 +
N−1∑
k=1

ak−1∆Ψk −
N−1∑
k=0

ak∆Ψk+1 ≤ a1∆Ψ1.

The third inequality uses the relation ak ≤ ak−1.4 Taking full expectations and sum-
ming from k = 0, . . . , N − 1, we continue the above bound

	

E

[
N−1∑
k=0

(αk − α2
klip1(hη))∆Ψk

]
≤ E

[
N−1∑
k=0

(αk − α2
klip1(hη)∆Ψk+1

]
+ (α1 − lip1(hη)α2

1)∆Ψ1

≤
N−1∑
k=0

(
3α2

k

2
s2

mk+1
+ 3α2

kβ2
k

η2 CF

)
+ (1 − αN lip1(hη))M

2

+ ηlip0(h)
√

n

N−1∑
k=0

(αk − α2
klip1(hη))

+ M
N−1∑
k=0

(αk − α2
klip1(hη))E (||bk+1||∗)

+ (α1 − α2
1lip1(hη))∆Ψ1

≤
N−1∑
k=0

(
3α2

k

2
s2

mk+1
+ 3α2

kβ2
k

η2 CF

)

+ M
N−1∑
k=0

(αk − α2
klip1(hη))βk

η

√
CF + (1 − αN lip1(hη))M

2

+ ηlip0(h)
√

n
N−1∑
k=0

(αk − α2
klip1(hη)) + (α1 − α2

1lip1(hη))∆Ψ1.

4 This can be deduced as follows: Since αk ≤ αk−1 one easily sees that

	ak − ak−1 = (αk − αk−1) − lip1(hη)(α2
k − α2

k−1) = (αk − αk−1) (1 − lip1(hη)(αk + αk−1)) ≤ 0.
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Therefore, defining Dk ≜ 3
(
s2/2 + β2

kmk+1
η2 CF

)
, and constructing an independent 

random variable κ : Ω → {0, . . . , N − 1} with density function

	
p(k) = P(κ = k) = ak∑N−1

t=0 at

≡ ak

AN
, AN ≜

N−1∑
t=0

at,

we obtain in a similar fashion as in the proof of Theorem 5.2

	
E[∆Ψκ] ≤

∑N−1
k=0

α2
k

mk+1
Dk + M

√
CF

η

∑N−1
k=0 akβk + M/2 + α1∆Ψ1

AN
+ η

√
nlip0(h).

� □

Similar to the analysis in the non-convex case, we can simplify the complexity bound 
of Theorem 6.1 via a judicious selection of parameters.

Corollary 6.2  Under the same conditions as in Theorem  6.1, let be δ > 1  and 
∆Ψk ≜ Ψ(yk) − ΨOpt. Then

	

E[∆Ψκ] ≤
∑N−1

k=0 α2
k( 1

mk+1
+ β2

k)D̄ + M
√

CF

η

∑N−1
k=0 αkβk + M/2 + α1∆Ψ1∑N−1

k=0 αk/2
+ η

√
nlip0(h).

� (6.5)

In particular, for fixed time horizon N, choosing step size αk = α0√
N , the constant 

mini-batch mk+1 = m ≥ 1 , and βk = a√
k+a , a ≥ 1 , as well as η = 1√

N . we obtain

	

E[∆Ψκ] ≤
D̄α0

m + D̄α0
N a2 log(N + a) + M

√
CF

η
2α0a

√
N+a√

N
+ M

2 + α1∆Ψ1
√

N
2

+
√

nlip0(h)√
N

.

� (6.6)

Proof  First we note that

	

N−1∑
k=0

α2
k

mk+1
Dk ≤ D̄

N−1∑
k=0

α2
m( 1

mk+1
+ β2

k),

where D̄ ≜ 3 max{s2/2, CF

η2 }; Second 
∑N−1

k=0 akβk ≤
∑N−1

k=0 αkβk. Moreover, by 
choosing the step size αk ≤ 1

2lip1(hη) , we see that ak = αk − α2
klip1(hη) ≥ αk

2 . 
Combining all these estimates, we arrive at (6.5). For fixed time horizon N, choose 
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step size αk = α0√
N

, the constant mini-batch mk+1 = m ≥ 1, and βk = a√
k+a

, a ≥ 1, 
as well as η = 1√

N
. Substituting these numbers into expression (6.5), we immedi-

ately obtain (6.6). � □
It is worth noting that the fixed step sizes αk = α0√

N
 can be replaced by diminish-

ing step sizes of the order 1√
k

.

7  Explicit complexity and relaxed stationarity

The previous results provided a finite-time complexity estimate in terms of the gradi-
ent mapping of the proximal gradient algorithm, involving the Gaussian smoothed 
objective. It is intuitive that a small proximal gradient in the smoothed regime should 
imply an approximate stationary point in the original optimization problem, when the 
smoothing parameter is sufficiently small. In this section we make this intuition pre-
cise and relate our complexity estimate from Theorem 5.2 to a complexity estimate 
with respect to a relaxed stationary point.

Fix η > 0 and define α1 = 2θ
lip1(hη) . Define the auxiliary process (ŷk)k≥1 by

	
ŷk ≜ Pα1(yk, V̂k+1) = argmin

u
{r1(u) + 1

2α1

∣∣∣
∣∣∣u − (yk − α1B−1V̂k+1)

∣∣∣
∣∣∣
2
}.

This point is uniquely characterized by the optimality condition

	 yk − α1B−1V̂k+1 ∈ ŷk + α1B−1∂r1(ŷk),

or equivalently

	 ŷk + α1B−1D(yk) ∈ ŷk + α1B−1∂r1(ŷk) ⇔ D(yk) ∈ ∂r1(ŷk),

where

	
D(yk) ≜ B

(
yk − ŷk

α1

)
− ∇hη(ŷk) + (∇hη(ŷk) − ∇hη(yk)) + (∇hη(yk) − V̂k+1).

This yields

	
B

(
yk − ŷk

α1

)
+ (∇hη(ŷk) − ∇hη(yk)) − ∆Wk+1 ∈ ∂r1(ŷk) + ∇hη(ŷk).

From now on we continue our developments with Assumption 7 in place. Choose 
ε1 > 0, ε2 > 0, and η < η̄ (depending on ε1, ε2), as defined in Proposition 4.5, so 
that
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B

(
yk − ŷk

α1

)
+ (∇hη(ŷk) − ∇hη(yk)) − ∆Wk+1 ∈ ∂r1(ŷk) + ∂ε2

G hη(ŷk) + ε1

3
BY .

Therefore, using Lemma 4.3, we arrive at

	

dist (0, ∂ε2
G h(ŷk) + ∂r1(ŷk))2 ≤ 6

α2
1

||yk − ŷk||2 + 3 ||∇hη(ŷk) − ∇hη(yk)||2∗

+ 3 ||∆Wk+1||2∗ + 2ε2
1

3

≤
(

6
α2

1
+ 3nlip0(h)2

η2

)
||yk − ŷk||2 + 3 ||∆Wk+1||2∗ + 2ε2

1
3

.

Next, we relate the auxiliary process (ŷk)k to the stochastic sequence (yk)k gener-
ated by Algorithm 1. To that end, observe that

	||yk − ŷk|| ≤ ||yk − Tη,α1(yk)|| + ||Tη,α1(yk) − ŷk|| = α1 ||Gη,α1(yk)|| + α1 ||∆Wk+1||∗ .

Combining this estimate and Lemma 4.3 with the penultimate display, we arrive at

	

dist (0, ∂ε2
G h(ŷk) + ∂r1(ŷk))2 ≤

(
12 + 6nlip0(h)2

η2 α2
1

)
||Gη,α1(yk)||2

+
(

15 + 6nlip0(h)2

η2 α2
1

)
||∆Wk+1||2∗ + 2ε2

1
3

≤
(
12 + 24β2)

||Gη,α1(yk)||2 +
(
15 + 24β2)

||∆Wk+1||2∗ + 2ε2
1

3

≤ 18 ||Gη,α1(yk)||2 + 21 ||∆Wk+1||2∗ + 2ε2
1

3
.

Adopting a non-increasing step size regime in Algorithm  1, we can leverage the 
monotonicity result of the prox-gradient mapping with respect to the step size, 
described in Appendix C, so that for all k ∈ {0, 1, . . . , N − 1}

	
dist (0, ∂ε2

G h(ŷk) + ∂r1(ŷk))2 ≤ 18 ||Gη,αk
(yk)||2 + 21 ||∆Wk+1||2∗ + 2ε2

1
3

.� (7.1)

From these preparatory calculations, we can state the next relation between the com-
plexity analysis in terms of the prox-gradient mapping (Corollary 5.3), and our defi-
nition of an (ε, δ)-stationary point (Definition 3.3).

Theorem 7.1  Given positive parameters (ε1 , ε2 ) and let Assumption 7 together with 
all assumptions formulated in Corollary 5.4 be true. Pick η ∈ (0 , η̄] so that the gra-
dient estimate of Proposition 4.5 for the given pair (ε1 , ε2 ) applies. Let (yk)N

k=0  be 
the stochastic process generated by Algorithm 1 with gradient estimator (4.5) and Let 
(ŷk)N

k=0  be the auxiliary process constructed recursively with
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	 ŷ0 = y0andŷk = Pα1(yk, V̂k+1) ∀k = 1, . . . , N − 1.� (7.2)

If κ : Ω → {0 , . . . , N − 1} is the random variable with law defined in Theorem 
5.2, then for N ≥ 2  chosen sufficiently large so that

	

36lip1(hη)[Ψη(y1) − ΨOpt
η ]

β
√

N
+

228s2

a (1 + log(N))
√

N
≤ ε2

1
3

.� (7.3)

Then,

	 E
[
dist (0 , ∂ε2

G h(ŷκ) + ∂r1 (ŷκ))2 ]
≤ ε2

1 ,

i.e. the algorithm delivers an (ε1 , ε2 )-stationary point in the sense of Definition 3.3.

Proof  Continuing from (7.1) and using (5.5), we readily deduce

	

E
[
dist (0, ∂ε2

G h(ŷκ) + ∂r1(ŷκ))2]

≤ 2ε2
1

3
+ 21

N−1∑
k=0

s2

mk+1
(2αk − α2

klip1(hη))
∑N−1

t=0 (2αt − α2
t lip1(hη))

+ 18


 4(Ψη(y1) − ΨOpt

η )∑N−1
t=0 (2αt − α2

t lip1(hη))
+

∑N−1
k=0 2 s2

mk+1
(4αk − α2

klip1(hη))
∑N−1

t=0 (2αt − α2
t lip1(hη))




≤ 2ε2
1

3
+

72(Ψη(y1) − ΨOpt
η )∑N−1

t=1 (2αt − α2
t lip1(hη))

+
N−1∑
k=0

57 s2

mk+1
(4αk − α2

klip1(hη))
∑N−1

t=0 (2αt − α2
t lip1(hη))

.

Choose αk = 2β

lip1(hη)
√

k
, so that 2αk − α2

klip1(hη) ≥ αk for all k ≥ 0. Additionally, 

choosing mk = a
√

k, and following the computations performed in Corollary 5.3, 
we continue the previous display as

	
E

[
dist (0, ∂ε2

G h(ŷκ) + ∂r1(ŷκ))2]
≤

36lip1(hη)[Ψη(y1) − ΨOpt
η ]

β
√

N
+ 2ε2

1
3

+
228 s2

a (1 + log(N))
√

N
.

Choosing N so large that (7.3) holds, the thesis follows. � □

Remark 7.1  Since lip1(hη) = O(1/η) and Proposition  4.5 shows that η = O(ε2), 
the implied iteration complexity by Theorem 7.1 is on the order of maginitude of 
N−1/2 ∼ ε2

1η
3 , so that N ∼ 9

ε4
1ε2

2
. Choosing ε ≡ ε1 = ε2 therefore yields the leading 

order of ε−6 for the iteration complexity.
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8  Numerical experiments

In our numerical experiments, we consider the bilevel learning approach to inverse 
problems and specify two case studies:

	● Experiment 1: One-dimensional signal denoising.
	● Experiment 2: Optimal experimental design.

Both experiments fall naturally within our general learning framework, as described 
in the next subsections.

8.1  One-dimensional signal denoising

In the first experiment, we consider a simple one-dimensional image denoising prob-
lem, inspired by [19]. The goal is to reconstruct a random one dimensional piece-
wise constant signal, observed at discretely sampled points and perturbed with 
Gaussian observational noise. Specifically, we represent the signal as a random vec-
tor ξ1 = (ξ1(t1), . . . , ξ1(tn)) with n = 256 sample points, corrupted by Gaussian 
white noise

	 ξ2(t) = ξ1(t) + σZ(t) t ∈ {t1, . . . , tn}.

(Z(t))t∈{t1,...,tn} are independent and identically distributed N(0, 1) random vari-
ables, and σ =

√
0.001. For the data generating process, we choose the sampling 

times uniformly by ti = i
n , i = 1, . . . , n,

	 ξ1(ti, ω) = 1[C(ω),R(ω)](ti),

where C,  R are two independent uniformly distributed random variables with 
C ∼ U([ 1

8 , 1
4 ]) and R ∼ U([ 3

8 , 7
8 ]). As a variational model for reconstructing the sig-

nal from the noisy observations, we consider the loss function

	
min
x∈Rn

g(x, (λ, τ, ν), ξ2) ≜ 1
2

||x − ξ2||2 + λ

2
||Lx||2 + τTVν(x),� (8.1)

where (λ, τ, ν) ∈ R3
+ is the hyperparameter vector of our problem. L ∈ Rn×n is a 

symmetric positive definite regularization matrix, chosen as L2 = 0.012∆, with ∆ 
being the discrete Laplace operator for the 1D-signal, and λ > 0 is the Tikhonov 
regularization parameter. In addition to the Tikhonov regularization, we consider a 
smoothed Total Variation regularization

	
TVν(x) ≜

∑
i

√
|xi+1 − xi|2 + ν2 ν > 0, a learned smoothing parameter.

Bilevel learning problems with this particular structure have also been studied in 
[19], and our numerical implementation follows the setup described in there. In par-
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ticular, it is reported in [19], that the lower level problem (8.1) is µ-strongly convex 
and ℓ-smooth with

	
µ ≥ λ · emin(L2) and ℓ ≤ 1 + τ∂

ν
+ λ∥L2∥,

where emin(L2) > 0 denotes the smallest eigenvalue of L and ∂ > 0 is a constant 
arising due to the spatial discretization of the Total Variation. Hence, in order to 
approximately retrieve the reconstruction operator x∗(y, ξ2), we can implement a 
gradient descent scheme achieving a full control over the inexactness in the lower 
level solution, as defined in Definition 4.6. More precisely, when implementing gra-
dient descent with constant step size 1

ℓ , we achieve accuracy β using the stopping 
criterion ∥∇xg(x,y,ξ2)∥2

µ2 ≤ β after at most ⌈ log(β)
log((q−1)/(q+1)) ⌉ iterations, where q = ℓ

µ  
is the condition number of the problem.

Implementation and validation For numerically solving the upper level prob-
lem, we’ve introduced the parametrization

	 y ∈ R3 �→ (λ, τ, ν) = (10y1 , 10y2 , 10y3) = (λ(y1), τ(y2), ν(y3)),� (8.2)

with the additional restriction y = (y1, y2, y3) ∈ [−7, 7]3. This leads to the upper-
level problem

	

min
y∈[−7,7]3

E[∥x∗(y, ξ2) − ξ1∥2
︸ ︷︷ ︸

=F (x∗(y,ξ2),ξ1)

] + 10−6


1 + ∂·τ(y2)

ν(y3) + λ(y1)∥L2∥
λ(y1)emin(L2)




2

︸ ︷︷ ︸
=r2(y)

.
� (8.3)

In every iteration k of our main scheme, we first solve the lower level problem (8.1) 
up to accuracy βk = β0√

k+1 , β0 > 0 using gradient descent. We then increase the 
batch size of the random gradient estimator (4.9) by mk =

√
k · m0, m0 ∈ N. We 

adopt the step-size policy αk = α0√
k+1 , α0 > 0. The smoothing parameter is fixed 

at level η = 0.01. In order to numerically confirm the convergence of the gener-
ated trajectory, we plot the summation over the random operator G̃βk

η,k scaled by the 

step-size policy, i.e. we demonstrate that ∆k :=
∑k

s=0 αsG̃βs
η,s remains bounded. To 

verify the generalization properties of the method, we generate a validation data set 
independent of the data set applied in the application of Algorithm  1, defined as 
i.i.d. sample (ξi,val

1 , ξi,val
2 )mval

i=1 , mval ∈ N, of (ξ1, ξ2). We then plot the normalized 
empirical errors in the upper level

	
Erri(y) ≜ ∥x∗(y, ξi,val

2 ) − ξi,val
1 ∥

∥ξi,val
1 ∥

∀i ∈ {1, . . . , mval}.� (8.4)

1 3



Derivative-free stochastic bilevel optimization for inverse problems

The lower level solution x∗(y, ξi,val
2 ) is obtained via the gradient descent method 

with tolerance β = 10−7. In this visualization, we compare the generalization error 
for different choices of y with the resulting learned parameters by Algorithm 1. We 
set α0 = 1, β0 = 0.01 and m0 = 1 as parameters in Algorithm DFProxGrad, and 
terminate after N = 700 iterations.

In Fig. 1a–c we plot the resulting regularization parameters generated by Algo-
rithm 1, where we observe that all three parameters converge. This result can also be 
observed from Fig. 1d, where we demonstrate that the summation over the random 
operators G̃βk

η,k remains bounded. The resulting reconstruction of the signal using the 
learned regularization parameters for solving the lower level problem (8.1) is plotted 
in Fig. 2b. As comparison, in Fig. 2c–f, we plot the reconstructions of the signal using 
different regularization parameters chosen by hand. In all four cases, we have cho-
sen a smoothing parameter ν = 10−3. The comparison of the reconstruction already 
conveys some evidence that our learned regularization parameter using Algorithm 1 
outperforms the fixed regularization parameters. This empirical evidence is further 
demonstrated in Fig. 3 where we compare the generalization error (8.4) over valida-
tion data set independent of the training data set.

8.2  Image reconstruction based on the radon transform

In X-ray tomography, the forward operator is a discretization of the Radon trans-
form [31], where data are collected at various angles θ ∈ [0, π). The unknown x 
represents a 2D image, and the measurements d(θ) = Aθx for one angle represents 
the line integrals of that image along straight lines at angle θ. We discretize this line 
integral, so that Aθ is numerically represented as a 1 × nx row vector, acting on 
model parameters x ∈ Rnx . Collecting a large number of angles θ ∈ [0, π) leads to 
a well-posed inverse problem and generally yields a good reconstruction. For practi-
cal applications it is of interest to reduce the number of angles, dictating the use of 
additional regularization to fill in the missing information. To model such a situation, 
we let n ∈ N denote the maximal number of angles from which we can observe the 
2D image. Let θ = (θ1, . . . , θd) ∈ [0, π)d the vector of angles, and the full forward 
model

	

K =




Aθ1
...

Aθd


 ∈ Rd×nx , x ∈ Rnx �→ Kx ∈ Rd

mapping the image x ∈ Rnx  to data in Rd. Let ξ1 ∈ L∞(Ω,Rnx) represent the ran-
dom vector of model parameters and let Z ∈ L∞(Ω;Rd) be an independent obser-
vational noise. Define

	 D(ω) ≜ Kξ1(ω) + Z(ω).

The random vector D ∈ Rd corresponds to d noise-contaminated perspectives of the 
image, representing the measurements available in a design using all d angles simul-
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taneously. To model an experimental design problem in which we can only take mea-
surements from 1 ≤ q ≤ d chosen angles, we have to define a selection procedure 
from the coordinates of the vector D. Hence, given a fixed integer 1 ≤ q ≤ d (typi-
cally much smaller than d), we define Sq,d ≜ {J ⊂ {1, 2, . . . , d} | |J | = q}. Each 
element J ∈ Sq,d gives rise to a q-tuple of observations

	 UJ(ω)D(ω) = (Aθj
ξ1(ω) + Zj(ω))j∈J ∈ Rq,� (8.5)

where UJ ∈ Rq×d is a matrix selecting the components contained in J out of the 
random vector D = Kξ1 + Z. Hence, using our statistical formulation of the experi-
mental design problem, the random pair (ξ1, ξ2) consists of model parameters 
ξ1 ∈ Rnx ≡ Ξ1 and observations ξ2 = (J, UJD) ∈ Ξ2 ≡ Sq,d × Rq.

Our aim is to learn the best angles to be used for taking measurements via a spe-
cific variational formulation of the experimental design problem, given by
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Fig. 1  a–c Learned parameters (y1, y2, y3) resulting from Algorithm  1 and d summation over the 
random operators G̃βt

η,t

 

1 3



Derivative-free stochastic bilevel optimization for inverse problems

	

min
x∈Rnx

+

g(x, (w, λ, τ, ν), ξ2) = min
x∈Rnx

{g(x, (w, λ, τ, ν), ξ2) + δRnx
+

}, where

g(x, (w, λ, τ, ν), ξ2) ≜ ||UJKx − UJD||22 + λ

2
||x||2 + τTVν(x) = ||Kx − D||2U⊤

J
UJ

+ λ

2
||x||2 + τTVν(x),

TVν(x) ≜
∑
i,j

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2 + ν2,

in which x ∈ Rnx
+  represents a two-dimensional discretized image of size √nx × √

nx 
px. Note that we incorporate state constraints to the lower level solution forcing the 
images x to remain non-negative, which is implemented using the projected gradient 
method. The loss function depends on hyperparameters y = (w, λ, τ, ν), which are 
trained via the minimization of the upper level loss function
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Fig. 3  Pointwise generalisation error in the 
upper level (8.4) over the validation data set 
(ξi,val

1 , ξi,val
2 )mval

i=1 , mval = 50. We plot the 
errors for the different choices of regularisation 
parameters from Fig. 2
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Fig. 2  a Ground truth signal and b reconstruction of the signal using the learned regularization pa-
rameters (λ, τ, ν) after N = 300 iterations. As comparison we show the reconstruction c using low 
Tikhonov regularization with λ = 10−3 and low TV regularization with τ = 10−3, d using high 
Tikhonov regularization with λ = 10−1 and low TV regularization with τ = 10−3, e using low Tik-
honov regularization with λ = 10−3 and high TV regularization with τ = 1, and f using high Tik-
honov regularization with λ = 10−1 and high TV regularization with τ = 1. In (c–f) we have fixed 
the smoothing parameter ν = 10−3
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	 Ψ(y) = E[F (x∗(y, ξ2), ξ1)] = E[∥x∗(y, ξ2) − ξ1∥2] .

The interpretation of the hyperparameters λ, τ, ν is clear. The hyperparam-
eter w ∈ Rd is used to parametrize the probability distribution over angles. 
To explain this transformation, define the set of probability mass functions 
P ≜ {p = (p1, . . . , pd) ∈ Rd | pi ≥ 0,

∑d
i=1 pi = 1}, in which pi ∈ [0, 1] describes 

the probability of selecting the line integral Aθi  in the experimental design. The 
weight vector w = (w1, . . . , wd) ∈ Rd determines the distribution over the random 
sample J ∈ Sq,d via the soft-max parametrization

	
pi = exp(wi)∑d

j=1 exp(wj)
, i = 1, . . . , d.

Having constructed this probability distribution, we sample J ∈ Sq,d without replace-
ment according to (p1, . . . , pd).

Implementation and validation In our concrete experiment, we assume that we 
are allowed to pick q = 6 angles out of a pool of d = 64 possible angles θi = (i−1)π

d . 
The goal is to reconstruct images of size 64 × 64 px given the noisy measurements 
generated by (8.5), where (Zi) are independent and identical distributed according 
to N(0, 0.012). Our set of images consist of randomly generated triangles of varying 
size, rotation in the space and varying gray levels ranging from 0.5 to 1. The angles 
and direction of the triangles are kept fixed. In Fig. 4, we show i.i.d. realization of 16 
different images.

In order to enhance the reconstruction accuracy we have implemented the OED 
problem of choosing the best possible policy over the set of all possible angles [49]. 
The regularization parameters (λ, τ, ν) are again parametrized as in (8.2). Includ-
ing the vector of weights (w1, . . . , wd), we abuse notation and identify the tuple of 
hyperparameters by the list

	 y = (y1, . . . , yd, 10yd+1 , 10yd+2 , 10yd+3),

so that our upper level problem (8.3) is a minimisation problem over a space Y  of 
dimension n = d + 3 = 67.

In our numerical implementation, we have chosen the uniform distribution 
(1/d, . . . , 1/d) (i.e. w = 0 ∈ Rd, corresponding to a naive selection mechanism of 
angles) as initial condition. The same distribution is used as comparison in our vali-
dation over the validation data set. Algorithm 1 with inexact lower level solution is 
applied with α0 = 0.2, β0 = 0.1 and m0 = 1, and terminated after N = 2000 itera-
tions. The generalization performance is illustrated in Fig. 6, where we have applied 
various configurations of regularization parameters together with the uniform pol-
icy. Among fixed choices of regularization parameters, we’ve also implemented the 
bilevel learning approach for selecting the regularization parameters (λ, τ, ν) with a 
fixed uniform policy. For validation, we use an i.i.d. sample (ξi,val

1 )mval
i=1 , mval ∈ N, 

of ξ1 and plot the normalized empirical errors in the upper level
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Erri(y) := ∥x∗(y, ξi,val

2 ) − ξi,val
1 ∥

∥ξi,val
1 ∥

∀i ∈ {1, . . . , mval}.� (8.6)

where ξi,val
2  is generated according to (8.5). The lower level solution x∗(y, ξi,val

2 ) is 
again obtained by gradient descent with targeted accuracy β = 10−7.

Overall, we observe a significant improvement by applying our learned policy. 
The resulting reconstructions for the different choices of regularization parameters 
and policies are shown in Fig. 5. These reconstructions further demonstrate the sig-
nificant improvement through the proposed OED approach based on the stochastic 
bilevel optimization approach.

9  Conclusion

In this paper we’ve studied a zeroth-order gradient method for a particular class of 
stochastic bilevel programs which arise naturally in data-driven learning of inverse 
problems. Our complexity estimates adapt to smoothing and inexact solutions of the 
lower level problem. Our theoretical and numerical results display the favourable 
properties of our scheme. In future work, we plan to continue this line of research 
along the following directions:

	● Higher-order numerical methods: The merit function employed in this paper is a 
stationary point. In non-convex optimization, an important question is whether 
our method is able to avoid saddle-points. For this, we plan to develop stochas-
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Fig. 4  Realisations of the random triangles in Example 8.2
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tic Newton methods, employing derivative-free gradient estimation strategies, as 
done in this paper.

	● Weakening the Lipschitz continuity assumptions of the hyperobjective. Interest-
ing recent results in this direction are reported in [38].

	● Construction of the random estimator: In this paper we adopt a Monte-Carlo ap-
proach to estimate the directional deriviative using iid Gaussian directions. It 
would be interesting to include more structure in this sampling approach. Quasi- 
or Multi-level Monte Carlo approaches would be interesting new stochastic simu-
lation approaches to reduce the computational costs [27].

1 2 3 4 5 6 7 8 9 10
data set

10-1

100
Evaluation over unseen data

leanred reg, learned angles
learned reg, random angles
high reg
med reg
low reg

Fig. 6  Pointwise generalization error in the 
upper level Erri(p, λ, τ, ν) (Eq. (8.6)) over 
the validation data set (ξval

i )mval
i=1 , mval = 10. 

We plot the errors for the different choices of 
regularization parameters from Fig. 5
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(d) recon (low reg, random angles)

10 20 30 40 50 60

10

20

30

40

50

60
0

0.5

1

1.5

(c) recon (learned reg, random angles)
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(b) recon (learned reg, learned angles)
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Fig. 5  a Ground truth image and b reconstruction of the image using the learned regularization param-
eters (λ, τ, ν) and the learned distribution p after N = 2000 iterations of DFProxGrad. As compari-
son we show the reconstruction of the image c using the learned regularization parameters (λ, τ, ν) 
after N = 2000 iterations and a fixed uniform policy, d using low regularization with λ = 10−9, 
τ = 10−9, ν = 10−2 and uniform policy, e using medium regularization with λ = 10−3, τ = 10−3, 
ν = 10−2 and uniform policy, f using high regularization with λ = 10−2, τ = 10−2, ν = 10−2 and 
uniform policy
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Properties of the Gaussian smoothing

Let E  be a finite-dimensional real vector space, and define Mp ≜ E[||U ||p].

Lemma A.1  ( [42], Lemma 1) We have M0 = 1 , M2 = n and for p ∈ [0 , 2 ],

	 Mp ≤ np/2.� (A.1)

If p ≥ 2 , then

	 np/2 ≤ Mp ≤ (p + n)p/2.� (A.2)

Proof of Lemma 4.1  For all y1, y2 ∈ Y , we have

	

|hη(y1) − hη(y2)| = |EP1 [h(y1 + ηU)] − EP1 [h(y2 + ηU)]|
= |EP1 [h(y1 + ηU) − h(y2 + ηU)]|
≤ EP1 [|h(y1 + ηU) − h(y2 + ηU)|]
≤ lip0(h) ||y1 − y2|| .

� □

Proof of Lemma 4.2  For any y ∈ Y  we have

	|hη(y) − h(y)| ≤ EP1 [|h(y + ηU) − h(y)|] ≤ ηlip0(h)EP1 [||U ||] = ηlip0(h)
√

n.

� □

Proof of Lemma 4.3  Let Υ denote the normalizing constant of the Gaussian density 
πη(•|y). Using the formula (4.1), for any y ∈ Y , we can directly differentiate under 
the integral to obtain

	

∇hη(y) = 1
Υηn

ˆ

Y
h(z) exp

(
− 1

2η2 ||z − y||2
)

B(z − y)
η2 dz

= 1
Υ

ˆ

Y

1
η

h(y + ηu) exp
(

−1
2

||u||2
)

Bu du

= EP1

[
h(y + ηU) − h(y)

η
BU

]

= EP1

[
h(y + ηU)

η
BU

]
.

� (A.3)

Now let y1, y2 ∈ Y  so that

1 3



M. Staudigl et al.

	

||∇hη(y1) − ∇hη(y2)||∗ ≤ EP1

[∣∣∣∣
h(y1 + ηU) − h(y2 + ηU)

η

∣∣∣∣ ||BU ||∗

]

≤ lip0(h) ||y1 − y2||
η

EP1 [||U ||]

≤ lip0(h) ||y1 − y2||
η

√
n

where the last inequality uses [42, Lemma1]. To obtain the bound on the gradient 
norm, we continue from the first relation, showing that

	

||∇hη(y)||2∗ ≤ EP1

[∣∣∣∣
h(y + ηU) − h(y)

η

∣∣∣∣
2

||BU ||2∗

]

≤ lip0(h)2EP1

[
||U ||2 · ||BU ||2∗

]

= lip0(h)2EP1

[
||U ||4

]
≤ lip0(h)2(4 + n)2.

The last equality uses again [42, Lemma1]. � □

Technical proofs

Proof of Lemma 4.7

Given y ∈ Y , we use the law of iterated expectations to compute

	

EP

[
V̂η,m(y)

]
= EP

[
1
m

m∑
i=1

∇̂(Ui,η)H(y, ξi)

]

= EP

[
1
m

m∑
i=1

EP

(
∇̂(Ui,η)H(y, ξi)|σ(U i)

)]

= 1
m

m∑
i=1

EP

[
h(y + ηU i) − h(y)

η
BU i

]

= ∇hη(y)

where the last equality uses eq. (4.2). For the second bound, observe that
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EP

[∣∣∣
∣∣∣V̂η,m(y)

∣∣∣
∣∣∣
2

∗

]
= EP




∣∣∣∣∣

∣∣∣∣∣
1
m

m∑
i=1

(
∇̂(Ui,η)H(y, ξi) − ∇hη(y)

)
+ ∇hη(y)

∣∣∣∣∣

∣∣∣∣∣
2

∗




= 1
m2EP




∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

(
∇̂(Ui,η)H(y, ξi) − ∇hη(y)

)∣∣∣∣∣

∣∣∣∣∣
2

∗


 + ||∇hη(y)||2∗ .

Define the centered random variable Xi ≜ ∇̂(Ui,η)H(y, ξi) − ∇hη(y) for 1 ≤ i ≤ m, 
to obtain an i.i.d collection of zero-mean random variables in Y∗. Therefore, we can 
continue from the last line of the previous display by noting that

	

EP




∣∣∣∣∣

∣∣∣∣∣
m∑

i=1
Xi

∣∣∣∣∣

∣∣∣∣∣
2

∗


 = EP

[
⟨B−1

m∑
i=1

Xi,

m∑
i=1

Xi⟩

]

=
∑
i,j

EP
[
⟨B−1Xi, Xj⟩

]
=

m∑
i=1

EP
[
⟨B−1Xi, Xi⟩

]

=
m∑

i=1
EP[||Xi||2∗].

Since EP[||Xi||2∗] = EP

[∣∣∣
∣∣∣∇̂(U,η)H(y, ξ)

∣∣∣
∣∣∣
2

∗

]
− ||∇hη(y)||2∗, it follows

	
EP

[∣∣∣
∣∣∣V̂η,m(y)

∣∣∣
∣∣∣
2

∗

]
≤ 1

m
EP

[∣∣∣
∣∣∣∇̂(U,η)H(y, ξ)

∣∣∣
∣∣∣
2

∗

]
+ (1 − 1

m
)∥∇hη(y)∥2

∗.

	

EP

[∣∣∣
∣∣∣∇̂(U,η)H(y, ξ)

∣∣∣
∣∣∣
2

∗

]
= EP

[∣∣∣∣
∣∣∣∣
H(y + ηU, ξ) − H(y, ξ)

η
BU

∣∣∣∣
∣∣∣∣
2

∗

]

= EP

[∣∣∣∣
H(y + ηU, ξ) − H(y, ξ)

η

∣∣∣∣
2

· ||BU ||2∗

]

≤ EP

[
lip0(H(·, ξ))2 ||U ||4

] Lemma A.1
≤ |lip0(H(·, ξ))|22 (4 + n)2.

Proof of Lemma 4.9

For arbitrary y ∈ Y  we compute
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EP

[
V̂ β

η,m(y)
]

= EP

[
1
m

m∑
i=1

∇̂(Ui,η)H
β(y, ξi)

]

= 1
m

m∑
i=1

EP

[
∇̂(Ui,η)H

β(y, ξi)
]

= 1
m

m∑
i=1

EP

[
F (xβ(y + ηU i, ξi

2), ξi
1) − F (xβ(y, ξi

2), ξi
1)

η
BU i

]

= 1
m

m∑
i=1

EP

[
F (x∗(y + ηU i), ξi

2), ξi
1) − F (x∗(y, ξi

2), ξi
1)

η
BU i

]

+ 1
m

m∑
i=1

EP

[
F (xβ(y + ηU i), ξi

2), ξi
1) − F (x∗(y + ηU i, ξi

2), ξi
1)

η
BU i

]

− 1
m

m∑
i=1

EP

[
F (xβ(y, ξi

2), ξi
1) − F (x∗(y, ξi

2), ξi
1)

η
BU i

]
.

From Lemma 4.7, we deduce that

	

1
m

m∑
i=1

EP

[
F (x∗(y + ηU i, ξi

2), ξi
1) − F (x∗(y, ξi

2), ξi
1)

η
BU i

]
= ∇hη(y),

and by mutual independence of U i from ξi = (ξi
1, ξi

2)

	

1
m

m∑
i=1

EP

[
F (xβ(y, ξi

2), ξi
1) − F (x∗(y, ξi

2), ξi
1)

η
BU i

]
= 0.

For the second assertion, we apply Lipschitz continuity of F (Assumption 3), the iid 
assumption on the random pair (U i, ξi), and Hölder’s inequality to obtain
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1
m

m∑
i=1

∥EP

[F (xβ(y + ηU i, ξi
2), ξi

1) − F (x∗(y + ηU i), ξi
1)

η
BU i

]
∥∗

≤ EP

[
∥F (xβ(y + ηU, ξ2), ξ1) − F (x∗(y + ηU, ξ2), ξ1)

η
BU∥∗

]

= 1
η
EP

[ ∣∣F (xβ(y + ηU, ξ2), ξ1) − F (x∗(y + ηU, ξ2), ξ1)
∣∣ ∥BU∥∗

]

≤ 1
η
EP

[
lip0(F (·, ξ1))

∣∣∣∣xβ(y + ηU, ξ2) − x∗(y + ηU, ξ2)
∣∣∣∣

X · ∥BU∥∗

]

≤ 1
η
EP[lip0(F (·, ξ1))] · EP

[ ∣∣∣∣xβ(y + ηU, ξ2) − x∗(y + ηU, ξ2)
∣∣∣∣

X · ∥BU∥∗

]

≤
|lip0(F (·, ξ1)|1

η
EP

[ ∣∣∣∣xβ(y + ηU, ξ2) − x∗(y + ηU, ξ2)
∣∣∣∣p

X

] 1
p · EP

[
||U ||

p−1
p

] p
p−1

≤
√

n |lip0(F (·, ξ1)|1
η

EP

[ ∣∣∣∣xβ(y + ηU, ξ2) − x∗(y + ηU, ξ2)
∣∣∣∣p

X

] 1
p

.

Proof of Lemma 4.10

We have

	

||ak+1||∗ = 1
mk+1

∣∣∣∣∣

∣∣∣∣∣
mk+1∑
i=1

[
F (xβk (yk, ξi

2,k+1), ξi
1,k+1) − F (x∗(yk, ξi

2,k+1), ξi
1,k+1)

η

]
BU i

k+1

∣∣∣∣∣

∣∣∣∣∣
∗

≤ 1
mk+1

mk+1∑
i=1

∣∣∣∣∣
F (xβk (yk, ξi

2,k+1), ξi
1,k+1) − F (x∗(yk, ξi

2,k+1), ξi
1,k+1)

η

∣∣∣∣∣
∣∣∣∣U i

k+1
∣∣∣∣

≤ 1
mk+1

mk+1∑
i=1

lip0(F (·, ξi
1,k+1))

η

∣∣∣∣xβk (yk, ξi
2,k+1) − x∗(yk, ξi

2,k+1)
∣∣∣∣

X ·
∣∣∣∣U i

k+1
∣∣∣∣ /, .

Hence, by Jensen’s inequality and the tower property and the independence of the 
triple (ξi

1,k+1, ξi
2,k+1, U i

k+1), we obtain

	

E[||ak+1||2∗ |Fk] ≤ 1
η2m2

k+1
E




(
mk+1∑
i=1

lip0(F (·, ξi
1,k+1))

∣∣∣∣xβk (yk, ξi
2,k+1) − x∗(yk, ξi

2,k+1)
∣∣∣∣

X ·
∣∣∣∣U i

k+1
∣∣∣∣

)2

|Fk




≤ 1
η2mk+1

mk+1∑
i=1

E
[
lip0(F (·, ξi

1,k+1))2 ∣∣∣∣xβk (yk, ξi
2,k+1) − x∗(yk, ξi

2,k+1)
∣∣∣∣2

X ·
∣∣∣∣U i

k+1
∣∣∣∣2 |Fk

]

= n

η2mk+1

mk+1∑
i=1

E
[
lip0(F (·, ξi

1,k+1))2|Fk

]
· E

[∣∣∣∣xβk (yk, ξi
2,k+1) − x∗(yk, ξi

2,k+1)
∣∣∣∣2

X |Fk

]

≤
n |lip0(F (·, ξ1)|22

η2mk+1

mk+1∑
i=1

E
[∣∣∣∣xβk (yk, ξi

2,k+1) − x∗(yk, ξi
2,k+1)

∣∣∣∣p

X |Fk

]2/p

≤
n |lip0(F (·, ξ1)|22

η2 β2
k ≜ CF

β2
k

η2 ,

where p ≥ 2, is the exponent from Definition 4.6. We can bound the L2(P)-norm for 
the bias term bk+1 in a similar way. First, observe that
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||bk+1||∗ ≤ 1
mk+1

mk+1∑
i=1

∣∣∣∣∣
F (xβk (yk + ηU i

k+1, ξi
2,k+1), ξi

1,k+1) − F (x∗(yk + ηU i
k+1, ξi

2,k+1), ξi
1,k+1)

η

∣∣∣∣∣
∣∣∣∣U i

k+1
∣∣∣∣

≤ 1
ηmk+1

mk+1∑
i=1

lip0(F (·, ξi
1,k+1))

∣∣∣∣xβk (yk + ηU i
k+1, ξi

2,k+1) − x∗(yk + ηU i
k+1, ξi

2,k+1)
∣∣∣∣

X ·
∣∣∣∣U i

k+1
∣∣∣∣ .

Using Jensen’s inequality and Hölder’s inequality as in the previous estimate, we see 
for s ≥ 1,

	

E[||bk+1||2∗ |Fk]

≤ 1
η2mk+1

mk+1∑
i=1

E
[
lip0(F (·, ξi

1,k+1))2 ∣∣∣∣xβk (yk + ηU i
k+1, ξi

2,k+1) − x∗(yk + ηU i
k+1, ξi

2,k+1)
∣∣∣∣2

X ·
∣∣∣∣U i

k+1
∣∣∣∣2 |Fk

]

=
∣∣lip0(F (·, ξi

1))
∣∣2
2

η2mk+1

mk+1∑
i=1

E
[∣∣∣∣xβk (yk + ηU i

k+1, ξi
2,k+1) − x∗(yk + ηU i

k+1, ξi
2,k+1)

∣∣∣∣2
X ·

∣∣∣∣U i
k+1

∣∣∣∣2 |Fk

]

≤
∣∣lip0(F (·, ξi

1))
∣∣2
2

η2mk+1

mk+1∑
i=1

E
[∣∣∣∣xβk (yk + ηU i

k+1, ξi
2,k+1) − x∗(yk + ηU i

k+1, ξi
2,k+1)

∣∣∣∣2s

X |Fk

]1/s

· E[
∣∣∣∣U i

k+1
∣∣∣∣2r]1/r

for 1
s + 1

r = 1. Choosing 2 s = p, we obtain

	

E[||bk+1||2∗ |Fk]

≤
∣∣lip0(F (·, ξi

1))
∣∣2
2

η2mk+1

mk+1∑
i=1

E
[∣∣∣∣xβk (yk + ηU i

k+1, ξi
2,k+1) − x∗(yk + ηU i

k+1, ξi
2,k+1)

∣∣∣∣p

X |Fk

]2/p

· E[
∣∣∣∣U i

k+1
∣∣∣∣ 2p

p−2 ]
p−2

p

≤
n

∣∣lip0(F (·, ξi
1))

∣∣2
2

η2 β2
k = CF

β2
k

η2 .

Proof of Lemma 5.1

The optimality condition for the iterate yk+1 gives

	
B

(
yk − yk+1

αk

)
∈ V̂k+1 + ∂r1(yk+1).

This means that there exists ρk+1 ∈ ∂r1(yk+1) satisfying

	
V̂k+1 + ρk+1 = B

(
yk − yk+1

αk

)
.

Since r1(·) is convex, the convex subgradient inequality gives for all u ∈ Y ,

	

r1(u) ≥ r1(yk+1) − ⟨V̂k+1 − B

(
yk − yk+1

αk

)
, u − yk+1⟩

= r1(yk+1) − ⟨V̂k+1, u − yk+1⟩ + 1
αk

⟨B(yk+1 − yk), yk+1 − u⟩ .

� (B.1)

Set u = yk to obtain
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r1(yk) ≥ r1(yk+1) − ⟨V̂k+1, yk − yk+1⟩ + 1
αk

||yk+1 − yk||2

= r1(yk+1) − αk⟨V̂k+1, G̃η,αk
(yk)⟩ + αk

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2
.

The descent property (2.1) for hη ∈ C1,1(Y) gives

	

hη(yk+1) ≤ hη(yk) + ⟨∇hη(yk), yk+1 − yk⟩ + lip1(hη)
2

||yk+1 − yk||2

= hη(yk) − αk⟨∇hη(yk), G̃η,αk
(yk)⟩ + α2

klip1(hη)
2

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2

= hη(yk) − αk⟨V̂k+1, G̃η,αk
(yk)⟩ + α2

klip1(hη)
2

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2

+ αk⟨V̂k+1 − ∇hη(yk), G̃η,αk
(yk)⟩

≤ hη(yk) − αk

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2 − (r1(yk+1) − r1(yk)) + αk⟨∆Wk+1, G̃η,αk
(yk)⟩

+ α2
klip1(hη)

2
∣∣∣∣G̃η,αk

(yk)
∣∣∣∣2

,

where we have used (B.1) in the last inequality. Rearranging the last inequality yields

	

Ψη(yk+1) − Ψη(yk) ≤ −αk

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2
(

1 − αklip1(hη)
2

)
+ αk⟨∆Wk+1, Gη,αk

(yk)⟩

+ αk⟨∆Wk+1, G̃η,αk
(yk) − Gη,αk

(yk)⟩

≤ −αk

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2
(

1 − αklip1(hη)
2

)
+ αk⟨∆Wk+1, Gη,αk

(yk)⟩

+ αk ||∆Wk+1||∗ ·
∣∣∣∣G̃η,αk

(yk) − Gη,αk
(yk)

∣∣∣∣ ,

where the Cauchy-Schwarz inequality in the last inequality is employed. Using the 
non-expansiveness of the prox-operator, we obtain

	
∣∣∣∣G̃η,αk

(yk) − Gη,αk
(yk)

∣∣∣∣ ≤
∣∣∣∣B−1(∇hη(yk) − Vk+1)

∣∣∣∣ = ||∇hη(yk) − Vk+1||∗ = ||∆Wk+1||2∗ .

Hence, we can continue the previous display as

	
Ψη(yk+1) − Ψη(yk) ≤ −αk

∣∣∣∣G̃η,αk
(yk)

∣∣∣∣2
(

1 − αklip1(hη)
2

)
+ αk⟨∆Wk+1, Gη,αk

(yk)⟩ + αk ||∆Wk+1||2∗ .

Properties of the prox-gradient mapping

Monotonicity of the prox-gradient mapping

Consider the function φy : α �→ 1
α ||y − Tη,α(y)||. For 

y ∈ zer (∂r1 + ∇hη) ≜ {y ∈ Y | ∂r1(y) + ∇hη(y) = 0}, we have φy(α) = 0 for 
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all α > 0. We next prove a classical monotonicity result with respect to the parameter 
α of this mapping.

Proposition C.1  If y /∈ zer (∂r1 + ∇hη), then it holds

	 α1 > α2 > 0 ⇒ φy(α1) < φy(α2).� (C.1)

Proof  To simplify notation, let us define ȳ(α) := Tη,α(y). This point satisfies the 
monotone inclusion (Fermat’s optimality principle)

	
1
α

B(y − ȳ(α)) − ∇hη(y) ∈ ∂r1(ȳ(α)).

Hence, for α1 > α2 > 0, the maximal monotonicity of the subdifferential ∂r1 yields

	
⟨ 1
α1

B(y − ȳ(α1)) − 1
α2

B(y − ȳ(α2)), ȳ(α1) − ȳ(α2)⟩ ≥ 0.

Rearranging,

	

0 ≤ 1
α1

⟨B(y − ȳ(α1)), ȳ(α1) − y⟩ + 1
α1

⟨B(y − ȳ(α1)), y − ȳ(α2)⟩

− 1
α2

⟨B(y − ȳ(α2)), y − ȳ(α1)⟩

− 1
α2

⟨B(y − ȳ(α2)), y − ȳ(α2)⟩

= − 1
α1

||ȳ(α1) − y||2 − 1
α2

||ȳ(α2) − y||2

+
(

1
α1

+ 1
α2

)
⟨B(y − ȳ(α1)), y − ȳ(α2)⟩ .

Consequently,

	

α1φy(α1)2 + α2φy(α2)2 ≤ (α1 + α2)⟨B
(

y − ȳ(α1)
α1

)
,

y − ȳ(α2)
α2

⟩

≤ α1 + α2

2
(
φy(α1)2 + φy(α2)2)

.

This, in turn leads to,

	 (α1 − α2)
(
φy(α1)2 − φy(α2)2)

≤ 0 .

� □
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Approximate stationarity

In this appendix, we derive the important relation between the norm of the 
prox-gradient mapping and stationary points. Consider the smoothed implicit 
function Ψη = hη(y) + r1(y). The prox-gradient mapping is defined as 
Gη,t(y) = 1

t (y − Pt(y, ∇hη(y)), where hη is the Gaussian smoothing of the function 
h. Since ∇hη  is a Lipschitz continuous operator, the optimality condition defining the 
point ȳ+

t = Pt(y, ∇hη(y)) is

	

0 ∈ t∂r1(ȳ+
t ) + t[−BGη,t(y) + ∇hη(y)]

⇔Gη,t(y) + B−1(∇hη(ȳ+
t ) − ∇hη(y)) ∈ B−1∂Ψη(ȳ+

t ) .

Hence,

	

dist (0, ∂Ψη(ȳ+
t )) ≤ ||Gη,t(y)|| +

√
n

η
lip0(h)

∣∣∣∣ȳ+
t − y

∣∣∣∣

≤
(

1 + t
√

n

η
lip0(h)

)
||Gη,t(y)|| .

In particular, choosing t ≜ η√
nlip0(h) , the above relation implies 

dist (0, ∂Ψη(ȳ+
t )) ≤ 2 ||Gη,t(y)||.

Acknowledgements  The first author thanks the FMJH Program Gaspard Monge for optimization and 
operations research and their interactions with data science for financial support and the Deutsche Forsc-
hungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 556222748.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​n​s​.​o​r​g​/​l​i​c​e​n​
s​e​s​/​b​y​/​4​.​0​/​​​​​.​​

References

1.	 Agarwal, A., Dekel, O., Xiao, L.: Optimal algorithms for online convex optimization with multi-
point bandit feedback. In 23rd Conference on Learning Theory, pages 28–40, (2010)

2.	 Arridge, S., Maass, P., Öktem, O., Schönlieb, C.-B.: Solving inverse problems using data-driven 
models. Acta Numer. 28, 1–174 (2019)

3.	 Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimization: Handling con-
straints, high dimensionality, and saddle points. Found. Comput. Math. 22(1), 35–76 (2022)

1 3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


M. Staudigl et al.

4.	 Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert 
Spaces. Springer - CMS Books in Mathematics, (2016)

5.	 Benning, M., Burger, M.: Modern regularization methods for inverse problems. Acta Numer. 27, 
1–111 (2018)

6.	 Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison 
of gradient approximations in derivative-free optimization. Found. Comput. Math. 22(2), 507–560 
(2022)

7.	 Bottou, L., Curtis, F., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM 
Rev. 60(2), 223–311 (2018)

8.	 Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge University Press, Cam-
bridge (2006)

9.	 Clarke, F.H.: Optimization and nonsmooth analysis. SIAM, (1990)
10.	 Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization. SIAM, 

(2009)
11.	 Cui, S., Shanbhag, U.V., Staudigl, M.: A regularized variance-reduced modified extragradient method 

for stochastic hierarchical games. arXiv preprint arXiv:2302.06497, (2023)
12.	 Cui, S., Shanbhag, U.V., Yousefian, F.: Complexity guarantees for an implicit smoothing-enabled 

method for stochastic mpecs. Mathematical Programming, (2022)
13.	 Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. 

SIAM J. Optim. 29(1), 207–239 (2019)
14.	 Davis, D., Grimmer, B.: Proximally guided stochastic subgradient method for nonsmooth, noncon-

vex problems. SIAM J. Optim. 29(3), 1908–1930 (2019)
15.	 Dontchev, A.L., Rockafellar, R.T.: Implicit functions and solution mappings: A view from variational 

analysis, volume 11. Springer, (2009)
16.	 Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and 

smooth maps. Math. Program. 178, 503–558 (2019)
17.	 Duchi, J.C., Jordan, M.I., Wainwright, M.J., Wibisono, A.: Optimal rates for zero-order convex opti-

mization: The power of two function evaluations. IEEE Trans. Inf. Theory 61(5), 2788–2806 (2015)
18.	 Duvocelle, B., Mertikopoulos, P., Staudigl, M., Vermeulen, D.: Multiagent online learning in time-

varying games. Mathematics of Operations Research, 2023/01/31 (2022)
19.	 Ehrhardt, M.J., Roberts, L.: Inexact derivative-free optimization for bilevel learning. J. Math. Imag-

ing Vis. 63(5), 580–600 (2021)
20.	 Ehrhardt, M.J., Roberts, L.: Analyzing inexact hypergradients for bilevel learning. IMA J. Appl. 

Math. 89(1), 254–278 (2024)
21.	 Engl, H.W., Hanke, M., Neubauer, G.: Regularization of inverse problems. Mathematics and Its 

Applications. Springer, Netherlands (1996)
22.	 Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming for hyperparam-

eter optimization and meta-learning. In International conference on machine learning, pages 1568–
1577. PMLR, (2018)

23.	 Garnett, R.: Bayesian optimization. Cambridge University Press, Cambridge (2023)
24.	 Ghadimi, Saeed, Lan, Guanghui: Stochastic first- and zeroth-order methods for nonconvex stochastic 

programming. SIAM J. Optim. 23(4), 2341–2368 (2013)
25.	 Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex sto-

chastic composite optimization. Math. Program. 155(1–2), 267–305 (2016)
26.	 Ghadimi, S., Wang, M.: Approximation methods for bilevel programming. arXiv preprint 

arXiv:1802.02246, (2018)
27.	 Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)
28.	 Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13, 14–22 (1977)
29.	 Grazzi, R., Franceschi, L., Pontil, M., Salzo, S.: On the iteration complexity of hypergradient com-

putation. International Conference on Machine Learning, pages 3748–3758, (2020)
30.	 Haber, E., Tenorio, L.: Learning regularization functionals–a supervised training approach. Inverse 

Prob. 19(3), 611 (2003)
31.	 Hansen, P.C., Jørgensen, J., Lionheart, W.R.B.: Computed tomography: algorithms, insight, and just 

enough theory. Society for Industrial and Applied Mathematics, Philadelphia, PA, (2021)
32.	 Holler, G., Kunisch, K., Barnard, R.C.: A bilevel approach for parameter learning in inverse prob-

lems. Inverse Prob. 34(11), 115012 (2018)

1 3

http://arxiv.org/abs/2302.06497
http://arxiv.org/abs/1802.02246


Derivative-free stochastic bilevel optimization for inverse problems

33.	 Hong, M., Wai, H.-T., Wang, Z., Yang, Z.: A two-timescale stochastic algorithm framework for 
bilevel optimization: complexity analysis and application to actor-critic. SIAM J. Optim. 33(1), 
147–180 (2023)

34.	 Kozak, D., Molinari, C., Rosasco, L., Tenorio, L., Villa, S.: Zeroth-order optimization with orthogo-
nal random directions. Mathematical Programming, (2022)

35.	 Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. 
SIAM. J. Imaging. Sci. 6(2), 938–983 (2013)

36.	 Kwon, J., Kwon, D., Wright, S., Nowak, R.D.: A fully first-order method for stochastic bilevel opti-
mization. PMLR, (2023)

37.	 Lan, G.: First-order and Stochastic Optimization Methods for Machine Learning. Springer Series in 
the Data Sciences, Springer Nature (2020)

38.	 Lei, M., Pong, T.K., Sun, S., Yue, M.-C.: Subdifferentially polynomially bounded functions and 
gaussian smoothing-based zeroth-order optimization. arXiv preprint arXiv:2405.04150, (2024)

39.	 Liu, R., Gao, J., Zhang, J., Meng, D., Lin, Z.: Investigating bi-level optimization for learning and 
vision from a unified perspective: a survey and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 
44(12), 10045–10067 (2022)

40.	 Lu, Z., Mei, S.: First-order penalty methods for bilevel optimization. SIAM J. Optim. 34(2), 1937–
1969 (2024)

41.	 Nesterov, Y.: Lectures on Convex Optimization, volume 137 of Springer optimization and its applica-
tions. Springer International Publishing, (2018)

42.	 Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Com-
put. Math. 17(2), 527–566 (2017)

43.	 Ochs, P., Ranftl, R., Brox, T., Pock, T.: Techniques for gradient-based bilevel optimization with non-
smooth lower level problems. J. Math. Imaging Vision 56, 175–194 (2016)

44.	 Pougkakiotis, S., Kalogerias, D.: A zeroth-order proximal stochastic gradient method for weakly 
convex stochastic optimization. SIAM J. Sci. Comput. 45(5), A2679–A2702 (2023)

45.	 Rajeswaran, A., Finn, C., Kakade, S.M.: and Sergey Levine. Meta-learning with implicit gradients. 
Adv. Neural Inf. Process. Syst. 32, (2019)

46.	 Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming. Society for Indus-
trial and Applied Mathematics, 2017/12/29 (2009)

47.	 Sinha, A., Khandait, T., Mohanty, R.: A gradient-based bilevel optimization approach for tuning regu-
larization hyperparameters. Optim. Lett. 18(6), 1383–1404 (2024)

48.	 Spall, J.C.: Introduction to stochastic search and optimization: estimation, simulation, and control. 
John Wiley & Sons, (2005)

49.	 Wang, T., Lucka, F., van Leeuwen, T.: Sequential experimental design for x-ray CT using deep rein-
forcement learning. IEEE Trans. Comput. Imaging 10, 953–968 (2024)

50.	 Zhang, J., Lin, H., Jegelka, S., Sra, S., Jadbabaie, A.: Complexity of finding stationary points of 
nonconvex nonsmooth functions. International conference on machine learning, pages 11173–11182, 
(2020)

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Mathias Staudigl1  · Simon Weissmann1 · Tristan van  Leeuwen2,3

	
 Mathias Staudigl
mathias.staudigl@uni-mannheim.de

Simon Weissmann
simon.weissmann@uni-mannheim.de

Tristan van Leeuwen
T.van.Leeuwen@cwi.nl

1 3

http://arxiv.org/abs/2405.04150
http://orcid.org/0000-0003-2481-0019


M. Staudigl et al.

1	 Department of Mathematics, Mannheim University, B6 26, 68159 Mannheim, Germany
2	 Centrum Wiskunde & Informatica, Science Park Amsterdam 123, 1098 XG Amsterdam, 

The Netherlands
3	 Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

1 3


	﻿Derivative-free stochastic bilevel optimization for inverse problems
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿Challenges and related literature
	﻿1.1.1﻿ ﻿Stochastic bilevel optimization
	﻿1.1.2﻿ ﻿Zeroth-order stochastic optimization


	﻿1.2﻿ ﻿Main contributions and outline
	﻿﻿2﻿ ﻿Notation and preliminaries
	﻿﻿3﻿ ﻿Problem formulation
	﻿3.1﻿ ﻿The hyperobjective program
	﻿3.2﻿ ﻿Approximate stationarity conditions

	﻿﻿4﻿ ﻿Derivative free randomized proximal gradient method
	﻿4.1﻿ ﻿Gaussian smoothing of the implicit function
	﻿4.2﻿ ﻿Zeroth-order gradient estimator of the implicit function
	﻿4.3﻿ ﻿Exact lower level solution
	﻿4.4﻿ ﻿Inexact lower level solution
	﻿4.5﻿ ﻿The algorithmic scheme
	﻿4.6﻿ ﻿Gap functions
	﻿4.7﻿ ﻿Properties of the gradient estimator with exact lower level solutions
	﻿4.8﻿ ﻿Properties of the gradient estimator with inexact lower level solutions

	﻿﻿5﻿ ﻿Complexity analysis for the non-convex case
	﻿5.1﻿ ﻿Exact lower level solution
	﻿5.2﻿ ﻿Inexact lower level solution

	﻿﻿6﻿ ﻿The convex case with inexact lower level solution
	﻿﻿7﻿ ﻿Explicit complexity and relaxed stationarity
	﻿﻿8﻿ ﻿Numerical experiments
	﻿8.1﻿ ﻿One-dimensional signal denoising
	﻿﻿8.2﻿ ﻿Image reconstruction based on the radon transform

	﻿﻿9﻿ ﻿Conclusion
	﻿﻿Properties of the Gaussian smoothing
	﻿﻿Technical proofs
	﻿Proof of Lemma ﻿4.7﻿
	﻿Proof of Lemma ﻿4.9﻿
	﻿﻿Proof of Lemma ﻿4.10﻿
	﻿﻿Proof of Lemma ﻿5.1﻿

	﻿﻿Properties of the prox-gradient mapping
	﻿Monotonicity of the prox-gradient mapping
	﻿Approximate stationarity

	﻿References


