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Abstract

Inverse problems are key issues in several scientific areas, including signal pro-
cessing and medical imaging. Data-driven approaches for inverse problems aim
for learning model and regularization parameters from observed data samples, and
investigate their generalization properties when confronted with unseen data. This
approach dictates a statistical approach to inverse problems, calling for stochastic
optimization methods. In order to learn model and regularisation parameters simul-
taneously, we develop in this paper a stochastic bilevel optimization approach in
which the lower level problem represents a variational reconstruction method for-
mulated as a convex non-smooth optimization problem, depending on the observed
sample. The upper level problem represents the learning task of the regularisation
parameters. Combining the lower level and the upper level problem leads to a
stochastic non-smooth and non-convex optimization problem, for which standard
gradient-based methods are not straightforward to implement. Instead, we develop
a unified and flexible methodology, building on a derivative-free approach, which
allows us to solve the bilevel optimization problem only with samples of the objec-
tive function values. We perform a complete complexity analysis of this scheme.
Numerical results on signal denoising and experimental design demonstrate the
computational efficiency and the generalization properties of our method.

Keywords Inverse problems - Data-driven design - Derivative-free optimization -
Gaussian smoothing

1 Introduction

Bilevel optimization is a very important optimization methodology for solving inverse
problems [5, 21]. The strength of bilevel optimization is that it allows to endog-
enously learn hyper-parameters, which otherwise would have to be tuned manually.
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A very prominent instantiation of this is the task of learning regularization param-
eters [30, 32, 35]. A mathematical formulation of this problem is to first define a
variational reconstruction method involving a data fidelity function z — L(K(z), &),
where ¢ € = is the observed data, and K : X — D is the forward operator, mapping
model parameters x to observations in D. We then define the reconstruction operator
x*(y,-) : E — X as a solution of the optimization problem

7(y,€) € argmin{ £(K(2), &) +Sy(2)} - forall (6] €Y X (1)

The function S, : X — R U {400} is a parameter-dependent regularizer, that avoids
overfitting and imposes a-priori known structure into the model parameter. Choosing
this parameter y € ) a-priori is a severe bottleneck in the effective solution of the
underlying inverse problem and poses significant practical challenges. Traditionally,
this problem of hyperparameter tuning has been heuristically solved and generally
requires a large number of solutions of this variational problem for a pre-defined grid
of parameter values y. Bilevel optimization replaces this heuristic search procedure
by a disciplined optimization approach which selects model parameters on par with
regularization parameters, given the data sample representing the inverse problem.
However, the bilevel methodology is not only useful for solving the hyperparam-
eter learning problem. It also has a significant impact for other inverse problems in
which the forward operator itself exhibits a dependence on model parameters. This
is generically the case in optimal experimental design. In this framework we address
the question of where and when to take measurements, which variables to include,
and what experimental conditions should be employed. Mathematically, this leads to
a forward model K, which depends on a vector of design parameters y € ), which
have to be chosen before the variational model is solved. Hence, problem (1.1) needs
to be modified to

(y,€) € argmin{ L(Ky (), &) + Sy(x)} forall (5,6 €V XE (1 9

To obtain a generic set-up for learning selected components of (1.2) from data,
we adopt a supervised learning approach [2]: We are given random variables
€= (&,&) € 21 x 29 = E, defined on a fixed probability space (2, F,P), where
the first component contains model parameters, and the second component are the
observations. This random element lives in some measurable space = with joint dis-
tribution P¢. Our aim is to learn the model parameters z*(y, &2) (as a function of
regularization parameters and data), and regularization parameters y* € ) simulta-
neously so that they are optimal given the expected risk defined in terms of the loss
function and the data. Following [2], this leads to the stochastic bilevel formulation

y* e arfgjin{Es[F(x*(y’52)751)] +71(y)}

s.t.r 2% (y, &) € argn;in{g(x,y,gg) + ro(x)}. (13)
S
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The upper level objective E¢[F(x*(y,&2),&1)] + m1(y) contains an expectation-
valued part involving a tracking-type function F': X x =Z; — R, usually assumed
to be sufficiently smooth, and a regularizer/penalty function 7 (y), i.e. chosen to
promote a-priori known structure in the parameter vector. The lower level objective
g(z,y,&) + ro(x) is a variational model for obtaining model parameters, as a func-
tion of the realized data £ € =5 and the tunable hyperparameter y € ).

Example 1.1 (Bilevel Learning) The bilevel learning approach for inverse problem is
a statistical learning methodology to select the regularization parameter based on a
variational formulation. The unknown parameter and the corresponding observation
are modeled as jointly distributed random variables (£1,&2) :  — Z; X Es, defined
as

52(W)éKy1§1 (w) + Z(w)7 w e Q7

where Z € L>({2; Z5) denotes measurement noise. In this model Z; 2. is the data
space and Z, 2D is the set of observations. The forward operator may depend explic-
itly on a hyperparameter y; € );. In order to build a reconstruction of the unknown
parameter &; (w) for a fixed w € €2, we consider the variational problem

min g(z, (y1,2), &2(w)) +72(), - 9(2; (h1,92), &(w)) = LKy, (2), &) + Sy (@),

where £ : E5 X E3 — R is a data fidelity function, S, : X — R is a regularization
function with regularization parameter y» € ) and ro(-) is another regularization
function reflecting a-priori knowledge about the data. The reconstruction highly
depends on the choice of the hyperparameter vector (y1,y2) € Y £ Y, x Vs, and
the overall goal in bilevel learning is to choose these hyperparameters based on the
stochastic bilevel optimization problem (1.3). This approach has been investigated
in many previous studies (see e.g. [19, 32, 43]). We will provide more details about
this application in Sect. 8. A typical upper-level objective function in this context is

F(z,&) = Y|z — & /%, and the bilevel problem (1.3) becomes

. 1,
min E, ¢, |5 |2 (1, &) — &ll3 | +ri(y)
y=(y1,92) 2

st 0 (3, 62) € argmin{ £(Ky, (¢), &(0) + 8y, (x) + ().

1.1 Challenges and related literature
Directly solving the stochastic bilevel optimization problem (1.3) is challenging for

at least two reasons: First, in order to solve the upper level problem, we need to know
a solution of the lower level problem. However, this is just our variational inverse
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problem, and thus is typically a large-scale optimization problem itself (although
very often convex). Even if this can entail computational challenges, it can in prin-
ciple be overcome via state-of-the-art convex programming techniques; The second
challenge that arises is how to optimize the upper level objective function, which is
only available as an implicit function of the lower level solution mapping z*(y, £).
This problem becomes even more pronounced when the lower level solution is not
unique. While non-uniqueness could be dealt with penalty methods (see e.g. [36,
40]), the presence of stochastic perturbations in the problem data, renders also this
approach challenging. Instead, in this paper we investigate in detail solution methods
for settings in which the lower level mapping can be solved up to some accuracy
at reasonable computational costs, and then use this mapping to construct a simple
optimization method that avoids delicate issues such as computing gradients, or even
higher-order information of the upper level objective. Specifically, we make the fol-
lowing standing hypothesis throughout this paper':

Standing Hypothesis For all (y,£2) € YV X Ep the lower level problem
min{g(z,y, &2) + r2(2)} (LL)

admits a unique solution x*(y, £z ), which is a measurable function of the data €.
Working under this hypothesis, the main remaining question is how to effectively
solve the upper level problem

225‘11@) £ Ee[F(2*(y,&2), &) + ri(y)- (1.4)

The challenge within this formulation lies in the fact that the first function
y — E¢[F(z*(y,£2), &1)] is expectation-valued (hence hard to evaluate) and in gen-
eral non-smooth and non-convex. The lack of regularity properties makes a direct
gradient-based approach less qualified, without even talking about the difficulties in
computing a gradient (aka the hypergradient [20, 29]) of this composite function.
The key complications arising in this formulation are (i) the dependence of the lower
level solution *(y, &2) on the random variable &2, (ii) the potential non-smoothness
of the lower level variational problem, (iii) the non-smoothness of the upper level
problem. All three complications make any attempt to adapt standard methods for
solving bilevel optimization problems complicated. One main technical contribution
of this paper is to construct a practically efficient strategy for solving the stochastic
bilevel problem (1.3) building on a zeroth-order stochastic oracle model for estimat-
ing the hypergradient, allowing for bias in the random estimator, and inexactness of
the solution of the lower level problem. Although this setting received a significant
amount of attention recently, mainly driven from applications in machine learning
such as meta-learning [45], hyper-parameter optimization [22, 47] and reinforcement
learning [33], the composite setting embodied in (1.4) is complicating the hypergra-

! A more precise formulation of this hypothesis will be given in Sect. 3.
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dient estimation task a lot. The survey [39] gives a comprehensive state-of-the-art
overview.

1.1.1 Stochastic bilevel optimization

The bilevel instance (1.3) differs from the typical machine learning setting in our
requirement that the lower level problem needs to be solved for any realization of the
random variable &. In machine learning, the typically encountered formulation has
no non-smooth terms and no explicit constraints:

min ¢ (y)=f(z*(y),y) st z*(y) € argming(z,y),
yeRd reRn

where f(z,y)2E[F(2,y,&)] and g(x, y)2E[G(z,y,£2)]. Under strong regularity
conditions the hyperobjective ¢ is smooth enough so that its gradient can be charac-
terized by the implicit function theorem

VoY) = Vo f (2 (1), ) — V2,902 (1), ) [V2e9(@* (1), 9)] " Vaf (@ (), y).

In the composite non-smooth setting arising in inverse problems, and which is of
interest in this paper, there is no hope that a similar formula for the hypergradient can
be defined. For numerical approximation methods departing from this approach, see
[26, 33].

Recently, [12] propose a stochastic zeroth-order method for a class of stochas-
tic mathematical programs under equilibrium constraints, in which the lower-level
problem is described by the solution set of a stochastic variational inequality, and the
upper-level problem is a stochastic unconstrained optimization problem. We extend
this setting to the non-smooth proximal framework in both the upper and the lower-
level problem. This is a non-trivial extension, since it requires a fundamentally dif-
ferent analysis of the iteration complexity of the method in terms of the prox-gradient
mapping (cf. (4.12)). Moreover, we provide complexity estimates on the criticality
measure represented by the prox-gradient mapping via an integrated smoothing and
zeroth-order optimization scheme, without any a-priori convexity assumptions on the
hyperobjective.

1.1.2 Zeroth-order stochastic optimization

The numerical solution of stochastic optimization problems requires the availabil-
ity of a stochastic oracle. In low informational settings such as simulation-based, or
black-box optimization, an attractive stochastic oracle is one that relies only on noisy
function queries. Such zeroth-order methods have been studied in the literature under
the name of derivative-free optimization [10, 48], Bayesian optimization [23], and
optimization with bandit feedback [8, 18]. Moreover, gradient-free methods received
a lot of attention within mathematical imaging [19, 20], and scientific computing
[34, 44], as well as in machine learning and computational statistics [1, 17, 24]. We
discuss the connection to the most important references in the following.
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[6] performs a detailed comparison of different derivative-free methods based on
noisy function evaluations, assuming that the noise component is additive and with
zero mean and bounded range. They established conditions on the gradient estima-
tion errors that guarantee convergence to a neighborhood of the solution. We per-
form a complexity analysis of a derivative free method in which the function values
are noisy evaluations of the hyperobjective of the bilevel problem (1.3), without a
uniformly bounded noise assumption. Instead, we only assume standard variance
bounds in LP, for some p > 2.

[3] provide an in-depth analysis of zero-order estimators for solving general sto-
chastic optimization problems, using a Frank-Wolfe method, a stochastic proximal
gradient method, or a higher-order method building on the cubic regularization glo-
balization technique. Their general complexity statements are not immediately trans-
ferable to our problem, since we solve a stochastic bilevel problem, with potentially
inexact feedback between the upper and the lower level problem. This noisy and
inexact feedback mechanism leads to an additional bias in the gradient estimator,
which needs to be carefully balanced in order to prove convergence guarantees of
the method.

1.2 Main contributions and outline
Our main results can be summarized as follows:

1. Under  weak regularity assumption on the hyperobjective
h(y) = E[F(z*(y,&2),&1)] (essentially only Lipschitz continuity), we derive an
iteration complexity statement in terms of the proximal gradient mapping for the
Gaussian smoothed objective h,,. In particular, we give complexity statements
assuming that the lower level problem can be solved exactly, or inexactly, with a
controlled precision in an L? sense.

2. We particularize this result in the convex case to obtain a complexity statement
in terms of the original objective function optimality gap.

3. To relate the complexity statement derived for the smoothed hyperobjective, we
define a notion for a relaxed stationary point, using a fuzzy version of the Gold-
stein subgradient, originally introduced in [28] for Lipschitz continuous math-
ematical programs. This allows us to transfer the complexity statements derived
in pervious sections for the smoothed prox-gradient mapping to a criticality mea-
sure involving the Goldstein subgradient.

The remainder of the manuscript is structured as follows. We introduce our nota-
tion and some known results, used in the analysis, in Sect. 2. Section 3 presents
the formulation of the stochastic bilevel optimization problem with the correspond-
ing assumptions. In Sect. 4, we introduce our proposed zeroth-order optimization
method. Section 5 begins the convergence analysis in a non-convex setting with a
fixed smoothing parameter, covering both exact and inexact lower level solutions.
We then proceed to Sect. 6, where we analyze the convex case and quantify the
smoothing error. Section 7 addresses the explicit complexity and relaxed stationarity
for non-convex problems. In Sect. 8, we apply our algorithm to linear inverse prob-
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lems, with a particular focus on imaging. Finally, we conclude the main body of the
manuscript with a summary in Sect. 9. For clarity, most of the proofs are deferred to
Appendices A—C.

2 Notation and preliminaries

For a finite dimensional real vector space £, we denote by £* its dual space. The value
of a linear function s € £* at point z € £ is denoted by s(z) £ (s, z). We endow the
spaces £ and £* with Euclidean norms ||z|| = (Bx, z)'/? and ||s||, = (s, B~'s)'/2,
where B = B* represents the Riesz isomorphism, i.e. a positive definite linear oper-
ator from £ to £*. For a subset C' C £ we define the distance of x € £ to C by
dist (x,C) £ inf,cc ||z — 2||. The closed ball with center x and radius r > 0 is
denoted as B(z, ). The convex hull of a set X is denoted as Conv (X). If Q is a
topological space, we denote by B(€2) the Borel o-algebra. In this paper, we consider
functions with different levels of smoothness. We say a function / : £ — R belongs
to class C*%(€) if there exists a constant lip,(h) > 0 such that

|h(21) — h(x2)| <lipg(h) [lz1 — 22|,  Va1,20 €E,

h belongs to class C*'(€) if there exists a constant lip, (h) > 0

IVh(z1) = Vh(z2)l|, <Tipy () [[21 —wal|, Vi, 20 €.

For h € CH'(E), we have the Lipschitz descent Lemma [41, Lemma 1.2.3]

h(z2) < h(z1) + (Vh(x1), 20 — 21) + w [|xe — x1|\2, Vai, 29 € €. (2.1)
For extended real-valued convex functions h : £ — [—00, 00|, we define its (effec-
tive) domain dom (h) = {y € Y|h(y) < oo}. The convex subdifferential is the set-
valued mapping Oh(y) = {v € E|h(F) > h(y) + (v, —y) Vg € E}. Elements
of the set Oh(y) are called subgradients, and the inequality defining the set is called
the subgradient inequality. A convex function is called proper if it never attains the
value —ooc.

Definition 2.1 Let 6 > 0. For a convex function h : £ — (—00, +00], the §-subdif-
ferential dsh(y) the set of vectors v € £* satisfying

h(G) > h(y) —d+ (v, G—y)  Vijek&.

Note that the above definition reduces naturally to the convex subdifferential by set-
ting 6 = 0.
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Definition 2.2 The proximal operator of a closed convex and proper function
g: & — (—o0, 0] is defined by

. 1
prox. (x) £ argmin{g(u) + 5 [lu - al|*}. (22)
ue

The prox-operator is always 1-Lipschitz (non-expansive) [4]. We also make use of
the Pythagorean identity on the Euclidean space £ with inner product (B-, -):

20y —u, B(x —y)) = ||z —u|* — ||z —y||* = [ly —ul|*. (2.3)
For p € [1,00], let LP(Q, F,P; £) be the set of all random variables for which the

integral Ep [| "] £ [, |f(w)[” dP(w) exists and is finite. This is a Banach space
: 1
with norm ||, £ (E [|f”))'".

3 Problem formulation

We denote by (X,][|:][y) and (V,]|||,,) finite dimensional Euclidean vector
spaces, with dual spaces (X, [||[x.), (V" [|-|[y-). Let (€0,.A4,Py) be a com-
plete probability space, carrying random elements &; € LY(Q, Ao, Po; 1)
and & € L°(Qo, Ag,Pg;Z2) taking values in a measurable space
(Z:,B(Z:)),i = 1,2. We define £(w) £ (£1(w), £2(w)), and denote the distribution
of this random element as P £ Py o €1, Accordingly, the marginal distributions are
defined as P¢, (A) £ P¢(A x Z3) and Pg,(B) £ P¢(Z; x B) for A € B(Z;) and

B € B(E,), respectively.

Remark 3.1 Throughout this paper we abuse notation in that we do not notationally
distinguish a random variable £ from its realization (hitherto also denoted by &). We
belief this common abuse of notation is simplifying the notation and its meaning
should be clear from the context.

3.1 The hyperobjective program

In problem (1.3), the variable y € ) (i.e. the learning parameters) is chosen before
the event w is realized, whereas z is a decision variable (i.e. the model parameters)
that is implemented just-in-time, given y € ) and the realization &> (w) € Z. A solu-
tion of the lower-level optimization problems constitutes therefore of a feedback
mapping x* (-, &2) € L (Y; X), satisfying a measurability property with respect to
the noise variable:

w e 2 (y, &2(w)) € L, Ao, Po; L (V3 X)).
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In particular, by the Doob-Dynkin Lemma, the mapping w — z*(y, {2(w)) is o(&2)
-measurable, for all y € ). The following standing assumption shall apply through-
out the paper.

Assumption1 1 : Y — (—00, 00] is a closed convex and proper function.
Assumption2 F: X x =Z; — R is a Carathéodory function:

(a) w+— F(x,& (w)) is 0(&1)-measurable for every © € X;
(b) = — F(x,&) is continuous for almost every &; € =;.

Assumption 3 Forall x € X, the value Ep, [F'(x, &;)] is finite. There exists a positive
valued random variable lipg (F'(-,&1)) : © — (0, 00) such that |lipy (F(+,£1))]; < oo,
and for all z1, x5 € X it holds that

|F(21,81) — F(x2,61)| < lipg(F (- &1)) |21 — 2|5 - (3.1

Assumption 3 implies that x — f(2) £ Ep,[F(x,&;)] is Lipschitz continuous [46,
Thm.7.44], with Lipschitz constant lipy ()£ [lipy (F (-, £1))|, . In particular, the func-
tion « — f(x) is measurable.

Assumption4 ry : X — (—o0, 00| is proper, closed and convex. Forally € dom (1),
the function  — g(x,y, £2) is continuously differentiable and convex.

Assumption 5 For all (y,&) € int dom (1) x Z5 the parameterized variational
inequality

Find z € X such that 0 € V,g(z,y,&) + Ora(x) (3.2)

has a unique solution z*(y, £2), enjoying the following properties:

(S.1)  w— 2*(y,&(w)) is measurable, uniformly in y € int dom (r);
(S.2) ywr a*(y,&) is Lipschitz continuous on int dom (r1), for almost all
62 € =9.

Our set of assumptions correspond to typical hypothesis that have been used in ora-
cle-based approaches to bilevel problems. Assumption 4 is a structural assumption
on the data, which reflects the typical structure of variational formulations of inverse
problems. Assumption 5 are technical assumptions which are needed to carry out
our derivative-free approach. Measurability (S.1) of the reconstruction is arguably
a minimal assumption. Lipschitz continuity is a more restrictive assumption, which
is essentially an a-priori hypothesis on the solution regularity of the lower level
problem. An important special case where Lipschitz continuity of the reconstruction
operator is obtained when V. g(z, y, £) is uniformly Lipschitz and rs is an indicator
function of a closed convex set. In this case, Theorem 2B.1 and Corollary 2B.3 of
[15] establishes the Lipschitz continuity of the reconstruction operator. Another set
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of transparent conditions is described in Theorem 1 of [19], which considers smooth
lower level problems. We need this assumption to obtain the Lipschitz property of the
implicit function y — H (y, &).

Combining Assumptions 3 and 5, we can define the stochastic hyperobjective

HyXE%Ra (y,g)HH(y,g)éF(I*(y7£2),€1) (33)

Note that H(-,£) € C*%(). In order to bound the variance of our gradient estimator,
we need an a-priori assumption on the integrability of the random Lipschitz modulus.

Assumption 6 We assume that |lipy(H (-, £))|, < oo.

Thanks to the inherited measurability, we can leverage Fubini’s theorem to obtain
h(y) £ Ep[H (y,6)] = [z, f(z"(y, w2)) dPg, (w2). The fact that f € C™*(Y) com-
bined with (S.2) allows us to conclude h € C*°(Y).

Absorbing the lower level solution into the upper level, we arrive at the reduced
formulation of the upper level optimization problem

g Ot & yig;{\p(y) £ h(y) +r1(y)} (34

which is commonly known in bilevel optimization as the hyperobjective optimization
problem.

3.2 Approximate stationarity conditions

The hyperobjective program (3.4) is a non-convex and non-smooth optimization
problem, involving a Lipschitz continuous function y — h(y), and a convex com-
posite term y — 71 (y). As is typical in non-convex optimization, our aim is to local-
ize a specific class of approximate stationary points, as we are about to define in
this section. For a locally Lipschitz function h : ) — R, the generalized directional
derivative in the sense of Clarke [9] of /1 at y € ) in direction u € ) is defined as

’ _ /
h°(y;u) = limsup Iy’ + tu) h(y)
y t
y =y, t—0t

The Clarke subdifferential of / at y is the set
dch(y) = {s € Y*|h°(y,u) = (s,u) Yue Y}

The primary goal of non-smooth non-convex optimization is the search for station-
ary points. A point y € Y is called (Clarke)-stationary for ¥ = h + r if the inclusion

0 € dch(y) + Or1(y)
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is satisfied.

Definition 3.1 Given ¢ > 0, a point y* € ) is called an e-stationary point of (3.4) if

dist (0,0c ¥ (y*)) < e. (3.5)

Recently, a series of papers challenged the question whether optimization algorithms
are able to identify e-stationary points in finite time. [50] provided a definite nega-
tive answer to this question, by demonstrating that no first-order method is able to
identify e-stationary points in finite time. Therefore, we will content ourselves with a
more modest stationarity notion.

Definition 3.2 ( [28]) For any ¢ > 0, the Goldstein d-subdifferential of 2 at y € ) is
the set

0&h(y) & Conv [ ) dch(@) | - (3.6)

JEB(y,0)

We employ the Goldstein subdifferential for relating the stationarity measures of a
smoothed auxiliary model, with stationarity with respect to the original problem. As
such, our proposal of an approximate stationary point combines the definitions of [13,
14] for stochastic subgradient methods, and [38] for zeroth-order methods.

Definition 3.3 For any (¢,d) > 0, we call a random variable y* € L°(Q, F,P;)) an
(e, §)-stationary point of (1.4) if

E [ dist (5", {y | dist (0,0%h(y) +0r1(y))* < })°] <. (3.7)

4 Derivative free randomized proximal gradient method

4.1 Gaussian smoothing of the implicit function

To simplify the notation, we write ||u| \y 2 ||lu|| £+/(Bu, u), given the Riesz map-

ping B = B* > 0 from ) to Y*. We denote the dimension of the Euclidean space

by n. The n-dimensional Lebesgue measure on (), B())) is denoted by Leby, and

we typically write dy, instead of dLeby (y). We define the Gaussian Lebesgue den-
. det(B

sity on (¥, B(Y), Leby) as 7 (2y) 2 35ranr exp (— 5k |12 — Il ) -

RCOREE

Given a function h : Y — R and a positive parameter 7 > 0, for any 1 > 0 we
define the Gaussian smoothing of / as the convolution
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hy(y) 2 (h @ my)(y /h 2)my(2]y)d (4.1)

Let us introduce an independent probability space (Q1,.4;,P;). We say
U:(Q,A) = (Y,B(Y)) is a standard Gaussian random variable on ), denoted
as U ~ N(0, Id y), if P; o U~! admits the density 71 (-|0) = 7 on ) with respect to
Leby. Via the change of variables z = y + nu, we can rewrite the above integral as

hly) = /y h(y + nu)m(u)du = Eg, [h(y + qU)].

For 1 > 0, the function y — h,(y) is differentiable and n > 0 plays the role of a
smoothing parameter. Using the expression above, we immediately deduce the for-
mula for the gradient (see Appendix A, eq. (A.3)) as

[h(y+nU) h(y +nU) —

Vhy(y) = Eg, BU] = Ep, [ "Wl @2

Specifically, we leverage upon the work [42], and use the following estimates.’

Lemma 4.1 Let h € C*(Y). Then h, € C”%(Y) and lip,(h,) < lip,(h) for all
n> 0.

Lemma 4.2 ( [42], Theorem 1) Let h € C”%(Y) and 1 > 0. Then for all y € Y it
holds

[l (y) — B()| < nlipy (h)v/n.

Lemma 43 Let heC”%(Y) and n>0. Then h,cC"' (V) with
lip, (hy) = %lipg(h). Moreover, for all y € Y, there holds

IV hy ()] < lipg(h)2(4 + n)2. (4.3)

In the convex case, we report a classical relation between the gradients of the
Gaussian smoothed function and the d-subdifferential.

Lemma 4.4 ( [42], Theorem 2) If h € C%°(Y) and convex, then, for all y € Y and
n > 0, we have

Vhy(y) € 0sh(y), ford = nlipg(h)v/n (4.4)
where Osh is the d-subdifferential (cf. Definition 2.1).

2For being self-contained, we provide proofs of these facts in Appendix A.
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The next proposition establishes a quantitative connection between the gradients
of the smoothed function h,, and the Goldstein J-subgradient. This is the key tool to
relate complexity estimates of the smoothed objective with the original, unsmoothed,
objective.

Proposition 4.5 (/38], Theorem 3.6) Let h € C”°(Y) and D C Y a convex compact
set. Then, for all § > 0 and for all € > 0, it holds that

Vhy,(y) € 9&h(y) + By vn € (0,7],Vy € D.
where By, denotes the unit ball in

Y, n 2 min{1,5/T'}, I =& [—nWﬂ <_”2/n)} 1 and

2me

vE min{m, (2m)"/% — LY. W_, is the negative branch of the Lambert W-

function, i.e. of the inverse of x — xe*, x € R.

V2/n

Remark4.1 Sincev < (2m)% — 3, wehave
Thus, I € (1/n, 00). ©

2me 2me

< L andhence W_, (”2/n> < —1.

4.2 Zeroth-order gradient estimator of the implicit function

The first step in our construction is the design of a zeroth-order gradient estimator.
This requires a solution of the lower-level problem. We discuss two different settings.
First, we consider the case in which the solution of the lower level problem is avail-
able exactly. This is a very common assumption in stochastic bilevel optimization;
see e.g. [11, 12, 39], as well as [19] for inverse problems. We then relax this assump-
tion by allowing for controllable errors in the lower level solution. This scenario
is more realistic, but also more challenging since the inexact model introduces an
additional bias in the stochastic gradient estimator. We account for this additional
difficulty by presenting two different complexity estimates, one for the exact and one
for the inexact case, respectively.

4.3 Exact lower level solution
Consider the implicit function h:)Y — R given by h(y) = Ep[H(y, )], where
H(y, &) = F(x*(y, &), & )isthehyperobjective,definedin(3.3). Wehaveh € C%° (),

so thatits Gaussian smoothing with parametern > Osatisfies h,, € ctt (YV).Letu € Y
represent a direction and 6 > 0 a parameter. We define the finite-difference estimator

@(u,n)H(yv €) £

Hy +nu.§) —Hy.6) 5 F@'(y+1mu.&).&) = Fa"(y,£).8) 5
n U
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If ul™ = {u',...,u™} is an m-tuple of directions in ) and £(™ = {¢', ... ¢}
are m-i.i.d copies of the random variable &, then we define the random gradient esti-
mator, based on finite differences of the subsampled hyperobjective:

m

1
V, (y, u™, £0m)) é—z (i H (Y, €). (4.5)

m

To realize this estimator on a sufficiently large common probability space, we build
the typical product space enlargement (2, A,P) = (Qp x Q1,49 ® A1, Py x Pq).
On this extended setup, we abuse notation and identify the random element ¢ and U
as measurable functions on (€2, .A) by means of the following notational convention:

&(w) = &(wp) and U(w) = U(wy) Yw € Q.

Let U™ £ (U' ..., U™) be an iid random sample of Gaussian J-valued random

vectors and £(™) & (€Y,...,€™) an iid sample of &, assumed to be independent of
each other. Define the random estimator

Vi (1, w) 2 Vo (y, U™ (), €M™ (W) Yw € Q. (4.6)

Given a positive smoothing parameter n > 0, we are iteratively solving the stochastic
composite optimization problem

min ¥, (y) with W, (y) = h,(y) +71(y) and
yey 4.7

hy(y) = Ep[F(z"(y +nU, &2),61)].

In the following, we assume that \Ify?pt £ inf,ey ¥, (y) > —oc. The smooth part of

this composite minimization problem is the Gaussian smoothing of the hyperobjec-
tive 4, and 71 is a closed convex and proper regularizing term.

4.4 Inexact lower level solution

We now define a relaxation of the stochastic oracle, allowing for computational errors
in the lower level solution.

Definition 4.6 (Inexact lower level solution) Given p > 2 and 8 > 0, we call a map-
ping z7 € L>®() x Z; X) a -optimal solution of the lower level problem (LL) if

p}l/p

E [Hxﬁ(%g) -z (y, )|, <8 (4.8)

Remark 4.2 We note that an inexact solution can readily be obtained by embedding
our main iteration in a double-loop algorithmic strategy in which the inner loop is
some fast solver that returns an approximate solution of the lower level problem, for
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fixed parameters (y, ). The exact formulation of such an inner loop solver should
be adapted to the nature of the lower level optimization problem. We treat the lower-
level problem essentially as an oracle, which can be queried at any position (y, &2)
and returning us some feedback 2 (y, ¢). Hence, we do not need to specify a spe-
cific numerical scheme employed to realize this oracle. However, our approach can
easily be embedded in a double loop architecture in which an inner loop constructs
an approximate lower level solution z(y, &), and the outer level is our scheme
(Algorithm 1). Such double-loop structures are a very popular solution strategy in
stochastic bilevel optimization (cf. [12, 36] and references therein).

Remark 4.3 Inexactness of lower level solutions in bilevel optimization has been
investigated in [19, 20] in deterministic regimes. Our notion takes into consideration
the potential noisy nature of the data.

Given the inexact lower level solution mapping, we accordingly define the inexact
hyperobjective as

HP(y,§) 2 F(2"(y,&),&) forally € Y, (&1.6) € Ey x Es.

The resulting biased random gradient estimator is given by

v AHﬁ , _Hﬂ ,
Vi H (y,6) £ (y +nu f)) (¥, €)

Bu :F(xﬁ(y +nu, &), &) — F(xﬁ(yafz),&)B
n

and replace the multi-point random gradient estimator by

m

B m m é

Sl

As in the exact case, in order to reduce notational clutter, we will adopt the simplified
notation Vn bony,w) £ VE(y, U (™) (w), ™) (w)) for the multi-point random gradi-
ent estimator based on the zeroth-order oracle.

4.5 The algorithmic scheme

Since h,, € 0171(3/), we are in the classical proximal-gradient framework, which is
defined in terms of the fixed point iteration

g+ = Tﬂ,t(y) = Prox ., (y - tB_1th(y)),

where ¢ € [0, 00) is a step size parameter, > 0 and y € ).

@ Springer



M. Staudigl et al.

Since we have no direct access to the gradient Vi, (y), we define a stochastic
approximation using the operator P; : Y x Y* — ) defined by

Py(y,v) £ prox,, (y —tB~'v)  V(y,v) €Y x Y. (4.10)

Clearly, Py (y, Vhy(y)) = Ty (y) fory € V.

Our numerical scheme for solving (1.3) is a derivative-free stochastic implementa-
tion of the proximal-gradient method. The random gradient estimator either employs
the finite-difference estimator (4.5) (Method *ExactLL’), or (4.9). The Pseudo-code
of the resulting scheme DFProxGrad is reported in Algorithm 1.

Require: yy € dom(r;) and terminal time N € IN. Let (ax)k=0, (Bx)k=0, (1Tk)k=0 € (0, ), and (m)i0 be
a sequence in IN.
fork=0,...,N-1do
if Method = "ExactLL’ then
Compute Vj, = Vo (Yks Utee) | E i)

else
Compute Vk+1 £ ng(]/k/ U, §(w1k+1))
end if
Update yx+1 = Po (Y, Vk+l)
end for

Algorithm 1 Derivative-free approximate prox-grad algorithm (DFProxGrad)

Remark 4.4 Algorithm DFProxGrad under Method ’ExactLL’ requires numeri-
cal parameters (aj)n " and a batch size sequence (my)i_,. The inexact regime

requires additionally a user-defined sequence ( Bk)kN:_Ol as an additional input, which
defines the error tolerance of the lower level solution mapping involved in the con-

struction of the estimator Vk+1. Although our algorithm is defined over a fixed time
window, the exact instantiation of the parameters (e.g. step size, inexactness of lower
level solutions and sampling rate) is independent of the terminal time N. Our com-
plexity results Theorem 5.2, Theorem 5.6 and Corollary 5.4, Corollary 5.7 contain
explicit expressions for these sequences culminating in good complexity bounds. An
exception is Corollary 6.2, which requires an step-size schedule (ak)fj;ol explicitly
depending on N. Our theoretical result ensures that the algorithm can be run up to
time N and then continued without requiring a restart, since the step sizes do not
depend on N. This stands in contrast to many theoretical guarantees for stochastic
algorithms, which often rely on fixing a step size depending on N rather than consid-
ering the diminishing step sizes that we employ here.

4.6 Gap functions

In order to derive performance guarantees when running DFProxGrad, we need to
introduce certain merit functions. The first, and most obvious merit function to use
would be the observed difference in the objective function values W¥(yy) — W OPt.
Since we have no access to W, but rather its smoothed counterpart ¥,, a conceptually
implementable merit function based on the objective function gap is
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Ay (yn) £ 0, (yn) — UOP0 (4.11)

However, since the smoothed implicitly defined objective function y — ¥, (y) is in
general non-convex, measuring the distance to the global optimum value is practi-
cally not very relevant. Instead, we are focussing on functions which measure the
distance to stationarity of points produced by the algorithm.

The prox-gradient mapping is the operator G, ; : J — Y defined by

Guo4) 2 5y~ Tyal0)) (412

Indeed, thanks to the smoothing, one can show that a small norm of the prox-gradient
mapping implies that approximate stationarity applies [16].3
The stochastic analogue to the prox-gradient mapping is the random operator

Ont 1 Y xQ =D,

gn,t(y7w) £ % (y - Pt(ya Vn,m(ya w))) . (413)

Note that if 1 = 0, then G, ;(y,w) = V;,.m(y,w) for all (y,w) € Y x Q. For the
complexity analysis of the inexact regime, we have to adapt the definition of the
gradient mapping accordingly to

5 1
gg,t (yv OJ) = E

(v= Py, Vi ))) (4.14)
4.7 Properties of the gradient estimator with exact lower level solutions

In this section we work out some a-priori error estimates on the random gradient
estimator (4.5). Whenever convenient, we suppress the dependence on w, and simply

write Vn,m(y) =V, (y, U™ £(M)) The first Lemma shows that our random estima-
tor is unbiased in terms of the gradient operator of the smoothed function h,,.

Lemma 4.7 Forall y € Y, we have Ep[ V) m(y)] = Vhy,(y) and

B ||| ][] - 198000 <2

m

where we defined s = (4 + n) |lip, (H(, €))

2-

Proof See Appendix B. i

3See Appendix C for a self-contained proof.
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Remark 4.5 We point out that our random estimator f/mm (y) is an unbiased estimator
of the gradient of the smoothed function h,,. It is not unbiased with respect to first-
order information of the original function 4. Furthermore, the variance of the estima-
tor scales inversely with the batch size m, and scales quadratically with the dimension
n. We absorb this dependency in the constant s, which will be used throughout our
derived estimates.

We define the error process
AWy (y,w) £ Vo (y,0) = Viy(y)  ¥(y,w) €Y x Q. (4.15)

An immediate corollary of Lemma 4.7 is that the error process defines essentially a
martingale difference sequence:

EIP’[AWn,'m(y)] = Oa and (416)

2
(4.17)

S
m

e (18 IE] = o | [Frn)] 1] = 1900112 <

Moreover, the error process can be used to estimate the prox-gradient mapping as
follows:

Lemma 4.8 We have

G )12 < 2|[Gos)|* + 211 AW, m@)I? as. (4.18)

Proof Using the non-expansiveness of the prox-operator, we obtain

1 2

~ly = Pi(y, Voo ()] +

: P Vg (9)) — T ()

15,1 = t

- 2 N 2
< 2([G0.W)|* + 5 [P0 Voo ) = Toetw) |

<2||Ge | +2 || B (V) = Fhaly H

= 2||Ge)|[* + 2 1AW, ()1

4.8 Properties of the gradient estimator with inexact lower level solutions
The inexactness of the solution of the lower-level problem will have its trace on the

variance of the random estimator. The bias can be described by means of the follow-
ing error decomposition.

@ Springer



Derivative-free stochastic bilevel optimization for inverse problems

Lemma4.9 Forally € Y and 8 > 0, it holds

e [V (0)] =V (0)
L iE]P {F(xﬁ(y + U, &), &) — Fa*(y + U, €, &) BU?_} 7(4.19)
m =1

n
and
m B i ¢ iy _ * i ¢ i ,
m < n *
i=1 (4.20)
n |lipy(F (-, \ »
< PRl TC g, o2y + 40160 - ° (0 + w0 2)
Proof See Appendix B. i

Let (yx)x be the stochastic process whose sample paths are generated via Algo-
rithm 1. The natural filtration associated with this process is Fi £ o(y1,- - -, Yk).
Along the sample paths of this process, we can perform the following error decom-
position of the random gradient estimators:

Ve = Vi1 — angr + big, (4.21)

with

A 1 & F(flfﬁk (Zlksfé,k-+1)vfi,k+1) - F(‘/I"*(ykvgé‘kﬁ»l)'/gik«{»l) i
ap+1 = BUk+1,

Me+1 = n

o 1 & FEP (e AU 6 gein)s € pgn) = F@ (k008108 i) E )

b1 = p— p BU;, -
+

i=1

Note that E(ay1]|F%) = 0, and we can derive a bound in L?(P) as the following
Lemma shows.

Lemma 4.10 Let be p > 2 the exponent from Definition 4.6. There exists a constant
Cr > 0, such that

2 Bi 2 B
E [llaxnll2 7] < Cr f andB [llbennl 2 17] < Cr it (4.22)

Proof See Appendix B.3. O
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5 Complexity analysis for the non-convex case
5.1 Exact lower level solution

We begin our convergence analysis in the non-convex setting, focusing on cases
where the lower-level problem can be solved exactly. Our first Lemma provides an
estimate on the per-iteration function progress in terms of the smoothed hyperobjec-
tive ¥,,.

Lemma 5.1 Consider the sequence (yk),@]: o generated by Algorithm (1) with gradi-
ent estimator (4.5). Then, for all m > 0, we have

o) Fn0) < |Gy )| (1 - 22202

+ (AWt 1, G or (U)) + i [[AWi 1|

(5.1
forallk=0,...,N— 1.

Proof See Appendix B.4. i
Set

Bt 2 AWyl 4+ (AWii1, Gy () and 0P £ min W, (y).

Summing (5.1) from £ =0,..., N — 1, we obtain

Zak (1 MY i ) < )~ )

N-1 N-1

+ ZakEkH < Wy(yr) — U P + ZakEkJrl-
k=0 k=0

Let Fi £ o(yo, ..., yx) denote the natural filtration up to time k of the process, so
that

2

S
E4[Eps1] 2 E[Ep1|Fi] = E[||AWipa |2 | Fe] < ;o as..
MEg+1

Therefore, using the law of iterated expectations, we obtain

N—-1

5| S (1= 22 ) 16, |

N— 1

< U, (y1) — TP 4+ . (5.2)

Mky1

k=0
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This yields our first main result in this paper:

Theorem 5.2 Fix N € N arbitrary and consider step sizes (a)k>0 chosen in
such a way that oy € (0,2/lip,(hy,)], with ar < 2/lip,(h,) for at least one
ke{0,...,N — 1} Let (yy)Y_, begenerated by Algorithm 1 with gradient estimator
(4.5). On (12, F,P) define an independent random variable s : 2 — {0,...,N — 1}
with probability mass function

>

o — oZlipy (hy) /2

EY2P(k=k) 2
p( ) ( ) i\/v:?)l(at —Oz%hpl(h/n)/2)

) kE{O,...,N*l}- (53)

. U, (y) — wOPt 4 SN ans”
E [||Gn,aﬁ(yn)|l2} < T e (5.4)
=0 (o — ailipy (hy)/2)

Proof Using eq. (5.2), together with the observation that

N—-1

5 ay — a2lipy (hy)/2 5 2
E N0, \Yk 2 = . & P1r E gnak ’
190 woll") = 32 sz e By =B 19 o]

the thesis follows. (I
A few remarks are in order.

Remark 5.1 Due to the ratio mi’:r -, there is a trade-off between too aggressive step-

sizes and the size of the mini-batches. In fact, consider an arbitrary step-size rule with

o, < ——. This bound implies lipy(hn) 2 < 10, Therefore, the numerator in
P1 (hn) 2 k 2

our complexity bound (5.4) can be simplified to

i Uy (y1) — TP + 050 e
E|||G)o. wo)l[*] < — bt
[1Gna o] )

with 6 € (0,1/2), and mini-batches

. _ 26
Concretely, choosing oy = lip; (hn) VE+1

mpy1 = avk + 1, with a > 0, we can recover the typical O(log(N)/v/N) com-
plexity estimate for proximal gradient methods. Indeed, such a step size choice yields
the iteration complexity upper bound

) oy (h) (, (1)) — BOP) 4 252 (1 4 Jog(NV))
B (/G ()] <~ |

On the contrary, if a constant step size and constant mini-batch estimation strategy
is adopted, then we see that convergence with respect to our merit function can only
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happen up to a plateau, a well-known fact when using stochastic approximation [7,
25]. Speciﬁcally, taking constant mini-batches mp4+1 = m and constant step-sizes

ap = oy forall k € {0, .. — 1} and some 3 € (0,1/2), then our complex-

lip (
ity bound is readily seen to become

; 2] _ lipy(h) (¥ (1) — 0 7") 257
E|[lGna. ] = =50 58 e g

Remark 5.2 Theorem 5.2 gives a finite-time complexity estimate of the gap function
evaluated at a randomly chosen iterate. Hence, the complexity bound should be inter-
preted as a criticality measure of an averaged output based on the sequence generated
by the stochastic process. Such performance estimates in terms of averaged quantities
are typical in stochastic programming [24, 37].

Our next result is a complexity estimate in terms of the prox-gradient mapping
involving the deterministic gradient V), instead of the stochastic approximation.

Corollary 5.3 Under the same assumptions as in Theorem 5.2 we assume addi-
tionally that the step sizes ay are chosen such that oy € (0, 2/lip; (hy)], with
ay < 2/lip; (hy) for at least one k € {0,...,N — 1}. Let (yx)_, be generated
by Algorithm I with gradient estimator (4.5) and let . : 2 — {0,...,N — 1} be the
discrete random variable with distribution (5.3). Then,

N— 52 .
4T, (1) — B OPY) Yo 22 (day, — aflipy (hy))

- i _ . (5.5)
S (200 —aflipy (hy)) SN (2a — alipy (hy))

E[||Gn.a, (4:)II"] <

Proof From Lemma 4.8 we readily obtain

g aglipy (hy) aplipy ( 2
Uy W)y G P <ont - PR g )
ali
+ (1 — 2P On)y a2,

2

Consequently, using (5.4):
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N-1

1 9 1 ap —Oéilipl( n)/2 9
SE[IGn,0. (W)l = 5 — E[l1Gn, o (yr)I7]
2 %Zo N Mo - adlipy(hy)j2)

N— .
akhpl( )/2
kg POl 01 (e — a?lipy (hy)/2)
N-—-1

b 3 el SRR |AW | ]
= T (c — adlipy () /2)

L e G Sk sl Ut e e
N-1 . N-1 .
=0 (at - O‘?hpl(hn)/m k=0 2t=0 (at - othpl(hn)/Q)
N-—1

2 (Lip, ()
\Ijn(yl) _ \I,Opt k=0 Ok m1+1 (2 _ ok 1p21 n )
N-1

¥ Tlar— olipy(in)/2) S0 (o — alip, () /2)

E[||Gr.an ()| ]

Corollary 5.4 For a time window N > 2, we choose the step size
o O )\/mﬁ €(0,1/2),k> 0, and the sampling rate

my+1 =avk+ 1,a > 0. Let (yr)Y_, be generated by Algorithm 1 with gradient
estimator (4.5). Then, we have

O =

21ip; (hy) (¥, (y1) — ©,0P") N 8% (1 + log(N))
0v'N VN '

The total number of calls to the stochastic oracle and lower level solutions to find a

pointy € Y such thatE[Hgn(y)HQ] < ¢ is bounded by O(c~7).

E(|Gn.a. (9)]1°] <

Proof We start with recalling a simple integral bound. Note that

;\[ / \/ﬁm*%/ —2>\F

for N > 2. Using this bound, the specific choices for the step sizes and the mini-
batch size, lead to the following inequalities:
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— 52 .
ATy(y) —2) Sy 2 (day, — alip, (hy))

E[l|Gn.a. (y)I] <

Zt 0 fay Et 0 fay
A =T | T ey
B Zt 0 'ay Zt 0 foy
< iy () (Y (1) — wort) N =0 +1log(N))
- BVN VN

Hence, by choosing N € O(e~2) we ensure that E[||G,, o, (4 )||*] € O(e~1). Hence,

the iteration complexity of the method is bounded by O(c¢~2). Now, to bound the

oracle complexity, note that in each iteration of Algorithm 1 we need my4; Gauss-

ian vectors U and the same number of random vectors £ = (&1, &2) to construct the
H(y*+nU? & .

random vector Y ;- MBU; +1- We therefore have my 1 calls of

the stochastic function H (-, £) in every single iteration. The total number of calls is

thus 30 g 1 = aXp, VEk < 22N3/2 As N € O(72), the oracle complexity
is upper bounded by O(¢~3). Similarly, in every iteration we need 1y 1 solutions of

the lower level problem. Hence, by the above computation, the total number of lower
level solves is bounded by O(e~3). O

5.2 Inexact lower level solution
Using this merit function and the definition of the error increment
AWL 2 V2 = Vhy(ye) = Vier — apsr + brgr — Vig(yr) = AWiat — @t + b1,

we can repeat the one-step analysis of the exact case to obtain the bound

1
Uy (Yrr1) — Uplyr) < — ag (1 akl%) ||Gox,, (ur) H2

) (5.6)
+ ak<AWk+1a G,an (Uk)) + i HAW5+1 ’ ’* :
Lemma 4.8 generalizes in the inexact case in the following way:
Lemma 5.5 We have
~ 2 2
19, < 2|05, w)|| +2 /AW, W0 as. (5.7)

Proof The assertion follows line by line as in Lemma 4.8 by replacing V,, ., (y) with
VA (y). O
n,m

Using this lemma directly in (5.6), we see that for ay, € (0,2/lip; (hy)]
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) = () < - 5 (1= 2D g, P

2
+ O‘k<AW]gB+1a gn ag (yk)> +ag HAWIE+1 ’ ’*

li 2
+ay <1 70"“ P ) awd|

Applying Young’s inequality of the inner product, we conclude that for arbitrary
6>0

1 lip; (h
i) = Bl < = 5 (1 5 = D) g,

5 axlipy (h 2
+ o (2+2—a’“ 1p21( ”)) awg, ||

Rearranging this expression and summing both sides from k=0 to N — 1, we
remain with

N-1 .
0—1 lip; (h
Yo (L i n>>|gn,%<yk>||zg%<yl>q,nom
- 5.8
sy 4+ ali 2 (5.8)
e () e
k=0 2 2

Since HAW,CJrl H < 3 AWigr|]? + 3lars1||” + 3 ||brsr|]>, we can take itera-
tively conditional expectations to obtain the main complexity bound for the inexact

regime.

Theorem 5.6 Suppose that the step sizes a, are chosen such that oy, € (0, %],

with ay, < 51 p (h ) for at least one k € {1,...,N}. Let (y)_, be generated by
Algorithm 1 with inexact gradient estimator (4.9), 6> 1 and r,s > 1 such that
L;I) = p > 2, where p is the exponent in Definition 4.6. On (12, F,P) define

an independent random variable  : 2 — {0,..., N — 1} with probability mass
function

a5t — aflip, (hy)/2

E)=Pk=Fk) 2
p() ( ) ivzfol(at(sé llpz( n)/g)

Vke{0,...,N—1}.

5k)fork_0 N — 1. Then,
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v (y1) - "I’Opt
“E[||Gna. )] € =
! N Ny 25E = alip, (hy)/2)

Zk 0 " Dy,
iy v .
t=0 (at 5 hpl( 17)/2)

(5.9)

Proof Starting from (5.8) the proof follows the same lines as the proof of Corol-
lary 5.3. 0

Similarly as in the exact case, we again find a trade-off between aggressive step-
sizes and the size of the mini-batches. However, in the inexact computational model,
we additionally observe a trade-off between the step-size schedule and the accuracy
tolerance Jj in the lower level problem. In order to ensure convergence, the estimate
developed in Theorem 5.6 reveals the condition >~ 87 < co. This observa-
tion allows us to design explicit parameter sequences with interpretable complexity
bounds. In addition, similarly as in the exact case, we require an upper bound on the
step-size «, to ensure the divergence of the denominator. These conditions lead to the
following refined error estimate.

Corollary 5.7 Under the same conditions as in Theorem 5.6, let be § > 1 and con-

sider a step-size ay, < % Let (yx)_, be generated by Algorithm 1 with

gradient estimator (4.9). Then

N—1
wn(yl) - WnOpt Zk 0 akD(m;irl +ﬂl§)

LB01Gy e, () 17) < 222 b ey TPk
26 Zut=0 At 55 Do
where D £ w max{s?, W%Cp}.

Proof We observe that Dy, < D( + /2) and with the bound on cv, we have

mk+
0—1 1 1 0—1
Q= o2lip, (h n) /2> o (6 — 1)(5 —6) =0
Combining these estimates with the bound (5.9) verifies the assertion. O
The constants appearing in the upper complexity bound can be well balanced via a
judicious choice of §. For instance, setting § = 2, the step-size policy o, = ﬁ
1Py

with 6 € (0,1/2), and choosing the sampling rate m;, = a\/k and the accuracy toler-
1 . . . .
ance 8, = bk~ % with constants a, b > 0, we obtain the overall complexity estimate

tuha) (@, (y1) — ,OP) + 2D (2 + b%)(1 + log(N))
VN ’

E[l|Gn.ax (y)I] <
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which resembles those of the exact oracle case.

6 The convex case with inexact lower level solution

We now turn to the case in which the implicit function /4 is convex. In this special
setting, the smoothed function h,, is also convex and Lipschitz continuous. By the
subgradient inequality, we have for all y € ) and g € Oh(y)

hy(y) = E[h(y +nU)] = E[h(y) + (g,nU)] = h(y). (6.1)

Moreover, in the convex case, it holds true that Vh, (y) always belongs to some ¢
-subdifferential of the function % (cf. Lemma 4.4). In this section, we make an addi-
tional boundedness assumption on the bilevel problem.

Assumption 7 The domain dom (r1) is bounded.

Theorem 6.1 Assume that the implicit function y — h(y) is convex and Assumption
7 holds. Assume that the step-size policy (o) > ¢ satisfies

0<01N—1§aN—2§~~~§a1§1
i

1 4 B i
Thn) ) forallk=1,...,N — 1. (62)

andoy, + o < ﬁ
Let (yk)gz o be generated by Algorithm 1 with gradient estimator (4.9) and let
k:2—={0,...,N — 1} be an independent random variable, with probability
mass function

N-1
a .
p(k) =P(k=k) = ﬁ) Ay = E ay, ap = ap — aihpl(hn). (6.3)
t=0

Then, we have

S0l ks Dy MYCE Y LBy + M2+ 01 A,

k=0 mpy1
E[®(y,) — WOPY] < - Ax (6.4)

+ nv/nlipy (h),

2
where Dy, & 8 (52/2 + %CF) and M = SUPy, € dom (r7) lly: — y2||2

Proof Lety* denote a solution of the original problem (3.4). Let (a )« be a sequence
of step-sizes, satisfying 0 < oy < W. For 17 > 0 we then have

U (yYr+1) = Yo (¥™) = hy(Yr41) — B (yi) + by (Yr) — hp(y") + 71 (Y1) — 1 (yre)-

Using the descent property (2.1) and the convexity of the smoothed implicit function
hy, we deduce that

@ Springer



M. Staudigl et al.

lip1(hn)

2
5 llyk+1 — yx||”, and

hn(yk+1) - hn(yk) < <th(yk),yk+1 — Yk +
by (i) — Py (™) < (Vho(yr), yx — y7™)-

Recall that AW,f 1= Vkﬁ 1 — Vhy(yr). Then, we continue from the above with

. lip; (h
U, (Yry1) — Vo (y™) S(AW£+1ayk — Yry1) + % yers — wel
<AW;€+17 —yr) +r1(Yrar) —r(y") + <Vkﬂ+17 Yrt1 —Y")-

By definition of the point y;+1, we have

* 1 * Y *
r1(y*) = r1(Yk1) + ;k<3(yk — k1) ¥ — k) — (Vo1 U — vkn).

Combining these two estimates, we can continue with

)

lipy (h N
W) = W) < (AW e = ynen) + 2 gy — el (AW, e )
1 *
+ —(B(yk — Yk+1), Yr+1 — Y")
€73
lip, (h,
A L A N

1 w2 1 2 1 w112
+0€k QHyk Yl 2Hyk+1 k|| 2||Z/k~+1 vl

Note that ax — % < ‘2’—2 for all z > 0, implying that

lipl(hn)ak —1

2
S0s [Yr+1 — yil|

(AWL Ly — Yis) +

lip; (hy)og — 1
20

IN

2
A2 || -ty =l + s = i

g

< AW, H .
~ 2(1 — aylipy (h H k"'l

Thus, multiplying both sides in the penultimate display by (a; — a2lip, (hy)), we
can continue the bound by

(o — aihpl(hn))[\pn(yk+l) =0, (y")]

2
DY ’AW,?_HH* + (ax, — oflip; (h ))<AWk+1a — Yk)

. 1 1|2 112
+ 0= anipy () [ 3l =71 = 5 s =)
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Using (6.1), we note that U, (yx+1) > ¥(yx+1). Additionally, Lemma 4.2 yields
W, (y*) > WOPt — lip,(h)y/n. This allows us to bound the objective function gap
by

(cx — ajlipy (7)) [ (ypg1) — TOP']
< (o — olipy (hy)) [ (Yks1) — Wy (y*)] + nlipg () v/n(ax — ailip, (hy))

2
G| ||+ (o — oty () AW, 1w )

0= alipy ) 5 e =071 = 5 s =1
+nlipg (k) v/n(ax — ailip; (hy)).

To bound the terms on the right-hand side, we first wuse
error decomposition (421) to bound the first addendum by

HA kHH < 3| AWkt ||? 4 3|ars1|® + 3 ||bri1]|°, as wellas the second adden-

dum (AW. v — ) = (AWhst, ¥ — yi)—(ars1, ¥* — yk) + ki1, " — Uk).
Hence, taking conditional expectations on both sides, we continue with

a2 52
Ey. [(cr — aflipy (7)) (¥ (yk+1) — U (y"))] SLQ’“ —
M1

n, . .
+ 3« iﬂCp + Eg [(ak - aihpl(hn))(bkﬂ,yk —y >]

. 1 e 1 .
+ (1 = aglip; (hy))Eg [5 llye — y*11> - 3 llgr =y Hz]

+ nlipg (h)v/n(aw — ajlip; (hy))

np? .
<S5 "PEC + Mo~ alipy () B [

+ (1 — aylipy (hyy))Eg [5 llye —y H2 ) lywsr =y Hz]
+ nlipy (h)v/n(ay — ailipl(hn)),
where the second inequality uses Cauchy-Schwarz and the bound M > ||y, — y*| |2,

which holds thanks to Assumption 7. Since the step size sequence () is non-decreas-
ing and satisfies condition (6.2), we can continue to obtain

N-1

> 0= antipy ) (3l =71 = 5 s =071

k=0

1 *112
= (1 — aylip, (R )) llys — 112 +th1 (o = 1) llyrss — o7
k=2

*12
||yN+1 -y ||

N =

(1—hp1( ) )
< (1~ alipy () 2L
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Next, calling AUy, £ U(y;) — ¥OP* and a;, £ oy, — a}lip; (h,), we deduce that

N-1 N—-1 N-1
ZakA\Ifk = ZakA\I/kJrl + Zak(A‘Ifk — A\Ifk+1)
k=0 k=0 k=0

and

N-1
Zak(A\I!k — A\Ifk+1) = ZakA\I/k — ZakA\I!kH
k=0 = =

N—-1 N-—-1
= a1 AV, + ZakA\I/k - ZakA\IJk+1
k=1 k=0
N-1 N-1
< a1 AU, + Zak_lA\I'k — ZakA\I'kH < a1 AU,
k=1 k=0

The third inequality uses the relation a; < ag_1.} Taking full expectations and sum-

ming from k =0,..., N — 1, we continue the above bound
N—-1 N-1
E | > (o — ajlip (hy) AT | <E | (ax — aflip; (hy) ATy | + (a1 = lipy (hy)ad) ATy
k=0 k=0
N-1
3a? &2 3a23? M
< k kZk 1 — aplipy (hy))—
a k=0 ( 2 Mpta * n? CF) * onlipy () 2
N-1
+ nlipo(h)\/ﬁz (o — a2lipy (hy))
k=0
N-1
+ MY (ar, — aglipy (hy))E (||brs1]],)
k=0

( *a?lipl(h NAY,
-1

(3 52 30/%/’3% CF)
=0

mk+1 n?

N-1 B M
+ A/[Z (ar = aglip; (hy)) = /Cr + (1 - aNliP1(hn))7
k=0 K

N-1
+ nlipg (h) \/EZ ag, — ailipy (hy)) + (a1 — aflip, (hy)) AT,
k=0

4This can be deduced as follows: Since vy, < (vg_1 one easily sees that

ar — a1 = (o — ag_1) = lipy (hy) (0} — af_;) = (ak — ag—1) (1 = lip; (hy)(ak + ax—1)) < 0.
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Therefore, defining D;, £ 3 (82 /24 %C p), and constructing an independent

random variable x : Q@ — {0,..., N — 1} with density function

ag ag N
pk)=Plk=k)= ——= -, Ay =2 §
(k‘) (Ii k‘) iVBlat AN, N at,

we obtain in a similar fashion as in the proof of Theorem 5.2

Sy miil K+ MFZ,CN;J%@@ + M/2 4 a1 AV,
E[AW,] < =

+ nv/nlipy(h).

O

Similar to the analysis in the non-convex case, we can simplify the complexity bound
of Theorem 6.1 via a judicious selection of parameters.

Corollary 6.2 Under the same conditions as in Theorem 6.1, let be § > 1 and
AWy, 2 U(y) — WOPt, Then

]E[A\I/ }< }]cvol i(mk+1 +Bk)D+M@Zk Oakﬁk+M/2+a1A\Ij1
o o Ok /2 (6.5)
+77\/th0(h).

In particular, for fixed time horizon N, choosing step size ay, = \a—ﬁf’ the constant

mini-batch myy; = m > 1, and By, = m, a>1,aswellasn = \/ZN we obtain

o 4 Do 2 log(N +a) + M\{@ 2a0ayNia 4 M + o1 AUy
E[AV,] < N ’ VN
VN
2 (6.6)
. Vilipg(h)

VN
Proof First we note that

N— 7N71 1

Z <D af( + B2,

P mk+1 —o Mi+1

where D £ 3 max{s?/2, %}, Second Z,?:Olakﬂk < ng:olozkﬁk. Moreover, by
choosing the step size aj < m, we see that ay = aj, — ailip; (hy) > %.

Combining all these estimates, we arrive at (6.5). For fixed time horizon N, choose
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step size a, = %,the constant mini-batch mg,1 = m > 1,and 8y, = \/lifa’a >1,
as well as n = \/% Substituting these numbers into expression (6.5), we immedi-

ately obtain (6.6). (Il
It is worth noting that the fixed step sizes oy = % can be replaced by diminish-

ing step sizes of the order ﬁ

7 Explicit complexity and relaxed stationarity

The previous results provided a finite-time complexity estimate in terms of the gradi-
ent mapping of the proximal gradient algorithm, involving the Gaussian smoothed
objective. It is intuitive that a small proximal gradient in the smoothed regime should
imply an approximate stationary point in the original optimization problem, when the
smoothing parameter is sufficiently small. In this section we make this intuition pre-
cise and relate our complexity estimate from Theorem 5.2 to a complexity estimate

with respect to a relaxed stationary point.

Fix n > 0 and define a; = %. Define the auxiliary process (Jx)r>1 by

Gk 2 Po, (Y, Vier1) = arginin{rl(u) + ﬁ Hu — (yx — alB_lfka)HQ}.
This point is uniquely characterized by the optimality condition
Yp — 1 B" Wiy € 9k + a1 B71Or1 (1),
or equivalently

Uk + a1 B D(yx) € Jx + a1 B71or (k) < D(yx) € Or1 (),

where
D) 2 B () = T+ (Th) = Fho1n) + (o)~ Vi)
This yields

B (P ) 4 () — T () — AWWies € 01 + T ).

From now on we continue our developments with Assumption 7 in place. Choose

€1 > 0,69 > 0, and n < 77 (depending on €1, €2), as defined in Proposition 4.5, so
that
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y y N 3
B (ykalyk> + (th(yk) - Vhr](yk)) — AW}{:+1 (S arl(yk) + aEth(yk) + ngy

Therefore, using Lemma 4.3, we arrive at

dist (0,02 h(gk) + Or1(9x))? << Wy = Gl + 311V ho (k) — Vg (i)l

251
3

6 nlipy (h
S (@*37}2( ) >||yk gll® + 3| AWk |12 + 2
1

+ 3| AW |2+ 22

251
< 3 -
Next, we relate the auxiliary process () to the stochastic sequence (yx)r gener-
ated by Algorithm 1. To that end, observe that

ok = Txll < [lyx = Toon (Rl + [[Tn,00 (98) = Grl| = 1 |G, ()] + 1 [|AWE 4], -

Combining this estimate and Lemma 4.3 with the penultimate display, we arrive at

. coq /n R 6nlip, (h)2
dist (0, 867 () + 91 ())” < (12 n %ﬁ’”a) G ()|

6nlipg (i 92
+<15+1;73() )||AW;€+1H + 5

2¢?
< (124 248%) |Gy e ()| * + (15 + 246%) [[ AW a2+ SE

2¢?
< 181Gy (o + 21 AW+ 2L

Adopting a non-increasing step size regime in Algorithm 1, we can leverage the
monotonicity result of the prox-gradient mapping with respect to the step size,
described in Appendix C, so that for all k € {0,1,..., N — 1}

dist (0, 95 h(gx) +0r1(51:))* < 181Gy, (y)l|” + 21 [ AW | + =5 (71)

From these preparatory calculations, we can state the next relation between the com-
plexity analysis in terms of the prox-gradient mapping (Corollary 5.3), and our defi-
nition of an (g, d)-stationary point (Definition 3.3).

Theorem 7.1 Given positive parameters (€1, €2) and let Assumption 7 together with
all assumptions formulated in Corollary 5.4 be true. Pickn € (0, 1) so that the gra-
dient estimate of Proposition 4.5 for the given pair (€;,¢2) applies. Let (y)Y_, be
the stochastic process generated by Algorithm 1 with gradient estimator (4.5) and Let
(gjk){f: o be the auxiliary process constructed recursively with
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jo = yoandijx = Po, (yr, Vir1) Vk=1,... N —1. (7.2)

Ifk: 2 —1{0,...,N — 1} is the random variable with law defined in Theorem
5.2, then for N > 2 chosen sufficiently large so that

36lip, () (W (1) — U] 25214 log(N)) _ &2
N + TN <3 (7.3)

Then,
E [dist (0, 0% h(gi) + 07 (9:))7] < €7,

i.e. the algorithm delivers an (e 1, € g)-stationary point in the sense of Definition 3.3.

Proof Continuing from (7.1) and using (5.5), we readily deduce

E [ dist (0, 922 h(x) + Or1(9x))?]

< B Y o o~ ol (hy)
k=0 t 0 20‘t_0‘thp1(h )

N 1
418 4(‘1’ (1) — ¥0P") L ks Qmiﬂ (4au, — aglipy (y))
t o (2at a?lip, (hy)) t o (204,5 — o?lip; (hy))
< ﬁ n 72@’?7(91) - \I/nOpt) n ]\52157#“(40% - O‘ihpl(hn))
= - ; N—1 . :
3 Zz]s\;11(20‘t - O‘t2hp1(hn)) k=0 Zt:o (20 — atzhpl(hn))

Choose o, = , so that 2a, — a2lipy (hy) > ay, forall k > 0. Additionally,
7k kP11t

li 1(h )
choosing my = av/k, and following the computations performed in Corollary 5.3,
we continue the previous display as

36lip, (hy)[ W (y1) — U OPY] 262 2285 (1 4 log(N
E [dist (0, 92 h(§,) + Or1 (5))7] < ~oal ﬂ)[ﬁ\n/(ﬁw) b ]+%+ a(\/Jrﬁog( )

Choosing N so large that (7.3) holds, the thesis follows. O

Remark 7.1 Since lip, (h,)) = O(1/n) and Proposition 4.5 shows that = O(e2),

the implied2iteration complexity by Theorem 7.1 is on the order of maginitude of

N=12 ~ 51 so that N ~ —. Choosing £ = 1 = & therefore yields the leading
1=2

order of £~° for the iteration complexity.
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8 Numerical experiments

In our numerical experiments, we consider the bilevel learning approach to inverse
problems and specify two case studies:

e Experiment 1: One-dimensional signal denoising.
e Experiment 2: Optimal experimental design.

Both experiments fall naturally within our general learning framework, as described
in the next subsections.

8.1 One-dimensional signal denoising

In the first experiment, we consider a simple one-dimensional image denoising prob-
lem, inspired by [19]. The goal is to reconstruct a random one dimensional piece-
wise constant signal, observed at discretely sampled points and perturbed with
Gaussian observational noise. Specifically, we represent the signal as a random vec-
tor & = (&1(t1), ..., &1(t,)) with n = 256 sample points, corrupted by Gaussian
white noise

L) =&{) +0Z(t) te{tr,... tn}.

(Z(t))teqt,,... .t} are independent and identically distributed N(0, 1) random vari-
ables, and o0 = v/0.001. For the data generating process, we choose the sampling
times uniformly by t; = X, i =1,...,n,

§1(ts, w) = Licw),r(w) (ti),

where C, R are two independent uniformly distributed random variables with
C ~U([%,1]) and R ~ U([2, I]). As a variational model for reconstructing the sig-
nal from the noisy observations, we consider the loss function

. 1 A
min g(z, (A, 7,),&) £ 5 [lr = &l + 3 [Lal]* + 7TV, (2), 8.1)

where (A, 7,v) € Ri is the hyperparameter vector of our problem. L. € R"*" is a
symmetric positive definite regularization matrix, chosen as L* = 0.012A, with A
being the discrete Laplace operator for the 1D-signal, and A > 0 is the Tikhonov
regularization parameter. In addition to the Tikhonov regularization, we consider a
smoothed Total Variation regularization

TV, (z) £ Z \/|xi+1 — x| + 12 v > 0, a learned smoothing parameter.
i

Bilevel learning problems with this particular structure have also been studied in
[19], and our numerical implementation follows the setup described in there. In par-
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ticular, it is reported in [19], that the lower level problem (8.1) is p-strongly convex
and /-smooth with

> X-emn(L?)  and £§1+@+>\||L2H,
14

where emin(LZ) > 0 denotes the smallest eigenvalue of L. and 0 > 0 is a constant
arising due to the spatial discretization of the Total Variation. Hence, in order to
approximately retrieve the reconstruction operator z*(y, £2), we can implement a
gradient descent scheme achieving a full control over the inexactness in the lower
level solution, as defined in Definition 4.6. More precisely, when implementing gra-
dient descent with constant step size %, we achieve accuracy [ using the stopping

) log(8) 0

2
criterion ”V’“‘J(‘Ziﬁ”&’“ < 3 after at most [WW iterations, where ¢ = m

is the condition number of the problem.

Implementation and validation For numerically solving the upper level prob-
lem, we’ve introduced the parametrization

Yy e RB — (A,T, V) = (10y17 10y27 101/3) = ()‘(yl)vT(yQ)v V(y3))7 (82)

with the additional restriction y = (y1,¥2,y3) € [~7,7]2. This leads to the upper-
level problem

1+ 2702 4 \(yy) L2
min__E[[|z*(y, &2) — 51”2] +107° o 2 .
yel-T7]? e 2 A(y1)emin(L7) (8.3)
=F(z*(y,£2),&1)

=r2(y)

In every iteration k of our main scheme, we first solve the lower level problem (8.1)
up to accuracy [y = \/%, Bo > 0 using gradient descent. We then increase the
batch size of the random gradient estimator (4.9) by my = Vk - mg, mo € N. We
adopt the step-size policy oy = \/%, ap > 0. The smoothing parameter is fixed
at level n = 0.01. In order to numerically confirm the convergence of the gener-
ated trajectory, we plot the summation over the random operator Qf ’“k scaled by the

step-size policy, i.e. we demonstrate that Ay := Zf:o asgfffs remains bounded. To

verify the generalization properties of the method, we generate a validation data set

independent of the data set applied in the application of Algorithm 1, defined as
i,val

i.i.d. sample (& ,f;’val);zvfl, Myal € N, of (&1, &2). We then plot the normalized
empirical errors in the upper level

o 7™ - ™)
A ")
Gl

Err;(y) Vie{l,...,mya} (8.4)
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The lower level solution z*(y, fé"val) is obtained via the gradient descent method

with tolerance 3 = 10~7. In this visualization, we compare the generalization error
for different choices of y with the resulting learned parameters by Algorithm 1. We
set ag = 1, By = 0.01 and mgy = 1 as parameters in Algorithm DFProxGrad, and
terminate after N = 700 iterations.

In Fig. la—c we plot the resulting regularization parameters generated by Algo-
rithm 1, where we observe that all three parameters converge. This result can also be

observed from Fig. 1d, where we demonstrate that the summation over the random

operators Qf’jc remains bounded. The resulting reconstruction of the signal using the

learned regularization parameters for solving the lower level problem (8.1) is plotted
in Fig. 2b. As comparison, in Fig. 2c—f, we plot the reconstructions of the signal using
different regularization parameters chosen by hand. In all four cases, we have cho-
sen a smoothing parameter v = 1073, The comparison of the reconstruction already
conveys some evidence that our learned regularization parameter using Algorithm 1
outperforms the fixed regularization parameters. This empirical evidence is further
demonstrated in Fig. 3 where we compare the generalization error (8.4) over valida-
tion data set independent of the training data set.

8.2 Image reconstruction based on the radon transform

In X-ray tomography, the forward operator is a discretization of the Radon trans-
form [31], where data are collected at various angles 6 € [0, 7). The unknown z
represents a 2D image, and the measurements d(0) = Agx for one angle represents
the line integrals of that image along straight lines at angle 6. We discretize this line
integral, so that Ay is numerically represented as a 1 X n, row vector, acting on
model parameters © € R™=. Collecting a large number of angles 0 € [0, ) leads to
a well-posed inverse problem and generally yields a good reconstruction. For practi-
cal applications it is of interest to reduce the number of angles, dictating the use of
additional regularization to fill in the missing information. To model such a situation,
we let n € N denote the maximal number of angles from which we can observe the
2D image. Let 6 = (61,...,04) € [0,7)% the vector of angles, and the fiull forward
model

A,
K=|: | eR™  zeR™+—KzeR?
A,

mapping the image z € R"= to data in R?. Let £; € L>(Q, R"=) represent the ran-
dom vector of model parameters and let Z € L>(Q; R?) be an independent obser-
vational noise. Define

D(w) £ K& (w) + Z(w).

The random vector D € R? corresponds to d noise-contaminated perspectives of the
image, representing the measurements available in a design using all d angles simul-
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Fig. 1 a—c Learned parameters (y1,y2,ys3) resulting from Algorithm 1 and d summation over the

58t
random operators gw

taneously. To model an experimental design problem in which we can only take mea-
surements from 1 < ¢ < d chosen angles, we have to define a selection procedure
from the coordinates of the vector D. Hence, given a fixed integer 1 < ¢ < d (typi-

cally much smaller than d), we define S,.q = {J C {1,2,...,d} | |J| = ¢}. Each
element J € S, 4 gives rise to a g-tuple of observations

UswyD(w) = (Ag;1(w) + Zj(w))jes € RY, (8.5

where U; € R7%? is a matrix selecting the components contained in J out of the
random vector D = K&, + Z. Hence, using our statistical formulation of the experi-
mental design problem, the random pair (£1,&2) consists of model parameters
& € R™ ==, and observations & = (J,U D) € 23 = Sy 4 x R

Our aim is to learn the best angles to be used for taking measurements via a spe-
cific variational formulation of the experimental design problem, given by
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12 (a) ground truth . (b) recon (learned reg) 12 (c) recon (low Tik, low TV)
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0.2 -0.2 -0.2
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Fig. 2 a Ground truth signal and b reconstruction of the signal using the learned regularization pa-
rameters (A, 7,v) after N = 300 iterations. As comparison we show the reconstruction ¢ using low
Tikhonov regularization with A = 10~3 and low TV regularization with 7 = 10~3, d using high
Tikhonov regularization with A\ = 10~ and low TV regularization with 7 = 1073, e using low Tik-
honov regularization with A = 10~2 and high TV regularization with 7 = 1, and f using high Tik-
honov regularization with A = 10~ and high TV regularization with 7 = 1. In (¢—f) we have fixed
the smoothing parameter v = 10~3

Fig. 3 Pointwise generalisation error in the ) Generalization

upper 116V¢] (%%.4) over the validation data set o leanred reg 3

(TR );lvf‘l, Myal = 50. We plot the —-—-high Tik; high TV

errors for the different choices of regularisation wl = = low Tik; low TV ||

parameters from Fig.2 T low Tik; high TV
— high Tik; low TV

0 5 10 15 20 25 30 35 40 45 50
validation data set

min g(z, (w, A\, 7,v),&) = min {g(z, (w, A\, 7,v), &) + dgne }, where
IER:} TERNz +

A A
90, (0,0, 7,0), &) 2 |[UsKe = UsDI} + 5 llo|* + 7TV, (@) = Kz = Dlig 7, + 5 llall® + 7TV, (2),

TV, () £ \/\$i+1.j =i g* + [mi g1 — gl + 02,
i

inwhich 2 € R'}” represents a two-dimensional discretized image of size /1, X /1
px. Note that we incorporate state constraints to the lower level solution forcing the
images z to remain non-negative, which is implemented using the projected gradient
method. The loss function depends on hyperparameters y = (w, A, 7, ), which are
trained via the minimization of the upper level loss function
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U(y) = E[F(z*(y, &), &1)] = E[llz* (v, &) — &%)

The interpretation of the hyperparameters A, 7,v is clear. The hyperparam-
eter w € R? is used to parametrize the probability distribution over angles.
To explain this transformation, define the set of probability mass functions
P2{p=(p1,...,pa) €R|p; > 0,50 p; =1}, in which p; € [0, 1] describes
the probability of selecting the line integral Ay, in the experimental design. The
weight vector w = (wy, ..., wy) € R? determines the distribution over the random
sample J € &y 4 via the soft-max parametrization

. ) )

Zj:l exp(w;)

Having constructed this probability distribution, we sample J € &, ¢ without replace-
ment according to (p1, - .., Dd).
Implementation and validation In our concrete experiment, we assume that we

are allowed to pick ¢ = 6 angles out of a pool of d = 64 possible angles 6; = @.
The goal is to reconstruct images of size 64 x 64 px given the noisy measurements
generated by (8.5), where (Z;) are independent and identical distributed according
to N(0,0.012). Our set of images consist of randomly generated triangles of varying
size, rotation in the space and varying gray levels ranging from 0.5 to 1. The angles
and direction of the triangles are kept fixed. In Fig. 4, we show i.i.d. realization of 16
different images.

In order to enhance the reconstruction accuracy we have implemented the OED
problem of choosing the best possible policy over the set of all possible angles [49].
The regularization parameters (A, 7,v) are again parametrized as in (8.2). Includ-
ing the vector of weights (ws, ..., wy), we abuse notation and identify the tuple of
hyperparameters by the list

Y= (y17 e Yd, 10yd+17 10yd+27 10?Jd+3),

so that our upper level problem (8.3) is a minimisation problem over a space ) of
dimension n = d + 3 = 67.

In our numerical implementation, we have chosen the uniform distribution
(1/d,...,1/d) (i.e. w = 0 € RY, corresponding to a naive selection mechanism of
angles) as initial condition. The same distribution is used as comparison in our vali-
dation over the validation data set. Algorithm 1 with inexact lower level solution is
applied with ag = 0.2, 5y = 0.1 and my = 1, and terminated after N = 2000 itera-
tions. The generalization performance is illustrated in Fig. 6, where we have applied
various configurations of regularization parameters together with the uniform pol-
icy. Among fixed choices of regularization parameters, we’ve also implemented the
bilevel learning approach for selecting the regularization parameters (), 7, v) with a

Mval

fixed uniform policy. For validation, we use an i.i.d. sample (fi’val)izl , Myal €N,
of &1 and plot the normalized empirical errors in the upper level
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20 20

40 40

60 60

20 40 60 20 40 60

20 20

40 40

60 60

20 40 60 20 40 60

20 40 60 20 40 60

Fig. 4 Realisations of the random triangles in Example 8.2

) — e

—
1€l

Err;(y) : Vie{l,...,mya} (8.6)

where fé’val is generated according to (8.5). The lower level solution z*(y, é’val) is

again obtained by gradient descent with targeted accuracy 8 = 1077,

Overall, we observe a significant improvement by applying our learned policy.
The resulting reconstructions for the different choices of regularization parameters
and policies are shown in Fig. 5. These reconstructions further demonstrate the sig-
nificant improvement through the proposed OED approach based on the stochastic
bilevel optimization approach.

9 Conclusion

In this paper we’ve studied a zeroth-order gradient method for a particular class of
stochastic bilevel programs which arise naturally in data-driven learning of inverse
problems. Our complexity estimates adapt to smoothing and inexact solutions of the
lower level problem. Our theoretical and numerical results display the favourable
properties of our scheme. In future work, we plan to continue this line of research
along the following directions:

e Higher-order numerical methods: The merit function employed in this paper is a

stationary point. In non-convex optimization, an important question is whether
our method is able to avoid saddle-points. For this, we plan to develop stochas-
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(a) ground truth (b) recon (learned reg, learned angles) 1

15

05 05

(c) recon (learned reg, random angles) 1

05

Fig.5 a Ground truth image and b reconstruction of the image using the learned regularization param-
eters (A, 7, ) and the learned distribution p after N = 2000 iterations of DFProxGrad. As compari-
son we show the reconstruction of the image ¢ using the learned regularization parameters (X, 7, v)
after N = 2000 iterations and a fixed uniform policy, d using low regularization with A = 102,
7 =102, v = 102 and uniform policy, e using medium regularization with A\ = 10=3, 7 = 103,
v = 10~ 2 and uniform policy, f using high regularization with A\ = 1072, 7 = 1072, v = 102 and
uniform policy

Fig. 6 Pointwise generalization error in the Evaluation over unseen data

upper level Err; (p, A, 7, v) (Eq. (8.6)) over ‘ ‘ ‘ ‘ ‘
the validation data set (£/2!)/21, mya1 = 10.
We plot the errors for the different choices of

regularization parameters from Fig. 5

——leanred reg, learned angles
107 || ==—-learned reg, random angles 1
= = high reg
-------- med reg
— low reg
1 2 3 4 5 6 7 8 9
data set

tic Newton methods, employing derivative-free gradient estimation strategies, as

done in this paper.

o Weakening the Lipschitz continuity assumptions of the hyperobjective. Interest-

ing recent results in this direction are reported in [38].

e Construction of the random estimator: In this paper we adopt a Monte-Carlo ap-
proach to estimate the directional deriviative using iid Gaussian directions. It
would be interesting to include more structure in this sampling approach. Quasi-
or Multi-level Monte Carlo approaches would be interesting new stochastic simu-

lation approaches to reduce the computational costs [27].
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Properties of the Gaussian smoothing

Let & be a finite-dimensional real vector space, and define M, = E[||U||"].

LemmaA.1 ([42], Lemma 1) We have My = 1, Mz = n and for p € [0, 2],
M, < nP/?, (A.1)
If p > 2, then

n?/2 < M, < (p+n)P/2 (A2)

Proof of Lemma 4.1 For all y1,y> € )V, we have

|hy (1) — by (y2)| = |Ep, [A(y1 + nU)] — Ep, [h(y2 +nU)]|
= |Ep, [h(y1 +nU) — h(y2 +nU)]|

< Ep, [[h(y1 +nU) = h(y2 +nU)|]
< lipg(h) [lyr — w2ll-
O
Proof of Lemma 4.2 For any y € ) we have
|l (y) = 1(y)| < B, [[h(y + nU) — h(y)[] < nlipy(h)Ep, [[|U]l] = nlipe(h)v/n.
O

Proof of Lemma 4.3 Let T denote the normalizing constant of the Gaussian density
m,(®|y). Using the formula (4.1), for any y € ), we can directly differentiate under
the integral to obtain

1 1 B(z —
Vo (y) = T /yh(z) exp (_2”2 |2 — y|z) (7723/)@1,2

1 1 1
=¥ /y Eh(y—i—nu) exp <—2 ||u||2) Budu

— B, {h(y + n? — h(y) BU] (A3)
= Ep, {WBU} :

Now let y1,y2 € Y so that

@ Springer



M. Staudigl et al.

h +nU) - h +nU
HV%@OV%@ﬂLSEMH(m nv) — ks ’w

wvu}
n

< tipg(n) 2= 2lg gon

n

where the last inequality uses [42, Lemmal]. To obtain the bound on the gradient
norm, we continue from the first relation, showing that

h(y +nU) — h(y) |?
vawmi<EM\ v +n0) (W|wvm

< lipy ()Ez, [|[UI*-[|BUIZ]

— lipy (n) e, [IU]"] < lipg(h)2(4+ )%

The last equality uses again [42, Lemmal]. O
Technical proofs

Proof of Lemma 4.7

Given y € ), we use the law of iterated expectations to compute

Ep [Vnm(y)} = Ep

SRR ;
mg;wmme@ﬂ

:EP

S B (Vi Hy €l ()
i=1

_ % iEP [h(y + nlj;) - h(y)BUi]

= Vhy, (y)

where the last equality uses eq. (4.2). For the second bound, observe that
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2
Ep =Ep
*
1
= 7E]P
m2

Define the centered random variable X; £ @(Uim)H(y, &) — Vhy(y) forl <i<m,
to obtain an i.i.d collection of zero-mean random variables in V*. Therefore, we can
continue from the last line of the previous display by noting that

S (Vi H . €) — Tho(w)) + Vi 1)

m
i=1

Vym (y)

]

+{|Vhy ()12

m 2

) (ﬁ(me(yaf") - th(y))

i=1

*

2
:]EIP

m

>ox,

=1

Ep

(B~ i Xi, zm: Xi>]
=1 =1

=> Ep [(B7'X;, X;)] = Em:]EP (B X, X3)]
i\J i=1

*

= Es[||X:lI7].
i=1

R 2
Since Ex[|| X;|[?] = Er [Hv(wmy,s)\\ ] — [|Vhy, ()], it follows

. 2
Vnm(.y)

Ee | | < 25 |[Fwmmwo|[[| + 0= DIvnmIE

*

2

n

. 2
Ep {HV(U,n)H(yaf)HJ =Ep

*
2

H(y+nU,§) — H(y,§) " BU|P

n

=Ep

Lemma A.1

< B [lipg(H(, )P IUI'] < lipg (H(, )13 (4 -+ m)2.

Proof of Lemma 4.9

For arbitrary y € ) we compute
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m

Er [0 ()] = E [;Z s HP yﬁ)}

~m ZEP’ [@(UwHﬁ(y, €i)]
7ZEIP’ |:F erUUZ 52) gnl) ( 5(y7£§)’£7i)BUL:|

*ZE {F (y +nU"), 63)751')—F(w*(y,éé),ﬂ)BUﬂ

"
L ZEP{ Aly +nU"), &), 5%)77—F(x*(y+nU’i7§§)7€i)BUi}
_ 72 { ly. ). &) ; F(x*(yyfé)fi)BUz} )

From Lemma 4.7, we deduce that

*Z]E]P’ |: y+77U 52) %)_F(x*(ya§5)7£i)BUz:| =th(y),

and by mutual independence of U? from &¢ = (£, £5)

1 Py, ), &) — F(a* (4,65),€1) prri| _
Z { ; BU} =0

For the second assertion, we apply Lipschitz continuity of ' (Assumption 3), the iid
assumption on the random pair (U*, £*), and Holder’s inequality to obtain
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iZHE { Bly + U €L, 5127 F(z *(y_'_nUi),gi)BUi}H*
{” (xﬁ(y+77U,f2)’§1) ~ F(a*(y + U, &), 61)
n

= ~Ee | [F(e” (y + U, &), &) = F(a*(y + 0V, &), )| | BU.

IA
&=
s

BU|.|

IA

Ep[lipg(F(-,€0)) |2 (y + nU, &) = " (v + U, &) - | BU]..]

IN
:\Hdm—lzm—t

Ep[lipo(F (- €1))] - Ee | ||o”(y + U, &) = " (y + nU. &) - |1 BUL.

P
p—1

—

IPO(Frg.’fl)l]EP[Hxﬁ(y +nU, &) — " (y +nU, fQ)Hi»} ’ EP{HUHP”;I}

< \/ﬁ“ipO(F('agl
n

=

>|1EJP’[H$B(ZI+77U7§2) —33*(3/+77U,§2)H§g}

Proof of Lemma 4.10

We have

ME41

>

i=1

ME+1

F(mﬁk(ykvfé,k+l)7£ik+1) - F(m*(yk,fé,kﬂ)vﬁ,kﬂ)
n

1
ME+1

llaks1ll, = BUj 1

*

F(mﬂk (ykvfé,k+1)7fi,k+1) - F(m*(ykvfé,k+1)7§i,k+1)
n

1

ME+1

IN

Lot
i=1

1 kaJr:l hpO(F('vgi,lH»l)) Hlﬁ,c
n

IN

(yk7§§,k+1) - m*(yk>£;,k+l)||/y : HUIiJAH /,~

LLLTES St

Hence, by Jensen’s inequality and the tower property and the independence of the

triple (&} 411,85 5415 Upy1)> We obtain

ME41

2
]E[HaAHH [F] < 7m 2 |:< Z lipy (F 51 k+1 H«T Z/hf%,k,ﬂ) - x*(llkafg,kﬂ)HX : ||U11‘+IH> [Fr
+1

Mgt
7] T 1:21 E [hpo 51 k+1 ||I (k. 52 k+1> (;Uk-f;,k,H)Hi : HUL:HHQ |-7:k}
ME41

> EQlipg(FC, )] < E [[[0 (s i) = @ s Eh )| [ 1]

77 Me+1 =

2 Mk+1

1
< M Z ]E{HQEB‘ Yk 52k+1)—17 (Yk» fzk+1 ||;c|]'-k

r/;n
P

n [lipg(£(+, ‘2 2 4 ﬂk
po B =Cr

where p > 2, is the exponent from Definition 4.6. We can bound the L?(P)-norm for
the bias term by in a similar way. First, observe that
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1 F @ (g + U108 g1)s €4 i) — F@™ (yn + MU} 415 € ) €1 s

by, < ' : : U;
Bl < Z . 10l
ME+1
=7 Z lipy (F" 51 k+1 HT (y +7)Uk+17§2 k+l) — 2" (yn +77Uk+17§2 k+1 Hx HUk+1H
Mk+1

Using Jensen’s inequality and Holder’s inequality as in the previous estimate, we see
fors > 1,

JE[HbmHZ | Fi]
Mp41

77 P ; E [hpn 3 k+1 Hzﬁk (yk + TIUz«,H’f;,kH) — " (yx + WUlf-,Jrhf%,kﬂ)Hi : ||UZ}+1||2 |]:k}

2 Mgy

lipg ( &) p ) ) . . ) : .

‘ 0,] ’”Hll | Z U ‘TJA(W +0Uki1,&2041) — " (Y + 77U13+17Eé.k+1)||i . ||UI:«+1H2 ‘Fk]

‘hpo (&) |j & 8 i i . i i i 2r91/r
S e DD B[ U, i) — 2 G U )Y 7] B0

i=1

for % + % = 1. Choosing 2 s = p, we obtain

E[[br1 12 | Fi]
lipg (F (-, €1))]5 "2 /p P
< | On mk+1] ‘2 12; E{Hf{k Yk +77Uk+17§2k+1)—»” Wk + Uk 1, & jr) Hx\fk] E[||UL 1|72
n [lipg(F(- €))]; .. 82
o o ‘Mﬁ:cp%.

Proof of Lemma 5.1

The optimality condition for the iterate yj 1 gives

E— Yk -

B (yy—H> S Vk+1 + 8T1(yk+1).
€73

This means that there exists px11 € Or1(yx+1) satisfying

Y — yk+1)

Vi1 + pes1 = B (
(075

Since 71 (+) is convex, the convex subgradient inequality gives for all u € ),

ri(w) > 71 (yes1) — (Vis1 — B (yk_ay“l) U= Yht1)
b (B.1)

~ 1
=71(Uk+1) — Vi1, ¥ — Ypg1) + OTk<B(yk+1 —Uk), Ykt1 — U) -

Set u = yy, to obtain
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N 1
r1(yx) = 11 (Yer1) — (Vetr1, Ye — Yet1) + on [e—
~ ~ ~ 2
= 71 (yk+1) — Vit 1, Gnon (k) + ik || G (wi) ||

The descent property (2.1) for h,, € C*()) gives

lipy (1
by (Y1) < hy(yk) + (VAo (yi)s Y1 — yx) + y yksr — will?
5 a?lip, (h 5 2
= () — 4 (T 1), G () + D 116,
N ~ a?lip, (h 5 2
= o) — 0k (Vicr, Gy ) + I 6 )

+ oy <Vk+1 - th(yk)7 Gn,ak (yk)>
< by (k) = e || Gy (k)| |2 — (11 (ye+1) — 1 (ur)) + ok (AWit1, Gya (Uk))

a2lip; (h 5
+ ) 6 )

I

I
where we have used (B.1) in the last inequality. Rearranging the last inequality yields

2
+ g <AW1€+17 g~n,<x1€ (yk) - gn,ak (yk)>

~ lip, (h
< a9 | (1= )Y 00 (A1, G ()

+ an [[AWiiall, - [|Gnan (k) = Gran (i) ||

5 2 aglipy (hy,
\I”rl(ykJrl) - \I’n(yk) S — QO Hg”huk (yk)H <]- - M) + ak<AWk+17 gn,ak (Uk))

where the Cauchy-Schwarz inequality in the last inequality is employed. Using the
non-expansiveness of the prox-operator, we obtain

|G W) = G (i) || < || B (VA (k) = Vieg1)|| = VA () — Vierall, = 1AW 1a]|7.

Hence, we can continue the previous display as

. 2 aglip (h
i) = Balon) < |G )] (1= L) (AT 1, G )+ o [AWl

Properties of the prox-gradient mapping

Monotonicity of the prox-gradient mapping

Consider the function oy a2y =T, .(y)|]. For
y € zer (Or1 + Vhy) £ {y € Y | 0r1(y) + Vhy,(y) = 0}, we have ¢, (a) =0 for
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all @ > 0. We next prove a classical monotonicity result with respect to the parameter
« of this mapping.

Proposition C.1 If'y ¢ zer (Or; + Vhy), then it holds

a; > a > 0= pylan) < y(ag). (C.1)

Proof To simplify notation, let us define () := T, (y). This point satisfies the
monotone inclusion (Fermat’s optimality principle)

éB(y —y(a)) = Vhy(y) € or1(y(«)).

Hence, for oy > ag > 0, the maximal monotonicity of the subdifferential Ory yields

(Bl — glan) =~ Bly — gla) i) — 0) 0.
Rearranging,
0< (Bl lan)). (@) ~ o) + o (Bly - 7).y - §laa))
- (Bl - 7laz))y - 7lan)
- (Bly - 7laz)).y — 7(0)

1 _ 2 1 _ 2
= —— — [ o) —
o ) =yl = - fla(e) — ol
(65} (%)

+<1%_1)w@—wmﬁw—ﬂwﬁ-

Consequently,

a1py(a1)? + aspy(az)? < (g + a2)(B (y —51(061)> Y —Ozi(a2)>
aq +042

- 2

(0y(@1)? + py(a2)?) .
This, in turn leads to,

(a1 — az) (py(1)® — @y(a2)?) <0.
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Approximate stationarity

In this appendix, we derive the important relation between the norm of the
prox-gradient mapping and stationary points. Consider the smoothed implicit
function ¥, = h,(y) +7r1(y). The prox-gradient mapping is defined as
Gnt(y) = +(y — Pi(y, Vhy(y)), where h,, is the Gaussian smoothing of the function

h. Since V h,, is a Lipschitz continuous operator, the optimality condition defining the
point 4~ = P, (y, Vh,(y)) is

0 € tdr1(y;) + t{—BGy.t(y) + Vhy(y)]
SGni(y) + B~ (Vhy(5) — Vhy(y)) € BT, () .

Hence,

dist (0,09, (3;"))

IN

G2 (w)]] + {fnpom) g — |
(1 n tfhpom)) 1G]

IN

. . A . . .
In particular, choosing = m, the above relation implies
dist (0,09, (5;")) < 2[|Gy.eW)II-
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