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ABSTRACT ARTICLE HISTORY
This work first describes Bayesian Partially-Protected Lasso (BPL), Received 25 July 2024
which combines the power of Bayesian Lasso with the ability to Accepted 20 August 2025
protect key theoretical explanatory variables from shrinkage to a KEYWORDS

zero effect in the model. This approach allows researchers to iden- Lasso; elastic net;

tify protected and non-protected variables so that data with many reqularization; Bayesian
explanatory variables can be efficiently machine-explored without statistics; predictive
sacrificing theoretically important predictors. We provide the statis- modeling; machine learning
tical background, algorithms, examples, and easy to use tools in an

R package. We then introduce BPEN — Bayesian Protected Elastic Net

estimation process that builds on the idea of the Bayesian Partially-

Protected Lasso. Since the Elastic Net adds a second penalty term to

the standard Lasso it provides a more flexible regularization process.

This is a novel approach that combines the robustness of the Elastic

Net in sifting through potentially large sets of variables while simulta-

neously safeguarding the integrity of those grounded in theoretical

principles.

1. Introduction

There are now a staggering number of powerful tools that have been or can be imported
from the broad spectrum of data science where the objective is typically categorical predic-
tion rather than fealty to the history of a specific literature. This is at odds with conventional
empirical work in the social sciences, which historically focuses on using theoretically
driven explanatory factors with a strong history that are then used to build generalizable
models adding to a specific line of inquiry. Yet, a profusion of machine learning based tools
are now routinely adopted as the primary methodology across nearly every subfield of the
discipline, often without thoughtful consideration of the important epistemological conse-
quences. This leads to a tension in modern empirical social science that has yet to be fully
resolved in a meaningful and constructive way.

The tools associated with machine learning and artificial intelligence are permeating
every academic field, and the rate is increasing dramatically right now. Many of these meth-
ods are classifiers that take, possibly very large, datasets and use within-data characteristics
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to classify cases into predefined or computer-defined categories, as opposed to more con-
ventional analytics that require humans to establish criteria. An example of the latter is a
standard logit regression model wherein a researcher selects a set of explanatory variables
and then classifies on the predicted outcomes separating at 0.5 as in the classic naive-
criteria two-by-two summary table. Are social science researchers willing to abandon this
tried-and-true strategy for binary classification with strictly machine-based decisions if
those decisions result in notably better classification? The answer is almost certainly no
given richness of the literatures we draw from in these fields, but are researchers also will-
ing to ignore the startling power of current and emerging machine learning tools? The
answer is almost certainly #o to this question as well.

In this work we cautiously introduce a model selection tool from machine learn-
ing adding a new and useful feature that allows protection for theoretically important
explanatory variables while at the same time harnessing the stunning power of recent data
science tools to deal with very big data. The Bayesian Partially-Protected Lasso (BPL) is
a recent approach that combines the robustness of the statistical Lasso in sifting through
potentially enormous amounts of explanatory variables while simultaneously safeguard-
ing the integrity of those grounded in theoretical principles. We explore the mathematical
foundations of the BPL method for both interval and dichotomous outcomes, extending
the Bayesian Lasso model by integrating different prior distributions for protected and
non-protected variables, thereby preserving selected variables during the Lasso shrink-
age process. We then extend the novelty of that approach to the more flexible Elastic Net
setup to provide a powerful version that accomplishes the same goals but with more power.
The utility of this semi-protected approach is demonstrated using simulation as well as
re-analyses of published social science works employing the Lasso and the Elastic Net.
This approach is also intended to be a model for introspective introduction of assertive
methodologies from data science in to applied empirical social science research.

2. Bayesian partially-protected regularization

As in the standard linear model setup, let X be the n x p matrix of standardized predictors
with aleading column of ones, y the n-length outcome variable vector, 8 the p-length vector
of regression coefficients to be estimated, and ¢ 2 the residual variance, but add A2 as penalty
term for overfitting with too many covariates. The Least Absolute Shrinkage and Selection
Operator [25] is given by:

P
B = argmﬂin (y—XB) (y—XB) + 4 Z 1Bl | > (1)

j=1

which produces the best set of non-zero coefficient estimates when the goal is exclu-
sively predicting the y outcomes with the resulting predictions y = B 1. X. The remaining
potential predictors are shrunk by the Lasso to zero and are therefore discarded in this
prediction calculation. While the Lasso regression estimator has optimal prediction prop-
erties under general conditions,it disregards regressors that are theoretically important in
a given literature, hence our motivation for a protection mechanism. Unfortunately with
the non-Bayesian Lasso valid (consistent) standard errors for the terms shrunk to zero are
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not produced by this process even with the use of bootstrapping, and several awkward
workarounds have been suggested.

The advantages of the Bayesian version of the Lasso were forcefully argued in [22]
and [15] starting with specifying a general version of the Laplace (double-exponential)
distribution for o2 to get a prior distribution of the form:

P

2y = T -2 e HIBI/Vo?
7(B1o?) Ezme (2)
These advantages include estimating the penalty term within the MCMC sampler, genera-
tion of valid standard errors for the parameters shrunk to zero, and easy extensions to more
elaborate forms like the Elastic Net and hierarchical specifications. Conditioning on o2
guarantees that the posterior form is unimodal, which improves the mixing of the MCMC
sampler and provides more interpretable results. Bayesian Lasso has been a popular choice
from social sciences to gene selection [1,2,4].

The protected version introduces the p-length T2 hyperparameter vector as a Bayesian
precision term and specifies the priors:

€ ~N(@0,6%), i=1,...,n ﬁj~/\/(o,rjzaz), j=1,...,p A*~T(1,01). (3)

2 2 2
We can then separate t° into protected ('L'Protecte 4) and non-protected (Tnon—protecte )

groups, leading to the additional priors:

72 ~exp(1%/2) T

non-protected

Iz)rotected ~ r(l’ 1) (4)
Note that the 72 prior specification for the protected variables above does not contain the
penalty term, thus saving it from Lasso shrinkage. To derive the marginal posterior distri-
butions from this setup, we calculate the full conditional distributions, facilitating iterative
draws of new values for each parameter given the current values of the other parameters
with a Gibbs Sampler. Performing these steps iteratively many times produces empirical
marginal posterior draws after convergence of the Markov chain can be asserted. All code
is written in R and standard diagnostics, both graphical and formal, are used to assess the
state of the chain with regard to its stationary distribution. The Bayesian Lasso for inter-
val measured outcomes with partially protected variables uses the standard semi-conjugate
specification, and is estimated by the following sampling scheme:

Update 8: 8 | 72,62, Y ~ N'((5XTY + diag(:5)) 7' XY, 02 (5 XTX 4 diag(5))™")
Update 72 For non-protected variables: T[%on—protected | B,o2, 32 ~IG( |22 2)
non-protected

2
. 22 2 1 protected
For protected variables: 7, .ieq | B:0° ~ T'(a + 3, + =557)

202
Update c%: 02 | B,72,Y ~ ZG(“72, 1 (Y = XB)T(Y — XB) + 18 diag(1)B)
Update /12: /12 | szlon—protected ~ F((p - nPYOt) +a % Znon—protected sz + b)

The Bayesian Lasso for dichotomous outcomes with partially protected variables uses
the following Gibbs sampling sub-steps:
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Update 0?: ) ~ p(w| 4V, 0,v)

Update 1: 1) ~ p(1| X, B4=D, k)

Update z: 2 ~ p(z| X, p4=1, 20 k)

Update 8: SO ~ p(8|X,2®, 19, 0®,v,0,x)

Update v: v® ~ p(v | BO, 5, x)

Calculate the log posterior probability: Ipost' = log p(y, X, 8, v, %,0)

Then after the last step the parameter values above at the iteration with the highest
posterior probability are returned to complete a single iteration of the Gibbs sampling
process.

2.1. Parameter specifications

Since some of the most common outcome variables specified in social science regression
models are dichotomous, we modify the linear structure of the Partially-protected Lasso
above for a logistic specification (p(y = 1| X, 8) = 1/(1 + exp(—XB)), y € {0, 1}). How-
ever, this leads to interactable full conditional distributions for a Gibbs Sampler. Several
authors have proposed limited simulation based estimation of Bayesian Logistic regression
coefficients [11,12,17]. Our more general solution builds upon [11]’s simulation based reg-
ularized logistic regression by modifying the software reglogit by [11] to allow direct
direct manipulation of the T2 terms in a way that produces realizable full conditional dis-
tributions. The prior distribution on a single f; may be specified as per a Lasso or Ridge
Regression (squaring the f; terms instead of taking the absolute values), controlled by a
regularization parameter v and scale parameter o

p(Bilo,v) o exp(—%ZW). (5)

The regularization of non-protected explanatory variables is affected by manipulating the
o term, where progressive increases cause the associated ﬂj coefficients to decrease towards
zero in the standard Lasso fashion as in the 4 term in (1). Conversely the protected vari-
ables are not affected by the regularization process, so they remain invariant throughout
this shrinkage process. Representing the set of j indices corresponding to the protected
variables by P (protection), the simple algorithm is:

v
exp (~Z181). ifjg P
1, ifjeP

p(Bjlo,v) o (6)

so that when j € P this Lasso does not affect the distribution of f;. See the appendix for
computational details of this Gibbs Sampler. In the supplementary materials, we also pro-
vide source code for our package ProtectR to implement Bayesian Partially-Protected
Regularization in linear models as well as an updated version of the [11]’s package
reglogit for dichotomous variables.
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2.2. Empirical evaluation

To substantiate the efficacy of the BPL approach we implemented it with two very different
datasets from published work in political science that use the standard Lasso. Beforehand,
we explore the properties of the BPL with simulation. We created a dataset of 1000 observa-
tions, with 20 predictor variables in X and a single outcome variable y. The true relationship
between the predictor variables and the outcome variable is linear. The predictor variables
are divided into two groups: the first group consists of five variables, which have a strong
signal, while the second group includes the remaining 15 variables, which have a weak sig-
nal (i.e. more noise). The strong signal variables are generated by drawing random numbers
from a standard normal distribution (x = 0,0 = 1), whereas the weak signal variables use
a higher standard deviation (4 = 0, ¢ = 10). The true coefficients for the predictor vari-
ables are set to 1 or -1 for the strong signal variables and 0 for the weak signal variables. This
implies that the outcome variable is only affected by the strong signal variables. The out-
come variable y is generated by taking the product of the X matrix and the true coefficients,
and adding (0, 20) random noise.

There are three estimation processes for comparison with the simulated data: the stan-
dard Bayesian Lasso that allows any of the coeflicients to shrink towards zero if it provides
better fit (No Protection), a BPL protecting coeficients corresponding to explanatory vari-
ables with the stronger signal, and a standard Bayesian linear regression, all the predictors
were protected (Full Protection). To assess the models’ performance, we computed the
Mean Squared Error (MSE) and Bayesian Information Criterion (BIC) for the training and
testing datasets, with lower values signifying better accuracy. BPL, which selectively pro-
tected variables, outperformed the full protection model in terms of MSE but fell slightly
short of the standard Bayesian Lasso. This trade-off reflects the cost of safeguarding the-
oretically driven variables. As illustrated in Figure 1, is a comparison using the Bayesian
Information Criterion (BIC), a measure that considers both fit and complexity: —2 times
the fitted likelihood + p times the log of n. Here again, BPL demonstrated superior perfor-
mance compared to standard Bayesian linear regression, with lower BIC values indicative
of a better model.

When checking the extent of coefficient shrinkage for strong-signal variables in Figure 2,
we observe that our method allows partial-protection for the protected variables. In other
words, it is not that they are excluded from the regression since they still help inform other
coeflicients in the Gibbs Sampler. Hence, their coefficients are almost always between the
fully protected model and no protected model. More importantly, when there are theoret-
ically driven but small-effect variables, like X9 in our case, they can be easily shrunk to
zero in a regular Bayesian Lasso. Figure 2 shows that protecting this variable saved it from
shrinkage, and it also managed to cover the true value within the associated credible inter-
val. Another issue we want to note is that the BPL does not cause an unnecessary protection,
or save some non-theoretically variables from shrinkage by mistake. This could be seen in
Figure 3, where all variables’ true coefficients are 0. With all models, including the BPL, the
95% credible intervals contain the true coefficient at 0.

Next we reanalyze two different datasets from very recent published work that use a
conventional Lasso, one with an interval measured outcome and the other with a dichoto-
mous outcome. Neither uses very large data (n = 601 training and n = 254 testing in the
first example, and n = 1556 training and n = 667 testing in the second example) where
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Comparison of Model Performance
MSE (Training and Testing) with 95% Cls and BIC
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Figure 1. Prediction error comparison for simulated data.

True coefficients are shown in black

®
X9 ® *—
@
®
X7 @ [
@
3
= ®
3 x5 ° °
C
@
]
>
L 4
X3 L @
@
L 4
X1 L @
@
-10 -5 0 5 10
Coefficients

-®- No Protection -@- Partial Protection -@- Full Protection

Figure 2. Comparison of coefficients for theoretically driven (and strong-signal) variables across models
using simulated data.
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Coefficients for The Non-Protected Variables Across All Three Models
True coefficients are shown in black
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Figure 3. Comparison of coefficients for weak-signal variables across models using simulated data.

the differences in estimation procedure would be pronounced, but there are important
observable differences in the quality of the results. The reanalysis and extensions of existing
models provide considerable insight into the performance and implications of protected
Bayesian regularization.

Revisiting forced migration: A machine learning perspective [19]. This study applies ran-
dom forest and Lasso to analyze the determinants of forced migration in 45 African
countries from 1997 to 2017. The outcome variables under consideration are refugee flows
and asylum applications, derived from the UNHCR Population Statistics online database
and the Eurostat database. The predictors include a wide range of factors such as internal
political conflict (based on ACLED data), real GDP per capita, internet usage, net official
development assistance and aid received, political regime and institutional characteristics,
as well as environmental determinants like natural disasters, precipitation, and temperature
anomalies. In the context of this study, theoretically driven protected variables include key
indicators of political terror and GDP per capita, which are seen as critical driving forces
of forced migration. The mean square error (MSE) values are 7,418,180 for no protec-
tion, 7,467,819 for partial protection, and 7,675,015 for full protection. This demonstrates
that there is a fit penalty for mandating all of the variables. This underscores the poten-
tial trade-off between preserving the significance of theoretically important variables and
maintaining optimal model accuracy, emphasizing the need for a judicious application of
protected Bayesian regularization.

Predicting politicians’ misconduct: Evidence from Colombia [9]. The article applies
machine learning models, including Lasso, to predict mayoral corruption at the
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municipality level in Colombia, using 147 municipality characteristics as predictors. The
outcome variable is mayoral corruption, while predictors span ten dimensions, includ-
ing public sector attributes, human capital, economic activity, and others. Lasso is used
for its regularization properties, which promote model parsimony and reduce overfitting.
The theoretically-driven protected variables are judicial offices in each municipality. As
we believe the number of judiciaries and judiciary offices in each municipality is directly
linked to the corruption levels, we protected those variables from shrinkage in the Partially-
protected models. The area under the curve (AUC) values are 0.716 for no protection, 0.717
for partial protection, and 0.665 for full protection. So in this case partial protection pro-
duced a slightly better overall fit, but this is well-within rounding and Monte Carlo error
differences so they are essentially the same. Recall that an unencumbered regular Lasso
will find the best set of predictions, but it is not guaranteed to fit better by other metrics.
Interestingly here, full protection in this case gives a noticeably worse overall fit showing a
strong protection penalty.

In this study, we introduce the Bayesian Partially-Protected Lasso (BPL), a novel
approach designed to balance the dual imperatives of rigorous statistical analysis and
respect for theoretical constructs. The BPL acknowledges that not all variables warrant
equal treatment in regression models, and therefore, allows researchers to selectively pro-
tect variables grounded in strong theoretical principles. To facilitate its application in
real-world scenarios, we have developed an R package ProtectR. This user-friendly tool
streamlines the implementation process, enabling researchers to integrate the BPL seam-
lessly into their analytical workflow, significantly simplifying what could otherwise be a
complex undertaking.

The potential advantages for empirical social science are manifold. First, the BPL
method provides a means to preserve the integrity of theoretical constructs without
sacrificing the power and adaptability of regression models. By doing so, it bridges
the often-discussed divide between theory-driven and data-driven research, fostering a
more harmonious integration of these two vital pillars of scientific inquiry. The Bayesian
Partially-Protected Lasso (BPL) approach offers a structured method to recognize impor-
tant covariates ex ante, potentially assisting in retaining theoretically informed variables
within the model. Particularly in situations of high multicollinearity, where predictors
might exhibit overlapping influences, conventional methods can sometimes unduly dimin-
ish or overlook certain essential variables. BPL, in its design, seeks to give precedence
to ‘theoretically motivated’ variables, aiming to reduce the risk of arbitrary shrinkage.
Furthermore, the introduction of our R package aids in democratizing this method.
By lowering the technical barriers to entry, even those not deeply entrenched in the
nuances of machine learning tools can harness the power of BPL. This inclusivity
ensures a broader reach and application across subfields, ultimately enriching the aca-
demic discourse and facilitating the generation of more nuanced, theory-aligned model
specifications.

In the ever-evolving landscape of social science, particularly in disciplines like polit-
ical science, there is an increasing trend towards harnessing the capabilities of machine
learning tools primarily for predictive purposes. However, the overarching emphasis on
prediction, often at the expense of robust theoretical foundations, can lead to a narrow
understanding and potentially skewed interpretations of complex socio-political phenom-
ena. The BPL is a new step in the direction of bridging this gap, aiming to integrate theory
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intricately into predictive modeling. The BPL serves as a reminder that theory and predic-
tion are not mutually exclusive but can coexist synergistically. For the future of political
science research, and social sciences more broadly, it is important to have an active pursuit
of strategies that thoughtfully blend machine learning’s predictive prowess with the depth
and richness of theoretical constructs.

3. Bayesian elastic net

We now pivot to an extension of the just described technology. Most literature in the social
sciences includes a collection of explanatory phenomena that need inclusion because the
supporting theories are very strong. Often, the decision involves selecting which measured
version of the phenomenon should serve as a right-hand side variable. Ref. [16] referred
to these as ‘inside the horizon’ variables, emphasizing their established value. In a voting
choice model, these variables include income, partisanship, ideology, sex, race, age, region,
family status, and education. According to Leamer, the challenge lies in specifying an addi-
tional set of ‘over the horizon’ variables that may provide new knowledge. Researchers often
include the first type of variables in the final specification even if they are not found to be
statistically reliable, due to a history of contributing to model specifications in the relevant
literature.

A fundamental conflict exists in modern social science regression modeling (‘regression’
in the broadest sense): all associated fields increasingly generate gigantic datasets, but social
scientists have deeply entrenched and important phenomena that must be used as histori-
cally reliable explainers. The problem of the 20th century was often the lack of explanatory
variables, but now there are actually foo many possible explanatory variables in the ‘data
century’ [10]. Moreover, this disconnect will likely intensify as new datasets from various
sources like IoT, internet traffic, digital video, genomics, and more, enter the analysis realm.
We address this salient challenge: how do you deal with the proliferation of useful but very
large datasets while preserving fealty to a long and rich social science literature?

Addressing this gap, we introduce the Bayesian Protected Elastic Net (BPEN), an
innovative approach that extends the conventional Elastic Net model within a Bayesian
framework to incorporate protections for variables deemed theoretically significant. Our
approach is also an extension of the recently introduced Bayesian Protected Lasso (BPL)
described above. By integrating a mechanism for selective shrinkage, the BPEN allows
researchers to safeguard key variables from penalization, thereby honoring theoreti-
cal commitments while leveraging the benefits of regularization to contend with high-
dimensional data. This methodological advancement represents a synthesis of predictive
efficiency and theoretical conscientiousness, tailored to the nuanced demands of social sci-
ence research. As far as we are aware, no research has been done to study the effect of using
differential penalization, either in a frequentist or Bayesian sense.

We provide the mathematical underpinnings of the BPEN, detailing its formulation
and the statistical principles that facilitate the differential treatment of protected versus
non-protected variables. The introduction of variable-specific priors enables the flexible
calibration of shrinkage, allowing the BPEN to adaptively refine model complexity without
compromising the integrity of theoretically indispensable variables.

To empirically validate the BPEN’s efficacy, we conduct a comprehensive evalua-
tion using a simulated dataset designed to closely mimic the challenges encountered in
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high-dimensional social science research, and a real-world dataset on conflict prediction.
The simulation is meticulously designed to mimic the complexities of real-world social
science data, enabling a rigorous assessment of the BPEN’s performance relative to exist-
ing methods. The empirical applications serve as a critical proving ground, demonstrating
the BPEN’s capability to maintain model accuracy and interpretability while steadfastly
preserving theoretical variables.

This paper has two important and unique methodological contributions that do not
currently exist in the statistical literature or elsewhere. First, it extends a novel method-
ological tool developed for Lasso to the Elastic Net, offering a sophisticated solution to the
problems posed by high-dimensional data that is now prevalent. Second, it balances the
computational strengths of machine learning with the rich theoretical traditions of social
sciences, thus balancing two competing criteria while demonstrating methodological plu-
ralism. Through the Bayesian Protected Elastic Net, we provide a bridge over the divide
between large-scale data-driven discovery and theory-driven inquiry, which is now a very
common problem in many scientific literatures.

4. The standard elastic net

In the context of the standard linear model, consider X as the # x p matrix of stan-
dardized predictors, which includes a leading column of ones for the intercept, y as the
n-dimensional outcome variable vector, B as the p-dimensional vector of regression coef-
ficients, and o2 as the residual variance. To address overfitting and variable selection
in high-dimensional data where the number of predictors may exceed the number of
observations, the Elastic Net combines the penalties of the Lasso and Ridge regression as
follows [31]:

p p
BENzargmﬁin F—XB) (7 —XB) + 21 D _IBl+ 12 D 181 |- (7)

j=1 j=1

where 1 and 1, are penalty terms that control the extent of Lasso and Ridge regularization,
respectively. The Elastic Net is particularly effective in scenarios with highly correlated pre-
dictors, as it allows for the grouping effect where correlated predictors are either included
or excluded from the model together. There are also extensions of the elastic net such
as the restricted bridge estimator (BRIDGE) of [29] where the penalty function is simply

j;l | ﬁjlq, and the special cases of the Lasso, Ridge, and Elastic Net follow.

The determination of the penalization parameters A; and 4, is crucial in moving the
model towards Lasso or Ridge penalization, and can be achieved through expert judgment
or algorithmically via cross-validation. In the standard, non-Bayesian Elastic Net scenario,
if we wanted to protect some variables from shrinkage, we could have assigned an addi-
tional weight w parameter to the penalization terms 4; and 4,. Under such an arrangement,
the model’s objective function would be adjusted to incorporate these weights, effectively
modifying the balance between Lasso and Ridge penalties for each variable based on the
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specified weights:

p p
Binew = afgfr}}n (y—XB) (y —XB) + 21 >_wilBil + A2 D>_wilBl* |. (8

j=1 j=1

The vector w = (w1, wa, . . ., wp) specifies individual weights for each of the p coefficients,
facilitating differential penalization across the model. A higher weight w; implies greater
penalization for the jth coefficient, effectively encouraging more significant shrinkage.
Conversely, a lower w; offers a degree of protection against shrinkage for the associated
coeflicient, allowing it to remain more influential in the model despite the regularization
process.

Despite its advantages, the standard Elastic Net framework as described has limitations.
First, non-Bayesian models generally lack a mechanism for directly incorporating prior
knowledge or theoretical considerations into the modeling, potentially leading to the exclu-
sion of variables critical to the substantive research. Theoretically, one could use the 4 or w
values as a way to incorporate prior information into the model, but shrinkage parameters
have not traditionally been used or tested in this manner. Thus, we do not have a reliable
method of integrating information from previous literature into the model with traditional
regularization methods.

Another fundamental drawback of standard penalization methods, including both the
Lasso and Elastic Net, is their inability to provide reliable standard errors for the coef-
ficients. This shortcoming significantly hampers the inferential statistics necessary for
understanding the precision of parameter estimates. Without reliable standard errors, the
quantification of uncertainty around coeflicient estimates becomes challenging, under-
mining the capacity to make statistically grounded inferences about the importance of
predictors. This limitation is especially severe in social science research, where the interpre-
tation of effect sizes and their confidence intervals are integral to substantiating theoretical
claims.

5. Bayesian partially-protected elastic net

Due to these limitations, penalized regression methods have been effectively extended into
the Bayesian framework through the introduction of specific prior specifications and the
application of modern simulation techniques for estimation. Early pioneers in the develop-
ment of Bayesian penalization techniques demonstrated that these methods could achieve
comparable, if not superior, results in minimizing prediction error [7,13,15,18,24,26].
Beyond the promise of reduced prediction error, Bayesian penalization offers several dis-
tinct advantages: it seamlessly integrates the penalty term into the prior structure, facilitates
the derivation of valid standard errors and parameter estimates from the posterior distri-
butions, and enables the inclusion of additional parameters in prior specification. The ease
of prior specification plays a critical role by enabling the selective protection of certain
variables from shrinkage, particularly when theoretical considerations underscore their
importance. Previous seminal works compellingly advocated the efficacy and advantages
of Bayesian regularization, notably elaborating on the adoption of a double exponential
(Laplace) prior for coefficient shrinkage [15,22].
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Another salient characteristic that sets Bayesian regularization apart from traditional
methods is its flexible approach to coefficient shrinkage. Unlike conventional methods that
might shrink coefficients to exactly zero, Bayesian penalization methods may or may not
exactly shrink coefficients to zero. However, since it provides reliable credible intervals for
the parameter estimates, researchers have developed nuanced strategies to select variables
after shrinkage [21]. Scholars proposed various methods such as the scaled neighborhood
criterion [18], a predetermined threshold value [8], and the credibility interval crite-
rion [26]. Particularly, the credible interval criterion posits that a coefficient is considered
effectively zero if its credible interval encompasses zero. This methodological flexibility is
not viewed as a drawback but rather as a strength of the Bayesian approach. It allows for the
identification of non-reliable coefficients in a regression context with the added advantage
of providing them with a systematically derived standard error, an attribute not available
in traditional non-Bayesian techniques.

Consider X as the matrix of standardized predictors, y as the outcome variable, f as the
vector of regression coefficients, o2 as the residual variance, 4; and A, as the hyperparam-
eters for the penalty terms corresponding to L; and L, regularization, respectively, and 72
representing the precision of coefficients. Let # denote the number of observations, p the
total number of predictors, and ppro the count of protected variables. The Bayesian Elastic
Net model, accommodating protected variables, is conceptualized as follows:

y=a+XB +e,
e,-NN(O,az), i=1,...,n,

J

Laplace(0, A;/0) X exp (—’1—22 ﬁ-z) , for regularized coeflicients,
! N0, 104), for protected coefficients,

)

where the variance parameter in the last normal expression is arbitrary and diffuse but
shows little sensitivity. We chose to use a highly diffuse prior on the protected variables by
specifying a large variance because we wanted to make the data for these variables ‘work
harder’ to produce a posterior distribution with good properties.

The priors in Bayesian Elastic Net are tailored to embody the Elastic Net’s balancing
act between the Lasso’s sparsity-inducing L1 penalty and the Ridge regression’s variance-
controlling L2 penalty. However, rather than employing a singular mixed Gaussian model
for all coefficients, our implementation distinguishes between coefficients based on their
theoretical importance or relevance to the research question at hand. For coefficients iden-
tified for regularization, we apply a Laplace prior—characteristic of the Lasso for its sparsity-
inducing properties—alongside a Gaussian penalty reminiscent of the Ridge, directly within
the model’s likelihood function. This dual approach allows for the nuanced application of
both penalties, where the Laplace prior aggressively pushes coefficients towards zero, and
the Gaussian term smooths the estimates by penalizing their squared values, effectively
achieving the Elastic Net’s characteristic regularization. Formally speaking, for each coef-
ficient targeted for regularization, denoted by freg for predictors where a binary indicator
Ireg[j] = 1, we apply a Laplace prior to impose the Lasso’s L1 penalty and directly integrate
an L2 penalty into the posterior log-likelihood for the Ridge effect. Mathematically, this
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dual penalization is represented as follows:
Preglj] ~ Laplace(0, 1) for Ireg[j] = 1, (10)

indicating the L1 penalty via a Laplace distribution with parameter 4;. Then we incorporate
the L2 penalty by adjusting the model’s target log posterior:

A
Target log posterior adjustment for L2: — ?2 Preg (i1, (11)

where /1, moderates the extent of shrinkage towards zero, embodying the Ridge penalty.
This formulation ensures that coefficients under regularization are influenced by both
sparsity-inducing and shrinkage effects, corresponding to the Elastic Net’s objectives. For
predictors protected from regularization, denoted by Bprot[j] where Ireg[j] = 0, we specify
non-informative priors to avoid influencing their estimates unduly:

Bprot[jl ~ N(0, 104)) (12)

reflecting a broad normal distribution that imposes minimal a priori constraints on Sprot[j]
values.

Given the priors, when calculating the posterior distributions, hence, we differentiate
the coefficients coefficients for protected variables (B,,) and those for non-protected
variables (B .g). The posterior distribution that incorporates this distinction is given by:

p(ﬂreg> ﬂprot’ a, o’ ly, X, A1, 42)
X X P(Y | X, Breg,ﬂpmt,a,az)p(ﬂreg | }'b j'2’ Gz)p(ﬂprot)p(a)p(az)’ (13)

Likelihood Priors

where:

o p(YIX, Bregs Bprov @ o ?) is the likelihood of the observed data given the model param-
eters.

o P(Bregl i1, 42,0 2) denotes the combined prior for the regularized coefficients, incorpo-
rating both L1 (Laplace) and L2 (Gaussian) penalties.

® p(Bproy) signifies the prior for the protected coeflicients, which could be a non-
informative or wide prior, indicating minimal regularization to retain their theoretical
significance.

o p(a) and p(a?) are the priors for the intercept and error variance, respectively.

Then, to identify the optimal L1 (1;) and L2 (4,) penalization terms for our Bayesian
Protected Elastic Net model, we implement a 5-fold cross-validation strategy. This method
involves partitioning the data into five folds, systematically using four folds for training and
one fold for validation, iteratively across a randomly created grid of 4; and 4, values. We
then determine the optimal combination of these penalization terms by finding the pair
that minimizes the Mean Squared Error (MSE) across the validation folds. This approach
ensures that the selection of A; and /1, is both empirically grounded and robust against
overfitting.
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This nuanced implementation not only aligns with the Bayesian Elastic Net’s theoretical
underpinnings but also enhances its practical utility by providing a mechanism to incor-
porate domain-specific knowledge and theoretical considerations into the regularization
process. By doing so, it addresses a critical gap in traditional penalization methods, which,
despite their predictive prowess, often fall short in terms of interpretability and adherence
to substantive theoretical frameworks.

5.1. Empirical evaluations of BPEN

To empirically test our proposed method, we applied BPEN on two datasets: The first is a
simulated dataset, and the second one is a real-world scenario on conflict prediction.

5.1.1. Simulation study

For this simulation we first generated a dataset which comprises # = 100 observations and
p = 20 predictor variables, denoted as x1, x3, . . . , 20, alongside a response variable y. The
relationship between the predictors and the response is modeled linearly, with predictors
divided into two categories based on the strength of their signal:

o Strong Signal Variables: X1, X3, X5, X7, and Xg are generated from a standard normal
distribution A/ (0, 1), indicating their significant influence on the outcome variable y.

o Weak Signal Variables: The remaining 15 predictors are sampled from a normal distri-
bution with a higher variance N/ (0, 10), representing variables with negligible impact
on y due to increased noise.

The true coefficients f; associated with each predictor variable j are determined as
follows:

1 ifj e {X1,X3, X5},
Bi=1-1 ifje {X7,Xo},
0 otherwise.

where coefficients of %1 signify strong signals, influencing y positively or negatively, and a
coeflicient of 0 indicates a lack of direct effect.

The outcome variable y is constructed using the linear model Y = XB + €, where €
represents normally distributed noise A/(0, 20), adding an additional layer of complexity
to the simulated data. This setup allows us to assess the performance of our method in
distinguishing between and appropriately handling variables of differing theoretical and
empirical significance.

Using the simulated dataset, we model the relationship between the predictors and
the outcome variable through the implementation of three distinct models using Stan,
although other estimation approaches are reasonable as well [5,14,20,23,27,28,30]. The first
model is the standard Bayesian Elastic Net, in which we protect no variable, so all vari-
ables are subject to the same regularization. The second model is our proposed Bayesian
Partially Protected Elastic Net (BPEN). Here, we protect some variables; we select these
protected variables based on their established importance in previous literature, particu-
larly those consistently shown to affect the outcome variable. Finally, we apply standard
Bayesian linear regression, where we protect all variables—thus, no variable is subject to
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Posterior Distributions When True Effect = 1

X1
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'
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Figure 4. Prediction error for the simulated data.

any penalization (Full Protection). Importantly, in all models, all variables are included in
the regression model.

To assess the efficacy of the aforementioned models, we used the Mean Squared Error
(MSE) metric on both training and testing datasets as a measure of performance. A lower
MSE value signifies enhanced model accuracy by denoting reduced discrepancies between
predicted and observed outcomes. Our findings for the simulation in Figure 4 reveal that
BPEN, which safeguards variables identified to possess a stronger theoretical signal, out-
performs the fully protected model in terms of MSE. However, it marginally lags behind
the standard Bayesian Elastic Net (no protection). This trade-off underscores the method-
ological cost associated with the intentional preservation of variables deemed significant
from a theoretical perspective. The reason why the training and testing MSEs are close
to each other is the way we train the models: Instead of using the whole training dataset,
we employed 5-fold cross-validation within the training set. Hence, we do not observe a
large difference between training MSE and testing MSE. In reality, for the partial protection
and full protection models, the MSEs for the training set are even larger than their testing
counterparts.

Figure 5 presents the estimated coefficients for the cases where the true f; is 1 in the sim-
ulation. It is evident that the model without any protection-the one applying the Bayesian
Elastic Net uniformly—performs suboptimally in capturing the true effect, with a tendency
to shrink significant variables towards zero even though the real effect is higher than 0.
Although all models technically capture the true effect within their credible intervals, the
models with full and partial protection provide a more accurate estimate of the true effect,
thanks to their less restrictive priors.
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Model Comparison Results
MSE for Simulation and Reanalysis (Liberia Conflict)
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Figure 5. MSE comparison results for simulation and reanalysis.

Posterior Distributions When True Effect = -1
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Figure 6. Posterior distributions when True Effect = —1.

In Figure 6, we turn our attention to instances where the true effect (8;) is —1. All models
successfully identify the true effect for both variables; however, the models with full and
partial protection demonstrate superior performance over the standard Bayesian Elastic
Net.
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Posterior Distributions When True Effect = 0
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Figure 7. Posterior distributions when True Effect = 0.

Finally, the scenario depicted in Figure 7 involves the 15 predictors for which there is
no real impact of (xj) on the outcome variable y. The partially protected model (BPEN)
excels at identifying the absence of an effect, surpassing both the fully protected and non-
protected models in precision. This is particularly noticeable for variables x; and x4, where
the BPEN model yields considerably more concentrated posterior distributions, in stark
contrast to the other models that produce broader distributions despite the true effect being
zero. In other words, our model does not only do a good job when it comes to protecting
theoretically motivated variables and capturing their effects more accurately, it also shrinks
more when the variables are not theoretically motivated.

5.1.2. Political violence in Liberia application

We now turn to real-world data in political science as a means of testing the Bayesian Penal-
ized Elastic Net (BPEN) against a published application of the regular Lasso in the Journal
of Peace Research. This is an important test for our new method since it uses data from a
published application of the obvious alternative. In their study on local violence predic-
tion, Ref. [6] used a Lasso to predict local political violence in Liberia from a dataset with
56 original variables. Their objective was to reduce this dimension space of potential risk
factors to a core set that can be easily interpreted from a policy perspective. Their applica-
tion of the Lasso reduced the number of potential covariates down to only five with strong
predictive power. We also picked this study as a straw-man for comparison because these
authors have already found in [6] that their Lasso approach outperforms other machine
learning alternatives such as random forests, neural networks, and the standard logistic
regression model. This allows us to very compactly compare the BPEN against a wide range
of approaches for this type of data. This re-analysis of the political violence data also shows



18 (&) Y.ATALANETAL.

that regularization tools are able to isolate key predictors of political violence in this dataset,
such as ethnic heterogeneity and polarization, while disregarding less pertinent variables.

The re-analysis here specifies three distinct regularization algorithms applied to the
political violence data using a Bayesian linear model: (1) a ‘No Protection’ Elastic Net,
(2) our ‘Partially Protected’ version of the Elastic Net developed in this work, and (3) a
‘Full Protection’ specification with no regularization at all using the variables that Ref. [6]
identified with their original standard Lasso: Exposure to War Violence, Frequency of
Police/NGO Visits, Percentage of Contribution to Public Facilities, Perception of Vio-
lence by Other Tribes, Minority Tribe Presence in Town Leadership, and the Commodity
Price Index. The comparative question is which of these approaches is more accurate
in predicting violent occurrences in 2012 by incorporating these theoretically informed
predictors.

All three regularization approaches are implemented in R for these data and the resulting
highest posterior density intervals are shown in Figure 8. It is clear that the BPEN mod-
erates the shrinkage of most variables, particularly for the initially protected set. However,
the ‘No Protection’ Elastic Net, which indiscriminately targets variables even if theoretically
important, shrinks the partially protected set from the BPEN more towards zero. This is
exactly as predicted by our theoretical discussion and the discussion of how the Markov
chain Monte Carlo process works. Notably, variable V30 has an estimator in Figure 8 that
exemplifies the efficacy of our approach. The BPEN effectively preserves this predictor’s
coefficient from shrinkage, acknowledging its theoretical relevance, while the indiscrim-
inate shrinkage of the non-protected Elastic Net shrinks it sufficiently that the highest
posterior density interval now covers zero.

Now consider the necessary trade-off in model performance for these three regular-
ization approaches. Meaning, what is the price that has to be paid to protect a set of
theoretically important variables in the investigation of political violence in Liberia? In
the second half of Figure 4 we provide the mean square error (MSE) in training and test-
ing scenarios for the three alternatives since this the appropriate accuracy measure because
we are specifying linear models (as opposed to posterior predictions, which would require
setting an arbitrary interval on the real line like > 0, etc). As anticipated by the theoretical
discussion, the ‘No Protection’ approach gives the lowest MSE value at 1.115, but of course,
it does not protect any theoretically important variables that a political researcher might
find necessary. The cost of partial protection modest in MSE terms: 1.121—1.115 = 0.006.
However, it is up to the individual researcher to decide whether this is an acceptable level.
Finally, note that the ‘Full Protection’ approach with no allowed shrinkage gives a higher
MSE cost over the BPEN, 1.227—1.121 = 0.106, than we paid for using the BPEN over
the unprotected Elastic Net. These findings demonstrate the efficacy of BPEN in integrat-
ing theoretically informed predictors from extant literature with minimal compromise on
model accuracy.

5.1.3. High dimensional data: ANES

Finally, to evaluate our model, we applied it to the 2020 American National Election Survey
(ANES) dataset-a high-dimensional data source that is ideal for illustrating the strengths
of Elastic Net Regularization. In doing so, we mirrored the methodology of [30], who
employed a protected Bayesian Lasso on the ANES data by safeguarding a set of theo-
retically important variables. Specifically, we adopted the same protection strategy for key
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Figure 8. Coefficient comparison for various models when predicting local conflict in Liberia. The first 6
variables on the y axis is the ones we protected in partially protected Elastic Net model. The second set
of predictors on the y axis are the ones that we allowed BPEN to shrink. The plotted points represent the
posterior median values, and the error bars correspond to their 95 percent credible intervals.

predictors (such as age, education, church attendance, race, gender, income, ideology, and
evangelical status) during the regularization process.

The goal of [30] was to predict feeling thermometer ratings for presidential candidates
while preventing theoretically critical variables from being shrunk to zero. Their approach
was designed to reconcile traditional research-which emphasizes the inclusion of concep-
tually important predictors-with modern, prediction-focused methods that often overlook
the theoretical importance of individual variables.

For our analysis, we closely followed their data preparation steps. We retained only
pre-election variables, addressed missing data using multiple imputation via the MICE
package in R, and removed variables with excessive missing values or near-zero variance.
The resulting dataset consisted of 385 variables across 6843 observations. In line with [30],
we divided the dataset into training (70%) and testing (30%) subsets, with Joe Biden’s
feeling thermometer scores serving as the outcome variable.

Using this framework, [30] demonstrated the advantages of protecting theoretically
important variables, showing that their method either preserved or improved model per-
formance compared to unprotected approaches. By replicating their variable selection
process and analytical steps, we aim to highlight the comparative properties of the Elastic
Net model in high-dimensional settings.

Figure 9 compares the performance of different protection strategies within the Bayesian
Elastic Net framework, building on the insights of [30]. The figure illustrates how model
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Comparison of MSEs Across Models and Regression Methods
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Figure 9. Comparison of MSE scores for BPL [30] and BPEN.

protection choices affect mean squared error (MSE) and highlights the cost of partial
protection in the Bayesian Partially-Protected Elastic Net (BPEN).

For the Elastic Net model, the No Protection strategy achieved the lowest MSEs on both
the training (510.75) and testing (520.55) sets, as allowing unrestricted shrinkage enables
the model to fine-tune coeflicients aggressively for error reduction. In the Partial Protection
setting-where certain theoretically important variables are shielded from shrinkage-the
MSEs were slightly higher (539.58 for training and 549.39 for testing), reflecting a modest
increase in error in exchange for preserving key predictors. In contrast, the Full Protection
strategy, which prevents any shrinkage across all variables, resulted in the highest MSEs
(922.42 for training and 929.74 for testing), indicating that overly restricting the model
significantly degrades predictive performance.

A similar trend was observed in the results reported by [30] under the Lasso framework.
There, the No Protection model produced the lowest MSEs (906.34 for training and 915.31
for testing), followed by the Partial Protection model (910.07 for training and 918.98 for
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testing), and finally the Full Protection model with the highest errors (922.42 for training
and 929.74 for testing).

These findings demonstrate that while No Protection maximizes predictive accuracy,
it overlooks the theoretical significance of certain predictors. Conversely, Full Protection
prioritizes theory at the cost of substantial predictive performance loss. Partial Protec-
tion offers a balanced compromise-only a moderate increase in MSE relative to the
unrestricted model, while still safeguarding key variables—making it a practical choice in
high-dimensional settings where both prediction and interpretability are valued.

6. Conclusion

This study has put forth the Bayesian Partially Protected Elastic Net (BPEN) as a
methodological innovation that adeptly negotiates the delicate balance between theoretical
prudence and predictive precision. Through rigorous simulations, we have demonstrated
that the BPEN not only preserves the theoretical underpinnings of key variables but
also either protects or enhances the model’s predictive fidelity. Our approach, there-
fore, does not simply cater to the dichotomy of predictive versus explanatory mod-
eling but instead offers a harmonious blend of both paradigms within the Bayesian
framework.

In social sciences, where empirical analysis is often intertwined with complex theoret-
ical constructs, the BPEN offers a robust alternative to traditional modeling techniques.
It allows for the empirical validation of theoretical claims without succumbing to the
perils of overfitting or underestimating the importance of theoretically significant pre-
dictors. As such, this approach aligns with the growing advocacy for methodological
pluralism in the discipline, championing a modeling strategy that is both data-informed
and theory-conscious.

While the Bayesian Partially-Protected Lasso (BPL) represents a significant method-
ological advancement, it is not without limitations. First, a key feature of the BPL is its
reliance on theoretical guidance for selecting variables to protect, which ensures that the
method aligns with substantive research objectives and preserves theoretically significant
variables. However, this strength also introduces a potential challenge: if the protected
variables are chosen based on poor theoretical justification or inconsistent criteria, the
method’s effectiveness may be compromised and may lead to suboptimal model perfor-
mance. Second,the BPEN adds complexity to the modeling process-requiring custom prior
specifications, tuning of multiple hyperparameters, and more computationally intensive
sampling procedures, which may limit accessibility for practitioners unfamiliar with such
techniques. Third, while the model offers credible intervals and posterior distributions,
the partial protection mechanism introduces asymmetries in penalization that can com-
plicate inference, especially when comparing protected and unprotected variables. Fourth,
the trade-off between flexibility and model interpretability can present challenges, partic-
ularly in applications where the balance between empirical fit and theoretical adherence is
difficult to maintain. For example, protecting variables might result in retaining predictors
with weak explanatory power and might potentially complicate the narrative derived from
the model. These considerations highlight the importance of careful theoretical reasoning
to ensure the effective application of the BPL framework.Finally, in cases where theoreti-
cal guidance is absent or ambiguous, the distinction between protected and unprotected
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variables becomes less justifiable, potentially undermining the objectivity of the modeling
process.

In the broader context of data-driven research, the BPEN represents a methodological
innovation that does not merely refine the tools of analysis but embodies a commit-
ment to integrating empirical rigor with theoretical depth. It challenges the conventional
dichotomy between predictive and explanatory modeling, advocating for a synthesis that
enhances both the accuracy of predictions and the relevance of explanations in social
science research.
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Appendices

Appendix 1. Lasso Gibbs sampling steps

This appendix provides the specific MCMC steps required to estimate the Bayesian partially-
protected Lasso as described in this research letter. Performing these steps iteratively many times
produces empirical marginal posterior draws after convergence of the Markov chain can be asserted.
All code is written in R and standard diagnostics, both graphical and formal, are used to assess the
state of the chain with regard to its stationary distribution.

The Bayesian Lasso for interval measured outcomes with partially protected variables uses the

standard semi-conjugate specification, and is estimated by the following sampling scheme:
Update B: B | 72,62, Y ~ N (5 XY + diag(£)) 7' XTY, 02 (5 XTX + diag(5) ™)
Update 72 For non-protected variables: Tﬁon-protected | B,o2, 2% ~ IG( /ﬁ, %)

2
B protected )

For protected variables: szrotecre d| B ~T(a+ 5.8+

202
Update o202 | B,7%,Y ~ IG("2, 1 (Y = XB)T(Y — XB) + 1 8" diag(5)B)
Update 22 | Tion—protected ~ r((p - ant) +a, % Znon—protected sz + b)
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The Bayesian Lasso for dichotomous outcomes with partially protected variables uses the
following Gibbs sampling sub-steps:

Update ?: o ~ p(w | 4D, 0,v)

Update 1: 10 ~ p(1| X, p4=D, k)

Update z: 2 ~ p(z| X, =1, 10, k)

Update B: O ~ p(81X,29,29,0,v,0,x)

Update v: v® ~ p(v | B9, 5,x)

Calculate the log posterior probability: Ipost® = logp(v, X, O, v,%,0)

Then after the last step the parameter values above at the iteration with the highest posterior
probability are returned to complete a single iteration of the Gibbs sampling process. For an inter-
esting and important comparison of Gibbs sampling strategies in this context see [3]. This work also
demonstrates the importance of Lasso estimation from a Bayesian approach.

Appendix 2. Elastic net MCMC procedure

We employed a Markov chain Monte Carlo (MCMC) procedure to estimate three Bayesian linear
regression models in simulated dataset: (1) a fully protected model, which applies no regularization to
any predictor; (2) a partially protected model, which shrinks all but a predefined subset of predictors;
and (3) an unprotected model, in which all predictors are regularized. To select the optimal strength
of the elastic net penalty, we performed k-fold cross-validation (CV) with k = 5 over a grid of 4,
(L1) and A, (L2) values, recording the mean squared error (MSE) of predictions on the held-out
folds. We then refit each model on the entire sample using the best (11, 1;) pair identified by CV.
The pairs identified during the CV can be found in the Appendix Section 3.
Formally, the observations satisfy

K
Yi=a+ Y fXat+en &~ N0,
k=1

fori=1,..., N, where Xj denotes the value of the kth predictor for the ith observation, and a, S, o
are unknown parameters. To encourage sparsity in coeflicients for which shrink[k] = 1, we place a
Laplace (double-exponential) prior on fi with scale parameter 41, along with a Gaussian penalty that
contributes a term —% 2 B} to the log-posterior. If shrink[k] = 0 (i.e. the predictor is ‘protected’),
we instead assign a weakly informative prior S ~ A (0, 10,000). Summarizing these choices, the
negative log-posterior contribution for each S subject to shrinkage takes the form

1Bl
A
while unshrunk coefficients only incur the weakly informative Gaussian prior term.

We used the No-U-Turn Sampler (NUTS) implemented in St an to draw posterior samples, rely-
ing on 4 chains of 500 total iterations each (half of which serve as warm-up). We set seed = 123
for reproducibility. At each iteration (and in each fold of the cross-validation), the sampler updates
(o, p15 . . ., Px> 0) according to the joint posterior,

A
~logp(f) = == + T >

N
p@ oo | V) < [JN(Yil o+ 8, 0?)
i=1
X H [Laplace(0, 11) x Gauss (0,45 ")] x H Gauss (0, 10,000) .
k: shrink[k]=1 k: shrink[k]=0
where x; denotes the row of predictors for observation i. We then use the posterior means or medians

of B and a from each fold to predict the held-out data and compute an MSE. After identifying the
(41, 42) combination that minimizes out-of-sample MSE, we refit the model on the full data set to



JOURNAL OF APPLIED STATISTICS ‘ 25

Table A1. Best combination of L1 (11) and L2 (4,) for each model and dataset.

Model Dataset A1 (L1 - Lasso) A2 (L2 - Ridge)
Fully Protected Simulation 1.05 2.000
Partially Protected Simulation 0.10 0.575
No Protection Simulation 0.10 0.575
Fully Protected Liberia Reanalysis 2.00 0.575
Partially Protected Liberia Reanalysis 0.10 0.575
No Protection Liberia Reanalysis 0.10 0.575

obtain final posterior draws. We repeat this process for the fully protected, partially protected, and
unprotected models, thereby yielding three distinct sets of posterior estimates for comparison .

Appendix 3. Posterior prediction

We evaluate the performance of our Bayesian Partially Protected Lasso models in the simulation
using posterior predictive checks, in addition to comparing the models in Table Al based on the
posterior estimations’ error rates. This evaluation is crucial for assessing the models’ accuracy in
reproducing observed data characteristics within new datasets. By extracting posterior samples and
simulating outcomes based on these distributions, we generate robust predictive data points for each
model variant-Full Protection, Partial Protection, and No Protection. We replicate the outcome pre-
dictions 1000 times, using the posterior mean of the model coefficients and incorporating normally
distributed noise that reflects the estimated residual variance.

To assess the model fit and predictive accuracy visually, we create kernel density plots in
Figure Al, comparing the predicted outcomes to the actual observed outcomes from the test set.
It is evident that all three models generate similar values for the unseen dataset, although the No
Protection model performs slightly worse compared to the Partially Protected and Fully Protected
models.

Appendix 4. Regularization parameters

Here we summarize the final penalty hyperparameters (4; and 1,) chosen for each model across
both the simulation dataset and the Liberia reanalysis. These values were determined via k-fold
cross-validation, searching over a grid of candidate A; and 1, combinations, then selecting the pair
that yielded the lowest mean squared error (MSE).

Parameter Selection Procedure. We conducted a grid search over candidate values of 1 and 1, to
minimize the mean squared error (MSE) via k-fold cross-validation (k = 5). Specifically, 4; corre-
sponds to the L1 (lasso) regularization penalty, and 4, corresponds to the L2 (ridge) penalty. Both
parameters were searched over the following grid:

A1, 42 € {0.1,0.575,1.05, 1.525, 2.0}.

The best combination for each model (fully protected, partially protected, and no protection) was
identified based on the lowest cross-validated MSE. These values are summarized in Table Al.
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Density Plot of Observed vs Predicted Y by Model
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Figure A1. Posterior predictive checks: density plots of predicted versus actual outcomes for three
variants of the Bayesian Lasso models.
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