Understanding Business Process Dynamics
through System-Level Process Mining

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universitat Mannheim

vorgelegt von

Alexander Kraus

Mannheim, 2026

Dekan: Prof. Dr. Claus Hertling, Universitit Mannheim
Referent: Prof. Dr. Han van der Aa, Universitit Wien
Koreferent: Prof. Dr. Jan Mendling, Humboldt-Universitit zu Berlin

Tag der miindlichen Priifung: 20. November 2025

Abstract

Process mining is a discipline that studies how organizational processes are carried
out. By analyzing process instances in event logs recorded by information systems
during process execution, process mining techniques allow organizations to under-
stand how processes are actually performed, identify inefficiencies, and improve
performance. Most existing techniques analyze process instances and their events
in isolation, treating the process as static and unchanging over time. However, busi-
ness processes are dynamic systems whose high-level behavior evolves in response
to changing operational environments. This high-level process dynamics is often
ignored. As a result, many process mining problems cannot be properly addressed
without considering it, while others can benefit greatly from its inclusion.

The goal of this thesis is therefore to demonstrate how business process dy-
namics can advance process mining through system-level process mining. By
focusing on high-level process characteristics that emerge from the execution of
many concurrent instances, the thesis makes four contributions: (1) a taxonomy
and framework for comprehensive concept drift characterization, (2) a computer
vision approach for concept drift detection, (3) a framework for steady-state de-
tection in business processes, and (4) a data-driven approach for process resilience
assessment. We demonstrate the effectiveness of the proposed solutions through
quantitative evaluations on synthetic data and highlight the practical value of our
solutions using real-world data. All approaches were developed and evaluated
following established practices in algorithm-engineering research, ensuring sound
contributions that advance the body of knowledge in the field of process mining.

ii

Zusammenfassung

Process Mining ist eine Disziplin, die untersucht, wie organisatorische Prozesse
tatsidchlich ausgefithrt werden. Durch die Analyse von Prozessinstanzen, die
wihrend der Nutzung von Informationssystemen aufgezeichnet in Ereignisdaten
werden, ermoglichen Process-Mining-Techniken Organisationen ein besseres Ver-
stidndnis ihrer Ablédufe, die Identifikation von Ineffizienzen sowie die Verbesserung
der Leistungsfahigkeit. Die meisten bestehenden Techniken betrachten Prozessin-
stanzen und deren Ereignisse isoliert und gehen dabei implizit von einem statis-
chen, unveridnderten Prozess iiber die Zeit aus. Geschéftsprozesse sind jedoch
dynamische Systeme, deren Verhalten sich auf Systemebene in Reaktion auf
verdanderte operative Umgebungen weiterentwickelt. Diese Prozessdynamik wird
im Bereich des Process Mining hiufig vernachléssigt. Folglich kénnen viele
Fragestellungen ohne ihre Beriicksichtigung nicht zufriedenstellend gelost werden,
wihrend andere erheblich von ihrer Einbeziehung profitieren.

Das Ziel dieser Dissertation ist es daher aufzuzeigen, wie die Dynamik von
Geschiftsprozessen durch systemorientiertes Process Mining die Analyse von
Prozessen erweitern und vertiefen kann. Mit Fokus auf Systemeigenschaften von
Prozessen, die aus der Analyse vieler gleichzeitiger Prozessinstanzen entstehen,
leistet die Arbeit vier zentrale Beitrdge: (1) eine Taxonomie und ein Rahmen-
werk zur umfassenden Charakterisierung von Concept Drifts, (2) einen Computer-
Vision-Ansatz zur Erkennung von Concept Drifts, (3) ein Rahmenwerk zur Iden-
tifikation von stationidren Zustidnden in Geschiftsprozessen sowie (4) einen Ansatz
zur Bewertung der Resilienz von Geschiftsprozessen. Wir zeigen die Wirksamkeit
der vorgeschlagenen Losungen anhand quantitativer Auswertungen mit synthetis-
chen Daten und verdeutlichen ihren praktischen Nutzen anhand von Realweltdaten.
Alle Ansitze wurden unter Anwendung etablierter Praktiken des Algorithm Engi-
neering entwickelt und evaluiert, wodurch fundierte Beitrége entstehen, die den
Wissensstand im Bereich des Process Mining erweitern.

ii

Acknowledgements

Every achievement is made possible through the encouragement and support of
many people, without whom it could not be realized. I therefore extend my sincere
gratitude to all who contributed to the success of my doctoral journey.

First and foremost, I would like to express my deepest gratitude to my supervi-
sor, Han van der Aa. Dear Han, I am grateful for your constant guidance throughout
my doctoral journey and for the time you invested in my development. I have gone
through the academic lows and highs of the doctoral journey to an extent I could
not have imagined. However, under your guidance, I was able to endure, to grow,
and to develop qualities that will continue to guide me successfully through life.
And let us be honest, I am now a strong man with a strong CV ;).

I would like to express my sincere gratitude to Jana Rehse. Dear Jana, your
valuable support and outstanding mentoring, especially in the moments when it
mattered most, were crucial to the success of my PhD journey.

Throughout my doctoral journey, I had the privilege of meeting, collaborating,
working, and exchanging ideas with many inspiring individuals. I would like to
thank Adrian Rebmann for being an outstanding colleague and a true role model,
whose achievements have continuously inspired and motivated me to grow. I am
also grateful to Keyvan Amiri Elyasi for our productive collaboration. My sincere
thanks go to my incredible colleagues: Robert Bliimel, Michael Grohs, Marie-
Christin Héage, Lukas Kirchdorfer, and Luka Abb for the valuable discussions and
the many enjoyable moments we shared. I am also thankful to my colleagues from
the DWS group and to my peers from other universities, with whom I had the
opportunity to exchange ideas and build networks during conferences.

I would like to thank two outstanding friends who made my PhD journey truly
special through meaningful conversations and many moments of joy: Christopher
Dorr, with whom I spent a lot of time in discussions about our academic adventures,
and Patrick Szymaniec, with whom I enjoyed valuable time outside academia, es-
pecially in sports and leisure activities.

Last, but most importantly, I wish to express my deepest gratitude to Alina for
being the most magical person in my life.

iii

Contents

1 Introduction

1.1 Motivation e
1.2 Contributions
1.3 Research Methodology
1.4 ThesisOutline

2 Background
2.1 ProcessMining
2.2 System-Level Process Mining

3 Comprehensive Concept Drift Characterization

3.1 Introduction
3.2 Problem Illustration
33 Framework
34 Evaluation e
35 RelatedWork
3.6 Conclusion e

4 Concept Drift Detection Using Computer Vision

4.1 Introduction
42 ProblemScope
43 Approach
44 Evaluation e
45 RelatedWork
46 Conclusion e

5 Business Process Steady-State Detection

5.1 Introduction
5.2 Background and Problem Illustration
53 Approach

v

CO OO0 W = |

19
31

41
41
43
50
61
81
84

Contents

54 Evaluation
55 RelatedWork
56 Conclusion e

6 Business Process Resilience Assessment

6.1 Introduction
6.2 Background
6.3 Problem Illustration
6.4 Approach
6.5 Evaluation
6.6 Discussion.
6.7 RelatedWork
6.8 Conclusion e

7 Conclusion

7.1 SummaryoftheResults.
7.2 Implications Lo
7.3 FutureResearch

Bibliography

118
124
125

127
127
129
133
135
147
156
158
161

163
163
165
167

169

Acronyms

BPM Business Process Management.
BPMN Business Process Model and Notation.

BPS Business Process Simulation.

CDC Concept Drift Characterization.

CV4CDD Computer Vision for Concept Drift Detection.

DES Discrete Event Simulation.

DFG Directly-Follows Graph.
ML Machine Learning.

PPI Process Performance Indicator.

PRA Process Resilience Assessment.
SSD Steady-State Detection.
VAR Vector Autoregression.

XES eXtensible Event Stream.

vi

List of Algorithms

1 Change Type Classification
2 Change Interrelation Detection

vii

List of Figures

1.1
1.2
1.3

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10

3.1
32
33
34
35
3.6

3.7
3.8

39

The idea of system-level process mining.
Overview of research topics, projects, and key contributions. . . .
Methodology of algorithm engineering (adopted from [13]).

Process mining as a discipline (adapted from [22]).
Elements of a business process (adapted from [1]).
Example of a business processmodel.
Example of a business process model version.
Meta model of XES format for event logs [32].
An example of an ordered collection of traces in an event log. . . .
Business processasasystem.
Derivation of system-level process characteristics.
Examples of system-level process characteristics.
Process mining tasks and the level of research potential.

Example of a conceptdrift.o
Concept drift types (adapted from [31]).
Incremental and recurring drifts can consist of sudden and gradual
drifts, leading to non-exclusive classification (L1).
Minor changes can form an incremental drift, but also a sequence
of independent sudden and gradual drifts (L2).
Instances of recurring drifts that align with the current definition
(a,b)ordonotalign(c,d)(L3).
Our taxonomy for concept drift characterization.
Overview of the main steps of our framework.
Outcome of the first framework step: change points are detected
using an existing change point detection technique, splitting the
time frame of an event log into time windows.
The main idea of the change type classification step.

viii

List of Figures ix

3.10

3.11
3.12

3.13

3.14
3.15
3.16
3.17

4.1

4.2

4.3
44
4.5
4.6
4.7
4.8
4.9
4.10

5.1
52
53
54
5.5
5.6

6.1
6.2
6.3
6.4
6.5

Outcome of the second framework step: each change point p; is

associated with a processchange. 52
Example of a behavioral matrix obtained from an eventlog. 54
Example of change point-level classification based on the behavior

MATIX. « . o v v v e e e e e e e e e e e e 56

Outcome of the final framework step: every process change is ei-
ther linked with other changes, creating a complex drift, or exists

independently as a simple drift. 57
Example of change interrelation detection using a behavioral matrix. 60
Examples of initial process trees of different complexity levels. . . 63
The output of the VDD technique. 80

The outcome of the state-of-the-art concept drift detection tech-
niques cannot comprehensively characterize a complex concept drift. 83

Problem scope: detection of sudden, gradual, incremental, and re-

curring drifts. 87
Our Computer Vision for Concept Drift Detection (CV4CDD) ap-

proach: overview of the mainsteps. 89
First approach step: transforming an event log into an image. . . . 89
Ilustration of the similarity calculation between two windows. . . 90
Output of the first approach step (incl. annotations). 91
Sensitivity analysis (CDLG testset). 100
Sensitivity analysis (CDRIFT dataset). 100
Drift detection results for the selected log. 104
Sensitivity analysis (CDLG testset). 105
Detected drifts by our CV4CDD approach. 107
Two key properties of a steady state. 113
Comparison of process performance between different periods. . . 114
Overview of the main steps of our framework. 115
Outcome of the first framework step. 115
SSD using the probability curve and consensus threshold. 117
Simulated number of arrived cases for each scenario. 119
The impact of a disruption on process performance. 128
Resilience assessment approaches (adapted from [118]). 129
Four measures of process resilience. 134

Overview of the main steps of our resilience assessment approach. 136
Process features derived for the running example with indicated
warm-up and cool-down phases. 138

List of Figures

6.6

6.7

6.8

Two examples of impulse-response functions (incl. 95% confi-
dence interval), showing the expected response in the average lead
time (in weeks) to a one-unit increase in the impulse.
Process resilience in terms of the average lead time in response to
a disruption in the number of active cases for the running example.
Simulated order-to-cash process (adapted from [116]).

List of Tables

1.1
1.2
1.3

2.1
2.2
23

3.1

3.2

33

34

35

3.6

3.7

3.8

39

3.10

Ontological clarity in the conducted research projects.
Epistemological precision in the conducted research projects. . . .
Methodological validity in the conducted research projects.

Example of aneventlog.
Classification of system-level process characteristics.
Process characteristics and affected process perspective.

Key settings in PTandLogGenerator [70] used to produce process
trees of various complexity levels.
Characteristics of the drifts in our base dataset consisting of 100
eventlogs. L.
Optimal parameter configurations for each change point detection
technique.
Performance of the change point detection techniques across logs
with different noise levels. Bold numbers indicate the best score
for the particular column.
Performance of the change point detection techniques across dif-
ferent change patterns. L. L.
Performance of the change point detection techniques across dif-
ferent change severity levels.
Results of Experiment 2.1: Change type classification using gold-
standard change points asinput. L.
Results of Experiment 2.2: Change type classification using
change points from Step 1 asinput.
Results of Experiment 3.1: Drift type detection accuracy using
gold-standard change points and types (Steps 1-2).
Results of Experiment 3.2: Drift type detection accuracy using
gold-standard change points (Step 1) asinput.

X1

27
34
35

70

77

List of Tables xii

3.11 Actual concept drift information for the event log 90 with 20%

noise vs. detected drift information using our framework. 79
3.12 Classification of different concept drift detection and characteriza-

tion techniques according to our taxonomy. 81
4.1 Characteristics of the two synthetic datasets. 95
4.2 Overall results for detecting change points. 98
4.3 Noise impact on detecting change points. 99
4.4 Concept drift detection results by latency levels. 102
4.5 Concept drift detection results by noise levels. 103
4.6 Actual drifts vs. detected drifts using our approach. 104
4.7 Characteristics of the real-life eventlogs. 106
4.8 Classification of different concept drift detection techniques. . . . 108

5.1 Results of Experiment 1: The average ¢ coefficient along with its

standard deviation.o 120
5.2 Characteristics of the employed eventlogs. 121
5.3 Mean Absolute Error for remaining time prediction. 123
6.1 Definitions of resilience in different disciplines. 130
6.2 Definitions of organizational resilience. 131
6.3 Definitions of process characteristics. 132

6.4 Overview of existing research on resilience assessment, highlight-
ing the gap in quantitative approaches (general measures) for pro-

cess resilience assessment. L. 133
6.5 Simulation setup for the process depicted in Figure 6.8. 149
6.6 Results of Experiment 1: accuracy for different disruption sizes. . 151
6.7 Properties of the considered real-life eventlogs. 152
6.8 Statistics of the time series per each process feature from the de-

fault resilience scenario on a semi-monthly windowing. 154
6.9 Results of Experiment 2.1, showing the resilience for the three dis-

ruption types (semi-monthly windows). 154

6.10 Results of Experiment 2.2, showing process resilience (semi-
monthly windows) per municipality to disruptions in the three most
common application types and the corresponding statistics, ob-
tained based on the initial eventlogs. 156

Chapter 1

Introduction

In this thesis, we study business process dynamics through system-level process
mining and demonstrate its usefulness for a variety of process mining tasks. Busi-
ness process dynamics refers to the evolution of high-level process behavior over
time. Instead of viewing a process as a static sequence of activities, process dy-
namics considers the evolution of the entire process as a system. This perspective
helps to reveal and better understand many phenomena, such as dynamic bottle-
necks, performance fluctuations, and process resilience. System-level process min-
ing offers a way to study business process dynamics by analyzing the process as
a whole system rather than focusing only on individual cases and their attributes.
It captures high-level process characteristics that emerge from the interaction of
many concurrent instances and evolve over time. By focusing on these characteris-
tics, system-level process mining provides deeper insights into process dynamics,
which can improve the accuracy of existing solutions and enable the handling of
tasks that would otherwise remain unaddressed.

In this chapter, we provide an introduction to this doctoral thesis. Section 1.1
presents the motivation for studying system-level process mining. Section 1.2 gives
an overview of the contributions of this thesis and the corresponding publications.
Section 1.3 describes the research foundations of the conducted projects. Finally,
Section 1.4 outlines the remaining chapters of this thesis.

1.1 Motivation

Business Process Management (BPM) is the art and science of overseeing how
work is performed in an organization to ensure consistent outcomes and to take ad-
vantage of improvement opportunities [1]. The work performed in this context is
typically represented by business processes, which refer to the core sets of activi-

Chapter 1. Introduction 2

ties that organizations execute to deliver products or services to their customers [1].
Business processes are widely supported by information systems, which record
data generated during process execution. Such data, captured in the form of event
logs, forms the basis for process mining, a family of techniques that analyze how
business processes are truly executed [2]. Using event logs, process mining tech-
niques equip organizations with the ability to gain a data-driven understanding of
their operations, identify inefficiencies, and implement improvements.

Since the establishment of process mining as a discipline in the early 2000s,
various techniques have been proposed to address different process mining tasks.
Most of these techniques are based on instance-level process mining, which exam-
ines individual process instances and their case and event attributes, before aggre-
gating insights from these instances into a process-level view. This approach has
been useful for many well-established process mining tasks, such as process dis-
covery and conformance checking. However, its main limitation is that process in-
stances are analyzed in isolation, assuming that the underlying business process is
static and unchanging over time. In reality, business processes are dynamic systems
that evolve in response to changing operational environments. For various aspects
of process analysis, particularly for tasks that consider the evolution of high-level
process behavior over time (i.e., process dynamics), such a case-by-case approach
to process mining does not suffice. As a result, many process mining problems,
such as dynamic bottleneck detection [3] and high-level event mining [4], can-
not be properly addressed without considering process dynamics, while others can
benefit significantly from it.

Process dynamics

System-level .
y o Derives
process mining

Extends / Improves

Event log =3 s e
- L———3 I process mining LG LTS
— R v 30 N Y
— S : -()-

Stores Instance-level Derives O
U information N/

Figure 1.1: The idea of system-level process mining.

To address the limitations of instance-level process mining and to uncover the
underlying process dynamics captured in event logs, this thesis considers system-
level process mining. System-level process mining refers to the analysis that en-
ables the study of process dynamics by capturing the evolution of high-level pro-

Chapter 1. Introduction 3

cess behavior and its characteristics that emerge from aggregated data across mul-
tiple cases over time. As illustrated in Figure 1.1, this approach shifts the per-
spective from isolated process instances to the behavior of the business process
as a whole system that evolves over time. Rather than assuming a static pro-
cess, it captures high-level process characteristics that emerge from the interactions
among process elements and reflect its dynamic behavior over time. By incor-
porating time-dependent system-level process characteristics such as the number
of active process instances or the rate at which new cases arrive during a given
period, system-level process mining has already shown clear benefits in process
mining. For instance, it increases the accuracy of remaining time predictions for
ongoing process instances [5], supports the automated development of more pre-
cise simulation models [6], and is essential for tasks such as detecting dynamic
bottlenecks [3] or identifying high-level events [4]. However, significant research
potential remains untapped.

The objective of this thesis is to advance the field of process mining by show-
ing how different forms of system-level process mining can be applied to study
business process dynamics from multiple perspectives that help to address spe-
cific process mining tasks. Specifically, we show how system-level process mining
improves the accuracy of concept drift detection, a well-established problem tradi-
tionally addressed using instance-level process mining. By examining the process
as a whole over time, we enable the detection of subtle behavioral changes in pro-
cess dynamics that can be used to detect drift patterns that instance-level methods
cannot capture. We further illustrate how system-level process mining opens up
previously unexplored tasks that require a system-level perspective. In particular,
we focus on the detection of steady states, which identifies periods of overall stabil-
ity in a process through the analysis of short- and long-term dynamics, and on the
assessment of business process resilience, which examines how long-term process
dynamics respond to temporary disruptions.

1.2 Contributions

This section presents the main contributions of the thesis. It outlines the addressed
process mining topics and the related research projects with their key contributions.
It concludes with a list of publications that form the foundation of this work.

1.2.1 Overview

As shown in Figure 1.2, the contributions of this thesis span three research direc-
tions in process mining and are realized through four projects. The first research

Chapter 1. Introduction 4

direction focuses on the well-established task of detecting concept drifts in event
logs. We study it in two projects: concept drift characterization and concept drift
detection using computer vision. The other two directions focus on novel topics
that are examined in separate projects: steady-state detection of a business process
and business process resilience assessment. Notably, two of our projects received
the Best Student Research Paper Award at the International Conference on Busi-
ness Process Management (BPM 2024) and the Runner-up Best Research Paper
Award at the International Conference on Advanced Information Systems Engi-
neering (CAiSE 2025), as indicated in Figure 1.2.

Topics Projects & Contributions

(\ 1) Concept Drift Characterization (CDC): We introduce a new taxonomy and
zi) BT S a three-step framework for automatically characterizing process concept drifts
= drift detection & 2) Computer Yision f01f Concept Drift Detection (CVflCDD)‘: We propose the
g characterization first supervised machine learning approach for detecting concept drift,
= achieving higher accuracy and robustness than existing unsupervised methods

'd N\

B) Process steady- 3) Steady-State Detection (SSD)?: We highlight the importance of SSD in
= state detection process mining and propose an SSD framework
> J
=} N\
z C) Process resilience 4) Process Resilience Assessment (PRA): We formulate the problem of process
assessment) resilience and design a data-driven approach for its assessment

1. The CV4CDD project received the Best Student Research Paper Award at BPM 2024.
2. The SSD project received the Runner-up Best Research Paper Award at CAiSE 2025.

Figure 1.2: Overview of research topics, projects, and key contributions.

The conducted projects share similarities. Specifically, across all projects, we
developed automated, data-driven techniques that take event logs as input and ap-
ply system-level process mining to uncover relevant process dynamics, which are
then used to address the research problem. In the following, we present each
project by motivating the addressed problem and outlining its key contributions:

1. Concept Drift Characterization (CDC): Business processes are subject to
changes due to the dynamic environments in which they are executed. These
process changes can lead to concept drifts, which are situations when the
characteristics of a business process undergo significant changes. This re-
sults in event logs that contain data from different versions of a process. The
accuracy and usefulness of process mining results derived from such event
logs may be compromised because they rely on historical data that no longer
reflects the current process behavior, or because the results do not distin-
guish between different process versions. Therefore, concept drift detection
in process mining aims to identify drifts recorded in an event log by detect-

Chapter 1. Introduction 5

ing when they occurred, localizing process modifications, and characterizing
how they manifest over time.

This project focuses on the latter task, i.e., drift characterization, which seeks
to understand whether changes unfolded suddenly or gradually and if they
form complex patterns, such as incremental or recurring drifts. However,
current solutions for automatically detecting concept drifts from event logs
lack comprehensive characterization capabilities. Instead, they mainly fo-
cus on drift detection and characterization of isolated process changes. This
leads to an incomplete understanding of more complex concept drifts, like
incremental and recurring drifts, when several process changes are inter-
connected. As a result, the actual evolution of the process remains hid-
den. To address these limitations, we introduce an improved taxonomy for
characterizing concept drifts and a three-step framework that automatically
identifies them from event logs. The framework applies two algorithms that
leverage process dynamics to relate process changes. We evaluate our frame-
work through extensive experiments conducted using a large collection of
synthetic event logs. The results highlight the effectiveness of our proposed
framework and show that it outperforms state-of-the-art techniques.

2. Computer Vision for Concept Drift Detection (CV4CDD): This project goes
a step further compared to the previous one. In the CDC project, our con-
tribution focused on characterizing concept drifts, whereas in the CV4CDD
project, we propose a new approach that also detects when drifts occur. Al-
though many techniques have been proposed for drift detection, they often
suffer from reduced accuracy in the presence of noise, diverse drift types,
and varying degrees of change severity. Moreover, they are limited in scope,
primarily detecting sudden and gradual drifts while neglecting more com-
plex types such as incremental and recurring drifts, or in usability, requiring
manual visual inspection to identify complex drifts.

To address these limitations, we present CV4CDD, a novel approach for au-
tomated concept drift detection that can identify sudden, gradual, incremen-
tal, and recurring drifts. Our approach follows an entirely different paradigm.
Specifically, it employs a supervised Machine Learning (ML) model fine-
tuned on a large collection of event logs with known concept drifts, enabling
the model to learn how drifts manifest in event logs. The possibility of train-
ing such a model has recently emerged through the availability of a tool that
generates event logs with known concept drifts. However, applying super-
vised ML remains challenging due to the complexities of event log encoding.
To address this, we propose converting an event log into an image-based rep-

Chapter 1. Introduction 6

resentation that captures the evolution of process dynamics, enabling the use
of a state-of-the-art computer vision model to detect drifts. Our experiments
show that our approach, compared to existing solutions, improves the accu-
racy and robustness to noise of drift detection while covering a broader range
of drift types, highlighting the potential of this new paradigm.

3. Steady-State Detection (SSD): Detection of steady states is a critical task in
the analysis of dynamic systems, as it enables the reliable evaluation of sys-
tem behavior by differentiating between stable and unstable states. While
SSD techniques have been developed and tested in domains such as signal
processing and industrial systems, their application in the information sys-
tems domain, particularly in process mining, has been largely overlooked.
Specifically, event logs that record the executed behavior of a business pro-
cess often contain data from both steady and non-steady states. This can
distort process mining results when conducting, e.g., performance analysis
and remaining time prediction.

In this project, we demonstrate the importance of SSD in process mining and
introduce a two-step framework for the detection of steady states in business
processes. The framework extracts relevant system-level process character-
istics from an event log and applies established SSD techniques to identify
periods in which a business process operated in a steady state. We eval-
uate the framework through experiments that assess its accuracy within a
controlled environment using simulated event logs and that demonstrate the
benefits of SSD for a downstream process mining task, namely remaining
time prediction. The findings emphasize the importance and potential of
SSD for obtaining more accurate process mining insights.

4. Process Resilience Assessment (PRA): Process resilience represents a core
competence for organizations in light of an increasing number of process
disruptions, such as sudden increases in case arrivals or absences in the work-
force. It reflects an organization’s ability to restore a process to its acceptable
performance level after a disruption. In this regard, the first key step for or-
ganizations towards achieving resilience is to understand how resilient their
processes actually are. Although recognized as important, few works fo-
cus on such resilience assessment in a data-driven manner, thus limiting the
ability of organizations to gain the necessary insights into how much their
processes are affected by disruptions and how long it takes them to recover.

To address this problem, we propose an approach for automated resilience
assessment, based on recorded event data. Our approach interprets relevant
system-level process characteristics, such as the average lead time or arrival

Chapter 1. Introduction 7

rate, as time series that capture the development of the process execution
over time. Based on these time series, it uses statistical modeling, specifi-
cally a vector autoregressive model, to determine the interrelations between
those characteristics and assesses how the process performance responds to
a disruption, i.e., a significant and temporary change in one of the process
characteristics. We validate our approach by comparing its accuracy with
that of a “what-if” analysis using a simulation model and demonstrate its
effectiveness by assessing the resilience of the same process to diverse dis-
ruptions across different organizations.

1.2.2 Publications

The research conducted in this doctoral thesis has resulted in five published papers:

A. Process concept drift detection & characterization:

[7] Alexander Kraus, Han van der Aa: Looking for Change: A Computer Vi-
sion Approach for Concept Drift Detection in Process Mining. In: International
Conference on Business Process Management (BPM), pp. 273-290, (2024).

[8] Alexander Kraus, Han van der Aa: Machine Learning-based Detection of
Concept Drifts in Business Processes. Process Science, 2,5 (2025).

[9] Alexander Kraus, Han van der Aa: Comprehensive Characterization of Con-
cept Drifts in Process Mining. Information Systems, 135, 102584 (2026).

Contribution: In all three publications, the author of this doctoral thesis was
responsible for the conceptualization, implementation, initial draft writing, edit-
ing, and reviewing. Han van der Aa contributed as a supervisor by providing
guidance during the research, as well as reviewing and editing the work.

B. Process steady-state detection:

[10] Alexander Kraus, Keyvan Amiri Elyasi, Han van der Aa: On the Use
of Steady-State Detection for Process Mining: Achieving More Accurate In-
sights. In: International Conference on Advanced Information Systems Engi-
neering (CAISE), pp. 204-220 (2025).

Contribution: The author of this doctoral thesis was responsible for the conceptu-
alization, implementation, drafting, editing, and reviewing. Keyvan Amiri Elyasi
contributed by conducting the runtime prediction experiment, implementing the
corresponding setup, and preparing the evaluation results. Han van der Aa con-
tributed as a supervisor by providing guidance during the research, as well as
reviewing and editing the work.

Chapter 1. Introduction 8

C. Process resilience assessment:

e [11] Alexander Kraus, Jana-Rebecca Rehse, Han van der Aa: Data-driven As-
sessment of Business Process Resilience. Process Science, 1,4 (2024).

Contribution: The author of this doctoral thesis was responsible for the conceptu-
alization, implementation, drafting, editing, and reviewing. Jana-Rebecca Rehse
and Han van der Aa both contributed through guidance, reviewing, and editing.

Beyond the scope of this thesis, the author contributed to a demonstration paper
presenting a tool for automatically generating event logs with known concept drifts,
developed to support the CV4CDD project:

e [12] Justus Grimm, Alexander Kraus, Han van der Aa: CDLG: A Tool for the
Generation of Event Logs with Concept Drifts. In: Demonstration Proceed-
ings of the International Conference on Business Process Management (BPM),
CEUR, Vol. 3216, pp. 92-96 (2022).

1.3 Research Methodology

This chapter presents the research methodology that underpins the work conducted
in this thesis. The thesis proposes several projects that present data-driven algo-
rithms aimed at addressing practical problems in the field of process mining. As
such, the research aligns with the domain of algorithm engineering, which involves
the design, implementation, and experimental evaluation of algorithms [13].

Evaluation Data Internal Validity (Research Desian) Construct Validity
[:_J g

Hypotheses }—Ll l_—lv‘ Results
External Body of Knowledge

- Logical Conclusion
Validity Validity Empirical Knowledge Validity
about Tasks/Designs

Conceptual Knowledge
of Tasks/Designs
Implementation

Algorithmic Algorithmic | _Validity
Task Design

Figure 1.3: Methodology of algorithm engineering (adopted from [13]).

Design
Validity

Ecological
Validity

Real-World
Problem

Algorithm
Implementation

Figure 1.3 presents the overall research methodology and its key components.
In the following, we examine three aspects of this methodology: the ontological
perspective, the epistemological foundations, and the methodological validity.

Chapter 1. Introduction 9

1.3.1 Ontological Perspective

The ontology of algorithm engineering refers to the practice of identifying and
implementing an algorithm to address a specific real-world problem [13]. From
an ontological perspective, four key elements can be distinguished: the real-world
problem, the algorithmic task, the algorithmic design, and the algorithmic imple-
mentation [13]. A scientific contribution demonstrates ontological clarity if it is
explicitly aligned with these elements [13].

Table 1.1: Ontological clarity in the conducted research projects.

Project Description

Real-world problem

CDC How to comprehensively characterize concept drifts in business processes?
CV4CDD How to enhance automated concept drift detection in process mining?
PRA How to assess business process resilience in a data-driven manner?
SSD How to identify steady states of a business process?
Algorithmic task
CDC Input: event log, output: simple and complex drift types
CV4CDD Input: event log, output: drift moment and type
PRA Input: event log, output: four resilience measures
SSD Input: event log, output: steady and non-steady state periods (sublogs)
Algorithmic design
CDC Framework: change detection, classification, interrelation analysis
CV4CDD Approach based on visual encoding and computer vision
PRA Approach based on statistical modeling and impulse-response analysis
SSD Framework: process characteristic extraction, steady-state identification

Algorithmic implementation
CDC
CVv4CDD
PRA
SSD

Python-based open-source implementation

Table 1.1 relates the four ontological elements to the conducted projects. In the
following, each element is briefly described, and examples are provided to illustrate
how the presented research achieves ontological clarity.

Real-world problem. Algorithm engineering is driven by real-world problems
that emerge within specific contexts, indicating the need for an algorithm as part of
a potential solution [13].

In this thesis, all proposed approaches address concrete real-world problems,
such as how to detect process concept drift, assessing business process resilience,

Chapter 1. Introduction 10

or identifying process steady states, as indicated in Table 1.1.

Algorithmic task. An algorithmic task represents an abstraction of a specific real-
world problem by capturing its essential structure through a well-defined formula-
tion, such as a set of requirements, while intentionally omitting irrelevant or exces-
sive complexity [13]. It defines what needs to be done and in what context, often
through input/output specifications.

For each real-world problem examined in this thesis, we define one or more
algorithmic tasks that collectively contribute to its solution. For example, in the
PRA project, we define the algorithmic task as the transformation of information
recorded in an event log into four specific resilience measures that characterize the
resilience of a business process. In addressing the algorithmic task of the CV4CDD
and CDC projects, we define the algorithmic task as identifying instances of drifts,
where each drift is described by its type and the corresponding change points.
Finally, in the SSD project, the algorithmic task is to detect periods when a business
process operates in a steady state.

Algorithm design. Algorithm design defines how to produce the desired output
that meets the requirements of an algorithmic task, and when properly developed,
it directly corresponds to that task [13].

In this thesis, we propose distinct designs for specific algorithmic tasks in each
project. For example, in the CV4CDD project, we introduce a two-step design.
The first step implements a four-phase algorithm that processes an event log meet-
ing certain assumptions. It applies a sequence of operations—windowing, behavior
abstraction, and similarity analysis—grounded in relevant domain knowledge. The
result is an image that visualises process evolution over time. In the second step,
we apply object detection techniques to these images to identify instances of con-
cept drift. This two-step design produces outputs that fully satisfy the requirements
of the overall algorithmic task. In the SSD project, we propose a two-step frame-
work that first extracts system-level process characteristics from an event log as
time series, and then applies established SSD techniques to detect periods when
a business process operated in a steady or non-steady state. In the PRA project,
after extracting system-level process characteristics, we employ a statistical model
to perform an impulse—response analysis, which directly produces the resilience
measures of interest. Finally, in the CDC project, our design follows a three-step
framework, where in steps two and three we propose new algorithms to accomplish
the task of detecting inter-related process changes.

Algorithm implementation. Algorithm implementation is a specific realization of
the algorithm design [13]. It describes a concrete solution that is based on certain
implementation decisions (e.g., selecting a programming language, hardware, etc.)
to effectively address the original real-world problem when executed with given

Chapter 1. Introduction 11

input data on a computer [13].

As shown in Table 1.1, all algorithm implementations in this thesis are devel-
oped in Python and released as open-source. These implementations are used to
gain insights into the designs through evaluation experiments, where performance
measures are applied to assess their effectiveness in addressing real-world prob-
lems.

1.3.2 Epistemological Foundations

The epistemology of algorithm engineering concerns the question of what can be
known about an algorithm [13]. A scientific contribution demonstrates epistemo-
logical precision when it clearly identifies what is not known, explains how this gap
in knowledge constitutes a research problem, and shows how the research extends
the existing body of knowledge [13].

As summarized in Table 1.2, the projects presented in this thesis contribute to
both conceptual knowledge of and empirical knowledge about algorithmic tasks
and designs. In the following, we examine these types of knowledge in more detail
and provide examples that demonstrate epistemological precision by highlighting
the contributions made within each knowledge type.

Contribution to conceptual knowledge. Our contribution to conceptual knowl-
edge is twofold: it advances the understanding of algorithmic tasks (knowledge of
tasks) and the understanding of algorithm designs (knowledge of designs).

Conceptual knowledge of tasks. Conceptual knowledge of tasks refers to the under-
standing developed by abstracting real-world problems [13]. Due to their complex-
ity and unpredictability, algorithmic tasks cannot be directly derived from these
problems but must be constructed through a process of abstraction. Therefore,
knowledge of tasks includes both the identification of relevant tasks and the under-
standing of their structure. This understanding can be described using mathemati-
cal, formal, semi-formal, or informal approaches [13].

In our research projects, we contribute in different ways to the conceptual
knowledge of tasks, as shown in Table 1.2. For instance, in the PRA project, we
propose a conceptualization of the problem that allows the task to be addressed
algorithmically through the derivation of quantitative measures that assess the re-
silience level of a business process. In the CDC project, we propose a new taxon-
omy for classifying concept drift. This taxonomy enables a more comprehensive
approach to concept drift detection compared to existing classification schemes.
The SSD project formalizes the concept of a steady state in a business process.
However, our CV4CDD project does not provide conceptual knowledge about
tasks. Instead, it contributes to other types of knowledge.

Chapter 1. Introduction 12

Table 1.2: Epistemological precision in the conducted research projects.

Project Description

Conceptual knowledge of tasks

CDC New concept drift characterization taxonomy

CV4CDD Not applicable

PRA Concept of process resilience and the resulting four resilience measures
SSD Concept of the steady state of a business process

Conceptual knowledge of designs

CDC Three-step framework and two algorithms

CV4CDD Log visualization technique that enables the use of computer vision
PRA Approach that uses a statistical model to assess resilience

SSD Two-step framework that uses system-level process characteristics

Empirical knowledge about tasks

CDC .

CVACDD Not applicable

PRA . -

SSD Extraction of system-level process characteristics
Empirical knowledge about designs

CDC . . . e .

CVACDD Comparison with the baselines, sensitivity analysis

PRA . .

SSD Evaluation of approach effectiveness and usefulness

Conceptual knowledge of designs. Conceptual knowledge of design refers to what
an algorithm design is, how it functions, and how it addresses an algorithmic
task [13]. This knowledge includes established designs that have proven effective
based on formal or empirical evidence. These designs range from task-specific so-
lutions to general procedures applicable to various tasks and often rely on generic
design principles, such as divide-and-conquer [13]. This knowledge can be repre-
sented in various forms, depending on its proximity to implementation, including
diagrams, pseudocode, flowcharts, or mathematical formulas [13].

The approaches presented in this thesis contribute to the knowledge of design
by introducing novel designs in the form of an approach or framework that ful-
fill algorithmic tasks derived from real-world problems. These designs employ
multiple representations to communicate the knowledge effectively. For exam-
ple, when proposing a novel taxonomy for concept drift characterization, we use a
UML Class Diagram to illustrate relationships between different elements related
to concept drift and process changes. A flowchart represents the overall framework
and its steps, while pseudocode is provided for two algorithms. Similarly, in the

Chapter 1. Introduction 13

CV4CDD project, we propose a new design for detecting concept drifts recorded in
event logs using supervised ML, in contrast to existing state-of-the-art techniques
that are unsupervised. The approach consists of two steps, which are represented
in a chevron diagram. The PRA project introduces a design that applies a statistical
model and its features to enable a data-driven assessment of business process re-
silience. Finally, the SSD project presents a novel two-step framework for studying
steady states in business processes.

Contribution to empirical knowledge. Our contribution to empirical knowledge
is also twofold: we advance the understanding of the properties of the addressed al-
gorithmic tasks (knowledge about tasks) and the proposed solution designs (knowl-
edge about designs) through controlled experiments in our evaluations.

Empirical knowledge about tasks. Empirical knowledge about tasks refers to in-
sights into the characteristics of specific algorithmic problems [13]. A central as-
pect of empirical knowledge about tasks is the identification of recurring patterns
in input data that inform the design of effective algorithms.

In our work, we contribute to empirical knowledge about tasks by identifying
patterns in typical input data across two projects. Specifically, in the PRA and
SSD projects, we examine system-level process characteristics using information
recorded in event logs. These analyses demonstrate how the identified problems
can be addressed using only limited data obtained from the underlying processes.
In the other two projects, this contribution is not applicable.

Empirical knowledge about designs. Empirical knowledge about designs refers to
insights into the properties and characteristics of a given algorithmic solution [13].
It includes the analysis of algorithm behavior, performance, and trade-offs, and
often considers the relationship between algorithmic tasks, the corresponding de-
signs, and how effectively those designs address the intended problems [13].

Through experimental evaluations of our design implementations, we con-
tribute to both performance knowledge and sensitivity knowledge in the CDC and
CV4CDD projects. We evaluate the performance of our designs by applying them
to real-world event log collections and measuring their effectiveness using estab-
lished task-specific performance metrics. Furthermore, we compare our results
with baseline methods and state-of-the-art techniques. For example, in evaluat-
ing our concept drift detection approach, we employ widely used metrics such as
precision, recall, and F1-score, and compare the outcomes with those achieved by
existing state-of-the-art methods. To build sensitivity knowledge, we examine the
impact of varying parameter settings, such as the number of windows, on accuracy.
In the remaining two projects, where real baselines are not available, we conduct
accuracy and validity analyses using synthetic data. We also evaluate the useful-
ness and effectiveness of the proposed designs on real-world data.

Chapter 1. Introduction 14

Table 1.3: Methodological validity in the conducted research projects.

Project Description
Ecological validity
CDC Tasks aligned with an established problem in process minin
CV4CDD & P P g
Is)l;S Tasks aligned with a problem through analogies with other domains
Design validity
CDC
CV4CDD We provided a detailed description of all relevant design steps,
PRA including explanations for key design decisions
SSD
Implementation validity
CDC
CV4CDD The code was thoroughly tested during implementation and made
PRA reproducible through the public release of code, datasets, and results
SSD
Internal validity
CDC . . .
Controlled execution environment (Python, same server); randomized
CV4CDD o . . .
PRA data split (if applicable), multiple runs on synthetic and real-world
SSD datasets
External validity
CDC
Cv4CDD Evaluation on diverse public datasets and synthetic data, including
PRA generated synthetic datasets when needed
SSD
Construct validity
CDC Use synthetic data with known gold standard and established metrics
Cv4CDD (precision, recall, F1-score); compare results with existing baselines
PRA Use synthetic data with known gold standard and established metrics
SSD (¢-coefficient, accuracy, mean absolute deviation)
Logical validity
CDC
CV4CDD Derive hypotheses based on prior empirical knowledge and logical
PRA deduction to overcome limitations of existing methods
SSD
Conclusion validity
CDC
CV4CDD State evaluation goals, quantitative evaluation, sensitivity analysis;
PRA report limitations of the proposed solutions

SSD

Chapter 1. Introduction 15

1.3.3 Methodological Validity

This thesis addresses methodological validity threats that are particularly relevant
to the contributions of this doctoral work, as outlined in Figure 1.3. The following
sections discuss these threats and the measures taken to ensure the reliability and
robustness of the research findings, which are briefly summarized in Table 1.3.

Ecological validity. Ecological validity examines the relationship between real-
world problems and an algorithmic task, evaluating how well task specifications
represent the real-world problem to ensure result generalizability [14].

In this thesis, ecological validity is addressed in several ways. In the PRA
project, we draw comparisons to similar tasks investigated in other research fields.
This ensures that the defined task characteristics, such as maximal deviation and
recovery time, are consistent with the requirements of real-world problems of a
similar nature. In the SSD project, we represent the business process as a system
and apply stability principles from systems theory, which have been used in other
domains to determine when a system has reached a steady state. In the CDC and
CV4CDD projects, we focus on an algorithmic task that is already well-known and
established in the process mining domain.

Design validity. Design validity refers to the extent to which the internal structure
of an algorithm is consistent, transparent, and explainable [13]. It enables repro-
duction, critical assessment, and reuse in an incremental scientific process [13].

In this thesis, we ensure design validity by providing a detailed and systematic
description of all relevant design steps for each proposed approach. This includes
formal definitions of the addressed problem, a clear specification of input and out-
put formats, and a step-by-step explanation of the algorithmic procedures. For ex-
ample, in the CDC and CV4CDD projects, we describe the conceptual framework,
individual processing stages, parameter settings, and decision rules, making it pos-
sible for other researchers to replicate or adapt the methods. In the PRA project,
we present the statistical foundations of the approach, such as the use of a Vec-
tor Autoregression (VAR) model, and explain how resilience measures are derived
from its outputs. In the SSD project, we provide the rationale for selecting system-
level process characteristics, describe how these characteristics are computed, and
outline the logic behind the steady-state detection mechanism.

Implementation validity. Implementation validity: the influence of implementa-
tion choices on outcomes and the risk of unfaithful implementation [13].

To ensure implementation validity, we performed thorough testing throughout
the development process to detect and correct potential errors early. We further
reduced the risk of unfaithful implementation by ensuring full reproducibility. This
was achieved by publicly releasing the source code, evaluation datasets, evaluation
scripts, gold standards, and raw experimental results.

Chapter 1. Introduction 16

Internal validity. Internal validity refers to the extent to which a research de-
sign accurately establishes a causal relationship between the manipulation and the
observed effect, without interference from external factors [13]. It ensures that
observed performance differences result from the proposed approach rather than
unrelated variables. Threats may arise from uncontrolled experimental conditions,
implementation differences, or biases in data selection.

We address internal validity by reducing the influence of confounding vari-
ables in different ways. First, all runs of our approaches and baselines are executed
in a consistent environment to block environmental factors such as hardware per-
formance or memory usage. Second, randomization is applied, for example, by
splitting datasets into training and test sets in the CV4CDD project, where we fine-
tune and test a computer vision model, to mitigate hidden biases. Finally, multiple
evaluation runs are conducted to account for variance, and both known external
synthetic datasets and our generated datasets are used to ensure that results are not
dependent on a single data source or configuration.

External validity. External validity concerns the generalizability of the re-
sults [15]. It considers to what extent we can assume the results of an experiment
to hold “beyond the sample or domain that the researcher observes” [16].

In practice, addressing this validity concern is challenging because the num-
ber of publicly available real-world datasets with the required properties is very
limited. Even when such data exists, the corresponding gold standard is often un-
known. Therefore, in the projects presented in this thesis, we aimed to achieve the
best possible evaluation by assessing the proposed solutions using both publicly
available synthetic and real-world datasets that are widely recognized in the process
mining research community and encompass a diverse range of characteristics that
cover various process domains. For example, in the SSD and PRA project, we use
several real-world event logs to demonstrate the usefulness of our solutions. How-
ever, when existing datasets lacked sufficient complexity or variation, or when no
gold standard was available to enable effective evaluation, we generated synthetic
data tailored to the requirements of specific experiments, ensuring that it contained
the properties relevant to the analysis. For example, in the CV4CDD project, we
employed a synthetic dataset that included different drift types, change severities,
and noise levels. In the SSD project, we simulated a business process to generate
synthetic data with a known gold standard, since no real data was available.

Construct validity. Construct validity assesses whether an evaluation measure ac-
curately reflects the intended property [17]. More specifically, the evaluation mea-
sure has to be a valid and reliable operationalization of the intended concept [18].

In our projects, we focus on assessing the effectiveness of the proposed solu-
tions. To ensure construct validity, we employ well-established evaluation metrics

Chapter 1. Introduction 17

that measure the accuracy of our approaches in relation to the tasks they are de-
signed to address. For example, in the CDC and CV4CDD projects, we use recall,
precision, and the F1-score, which is the harmonic mean of precision and recall.
In this context, precision is defined as the proportion of detected process change
points that correspond to actual change points, while recall is the proportion of
actual change points correctly detected by our approach. The corresponding gold
standard is obtained either from existing synthetic datasets or generated syntheti-
cally using an external tool. In the PRA and SSD projects, we generate synthetic
data with a known gold standard to assess the accuracy of the proposed algorithms.
In the PRA project, we compare the measures produced by our approach with those
obtained from simulation to determine accuracy. In the SSD project, we com-
pare the detected steady-state periods with the actual steady-state periods obtained
through controlled data generation. This is framed as a binary classification prob-
lem, and we evaluate performance using accuracy and the ¢-coefficient, following
practices applied in other domains for steady-state detection.

Logical validity. Logical validity concerns the soundness and justification of the
reasoning underlying a formulated hypothesis [13]. It explains why a hypothesis
is considered valid, typically through deduction from prior knowledge and support
from an underlying theoretical framework.

In our projects, the hypotheses are not explicitly stated but are implicitly em-
bedded within the research. To ensure the logical validity of these hypotheses,
we ground them in logical deduction supported by prior empirical findings from
evaluation and performance comparison analyses. For example, in the CV4CDD
project, we begin by observing that the performance of existing techniques is often
suboptimal in practical scenarios. This is largely due to the fact that these methods
are built on specific assumptions about how concept drifts appear in event logs,
assumptions that may not consistently reflect real-world behavior. In response, we
propose an alternative approach that employs a computer vision model trained to
detect drift patterns directly from the data, thereby eliminating the need for prede-
fined statistical or handcrafted rules. Similarly, in the CDC project, we justify the
development of a new taxonomy for concept drift classification by identifying limi-
tations in the existing taxonomy. In the SSD project, we demonstrate the impact on
process mining outcomes when steady and non-steady states of a business process
are not distinguished during downstream tasks. In the PRA project, we emphasize
the importance of a data-driven, quantitative assessment of process resilience that
complements existing qualitative approaches.

Conclusion validity. Conclusion validity concerns the extent to which conclusions
drawn from an analysis are reasonable given the stated hypotheses [19]. While it
places strong emphasis on statistical analysis, it also encompasses qualitative con-

Chapter 1. Introduction 18

siderations [20]. Statistical conclusions are valid when the assumptions of the ap-
plied tests are met and the required significance levels are achieved. Complemen-
tary qualitative analyses, such as examining outliers or anomalous data points, can
provide additional support for conclusions or help identify reasons for unexpected
results [21]. Limitations or threats to validity are often reported when reservations
about empirical conclusions exist [13].

In all our projects, we address conclusion validity by clearly defining evalu-
ation goals, conducting quantitative experiments with established evaluation met-
rics, and complementing these with quantitative analyses such as sensitivity analy-
sis. We also report limitations of the proposed designs and evaluations.

1.4 Thesis Outline

The remainder of this thesis is organized into six chapters. The core Chapters 3
to 6 each present a research project that addresses a specific problem:

* Chapter 2: Background. Introduces the key concepts in process mining and
system-level process mining that form the foundation for the thesis.

* Chapter 3: Comprehensive Concept Drift Characterization. Proposes a new
taxonomy and a three-step framework for the automatic characterization of
concept drifts from event data. The chapter builds on concepts and results
previously published in the Information Systems [9].

* Chapter 4: Concept Drift Detection Using Supervised ML. This chapter
presents a novel ML-based approach for detecting different types of con-
cept drift. The content builds on earlier work published at BPM [7] and its
extended version in Process Science [8].

* Chapter 5: Business Process Steady-State Detection. Examines the impor-
tance of steady-state detection in process mining and presents a framework
for identifying steady states from event data. The chapter builds on work
described in a paper published at CAiSE [10].

e Chapter 6: Business Process Resilience Assessment. Introduces a data-
driven method for assessing business process resilience using information
recorded in event logs. The chapter is based on concepts and results previ-
ously published in the Process Science [11].

* Chapter 7: Conclusion. Concludes the thesis by summarizing key results,
discussing implications, and outlining future research directions.

Chapter 2

Background

This chapter provides the necessary background for the remainder of the thesis.
It consists of two sections. Section 2.1 introduces process mining and discusses
key concepts referenced throughout this thesis. Section 2.2 discusses the idea of
system-level process mining, which plays a pivotal role in the solutions proposed
in this thesis.

2.1 Process Mining

This section provides an overview of process mining and its fundamental con-
cepts. We begin with an introduction to process mining as a discipline. Then,
Section 2.1.1 defines the concept of a business process, which forms a core ele-
ment in process mining, followed by a discussion of event logs in Section 2.1.2,
which serve as the primary data source for process mining tasks.

Process Mining. Process mining is an emerging discipline that focuses on the
analysis and improvement of business processes by systematically leveraging event
data recorded by information systems [22]. With the help of process mining, or-
ganizations can improve their processes by conducting a wide range of analytical
activities [1, 2, 22], such as:

* discovering and visualizing process flows,

* revealing compliance violations and deviations from expected behavior,

* analyzing bottlenecks and identifying inefficiencies,

* monitoring Process Performance Indicators (PPIs) in real time,

* supporting root-cause analysis of performance problems,

* detecting process concept drifts,

* predicting process outcomes and estimating remaining execution time,

* evaluating resource utilization and workload distribution,

19

Chapter 2. Background 20

* simulating alternative process scenarios for decision support.
As a result, process mining has been widely adopted across a range of sectors,
including manufacturing, logistics, finance, healthcare, education, and public ad-
ministration [2]. It is important to note that process mining is not limited to busi-
ness processes and can be applied to any type of process for which events are
recorded [2].

Process
Science

Process
Mining

Figure 2.1: Process mining as a discipline (adapted from [22]).

As illustrated in Figure 2.1, process mining is situated at the intersection of
data science and process science, serving as a critical bridge between these foun-
dational fields [22]. Specifically, mainstream data science approaches such as data
mining and machine learning are generally process-agnostic, meaning they do not
take end-to-end process models into account [2]. In contrast, process science ap-
proaches are process-centric but often emphasize the creation of models rather than
learning from event data. Process mining brings these perspectives together by
combining the model-driven insights of process science with the data-driven tech-
niques of data science [2].

To better understand process mining as a discipline, we briefly discuss the char-
acteristics of data science and process science.

Data science. Data science is an interdisciplinary field aiming to turn data into
value [2]. Data refers to raw observations or facts collected from various sources,
such as sensors, user interactions, transactions, or system logs, which can be struc-
tured (e.g., databases), semi-structured (e.g., JSON files), or unstructured (e.g.,
text, images, videos). Value, in a business context, is a concept that is unique to
each organization [23] and includes different tangible and intangible elements [24].
However, in general, it refers to the measurable benefits that an organization gains
from its activities, and can take different forms: financial, operational, customer,
reputational, etc. [23]. It may be provided in the form of predictions, automated
decisions, models learned from data, or any type of data visualization delivering
insights [2]. Turning data into value involves data extraction, preparation, explo-
ration, transformation, storage and retrieval, computing infrastructure, data mining
and machine learning, and the responsible application of results, with attention to

Chapter 2. Background 21

ethical, social, legal, and business aspects [2].

Data science focuses on four main objectives: reporting (What happened?),
diagnosis (Why did it happen?), prediction (What will happen?), and recommen-
dation (What is the best that can happen?) [25]. To achieve these objectives and
answer the corresponding questions, data science uses techniques from several es-
tablished domains [2]:

* Statistics: Foundation of data science, divided into descriptive (summarizing

data) and inferential (drawing conclusions from samples) methods.

* Algorithms: Essential for data analysis; efficiency becomes critical as data
size grows. Examples include Apriori, MapReduce, and PageRank.

* Data Mining: Analyzes large data sets to uncover hidden patterns or rela-
tionships; focuses on practical applications and scalability.

* Machine Learning: Develops algorithms that learn from data and improve
over time without explicit programming. Enables data-driven predictions
and decisions.

* Predictive Analytics: Uses historical data to predict future outcomes; often
applied in business contexts using mining and learning techniques.

* Databases: Store and manage data efficiently. Includes traditional relational
databases and modern NoSQL or in-memory systems for large-scale, real-
time access.

* Distributed Systems: Provide scalable infrastructure for data analysis by ex-
ecuting tasks across multiple computing nodes (e.g., cloud computing).

* Visualization & Visual Analytics: Supports human interpretation through in-
teractive and automated visual tools, aiding insight discovery in complex
data sets.

* Behavioral & Social Sciences: Help interpret data influenced by human be-
havior; essential for understanding societal and organizational dynamics.

* Privacy, Security, Law & Ethics: Ensure responsible data usage, safeguard
sensitive information, and prevent biased or unethical analysis outcomes.

Process science. Process science is the interdisciplinary study of business pro-
cesses as they unfold over time [26]. It can be considered as a post-disciplinary
approach that puts processes (as the phenomenon of interest) in the center of at-
tention and invites contributions from as many disciplines as can make a contri-
bution to identifying, understanding and intervening into processes [27]. Process
science focuses on understanding and analyzing sequences of business activities
that involve both human actors and technological systems. It integrates conceptual
process thinking with data-driven methods, extending data science by shifting the
unit of analysis from isolated data points to structured, temporal behaviors, placing
processes, rather than just data, at the center of investigation [26].

Chapter 2. Background 22

Process science focuses on three main objectives: discovery, explanation, and
intervention in business processes using recorded event data [26]:

Discovery emphasizes the detection of (emergent) dynamics that constitute
the phenomenon of interest to uncover patterns that may only be understood
retrospectively.

Explanation aims to understand how and why processes unfold, identifying
cause-effect relations within their temporal and spatial context, and leverag-
ing theory as well as diverse data sources to gain an in-depth understanding.
Prediction emerges from this understanding, enabling anticipation of future
process states based on patterns and indicators.

Intervention targets the purposeful change of processes, guided by prior ex-
planations and envisioned goals, using established approaches such as design
science research, policy development, or experimental design.

Throughout all objectives, process science relies on event data that capture
temporal change and stresses the importance of integrating data across different
levels of abstraction to understand complex process interplay.

To achieve the objectives, process science uses techniques from several estab-
lished domains [2]:

Stochastics: Uses probabilistic models (e.g., Markov chains) to analyze ran-
dom behavior in processes such as waiting times and reliability.
Optimization: Aims to find the best solution from many alternatives using
techniques like linear programming, integer linear programming, constraint
satisfaction, and dynamic programming.

Operations Management & Research: Focuses on the design and control of
processes and systems. Operations Research emphasizes mathematical mod-
eling, while Operations Management deals with practical implementation in
business contexts.

Business Process Management: Involves modeling, execution, monitoring,
and optimization of business processes, often using formal models such as
Business Process Model and Notation (BPMN) and Petri nets.

Business Process Improvement: Covers a range of methods (e.g., Lean Six
Sigma) aimed at enhancing efficiency and effectiveness in business pro-
cesses.

Process Automation & Workflow Management: Focuses on model-driven
systems that support and automate operational business processes using
workflow engines.

Formal Methods & Concurrency Theory: Uses rigorous mathematical tools
to model, analyze, and verify concurrent and distributed systems.

Chapter 2. Background 23

2.1.1 Business Process

A central concept in process mining is the business process [22]. In the following
sections, we present the key elements of a business process, its formal definition,
the main perspectives for analysing business processes, and the concept of a busi-
ness process model along with its versions in the context of process mining.

Business process elements. As visualized in Figure 2.2, a business process is
characterized by the following elements [1]:

* Events: Instantaneous occurrences of specific process actions or changes.

* Activities: Units of work that take time to complete and may consist of
smaller tasks or sub-activities.

* Decision points: Conditions or branching logic that determine how the pro-
cess continues based on specific outcomes.

* Actors: Entities involved in process execution, including human participants,
organizations, or software systems. Actors can be internal (e.g., employees)
or external (e.g., business partners).

* Objects: Physical resources (e.g., equipment) and informational items (e.g.,
documents) that are used or generated during the process.

* QOutcomes: Results produced by the process, which deliver value.

* Customer: These outcomes are consumed by one or more customers, who
can be either internal or external to the organization.

’ Actor ‘
’ Event ‘ linvolves
[Aetiy | Business | GO G eome]
process
— - creates
’ Decision point ‘ involves value to
’ Object ‘ ’ Customer ‘

Figure 2.2: Elements of a business process (adapted from [1]).

We formalize the definition of a business process as follows [1, 28]:

Definition 1 (Business Process) A business process is a collection of interrelated
events, activities, decision points, actors, and objects that are performed in an
organizational and technical environment and collectively lead to an outcome of
value to at least one customer.

This definition underscores the perspective that a business process functions
as an interactive system of interconnected components, working together to drive
purposeful organizational behavior and create value.

Chapter 2. Background 24

Business process perspectives. A business process can be analyzed from multi-
ple perspectives, providing a multidimensional understanding of its structure and
behavior [1]:

* Control-flow perspective focuses on the sequencing and dependencies of ac-
tivities.

* Resource perspective examines the involvement of various resources, such
as individuals, systems, or departments, based on event log data, aiming to
reveal organizational structures or uncover social networks.

» Time perspective addresses the temporal aspects of process execution by
leveraging timestamps to detect bottlenecks, assess service levels, monitor
resource utilization, and predict the remaining duration of ongoing cases.

* Data perspective considers additional contextual information associated
with events, such as costs, supplier names, product types, or quantities.

To capture and analyze different perspectives of a business process, business
process models provide a structured way to visualize its key elements and flow.

Business process model. A business process model is a structured diagrammatic
representation, typically focusing on the control-flow of a business process, and
generally consists of three fundamental types of elements [1]:

* Activity nodes: Represent units of work carried out by humans, software
systems, or a combination of both.

* Control nodes: Define the flow of execution between activities, determining
the sequence and logic of the process.

* Event nodes: Capture occurrences that may trigger or affect the process,
such as external messages or internal events that require a response. While
not supported in all modeling notations, they are essential for modeling in-
teractions with the process environment.

Other types of elements may be included, but these three serve as the core
building blocks of most process models. We formalize the concept of a process
model as follows [29]:

Definition 2 (Process Model) A process model is a tuple M = (A, E,G, N, F,t),
where:

* A is a finite set of activities,

* F is a finite set of events,

* G is a finite set of gateways,

* N = AU E UG is a finite set of nodes,

* F C N x N is the flow relation, such that (N, F) forms a directed graph,

* t: G — {and, zor} is a mapping that assigns a type to each gateway.

Chapter 2. Background 25

Business processes are often represented using a specific process modeling lan-
guage. There are many languages for modeling business processes diagrammati-
cally [1], such as from Directly-Follows Graphs (DFGs), transition systems, pro-
cess trees, and Petri nets, Event-driven Process Chains (EPCs), and UML activity

diagrams [22].
components

Not pre-produced

Assemble Final
parts inspection
Order

dispatched

Order I Pre-produced
received

Obtain
from
warehouse

Figure 2.3: Example of a business process model.

In the thesis, we use BPMN [30], a widely recognized standard for business
process modeling. Figure 2.3 presents a simple business process model created
using BPMN. This model features a start event labeled “Order received”, five busi-
ness process activities, and an end event marked “Order dispatched.” The activities
are carried out in sequence, with a single decision point following the first process
activity. The process model focuses on the control-flow perspective of the business
process, however, it can be extended, for example, to also represent the resource
perspective by adding pools and lanes.

Business process version. Business processes evolve in response to organizational
changes, such as regulatory updates and technological advancements [31]. As are-
sult, different versions of the same process may coexist or follow one another over
time. Identifying and analyzing process versions is crucial for understanding pro-
cess evolution, comparing performance across time periods or units, and ensuring
compliance [31]. Given the definition of a business process, we define a business
process version as:

Definition 3 (Business Process Version) A business process version is a variant
of a business process, defined by a specific combination of involved events, activi-
ties, decision points, actors, and objects.

Different process versions can be represented through corresponding business
process models. Figure 2.4 shows two alternative process models that describe
different versions of the same process. Compared to the original process version
in Figure 2.3, process version 1 presents a simple linear flow without decision
points. Process version 2 modifies the original version by simplifying the decision

Chapter 2. Background 26

Print Obtain
Version 1 component from As'sjzrrrtlsle |nsf)|2<illon
Order plan warehouse Order

received dispatched
i Pre-produced Obtam Assemble H Final
: from) a
parts inspection
Version 2 Order | warehouse Order
received dispatched
Not pre-produced o Reject
order
Order
rejected

Figure 2.4: Example of a business process model version.

logic and introducing a new outcome: orders with unavailable components are
rejected instead of being processed. In this thesis, we refer to different process
versions as cases where the underlying process models differ. Two process model
versions are considered different if any of their model elements are not identical.

2.1.2 Event Log

In addition to the concept of a business process, another important concept in pro-
cess mining is the event log. An event log contains a collection of traces, where
each trace represents the sequence of events recorded for a specific process in-
stance. These events are captured by a process-aware information system during
the execution of the process [2]. In the following, we present an event log exam-
ple and discuss its sources, essential requirements, underlying data model, and the
formalization used throughout this PhD thesis.

Event log example. Table 2.1 presents an illustrative snapshot of an event log gen-
erated from the execution of the business process shown in Figure 2.3. Each row in
the table corresponds to a single event recorded during the execution of a business
process. These events reflect the observable behavior of the process and serve as
the foundation for discovering, analyzing, and improving business processes. In
this example, every event is described by five attributes: Case ID, Timestamp, Ac-
tivity, Resource, and Cost. The Case ID identifies the process instance (e.g., an
order), the Activity denotes the operation performed, and the Timestamp indicates
when it occurred. The additional attributes, such as Resource and Cost, provide
contextual and operational insights that can support more advanced analyses, such
as organizational or performance mining. In this illustrative event log, Case 1 and
Case 2 represent two separate process instances following a similar sequence of
activities with variations in timing and resource allocation.

Chapter 2. Background

Table 2.1: Example of an event log.

27

Case ID Timestamp Activity Resource Cost
1 29-12-2010 14:17 Order received Susana 0
1 30-12-2010 11:02 Print component plan Mike 50
1 31-12-2010 10:06 Obtain from warehouse ~ Sue 200
1 05-01-2011 15:12 Assemble parts Mike 100
1 06-01-2011 11:18 Final inspection Sara 200
1 07-01-2011 10:00 Order dispatched Sara 80
2 30-12-2010 15:34 Order received Susana 0
2 30-12-2010 11:32 Print component plan Mike 50
2 30-12-2010 12:12 Order components Mike 100
2 30-12-2010 14:16 Assemble parts Pete 400
2 05-01-2011 11:22 Final inspection Sara 200
2 06-01-2011 11:33

Order dispatched Sara 80

Event log sources. Event logs are increasingly available across sectors such as
finance, manufacturing, healthcare, education, and e-commerce, driven by the dig-
italization of business processes. They can be extracted from different sources [22]:

* Business Process Management Systems: Highly process-aware and typically
provide structured, analysis-ready logs with little preprocessing.

* Case management and ticketing systems: Common in service contexts; log
status changes and timestamps but may require preprocessing to extract ac-
tivity labels.

* Enterprise Resource Planning and Customer Relationship Management sys-
tems: Widely used platforms like SAP and Salesforce offer rich event data
but often involve complex extraction procedures.

* Operational databases: Support daily operations and may store historical
data useful for process mining.

* Project management tools: Systems like Jira and Trello generate event data
aligned with agile and project workflows.

* Business intelligence infrastructure: Data warehouses and data lakes con-
solidate business data, with lakes offering more flexible, schema-on-read ac-
cess.

» Web applications and platforms: Generate extensive user interaction data,
often in JSON format, valuable for customer-centric analysis.

e Internet of Things: Produce time-stamped sensor data, increasingly used in
domains like manufacturing and healthcare despite structural challenges.

Event log requirements. An event log must meet three key data requirements to
be suitable for process mining [22]:

* Case ID: Each event must be associated with a unique process instance, al-

Chapter 2. Background 28

lowing related events to be grouped into distinct process executions. Case
IDs are essential but may not always be directly available, sometimes requir-
ing event correlation techniques for reconstruction.

* Activity label: Each event should correspond to a specific activity within the
process. These labels should ideally reflect a business-relevant level of gran-
ularity, which may require transforming low-level system events through
event abstraction.

» Event order: Events must be ordered within each process instance, typically
using timestamps. Alternatively, order can sometimes be inferred from the
sequence of log entries, provided it reflects the actual execution order.

In addition to these core elements, event logs often include supplementary at-
tributes such as vendor, location, cost, or item details. These may be case-level
or event-specific and support filtering, provide contextual insights, and enable ad-
vanced analyses.

Event log format. The eXtensible Event Stream (XES) format, standardized by
the IEEE in 2016 [32], is a widely adopted format for storing and exchanging event
data in process mining. As shown in Figure 2.5, it structures logs as collections of
traces, each representing a sequence of events for a specific case. XES supports
flexible attribute definitions, with different variable types, and allows semantic en-
richment through extensions. XES’s flexibility and semantic capabilities make it a
foundational standard for event log representation in process mining.

Other formats have also been developed for storing event data. One of the more
recent formats is object-centric event log [33], which allows events to be linked to
multiple objects of different types, rather than being restricted to a single case.
However, in this thesis, we focus solely on the XES format and do not consider
alternative event data formats.

Event log formalization. Events form traces, and traces form event logs. In the
following, we formally define these concepts.

An event corresponds to the execution of a single action within a process. In
the context of this thesis, we formally define events as follows:

Definition 4 (Event) Let £ denote the universe of all possible events. An event
e € & is defined as a tuple e = (id, c,a,t, D) of five event attributes, where id
is a unique event identifier (event ID), c is the identifier of a business case (case
ID), a refers to an activity name, t refers to the timestamp, and D is a set of data
attributes that represent additional context.

Uniqueness of events, provided by the event ID, is essential in process min-
ing because it prevents ambiguities in event ordering, allows precise referencing
for analysis tasks such as performance monitoring or anomaly detection, and helps

Chapter 2. Background 29

<declares>
e Extension

<defines> <defines>

Classifier

<trace-global>

o

<&

* [

L 2 H
<event-globak J- Jo.o.

<contains>

<contains>

<contains>

Figure 2.5: Meta model of XES format for event logs [32].

maintain data integrity during preprocessing or integration. If the event ID is miss-
ing, uniqueness can be ensured by enumerating all events in the event log after
sorting them by their timestamps. In this thesis, we use dot notation as a shorthand
to refer to event attributes, for example, e.a for the activity of an event e.

Events sharing the same case ID are grouped into a trace, which represents
a sequence of events ordered by their time of occurrence within a single process
instance. If the timestamp-based ordering of events within a single case does not
constitute a strict total order, such as when multiple events share the same times-
tamp, the event ID attribute can be used as a criterion to enforce a strict total order.
This attribute can always be obtained by enumerating all recorded events in an
event log, starting from 1 up to |L|, the total number of recorded events. The
formal definition of such traces is provided below.

Definition 5 (Trace) A trace o = (ey,...,ey) is afinite sequence of n € N events
from &€ such that all events share the same case ID and are strictly ordered by their
timestamp and, when timestamps are equal, by event ID. A trace variant denotes
traces with the same activity sequences.

Note that, in addition to events having attributes, cases themselves may also
include attributes that describe or influence the overall process instance [2]. How-

Chapter 2. Background 30

ever, case attributes are not considered within the scope of this thesis. In addition,
we often represent traces by listing the sequence of activity names, which may be
abbreviated for simplicity. For example, the trace with Case ID 1 in the event log
shown in Table 2.1 can be represented as (Order received, Print component plan,
Obtain from warehouse, Assemble parts, Final inspection, Order dispatched), or
more concisely as (OR, PCP, OfW, AP, FI, OD), where activity names are abbre-
viated using their initial letters.

Finally, having defined events and traces, we can define an event log as a col-
lection of traces:

Definition 6 (Event log) An event log L is a finite set of traces. Y1, denotes the
ordered collection of traces, arranged according to the timestamp of their first
event. For each indexi € T :={1,2,...,|3L|}, 0; denotes the i-th trace in ..

Figure 2.6 shows an example of an event log visualized using a dotted chart in
ProM!. The chart presents an ordered collection of traces, arranged based on the
timestamp of their first event. Each dot represents the execution time of a recorded
event. Events that belong to the same trace are aligned horizontally and connected
by aline. All approaches proposed in this thesis take as input an event log that can
be represented as in this figure.

Traces

Time
Figure 2.6: An example of an ordered collection of traces in an event log.
Behavioral representation. A behavioral representation of a process is a set of

defined behavioral relations and their support (e.g., frequency) that characterize a
process based on data from an event log L. A commonly used type of behavioral

"Process mining tool available online at https://promtools.org/

https://promtools.org/

Chapter 2. Background 31

representation in process mining is the directly-follows relation [34], which cap-
tures the frequency with which two activities are observed to immediately succeed
one another within the same case. For example, using the two cases shown in Ta-
ble 2.1, we can derive the following directly-follows relations with abbreviated
activity names: (OR — PCP): 2, (PCP — OfW): 1, (OfW — AP): 1,
(AP — FI): 2, (PCP — 0OC): 1, (OC — AP): 1, (FI — OD): 2.
Other behavioral representations, such as eventually-follows relations [34], a-
relations [34], behavioral profiles [35], or declarative process constraints [36], are
also frequently applied to capture different aspects of process behavior.

2.2 System-Level Process Mining

In this section, we discuss system-level process mining, an analysis that enables
the data-driven study of business process dynamics, i.e., the evolution of high-level
process behavior over time. In recent years, it has shown strong potential for ad-
dressing both well-established and emerging tasks in process mining, particularly
in situations when problems cannot be addressed through case-level analysis, in
which cases are examined in isolation. Although the underlying idea is not new
and has been implicitly applied in many process mining techniques, it has only
recently gained increased attention within the process mining community.

Next, we examine three key aspects that are central to system-level process
mining. First, in Section 2.2.1, we discuss why system-level process mining is ap-
plicable and relevant for business processes. Then, in Section 2.2.2, we describe the
typical system-level process characteristics and how they are derived from an event
log. Finally, we demonstrate the practical relevance of system-level process min-
ing by highlighting several prominent process mining tasks where this approach
has already been applied in Section 2.2.3.

2.2.1 Business Process as a Complex System

In system theory, a system is defined as a set of interrelated components or elements
that work together in an organized way to achieve a common goal or purpose [37].
Key characteristics of a system include [37-39]:

* Elements: The individual parts that make up the system.

* Interrelationships: The interactions between the elements.

* Boundary: A perimeter that distinguishes the system from its environment.

» Environment: Everything outside the system that interacts with it.

* Inputs and Outputs: Systems receive inputs from the environment, process

them, and produce outputs.

Chapter 2. Background 32

* Purpose: Every system is organized to fulfill a specific function or achieve
an objective.

Environment

/ Boundary \

1 —
Order : Output

components

L I

X Assemble Final
parts | |nspemon
Pre-produced Order

| dispatched

(:f—&(omponem
Order 1| plan

received|

rom 1

I warehouse 1
== <\Elements i

Figure 2.7: Business process as a system.

Given our definition of a business process (see Definition 1), we can consider a
business process as a specific type of system, as it exhibits all the aforementioned
characteristics of a system. As illustrated in Figure 2.7, the input is represented by
incoming orders, while the output consists of dispatched orders. By dispatching
orders, the process fulfills its purpose, i.e., meeting customer demand. The ele-
ments of the process include its key business activities, the control flow between
them, and other process perspectives such as the resources involved. These inter-
connected elements define the process boundary, which operates within a business
environment influenced by various external factors, such as economic conditions
that may affect the volume of incoming orders.

Business processes are systems that exhibit dynamic complexity [40], as they
are characterized by:

 constant change across multiple time scales,

* tight coupling and interdependence among activities and resources,

 feedback mechanisms that shape outcomes,

* nonlinear relationships between causes and effects,

* history dependence and path constraints,

* self-organizing patterns emerging from interactions,

* adaptation through learning and evolution, and

* trade-offs between short-term and long-term effects.

To study and understand these aspects, it is necessary to consider process dy-
namics, which we define as [41]:

Definition 7 (Process Dynamics) Process dynamics refers to the evolution of

Chapter 2. Background 33

high-level process behavior over time that characterizes how the process as a
whole responds to internal and external variations.

The study of process dynamics in process mining within its socio-technical
environment [26] is particularly challenging, in contrast to engineered systems,
where components are physical and interactions typically follow clear physical
laws or rule-based patterns. In business processes, by contrast, interactions among
elements leave behind digital traces in information systems, often characterized by
indirect or weak connections.

In this thesis, we consider system-level process mining as an approach that
enables the meaningful characterization of business process dynamics, which we
define as follows:

Definition 8 (System-Level Process Mining) System-level process mining refers
to the analysis that enables the study of process dynamics by capturing the evolu-
tion of high-level process behavior and its characteristics that emerge from aggre-
gated data across multiple cases.

In the following, we consider system-level process characteristics as a basis for
studying business process dynamics through system-level process mining.

2.2.2 System-Level Process Characteristics

The study of business process dynamics using system-level process mining relies
on system-level process characteristics and their evolution over time. A system-
level process characteristic is a measurable property or feature that reflects the
behavior of a business process as a whole and can be derived from an event log
or a sublog that covers a certain period. These characteristics are derived from
aggregating event data using a feature extraction function that considers multiple
cases and corresponding event attributes to capture overarching process dynam-
ics, such as workload, resource utilization, or the number of concurrent cases over
time. The exact operationalization of the feature extraction functions depends on
the available data and the concrete analysis objectives. The resulting process char-
acteristics should provide a holistic view of the system’s behavior over time. We
formalize the concept as follows:

Definition 9 (System-Level Process Characteristic) Let L be an event log and F
a universe of all functions that extract process characteristics from event data. A
system-level process characteristic is a measurable property v € R that is derived
by applying f € FtoL' C L, i.e,v= f(L).

Chapter 2. Background 34

It is important to note that when examining the system-level characteristics of
a business process, we focus on characteristics that provide a holistic description
of its behavior that evolves over time, exhibiting notable fluctuation.

Input Characteristics Internal Characteristics Output Characteristics
Number of arrived cases Number of active cases Number of completed cases
Avg. case inter-arrival time ~ Number of executed events, activities Average lead, cycle, idle time
Distribution of case types Activity duration distribution On-time completion rate
Resource utilization Compliance rate
Number of rework loops Error rate or defect rate
Frequency of directly-follows relations Average cost per case

Frequency of eventually-follows relations % of cases requiring rework

Table 2.2: Classification of system-level process characteristics.

Classifications. Given that a business process can be viewed as a system, system-
level process characteristics can be classified into three groups, as shown in Ta-
ble 2.2:

Input characteristics. System input refers to the data, resources, and information
that enter a system from its environment. In the context of a business process,
inputs typically include incoming cases along with their characteristics, such as
inter-arrival times, case types, and priority levels. It may also include the number
of available employees, the equipment provided, and other operational resources.

Internal characteristics. System internal characteristics describe how the process
operates as a whole during execution. These include dynamic metrics such as the
number of active cases, the distribution of activity durations, resource utilization,
and the occurrence of control-flow patterns.

Output characteristics. Output characteristics capture the outcomes or results pro-
duced by the process. These may include the number of completed cases, average
lead or cycle time, error or defect rates, and key performance indicators such as ser-
vice level agreement compliance or on-time completion rates. Such characteristics
provide insights into the overall effectiveness, quality, and customer satisfaction
aspects of the business process.

Process perspectives. From a process perspective, process characteristics may re-
flect one or more dimensions of the process. Table 2.3 shows examples of common
system-level process characteristics and indicates which perspectives they capture.
Some characteristics focus on a single perspective, such as directly-follows rela-
tions or average lead time, while others combine multiple perspectives to provide
a more comprehensive view of the process, like the average resource cost per hour.

Representation. The representation of system-level process characteristics can

Chapter 2. Background 35

Process Characteristic Control-flow Time Resource Data
Frequency of directly-follows relations ([J

Average lead, cycle, idle time [J

Total resource availability [J
Distribution of arrived case types (e.g., standard vs. gold) ([J
Average case variant duration [J [J

Average resource utilization, waiting time [J [J

Resource availability by type (e.g., manager, expert) [J (]
Average case inter-arrival time [J ([J
Average activity execution duration per resource [J [J [J

Average resource cost per hour [J [J ([J

Table 2.3: Process characteristics and affected process perspective.

take various forms. In this thesis, we consider process characteristics in the form
of a time series that enables the analysis and understanding of the temporal evolu-
tion of system-level process characteristics. A time series typically represents the
observation of an underlying process over time, where values are collected through
measurements taken at uniformly spaced time intervals, following a predefined
sampling rate [42]:

Definition 10 (Time Series) A time series V is an ordered sequence of n real-
valued observations, denoted as:

V= (vi,v9,...,0p), v € RY.

If d = 1, the time series is called univariate, meaning each observation is a single
real value. If d > 1, the time series is multivariate, where each observation is
a vector of d variables recorded simultaneously at the same time instant. In this
case, the series captures multiple interrelated sequences evolving in parallel over
time.

Event log Step 1 Step 2

Case events Case Process characteristics |wq (w; (w3 | ... |w;

| |
S el '.'.'J". eden Arrived cases G=1|3|4a|2]..|v

oo joeejes |
:",','I,’ vy JI"’ Active cases G=2)|3 7|7 |..|v?

ol o odeoy
I e Completedcases (j=3) | 0|0 | 4 |..]|v3
. | [X A i
Time | | 1*" Time .
T T T I I e R
| | | eee
Windows

Figure 2.8: Derivation of system-level process characteristics.

Derivation. The derivation of such time series from an event log involves two
main steps, as illustrated in Figure 2.8. In Step I, the recorded traces and their

Chapter 2. Background 36

corresponding events are divided into equally spaced, non-overlapping time win-
dows, ensuring that each event is assigned to exactly one window. In Step 2, the
values of system-level process characteristics are computed for each window using
a specific feature extraction function. The resulting value vf represents the value
of process characteristic j during time window ¢. These values are then assembled
into separate univariate time series, one for each process characteristics of interest.
Taken together, the resulting time series can be combined into a multivariate time
series that describes the temporal evolution of system-level behavior captured in
the event log. Figure 2.9 shows examples of resulting time series.

Completed cases

40

20

Active cases

50

25

100

Time windows

Figure 2.9: Examples of system-level process characteristics.

2.2.3 Applications

In recent years, system-level process mining has been applied in a wide range of
process mining applications, where it has taken on different roles. In the following,
we highlight these roles and present a set of representative applications.

Importance of system-level process mining. Figure 2.10 shows a Venn diagram
that contrasts instance-level and system-level process mining as two complemen-
tary approaches. It highlights the importance of system-level process mining by
distinguishing three types of tasks that benefit in different ways from system-level
analysis and exhibit different levels of realized research potential. Type I tasks can
be fully addressed through instance-level process mining, such as process discov-

Chapter 2. Background 37

ery and conformance checking, and therefore do not require system-level process
mining. Type II tasks can be addressed by instance-level techniques but benefit
significantly from system-level analysis, for example, in predictive process moni-
toring, where system-level process mining plays a supportive role. Type III tasks
can only be addressed using system-level process mining, such as the detection of
dynamic bottlenecks or the identification of high-level events, where system-level
process mining plays an essential role. Finally, type II and III tasks show the great-
est remaining research potential that is addressed in this thesis and can be explored
in the future.

“\Smnce-level process mining System—level Process minjy,
g

Type I tasks:
an be fully addressed
hrough instance-level
~ process mining

Type II tasks:
can benefit from
system-level process
mining

Type III tasks:
can only be addressed
through system-level
process mining

I Level of realized research potential Low
Figure 2.10: Process mining tasks and the level of research potential.

Supportive role of system-level process mining. System-level process mining
plays an important supportive role in many well-established process mining tasks.
In the following, we briefly discuss several examples that demonstrate the useful-
ness of system-level process mining:

Performance analysis. Performance analysis is a key task in process mining [22].
It typically considers four main performance dimensions, collectively known as the
Devil’s Quadrangle: time, cost, quality, and flexibility [1]. In many cases, perfor-
mance measures derived from an event log require the simultaneous consideration
of all process instances. For example, time-related metrics such as average cycle
time or lead time are computed based on all cases completed in the event log. How-
ever, while the derivation of such a measure describes the entry state of a process,
it does not capture the time aspect of process dynamics, namely its evolution. This
can be addressed by deriving performance measures for a fixed time period, for
example, on a weekly basis. This approach offers a more dynamic view of how
process performance evolves over time. Therefore, system-level process mining
enables a more precise performance analysis that is differentiated in time.

Predictive process monitoring. Predictive process monitoring is a branch of pro-

Chapter 2. Background 38

cess mining that focuses on forecasting the future behavior of ongoing (incom-
plete) process executions [22]. It is a typical example of a task that is commonly
addressed at the level of individual process instances, based on the assumption that
the value to be predicted depends only on intra-case information—such as the ex-
ecution history of the specific case [22]. However, this intra-case assumption does
not hold in many real-world scenarios [22]. For instance, when cases share limited
resources, the completion time of one case may be strongly influenced by other
cases running concurrently [5, 43]. In such cases, system-level process charac-
teristics become important. As a result, system-level process mining has played
a supportive role in predictive process monitoring by improving the accuracy of
predictions made by traditional techniques [5].

Business process simulation. System-level process mining plays an important role
in the context of Business Process Simulation (BPS). BPS refers to the use of sim-
ulation techniques to analyze, predict, and improve the performance of business
processes based on event data extracted from information systems [1]. It is also
an important tool in process mining for the redesign of organizational processes.
By creating a digital process twin that includes strategic decisions, external fac-
tors, and feedback loops [44], simulation supports the estimation of the effects of
process changes on several process aspects and enables effective what-if analy-
sis [45]. Through BPS, it also becomes possible to study process dynamics under
different operating conditions. However, while traditional BPS approaches usu-
ally rely on Discrete Event Simulation (DES) and focus on detailed instance-level
behavior [46], system-level process mining provides a complementary foundation
by enabling the discovery of system dynamics simulation models [6]. This ap-
proach captures aggregated patterns and interactions across many cases and offers
a higher-level view. By abstracting individual events into system-level behaviors,
system dynamics supports the construction of simulation models that reflect strate-
gic decisions, external influences, and feedback loops found in real-world pro-
cesses. As a result, system-level process mining connects data driven discovery
with system dynamics modeling and provides a holistic simulation framework that
complements and extends traditional auto-mined simulation techniques [47-49].

Essential role of system-level process mining. System-level process mining has
played a vital role in addressing several emerging tasks that are difficult to handle
when using only instance-level process mining.

Concept drift detection. Concept drift detection is a prominent example of a pro-
cess mining problem that requires system-level process mining. Concept drift
in process mining refers to changes in a process that occur while the process is
still being analyzed [50]. To detect concept drifts effectively, current methods
apply system-level process mining to extract information from multiple process

Chapter 2. Background 39

traces. This information is then represented in forms such as multivariate time se-
ries [51], process graphs [52], multi-layered event knowledge graphs [53], or other
formats that reflect the frequency and patterns of process characteristics. These
representations are analyzed using techniques such as statistical analysis [31, 54,
55] or visual analysis [56] to identify possible drifts. In addition to detection,
system-level process mining has also been used to explain concept drift in busi-
ness processes [51]. By constructing time series that describe system-level process
characteristics across different process perspectives, it is also possible to identify
causal relationships using the concept of Granger causality, offering insights into
the cause-and-effect relationships underlying significant changes [57].

Dynamic bottleneck detection. The problem of dynamic bottleneck detection is
another important example of a process mining task that can only be addressed
through system-level process mining. Dynamic bottlenecks occur when certain
cases experience temporary delays at specific stages of a process [3]. These delays
can become particularly costly when they propagate through subsequent process
steps. Traditional techniques for bottleneck detection, which primarily focus on
individual activities that cause delays, cannot identify dynamic bottlenecks that
propagate throughout a process. By applying system-level process mining, a ded-
icated method has been introduced to detect cascades of system-level behavior,
that is, patterns that frequently occur before dynamic bottlenecks arise [3]. These
patterns are identified through temporal event sequences observed across multiple
cases within the same process step. This approach enables the automatic detection
of cascading, undesired behaviors that lead to dynamic bottlenecks.

High-level event mining. High-level event mining is an emerging research direction
that enables the study of system-level process behavior using event data. High-level
event mining can be seen as an alternative form of system-level process mining.
Instead of relying on time series, as done in this thesis, it is based on the idea of
deriving discrete events to study system behavior. Specifically, it focuses on ex-
tracting high-level events from event logs to capture system-level process behavior
from a broader perspective [58]. Derivation of high-level events relies on grouping
original events that occur in close temporal proximity and share common process
characteristics [4]. The specific implementation of the feature extraction function
may vary depending on the analysis goal and available data attributes. Each derived
high-level event includes attributes such as activity, case, and timestamp. The re-
sulting high-level event log can be used to examine how various process states
emerge, spread, and are resolved across the system [58]. It also enables several
downstream analysis tasks, such as identifying signs of performance issues, like
delays, bottlenecks, long waiting times, or reduced throughput, and analyzing their
root causes through correlation and causality analysis [58].

Chapter 2. Background 40

The process mining tasks discussed above are representative examples that illus-
trate the role system-level process mining has already played in the field. However,
considerable research potential remains untapped. In the following chapters, we
demonstrate how studying process dynamics through system-level process mining
can further advance the state of the art and enable novel process mining tasks that
have not yet been explored.

Chapter 3

Comprehensive Concept Drift
Characterization

Business process dynamics can serve as a means to better characterize concept
drifts. By analyzing these dynamics after process changes, it becomes possible
to more effectively relate different changes and assess whether detected variations
form part of a more complex drift. This chapter explains how this can be achieved,
building on our paper “Comprehensive Characterization of Concept Drifts in Pro-
cess Mining” by Alexander Kraus and Han van der Aa [9].

The remainder of the chapter is structured as follows. Section 3.1 introduces
the topic. Section 3.2 discusses the current taxonomy, its limitations, and presents
our proposed taxonomy. Section 3.3 explains the steps of our framework and the
proposed algorithms. Our evaluation results are presented in Section 3.4, followed
by related work in Section 3.5. Finally, we conclude in Section 3.6.

3.1 Introduction

Business processes are subject to change over time due to various internal and ex-
ternal factors, such as organizational adjustments, process enhancements, policy
updates, and technological advancements. These changes can introduce concept
drifts, which are situations when the characteristics of a business process have un-
dergone significant changes [57] during the period when process execution data
has been recorded, resulting in event logs that contain information on different ver-
sions of a process. The presence of such drifts in event logs can have a detrimental
impact on the accuracy and usefulness of process mining results as these will be
(partially) based on historical data that no longer represents the current process.
Therefore, to avoid incorrect or even misleading process mining results, con-

41

Chapter 3. Comprehensive Concept Drift Characterization 42

cept drift detection aims to identify and characterize concept drifts from event logs,
striving to understand how a recorded process evolved over time. To achieve this,
concept drift detection addresses the following three key tasks [31]: (1) drift detec-
tion, which involves detecting when drifts occurred, (2) drift localization, which
aims to describe what was modified in the process, and (3) drift characterization,
which considers how drifts manifest themselves over time. In this chapter, we par-
ticularly focus on the latter task, i.e., drift characterization, which seeks to under-
stand how drifts in event logs unfold over time, i.e., whether they occur suddenly
or gradually, and whether or not changes jointly form more complex patterns in the
form of incremental or recurring drifts.

Despite numerous proposed solutions to automatically detect concept
drifts [59], none of the existing techniques can comprehensively characterize drifts
in event logs [60]. Specifically, most existing techniques focus on detecting iso-
lated process changes that lead to sudden drifts [52, 61-67], with few others also
differentiating between sudden and gradual ones [31, 54-56]. These techniques
thus only provide a partial picture of detected concept drifts since they cannot rec-
ognize interrelations between process changes, which lead to more complex drifts
in the form of incremental and recurring drifts.

In many process mining tasks, ignoring such complex drifts can lead to mis-
leading results. For instance, applying existing concept drift detection techniques
on a process may reveal that it went through a considerable amount of changes,
each leading to possibly different process versions that should be analyzed sepa-
rately. However, by considering the interrelations of these changes, it may become
clear that this process is in fact subject to a seasonal pattern in which just two
process versions alternate. Subsequent analyses can then target each of these ver-
sions individually. Similarly, performance analysis may be biased if the event data
includes an incremental drift. In this case, proper performance analysis should sep-
arately consider recorded process behavior before the incremental drift and after it,
while disregarding intermediate behavior that occurs during the period of the in-
cremental drift. As a result, the state of the art provides only incomplete insights
into the actual evolution of business processes over time.

This chapter addresses this limitation through two contributions. First, we pro-
pose an improved taxonomy that can be used as a basis for the comprehensive
characterization of concept drifts, since we recognize that existing works are not
just limited in their scope, but are actually grounded on imprecise and incomplete
definitions. Second, we propose a three-step framework that automatically char-
acterizes detected drifts in a comprehensive manner, following our proposed tax-
onomy. Our framework starts with the detection of isolated change points in the
event log, marking significant shifts in process behavior. Next, using our change
type detection algorithm, we identify actual process changes and categorize them

Chapter 3. Comprehensive Concept Drift Characterization 43

as sudden or gradual. Finally, we determine concept drifts and their types from
the detected process changes using our change interrelation detection algorithm.
Conducted evaluation experiments show the accuracy of the developed framework
and its algorithms compared to state-of-the-art techniques.

3.2 Problem Illustration

This section proposes a new taxonomy for the comprehensive characterization of
concept drifts in process mining, which overcomes the limitations of existing def-
initions and can be used to accurately reflect the scope (and limits) of existing
concept drift detection techniques. To achieve this, we examine the current taxon-
omy used to characterize concept drifts in Section 3.2.1, along with its limitations,
which are detailed in Section 3.2.2. Finally, we present our proposed, improved
taxonomy in Section 3.2.3.

3.2.1 Status Quo Taxonomy

This section provides a brief overview of concept drift detection and the current
definitions (i.e., the status quo taxonomy) used to categorize and understand differ-
ent types of concept drifts in process mining, which is provided by Bose et al. [31].

In the context of process mining, a concept drift refers to a situation in which
a process is changing while being analyzed [31], which happens when an event
log contains data stemming from different process versions. Figure 3.1 illustrates
an example of a concept drift. In this example, the original process version is
replaced with the new one that rejects the order if its components have not been
pre-produced.

Concept drift

Print
component
Order 5D
It

eceived

Order

components

Not pre-produced

Final
inspection

Pre-produced | Obtain
S Trom o Al o e pecton
warehouse pe Order

rdes
dispatched

Reject
order
Order

rejected

Order Pre-produced

Order
received dispatched

Obtain
from

Not pre-produced
warehouse

Original process version New process version

Figure 3.1: Example of a concept drift.

Concept drift detection aims to identify process changes based on event logs
to obtain a comprehensive understanding of the overall evolution of a process
over time. To achieve this, concept drift detection addresses the following key
tasks [31]:

(i) drift detection, which involves detecting when drifts occurred,

Chapter 3. Comprehensive Concept Drift Characterization 44

(i1) drift localization, which aims to describe the process perspective(s) (control-
flow, data, time, and data) affected by and specific modifications made to the
process during a drift, and

(iii) drift characterization, which considers how drifts manifest themselves over
time (e.g., suddenly versus gradually).

Sudden drift Gradual drift Incremental drift Recurring drift
c ! c ! | o ! | o | | |
2 | i=] | | i=] | v, K= | | |
2 | 4 | | o | Il 2 | [
S mm ;| emwm ;| T AR
[} I Uy 1] 1 1] I I 1] ! | I

S oo 5| - | - e
S : g S| | S|k
a 1 a 1 1 a 1 1 x [

Time Time Time Time

Figure 3.2: Concept drift types (adapted from [31]).

Our work primarily focuses on this latter task, i.e., change characterization, since
this is, at best, only partially covered by existing works (see Section 3.5). In the
taxonomy by Bose et al. [31], change characterization primarily focuses on classi-
fying drifts into one of four drift types [31], which are illustrated in Figure 3.2:

1. A sudden drift occurs when a current process version is entirely replaced
by a new one at a specific moment, and the new one takes over all ongo-
ing cases [31]. This type of drift can occur in emergencies or when new
regulations must be followed [60].

2. A gradual drift occurs when a current process version is replaced by a new
one, and both versions coexist during a transition period [31]. Throughout
this transition period, an increasing number of process instances begin to fol-
low the new process version until the point at which the new version operates
exclusively.

3. An incremental drift occurs when a current process version is replaced by a
new one via smaller incremental changes [31]. For instance, this drift type
occurs in organizations implementing successive business process quality
improvements as part of a larger initiative.

4. A recurring drift occurs when a set of process versions reappear after some
time [31]. Recurring drifts can occur in two forms: periodic and non-
periodic. Periodic drifts follow seasonal patterns, such as reduced demand
and resource needs during the summer holidays, whereas non-periodic drifts
stem from changes that do not recur according to predetermined times, but
rather from other conditions, such as a change in a process that is imple-
mented when the workload is too high.

Chapter 3. Comprehensive Concept Drift Characterization 45

3.2.2 Limitation of the Status Quo Taxonomy

The aforementioned status quo taxonomy has several key limitations that hinder its
usefulness when aiming to properly characterize concept drifts:

L1: Non-exclusive drift type classification. The four drift types defined by Bose
et al. [31] are not mutually exclusive because they encompass two different levels
of granularity. Specifically, sudden and gradual drifts characterize how individ-
ual process changes manifest themselves, whereas incremental and recurring drifts
connect several process changes to each other. As a result, a single concept drift
can be an incremental or recurring drift, but consist of individual sudden or grad-
ual (or both) changes, as visualized in Figure 3.3!. Due to this limitation, drifts
cannot be properly characterized when using the existing four drift types, since we
either lose information at the high level, i.e., how changes are connected, or at the
low level, i.e., if individual changes in a recurring or incremental drift occurred
suddenly or gradually.

Incremental drift Recurring drift

2 Gradual drift 2

o Sudden o sudd

7] Gradual drift 'S udden

) drift i 5 Gradual Sudden ~ Gradual drift

> Sudden oy i > drift drift drift

n aie HECPEE 0 | | 7 - — — ‘ ‘

N T % | v N

S\Ewm | | 0 S v

= | | | | | | = | o ! I I ! !

[al | | | | | | | oL [| | | | [
Time Time

Figure 3.3: Incremental and recurring drifts can consist of sudden and gradual
drifts, leading to non-exclusive classification (L1).

L2: Imprecise definition of incremental drifts. The definition of incremental
drifts is imprecise, which means that it is not always possible to deterministically
assign a drift type to specific observations. Specifically, the existing definition
does not specify what makes a change incremental and, therefore, cannot be used
to differentiate between a series of unrelated, relatively small drifts and a single,
incremental drift, as, e.g., visualized in Figure 3.4.

L3: Incomplete definition of recurring drifts. Finally, the definition of recurring
drifts is incomplete (and imprecise) because it does not align with the examples
that are used to illustrate these drifts, essentially making the definition too narrow.
For example, the definition, which requires a set of process versions to reappear,

"Note that Bose et al. [31] indeed remark on this aspect, but it is not picked up by subsequent
works.

Chapter 3. Comprehensive Concept Drift Characterization 46

What type of drift is it?

14 [
< L
2 -
A collection of drifts ' g J \‘; . ’ Asingle incremental drift
i - «
! A
T e N S N N V- o
z i T 2 e .
S| g g [I
g L S 2 o= @
gl I | | | | s I | | | !
al | i i i | | al ! i i i i i
Time Time

Figure 3.4: Minor changes can form an incremental drift, but also a sequence of
independent sudden and gradual drifts (L2).

would exclude situations in which a single process version reappears every so of-
ten (whether periodically or not), as, e.g., visualized in case c¢) of Figure 3.5. In
addition, if there are two recurring drifts in an event log, e.g., as depicted in case d)
of the figure, then the existing definition would classify them as a single recurring
drift, whereas it would be more precise to state that there are two recurring drifts,
one involving versions v; and vy and another involving v3 and vy.

Classical More complex Simple Two classical
2-version pattern 3-version pattern 1-version pattern recurring drifts
2 2 2 2
K] K] o S
(2] w w w
g 2 | 2 V5] g
g v, [| 8 | 8
I i

S - . B ! 8
al— /= & I/ ! _ gL I —— &

a) [Time b) Time c) Time

| |

Figure 3.5: Instances of recurring drifts that align with the current definition (a, b)
or do not align (c, d) (L3).

Due to these limitations, concept drift characterization has mainly centered on
detecting isolated process changes and their types (sudden vs. gradual), overlook-
ing more “complex” drifts, like recurring and incremental drift types, especially
those involving lower-level sudden and gradual changes (see Section 3.5 for an
overview).

3.2.3 A New Concept Drift Characterization Taxonomy

To overcome current limitations, we propose a new taxonomy to achieve a more
clear and comprehensive characterization of concept drifts. The novelty of our tax-
onomy lies in its distinction between simple and complex drifts and its recognition
that any change that forms or is part of a drift can be either sudden or gradual. In
this manner, it overcomes the limitations observed in the status quo taxonomy.

Chapter 3. Comprehensive Concept Drift Characterization 47

In the following, we explain our taxonomy, visualized in Figure 3.6, in detail,
and discuss how it addresses the identified limitations.

Drift collection Concept drift
ConsistsOf » DriftType
> —
1 1.*

A

[]

Simple drift Complex drift
1| consistsOf > «ConsistsOf |1
1 2.%*
Process version Process change Change point

X N 4HasOld HasStart >
BehavioralRepresentation 1 1 ChangeType 1 1 ChangeMoment
StartMoment HasNew HasEnd» T/‘meW{ndowBefore
EndMoment 1 1 1 1 TimeWindowAfter

Figure 3.6: Our taxonomy for concept drift characterization.

Key Concepts of the New Taxonomy

As shown in Figure 3.6, a central concept in our taxonomy is a process change. We
formalize the concept of process change and its characteristics as follows:

Process Change. A process change c is a modification of a business process that
is characterized by a tuple:

c= (t, pstart’ pend7 Uprevious’ Unea:t), (31)

where:

* ¢t € {“sudden", “gradual"} is the process change type that describes how a
process change occurred, i.e., suddenly or gradually,

« ptert ¢ T and p®? € T are change points that denote the start and end
moments of a process change in L. They are represented by trace indices
fromZ = [1,2,...,|X|], which indicate corresponding traces after which
the behavior of recent process executions deviates significantly from prior
behavior [55]. In the case of a sudden change type, both change points take
the same value: p*'** = p*¢ whereas in gradual cases, they differ.

o pPrevious apd ¢meet are process versions before and after the process change.
A process version is a variant of a business process, defined by a specific set
of activities and their underlying relations. It is characterized by a behavioral

Chapter 3. Comprehensive Concept Drift Characterization 48

abstraction used to derive the version from an event log and is associated with
a defined start and end point that mark the period during which the version

was active.
We use ¢ := (c1,...,cn) to denote a sequence of all process changes ordered by
p*tart that are present in L.

From the behavioral representations of the process versions associated with a pro-
cess change, we can extract further essential characteristics for drift characteriza-
tion and other concept drift detection tasks:

* Change Severity determines how much a process changed, which can be
used, e.g., to detect minor changes when searching for incremental drifts. It
can be computed using a function that takes the behavioral representation of
old and new process versions as input and produces a value in the range (0,
1). Values closer to 0 indicate low severity, while values closer to 1 signify
high severity.

* Change Localization identifies specific process modifications when compar-
ing old and new process versions. This information is valuable to address
the task of localization changes in concept drift detection. Depending on the
behavioral representation, change localization can be quantified by examin-
ing sets of behavioral relations or patterns that are removed, introduced, or
modified.

* Change Perspective reveals the affected process perspectives: control-flow,
time, resource, and data. This determination aligns with the concept of per-
spective of change, as discussed by Bose et al. [31], and relies on the selected
behavioral representation techniques.

One or more connected process changes constitute a concept drift, which we for-
malize as follows:

Concept drift. A concept drift d is a modification of a business process that is
characterized by a tuple:
d = (driftType,c), (3.2)

where drift Type € {“sudden", “gradual”, “incremental”, “recurring"} and ¢ :=
(CisCit1s -+, ¢5), 1 <i < j < N is asubsequence of ¢. Depending on the number
of process changes, each drift is categorized into two groups, each consisting of
two distinct drift types:
* A simple drift is a drift that consists of a single standalone process change,
ie,|c|=1:
— A sudden drift is given in the case of a sudden change type.

Chapter 3. Comprehensive Concept Drift Characterization 49

— A gradual drift is given in the case of a gradual change type.

* A complex drift is a drift that consists of two or more connected process
changes, i.e., |¢| > 1:

— An incremental drift is given by a consecutive sequence of at least two
process changes with low change severity that adheres to the same pro-
cess transformation initiative (business driver).

— A recurring drift is defined as a collection of process changes that in-
troduce one or more process versions, forming a pattern that recurs at
least once.

A drift collection d := {d;,...,dx} is a set, consisting of K > 1 concept drifts.
Given the aforementioned concepts, the objective of concept drift characterization
is to establish a drift collection d from an event log L, such that d provides a
comprehensive characterization of the concept drifts contained in L according to
the taxonomy of Figure 3.6.

Benefits of the New Taxonomy

Our taxonomy jointly addresses the limitations of the status quo taxonomy. First,
our taxonomy addresses the first limitation (L1) by introducing a mutually exclu-
sive classification of drift types that is based on a process change as a building
block for any concept drift and the number of process changes that belong to a
drift (simple and complex drifts). Complex drifts (recurring and incremental), by
definition, consist of several process changes, where each process change can hap-
pen suddenly or gradually, resolving the issues depicted in Figure 3.3.

We improve the definitions of recurring and incremental drift types, addressing
limitations L2 and L3 by specifying how process changes should be related and
form complex drifts. In the case of an incremental drift, the proposed notion of
a shared business drive, like a BPM initiative to improve the average lead time of
a business process, introduces a clear manner to differentiate an incremental drift
from a sequence of standalone disconnected process changes. It also opens new
opportunities for how incremental drifts can be detected, i.e., the necessary condi-
tion of at least two consecutive process changes with low severity can be extended
with further conditions or restrictions. For instance, an additional condition could
be related to time, i.e., a sequence of process changes should occur within a certain
period, or they should be close in terms of change localization (i.e., which parts of
a process are changed). In the case of recurring drifts, our definition of a recurring
drift as a pattern of one or more process versions that reappear at least one time
covers all possible recurring drift instances, including those depicted in Figure 3.5.

Chapter 3. Comprehensive Concept Drift Characterization 50

3.3 Framework

This section presents our framework for detecting and characterizing simple and
complex concept drifts. Section 3.3.1 introduces the framework at a high level,
while Sections 3.3.2-3.3.4 describe its main steps in detail.

3.3.1 Framework overview

Figure 3.7 outlines our proposed framework at a high level, detailing its input, main
steps, and output.

9Event 1. Change 2. Change type 3. Change inter- Simple and
log point detection classification relation analysis complex drifts

Figure 3.7: Overview of the main steps of our framework.

Framework input. Our framework takes as input an event log L. We define the
event log together with a trace o, as well as the ordered collection of traces >r,
as specified in Section 2.1.2. Additionally, we use pg.s; and p,s as time points,
respectively, corresponding to the timestamps of the first and last events in L.

Framework structure. Our framework consists of three key steps. Step 1 focuses
on the detection of change points in log L, for which a range of existing state-of-
the-art techniques can be employed. In Step 2, our framework turns the sequence
of detected change points into a sequence of process changes by differentiating be-
tween individual points that correspond to sudden changes and pairs of consecutive
change points that indicate a gradual process change. Lastly, in Step 3, we conduct
change interrelation analysis to establish connections between the detected process
changes, yielding a collection d of simple and complex drifts.

Framework output. Our framework’s output is a collection d of identified simple
and complex drifts, following the definitions in Section 3.2.3. Each identified drift
is thus associated with a drift type and corresponding process changes, including
process change types and the associated change points, providing a comprehensive
characterization of the drifts in an event log.

3.3.2 Step 1: Change Point Detection

The first step of our framework identifies the moments in an event log when pro-
cess behavior changes, resulting in a sequence of detected change points and the

Chapter 3. Comprehensive Concept Drift Characterization 51

corresponding time windows, as illustrated in Figure 3.8. This step can be in-
stantiated with any existing technique for change point detection in an event log,
as this problem is the most extensively addressed task in concept drift detection,
unlike other aspects of our framework, as demonstrated in Section 3.5. Addition-
ally, recent work by Adams et al. [57] underscores the effectiveness of some of
these techniques, which we also test and compare in our experimental evaluation
in Section 3.4.

Il WO it Wl it Wz | W3 it W4 it WS W6 |
—

Prirst D1 P2 Ps Pa Ds Pe Plase 1me

Figure 3.8: Outcome of the first framework step: change points are detected using
an existing change point detection technique, splitting the time frame of an event
log into time windows.

Once Step 1 is instantiated using any existing change point detection tech-
nique, we obtain a sequence of detected change points, which we represent as
p = (p1,...,pN). These change points split the time frame of log L into a se-
quence of N + 1 time windows w := (wy, . .., wy), Where wy represents the time
window from pg;.s; to p1, and wyy corresponds to the time window from py to pjgs¢.
Figure 3.8 shows the outcome of the first framework step, assuming an event log
with six process change points (our running example for this section).

Note that our framework terminates after the first step if p does not contain
any change points; otherwise, the framework continues with the next step to reveal
process changes from detected change points.

3.3.3 Step 2: Change Type Classification

The second step of our framework turns the sequence of detected change points into
a sequence of sudden and gradual process changes. As illustrated in Figure 3.9, this
involves differentiating between two cases:

1. Situations where the behavior that follows a change point p; (i.e., during
window w;) corresponds to a distinct process version, signaling that a sudden
change occurred at point p;;

2. Situations where the behavior in w; reflects a mix of the behavior that oc-
curred before p; (i.e., in window w;_1) and the behavior that happens after
the next change point p; 1 (i.e., window w;41). This indicates that the behav-
ior observed in window w; does not correspond to a distinct process version.
Rather, it corresponds to a transition period in which the previous process

Chapter 3. Comprehensive Concept Drift Characterization 52

Does w; correspond to a distinct process version or

is it a mix of process versions from w;_, and w;,{?
\ J

r i_i-i iTime ﬁ
Di-1 Pi Pi+1 Dit2

Distinct process version Mix of process versions
Gradual

o Sudden " Gradual / end

gs , ! gs start

83| | Y v |

=2 K Time £2| W Time
L L L

Pi-1 Pi Di+1 Di+2 Di-1 Pi Pi+1 Di+2

Figure 3.9: The main idea of the change type classification step.

version v; is shifted out and the new one v;4; is introduced, signifying a

gradual process change that starts at p; and ends at p; 1.
To operationalize this idea, we have developed a change type classification tech-
nique, presented in Algorithm 1. It determines if a change point belongs to a sud-
den or gradual process change by considering the evolution of the process behavior
before and after the detected change points. It takes an event log L and a sequence
of change points p, as input and generates a corresponding sequence of N < |[p|
process changes ¢ = (ci,...,cy) as output. Following our definition of a pro-
cess change in Section 3.2.3, each process change is associated with a change type
(“sudden" or “gradual"), two corresponding start and end change points (p***"* and
p"®), and two process versions (vP"¢V?°"s and v™°*). For our running example, the
output of this step is shown in Figure 3.10, which shows that six detected change
points describe four process changes.

Next, we explain the main parts of Algorithm 1: behavioral representation and

change point classification.

Process

change ¢4
P oo
rocess
P change c; —_—
Process change ¢, v 3
versions —_ ; ;
o | |
! 1 1 1 3
: ! ! ! ! ! i !
Drirst ;91 b2 123 ;74 Pé; 116 Piast Time
Gradual Gradual Sudden Gradual Gradual Sudden
start end start/end start end start/end

Figure 3.10: Outcome of the second framework step: each change point p; is asso-
ciated with a process change.

Chapter 3. Comprehensive Concept Drift Characterization 53

Algorithm 1 Change Type Classification

Input: Event log L, sequence of change points p = (p1,...,pn~)
Parameter: Trend percentile

Output: Sequence of process changes ¢ = (c1,...,cnN)
1: procedure CHANGETYPECLASSIFICATION(L, p, o)
2: w = <wg, R w|p‘> <+ computeWindows(L, p) > Define window sequence based on p
3: t < (t1,...,t)p|) with t; = L forall i in [1, |p|] > Initialize a classification sequence
4: B < getBehavioralMatrix(L, p) > Derive behavioral matrix
5 fori e [1,|p| — 1] do > Iterate over all but the last change point in p
6: if t; = L then
7 weigth, < 0, weigth, < 0 > Initialize the weights for s./gr. classification
8: for b € B.relations do > Iterate over behavioral relations
9: rocp,1 < rate0fChange(b, w;—1,w;) > Getrate of change from w;_1 to w;
10: rocp,2 < rateOfChange(b, w;,w;+1) > Gat rate of change from w; to w;4+1
11: trendy < classifyTrend(rocs,1, 70,2,) > Sudden, gradual, or unchanged
12: if trend, = “sudden” then
13: weigth, + weigth, + calcWeight(b, [wi—1,w;, wit+1]) > Accum. weights
14: else if trend, = “gradual” then
15: weigth,, < weigth + calcWeight(b, [wi—1, wi, wit1]) > Accum. weights
16: if weigth, > weigth, then
17: t; < “gradual,,,,,”, t;11 < “gradual_, ,” > Assign change types
18: else
19: t; < “sudden" > Assign sudden change type
20: ift,) = L then > Handle edge cases where the final point is not assigned yet
21: tp| <+ “sudden” > Assign sudden change type
22: ¢={(c1,...,cn) < setProcessChanges(p, t, B) > Define process changes
23: return ¢

Behavioral representation. Our algorithm first computes a behavioral repre-
sentation to characterize the recorded process behavior during the time windows
between detected change points (cf. Section 2.1.2). In our framework, we use
directly-follows relations [34] observed within a specified time window, a widely
used behavioral representation in process mining for concept drift detection [59]. It
involves counting the frequency with which two activities are observed to directly
follow one another within a single case. However, it is important to note that our
algorithm’s choice of behavioral representation is flexible, provided that it yields a
numeric frequency distribution over a predefined set of relations or patterns across
the windows. Therefore, it can also cover other types of relations (e.g., eventu-
ally follows), sets of relation types, such as those of a behavioral profile [35], or
declarative process constraints [36].

To derive a behavioral representation, our algorithm takes an event log L with
the sequence of detected change points p as input and then computes a behavioral
matrix, denoted as B. The behavior matrix consists of columns B.windows that cor-

Chapter 3. Comprehensive Concept Drift Characterization 54

respond to the time windows and rows B.relations that correspond to the behavioral
relations. Each cell B[b, w] of the behavioral matrix corresponds to the relative fre-
quency of a relation b (e.g., a directly-follows relation between two activities) for
a window w (line 4). To calculate such a relative frequency, our algorithm first
identifies the set of traces ¥,, C X, that started during that window (according
to the timestamp of the trace’s first event)>. The algorithm then counts how often
relation b is observed in X, e.g., how often we observe that an activity x is di-
rectly followed by activity y in these traces, and divides that count by the number
of traces in ¥, yielding B[b, w].

Change points and windows Absolute frequencies Relative frequencies
P1 D2 D3 (behavioral matrix)
| Wi | wa | wa| wy| Wy Wy W3 W, Wy Wy W3z W,
f 1_ b,[10 9 12 15 by [2.0 15 2.0 3.8
sz{ =1 ‘bz 10 10 12 11 b, 120 1.7 2.0 28
{ | b; {10 8 10 9 b;12.0 13 1.7 23
I \ b0 5 5 5 bslo 08 08 13

Figure 3.11: Example of a behavioral matrix obtained from an event log.

Figure 3.11 illustrates the steps for constructing a behavioral matrix in a simpli-
fied example. In this example, an event log containing three change points is first
converted into absolute frequencies for each time window, assuming four distinct
relations across all recorded traces. These absolute frequencies are then trans-
formed into relative frequencies, producing the final behavioral matrix.

Change point classification. Using the obtained behavioral representation, our
algorithm next iteratively goes over the change points in p to classify them. For
each index i € [1,|p| — 1], the algorithm considers a situation such as previously
illustrated in Figure 3.9. Specifically, it considers the behavior observed during
window w;, in light of the behavior observed for its preceding (w;_1) and succeed-
ing (w;+1) windows, in order to determine if a change point p; corresponds to a
sudden change or to a gradual start, i.e., the first change point in a gradual process
change from p; to p;1.

To decide between these two options, the algorithm first considers each be-
havioral relation surrounding point p; individually before classifying p; as being a
sudden or gradual start point:

The choice to compute a behavioral matrix according to the traces that start during w follows
existing work on concept drift detection (cf. [57]) and is based on the assumption that the process
version of a trace is fixed when it starts. If this assumption does not hold, the behavioral matrix B
should, instead, be computed according to the events observed during w.

Chapter 3. Comprehensive Concept Drift Characterization 55

Relation-level classification. Given a change point p;, our algorithm determines
for each behavioral relation b € B.relations if it was involved in the changes of
points p; and p;+1, and, if so, if b changed in a sudden or a gradual manner.

To achieve this, we calculate the rates of change (roc) [68] of relation b when
moving from time window w;_1 to w;, denoted as rocy, 1, and from w; to w;41,
denoted as rocy o (lines 9-10). For this, we use the following function:

rateOfChange(b, w;_1,w;) :=
(B[b,wl]/lg[b, wi_l] — 1) x 100 if B[b,wi_l] > 0,

=4 100 if B[b, w;—1] = 0 and B[b, w;] > 0,
0 if B[b, wi_l] = 0 and B[b, wi] =0.
(3.3)

In Equation 3.3, the first case captures the usual computation of a rate of change,
according to established definitions [68]. The second and third cases avoid division
by zero errors, setting the change rate of a relation b to 100% if it appears in w; but
not in w;_1 (second case) and to 0% if it appears in neither w; or w;_; (third case).

Next to these change rates, we also consider a trend percentile o, which we
use to determine if a change rate falls within the normal variance in a process
or if it is part of an actual process change. Specifically, we consider the rates
of change of all behavioral relations across all pairs of successive windows, i.e.,
the distribution of rates of change for a particular log. Given this distribution,
we consider roc to be significant (i.e., a true process change) if it is lower than
the value of the bottom percentile V, (a significant decrease in the frequency of a
relation) or greater than the value of the top percentile V;_, (a significant increase)
of all rates of change, otherwise, i.e., if roc € [V,,, V1_,], it is considered to be part
of the normal behavioral variation.

Given the change rates rocy, ;1 and rocy 2, and the trend percentile «, we then
classify the trend of relation b for this particular change point using the following
function (line 11):

classifyTrend(rocy 1, rocy 2,) ==
unchanged if rocy1 € [Vo, Vi—o] and rocp 2 € [V, Vi—al,
gradual change if sign(rocy1) = sign(rocy o) and (3.4)
T0Cp,1 ¢ [Vou ‘/l—a] \ T0Cp,2 ¢ [Vom ‘/I—a]a
sudden change otherwise.

This function classifies the relation b as unchanged when both rocy, 1 and rocy, o
represent normal behavioral variation. If roc, 1 and rocy 2 indicate shifts in the

Chapter 3. Comprehensive Concept Drift Characterization 56

same direction (both positive or both negative) with at least one reflecting a sig-
nificant increase or decrease, then b is classified as a gradual change. Finally, the
change is classified as sudden in all other cases.

Change point-level classification. Next, the algorithm classifies the change point
as either sudden or as gradual start by considering the relevance of the identified
trend types per relation. Specifically, given a relation b and a change point p;, the
algorithm assigns a weight to that relation. This weight is determined as the average
of the relative frequencies of b in windows w;_1, w;, and w;+1 divided by the sum
of all averaged relative frequencies of other relations. Using these weights, our
algorithm categorizes the change point as gradual start if the cumulative weight
of identified relations exceeds that of sudden; otherwise, it is labeled as a sudden
(lines 12-19).

Note that if a point p; is classified as a gradual start point, its successor, p;1
is then immediately classified as a corresponding gradual end (see the illustration
in Figure 3.9). Furthermore, if the last change point has not been assigned a type
yet when completing the iteration, which happens when |[p| = 1 or when the type
of the second last change point is sudden, then the last change point is classified as
sudden (line 21).

p1 (Wy = wy) P2 (W = ws) Classification Accumalation
ROC; Variation,| ROC, Variation, Trend Weight Trend Weight
Analysis of py E -25 normal +33 normal unchanged 0.15 unchanged 0.31 p; is a sudden
1 by| -27 normal +20 normal . unchanged 0.16 ‘ sudden 0.19 ‘ process change
o T bz| -33 significant | +25 normal sudden 0.15 gradual 0.00
I 2_10 1.25 2,3 3.:3 b4 | 100 significant | +0 normal sudden 0.04
b
,Z gg i; fs ég P2 (W = w3) 3 (W3 = wy) Classification Accumalation
biflo lo8 08| 1.3 o ROC, Variation,| ROC, Variation, | Trend Weight Trend Weight P, is the gradual start
I | by 433 normal +88 significant gradual start 0.15 unchanged 0.35 and p; the gradual end
Analysis of p, by [+20 normal +38 normal ‘ unchanged 0.16 ‘ sudden 0.00 points of the same
b3|+25 normal +35 normal unchanged 0.13 gradual 0.15 process change
by +0 normal +50 normal unchanged 0.07

Figure 3.12: Example of change point-level classification based on the behavior
matrix.

Figure 3.12 illustrate the change point-level classification using the behavior
matrix depicted in Figure 3.11. We consider the first three columns of the behavior
matrix to decide whether c; is a sudden process change or is the start point of a
gradual process change. For this, we calculate the corresponding rocy, 1 and rocy o
for each relation b. Assuming a trend percentile of & = 3, we get upper and
lower percentiles for roc of 77 and -31, respectively. Given these percentiles, the
variations of rocy, 1 and rocy, 2 are classified into “normal” or “significant” and then
for each relation a trend is defined according to Equation 3.4. Finally, the weights
are accumulated according to the trends. Since the total number of relation weights
that belong to a sudden change (0.19) is greater than for gradual (0.0), the change

Chapter 3. Comprehensive Concept Drift Characterization 57

point c; is classified as sudden. Following the same procedure, the change point
cg is classified as a gradual start, therefore, the change point c3 is a gradual end
point. Overall, the three change points form two process changes: sudden (c;) and
gradual (cy and c3).

Finally, the algorithm establishes a sequence of detected process changes
¢ based on the change points, their classifications, and the behavioral ma-
trix (line 22). Specifically, if a change point p; is classified as a sud-
den change, then the algorithm generates a process change instance c¢ :=
(sudden, p;, p;, vPTeVOUS 1€Tt) where vPT¢VUS and v"¢* corresponding to the
behavioral representation recorded in B for the time windows preceding and fol-
lowing p;, respectively. Otherwise, if two consecutive change points p; and p;41
are classified as gradual start and gradual end, then the algorithm creates a pro-
cess change instance ¢ := (gradual, p;, p; 11, vPTeV"°us y"e®t) Here, vP"V"% and
vt correspond to the behavioral representation recorded in B for the time win-
dows w;_1 and w1, respectively.

3.3.4 Step 3: Change Interrelation Analysis

In the final step, our framework analyzes connections among the detected process
changes to recognize a collection of simple and complex drifts as output. We il-
lustrate this output in Figure 3.13, which shows that the four process changes of
our running example form three concept drifts. Specifically, the gradual process
change c¢; does not connect to other changes and is therefore classified as a sim-
ple drift. By contrast, changes co and c3 have been recognized to jointly form an
incremental drift. Finally, since change c, leads to a previously observed process
version (v1), this represents a recurring drift in the process.

Recurring drift d3

Gradual drift dy Incremental drift d, l
n
f Process ' Process
Process change c3 change c,
change c; —— v
Process Process v v
f change c;
versions Vo i
] i
| i i LU
Pfirst P1 P2 p3 Ps Ds Pe Digsc Time

Figure 3.13: Outcome of the final framework step: every process change is either
linked with other changes, creating a complex drift, or exists independently as a
simple drift.

Chapter 3. Comprehensive Concept Drift Characterization 58

Algorithm 2 Change Interrelation Detection
Input: Sequence of process changes ¢ = (c1,...,cum)
Parameter: Thresholds for recurring and incremental behavioral similarity 0,.¢. and ;¢
Output: Collection of detected drifts d
1: procedure CHANGEINTERRELATIONDETECTION(C, Oycc, Oinc)
> Recurring drift detection

2: S +— {} > Initialize a collection to store detected sets of recurring process changes
3: co := (sudden, ppirst, Pfirst, L, c1.0P7VO"T) > Define artificial start change
4: for ¢; in {(co, c1,...,cm) do > For all process changes...
5 ifc; ¢ |J sthen > ... that are not already assigned
seSree
6: s7¢ +— {ei} > Initialize a set for changes similar to ¢;
7: for ¢; in (cit+2,...,cum) do > For indirect successors of ¢;...
8: if cj_1 ¢ s"°° A isRecurringChange(c;, 0rec) then
9: s"%¢.add(c;) > Extend s with c;
10: if [s7°°| > 1 then > Check if s"““ has more than one process change
11: S7¢¢.add(s"¢°) > Add s™° to the collection of recurring sets
12: d™¢¢ < detectRecurringPatterns(S"°°) > Turn recurring sets into recurring drifts
> Incremental drift detection
13: ST —{},s«+ () > Initialize a collection to store detected incr. process changes
14: for c; in c do > For all process changes...
15: ifci ¢ |J sAisMinorChange(c;,0inc) then > Check the condition for incr.
Sesr‘ec
change _
16: 5" .extend(c;) > Add ¢; to the sequence of incremental process changes
17: else
18: if [s""¢| > 1 then > Check if s has more than one process change
19: 8¢ add(s"") > Add s to §*¢
20: s {} > Reset s"¢
21: d"™° + detectIncrementalPatterns(S*“) > Turn incremental sequence into incr. drifts
22: dsimple ~ detectSimpleDrifts(E, dree, dmc) > Turn other changes into simple drifts
23: d = d*"™mPle y drec u dine > Define drift collection

24 return d

To operationalize this step, we have developed a change interrelation detection
algorithm outlined in Algorithm 2. The algorithm takes the sequence of changes
¢ stemming from the previous steps as input and evaluates relationships between
the changes by comparing behavioral similarities of associated process versions.
It produces a collection of concept drifts d as output, where process changes are
connected, forming complex drifts, or independent, representing simple drifts. The
main part of our algorithm focuses on detecting complex drifts since simple drifts
automatically remain after larger, complex drifts have been detected. To identify
complex drifts, our algorithm begins by searching for recurring drifts and then turns
to incremental ones. The search for recurring drifts takes priority over incremen-
tal ones because it relies on a stronger condition regarding the similarity between

Chapter 3. Comprehensive Concept Drift Characterization 59

different process versions.
Next, we describe Algorithm 2 following its key components: recurring drift
detection, incremental drift detection, and simple drift detection.

Recurring drift detection. Algorithm 2 detects recurring process changes by
looking for process changes that lead to highly similar process behavior.

To do this, our algorithm starts by initializing a collection S"¢¢ to store sets of
process changes that lead to instances of the same process version (line 2). Since
also the initial process version in wy can reoccur (see e.g., Figure 3.13), we estab-
lish a dummy change cg, corresponding to a sudden change that appears at the start
of the event log, i.e., at point pgs; (line 3). Afterwards, the algorithm iterates over
all process changes, including ¢ (line 4). For any change ¢; that is not yet part of a
recurring drift, the algorithm checks if there is any indirect successor c; that leads
to process behavior highly similar to the version following ¢;, while ensuring that
c¢;j—1 1s not part of a recurring drift. (line 8). If that is the case, it is recognized that
c; is recurring with respect to c;.

Here, the function isRecurringChange quantifies the similarity between the
two process versions ¢;.v"*** and cj.vnext. If the similarity is above a threshold
Orec, then the process change c; is considered to be a recurring change with re-
spect to ¢;. The function isRecurringChange can be operationalized using any
measure that quantifies the similarity between two frequency distributions (over
behavioral relations, i.e., the behavioral representation of two windows or process
versions), such as the cosine similarity, a vector-based similarity measure, or the
Earth mover’s distance, which quantifies the distance between distributions, both
of which are commonly applied in process mining settings [61, 69]. As a default
option, we use cosine similarity, which demonstrates higher sensitivity in detect-
ing added and removed behavioral relationships and achieved the best overall drift
detection results in our evaluation.

Recurring changes are collected in a previously instantiated set s"*¢ (line 9).
Note that our algorithm ensures that s"*° will never contain consecutive process
changes, as recurring process version instances correspond to process changes that
are separated by at least one other process change. Any set s"°° that contains more
than one process change, i.e., any set that actually forms a recurring drift, is added
to the set of recurring drifts S"*¢ (lines 10-11).

Finally, the set $"¢¢ is turned into a set of recurring drifts d"¢¢ (line 12). To do
this, our algorithm looks for sequences of consecutive changes in the sets of S"¢¢
that repeat two or more process versions in a particular order. Examples of this are
seen in Figure 3.5, where case a) shows versions v; and v9 in an alternating pattern,
whereas case b) shows a repetition of a larger sequence (v1, vo, v3). In both cases,
the sets that form these larger patterns are combined into a single recurring drift,

Chapter 3. Comprehensive Concept Drift Characterization 60

whereas any set in $"¢° that does not form a larger pattern is turned into a recurring
drift by itself, as, e.g., seen for the {cg, ¢4} in Figure 3.13.

Process changes

C2 C3 Cy
Behavioral matrix 3 4 5 6 7
0.60 0.84 — 0.79

Wi W W3 Wg Ws Wg

p[20 — 1.0 21 — 25 -

00 [091 g 074 0.63
b[20 — 20 40 — 25 091 MO0 ZW
bs[20 — 1.0 20 — 0.0 oo =
bilo - 30 25 — 10

074 0.87 — [@00 0.74
063 084 - 0.74

Figure 3.14: Example of change interrelation detection using a behavioral matrix.

To illustrate the idea of the recurring drift detection component of our change
interrelation detection algorithm, we present an example shown in Figure 3.14.
This example includes a behavior matrix corresponding to the scenario in Fig-
ure 3.13, along with the matrix displaying the cosine similarity between behavioral
representations of different process versions across various windows>. Since the
process changes c; and c3 are of a gradual type, the windows wy and ws repre-
sent transition periods between two different process versions and, therefore, are
excluded from consideration. From this similarity matrix, we can observe how the
behavior of process versions before and after each change point compares to one
another. Assuming 0,.. = 0.95, the algorithm detects that the similarity between
the process version in w; and the process version in wy (i.e., after c4) is 0.99, which
exceeds the threshold of 6,.. (see Point 1 in the figure). As a result, the process
change c4, along with cg, is identified as a recurring drift.

Incremental drift detection. After recurring change detection, we start with the
detection of incremental changes by identifying sequences of minor consecutive
process changes in the sequence ¢.

To do this, we start by initializing a collection S to store sequences of con-
secutive incremental process changes (line 13). For each process change c; in ¢
that is not already part of detected recurring drifts, the algorithm checks if ¢; is a
minor change (lines 14-15). The underlying function, isMinorChange considers
a change to be minor if the behavioral similarity between ¢; .WPTEVIOUS and ¢, gnert
is above the threshold 6;,. (using the same similarity measure as used for recur-
ring drifts). If ¢; is indeed a minor change, we add it to the current sequence s

3Qur algorithm performs similarity analysis by iterating over a sequence of detected process
changes. For clarity, however, we consider the matrix as a whole to provide a more straightforward
explanation.

Chapter 3. Comprehensive Concept Drift Characterization 61

(line 16) and continue with the following process change. If ¢; is not minor (or
was already part of a recurring change), we add the sequence of minor changes
observed so far, s™¢, to the set of incremental sequences, provided that s*"¢ con-
tains more than one change (lines 18—19). Then, after resetting s"*° (line 20), we
continue with the next process change.

To illustrate the idea of the incremental drift detection component, we again
use the example in Figure 3.14. Since process changes ¢y and c4 are identified
as changes of a recurring drift, we need to only consider the remaining process
changes and look for a sequence of at least two process changes with a minor
change severity. Assuming 0;,. = 0.85, a minor process change is given if the
similarity between the process version before and after the process change is above
Oinc- In our example, among the remaining process changes c1, co, and c3, both ¢y
and c3 exhibit similarity values above the incremental threshold of 0.85 (see Point
2 in the figure). Therefore, these changes constitute an incremental drift.

In the end, the algorithm converts the set S™¢ into a collection of incremental
drifts d"¢¢ (line 21), where each detected sequence of consecutive minor process
changes within S™¢ is turned into an incremental drift.

Simple drift establishment. After identifying complex drifts, the algorithm estab-
lishes a set of simple drifts (line 22) by turning any process change in ¢ that is not
part of a recurring or incremental drift into a stand-alone, simple drift, resulting in
a set d*™P'¢_In our example, shown in Figure 3.14, the only remaining process
change is the gradual process change cy. Since it is not part of a complex drift, it
is classified as a simple drift.

Framework output. Finally, the algorithm returns the collection of detected drifts
d given by the union of the detected simple, recurring, and incremental drifts
(line 23).

Our framework thus identifies both simple and complex drifts in accordance
with the taxonomy presented in Figure 3.6, specifying their drift types along with
the associated process changes, distinguishing between sudden and gradual process
changes. In this way, our framework supports the comprehensive detection and
characterization of concept drifts from event logs.

3.4 Evaluation

This section describes the evaluation experiments we conducted to test the ability
of our framework to detect different types of concept drifts recorded in event logs.
Section 3.4.1 describes the data collection used for this purpose and Section 3.4.2
presents the general evaluation setup. Afterwards, Sections 3.4.3-3.4.5 describe
the quantitative experimental results per framework step, whereas Section 3.4.6

Chapter 3. Comprehensive Concept Drift Characterization 62

presents a qualitative comparison of our work to a state-of-the-art technique. To
ensure reproducibility, we have made the data collection, implementation, config-
urations, and raw results accessible in our public repository*.

3.4.1 Data Collection

To evaluate our work, we require a collection of event logs that contain known (i.e.,
gold-standard) concept drifts of all types. Since a publicly available collection
does not exist, we generated synthetic datasets using CDLG [12], a flexible tool
that produces event logs with known concept drifts. We used CDLG to generate a
dataset of 100 event logs. Each log is derived from a randomly generated process
tree using PTandLogGenerator [70], which is then modified by a sequence of one
to three randomly generated drifts, of different types.

PTandLogGenerator Parameter Process Tree Complexity
Type Name Simple Middle Complex
Number of activities Minimum 6 14 20
Mode 9 18 25
Maximum 12 20 30
Control-flow Sequence 0.70 0.25 0.25
probabilities Choice 0.10 0.30 0.30
Parallel 0.15 0.25 0.25
Loop 0.05 0.20 0.20

Table 3.1: Key settings in PTandLogGenerator [70] used to produce process trees
of various complexity levels.

To generate a diverse set of scenarios for concept drift detection, we varied
two factors during log generation. First, we created the initial process trees with
three levels of complexity: simple, middle, and complex. Table 3.1 shows the key
parameter settings, such as the number of activities and the probabilities of control-
flow operators, used in PTandLogGenerator for each complexity level. Examples
of generated process trees for simple and complex cases are shown in Figure 3.15.
Second, we also varied the characteristics of the drifts, including their severity and
distribution over the timeline of the event log®>. The complete set of parameters

*Project repository: https://gitlab.uni-mannheim.de/processanalytics/concept-
drift-characterization.

SWe intentionally excluded logs with only a single sudden drift, as these contain just one change
point and therefore do not represent a classification problem.

https://gitlab.uni-mannheim.de/processanalytics/concept-drift-characterization
https://gitlab.uni-mannheim.de/processanalytics/concept-drift-characterization

Chapter 3. Comprehensive Concept Drift Characterization 63

used to generate this dataset, along with the initial and modified process trees and
the event logs themselves, is available in our repository.

Complex

Figure 3.15: Examples of initial process trees of different complexity levels.

Table 3.2 provides an overview of the base dataset that contains 100 event logs.
The logs contain a total of 198 drifts, i.e., 38 logs with 1 drift, 26 logs with 2 drifts,
and 36 logs with 3 drifts. Simple sudden and gradual drifts involve a single process
change, whereas complex recurring and incremental drifts comprise three process
changes, resulting in a total of 426 process changes. Each process change can
occur suddenly, resulting in a single change point, or gradually, resulting in two
change points (gradual start and end), leading to 651 change points in total.

Table 3.2: Characteristics of the drifts in our base dataset consisting of 100 event
logs.

Drift #of # of process Change points

type drifts changes Total Sudden Grad. start Grad. end
Sudden 35 35 35 35 — —
Gradual 49 49 98 — 49 49
Incremental 58 174 263 85 89 89
Recurring 56 168 255 81 87 87
Total 198 426 651 201 225 225

To evaluate the robustness of our detection framework, we generated two vari-
ations of the base dataset by introducing noise into the event logs Specifically, we

Chapter 3. Comprehensive Concept Drift Characterization 64

use an existing noise-insertion technique [71] that randomly inserts, removes, and
swaps events in a fraction of the traces in an event log, obtaining datasets with
20% and 40% noisy traces (with all other characteristics, such as the number of
drifts and change points, the same as depicted in Table 3.2). Consequently, the
data collection used in our evaluation consists of 600 event logs.

3.4.2 General Setup

Framework implementation. We used Python 3 to implement a prototype of
our framework, which is publicly available through the aforementioned project
repository. Our implementation uses the PM4Py [72] library to handle event logs
and the python library Pandas® for data processing steps.

Framework configurations. Step 1 of our framework can be instantiated using
any of a range of existing change point detection techniques. Therefore, in Sec-
tion 3.4.3, we evaluate existing techniques on our data collection and select the
one with the best accuracy for the remaining experiments. In Step 2, to build a be-
havioral matrix, we rely on directly-follows relations over the control flow perspec-
tive to obtain behavioral representations of the process execution for each window.
In particular, we extract all directly-follows relations from each trace and allocate
them to the window containing the first event in the trace. Finally, in Step 3, we
use cosine similarity to compare the behavioral similarity between windows in the
behavioral matrix when performing incremental and recurring change analyses.

In our algorithms, we set the hyperparameters as follows: the trend percentile
is a = 3, the incremental threshold is 6;,. = 0.80, and the recurring threshold is
Orec = 0.95. We determined these hyperparameters by testing a range of options:
a € [1,2,3,4,5,10], O;pe € [0.5,0.1,...,0.4], and 0, € [0.50,0.55,...,0.95]
and selecting the combination that yielded the best average score, as reported in
Experiment 3.2 (see Section 3.4.5) using an additional data collection for fine-
tuning. This data collection was obtained using the same method as the evaluation
dataset and exhibits similar concept drifts and noise levels.

Evaluation measures. To evaluate our framework’s accuracy, we compare the
detected change points, drifts, and drift types against those in the gold standard
using precision, recall, and F1-score. Below, we provide a general representation
of these measures since their specific operationalization differs per experiment.
Precision measures how many detected change points or drifts are correct
based on their alignment with the gold standard. It is given as the ratio of true
positive detection over the total number of true positive and false positive detec-

6 Available at https://pandas.pydata.org

https://pandas.pydata.org

Chapter 3. Comprehensive Concept Drift Characterization 65

tions: True Posit
.. rue Positives
Precision = — — 3.5)
True Positives + False Positives

Recall measures the fraction of gold standard changes or drifts that are detected
by our framework. It is given as the ratio of true positive detections over the total
number of true positive and false negative detections:

True Positi
Recall = Rl (3.6)
True Positives + False Negatives

Finally, the F/-score is the harmonic mean of precision and recall:

Precision x Recall
F1- =2 . 3.7
score % Precision + Recall 3.7

Depending on the experimental setup, we use additional measures that aggre-
gate the results, such as the weighted F1-score, which considers all drift types or
change points and their respective support (number of instances).

3.4.3 Step 1: Change Point Detection

This section discusses experiments conducted to test the performance of various
existing techniques that can be used to instantiate Step 1 of our framework, which
detects change points in a given event log.

Experimental Setup

The first step of our framework relies on existing solutions for change point de-
tection. For this reason, we evaluate existing change point detection techniques
on our data collection and select the one with the best results for the remaining
experiments.

Change point detection techniques. We test the same seven change point detec-
tion techniques used in a recent experimental comparison by Adams et al. [57]:

1. PRGRAPHS: Seeliger et al. [52] derives process graph features from an event
log with the corresponding edge and node frequencies, using a sliding win-
dow to extract features. Change points are recognized if p-values from a
statistical test fall below a threshold.

2. EMD: Brockhoff et al. [61] use sliding windows where each trace becomes
a local multi-activity feature. Earth Mover’s Distance measures distribution
differences between different windows. Change points are identified as local
maxima in a graph.

Chapter 3. Comprehensive Concept Drift Characterization 66

3. ADWIN/J: Martjushev et al. [54] address window size limitations in Bose et
al. [31]. They introduce an adaptive window size, using recursive hypothesis
tests on smaller windows near low p-values for precise drift location. High
p-values lead to adaptive window growth, enabling segment skipping.

4. RINV: Zheng et al. [62] propose drift detection using a boolean relation ma-
trix. Matrix entries show direct and eventual activity relations within cases.
Drifts are identified by change point candidates. These are clustered using
DBSCAN, with final change points found based on minimal centroid dis-
tance.

5. LcDD: Lin et al. [63] detect drifts by monitoring changes in directly-follows
relations. They use two windows: a static complete window and a sliding
detection window. The complete window size is determined based on local
directly-follows completeness, ensuring all relations of the active process
are included. A drift is reported when the two windows diverge concerning
a directly-follows relation.

6. BOSE/J: Bose et al. [31] propose activity pair-based features. Using a fixed
sliding window, features are extracted locally or globally. Their importance
is assessed using J-measure, which quantifies the goodness of a rule. Then,
populations are compared using non-parametric tests, and drifts are identi-
fied based on the resulting p-values.

7. PRODRIFT: Maaradji et al. [55] convert traces to partial orders of activi-
ties (called "runs"). Runs emerge from ordered traces, handling concurrent
activities. Using sliding windows, run populations are extracted and then
compared using statistical tests.

To identify the optimal parameter configuration for each technique, we employ the
experimental framework [57]. This framework tests these techniques with differ-
ent parameter options and reports various evaluation measures. Based on the best
F1-score, we select the best parameter configuration for each technique, depicted
in Table 3.3.

Evaluation measures. We use precision, recall, and F1-score introduced in Equa-
tion 3.5 to Equation 3.7. In this experiment, a true positive is recorded if a detected
change point is correctly assigned to a gold-standard change point. To achieve
this optimal assignment, we solve a linear program proposed by Adams et al. [57].
This program finds the best match between detected and actual change points (both
are given via trace ID, i.e., the ordinal number of a trace in the log following the
change), minimizing the total distance in terms of the number of traces between
them. In contrast to Adams et al., who use a fixed absolute deviation of 200 traces,
we use a relative accepted deviation between the detected and the actual change
point. This relative acceptance deviation ensures a fair accuracy analysis for our

Chapter 3. Comprehensive Concept Drift Characterization 67

Table 3.3: Optimal parameter configurations for each change point detection tech-
nique.

Technique Parameters

PRGRAPHS Window size: 300, max. window size: 400, p-value:0.1

EMD Window size: 150, step size: 1

ADWIN/J Min/max adaptive window: 200/700, p-value: 0.4, step size: 20
RINV Minimum relation invariance distance: 600, epsilon: 180
Lcpp Window size complete/detection: 400/400, stable period: 5
BOSE/] Window size: 150, step size: 2

PRODRIFT Window size: 400, step size: 2

data collection containing event logs with significant differences in the number of
traces. In our evaluation, we consider relative acceptable deviation of 1%, 5%,
and 10% and discuss results obtained for a relative acceptable deviation of 5% .
This choice is based on empirical justification. Given the characteristics of the data
and the capabilities of the applied techniques, a relative acceptable deviation of
5% allows for effective differentiation in performance. When the deviation is set
below 5%, the evaluation values are too low, as none of the techniques can detect
changes at that level. In contrast, deviations above 5% lead to high values, as all
techniques detect changes, making it harder to distinguish their performance. For
all assignments, we identify a true positive when the distance between the detected
change point and the gold-standard change point is less than or equal to 5% of the
total number of traces in the log. Otherwise, the detected change points are clas-
sified as a false positive detection. The sum of false negatives and true positives
(the denominator in the recall calculation) equals the total number of gold-standard
change points.

Results

We present the evaluation results of the change point detection techniques, high-
lighting overall performance and the impact of noise, various change patterns, and
different levels of change severity.

Overall performance. Table 3.4 provides an overview of the evaluation results.
In terms of overall performance, we can distinguish three clear groups. The first
group consists of two techniques demonstrating top performance: PRGRAPHS and
EMD. PRGRAPHS is the best performer, with an average F1-score of approxi-
mately 0.70 across all datasets, while EMD also shows good performance but

"Our repository also contains results for other relative acceptable deviations.

Chapter 3. Comprehensive Concept Drift Characterization 68

achieves a slightly lower average F1-score of 0.67. In the second group, we find
ADWIN/J, RINV, and LCDD, attaining average F1-scores between 0.53 and 0.58.
Lastly, the third group encompasses BOSE/J and PRODRIFT, with average F1-
scores of 0.31-0.33.

Table 3.4: Performance of the change point detection techniques across logs with
different noise levels. Bold numbers indicate the best score for the particular col-
umn.

Logs w/o noise Logs w. 20% noise Logs w. 40% noise Avg.
Prcc Rec. F1 Prc. Rec. F1 Prc. Rec. F1 F1
PRGRAPHS 0.63 0.74 0.68 0.66 0.76 0.71 0.68 0.72 0.70 0.70

Technique

EMD 0.71 0.67 0.69 067 065 0.66 068 066 0.67 0.67
ADWIN/] 0.84 045 059 084 044 058 085 043 057 0.58
RINV 072 0.87 0.78 057 032 041 049 037 042 054
Lcop 057 063 060 034 095 050 035 0.88 050 0.53
BOSE/] 052 023 032 064 023 034 066 022 033 033

PrRODRIFT 099 055 071 0.89 009 0.16 1.00 0.02 0.05 0.31

Noise impact. Regarding robustness to noise, PRGRAPHS, EMD, ADWIN/J, and
BOSE/] maintain stable evaluation measures across noise levels, while RINV, PRO-
DRIFT, and LCDD achieve lower accuracy for the noisy logs. Specifically, RINV’s
F1-score drops by close to 50% between the dataset without noise and those with
20% noisy traces (from 0.78 to 0.41). However, additional noise does not no-
ticeably impact its performance further. By contrast, PRODRIFT experiences a
substantial performance decline, with an 80% drop in Fl1-score when 20% noise
is introduced (from 0.71 to 0.16), followed by an additional 70% decrease for the
logs with 40% noise (from 0.16 to 0.05). The significant drop in performance is
primarily due to a decline in recall when noise is introduced, decreasing to 0.09
at 20% noise and further to 0.02 at 40% noise. However, precision remains con-
sistently high, exceeding 0.90. LCDD also appears highly sensitive to noise, often
detecting non-existent changes in its results. Its precision is consistently low, while
recall increases significantly for the noisy logs, reaching up to 0.95. Interestingly,
both PRGRAPHS and BOSE/J exhibit an increase in precision as noise levels rise.

Change pattern impact. In addition to the noise impact, we assess the accuracy
of change point detection techniques across different change patterns. We consider
6 different change patterns that are derived from three basic process changes and
any combination of them: insertion of new activities (&), deletion of existing activ-
ities (8), and relocation of activities (<>). Based on all correctly detected change
points, we compute recall for each change pattern. As false positives do not corre-

Chapter 3. Comprehensive Concept Drift Characterization 69

Table 3.5: Performance of the change point detection techniques across different
change patterns.

Overall Recall (by change patterns)

Technique Prc. Rec. & © & B&O & O&sS B&O&kE
PRGRAPHS 0.65 074 0.68 0.73 059 090 0.88 0.82 0.97
EMD 0.69 0.66 0.66 0.69 064 0.57 0.66 0.74 0.75
ADWIN/J 084 044 054 051 034 042 0.25 0.17 0.28
RINV 0.61 052 056 061 046 0.52 0.33 0.39 0.30
LcbpDp 038 0.82 086 0.73 0.80 0.86 0.87 0.91 0.94
BOSE/] 0.60 023 027 032 0.14 020 0.06 0.00 0.12
PRODRIFT 098 022 021 0.19 0.19 0.25 0.30 0.30 0.32
Support 555 537 309 279 138 66 69

Legend: “@"- Insertion, “&" - Deletion, “<" - Relocation.

spond to any specific change pattern, we report precision as an overall measure per
technique.

Table 3.5 shows the evaluation results for different change patterns, revealing
two main findings. First, detection capabilities vary across techniques for different
change patterns. For example, LCDD achieves the highest overall recall of 0.82,
showing the best performance for basic process changes. However, PRGRAPHS
demonstrates superior change point detection accuracy for complex patterns, out-
performing LCDD’s recall in 3 out of 4 cases. Second, the complexity of the change
pattern impacts detection accuracy differently among techniques. For some tech-
niques, accuracy improves with complex patterns that involve combinations of two
or three basic process changes, while for others, accuracy declines as complex-
ity increases. For instance, PRGRAPHS, EMD, LCDD, and PRODRIFT show im-
proved performance with complex patterns, with recall increasing by up to 30 per-
centage points (as observed for PRGRAPHS) compared to their average recall on
simpler patterns with only one change type. Conversely, other techniques expe-
rience a drop in recall, indicating challenges in detecting more complex process
changes.

Change severity impact. To complement the analysis of change pattern impact,
we assess the effect of change severity on detection accuracy. To do this, we assign
each change point a severity level, defined as the percentage of behavioral alteration
following a process change. This percentage is calculated by comparing the gold-
standard process trees before and after a process change. Specifically, we generate
all possible traces (setting loop sizes to one) and derive directly-follow relation-

Chapter 3. Comprehensive Concept Drift Characterization 70

Table 3.6: Performance of the change point detection techniques across different
change severity levels.

Overall Recall (by change severity, in %)
Technique Precision Recall (0,20] (20,30] (30,40] (40,50] (50, 100]
PRGRAPHS 0.65 0.74 0.71 0.70 0.75 0.78 0.81
EMD 0.69 0.66 0.66 0.64 0.71 0.68 0.62
ADWIN/J 0.84 0.44 0.39 0.41 0.53 0.42 0.49
RINnv 0.61 0.52 0.49 0.46 0.52 0.52 0.65
Lcop 0.38 0.82 0.81 0.83 0.78 0.89 0.78
BOSE/] 0.60 0.23 0.25 0.16 0.21 0.26 0.29
PRODRIFT 0.98 0.22 0.20 0.25 0.24 0.20 0.22
Support 468 495 348 312 330

ships. These sets of relationships are then compared using the Jaccard coefficient,
a similarity measure between finite sets defined as the ratio of the intersection size
to the union size of the sample sets [73]. Finally, we group the resulting values into
five intervals with comparable support.

Table 3.6 presents the obtained evaluation results across different levels of
change severity. Regarding peak performance, LCCD achieves the highest recall
for change severities up to 50%. However, for process changes that lead to ex-
treme behavioral shifts above 50%, PRGRAPHS surpasses LCCD in performance.
When analyzing the impact of change severity on accuracy across techniques, we
observe that both PRGRAPHS and RINV demonstrate improved accuracy as change
severity increases, while the recall for other techniques remains relatively stable.
Given these evaluation results, we adopt the PRGRAPHS technique to instantiate
Step 1 of our framework in the remaining experiments (where applicable).

3.4.4 Step 2: Change Type Classification

This section discusses experiments conducted to test the performance of Step 2 of
our framework, which aims to detect if the detected change points belong to sudden
or gradual process changes.

Experimental Setup

Experiments. To comprehensively assess the performance of our framework when
it comes to change type classification, we conduct two experiments: In Experi-
ment 2.1, we assess the performance of Step 2 in isolation, which tests how well

Chapter 3. Comprehensive Concept Drift Characterization 71

our change type detection technique works when provided with the gold-standard
change points as input. Afterward, in Experiment 2.2, we assess the combined per-
formance of Steps 1 and 2, i.e., using the change points detected by the PRGRAPHS
technique as input for Step 2, which tests how well our framework can recognize
sudden and gradual changes in general.

Evaluation measures. We use the following measures in the two described exper-
iments:

Experiment 2.1 represents a classical classification problem, where each
change point from the gold standard is classified as either sudden, gradual start, or
gradual end. A true positive is thus recorded if the detected change point type is
correctly assigned to its gold-standard type.

In Experiment 2.2, a true positive is recorded under two conditions: (1) the de-
tected change point is correctly assigned to an actual change point, with a deviation
of less than 5% of the total traces in the event log (same as for the evaluation of
Step 1), and (2) the detected change point type (sudden, gradual start, or gradual
end) corresponds to the gold standard. Otherwise, it is a false positive.

Baseline. To put the performance of Step 2 of our framework into perspective,
we compare its accuracy against the PRODRIFT technique proposed by Maaradji
et al. [55]. We select this technique as a baseline for two reasons: First, it stands
out as the only technique that focuses on the automated detection of both sudden
and gradual drifts, without requiring a manual indication of the drift type to be
searched (e.g., in contrast to BOSE/J [31]). Second, this technique uses a similar
two-step procedure that first detects change points and then aims to detect gradual
changes by considering sequences of three consecutive windows (see Figure 3.9).
The technique is conceptually different, though, since their second step relies on a
statistical test on distributions of partially ordered runs within sliding windows of
traces, while our framework considers individual behavioral patterns.

Baseline implementation. To be able to use PRODRIFT as a baseline for both
experiments, we need to decouple its two steps as well, allowing us to provide
its second step with the gold-standard change points as input. Since its available
Java implementation® does not support this, we implemented the second step in
Python, following the procedure given in the paper [55, Definition 4]. Instead of
using the Java-based JOptimitzer as the solver for the non-linear program, we use
the Optimize module from SciPy® (version 1.10.0), using BFGS as the selected
optimization method with the initialization (3, 3).

8 Available at http: //apromore.org/platform/tools
% Available at https://docs.scipy.org/doc/scipy/

http://apromore.org/platform/tools
https://docs.scipy.org/doc/scipy/

Chapter 3. Comprehensive Concept Drift Characterization 72

Results

Experiment 2.1. Table 3.7 presents the change type classification results when
using the gold-standard change points as input for Step 2. In this table, we compare
the accuracy of our second framework step (see Algorithm 1) against the baseline
across datasets with varying noise levels. For each dataset, we report the obtained
evaluation measures, including overall measures weighted by the support for each
type.

Our framework’s algorithm greatly outperforms the PRODRIFT baseline, show-
ing higher F1-scores for all change types, achieving a weighted F1-score of 0.79
for the logs without noise, versus 0.35 of the baseline. Our algorithm maintains
a balanced precision-recall ratio across different change types. In contrast, the
baseline struggles with identifying gradual change start and end instances, often
mistaking them for sudden changes. This is evident in the baseline’s high recall
(0.86) and low precision (0.36) for sudden changes, along with relatively higher
precision compared to recall for gradual start and end change types.

Table 3.7: Results of Experiment 2.1: Change type classification using gold-
standard change points as input.

Technique Type Logs w/o noise Logs w. 20% noise ~ Logs w. 40% noise
Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1
Sudden 063 085 072 076 079 077 075 073 0.74
Framework Gradual start 0.88 0.75 0.81 0.88 0.87 0.87 0.82 0.83 0.83
Step 2 Gradualend 089 0.76 082 089 0.88 088 083 0.84 0.83
Overall 0.81 078 0.79 0.85 084 0.85 0.80 0.80 0.80
Sudden 036 086 0.50 031 092 046 031 085 046
PRODRIFT
Step 2 Gradual start 0.55 0.20 029 030 0.03 006 051 0.12 0.19
p . Gradualend 049 0.18 026 035 0.04 006 053 0.12 0.20
(baseline)

Overall 047 040 035 032 031 0.18 046 034 027

Support: Sudden - 201, Gradual start - 225, Gradual end - 225.

The difference between our algorithm and the baseline is even more pro-
nounced when considering the datasets with noise. The performance of our al-
gorithm even slightly improves for these datasets (from 0.79 to 0.85 and 0.80),
whereas the baseline’s performance further drops (from 0.35 to 0.18 and 0.27). A
particular issue for the baseline is the detection of gradual changes in noisy set-
tings, as, e.g., shown by the recall scores of 0.03 and 0.04 for the logs with 20%
noise.

Experiment 2.2. Table 3.8 presents the change type classification results obtained

Chapter 3. Comprehensive Concept Drift Characterization 73

Table 3.8: Results of Experiment 2.2: Change type classification using change
points from Step 1 as input.

Technique Type Logs w/o noise Logs w. 20% noise Logs w. 40% noise
Prcc Rec. F1 Prc. Rec. F1 Prc. Rec. F1
Sudden 027 041 032 029 042 035 031 039 035

Framework Gradual start 0.50 051 050 046 048 047 044 043 044
Steps 1-2 Gradualend 049 048 049 046 046 046 044 043 043

Overall 042 047 044 041 045 043 040 042 040
PRODRIFT Sudden 045 060 051 056 021 030 052 005 0.10
Python- Gradual start 0.57 0.13 022 0.00 0.00 0.00 0.00 0.00 0.00
based Gradualend 0.02 0.00 0.01 000 000 000 000 000 0.00
(baseline) ~Qyerall 034 023 024 017 007 009 0.6 002 003
ProDripy | Sudden 041 066 050 000 000 000 000 0.00 0.00
Javabaseq Cradualstart 0.00 000 000 000 000 000 000 0.00 000
s Gradualend 0.00 0.00 0.0 000 000 000 000 000 0.00
(baseline)

Overall 0.13 020 0.16 0.00 0.00 0.00 0.00 0.00 0.00

Support: Sudden - 201, Gradual start - 225, Gradual end - 225.

using the change points detected in Step 1. Similar to Table 3.7, this table provides
evaluation measures for different change point types across datasets with varying
levels of noise. However, we compare the joint accuracy of our framework’s Steps
1 and 2 against both versions of the baseline.

First of all, compared to the results of Experiment 2.1, the evaluation results
indicate a notable drop in performance for both techniques: For the logs without
noise, our framework’s weighted F1-score drops from 0.77 to 0.44, whereas the
baseline’s performance drops from 0.35 to 0.24. This is because the accuracy of
change type classification (Step 2) depends on the accuracy of change point detec-
tion (Step 1). If a change point is not detected, it cannot be classified accurately,
and if a change point is incorrectly detected, it also leads to classification errors.
Therefore, if the quality of available change point detection techniques improves,
the quality of our framework’s subsequent steps will follow.

Despite the performance drop, it is important to note that our framework con-
sistently outperforms the baseline in precision, recall, and Fl-score across all
change types. Furthermore, the results remain robust in the presence of noise.
Notably, the Python-based implementation of the baseline struggles to identify
gradual drifts when noise is present. To verify that this is not due to an imple-
mentation error, we provide evaluation results for the baseline using the existing
Java-based tool. Using run-based configurations with adaptive window size, the

Chapter 3. Comprehensive Concept Drift Characterization 74

obtained results for sudden process changes align with our Python-based imple-
mentation (including the change point detection accuracy of Step 1 corresponding
to the results in Table 3.4). However, the Java-based implementation still strug-
gles to detect gradual process changes, which is consistent with our Python-based
results.

3.4.5 Step 3: Change Interrelation Analysis

This section discusses experiments conducted to test the performance of Step 3
of our framework, which goal is to detect concept drifts and determine their drift
types from identified process changes.

Experimental Setup

Experiments. To demonstrate the accuracy of the framework’s step, we conduct
two experiments similar to the experiments in Section 3.4.4. In Experiment 3.1,
we assume 100% accuracy of the first and second framework steps to measure the
unbiased accuracy of Step 3. Then, in Experiment 3.2, we assume 100% accuracy
only of the first framework step (since this is based on existing work) to evaluate
the joint accuracy of Steps 2 and 3, thus evaluating how well our framework can
detect simple and complex drifts based on detected change points.

Evaluation measures. For both experiments, we consider evaluation measures at
two levels. First, we assess drift type detection accuracy at the change-point level,
for which we check if change points are assigned to the right drift type (i.e., sudden,
gradual, incremental, or recurring). Second, we assess accuracy at the drift level,
for which we check if change points have been grouped together into drifts (of the
right type).

Change-point level. To assess drift type detection accuracy at a change-point level,
we consider a multi-class classification problem, where each change point is clas-
sified into one of four drift types: sudden, gradual, incremental, and recurring. We
record a true positive if the detected drift type of a change point is correct given the
gold standard; otherwise, it is a false positive for the detected type and a false neg-
ative for the gold-standard type. Note that we here report on weighted precision,
recall, and F1-score, to account for imbalances in the dataset.

Drift level. Assessing drift type detection accuracy at a drift level is more complex
than at a change-point level, since, in this case, it involves the (possible) assignment
of multiple change points to a single drift, which must also be of the right type.
Therefore, we consider a drift to be correctly detected (i.e., a true positive) if it
has the right drift type and contains the right set of associated change points. If

Chapter 3. Comprehensive Concept Drift Characterization 75

the drift type is correct, but the set of detected change points differs, we use the
Jaccard similarity to quantify to what degree the set of change points is correct.
The Jaccard similarity is calculated by dividing the number of change points in
both the actual and detected drifts by the number of observations in either set. For
example, if a detected incremental drift d includes three change points {c1, ¢2, c3},
while the gold standard specifies four change points {c1, ¢2, ¢3, ¢4}, d is considered
to be a 0.75 true positive. A drift is considered a false positive if its type is incorrect
or if the Jaccard similarity is 0. The denominator in recall, representing the sum of
true positive and false negative detections for each drift type, is determined by the
total number of drifts that type in the gold standard.

Note that this assessment requires us to establish an alignment between the sets
of detected and actual (gold-standard) drifts, i.e., determining which gold-standard
drift corresponds to a detected drift, if any. This task is equivalent to solving the
two-dimensional rectangular assignment problem [74], a well-known problem in
operations research. The goal of this assignment is to efficiently distribute a pool
of resources (such as individuals or employees) among a limited set of tasks, with
the aim of minimizing the total associated cost matrix. In our case, the detected
drifts serve as resources, and the actual drifts represent the tasks. The cost matrix
is derived from the Jaccard similarity (with a negative sign) between pairs of drifts.
We solve this problem using the Jonker-Volgenant algorithm [75], implemented in
the Python library scipy.optimize.

Table 3.9: Results of Experiment 3.1: Drift type detection accuracy using gold-
standard change points and types (Steps 1-2).

Drift type Supp. Logs w/o noise Logs w. 20% noise Logs w. 40% noise

Prcc Rec. F1 Prc. Rec. F1 Prc. Rec. F1

Change-point level

Sudden 35 046 091 062 046 089 061 046 089 0.60
Gradual 98 078 086 082 078 086 082 0.78 086 0.82
Incremental 263 093 0.69 0.79 093 0.68 0.79 093 0.67 0.78
Recurring 255 090 098 094 089 098 093 088 098 093

Overall (weighted) 0.87 0.84 0.85 087 0.84 0.84 086 083 0.83

Drift level

Sudden 35 046 091 062 046 089 061 046 089 0.60
Gradual 49 0.78 086 082 0.78 086 0.82 0.78 0.86 0.82
Incremental 58 093 0.66 0.77 093 0.65 076 092 0.63 0.75
Recurring 56 083 079 081 082 081 0.82 0.81 0.81 0.81

Overall (weighted) 0.78 0.79 0.77 0.78 0.79 0.77 0.77 0.78 0.76

Chapter 3. Comprehensive Concept Drift Characterization 76

Results

Experiment 3.1. Table 3.9 presents the evaluation results of Experiment 3.1 for
both measurement levels.

The results at the change-point level show that our framework performs well,
achieving an average weighted F1-score of about 0.84 across all datasets. The
results also show our framework’s robustness to noise, maintaining consistent per-
formance across all noise levels.

With respect to drift types, there are some drift-specific findings. We achieve
good accuracy for gradual drifts with precision and recall consistently remains at
approximately 0.78 and 0.86, respectively. The detection of recurring drifts yields
a perfect recall of 0.98 and a precision close to 0.90. Notably, sudden drift de-
tection displays relatively lower precision, but remains consistently high in recall.
In contrast, detecting incremental drifts reveals an opposing trend, indicating that
incremental changes are occasionally mistaken for sudden ones. This is closely
related to the problem of differentiating a sequence of simple drifts from an incre-
mental drift, as illustrated in Figure 3.4. Following our definition of a concept drift
in Section 3.2.3, our algorithm considers the two necessary conditions for detect-
ing incremental drifts: (1) a sequence of at least two consecutive process changes
with (2) low change severity. Improving detection accuracy can be achieved by
introducing additional criteria to assess whether or not process changes are part of
the same transformation initiative, indicating they belong to the same incremental
drifts.

At the drift level, the overall detection accuracy drops by about 8%pt. (from
0.84 to 0.76) compared to the change level. This decline relates to complex drifts
(recurring and incremental) since the accuracy for simple drifts remains the same.
This aligns with expectations, as complex drifts involve multiple process changes,
making them more prone to misidentification at the drift level.

The decline in detection accuracy in recurring drifts is the primary factor con-
tributing to the overall accuracy drop. The average recall over all datasets drops
by about 18%pt. (from 0.98 to 0.80). Given the high recall at the change level,
this suggests that recurring change points are occasionally assigned to the wrong
recurring drifts. Consequently, precision also drops by about 7%pt. Another con-
tributing factor is the drop of around 3%pt. in recall for incremental drifts. This
can be attributed to the detection challenge between simple and incremental drifts.

Experiment 3.2. Table 3.10 presents the evaluation results of Experiment 3.2 for
both measurement levels.

The results on the change-point level show solid performance with an average
weighted F1-score of about 0.79 across all datasets. The results remain robust to
noise, ensuring a stable performance across all noise levels.

Chapter 3. Comprehensive Concept Drift Characterization 77

Table 3.10: Results of Experiment 3.2: Drift type detection accuracy using gold-
standard change points (Step 1) as input.

Drift type Supp. Logs w/o noise Logs w. 20% noise Logs w. 40% noise

Prcc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

Change-point level

Sudden 35 035 077 048 044 077 056 045 071 0.55
Gradual 98 0.68 0.66 067 064 078 070 069 076 0.72
Incremental 263 0.87 0.61 072 090 0.64 075 089 0.69 0.78
Recurring 255 084 097 090 087 096 091 088 098 092

Overall (weighted) 0.80 0.77 0.77 0.82 0.79 0.80 0.83 0.81 0.81

Drift level
Sudden 35 035 077 048 044 077 056 045 071 0.55
Gradual 49 0.70 0.66 068 064 078 070 0.70 0.76 0.73

Incremental 58 0.85 057 068 088 060 071 088 0.61 0.72
Recurring 56 075 075 075 078 077 077 081 0.78 0.80

Overall (weighted) 0.70 0.68 0.66 0.71 0.72 0.70 0.74 0.71 0.72

Compared to the previous experiment, the overall accuracy drops by about
5%pt (from 0.84 to 0.79), caused by errors from the change type classification
algorithm (Step 2). The primary factor contributing to the decline in performance
is the decrease in accuracy in simple drift detection. Specifically, we observe an
average Fl-score drop of about 12%pt. for gradual and about 8%pt. for sudden
drifts across all datasets. This is anticipated, as simple drift detection relies on the
identified change type from Step 2. If there is an error in identifying the change
type, it follows that the corresponding drift type will be inaccurately determined.
The errors in Step 2 also impact the accuracy of complex drift detection; however,
the drop for recurring and incremental drift types is below 5%pt.

At the drift level, the average Fl-score drops by 10%pt. compared to the
change-level evaluation. The main drivers and their contributions are proportional
to what we observe in Experiment 3.1.

Overall, our algorithms proposed for Steps 2 and 3 demonstrate their effec-
tiveness at detecting drift types, with clearly evident noise resilience, since they
maintain consistent results across different noise levels. In addition, our evaluation
at the drift level highlights the challenges in accurately detecting and distinguishing
complex drifts.

Chapter 3. Comprehensive Concept Drift Characterization 78

3.4.6 Steps 1-3: Comparison with the Baseline

In this section, we apply all three steps of our framework and highlight the advan-
tages of the obtained results compared to the state-of-the-art solution.

Experimental setup

Baseline and configurations. We use the Visual Drift Detection (VDD) tech-
nique [56] as the state-of-the-art technique. It can detect simple and complex drift
types from an event log and is the only (partially) comparable solution (see Sec-
tion 3.5), although the approach is not automated. In our experiments, we use
the online version of the VDD technique!® with the suggested default parameters:
window size 300, slide size 150, cut threshold 300.

Experiment. The VDD technique is not fully automated, requiring a user’s in-
terpretation of visualizations for complex drift detection. This makes automated
comparisons infeasible. Therefore, we illustrate our framework’s advantages by
comparing results for a specific event log from our data collection (i.e., log number
90, with 20% noise). The selected log contains 64,594 events, 9,169 traces, 1,237
trace variants, and 8 distinct activities. The left-hand side of Table 3.11 shows that
the log contains 8 change points that jointly form 5 changes and 3 drifts. Specifi-
cally, there are individual sudden and gradual drifts and a larger incremental drift,
which encompasses 3 changes and 5 change points.

Results

Our framework. In Table 3.11, the right-hand side displays the outcomes of our
framework. The first framework step accurately identifies 7 out of 8 change points,
with one false positive (identifying a non-existent change point) and one false neg-
ative (not recognizing an actual change point), resulting in a F1-score of 0.88. The
change type detection step identifies 1 out of 2 sudden change types, with one false
negative detection, and successfully identifies 2 out of 3 gradual start/end changes,
with also one false positive detection. This leads to a weighted F1-score of 0.67.
The errors in the classification of change types appear primarily due to the errors
in the previous step. In the final detection step, all change points are correctly as-
signed to their corresponding drift types, except for the first two, which together
form a simple gradual drift, leading to the weighted F1-score of 0.58 (evaluated at
the change level).

10 Available online through the URL https://yesanton.github.io/Process-Drift-
Visualization-With-Declare/client/build/

https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/
https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/

Chapter 3. Comprehensive Concept Drift Characterization 79

Table 3.11: Actual concept drift information for the event log 90 with 20% noise
vs. detected drift information using our framework.

Gold standard Detected drift information (our framework)
Change point* Change type Drift type Change point* Change type Drift type
1042 gradual start gradual (+) 1429 (+) gradual start (-) incr.
1748 gradual end gradual (+) 1879 (+) gradual end (-) incr.
(-) 2593 (-) gradual start ~ (-) incr.
2855 sudden incr. (+) 2989 (-) gradual end (+) incr.
4089 gradual start incr. (+) 4195 (-) sudden (+) incr.
4623 gradual end incr.
5847 gradual start incr. (+) 5976 (+) gradual start (+) incr.
6623 gradual end incr. (+) 6694 (+) gradual end (+) incr.
7991 sudden sudden (+) 7947 (+) sudden (+) sudden

* We use trace ID to indicate the change point in a log.

Baseline. Figure 3.16 presents a primary outcome of the baseline technique, i.e.,
the Drift Map, Drift Charts, and autocorrelation plots with further measures that
are used to support visual analysis. The Drift Map (Figure 3.16a) shows over 525
detected behavioral rules (y-axis), organized into 55 behavioral clusters (indicated
by horizontal dashed white lines). Within each cluster, white vertical lines indicate
change points, while black vertical dashed lines highlight global change points
spanning over all clusters. The Drift Charts (Figure 3.16b depicts a drift chart for
a selected cluster) categorize drifts, helping to determine if drifts exist, their pat-
terns over time, and the stability or drift in behavior. Finally, Figure 3.16c depicts
autocorrelation, to detect recurring drifts, and erratic measure to differentiate, for
instance, gradual drift from incremental.

Next, we use VDD to try to obtain the same types of insights provided by our
framework’s three steps:

Step 1: Change point detection. The baseline identifies a total of 6 change points.
The change points py, p2, ps3, and pg align with the gold standard, while the re-
maining p4 and ps are within the gradual transition phases. Unfortunately, the
figure does not allow for a precise assessment of whether p4 and ps adhere to the
accepted deviation of 5% from the log size. Consequently, our estimation of the
accuracy in the change point detection step yields a precision range of 0.67 to 1.00
and a recall range of 0.50 to 0.75, depending on whether or not the change points
p4 and ps are considered correct. This results in an F1-score spanning from 0.57
to 0.86 with an average value of 0.71. Even in the best-case scenario (F1-score of
0.86), the performance is below the accuracy of our framework’s Step 1.

Step 2: Change type classification. Regarding process change detection, the

Chapter 3. Comprehensive Concept Drift Characterization 80

.

Detected change points
—_——

0.8

0.6

Erratic measure

:%2 0.4 Spread of constraints
25(1) 02 Incremental drift present, p = 0.2995
=
504
525 8.8 0.0
(a) Drift Map. (b) Drift chart (cl. 13). (c) Autocorr. (cl. 13).

Figure 3.16: The output of the VDD technique.

baseline does not automatically distinguish between gradual and sudden process
changes. However, by visualizing different behavioral clusters, we can identify
when detected change points suggest a gradual process change. For example, mul-
tiple clusters between the first and second change points indicate a gradual shift
in certain behavioral patterns. Thus, we can conclude that the baseline correctly
identified the first gradual process change, the second sudden process change, and
the final sudden process changes. However, change points p4 and ps are misclassi-
fied as sudden process changes due to an error in the change point detection step.
Overall, VDD thus leads to a perfect recall and precision of 0.50 for sudden pro-
cess changes, with perfect precision and 0.33 recall for gradual process changes,
resulting in a total weighted F1-score of 0.54. This result is 13%pt. below the
accuracy of our framework’s Step 2, which, furthermore, does not rely on manual
interpretation of various visualizations.

Step 3: Change interrelation detection. The identification of drifts and their drift
types using VDD is highly challenging. The tool’s visualization of clusters does
not differentiate between affected behavioral rules that relate to different drifts.
Therefore, based on the Drift Map and Drift Charts, it is not feasible to understand
the big picture, i.e., that the first two change points as well as the last one are
simple drifts that do not belong to the incremental drift in between. Moreover,
some visualized clusters indicate a recurring drift pattern, though such patterns are
not present in the gold standard. Therefore, drawing conclusions about the overall
drift scenario, in terms of exact simple and complex drifts, remains speculative.

Overall insights. In summary, the VDD technique visualizes and locates change
points well, but understanding the different types of process changes and their re-
lationships, and determining if they form a single incremental drift or a set of un-
related drifts, is still difficult. Consequently, achieving a complete understanding

Chapter 3. Comprehensive Concept Drift Characterization 81

of the overall concept drift is not feasible, even with manual effort. In contrast, our
proposed framework enables an automated detection of drifts and achieves better
results for all three steps compared to the baselines. Therefore, our framework pro-
vides an important step towards automated and comprehensive detection of concept
drifts from event logs.

3.5 Related Work

In this section, we discuss existing concept drift detection techniques in light of
our taxonomy, specifically showing their coverage of the different change and drift
types. Given the scope of the addressed problem, we focus on offline detection
techniques that use event logs as input and yield information about the type of
change or drift as output. We exclude online concept drift detection techniques
that rely on event streams from consideration, as this problem setting introduces
additional constraints and limitations (such as increased computational overhead,
real-time processing requirements, and the need for continuous monitoring) that
make direct comparisons with our framework and other offline techniques unrea-
sonable.

Table 3.12: Classification of different concept drift detection and characterization
techniques according to our taxonomy.

Change Change Drift type detection
Technique point type Simple drifts Complex drifts
detection detection Sud. Grad. Incr. Rec.
Various works H* K
Bose et al. [31] ¥ * * *
Martushev et al. [54] ¥ * * *
Maaradji et al. [55] ¥ ¥ ¥ ¥
Yeshchenko at el. [56] K * ¥ (%) (%) (%)
Proposed framework Kk * K H*K KK K kXK

Legend: “X%" - automated, “*" - semi-automated, “(%)" - non-automated.

Table 3.12 provides an overview of the scope and automation level of exist-
ing drift detection and characterization techniques. Since establishing the problem
and importance of concept drift detection in process mining more than a decade
ago [50], various techniques have been proposed to detect and characterize them,
as highlighted in recent literature reviews [59, 60]. However, the majority of exist-
ing techniques detect change points in an event log, aiming to identify a moment
when a process behavior significantly changes [52, 54, 61-67]. In terms of drift

Chapter 3. Comprehensive Concept Drift Characterization 82

characterization, they do not contribute to the understanding of the underlying drift
types.

Change type detection. When it comes to detecting not only process change
points but also process change types, there are two techniques that distinguish be-
tween gradual and sudden changes:

Bose et al. [31] introduced concept drift detection in process mining and pre-
sented a method for automatically detecting process change types. Their approach
uses statistical testing of feature vectors. However, users should indicate which
change type should be searched for, i.e., the techniques can only detect sudden
or gradual drifts, not both. The method lacks automation, requiring user manual
feature selection, assuming prior knowledge of drift characteristics. Additionally,
testing all possible activity combinations can also be computationally demanding.
Finally, users must specify a window size for drift detection, potentially miss-
ing some drift occurrences. To address the window size limitation, Martushev et
al. [54] introduced adaptive windowing, which automatically adjusts the window
size when searching for drifts. However, this approach requires users to define
minimum and maximum window size parameters as upper and lower boundaries
for automated window adaptation. Given the mentioned constraints, both tech-
niques have limited capability in detecting process change types, especially in an
automated manner.

The work by Maaradji et al. [55] introduced an alternative technique for change
type detection, addressing the limitations of Bose’s technique. Their method offers
an automated and statistically grounded solution for identifying both sudden and
gradual process change types, representing the current state of the art in simple drift
detection. Their approach involves a two-step process: initially, it detects change
points to identify sudden drifts (see Figure 3.9), and then it employs postprocess-
ing on the output of the sudden drift detection algorithm to detect gradual drifts.
Specifically, they analyze the behavior within the intervals between two change
points by statistically assessing whether it exhibits a mixture of behavior distribu-
tions before and after these points [55]. However, this distribution-based method
has a significant drawback. In situations where noise is present in an event log, par-
ticularly concerning gradual drift detection, their approach experiences a notable
decrease in detection accuracy, as demonstrated in our evaluation (Section 3.4).

Drift type detection. Change type detection techniques can only detect simple
drifts. Therefore, their usefulness in practice is notably limited when it comes to
drift characterization since event logs might include complex drifts, which is apri-
ori unknown. These techniques do not consider the interrelations between process
changes, leading to a collection of simple drifts if the underlying drift in an event
log is complex. We demonstrate it using an exemplary concept drift scenario with

Chapter 3. Comprehensive Concept Drift Characterization 83

two drifts: a complex drift of incremental type followed by a simple drift of grad-
ual type, depicted in Figure 3.17a. The incremental drift consists of three process
changes: two sudden drifts at the change points p; and py4, and a gradual change
between py and p3. Figure 3.17b shows the detected change points using the tech-
nique by Maaradji et al. [55]. Given the output, it is impossible to conclude that
the first four change points belong to an incremental drift and the last one is an
independent gradual drift.

Incremental drift Gradual drift
sudden :

gradual !

|

sudgen NNEEENE |
.

| |

I I ! I
e

>
>

Lstare Pr P2 P3 D4 DPs DPe Lena

(a) Concept drift scenario with incremental and gradual drifts.

Process versions

28

s

B8RRI RRBAILDYLIER YU RN S e o

5

0.0

(b) Outcome of concept drift detection (c) Outcome of concept drift detection
technique for simple drifts [55]. technique for complex drifts [56].

Figure 3.17: The outcome of the state-of-the-art concept drift detection techniques
cannot comprehensively characterize a complex concept drift.

The comprehensive detection and characterization of drift types requires tech-
niques that can simultaneously detect simple and complex drifts. The Visual Drift
Detection (VDD) technique, introduced by Yeshchenko at el. [56], represents the
current state of the art. VDD uses concepts like temporal logic, DECLARE con-
straints [76], and time series analysis. It groups similar declarative behavioral con-
straints and automatically identifies change points. The system provides visual aids
such as the Drift Map, Drift Charts, and a directly-follows graph. While these vi-
sualizations effectively localize change points, it has a significant limitation. The
process of identifying simple gradual and complex drifts is not automated and de-

Chapter 3. Comprehensive Concept Drift Characterization 84

pends on a user’s visual interpretation. As a result, recognizing complex drift types
or several different drifts within the same event log can be challenging and subjec-
tive, limiting the ability to characterize drift types and the overall process evolution.
Figure 3.17c shows the Drift Map, the main output of the VDD technique, for the
same concept drift scenario in Figure 3.17a. Given the visualization, it is impos-
sible to see if detected change points belong to a complex or form a sequence of
simple drifts. In our evaluation (Section 3.4), we further demonstrate these limita-
tions and compare the VDD approach to our work.

3.6 Conclusion

In this chapter, we contribute to the more comprehensive characterization of con-
cept drifts recorded in event logs by introducing an improved drift type character-
ization taxonomy and presenting a three-step framework for the automated detec-
tion of drift types.

Our improved drift type classification taxonomy classifies drifts into simple
and complex ones, relying on process changes and their properties as the core ele-
ments of concept drifts. Our taxonomy addresses existing inconsistencies by pro-
viding an exclusive drift type classification. Our taxonomy enhances the detection
and evaluation of concept drifts, especially complex drifts with inter-connected
process changes. Following our taxonomy, we proposed an automated, three-step
framework for the comprehensive detection and characterization of concept drifts.
Our experiments demonstrated that our change type and change interrelation de-
tection algorithms used in Steps 2 and 3 provide accurate results, offering a more
comprehensive understanding of drift types and the overall evolution of the process
compared to state-of-the-art solutions.

In future work, we plan to enhance our framework in several directions. First,
we aim to refine the change point detection step, which significantly influences
the overall framework accuracy. Our evaluation of existing change point detection
techniques revealed a need for a more precise approach to detect change points
that correspond to sudden, gradual start and end points, especially, in the presence
of noise. Second, we plan to improve the identification of incremental drifts by
considering additional aspects, like change localization and time aspects, that can
improve detection accuracy. Finally, we see the potential to expand this frame-
work with drift localization information that, based on identified drifts and process
versions, goes beyond localization for individual change points.

Chapter 4

Concept Drift Detection Using
Computer Vision

Business process dynamics can be used not only to better characterize concept
drifts, as demonstrated in the previous chapter, but also to detect them with higher
accuracy and greater robustness to noise than state-of-the-art approaches that do
not account for process dynamics. By visualizing process dynamics over the full
timeframe of an event log, it becomes possible to more effectively relate different
changes and assess whether detected variations represent simple or more complex
drifts. This chapter explains how this can be achieved, building on our papers
“Looking for Change: A Computer Vision Approach for Concept Drift Detection
in Process Mining” [7] and “Machine Learning-based Detection of Concept Drifts
in Business Processes” [8], both by Alexander Kraus and Han van der Aa.

In the remainder, Section 4.1 introduces the topic. We define the scope of the
work in Section 4.2. Our CV4CDD approach, including the input to the problem
and desired output, is detailed in Section 4.3. Section 4.4 presents the evaluation
of our approach against state-of-the-art techniques. Finally, Section 4.5 reflects on
related work before Section 4.6 concludes the chapter.

4.1 Introduction

The importance of concept drift detection in process mining has been widely ac-
knowledged [50], resulting in a range of proposed concept drift detection tech-
niques [60]. However, these existing techniques exhibit notable limitations con-
cerning their accuracy and scope. With respect to their accuracy, the performance
of existing techniques tends to significantly decline in situations where noise, vary-
ing types of drifts, or different levels of change severity are present in an event log.

85

Chapter 4. Concept Drift Detection Using Computer Vision 86

Such declines occur because the techniques depend on algorithmic design choices,
often based on heuristic strategies and assumptions about how drifts manifest in
event logs. Since, these assumptions are not applicable to all situations, algorithms
based on them can be subject to issues such as a lack of robustness or generally
poor accuracy. With respect to their scope, existing techniques typically detect
only a subset of the commonly-known drift types, typically just focusing on sud-
den drifts, with few techniques also considering gradual ones [59]. The detection
of more complex drifts, such as incremental and recurring drifts [31], is generally
overlooked and has not yet been tackled in an automated manner. Due to these
limitations, existing concept drift detection techniques are thus unable to provide a
precise and comprehensive understanding of how processes evolve over time.

To overcome this, we propose CV4CDD, a concept drift detection approach
that can detect sudden, gradual, incremental, and recurring drifts in an automated
manner, with high accuracy. We achieve this by following an entirely different
paradigm for drift detection in process mining. Specifically, unlike existing tech-
niques, our approach uses a machine learning model trained on a large dataset of
labeled event logs, enabling it to learn how drifts of different types manifest them-
selves in event logs. The possibility of training such a model has only recently
emerged, thanks to a tool for generating large collections of logs with known con-
cept drifts [12]. However, even with such data, the challenge of applying (su-
pervised) machine learning to concept drift detection is far from straightforward.
This difficulty stems from the challenge of capturing the progression of an entire
process over time, in a way that it can serve as suitable for input into a machine
learning model. To address this challenge, we draw inspiration from research that
uses image-based representations to encode multi-faceted data about processes [77,
78]. Therefore, we first turn an event log into an image that visualizes differences
in process behavior over time. This enables us to employ a state-of-the-art object
detection model [79] (from the field of computer vision), fine-tuned on a large col-
lection of event logs with known concept drifts, to recognize where drifts occur
in unseen event logs. Our experiments reveal the efficacy of this idea, showing
that our approach significantly improves the state of the art in terms of accuracy,
robustness, and automation in detecting drifts, while covering a broader range of
drift types.

This chapter extends our earlier work [7], where we introduced a computer
vision-based approach for concept drift detection in process mining. We broaden
the scope to cover not only sudden and gradual drifts but also incremental and re-
curring drifts, and we expand the evaluation with further experiments. In addition,
we include a sensitivity analysis, a qualitative study, and a benchmark comparison
on real-world event logs to provide deeper insights into our approach’s perfor-
mance.

Chapter 4. Concept Drift Detection Using Computer Vision 87

4.2 Problem Scope

Our work addresses the problem of detecting concept drifts in the control-flow per-
spective of a process based on data recorded in an event log. Conventionally, such
concept drifts encompass four types: sudden, gradual, incremental, and recurring
drifts [31], as illustrated in Figure 4.1. We divide these four drift types into two
groups, as discussed in Chapter 3:

- Sudden drift Gradual drift

£

'5 A s (7=

2 5% T I .

o £F° : 3

£ <3 E = ¢ | IR

@ P1 Time P1 P2 Time

- Incremental drift Recurring drift

£ |

= o

x 45 | 25| XNom N

s 8%l : S - D v

£ < pm | R =S (I P :

O P1 P23 P4 Time P1 P2 P3 P4 Ps Time
! - Sudden drift - Gradual drift

Figure 4.1: Problem scope: detection of sudden, gradual, incremental, and recur-
ring drifts.

Simple drifts. We jointly refer to sudden and gradual drifts as simple drifts, since
they correspond to a single change in a process from one version to another:

* Sudden drift: A sudden drift describes an abrupt replacement of one process
version by another. For instance, Figure 4.1 shows the replacement of pro-
cess version v; by version vy at a certain moment, i.e., the change point p;.
This means that all process instances that start after p; will follow process
version vy. Sudden drifts are often observed in scenarios such as emergency
response planning, where airlines and airports may alter their security pro-
cedures in response to new regulations [31].

* Gradual drift: A gradual drift describes a situation where the replacement
of process version v; by vy involves a transition period in which both ver-
sions coexist. In these cases, after an initial change point p; an increasing
fraction of new process instances will follow version vs, until the roll-out of

Chapter 4. Concept Drift Detection Using Computer Vision 88

that version is completed at change point py. Gradual drifts, for instance,
will occur when an organization starts training its employees in a spread-out
manner regarding a new way of working, so that more and more employees
start following the new version during the training period.

Complex drifts. We jointly refer to incremental and gradual drifts as complex
drifts, since they consist of several, related simple drifts:

* Incremental drift: An incremental drift occurs when one process version is
replaced by another through a sequence of simple drifts, rather than at once.
For instance, in Figure 4.1, process version vy g is replaced by vz g through
a sequence of sudden and gradual drifts. This results in two intermediate
versions, v1.1 and vy 2, along with a total of four change points. Generally,
the simple drifts that make up an incremental drift correspond to relatively
small changes, whereas this also must relate to the same transformation ini-
tiative. A notable example of this type of drift are the process changes that
arise from agile business process management methodologies [31].

* Recurring drift: A recurring drift is characterized by a situation when dif-
ferent versions of a process reoccur in an alternating fashion. For instance,
Figure 4.1 illustrates a situation where a process switches between versions
v1 and vy, following a sequence of sudden and gradual drifts. Recurring
drifts are, for instance, common in processes with seasonal patterns.

The aforementioned definitions are consistent with our concept drift characteriza-
tion taxonomy, presented in Section 3.2.3.

In the following section, we detail our approach that can detect drifts of each
of these four types.

4.3 Approach

This section introduces CV4CDD, our computer vision approach for concept
drift detection. As visualized in Figure 4.2, our approach consists of two main
steps. First, we transform an event log into an image that captures the behavioral
(dis)similarity of a process over time. Then, the image is passed to our fine-tuned
computer vision model, which identifies if drifts are present in an event log and, if
so, determines their type (sudden, gradual, incremental, recurring) and correspond-
ing change points.

Before describing the two steps of our approach in detail, we define the ap-
proach’s input and desired outcome.

Chapter 4. Concept Drift Detection Using Computer Vision 89

representation I drifts

@ E\éentt> |:> mﬂ 0y [2. Drift detection ’ 0y jﬂ#

Figure 4.2: Our CV4CDD approach: overview of the main steps.

Input. Our approach takes as input an event log L. We define the event log L
together with a trace o, as well as the ordered collection of traces X7, as specified
in Section 2.1.2.

Output. Given an event log L as input, the desired output is a collection of
drifts D := {di,--- ,d,}, where each drift d; is represented by a tuple, d; :=
(type, Dstart, Dend)> With d;.type specifying the drift type, and d;.psiare and d;.peng
denoting the drift’s start and end change points, respectively. In case of a sudden
drift, the start and end points are the same. For a complex drift, which consists of a
sequence of sudden and gradual drifts, the start and end change points are defined
by the start change point of the first drift and the end change point of the last drift
in the sequence, respectively.

4.3.1 Transformation of Event Log into Image

The first approach step takes as input an event log and transforms it into an image.
The image visualizes the behavioral (dis)similarity of a process over time recorded,
which can be used to recognize concept drifts. The transformation includes four
sub-steps, as depicted in Figure 4.3.

-
9 Event Split traces Calculate behavioral Measure Transform ﬁ
log into windows representation similarity into image g

Figure 4.3: First approach step: transforming an event log into an image.

Split traces into windows. The approach first splits the chronologically ordered
traces in X7, into an ordered collection of N windows, W := (wy, ..., wy). These
windows are non-overlapping and collectively cover all recorded traces in X1, with
each window w; containing approximately | X |/N traces.

During the fine-tuning of the computer vision model, we use N = 200 as a de-
fault value for the number of windows so that each window w; covers about 0.5%

Chapter 4. Concept Drift Detection Using Computer Vision 90

of all traces from the log. For the training collection (see Table 4.1), with logs con-
taining about 1,000-21,000 traces, this setting provides an effective image-based
representation per log for the problem of concept drift detection. We recommend
using 200 windows also as the default setting for detecting concept drifts using
CV4CDD on a new event log. However, for small event logs (e.g., with fewer
than 2,000 traces), decreasing the number of windows avoids having too few traces
per window, as demonstrated in our sensitivity analysis in Experiment 1 (see Sec-
tion 4.4.1). Conversely, larger event logs (especially those spanning a long time
range) may benefit from having more windows, to prevent drifts occurring within
the span of a single window.

Calculate behavioral representation. After establishing W, our approach com-
putes a behavioral representation, B(w;) for each window w;, which characterizes
the process behavior of w;’s traces. Each B(wj;) consists of a collection of two-
dimensional tuples, each storing a behavioral pattern and its frequency, as visual-
ized in Figure 4.4.

A common behavioral representation used in process mining is to capture the
directly-follows frequencies observed during a time window [59], which we use
as the default for our approach. It counts how often two activities were observed
to directly succeed each other for a case. However, it is important to note that the
choice for a behavioral representation is flexible, provided that it yields a numeric
frequency distribution over a predefined set of relations or patterns across the win-
dow. Therefore, CV4CDD can also cover other types of relations (e.g., eventually
follows), sets of relation types, such as those of a behavioral profile [35], or declar-
ative constraints [36].

. Behavioral Similarity
Windows Traces representation measure
a—b:2
‘ (a,b,c)? [b—c:2 o . ‘
w; (a.c) B(w;) = 4o 1 S[i, j] = sim(B(w;), B(w;))
c—d:0 21 |1
a—b:1 :cosine(2 , 1)
. 1 1
w (a,b,c) B(w;) = b—c:1
J (a,c,d) Vo la—=e:l 0 1
c—d:1 = 0.83

Figure 4.4: Illustration of the similarity calculation between two windows.

Measure similarity. Next, our approach compares the behavioral representations
obtained for the different windows, quantifying their similarity. This comparison
is done for each pair w; and w; from W, resulting in a symmetric similarity matrix

Chapter 4. Concept Drift Detection Using Computer Vision 91

denoted as S. Each entry S[i, j] in this matrix shows the similarity between the
behavior represented by B(w;) and B(wj).

The similarity matrix S can be established using various similarity measures.

Common options employed in process mining contexts include the cosine similar-
ity (our default choice) and the Earth mover’s distance [61]. Figure 4.4 illustrates
the calculation of the similarity measure between two windows, using a behav-
ioral representation based on directly-follows frequencies and the cosine similarity
measure.
Transform into image. Finally, to enable image-based concept drift detection,
the similarity matrix S is transformed into an image. For this transformation, our
approach normalizes the matrix values to a range between 0 and 1, where the maxi-
mum similarity corresponds to 1 and the minimum similarity is 0. Each normalized
value is then scaled by 255 and converted to integers, resulting in a range between
0 and 255. Finally, using the Python Imaging Library! and a color map, images are
generated from the normalized values.

Windows Windows Windows Windows
W1 Wi WN W1 Wi WNW1 Wi WN W1 Wi WN

| High
R T2
SE
> =
Hl|. 85
g5

2 I
; i | lLow

a) Gradual and b) Gradual, gradual, ¢) Gradual and d) Recurring, gradual,

sudden drifts and sudden drifts incremental drifts and recuring drifts

Figure 4.5: Output of the first approach step (incl. annotations).

Figure 4.5 depicts a few examples of the outcome of this step, covering dif-
ferent drift scenarios. Note that the annotation that is shown is covered in Sec-
tion 4.3.2.

4.3.2 Drift Detection

The second step of CV4CDD takes as input the image obtained from the previous
step and applies a fine-tuned object detection model to detect concept drifts. In
this section, we present an overview of the object detection task and the employed
object detection model, elaborate on the training data and its annotation, and clarify
the training configurations.

! Available online: https://python-pillow.org

https://python-pillow.org

Chapter 4. Concept Drift Detection Using Computer Vision 92

Object detection using RetinaNet. Object detection is a fundamental task in com-
puter vision, where the goal is to identify and locate objects within images. Deep
learning methods have significantly advanced this field by directly learning features
from data, leading to breakthroughs in object detection [79]. RetinaNet [80] is a
recent addition to deep learning-based object detection models. Known for its ef-
fectiveness and reliability, RetinaNet has become widely adopted in both research
and practical applications, setting new standards in object detection performance.
RetinaNet Architecture. The RetinaNet model consists of three main compo-
nents [80]:

* Backbone Network: The backbone network identifies patterns necessary for
object detection. RetinaNet uses ResNet, a deep convolutional neural net-
work, which improves learning efficiency by allowing inputs to bypass cer-
tain layers.

* Feature Pyramid Network (FPN): The FPN processes multi-scale feature
maps from the backbone to create a pyramid of features at different reso-
lutions. It enhances the model’s ability to detect objects of varying sizes
by combining high-resolution feature maps from earlier layers with lower-
resolution feature maps from deeper layers.

* Classification and Bounding Box Subnetworks: These subnetworks enable
accurate object detection. The classification subnet predicts the probability
of an object belonging to a particular class at each location on the feature
map, operating at multiple levels of the FPN. The box regression subnet
predicts the coordinates of bounding boxes for objects and refines their po-
sitions.

Additionally, RetinaNet uses a specialized loss function, Focal Loss, to address
class imbalance by down-weighting easily classified background examples and fo-
cusing on difficult-to-detect objects. This makes RetinaNet effective in detecting
concept drift and handling noise across various sections of an image.
Training data and annotation. We use a training set of event logs with known
concept drifts. Each event log in the training set is transformed into an image
using the first step of our CV4CDD approach (Section 4.3.1). Then, each image
is annotated based on the drift information stored in the gold standard, capturing
where different drifts occur and what their types are. For the annotation, we define
bounding boxes using the widely-employed COCO (Common Objects in Context)
format [81].

In our case, we use these bounding boxes to capture where drifts of certain
types occurred in the image, as shown for various scenarios in Figure 4.5. To

Chapter 4. Concept Drift Detection Using Computer Vision 93

annotate sudden drifts, characterized by a single change point p that belongs to a
window w;, we establish a bounding box around w; that spans in total 2 windows
in both directions from w;, resulting in a total length of 5 windows. For gradual
drifts, we create annotations using windows that correspond to the start and end
change points. Each change point pssq.¢ and pe,q is associated with a trace index,
which belongs to a particular window in W. The corresponding windows w; and
wj, allow us to link pgtqr¢ and pepq to their window indices ¢ and j. We use these
indices to define a bounding box for gradual drift within an image.
Training configurations. To operationalize CV4CDD, we specifically use the
RetinaNet model from the TensorFlow Model Garden?, based on the SpineNet
backbone (ID 143). The model is pre-trained on the COCO dataset’, a widely-
used dataset for object detection. To adapt it to our specific task, we fine-tune
the model on a training set and halt fine-tuning using a validation set to prevent
overfitting.
Image input, batch size, anchor boxes. We use a fixed input size of 256x256 for
fine-tuning the model* with a batch size of 128 images, taking 312 iterations per
epoch. The model undergoes 500 epochs of training, with augmented images to
increase diversity and robustness by scaling up to two times or down to one-tenth of
their original size. We employ anchor boxes with a 1:1 aspect ratio, concentrating
exclusively on square-shaped bounding boxes, since all annotations correspond to
squares of different sizes along the diagonal of the image.
Optimization and learning rate. We use stochastic gradient descent with a momen-
tum of 0.9 and clip norm of 10, known for its simplicity and efficiency in training
deep learning models, especially with large datasets. Momentum aids convergence
by leveraging past gradients, while gradient clipping prevents exploding gradients,
ensuring stability, particularly in complex neural networks. Additionally, we em-
ploy a cosine learning rate, widely adopted for its simplicity and ability to enhance
convergence and generalization. This schedule adjusts the learning rate throughout
training, following a cosine-shaped function.

Using the fine-tuned RetinaNet model, our CV4CDD approach can be directly
applied to detect concept drifts in unseen event logs.

2TensorFlow Model Garden, Available online: https://github.com/tensorflow/models

3COCO dataset, Available online: https://cocodataset.org/

“If an input image provided for inference has a different size, i.e., because it was established using
a different number of windows IV, RetinaNet automatically rescales the image to the default size.

https://github.com/tensorflow/models
https://cocodataset.org/

Chapter 4. Concept Drift Detection Using Computer Vision 94

4.4 Evaluation

This section presents three experiments conducted to comprehensively evaluate the
performance of our CV4CDD approach for concept drift detection from multiple
perspectives. In Experiment 1, we assess the accuracy of our approach in detecting
change points in event logs and compare our results to various baseline techniques
that address this critical task for concept drift detection. Next, in Experiment 2,
we evaluate the accuracy of our approach in detecting drifts and their types and
highlight its advantages over a comparable state-of-the-art technique. Finally, in
Experiment 3, we apply our approach to real-life event logs and compare the in-
sights obtained with findings from the state-of-the-art technique.

To ensure reproducibility, the data collection, implementation, configurations,
and raw results are accessible in our public repository>.

4.4.1 Experiment 1: Change Point Detection

In this section, we assess the ability of our approach to detect change points in
event logs in comparison to existing baselines using synthetic data. We consider
this problem in isolation from the detection of drifts, given its fundamental role in
concept drift detection, as also evidenced by the various techniques that have been
proposed to address it. In the following, we discuss the evaluation setup, obtained
results, and findings from a sensitivity analysis.

Evaluation Setup

Below we elaborate on the details of the data collection, baselines, evaluation mea-
sures, as well as configurations used to evaluate our approach.

Data collection. Our data collection comprises two datasets, summarized in Ta-
ble 4.1.

CDLG dataset. To train, validate, and test our drift detection approach, we require
a large collection of event logs that contain known (i.e., gold-standard) concept
drifts of sudden, gradual, incremental, and recurring types. Since such a collection
is not publicly available, we, therefore, generated synthetic datasets using CDLG
(Concept Drift Log Generator) [12], a tool for the automated generation of event
logs with concept drifts, which comes with a wide range of parameters.

We used CDLG to generate 50,000 event logs, allocating 80% for training, 5% for
validation, and 15% testing. The generated event logs have the following charac-
teristics:

5Project repository: https://gitlab.uni-mannheim.de/processanalytics/cv4cdd.

https://gitlab.uni-mannheim.de/processanalytics/cv4cdd

Chapter 4. Concept Drift Detection Using Computer Vision 95

Table 4.1: Characteristics of the two synthetic datasets.

Characteristics CDLG dataset CDRIFT
(Number of) Training Validation Test dataset
Event logs 40000 2500 7500 115
— without drifts 9834 586 1834 0
— with noise 19908 1250 3768 60
Drifts 112660 7069 21229 156
— Sudden drifts 41295 2587 7827 156
— Gradual drifts 41 395 2615 7776 0
— Incremental drifts 14967 986 2823 0
— Recurring drifts 15003 881 2803 0
Change points 120151 7501 22567 156

* The logs are generated from process trees containing between 6 and 20 ac-
tivities, as well as sequential, choice, parallel, and loop operators.

* Each event log has between 1,000 and 21,000 traces (with an average of
around 7,200 traces per log), and the average trace length varies from 1 to
65 events.

* The event logs have 0 to 3 drifts each (with equal probability). Incremental
and recurring drifts consist of 3 simple drifts (of sudden or gradual type),
yielding a maximum of 18 change points per log.

* Each drift introduces changes up to 30% of the process tree elements (activ-
ities and operators) through deletion, insertion, or swapping.

* A quarter of the logs contain randomly inserted noise in 30% of the traces
and another quarter in 60% of the traces. The other half are noise-free.
CDRIFT dataset. To assess the generalizability of our approach and verify that
its performance is not restricted to the characteristics of the CDLG dataset, we
also consider a dataset used in a recent experimental study [57], which we refer to
as the CDRIFT dataset. This set consists of 115 synthetic event logs, previously
employed in evaluating various concept drift detection techniques, stemming from
three sources [50, 82, 83]. The logs have about 1700 traces on average and contain
between 1 and 4 change points. Notably, the CDRIFT dataset only contains sudden

drifts, though.
Baselines. We compare our approach to seven techniques for the detection of
change points that were used in a recent benchmark study by Adams et al. [57]:

Chapter 4. Concept Drift Detection Using Computer Vision 96

1. BOSE/J by Bose et al. [31] uses non-overlapping and continuous fixed-size
windowing with activity pair-based feature extraction and statistical testing.

2. ADWIN/J by Martjushev et al. [54] improves the BOSE/J technique by intro-
ducing adaptive windowing using the ADWIN approach.

3. PROGRAPHS by Seeliger et al. [52] implements non-overlapping and contin-
uous adaptive-size windowing, uses graph-based process features alongside
Heuristics Miner, and employs statistical testing.

4. PRODRIFT by Maaradji et al. [55] employs non-overlapping, fixed, and
adaptive-size windowing, statistical testing, and an oscillation filter.

5. RINV by Zheng et al. [62] uses behavioral profiles, a process similarity mea-
sure, and DBSCAN clustering.

6. EMD by Brockhoff et al. [61] employs a sliding window approach with local
multi-activity feature extraction and the Earth Mover’s Distance.

7. LcDD by Lin et al. [63] uses both static and adaptive sliding windows, in-
corporates directly-follows relations, and ensures local completeness.
Evaluation measures. We report on results obtained using established evaluation
measures for detecting change points [57]. Specifically, for each event log, we
compare the sequences of detected P4 = <pil, ceey pﬁ> and gold-standard P9 =
(pf,...,p%) change points (n,m > 0), where each change point is represented by

the ordinal number of the first trace that started after the change.

To identify which gold-standard change points have been successfully detected,
we use the linear program proposed by Adams et al. [57] to establish a pairwise
mapping between the points in P% and P9. This program finds an optimal mapping
M, assigning as many points to each other as possible, while minimizing the dis-
tance between corresponding change points. Note that no point in P¢ is assigned
to multiple points in P9 or vice versa. Furthermore, M will only include pairs
pf ~ p? that are within an acceptable distance from each other, which we refer to
as the allowed latency. We define latency as a percentage of the total traces in 3,
i.e., it must hold that |p¢ — Pl < |EL| * latency. We report on results obtained
using latency levels of 1%, 2.5%, and 5%.

Due to the consideration of latency, each correspondence in M is regarded as
a true positive. From this, we derive precision (Prc.) as |M|/|P%|, i.e., the fraction
of detected change points that are correct according to the gold standard, recall
(Rec.) as |M|/| P9, i.e., the fraction of correctly detected gold-standard change
points, and the F1-score as the harmonic mean of precision and recall.
Configurations. For different datasets, we use different configurations for the
baselines and our approach.

Baselines. When reporting on the performance of the baseline techniques, we use
the parameter settings that we found to achieve the highest F1-score. To find these
settings for the CDLG data set, we applied the experimental framework by Adams

Chapter 4. Concept Drift Detection Using Computer Vision 97

et al. [57], which assesses different parameter configurations, on the CDLG valida-
tion set. For the CDRIFT dataset, we ran experiments using all configurations that
are tested in the Adams et al. [57] framework and report on the results obtained us-
ing the best parameter settings. The exact parameter settings used for the different
techniques per dataset are detailed in our repository.

Our approach. We fine-tuned the RetinaNet model used by our approach with the
CDLG training and validation sets and parameters described in the second step
of our approach. Given such a fine-tuned model, the only parameter to set for
inference is the number of windows N to be used. For the CDLG test set, we
use the same number of windows as used during the fine-tuning (N = 200). For
the CDRIFT dataset, similar to the baseline’s parameters, we report on the results
obtained for the best parameters (N = 70) derived from a sensitivity analysis
(see Section 4.4.1).

Results

In the following, we present the results obtained for the two datasets, also focusing
on different latency and noise levels.®

Accuracy. In the following, we describe the results for each of the two datasets.
CDLG test set. For the CDLG test set, our CV4CDD approach consistently out-
performs the baselines, demonstrating F1-scores ranging from 0.80 at 1% latency
to 0.83 at 2.5% and 5% latencies. It already reaches its peak performance at just
2.5% latency, surpassing the best baseline, EMD, by 0.27. In terms of recall, our
approach outperforms the baseline scores by 0.30 and 0.15 at 1% and 2.5% laten-
cies, respectively. At 5% latencies, our approach achieves also the highest recall of
0.77, however, the LcDD, EMD, and BOSE/J techniques achieve comparable re-
call scores, each exceeding 0.70. Despite this, they exhibit lower precision, result-
ing in significantly lower F1-scores. Finally, in terms of precision, our CV4CDD
approach surpasses the best-performing baseline, PRODRIFT, by margins of 0.21,
0.15, and 0.13 for 1%, 2.5%, and 5% latency, respectively.

CDRIFT dataset. We obtain overall similar results for the CDRIFT dataset. Our
CV4CDD approach outperforms all baselines across latency levels, achieving F1-
scores of 0.56, 0.87, and 0.94 at 1%, 2.5%, and 5% latencies, respectively. These
higher values can be attributed to the fact that the CDRIFT dataset contains only
sudden drifts, which are relatively easier to detect for our approach. Only at 1%
latency does PRODRIFT achieve a higher precision of 0.91 compared to 0.61 for

8Given the non-determinism involved in training deep learning models, we repeated the training
and inference procedure of our approach five times. These repetitions resulted in mean standard
deviations of less than 0.1 percentage points across all measures (for CDLG test). We report on the
results of the first run in the remainder.

Chapter 4. Concept Drift Detection Using Computer Vision 98

Table 4.2: Overall results for detecting change points.

Latency 1% Latency 2.5% Latency 5%
Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

BOSE/] 0.32 0.39 0.25 0.49 0.60 0.54 0.57 0.70 0.63
ADWIN/J 0.43 0.28 0.34 0.58 0.38 0.46 0.63 0.42 0.50
PROGRAPHS 0.24 0.26 0.25 0.48 0.52 0.50 0.58 0.64 0.61
CDLG PRODRIFT 0.55 0.22 0.32 0.74 0.30 043 0.76 0.31 0.44

Dataset Technique

(test) RINV 0.36 0.44 0.40 0.46 0.56 0.51 0.53 0.64 0.58
EMD 0.36 0.44 0.39 0.51 0.62 0.56 0.58 0.71 0.64
Lcop 0.27 0.41 0.32 0.39 0.61 048 0.46 0.72 0.56
CVv4CDD 0.86 0.74 0.80 0.89 0.77 0.83 0.89 0.77 0.83
BOSE/] 0.08 0.07 0.07 0.60 0.52 0.56 0.75 0.66 0.70

ADWIN/J 0.15 0.11 0.13 0.40 0.29 0.34 0.71 0.51 0.59
PrROGRAPHS 0.21 0.18 0.19 048 0.41 0.45 0.78 0.67 0.72

CDRIFT PRODRIFT 091 032 0.48 1.00 0.35 0.52 1.00 0.35 0.52

RINV 0.01 0.00 0.00 0.23 0.18 0.20 0.47 0.36 0.41
EMD 0.05 0.03 0.04 0.88 0.59 0.71 0.97 0.66 0.79
Lcop 0.00 0.01 0.01 0.02 0.04 0.02 0.24 0.64 0.35

Cv4CDD 0.61 0.52 0.56 1.00 0.86 0.92 1.00 0.86 0.92

Support for CDLG (test): 22567 change points, CDRIFT: 156 change points.

our approach. The reason for the lower precision of our approach is rather techni-
cal. It is mainly attributed to the annotation of sudden drifts using bounding boxes
of 5 windows spanning around the position of an actual sudden drift in an image.
In scenarios with 70 windows and a latency of just 1%, inaccuracies arise during
the transformation from the coordinates of the bounding box to the corresponding
window index and subsequently to the first trace within the window, leading to low
precision and recall. This is supported by the correctly positioned bounding boxes
in the respective images, along with the observation that accuracy sharply increases
to its peak values at the next latency of 2.5%.
Noise impact. To evaluate the robustness of our approach, we report the results for
the event logs with different noise levels in the CDLG test set (using 5% latency).
As summarized in Table 4.3, our CV4CDD approach maintains consistent per-
formance regardless of noise, achieving the highest F1-scores from 0.82 for logs
without noise to 0.81 for logs with 30% and 60% noisy traces. In noise-free con-
ditions, three baselines (PRODRIFT, LcCD, and RINV) come close to our results.

Chapter 4. Concept Drift Detection Using Computer Vision 99

Table 4.3: Noise impact on detecting change points.

. 'W/o noise With 30% noise With 60% noise
Technique
Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1
BoOSE/] 059 070 064 057 070 063 055 071 0.62

ADWIN/J 0.64 043 051 062 041 050 062 040 049
PROGRAPHS 055 064 059 060 066 063 064 061 0.63
PRODRIFT 0.76 0.60 0.67 0.67 0.00 000 033 0.00 0.00

RINV 063 083 072 039 041 040 040 048 044
EMD 058 0.72 064 059 0.70 064 057 070 0.62
Lcpb 063 076 0.69 035 077 048 036 0.60 045

Cv4CDD 088 0.77 082 088 0.76 081 0.88 0.75 0.81

Support: 22,567 change points.

The LccD technique shows an outstanding recall of 0.83, while PRODRIFT main-
tains its lead across the baselines in precision, also seen for the noise-free CDRIFT
dataset. However, all three of these baselines experience a notable decline in ac-
curacy when noise is introduced, particularly PRODRIFT. Conversely, baselines
with relatively lower accuracy on the noise-free logs (EMD, ADWIN/J, and PRO-
GRAPHS) demonstrate less vulnerability to noise. This reveals that the baselines
are subject to a trade-off between performance in noise-free conditions and robust-
ness to noise, which does not apply to our approach.

Sensitivity Analysis

Finally, we discuss how the number of windows, NN, specified by the user affects
the performance of our approach. To investigate this, we conduct a sensitivity anal-
ysis that examines a range of windows and the corresponding evaluation measures
for the two datasets. Considering the average size of the event logs, we analyze
windows between 100 and 300 for the CDLG test set and between 60 and 200 for
the CDRIFT dataset.

CDLG test set. Figure 4.6 shows the effects of different number of windows on
the evaluation measures across the latency levels. All three figures show the same
major trend. Specifically, we observe that the F1-score remains within a corridor
of £5%pt. for each latency level, with a slight decline in performance at both
extremes of the examined range of windows. This indicates that the approach is
generally robust to the choice of the number of windows when detecting drifts in
the CDLG test set.

Chapter 4. Concept Drift Detection Using Computer Vision 100

Latency: 1.0% Latency: 2.5% Latency: 5.0%
1.0 1.0 1.0
— — — T
206 206 20.6
S S S
)))
0.4 Metric 0.4 Metric 0.4 Metric
—— Precision —— Precision —— Precision
0.2 Recall 0.2 Recall 0.2 Recall
—<— F1 Score —+— F1 Score —+— F1 Score
0.0 0.0 0.0
100 150 200 250 300 100 150 200 250 300 100 150 200 250 300
Number of windows Number of windows Number of windows

Figure 4.6: Sensitivity analysis (CDLG test set).

CDRIFT dataset. Figure 4.7 illustrates the results of our sensitivity analysis,
where we can see two major findings. First, the results suggest that for event logs
with relatively few traces (as in the CDRIFT dataset), it is reasonable to reduce
the number of windows from the default value of 200 to 100 or fewer, allowing
each window to capture more traces and better represent process behavior. Sec-
ond, a noticeable decline in recall occurs between 100 and 160 windows, with the
lowest performance observed at 130 windows. This outcome can be attributed to
the structure of the synthetic event logs in the CDRIFT dataset, which typically
feature either one change point in the middle of the log (in the majority of logs) or
multiple evenly spaced change points. At 130 windows, change points fall near the
center of a window, causing the distance from the start of the window (used for the
detection of change points) to exceed the allowable latency, resulting in reduced
performance.

Latency: 1.0% Latency: 2.5% Latency: 5.0%
10 Metric 10— » 1.0 -
—— Precision —— e N e
08 Recall 0.8 \ g 0.8 ‘
—e— F1 Score / — < e, \
206 A 206 \/ Los6
g A \ S \ — S
) FZ2 N A e, @ L~/)
0.4 == \\\\/ . 0.4 N/ Metric 0.4 Metric
Ne—2 .\ /. ~e—e—s —— Precision —— Precision
0.2 Y 0.2 Recall 0.2 Recall
y —+— F1 Score —+— F1 Score
0.0 0.0 0.0
75 100 125 150 175 200 75 100 125 150 175 200 75 100 125 150 175 200
Number of windows Number of windows Number of windows

Figure 4.7: Sensitivity analysis (CDRIFT dataset).

Overall, we can observe in this experiment that our approach achieves a notable
performance improvement with respect to latency and shows consistent robustness
to noise when it comes to the detection of change points in event logs.

Chapter 4. Concept Drift Detection Using Computer Vision 101

4.4.2 Experiment 2: Concept Drift Detection

This section discusses the experiment conducted to evaluate the performance of our
approach to detect drift and their types, also in comparison with the state-of-the-art
technique. In the following, we discuss the evaluation setup, obtained results, and
insights from a sensitivity analysis.

Evaluation Setup

First, we provide information regarding the baseline, data collection, configura-
tions, and evaluation measures used in this experiment.

Baseline. We compare our approach against the Visual Drift Detection (VDD)
technique proposed by Yeshchenko at el. [56]. We selected this technique because
it stands out as the only existing technique that can be used to detect four types
of drifts from an event log and is the only (partially) comparable solution to our
approach, due to a lag in automation. In our experiments, we use the online version
of the VDD technique’.

Data collection. We use the CDLG test set to evaluate the accuracy of our approach
in detecting concept drift, as no other collections of event logs encompass the nec-
essary drift scenarios that include a mix of different numbers, types of drifts, noise
levels, and severities of process changes. However, since the VDD technique is not
fully automated and depends on user interpretation of visualizations, we showcase
the advantages of our approach using a specific event log from our CDLG test set
(log number 5436). The selected log contains 60% noise, 72,433 events, 10,103
traces, 3,787 trace variants, and 9 distinct activities. The left side of Table 4.6 in-
dicates that the log includes two complex drifts: incremental and recurring. Both
drifts consist of a sequence of three simple drifts: sudden, gradual, and sudden,
leading to a total of 8 change points.

Configurations. For the baseline, we use the suggested default parameters of the
online version of the tool for the selected event log: window size 330, slide size
165, cut threshold 300. For our CV4CDD approach, we use the default value of
200 windows.

Evaluation measures. We report on precision, recall, and F1-score by compar-
ing a collection of detected drifts D? to the gold-standard drifts D9. For each
drift type, ¢, and the corresponding detected D?%(t) C D and gold-standard drifts
DI(t) € D9, a true positive (tp) occurs if there is a detected drift d € D?(t) of
which both the start and end change points correspond to those of a gold-standard
drift dlg € DI(t) (given a certain latency level). However, if only the start or end

7 Available online: https: //yesanton.github.io/Process-Drift-Visualization-With-
Declare/client/build/

https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/
https://yesanton.github.io/Process-Drift-Visualization-With-Declare/client/build/

Chapter 4. Concept Drift Detection Using Computer Vision 102

point of dlg is detected correctly, we still count it as 0.5 of a true positive (as well
as 0.5 of a false positive). If neither of the detected change points for a drift cor-
responds to the gold standard, it is considered a false positive (fp). Finally, the
number of false negative and true positives (fn + tp) is given by the number of
actual drifts of a given type.

Given these scores, we compute precision (Prc.) as tp/(tp + fp), recall (Rec.)
as tp/(fn+tp), and the Fl-score per drift type (and logs without drifts), as well for
the overall detection (using weights to account for their different support values).

Results

In the following, we present the overall results of our approach with respect to dif-
ferent latency and noise levels. Then, we show the advantage of using our approach
in comparison to the baseline.

Table 4.4: Concept drift detection results by latency levels.

Drift Support Latency 1% Latency 2.5% Latency 5%
Prcc Rec. F1 Prc. Rec. F1 Prc. Rec. F1
No drifts 1834 091 100 095 091 100 095 091 1.00 0.95
Sudden 11333 099 076 086 099 076 0.86 0.99 076 0.86
Gradual 11234 099 060 075 1.00 062 077 1.00 062 0.77
Incremental 2823 097 092 095 098 097 098 099 098 098
Recurring 2803 099 097 098 099 099 099 099 099 0.99
Overall 098 075 0.84 099 076 0.86 099 0.76 0.86

Accuracy. Table 4.4 presents the results obtained for different latency levels. Our
CV4CDD approach shows F1-scores ranging from 0.84 at 1% latency to 0.86 at
5% latency. For event logs without any drifts, the approach achieves a perfect
recall of 1.00 and a precision of 0.91 across all latency levels. This indicates that
it correctly identifies all event logs without drifts. However, in 1 out of 10 cases,
the approach incorrectly detects a drift in an event log where no drift exists. For
sudden and gradual drifts, precision remains high (above 0.99), but recall drops to
0.75 for sudden drifts and ranges between 0.60 and 0.62 for gradual drifts. This
suggests that some actual sudden and gradual drifts, particularly gradual ones, are
not detected as such. This can be attributed to the fact that our test set includes
event logs with varying noise levels and process changes of different severities,
making accurate detection a challenging task. Lastly, for incremental and recurring
drifts, the approach achieves results above 0.92 for all measures and latency levels,
indicating that it accurately detects the start and end points of these more complex

Chapter 4. Concept Drift Detection Using Computer Vision 103

drifts.
Table 4.5: Concept drift detection results by noise levels.

Drift Support W/o noise With 30% noise With 60 % noise
Prc. Rec. F1 Prc. Rec. F1 Prc. Rec. F1

No drifts 1834 091 100 095 092 100 096 090 1.00 0.95

Sudden 11333 099 076 0.86 099 077 0.86 099 075 0.85

Gradual 11234 1.00 063 077 099 060 075 099 059 0.74

Incremental 2823 098 095 097 099 097 098 098 095 096

Recurring 2803 099 098 099 099 098 099 099 098 0.99

Overall 099 077 086 099 076 0.85 098 0.75 0.84

Noise impact. Table 4.5 shows the results for different noise levels. Overall, the
results remain consistent across all noise levels, demonstrating that our approach is
robust to noise. The only notable variation is a slight decrease in recall for gradual
drifts, from 0.63 for noise-free event logs to 0.59 for logs with 60% of noise. This
suggests that the relatively low recall observed in Table 4.4 is primarily due to the
complexity of the drift scenario rather than the influence of noise.

Comparison with the baseline. Figure 4.8 presents the results of our approach
compared to the baseline for the selected event log.

Our approach. Figure 4.8a illustrates the results of our CV4CDD approach, high-
lighting the detected drifts and their corresponding confidence levels. Table 4.6
shows the corresponding summary of all detected drifts, including their type and
respective start and end points. Based on the actual drifts and the deviations be-
tween detected and actual change points, our approach successfully identifies all
drifts in this event log for a 1% latency, which allows deviations of at most 101
traces, given the log size of 10,103 traces. The average deviation across all change
points is approximately 23 traces, which is consistent with the expected deviation®.
VDD technique. Figure 4.8b presents the primary outcome of the baseline tech-
nique: the Drift Map. This map displays over 900 detected behavioral rules (on the
y-axis), organized into 61 behavioral clusters, which are indicated by horizontal
dashed white lines. The Drift Map highlights four sudden drifts indicated by verti-
cal dashed black lines. While the first and the last drifts are correctly identified, the
two other sudden drifts actually mark two change points that denote the start and
end moments of a gradual drift. This gradual drift can only be identified through
visual inspection of the gradual change in the confidence level in certain behavior

8For a log with 10,103 traces divided into 200 windows, each window contains approximately 50
traces. In cases of accurate drift detection, the expected error between the actual trace index and the
first trace in the window is half the window size, i.e., 25 traces.

Chapter 4. Concept Drift Detection Using Computer Vision 104

Time
< =
= 2
T T
>

£z *
] 5 o
= 2 >
S 3 2
@ Kz 5 @
£ E £ s
= <} S S
=
3 2 €
< o o
@ © ©
2 2
o
IS =

(a) CV4CDD (our approach). (b) VDD technique (baseline).

Figure 4.8: Drift detection results for the selected log.

clusters. Using the Drift Map, users can also observe that several clusters exhibit
recurring behavior in the second part of the log, suggesting that detected drifts
belong to a recurring drift. However, analyzing the first part of the log, which con-
tains incremental drifts, proves to be more challenging. Although the Drift Map
detects several changes across different behavioral clusters (indicated by a white
dashed line within clusters), it becomes nearly impossible to conclude that these
changes are part of the same incremental drift.

Table 4.6: Actual drifts vs. detected drifts using our approach.

Actual drifts Detected drifts Deviation

Type Start End Type Start End Start End

Incremental 1387 4668 (+) Incremental (+) 1351 (+)4651 —-36 —17
— Sudden 1387 1387 (+) — Sudden (+) 1351 (+) 1351 —-36 —36
— Gradual 2986 3463 (+) — Gradual (+)2951 (+)3401 -35 —62
— Sudden 4668 4668 (+) — Sudden (+) 4651 (+)4651 —17 —17
Recurring 5835 9001 (+) Recurring (+) 5801 (+)9001 —34 0
— Sudden 5835 5835 (+) — Sudden (+)5801 (+)5801 —-34 —34
— Gradual 6947 7321 (+) — Gradual (+) 6951 (+) 7301 4 =20
— Sudden 9001 9001 (+) — Sudden (+) 9001 (+) 9001 0 0

“(+)" indicates that the detected information correspond to the actual, given 1% latency.

Chapter 4. Concept Drift Detection Using Computer Vision 105

Sensitivity Analysis

Similar to the first experiment, we conclude this experiment by presenting the in-
sights gained from the sensitivity analysis conducted on the CDLG test set. We
consider again different number of windows between 100 and 300 and illustrate
the impact of the number of windows on drift detection accuracy across three la-
tency levels.

Latency: 1.0% Latency: 2.5% Latency: 5.0%

_— — — _—
08 0.8 . ~ 0.8
20.6 206 206
S S S
S S S
)))
0.4 Metric 0.4 Metric 0.4 Metric
—— Precision —— Precision —— Precision
0.2 Recall 0.2 Recall 0.2 Recall
—+— F1 Score —+— F1 Score —+— F1 Score
0.0 0.0 0.0

100 150 200 250 300 100 150 200 250 300 100 150 200 250 300
Number of windows Number of windows Number of windows

Figure 4.9: Sensitivity analysis (CDLG test set).

Figure 4.9 illustrates how varying the number of windows influences evalua-
tion measures across different latency levels. Similar to the sensitivity results from
Experiment 1 (for the CDLG test set), we again observe a slight decline in perfor-
mance at both extremes of the examined number of windows. However, regardless
of latency, the evaluation measures remain within a corridor of £5%pt., indicating
that drift detection is also robust to the choice of the number of windows.

In summary, the evaluation results of this experiment suggest that our approach
detects various types of drifts with high precision and acceptable recall across
different latencies, while remaining robust to noise and choice of the number of
windows. Compared to the state-of-the-art techniques, our approach represents
a notable advancement towards the automated and thorough detection of concept
drifts.

4.4.3 Experiment 3: Evaluation on Real-Life Event Logs

In this experiment, we report results obtained using our approach on real-life event
logs and compare them with findings obtained in a comparable study. In the fol-
lowing, we discuss the evaluation setup and obtained results.

Chapter 4. Concept Drift Detection Using Computer Vision 106

Evaluation Setup

We provide a summary of the characteristics of the real-life event logs and detail
the configurations used in our approach.

Data collection. To allow a direct comparison of insights, we selected the same
three real-life event logs used in the study by Yeshchenko et al. [56], where the
authors employed their VDD technique to detect four types of drifts. The charac-
teristics of the selected event logs are summarized in Table 4.7. These logs exhibit
diverse characteristics in terms of the number of traces, trace variants (unique se-
quence of executed activities), number of events, and distinct activities.

Table 4.7: Characteristics of the real-life event logs.

Log name #Traces #Trace variants #Events #Unique activities
Hospital Log 1,143 981 150,291 624
Help desk Log 4,580 226 21,348 14
Sepsis Log 1,050 846 15,214 16

Configuration. To accommodate the relatively low number of traces in the selected
real-life event logs, we applied our approach using an adjusted number of windows.
Specifically, we report results using 70 windows for the Hospital and Sepsis logs
(which contain around 1,000 traces) and 100 windows for the Helpdesk event log
(which has approximately 4,500 traces).

Results

Figure 4.10 presents the results obtained by our approach for the real-life event
logs, which we compare with the findings reported using the VDD technique [56].
Hospital Log. For the Hospital event log, our method identifies a single sudden
drift around June 12, 2006. This detection partially aligns with the second sudden
drift reported by the VDD technique (around July 07, 2006) [56]. However, the
Drift Map identified an additional sudden drift in November 2005, which our ap-
proach does not capture. Lastly, neither our approach nor the VDD tool detected
any complex drifts within the log.

Help Desk Log. In the case of the Help desk event log, our approach identifies
an incremental drift that begins on September 5, 2012, and concludes on July 10,
2013. Within this period, we also detect a gradual drift between June 8, 2011,
and August 9, 2013, as part of the incremental drift process. The start points of
these two drifts correspond to the sudden drifts detected by the VDD technique.
However, according to our findings, these drifts represent change points within
the detected incremental drift. For certain behavioral clusters, the VDD technique

Chapter 4. Concept Drift Detection Using Computer Vision 107

\ 4

Time Time Time

~ee

Time

a) Hospital log b) Help desk log c) Sepsis log

Figure 4.10: Detected drifts by our CV4CDD approach.

also detects gradual and incremental drifts, which are temporally aligned with the
two drifts identified by our approach. Additionally, the VDD tool detects several
sudden drifts in some clusters, though, as noted by the authors, these are considered
outliers rather than true drifts. Our image-based representation of the event logs
depicts these outliers, though our approach does not classify them as drifts.

Sepsis Log. Our approach does not detect any notable drifts in the Sepsis event
log. As shown in Figure 4.10, the process behavior remains relatively homoge-
neous throughout the entire recorded period. Similarly, the VDD technique does
not show any patterns of change over time, indicating that the major clusters of
behavior do not exhibit significant drifts [56]. However, the authors identify some
recurring patterns in a few minor clusters, which are associated with two specific
activities. While these patterns may indeed suggest recurring drifts, they could also
be attributed to the specific cases within these minor clusters, as they represent only
a small portion of the overall behavior.

Overall, this experiment demonstrates that our CV4CDD approach can be effec-
tively applied to real-life event logs, providing insights that align with and also
extend the findings of the state-of-the-art technique. However, our approach auto-
matically identifies when drifts occur and what their types are without the need of
any additional interpretation of different visualizations.

4.5 Related Work

Since establishing the problem and importance of concept drift detection in process
mining more than a decade ago [50], various techniques have been proposed to
address this problem, as highlighted in recent literature reviews [59, 60]. In this

Chapter 4. Concept Drift Detection Using Computer Vision 108

section, we discuss such existing techniques that take event logs as input to identify
drifts and their types.

Table 4.8: Classification of different concept drift detection techniques.

Technique Cl(llalzgeﬁp(:nt Drift type detection
ctectio Sudden Gradual Incr. Rec.
Various works *

Bose et al. [31] * () (%)

Martushev et al. [54] * (%) (%)

Maaradji et al. [55] * * *

Yeshchenko at el. [56] * * (%) 6 ¥
Our approach (CV4CDD) * * * * *

Legend: “*" - automated, “(%)" - semi-automated.

Change point detection. Table 4.8 provides an overview of existing concept drift
detection techniques, including their scope and automation level. As shown, the
majority of existing techniques [52, 61-65, 67], as shown in the first row of the ta-
ble, focus on detecting change points in an event log since this it is a required first
step in concept drift detection. They use a wide range of ways to tackle this task,
including statistical testing, various kinds of feature representations, windowing
strategies, and clustering. Many of the techniques achieve good results, as demon-
strated in a recent evaluation framework [57]. However, our evaluation experiments
demonstrate that our proposed CV4CDD approach outperforms them in terms of
accuracy and robustness to noise when detecting change points. Furthermore, these
techniques do not go beyond the detection of change points, meaning that they are
only able to recognize when a process’s behavior significantly changed, but they
do not provide insights into what type of drift actually occurred. As a result, they
do not provide information about how process evolved over time.

Drift type detection. As shown in Table 4.8, a few techniques [31, 54, 55] are able
to detect drifts and their types (though often only semi-automatically).

Bose et al. [31] introduced concept drift detection in process mining, present-
ing a method for automatically detecting sudden and gradual drifts using statistical
testing of feature vectors. Although this approach is pioneering, it has limitations
in automated drift detection. Users must specify the type of drift in advance and
are required to manually select features, relying on prior knowledge of drift charac-
teristics. Otherwise, they may face the computational burden of testing all feature
combinations. Martushev et al. [54] enhance this method by introducing adaptive
windowing, which allows a more accurate detection of drifts. However, users still

Chapter 4. Concept Drift Detection Using Computer Vision 109

need to define the type of drift beforehand, and both techniques remain limited
to detecting only sudden and gradual drifts, neglecting recurring and incremental
drifts.

Maaradji et al. [55] introduced an alternative technique (ProDrift) for sudden
and gradual drift detection, addressing the main limitation of Bose’s method. Their
approach provides an automated and statistically grounded solution for identifying
both sudden and gradual drifts, representing the current state of the art in this area.
However, a significant drawback arises in event logs containing noise, where de-
tection accuracy notably decreases, as shown in our evaluation.

The Visual Drift Detection (VDD) technique, introduced by Yeshchenko et
al. [56], is a stand-alone solution for detecting four types of concept drifts in event
logs. This technique leverages concepts such as temporal logic, DECLARE con-
straints [76], and time series analysis. To identify different types of drifts, it pro-
vides visual aids, including Drift Maps, Drift Charts, and directly-follows graphs.
However, the identification of gradual, recurring, and incremental drifts remains a
manual process that relies on user interpretation. As a result, recognizing drifts and
their types within the same event log can be challenging and subjective.

Overall, it is evident that the comprehensive detection and characterization of
drifts in event logs has not been adequately addressed. The approach presented
in this chapter overcomes existing limitations and advances the state of the art by
offering a reliable and automated method for identifying all four types of drifts.
This innovative paradigm uses machine learning to learn how drifts manifest in
event logs, moving beyond traditional hand-crafted unsupervised techniques.

4.6 Conclusion

In this chapter, we proposed CV4CDD, a concept drift detection approach that
can detect sudden, gradual, incremental, and recurring drifts in an automated man-
ner. It is based on a novel idea to detect drifts in an event log using an object
detection model (RetinaNet) fine-tuned with a large collection of event logs that
contain known concept drifts. In the conducted experiments, we demonstrated that
CV4CDD considerably outperforms available baselines for detecting change points
in event logs across several datasets, including well-established datasets commonly
used to evaluate concept drift detection techniques. We also demonstrated the ac-
curacy in detecting all four types of drifts and the robustness of our approach to
noise. Additionally, we highlighted its advantages in performing qualitative anal-
ysis on various real-world event logs compared to the state of the art. Finally, it
is worth noting that CV4CDD stands out not only as the first approach using tech-
niques from computer vision for concept drift detection in process mining, but as

Chapter 4. Concept Drift Detection Using Computer Vision 110

the first approach using supervised machine learning in general.

In future work, we aim to address the limitations of our approach and enhance
its capabilities. We plan to refine the annotation of sudden drifts, as the current
bounding box of 5 windows may be too large for small event logs. Additionally, our
goal is to develop an algorithm to determine the optimal number of windows based
on event log characteristics, removing the need for user selection. We also intend
to train our model using diverse data sources, moving beyond our current reliance
on a single tool for generating event logs with known concept drifts. We will
enhance our capabilities in concept drift detection to encompass multiple process
perspectives, including time, resources, and data. Additionally, we target including
drift localization to gain insights into the changes that occur after each drift.

Chapter 5

Business Process Steady-State
Detection

In the previous chapters, we addressed the problem of concept drift detection and
characterization, where the use of process dynamics proved beneficial. In this
chapter, we shift the focus to the process dynamics itself. Any dynamic system
alternates between phases of relative stability and periods of instability. In the
context of business processes, detecting such dynamics is a non-trivial task with
considerable relevance for many process mining activities. This chapter empha-
sizes the importance of steady-state detection in process mining and explains how
steady and non-steady states of a business process can be identified. It builds on
our paper “On the Use of Steady-State Detection for Process Mining: Achieving
More Accurate Insights” by Alexander Kraus, Keyvan Amiri Elyasi, and Han van
der Aa[10].

The remainder of this chapter is organized as follows. Section 5.1 introduces
the topic. Section 5.2 provides background information and illustrates the impor-
tance of SSD in process mining. Then, we present our framework for SSD for
business processes in Section 5.3. In Section 5.4, we present the results of our
evaluation experiments, demonstrating the framework’s accuracy and usefulness.
Finally, Section 5.5 discusses the relationship between SSD and other related prob-
lems in process mining, while Section 5.6 summarizes our findings and suggests
potential directions for future work.

5.1 Introduction

Business processes are often supported by information systems that record execu-
tion data in event logs, which are then used in process mining to extract data-driven

111

Chapter 5. Business Process Steady-State Detection 112

insights [2]. However, these event logs often capture business processes executed
in both steady and non-steady states. Steady states refer to periods when process
behavior remains stable and consistent over time [84], while non-steady states are
marked by fluctuations and irregularities due to the dynamic environments in which
processes operate. These non-steady states can arise from factors such as increased
case arrivals during peak seasons or reduced resource availability during holidays,
causing the process to deviate from its usual operations and performance levels.

The distinction between steady and non-steady states of processes is crucial
for various process mining tasks. As shown later in this chapter, failing to distin-
guish between such states can, for instance, distort performance insights obtained
through lead-time analysis or hurt the accuracy of predictive process monitoring
models. Recognizing the impact that state fluctuations have in dynamic environ-
ments, the task of steady-state detection (SSD) aims to identify periods when a
system operates in a steady state (or when it does not). Various techniques for this
task have already been developed and tested in different application contexts, such
as industrial systems [85] and signal processing [86]. However, their application
in process mining has been largely overlooked so far, despite the potential of SSD
to improve the accuracy of process mining insights.

Therefore, this chapter highlights the importance of SSD in process mining
and investigates the applicability of existing SSD solutions within this domain. To
operationalize this, we propose a framework designed to identify steady states in
business processes based on event data. The framework consists of two steps: (1)
extracting time series from an event log that capture the progression of relevant pro-
cess characteristics and (2) applying an established SSD technique to detect steady
and non-steady states per process characteristic and aggregating these results to de-
tect steady states at the process level. The effectiveness of our framework is eval-
uated in two experiments: one assessing its accuracy in a controlled environment
based on simulated event logs and the other demonstrating its practical benefits in
a downstream process mining task, specifically for remaining time prediction. Our
findings showcase that our framework indeed enables the use of SSD for process
mining and highlight the potential of SSD to provide more accurate insights into
the operations of organizations.

5.2 Background and Problem Illustration

In this section, we provide background information on steady states and demon-
strate the importance of their consideration in process mining.

Steady states and their properties. A steady state refers to a condition in which
the behavior of a system remains constant over time [84]. The analysis of steady

Chapter 5. Business Process Steady-State Detection 113

0 Balance of inputs and outputs

System
NEIAEDE

e Constant system characteristics

Input —> —> Output

Figure 5.1: Two key properties of a steady state.

states has a long-standing history and has demonstrated its significance across var-
ious fields, including thermodynamics [87], biology [88], ecology [89], and eco-
nomics [90]. As visualized in Figure 5.1, any system (including a business process)
in a steady state can be characterized by the following two properties:

1. Balance of system’s inputs/outputs: A system in a steady state maintains a
balance between input and output rates, ensuring that no measurable quantity
accumulates or depletes over time. In the context of a business process,
this means, e.g., that the number of incoming and completed cases remains
consistent over time.

2. Constant system’s characteristics: The characteristics of a system in a steady
state remain constant, without significant fluctuations. For a business pro-
cess, this could mean that, e.g., the number of active cases and available
resources remain stable.

Given these properties, the system’s behavior becomes predictable, allowing for
more precise and meaningful analysis.

Importance of SSD in process mining. To illustrate the importance of SSD in
process mining, we examine how the performance of a business process, measured
by average and median lead times, can differ between steady and non-steady pe-
riods, and the implications this may have on a downstream process mining task.
For this purpose, we use a real-life event log describing a permit application pro-
cess at a municipality (BPIC2015-2) [91] as a running example. The event log
contains 44,354 events, capturing the execution of 832 cases over a period of ap-
proximately 5 years. During this period, the process exhibits an average lead time
of 22.9 weeks, with a median lead time of 15.5 weeks.

The number of active cases, shown in Figure 5.2, indicates that the process
was not steady throughout the recorded timeframe, with both stable and unstable
periods. For instance, in Period 1, spanning 5 months and involving 23 cases, the
process shows instability, marked by a significant drop in active cases. The average
lead time is 10.7 weeks, with a median of 11.3 weeks. Period 2, also 5 months long
with 23 cases, is more stable, with fewer fluctuations in active cases. The average

Chapter 5. Business Process Steady-State Detection 114

Period 1 Period 2 Period 3

Active cases

Steady State Time
Measure Event log Period 1 Period 2 Period 3
Number of traces 832 23 23 25
Duration 56 months 5 months 5 months 5 months
Average lead time 22.9 weeks 10.7 weeks 5.6 weeks 12.1 weeks
Median lead time 15.5 weeks 11.3 weeks 3.6 weeks 13.9 weeks

Figure 5.2: Comparison of process performance between different periods.

lead time is 5.6 weeks, and the median is 3.6 weeks. Lastly, Period 3 exhibits a rise
and fall in active cases, indicating a non-steady state. It has an average lead time
of 12.1 weeks and a median lead time of 13.9 weeks.

Performance in the steady state (Period 2) is nearly twice as good as in the other
periods and about four times better than the overall average across all recorded
cases. Such differences are particularly relevant for process mining tasks such as
remaining time prediction, as demonstrated in our evaluation. Specifically, when
significant performance differences exist between steady and non-steady states, it
may be beneficial to use SSD as a bucketing method to split the event log into
sublogs representing steady and non-steady states. Separate models can then be
trained for each sublog, allowing the appropriate model to be applied based on
whether the process is currently in a steady or non-steady state, improving the
accuracy of predictions for ongoing cases.

5.3 Approach

This section describes our proposed SSD framework. As illustrated in Figure 5.3,
the framework takes an event log as input and then extracts time series that rep-
resent the progression of relevant process characteristics over time. These time
series are subsequently analyzed using existing SSD techniques to identify steady
states. Finally, the framework produces as output a sublog of traces that belong to
the detected steady states. In the following, we describe these two main steps.

Chapter 5. Business Process Steady-State Detection 115

Input Framework steps Output

1. Time Series 2. Steady-StateN\ Sublog with traces
>§vent I09> Extraction >Detec¥|on >|n stgeady state

Figure 5.3: Overview of the main steps of our framework.

5.3.1 Time Series Extraction

In Step 1, we generate time series from an event log to capture the evolution of
process characteristics relevant to SSD. Such transformations are widely used in
process mining, for purposes including business process simulation [92], assessing
process resilience [11], and evaluating process complexity [93]. Below, we outline
the specifics of this step.

Input. Our approach takes an event log as input. We define an event log L, a trace
o, the ordered collection of traces Xy, and an event e as specified in Section 2.1.2.

Windowing. We divide the entire timeframe of an event log L into n € N equally
spaced time windows W; = (w1, . .., wy), each with a fixed length [(e.g., a day or
a week). Consequently, each event e € L is assigned to exactly one time window
wy, where t € {1,...,n}.

Time series construction. Next, we construct time series over w; € W, for a num-
ber of relevant process characteristics. In our framework, we consider 3 process
characteristics that are relevant for SSD and can be derived from a standard event
log L: the number of active cases (ac), the number of completed cases (cc), and the

—e— Completed cases
—o— Active cases
1501 —e— Average lead time (in weeks)

100

50

2011 2012 2013 2014 2015
Time windows (W))

Figure 5.4: Outcome of the first framework step.

Chapter 5. Business Process Steady-State Detection 116

average lead time (alt) of completed cases during a time window wy. If the event
log contains further information, such as resource details, additional process char-
acteristics can be incorporated to provide a more comprehensive representation of
the process.

We use y{;t € R to denote the value of a characteristic (or feature) f € F =
{ac, cc,alt} during a time window wy. For each feature, we concatenate these
values into a time series {y{;t }- 1, which captures the evolution of f over the time
windows in W;. Figure 5.4 shows the outcome of this step with weekly windowing
for the BPIC2015-2 event log, serving as a running example.

5.3.2 Steady-State Detection

After extracting time series that represent relevant process characteristics, the next
step is to identify steady states and their associated traces. This involves perform-
ing SSD at the time series level (i.e., per characteristic), then determining steady
states at the process level, and finally identifying the relevant traces.

SSD at time series level. For each time series {y{;t }- 1, we derive a corresponding
binary time series {pl, ey, with pl, € {0,1} for each time window w; using an
existing SSD technique. This binary time series indicates whether the correspond-
ing process characteristic is in a steady state during w;, where p{;t = 1 signifies a
steady state and p{;t = 0 indicates a non-steady state.

To obtain {p{;t}?:l, we can use an SSD technique from a range of existing

ones. Our framework’s implementation currently supports the following options:

* Rolling Window (RW) [94]: The RW technique detects steady states in a
time series by comparing the short-term and long-term rolling averages of
its values. It identifies a drift when the deviation between the short-term
and long-term averages exceeds a threshold that is scaled by the standard
deviation of the long-term average.

* Cumulative Sum (CS) [95]: The CS algorithm monitors cumulative increases
and decreases in the data and flags a change when these values exceed a
predefined threshold. Once a change is identified, the cumulative calculation
resets to ensure continued monitoring.

* Variance Filter (VR) [96]: The VR method proposed by Rhinehart uses a
variance filter to distinguish between steady and non-steady states based on
statistical analysis. It applies a filter that evaluates the ratio of the variance
of the signal, with thresholds used to identify steady states.

* ED Pelt with Transitions (EDP) [97]: The EDP technique identifies steady
states in a time series by splitting the time series into “statistically homoge-
neous” segments using the pruned exact linear time (Pelt) change point de-

Chapter 5. Business Process Steady-State Detection 117

tection algorithm. The Pelt method guarantees optimal segmentation while
maintaining a linear computational complexity.
Beyond these techniques, our framework is compatible with any SSD method that
accepts a real-valued time series and generates a binary time series.

Steady-state probability curve Steady states
1.0
0.8 Consensus
0'7 threshold /\/\
.. 0
Z o /MY
Ke)
®
Ko}
o 04
a
0.2
0.0
2011 2012 2013 2014 2015
Time (W))

Figure 5.5: SSD using the probability curve and consensus threshold.

SSD at process level. After performing SSD per process characteristic, we next
aggregate the information from the binary time series to determine if indeed the
entire process can be considered to be in a steady state during a given time window.
Our framework supports several aggregation techniques for this:

Kernel-based aggregation computes a steady-state probability curve as a time
series { Py, }1-, with P, € [0,1],Vw, that represents the likelihood of a time
window wy to record a steady state of a process. To do this, we first aggregate in-
sights from different process characteristics by calculating the average value across
all binary time series {p{ut}?zl for each time window. We then apply a Gaussian
filter [98] with a kernel of 4 standard deviations to smooth the curve and reduce
fluctuations. After smoothing, the time series is rescaled using Min-Max normal-
ization to ensure that the values lie between 0 and 1. Finally, to identify the steady
states of a business process, we compare the values of the steady-state probability
curve with a consensus threshold T € [0,1]. If P, > 7, the time window wy is
considered to be part of a steady state; otherwise, as non-steady. Figure 5.5 illus-
trates the outcome of this transformation for the time series shown in Figure 5.4,
assuming a consensus threshold 7 = 0.7.

In addition to the kernel-based aggregation technique, our framework also sup-
ports more straightforward aggregation techniques. Consensus-based aggregation

considers a time window w; as a steady state if p{j}t = 1 for all process charac-

Chapter 5. Business Process Steady-State Detection 118

teristics. Majority-based aggregation deems a time window wy as a steady state if
p{; = 1 holds for at least 50% of the process characteristics. Finally, single-source
aggregation classifies a time window wy as a steady state if p{j,t = 1 holds for at

least one process characteristic f.

Detection of steady-state traces. Finally, after identifying the steady states, we
identify traces that correspond to the steady states. To do this, we analyze each
trace 0 € X1, and check whether the timestamps of its events fall within the iden-
tified steady states. If the proportion of such events relative to the total number of
events in o exceeds a predefined frace acceptance threshold 6 € [0, 1], the trace is
classified as part of a steady state. As a result, we obtain a sublog Ef C X1, which
consists of traces associated with the steady states of the business process.

5.4 Evaluation

This section presents two conducted evaluation experiments. In the first exper-
iment, detailed in Section 5.4.1, we evaluate the accuracy of our framework at
detecting steady states using synthetic data. The second experiment, explained in
Section 5.4.2, demonstrates the usefulness of the framework using real-life event
logs and a concrete process mining task, i.e., the prediction of the remaining time
for ongoing cases. To ensure reproducibility, we have provided the data, implemen-
tation details, configurations, and raw results in a publicly accessible repository!.

5.4.1 Experiment 1: Accuracy

In the first experiment, we assess the ability of our framework to identify steady
states in event logs. In the following, we discuss the data collection, setup, evalua-
tion measure, and obtained results.

Data collection. In this experiment, we generate data by simulating an order-to-
cash process for a medium-sized company, as described in the work by Zahoransky
et al. [99]. The simulation model is built using the CIW library [100], an open-
source tool for discrete event simulation.> To introduce steady and non-steady
states, we vary the number of incoming cases during the simulation, ensuring a
balanced distribution between steady and non-steady periods. Specifically, we cre-
ate non-steady states by applying periods of linear increases and decreases in the
arrival rate, followed by periods of constant arrival rate to establish steady states.
We implement up to 5 changes in the arrival rates, starting with either increases
or decreases, resulting in 10 distinct scenarios, as shown in Figure 5.6. To ensure

lProject repository: https://gitlab.uni-mannheim.de/processanalytics/ssd.
2 Available online: https://ciw.readthedocs.io/en/latest/index.html

https://gitlab.uni-mannheim.de/processanalytics/ssd
https://ciw.readthedocs.io/en/latest/index.html

Chapter 5. Business Process Steady-State Detection 119

robust evaluation, we generate 10 event logs for each scenario, producing a total of
100 event logs.

Scenario 1 Scenario 2
100 100
" P
b b
% 50 ® 50
w o
Week Week
Scenario 3 Scenario 4
100 100
w w
b b
% 50 & 50
o (8]
Week Week
Scenario 5 Scenario 6
100 100
v “
b b
8 50 & s0
Week Week
Scenario 7 Scenario 8
100 100
w w
9 8
@ 50 @ 50
o o
Week Week
Scenario 9 Scenario 10
100 100
] b
50 @ 50
8 S
[50 100 150 200 0 50 100 150 200
week Week

Figure 5.6: Simulated number of arrived cases for each scenario.

Setup. In Step 1 of our framework, we apply weekly windowing and consider 3
process characteristics: the number of active cases, the number of completed cases,
and the average lead time of completed cases, i.e., f € {ac, cc, alt}.

In Step 2, we evaluate all four implemented techniques for SSD: Rolling Win-
dow (RW), Cumulative Sum (CS), Variance Filter (VR), and ED Pelt with Tran-
sitions (EDP). For each technique, we test a variety of parameter combinations,’
resulting in a total of 564 evaluations per event log. To detect steady states of the
process, we evaluate 4 aggregation techniques (i.e., aggregation-based SSD) with
a trace acceptance threshold of # = 0.8: kernel-based, consensus-based, majority-
based, and single-source. For the kernel-based approach, we set the consensus
threshold to 7 = 0.7. Additionally, we compare the results of our framework when
the decision about steady states is made based solely on a single process character-
istic (i.e., feature-based SSD).

Evaluation measure. To measure our framework’s accuracy in classifying each
time window as a steady or non-steady state, we use the ¢ coefficient [101], a
widely used binary classification metric for assessing the strength of observed as-

3The exact parameters tested for each technique are specified in our repository.

Chapter 5. Business Process Steady-State Detection 120

sociations. It provides a balanced evaluation by considering all elements of the
confusion matrix and is defined as follows:

b (TP x TN) — (FP x FN)
- /(TP +FP)(TP+ FN)(TN + FP)(TN + FN)’

where TP, TN, FP, and FN represent true positives, true negatives, false positives,
and false negatives, respectively. TP occurs when the predicted steady-state time
window matches the gold standard, while FP occurs when it does not. TN and FN
follow similarly for time windows that denote non-steady states. The ¢ coefficient
ranges from -1 to +1, where +1 indicates perfect classification, O indicates random
guessing, and -1 indicates complete disagreement. The closer the metric is to 1,
the better.

Table 5.1: Results of Experiment 1: The average ¢ coefficient along with its stan-
dard deviation.

SSD configuration SSD technique

RW CS VF EDP
Feature-based
Active cases 0.35+0.03 0.27 £0.08 0.19+£0.06 0.43+0.12
Avg. lead time 0.21 £0.06 0.38 £0.12 0.37+0.10 0.04 £0.07
Case completions 0.36 £0.03 0.26 £ 0.05 0.25+£0.06 0.43 £ 0.08
Aggregation-based
Kernel-based 0.47 £ 0.04 0.33 £0.06 0.32+0.10 0.35+0.09
Consensus-based 0.32+£0.03 0.25+£0.05 0.32+£0.13 0.35 £ 0.09
Majority-based 0.34+£0.03 0.30 £ 0.06 0.18 £0.05 0.42 +0.08
Single-source 0.25+0.04 0.40 £0.10 0.20 +£0.07 0.07 £0.09

Note: The highlighted values show the best results in each row.

Results. Table 5.1 presents the results obtained on our data collection, showing
the average and standard deviations of the ¢ coefficient for both feature-based
and aggregation-based configurations. The table shows that the SSD technique
using rolling windows (RW) achieves the highest ¢ coefficient of 0.47 with kernel-
based aggregation, indicating a moderate positive association between the pre-
dicted steady and non-steady states. This result is comparable to results observed
in other domains [102], though slightly lower. The EDP technique produces similar
outcomes, with a ¢ coefficient around 0.43 when using either the number of active
cases or the number of case completions. In contrast, the VF technique demon-
strates the lowest performance, consistently underperforming relative to other tech-
niques across all configurations.

Chapter 5. Business Process Steady-State Detection 121

Overall, existing SSD techniques can be applied in process mining, but the
evaluation indicates room for improvement due to the unique properties and inter-
relations of process characteristics, which differ from other domains, thus requiring
domain-specific adjustments to SSD to enhance accuracy and applicability.

5.4.2 Experiment 2: Usefulness

In this experiment, we demonstrate the usefulness of our SSD framework by con-
sidering a well-known task in process mining, namely the remaining time predic-
tion problem. Specifically, we compare the prediction accuracy of various state-of-
the-art approaches applied to entire event logs with their accuracy when using only
data from steady states.

In the following, we discuss the data collection, setup, and obtained results.

Table 5.2: Characteristics of the employed event logs.

Event Number of Case length Case duration
log

Cases Variants Events E.classes Avg. Max Avg. Max

Steady and non-steady states (>;)

Hospital 100000 1020 451 359 18 4.5 217 1272 1035
Sepsis 1050 846 15214 16 14.5 185 28.5 422
Helpdesk 4580 226 21 348 14 4.7 15 40.9 60
BPIC12 13087 4366 262200 36 20.0 175 8.6 137
BPIC15-1 1199 1170 52217 398 43.6 101 95.9 1486
BPIC15-2 832 828 44 354 410 53.3 131 160.3 1326
BPIC15-3 1409 1349 59681 383 42.4 123 62.2 1512
BPIC15-4 1053 1049 47293 356 44.9 115 1169 927
BPIC15-5 1156 1153 59083 389 51.1 153 98.0 1344
Steady states (X7)

Hospital 8315 176 27117 15 3.3 217 54.3 773
Sepsis 439 378 6242 16 14.2 170 35.8 422
Helpdesk 745 92 3742 10 5.0 14 40.4 60
BPIC12 5692 1417 81125 36 14.2 142 5.0 67
BPICI15-1 682 667 29956 377 43.9 93 99.8 1486
BPIC15-2 311 310 17823 341 57.3 132 1529 1171
BPIC15-3 521 505 22 363 303 42.9 101 58.3 1261
BPIC15-4 677 674 30813 321 45.5 116 1049 831
BPIC15-5 520 519 27462 329 52.8 108 86.9 812

Note: The attributes case duration is in days.

Data collection. Our data collection consists of 9 publicly available real-life event
logs that are commonly used for predicting the remaining runtime of ongoing

Chapter 5. Business Process Steady-State Detection 122

cases.* As summarized in Table 5.2, these logs represent the execution of vari-

ous processes and display diverse characteristics across multiple dimensions, in-
cluding the number of cases, variants (i.e., unique traces), recorded events, event
classes (i.e., unique activities), average case lengths and durations. Furthermore,
we include the characteristics of the sublogs with traces that correspond to steady
states (EE), as identified using our framework.

Setup. Next, we discuss the framework configurations, employed data split, and
used remaining time prediction approaches.

Configurations. In Step 1 of our framework, we apply weekly windowing for all
event logs, except for the BPIC12 event log, which covers a relatively short time
period. For this log, we use daily windowing instead. We again consider 3 process
characteristics, i.e., f € {ac,cc,alt}. In Step 2, we use the configuration that
yielded the best results in Experiment 1, specifically the rolling window (RW)
and kernel-based aggregation with a consensus threshold of 7 = 0.7 and a trace
acceptance threshold of 6 = 0.8.

Data split and prefix generation. We use a 64%-16%-20% chronological holdout
split that divides data into training, validation, and testing sets while preserving
the natural chronological order. This method mitigates data leakage and simulates
real-world scenarios where predictions are made based on historical data [103].
For each trace o in a split, we extract all prefixes between lengths 2 and |o| — 1 to
establish prediction problems.

Approaches. We consider 3 remaining time prediction approaches that estimate
the remaining time of an ongoing case based on the sequence of already executed
activities (and possibly other available attributes):

* DUMMY: A simple baseline that predicts the remaining time of an ongoing
case by averaging the remaining time of training cases that share the same
sequence of executed activities.

* DALSTM: This deep learning model, based on the LSTM architecture, out-
performs other LSTM-based approaches in remaining time prediction [104].

* PGTNET: This approach employs graph transformers to balance learn-
ing from the local contexts with capturing long-range dependencies [105],
demonstrating state-of-the-art results.

For DALSTM and PGTNET, we use the settings reported in the original papers.

Evaluation measure. To evaluate the prediction accuracy, we use Mean Ab-
solute Error (MAE), which measures the average magnitude of absolute errors
between predicted and actual remaining time. Formally, MAE is defined as

*We excluded event logs from the BPI Challenge 2013 and 2020 due to long periods of process
inactivity, the Traffic Fine log for its strong batching behavior, and the Environment Permit log for
having too few events, making further segmentation unsuitable for training a prediction model.

Chapter 5. Business Process Steady-State Detection 123

MAE = % > 1 |lyi — yil, where n is the number of predictions, y; represents the
actual observed values, and ¢; denotes the predicted values. Lower MAE values
signify better predictive performance.

Results. Table 5.3 provides the MAE values obtained for all traces in an event
log, denoted as X1, as well as those obtained for traces belonging to steady states,
denoted as Z*Lq. To better clarify the findings, we calculate the average performance
change, APC, that represents the change in the MAE between X1, and EE across
all approaches. Additionally, we include the steady-state ratio, SSR, defined as the
percentage of steady-state traces relative to the total number of traces in each event
log, i.e., SSR = |22|/|21].

First, we observe that for most event logs, the APC is negative, ranging from
-5.7% to -27.1%. This indicates that the MAE for traces executed in a steady
state (columns Ef) is, on average, lower than when predictions are made using the
entire dataset (columns 7). This is expected, as processes in steady states have
shorter lead times with less fluctuation, allowing for more accurate predictions
of the remaining time for ongoing cases compared to non-steady states. In some
event logs, such as BPIC15 Municipalities 2, 3, and 5, this trend holds consistently
across different remaining time prediction approaches. For the remaining time
prediction task, this finding highlights the importance of training separate models:
one tailored for steady states and another optimized for non-steady states. This
strategy is likely to provide more accurate predictions in terms of MAE compared
to using a single model that is trained on the entire event log.

Table 5.3: Mean Absolute Error for remaining time prediction.

DUMMY DALSTM PGTNet

Event log APC SSR
Y »? v =7 TL »?

Hospital 47.9 66.8 36.7 35.9 24.2 59.0 60.4 8.3

Sepsis 32.7 43.4 15.7 22.2 16.4 24.9 41.8 41.8

Helpdesk 12.3 10.6 12.9 10.9 5.4 6.1 —5.7 16.3

BPIC12 7.6 7.5 8.0 4.8 5.5 59 —11.3 43.5

BPIC15-1 38.2 40.9 29.3 37.9 20.4 27.3 23.6 56.9
BPIC15-2 72.9 61.4 47.0 43.8 68.8 59.2 —12.1 374
BPIC15-3 24.2 22.5 15.1 10.6 15.0 10.3 —22.6 37.0
BPIC15-4 77.2 86.5 2.7 45.4 82.7 36.6 —27.1 64.3
BPIC15-5 48.3 45.4 43.6 32.9 36.3 32.6 —13.6 44.0

Note: The average performance change (APC) and steady-state ratio (SSR) are in %.

However, in some event logs, the APC is positive, meaning the MAE has in-
creased. This can be attributed to the specific characteristics of the recorded pro-
cesses. In the Sepsis event log, the APC is 40%, due to the process’s long warm-up

Chapter 5. Business Process Steady-State Detection 124

and cool-down phases, which together account for over 50% of the total recorded
time. As a result, steady states are detected too early, misclassifying the warm-up
period and causing inaccurate detection. This highlights a challenge in business
process mining, where SSD techniques from other fields may struggle to accu-
rately detect and differentiate steady states from warm-up and cool-down phases.
In the Hospital event log, the APC is also positive. However, the SSR is only 8%,
indicating that the proportion of traces belonging to a steady state is very low. Con-
sequently, the steady-state sublog may be too small to yield reliable results. Finally,
for the BPIC15-1 event log, the APC is approximately 24%. A closer analysis of
the detected steady states reveals that the event log may contain multiple steady
states with different properties. The detected steady state at the beginning of the
event log occurs when the number of active cases is high, while the second part
features a lower number of active cases, leading to a qualitatively different steady
state. In this case, a more appropriate approach would be to consider these two
steady states independently.

Overall, this experiment demonstrates that our SSD framework can notably im-
pact the insights for a downstream process mining task, making it a valuable pre-
processing step, such as bucketing in the case of remaining time prediction. While
the applicability of our framework may be influenced by certain specific character-
istics of the recorded process behavior, it remains a highly effective approach for
many business processes.

5.5 Related Work

In this section, we position the SSD problem in relation to other related problems
in process mining.

Concept drift detection. The problem of SSD is related to concept drift detection
in process mining, but they have different focuses. Concept drift detection focuses
on identifying changes in the process [106], whereas SSD aims to determine when
a process reaches a steady state. However, not every drift leads to a change in the
steady state. For example, introducing a new business activity results in a drift in
the control-flow of the process, yet the process may continue to operate at the same
steady state.

Business process simulation. In business process simulation, SSD can be used to
address the initialization bias (or startup issue) of simulation models [107]. Many
simulations begin from an empty state, causing early fluctuations that distort results
and limit analysis. The primary goal of SSD in process simulation is to identify
when a process reaches a steady state, which is essential for predicting reliable
long-term insights. Despite the similar terminology, the SSD problem discussed in

Chapter 5. Business Process Steady-State Detection 125

this chapter is distinct, focusing on detecting the steady state of a business process
based on past recorded behavior in an event log, and serving as a crucial prepro-
cessing step for various offline process mining techniques.

Anomaly detection. Anomaly detection seeks to identify outliers or unusual pat-
terns at the case level that deviate from expected process behavior [108]. In con-
trast, SSD focuses on identifying periods of stable, consistent process behavior
across all active cases for a given period. However, SSD can provide a baseline for
anomaly detection, making it easier to identify and explain unexpected behaviors.
Once a steady state is reached, significant deviations can signal potential irregu-
larities, while anomalies during non-steady states can often be explained by the
process’s inherent instability during that period.

Statistical quality control. The problem of SSD is closely related to statistical
quality control (SQC) [109], both aiming to monitor process stability over time.
However, SSD focuses on identifying when a process has reached a steady state,
where its characteristics remain relatively stable. In contrast, SQC emphasizes
detecting deviations from a desired range, typically defined by specific process
characteristics that reflect the process’s quality or efficiency. Moreover, it is im-
portant to note that reaching a steady state does not necessarily mean the process
is operating within the optimal performance range that SQC seeks to maintain. A
process can be stable but still fall outside the desired limits.

5.6 Conclusion

This chapter addresses the problem of SSD in business processes, emphasizing its
importance in process mining and examining the applicability of existing SSD so-
lutions within this domain. We propose a framework designed to identify steady
states in a data-driven manner using information recorded in event logs. The frame-
work first generates time series to represent key process characteristics and applies
established SSD techniques to identify steady states in the time series and process
levels, producing a sublog that captures the process behavior during these periods.
The evaluation demonstrates that the framework effectively detects steady states in
business processes and can enhance the accuracy and reliability of insights derived
from a downstream process mining task.

In future work, we aim to enhance the proposed framework by addressing its
limitations and extending its capabilities. First, as demonstrated in one of our ex-
periments, the framework cannot be directly applied to event logs exhibiting atyp-
ical behavior, such as extended warm-up periods or periods without any business
activities. This can be addressed by developing a preprocessing step that automat-
ically verifies whether the event log meets the necessary conditions for SSD. Sec-

Chapter 5. Business Process Steady-State Detection 126

ond, the experiment revealed that the overall accuracy of SSD in business processes
can be improved, as these processes often exhibit unique behavioral characteristics
that SSD techniques from other domains may not easily capture. Therefore, future
work will focus on developing new SSD techniques tailored specifically to pro-
cess mining. Finally, the framework could be extended to include an additional
step that groups detected steady states based on similar characteristics. This would
be particularly useful when the process records multiple steady states that exhibit
different qualitative properties.

Chapter 6

Business Process Resilience
Assessment

The study of business process dynamics opens opportunities to address problems
that characterize a business process as a whole. In this chapter, we focus on the
problem of assessing business process resilience, a characteristic that cannot be
fully understood by analyzing isolated process instances. Instead, it requires a
comprehensive perspective that considers the process as a whole. We present a
data-driven approach that automatically assesses the resilience of a business pro-
cess based on historical execution data recorded in an event log using system-level
process mining. This chapter builds on our paper “Data-driven Assessment of
Business Process Resilience” by Alexander Kraus, Jana-Rebecca Rehse, and Han
van der Aa [11].

The remainder of this chapter is structured as follows. Section 6.1 introduces
the topic. Section 6.2 reviews relevant background on process resilience and its
assessment. Section 6.3 defines the problem under study, and Section 6.4 presents
our proposed approach, which is evaluated in Section 6.5. Advantages and limita-
tions are discussed in Section 6.6. Finally, Section 6.7 reviews related work, and
Section 6.8 concludes the chapter.

6.1 Introduction

Organizations operate in dynamic environments that are subject to frequent
changes. This includes the occurrence of disruptions, such as peaks in case arrivals,
equipment failure, or absences in the workforce. Such disruptions can have a (tem-
porary) negative impact on process performance. As shown in Figure 6.1, a process
disruption can cause performance to initially worsen, e.g., resulting in an increased

127

Chapter 6. Business Process Resilience Assessment 128

lead time, before slowly returning to its pre-disruption level. Process resilience
refers to the ability of an organizational process to deal with such a disruption and
recover from it [110]. As a means to ensure consistent performance despite the
occurrence of disruptions, being resilient is thus a core competence for organiza-
tions [111]. In this regard, the first key step for organizations towards achieving
resilience is to understand how resilient their processes actually are [112], which
involves assessing how they respond to different disruptions.

A -— Maximal performance
deviation

The lead time has returned
to its acceptable level

R_Disruption starts
affecting the lead time

Avg. lead time

>
to g A temporal drop in Time
available resource (disruption)

Figure 6.1: The impact of a disruption on process performance.

Despite the recognized importance of process resilience and its measure-
ment [111-113], little research actually targets this measurement task, especially
not in a data-driven manner. Existing works in this area either provide concep-
tual characterizations of process resilience [99, 114] and resilient business process
management [113], or focus on achieving resilience in a design-time manner [115].
The one exception is a case study by Zahoransky et al. [116], where the authors de-
scribe how they assessed process resilience in a specific scenario, based on event
data and a known process model. However, they do not propose a generalizable
approach that is applicable to other processes. In addition, they strongly depend on
domain knowledge (such as having an accurate process model) and manual analysis
(for the estimation of key probabilities), which makes their resilience assessment
impractical. Hence, the problem of how to properly and conveniently measure the
resilience of organizational processes remains unaddressed.

The contribution of this chapter is an approach that assesses process resilience
in a data-driven and automated manner, based on an event log and a resilience sce-
nario of interest. For a potential disruption, such as a sudden absence of a resource
or a peak in cases, our approach quantifies the disruption’s impact on process per-
formance according to four resilience measures, which jointly characterize the du-
ration and severity of the disruption’s impact. To do this, we establish a statistical
model that captures the interrelations between different process characteristics over

Chapter 6. Business Process Resilience Assessment 129

time. We then use this model to measure the impact of a potential future disrup-
tion on process performance. We evaluate our approach by assessing its accuracy
through comparison with a “what-if”” analysis by means of a simulation model. In
addition, we demonstrate its effectiveness by assessing the resilience of the same
process to diverse disruptions across different organizations.

6.2 Background

In this section, we explore the concept of resilience. We begin by examining re-
silience in general, considering its definition across various disciplines and existing
assessment methods. Next, we delve into the definitions and assessment methods
specific to organizational resilience. Finally, we focus on the resilience of business
processes as a key layer of organizational resilience, highlighting the current lack
of data-driven assessment methods and the need for their development.

Resilience as a concept. The concept of resilience has been discussed across vari-
ous disciplines [117-119], ranging from psychology to seismology and to material
science, as depicted in Table 6.1. However, a universal definition of resilience has
not been established because different disciplines use specific terminology to ad-
dress their unique needs and challenges. Despite these diverse perspectives, an
overarching understanding of resilience can be summarized as the ability of a sys-
tem to withstand a disruption within acceptable degradation and to recover within
a suitable time and reasonable costs [120].

Resilience assessment

Qualitative approach Quantitative approach
Conceptual Semi-quantitative General Structured-based
frameworks indices measures models

(optimization, simulation,

(deterministic, probabilistic) fuzzy logic models)

Figure 6.2: Resilience assessment approaches (adapted from [118]).

Resilience assessment methods can be grouped into two categories [118], as
visualized in Figure 6.2. Qualitative approaches involve methods for assessing
system resilience that do not rely on numerical calculations (cf. [121, 122]). These
methods include conceptual frameworks that establish best practices, which are the
primary qualitative approaches, along with semiquantitative indices that offer ex-
pert assessments of different qualitative aspects of resilience. Quantitative methods
are categorized into two groups: general resilience approaches, which use deter-
ministic or probabilistic measures to quantify resilience that are independent of

Chapter 6. Business Process Resilience Assessment 130

Table 6.1: Definitions of resilience in different disciplines.

Discipline Definition

Psychology The ability of individuals to recover from adversity. Positive ability of
individuals to cope with stress and catastrophic events.

Seismology The ability of the system to reduce the chances of shock, to absorb a
shock if it occurs, and to recover quickly after a shock (re-establish
normal performance).

Ecology The magnitude of disturbance that a system can absorb before its struc-
ture is redefined by changing the variables and processes that control
behavior.

Infrastructure Ability of infrastructure to reduce the probability of failure, the conse-
quences of such failure, and the response and recovery time.

Material A material’s tendency to return to its original form after applying a force

Science or stress that has produced elastic deformation.

Engineering The ability to sense, recognize, adapt, and absorb variations, changes,
disturbances, disruptions, and surprises.

Tourism Ability of communities (ecosystems) to withstand the impacts of exter-
nal forces while retaining their integrity and ability to continue func-
tioning.

Networks The ability of a network to defend against and maintain an acceptable
level of service in the presence of challenges.

Society Capability of a system to maintain its functions and structure in the face
of internal and external change and to degrade gracefully when it must.

Economics Ability to reduce efficiently both the magnitude and duration of devia-
tion from targeted system performance levels given the occurrence of a
particular disruptive event.

Sociology Ability to recover from adversity and become stronger than before.

The table summary is based on [117-119].

specific domains; and structural-based modeling approaches, which employ opti-
mization, simulation, or fuzzy logic models to analyze how a system’s structure
affects its resilience in specific domains.

Organizational resilience. Over the past decade, research on organizational re-
silience has gained popularity, leading to the development of numerous approaches,
indicators, and methodologies [117, 123, 124]. As shown in Table 6.2, the underly-
ing conceptual definition generally considers a few key features that characterize an
organization’s response to a disruption. In the context of an organization, a disrup-
tion is an incident that causes an unplanned, negative deviation from the expected
delivery of products and services according to the organization’s objectives [125].

The importance of measuring organizational resilience is a key requirement

Chapter 6. Business Process Resilience Assessment 131

Table 6.2: Definitions of organizational resilience.

Key features Definition

Absorption & Enterprise capacity to absorb changes and ruptures through flexibil-
Flexibility ity without affecting its profitability.

Absorption & The capacity to absorb shocks effectively, develop situation-specific
Transformation responses to, and engage in transformative activities.

Anticipation & Ability to anticipate and adapt to key events related to emerging
Adaptability trends and to recover quickly after disasters and crises.

Robustness & Ability of an organization to strengthen the creation of robust and
Flexibility flexible processes in a proactive way.

Recovery & Ability not only to recover from disruptions but to avoid them com-
Avoidance pletely.

Resistance & Resistance to shocks, renewal, and recovery or bounce back from
Recovery shocks.

Resistance & The ability to resist systematic discontinuities and the capability to
Adaptation adapt to new risk environments.

Vulnerability & The ability to manage vulnerabilities and adaptive response in a tur-
Adaptation bulent environment.

Withstanding & Reactive ability of the company to withstand an external event and
Anticipation active ability to anticipate events.

Withstanding & The ability to withstand systematic discontinuities as well as the ca-
Adaptation pability to adapt to new risky environments.

The table summary is based on [117, 123].

to achieving resilience within an organization [114]. Consequently, various ap-
proaches have been proposed to measure organizational resilience, which can be
categorized into six main groups [126]:

The systems view on measuring resilience emphasizes understanding orga-
nizations as complex and dynamic entities, advocating a holistic approach
that considers interconnected components, such as stakeholders and envi-
ronment, to accurately assess resilience.

Resilience as an emergent feature of the system underscores the importance
of identifying inherent enterprise attributes that contribute to its resilience.

Inherent and adaptive characteristics of resilience consider resilience under
normal operating conditions and the deployment of resourcefulness and extra
effort in crisis situations.

Resilience as a continuous process views resilience as the outcome of contin-
uous processes, including planning, responding to threats, and taking adap-

Chapter 6. Business Process Resilience Assessment 132

tive actions to recover.

* Measuring resilience against disruptions focuses on preventing and recover-
ing from disruptive events.

* Measuring resilience using adaptive capacity and time dimension highlights
the importance of the time taken for a system to respond and recover in
understanding its resilience.

Next, we delve into existing research on the conceptualization and assessment of
business process resilience, a crucial layer of organizational resilience [99].

Table 6.3: Definitions of process characteristics.

Characteristic Definition

Absorption The ability to dampen the impact of disruptive events.

Adaptability The capability to respond to and adapt to the changing environment.
Agility The ability to rapidly respond to changing conditions.

Flexibility The ability to change and to adapt to new or complex situations.
Redundancy The extra capacity to withstand potentially high-impact disruptions.
Robustness The capability to withstand stress without significant loss.
Recovery The ability to quickly resume operations at a desired performance.
Resourcefulness The ability to diagnose problems and to initiate solutions.

Rapidity The ability to react fast to changes in its environment.

The table summary is based on [123, 127].

Business process resilience. In general, process resilience can be summarized
as the ability of a process to withstand and recover from a disruption. Similar
to organizational resilience, the resilience of a business process can be defined
by various characteristics outlined in Table 6.3, as enhancements in any of these
characteristics ultimately strengthen the process’s resilience.

As highlighted in Table 6.4, there has been little research conducted to as-
sess resilience at the process level. Furthermore, the existing solutions—discussed
in more detail in Section 6.7.1—predominantly rely on conceptual (qualitative)
approaches, such as business continuity analysis [128] or value tree frame-
works [129]. There are a few techniques that attempt to quantitatively assess pro-
cess resilience with actual implementation and validation [112], such as methods
that assess the resilience of business process architectures [116] or estimate vari-
ous levels of process model resilience using a collaboration-oriented modeling lan-
guage for processes [115, 130]. However, these approaches are structured-based
methods primarily utilized to assess process resilience at design-time, i.e., during

Chapter 6. Business Process Resilience Assessment 133

Table 6.4: Overview of existing research on resilience assessment, highlighting the
gap in quantitative approaches (general measures) for process resilience assess-
ment.

Resilience Resilience assessment method
if::ls sment Qualitative approach Quantitative approaches
Conceptual Semi-quantitative Structured-based General
frameworks indices models measures
Across disciplines KNI ¥*K KK KNI
= Organizations F*K * H*K H*K
= Processes * (%) * i

Legend: “%%%" - Abundant research, “%" - Moderate research, “*" - Little research, “(%)" -
Indirect research (applicable from other levels), “%" - Missing research (addressed gap).

the phase when a process is developed and planned before implementation. They
do not evaluate the resilience of a process at run-time, i.e., when it is actually be-
ing performed. Run-time resilience assessment is crucial because it evaluates how
well a process can respond disruptions that may not have been anticipated dur-
ing the design phase. Furthermore, to avoid the need to rely on expectations about
how a process is executed, run-time resilience assessment should be performed in a
data-driven manner, which is not done by existing works. Therefore, there is a need
for data-driven resilience assessment approaches that evaluate process resilience at
run-time using process behavior recorded in event logs.

In the next section, we operationalize the problem of data-driven assessment of
process resilience addressed in our work.

6.3 Problem Illustration

In this work, we propose an approach for the data-driven assessment of business
process resilience. Our approach assesses such resilience in terms of the ability
of a process to withstand and recover from disruptions. Specifically, it analyzes
historic data about a process to estimate how its performance will be affected by
future (previously unseen) disruptions. It thereby allows us to draw conclusions
about the process’s overall resilience based on an excerpt of its execution data,
as captured in an event log. Next, we operationalize the problem tackled by our
approach.

As input, our approach takes an event log, as specified in Section 2.1.2. The
event log might contain additional information that can be relevant for assessing
business process resilience, such as resource details for each event or trace at-

Chapter 6. Business Process Resilience Assessment 134

tributes indicating different case types (such as regular or premium customers).
Our approach captures the state and progress of a process through process fea-
tures. We define a process feature as follows:

Definition 11 (Process feature) A process feature is a characteristic of a business
process that is relevant for resilience assessment and measurable as a real-valued
numerical metric over time, using information recorded in an event log L.

We distinguish between input or in-system features, such as the numbers of case
arrivals or active resources during a specific period, and output features, such as
the number of completed cases or average lead time during a period. These latter
features also encompass Process Performance Indicators (PPIs), which are quan-
tifiable metrics that capture a process’s effectiveness or efficiency [131]. They can
relate to various dimensions, such as time, cost, and quality.

Our work assesses the resilience of a process by quantifying how a PPI will
react to a process disruption, which we define as follows:

Definition 12 (Process disruption) A process disruption D is a change in the
value of an input or in-system process feature that is significant, exceeding the
range of feature values that are normally observed for that business process, and
temporary, meaning that the feature values return to the normally observed range
after a given period of time.

Examples of process disruptions are a drop in available resources or a rapid in-
crease in case arrivals during a week.!

3
>

o

e

[«5]

E

o

@

<

S T RT Performance

g: A ¢ has recovered\

. W2 £ .
Disruption Lo 1™ performance tz Time
D occurs becomes affected

Figure 6.3: Four measures of process resilience.

We quantify the impact of a disruption D on a PPI P in terms of four measures
derived from established concepts [118], as visualized in Figure 6.3, assuming an
acceptable performance level P* € R as the threshold that PPI P must not exceed:

! Although an increase in case arrivals can be positive from a business perspective, it may still
have negative effects on performance, such as the lead time of a process.

Chapter 6. Business Process Resilience Assessment 135

1. Time-to-impact (TI[p p)) captures the time between a disruption D, occur-
ring at time ¢, and the next moment ¢; at which process performance P first
goes beyond its acceptable performance level P*.

2. Recovery time (RT[p p)) captures the time it takes for PPI P to return to its
acceptable performance level P* (at time to) after the initial impact at ¢;.

3. Maximal performance deviation (MPD[p p)) captures the largest (negative)
deflection of PPI P from its acceptable performance level P* during the
recovery period, i.e., between t; and ¢».

4. Cumulative performance loss (CPL|p p)) aggregates the total performance
loss of P incurred during the recovery period, i.e., between ¢ and 5.
Together, these measures provide in-depth insights into process resilience. Time-
to-impact and maximal performance deviation quantify the ability of a process to
withstand a disruption. Recovery time assesses the ability of a process to recover
from a disruption. Finally, cumulative performance loss summarizes these two

abilities by providing an aggregated value.

Given the above, we then define the resilience assessment problem that our

work addresses as follows:

Definition 13 (Business Process Resilience Assessment Problem) Business
process resilience assessment uses historic process data in an event log L to
estimate the impact of a possible future disruption D on a PPI P under normal
process operations, quantified in terms of the time-to-impact, recovery time,
maximal performance deviation, and cumulative performance loss.

In the context of this problem, it is important to note that resilience assessment
is not limited to past disruptions recorded in an event log, instead, it considers the
impact of possible future process disruptions that can occur. In the next section, we
present an approach that can assess process resilience for possible future process
disruptions.

6.4 Approach

In this section, we provide a detailed description of our resilience assessment ap-
proach. As depicted in Figure 6.4, our approach takes as input an event log and
a user-defined resilience scenario that specifies the PPIs, process disruptions, and
further relevant process characteristics. Based on this scenario, our approach first
generates process features as time series to capture the progression of each of the
process characteristics over time. Then, we use these time series to establish a VAR
model, which captures the linear interrelations between the different process char-

Chapter 6. Business Process Resilience Assessment 136

acteristics. In the final step, we use the obtained VAR model to conduct impulse-
response analysis to compute the four resilience measures depicted in Figure 6.3.

Input Approach steps Output

Event log 1. Time Series 2. Statistical 3. Resilience Four resilience
Generanon Modellng Analy5|s measures
Resilience
scenario -'))"

Figure 6.4: Overview of the main steps of our resilience assessment approach.

In the remainder, we describe our approach’s input (Section 6.4.1) and three
steps (Sections 6.4.2—6.4.4) in detail.

6.4.1 Resilience Scenario

Our approach takes as input a user-defined resilience scenario S. The resilience
scenario captures the process features that are crucial for assessing process re-
silience from the user’s perspective. Such a scenario is defined in terms of three
sets of process features, S := (Fp, Fp, F4):

* Performance measures (Fp): This set contains the output features that are
used as PPIs, such as the average lead time of completed cases or the number
of rejected orders. Fp must contain at least one PPI, though a user can also
specify multiple ones, so that the resilience of a process is considered from
the perspective of different performance measures.

* Disruption types (Fp): This set defines process disruptions as input or in-
system features that increase or decrease to cause disruptions, such as an
increase in the number of case arrivals or a decrease in the number of avail-
able resources. F'p must contain at least one disruption type, though multiple
disruptions can be considered in isolation or simultaneously.

* Additional features (F'4): Finally, a user can optionally define additional
process features that may help to capture the interrelations between features
in Fp and F'p (akin to mediating variables). For example, when determining
the impact of deviations in the number of case arrivals (in F'p) on the average
lead time (in F'p), F'4 might include the number of available resources as an
additional factor.

As a running example in this section, we will use as input the 5th log from the BPI
Challenge 2015 [91] and a default resilience scenario Sy, with the average lead
time as a PP, i.e., F'p = {l_t}, disruption types involving increases in the num-
bers of case arrivals, and active cases, and decreases in the available resources,
ie., Fp = {tarr_c,tact_c,lavi_r}, and F4 = (. However, we stress that our

Chapter 6. Business Process Resilience Assessment 137

approach can work with any process features measurable for an event log. For in-
stance, a resilience scenario can include log-specific features, such as the number
of active cases by premium customers or the number of available specialists.

6.4.2 Time Series Generation

In the first step, we generate time series that represent the evolution of process
features within a resilience scenario. Time series generation is commonly used in
process mining to address problems such as concept drift detection and explana-
tion [51], or to assess process complexity and its impact on performance [93]. In
the following, we detail the three steps of time series generation used in our ap-
proach: windowing, time series construction, and warm-up and cool-down phase
detection.

Windowing. First, we split the period of an event log L using time-based tumbling
windows of fixed length [[22]. This gives a series of non-overlapping time win-
dows W; := (wy,...,w,) of equal length, such that each event e € L belongs to
exactly one window wy for ¢ € {1,...,n}. The first window w starts at the earli-
est event in L, whereas the last event is in w,. Our approach can consider different
options for window lengths, e.g., [1, [, etc., resulting in a set of window sequences
W = {W;,,W,,...}. Based on the modeling results in the next step, our ap-
proach automatically selects a window length [that best describes the evolution of
the process features over time.

Time series construction. Following Definition 10, we define a time series as a set
of observations {y; | t € {to,...,tn}}, where each y; € R represents an observa-
tion made at a time ¢ ({y: } in short). We particularly consider series over discrete,
equally-spaced time intervals, which means that each y; captures an observation
made for a specific period, e.g., a day or a week.

For all window sequences W; € W, we construct time series for each process
feature f, € F' := Fp U Fp U Fa, with k € {1,...,|F|} as an index. For this,
we first calculate the feature value y;,, € R for the feature fj for each window
wy € Wj. Then, we combine these sequential values into a time series {y;},
which captures the evolution of fi over the windows in ;. These two steps are
repeated for each feature fj, € F', resulting in a set Y; := {{yx+}}. Repeating this
for each window sequence, we obtain aset Y := {Y; | W; € W}. Figure 6.5 shows
the week-based time series Y. for our running example.

Warm-up and cool-down detection. Finally, we check if the beginning and end
of the time series should be truncated. This can be necessary because event logs
are data snapshots, consisting of cases associated with a particular time frame. For
instance, the running example’s log appears to contain all cases that were active

Chapter 6. Business Process Resilience Assessment 138

Warm-up phase Cool-down phase Warm-up phase Cool-down phase\
{ | Active cases (act_c) AV

151 7 Case arrivals (arr_r) < 125 |

100 4
759
50

254

Available resources (avl_r) Average lead time ([_t)
60

40

204

07 [
T T T u U U u u u T T T
2010 2011 2012 2013 2014 2015 2010 2011 2012 2013 2014 2015

Figure 6.5: Process features derived for the running example with indicated warm-
up and cool-down phases.

between early 2011 and March 2015. However, since some of these cases started
much earlier than 2011, the event log has a lengthy warm-up phase, in which there
are few active cases in the system, as shown in Figure 6.5. Similarly, if a log
consists of cases that started in a certain period, there will be a cool-down phase at
the end, in which only a few to-be-completed cases remain in the log.

To detect warm-up and cool-down phases, we use the time series {y .} that
describes the evolution of the number of active cases over time (act_c).2 We use
the corresponding frequency distribution of the values y; ; and a percentile § to
define a threshold. We then use this threshold to detect a sequence of windows wy
at the beginning (warm-up) and at the end (cool-down) of W;, where the feature
values y;,; are all below this threshold. Finally, we remove feature values that
belong to the detected windows from all features in the set Y}, resulting in truncated
time series Y;*. Repeating this procedure for each window sequence W, we get
Y* := {Y*}. In Figure 6.5, the detected warm-up and cool-down phases are
highlighted in gray. For the 1st percentile,) = 1, we removed 48 windows at the
beginning and two at the end.

6.4.3 Statistical Modeling

In the second step, our approach uses the obtained time series to build a collection
of VAR models, from which an optimal model is then selected. In this section, we

2We use this feature even if it is not part of the resilience scenario of interest.

Chapter 6. Business Process Resilience Assessment 139

first introduce VAR models and then explain the model generation and selection
steps.

Vector autoregressive models. VAR models are among the most successful and
flexible statistical modeling techniques for analyzing multivariate time series. Ini-
tially developed by Sims [132], they have proven to be helpful in describing and
forecasting process dynamics in many domains. VAR models relate current obser-
vations of a variable to past observations of the same and other variables (called
lags) via a linear combination [133].

Model definition. Given a set of K features, we define a K-dimensional vector
i i= Y1t UKL) € RX, which captures the time series values of the features
for a given window wy. Using this vector notation, the standard VAR model is
defined as a system of K linear equations:

P
ye=Aod+ Y Aiyi i +ey. 6.1)
i=1
The vector d € R™*! holds m deterministic parameters, which can be used to
model, e.g., an intercept (d = 1 € R) or a linear trend (d = (1,t) € R?). The
matrix Ag € RE*™ holds the parameters used in d. The value p € N is the model
order, defining the number of lags that are considered by the model via the vectors
yi_i, fori € {1,...,p}. Matrices A; € R¥*¥ hold model coefficients that show
the per-lag impact of the features on one another. Finally, e; := (e14,...,ex) €
RX is a vector of error terms.
As an illustration, we consider a first-order VAR model (p = 1) with three time
series (K = 3): Y14, Yo, and y3 ¢, assuming that each model equation includes a
linear trend, i.e., d = (1,¢) € R2. Then, Equation 6.1 takes the following form:

Y1t ar by 1 ol a1z o3| Y1 el
Y2 | = |az b [t] + |21 aoe ags| |y |+ |e2t] - (6.2)
Y3t az b3 a31 a32 a3z (Y31 €3t

Model assumptions. An adequate VAR model should fulfill two assumptions:

1. A VAR model’s error terms e; should be white noise, which is the case when
the expectation of the error terms is zero, E[e;] = 0, the contemporaneous
covariance matrix of error terms is nonsingular, E[e;e]] = Y, the error
terms are uncorrelated, Eje;el] =0 for t# s, and all fourth moments Ele}]
exist and are bounded (large outliers are unlikely) [134].

2. A VAR model should be stable, which holds when its reverse characteristic
polynomial has no roots in and on the complex unit circle [134]. Stability of

Chapter 6. Business Process Resilience Assessment 140

a VAR model also implies stationarity [134, p. 25], which is necessary for

impulse-response analysis (Section 6.4.4).
In general, VAR models typically assume that all time series are stationary, mean-
ing their statistical properties such as mean and variance remain stable over time.
However, this assumption can be overly constraining in practical scenarios, espe-
cially within business process analysis. Unlike domains such as finance, where
significant trends or abrupt changes are common, features capturing process char-
acteristics often exhibit less variation. Nonetheless, business processes can still
undergo subtle or seasonal drifts. In this scenario, concept drift detection could be
regarded as an additional preprocessing step to identify different versions of the
process and independently assess the resilience of each version before extracting
the relevant time series. Alternatively, if seasonality is a permanent characteris-
tic of a business process, standardized techniques for seasonality removal, such as
seasonal-trend decomposition based on loess [135], can be applied after time series
are extracted.

Model estimation. In situations where these assumptions are fulfilled, the model
parameters in Equation 6.1 can be obtained using multivariate least squares (LS)
estimation [134, p. 74]. The resulting LS estimates then have two key asymptotic
properties: consistency and normality, which are important to obtain reliable esti-
mation for model parameters [136].

Model generation and selection. Since the optimal configuration of a VAR model
cannot be known a priori for a given event log, our approach first generates a collec-
tion of candidate VAR models using various parameter settings. Then, it checks the
validity of these candidate models regarding the aforementioned model assump-
tions and, from the valid models, selects the one that has the best fit according to
an established information criterion.

Candidate-model generation. We first generate a set of candidate VAR models M,
so that each model M € M has a unique combination of four parameters:
1. A window sequence W; € W.
2. A choice for the deterministic parameter d from a set of options, which com-
monly contains d = 0 (no trend or intercept), d = 1 € R (an intercept),
d = (1,t) € R? (alinear trend).
3. A model order p € {1, ..., Prmaz }» Where pp,q. is the highest possible model
order, which can be heuristically estimated® by the total number of observa-
tions n = |W;| as 124/n/100.
4. A set of features F; to be included in the model. F); contains all PPIs
from Fp and disruption types from F'p, plus a (possibly empty) subset of

3This heuristic is applied by the Python library we employ in our implementation [137].

Chapter 6. Business Process Resilience Assessment 141

additional features from F'4. By including different subsets of F'4, we test
whether including extra features leads to a better-fitting model.

Assumption checking. Next, for each of the candidate VAR models in M, we check
if it meets the assumptions of noise whiteness and model stability. Given a candi-
date model M € M of order p, we check whether the error terms fulfill the white
noise assumption using the multivariate Ljung—Box portmanteau test [138]. The
test’s null hypothesis is that there is no overall significance in the auto-correlations
of the error terms. If we cannot reject the null hypothesis at the significance level
a = 0.05 and for p+-1 lags, then we conclude that there is no evidence to reject the
white noise assumption [134, p. 169]. We determine the stability of a model using
the eigenvalues of its companion-form representation of order 1, which exists for
any model M and provides a more compact form [134]. If all absolute eigenval-
ues of the companion-form matrix are less than one, the model M is stable [134,
p- 15]. We add the models that meet both assumptions to a set of accepted mod-
els, M, C M. If no models are found that fulfill the assumptions, we extend the
search space and consider models with any set of features F5; that contains at least
one performance measure and one disruption type.

Optimal model selection. Finally, we select the optimal model M/ as the model
in M, with the best (i.e., lowest) Akaike Information Criterion (AIC) [139] score.
AIC is a widely-employed metric that evaluates a statistical model’s ability to fit
the data at hand, while accounting for the model’s complexity [134]. Given the
objective of the model to capture as much information as possible from various
factors to better describe dependencies during the impulse-response analysis, AIC
is a better choice compared to other information criteria, such as the Bayesian
Information Criterion (BIC) or the Hannan-Quinn Information Criterion (HQIC),
which impose heavier penalties for model complexity. Moreover, AIC tends to
perform well with limited data points, a common situation when working with
time series data extracted from event logs [140].

In general, optimal model selection is a challenging task. However, the use of
AIC provides a simplification that has proven useful and practical for the addressed
problem. Nevertheless, the proposed model selection can be improved by incorpo-
rating additional measures or procedures, such as cross-validation [141], or more
complex techniques [142, 143].

6.4.4 Resilience Analysis

In the third step, we assess process resilience using impulse-response analysis,
which estimates the expected impact of disruptions on process performance. This
corresponds to a form of “what-if”” analysis, which can be derived directly from the

Chapter 6. Business Process Resilience Assessment 142

obtained optimal VAR model. We first introduce its concept and then explain how
we estimate the four resilience measures (time-to-impact, recovery time, maximal
performance deviation, and cumulative performance loss) for a given disruption
and the corresponding response in a PPL

Impulse-response analysis. A VAR model’s properties are typically assessed
through structural analysis such as Granger causality, impulse responses, and fore-
cast error variance decompositions, since examining individual model coefficients
alone does not offer a comprehensive understanding of the interactions among the
variables in a model. For the purpose of assessing business process resilience,
impulse-response analysis serves as the right instrument.

Intuition. Impulse response analysis is a technique for interpreting VAR models. It
is based on a impulse-response function that predicts how one variable responds to
a sudden change in another variable [134], given the identified interrelations among
model variables in Equation 6.1. To ensure a clean assessment of the response in
one variable to a change in another, the analysis is conducted after centering each
variable around 0, by subtracting its expected value. Next, a one-unit change is
introduced in one variable, and its impact on another variable is observed over
subsequent periods, accounting for detected inter-dependencies between the model
variables. A one-unit change can always be considered since all time series in a
VAR model are numerical and real-valued. Given that the introduced impulse is
a one-time change and the VAR model is stable (an assumption checked during
the search for the optimal model), the model will return to its centered state after
the initial impulse has propagated through the system. This way, impulse-response
analysis facilitates a deeper understanding of the dynamic interactions among vari-
ables over time, proving valuable in assessing process resilience.

We illustrate the concept of impulse-response analysis using two exemplary
impulse-response functions, depicted in Figure 6.6. The first impulse-response
function (Figure 6.6a) demonstrates the expected increase (black line) in the av-
erage lead time following a disruption in the total number of active cases during
the periods h € H := 1,2, ..., hyqz- The disruption occurs in period h = 0 and
corresponds to a one-time, one-unit increase in the total number of active cases.
The maximum expected deviation in the lead time is observed in the second period
after the impulse, elevating the average lead time above its average value by about
0.06 units. The impulse-response analysis also provides confidence intervals (blue
lines) indicating where the response in the lead time can be expected with a 95%
probability. The second impulse-response function (Figure 6.6b) illustrates the an-
ticipated change in the average lead time after a one-unit increase in the number of
available resources. In this scenario, the expected lead time decreases since more
resources are available, making it more likely for the lead time to decrease.

Chapter 6. Business Process Resilience Assessment

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Impulse-response
function

Ve

Response in the average
lead time (wks)

0 10 20 30 40
Period after disruption

(a) Impulse corresponds to a one-unit
increase in the total number of active
cases.

143
0.20
(5]
g 010
G
‘%é 0.00 .
£2>=.010
= g \ Impulse-response
== -0.20 function
n o
£ g -030
g -0.40
T 050

0 10 20 30 40 50
Period after disruption

(b) Impulse corresponds to a one-unit in-
crease in the total number of available re-
sources.

Figure 6.6: Two examples of impulse-response functions (incl. 95% confidence
interval), showing the expected response in the average lead time (in weeks) to a

one-unit increase in the impulse.

Mathematical derivation. For each feature combination f; € Fp and f, € Fp,
we obtain the corresponding impulse-response function IRF|[fqg, fp](h), showing
the impact of a potential disruption in feature f; on performance indicator f,, at
the moment A after the disruption, by transforming the (stable) VAR model into its
infinite moving average representation [134]. To illustrate this transformation, we
consider a VAR model of order 1 since any VAR model of order p can be rewritten
to that, using the following matrix form [134]:

vt 7 [A Ay Ap1 A, Yi-1 e
Yi—1 0 I 0 0 0 Yi—2 0
Yi—2 =10 |4] 0 [0 0 ye-3 |+ | O

L Yt—p+1 1 | 0 1 L 0 0 I 0 1L Yt—p i L 0 i
—_— > ~ SN——
=:7 =Ty =TI =71 =T

This matrix form of any VAR model of order p can be simplified using

Zt7 F07 Fly Tt:

Zy=To+T12;_1 + 14.

Chapter 6. Business Process Resilience Assessment 144

Using the initial notation used in Equation 6.1 for p = 1, we can further simplify
the obtained equation:

Vi = p+ Aryi—1 + e,

with o := Agd. Now, we can derive its infinite moving average representation by
using recursive substitution [134]:

vi = (L+A+A + A u+ Ay gy
e+ Arer 1 + A2e o+ ...+ Ale;). (6.3)
For a stable VAR process, the following results hold [134]:
T4+ A1+ ...+ A)pu— (I —A) tpand ATy, 5 1 =0, as j — .

Hence, Equation 6.3 reduces to:
©° .
ye=¢+ Z Ale;j,
j=0
where ¢ := (I — A1)~ u. Now, by rewriting B; := A{ and By := I, we get:
oo
yi=¢+ > Bjer;. (6.4)
j=0

Finally, the obtained representation is used to track the impact of a disturbance
in one variable on the other. This is done by initiating the impulse vector e* :=
(0,...,0,1,0,...0), where the 1 in et corresponds to the position of the feature
faq in the VAR model. Afterward, the impact on any variable within the system
for a given future time period ¢ can be assessed by examining the outcome of
the computations in Equation 6.4, given by the right-hand side of the equation.
The 95% confidence interval for each period ¢ and pair of impulse and response
variables is derived using the associated covariance matrix of ¢ > "2 Bj, where j
ends at t.

Resilience assessment. To assess process resilience, we consider the resilience
scenario S = (Fp, Fp, F4) and the selected optimal VAR model M. For each
feature combination fq € Fp and f, € Fp, we use the corresponding impulse-
response function IRF[fg, f,](h), which estimates the expected impact of a poten-
tial disruption in feature fq on performance indicator f,.

Resilience aspects. We account for the following aspects when using an impulse-
response function to assess business process resilience:

Chapter 6. Business Process Resilience Assessment 145

1. Disruption size: By default, an impulse-response function considers the im-
pact of one additional unit, which may be insufficient for modeling an actual
disruption. However, as a VAR model is linear, the initial impulse can be
rescaled by multiplication with a scalar of interest. A common choice is
one, two, or three standard deviations of the impulse variable. This rescaling
is widely employed as it facilitates the comparison of disruptions’ impacts
across variables with different scaling [134]. Consequently, the values of the
impulse-response function are rescaled as well, maintaining the same shape.
Using the impulse-response function in Figure 6.6a as an example, if the
standard deviation of the number of active cases is 10, and the average lead
time is 3 weeks, then a disruption, represented by 2 standard deviations, will
increase the lead time by 10 x 2 x 0.06 = 1.2 weeks in the second period
after the disruption. In other words, the maximum expected increase in the
average lead time is approximately 40% (1.2 wks / 3 wks).

2. Disruption direction: Depending on the resilience scenario, we may be in-
terested in disruptions that increase or decrease the impulse variable. For
example, when assessing resilience to disruptions in the number of active
cases, we want to evaluate the impact of increases, while in the case of avail-
able resources, we want to observe the effect of decreases. To obtain the
impact of a decreasing disruption, we multiply the values of the impulse-
response function by -1. In the context of the impulse-response function
in Figure 6.6b, where we aim to observe the response to a decrease in the
number of available resources, this action will mirror the obtained curves
along the x-axis.

3. PPI’s negative deviation: When examining the response in a PPI, our focus
lies on negative deviations, which we denote as IRF[fg, f»](h)~. Depending
on the PPI, a negative impact can be linked to either an increase or decrease
in the PPI (or both if the PPI needs to remain within a specified range).
In the scenario of average lead time, an increase is deemed negative as it
results in prolonged execution time, commonly viewed as an undesirable
outcome. Moreover, deviations in a PPI are commonly tolerated up to a
certain level. For this reason, we consider a specific tolerated deviation,
P,;. This defines the accepted deviation of a PPI from its average (target)
value, i.e., P* = fp + P,y (or — P for PPIs where higher is better). If the
response to a disruption is less than P;,;, the disruption is not considered to
impact the PPL.

4. PPI’s deviation confidence: When assessing the expected PPI deviation after
a disruption, we aim to measure process resilience in terms of the worst-case
scenario. In other words, we want to ensure that the performance deviation
does not exceed a specific threshold, like 2 weeks for average lead time, with

Chapter 6. Business Process Resilience Assessment 146

a 95% probability. For this, we are more interested in the deviations given
by the upper and lower confidence bounds (blue lines) in Figure 6.6 around
the expected response given by the black curve. Depending on the resilience
scenario, we denote IRF*[fy, f,](h)™ as the relevant negative extreme bound
for the PPI’s deviation.
Next, we explain how we define resilience measures using the relevant impulse-
response function.

Resilience measures. For a given resilience scenario S = (Fp, Fp, F4) and the
tolerated deviation P;,;, we define the following four resilience measures:

* Time-to-impact. We define time-to-impact as the first period after a disrup-
tion where the PPI’s negative deviation exceeds P;;:

TI[fd,fp} = mf{h c H: ‘IRF*[fd,fp](h>_’ > Ptol}-

If the deviation does not exceed P, all remaining resilience measures are
0, since there is no impact on the PP

* Recovery time: The recovery time is given by the difference between the last
time at which the predicted negative deviation is greater than the tolerated
deviation and the time-to-impact value:

RT[fd,fp} = sup{h € H: ‘IRF*[fd,fp](h)_| > Ptal} — TI[fd,fp]‘
Both time-to-impact and recovery time take integer between 0 and A4 ..

* Maximal performance deviation: The maximal performance deviation is
given as the greatest absolute negative deviation of the impulse-response
function during the recovery period:

MPDs, 1,1 := Sup{|IRF*[fq, fl(R) "1, h € {TI(p, 11~ > TLp, 1] + RT g 1013 -

* Cumulative performance loss: To quantify the cumulative performance loss,
we sum up the gains and losses incurred between initial impact and recovery:

CPL{f, s, 1= O IRF*[fa, fol(B), B € {TT(g, pts s Ty g + RT(a 0 -
h

Both MPD, ;1 and CPL[4, ;1 takes a value in RT.

Example. To illustrate the output obtained in this manner, Figure 6.7 depicts an
impulse-response function IRF*[fy, f](h) for the running example. It shows the
response of the average lead time (I_t, in weeks) to a disruption of two standard

Chapter 6. Business Process Resilience Assessment 147

3
>

MPD (2.1 weeks or 15% of P*)

[EnY
~

4

! CPL (15 weeks)

[E
»

)

]

=

[

f; 15

E 14— P

8 131 T1 (2 weeks RT (38 weeks

g % ./W.() R () : .

<§(” 02 20 40 Time
X Disruption occurs (in weeks)

Figure 6.7: Process resilience in terms of the average lead time in response to a
disruption in the number of active cases for the running example.

deviations in the number of active cases (Tact_c), using a tolerated deviation P
of 1 percent (about 0.15 week). With a probability of 95%, the actual increase in
the lead time is not going to exceed the predicted response IRF*[fy, f,](h) (black
curve). As shown, the disruption impact occurs quickly (time-to-impact of just two
weeks) and increases the average lead time from about 14 weeks to a maximum of
16.1 (an increase of 15%). After this initial spike, the process starts recovering
gradually, though it takes a total of 40 weeks before it returns to its acceptable
performance level. Overall, the cumulative performance loss is 15 weeks, which
can be used when comparing the impact of this disruption to other types or when
comparing the process’ resilience to other versions. We demonstrate this, among
others, in the evaluation experiments performed next.

6.5 Evaluation

This section reports on two experiments conducted to evaluate our approach. In
the first experiment, we assess the validity of our approach through a controlled
process simulation. In the second experiment, we evaluate the effectiveness of our
approach by applying it to real-life event logs.

Our experiments can be replicated using our repository*, which contains a
Python prototype of our approach, input data, relevant experimental details, and
raw results. Our prototype employs functions from the PM4Py [144] and statsmod-
els [137] libraries.

“Project repository: https://gitlab.uni-mannheim.de/processanalytics/resilience

https://gitlab.uni-mannheim.de/processanalytics/resilience

Chapter 6. Business Process Resilience Assessment 148

6.5.1 Experiment 1: Approach validity

In the first experiment, we demonstrate the validity of our approach by assessing
the accuracy of estimated resilience measures. To accomplish this, we conduct
multiple simulations of a business process under a predetermined resilience sce-
nario and compare the actual resilience measures—from the simulation—against
the estimations obtained using our approach.

Setup

In the following, we discuss the relevant experiment settings, i.e., the simulation
configurations, resilience scenario, approach configurations, and evaluation metric.

Simulation scenario. As a basis for this experiment, we consider a process model
and its simulation parameters that were used in prior work on business process
resilience assessment [116]. The model captures an order-to-cash process of a
medium-sized company, depicted in Figure 6.8.

Fill out (Send On arrival:
order L order inspect

i Not in stock
Print Create Acquire
assembly parts arts
plan list P

Not pre-produced

In stock

\nco(rjnmg Final Invaoﬂ\ﬂng
order inspection dispatch
Start P:

Pre-produced
components ¥ components

Figure 6.8: Simulated order-to-cash process (adapted from [116]).

Control-flow, processing times, and resources. The process model consists of 15
activities and two decision points. Following the parameters of the original sce-
nario [116], each decision point has an equal branching probability when simulat-
ing the process. Furthermore, the execution times of the activities are given by the
distributions shown in Table 6.5. Finally, each task is managed by one dedicated
resource, operating 24/7.

Arrival process. The original paper does not specify how case arrivals were simu-
lated, thus we utilize the Poisson distribution P()\) for the arrival process. We use
an arrival rate of \,, = 0.45 cases per hour, which leads to stable process utilization
without causing queues to grow.

Process disruption. We perform simulation runs that last 10,000 (simulated) hours,
with each run involving a disruption in the case arrival rate A after 70% of the

Chapter 6. Business Process Resilience Assessment 149

Task Distribution Parameters (hours)
Incoming order Log-normal =02 o0=04
Print component plan Normal np=0>5 o0c=0.1
Print assembly plan Normal u=06 o0=0.15
Create part list Gamma a=09 =07
Acquire parts Gamma a=08 =028
Fill out order Log-normal p=0.1 o¢=0.5
Send order Gamma a=10 p=05

Arrival and inspection ~ Log-normal p=0.25 o0=0.5
Obtain from warehouse Log-normal p =0.07 o =0.3

Stage from warehouse =~ Gamma a=08 =03
Assemble parts Log-normal =13 o¢=04
Obtain components* Log-normal =04 o0=04
Assemble components Log-normal p=04 o¢=04
Final inspection Normal u=10 o=04
Invoicing and dispatch ~ Normal n=08 o0=03

* No specifications were provided for the activity “Obtain components", therefore, we
used the same setup as for the activity “Assemble components".

Table 6.5: Simulation setup for the process depicted in Figure 6.8.

time. This timing ensures the model stabilizes before the disruption, and allows
sufficient time afterward to observe changes in the PPI. The increase in the arrival
rate persists for exactly one window, returning then to its normal level of A,, = 0.45
cases per hour.

We simulate disruptions by increasing the number of case arrivals by up to 20
standard deviations. This is achieved by multiplying the arrival rate by a factor
ranging between 2 and 4 times the normal arrival rate. For each tested increase in
the arrival rate, we conduct 1000 simulations, resulting in 10000 simulation runs
in total.

Implementation. To simulate the resilience scenario, we built a simulation model
using the CIW library [100], an open-source library for conducting discrete event
simulations®. This library allows us to simulate the process as a network of queues,
providing the functionality and simulation logic required to model the desired sim-
ulation. The total computation time for his experiment took about 3 hours on 50
CPUS®.

5 Available online: https://ciw.readthedocs.io/en/latest/index.html
®Intel Xeon CPU E5-2698 v4 @ 2.20GHz.

https://ciw.readthedocs.io/en/latest/index.html

Chapter 6. Business Process Resilience Assessment 150

Resilience scenario. We consider a resilience scenario S = (Fp, Fp, F4), where
the disruption type Fp is given by an increase in the number of case arrivals. The
performance measure F'p is given by the average lead time derived from the lead
time of all cases that finished during the window. Finally, the additional feature
F4 is given by the number of active cases determined by the number of cases that
were in progress during the window’.

Approach configuration. We use the following settings when applying our ap-
proach. In Step 1, we use a fixed window length [of 70 hours (appr. 3 days). In
this controlled experiment, this window size leads to a balanced representation of
the process features as time series over the total simulation duration. It is neither
too large, ensuring a sufficient length of the time series before the disruption to fit
VAR models, nor too small, preventing any of the derived process features from
having zero values. We test five percentiles for the warm-up and cool-down phase
detection parameter 4, i.e., § € {1%, 5%, 10%, 15%,20%}. In Step 2, we fit VAR
models without an intercept, with an intercept, and with an intercept and a linear
trend, i.e., d € {0,1,(1,¢)} and use a significance level & = 0.05 for the mul-
tivariate Ljung—Box portmanteau test. In Step 3, we consider a response horizon
hmaz Of 10 windows after the disruption moment, which corresponds to about 10%
of the simulated time before the disruption. This response horizon covers enough
time to capture the response in the post-disruption PPI. We consider a tolerated
deviation P;,; of 30% of the standard deviation of the average lead time observed
before the disruption.

Accuracy assessment. To evaluate our approach, we assess how often each re-
silience measure falls within the interval estimated by our approach for each simu-
lation run. To derive the interval estimated by our approach, we apply our approach
to the portion of the event log that occurs before the disruption. This way our ap-
proach does not observe the disruption in the data nor does it learn how the process
reacts to it. Then, we derive lower R{*" and upper R bounds using the impulse-
response functions that denote the corresponding 99% confidence interval, result-
ing in the interval I := [R{*, RS*!]. To derive the actual resilience measure R
from the simulation, we consider the response in the PPI following the disruption.

Given R and I for each resilience measure, we evaluate our approach by
considering its accuracy, denoted Acc, as the proportion of simulations where the
actual value R falls within an interval of interest I = [R¢*', R%'] (correct de-
tections) divided by the total number of conducted simulations N (all detections)

"In this simulated experiment, we do not consider the number of available resources. This is
because each activity has its own dedicated resource, and all resources are consistently available to
process tasks once they are completed with the current one.

Chapter 6. Business Process Resilience Assessment 151

for a given disruption size. It is defined as follows:

1, if Rot e I,

N
1
Acc = — E 17 (R%Y), where 1 (R):=
Ni:1 L(R) L (B {O, otherwise.

The accuracy ranges between 0 and 1. The higher the value, the more accurate our
approach is.

Results

Table 6.6 shows the results of this experiment, depicting the accuracy of our ap-
proach obtained for different disruption sizes in the number of case arrivals.

Table 6.6: Results of Experiment 1: accuracy for different disruption sizes.

Disrubtion size Moderate Severe Extreme Average
P (5-10std.) (10-15 std.) (15-20 std.) g
Time-to-impact 0.75 0.83 0.68 0.76
Recovery time 0.86 0.88 0.89 0.88
Maximal deviation 0.65 0.78 0.88 0.77
Cumulative perf. loss 0.70 0.72 0.72 0.71
Average 0.74 0.80 0.79 0.78

Overall, our approach demonstrates a satisfactory level of accuracy in estimat-
ing resilience measures, achieving an average accuracy across all disruption sizes
and resilience measures of 0.78. With respect to different disruption sizes, the
average accuracy ranges from 0.74 to 0.80 (without a clear trend), indicating con-
sistency in accuracy largely regardless of the disruption’s severity.

Concerning different resilience measures, the accuracy varies between 0.71
and 0.88. Notably, the approach achieves its highest accuracy of 0.88 for recovery
time estimation, maintaining consistency across various disruption sizes. While
the accuracy for cumulative performance loss also demonstrates consistency, it is
the lowest among the resilience measures with an average accuracy of 0.71. How-
ever, this aligns with expectations, as the accuracy of cumulative performance loss
is influenced by the combined accuracy of other resilience measures. The accuracy
for the time-to-impact measure spans from 0.68 to 0.83, without any notable trend
relative to disruption size. Lastly, maximal performance deviation demonstrates
good accuracy, surpassing 0.78 for severe and extreme disruption sizes. However,
it tends to slightly underestimate the severity of the impact in cases of severe dis-
ruption.

Chapter 6. Business Process Resilience Assessment 152

The results of this experiment thus show that our approach is able to accurately
estimate the disruption size in a complex scenario. After this confirmation of the
validity of our approach, we conduct the next experiment to show the effectiveness
of our approach using real-life data.

6.5.2 Experiment 2: Approach effectiveness

After confirming the validity of our approach, we aim to showcase the effective-
ness of our approach in evaluating business process resilience using the introduced
four resilience measures. Since we do not have access to the actual resilience
ground truth of the processes recorded in an event log, our evaluation centers on
real-life event logs describing the execution of the same process across various or-
ganizations. This allows us to compare findings about process resilience, providing
relative insights into strengths and weaknesses across different organizations and
demonstrating the utility of our analysis.

Setup

Next, we discuss the setup and obtained results of the conducted experiment.

Data collection. To perform the experiment, we used data from the BPI Challenge
2015 [91], which consists of five real-world event logs (M1-M5), each capturing a
permit application process at a Dutch municipality. The nature of these logs makes
them highly suitable for our work because they allow us to assess and compare the
resilience of the same process across different organizations, accounting for differ-
ences in its implementation. The event logs are comparable in terms of the covered
period (about 5 years) and size, including numbers of events, event classes, and
traces, as shown previously shown in Table 6.7. However, we also observe con-
siderable differences in their lead times (averages ranging approximately from 9 to
23 weeks), which strongly fluctuate, as evidenced by the high standard deviation
(from 14 to 24 weeks).

Table 6.7: Properties of the considered real-life event logs.

Event Period N. of Event N. of Trace Lead time
log (wks) events classes traces variants Avg./SD (wks)
BPIC15 M1 252 52217 398 1199 1170 14/17
BPIC15 M2 244 44 354 410 832 828 23/24
BPIC15 M3 270 59681 383 1409 1349 9/14
BPIC15 M4 276 47293 356 1053 1049 17/15

BPIC15 M5 275 59083 389 1156 1153 14/15

Chapter 6. Business Process Resilience Assessment 153

Approach configuration. We use the following settings when applying our ap-
proach. In Step 1, we use a fixed window length to achieve comparability of re-
silience insights between municipalities. We select semi-monthly time windows
because they were found to be the overall best window size across the logs, given
their length and fluctuations in the process features. We test the same five per-
centiles for the warm-up and cool-down phase detection parameter ¢, as in the
first experiment. In Step 2, we fit VAR models with the same configurations for
trend options, keeping again the significance level o = 0.05 for the multivariate
Ljung—Box portmanteau test. In Step 3, we use a tolerated deviation P, of 10%
of the standard deviation of the PPI and consider a response horizon A4, equal to
50% of the window sequence length. Finally, we let each disruption correspond to
an increase or decrease of two standard deviations of the respective feature (using
the standard deviation across the time-series values).

Using our implementation with the specified configuration, the total computa-
tion time for this experiment on an Intel i7-9750H CPU (2.60GHz) with 16 GB
RAM took about 40 minutes.

8

Experiments. We conducted two experiments to assess process resilience®:

Experiment 2.1: Overall resilience. We assess the overall resilience per munic-
ipality using the default resilience scenario described in Section 6.4.1. Specifi-
cally, we consider the average lead time as the PPL i.e., Fp = {i_t}, and dis-
ruptions in the numbers of case arrivals, active cases, and available resources, i.e.,
Fp = {farr_c,tact_c,lavl_r}. We do not consider additional features, i.e.,
Fu=0.

Experiment 2.2: Resilience per case type. Given that the process under inves-
tigation covers a broad range of permit applications, we use this experiment to
examine if the process is specifically prone to increases in certain case types. To
do this, we consider a resilience scenario with disruptions in terms of the three
most common case types per municipality (based on a case’s “parts” attribute),
Fp = {tact_c_type,, Tact_c_type,, Tact_c_type.}, where x, y, and z differ per
municipality, due to varying commonality of the case types. Other scenario options
are left the same as in Experiment 2.1, i.e., Fp = {l;} and F4 = (.

Results

In this section, we report on the results obtained from our experiments.

81n the second experiment with real-life data, we determine the average lead time by considering
the lead time for each window of the last 3% of all cases completed before the end of that window to
prevent situations where the lead time is inflated by a few lengthy cases completed within a specific
window.

Chapter 6. Business Process Resilience Assessment 154

Experiment 2.1: Overall resilience. To contextualize resilience insights, Ta-
ble 6.8 presents the main characteristics of diverse time series in terms of the av-
erage values, standard deviations, and coefficients of variation, obtained through
semi-monthly windows. Here, we find that the processes are rather stable in terms
of the available resources (avg. coefficient of variation of 19%) and active cases
(22%) but fluctuate in terms of case arrivals (46%). Per municipality, we see con-
siderable differences, with, e.g., M3 having much less fluctuation in its active cases
(just 14%) than others (up to 32%).

Table 6.8: Statistics of the time series per each process feature from the default
resilience scenario on a semi-monthly windowing.

Event Case arrival Active cases Avl. resources Lead time
log Avg Std CV Avg Std CV Avg Std CV Avg Std CV
M1 11.3 56 49% 882 124 14% 74 17 22% 65 2.1 33%

M2 8.0 48 60% 949 21.0 22% 53 11 21% 97 34 35%
M3 13.2 49 37% 69.1 9.7 14% 67 08 12% 37 12 32%
M4 9.9 42 42% 914 253 28% 52 12 22% 74 23 31%

M5 109 47 43% 823 261 32% 81 13 16% 6.1 24 40%

Table 6.9 provides an overview of the overall resilience results. We observe
that the processes have the worst resilience to increases in the active cases, with
the longest average recovery time across all municipalities and the greatest av-
erage maximum increase in the average lead time, causing a notable cumulative
performance loss. Although resilience to the other two disruptions is generally
comparable in terms of maximal impact, the average recovery time after decreases
in the number of available resources takes 40% longer compared to increases in the
case arrival, which doubles the observed average cumulative performance loss.

Table 6.9: Results of Experiment 2.1, showing the resilience for the three disrup-
tion types (semi-monthly windows).

Increase in Increase in Decrease in

Disruption . .
case arrivals active cases avl. resources

Municipality M1 M2 M3 M4 M5| Ml M2 M3 M4 MS5| Ml M2 M3 M4 M5

1 1 1 1
28 8 11 5
09 04 0.8 0.5
135 22 56 1.8

Time-to-impact 1 1 1 1 9 1 1 1 1 1
Recovery time 4 17 3 1 11 8§ 28 8 22 29
Max. deviation 0.5 0.6 0.7 04 02| 03 25 04 12 09
Cum. perf. loss 14 57 13 04 2.6| 22 258 23 159 164

(=Nl

When comparing the resilience among the municipalities, we also gain sev-

Chapter 6. Business Process Resilience Assessment 155

eral interesting insights. Municipality M1 exhibits the highest overall resilience.
It demonstrates strong resilience to disruptions in case arrivals and active cases.
Furthermore, it is not anticipated to experience any performance drops from dis-
ruptions in available resources. In other words, the expected increase in the aver-
age lead time does not exceed the tolerated deviation F;,;. Municipality M3 also
displays strong resilience; however, a potential disruption in available resources af-
fects the lead time, compared to M1. In contrast, municipality M2 shows the worst
resilience in all disruption scenarios, showing the highest cumulative performance
loss across all municipalities. Finally, municipalities M4 and M5 exhibit relatively
low resilience to an increase in the number of active cases, remaining competitive
with other municipalities in other disruptions. Based on such insights, municipality
M2 could conduct further analyses to understand why their resilience on the same
process is so different compared to M1 and M3, as a basis for future improvement.

Experiment 2.2: Resilience per case type. Table 6.10 shows the resilience in-
sights obtained for disruptions in the three common application types per munici-
pality. To contextualize the resilience insights, we include the corresponding fre-
quency and average lead time for each case type. We observe that the three most
common application types account for 55 to 70 % of all cases. Interestingly, type A
is most common for all municipalities, accounting for 40 to 50% of the total cases,
and type B always is the second or third most common type. The lead times differ
remarkably between case types and municipalities. For M1, for instance, type A
takes about 11 weeks on average (5 semi-monthly windows), whereas cases of type
C take 40 weeks (19 semi-monthly windows).

Based on the computed resilience measures, we observe several differences in
resilience to the three most common case types compared to the overall resilience.
First of all, we see that municipalities M1 and M3 show the highest resilience
to all frequent case types. This aligns with insights from an overall analysis of
resilience to disruptions in the number of active cases, depicted in Table 6.6. The
resilience measures for common case types at M2 are comparable to the overall
resilience in terms of recovery time and cumulative performance loss. However,
municipalities M4 and M5 show remarkably lower resilience to increases in the
three most common case types compared to the overall resilience. In both cases, the
maximum impact doubles, and with a long recovery time reaching the maximum
considered horizon, the cumulative loss is significant.

We also observe notable differences in resilience for the same case type across
different municipalities. For example, resilience to the most common case type A
is high at M1 and M3 but worse at other municipalities, especially M4. A similar
trend is observed for type B, with lower resilience at MS. Looking at type C at M1
and M2, there’s a notable difference in resilience despite the same case frequency

Chapter 6. Business Process Resilience Assessment 156

Table 6.10: Results of Experiment 2.2, showing process resilience (semi-monthly
windows) per municipality to disruptions in the three most common application
types and the corresponding statistics, obtained based on the initial event logs.

Municipality M1 M2 M3 M4 M5
Increase incasetype A B C|A B C|A B D|A B E|A B D
Case frequency (%) 50 8 5 |39 11 7 |39 19 6 |4 15 9 |50 10
Avg. lead time 5 5 1919 4 2014 2 6 8§ 6 7 5 6 7
Time-to-impact 1 1 212 1 5|3 3 4 1 1
Recovery time 8§ 12 14|36 31 45|10 4 26 52 49 52 50 50 50
Max. deviation 05 09 0313 16 08|05 02 06|32 09 34|20 23 1.6
Cum. perf. loss 2 6 3129 27 29| 3 08 8 [147 30 151|82 102 73

Case type descriptions: A: “Bouw”(“Construction"), B: “Kap” (“Felling (Cutting down trees)"), C:
“Milieu (vergunning)” (“Environment (permit)"), D: “Bouw, Handelen in strijd met regels RO”
(“Construction, Acting against spatial planning rules"), E: “Handelen in strijd met regels RO”
(“Acting against spatial planning rules")

and average lead time. A similar trend is noted for type D in municipalities M3
and M5.

Overall, when considering resilience per case type and municipality, we see
the importance of examining resilience by case type. The resilience insights ob-
tained from this experiment expand upon the findings from the overall resilience
analysis and can guide further investigation into improving process resilience in
municipalities. For instance, it is worth investigating why the resilience to the most
common case types at M4 and M5 differs significantly from their overall resilience
or whether batching causes low resilience at M4.

6.6 Discussion

In this section, we first discuss the advantages of our approach for business process
resilience assessment in comparison to the alternative solution. Then, we examine
the limitations of our approach, identifying potential areas for improvement.

Advantages of the proposed solution. The proposed approach for resilience as-
sessment offers several advantages that make it particularly well-suited for the task
at hand. First, the VAR model estimates how process performance responds to
disruptions using impulse-response analysis, which closely aligns with the idea of
measuring resilience against disruptions (see Section 6.2). Moreover, the impulse-
response analysis provides insights into the magnitude and duration of disruption
impacts, enabling direct identification of all four resilience measures. Second, the

Chapter 6. Business Process Resilience Assessment 157

VAR model assumes linear relationships between relevant process features, which
have been proven to provide reliable and accurate estimates of the resilience of
a business process under the short-term impact of disruptions (see Section 6.5.1),
even when process disruptions have not been previously observed in the data. Fi-
nally, our approach is automated, requiring only an event log and a user-defined
resilience scenario as input, and can be used out-of-the-box.

Comparison with alternative solution. Our approach offers significant advan-
tages over the alternative solution based on (auto-mined) process simulations. Con-
cerning the latter, we note that constructing a simulation model that adequately
replicates process behavior is highly complex and time-consuming [45, 145]. Sim-
ulation models discovered in an automated manner [146, 147] lack the function-
ality needed to simulate disruption scenarios essential for resilience assessment,
requiring additional customization and hindering automated resilience assessment.
In contrast, our approach eliminates the need to create simulation models from
scratch or to modify automatically generated process simulations to include spe-
cific functionalities.

Limitations. The use of a VAR model to assess the resilience of a business process
from event data also has limitations, which we aim to address in the future.

The linearity of the VAR model allows for robust estimation of the short-term
impact of a disruption on process performance. However, it might lead to an un-
derestimation of the impact if the disruption size is extremely large. This occurs
because a process might behave non-linearly under extreme disruptions, making
rescaling the detected response in process performance ineffective.

The first step in our approach generates process features as time series, which
describe characteristics relevant for resilience assessment. Although these process
features are typically stationary, maintaining a consistent mean and variance, they
can exhibit significant changes due to factors such as concept drift. In such cases,
preprocessing steps are necessary. For instance, concept drift detection can be
applied to an event log to identify these changes before assessing the resilience of
the process version of interest. Furthermore, if a process is highly seasonal, the
time series may need to be de-seasonalized to eliminate the impact of seasonality
on the resilience assessment results.

Finally, our approach employs the Akaike information criterion for selecting
optimal model settings. Despite its acceptable results, this is a relatively simplistic
strategy, whereas selecting (truly) optimal models is a complex task.

Chapter 6. Business Process Resilience Assessment 158

6.7 Related Work

Our work relates to resilience assessment approaches specific to business processes
and some well-established problems in process mining. It also relates to broader
research areas in other fields.

6.7.1 Process Resilience Assessment

In the following, we discuss the two main research directions in process resilience
assessment and explore related problems within process mining.

Main research directions. The assessment of business process resilience diverges
into two directions: resilience assessment at design-time and at run-time.

Resilience assessment at design-time. Resilience assessment at design-time refers
to the evaluation of a process’ resilience capabilities during the initial design
phase. A recently proposed method introduces four levels of process model re-
silience based on a data-centric, collaboration-oriented modeling language for pro-
cesses [130]. Based on this method, a resilience-aware maturity model for mod-
eling multi-party business processes allows precise quantification of model com-
pliance concerning the different resilience levels [115]: no resilience awareness,
failure awareness, data resilience, milestone resilience, and process resilience.

Resilience assessment at run-time. Resilience assessment at run-time involves eval-
uating a process’s ability to withstand disruptions and maintain performance dur-
ing its operational phase, with a focus on monitoring its response to unexpected
events. Our chapter focuses on data-driven resilience assessment at run-time, for
which little research in business process management and process mining has been
conducted so far. The only research that addresses this problem is the work by
Zahoransky et al., who have presented a decision support framework [99]. This
framework collects and quantifies metrics and indicators for assessing the run-time
resilience of a process based on the ex-post analysis of event logs. They also con-
ducted a case study [116], investigating the temporal aspect of process resilience,
done by applying process mining to create probability distributions on the time be-
havior of business processes, using historic information in an event log. However,
their approach is not generalizable because it depends on domain knowledge and
manual intervention and requires a known process model for building a simulation
model, making process-centered and data-driven resilience assessment impractical.

Connection to other problems in process mining. In the following discussion,
we position the problem of assessing business process resilience alongside other
well-established problems in process mining, highlighting the unique aspects of
resilience assessment.

Chapter 6. Business Process Resilience Assessment 159

Anomaly detection. Anomalies can be defined as deviations in process behavior
from normal or expected behavior according to an established process model [148].
Numerous supervised and unsupervised techniques have been proposed to detect
these deviations within event logs, as highlighted in recent surveys [149, 150].
However, anomaly detection cannot be used to address the problem of process re-
silience assessment due to its different scope and approach level. Specifically, pro-
cess resilience assessment aims to estimate the potential impact of future process
disruptions, which indicate changes characteristics of a process at the system level.
In contrast, anomaly detection focuses on identifying past deviations recorded in
an event log, either at the trace level or within segments of traces.

Concept drift detection. Concept drift in process mining occurs when a process
changes while being analyzed [106]. The objective of concept drift detection is
to identify and describe these changes using data from an event log. A tempo-
rary disruption, such as a sudden increase in case arrivals, should not be mistaken
for concept drift. Unlike concept drift, which indicates a shift to a new version
of the process model, disruptions are temporal and are more linked to anomalies.
Furthermore, concept drift detection focuses on detecting changes in the recorded
data rather than predicting how a process might react to future disruptions. There-
fore, resilience assessment presents a distinct challenge compared to concept drift
detection.

Causal process mining. Causal process mining involves identifying and under-
standing the cause-and-effect relationships within different features of a business
process. Causal analysis has been successfully used to automate the discovery of
factors that impact process performance [151] or to mine process dependencies for
control-flow decisions taken during the execution of process models [152].

The problem of resilience assessment can be viewed as a problem of causal
analysis, where the disruption is the cause and the decline in process performance
is the effect. However, in this context, identifying the cause and effect is redundant
since they are already known, making the quantification of the impact the primary
concern. Existing methods for causality detection, such as those based on Granger
causality, can quantify the impact of a disruption on process performance. How-
ever, these methods do not consider the evolution of this impact over time or its
relation to other process features that are also affected and may contribute to the
performance decline. In contrast, a vector autoregressive model can address these
challenges more effectively. It can analyze the dependencies between relevant pro-
cess features in a single run, considering all features and their interrelations simul-
taneously. This allows for a comprehensive prediction of the response in process
performance under various disruption scenarios, taking into account the complex
interactions between different process features.

Chapter 6. Business Process Resilience Assessment 160

6.7.2 Resilience assessment in other research fields

The problem of resilience assessment is linked to various established research
fields. In the following discussion, we consider these fields and discuss their dif-
ferences in comparison to business process resilience assessment.

Risk assessment. Risk assessment is a mature discipline that has been developed in
the past 40 years to help understand and control the risk of accident events [153].
Many principles and methods are developed for how to conceptualize, assess, and
manage risk [154], i.e., the potential occurrence of undesirable consequences for
certain entities or situations.

Risk assessment and resilience assessment complement each other [153]. Risk
assessment focuses on identifying and managing potential risks, while resilience
assessment focuses on the ability to withstand and recover from disruptions. To-
gether, they provide a comprehensive approach to understanding and mitigating
threats, ensuring both the prevention of issues and the capability to recover when
they occur. However, existing data-driven techniques for risk assessment cannot
describe the ability of a process to withstand and recover from possible disrup-
tions, but process resilience assessment can enhance awareness of potential risks
in business process management.

Business continuity management. The continuity of a business process and pro-
cess resilience are closely related concepts that complement each other, though
they differ slightly in scope and focus. Business continuity is defined as the ability
of an organization to continue delivering products or services at acceptable levels
after a disruption [125]. It primarily aims at ensuring immediate operational sta-
bility by developing specific, tactical plans and procedures to prevent disruptive
events from causing unexpected, unwanted interruptions in production or service
activities [153]. Business continuity focuses on building processes and procedures
to navigate a single disturbance by establishing alternative suppliers, maintaining
backup inventory, and creating detailed plans for switching suppliers if the primary
supplier is unavailable. In contrast, process resilience emphasizes the process itself,
aiming for long-term strength and the ability to handle any number of disruptions,
even unforeseen ones, by integrating flexible manufacturing practices that enable
process activities to be executed under various conditions.

Statistical quality control. Statistical quality control is a collection of tools and
techniques useful in achieving quality improvement by establishing process sta-
bility [109]. The enhancement of process quality stems from the reduction of
variability in its outcomes, implying that a decrease in variability in the critical
characteristics of a product results in an increase in product quality.

Process resilience assessment and statistical process control share some simi-
larities but differ in scope. Statistical process control aims to maintain process per-

Chapter 6. Business Process Resilience Assessment 161

formance within acceptable levels and alert management when deviations occur,
typically utilizing control charts that display upper and lower bounds for a given
performance indicator. In contrast, process resilience not only addresses deviations
from desired levels but also seeks to predict the expected impact and recovery time
in the event of disruptions.

Sensitivity analysis. Sensitivity analysis evaluates how variations in input param-
eters affect a model or system’s output [155, 156]. It is used to identify critical
factors influencing outcomes, quantify their influence, and inform decision-making
by highlighting areas where improvements or interventions may be most effective.

Still, sensitivity analysis provides an incomplete view of the resilience assess-
ment problem. Existing sensitivity analysis methods, e.g., Sobol sensitivity analy-
sis [157] and PRIM (Patient Rule Induction Method) analysis [158], allow quantifi-
cation of the impact of changes in one variable on another. In resilience assessment,
this can be used to assess the maximal expected impact on process performance
based on the initial size of the disruption. However, they can only be used to esti-
mate the anticipated maximum impact of a disruption, whereas they do not provide
insights into the impact of a disruption over time, such as the time-to-impact or
recovery time.

6.8 Conclusion

This chapter presented an approach for assessing process resilience using event
log data. We measure process resilience in terms of the expected deviation of
the process performance to disruptions in different process characteristics, such as
arrival rate, active cases, and available resources. Our approach represents pro-
cess characteristics as time series, constructs a vector autoregressive model that
captures the statistical relationship between them, and conducts impulse-response
analysis. Evaluation experiments demonstrate the accuracy and effectiveness of our
approach in quantifying overall process resilience and its weak and strong points
concerning different disruption types. The obtained insights help to understand the
resilience of business processes, which is the first critical step towards achieving
better resilience.

In future research, we plan to improve and further develop our work in several
manners. First, our employed VAR models assume a linear relationship between
the process features, which is not always the case. In our evaluation, we saw that
the linear models generally performed well. Nevertheless, future research should
investigate other VAR models, for instance, with time-varying coefficients or non-
linearity. Second, our approach employs the Akaike information criterion for se-
lecting optimal model settings. Despite its acceptable results, this is a relatively

Chapter 6. Business Process Resilience Assessment 162

simplistic strategy, whereas selecting (truly) optimal models is a complex task.
Therefore, in the future, we aim to investigate state-of-the-art selection strategies
that best suit the objective of resilience assessment using event data. Third, we
aim to improve the statistical properties of the generated time series by accounting
for, e.g., trends with drifts and seasonal effects, which may yield more accurate
models. Finally, we aim to study how countermeasures can mitigate the expected
negative impact of a disruption on a PPI. We seek to determine the appropriate
timing and amount of these countermeasures to keep the negative impact within
defined boundaries.

Chapter 7

Conclusion

This chapter concludes the doctoral thesis. Section 7.1 summarizes the main re-
sults, while Section 7.2 discusses their implications for research and practice. Fi-
nally, Section 7.3 outlines possible directions for future research that build on the
presented work.

7.1 Summary of the Results

In this thesis, we applied system-level process mining to gain an understanding
of business process dynamics that we then used to address specific problems in
process mining. To this end, we explored different forms of system-level process
mining to uncover aspects of process dynamics that are relevant for the process
mining tasks at hand. Given our contributions, we can summarize the main results
presented in this thesis as follows:

1. Comprehensive Concept Drift Characterization: Business processes evolve
in time, leading to concept drift in event logs. Detecting such drift is cru-
cial for many process mining tasks to obtain reliable insights. Current
techniques, however, mainly identify isolated changes and therefore fail
to provide a complete understanding of process evolution. In Chapter 3,
we showed how studying business process dynamics through system-level
process mining enables a more comprehensive characterization of concept
drifts. Specifically, we addressed the problem of comprehensive drift charac-
terization by introducing a new taxonomy that emphasizes process changes
and their interconnections. Building on this taxonomy, we presented a three-
step framework that automatically characterizes concept drift from event
logs using algorithms that employ behavioral similarity analysis of process

163

Chapter 7. Conclusion 164

dynamics across different periods, thus supporting the characterization of
both isolated changes and more complex drift types.

2. Concept Drift Detection Using Computer Vision: Business process dynam-
ics can be used not only to enhance the characterization capability of existing
concept drift detection techniques but also to enable more accurate detection
of concept drifts. In Chapter 4, we proposed a novel approach that leverages
process dynamics and machine learning to address the problem of concept
drift detection in a new way. By introducing an image-based visualization
of process dynamics over time, our approach applies supervised ML to learn
how drifts manifest in event logs. Using a fine-tuned state-of-the-art com-
puter vision model, the approach detects four drift types and outperforms
existing solutions in accuracy and robustness to noise, demonstrating the po-
tential of this new paradigm that combines process dynamics with machine
learning.

3. Steady-State Detection: A business process is a complex system that con-
tinuously evolves over time. As a result, event logs often contain data from
both steady and non-steady states. Distinguishing between these states is a
crucial task in process mining, as ignoring them can distort results such as
performance analysis and remaining time prediction. The analysis of pro-
cess dynamics over time makes it possible to study steady and non-steady
states in business processes. In Chapter 5, we highlighted the importance
of SSD in the process mining domain and proposed a two-step framework
for detecting steady states. This framework allowed us to investigate the ap-
plicability of existing SSD solutions in the context of process mining. The
findings emphasize the importance and potential of SSD for obtaining more
accurate process mining insights.

4. Process Resilience Assessment: Process resilience refers to the ability of a
process to return to an acceptable performance level after disturbances and
is a critical competence for organizations facing disruptions such as sudden
workload increases or workforce absences. Despite its importance, few stud-
ies assess resilience in a data-driven manner, limiting the ability of organiza-
tions to understand how strongly their processes are affected by disruptions
and how long recovery takes. In Chapter 6, we presented an approach for
automated resilience assessment. It builds on different characteristics that
capture process dynamics over time and applies a statistical model to ana-
lyze their interrelations and evaluate how process performance responds to
both observed and unseen disruptions. We validated the approach against

Chapter 7. Conclusion 165

simulation-based “what-if” analyses and demonstrate its effectiveness in as-
sessing process resilience under diverse disruptions across organizations.

When developing and evaluating our approaches, we followed established
practices from algorithm-engineering research (Section 1.3). By ensuring onto-
logical clarity, maintaining epistemological precision, and addressing threats to
methodological validity, we provided sound contributions that substantially ad-
vance the body of knowledge in the field of process mining.

7.2 Implications

This section discusses the implications of the work presented in this thesis, with
Section 7.2.1 focusing on practice and Section 7.2.2 on research.

7.2.1 Implications for Practice

The work presented in this thesis carries several implications for practitioners in
organizations that apply process mining to analyze their processes. The primary
implication is that our research supports the generation of more accurate insights
across a wide range of process mining activities. The following sections outline
the specific implications of our research for the key process mining tasks most
commonly applied in practice:

* Achieving more accurate process discovery. Process discovery is one of the
main process mining activities in practice. However, the insights obtained
can be highly misleading if event logs contain data from different versions of
the same process. Our work on concept drift detection and characterization,
presented in Chapter 3 and Chapter 4, enables more precise identification
of different process versions by enhancing both accuracy and robustness to
noise. As a result, practitioners can gain more reliable insights into different
process versions and their evolution over time by applying process discovery
only to periods that cover the process version of interest.

* Proposing a new bucketing strategy. Our work on steady-state detection
(Chapter 5) introduces a new bucketing strategy in process mining. For prac-
titioners, it is applicable to many use cases where it is essential to divide
event data into meaningful segments, such as:

— Process performance analysis. Performance analysis is a core process
mining activity frequently applied in practice. Similar to process dis-
covery, it can lead to misleading insights if proper pre-analysis is not

Chapter 7. Conclusion 166

conducted. In particular, performance analysis may become unreli-
able when practitioners ignore the distinction between steady and non-
steady states of a business process, because process performance can
vary significantly between these states, making such a distinction es-
sential for accurate performance analysis. With our proposed approach
for steady-state detection, it becomes possible to differentiate perfor-
mance between periods of steady states, when a process operates under
normal conditions, and non-steady states, when it is subject to contin-
uous disruptions.

— Predictive process monitoring. Predictive process monitoring often in-
volves bucketing before training predictive models in order to obtain
more accurate predictions. By applying our framework, event logs can
be split into sublogs that represent steady and non-steady states of a
process. These sublogs can then be used in predictive process moni-
toring, where separate models are trained to predict the remaining time
of ongoing cases under different conditions. The resulting models can
then be applied to ongoing cases by selecting the model that corre-
sponds to the current state of the business process, thereby improving
the accuracy of predictions.

* Enabling the measurement of business process resilience. Organizations aim
to be resilient in order to survive turbulent times, and organizational re-
silience begins with the resilience of core business processes. To understand
business process resilience, the first step is to measure it. Our approach
(Chapter 6) presents the first automated approach to assess business process
resilience in a data-driven manner. Using historical event data, organiza-
tions can evaluate the resilience of their processes through four proposed re-
silience measures. These measures help organizations assess the resilience of
their processes, determine which processes require improvement, and iden-
tify the resilience aspects that should be addressed first through the design
of interventions that strengthen process resilience.

7.2.2 Implications for Research

Our work enables and informs several research directions in the field of process
mining. In particular, our contributions demonstrate the usefulness and added value
of studying process dynamics through system-level process mining, with implica-
tions for research on:

» Concept drift detection and characterization. Concept drift detection is a
well-established problem in process mining, and numerous techniques have

Chapter 7. Conclusion 167

been proposed to address it. However, in recent years, research in this area
has slowed down, with limited progress in developing new approaches to
overcome the persistent trade-off between accuracy and robustness to noise.
Our research on concept drift detection (Chapter 3 and Chapter 4) gives this
problem new momentum. We introduced a new taxonomy and proposed the
first supervised machine learning—based approach that directly learns how
drifts manifest in event logs. Our approach outperforms existing solutions
by improving both accuracy and robustness to noise, thereby introducing a
new use case for machine learning in process mining and extending the state
of the art.

* Steady-state detection. The problem of steady-state detection has received
no attention in process mining so far, even though it can significantly affect
the accuracy of many process mining activities. In our work (Chapter 5),
we demonstrated the importance of SSD in process mining and proposed a
framework to detect steady and non-steady periods in business processes.
This opens a new research direction in process mining with a novel problem
definition and a baseline solution.

* Process resilience assessment. Research on process resilience has received
little attention in process mining and is still in its early stages. The only tan-
gible approach so far has been to manually build business process simulation
models and evaluate disruption scenarios to estimate process resilience. This
is typically time-consuming, and although recent years have seen progress
in automating simulation modeling, existing solutions still lack the neces-
sary functionality for resilience assessment. In our work, we formalized the
concept of resilience for business processes and proposed an automated ap-
proach to assess process resilience directly from event logs without the need
to build simulation models and conduct extensive “what-if”” analyses. In this
way, our research highlights the importance of process resilience and pro-
vides a baseline solution that can serve as a starting point for more advanced
approaches in the future.

7.3 Future Research

This work opens several promising directions for future research. They offer op-
portunities to study business process dynamics more deeply and to apply them to
various process mining tasks in order to improve accuracy and broaden the range
and quality of insights. In particular, we see the greatest potential in the following
directions:

Chapter 7. Conclusion 168

» Extending the concept of process dynamics. This thesis presents an initial at-
tempt to formalize the idea of process dynamics within process mining and
should be regarded as a starting point. Future research should aim to further
refine this concept and clarify its relevant aspects to establish a stronger con-
ceptual and methodological grounding. This may involve developing formal
definitions, models, taxonomies, and categorizations of process dynamics.
It is also important to investigate how process dynamics emerge, evolve,
and interact, and to distinguish between different types of dynamics, such
as structural, behavioral, and performance-related. A deeper theoretical un-
derstanding would not only sharpen the notion of process dynamics but also
open new opportunities for systematically exploring its applicability across
diverse process mining tasks.

» Exploring data sources and forms for system-level process mining. In this
thesis, system-level process mining was applied to capture process dynam-
ics in the form of time series and images derived from event logs. Future
research should investigate opportunities beyond these representation forms
and data types. For example, alternative formats such as graphs or multidi-
mensional data structures (e.g., 3D cubes) may provide richer ways to rep-
resent the temporal and structural aspects of high-level process dynamics.
Moreover, combining event logs with complementary data sources, such as
resource calendars, sensor data, weather information, or geolocation, could
yield a more comprehensive view of process dynamics within their opera-
tional context. Finally, system-level process mining should be explored for
other data types, such as object-centric event logs, to analyze how different
objects contribute to overall process dynamics.

* Broadening applications of process dynamics and system-level process min-
ing. In this thesis, we demonstrate how process dynamics can support three
distinct tasks, i.e., concept drift detection and characterization, steady-state
detection, and resilience assessment, which extend the limited set of existing
applications discussed in Section 2.2.3. We believe that many more tasks
in process mining could benefit from, or even require, system-level process
mining and the study of process dynamics. For example, beyond traditional
tasks such as process discovery, conformance checking, and predictive pro-
cess monitoring, the study of process dynamics through system-level process
mining can also provide deeper insights into interconnected processes within
the same organization. It can enable the analysis of how multiple processes
interact (e.g., supply chains) and supports the identification of dependencies
across organizations.

Bibliography

[1]

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers, et al.
Fundamentals of business process management. Vol. 2. Springer, 2018.

Wil van der Aalst. Process Mining: Data Science in Action. Springer, 2016.

Zahra Toosinezhad, Dirk Fahland, Ozge Koroglu, and Wil van der Aalst.
“Detecting System-Level Behavior Leading To Dynamic Bottlenecks”. In:
International Conference on Process Mining (ICPM). IEEE, 2020, pp. 17—
24.

Bianka Bakullari and Wil van der Aalst. “High-level event mining: A
framework”. In: International Conference on Process Mining (ICPM).
IEEE. 2022, pp. 136-143.

Arik Senderovich, Chiara Di Francescomarino, Chiara Ghidini, Kerwin
Jorbina, and Fabrizio Maria Maggi. “Intra and inter-case features in predic-
tive process monitoring: A tale of two dimensions”. In: International Con-
ference on Business Process Management (BPM). Springer. 2017, pp. 306—
323.

Mahsa Pourbafrani, Sebastiaan van Zelst, and Wil van der Aalst. “Sup-
porting automatic system dynamics model generation for simulation in the
context of process mining”. In: International Conference on Business In-
formation Systems (BIR). Springer. 2020, pp. 249-263.

Alexander Kraus and Han van der Aa. “Looking for Change: A Computer
Vision Approach for Concept Drift Detection in Process Mining”. In: Inter-
national Conference on Business Process Management (BPM). Springer,
2024, pp. 273-290.

Alexander Kraus and Han Van der Aa. “Machine Learning-based Detection
of Concept Drifts in Business Processes.” In: Process Science 2,5 (2025).

Alexander Kraus and Han van der Aa. “Comprehensive characterization
of concept drifts in process mining”. In: Information Systems 135, 102584
(2026).

169

Bibliography 170

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Alexander Kraus, Keyvan Amiri Elyasi, and Han van der Aa. “On the Use
of Steady-State Detection for Process Mining: Achieving More Accurate
Insights”. In: International Conference on Advanced Information Systems
Engineering (CAISE). Springer, 2025, pp. 204-220.

Alexander Kraus, Jana-Rebecca Rehse, and Han van der Aa. “Data-driven
assessment of business process resilience”. In: Process Science 1, 4 (2024).

Justus Grimm, Alexander Kraus, and Han van der Aa. “CDLG: A Tool
for the Generation of Event Logs with Concept Drifts”. In: Workshop Pro-

ceedings of the International Conference on Business Process Management
(BPM). Vol. 3216. CEUR-WS. 2022, pp. 92-96.

Jan Mendling, Henrik Leopold, Henning Meyerhenke, and Benoit Depaire.
“Methodology of algorithm engineering”. In: Preprint arXiv:2310.18979
(2023).

Gijs A. Holleman, Ignace T.C. Hooge, Chantal Kemner, and Roy S. Hes-
sels. “The ‘real-world approach’and its problems: A critique of the term
ecological validity”. In: Frontiers in Psychology 11, 721 (2020).

Jana-Rebecca Rehse, Sander Leemans, Peter Fettke, and Jan Martijn E. M.
van der Werf. “On Process Discovery Experimentation: Addressing the
Need for Research Methodology in Process Discovery”. In: ACM Trans-
actions on Software Engineering and Methodology 34.1 (2024).

Allen S. Lee and Richard L. Baskerville. “Generalizing generalizability
in information systems research”. In: Information Systems Research 14.3
(2003), pp. 221-243.

Scott W. O’Leary-Kelly and Robert J. Vokurka. “The empirical assessment
of construct validity”. In: Journal of Operations Management 16.4 (1998),
pp- 387-405.

Norman Fenton and James Bieman. Software Metrics: A Rigorous and
Practical Approach. 3rd ed. CRC Press, 2014.

Thomas D. Cook, Donald Thomas Campbell, and William Shadish. Exper-
imental and quasi-experimental designs for generalized causal inference.
Vol. 1195. Houghton, Mifflin and Company, 2002.

Paul C. Cozby. Methods in behavioral research. 10th ed. McGraw-Hill
Education, 2009.

José Herndndez-Orallo. “Evaluation in artificial intelligence: from task-
oriented to ability-oriented measurement”. In: Artificial Intelligence Re-
view 48.3 (2017), pp. 397-447.

Bibliography 171

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Wil van der Aalst and Josep Carmona. Process mining handbook. Springer,
2022.

Project Management Institute. A Guide to the Project Management Body of
Knowledge (PMBOK Guide). Tth ed. Project Management Institute, 2021.

Eric Almquist, John Senior, and Nicolas Bloch. “The elements of value”.
In: Harvard business review 94.9 (2016), pp. 47-53.

Wil Van der Aalst. “Data scientist: The engineer of the future”. In: Enter-
prise interoperability VI: Interoperability for agility, resilience and plas-
ticity of collaborations. Springer, 2014, pp. 13-26.

Jan vom Brocke, Wil van der Aalst, et al. “Process science: the interdisci-
plinary study of socio-technical change”. In: Process Science 1, 1 (2024).

Michael Rosemann, Jan vom Brocke, Amy Van Looy, and Flavia Santoro.
“Business process management in the age of Al-three essential drifts”. In:
Information Systems and e-Business Management 22.3 (2024), pp. 415-
429.

Mathias Weske. Business Process Management: Concepts, Languages, Ar-
chitectures. 4th ed. Springer, 2024.

Sergey Smirnov, Matthias Weidlich, and Jan Mendling. “Business process
model abstraction based on behavioral profiles”. In: International Confer-
ence on Service-Oriented Computing (ICSOC). Springer. 2010, pp. 1-16.

Mark Von Rosing, Stephen White, Fred Cummins, and Henk De Man.
Business Process Model and Notation - BPMN. OMG, 2015.

R.P. Jagadeesh Chandra Bose, Wil Van Der Aalst, Indré Zliobaité, and
Mykola Pechenizkiy. “Dealing with concept drifts in process mining”.

In: Transactions on Neural Networks and Learning Systems 25.1 (2013),
pp. 154-171.

IEEE Task Force on Process Mining. XES Standard Definition. http://
www. xes-standard.org/. 2016.

Anahita Farhang Ghahfarokhi, Gyunam Park, Alessandro Berti, and Wil
van der Aalst. “OCEL: a standard for object-centric event logs”. In: Eu-

ropean Conference on Advances in Databases and Information Systems
(ADBIS). Springer. 2021, pp. 169-175.

Wil Van der Aalst, Ton Weijters, and Laura Maruster. “Workflow mining:
Discovering process models from event logs”. In: IEEE transactions on
knowledge and data engineering 16.9 (2004), pp. 1128-1142.

http://www.xes-standard.org/
http://www.xes-standard.org/

Bibliography 172

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Sergey Smirnov, Matthias Weidlich, and Jan Mendling. “Business process
model abstraction based on synthesis from well-structured behavioral pro-
files”. In: International Journal of Cooperative Information Systems 21.1
(2012), pp. 55-83.

Wil van Der Aalst, Maja Pesic, and Helen Schonenberg. ‘“Declarative
workflows: Balancing between flexibility and support”. In: Computer
Science-Research and Development 23 (2009), pp. 99-113.

Ludwig von Bertalanffy. General System Theory: Foundations, Develop-
ment, Applications. 1st ed. George Braziller, 1968.

Peter Checkland. “Systems thinking, systems practice”. In: European Jour-
nal of Operational Research 11.4 (1982), pp. 405-407.

Diana Wright and Donella H. Meadows. Thinking in systems: a primer.
Taylor and Francis, 2012.

John Sterman. “System Dynamics: systems thinking and modeling for a
complex world”. In: Engineering Systems Division (ESD) Working Paper
Series (2002).

Jiale Zheng, Chunhui Zhao, and Furong Gao. “Retrospective comparison
of several typical linear dynamic latent variable models for industrial pro-
cess monitoring”. In: Computers & Chemical Engineering 157, 107587
(2022).

Philippe Esling and Carlos Agon. “Time-series data mining”. In: ACM
Computing Surveys (CSUR) 45.1 (2012), pp. 1-34.

Arik Senderovich, Chiara Di Francescomarino, and Fabrizio Maria Maggi.
“From knowledge-driven to data-driven inter-case feature encoding in pre-
dictive process monitoring”. In: Information Systems 84 (2019), pp. 255-
264.

Marlon Dumas. “Constructing digital twins for accurate and reliable what-
if business process analysis.” In: Workshop Proceedings of the Interna-
tional Conference on Business Process Management (BPM). Vol. 2938.
CEUR-WS. 2021, pp. 23-27.

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo Reijers. Fun-
damentals of business process management. Vol. 2. Springer, 2018.

Anne Rozinat, Ronny S. Mans, Minseok Song, and Wil van der Aalst.
“Discovering simulation models”. In: Information systems 34.3 (2009),
pp. 305-327.

Bibliography 173

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Lukas Kirchdorfer, Robert Bliimel, Timotheus Kampik, Han van der
Aa, and Heiner Stuckenschmidt. “Discovering multi-agent systems for
resource-centric business process simulation”. In: Process Science 2, 4
(2025).

Manuel Camargo, Marlon Dumas, and Oscar Gonzéilez-Rojas. “Learning
accurate business process simulation models from event logs via automated
process discovery and deep learning”. In: International Conference on Ad-
vanced Information Systems Engineering (CAiSE). Springer. 2022, pp. 55—
71.

Orlenys Loépez-Pintado and Marlon Dumas. “Business process simula-
tion with differentiated resources: Does it make a difference?” In: Inter-
national Conference on Business Process Management (BPM). Springer.
2022, pp. 361-378.

Wil Van Der Aalst, Arya Adriansyah, Ana Karla Alves De Medeiros,
Franco Arcieri, Thomas Baier, Tobias Blickle, R.P. Jagadeesh Chandra
Bose, Peter Van Den Brand, Ronald Brandtjen, Joos Buijs, et al. “Process
mining manifesto”. In: Workshop Proceedings of the International Confer-
ence on Business Process Management (BPM). Springer. 2011, pp. 169-
194.

Jan Niklas Adams, Sebastiaan van Zelst, Lara Quack, Kathrin Hausmann,
Wil van der Aalst, and Thomas Rose. “A framework for explainable con-
cept drift detection in process mining”. In: International Conference on
Business Process Management (BPM). Springer. 2021, pp. 400-416.

Alexander Seeliger, Timo Nolle, and Max Miihlhauser. “Detecting concept
drift in processes using graph metrics on process graphs”. In: Conference
on Subject-Oriented Business Process Management (S-BPM). Vol. 9. 6.
ACM, 2017, pp. 1-10.

Eva L. Klijn, Felix Mannhardt, and Dirk Fahland. “Multi-perspective con-
cept drift detection: Including the actor perspective”. In: International Con-
ference on Advanced Information Systems Engineering (CAiSE). Springer.
2024, pp. 141-157.

J. Martjushev, R.P. Jagadeesh Chandra Bose, and Wil Van Der Aalst.
“Change point detection and dealing with gradual and multi-order dynam-
ics in process mining”. In: International Conference on Business Informat-
ics Research (BIR). Springer. 2015, pp. 161-178.

Bibliography 174

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Abderrahmane Maaradji, Marlon Dumas, Marcello La Rosa, and Alireza
Ostovar. “Detecting sudden and gradual drifts in business processes from
execution traces”. In: IEEE Transactions on Knowledge and Data Engi-
neering 29.10 (2017), pp. 2140-2154.

Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, and Artem
Polyvyanyy. “Visual drift detection for event sequence data of business
processes”. In: IEEE Transactions on Visualization and Computer Graph-
ics 28.8 (2021), pp. 3050-3068.

Jan Niklas Adams, Cameron Pitsch, Tobias Brockhoff, and Wil van der
Aalst. “An Experimental Evaluation of Process Concept Drift Detection”.
In: Proceedings of the VLDB Endowment 16.8 (2023), pp. 1856—-1869.

Bianka Bakullari, Jules van Thoor, Dirk Fahland, and Wil van der Aalst.
“The interplay between high-level problems and the process instances that
give rise to them”. In: International Conference on Business Process Man-
agement (BPM). Springer. 2023, pp. 145-162.

Ghada Elkhawaga, Mervat Abuelkheir, Sherif 1. Barakat, Alaa M. Riad,
and Manfred Reichert. “CONDA-PM: a systematic review and framework
for concept drift analysis in process mining”. In: Algorithms 13.7, 161
(2020).

Denise Maria Vecino Sato, Sheila Cristiana De Freitas, Jean Paul Bard-
dal, and Edson Emilio Scalabrin. “A Survey on Concept Drift in Process
Mining”. In: ACM Computing Surveys 54.9 (2021), pp. 1-38.

Tobias Brockhoff, Merih Seran Uysal, and Wil van der Aalst. “Time-aware
concept drift detection using the earth mover’s distance”. In: International
Conference on Process Mining (ICPM). IEEE. 2020, pp. 33—40.

Canbin Zheng, Lijie Wen, and Jianmin Wang. “Detecting process concept
drifts from event logs”. In: OTM Confederated International Conferences
“On the Move to Meaningful Internet Systems". Springer. 2017, pp. 524—
542.

Leilei Lin, Lijie Wen, Li Lin, Jisheng Pei, and Hedong Yang. “LCDD:
Detecting business process drifts based on local completeness”. In: IEEE
Transactions on Services Computing 15.4 (2020), pp. 2086—2099.

Hoang Nguyen, Marlon Dumas, Marcello La Rosa, and Arthur H.M.
ter Hofstede. “Multi-perspective comparison of business process variants
based on event logs”. In: International Conference “Conceptual Model-
ing” (ER). Springer. 2018, pp. 449-4509.

Bibliography 175

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Bart FEA. Hompes, Joos Buijs, Wil van der Aalst, Prabhakar M. Dixit, and
Johannes Buurman. “Detecting changes in process behavior using com-
parative case clustering”. In: Workshop Proceedings of the International
Symposium on Data-driven Process Discovery and Analysis (SIMPDA).
Springer. 2015, pp. 54-75.

Alfredo Bolt, Wil van der Aalst, and Massimiliano De Leoni. “Finding Pro-
cess Variants in Event Logs”. In: OTM Confederated International Con-
ferences “On the Move to Meaningful Internet Systems". Springer. 2017,
pp- 45-52.

Xixi Lu, Dirk Fahland, Frank J.H.M. van den Biggelaar, and Wil van der
Aalst. “Detecting deviating behaviors without models”. In: Workshop Pro-

ceedings of the International Conference on Business Process Management
(BPM). Springer. 2016, pp. 126—139.

Douglas Curran-Everett and Calvin L Williams. “Explorations in statistics:
the analysis of change”. In: Advances in Physiology Education 39.2 (2015),
pp- 49-54.

Fabian Rosel, Stephan A. Fahrenkog-Petersen, Han van der Aa, and
Matthias Weidlich. “A distance measure for privacy-preserving process
mining based on feature learning”. In: International Conference on Busi-
ness Process Management (BPM). Springer. 2021, pp. 73-85.

Toon Jouck and Benoit Depaire. “PTandLogGenerator: a Generator for Ar-
tificial Event Data”. In: Demonstration Proceedings of the International
Conference on Business Process Management (BPM). Vol. 1789. 2016,
pp- 23-27.

Han van der Aa, Adrian Rebmann, and Henrik Leopold. ‘“Natural
language-based detection of semantic execution anomalies in event logs”.
In: Information Systems 102, 101824 (2021).

Alessandro Berti, Sebastiaan van Zelst, and Daniel Schuster. “PM4Py:
a process mining library for Python”. In: Software Impacts 17, 100556
(2023).

Neo Christopher Chung, Btazej Miasojedow, Michat Startek, and Anna
Gambin. “Jaccard/Tanimoto similarity test and estimation methods for bio-
logical presence-absence data”. In: BMC Bioinformatics 20.15, 644 (2019).

J. Bijsterbosch and A. Volgenant. “Solving the rectangular assignment
problem and applications”. In: Annals of Operations Research 181 (2010),
pp. 443-462.

Bibliography 176

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

David F. Crouse. “On implementing 2D rectangular assignment algo-
rithms”. In: IEEE Transactions on Aerospace and Electronic Systems 52.4
(2016), pp. 1679-1696.

Claudio Di Ciccio and Massimo Mecella. “On the discovery of declara-
tive control flows for artful processes”. In: Transactions on Management
Information Systems (TMIS) 5.4 (2015), pp. 1-37.

Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castellano, Do-
nato Malerba, and Giuseppe Modugno. “ORANGE: outcome-oriented pre-
dictive process monitoring based on image encoding and CNNs”. In: /[EEE
Access 8 (2020), pp. 184073-184086.

Peter Pfeiffer, Johannes Lahann, and Peter Fettke. “Multivariate business
process representation learning utilizing gramian angular fields and convo-
lutional neural networks”. In: International Conference on Business Pro-
cess Management (BPM). Springer. 2021, pp. 327-344.

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang
Liu, and Matti Pietikdinen. “Deep learning for generic object detection: A
survey”. In: International Journal of Computer Vision 128 (2020), pp. 261—
318.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollér.
“Focal loss for dense object detection”. In: International Conference on
Computer Vision (ICCV). IEEE, 2017, pp. 2980-2988.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollar, and C. Lawrence Zitnick. “Microsoft COCO:
Common objects in context”. In: European Conference on Computer Vi-
sion (ECCV). Vol. 8693. Springer. 2014, pp. 740-755.

Alireza Ostovar, Abderrahmane Maaradji, Marcello La Rosa, Arthur H. M.
ter Hofstede, and Boudewijn van Dongen. “Detecting Drift from Event

Streams of Unpredictable Business Processes”. In: International Confer-
ence “Conceptual Modeling” (ER). Springer, 2016, pp. 330-346.

Paolo Ceravolo, Gabriel Marques Tavares, Sylvio Barbon Junior, and
Ernesto Damiani. “Evaluation Goals for Online Process Mining: A Con-
cept Drift Perspective”. In: IEEE Transactions on Services Computing 15.4
(2022), pp. 2473-2489.

Fremont E. Kast and James E. Rosenzweig. “General systems theory: Ap-
plications for organization and management”. In: Academy of Management
Journal 15.4 (1972), pp. 447-465.

Bibliography 177

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Lang Dai, Tianyu Liu, Zhongyong Liu, Lisa Jackson, Paul Goodall,
Changqing Shen, and Lei Mao. “An improved deep learning model for
online tool condition monitoring using output power signals”. In: Shock
and Vibration 2020.1, 8843314 (2020).

Zoltan Derzsi. “Optimal approach for signal detection in steady-state vi-
sual evoked potentials in humans using single-channel eeg and stereoscopic
stimuli”. In: Frontiers in Neuroscience 15, 600543 (2021).

Nicholas W. Tschoegl. Fundamentals of equilibrium and steady-state ther-
modynamics. Elsevier, 2000.

David L. Nelson and Michael M. Cox. Lehninger Principles of Bio-
chemistry. 5th ed. W. H. Freeman, 2008. 1SBN: 978-0-7167-7108-1. URL:
https://www.amazon. ca/Lehninger-Principles-Biochemistry-
Albert/dp/071677108X.

Esa Ranta, Per Lundberg, and Veijo Kaitala. Ecology of Populations. Cam-
bridge University Press, 2005.

Herman E. Daly. “The economics of the steady state”. In: The American
Economic Review 64.2 (1974), pp. 15-21.

Boudewijn van Dongen. “BPI Challenge”. In: Workshop Proceedings on
Business Process Intelligence (BPI). 4TU ResearchData. Dataset. 2015.

Mahsa Pourbafrani and Wil van der Aalst. “Discovering system dynam-
ics simulation models using process mining”. In: IEEE Access 10 (2022),
pp. 78527-78547.

Maxim Vidgof, Bastian Wurm, and Jan Mendling. “The Impact of Pro-
cess Complexity on Process Performance: A Study using Event Log Data”.
In: International Conference on Business Process Management (BPM).
Springer. 2023, pp. 413—429.

Eric Zivot and Jiahui Wang. Modeling financial time series with S-PLUS.
Vol. 2. Springer, 2006.

Fredrik Gustafsson. Adaptive filtering and change detection. Vol. 1. John
Wiley & Sons, 2000.

R. Russell Rhinehart. “Automated steady and transient state identifica-
tion in noisy processes”. In: American Control Conference. IEEE. 2013,
pp. 4477-4493.

Kaylea Haynes, Paul Fearnhead, and Idris A. Eckley. “A computationally
efficient nonparametric approach for changepoint detection”. In: Statistics
and Computing 27 (2017), pp. 1293-1305.

https://www.amazon.ca/Lehninger-Principles-Biochemistry-Albert/dp/071677108X
https://www.amazon.ca/Lehninger-Principles-Biochemistry-Albert/dp/071677108X

Bibliography 178

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Alan V. Oppenheim. Discrete-time signal processing. Pearson Education
India, 1999.

Richard M. Zahoransky, Christian Brenig, and Thomas Koslowski. “To-
wards a process-centered resilience framework™. In: International Confer-
ence on Availability, Reliability and Security (ARES). IEEE. 2015, pp. 266—
273.

Geraint 1. Palmer, Vincent A. Knight, Paul R. Harper, and Asyl L. Hawa.
“CIW: An open-source discrete event simulation library”. In: Journal of
Simulation 13.1 (2019), pp. 68-82.

Mattan S. Ben-Shachar, Indrajeet Patil, Rémi Thériault, Brenton M.
Wiernik, and Daniel Liidecke. “Phi, Fei, Fo, Fum: Effect Sizes for Cat-
egorical Data That Use the Chi-Squared Statistic”. In: Mathematics 11.9
(2023).

Evren Mert Turan and Johannes Jaschke. “A simple two-parameter steady-
state detection algorithm: Concept and experimental validation”. In: Com-
puter Aided Chemical Engineering. Vol. 52. Elsevier, 2023, pp. 1765-
1770.

Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. “Pre-
dictive Business Process Monitoring with LSTM Neural Networks”. In:

International Conference on Advanced Information Systems Engineering
(CAiSE). Springer, 2017, pp. 477-492.

Efrén Rama-Maneiro, Juan C. Vidal, and Manuel Lama. “Deep Learning
for Predictive Business Process Monitoring: Review and Benchmark”. In:
IEEFE Transactions on Services Computing 16.1 (2023), pp. 739-756.

Keyvan Amiri Elyasi, Han van der Aa, and Heiner Stuckenschmidt.
“PGTNet: A Process Graph Transformer Network for Remaining Time
Prediction of Business Process Instances”. In: International Conference
on Advanced Information Systems Engineering (CAiSE). Springer. 2024,
pp- 124-140.

R.P. Jagadeesh Chandra Bose, Wil van der Aalst, Indré Zliobaite, and
Mykola Pechenizkiy. “Handling concept drift in process mining”. In: In-

ternational Conference on Advanced Information Systems Engineering
(CAiSE). Springer. 2011, pp. 391-405.

Mahsa Pourbafrani, Niels Liicking, Matthieu Lucke, and Wil van der Aalst.
“Steady State Estimation for Business Process Simulations”. In: Infer-
national Conference on Business Process Management (BPM). Springer.

2023, pp. 178-195.

Bibliography 179

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Jonghyeon Ko and Marco Comuzzi. “A Systematic Review of Anomaly
Detection for Business Process Event Logs”. In: Business & Information
Systems Engineering 65.4 (2023), pp. 441-462.

Douglas C. Montgomery. Introduction to statistical quality control. 8th ed.
John Wiley & Sons, 2019.

Yossi Sheffi. “Resilience reduces risk”. In: Logistics Quarterly 12.1 (2006),
pp- 12-14.

Alessandro Annarelli and Fabio Nonino. “Strategic and operational man-
agement of organizational resilience: Current state of research and future
directions”. In: Omega 62 (2016), pp. 1-18.

Giinter Miiller, Thomas Koslowski, and Rafael Accorsi. “Resilience-a new
research field in business information systems?” In: International Confer-
ence on Business Information Systems (BIS). Springer. 2013, pp. 3—-14.

Pedro Antunes and Hernani Mourfo. “Resilient business process manage-
ment: framework and services”. In: Expert Systems with Applications 38.2
(2011), pp. 1241-1254.

E. P. Dalziell and S. T. McManus. “Resilience, Vulnerability, and Adap-
tive Capacity: Implications for System Performance”. In: Proceedings of
the International Forum for Engineering Decision Making (IFED). Inter-
national Forum for Engineering Decision Making. 2004.

Andrea Marrella, Massimo Mecella, Barbara Pernici, and Pierluigi Ple-
bani. “A design-time data-centric maturity model for assessing resilience
in multi-party business processes”. In: Information Systems 86 (2019),
pp- 62-78.

Richard M. Zahoransky, Thomas Koslowski, and Rafael Accorsi. “To-
ward resilience assessment in business process architectures”. In: Inter-
national Conference on Computer Safety, Reliability, and Security (Safe-
Comp). Springer. 2014, pp. 360-370.

Raquel Sanchis, Luca Canetta, and Raul Poler. “A conceptual reference
framework for enterprise resilience enhancement”. In: Sustainability 12.4,
1464 (2020).

Seyedmohsen Hosseini, Kash Barker, and Jose E. Ramirez-Marquez. “A
review of definitions and measures of system resilience”. In: Reliability
Engineering & System Safety 145 (2016), pp. 47-61.

Ran Bhamra, Samir Dani, and Kevin Burnard. “Resilience: the concept, a
literature review and future directions”. In: International Journal of Pro-
duction Research 49.18 (2011), pp. 5375-5393.

Bibliography 180

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Yacov Y. Haimes. “On the definition of resilience in systems”. In: Risk
Analysis: An International Journal 29.4 (2009), pp. 498-501.

Michael Ungar. “Qualitative contributions to resilience research”. In: Qual-
itative social work 2.1 (2003), pp. 85-102.

Sophie Sarre, Cara Redlich, Anthea Tinker, Euan Sadler, Ajay Bhalla, and
Christopher McKevitt. “A systematic review of qualitative studies on ad-

justing after stroke: lessons for the study of resilience”. In: Disability and
rehabilitation 36.9 (2014), pp. 716-726.

Muhammedamin Hussen Saad, Geoffrey Hagelaar, Gerben Van Der Velde,
and SWF Omta. “Conceptualization of SMEs’ business resilience: A sys-
tematic literature review”. In: Cogent Business & Management 8.1 (2021),
p- 1938347.

Elisa Conz and Giovanna Magnani. “A dynamic perspective on the re-
silience of firms: A systematic literature review and a framework for future
research”. In: European Management Journal 38.3 (2020), pp. 400—412.

International Organization for Standardization. ISO 22301:2019: Secu-

rity and resilience - Business continuity management systems. (Visited on
05/28/2024).

Ozgur Erol, Devanandham Henry, Brian Sauser, and Mo Mansouri. “Per-
spectives on measuring enterprise resilience”. In: International Systems
Conference (SYSCON). IEEE. 2010, pp. 587-592.

Ozgur Erol, Brian J. Sauser, and Mo Mansouri. “A framework for investi-
gation into extended enterprise resilience”. In: Enterprise Information Sys-
tems 4.2 (2010), pp. 111-136.

Ulrich Winkler, Wasif Gilani, Alex Guitman, and Alan Marshall. “Mod-
els and methodology for automated business continuity analysis”. In: In-

ternational Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE. 2012, pp. 57-64.

R.J.M. Stolker, D.M. Karydas, and J.L. Rouvroye. “A comprehensive ap-
proach to assess operational resilience”. In: Proceedings of the Resilience
Engineering Symposium. Vol. 1. 2008, pp. 247-253.

Pierluigi Plebani, Andrea Marrella, Massimo Mecella, Marouan Mizmizi,
and Barbara Pernici. “Multi-party business process resilience by-design: a
data-centric perspective”. In: International Conference on Advanced Infor-
mation Systems Engineering (CAiSE). Springer. 2017, pp. 110-124.

Bibliography 181

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Adela del-Rio-Ortega, Manuel Resinas, Cristina Cabanillas, and Antonio
Ruiz-Cortés. “On the definition and design-time analysis of process perfor-
mance indicators”. In: Information Systems 38.4 (2013), pp. 470-490.

Christopher Sims. “Macroeconomics and reality”. In: Econometrica 48.1
(1980), pp. 1-48.

Colm Kearney and Mehdi Monadjemi. “Fiscal policy and current account
performance: International evidence on the twin deficits”. In: Journal of
Macroeconomics 12.2 (1990), pp. 197-219.

Helmut Liitkepohl. New Introduction to Multiple Time Series Analysis.
Springer, 2005.

Tim Krake, Daniel Klotzl, David Hiégele, and Daniel Weiskopf.
“Uncertainty-Aware Seasonal-Trend Decomposition Based on Loess”. In:
IEEFE Transactions on Visualization and Computer Graphics (TVCG) 31.2
(2024), pp. 1496-1512.

Larry Wasserman. “Bayesian Inference”. In: All of Statistics: A Concise
Course in Statistical Inference. Springer, 2004, pp. 175-192.

Skipper Seabold, Josef Perktold, et al. “Statsmodels: econometric and sta-
tistical modeling with Python.” In: SciPy 7.1 (2010), pp. 92-96.

Greta Ljung and George Box. “On a measure of lack of fit in time series
models”. In: Biometrika 65.2 (1978), pp. 297-212.

Peter Brockwell and Richard Davis. Time series: theory and methods.
Springer, 2009.

Paulo C. Emiliano, Mario J.E. Vivanco, and Fortunato S. de Menezes. “In-
formation criteria: How do they behave in different models?” In: Compu-
tational Statistics & Data Analysis 69 (2014), pp. 141-153.

Stephen Bates, Trevor Hastie, and Robert Tibshirani. “Cross-validation:
what does it estimate and how well does it do it?” In: Journal of the Amer-
ican Statistical Association 119.546 (2024), pp. 1434-1445.

Dimitris Korobilis. “VAR forecasting using Bayesian variable selection”.
In: Journal of Applied Econometrics 28.2 (2013), pp. 204-230.

Ralf Briiggemann, Hans-Martin Krolzig, and Helmut Liitkepohl. Compar-
ison of Model Reduction Methods for VAR Processes. SFB 373 Discussion
Paper. Humboldt University of Berlin, 2002.

Alessandro Berti, Sebastiaan van Zelst, and Wil van der Aalst. Process
Mining for Python (PM4Py): Bridging the Gap Between Process- and Data
Science. 2019. arXiv: 1905.06169.

https://arxiv.org/abs/1905.06169

Bibliography 182

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

Laura Oberle and Han van der Aa. “DDPS: A Project Methodology for
Data-Driven Process Simulation”. In: Proceedings of Americas’ Confer-
ence on Information Systems (AMCIS). Vol. 13. 2023, 1767.

Manuel Camargo, Daniel Bdron, Marlon Dumas, and Oscar Gonzélez-
Rojas. “Learning business process simulation models: a hybrid process
mining and deep learning approach”. In: Information Systems 117, 102248
(2023).

Orlenys Loépez-Pintado, Iryna Halenok, and Marlon Dumas. “Prosimos:
Discovering and Simulating Business Processes with Differentiated Re-
sources”. In: International Conference on Enterprise Design, Operations,
and Computing (EDOC). Springer. 2022, pp. 346-352.

Fabio Bezerra, Jacques Wainer, and Wil van der Aalst. “Anomaly detection
using process mining”. In: International Workshop on Business Process
Modeling, Development and Support (BPMDS). Springer. 2009, pp. 149—
161.

Jonghyeon Ko and Marco Comuzzi. “A systematic review of anomaly de-
tection for business process event logs”. In: Business & Information Sys-
tems Engineering (BISE) 65.4 (2023), pp. 441-462.

Riyanarto Sarno, Fernandes Sinaga, and Kelly Rossa Sungkono. ‘“Anomaly
detection in business processes using process mining and fuzzy association
rule learning”. In: Journal of Big Data 7.1, 5 (2020).

Bart F.A. Hompes, Abderrahmane Maaradji, Marcello La Rosa, Marlon
Dumas, Joos Buijs, and Wil van der Aalst. “Discovering causal factors ex-
plaining business process performance variation”. In: International Con-
ference on Advanced Information Systems Engineering (CAiSE). Springer.
2017, pp. 177-192.

Sander Leemans and Niek Tax. “Causal reasoning over control-flow deci-
sions in process models”. In: International Conference on Advanced Infor-
mation Systems Engineering (CAiSE). Springer. 2022, pp. 183-200.

Enrico Zio. “The future of risk assessment”. In: Reliability Engineering &
System Safety 177 (2018), pp. 176-190.

Terje Aven. “Risk assessment and risk management: Review of recent ad-

vances on their foundation”. In: European Journal of Operational Research
253.1 (2016), pp. 1-13.

Andrea Saltelli, Stefano Tarantola, Francesca Campolongo, Marco Ratto,
et al. Sensitivity analysis in practice: a guide to assessing scientific models.
Vol. 1. Wiley Online Library, 2004.

Bibliography 183

[156] Federico Ferretti, Andrea Saltelli, and Stefano Tarantola. “Trends in sensi-
tivity analysis practice in the last decade”. In: Science of the Total Environ-
ment 568 (2016), pp. 666—670.

[157] Ilya M Sobol. “Global sensitivity indices for nonlinear mathematical mod-
els and their Monte Carlo estimates”. In: Mathematics and Computers in
Simulation 55, 1-3 (2001), pp. 271-280.

[158] Jerome H. Friedman and Nicholas I. Fisher. “Bump hunting in high-
dimensional data”. In: Statistics and Computing 9.2 (1999), pp. 123-143.

	Introduction
	Motivation
	Contributions
	Research Methodology
	Thesis Outline

	Background
	Process Mining
	System-Level Process Mining

	Comprehensive Concept Drift Characterization
	Introduction
	Problem Illustration
	Framework
	Evaluation
	Related Work
	Conclusion

	Concept Drift Detection Using Computer Vision
	Introduction
	Problem Scope
	Approach
	Evaluation
	Related Work
	Conclusion

	Business Process Steady-State Detection
	Introduction
	Background and Problem Illustration
	Approach
	Evaluation
	Related Work
	Conclusion

	Business Process Resilience Assessment
	Introduction
	Background
	Problem Illustration
	Approach
	Evaluation
	Discussion
	Related Work
	Conclusion

	Conclusion
	Summary of the Results
	Implications
	Future Research

	Bibliography

