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 A B S T R A C T

Public mobility sharing systems are an important component of sustainable transport, particularly for last-mile 
travel. However, analysing trip patterns using open standards such as GBFS can be challenging due to vehicles 
frequently being assigned new identifiers and missing GPS trajectories, preventing a detailed tracking. To 
overcome this limitation, we present a machine learning pipeline that retrospectively predicts trip destinations 
within this circumstances—making it possible to partially recover travel patterns for GBFS data.

Our approach involves a three-step prediction pipeline: (1) candidate generation and reduction using 
spatial–temporal filtering; (2) multi-target regression via XGBoost to estimate destination coordinates; and 
(3) selection of the best-matching candidate. Our approach achieves an average accuracy of 77% across five 
German and 74% across five international cities within a tolerance of 500 metres. Compared to existing 
approaches, our method improves prediction accuracy by an average of 20% over methods that also do not 
use user-specific or GPS trajectory features.

These results demonstrate the feasibility of accurately predicting destinations in shared mobility despite 
rotating vehicle identifiers and missing trajectory data, thereby supporting improved system analysis and 
planning.
1. Introduction

Public mobility sharing systems, such as bike and e-scooter sharing, 
have become an integral part of sustainable urban transport, providing 
flexible, low-emission alternatives for short journeys and the final mile 
of a trip (Wang and Zhou, 2017; Huang and Xu, 2023). The widespread 
adoption of these systems has generated large volumes of publicly 
available data (Todd et al., 2021), enabling new opportunities for 
research into mobility behaviour (Wielinski et al., 2017; Si et al., 2020; 
Zhou, 2015), demand forecasting (Xu et al., 2018; Lin et al., 2018; 
Sathishkumar et al., 2020) and infrastructure planning (Félix et al., 
2020; Griffin and Sener, 2016). In the context of rapid urbanisation and 
climate change, shared mobility services play a crucial role in reducing 
car dependency (Bissel and Becker, 2024; Vega-Gonzalo et al., 2024), 
lowering greenhouse gas emissions (Zhang and Mi, 2018) and improv-
ing access to transport in underserved areas (Lu et al., 2018). Their 
flexible deployment models, especially in free-floating systems without 
fixed stations, enable cities to adapt their infrastructure dynamically 
and support multimodal integration with public transit systems. Jaber 
et al. (2022), Tran et al. (2015)

Understanding how people use these services, particularly where 
trips begin and end, is essential for numerous applications. Urban 
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planners require such insights for infrastructure development (e.g., the 
placement of bike lanes (Chahine et al., 2025) or stations (García-
Palomares et al., 2012)), operators require them for fleet balancing 
and maintenance (De Chardon et al., 2016), and researchers depend 
on them for behavioural modelling and policy evaluation (Wielinski 
et al., 2017; Si et al., 2020; Zhou, 2015). However, analysing trip 
patterns from such systems remains a considerable challenge. Today, 
many cities and operators publish their data via open standards such as 
the General Bikeshare Feed Specification (GBFS) (MobilityData, 2025), 
which prioritises user privacy and data minimisation. Rotating vehicle 
identifiers, which are common in GBFS, prevent the linking of trip 
origins and destinations. The absence of continuous GPS trajectory data 
complicates or prevents the use of traditional methods for trajectory 
reconstruction and behavioural analysis.

While these limitations are essential from a data protection perspec-
tive, it comes at the cost of analytical granularity. Standard trip-based 
analysis techniques, which are commonly used in transportation re-
search and data-driven urban analytics, rely on persistent identifiers 
to model demand Xu et al. (2018), Lin et al. (2018), Sathishkumar 
et al. (2020), infer behavioural patterns (Wielinski et al., 2017; Si et al., 
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2020; Zhou, 2015), or detect anomalies (Liu et al., 2022a). Without 
such links, even basic tasks such as identifying the most common 
destinations or computing average trip distances become non-trivial. 
Moreover, advanced deep learning approaches — for instance, graph 
neural networks (GNNs) or convolutional neural networks (CNNs) com-
bined with recurrent architectures such as long short-term memory 
networks (LSTMs) — typically rely on continuous GPS trajectory data to 
capture spatio-temporal dependencies and temporal variations in traffic 
flows. Since they are unavailable in GBFS, alternative approaches must 
be employed.

Therefore, our work addresses this issue by proposing a machine 
learning-based pipeline for predicting trip destinations retrospectively 
under the aforementioned constraints of limited trajectory data and 
rotating vehicle identifiers presented by GBFS. Unlike previous studies 
with the same GPS trajectory constraint, which often rely on persistent 
identifiers or user-specific features, such as travel history, our work 
focuses on a setting where only GBFS-compliant features are available 
and no prior knowledge of individual users is required. This complies 
with various data privacy regulations and enables the future adaptation 
of our pipeline for the nearly 1300 public sharing networks that already 
use GBFS today (MobilityData, 2025).

We present a three-step prediction pipeline that generates potential 
destinations based on spatio-temporal plausibility and system con-
straints, estimates their geographic coordinates using multi-target re-
gression and selects a destination based on spatial proximity. To eval-
uate generalisation and real-world applicability, we conducted ex-
periments using data from two public mobility operators across five 
German cities, spanning more than two years (April 2023 to May 2025), 
as well as five additional datasets from other cities around the world.

This study contributes to both machine learning in transportation 
science and the broader discourse on responsible data use in smart 
cities. It demonstrates that effective analytical methods can be de-
veloped even under privacy-preserving conditions, thereby aligning 
technical innovation with ethical data governance.

In summary, this paper makes the following contributions:

1. First demonstration of trip reconstruction with rotating IDs 
within GBFS. To the best of our knowledge, this is the first time 
that it has been demonstrated that it is possible to accurately 
reconstruct trips in GBFS datasets that rotate vehicle identifiers 
and do not provide GPS trajectories.

2. Multi-operator and multi-city generalisation. We demon-
strate that our approach maintains strong predictive perfor-
mance across operators and cities for future adaptations to other 
cities.

3. Improved prediction accuracy with minimal data require-
ments. Our approach outperforms existing approaches by an 
average of 20% when no user-specific data is used and no GPS 
trajectory data is available.

4. Fully open-source pipeline. We are releasing our full pipeline 
alongside a representative dataset under an Apache 2.0 licence, 
which will enable reproducibility and further research, available 
on GitHub.1

Our findings enable a wide range of analyses that were previously 
considered impossible on publicly available GBFS datasets. Accurate 
reconstruction of trip destinations makes it possible to conduct studies 
of traffic flow, demand distribution, vehicle rebalancing strategies and 
the spatial–temporal dynamics of shared mobility. Such analyses are 
central to transportation planning and policy, but were previously 
limited to datasets with persistent identifiers or privileged internal 
access. By making them possible using rotating public data, our work 
paves the way for more extensive and inclusive mobility research.

1 The full pipeline alongside a representative dataset is available here on 
GitHub.
2 
The rest of the paper is structured as follows: Section 2 discusses 
related work on trip destination prediction in both station-based and 
free-floating mobility systems and introduces the GBFS. Section 3 de-
scribes the methodology, including data preprocessing, the candidate 
filtering mechanism, and our predictive model. Section 4 presents 
empirical results and analyses model performance across operators 
and cities. Finally, Section 5 summarises key findings and outlines 
directions for future work.

2. Related work

Destination prediction is a well-studied area in contexts such as taxi 
services (Zhang et al., 2017; Yang et al., 2020-02; Song et al., 2020-09; 
Liao et al., 2022-05), car navigation (Tanaka et al., 2009; Terada et al., 
2006), metro systems (Wu et al., 2025; Cheng et al., 2022; Liu et al., 
2022b), railway (Noursalehi et al., 2021; Roos et al., 2016; Jiang et al., 
2022), or multi-purpose services (Chen et al., 2010-12-01). Further 
studies conducted in the area of public mobility sharing systems, and 
existing ones are often limited to specific cities or datasets (Liu et al., 
2024, 2019; Jiang et al., 2019; Du et al., 2018; Dai et al., 2018), that 
do not imply the limitation of GBFS. By contrast, Xu et al. (2022) were 
among the first to provide algorithms for dealing with different vehicle 
identifier types in the GBFS. However, they were unable to provide 
reliable algorithms for creating origin–destination pairs from rotating 
feeds; instead, they provided a list of vehicle rentals and returns.

In general, destination prediction in public mobility sharing systems 
can be categorised according to two main criteria: the type of network 
and the prediction approach. Networks can be station-based, in which 
trips start and end at predefined stations, or free-floating, in which 
trips can start and end at any location within a predefined area. 
Prediction approaches can be divided into classification tasks, where 
the aim is to predict predefined categories (e.g. stations or regions), 
and regression tasks, where the aim is to predict continuous values, 
such as geographical coordinates.

In addition to these main categorisations, there are other research 
areas related to predicting trip destinations: González and Melo-Riquelm
(2016-05-01), Faghih-Imani and Eluru (2015) predicted the motivation 
behind bike-sharing trips using surveys, while Faghih-Imani and Eluru 
(2020-04-01) incorporated sociological data from the 2010 US Census 
to map rentals to social factors such as working, housing and shopping 
trips. Furthermore, Zhang and Yu (2016-11) discussed multi-rental trips 
incorporating lends and returns at multiple stations to allow longer 
routes on free plans.

2.1. Trip destination prediction in station-based networks

In station-based networks, predicting the destination of a journey is 
often framed as a classification task, where the aim is to predict either 
the destination station or a cluster of adjacent stations.

For example, Dai et al. (2018) used a Random Forest with a station 
clustering algorithm that incorporated both geographic proximity and 
usage patterns to achieve an accuracy of 0.39 in New York using Citi 
Bike data from the full year 2017. They also integrated weather data, 
such as temperature and precipitation, to improve prediction accuracy. 
A different approach from Du et al. (2018) framed the problem as a 
binary classification task, estimating the probability of a trip between 
two stations under given conditions. Using LightGBM on Beijing Mobike 
data from two weeks in 2017, they achieved an accuracy of 0.454 in 
correctly predicting the first-choice destination and relied on user data 
to refine training and prediction accuracy.

https://github.com/PhD-Kerger/trip-destination-prediction
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2.2. Trip destination prediction in free-floating networks

Free-floating networks present a more complex challenge than 
station-based networks because destinations are not limited to prede-
fined stations. This makes the problem a regression task by definition, 
where the goal is to predict accurate geographic coordinates. It is 
common practice to cluster destinations into regions in order to reduce 
the complexity of the classification.

For example, Liu et al. (2019) used XGBoost to predict destination 
coordinates using geo-hashing, achieving an accuracy of 0.55 in Beijing 
using Mobike data from 2017. This approach relied on user-specific 
data, including the frequency of departures and arrivals at specific 
locations for each user and the distance between pick-up and drop-
off points. While effective, this reliance on user-specific data limits the 
approach’s applicability to non-user-specific scenarios. Similarly, Jiang 
et al. (2019) combined LSTM networks and CNNs to capture spatial and 
temporal dependencies, achieving an F1 score of 0.42. Their approach 
used user data to identify likely destinations and incorporated meteo-
rological characteristics to improve performance. The study focused on 
the Beijing Mobike stationless bike-sharing system. Another study by Li 
and Shuai (2020a) shifted the focus from destination forecasting to de-
mand forecasting by clustering data into space–time cubes (STCs) using 
GBFS data. This approach aggregated trips into predefined regions on 
a minute-by-minute basis. A similar approach was taken by Liu et al. 
(2024), who trained an XGBoost model to predict the destination of a 
trip within a 1000 × 1000 metre area in Beijing, achieving an accuracy 
of 0.56 using data from two weeks in May 2017. Later incorporating 
user-specific features increased their performance to an accuracy of 
0.76.

2.3. General bikeshare feed specification

The General Bikeshare Feed Specification (GBFS) is a standard for 
publishing open data from bikeshare and scooter systems. It defines a 
set of JSON-based feeds that provide snapshots of the system, includ-
ing static metadata (e.g., system_information), station-level availability 
(station_status), and free-floating vehicle availability (vehicle_status). 
These feeds are designed to reflect the state of the system at a specific 
point in time, enabling applications such as trip planning, real-time 
availability displays, and system monitoring. MobilityData (2025)

In contrast to other standards like GTFS (General Transit Feed 
Specification), which are event-driven and can represent continuous 
trajectories, delays, or trip-level updates, GBFS is limited to availability 
and system snapshots. This design reflects its focus on transparency 
for end users rather than operational analytics. Notably, GBFS employs 
rotating identifiers for vehicles, which supports privacy protection but 
limits longitudinal tracking. MobilityData (2025)

2.4. Characteristics of trips in micromobility

Several studies have examined trip characteristics of shared mi-
cromobility systems, including e-scooters and bicycles, across different 
cities. Table  1 summarises key reported metrics such as trip duration, 
distance, and speed.

Across the reviewed literature micromobility trips are consistently 
short in both time and distance. Average trip durations typically range 
between 5 and 20 min, with slightly longer trips reported in Asian 
cities (Cao et al., 2021) compared to North America. Mean travel 
distances commonly fall between 0.7 and 2.5 km, reflecting the local 
character and accessibility of shared micromobility systems.

Average travel speeds vary by vehicle type and environment, gener-
ally ranging from 6 to 8 km/h for e-scooters and around 7 to 15 km/h 
for bicycles. Urban conditions, infrastructure quality, and vehicle type 
largely explain these differences, with higher speeds typically observed 
for bicycles and in less congested settings.
3 
Overall, the reported values indicate that micromobility serves pri-
marily short-distance, low-speed trips that complement rather than 
replace traditional modes of transport. While factors like topogra-
phy, infrastructure, and vehicle type cause some variation, consistent 
patterns emerge across the studies.

2.5. Research gaps

Despite advances in destination prediction, several critical gaps 
remain, particularly for free-floating networks with rotating vehicle IDs 
that do not incorporate GPS trajectories:

1. Dependence on user-specific data: Many existing studies, such 
as Liu et al. (2019), Jiang et al. (2019), Du et al. (2018), 
rely on user-specific data to improve prediction accuracy. For 
instance, Liu et al. (2019) used features such as the frequency of 
departures and arrivals at specific locations, while Jiang et al. 
(2019) incorporated the travel history of the users to identify 
the likely destinations. However, such data is unavailable in 
GBFS-compliant datasets, which limits the applicability of these 
methods.

2. Prediction of Station Clusters: Several approaches abstract 
the problem by either clustering sharing stations (Dai et al., 
2018), or by clustering free-floating destinations into large re-
gions or grids (e.g. STCs) (Liu et al., 2024). Although this reduces 
computational complexity and achieves higher performance, the 
use of large regions limits granularity, rendering these methods 
unsuitable for applications requiring high spatial accuracy.

3. Methodology

This section presents the methodology used to retrospectively pre-
dict trip destinations in public mobility sharing systems. This process 
was applied to data collected from public mobility sharing operators of 
all cities.

3.1. Architectural overview

Fig.  1 illustrates our pipeline process: We collected data from GBFS 
feeds, to represent the network’s current status, including the location 
of vehicles not currently in use in the free-floating area, updated every 
three minutes.

Information on vehicles currently on trips is unavailable in GBFS; 
it is only available after the vehicles are returned. The full pseu-
docode for the three pipeline steps that follow is available in Section 1 
of Appendix.

Candidate Generation & Reduction: First, we extract all rentals 
and returns within the defined start and end times from the raw GBFS 
feed, especially the free_bike_status (changed to vehicle_status in GBFS 
version 3) endpoint of each feed, and adding them to separate lists. An 
excerpt of the feed looks like the following: {‘‘last_updated’’:
1755627017, ‘‘ttl’’:0, ‘‘version’’:‘‘2.3’’,
‘‘data’’:{‘‘bikes’’: [{‘‘bike_id’’:‘‘3d523af2’’,
‘‘lat’’:49.454114, ‘‘lon’’:8.484718, 
‘‘current_range_meters’’:23200, ‘‘battery_level’’:
0.90}, . . . ]}}

If a vehicle/bike ID disappears from the feed (i.e. if it was present 
in the previous frame but not the current one), then the vehicle was 
rented. Conversely, if a new vehicle/bike ID appears (i.e. it was not 
present in the previous frame but is present in the current one), 
then a vehicle has been returned. Each rental and return has the 
following features: timestamp, latitude, longitude, battery_level, and cur-
rent_range_meters. Using the rentals and returns, we create a set of 
destination candidates for each rental. The initial set of destination can-
didates contains all returns conducted after the rental. As this set may 
include hundreds or thousands of candidates, we reduce the number 
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Table 1
Overview of Average Reported Trip Characteristics in Micromobility Studies. Trips made using micromobility vehicles (bikes and e-scooters) tend to be short in 
distance, duration, and average speed.
 Study City (Country) Duration [min] Distance [m] Speed [km/h] Type  
 McKenzie (2020) Washington, D.C. (USA) 4.8–14.6 874–2382 9.8–11a E-Scooter/E-Bike 
 Bai et al. (2021) Austin (USA) 6 1100 5 E-Scooter  
 Bai and Jiao (2020) Minneapolis (USA) 19 1300 6 E-Scooter  
 Cao et al. (2021) Singapore (Singapore) 21.5 2130 5.9a E-Scooter  
 Eriksson et al. (2019) Stockholm (Sweden) – – 15 Bike  
 Strauss and Miranda-Moreno (2017) Montreal (Canada) – – 20 Bike  
 Lin et al. (2008) Kunming (China) – – 14.8 E-Bike  
 Heumann et al. (2025) Berlin (Germany) 17.6a 2202 7.5 Bike  
 Berlin (Germany) 14.7a 1662 6.8 E-Scooter  
 Mavrogenidou and Polydoropoulou (2025) Agia Paraskevi (Greece) 9.3 1150 7.5–8.5 E-Scooter  
 
Reck et al. (2021)

Zurich (Switzerland) – 730 – E-Scooter  
 Zurich (Switzerland) – 1292 – Bike  
 Zurich (Switzerland) – 1595 – E-Bike  
a Calculated from other available metrics.
Fig. 1. Flow chart of the destination prediction pipeline. The process involves candidate generation and reduction using spatial–temporal filtering and multi-target 
regression via XGBoost to estimate destination coordinates. The final step is to select the closest matching candidate from the reduced set.
by applying a set of conditions. These conditions are categorised using 
statistics from over 850,000 past trips in the training sets of the cities 
of Mannheim, Ludwigshafen, Heidelberg, Karlsruhe, and Stuttgart, and 
are in line with the findings presented in Table  1. Later, they are 
transferred on the international cities Shanghai, London, New York, 
Montreal, and San Francisco. These include constraints such as a max-
imum travel speed of 20 km/h, a maximum travelled distance of 3000 
metres, and a maximum trip length of 30 min. The reason why these 
three thresholds were set as constraints is explained in Section 3.2. It 
is possible that there may be no more candidates for a trip, resulting 
in removal. The final result of this step is a reduced set of assignable 
destination candidates for each rental.

Multi-Target Regression: In the second step, we use these sets of 
rental and return data to extract features for the subsequent machine 
learning model. For each rental and destination candidate in the set, 
we use features such as the time difference between rental and re-
turn, change in battery level, average speed and travel distance from 
the candidate reduction. We use the Open Source Routing Machine 
(OSRM) (Luxen and Vetter, 2011) to calculate travel distances. This 
enables us to plan routes using the city’s bike network. By default, we 
use the shortest path, assuming that this is the route chosen by the 
user. However, to account for cases where the user does not choose 
the shortest path, it is possible to set an adjustable threshold to include 
longer routes in the distance calculation. If there is no bike geodata 
available for OSRM, we use the shortest route on the road network or, 
as a last resort, the air distance. We then use a multi-target regression 
model to predict the return coordinates for each destination candidate 
in the set. By the end of this step, we have a pair of predicted and 
extracted coordinates for each candidate.

Candidate Selection: In the final step, we use an selection algo-
rithm to select one potential final destination for each rental.

To accomplish this, we use the pairs of coordinates from the pre-
vious step to select one candidate for each rental, as illustrated in 
Fig.  2. First, we calculate the distance between the GBFS-extracted 
and predicted coordinates for each candidate in the set of destination 
4 
candidates. This distance is used as a metric of similarity to determine 
how feasible a trip is under the given constraints. Then, we select the 
candidate with the shortest distance as the final destination candidate 
for the rental. All others are disregarded. If two candidates have the 
same distance between their predicted and extracted coordinates, one is 
randomly selected. This did not happen for any of our over 2.7 million 
trips.

For performance reporting, we distinguish between true perfor-
mance and the use of an additional tolerance radius, as in previous 
publications. True performance only considers correct matches between 
a rental and a return. If the selected candidate does not match the 
correct return, it is treated as a false prediction. This ensures that 
all other GBFS fields, in addition to the location, are correct. The 
tolerance radius considers the final candidate selection to be correct if 
the predicted location is within a defined threshold of the actual return 
position of the rental. Therefore, we calculate the airline distance be-
tween the predicted coordinates of the final destination candidate and 
the actual return coordinates. If this distance is within the threshold, 
the selection is considered correct.

3.2. Dataset

The main datasets, labelled 𝑂1 and 𝑂2 (Operator 1 and Operator 
2), used in this study were collected from two public mobility sharing 
operators GBFS feeds in version 2.3 and version 3.0 in Germany and 
cover the cities of Mannheim, Ludwigshafen, Heidelberg, Karlsruhe and 
Stuttgart. We also used non-GBFS public international datasets from 
the cities of Shanghai (Heywhale, 2020), London (Au, 2019), New 
York (Citi, 2024), Montreal (Sigouin, 2017), and San Francisco (Ham-
ner, 2019), which we have labelled 𝑀1 (Miscellaneous 1). Table  2 
provides an overview of the operators and their data characteristics.

The datasets contain the features vehicle_id, timestamp, latitude, lon-
gitude, battery_level in percent, and current_range_meters in metres from 
the GBFS feeds. Since GBFS does not provide GPS trajectories, only the 
start and end locations of a trip can be used for later model training 
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Fig. 2. Candidate selection process: In this example, the predicted candidate in yellow would be selected as the final destination for the starting location (blue), 
as the distance between the extracted GBFS and its predicted coordinates is the shortest compared to the other two pairs (the red pair has the longest distance, 
followed by the green pair). However, this would be a false prediction, as the correct candidate is the green pair containing the real extracted destination (green 
star). When the tolerance radius is incorporated at a resolution of 500 metres (the middle purple circle), the prediction is classified as correct because the distance 
to the real destination is within this later selected threshold.
Table 2
An overview of the public sharing operators used in the study. We used three different datasets, two of which were from German 
cities. The third dataset is publicly available to enable better performance comparisons and reproducibility.
 Dataset City Missing features Time frame  
 

𝑂1

Mannheim – 31.08.2023–27.10.2024 
 Ludwigshafen – 31.08.2023–27.10.2024 
 Heidelberg – 31.08.2023–27.10.2024 
 Karlsruhe – 31.08.2023–27.10.2024 
 Stuttgart – 31.08.2023–27.10.2024 
 
𝑂2

Mannheim battery_level 21.01.2025–01.05.2025 
 Karlsruhe battery_level 21.01.2025–01.05.2025 
 Stuttgart battery_level 21.01.2025–01.05.2025 
 

𝑀1

Shanghai battery_level, current_range_meters 01.08.2016–31.08.2016 
 London battery_level, current_range_meters 01.08.2017–31.08.2017 
 New York battery_level, current_range_meters 01.01.2017–30.01.2017 
 Montreal battery_level, current_range_meters 01.05.2017–31.05.2017 
 San Francisco battery_level, current_range_meters 01.08.2013–30.11.2013 
regarding geographical location. For datasets 𝑂1 and 𝑂2, we were able 
to reconstruct all trips using either a non-rotating vehicle_id or another 
field which does not rotate during rental and return from the GBFS feed. 
The dataset 𝑀1 was built using non-GBFS sources and also contains a 
static vehicle_id. The vehicle_id is solely used for analysis, not for des-
tination matching. To enhance trip analysis, additional features were 
derived, including time_diff  (rental-return time difference), battery_diff
(battery level change), range_diff  (range change), distance (road path 
via OpenStreetMap using OSRM routing), mean_speed_distance (average 
speed based on distance), and mean_speed_range (average speed based 
on range). As not all of these features are mandatory in the GBFS, 
the dataset 𝑂2 does not have a valid battery_level, and the dataset 𝑀1
additionally lacks current_range_meters. A performance decrease is to be 
expected.

Before training, the data of 𝑂1 and 𝑀1 were cleaned to exclude data 
points which are assumed to belong to manual redistribution or repairs 
to keep the focus on the last-mile trips. To select suitable thresholds 
5 
for filtering, we examined the distribution of the features time_diff,
mean_speed_distance, mean_speed_range, and range_diff, shown in Fig.  3.

Trips were removed if the battery was charged during the journey, 
if the time difference exceeded 30 min, if the travel speed exceeded 
20 km/h, or if the travel distance exceeded 3000 metres. The speed 
threshold is particularly significant, as e-scooters are only permitted to 
travel at a maximum speed of 20 km/h according to German law. All 
of the above mentioned thresholds are further above the averages of 
the reviewed literature in Table  1. It is important that this strict form 
of data cleaning is done only in the model training process. Similar 
reduction rules are applied in the subsequent testing with the data 
pipeline, but to destination candidates rather than preformed trips.

Rather than using the standard train-test split of e.g. 80∕20, we 
introduce a more reliable, stratified split. We select one week from each 
month as the test set and use the remaining weeks for training. This 
ensures that weekly and seasonal influences are reflected in both the 
training and test sets in a similar way. As 𝑂2 and 𝑀1 are only used 
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Fig. 3. Data distributions of the four features distance, time, battery difference, and mean speed of the trips in the datasets, with the selected threshold for the 
future reduction step of candidates. The data is taken from training sets for the cities of Mannheim, Ludwigshafen, Heidelberg, Karlsruhe and Stuttgart, ensuring 
that no data leakage into the test set is done.
Table 3
Training and test set trip distribution by city for 𝑂1, 𝑂2 and 𝑀1. Our datasets contain a total of approximately 2.7 million trips from ten different cities. Datasets 
𝑂1 and 𝑀1 are split for training and testing purposes.
 Dataset Type Cities

 
𝑂1

Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart  
 Train 307,771 63,588 137,193 63,789 287,376  
 Test 99,872 21,236 44,610 18,910 91,831  
 
𝑂2

Mannheim – – Karlsruhe Stuttgart  
 Test 59,560 – – 288,769 340,115  
 
𝑀1

Shanghai London New York Montreal San Francisco 
 Train 48,611 154,892 406,507 320,016 54,611  
 Test 50,638 135,475 292,007 249,839 23,522  
for testing, they are omitted from the rest of this section and will be 
referenced again in Section 4. No new model training is needed for 
𝑂2 as the city models are trained on 𝑂1. Therefore, we are not doing 
a data split for 𝑂2, but we are doing one for 𝑀1. Model training is 
still required for 𝑀1, since no data on the cities is available in another 
dataset. This is done in the same way as for dataset 𝑂1. A detailed 
breakdown of the training and test trip sets by city can be found in 
Table  3.

3.3. Trip subset generation & candidate reduction

In the first step of our pipeline, we generate a subset of plausible 
destinations for each rental based on a set of reduction rules to address 
the challenge of forming trips with rotating vehicle IDs. The thresholds 
of the rules are based on findings from the literature and the charac-
teristics of trips that were previously introduced in our dataset. This 
subset, in the following known as ’destination candidates’, is created 
by iterating through all rentals and adding potential returns that satisfy 
the following conditions:

• 𝑅1: The return time is after the rental time.
• 𝑅2: The return time is within 30 min of the rental time.
• 𝑅3: The return battery level is less than the rental battery level.
• 𝑅4: The battery difference is less than 10%.
• 𝑅5: The mean speed is less than 20 km/h.
• 𝑅6: The distance on the bike-network (OpenStreetMap, 2025) is 
less than 3000 m.

In addition, if a rental and a return are identified as a perfect match, 
defined as a time difference of six minutes or less, a range difference 
of zero, a battery difference of zero, and a distance of less than 1000 
metres, the corresponding return candidate is removed from all other 
pairings. This rule is denoted 𝑅7. The thresholds for rules 𝑅2, 𝑅4 and 
𝑅6 were determined through data exploration to ensure the removal of 
implausible trips. We evaluated the effectiveness of each rule based on:

• The number of correct and wrong eliminated destination candi-
dates.
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• The number of still assignable trips (the correct return remains in 
the candidate set)

• The number of non-assignable trips (the correct return is removed 
from the candidate set).

As shown in Fig.  4, when comparing the relative number of cor-
rect and incorrect destination candidates before and after candidate 
reduction, the number of correct candidates remained above 80% for 
all cities except Ludwigshafen. Meanwhile, we were able to reduce 
the number of incorrect candidates to around 10% for each city. We 
eliminated any influence introduced by the reduction order by per-
muting the rule orders, which resulted in no difference. Therefore, the 
most effective reduction rules are 𝑅1 −𝑅3, which filter twice for time, 
and battery level. This reduced up to 70% of all incorrect destination 
candidates for all cities except Karlsruhe, where the reduction was 30%. 
An important finding is that, since the battery level is one of the most 
important feature for candidate reduction, a performance decrease for 
𝑂2 and 𝑀1 can be expected, since this feature is missing there.

The reduction process introduces an inherent error rate, meaning 
that some trips will have no correct candidate destinations after re-
duction and will therefore be unassignable. The error introduced by 
that is referred to as the minimal error rate and is shown in Table  4 
for each city for 𝑂1, 𝑂2, and 𝑀1. For the 𝑂1 test set, all cities show 
that 82%–86% of all trips are still assignable. The 𝑂2 test set includes 
fewer cities, but the share of trip origins with assignable destination 
candidates is higher, between 87% and 91%, indicating better coverage 
or predictability in this dataset. Finally, the 𝑀1 test set has cities with 
a high percentage (87% to 95%) of trips with assignable destinations, 
while London and Montreal have lower percentages (69% and 78%).

3.4. Destination prediction model

Next, we introduce the machine learning models that will be used 
in the pipeline later on. Several types of machine learning regression 
model were trained for each city using the features stated in Table  5.

The target variables are a new coordinate pair consisting of a lati-
tude and longitude value in the same format as the two input variables 
used by the model. If a model does not support multi-target regression, 
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Fig. 4. The impact of different reduction rules on the relative number of correct (left) and incorrect (right) destination candidates in the 𝑂1 test set. During the 
candidate reduction process, we observed that the number of incorrect destination candidates decreased significantly, whereas the number of correct candidates 
decreased slightly.
Table 4
Assignable and non-assignable trips in the test sets. In most cities, around 80% of trips can be assigned to the correct destination, while the remaining 20% 
introduce minimal estimated error.
 Set Assignable Cities

 

𝑂1

Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart  
 Yes 82, 894 17, 414 37, 027 15, 696 78, 975  
 (83%) (82%) (83%) (83%) (86%)  
 No 16, 978 3, 822 7, 583 3, 214 12, 856  
 (17%) (18%) (17%) (17%) (14%)  
 

𝑂2

Mannheim – − Karlsruhe Stuttgart  
 Yes 54, 432

− −
254, 116 299, 301  

 (91%) (87%) (88%)  
 No 5, 128

− −
34, 653 40, 814  

 (9%) (13%) (12%)  
 

𝑀1

Shanghai London New York Montreal San Francisco 
 Yes 46, 080 93, 477 254, 046 194, 874 19, 993  
 (87%) (69%) (87%) (78%) (95%)  
 No 4, 558 41, 998 37, 961 215, 186 3, 529  
 (13%) (31%) (13%) (22%) (5%)  
Table 5
Features used for the trip destination prediction model.
 Feature Type Description  
 lat_lend Float Start coordinate’s latitude of the vehicle.  
 lng_lend Float Start coordinate’s longitude of the vehicle.  
 time_diff Integer Time difference between rent and return.  
 battery_diff Integer Battery difference between rent and return. 
 range_diff Integer Range difference between rent and return.  
 distance Float Route distance between rent and return.  
 mean_speed_distance_based Float Mean Speed of the trip based on distance.  
 mean_speed_range_based Float Mean speed of the trip based on range.  
 

we utilise MultiOutputRegressor from scikit-learn (Pedregosa et al., 
2011).

Since GBFS does not provide GPS trajectories (MobilityData, 2025), 
we cannot adapt deep learning techniques that frequently require these 
features to our exact problem statement. These include approaches, 
using hybrid deep learning approaches, such as graph convolutional 
neural networks (GCNs), used by Zhang et al. (2025) for traffic flow 
prediction, or a combination of recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs), such as proposed by Zhao et al. 
(2021) for taxi or Li and Shuai (2020b), and Miao et al. (2022) for 
bicycle destination prediction.

Unlike other related works involving CNNs from other modes of 
transport (Wu et al., 2025; Noursalehi et al., 2021), an origin–destination
(O–D) matrix was not adopted here. While O–D matrices capture 
aggregate traffic demand between areas and work well for origin–
destination demand prediction, using them to predict the exact location 
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of a returning trip is insufficient, as they ignore contextual factors such 
as battery state, weather, and temporal dynamics, and even probabilis-
tic approaches would yield identical predictions for each timestamp 
within a region. Machine learning models are therefore required to cap-
ture these nuances and generate accurate, context-sensitive destination 
predictions.

In the performance evaluation, several common metrics from the 
field of machine learning are utilised. The evaluation of internal models 
is conducted through the utilisation of the mean square error (MSE) 
(Eq.  (1)), the mean absolute error (MAE) (Eq.  (2)), and the 𝑅2 (Eq.  (3)) 
coefficient of determination. We use their respective implementations 
from scikit-learn  (Pedregosa et al., 2011), which are defined as follows: 

MSE(𝑦, 𝑦̂) = 1
𝑛
∑

(𝑦𝑖 − 𝑦̂𝑖)2 (1)

𝑛 𝑖=1
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Table 6
Performance comparison for Mannheim on O1. We tested multiple models 
using the Mannheim dataset and found that the XGBoost model produced the 
best results.
 Model type Multi-Target MSE 𝑅2 MAE  
 XGBoost Yes 4.01 × 10−5 0.92 0.004 
 LightGBM No 4.63 × 10−5 0.91 0.004 
 Catboost Yes 4.7 × 10−5 0.91 0.004 
 Linear Regression No 7.01 × 10−5 0.869 0.006 
 Ridge Regression No 7.01 × 10−5 0.869 0.006 
 Random Forest Yes 5.3 × 10−4 0.84 0.015 
 Support Vector Machine No 0.001 −2.12 0.034 

MAE(𝑦, 𝑦̂) = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦̂𝑖|| (2)

𝑅2(𝑦, 𝑦̂) = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(3)

Further, in the subsequent chapter we introduce the metrics root mean 
squared error (RMSE) (Eq.  (4)), precision (Eq.  (5)), and accuracy (Eq. 
(6)), also with their implementations from scikit-learn (Pedregosa et al., 
2011), which are defined as follows, where TP are true positives, TN 
are true negatives, FP area false positives, and FN are false negatives. 

RMSE(𝑦, 𝑦̂) =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (4)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(5)

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(6)

As shown in Table  6, the XGBoost model, trained as a multi-target 
regressor to predict destination latitude and longitude, outperformed all 
other models. It achieved a MSE of 4.01𝑒−5 and a 𝑅2 of 0.92. We also 
tested it with additional time-related features, such as day of the week 
and time of day, in both single-feature and one-hot encoded forms, but 
found no improvement in performance. All features except lat_lend and
lng_lend were normalised using scikit-learn’s StandardScaler (Pedregosa 
et al., 2011). lat_lend and lng_lend were not normalised to preserve 
their absolute geographic values, which are essential for accurately 
representing spatial relationships. All models, LightGBM, CatBoost, 
Linear Regression, Ridge Regression, and Random Forest performed 
well, whereas the Support Vector Machine underperformed, likely due 
to the unscaled spatial features and targets hindering the model’s ability 
to capture underlying patterns. Despite further hyperparameter tuning, 
no significant performance enhancement was achieved.

We decided against incorporating deep learning models, such as 
deep neural networks (DNNs), into our research. Our XGBoost model 
already achieved a high level of performance. Given these results, the 
potential performance gains from deploying a more computationally 
expensive deep learning approach would likely be marginal and not 
justify the considerable training and deployment costs. Instead, we 
focused on traditional machine learning methods, which offered a 
more efficient balance between accuracy, interpretability, and resource 
consumption.

All models were validated using tenfold cross-validation to ensure 
stable performance. Given these results, further training and optimi-
sation were performed using XGBoost, as it had consistently outper-
formed the other models in all cities (see Table  7).

Extended training and optimisation were performed for each city 
using the aforementioned features. Hyperparameter tuning for n_esti-
mators, max_depth, learning_rate, subsample, and colsample_bytree in the 
XGBoost model was performed using Optuna (Akiba et al., 2019) to 
minimise the mean squared error (MSE). The spaces were adjusted sev-
eral times during training when upper or lower bounds were reached. 
The random seed was set to 42 for all cities to ensure reproducibility.
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The optimisation process was performed over 500 trials, with ten-
fold cross-validation performed on each trial to evaluate performance. 
Fig.  5 shows the convergence of MSE and R2, which stabilised after 
fewer than 500 trials, indicating that near-optimal hyperparameter 
values were achieved. For the 𝑀1 hyperparameter, see Table  A.12.

Taking into account the importance of the features, the geographic 
features, specifically lat_lend and lng_lend, consistently emerge as the 
most important predictors of destinations in all cities, dominating both 
weight and gain metrics as shown in Fig.  6. Weight measures how 
frequently a feature is used in the model’s splits, while gain quantifies 
the improvement in prediction accuracy attributed to that feature (Pe-
dregosa et al., 2011). In Mannheim, these features contribute 26% and 
23% in weight and 36% and 43% in gain. Similarly, in Karlsruhe,
lat_lend and lng_lend dominate the gain-based importance, contributing 
over 65% together. The feature distance is another key factor, ranking 
just below the geographical coordinates in importance, with a weight 
contribution of approximately 15−18% between cities. Features such as
battery_diff, speed_distance, and time_diff  are of moderate importance, 
while range_diff  and speed_range are consistently among the least in-
fluential features, contributing minimally to the model’s predictive 
power.

4. Results and discussion

This section presents an evaluation of destination prediction. We 
analyse the training performance of the multi-target regression model, 
both on its own and in combination with candidate reduction and 
final candidate selection. Additionally, we compare the results with 
those of state-of-the-art methods, discuss an inter-city transfer learning 
approach, and possible security implications for the GBFS.

4.1. Multi-target regression model training performance

Table  8 shows the performance of the trip destination prediction 
models trained on the 𝑂1 and 𝑀1 datasets. No new models were 
trained for 𝑂2 as the models from 𝑂1 were used later.

Most cities in the 𝑂1 dataset — including Mannheim, Ludwigshafen, 
Heidelberg and Karlsruhe — demonstrate high predictive accuracy, 
with low RMSE, MSE and MAE values, and high 𝑅2 scores ranging from 
0.75 to 0.92. However, Stuttgart stands out as an outlier, with higher 
errors (an RMSE of 1.029 and an MSE of 1.05989) and a lower 𝑅2 of 
0.21, indicating poorer model performance there.

For the 𝑀1 dataset, performance varies more widely between cities. 
San Francisco and Shanghai achieved very low RMSE values (0.001 and 
0.011, respectively) and high 𝑅2 values (0.99 and 0.95, respectively), 
indicating accurate predictions. New York, Montreal and London have 
moderate results; however, London has the lowest 𝑅2 (0.76) and higher 
error values among them, indicating weaker performance. Distance 
error metrics also follow this trend, with San Francisco showing min-
imal median and mean distance errors, while other cities have higher 
values. Overall, the 𝑀1 dataset results reveal greater variability due to 
the different time frame sizes and the absence of the battery_level and
current_range_meters attributes.

4.2. Performance with candidate reduction and destination selection

In addition to the previously introduced model performance, the 
effect of using the entire pipeline on the dataset is examined. For 
performance evaluation, we rely solely on the accuracy metric, as there 
are only two possibilities: a correct or false selection of the destination 
candidate. This does not allow us to report other metrics, such as recall, 
precision or the F1 score. We also differentiate between various levels 
of resolution, ranging from 11 metres (true performance), where a 
prediction is only considered correct if the correct destination candidate 
is selected from the set, to 1000 metres, where the selected destination 
candidate must be within this tolerance radius to be considered correct. 
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Table 7
Optimal hyperparameters for XGBoost models by city for 𝑂1. We used Optima to optimise the most important XGBoost model hyperparameter to improve 
performance.
 Parameter Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart Range  
 n_estimators 1148 843 435 682 126 50−1, 500 
 max_depth 16 15 15 14 4 3−20  
 learning_rate 0.01 0.01 0.02 0.01 0.06 0.01−0.1  
 subsample 0.96 0.97 0.90 0.94 0.69 0.5−1.0  
 colsample_bytree 0.89 0.76 0.99 0.80 0.81 0.5−1.0  
 random_seed 42 42 42 42 42 42  
Fig. 5. The figure shows the convergence of MSE (left) and 𝑅2 (right) during Optuna hyperparameter tuning for 𝑂1. The MSE and 𝑅2 converge after fewer than 
500 trials, indicating that near-optimal hyperparameter values were achieved.
Fig. 6. Feature Importance for Destination Prediction by XGBoost Weight (left) and Gain (right) for 𝑂1. lat_lend and lng_lend, consistently emerge as the most 
important predictors of destinations in all cities.
Table 8
Trip Destination Prediction Performance on the Test Set of 𝑂1 and 𝑀1. Most cities demonstrate high predictive accuracy, with 
low RMSE, MSE, and MAE values and high 𝑅2 scores.
 Set Metric Cities

 

𝑂1

Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart  
 RMSE 0.006 0.006 0.007 0.008 1.029  
 MSE 4.01𝑒−5 3.69𝑒−5 5.43𝑒−5 6.78𝑒−5 1.05989  
 MAE 0.004 0.003 0.004 0.005 0.021  
 𝑅2 0.92 0.90 0.75 0.84 0.21  
 𝑑 446m 367m 493m 601m 893m  
 𝑑 582m 521m 664m 744m 3, 472m  
 

𝑀1

Shanghai London New York Montreal San Francisco 
 RMSE 0.011 0.015 0.007 0.009 0.001  
 MSE 0.0001 0.002 6.23𝑒−5 9.40𝑒−5 1.08𝑒−5  
 MAE 0.008 0.009 0.004 0.005 0.0003  
 𝑅2 0.95 0.76 0.84 0.77 0.99  
 𝑑 1045m 902m 300m 344m 26m  
 𝑑 1336m 1259m 649m 763m 60m  
9 
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Table 9
Accuracy by distance threshold and region on the test sets. Performance increases as resolution decreases, ranging from 0.49 to 
0.77 for true performance in 𝑂1, with a slight decrease in 𝑂2 and high variation in 𝑀1 due to missing features.
 Set Resolution Cities

 

𝑂1

Mannheim Heidelberg Ludwigshafen Karlsruhe Stuttgart  
 @11m 0.61 0.56 0.77 0.60 0.49  
 @250m 0.70 0.66 0.81 0.66 0.56  
 @500m 0.81 0.79 0.86 0.76 0.69  
 @1000m 0.94 0.94 0.94 0.92 0.88  
 

𝑂2

Mannheim – − Karlsruhe Stuttgart  
 @11m 0.42 – − 0.18 0.23  
 @250m 0.59 – − 0.62 0.44  
 @500m 0.75 – − 0.89 0.67  
 @1000m 0.89 – − 0.99 0.92  
 

𝑀1

Shanghai London New York Montreal San Francisco 
 @11m 0.34 0.11 0.17 0.15 0.70  
 @250m 0.42 0.37 0.53 0.47 0.79  
 @500m 0.58 0.66 0.81 0.76 0.89  
 @1000m 0.85 0.90 0.95 0.93 0.97  
We determined that a region of 500 metres offered the best trade-off 
between high accuracy and reasonable resolution, in line with state-of-
the-art performance. Further testing of other resolutions indicates that 
accuracy converges after 1000 metres, as shown in Fig.  A.7.

Table  9 shows the detailed accuracy metrics for the 𝑂1, 𝑂2 and 
𝑀1 test sets. Generally, performance improves as resolution decreases 
for all test sets. The mean accuracy for the 𝑂1 test set is 0.60 for 
true performance and 0.78 at 500 metres. For 𝑂2, true performance 
decreases by an average of 0.29 and remains steady at 500 metres. 
This decrease in performance was to be expected, as the battery con-
sumption feature is unavailable in the dataset, resulting in larger sets 
of potential destinations with over 100 candidates. For the 𝑀1 test 
set, the accuracy values are lower for true performance, with London 
exhibiting the lowest resolution at 0.11. However, accuracy improves as 
the distance threshold increases, reaching values of up to 0.89 for San 
Francisco at 500 metres. The lower overall true performance on 𝑀1
is related to the missing features battery_level and current_range_meters, 
which impacted the candidate reduction step of the solution.

4.3. Comparison with state of the art

We compared our models with several state-of-the-art approaches, 
including Liu et al. (2024), Liu et al. (2019), Jiang et al. (2019), Du 
et al. (2018), Jiang et al. (2021), and Dai et al. (2018). As far as we 
are aware, there are no other works that provide a pipeline or baseline 
tailored to GBFS. Therefore, we compare our pipeline with models 
in the field of trip destination prediction in public sharing systems. 
Most of the works we compared relied on the 2017 Beijing dataset. 
However, this dataset is no longer publicly accessible and could not 
be obtained upon request. To ensure reproducibility and comparability 
across diverse urban contexts, we additionally evaluated our models 
on five international, publicly available datasets (𝑀1). Notably, this 
set includes the 2017 New York data also used by Dai et al. (2018), 
enabling at least partial direct comparison. As mentioned earlier, we 
are not comparing our results with those of approaches that use GPS 
trajectory data as input features, such as the works from e.g.Zhang 
et al. (2025), Zhao et al. (2021), Li and Shuai (2020b), and Miao et al. 
(2022). These approaches focus on a different aspect of the problem 
and are therefore not comparable.

The results, presented in Table  10, show that our models consis-
tently achieve higher accuracy across multiple cities and configura-
tions, even under more demanding prediction settings and without 
relying on user-specific data.

Dai et al. (2018)’s approach predicts station clusters in New York, 
achieving a maximum accuracy of 0.39. When they adapt this approach 
to our setting by treating each station as its own class, the performance 
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drops to 0.14. In contrast, our own pipeline for New York, trained on 
a comparable subset of the same 2017 dataset, achieves an accuracy of 
up to 0.66, reflecting a substantial improvement of 52%.

Compared to other station-based methods, such as those described 
in Liu et al. (2019) and Du et al. (2018), our approach achieves higher 
accuracy in all other cities for which data is available. Notably, the 
aforementioned methods rely on user identifiers or profile features, 
whereas our models operate without such information. As we do not 
have access to their data, a direct comparison is not possible. How-
ever, our mean result of 76% for all tested cities suggests that our 
performance exceeds that of the their methods.

The LSTM-CNN model proposed by Jiang et al. (2019) does not re-
port accuracy, but shows weaker performance on other metrics (preci-
sion of 0.54). This suggests that, in certain configurations, our XGBoost-
based pipeline may outperform certain deep learning architectures 
with access to user-specific data. Similar results can be derived for 
the approach proposed by Jiang et al. (2021), which also only states 
resolution within a 500-metre radius for their LightGBM model.

We also compare our models with the current state of the art, as 
defined by Liu et al. (2024). Across nearly all cities — except Stuttgart, 
London and Shanghai — our models outperform theirs in terms of 500-
metre resolution, even when they are using user-specific data. When 
considering Liu et al. (2024)’s reported non-user-specific models, our 
approach yields gains of between 2% and 30%. Lower gains are mostly 
due to a lack of key features such as battery level or current range in the 
international datasets. Furthermore, our mean accuracy of 76% across 
all cities is comparable to their approach when using user-specific data. 
In contrast, we achieve a mean performance increase of 20% when 
compared to the non-user-specific data approach.

These results suggest that our method is a promising alternative 
to existing approaches. Although direct dataset-level comparisons are 
limited by data availability, our consistent performance across ten 
different urban environments, combined with the generalisability of our 
feature set, indicates that our approach is robust and scalable, even in 
the absence of user-specific information.

4.4. Possibility of inter-city transfer learning

A major challenge in applying machine learning for trip destination 
prediction is the reliance on ground truth data. Data is often unavail-
able because many modern datasets only provide information where 
an algorithmic reconstruction of trips is impossible. Inter-City transfer 
learning presents a potential solution: a model trained on one city, or a 
combination of cities, could be adapted to predict trips in a city without 
ground truth data.

In our investigation of this approach, we encountered several limita-
tions that ultimately rendered inter-city transfer learning infeasible for 
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Table 10
Performance comparison with state-of-the-art solutions. Our models achieve superior accuracy without relying on user-specific 
data. They outperform all previously reported methods across multiple cities and operators, even under more demanding resolution 
levels on several datasets from different years.
 Paper Model type City Accuracy Precision  
 Own (𝑀1) XGBoost San Francisco 0.89e –  
 Own (𝑂1) XGBoost Ludwigshafen 0.86e –  
 Own (𝑂1, 𝑂2) XGBoost Mannheim 0.81e, 0.75e –  
 Own (𝑀1) XGBoost New York 0.81e –  
 Own (𝑂1) XGBoost Heidelberg 0.79e –  
 Own (𝑂1, 𝑂2) XGBoost Karlsruhe 0.76e, 0.89e –  
 Own (𝑀1) XGBoost Montreal 0.76e –  
 Liu et al. (2024) XGBoost Beijing 0.76c,d, 0.56c 0.75c,d, 0.55c 
 Own (𝑂1, 𝑂2) XGBoost Stuttgart 0.69e, 0.67e –  
 Jiang et al. (2021) LightGBM Fuyang – 0.68d,e  
 Own (𝑀1) XGBoost London 0.66e –  
 Own (𝑀1) XGBoost Shanghai 0.58e –  
 Liu et al. (2019) XGBoost Beijing 0.57a,d –  
 Jiang et al. (2019) LSTM-CNN Beijing – 0.54d  
 Du et al. (2018) LightGBM Beijing 0.45a,d –  
 Dai et al. (2018) Random Forest New York 0.39a,d, 0.14a,d −  
aPredicts stations; bPredicts station clusters; cResult within 1000 × 1000 m; dUses user-specific data; eResult within 500 m.
Fig. A.7. Fine granular accuracy by distance threshold and region on the test sets. Further testing of other resolutions indicated that the accuracy converges after 
1000 metres.
Table 11
Accuracy by distance threshold and city using an inter-city transfer learning 
approach. The model trained on Mannheim data was applied to trips in other 
cities.
 Resolution Cities

 Heidelberg Ludwigshafen Karlsruhe Stuttgart 
 @11m 0.21 0.23 0.20 0.37  
 @250m 0.21 0.23 0.20 0.37  
 @500m 0.21 0.23 0.20 0.37  
 @1000m 0.21 0.23 0.20 0.37  

our purposes with XGBoost: As shown in Fig.  6 before, spatial features 
such as lat_lend and lng_lend are some of the most important predictors 
for destination. These coordinates are inherently city-specific, reflecting 
the local distribution of stations, demand centres, and typical travel 
patterns. Additionally, local factors such as topology, infrastructure 
layout, and zoning regulations strongly influence mobility dynamics. 
Consequently, the relationships learned from one city’s spatial structure 
most likely cannot be generalised to another city. We nevertheless 
attempted transfer learning by using the model trained on Mannheim 
data to predict destinations for trips in other German cities. The results 
are summarised in Table  11.

Overall, performance is consistently lower than that of models 
trained specifically for each city (see Table  10 for comparison). No-
tably, all correct predictions occurred when the filtering step reduced 
the set of destination candidates to a single option, making the machine 
learning step irrelevant. This outcome was expected. Since the model 
has never encountered coordinates outside of Mannheim, it predicts 
11 
destinations relative to Mannheim’s coordinate system. This leads to 
a 100% error rate and unusable results in other cities.

4.5. Security implications for the GBFS

Although the GBFS is designed to provide open access to shared 
mobility data while protecting personal information, retrospectively 
predicting destinations raises potential privacy concerns. Our approach 
does not directly reveal who was using a specific vehicle at a given time 
since GBFS datasets do not contain user identifiers. However, predicted 
destinations, when combined with temporal and spatial patterns, can be 
used to infer habitual trips, particularly in small networks or areas with 
few users.

For instance, in smaller networks or low-density environments, 
repeated patterns could enable observers to link trips to particular 
individuals based on their departure and destination locations and 
times. Similarly, in settings where trips are sparse, even anonymised ve-
hicle IDs could indirectly reveal daily routines or behavioural patterns. 
Conversely, in large urban networks with high vehicle turnover and 
many users, such identification is significantly more challenging due to 
the sheer volume of trips and the absence of user-specific identifiers.

These observations suggest that, while GBFS data remains broadly 
anonymised, enhanced predictive methods can partially reconstruct 
travel behaviours that may previously have been considered private. 
Therefore, operators and regulators should be aware of the potential 
for indirect inference of user habits.
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Table A.12
Optimal hyperparameters for XGBoost models by city for 𝑀1. We used Optima to optimise the most important XGBoost model 
hyperparameter to improve performance.
 Parameter Shanghai London New York Montreal San Francisco Range  
 n_estimators 478 791 476 447 461 50−1, 500 
 max_depth 7 14 14 15 15 3−20  
 learning_rate 0.02 0.02 0.09 0.08 0.09 0.01−0.1  
 subsample 0.69 0.68 0.99 0.98 0.83 0.5−1.0  
 colsample_bytree 0.63 0.89 0.89 0.97 0.78 0.5−1.0  
 random_seed 42 42 42 42 42 42  
5. Conclusion

This study demonstrates the feasibility of retrospectively predicting 
trip destinations using datasets from public sharing systems with ro-
tating vehicle IDs. By generating a subset of plausible destinations and 
applying a machine learning model, accurate predictions were achieved 
even with rotating vehicle IDs.

Models trained for five German cities achieved an average accuracy 
of 77% within a 500-metre radius, outperforming existing methods by 
21% (when they do not use user features) and performing similarly 
(when they do use user features). Comparable results were obtained 
on international datasets from Shanghai, London, New York, Montreal 
and San Francisco, with minor losses due to missing features, achieving 
an average accuracy of 74%.

Beyond methodological contributions, our approach offers practi-
cal value for operators and city planners. For operators, destination 
predictions enable proactive fleet rebalancing, targeted pricing or in-
centive schemes, and efficient planning of charging or maintenance 
operations. For city planners, predicted destinations reveal demand 
hotspots and mobility gaps, support infrastructure investment such as 
bike lanes and parking zones, and highlight opportunities for integra-
tion with public transport. Moreover, this solution can be combined 
with other machine learning approaches — such as demand predic-
tion, traffic simulation, or vehicle rebalancing models — to create 
more comprehensive decision-support systems. Together, these applica-
tions demonstrate that destination prediction can directly support both 
efficient system management and sustainable urban mobility planning.

Future work could explore performance variations across cities, 
refine the candidate reduction process to minimise error and investigate 
likelihood models to handle cases where there are no correct destina-
tion candidates. Moreover, future work could address how to adopt a 
similar pipeline in cities where ground truth data is unavailable and 
how the approach would need to be adapted to accommodate different 
spatial characteristics, such as points of interest, using the first results 
of our inter-city transfer learning approach. Furthermore, we plan to 
use explainable AI methods such as SHAP to investigate differences in 
traffic flow and demand hotspots between original and predicted trips 
at the feature level. Finally, we intend to integrate this solution into our 
future real-time data processing pipeline to provide real-time analytics 
across multiple operators and cities.
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Appendix. Additional insights

See Algorithm. 
12 
Algorithm 1 Trip Destination Prediction Pipeline
1: procedure Phase 1: Candidate Generation and Reduction
2:  Load trip data from GBFS in parallel
3:  for each trip record do
4:  Handle missing or invalid data
5:  Extract rentals and returns with GBFS features
6:  end for
7:  for each rental do
8:  for each return in time frame do
9:  Calculate temporal and spatial features: time_diff, bat-
tery_diff, distance, speeds

10:  Apply time, battery, speed and distance filters
11:  if non-moving trip detected then
12:  Mark as definitive match
13:  else
14:  Add to candidate set
15:  end if
16:  end for
17:  end for
18:  Output: Destination candidate mapping
19: end procedure

20: procedure Phase 2: Multi-Target Prediction
21:  Load trained ML model and scaler
22:  for each rental with candidates do
23:  for each candidate return do
24:  Prepare feature vector: coordinates, time, battery, range, 

distance, speeds
25:  Scale features using trained scaler
26:  Predict return coordinates using ML model
27:  Calculate distance from predicted coordinates to actual 

return location
28:  end for
29:  Store all predictions with distances for candidate selection
30:  end for
31: end procedure

32: procedure Phase 3: Candidate Selection
33:  for each rental do
34:  Select candidate with minimum predicted distance as final 

prediction
35:  end for
36:  Evaluate predictions (confusion matrix & evaluation metrics)
37: end procedure

Data availability

A subset of the data and the used source code is available on GitHub. 
Further data is available on request.
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