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Keywords: Public mobility sharing systems are an important component of sustainable transport, particularly for last-mile
Shared mobility travel. However, analysing trip patterns using open standards such as GBFS can be challenging due to vehicles
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frequently being assigned new identifiers and missing GPS trajectories, preventing a detailed tracking. To
overcome this limitation, we present a machine learning pipeline that retrospectively predicts trip destinations
within this circumstances—making it possible to partially recover travel patterns for GBFS data.

Our approach involves a three-step prediction pipeline: (1) candidate generation and reduction using
spatial-temporal filtering; (2) multi-target regression via XGBoost to estimate destination coordinates; and
(3) selection of the best-matching candidate. Our approach achieves an average accuracy of 77% across five
German and 74% across five international cities within a tolerance of 500 metres. Compared to existing
approaches, our method improves prediction accuracy by an average of 20% over methods that also do not

use user-specific or GPS trajectory features.
These results demonstrate the feasibility of accurately predicting destinations in shared mobility despite
rotating vehicle identifiers and missing trajectory data, thereby supporting improved system analysis and

planning.

1. Introduction

Public mobility sharing systems, such as bike and e-scooter sharing,
have become an integral part of sustainable urban transport, providing
flexible, low-emission alternatives for short journeys and the final mile
of a trip (Wang and Zhou, 2017; Huang and Xu, 2023). The widespread
adoption of these systems has generated large volumes of publicly
available data (Todd et al.,, 2021), enabling new opportunities for
research into mobility behaviour (Wielinski et al., 2017; Si et al., 2020;
Zhou, 2015), demand forecasting (Xu et al., 2018; Lin et al., 2018;
Sathishkumar et al., 2020) and infrastructure planning (Félix et al.,
2020; Griffin and Sener, 2016). In the context of rapid urbanisation and
climate change, shared mobility services play a crucial role in reducing
car dependency (Bissel and Becker, 2024; Vega-Gonzalo et al., 2024),
lowering greenhouse gas emissions (Zhang and Mi, 2018) and improv-
ing access to transport in underserved areas (Lu et al., 2018). Their
flexible deployment models, especially in free-floating systems without
fixed stations, enable cities to adapt their infrastructure dynamically
and support multimodal integration with public transit systems. Jaber
et al. (2022), Tran et al. (2015)

Understanding how people use these services, particularly where
trips begin and end, is essential for numerous applications. Urban
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planners require such insights for infrastructure development (e.g., the
placement of bike lanes (Chahine et al., 2025) or stations (Garcia-
Palomares et al., 2012)), operators require them for fleet balancing
and maintenance (De Chardon et al., 2016), and researchers depend
on them for behavioural modelling and policy evaluation (Wielinski
et al,, 2017; Si et al., 2020; Zhou, 2015). However, analysing trip
patterns from such systems remains a considerable challenge. Today,
many cities and operators publish their data via open standards such as
the General Bikeshare Feed Specification (GBFS) (MobilityData, 2025),
which prioritises user privacy and data minimisation. Rotating vehicle
identifiers, which are common in GBFS, prevent the linking of trip
origins and destinations. The absence of continuous GPS trajectory data
complicates or prevents the use of traditional methods for trajectory
reconstruction and behavioural analysis.

While these limitations are essential from a data protection perspec-
tive, it comes at the cost of analytical granularity. Standard trip-based
analysis techniques, which are commonly used in transportation re-
search and data-driven urban analytics, rely on persistent identifiers
to model demand Xu et al. (2018), Lin et al. (2018), Sathishkumar
et al. (2020), infer behavioural patterns (Wielinski et al., 2017; Si et al.,
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2020; Zhou, 2015), or detect anomalies (Liu et al., 2022a). Without
such links, even basic tasks such as identifying the most common
destinations or computing average trip distances become non-trivial.
Moreover, advanced deep learning approaches — for instance, graph
neural networks (GNNs) or convolutional neural networks (CNNs) com-
bined with recurrent architectures such as long short-term memory
networks (LSTMs) — typically rely on continuous GPS trajectory data to
capture spatio-temporal dependencies and temporal variations in traffic
flows. Since they are unavailable in GBFS, alternative approaches must
be employed.

Therefore, our work addresses this issue by proposing a machine
learning-based pipeline for predicting trip destinations retrospectively
under the aforementioned constraints of limited trajectory data and
rotating vehicle identifiers presented by GBFS. Unlike previous studies
with the same GPS trajectory constraint, which often rely on persistent
identifiers or user-specific features, such as travel history, our work
focuses on a setting where only GBFS-compliant features are available
and no prior knowledge of individual users is required. This complies
with various data privacy regulations and enables the future adaptation
of our pipeline for the nearly 1300 public sharing networks that already
use GBFS today (MobilityData, 2025).

We present a three-step prediction pipeline that generates potential
destinations based on spatio-temporal plausibility and system con-
straints, estimates their geographic coordinates using multi-target re-
gression and selects a destination based on spatial proximity. To eval-
uate generalisation and real-world applicability, we conducted ex-
periments using data from two public mobility operators across five
German cities, spanning more than two years (April 2023 to May 2025),
as well as five additional datasets from other cities around the world.

This study contributes to both machine learning in transportation
science and the broader discourse on responsible data use in smart
cities. It demonstrates that effective analytical methods can be de-
veloped even under privacy-preserving conditions, thereby aligning
technical innovation with ethical data governance.

In summary, this paper makes the following contributions:

1. First demonstration of trip reconstruction with rotating IDs
within GBFS. To the best of our knowledge, this is the first time
that it has been demonstrated that it is possible to accurately
reconstruct trips in GBFS datasets that rotate vehicle identifiers
and do not provide GPS trajectories.

2. Multi-operator and multi-city generalisation. We demon-
strate that our approach maintains strong predictive perfor-
mance across operators and cities for future adaptations to other
cities.

3. Improved prediction accuracy with minimal data require-
ments. Our approach outperforms existing approaches by an
average of 20% when no user-specific data is used and no GPS
trajectory data is available.

4. Fully open-source pipeline. We are releasing our full pipeline
alongside a representative dataset under an Apache 2.0 licence,
which will enable reproducibility and further research, available
on GitHub.'

Our findings enable a wide range of analyses that were previously
considered impossible on publicly available GBFS datasets. Accurate
reconstruction of trip destinations makes it possible to conduct studies
of traffic flow, demand distribution, vehicle rebalancing strategies and
the spatial-temporal dynamics of shared mobility. Such analyses are
central to transportation planning and policy, but were previously
limited to datasets with persistent identifiers or privileged internal
access. By making them possible using rotating public data, our work
paves the way for more extensive and inclusive mobility research.

1 The full pipeline alongside a representative dataset is available here on
GitHub.
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The rest of the paper is structured as follows: Section 2 discusses
related work on trip destination prediction in both station-based and
free-floating mobility systems and introduces the GBFS. Section 3 de-
scribes the methodology, including data preprocessing, the candidate
filtering mechanism, and our predictive model. Section 4 presents
empirical results and analyses model performance across operators
and cities. Finally, Section 5 summarises key findings and outlines
directions for future work.

2. Related work

Destination prediction is a well-studied area in contexts such as taxi
services (Zhang et al., 2017; Yang et al., 2020-02; Song et al., 2020-09;
Liao et al., 2022-05), car navigation (Tanaka et al., 2009; Terada et al.,
2006), metro systems (Wu et al., 2025; Cheng et al., 2022; Liu et al.,
2022b), railway (Noursalehi et al., 2021; Roos et al., 2016; Jiang et al.,
2022), or multi-purpose services (Chen et al., 2010-12-01). Further
studies conducted in the area of public mobility sharing systems, and
existing ones are often limited to specific cities or datasets (Liu et al.,
2024, 2019; Jiang et al., 2019; Du et al., 2018; Dai et al., 2018), that
do not imply the limitation of GBFS. By contrast, Xu et al. (2022) were
among the first to provide algorithms for dealing with different vehicle
identifier types in the GBFS. However, they were unable to provide
reliable algorithms for creating origin—destination pairs from rotating
feeds; instead, they provided a list of vehicle rentals and returns.

In general, destination prediction in public mobility sharing systems
can be categorised according to two main criteria: the type of network
and the prediction approach. Networks can be station-based, in which
trips start and end at predefined stations, or free-floating, in which
trips can start and end at any location within a predefined area.
Prediction approaches can be divided into classification tasks, where
the aim is to predict predefined categories (e.g. stations or regions),
and regression tasks, where the aim is to predict continuous values,
such as geographical coordinates.

In addition to these main categorisations, there are other research
areas related to predicting trip destinations: Gonzalez and Melo-Riquelme
(2016-05-01), Faghih-Imani and Eluru (2015) predicted the motivation
behind bike-sharing trips using surveys, while Faghih-Imani and Eluru
(2020-04-01) incorporated sociological data from the 2010 US Census
to map rentals to social factors such as working, housing and shopping
trips. Furthermore, Zhang and Yu (2016-11) discussed multi-rental trips
incorporating lends and returns at multiple stations to allow longer
routes on free plans.

2.1. Trip destination prediction in station-based networks

In station-based networks, predicting the destination of a journey is
often framed as a classification task, where the aim is to predict either
the destination station or a cluster of adjacent stations.

For example, Dai et al. (2018) used a Random Forest with a station
clustering algorithm that incorporated both geographic proximity and
usage patterns to achieve an accuracy of 0.39 in New York using Citi
Bike data from the full year 2017. They also integrated weather data,
such as temperature and precipitation, to improve prediction accuracy.
A different approach from Du et al. (2018) framed the problem as a
binary classification task, estimating the probability of a trip between
two stations under given conditions. Using LightGBM on Beijing Mobike
data from two weeks in 2017, they achieved an accuracy of 0.454 in
correctly predicting the first-choice destination and relied on user data
to refine training and prediction accuracy.


https://github.com/PhD-Kerger/trip-destination-prediction
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2.2. Trip destination prediction in free-floating networks

Free-floating networks present a more complex challenge than
station-based networks because destinations are not limited to prede-
fined stations. This makes the problem a regression task by definition,
where the goal is to predict accurate geographic coordinates. It is
common practice to cluster destinations into regions in order to reduce
the complexity of the classification.

For example, Liu et al. (2019) used XGBoost to predict destination
coordinates using geo-hashing, achieving an accuracy of 0.55 in Beijing
using Mobike data from 2017. This approach relied on user-specific
data, including the frequency of departures and arrivals at specific
locations for each user and the distance between pick-up and drop-
off points. While effective, this reliance on user-specific data limits the
approach’s applicability to non-user-specific scenarios. Similarly, Jiang
et al. (2019) combined LSTM networks and CNNs to capture spatial and
temporal dependencies, achieving an F1 score of 0.42. Their approach
used user data to identify likely destinations and incorporated meteo-
rological characteristics to improve performance. The study focused on
the Beijing Mobike stationless bike-sharing system. Another study by Li
and Shuai (2020a) shifted the focus from destination forecasting to de-
mand forecasting by clustering data into space-time cubes (STCs) using
GBFS data. This approach aggregated trips into predefined regions on
a minute-by-minute basis. A similar approach was taken by Liu et al.
(2024), who trained an XGBoost model to predict the destination of a
trip within a 1000 x 1000 metre area in Beijing, achieving an accuracy
of 0.56 using data from two weeks in May 2017. Later incorporating
user-specific features increased their performance to an accuracy of
0.76.

2.3. General bikeshare feed specification

The General Bikeshare Feed Specification (GBFS) is a standard for
publishing open data from bikeshare and scooter systems. It defines a
set of JSON-based feeds that provide snapshots of the system, includ-
ing static metadata (e.g., system_information), station-level availability
(station_status), and free-floating vehicle availability (vehicle_status).
These feeds are designed to reflect the state of the system at a specific
point in time, enabling applications such as trip planning, real-time
availability displays, and system monitoring. MobilityData (2025)

In contrast to other standards like GTFS (General Transit Feed
Specification), which are event-driven and can represent continuous
trajectories, delays, or trip-level updates, GBFS is limited to availability
and system snapshots. This design reflects its focus on transparency
for end users rather than operational analytics. Notably, GBFS employs
rotating identifiers for vehicles, which supports privacy protection but
limits longitudinal tracking. MobilityData (2025)

2.4. Characteristics of trips in micromobility

Several studies have examined trip characteristics of shared mi-
cromobility systems, including e-scooters and bicycles, across different
cities. Table 1 summarises key reported metrics such as trip duration,
distance, and speed.

Across the reviewed literature micromobility trips are consistently
short in both time and distance. Average trip durations typically range
between 5 and 20 min, with slightly longer trips reported in Asian
cities (Cao et al., 2021) compared to North America. Mean travel
distances commonly fall between 0.7 and 2.5 km, reflecting the local
character and accessibility of shared micromobility systems.

Average travel speeds vary by vehicle type and environment, gener-
ally ranging from 6 to 8 km/h for e-scooters and around 7 to 15 km/h
for bicycles. Urban conditions, infrastructure quality, and vehicle type
largely explain these differences, with higher speeds typically observed
for bicycles and in less congested settings.
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Overall, the reported values indicate that micromobility serves pri-
marily short-distance, low-speed trips that complement rather than
replace traditional modes of transport. While factors like topogra-
phy, infrastructure, and vehicle type cause some variation, consistent
patterns emerge across the studies.

2.5. Research gaps

Despite advances in destination prediction, several critical gaps
remain, particularly for free-floating networks with rotating vehicle IDs
that do not incorporate GPS trajectories:

1. Dependence on user-specific data: Many existing studies, such
as Liu et al. (2019), Jiang et al. (2019), Du et al. (2018),
rely on user-specific data to improve prediction accuracy. For
instance, Liu et al. (2019) used features such as the frequency of
departures and arrivals at specific locations, while Jiang et al.
(2019) incorporated the travel history of the users to identify
the likely destinations. However, such data is unavailable in
GBFS-compliant datasets, which limits the applicability of these
methods.

2. Prediction of Station Clusters: Several approaches abstract
the problem by either clustering sharing stations (Dai et al.,
2018), or by clustering free-floating destinations into large re-
gions or grids (e.g. STCs) (Liu et al., 2024). Although this reduces
computational complexity and achieves higher performance, the
use of large regions limits granularity, rendering these methods
unsuitable for applications requiring high spatial accuracy.

3. Methodology

This section presents the methodology used to retrospectively pre-
dict trip destinations in public mobility sharing systems. This process
was applied to data collected from public mobility sharing operators of
all cities.

3.1. Architectural overview

Fig. 1 illustrates our pipeline process: We collected data from GBFS
feeds, to represent the network’s current status, including the location
of vehicles not currently in use in the free-floating area, updated every
three minutes.

Information on vehicles currently on trips is unavailable in GBFS;
it is only available after the vehicles are returned. The full pseu-
docode for the three pipeline steps that follow is available in Section 1
of Appendix.

Candidate Generation & Reduction: First, we extract all rentals
and returns within the defined start and end times from the raw GBFS
feed, especially the free_bike_status (changed to vehicle_status in GBFS
version 3) endpoint of each feed, and adding them to separate lists. An
excerpt of the feed looks like the following: {¢ ‘last_updated’’:
1755627017, “ftt1’°:0, ‘‘version’’:¢¢2.377,
‘‘data’’:{‘‘bikes’’: [{¢‘bike_id’’: ¢ ¢3d523af2’’,
‘‘lat’’:49.454114, ‘‘lon’’:8.484718,
‘‘current_range_meters’’:23200, ‘ ‘battery_level’’:
0.90}, . . .1}

If a vehicle/bike ID disappears from the feed (i.e. if it was present
in the previous frame but not the current one), then the vehicle was
rented. Conversely, if a new vehicle/bike ID appears (i.e. it was not
present in the previous frame but is present in the current one),
then a vehicle has been returned. Each rental and return has the
following features: timestamp, latitude, longitude, battery level, and cur-
rent range meters. Using the rentals and returns, we create a set of
destination candidates for each rental. The initial set of destination can-
didates contains all returns conducted after the rental. As this set may
include hundreds or thousands of candidates, we reduce the number
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Table 1
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Overview of Average Reported Trip Characteristics in Micromobility Studies. Trips made using micromobility vehicles (bikes and e-scooters) tend to be short in

distance, duration, and average speed.

Study City (Country) Duration [min] Distance [m] Speed [km/h] Type
McKenzie (2020) Washington, D.C. (USA) 4.8-14.6 874-2382 9.8-11* E-Scooter/E-Bike
Bai et al. (2021) Austin (USA) 6 1100 5 E-Scooter
Bai and Jiao (2020) Minneapolis (USA) 19 1300 6 E-Scooter
Cao et al. (2021) Singapore (Singapore) 21.5 2130 5.9° E-Scooter
Eriksson et al. (2019) Stockholm (Sweden) - - 15 Bike
Strauss and Miranda-Moreno (2017) Montreal (Canada) - - 20 Bike
Lin et al. (2008) Kunming (China) - - 14.8 E-Bike
Berlin (Germany) 17.6* 2202 7.5 Bike
Heumann et al. (2025) Berlin (Germany) 14.7¢ 1662 6.8 E-Scooter
Mavrogenidou and Polydoropoulou (2025) Agia Paraskevi (Greece) 9.3 1150 7.5-8.5 E-Scooter
Zurich (Switzerland) 730 - E-Scooter
Reck et al. (2021) Zurich (Switzerland) 1292 - Bike
Zurich (Switzerland) 1595 - E-Bike

2 Calculated from other available metrics.

1. Candidate Generation & Reduction

G

o Rentals Feature Candidate
Generation Reduction
GBFS T
Feeds (M)

Returns

Destination
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2. Multi-Target Regression 3. Candidate Selection
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m Selection
GBFS & Predicted

Coordinates

Machine
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Fig. 1. Flow chart of the destination prediction pipeline. The process involves candidate generation and reduction using spatial-temporal filtering and multi-target
regression via XGBoost to estimate destination coordinates. The final step is to select the closest matching candidate from the reduced set.

by applying a set of conditions. These conditions are categorised using
statistics from over 850,000 past trips in the training sets of the cities
of Mannheim, Ludwigshafen, Heidelberg, Karlsruhe, and Stuttgart, and
are in line with the findings presented in Table 1. Later, they are
transferred on the international cities Shanghai, London, New York,
Montreal, and San Francisco. These include constraints such as a max-
imum travel speed of 20 km/h, a maximum travelled distance of 3000
metres, and a maximum trip length of 30 min. The reason why these
three thresholds were set as constraints is explained in Section 3.2. It
is possible that there may be no more candidates for a trip, resulting
in removal. The final result of this step is a reduced set of assignable
destination candidates for each rental.

Multi-Target Regression: In the second step, we use these sets of
rental and return data to extract features for the subsequent machine
learning model. For each rental and destination candidate in the set,
we use features such as the time difference between rental and re-
turn, change in battery level, average speed and travel distance from
the candidate reduction. We use the Open Source Routing Machine
(OSRM) (Luxen and Vetter, 2011) to calculate travel distances. This
enables us to plan routes using the city’s bike network. By default, we
use the shortest path, assuming that this is the route chosen by the
user. However, to account for cases where the user does not choose
the shortest path, it is possible to set an adjustable threshold to include
longer routes in the distance calculation. If there is no bike geodata
available for OSRM, we use the shortest route on the road network or,
as a last resort, the air distance. We then use a multi-target regression
model to predict the return coordinates for each destination candidate
in the set. By the end of this step, we have a pair of predicted and
extracted coordinates for each candidate.

Candidate Selection: In the final step, we use an selection algo-
rithm to select one potential final destination for each rental.

To accomplish this, we use the pairs of coordinates from the pre-
vious step to select one candidate for each rental, as illustrated in
Fig. 2. First, we calculate the distance between the GBFS-extracted
and predicted coordinates for each candidate in the set of destination

candidates. This distance is used as a metric of similarity to determine
how feasible a trip is under the given constraints. Then, we select the
candidate with the shortest distance as the final destination candidate
for the rental. All others are disregarded. If two candidates have the
same distance between their predicted and extracted coordinates, one is
randomly selected. This did not happen for any of our over 2.7 million
trips.

For performance reporting, we distinguish between true perfor-
mance and the use of an additional tolerance radius, as in previous
publications. True performance only considers correct matches between
a rental and a return. If the selected candidate does not match the
correct return, it is treated as a false prediction. This ensures that
all other GBFS fields, in addition to the location, are correct. The
tolerance radius considers the final candidate selection to be correct if
the predicted location is within a defined threshold of the actual return
position of the rental. Therefore, we calculate the airline distance be-
tween the predicted coordinates of the final destination candidate and
the actual return coordinates. If this distance is within the threshold,
the selection is considered correct.

3.2. Dataset

The main datasets, labelled O1 and O2 (Operator 1 and Operator
2), used in this study were collected from two public mobility sharing
operators GBFS feeds in version 2.3 and version 3.0 in Germany and
cover the cities of Mannheim, Ludwigshafen, Heidelberg, Karlsruhe and
Stuttgart. We also used non-GBFS public international datasets from
the cities of Shanghai (Heywhale, 2020), London (Au, 2019), New
York (Citi, 2024), Montreal (Sigouin, 2017), and San Francisco (Ham-
ner, 2019), which we have labelled M1 (Miscellaneous 1). Table 2
provides an overview of the operators and their data characteristics.

The datasets contain the features vehicle id, timestamp, latitude, lon-
gitude, battery level in percent, and current range meters in metres from
the GBFS feeds. Since GBFS does not provide GPS trajectories, only the
start and end locations of a trip can be used for later model training
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Fig. 2. Candidate selection process: In this example, the predicted candidate in yellow would be selected as the final destination for the starting location (blue),
as the distance between the extracted GBFS and its predicted coordinates is the shortest compared to the other two pairs (the red pair has the longest distance,
followed by the green pair). However, this would be a false prediction, as the correct candidate is the green pair containing the real extracted destination (green
star). When the tolerance radius is incorporated at a resolution of 500 metres (the middle purple circle), the prediction is classified as correct because the distance

to the real destination is within this later selected threshold.

Table 2

An overview of the public sharing operators used in the study. We used three different datasets, two of which were from German
cities. The third dataset is publicly available to enable better performance comparisons and reproducibility.

Dataset City Missing features Time frame
Mannheim - 31.08.2023-27.10.2024
Ludwigshafen - 31.08.2023-27.10.2024
o1 Heidelberg - 31.08.2023-27.10.2024
Karlsruhe - 31.08.2023-27.10.2024
Stuttgart - 31.08.2023-27.10.2024
Mannheim battery_level 21.01.2025-01.05.2025
02 Karlsruhe battery_level 21.01.2025-01.05.2025
Stuttgart battery level 21.01.2025-01.05.2025
Shanghai battery_level, current range meters 01.08.2016-31.08.2016
London battery level, current range meters 01.08.2017-31.08.2017
M1 New York battery_level, current range_meters 01.01.2017-30.01.2017
Montreal battery_level, current range meters 01.05.2017-31.05.2017

San Francisco

battery_level, current range meters

01.08.2013-30.11.2013

regarding geographical location. For datasets O1 and 02, we were able
to reconstruct all trips using either a non-rotating vehicle_id or another
field which does not rotate during rental and return from the GBFS feed.
The dataset M1 was built using non-GBFS sources and also contains a
static vehicle_id. The vehicle_id is solely used for analysis, not for des-
tination matching. To enhance trip analysis, additional features were
derived, including time diff (rental-return time difference), battery diff
(battery level change), range diff (range change), distance (road path
via OpenStreetMap using OSRM routing), mean _speed distance (average
speed based on distance), and mean speed range (average speed based
on range). As not all of these features are mandatory in the GBFS,
the dataset O2 does not have a valid battery_level, and the dataset M1
additionally lacks current range meters. A performance decrease is to be
expected.

Before training, the data of O1 and M 1 were cleaned to exclude data
points which are assumed to belong to manual redistribution or repairs
to keep the focus on the last-mile trips. To select suitable thresholds

for filtering, we examined the distribution of the features time_diff,
mean_speed distance, mean_speed range, and range_diff, shown in Fig. 3.
Trips were removed if the battery was charged during the journey,
if the time difference exceeded 30 min, if the travel speed exceeded
20 km/h, or if the travel distance exceeded 3000 metres. The speed
threshold is particularly significant, as e-scooters are only permitted to
travel at a maximum speed of 20 km/h according to German law. All
of the above mentioned thresholds are further above the averages of
the reviewed literature in Table 1. It is important that this strict form
of data cleaning is done only in the model training process. Similar
reduction rules are applied in the subsequent testing with the data
pipeline, but to destination candidates rather than preformed trips.
Rather than using the standard train-test split of e.g. 80/20, we
introduce a more reliable, stratified split. We select one week from each
month as the test set and use the remaining weeks for training. This
ensures that weekly and seasonal influences are reflected in both the
training and test sets in a similar way. As O2 and M1 are only used
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Fig. 3. Data distributions of the four features distance, time, battery difference, and mean speed of the trips in the datasets, with the selected threshold for the
future reduction step of candidates. The data is taken from training sets for the cities of Mannheim, Ludwigshafen, Heidelberg, Karlsruhe and Stuttgart, ensuring

that no data leakage into the test set is done.

Table 3

Training and test set trip distribution by city for O1, 02 and M 1. Our datasets contain a total of approximately 2.7 million trips from ten different cities. Datasets

O1 and M1 are split for training and testing purposes.

Dataset Type Cities
Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart
ot Train 307,771 63,588 137,193 63,789 287,376
Test 99,872 21,236 44,610 18,910 91,831
02 Mannheim - - Karlsruhe Stuttgart
Test 59,560 - - 288,769 340,115
Shanghai London New York Montreal San Francisco
Ml Train 48,611 154,892 406,507 320,016 54,611
Test 50,638 135,475 292,007 249,839 23,522

for testing, they are omitted from the rest of this section and will be
referenced again in Section 4. No new model training is needed for
02 as the city models are trained on O1. Therefore, we are not doing
a data split for 02, but we are doing one for M1. Model training is
still required for M1, since no data on the cities is available in another
dataset. This is done in the same way as for dataset Ol. A detailed
breakdown of the training and test trip sets by city can be found in
Table 3.

3.3. Trip subset generation & candidate reduction

In the first step of our pipeline, we generate a subset of plausible
destinations for each rental based on a set of reduction rules to address
the challenge of forming trips with rotating vehicle IDs. The thresholds
of the rules are based on findings from the literature and the charac-
teristics of trips that were previously introduced in our dataset. This
subset, in the following known as ’destination candidates’, is created
by iterating through all rentals and adding potential returns that satisfy
the following conditions:

* RI1: The return time is after the rental time.

* R2: The return time is within 30 min of the rental time.

* R3: The return battery level is less than the rental battery level.

* R4: The battery difference is less than 10%.

* R5: The mean speed is less than 20 km/h.

» R6: The distance on the bike-network (OpenStreetMap, 2025) is
less than 3000 m.

In addition, if a rental and a return are identified as a perfect match,
defined as a time difference of six minutes or less, a range difference
of zero, a battery difference of zero, and a distance of less than 1000
metres, the corresponding return candidate is removed from all other
pairings. This rule is denoted R7. The thresholds for rules R2, R4 and
R6 were determined through data exploration to ensure the removal of
implausible trips. We evaluated the effectiveness of each rule based on:

» The number of correct and wrong eliminated destination candi-
dates.

» The number of still assignable trips (the correct return remains in
the candidate set)

+ The number of non-assignable trips (the correct return is removed
from the candidate set).

As shown in Fig. 4, when comparing the relative number of cor-
rect and incorrect destination candidates before and after candidate
reduction, the number of correct candidates remained above 80% for
all cities except Ludwigshafen. Meanwhile, we were able to reduce
the number of incorrect candidates to around 10% for each city. We
eliminated any influence introduced by the reduction order by per-
muting the rule orders, which resulted in no difference. Therefore, the
most effective reduction rules are R1 — R3, which filter twice for time,
and battery level. This reduced up to 70% of all incorrect destination
candidates for all cities except Karlsruhe, where the reduction was 30%.
An important finding is that, since the battery level is one of the most
important feature for candidate reduction, a performance decrease for
02 and M1 can be expected, since this feature is missing there.

The reduction process introduces an inherent error rate, meaning
that some trips will have no correct candidate destinations after re-
duction and will therefore be unassignable. The error introduced by
that is referred to as the minimal error rate and is shown in Table 4
for each city for O1, 02, and M 1. For the O1 test set, all cities show
that 82%-86% of all trips are still assignable. The O2 test set includes
fewer cities, but the share of trip origins with assignable destination
candidates is higher, between 87% and 91%, indicating better coverage
or predictability in this dataset. Finally, the M1 test set has cities with
a high percentage (87% to 95%) of trips with assignable destinations,
while London and Montreal have lower percentages (69% and 78%).

3.4. Destination prediction model

Next, we introduce the machine learning models that will be used
in the pipeline later on. Several types of machine learning regression
model were trained for each city using the features stated in Table 5.

The target variables are a new coordinate pair consisting of a lati-
tude and longitude value in the same format as the two input variables
used by the model. If a model does not support multi-target regression,
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Fig. 4. The impact of different reduction rules on the relative number of correct (left) and incorrect (right) destination candidates in the O1 test set. During the
candidate reduction process, we observed that the number of incorrect destination candidates decreased significantly, whereas the number of correct candidates

decreased slightly.

Table 4

Assignable and non-assignable trips in the test sets. In most cities, around 80% of trips can be assigned to the correct destination, while the remaining 20%

introduce minimal estimated error.

Set Assignable Cities
Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart
Yes 82,894 17,414 37,027 15,696 78,975
o1 (83%) (82%) (83%) (83%) (86%)
No 16,978 3,822 7,583 3,214 12,856
(17%) (18%) (17%) (17%) (14%)
Mannheim - - Karlsruhe Stuttgart
) Yes 54,432 254,116 299,301
0 ©91%) (87%) (88%)
No 5,128 34,653 40,814
(9%) (13%) (12%)
Shanghai London New York Montreal San Francisco
Yes 46,080 93,477 254,046 194,874 19,993
M1 (87%) (69%) (87%) (78%) (95%)
No 4,558 41,998 37,961 215,186 3,529
(13%) (31%) (13%) (22%) (5%)
Table 5
Features used for the trip destination prediction model.
Feature Type Description
lat_lend Float Start coordinate’s latitude of the vehicle.
Ing_lend Float Start coordinate’s longitude of the vehicle.
time_diff Integer Time difference between rent and return.
battery_diff Integer Battery difference between rent and return.
range_diff Integer Range difference between rent and return.
distance Float Route distance between rent and return.
mean_speed_distance_based Float Mean Speed of the trip based on distance.
mean_speed_range_based Float Mean speed of the trip based on range.

we utilise MultiOutputRegressor from scikit-learn (Pedregosa et al.,
2011).

Since GBFS does not provide GPS trajectories (MobilityData, 2025),
we cannot adapt deep learning techniques that frequently require these
features to our exact problem statement. These include approaches,
using hybrid deep learning approaches, such as graph convolutional
neural networks (GCNs), used by Zhang et al. (2025) for traffic flow
prediction, or a combination of recurrent neural networks (RNNs) and
convolutional neural networks (CNNs), such as proposed by Zhao et al.
(2021) for taxi or Li and Shuai (2020b), and Miao et al. (2022) for
bicycle destination prediction.

Unlike other related works involving CNNs from other modes of
transport (Wu et al., 2025; Noursalehi et al., 2021), an origin—destination
(O-D) matrix was not adopted here. While O-D matrices capture
aggregate traffic demand between areas and work well for origin—
destination demand prediction, using them to predict the exact location

of a returning trip is insufficient, as they ignore contextual factors such
as battery state, weather, and temporal dynamics, and even probabilis-
tic approaches would yield identical predictions for each timestamp
within a region. Machine learning models are therefore required to cap-
ture these nuances and generate accurate, context-sensitive destination
predictions.

In the performance evaluation, several common metrics from the
field of machine learning are utilised. The evaluation of internal models
is conducted through the utilisation of the mean square error (MSE)
(Eq. (1)), the mean absolute error (MAE) (Eq. (2)), and the R? (Eq. (3))
coefficient of determination. We use their respective implementations
from scikit-learn (Pedregosa et al., 2011), which are defined as follows:

MSEG.5) = - 30 - 5)° o)
i=1
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Table 6

Performance comparison for Mannheim on O1l. We tested multiple models
using the Mannheim dataset and found that the XGBoost model produced the
best results.

Model type Multi-Target MSE R? MAE
XGBoost Yes 4.01 x 1073 0.92 0.004
LightGBM No 4.63x 1073 0.91 0.004
Catboost Yes 47 %1073 0.91 0.004
Linear Regression No 7.01 x 1073 0.869 0.006
Ridge Regression No 7.01 x 107> 0.869 0.006
Random Forest Yes 53x107* 0.84 0.015
Support Vector Machine No 0.001 -2.12 0.034
l n
MAE(y,y) = — i —Ji 2)
.9 "2“” i
n a2
20 Zi:](yi -9
Ry.»n=1-FG——7 3
Zi= i =P

Further, in the subsequent chapter we introduce the metrics root mean
squared error (RMSE) (Eq. (4)), precision (Eq. (5)), and accuracy (Eq.
(6)), also with their implementations from scikit-learn (Pedregosa et al.,
2011), which are defined as follows, where TP are true positives, TN
are true negatives, FP area false positives, and FN are false negatives.

n
N 1 N
RMSE(y, §) = 4| - 20 = 9))? )
i=1
Precision = _Tre 5)
TP+FP
Accuracy = TP+TN 6)

TP+TN+FP+FN

As shown in Table 6, the XGBoost model, trained as a multi-target
regressor to predict destination latitude and longitude, outperformed all
other models. It achieved a MSE of 4.0l1e™ and a R? of 0.92. We also
tested it with additional time-related features, such as day of the week
and time of day, in both single-feature and one-hot encoded forms, but
found no improvement in performance. All features except lat lend and
Ing lend were normalised using scikit-learn’s StandardScaler (Pedregosa
et al.,, 2011). latlend and Inglend were not normalised to preserve
their absolute geographic values, which are essential for accurately
representing spatial relationships. All models, LightGBM, CatBoost,
Linear Regression, Ridge Regression, and Random Forest performed
well, whereas the Support Vector Machine underperformed, likely due
to the unscaled spatial features and targets hindering the model’s ability
to capture underlying patterns. Despite further hyperparameter tuning,
no significant performance enhancement was achieved.

We decided against incorporating deep learning models, such as
deep neural networks (DNNs), into our research. Our XGBoost model
already achieved a high level of performance. Given these results, the
potential performance gains from deploying a more computationally
expensive deep learning approach would likely be marginal and not
justify the considerable training and deployment costs. Instead, we
focused on traditional machine learning methods, which offered a
more efficient balance between accuracy, interpretability, and resource
consumption.

All models were validated using tenfold cross-validation to ensure
stable performance. Given these results, further training and optimi-
sation were performed using XGBoost, as it had consistently outper-
formed the other models in all cities (see Table 7).

Extended training and optimisation were performed for each city
using the aforementioned features. Hyperparameter tuning for n esti-
mators, max_depth, learning rate, subsample, and colsample bytree in the
XGBoost model was performed using Optuna (Akiba et al., 2019) to
minimise the mean squared error (MSE). The spaces were adjusted sev-
eral times during training when upper or lower bounds were reached.
The random seed was set to 42 for all cities to ensure reproducibility.
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The optimisation process was performed over 500 trials, with ten-
fold cross-validation performed on each trial to evaluate performance.
Fig. 5 shows the convergence of MSE and R?, which stabilised after
fewer than 500 trials, indicating that near-optimal hyperparameter
values were achieved. For the M1 hyperparameter, see Table A.12.

Taking into account the importance of the features, the geographic
features, specifically lat lend and Ing lend, consistently emerge as the
most important predictors of destinations in all cities, dominating both
weight and gain metrics as shown in Fig. 6. Weight measures how
frequently a feature is used in the model’s splits, while gain quantifies
the improvement in prediction accuracy attributed to that feature (Pe-
dregosa et al., 2011). In Mannheim, these features contribute 26% and
23% in weight and 36% and 43% in gain. Similarly, in Karlsruhe,
lat lend and Ing lend dominate the gain-based importance, contributing
over 65% together. The feature distance is another key factor, ranking
just below the geographical coordinates in importance, with a weight
contribution of approximately 15—18% between cities. Features such as
battery diff, speed distance, and time diff are of moderate importance,
while range diff and speed range are consistently among the least in-
fluential features, contributing minimally to the model’s predictive
power.

4. Results and discussion

This section presents an evaluation of destination prediction. We
analyse the training performance of the multi-target regression model,
both on its own and in combination with candidate reduction and
final candidate selection. Additionally, we compare the results with
those of state-of-the-art methods, discuss an inter-city transfer learning
approach, and possible security implications for the GBFS.

4.1. Multi-target regression model training performance

Table 8 shows the performance of the trip destination prediction
models trained on the O1 and M1 datasets. No new models were
trained for O2 as the models from O1 were used later.

Most cities in the O1 dataset — including Mannheim, Ludwigshafen,
Heidelberg and Karlsruhe — demonstrate high predictive accuracy,
with low RMSE, MSE and MAE values, and high R? scores ranging from
0.75 to 0.92. However, Stuttgart stands out as an outlier, with higher
errors (an RMSE of 1.029 and an MSE of 1.05989) and a lower R? of
0.21, indicating poorer model performance there.

For the M1 dataset, performance varies more widely between cities.
San Francisco and Shanghai achieved very low RMSE values (0.001 and
0.011, respectively) and high R? values (0.99 and 0.95, respectively),
indicating accurate predictions. New York, Montreal and London have
moderate results; however, London has the lowest R? (0.76) and higher
error values among them, indicating weaker performance. Distance
error metrics also follow this trend, with San Francisco showing min-
imal median and mean distance errors, while other cities have higher
values. Overall, the M1 dataset results reveal greater variability due to
the different time frame sizes and the absence of the battery level and
current range_meters attributes.

4.2. Performance with candidate reduction and destination selection

In addition to the previously introduced model performance, the
effect of using the entire pipeline on the dataset is examined. For
performance evaluation, we rely solely on the accuracy metric, as there
are only two possibilities: a correct or false selection of the destination
candidate. This does not allow us to report other metrics, such as recall,
precision or the F1 score. We also differentiate between various levels
of resolution, ranging from 11 metres (true performance), where a
prediction is only considered correct if the correct destination candidate
is selected from the set, to 1000 metres, where the selected destination
candidate must be within this tolerance radius to be considered correct.
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Table 7
Optimal hyperparameters for XGBoost models by city for O1. We used Optima to optimise the most important XGBoost model hyperparameter to improve
performance.

Parameter Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart Range
n_estimators 1148 843 435 682 126 50-1,500
max_depth 16 15 15 14 4 3-20
learning rate 0.01 0.01 0.02 0.01 0.06 0.01-0.1
subsample 0.96 0.97 0.90 0.94 0.69 0.5-1.0
colsample_bytree 0.89 0.76 0.99 0.80 0.81 0.5-1.0
random_seed 42 42 42 42 42 42
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Fig. 5. The figure shows the convergence of MSE (left) and R? (right) during Optuna hyperparameter tuning for O1. The MSE and R? converge after fewer than
500 trials, indicating that near-optimal hyperparameter values were achieved.
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Fig. 6. Feature Importance for Destination Prediction by XGBoost Weight (left) and Gain (right) for O1. latlend and Ing lend, consistently emerge as the most
important predictors of destinations in all cities.

Table 8
Trip Destination Prediction Performance on the Test Set of O1 and M 1. Most cities demonstrate high predictive accuracy, with
low RMSE, MSE, and MAE values and high R? scores.

Set Metric Cities
Mannheim Ludwigshafen Heidelberg Karlsruhe Stuttgart
RMSE 0.006 0.006 0.007 0.008 1.029
MSE 4.01e7® 3.69¢7° 5.43¢73 6.78¢73 1.05989
o1 MAE 0.004 0.003 0.004 0.005 0.021
R? 0.92 0.90 0.75 0.84 0.21
d 446m 367m 493m 601 m 893m
d 582m 521m 664m 744m 3,472m
Shanghai London New York Montreal San Francisco
RMSE 0.011 0.015 0.007 0.009 0.001
MSE 0.0001 0.002 6.23¢75 9.40¢7 1.08¢5
M1 MAE 0.008 0.009 0.004 0.005 0.0003
R? 0.95 0.76 0.84 0.77 0.99
d 1045m 902m 300m 344m 26m
d 1336 m 1259 m 649m 763m 60m
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Table 9
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Accuracy by distance threshold and region on the test sets. Performance increases as resolution decreases, ranging from 0.49 to
0.77 for true performance in O1, with a slight decrease in O2 and high variation in M1 due to missing features.

Set Resolution Cities
Mannheim Heidelberg Ludwigshafen Karlsruhe Stuttgart
@I11m 0.61 0.56 0.77 0.60 0.49
o1 @250m 0.70 0.66 0.81 0.66 0.56
@500 m 0.81 0.79 0.86 0.76 0.69
@1000 m 0.94 0.94 0.94 0.92 0.88
Mannheim - - Karlsruhe Stuttgart
@1lm 0.42 - - 0.18 0.23
02 @250m 0.59 - - 0.62 0.44
@500 m 0.75 - - 0.89 0.67
@1000 m 0.89 - - 0.99 0.92
Shanghai London New York Montreal San Francisco
@I1lm 0.34 0.11 0.17 0.15 0.70
Ml @250m 0.42 0.37 0.53 0.47 0.79
@500 m 0.58 0.66 0.81 0.76 0.89
@1000 m 0.85 0.90 0.95 0.93 0.97

We determined that a region of 500 metres offered the best trade-off
between high accuracy and reasonable resolution, in line with state-of-
the-art performance. Further testing of other resolutions indicates that
accuracy converges after 1000 metres, as shown in Fig. A.7.

Table 9 shows the detailed accuracy metrics for the O1, O2 and
M1 test sets. Generally, performance improves as resolution decreases
for all test sets. The mean accuracy for the Ol test set is 0.60 for
true performance and 0.78 at 500 metres. For 02, true performance
decreases by an average of 0.29 and remains steady at 500 metres.
This decrease in performance was to be expected, as the battery con-
sumption feature is unavailable in the dataset, resulting in larger sets
of potential destinations with over 100 candidates. For the M1 test
set, the accuracy values are lower for true performance, with London
exhibiting the lowest resolution at 0.11. However, accuracy improves as
the distance threshold increases, reaching values of up to 0.89 for San
Francisco at 500 metres. The lower overall true performance on M1
is related to the missing features battery level and current range meters,
which impacted the candidate reduction step of the solution.

4.3. Comparison with state of the art

We compared our models with several state-of-the-art approaches,
including Liu et al. (2024), Liu et al. (2019), Jiang et al. (2019), Du
et al. (2018), Jiang et al. (2021), and Dai et al. (2018). As far as we
are aware, there are no other works that provide a pipeline or baseline
tailored to GBFS. Therefore, we compare our pipeline with models
in the field of trip destination prediction in public sharing systems.
Most of the works we compared relied on the 2017 Beijing dataset.
However, this dataset is no longer publicly accessible and could not
be obtained upon request. To ensure reproducibility and comparability
across diverse urban contexts, we additionally evaluated our models
on five international, publicly available datasets (M1). Notably, this
set includes the 2017 New York data also used by Dai et al. (2018),
enabling at least partial direct comparison. As mentioned earlier, we
are not comparing our results with those of approaches that use GPS
trajectory data as input features, such as the works from e.g.Zhang
et al. (2025), Zhao et al. (2021), Li and Shuai (2020b), and Miao et al.
(2022). These approaches focus on a different aspect of the problem
and are therefore not comparable.

The results, presented in Table 10, show that our models consis-
tently achieve higher accuracy across multiple cities and configura-
tions, even under more demanding prediction settings and without
relying on user-specific data.

Dai et al. (2018)’s approach predicts station clusters in New York,
achieving a maximum accuracy of 0.39. When they adapt this approach
to our setting by treating each station as its own class, the performance

10

drops to 0.14. In contrast, our own pipeline for New York, trained on
a comparable subset of the same 2017 dataset, achieves an accuracy of
up to 0.66, reflecting a substantial improvement of 52%.

Compared to other station-based methods, such as those described
in Liu et al. (2019) and Du et al. (2018), our approach achieves higher
accuracy in all other cities for which data is available. Notably, the
aforementioned methods rely on user identifiers or profile features,
whereas our models operate without such information. As we do not
have access to their data, a direct comparison is not possible. How-
ever, our mean result of 76% for all tested cities suggests that our
performance exceeds that of the their methods.

The LSTM-CNN model proposed by Jiang et al. (2019) does not re-
port accuracy, but shows weaker performance on other metrics (preci-
sion of 0.54). This suggests that, in certain configurations, our XGBoost-
based pipeline may outperform certain deep learning architectures
with access to user-specific data. Similar results can be derived for
the approach proposed by Jiang et al. (2021), which also only states
resolution within a 500-metre radius for their LightGBM model.

We also compare our models with the current state of the art, as
defined by Liu et al. (2024). Across nearly all cities — except Stuttgart,
London and Shanghai — our models outperform theirs in terms of 500-
metre resolution, even when they are using user-specific data. When
considering Liu et al. (2024)’s reported non-user-specific models, our
approach yields gains of between 2% and 30%. Lower gains are mostly
due to a lack of key features such as battery level or current range in the
international datasets. Furthermore, our mean accuracy of 76% across
all cities is comparable to their approach when using user-specific data.
In contrast, we achieve a mean performance increase of 20% when
compared to the non-user-specific data approach.

These results suggest that our method is a promising alternative
to existing approaches. Although direct dataset-level comparisons are
limited by data availability, our consistent performance across ten
different urban environments, combined with the generalisability of our
feature set, indicates that our approach is robust and scalable, even in
the absence of user-specific information.

4.4. Possibility of inter-city transfer learning

A major challenge in applying machine learning for trip destination
prediction is the reliance on ground truth data. Data is often unavail-
able because many modern datasets only provide information where
an algorithmic reconstruction of trips is impossible. Inter-City transfer
learning presents a potential solution: a model trained on one city, or a
combination of cities, could be adapted to predict trips in a city without
ground truth data.

In our investigation of this approach, we encountered several limita-
tions that ultimately rendered inter-city transfer learning infeasible for
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Table 10

Performance comparison with state-of-the-art solutions. Our models achieve superior accuracy without relying on user-specific

data. They outperform all previously reported methods across multiple cities and operators, even under more demanding resolution

levels on several datasets from different years.

Paper Model type City Accuracy Precision
Own (M1) XGBoost San Francisco 0.89¢ -

Own (01) XGBoost Ludwigshafen 0.86° -

Own (01,02) XGBoost Mannheim 0.81¢, 0.75° -

Own (M1) XGBoost New York 0.81¢ -

Own (01) XGBoost Heidelberg 0.79¢ -

Own (01,02) XGBoost Karlsruhe 0.76¢, 0.89°¢ -

Own (M1) XGBoost Montreal 0.76° -

Liu et al. (2024) XGBoost Beijing 0.76%4, 0.56° 0.75%4, 0.55°
Own (01,02) XGBoost Stuttgart 0.69¢, 0.67¢ -

Jiang et al. (2021) LightGBM Fuyang - 0.68%¢
Own (M1) XGBoost London 0.66° -

Own (M1) XGBoost Shanghai 0.58¢ -

Liu et al. (2019) XGBoost Beijing 0.5724 -

Jiang et al. (2019) LSTM-CNN Beijing - 0.544
Du et al. (2018) LightGBM Beijing 0.45%d -

Dai et al. (2018) Random Forest New York 0.3924, 0.1424 -

“Predicts stations; "Predicts station clusters; “Result within 1000 x 1000 m; YUses user-specific data; “Result within 500 m.
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Fig. A.7. Fine granular accuracy by distance threshold and region on the test sets. Further testing of other resolutions indicated that the accuracy converges after

1000 metres.

Table 11

Accuracy by distance threshold and city using an inter-city transfer learning
approach. The model trained on Mannheim data was applied to trips in other
cities.

destinations relative to Mannheim’s coordinate system. This leads to
a 100% error rate and unusable results in other cities.

Resolution Cities 4.5. Security implications for the GBFS

Heidelberg Ludwigshafen Karlsruhe Stuttgart
@I11m 0.21 0.23 0.20 0.37
@250m 0.21 0.23 0.20 0.37 Although the GBFS is designed to provide open access to shared
@500m 0.21 0.23 0.20 0.37 mobility data while protecting personal information, retrospectively
@1000m 0.21 0.23 0.20 0.37

our purposes with XGBoost: As shown in Fig. 6 before, spatial features
such as lat lend and Ing lend are some of the most important predictors
for destination. These coordinates are inherently city-specific, reflecting
the local distribution of stations, demand centres, and typical travel
patterns. Additionally, local factors such as topology, infrastructure
layout, and zoning regulations strongly influence mobility dynamics.
Consequently, the relationships learned from one city’s spatial structure
most likely cannot be generalised to another city. We nevertheless
attempted transfer learning by using the model trained on Mannheim
data to predict destinations for trips in other German cities. The results
are summarised in Table 11.

Overall, performance is consistently lower than that of models
trained specifically for each city (see Table 10 for comparison). No-
tably, all correct predictions occurred when the filtering step reduced
the set of destination candidates to a single option, making the machine
learning step irrelevant. This outcome was expected. Since the model
has never encountered coordinates outside of Mannheim, it predicts

11

predicting destinations raises potential privacy concerns. Our approach
does not directly reveal who was using a specific vehicle at a given time
since GBFS datasets do not contain user identifiers. However, predicted
destinations, when combined with temporal and spatial patterns, can be
used to infer habitual trips, particularly in small networks or areas with
few users.

For instance, in smaller networks or low-density environments,
repeated patterns could enable observers to link trips to particular
individuals based on their departure and destination locations and
times. Similarly, in settings where trips are sparse, even anonymised ve-
hicle IDs could indirectly reveal daily routines or behavioural patterns.
Conversely, in large urban networks with high vehicle turnover and
many users, such identification is significantly more challenging due to
the sheer volume of trips and the absence of user-specific identifiers.

These observations suggest that, while GBFS data remains broadly
anonymised, enhanced predictive methods can partially reconstruct
travel behaviours that may previously have been considered private.
Therefore, operators and regulators should be aware of the potential
for indirect inference of user habits.
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Table A.12

Journal of Cycling and Micromobility Research 7 (2026) 100105

Optimal hyperparameters for XGBoost models by city for M 1. We used Optima to optimise the most important XGBoost model

hyperparameter to improve performance.

Parameter Shanghai London New York Montreal San Francisco Range
n_estimators 478 791 476 447 461 50—1,500
max_depth 7 14 14 15 15 3-20
learning rate 0.02 0.02 0.09 0.08 0.09 0.01-0.1
subsample 0.69 0.68 0.99 0.98 0.83 0.5-1.0
colsample_bytree 0.63 0.89 0.89 0.97 0.78 0.5-1.0
random_seed 42 42 42 42 42 42

5. Conclusion

This study demonstrates the feasibility of retrospectively predicting
trip destinations using datasets from public sharing systems with ro-
tating vehicle IDs. By generating a subset of plausible destinations and
applying a machine learning model, accurate predictions were achieved
even with rotating vehicle IDs.

Models trained for five German cities achieved an average accuracy
of 77% within a 500-metre radius, outperforming existing methods by
21% (when they do not use user features) and performing similarly
(when they do use user features). Comparable results were obtained
on international datasets from Shanghai, London, New York, Montreal
and San Francisco, with minor losses due to missing features, achieving
an average accuracy of 74%.

Beyond methodological contributions, our approach offers practi-
cal value for operators and city planners. For operators, destination
predictions enable proactive fleet rebalancing, targeted pricing or in-
centive schemes, and efficient planning of charging or maintenance
operations. For city planners, predicted destinations reveal demand
hotspots and mobility gaps, support infrastructure investment such as
bike lanes and parking zones, and highlight opportunities for integra-
tion with public transport. Moreover, this solution can be combined
with other machine learning approaches — such as demand predic-
tion, traffic simulation, or vehicle rebalancing models — to create
more comprehensive decision-support systems. Together, these applica-
tions demonstrate that destination prediction can directly support both
efficient system management and sustainable urban mobility planning.

Future work could explore performance variations across cities,
refine the candidate reduction process to minimise error and investigate
likelihood models to handle cases where there are no correct destina-
tion candidates. Moreover, future work could address how to adopt a
similar pipeline in cities where ground truth data is unavailable and
how the approach would need to be adapted to accommodate different
spatial characteristics, such as points of interest, using the first results
of our inter-city transfer learning approach. Furthermore, we plan to
use explainable Al methods such as SHAP to investigate differences in
traffic flow and demand hotspots between original and predicted trips
at the feature level. Finally, we intend to integrate this solution into our
future real-time data processing pipeline to provide real-time analytics
across multiple operators and cities.
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Appendix. Additional insights

See Algorithm.
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Algorithm 1 Trip Destination Prediction Pipeline

1: procedure PHASE 1: CANDIDATE GENERATION AND REDUCTION
2: Load trip data from GBFS in parallel

3: for each trip record do

4: Handle missing or invalid data

5: Extract rentals and returns with GBFS features

6: end for

7: for each rental do

8: for each return in time frame do

9: Calculate temporal and spatial features: time_diff, bat-

tery_diff, distance, speeds

10: Apply time, battery, speed and distance filters
11: if non-moving trip detected then
12: Mark as definitive match
13: else
14: Add to candidate set
15: end if
16: end for

17: end for
18: Output: Destination candidate mapping
19: end procedure

20: procedure PHase 2: MuLTI-TARGET PREDICTION

21: Load trained ML model and scaler

22: for each rental with candidates do

23: for each candidate return do

24: Prepare feature vector: coordinates, time, battery, range,
distance, speeds

25: Scale features using trained scaler

26: Predict return coordinates using ML model

27: Calculate distance from predicted coordinates to actual
return location

28: end for

29: Store all predictions with distances for candidate selection

30: end for
31: end procedure

32: procedure PHase 3: CANDIDATE SELECTION

33: for each rental do

34: Select candidate with minimum predicted distance as final
prediction

35: end for

36: Evaluate predictions (confusion matrix & evaluation metrics)

37: end procedure

Data availability

A subset of the data and the used source code is available on GitHub.

Further data is available on request.
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