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Figure 1: Visualization of WEAR accelerometer data at sensor location: left arm of an exemplary subject

Abstract

This technical report presents the methodology and results of Team
HARMA’s participation in the HASCA-WEAR Challenge. The chal-
lenge uses the WEAR dataset, which involves classifying 18 sports
activities using inertial-based data. Additionally, the dataset in-
cludes a prevalent "null" class, resulting in 19 classification targets
overall. The dominance of the null class introduces class imbalance,
akey challenge in activity prediction. In this report, we focus on mit-
igating difficulties posed by this imbalance. To this end, we explore
preprocessing strategies, including adjusted undersampling, which
we adopt for the final challenge submission, as well as postprocess-
ing techniques such as optimized thresholding based on prediction
confidence. This report outlines our methodology, design choices,
and evaluation results. Our approach uses an ensemble of gradi-
ent boosting methods applied to statistical and frequency-domain
features extracted from raw sensor data.
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1 Introduction

Human Activity Recognition (HAR) based on inertial-based data
is a practical research topic with applications in areas like sports
monitoring, healthcare, and wearable devices, [4]. The HASCA-
WEAR Challenge provides a structured way to test different HAR
approaches on a real-world dataset, the WEAR dataset by Bock et
al, [2].

This section presents the dataset and classification task, high-
lighting specific characteristics that make the task more challenging.
Section 2.2 details feature engineering, Section 3 introduces the
predictive models, and Section 4 explores strategies for handling
the null class. Section 5 presents results, with the key finding be-
ing that balancing misclassifications between null and non-null
classes significantly improves performance. Section 6 summarizes
the findings.

1.1 Description of the Task

The WEAR dataset [2] comprises recordings of 18 different outdoor
sports activities, including various forms of jogging and stretching
exercises. The data was collected from 22 participants across 11 dif-
ferent locations, capturing realistic variations in performance and
environmental conditions. The dataset contains two types of data:
visual recordings from a first-person GoPro camera and inertial-
based measurements from accelerometers. However, the HASCA-
WEAR Challenge restricts participants to using only the inertial-
based data for activity recognition. Inertial-based data is collected
from four sensor placements: the left and right arms, and the left
and right legs. Each sensor captures acceleration along the three
orthogonal axes (x, y, z), measured in units of gravitational acceler-
ation (1g = 9.81 m/s?). The sampling rate is 50 Hz, corresponding to
50 data points per second for each axis. The training data consists
of sequences where multiple activities are performed consecutively,
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with intervals between activities where none of the 18 predefined
activities is performed, labeled as the null class.

1.2 Specific Characteristics of the Challenge
Data

The challenge hosts provide a training and a challenge dataset
which differ significantly from each other. The key differences
between the two are outlined below.

1.2.1  Lack of Temporal Context. Instead of full sequences of activi-
ties, as in the training data, the challenge set consists of randomly
sampled, 1-second sliding windows, which contain 50 accelerom-
eter measurements per axis. This limits the ability to compute
features that rely on longer time spans or movement patterns over
several seconds. Additionally, no time-based postprocessing, such
as smoothing or majority voting across adjacent time windows,
which could help stabilize predictions, is possible.

1.2.2  Availability of Only One Sensor Location at a Time. Each
test sample contains data from only one sensor location out of the
four available locations which were simultaneously provided in the
training data. The sensor location is provided and does not have
to be estimated. This constraint makes it harder to incorporate
full-body motion information, but reflects real-world use cases
where only a limited number of sensors (e.g., on a smartwatch) are
available.

1.2.3  Unseen Test Subjects. The challenge set includes data from
four participants who do not previously appear in the WEAR
dataset. This introduces additional variability due to personal differ-
ences in movement patterns and sensor placement, and increases
the difficulty of generalizing the model to unseen individuals.

1.3 Null Class Dominance

The null class (label 0), this is the class that includes all activity
segments that do not correspond to one of the 18 defined workout
classes (labels 1-18), presents a significant challenge. As shown
in Figure 2, the null class appears notably more often than any
individual activity class. The decoded activities are the following:
null: 0, variations of jogging: 1-5, variations of stretching: 6-10,
variations of push-ups: 11, 12, variations of sit-ups: 13, 14, burpees:
15, variations of lunges: 16, 17, and bench-dips: 18.

2 Data Processing and Feature Extraction

2.1 Preprocessing of Training Data

2.1.1  Generation of One-Second Samples. As previously described,
the nature of the training data differs significantly from that of the
test data. To make the two datasets compatible, we preprocess the
training data by segmenting it into one-second intervals. These
intervals are extracted from the continuous activity recordings of
each subject. Each second contains measurements of 3D accelerom-
eter data (a*, a¥, a%).

Importantly, each sensor location (e.g., left arm, right leg) is
treated independently to meet the requirements of the challenge
data format. This means that from a single one-second time segment
across all four sensor positions, we obtain four separate training
samples, one for each location.
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Figure 2: Distribution of class labels in the processed training
set. Label 0 corresponds to the null class, while labels 1 to 18
represent the workout activities. The null class is assigned
to data segments not belonging to any of the predefined
activities.

2.1.2  Subject-Based Train-Test Split. To evaluate model generaliza-
tion, we perform a subject-based train-validation-test split. Given
that the training set includes subject IDs, we allocate approximately
70% of the 22 individuals to the training set, and the remaining 30%
are evenly split between validation and test sets. Since each sub-
ject contributes a similar amount of data, this results in a roughly
70/15/15 split of the overall one-second samples. This setup mimics
the challenge condition where the model must generalize to unseen
participants, which is crucial, as the execution of activities often
varies with individual body characteristics, habits, and preferences.

2.2 Feature Engineering

Our approach relies on engineered features derived from the raw
accelerometer data. Each sample consists of 50 time steps across
the three axes, resulting in 3 - 50 measurements per sample. From
this data, we extract features that summarize key statistical and
frequency-related characteristics of the signal. We calculate features
as suggested by last year’s challenge winners, Van Der Donckt et
al. [7] and extend them with other common statistical features. We
first examine single-axis features, followed by multi-axis features.

2.2.1 Single-Axis Features. We compute features separately for
each of the three axes (x, y, and z). These features are categorized
into two groups. The first are time domain features which describe
the statistical properties of the signal over time. The second are fre-
quency domain features which capture the periodic characteristics
of the signal by applying a Fourier transform. This is particularly
useful for activity recognition, as many physical activities exhibit
repetitive patterns.

Let a, € R denote the measurement at time step n € {1,...,50}
on axis j € {x,y,z}. The full time series for axis j is denoted as

i e (o) J
al = (ap,...,a5).

2.2.2  Multi-axis Features. Next, we derive the multi-axis features
by combining information across multiple sensor axes to compute
a single feature. We define the Signal Magnitude Vector (SMV)

as smop, = \/(aﬁ)z + (a,g{)2 + (a%)? with smo = (smon)neqr,. N}
which serves as the basis for several features used. In addition, we
compute other statistical and orientation-based features such as
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the tilt angle derived from [1]. We list the computed features in
the supplementary material.! Based on these features, we aim to
predict the correct activity labels using the models introduced in
the following section.

3 Feature-based Model
3.1 Classification Model

We evaluated several gradient-boosted decision tree (GBDT) mod-
els, which are particularly effective for tabular data due to their
ability to handle heterogeneous feature types and complex interac-
tions. The models considered include LightGBM [5], known for its
efficiency, GPBoost [6], which extends GBDTs with Gaussian pro-
cess components to capture structured dependencies. In addition,
we included TabM [3], an MLP-based deep learning architecture
tailored for tabular data that admits unbalanced data. Among these,
LightGBM delivered the most effective and consistent performance
under our configurations and tuning efforts, and is therefore used
to report the majority of results in the following sections.
Importantly, one single model is trained jointly across all sensor
locations, rather than training distinct models for each location.

3.2 Ensemble Model

Building on the strengths of the individual classifiers, we employed
an ensemble of M independently trained models to further im-
prove predictive performance and robustness. For each one-second
test sample, each model outputs class probabilities (p]");co,...18}»
where pI” denotes the predicted probability that the true label cor-
responds to class i according to model m. Now for our ensemble
method, we choose the final predicted label i* to be obtained via
majority soft voting over the highest label probability

i* = argmax (p]")me(1,...M}-

i€{0,...,18}
We aim to profit from the individual strengths of the models through
this ensemble method.

4 Mitigating the Null Class Imbalance

The class imbalance caused by the dominance of the null class
affects predictive performance. To illustrate this effect, we present
preliminary experimental results, in the form of confusion matrices
generated by a LightGBM model, in this section. These initial results
reveal that the imbalance causes a high number of misclassifications,
where the model incorrectly predicts the null class even though the
ground truth corresponds to one of the 18 defined activities (see
Figure 3(a)).

In this section, we explore three strategies to mitigate the impact
of the dataset’s class imbalance.

The first strategy, presented in Section 4.1, is based on the hy-
pothesis that, unlike activity classes 1 to 18, the null class lacks a
consistent behavioral pattern. It likely contains a broad range of
motions, which makes it more challenging for the model to learn
a clear and reliable representation. Hence, we omit the null class
entirely from the training set and then apply a confidence-based
projection onto the null class.

!Supplementary information about the computed features is available at https:/github.
com/rilink/HARMA.
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Figure 3: Confusion matrices of the same LightGBM model
under two different normalization schemes where the rows
represent the ground truth classes and the columns represent
the predicted classes. (a) Row-normalized: each row sums to
one, showing recall per class. (b) Column-normalized: each
column sums to one, illustrating precision per predicted class.
The decoded class labels can be revisited in Section 1.3.

In the second strategy, in Section 4.2, we acknowledge that the
null class may contain some underlying structure. However, we
aim to limit the null class’s influence on predictions by introducing
an adjusted undersampling technique.

The third strategy, in Section 4.3, again involves a confidence-
based thresholding approach, allowing the model to selectively
project predictions onto or away from the null class. Now the null
class itself was involved in training.

4.1 Leaving out the Null Class from Training
and Thresholding

Due to the hypothesized lack of a learnable pattern in the null
class, in this strategy we exclude samples labeled as null entirely
from the training set. Consequently, we analyze the predicted class
probabilities and apply confidence-based thresholding. Specifically,
if the maximum predicted class probability falls below a predefined
threshold, we project the prediction onto the null class label. This
projection is formalized by 7, : [0,1] 18, {0,1,..., 18}, where
th; € [0,1] fori € {0,1,...,18} and th; = thj for i, j € {1,...,18},
denoting a confidence threshold. Since the 18 activity classes occur
with similar frequencies across the training samples, we choose to
assign the same threshold for all classes to reduce computational
costs during threshold optimization. For each modelm € {1,..., M},
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we define the projection by
1] (Pg:n)

arg max (p/"),
ie{1,...,18}

Tnn = (Pieq1,...18) 7 inn 1]tk

i*nn>

with iy, :
where the subscript “nn” indicates the non-null setting, as the null
class is absent from both the training data and the predicted outputs.
The null class is hence assigned if the above indicator function eval-
uates to zero, which is the case when no probability (p]");c(1,...18}
passes the threshold, leading to 7 ((p]")ic(1,...,18)) = inn 0= 0.
However, in practice, the null class might indeed contain struc-
tured patterns, such as repeating transitions between activities, like
getting up or laying down for the next activity, drinking something,
or resting phases in general. This observation suggests that exclud-
ing the null class entirely discards important information, therefore,
the inclusion of the null class in the training set is reconsidered in
the next strategy.

4.2 Undersampled Null Class

Instead of removing the null class, we reintroduce it into the training
set. To mitigate the imbalance illustrated in Figure 3(a), we apply
undersampling to the majority class, the null class. This adjustment
aims to reduce the number of activity samples that are incorrectly
classified as null.

To determine an appropriate undersampling amount, we com-
pute the average number of samples per class, denoted as (15},
over all activity classes i € {1,...,18}. We then randomly sam-
ple pi(1,.. 18} instances from the null class to match this average.
This helps balance the training data and is supposed to reduce bias
towards the null class.

i
Predicted Class

(@)

oose [T o oS

1 o 0 o

nose

B oo oo ocoo coon oo con oco0

01 ocos coos oo o

e cooa oo coss  oose

(b)
Figure 4: Confusion matrices of the undersampled LightGBM
model where the rows represent the ground truth classes
and the columns represent the predicted classes. (a) Row-
normalized and (b) Column-normalized.
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After applying undersampling, the null class no longer dom-
inates the predictions, as seen in the row-normalized confusion
matrix in Figure 4(a), effectively reducing the mislabeling of ac-
tivity samples as null. However, the column-normalized matrix in
Figure 4(b) reveals that many actual null class samples are now
being confused with activity classes, which can be seen by the
more heavily coloured first row, indicating a trade-off introduced
by undersampling.

To balance these opposing effects, we introduce an adjustable
undersampling method. Instead of undersampling the null class
down to the mean class size p(; 13}, we define an adjusted un-
dersampling size by adding a tunable hyperparameter adj € N to
obtain ,ui{i?] 18) = {118y F adj which is the adjusted amount
of sampleé we draw from the null class. This provides a way to
optimize model performance by finding the ideal trade-off between
the two types of misclassification.

4.3 Null Class Thresholding

To address the null class imbalance further, we again introduce a
threshold-based method to improve predictive performance. Simi-
lar to the approach in Subsection 4.1 we apply confidence-based
thresholding. We define the thresholds

(the, thy, ..., thig) € [0,1]"  with th; = th for i, j € {1,...,18}.

Again, since the 18 activity classes occur with similar frequencies

across the samples, we choose to assign the same threshold for all

classes similar to Section 4.1. The threshold for the null class, thy,

is treated separately and may differ from the shared threshold.
For any model m € {1,... M}, we define

7 (pidiefo,...18) 1 Aehy 1] (D)
+inn - Yok ) PF) ey, 11(PFE)

where we again have i* = argmax (p;) and i}, = argmax (p;)
i€{0,...,18} ie{1,...,18}

for which i},, = i* if i* # 0.

Intuitively, if the highest predicted probability p; corresponds
to the null class and exceeds its threshold thy, the predicted label
remains the null class, as expected. However, if the null class has
the highest confidence but its value does not exceed thy, we instead
consider the next most confident class ij,,, excluding the null class,
and assign it as the predicted label, provided its confidence exceeds
its corresponding threshold th;: .

Conversely, if the highest p; corresponds to any of the activity
classes besides the null class, and exceeds its threshold th;, then
i is selected as the predicted label. If the confidence is below the
threshold, we do not select the second-best activity class, since
it will also be below its threshold. Finally, if no class probability
exceeds its respective threshold, the null class is assigned as the
predicted label.

This method aims to further reduce the two effects visited in
Figures 3(a) and 4(b).

5 Results and Discussion

The classification task on the WEAR dataset is challenged by sev-
eral factors, with the dominance and ambiguity of the null class
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being a one of them. To address this, we implemented and evaluated
a combination of preprocessing and postprocessing strategies de-
scribed in the previous section. Next, we report preliminary results
on the test set, which are discussed in more detail throughout this
section. A simple baseline is established by training a Light GBM
model on the full dataset, including all classes. To predict the chal-
lenge data, we train the model on the whole training set and derive
hyperparameters such as the undersampling adjustment amount
using 6-fold cross-validation. This means we trained on all subjects
and all one-second sequences available. Our final submission to the
Challenge is ’target.csv’ where the ensemble method with adjusted
undersampling was used.

Table 1: Test set results. Results (0)-(4) were obtained with
the best-performing individual model: LightGBM, while (5)
represents the ensemble of the models LightGBM, TabM and
GPBoost.

Strategy Macro F1 score
(0) Baseline 0.573
(1) No null + Threshold 0.540
(2) Adj. Undersampling 0.585
3) Thresholding 0.584
(4) Combination of (2) and (3)  0.585
(5) Ensemble method under (2) 0.594

5.1 Leaving out the Null Class

The strategy suggestion in Section 4.1 did not yield an improvement
over retaining the null class during training, as seen in Table 1 (1).
Removing the null class labeled samples from training led to a
reduced macro F1 score of 48.6%, where only non-null labels were
predicted. Incorporating the discussed thresholding and optimizing
the threshold th; for i € {1,...,18} on a separate validation set
with unseen subjects achieved a macro F1 score on the test set of
54%, still falling short of the baseline with the null class included.
An example of this optimization process is illustrated in Figure 5.
These results challenge the assumption that the null class lacks
consistent patterns, suggesting that it may in fact exhibit some
regularity.

5.2 Adjusted Undersampling

For the undersampling approach, a range of undersampling levels
was tested. As shown in Figure 6, performance, measured by the
macro F1 score, peaked at an adjustment of 20,000 samples of the

null class, with a cross-validated improvement of 1.2% (Table 1 (2)).

This corresponds to an adjusted number of null class samples that is
approximately four times greater than the number of samples in the
other classes. However, fully undersampling the null class down to
the mean size of classes 1 to 18 led to worse performance than the
baseline with no undersampling, where the null class remained at
its original size (shown in green). Analysis of the confusion matrices
showed that while full undersampling reduced false positives for the
null class, it also increased false negatives, meaning more actual null
class samples were misclassified as activity classes. Given the high
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Figure 5: Effect of the optimized global threshold th; for one
exemplary seed. The green marker shows the macro F1 score
without the null class or thresholding. The blue line shows
validation scores across thresholds, with the red marker in-
dicating the maximum. The orange marker shows the test
score using the optimized threshold.

frequency of null class samples, this effect has a greater negative
impact in the trade-off discussed in Section 4.2. As a result, the
overall macro F1 score with full undersampling is lower than in the
case without undersampling, as illustrated in Figure 6.
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Figure 6: Macro F1 scores for different levels of undersam-
pling applied to the null class, ranging from p(; 13, +0 to
H{1,...,18} T 60,000 samples. Best performance is observed at an
undersampling level of ¢y 5) + 20,000 samples. Results are
based on cross-validation.

5.3 Confidence-Based Thresholding

As a next strategy, we introduced confidence-based thresholding.
The thresholds were optimized on the validation sets with unseen
subjects, and the resulting cross-validated performance was eval-
uated on the test sets. The thresholding approach yields a 1.1%
improvement in macro F1 score under cross-validation Table 1 (3).

5.4 Combination of Undersampling and
Thresholding

The next logical step was to combine adjusted undersampling with
confidence-based thresholding. However, this approach resulted in
no further improvement Table 1 (4), indicating that both strategies
likely address the same underlying challenges in the data. While
undersampling slightly outperforms thresholding when used alone,
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seed. The surface shows validation macro F1 scores across
thresholds. The red marker indicates the optimal threshold
combination, the blue triangle shows the corresponding test
set score, the black cross represents performance without
thresholding.

the thresholding approach offers a practical advantage, it requires
only a single model training since it is a postprocessing measure. In
contrast, optimizing undersampling requires retraining the model
multiple times since it is a preprocessing measure.

5.5 Ensemble Model Impact

The ensemble approach outperformed individual models (Table 1 (5)).

In our ensemble approach, we used adjusted undersampling of
three models: LightGBM, TabM and GPBoost and obtained an im-
provement of 0.9% compared to the LightGBM model with adjusted
undersampling alone.
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6 Conclusion

The null class in the WEAR dataset introduces a major challenge
due to its size and lack of consistency. Basic undersampling alone
was not effective, as it shifted misclassifications rather than resolv-
ing them. Adjusted undersampling offered a more effective solution
by better balancing the class distribution. Confidence-based thresh-
olding approaches also provide a way to improve results when
applied independently. However, when adjusted undersampling
was already in place, threshold optimization did not yield addi-
tional benefits. This suggests that the class imbalance had already
been effectively mitigated. Therefore, for our challenge submission,
we opted to use only adjusted undersampling. The use of an ensem-
ble model further stabilized predictions. These strategies, to some
extent, mitigated the impact of the null class and enhanced overall
performance in multi-class activity recognition.
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