
The Accuracy of Cardinality Estimators: Unraveling the
Evaluation Result Conundrum

Nazanin Rashedi
University of Mannheim, Germany
nazanin.rashedi@uni-mannheim.de

Guido Moerkotte
University of Mannheim, Germany
moerkotte@uni-mannheim.de

ABSTRACT
Existing research on the accuracy of cardinality estimators gen-
erally suffers from a lack of diversity and sufficient quantity of
their experimental datasets, particularly in relation to the claimed
scope of the study and the generality of its conclusions. We argue
that a sufficiently large number of varied datasets are essential for
comprehensive evaluations. However, the prevailing per-dataset
evaluation method (PDE), producing one result table per dataset,
has so far hindered this necessary expansion of the experiments.
Moreover, as we demonstrate, this evaluation method often leaves
the reader with contradictory results, where one estimator excels
on certain datasets or queries, while the other performs better
elsewhere. To address these and similar limitations, we propose a
multidimensional evaluation framework. This framework unravels
the conundrum of analyzing the evaluation results across multiple
datasets through the use of discretization. It establishes a robust
foundation for aggregating the evaluation results and conducting
pairwise comparisons between estimators. Furthermore, it facili-
tates informed decisionmaking in the presence of conflicting results
through a customizable ranking mechanism.

To empirically highlight the shortcomings of the aforementioned
per-dataset evaluation and demonstrate the advantages of our pro-
posed framework, we conduct a benchmarking study of cardinality
estimators, incorporating both learned and traditional approaches.
We focus on a fundamental challenge: estimating the cardinality
of range queries on a single 2-D geographical relation in a static
environment. Despite the apparent simplicity of this task, our find-
ings reveal that many estimators struggle to handle this challenge
effectively. To further enhance the quality of our study, we pro-
vide valuable insights by addressing some critical aspects that were
overlooked in previous benchmarking studies.

PVLDB Reference Format:
Nazanin Rashedi and Guido Moerkotte. The Accuracy of Cardinality
Estimators: Unraveling the Evaluation Result Conundrum. PVLDB, 18(11):
3744 - 3756, 2025.
doi:10.14778/3749646.3749651

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Nazanin-Rashedi/CE_Accuracy.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 11 ISSN 2150-8097.
doi:10.14778/3749646.3749651

1 INTRODUCTION
Motivation. During the last decade, an increasing number of cardi-
nality estimators, including learned methods, have been proposed
and numerous studies compared the accuracy of these estimators.
However, their experiments fall short of the comprehensiveness re-
quired by the broad scope of their conclusions. In this study, we set
the stage for large-scale experimentation across diverse datasets by
proposing a multidimensional evaluation framework. Moreover, to
showcase the analytical capabilities of this framework and address
common shortcomings of prior work, we conduct a benchmarking
study within a well-defined yet practical scope for the experimental
datasets and workload. Importantly, we maintain this scope while
drawing conclusions about the accuracy comparison of the estima-
tors. We examine a general claim made by previous studies about
the superiority of learned over traditional estimators for single re-
lation range predicates in static environments (for more details, see
Section 2). We use a wide range of traditional algorithms, including
heuristic approaches and those tailored for 2-D numeric datasets,
and select four top-performing learned estimators that according
to recent studies [9, 12, 31, 34–36], exhibit superior accuracy com-
pared to traditional algorithms in static environments. The focus on
2-D geographical datasets is motivated by their widespread avail-
ability and the broad range of applications. The crucial role of these
datasets in industries like urban planning, transportation, and disas-
ter management has led to the development of tailored cardinality
estimators and database extensions, some of which are included in
this study. Moreover, to the best of our knowledge, the specialized
cardinality estimators proposed for these datasets have not been in-
vestigated in any prior benchmarking studies. It is noteworthy that
although our experiments and the comparison conclusions focus
on 2-D geographical datasets, the modifications we propose to the
evaluation method are applicable to any benchmarking study on
cardinality estimators. We believe these enhancements are crucial
for conducting thorough comparisons between different methods.
Contributions. 1) Our major contribution is proposing a novel
evaluation framework that leverages discretization to establish a
solid foundation for aggregating the evaluation results across di-
verse datasets. We discuss the limitations of current evaluation
methods and address them in our framework. Most importantly,
the aggregation capability of our framework resolves the key de-
ficiency of the existing method (PDE) by eliminating the need to
produce one result table per dataset, thereby facilitating compre-
hensive experiments across any number of datasets. Moreover, our
approach enhances insights into the relationships between the ma-
jor dimensions of the cardinality estimation problem, namely the
input relation cardinality, the query selectivity, and the frequency
and magnitude of the errors produced by the estimator. It enables
flexible pairwise comparisons and a precision-based ranking of the

3744

https://doi.org/10.14778/3749646.3749651
https://github.com/Nazanin-Rashedi/CE_Accuracy
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3749646.3749651
https://www.acm.org/publications/policies/artifact-review-and-badging-current

estimators. These aggregated results aid informed decision-making
when selecting a cardinality estimator for a database system.

2) We address the existing bias in current benchmarking studies
by highlighting that many previous comparisons between learned
and traditional estimators fail to adequately consider the potential
tuning knobs of traditional methods. For example, PostgreSQL has
been criticized for significant errors in several studies. However, the
absence of detailed configuration information suggests the poten-
tial use of default settings, without adjusting the number of statistic
slots, using extended statistics, or incorporating available exten-
sions. In contrast, we address the configurations of each estimator
and, where feasible, evaluate variants with alternative settings to
ensure a fair comparison.

3) In our efforts to identify the tuning knobs of the candidate
estimators, we found opportunities for significant improvement in
two of them, prompting us to introduce enhanced variants. First,
we introduce EXGB, an improved version of the lightweight XG-
Boost estimator LW-XGB [5]. EXGB maintains the rapid training
and inference capabilities of LW-XGB, while significantly boosting
the estimation accuracy. Finally, we present QTS-2, a new variant
of the traditional QTS method [2]. QTS-2 features a more efficient
compression technique and an optimized splitting criterion, result-
ing in substantial improvements in the estimation accuracy.
Outline. The remainder of the paper is organized as follows. Sec-
tion 2 reviews previous work. Section 3 and Section 4 describe
the datasets and the workload we use to showcase the application
of our proposed method, while Section 5 presents the cardinality
estimators incorporated for this purpose. Section 6 describes our
evaluation metric and its continued validity against the challenges
discussed in a recent paper. In Section 7, we discuss the current
per-dataset evaluation method and its limitations. Section 8 ex-
plains our proposed evaluation framework, its capabilities, and
implementation details. Finally, Section 9 presents our conclusions.

2 RELATED WORK
Previous studies have conducted comparisons between cardinality
estimators, and a recent trend is comparing learned vs. traditional
estimators [5, 8, 11, 12, 17–19, 34, 36]. However, their experiments
have always been restricted to a small number of datasets. This
constraint is a consequence of the per-dataset evaluation method,
which has been the standard approach for assessing cardinality
estimators to date. Section 7 discusses this issue in more detail. We
argue that a limited diversity of the experimental datasets coupled
with generalized conclusions is a recipe for biased research and
may result in the surveys’ inability to reveal the deficiencies of
candidate estimators. Wang et al. [34] conducted experiments on
single-table cardinality estimators; however, the maximum number
of distinct values per-column in their datasets is on the order of only
a few thousand. Consequently, challenges such as those encoun-
tered by NARU [36] in encoding columns with a larger number of
distinct values are not adequately reflected in their experiments. A
remarkable number of these studies [5, 17, 18, 34, 36] evaluated the
estimators using single relation, range predicate queries in a static
environment and concluded that learned cardinality estimators are
more accurate than their traditional counterparts in this setting. No-
tably, some of them [17, 18] incorporated 2-D geographical datasets

in their handful of experimental datasets. However, our extensive
experiments do not confirm their conclusion for 2-D geographical
datasets. Several studies [9, 12, 18, 35] introduced new learned esti-
mators and compared the accuracy of their proposed methods to
that of various learned and traditional estimators. However, their
evaluations neither describe nor optimize the configurations of
the traditional competitors. We show that this neglect can lead to
biased conclusions about the estimators’ performance. Moreover,
all previous studies on the accuracy of cardinality estimators were
confined to producing one result table per dataset, reporting q-error
percentiles for each estimator. This approach not only limited the
number of experimental datasets but also impeded a deeper analysis
of the evaluation results. Han et al. [8] mentioned a key shortcoming
in the information provided by the typical evaluation results and, as
a remedy, proposed a newmetric for evaluation and optimization of
the estimators. In contrast, we argue that the q-error [24] remains
the appropriate metric and address both the limitation mentioned
by Han et al. [8] and some other shortcomings of the prevailing
evaluation method by proposing a novel evaluation framework.

3 DATASETS
We utilize a repository of 18,020 datasets, each containing the longi-
tude and latitude of datapoints collected from the snapshot of three
sets of datasets namely Earthquake [33], OpenStreetMap [27], and
Tiger [32] in the year 2013, when we first conducted research on
methods for estimating the number of points in two-dimensional
datasets [23]. We consider two subsets from these datasets:

𝑆1: The subset with 5 datasets, explained in Subsection 3.1.
𝑆2: The subset of 276 datasets with details in Subsection 3.2.

Notably, for the top five estimators in our ranking results, Subsec-
tion 8.3, we use the whole set of 18,020 datasets.

3.1 Selection Process for Subset S1
Although comprehensive experiments across a large number of
datasets are preferable, this may not always be feasible. For such
cases, we propose an informed approach to dataset selection.We col-
lect statistical information on our datasets, each of which comprises
two attributes: longitude (X) and latitude (Y). More precisely, we
collect the number of distinct datapoints, total cardinality, variance
(VX and VY), skewness (SX and SY), and the correlation between
columns for each dataset in our dataset repository. For skewness
and correlation, we consider the Fisher-Pearson coefficient of skew-
ness and the Pearson correlation coefficient [13]. Table 1 includes
these measures for the finally selected datasets. Furthermore, the
table also presents two other properties of these datasets that will
be needed later in the paper. For dataset selection, we employ K-
Means clustering preceded by a principal component analysis (PCA),
a beneficial technique for enhancing clustering performance [4].We
initially apply PCA to the statistical data collected for our datasets
and set the number of principal components to be 2. According to
the cumulative sum of explained variance ratio, this already covers
about 45 % of the data variance. We cluster the resulting datapoints
and determine the number of clusters for the K-Means algorithm
to be five by analyzing the inertia metric for up to 20 clusters. We
then select the dataset corresponding to the datapoint nearest to
each cluster centroid as the representative for that cluster. This

3745

results in the selection of three datasets from OpenStreetMap (in-
dia, netherlands, and us-south), along with two datasets from Tiger
(tl_2013_02016_areawater and tl_2013_20041_linearwater), referred
to as areawater and linearwater, respectively. Figure 1 illustrates
scatter plots of these selected datasets, showing diverse distribu-
tions. For example, linearwater exhibits a relatively uniform distri-
bution across the two attributes, whereas areawater is sparse with
high-density regions concentrated in specific areas. This diversity
is further evidenced by the varying statistical measures in Table 1.
Taking into account the impact of dataset characteristics on the es-
timators’ performance, as studied byWang et al. [34], this approach
helps identify the limitations of each estimator.

3.2 Description of Datasets in Subset S2
To conduct more extensive experiments on the estimators and
demonstrate the aggregation benefits of our proposed framework,
we build a larger subset of datasets by adding the remaining datasets
in OpenStreetMap to 𝑆1, resulting in 𝑆2 with a total of 276 datasets.

3.3 Per-Dataset Budget Assignment
We apply budget constraints to our estimators, where applicable,
to ensure an effective resource management and facilitate fair com-
parisons. However, a strict budget control is not feasible for some
estimators. Specifically, for learned estimators, although the size of
the trained model can be influenced by architectural and hyperpa-
rameter choices, enforcing the tight controls typical of traditional al-
gorithms is less practical. This limitation extends to our PostgreSQL
experiments as well. While PostgreSQL’s memory consumption
can be influenced by configuring the statistics collection process,
actual memory usage is governed by the internal algorithms and
processes of the DBMS, which we did not modify in our experi-
ments. Wang et al. [34] and Yang et al. [36] suggest the budget limits
of 1.5% and 1% of the dataset size, respectively. Nevertheless, for a
real-world dataset that can easily reach 1 TB in size, allocating 10
to 15GB to a cardinality estimator is excessive. Instead, we suggest
a budget constraint of 𝑠 statistic slots, each accommodating two
32-bit floating-point values, where 𝑠 is determined by the dataset’s
cardinality |𝑅 |:

𝑠 :=
⌈︂√︁

|𝑅 | ln |𝑅 |
⌉︂

(1)

The sublinearity of this function prevents huge storage assignments
to large datasets, while allowing smaller datasets to gain a proper
budget. Table 1 illustrates the budget (in Bytes) and the number of
statistic slots 𝑠 for the datasets in subset 𝑆1.

4 WORKLOAD
In our experiments, we estimate the number of tuples that satisfy
queries with half-open rectangles and simple, single-column predi-
cates on both data dimensions using the following query template:
select * from R where 𝑥 ≥ 𝑥𝑙 and 𝑥 < 𝑥𝑢 and 𝑦 ≥ 𝑦𝑙 and 𝑦 < 𝑦𝑢

For each dataset 𝑅, the workload consists of 1M test queries,
along with a set of 100 K queries allocated for training (90 K) and
validation (10 K) of learned estimators. This set serves as the train-
ing and validation repository, with the exact number of queries
used for each estimator detailed in the respective specification sec-
tion. Queries are generated by randomly selecting a datapoint and

applying four random real-valued offsets to determine the lower
and upper bounds for each dimension, (𝑥𝑙 , 𝑥𝑢 , 𝑦𝑙 , 𝑦𝑢), ensuring
that each query returns at least one datapoint.

5 CARDINALITY ESTIMATORS
Here, we introduce the cardinality estimators used in this study.

5.1 Traditional Cardinality Estimators
Traditional cardinality estimators primarily rely on histograms and
sampling techniques [8], though many variants of these methods
exist. Here, we briefly introduce the traditional cardinality estima-
tors employed in our experiments. It is noteworthy that the budget
constraint mentioned in Subsection 3.3 is applied to all these tradi-
tional estimators with the exception of Est-Area, which is so cheap
that it does not need any storage consumption considerations.

Sampling is a uniform sampler where the number of samples 𝑠
is determined by Equation 1. For a query with𝑚 qualifying samples,
the cardinality estimate, CE, is calculated as CE = 𝑚 |𝑅 |/𝑠 , where
|𝑅 | denotes the size of the relation.

Est-Area is an estimator that assumes a uniform data distribu-
tion and independence among attributes. These assumptions often
lead to significant misestimations on real-world datasets [22]. How-
ever, Est-Area can still serve as a fast and cost-effective baseline.
To estimate the query selectivity, Est-Area calculates the overlap
of each attribute domain with the query predicate and multiplies
these proportions. To achieve this, it only needs to store the car-
dinality of the dataset and four floating-point values representing
the dataset’s bounding rectangle, thereby eliminating the need for
budget considerations.

Regular Partitioning (REGP) [20] is a multidimensional his-
togram that employs the classic equi-width heuristic to determine
the bucket boundaries.

Equi-depth histogram (EQD) [25] is a multidimensional his-
togram. It uses a multidimensional index structure called H-tree [7].

MHist [29] is a multidimensional histogram constructed by par-
titioning the joint data distribution into mutually disjoint buckets.
In this study, we consider the variant that employs the MHist-2
algorithm and utilizes Maxdiff and Area to identify the buckets
which need to be partitioned.

QTS [2] is a hierarchical summarization technique proposed by
Buccafurri et al. [2] for two-dimensional datasets. QTS relies on
Quad-Tree partitioning of the data. The original version, referred
to as QTS-0 in our experiments, partitions the nodes based on the
sum of squared errors (SSE), which measures the “goodness” of the
compressed representation for a data array. We propose a new
variant, QTS-2, which utilizes the q-compression technique [22] and
employs cardinalities as the splitting criterion for the tree nodes.
Additionally, Buccafurri et al. [2] proposed an Indexed Quad-Tree
Summary (IQTS), a variant of QTS that allows indexing of the
leaf nodes. In this study, we consider a variant of IQTS that uses
maximum variance as the priority queue [2] criterion.

GXTree [23] is a hierarchical histogram that provides a com-
pressed version of the frequency matrix through structured parti-
tioning of the data distribution. Similar to QTS, the current imple-
mentation of GXTree is tailored for 2-D datasets, however, it can
be extended to handle higher dimensions. Each node in a GXTree

3746

Table 1: Properties of datasets in subset S1

Dataset Distinct Points Cardinality VX VY SX SY Correlation Statistic Slots Budget (Bytes)
areawater 46,798 48,314 11,500.00 0.99 2.52 0.78 -0.30 722 5,776
linearwater 189,541 193,623 0.02 0.02 -0.04 0.13 -0.04 1,536 12,288
india 18,592,034 18,610,840 42.02 24.07 -0.12 1.17 0.11 17,651 141,208
netherlands 86,177,043 86,192,127 0.33 0.68 0.16 -0.03 0.37 39,686 317,488
us-south 171,059,705 172,194,627 9.36 50.99 -0.54 -0.71 0.43 57,145 457,160

Figure 1: Scatter plot of datasets in subset S1

stores an encoding of a regular partitioning, referred to as a grid.
To minimize the number of bits required for grid representation,
GXTree utilizes the q-compression technique.

PostgreSQL is frequently used as a baseline for evaluating
learned cardinality estimators in comparison to traditional methods
(e.g., [8, 9, 12, 18, 34–36]), often demonstrating significant errors.
This poor performance is primarily attributed to its reliance on
single-column statistics and the assumption of independence be-
tween columns. However, in many cases (e.g., [8, 9, 12, 18, 35]), the
configurations of this estimator are neither customized nor men-
tioned in the description of the experiments. Similar to the learned
methods, which require a careful tuning of hyperparameters, Post-
greSQL can also be tuned to avoid the huge errors generated by the
default settings. This can be achieved by setting a proper number
of statistic slots, collecting extended statistics, or using specific
extensions that are relevant to the task at hand [30]. In this study,
in order to illustrate the role of such configurations, we consider
the following three variants of PostgreSQL:
1) PGDef is the default, out of the box estimator in PostgreSQL
version 15.6. with the default statistics target of 100 for all tables.
2) PGB is the variant with our budget limits considered in setting
the number of per-column statistic slots. This controls the maxi-
mum number of entries collected as the most common values and
the histogram buckets [30]. We set the number of statistic slots per
column equal to 𝑠 , where 𝑠 is calculated by Equation 1.
3) POSTGIS is the variant with the PostGIS extension enabled. This
extension adds support for geospatial data, which makes it a poten-
tial enhancement for the case of our experimental datasets. We set
the number of statistic slots for the single column of type GEOME-
TRY equal to 2𝑠 , where 𝑠 is calculated by Equation 1, according to
the budget limit for each table.

Two key points are noteworthy: First, we execute the ANALYZE
command on each table to update the statistics prior to evaluating
each variant. Second, PostgreSQL imposes an upper limit of 10 K
for the number of per-column statistic slots.

5.2 Learned Cardinality Estimators
We select four learned estimators that have actively been used in the
published benchmarking studies (e.g., [8, 18, 19, 34, 36]) demonstrat-
ing a promising accuracy. For each, we follow the implementation
and configuration guidelines from the original paper unless stated
otherwise. During hyperparameter tuning, we carefully monitor
the training and validation loss to avoid overfitting.

DeepDB [9] is a data-driven cardinality estimator that builds
probabilistic interpretations of the given queries and estimates the
cardinality by evaluating the corresponding expectations and prob-
abilities on some learned representations of data. These learned
representations, called RSPNs, are a customized version of sum-
product networks [28]. As a result of our experimental environ-
ment being restricted to single relation queries, for each dataset,
we learn a base ensemble using the naive ensemble creation pro-
cedure provided in the published implementation [14]. According
to the original paper, the storage consumption of DeepDB can be
controlled by the sample size used for constructing RSPNs. With
the aim of applying our budget limits mentioned in Subsection 3.3,
we set the sample size using Equation 1. Notably, although the size
of the generated ensemble is correlated with the sample size, it does
not comply with our budget constraints. For instance, in the case
of the us-south dataset, this configuration yields an ensemble size
of 4.2MB, which significantly exceeds our budget limit of 457 KB.

NARU [36] is a deep unsupervised cardinality estimator for
single-relation queries. It estimates the joint distribution of input
data using autoregressive models and performs progressive sam-
pling to approximate the query selectivity. We use the implementa-
tion released in the corresponding GitHub repository [26]. NARU
has been reported as a highly accurate learned estimator [19, 34, 36].
According to Yang et al. [36], it achieves a single-digit maximum
q-error after about 15 epochs and with a storage consumption
around 1% of the dataset size. Wang et al. [34] found that NARU
performs particularly well when the attribute domain is small but
the dataset size, and therefore the model budget, is large [34]. Nev-
ertheless, the maximum number of distinct values per attribute in
their experiments [19, 34, 36] remains limited to a few thousand.

3747

NARU employs column-specific encoders, starting with dictionary-
based encoding to map attribute values to integer IDs. For domains
with fewer than 64 distinct values, it applies one-hot encoding,
while for larger domains, it switches to embedding encoding. The
embedding encoding, however, becomes inefficient with a large
number of distinct values, as it requires learning tensors of size
|𝐴𝑖 | × ℎ, where |𝐴𝑖 | represents the number of distinct values and
ℎ, the embedding vector size, is typically set to 64. The threshold
at which this issue becomes problematic varies depending on the
available GPU resources. Using our NVIDIA RTX A6000 GPU with
48GB memory, training becomes impractical when |𝐴𝑖 | exceeds
2.6 × 106, even after reducing the batch size from its default value
of 1024 to 64. Utilizing mixed precision [21] only increases this
threshold to 3.8×106. Consequently, NARU could not be trained on
three of the five datasets in 𝑆1 and many datasets in 𝑆2. Therefore,
we exclude it from the corresponding evaluation results.

Regarding the budget constraint, the original paper controls the
storage consumption by the choice of model architecture. We follow
the same approach; however, complying with the budget defined
in Subsection 3.3, and the 1% or 1.5 % of dataset size limits, are
all infeasible for NARU. To clarify, we consider training NARU on
areawater, a 1.2 MB dataset with two attributes, each containing
4.6 × 104 distinct values. With the settings recommended in the
original paper, a ResMade model with four hidden layers of size 256,
the model has over 5.8×106 parameters and a size of 25MB on disk.
While alternative architectures from the original paper perform
significantly worse with respect to precision, they can only reduce
the model size to 11MB. The reason is that most parameters are
associated to the embedding layer. Notably, the budget suggested
in Subsection 3.3 and the limits of 1 %, and 1.5 % correspond to
5.8 KB, 12.3 KB, and 18.5 KB, respectively, indicating that NARU
cannot meet these constraints. Hence, we pick the original paper’s
recommended architecture and lift the budget limit for NARU.

For areawater and linearwater, we train NARU with 15, 20, 50,
80 and 100 epochs. Since the training loss and the accuracy on
the validation set show negligible variation for models trained
with 50 or more epochs, we report the evaluation results for 50
epochs in Table 2 and Table 3. We evaluate the trained models using
two variants of the evaluation step. In the first variant, denoted by
NARU, we use 1 K progressive samples. According to Yang et al. [36],
this number of progressive samples is sufficient for datasets with up
to 100 columns and should therefore be adequate for our datasets,
which contain only two columns. In the second variant, denoted
by NARU2K, we increase the number of progressive samples to 2 K
to assess whether this improves the estimates.

MSCN [12] is a query-driven cardinality estimator that employs
multi-set convolutional neural networks and minimizes the mean
q-error as its training objective. The preprocessing module con-
verts the queries from the training set, consisting of 90 K queries
for training and 10 K for validation, along with the test queries into
feature vectors. These feature vectors incorporate the normalized
predicate boundaries and a bitmap representing the materialized
sample tuples that qualify the corresponding predicate. We follow
the implementation in the GitHub repository introduced by the
authors [1]. Given that the original paper does not offer explicit
guidance on storage control in presence of the bitmap of samples,

we do not impose any budget constraints on this estimator. Conse-
quently, the resulting model is 2.6MB, independent of the dataset
size, which exceeds the budget defined in Subsection 3.3 for many
datasets. MSCN normalizes labels using the minimum and maxi-
mum of log-transformed true cardinalities from the training and
validation set and reverses this transformation during inference
to estimate the cardinalities. This approach may reduce the model
accuracy for test queries with true cardinalities outside the range
experienced during the training [12].

LW-XGB [5] is a query-driven cardinality estimator that em-
ploys tree-based ensembles using XGBoost [3]. It uses 16 K queries
for training and 4K for validation. In addition to the predicate
boundaries, LW-XGB uses three enriching features to provide the
model with some information about the data distribution. Regarding
the optimization metric, LW-XGB uses mean squared error (MSE)
on log-transformed labels and predictions to minimize the geomet-
ric mean of q-errors. The storage consumption of the trained model
primarily depends on the hyperparameters set for the maximum
depth of trees and the number of trees. The design decisions of this
estimator aim at minimizing the training and inference latency, as
well as the storage footprint to achieve a level of performance com-
parable to the traditional competitors in these aspects. However,
this gain comes at the cost of losing accuracy, since they restrict the
enriching features to those derived from 1-D histograms with 100
buckets and keep the model structure as compact as a maximum
of 16 trees, each with a depth of at most 4 (16 leaves). This struc-
ture results in a model size around 16KB. For enriching features,
the model utilizes predictions from three heuristic estimators: AVI,
EBO, and MinSel, derived from 1-D histograms, as described in the
original paper. These settings result in an estimator that, accord-
ing to their experiments, needs less than one minute to produce
2 K training queries, compute the enriching features, and train the
model on a dataset of 100 K tuples. However, since all these features
rely on 1-D histograms, the accuracy degrades when the selectivity
of each single predicate is high, but the conjunction of the predi-
cates returns few tuples [34]. We construct the 1-D histograms in
accordance with our budgetary constraints.

EXGB is our proposed variant of LW-XGB. Motivated by the
work of Grinsztajn et al. [6], which highlights the superiority of
tree-based models over deep learning for tabular data, we explore
enhancements to LW-XGB. Our experiments demonstrate that the
accuracy is highly dependent on the availability of rich feature vec-
tors, beyond those restricted to 1-D histograms, and a sufficiently
large number of trees. However, it is crucial to preserve the com-
petitive advantage of low latency. In our proposed variant, EXGB,
the enriching features consist of the estimates generated by two
traditional estimators, namely Est-Area and Sampling, which are
detailed in Subsection 5.1.We implement EXGB in C++ and leverage
the rapid training and inference capabilities to bring the advantage
of sample-based estimation to the enriching features. To rule out
overfitting while increasing the maximum number of trees, we
perform hyperparameter tuning on 20 randomly selected datasets
from our repository and monitor the training and validation loss
to ensure their consistent decrease and the absence of a significant
gap between them. We conduct a grid search varying the maximum
number of trees {10, 20, 50, 100, 300, 500, 1000}, the maximum tree
depth {3, 5, 10}, and the regularization parameter gamma {0, 0.01, 0.1,

3748

0.5}. Our findings confirm that the XGBoost built-in regularization
parameter, gamma, effectively mitigates overfitting. We select the
following hyperparameters: maximum number of trees = 300, max-
imum depth = 3 and regularization parameter gamma = 0.1. These
settings produce models approximately 203 KB in size, yielding
significantly more accurate estimates than LW-XGB, as shown in
Tables 2 to 4. Additionally, we consider training/validation set sizes
of 16 K/4 K and 90K /10 K to assess the impact of using a training
set larger than the one used for LWXGB[5]. Since no significant
improvement in the validation loss was observed with the larger set,
we retain the 16 K/4 K training/validation size. One might assume
that the enhancements we propose would diminish the advantage
of short latencies. However, in our C++ implementation, generat-
ing 2K training and validation queries, calculating Sampling and
Est-Area estimates for each query, and training the XGBoost model
with the mentioned hyperparameters takes less than 6 seconds for
the tl_2013_45067_edges dataset in the Tiger repository. We select
this dataset for the latency experiments because its cardinality of
100,009 tuples aligns with the 100K tuples in the measurements
of Dutt et al. [5]. Regarding the inference latency, EXGB requires
only 11 seconds to compute enriching features and make predic-
tions for 1M test queries. Our time measurements were obtained
through single-threaded execution on a Xeon(R) E5-2690 v3 CPU.
Notably, the authors have not publicly released the implementation
of LW-XGB, preventing us from reproducing their latency-related
experiments in our environment.

6 EVALUATION METRIC: Q-ERROR
The evaluation metric in our experiments is the q-error. The q-error
of an estimate 𝑒 for the true value 𝑡 is defined [24] as:

q-error := max(𝑒/𝑡, 𝑡/𝑒). (2)

This symmetric measure treats overestimations and underestima-
tions equally. There is wide agreement in the literature that the
q-error is the appropriate metric for evaluating cardinality estima-
tors. However, Han et al. [8] challenge the ability of the q-error
in distinguishing the errors that occurred for queries with large
true cardinalities, thereby significantly impacting the quality of the
generated plans. They further argue that a lower q-error does not
necessarily translate into better execution plans. On the contrary,
we contend that the q-error remains the appropriate metric for
evaluating and optimizing the accuracy of cardinality estimators
for the following reasons:

1) The q-error is directly related to the quality of the generated
plans, since it provides a theoretical upper bound for the plan quality
if the q-errors of a query are bounded [10, 24].

2) While we agree with Han et al. [8] that the true cardinality of a
query affects the impact of a specific q-error on the plan quality, we
contend that the lack of this critical information in the evaluation
results arises from flaws in the evaluation method rather than from
the metric. Our multidimensional evaluation framework introduced
in Section 8 addresses this issue.

3) The query optimizer consists of multiple modules, each with
their own characteristics, limitations, and errors. Therefore, the pos-
sible phenomenon of more accurate cardinality estimates resulting
in worse execution plans [8, 15] should be traced and solved in the
evaluations of the appropriate modules, namely the cost function or

the plan generator, instead of encouraging the cardinality estimator
to make less accurate estimates and compensate for errors caused
by other modules. This issue is clearly exemplified in the experi-
ments of Leis et al. [16] and Lee et al. [15] where, for some queries,
injecting the true cardinalities in the query optimizer resulted in
plans with increased execution times. With a similar argument, any
metric that uses the plan costs for evaluating cardinality estimators,
as is the case for the p-error proposed by Han et al. [8], suffers
from conflating the errors produced by two distinct and ideally
independent modules of the query optimizer.

7 PER-DATASET EVALUATION (PDE)
The predominant approach for evaluating and comparing the accu-
racy of cardinality estimators involves reporting the 50th, 95th, 99th,
and 100th percentiles of the q-errors generated by each estimator on
a per-dataset basis. This approach neglects the selectivities of the
queries associatedwith these q-errors (e.g., [5, 8, 9, 11, 12, 19, 31, 34]).
Some studies [18, 36] have advanced their analysis one step fur-
ther by reporting the q-error percentiles in three selectivity cate-
gories. More precisely, they set fixed intervals to distinguish be-
tween high, medium, and low selectivity queries and, for each
dataset, report the q-error percentiles per selectivity category. We
refer to this approach, which is thus far the most comprehensive,
as per-dataset evaluation (PDE) and apply it with the selectivity
boundaries defined by Yang et al. [36]. By designating this approach
as per-dataset, we highlight the unavoidable one-to-one relation-
ship between datasets and their corresponding result tables in this
evaluation method. Furthermore, we refer to the entries in PDE re-
sult tables as PDE segments. Consequently, similar PDE segments are
those sharing the same percentile levels and selectivity categories.

7.1 PDE Results on Datasets for Subset S1
Tables 2 to 4 display the q-error percentiles for three datasets of sub-
set 𝑆1. Due to space constraints and the need to allocate one result
table per dataset in PDE, the results of the other two datasets are
excluded and will be released in an extended version of this paper.
In these tables, the upper sections list traditional methods, while the
lower sections show learned estimators. Focusing on the learned
estimators, both variants of NARU exhibit high q-errors for the two
datasets on which we could train it. Even the increased number
of progressive samples in NARU2K fails to yield better estimates.
Similarly, MSCN produces significant errors. LW-XGB outperforms
MSCN, NARU, and NARU2K, while EXGB surpasses LW-XGB in
accuracy. If we ignore the few segments where DeepDB shows
lower q-error percentile values than EXGB, we can conclude that
EXGB is the most accurate learned estimator followed by DeepDB.
Incorporating the traditional estimators into our analysis yields the
following findings: Est-Area and PGDef make huge errors. In some
cases, PGDef is even worse than our cheap baseline, Est-Area. How-
ever, the two configured variants of PostgreSQL, namely PGB and
POSTGIS, have significantly better results. This underscores that
conducting comparisons without an appropriate configuration can
lead to misleading conclusions. POSTGIS is the winner estimator
for linearwater in all selectivity categories; however, its accuracy
degrades for other datasets. For the other two datasets, QTS-2 and
GXTree can be considered the most accurate estimators. Notably,

3749

QTS-2 provides significantly more accurate estimates than QTS-0.
As these tables show, most estimators exhibit varying levels of ac-
curacy across different datasets and selectivity categories. These
contradictory results make it difficult to establish a clear pairwise
superiority or ranking. We address this issue in Section 8.

7.2 Limitations of PDE
PDE has several notable shortcomings, such as:

1) The primary drawback of PDE is its lack of scalability with
respect to the number of datasets.While comprehensive evaluations
require testing the estimators across numerous datasets, the one-
to-one correspondence between datasets and PDE result tables
severely hinders this necessary extension. Our experiments with
PDE were confined to five datasets, yet they already generated a
substantial amount of numbers across five tables, three of which
are presented in Tables 2 to 4. How overwhelming would it be to
be left with hundreds of such tables and try to draw meaningful
conclusions from them?

2) The data entries in similar PDE segments are neither compara-
ble nor aggregable across different datasets. This stems from using
fixed boundaries for categorizing query selectivities on datasets
of varying cardinalities. To be more precise, when we define low
selectivity queries as those with a selectivity below 0.5%, as it is
defined by Yang et al. [36], it may correspond to queries with fewer
than 10 result tuples in datasets of cardinality below 2K or up to
1M tuples in datasets of cardinality 200M. Notably, the impact of
a specific q-error is heavily influenced by the true cardinality of
the corresponding query. Therefore, the q-error values and conse-
quently the percentiles derived from them are neither comparable
nor aggregable across datasets with various cardinalities, despite
ending up in similar PDE segments. This prevents PDE from offer-
ing a solid basis for meaningful aggregation and confirms that this
approach becomes impractical for a larger number of datasets.

3) Analyzing each estimator’s worst-case errors is crucial for a
thorough assessment of the estimators’ accuracy. However, PDE
falls short by only reporting the 99th and 100th percentiles, neglect-
ing the frequency of such extreme errors.

4) PDE leaves the reader with the conundrum of interpreting per-
dataset evaluation results that often present conflicting outcomes,
where one estimator outperforms another on certain datasets, but
not on other datasets. Take POSTGIS and Sampling, for example.
Assume we plan to use the evaluation results in Tables 2 to 4 to
choose one of these two estimators for the problem of estimating the
cardinality of single relation queries on 2-D geographical datasets.
Even with the evaluation results of only three datasets, arriving at a
conclusion remains challenging. In particular, the winner between
these two estimators is Sampling for areawater as well as for the
majority of segments for us-south; however, the winner is POST-
GIS for linearwater. So what can we conclude? Such contradictory
results are often inevitable. Even within the results for a single
dataset, it can be challenging to determine which method yields
more accurate estimates and to surpass the typical non-conclusive
comparison outcomes, such as:

Regarding the accuracy comparison between EQD and REGP on
areawater (Table 2), EQD outperforms REGP in median q-errors, the

95th percentile for high selectivity queries, and maximum q-error for
low selectivity queries, while REGP shows a better accuracy elsewhere.

Overcoming these challenges requires information that is not
provided by PDE result tables. In the following, we pose three
example questions that are important in analyzing the evaluation
results but remain unanswered by PDE. According to the evaluation
results on us-south (Table 4), we observe that EXGB, POSTGIS, and
Sampling demonstrate quite acceptable q-error percentiles except
for the PDE segment corresponding to the maximum q-error on
low selectivity queries, where the q-error rapidly jumps to 5.2×103,
1.5 × 104, and 1.8 × 104 respectively. It is interesting to know:

𝑄1) How often do such high-end q-errors, for instance q-errors
larger than 512, occur per estimator?

𝑄2) How many low-selectivity queries did our query generator
produce for this dataset?

𝑄3) What are the true cardinalities of these misestimated queries,
given that they can range from 1 to 860,973 tuples?

8 MULTIDIMENSIONAL EVALUATION (MDE)
In this section, we propose the multidimensional evaluation frame-
work (MDE) that addresses the limitations of PDE. Most importantly,
this framework supports experiments on any number of datasets.
It is important to note that experimentation on numerous datasets
has been hindered up to this point due to PDE’s inability to aggre-
gate evaluation results, limiting it to generating one result table per
dataset. To illustrate the ability of MDE in handling this challenge,
we pick the task of evaluating each of our 16 estimators on 276
datasets in subset 𝑆2. While percentiles provide a compact sum-
mary of the q-error distribution, overcoming the limitations of PDE
requires evaluation data that is not only more granular but also
suitable for meaningful aggregation and effective presentation. In
the following, we introduce our multidimensional profile, which
forms the foundation for meeting these requirements.

8.1 Multidimensional Profile (MDP)
We collect the raw evaluation results in (𝑑𝑠, 𝑒𝑠𝑡, 𝑐𝑎𝑟𝑑, 𝑠𝑒𝑙, 𝑞𝑒) tu-
ples, where 𝑑𝑠 represents the dataset, 𝑒𝑠𝑡 the estimator, 𝑐𝑎𝑟𝑑 the
cardinality of the relation, 𝑠𝑒𝑙 the selectivity of the query, and 𝑞𝑒
the q-error. Notably, the true cardinality of each query, which is a
critical missing piece in PDE, can be derived from the selectivity of
the query and the dataset cardinality. For our experiments on the
datasets in subset 𝑆2, this produces 16 × 276 × 106 tuples that pro-
vide fine-grained, yet non-aggregable evaluation results which are
difficult to present or conclude from effectively. In order to provide
the necessary foundation for aggregation, we apply discretization.
For this purpose, we propose the logarithmic scale where the base
of the logarithm can be set according to the desired precision of
the discretization. While using identical bases for discretizing the
cardinality and the selectivity is beneficial for further analysis, the
base for the q-error can differ from them. For a relation 𝑅 with
cardinality |𝑅 |, we define the cardinality class of the relation (cc),
the selectivity class of the query (sc), and the q-error class of the

3750

Table 2: Evaluation results on areawater dataset

High Selectivity (2%, 100%] Medium Selectivity (0.5%, 2%) Low Selectivity (≤ 0.5%)
Method 50th 95th 99th 100th 50th 95th 99th 100th 50th 95th 99th 100th
EQD 1.04 1.18 10.71 529.50 1.24 15.76 68.49 725.00 1.64 15.72 58.00 390.00
Est-Area 65.67 491.00 1.3 · 103 5.8 · 103 7.92 109.00 358.00 966.00 4.18 73.50 182.00 241.00
GXTree 1.02 1.08 1.12 1.34 1.06 1.20 1.32 2.01 1.14 1.81 3.40 28.00
IQTS 1.03 1.18 1.42 6.55 1.11 2.33 3.42 50.00 1.24 4.00 11.75 264.80
MHist 3.05 5.15 6.38 15.15 1.39 5.91 9.15 27.82 1.56 7.80 20.03 932.00
PGDef 69.30 184.18 1.5 · 103 6.5 · 103 5.17 850.00 945.00 966.00 8.42 220.00 237.00 241.00
PGB 1.77 3.86 11.12 19.54 2.33 15.09 20.07 95.67 3.04 24.75 70.00 582.50
POSTGIS 15.64 105.12 231.66 1.1 · 103 8.24 397.00 608.00 902.00 6.17 177.00 225.02 241.00
QTS-0 6.07 46.92 114.40 542.25 1.04 5.81 23.20 763.00 1.07 6.50 26.46 322.50
QTS-2 1.01 1.05 1.11 1.69 1.06 1.26 1.46 4.39 1.17 2.44 6.00 49.00
REGP 1.67 2.28 3.31 12.18 1.31 4.56 7.31 125.00 1.72 8.22 24.84 558.60
Sampling 1.03 1.26 1.73 3.92 1.25 2.61 4.11 548.00 1.77 117.00 187.00 241.00
DeepDB 1.06 1.31 1.54 3.40 1.26 2.08 3.65 379.00 1.74 88.00 195.00 241.00
EXGB 1.02 1.11 1.20 2.88 1.10 1.44 1.86 52.00 1.34 3.35 8.29 53.50
LW-XGB 2.06 2.59 3.02 5.31 1.35 2.35 3.19 13.77 2.14 12.41 40.67 715.00
MSCN 3.34 46.12 177.54 1.9 · 104 3.35 46.66 180.36 1.2 · 104 3.34 45.50 171.79 9.9 · 103
NARU2K 3.26 11.83 22.81 43.86 16.76 108.70 147.06 179.41 60.45 794.28 3.2 · 103 4.4 · 104
NARU 3.53 13.31 23.28 43.31 20.71 106.50 144.89 176.29 74.85 839.59 3.3 · 103 4.3 · 104

Table 3: Evaluation results on linearwater dataset

High Selectivity (2%, 100%] Medium Selectivity (0.5%, 2%) Low Selectivity (≤ 0.5%)
Method 50th 95th 99th 100th 50th 95th 99th 100th 50th 95th 99th 100th
EQD 1.05 1.12 1.13 1.13 1.05 1.17 1.26 1.88 1.12 1.75 2.75 68.50
Est-Area 2.30 2.37 2.37 2.37 1.40 2.03 2.48 4.09 1.37 2.63 4.00 262.50
GXTree 1.02 1.04 1.04 1.04 1.04 1.11 1.14 1.26 1.07 1.35 1.84 54.00
IQTS 1.04 1.05 1.06 1.06 1.04 1.14 1.21 1.49 1.09 1.56 2.35 59.00
MHist 1.73 1.78 1.78 1.78 1.32 1.87 2.16 3.23 1.32 2.48 3.77 95.50
PGDef 4.24 4.40 4.40 4.40 2.67 17.01 1.1 · 103 2.9 · 103 1.97 12.32 83.00 968.00
PGB 1.83 1.96 1.96 1.96 1.24 1.90 2.70 8.87 1.32 2.50 4.60 158.50
POSTGIS 1.00 1.01 1.02 1.02 1.01 1.05 1.07 1.20 1.03 1.23 1.59 31.00
QTS-0 2.52 2.60 2.60 2.60 1.27 2.02 2.68 4.48 1.28 2.48 3.80 239.50
QTS-2 1.01 1.03 1.03 1.03 1.02 1.07 1.10 1.23 1.05 1.34 1.89 58.00
REGP 1.01 1.02 1.02 1.02 1.02 1.06 1.09 1.31 1.04 1.29 1.74 41.00
Sampling 1.38 1.54 1.57 1.58 1.23 1.96 2.84 1.2 · 103 1.50 152.00 342.00 967.00
DeepDB 1.37 1.53 1.53 1.54 1.25 1.94 3.00 8.84 1.38 2.93 5.91 271.00
EXGB 1.18 1.28 1.30 1.31 1.10 1.34 1.48 2.26 1.19 1.93 2.86 104.00
LW-XGB 3.18 3.23 3.24 3.24 1.41 1.99 2.36 4.00 1.27 2.47 4.56 178.00
MSCN 2.10 5.04 5.10 5.12 2.29 12.55 29.86 1.9 · 103 2.28 12.76 30.79 2.3 · 103
NARU2K 6.52 7.64 7.71 7.72 34.14 107.82 133.39 180.99 111.74 797.98 2.3 · 103 1.7 · 105
NARU 6.40 7.62 7.69 7.71 34.43 106.17 131.80 180.66 112.05 790.63 2.3 · 103 1.7 · 105

estimate (qc) as follows:

𝑐𝑐 := ⌊log2 |𝑅 |⌋
𝑠𝑐 := ⌊− log2 𝑠𝑒𝑙⌋
𝑞𝑐 := ⌊log√2 𝑞𝑒⌋ .

(3)

Although discretization introduces some precision loss, this loss
can be controlled by the choice of the logarithmic base. With our
chosen bases, the loss is bounded by a factor of two for cardinality

and selectivity, and a factor of
√
2 for the q-error. Moreover, for

each cc and sc combination, we can approximate the true cardinality
of the query, true_card, in the following interval:

true_card ∈ [2cc−sc, 2cc−sc+1) . (4)

Given a (𝑐𝑐, 𝑠𝑐) pair, this approximation is sufficient to address
the issues of aggregability and comparability of the evaluation
segments that we had in PDE. By definition, cardinality class values
are determined solely by the range of dataset cardinalities, which

3751

Table 4: Evaluation results on us-south dataset

High Selectivity (2%, 100%] Medium Selectivity (0.5%, 2%) Low Selectivity (≤ 0.5%)
Method 50th 95th 99th 100th 50th 95th 99th 100th 50th 95th 99th 100th
EQD 1.00 1.01 1.01 1.12 1.00 1.02 1.05 1.96 1.01 1.10 1.56 859.00
Est-Area 8.35 17.59 24.08 51.36 5.02 11.88 25.83 166.39 1.94 8.60 12.82 6.2 · 104
GXTree 1.01 1.02 1.02 1.04 1.00 1.01 1.02 1.04 1.01 1.03 1.05 24.32
IQTS 1.00 1.01 1.02 1.05 1.00 1.01 1.03 1.21 1.01 1.03 1.08 4.00
MHist 6.15 12.96 17.75 37.85 3.70 8.75 19.03 122.60 1.78 6.42 9.68 3.5 · 103
PGDef 15.65 48.65 65.78 111.95 3.91 18.62 64.18 3.3 · 106 1.86 20.01 4.1 · 105 8.6 · 105
PGB 1.73 5.04 6.62 11.19 1.66 5.69 7.97 27.44 1.69 5.34 10.16 3.0 · 103
POSTGIS 1.03 1.12 1.20 1.44 1.05 1.19 1.31 3.62 1.09 1.38 1.77 1.5 · 104
QTS-0 3.79 11.88 16.93 27.41 2.80 12.82 20.29 92.85 1.94 6.73 14.46 3.7 · 104
QTS-2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.03 20.00
REGP 1.00 1.00 1.01 1.03 1.00 1.01 1.01 1.14 1.00 1.02 1.04 2.81
Sampling 1.01 1.05 1.08 1.12 1.03 1.10 1.14 1.28 1.06 1.26 1.53 1.8 · 104
DeepDB 1.02 1.07 1.09 1.15 1.04 1.16 1.24 1.64 1.12 1.61 2.33 3.0 · 104
EXGB 1.01 1.04 1.06 1.31 1.02 1.08 1.11 1.37 1.05 1.24 1.54 5.2 · 103
LW-XGB 4.10 6.93 8.17 12.66 2.68 5.17 7.53 14.31 1.60 3.42 5.14 9.4 · 103
MSCN 3.92 40.31 133.14 8.5 · 104 2.33 13.26 41.20 1.1 · 105 4.33 33.23 75.72 3.1 · 104

for subset 𝑆2 spans from 13 to 27. The selectivity class values, on the
other hand, range from 1, indicating queries that return all tuples
of the relation, to a maximum value equal to the cardinality class of
the relation, which is observed in cases where the query retrieves a
single tuple. We cap q-errors larger than 216 by assigning them to
the qc value of 32 for visualization purposes. Such large q-errors
indicate a level of inaccuracy that is highly undesirable, irrespective
of the specific q-error value. Notably, this cap is not a mandatory
part of our profile structure and can be adjusted or removed entirely
based on the analyst’s preferences. Having introduced the building
blocks, we can now proceed to construct our multidimensional
profile, which serves as the solid foundation for aggregating the
evaluation results across diverse datasets. For each dataset ds and
estimator est, we collect the cc of the relation along with the qc and
sc of each test query. Duplicated tuples are aggregated, with their
frequency stored as cnt. This results in tuples that can be organized
in a database relation with the following relational schema:

𝑀𝐷𝑃 (𝑑𝑠, 𝑒𝑠𝑡, 𝑐𝑐, 𝑠𝑐, 𝑞𝑐, 𝑐𝑛𝑡). (5)

We refer to this structure as themultidimensional profile (MDP). For
our experiments, this yields 666,124 tuples, representing a substan-
tial reduction from the number of result tuples prior to discretiza-
tion. In order to provide some numeric examples of the insights we
gain from this profile, we address the three questions posed in Sub-
section 7.2 and concentrate on the specified dataset and estimators.
The answer to 𝑄1 is obtained by

Γest;𝑠𝑢𝑚 (cnt)
(︂
𝜎 (𝑑𝑠=“us-south”∧𝑞𝑐>18) (𝑀𝐷𝑃)

)︂
,

where Γ denotes the group-by operator. This yields 1, 26, and 162
queries for EXGB, POSTGIS, and Sampling, respectively. We can
approximate the answer to 𝑄2 through

𝑠𝑢𝑚(cnt)
(︂
𝜎 (𝑑𝑠=“us-south”∧𝑠𝑐>7) (𝑀𝐷𝑃)

)︂
.

In this expression, 𝑠𝑐 > 7 corresponds to the definition of low
selectivity category in PDE. The result indicates that 2.7 × 105 out
of 106 queries generated for us-south fall into this category. This
means the PDE segment corresponding to the maximum q-error
on low selectivity queries consolidates the evaluation results of
2.7 × 103 queries in reporting only the maximum q-error for these
queries, regardless of the frequency of such high end errors, which
may in this case range from 1 to 2.7 × 103. To answer 𝑄3 we obtain
the selectivity class of the queries with high qc values through

Π𝑒𝑠𝑡,𝑠𝑐,𝑐𝑐

(︂
𝜎 (𝑑𝑠=“us-south”∧𝑞𝑐>18) (𝑀𝐷𝑃)

)︂
.

For instance, the query for which EXGB produced a q-error greater
than 512, 𝑞𝑐 > 18, falls in the selectivity class 25. Since the cardinal-
ity class for us-south is 27, using Equation 4, we can approximate
the true cardinality of the query in the range [4, 8).

The multidimensional profile structure introduced in (5) em-
bodies the core concept of MDE. While these profile tuples offer a
wealth of information, drawing definitive conclusions from them re-
mains challenging. However, this structure supports various forms
of aggregation through slice-and-dice operations. As an example,
we can replicate PDE-like evaluation results by grouping sc values
into selectivity categories, which we can now define with desired
granularity, and aggregating qc values into specific percentiles
across ds, est, and each selectivity category. The remainder of this
section presents examples of analytical investigations on MDP.

8.2 Accuracy Heatmaps
We aggregate the MDP tuples by summing up the frequencies per
(est, cc, sc, qc) combination. Having grouped our datasets into cardi-
nality classes, we made our first move towards surpassing the main
deficiency of PDE. This yields per-estimator evaluation tuples in
the form of (cc, sc, qc, cnt), which provide an overview on the estima-
tors’ accuracy. While informative, these tuples remain challenging
to present or draw a conclusion from. To address this challenge, we

3752

apply dimensionality reduction. We use the log-transformed upper
bound of the approximation interval presented for true cardinalities
in Equation 4 and define log_card as a new dimension to combine
cc and sc as follows:

log_card := 𝑐𝑐 − 𝑠𝑐 + 1. (6)

Additionally, for better visualization, we define:

log_cnt := log2 (𝑐𝑛𝑡) . (7)

For each estimator, we use the aggregated (log_card, qc, log_cnt)
tuples to plot the accuracy heatmaps, Figure 2, where each cell
corresponds to a (log_card, qc) pair, with its color indicating log_cnt
value. Notably, in each plot, large q-errors for queries with high true
cardinalities are identifiable in the top-right corner, where yellow
or light green cells indicate a high frequency of these undesirable
outcomes. Observably, QTS-2 and GXTree exhibit the least expan-
sion in this area. Although these heatmaps are highly informative,
they pose challenges for pairwise comparisons of estimators. For
instance, it remains challenging to determine whether DeepDB
outperforms Sampling. In Subsection 8.3, we propose a systematic
way to rank estimators based on their overall accuracy results.

8.3 From MDP to Ranking the Estimators
We argue that a properly defined weighted sum of 𝑞𝑐 values can
serve as a meaningful metric for comparing the accuracy of es-
timators. Here, we outline the intuition for this approach. Our
experiments evaluate each estimator on datasets of diverse cardi-
nality classes. Therefore, queries with identical 𝑠𝑐 values can have
very different true cardinalities, which influences the impact of a
specific 𝑞𝑐 . To account for these variations, we slice the evaluation
results per (𝑐𝑐, 𝑠𝑐) pairs. This ensures that the 𝑞𝑐 values within
each slice correspond to true cardinalities in a range defined by
Equation 4 and are comparable across different datasets. Conse-
quently, the accuracy of estimators can be compared by analyzing
the frequency distribution of 𝑞𝑐 values per slice. Since the num-
ber of queries per (𝑐𝑐, 𝑠𝑐) pair is consistent across estimators, an
estimator with a higher frequency mass at larger 𝑞𝑐 values can be
recognized as the less accurate one with respect to the correspond-
ing slice. To quantify this undesirable mass, we use a weighted sum
of 𝑞𝑐 frequencies, Σ(𝑓 (𝑞𝑐) ·𝑐𝑛𝑡), where 𝑓 (𝑞𝑐) is a strictly increasing
function penalizing larger 𝑞𝑐 vales and 𝑐𝑛𝑡 is the frequency of the
corresponding 𝑞𝑐 . A relevant question is which function to choose
as 𝑓 . This depends on the analyst’s preference: a polynomial or
exponential function imposes stricter penalties on high 𝑞𝑐 values,
favoring the search for an estimator with the lowest worst-case
errors, while a linear function applies a milder penalty, preventing
extreme errors from dominating the evaluation. Having selected
the penalty function 𝑓 , we can determine the superior estimator for
each (𝑐𝑐, 𝑠𝑐) pair. However, the known problem of contradictory
results may arise where an estimator is superior for one slice, while
the other is preferable elsewhere. In contrast to PDE, we can re-
solve this contradiction by imposing higher penalties on the slices
with larger true cardinalities while aggregating the weighted sum
over slices. In the following, we present an implementation of this
approach with three recommended weighting mechanisms,𝑤𝑖 , that
account for both penalizing higher 𝑞𝑐 values and emphasizing slices
corresponding to larger true cardinalities.

We use the MDP tuples, with the relational schema introduced
in (5), and a weighted sum to derive a penalty score per estimator.
For an estimator 𝐸𝑠𝑡 , a tuple 𝑡 in MDP, and a weight function𝑤 (𝑡),

penalty_score(𝐸𝑠𝑡) :=
∑︂

𝑡 ∈𝜎est=𝐸𝑠𝑡 (MDP)
𝑤 (𝑡) · 𝑡 .cnt . (8)

Some recommendations for the weighting mechanism are:

𝑤1 (𝑡) := (𝑡 .𝑐𝑐 − 𝑡 .𝑠𝑐 + 1) ·
√
2
𝑡 .qc

𝑤2 (𝑡) := 𝑤𝑠𝑐 (𝑡) ·
√
2
𝑡 .qc

where𝑤𝑠𝑐 (𝑡) :=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.4 𝑡 .cc − 𝑡 .sc < 2
0.8 1 < 𝑡 .cc − 𝑡 .sc < 4
1 otherwise

𝑤3 (𝑡) := (𝑡 .cc − 𝑡 .sc + 1) · 𝑡 .qc,

where 𝑤1 and 𝑤3 employ the log-transformed upper bound of
the true cardinalities, defined in Equation 4, as a strictly positive
coefficient to emphasize the slices with larger true cardinalities,
whereas 𝑤2 uses a piecewise constant function for this purpose.
Regarding the penalty function 𝑓 (𝑞𝑐),𝑤1 and𝑤2 demonstrate the
choice of an exponential penalty in contrast to the identity function
in𝑤3. An intuitive choice for the base of the exponent, in𝑤1 and
𝑤2, is to match the logarithm base used in our discretization of
q-errors, allowing the magnitude of large q-errors to be reflected
in the penalty score. The resulting penalty scores can be used for
establishing a precision-based ranking of the estimators.

8.3.1 Case Study. To further elaborate on the data processing in
MDE and our proposed ranking mechanism, Figure 3 presents the
data processing pipeline for four example tuples. These tuples are
selected from the evaluation results of PGDef and PGB on two
OpenStreetMap datasets, namely alps and us-south. Notably, we
deliberately selected these tuples as our examples to highlight the
varying accuracy of PostgreSQL’s cardinality estimator under differ-
ent configurations. We hope this further encourages the community
to avoid evaluating this estimator without accounting for its config-
uration potential. While the data structure introduced for the raw
evaluation results in Subsection 8.1 is sufficient for the pipeline to
work, here we also include 𝑇𝑟𝑢𝑒𝐶𝑎𝑟𝑑 and 𝐸𝑠𝑡𝐶𝑎𝑟𝑑 for better illus-
tration. By following the process on the second tuple, identifiable
by its red color, we observe that in the first step, the 𝑐𝑐 , 𝑠𝑐 , and 𝑞𝑐
values are computed, determining the MDP tuple in which the red
tuple should be aggregated. Consequently, it contributes a count
of one to the frequency of 204 for the tuples sharing the same 𝑐𝑐 ,
𝑠𝑐 , and 𝑞𝑐 values for the dataset us-south and the PGB estimator. In
the next step, the MDP tuples are aggregated and grouped by (𝑒𝑠𝑡 ,
𝑐𝑐 , 𝑠𝑐 , 𝑞𝑐) combinations irrespective of the name of the dataset. As
a result, our red tuple is aggregated into the red-highlighted tuple,
contributing to the total frequency of 20,930 for this group. The
aggregated evaluation results can be used for further analysis, one
such example being ranking the estimators according to the penalty
score accumulated for each. By comparing the first and third tu-
ples in the raw evaluation results, identifiable by their blue and
purple colors, we see that they have similar q-errors both falling
into the 𝑞𝑐 of one, however, they have significantly different true
cardinalities. As a result, the blue tuple exhibits a misestimate ex-
ceeding 1.45 × 107, whereas the purple tuple’s misestimate is a few
thousand. Following the corresponding colors in the contribution

3753

Figure 2: Per-estimator accuracy heatmaps

of each tuple in the penalty score, we observe that𝑤1 and𝑤3 take
this difference well into consideration. By further comparing the
contributions of these tuples in the penalty score under the three
weighting mechanisms, we see that𝑤1 is the strictest in penalizing
high errors and emphasizing larger true cardinalities.

8.3.2 Estimators’ Ranking. Table 5 presents the rankings according
to the penalty scores derived from the evaluation results for the
two subsets introduced in Section 3, along with the rankings of
the top five estimators derived from experiments on the full set
of datasets in our repository. The primary objective of expanding
experiments to 18,020 datasets is to assess the robustness of our
ranking results across a broader set of datasets. Focusing on the
top five estimators is motivated by their greater relevance to de-
cision makers, who prioritize leading performance. Regarding the
ranking results, we observe that QTS-2 and GXTree consistently
rank as the most accurate estimators. EXGB, followed by DeepDB,
achieve better positions compared to other learned methods. The
three PostgreSQL variants exhibit notable results: PGDef ranks at
the bottom, PGB, however, is mid-range and surprisingly outper-
forms both MSCN and LW-XGB. POSTGIS does not outperform
PGB, except when ranked on the larger dataset subset and with𝑤3.
Particularly, when greater penalties are applied to larger q-errors,

POSTGIS ranks lower than PGB, which is unexpected given its
tailored features for geospatial data. By extending the experimental
datasets from the five datasets in 𝑆1 to the 276 datasets in 𝑆2, we
observe the swap between the first and second positions for GXTree
and QTS-2, along with quite notable shifts in the positions of REGP
and DeepDB for 𝑤3. The overall ranking remains mostly stable,
with the top estimators largely remaining in the top tier and those
in the middle or bottom exhibiting similar standing. This suggests
that the K-Means selection was quite effective in choosing a rep-
resentative subset of only five datasets, capturing the diversity of
our repository. However, conducting comprehensive experiments
on a larger number of datasets is preferable whenever feasible.
The advantage of exploiting a sufficiently large set of experimental
datasets is further confirmed by the consistent ranking of the top
estimators across different weighting mechanisms for the subset
with 276 datasets, and the robustness of the ranking results when
utilizing an even larger set comprising 18,020 datasets.

8.3.3 Robustness Against the Discretization Granularity. To exam-
ine the robustness of the ranking against the discretization granular-
ity, we materialize the raw evaluation results of the top five estima-
tors on the 276 datasets in 𝑆2 and apply discretization using different
logarithm bases. For cardinality and selectivity, we use bases from

3754

{
√
2, 2, 4, 10}, and for q-error, bases from {2

1
8 , 2

1
4 ,
√
2, 2, 4}. We re-

move the cap for 𝑞𝑐 values, apply our three weighting mechanisms
to derive the penalty scores, and rank the estimators accordingly.
The key finding is that the ranking is insensitive to the discretiza-
tion of cardinality and selectivity. For q-error discretization, there
is a swap between the first and second places for 𝑤3 with bases
larger than

√
2, while the rest remains stable.

8.3.4 Sufficiency of Our Experimental Scope. MDE requires as in-
put the relation cardinalities, the estimated selectivities, and the
resulting q-errors. Therefore, its evaluation requires a diverse range
of these inputs, regardless of the complexity of the workload used to
generate them. Our experiments incorporate 18,020 datasets exhibit-
ing varied statistical properties, alongside 16 estimators ranging
from naïve to sophisticated methods. This produces a broad spec-
trum of q-error distributions, as illustrated in Figure 2, thereby
ensuring sufficient input diversity for a robust evaluation of MDE.

Figure 3: MDE – Data processing pipeline

9 CONCLUSION AND FUTUREWORK
We developed a multidimensional evaluation framework (MDE)
that facilitates the aggregation of evaluation results across any
number of datasets. This capability eliminates the need for reliance
on per-dataset evaluations, which have so far hindered conduct-
ing experiments involving a sufficient number of datasets. MDE
facilitates pairwise comparisons between estimators and drawing
conclusions in the presence of seemingly contradictory results. The

customizable ranking mechanism of MDE enables the imposition of
stricter penalties on more undesirable misestimation cases, thereby
providing rankings that align with the analyst’s primary objectives.

We performed experiments on the accuracy of cardinality esti-
mators from learned and traditional methods on 2-D geographical
datasets. The narrow yet purpose-driven scope of this study in
contrast to the comprehensiveness of the experiments challenges
the prevalent but flawed practice of drawing sweeping conclusions
about the accuracy of cardinality estimators from a limited set
of experiments. Regarding the comparison of the estimators, our
experiments do not confirm the general conclusion of previous
studies about the superiority of learned over traditional cardinality
estimators for single relation range queries in static environments.
According to our evaluation results, QTS-2 and GXTree are the
most accurate cardinality estimators for 2-D geographical datasets
in this setup. Among learned estimators, EXGB demonstrates a su-
perior accuracy, followed by DeepDB. Remember that the storage
consumption of DeepDB is influenced by the sample size, which in
turn scales with the dataset size and can reach megabytes beyond
our budget limits. In contrast, EXGB exhibits a much more manage-
able storage footprint. Moreover, we highlighted that conducting
comparisons with traditional estimators without considering their
tuning knobs can lead to misleading results. One surprising finding
in this regard is that although PostgreSQL is a common baseline
heavily criticized in benchmarking studies, a configured version
of it, PGB, outperforms some of the learned estimators. Another
interesting finding is that POSTGIS, the extension of PostgreSQL
for geospatial data, does not always outperform PGB, although
it is expected to be tailored to this experimental environment. Fi-
nally, we believe MDE can pave the way for future benchmarking
studies to conduct extensive experiments with well-defined scopes
across various scenarios, including higher-dimensional datasets,
more complex workloads involving joins, and a broad range of
estimators suitable for each scenario.

Table 5: Ranking results with three different weightings

5 datasets 276 datasets 18,020 datasets
Estimator 𝑤1 𝑤2 𝑤3 𝑤1 𝑤2 𝑤3 𝑤1 𝑤2 𝑤3
QTS-2 2 2 2 1 1 1 1 1 1
GXTree 1 1 1 2 2 2 2 2 2
IQTS 3 3 3 3 3 3 3 3 3
REGP 5 5 7 4 4 4 4 4 4
EXGB 4 4 5 5 5 5 5 5 5
EQD 7 7 6 6 6 7
DeepDB 6 6 4 7 7 6
PGB 8 8 9 8 9 10
Sampling 10 11 8 9 10 8
LW-XGB 9 9 10 10 8 11
MHist 11 10 11 11 11 12
QTS-0 12 12 14 12 12 14
MSCN 13 13 12 13 13 13
Est-Area 14 14 15 14 14 15
POSTGIS 15 15 13 15 15 9
PGDef 16 16 16 16 16 16

3755

REFERENCES
[1] Andreas Kipf. 2019. andreaskipf/learnedcardinalities. https://github.com/

andreaskipf/learnedcardinalities Retrieved September 3, 2024.
[2] F. Buccafurri, F. Furfaro, G. M. Mazzeo, and D. Sacca. 2003. A quad-tree based

multiresolution approach for two-dimensional summary data. In Proceedings of
the International Conference on Scientific and Statistical Database Management
(SSDBM).

[3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA). ACM,
785–794. https://doi.org/10.1145/2939672.2939785

[4] Chris Ding and Xiaofeng He. 2004. K-Means Clustering via Principal Component
Analysis. In Proceedings of the Twenty-First International Conference on Machine
Learning (Banff, Alberta, Canada) (ICML ’04). Association for Computing Ma-
chinery, New York, NY, USA, 29. https://doi.org/10.1145/1015330.1015408

[5] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using
lightweight models. Proceedings of the VLDB Endowment 12, 9 (May 2019),
1044–1057. https://doi.org/10.14778/3329772.3329780

[6] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. 2022. Why do tree-based
models still outperform deep learning on tabular data? arXiv:2207.08815 [cs.LG]

[7] AntoninGuttman. 1984. R-trees: ADynamic Index Structure for Spatial Searching.
In Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data. ACM, 47–57. https://doi.org/10.1145/971697.602266

[8] Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren
Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (Dec. 2021),
752–765. https://doi.org/10.14778/3503585.3503586

[9] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2020.
DeepDB: Learn from Data, Not from Queries! Proc. VLDB Endow. 13, 7 (March
2020), 992–1005. https://doi.org/10.14778/3384345.3384349

[10] Fisnik Kastrati and Guido Moerkotte. 2016. Optimization of Conjunctive Pred-
icates for Main Memory Column Stores. Proc. VLDB Endow. 9, 1 (Aug. 2016),
1125–1136. https://doi.org/10.14778/2994509.2994529

[11] Kyoungmin Kim, Sangoh Lee, Injung Kim, and Wook-Shin Han. 2024. ASM:
Harmonizing Autoregressive Model, Sampling, and Multi-dimensional Statistics
Merging for Cardinality Estimation. Proceedings of the ACM on Management of
Data 2, 1 (March 2024), 1–27. https://doi.org/10.1145/3639300

[12] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. 2018. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. arXiv:1809.00677 [cs]. http://arxiv.org/abs/1809.00677

[13] Stephen Kokoska and Daniel Zwillinger. 2014. CRC Standard Probability and
Statistics Tables and Formulae, Student Edition. CRC Press, Boca Raton. https:
//doi.org/10.1201/b16923

[14] Data Management Lab. 2020. DeepDB: Deep Learning for Query Processing.
https://github.com/DataManagementLab/deepdb-public. Accessed: 2024-09-03.

[15] Kukjin Lee, Anshuman Dutt, Vivek Narasayya, and Surajit Chaudhuri. 2023.
Analyzing the Impact of Cardinality Estimation on Execution Plans in Microsoft
SQL Server. Proceedings of the VLDB Endowment 16, 11 (2023), 2871–2883. https:
//doi.org/10.14778/3611479.3611494

[16] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proceedings
of the VLDB Endowment 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/
2850583.2850594

[17] Yingze Li, Xianglong Liu, Hongzhi Wang, Kaixin Zhang, and Zixuan Wang. 2024.
Updateable Data-Driven Cardinality Estimator with Bounded Q-error. arXiv
preprint arXiv:2408.17209 (2024). https://doi.org/10.48550/arXiv.2408.17209

[18] Yingze Li, Hongzhi Wang, and Xianglong Liu. 2024. One Seed, Two Birds: A
Unified Learned Structure for Exact and Approximate Counting. Proc. ACM

Manag. Data 2, 1 (March 2024), 1–26. https://doi.org/10.1145/3639270
[19] Yuming Lin, Zejun Xu, Yinghao Zhang, You Li, and Jingwei Zhang. 2023. Cardi-

nality estimation with smoothing autoregressive models. World Wide Web 26, 5
(Sept. 2023), 3441–3461. https://doi.org/10.1007/s11280-023-01195-7

[20] T. H. Merrett and Ekow J. Otoo. 1979. Distribution models of relations. In
Proceedings of the fifth international conference on Very Large Data Bases - Volume
5 (Rio de Janeiro, Brazil) (VLDB ’79). VLDB Endowment, 418–425. https://doi.
org/10.5555/602876.602909

[21] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. arXiv:1710.03740
[cs.AI].

[22] Guido Moerkotte. 2024. Query Compiler. https://pi3.informatik.uni-mannheim.
de/~moer/querycompiler.pdf. Accessed: 2024-07-16.

[23] Guido Moerkotte, Norman May, and Anja Boehm. 2017. Methods and Sys-
tems for Estimating the Number of Points in Two-Dimensional Data. https:
//patents.google.com/patent/US20170177663A1/en US20170177663A1, June 22,
2017. (accessed 2024-07-16).

[24] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad
plans by bounding the impact of cardinality estimation errors. Proc. VLDB Endow.
2, 1 (2009), 982–993. https://doi.org/10.14778/1687627.1687738

[25] M. Muralikrishna and David J. DeWitt. 1988. Equi-depth multidimensional
histograms. In ACM SIGMOD Record, Vol. 17. 28–36. https://doi.org/10.1145/
971701.50205

[26] naru-project. 2019. naru-project/naru. https://github.com/naru-project/naru
Retrieved September 3, 2024.

[27] OpenStreetMap Foundation. n.d.. OpenStreetMap. https://www.openstreetmap.
org Accessed: 2024-08-31.

[28] Hoifung Poon and Pedro Domingos. 2011. Sum-Product Networks for Deep
Learning. In Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence (Barcelona, Spain) (UAI’11). AUAI Press, Arlington, Virginia,
USA, 337–346. https://dl.acm.org/doi/10.5555/3020548.3020596

[29] Viswanath Poosala and Yannis E Ioannidis. 1988. Selectivity Estimation without
the Attribute Value Independence Assumption. ACM SIGMOD Record 17, 3 (June
1988), 28–36. https://doi.org/10.1145/971701.50205

[30] PostgreSQL Global Development Group. 2023. Statistics Used by the Planner.
https://www.postgresql.org/docs/15/planner-stats.html Accessed: 2024-06-11.

[31] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned
Cardinality Estimation: A Design Space Exploration and a Comparative Eval-
uation. Proceedings of the VLDB Endowment 15, 1 (2021), 85–97. https:
//doi.org/10.14778/3485450.3485459

[32] U.S. Census Bureau. 2023. TIGER/Line Shapefiles and TIGER/Line Geo-
database. https://www.census.gov/geographies/mapping-files/time-series/geo/
tiger-geodatabase-file.html Accessed: 2024-08-31.

[33] U.S. Geological Survey. 2013. Earthquake Data Feed. https://earthquake.usgs.
gov/earthquakes/feed/v1.0/csv.php Accessed: 2024-08-31.

[34] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? Proceedings of the
VLDB Endowment 14, 9 (May 2021), 1640–1654. https://doi.org/10.14778/3461535.
3461552 arXiv:2012.06743 [cs].

[35] L. Woltmann, C. Hartmann, M. Thiele, D. Habich, and W. Lehner. 2019. Cardi-
nality Estimation with Local Deep Learning Models. In Proceedings of the Second
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management. ACM, Amsterdam, Netherlands, 1–8. https://doi.org/10.1145/
3329859.3329875

[36] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi
Chen, Pieter Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (Nov.
2019), 279–292. https://doi.org/10.14778/3368289.3368294

3756

https://github.com/andreaskipf/learnedcardinalities
https://github.com/andreaskipf/learnedcardinalities
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1015330.1015408
https://doi.org/10.14778/3329772.3329780
https://arxiv.org/abs/2207.08815
https://doi.org/10.1145/971697.602266
https://doi.org/10.14778/3503585.3503586
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/2994509.2994529
https://doi.org/10.1145/3639300
http://arxiv.org/abs/1809.00677
https://doi.org/10.1201/b16923
https://doi.org/10.1201/b16923
https://github.com/DataManagementLab/deepdb-public
https://doi.org/10.14778/3611479.3611494
https://doi.org/10.14778/3611479.3611494
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.48550/arXiv.2408.17209
https://doi.org/10.1145/3639270
https://doi.org/10.1007/s11280-023-01195-7
https://doi.org/10.5555/602876.602909
https://doi.org/10.5555/602876.602909
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
https://patents.google.com/patent/US20170177663A1/en
https://patents.google.com/patent/US20170177663A1/en
https://doi.org/10.14778/1687627.1687738
https://doi.org/10.1145/971701.50205
https://doi.org/10.1145/971701.50205
https://github.com/naru-project/naru
https://www.openstreetmap.org
https://www.openstreetmap.org
https://dl.acm.org/doi/10.5555/3020548.3020596
https://doi.org/10.1145/971701.50205
https://www.postgresql.org/docs/15/planner-stats.html
https://doi.org/10.14778/3485450.3485459
https://doi.org/10.14778/3485450.3485459
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html
https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.14778/3461535.3461552
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.1145/3329859.3329875
https://doi.org/10.14778/3368289.3368294

	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Selection Process for Subset S₁
	3.2 Description of Datasets in Subset S₂
	3.3 Per-Dataset Budget Assignment

	4 Workload
	5 Cardinality Estimators
	5.1 Traditional Cardinality Estimators
	5.2 Learned Cardinality Estimators

	6 Evaluation metric: Q-error
	7 Per-Dataset Evaluation (PDE)
	7.1 PDE Results on Datasets for Subset S₁
	7.2 Limitations of PDE

	8 Multidimensional Evaluation (MDE)
	8.1 Multidimensional Profile (MDP)
	8.2 Accuracy Heatmaps
	8.3 From MDP to Ranking the Estimators

	9 Conclusion AND FUTURE WORK
	References

