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Abstract

The advent of hybrid transactional/analytical processing (HTAP)
systems has reshaped enterprise data management, breaking the
wall between transaction processing and analytics. This paper
explores the co-innovation between enterprise applications and
databases to advance HTAP architecture and drive its scalable adop-
tion, as exemplified by SAP S/4HANA powered by SAP HANA. At
the core of this innovation lies the Virtual Data Model (VDM),
which simplifies the formulation of analytical queries directly over
transactional data, making HTAP databases more accessible to ap-
plication developers.

This paper delves into the complexities of the VDM, highlighting
key query optimization challenges such as expansive join views,
augmentation joins, and augmentation self-joins. Our findings un-
derscore the pivotal role of robust query optimizers in achieving
efficient HTAP query execution. By providing actionable insights
into the design and optimization of database systems, this paper
may serve as motivation for further research into advancing HTAP
database technology.
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1 Introduction

SAP undertook the challenge of developing a common database ap-
proach for OLTP and OLAP by leveraging an in-memory columnar
database technology [31]. Gartner coined the term HTAP (Hybrid
Transactional/Analytical Processing) [30], while Forrester referred
to it as Translytical [50]. SAP HANA, an in-memory columnar
database, serves as the foundation for enabling HTAP [32]. SAP
S/4HANA, an ERP (Enterprise Resource Planning) software pow-
ered by SAP HANA, exemplifies an HTAP system by unifying
transactional and analytical processing on a single database system.
With in-memory computing and real-time data access, businesses
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can derive both operational and analytical insights instantly, en-
abling better decision making and greater business agility [3, 37].

Technically, SAP S/4HANA executes both transactional and ana-
lytical queries on a single set of database tables. Traditional OLTP
systems utilize normalized tables, such as the order and order-line
table pair found in TPC-C [44]. In contrast, OLAP systems often use
star-schema tables, denormalizing the order and order-line tables
into a fact table (like the store_sales table in TPC-DS [46]) with
corresponding dimension tables created through dimensional data
modeling [18]. Query processing benefits from this data organi-
zation optimized for analytical queries. The process of replicating
transactional data from an OLTP system into separate star-schema
tables in a dedicated OLAP system is called ETL (Extract, Transform,
Load) and typically performed periodically (e.g., daily or weekly)
[19]. Consequently, analytical queries would access stale data.

S/4HANA executes analytical queries directly on its OLTP data-
base without any data replication, providing real-time access to
transactional data for analytics [5]. Such an HTAP architecture
was not feasible decades ago, necessitating data warehouses dedi-
cated for OLAP workloads. Analytical HTAP queries are inherently
more complex and slower than equivalent queries on star-schema
tables, as they often require on-the-fly data transformations that
ETL processes would handle in advance. Nevertheless, S/AHANA
achieves competitive performance levels by capitalizing on modern
hardware advancements and SAP HANA’s in-memory columnar
technology, which unleashes the high computing power of contem-
porary servers [13, 23].

While the technology to run HTAP workloads within a single
database system is available, application developers often struggle
to craft analytical HTAP queries directly over transactional tables,
which slows down the development of HTAP applications. To over-
come this, the Virtual Data Model (VDM) was introduced as the
foundation for data access in S/4HANA [29, 38]. The VDM provides
a collection of SQL views that expose application data in a standard-
ized, business-oriented format. For example, the SalesOrder view
presents sales order records in a format meaningful to human users
joining multiple tables, and SalesOrderFulfillmentIssue combines
data from multiple business processes (e.g., sales, delivery, billing,
and related purchasing or manufacturing) presenting the combined
data in a format easily consumable for identifying fulfillment anom-
alies.

While the VDM significantly simplifies query formulation and
makes HTAP databases more accessible to application developers,
it also adds complexity to analytical HTAP queries, necessitating so-
phisticated query optimizers. Unlike typical analytical queries that
involve only necessary tables, VDM views are designed to address
a wide range of business needs, often including more tables and
fields than required for individual queries. For instance, SalesOrder
exposes 148 fields related to sales orders, covering customer infor-
mation, sales personnel, purchase orders, delivery, invoices, and
more. While this comprehensive structure supports a variety of
queries, most queries only utilize a small subset of these fields. This
mismatch presents a significant query optimization challenge: iden-
tifying and removing unnecessary operations from VDM queries
to ensure efficient execution without compromising flexibility or
usability.

486

Kihong Kim, et al.

SAP S/AHANA

Fiori User Interfaces

OData

ABAP Application Servers

Application Logic

SQL

SAP HANA

( Application Data

Figure 1: S/AHANA’s Three-Tier Architecture

This paper examines the query design patterns employed in
VDM-based HTAP queries and identifies key query optimization
opportunities, unique to these patterns. Instead of presenting query
optimization techniques, this paper focuses on highlighting the opti-
mizations essential for HTAP queries in SAP S/4HANA, explaining
why they are necessary, and evaluating their implementation status
in SAP HANA and other database systems. By addressing these top-
ics, this paper provides practical insights into the challenges posed
by HTAP workloads in enterprise environments and underscores
the pivotal role of robust query optimizers in similar systems.

Section 2 provides an overview of SAP S/4HANA, SAP HANA,
and the VDM. Section 3 presents a real-world VDM query to estab-
lish the overall problem context in a tangible manner. Section 4, 5,
and 6 examine three key query patterns in HTAP queries using the
VDM, detailing corresponding query optimization requirements
and evaluating the implementation status of these optimizations
in today’s query optimizers. Section 7 discusses SQL language ex-
tension requirements, identified while advancing the method of
formulating analytical queries on VDM views.

2 SAP S/4HANA and its Virtual Data Model

2.1 SAP S/4HANA

SAP S/4HANA is the core of SAP’s Enterprise Resource Planning
(ERP) application suite, designed to cover essential business pro-
cesses, such as accounting, sourcing and procurement, manufac-
turing, supply chain, asset management, sales, project manage-
ment, and engineering [3, 37, 51]. Additionally, it provides country-
specific and industry-specific solutions across 64 countries and 25
industries, such as retail, automotive, healthcare, and utilities, help-
ing organizations meet unique regulatory and market needs. SAP
S/4HANA offers deployment flexibility, allowing it to be hosted
on-premises, in a private cloud, or in a public cloud. It is highly
configurable, extendable, and designed to integrate smoothly with
other business applications.

SAP S/4HANA employs a three-tier architecture, as illustrated in
Figure 1. The presentation layer is powered by SAP Fiori, SAP’s user
experience design framework, which delivers both transactional
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and analytical user interfaces. The application layer processes busi-
ness logic, primarily developed in the ABAP (Advanced Business
Application Programming) language. The database layer relies on
SAP HANA, SAP’s in-memory columnar database technology, to
store extensive application data, including around 111,500 tables
and 108,500 views, sometimes more than 100 columns per table,
and over 150 billion records in a table (such as sales line items for
large retail enterprises). Fiori communicates with ABAP servers
through OData [17], while the ABAP layer communicates with SAP
HANA using SQL.

Beyond transactional interfaces and APIs, SAP S/4HANA of-
fers embedded analytics that enable real-time, multidimensional
analysis on transactional data [5]. Capitalizing on SAP HANA’s
in-memory capabilities, SAP S/4HANA delivers real-time data pro-
cessing and analytics, leading to enhanced performance, faster
transaction processing, and advanced analytical capabilities. This
architecture makes SAP S/4HANA ideal for large-scale enterprises
aiming to streamline operations, improve decision-making, and
respond quickly to changing business demands. Its design empha-
sizes simplicity and agility, allowing organizations to efficiently
manage complex processes.

2.2 SAP HANA

The SAP HANA database manages all the transactional data of
S/4HANA while offering efficient access to this transactional data
in analytical queries without any redundant copy of the data or the
need of ETL processes [10, 15, 23, 25].

SAP HANA offers clients access via SQL interface. SQL requests
are parsed and analyzed for semantic correctness using catalog
metadata. The parsed query is translated into a relational alge-
bra tree which is first optimized using heuristic rewrite rules, e.g.
inlining views or unnesting nested queries. Subsequently, a Volcano-
style cost-based optimizer generates a query execution plan relying
on data statistics to compute the cost of alternative query execu-
tion plans. The query execution plan is then transformed into a
push-based plan representation for the HANA Execution Engine
(HEX) [20].

HEX leverages just-in-time compilation to efficiently blend pre-
compiled C++ code, e.g. for the data access in the columnar storage,
and LLVM code for expressions or even complete operators, e.g.
sorting. The pipelined and push-based query processing strategy of
HEX helped to significantly reduce the memory footprint of most
queries compared to the materializing operators of SAP HANA’s
legacy query engines.

While also row-oriented tables are supported by SAP HANA,
the majority of tables follows a columnar layout where updates are
processed by a write-optimized delta fragment which is periodically
merged into the read-optimized main fragment of a column. This
columnar layout can be compressed using various compression
methods reducing the memory footprint of tables and at the same
time is the foundation for efficient analytical query processing us-
ing vector instruction sets of modern processors, e.g. Intel AVX
512 or ARM SVE [22, 49]. Tables with billions of rows are typically
partitioned. S/4HANA carefully tuned the physical layout of tables
so that partition pruning can be applied effectively and only hot par-
titions of frequently updated tables need to be merged when using

487

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

| Consumption Views |

| Composite Interface Views |

| Basic Interface Views |

| Database Tables |

Figure 2: Virtual Data Model Layers

range-partitioning based on time. In general, in SAP HANA sec-
ondary indexes are used much less frequently than in row-oriented
databases. On top of the compression of columnar data, tables can
be stored in a page-wise fashion avoiding to load complete columns
when accessing data. Instead, only accessed pages are loaded into an
in-memory page buffer and evicted as needed. This page-oriented
layout in SAP HANA is called native storage extension (NSE) [39],
and S/4HANA uses NSE, e.g., for storing write-mostly data like
journals of change documents. Switching between page-based vs.
column-based organization of a column table is easy by changing
the metadata of the table and reloading the column, partition or
table.

Because SAP HANA supports transactional workloads with mil-
lions of transactions per hour concurrently with analytical work-
load it implements a MVCC-based concurrency scheme. ARIES-
style write-ahead logging makes sure that all committed changes
are stored in durable storage when a transaction is committed.

SAP HANA offers enterprise features like HA/DR as needed by
business-critical applications like S/4HANA. Further features of
SAP HANA that are not in the focus of this paper include support
for graph-data processing, an integrated JSON-document store,
native support for hierarchies and an integrated vector store.

2.3 Virtual Data Model

Application developers require simple and intuitive database inter-
faces. While S/4HANA application developers are highly skilled in
specific business domains and proficient in the imperative program-
ming languages, such as ABAP, used in those domains, they are
not necessarily SQL experts. Many have limited knowledge of rela-
tional algebra and are unfamiliar with DBMS-level optimizations.
Furthermore, despite its immense success, SQL is an old language
and can be challenging to learn and use effectively[40].

The basic idea of SAP S/4HANA’s Virtual Data Model (VDM)
is to offer all application data via standardized business-oriented
views that are easy to understand and easy to consume [29]. For
the definition of views, SAP’s Core Data Services (CDS) technology
is used [8, 24]. VDM views are modeled in CDS and deployed as
SQL views into the database. Cryptic technical details and names in
historically grown database table designs are hidden by VDM views.
In addition, VDM views are enriched with semantical information
and connected to other VDM views by CDS associations. These
associations can be used in a CDS path notation to add fields from
the associated view - an easy and convenient way to join a view
and project columns from it.
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VDM consists of multiple layers of views, each serving a distinct
purpose, as shown in Figure 2:

o Basic view layer: Close to the database tables, these views
introduce VDM’s added value of business terminology, se-
mantics, and associations.

Composite view layer: Built upon the basic views, this in-
termediate layer is designed to serve functional purposes,
such as transactional processing, data extraction, or analyt-
ics. It may transform and de-normalize the data according
to application-specific needs.

Consumption view layer: This top layer offers views that are
tailored for specific user interfaces and APIs or that define
specific analytical queries. These views are either deployed
as database views or retained as pure VDM artifacts, from
which the consumption infrastructure generates a query and
executes it on demand. They are constructed upon basic or
composite views.

While basic and composite views expose all data (rows and
columns) to support a wide range of use cases, consumption views
are specifically designed for their intended tasks. These views in-
clude only the necessary data and should not be used outside their
designed purposes. For consumption scenarios not predefined by
SAP S/4HANA, VDM allows customers to construct simple queries
from a broad composite view or precise but complex queries from
lean basic views. As of 2024, the number of basic/composite/con-
sumption views amounts to over 7,500 [36]. Some consumption
views are deeply nested, with the highest nesting depth reaching
24.

3 Motivating Example

Figure 3 shows the logical query plan of a seemingly simple VDM
query, "select * from JournalEntryItemBrowser". To illustrate
the raw complexity of VDM views, all nested views are unfolded
and no optimizations have been applied. The query plan comprises
47 table instances, 49 joins, one five-way UNION ALL, one GROUP
BY, one DISTINCT, and many selections and projections in the
DAG form. SAP HANA is able to share a subquery in a query plan,
forming a DAG instead of a tree. When unshared, the number of
table instances increases from 47 to 62.

JournalEntryItemBrowser is one of the most frequently ac-
cessed VDM views in SAP S/4HANA Cloud Public Edition. It is
centered around the ACDOCA table, one of the core tables in SAP
S/4AHANA. ACDOCA, known as the universal journal table, serves
as a unified source of all financial transactions at the line-item level.
This query plan can be decomposed into three parts.

o The three-way join in the lower left corner is the core of this
view, forming a composite interface view for ACDOCA. A
global enterprise usually has multiple legal entities (named
Company in SAP S/4HANA) and multiple ledgers. By com-
bining ACDOCA with the company table and the ledger table,
users can access a specific ledger for a specific company.

o The interface view is then augmented through 30 many-
to-one left outer joins with various other views, forming a
consumption view. Its maximum nesting depth is 6.

o The consumption view is protected with record-wise data
access control (DAC), filtering out the records that a user
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Figure 3: A Typical VDM Query (select * from JournalEn-
tryltemBrowser)

is not authorized to access [2]. The DAC filter is automati-
cally injected per user when quering, further increasing the
complexity of VDM queries.

However, processing such a complex query plan in its entirety is
not the intent behind VDM. VDM designers expect modern query
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Figure 4: An Optimized Query Plan for "select count(*)
from JournalEntryltemBrowser"

optimizers to simplify these complex views for each query, re-
taining only the necessary operations and eliminating unneces-
sary ones. Figure 4 shows an optimized query plan for "select
count(*) from JournalEntryItemBrowser", showcasing the ex-
tent to which such a complex view can be optimized. The two
many-to-one left outer joins in Figure 4—one with LFA1 (supplier
data) and the other with KNA1 (customer data)—are not removed
because they are used in the data access control filters placed above
each of them. The rest of the joins are pruned out as they don’t
change the cardinality due to the many-to-one left outer join se-
mantics.

This view can be seen as a virtual star schema, with all dimen-
sions pre-joined into the fact table, ACDOCA. The key advantage
is the ability to operate directly on transactional data without ETL-
based replication, meaning real-time analytics. Its downside is that
calculations and transformations are performed on the fly during
each query execution, rather than being pre-computed once during
ETL.

Key characteristics of VDM views include:

o Rich set of fields: VDM views provides a comprehensive
selection of fields through joins, reducing the need for addi-
tional joins in queries. However, this adds complexity to the
views, requiring query optimizers to remove unnecessary
joins.

Minimal use of filters and aggregations: VDM views
intentionally minimize the use of filters and aggregations,
ensuring their versatility across diverse use cases. Aggre-
gations are typically placed higher in the stack, either in
consumption views or in queries built atop. Advanced opti-
mizer logic is essential to push these operations as far down
as possible.

Incorporation of calculations: Business-specific calcula-
tions are incorporated as view fields, simplifying application
development while maintaining the view’s versatility. As
these views work directly with transactional data, the cal-
culations are performed on the fly during each query execu-
tion, not once during ETL. Advanced optimizer logic is again
essencial to minimize the impact of on-the-fly calculations.
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This paper explores the challenges and solutions associated with
the VDM. Formulating analytical queries over HTAP tables is inher-
ently complex. The VDM simplifies the formulation of analytical
queries for application developers, but it introduces additional lay-
ers of complexity, significantly complicating query optimization.
This paper highlights some challenges for query optimizers in such
a widely used and business critical application. These insights may
serve as motivation for further research into effective methods
for formulating analytical HTAP queries and developing advanced
query optimization techniques to address these challenges

Note that views can be materialized for query performance. SAP
HANA provides static cached views (SCV) and dynamic cached
views (DCV). They are primarily materialized in memory and thus
called cached views. SCV is refreshed periodically, providing a de-
layed snapshot of view. DCV is incrementally maintained, providing
the up-to-date snapshot.

4 VDM Query Optimization

The VDM provides a set of predefined SQL views, enabling appli-
cation developers to choose the most appropriate view for a given
business context and write queries without needing to manually
handle joins. This simplifies the process of writing correct and
performant queries.

4.1 Requirement: Expansive Join Views

Many VDM views are expansive, sometimes joining over 100 tables
and exposing hundreds of fields. This expansive structure allows
each view to support a broad range of business queries. In contrast,
creating highly specialized views for each specific business context
is generally undesirable, as it not only shifts development effort
from application developers to VDM view designers but also drasti-
cally increases the number of views, which increases maintenance
efforts and adds complexity to schema evolution.

For example, consider a view that joins a sales transaction ta-
ble with various master data tables—such as customers, suppliers,
stores, cost centers, and general ledger accounts—as well as admin-
istrative data tables like regions, countries, and calendar data, often
used to create hierarchies. This type of broad view supports multi-
ple analytical scenarios, for instance, customer-focused, country-
focused, and supplier-focused revenue analyses on a single view.

However, expansive VDM views do not necessarily require that
all joins be executed. Typically, a query accesses only 10-20 fields
out of hundreds, making many joins and other relational operations
in the view unnecessary. Therefore, optimizing out these redundant
operations is essential; otherwise, queries on VDM views may run
significantly slower than handcrafted queries executed directly on
the tables, reducing the benefit of easier query formulation.

The expansiveness of VDM views partly stems from nesting,
where views are often built on top of others, with the highest nest-
ing depth reaching 24. Since a view rarely uses all the information
from its nested views, certain joins become superfluous at each
subsequent level. These unnecessary joins from nested views con-
tribute to making the outermost view even more expansive than
originally intended.
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4.2 Modeling Pattern: Augmentation Join

As described earlier, application requirements led us to encounter
queries containing numerous unnecessary joins that ideally should
be optimized out. We introduce the term augmentation join (AJ)
to denote this query pattern frequently observed in VDM views. In
ajoin R»>< S, arecord r € R is augmented with s € S, filtered out if
no matching s € S is found, or duplicated if multiple s € S records
match. An augmentation join, however, is purely augmentative,
meaning it neither filters nor duplicates any r € R. Therefore, an
augmentation join can be removed if no fields introduced by it
are used in the query. We refer to such removable augmentation
joins as unused augmentation joins, or UAJs. The left child of
an augmentation join is referred to as the anchor while the right
child is the augmenter.

To remove a UA], it is essential to determine whether a join is
purely augmentative and does not filter or duplicate records [4]. We
identified two types of many-to-one joins that meet this criterion:

o (AJ 1) many-to-exact-one inner join, specifically, 1..m : 1..1
o (AJ 2) many-to-one left outer join, specifically, 1..m : 0..1

where m is a positive integer, and 1..m denotes a join cardinality
with a lower bound of 1 and an upper bound of m. One-to-one joins
are not treated separately because they are a subset of many-to-one.
The right-side join cardinality 1..1 implies exactly one match, ensur-
ing that no records from the left relation are filtered or duplicated.
The left outer join, on the other hand, doesn’t filter records even
when no match is found, instead augmenting with NULL values.
This allows the lower bound to be relaxed to zero for left outer join,
denoted as 0..1.

To identify these augmentation joins, it is necessary to determine
the join cardinality of the right child. We categorized our findings
into four cases:

o (AJ 1a) Inner equi-join based on a foreign-key constraint:
This is a typical example of a many-to-one join. Although not
uncommon, foreign key constraints are infrequent within
the SAP ecosystem, making this case rare in S/4HANA.

o (AJ 1b) Inner equi-self-join on key: This will be separately
discussed in section 5.

o (A] 2a) Left-outer equi-join on a unique field (or fields):
Joining on a unique field ensures at most one match, making
this a subset of AJ2 and the most frequently encountered
case.

o (A] 2b) Left-outer theta-join with an empty relation or R»<¢p:
This means a many-to-zero join, a subset of AJ 2. The same
logic applies to equi-join. This occurs when an always-false
filter is applied to the right relation, making it a rare case.

Case AJ 2a is the most common case in SAP S/4HANA. It requires
verifying the uniqueness of the join field on the right relation. We
identified three possible scenarios for a join like R LEFT JOIN S ON
R.a = S.x, where a and x are either a single field or a composite
one:

o (AJ 2a-1) S.x is from a table and is guaranteed to be unique,
for instance, by a uniqueness or primary key constraint.
o (AJ 2a-2) S.x is the grouping key from a GROUP BY operation.
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Figure 5: Basic UAJ Queries

o (AJ 2a-3) The pair (S.x, S.y) is unique (by one of the scenar-
ios above) and S.y is restricted to a constant value through a
filter such as S.y = 1.

4.3 Unused Augmentation Joins

UA]J optimization doesn’t demand novel algorithms but does require
strong engineering to accurately derive join cardinality and deter-
mine whether augmenter relations are necessary for subsequent
operations, especially in complex queries [7]. These two functions
are well-known and are implemented to varying degrees in modern
query optimizers. However, we observed that many query opti-
mizers fail to optimize not only complex VDM queries but also
very simple queries, likely because UAJ optimization has not been
a priority for them.

Figure 5 shows 7 simple UAJ queries based on the TPC-H schema
[45]. It is assumed that primary keys are defined according to the
benchmark but optional foreign-key constraints are omitted. All
seven queries can be optimized into a single projection operation
with all other operations removed.

e UAJ 1 is the simplest form of AJ 2a-1, where the join field
c_custkey is unique on the right relation because it is the
primary key.

o UAJ 2 is the simplest form of AJ 2a-2, where the join field
1_orderkey is unique because it is the grouping key of group-
by operation.

e UAJ 3 is the simplest form of AJ 2a-3, where the join field
I_orderkey is unique because the pair (I_orderkey, 1) forms
a composite key.
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o UAJ 1a, 2a, and 3a increase complexity marginally by adding
a non-duplicating join to the augmenter table. It checks if
UAJ optimization applies not only to tables (or leaf nodes)
but also to sub-queries (or intermediate nodes), correctly
deriving the uniqueness property along a query plan graph.

o UAJ 1b increases complexity by adding an order-by operation
followed by a limit operation on top of the augmenter table.
Note that both operations don’t change the uniqueness of
fields.

We evaluated five DBMSs (SAP HANA Cloud, PostgreSQL 17,
and three of the most popular commercial RDBMSs) to assess their
ability to optimize the seven simple UAJ queries shown in Figure 5.
This evaluation involved creating a TPC-H schema with primary
keys, loading data, and analyzing query execution plans for the
seven queries through EXPLAIN PLAN or equivalent tools. Table 1
summarizes the findings. The SAP HANA optimizer successfully
removes UAJs for all queries. Postgres handles UAJ 1, 2, 3 and 2a
effectively. The three commercial systems show varying levels of
support for optimizing these queries.

Table 1: UAJ Optimization Status

HANA  Postgres System X SystemY System Z

UAJ 1 Y Y Y Y
UAJ 2 Y Y - - Y
UAJ 3 Y Y - Y Y
UAJla Y - - - Y
UAJ2a Y Y - - Y
UAJ3a Y - - - Y
UAJ1b Y - - - -

4.4 Paging Queries with Augmentation Joins

Paging queries are frequently used in SAP S/4HANA to retrieve a
specific subset or "page" of records from a large dataset, particularly
in scenarios involving UI features such as paginated tables or infi-
nite scrolling. A typical paging query looks like "select * from
Foo limit 100 offset 1", which retrieves 100 records starting
from the 1st record (or the first page of results).

Figure 6 shows a simple paging query with an augmentation join
and its corresponding optimized query plan. The limit operation can
be pushed down across the augmentation join, which is a critical
optimization for query performance. For example, this directly
impacts which side of the join builds the hash table in a hash join
operation, significantly influencing efficiency.

Although the optimization of limit pushdown across augmenta-
tion join is straightforward, it is not implemented in most optimiz-
ers. Table 2 shows the implementation status of the five selected
optimizers for the very basic query in Figure 6. SAP HANA alone
implements this optimization.

Table 2: Limit-on-AJ Optimization Status

HANA  Postgres System X SystemY System Z

Fig.6 Y - - - -
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Figure 6: Limit on Augmentation Join

4.5 Lessons Learned

From our collaboration with the application development team, we
gained the following insights:

o Applications tend to avoid foreign key constraints, relying
on application-side means to ensure referential integrity. For
instance, an ABAP application transaction may consist of
multiple database transactions, and it is a common practice
to verify input data in the end of an application transaction.

o Left outer joins are far more common than inner joins, re-
flecting the need to handle missing data gracefully.

e Augmentation joins are widely used, especially in modeling-
based applications like SAP S/4HANA.

e Unused augmentation joins are also common in order to
make views reusable for various business queries. Optimiz-
ing them out can provide significant performance gains.

e Limit operations are widely used for paging queries. It is
crucial to properly push them down across augmentation
joins.

5 Extending VDM with Custom Fields

One of SAP S/4HANA’s core strengths is its ability to support
custom extensions, offering enterprise customers the flexibility to
tailor the system to their specific needs while ensuring stability
and compatibility with future S/4HANA upgrades. Business experts
or implementation consultants can customize applications, user
interfaces, reports, forms, and more. An important custom extension
scenario from a database perspective is adding custom fields to SAP-
managed database tables and making these custom fields available
across SAP-provided Uls, reports, forms, free-text search, and other
business scenarios [34].

Figure 7 illustrates such an extension scenario with an SAP Fiori
app. Fiori, SAP’s user experience design framework, allows cus-
tomers to extend app screens (for instance, analysis report or a
transaction input form) by adding custom fields, which are ulti-
mately stored in SAP-managed database tables by adding custom
fields. The app accesses these tables via the OData protocol [17],
using SAP-managed VDM views. To expose custom fields correctly,
both VDM and the corresponding database views must be extended
appropriately. SAP leverages the Core Data Services (CDS), SAP’s
data modeling framework, to manage VDM views at the app server
level and the related SQL views at the database level [24].

This section examines how to extend database views to expose
custom fields in an upgrade-safe manner. The extension process at
the application layer (app server, gateway, and Fiori Ul) is beyond
the scope of this paper.
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5.1 Requirement: Custom Fields Extension

Figure 8(a) illustrates the need to extend an SAP-managed con-
sumption view CV in order to expose the extension field ext added
to table T by a customer. A straightforward approach might be
redefining CV to include ext. However, this method requires cas-
cading redefinitions of interim views in the view stack between CV
and T. This cascading redefinition is problematic because it is not
upgrade-safe. While SAP ensures the stability of certain views to
guarantee that customer applications remain unaffected by SAP
S/4HANA upgrades, this stability contract does not extend to many
interim views, which are SAP-internal. As a result, the cascading
redefinition method is not a viable solution.

Figure 8(b) illustrates SAP’s approach, which leverages a self-join
on the key field. CV is redefined to include T.ext through an aug-
mentation join with table T on its key. This method modifies table
T at the bottom to add custom fields and updates the consumption
view CV on the top to expose custom fields, while keeping interim
views unchanged. Although this approach effectively handles the
functional requirement of exposing ext without cascading view
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Figure 9: Augmentation Self-Join

redefinitions, it introduces a query optimization challenge. The
additional self-join is both costly and redundant, necessitating its
optimization to improve query performance.

5.2 Modeling Pattern: Augmentation Self-Join

Figure 9 illustrates SAP’s query design pattern, called the Augmen-
tation Self-Join (AS]), used to expose fields that are not projected
in an existing view. In Figure 9(a), the view V does not expose the
custom field ext, a situation that arises when a customer extends
an SAP-managed table with custom fields. Figure 9(b) demonstrates
how the ext field can be exposed by performing a self join with
table T on its key. While both inner joins and left outer joins are
viable, the latter is used here for consistency with section 4. This
technique works when V already projects the key field of T.

An important point is that this additional self-join doesn’t de-
grade query performance if properly optimized. Figure 9(c) shows
an equivalent query plan, where the ASJ is optimized out. AS] is a
query design method that allows unprojected fields to be exposed
without sacrificing query performance.

AS] is a special form of augmentation join (AJ). While AJ can
be removed when unused, ASJ can be removed even when in use.
This is because augmenter fields are internally accessible in the left
child, the original view, even if they are not initially projected.

5.3 Optimizing Augmentation Self-Join

AS] is technically a self-join on key, which can be easily optimized
out with field accesses wired to the left relation. However, we found
that other query optimizers don’t optimize out even obvious ones.
This section examines basic ASJ queries that can be optimized out.

Figure 10(a) shows a very simple query with a self-join on key
and its optimized query plan. Interestingly, none of query optimiz-
ers we checked optimizes this simple query. Perhaps, this has been
regarded as an inferior query formulation, and it hasn’t been a
priority to optimize such queries. Our argument is that this is a
useful query pattern, worth optimizing, as described earlier.

Figure 10(b) shows an AS] optimization when the anchor re-
lation is a sub-query. An ASJ can be removed when references
to augmenter fields can be re-wired to the anchor sub-query. In
other words, the same table exists in the anchor sub-query, and
the required fields are accessible. While it is not the scope of this
paper to investigate when such re-wiring is possible, there are two
points worth mentioning. First, projection operations don’t block
AS]J optimization because an optimizer can modify them to expose
un-projected fields. Second, outer joins need to be carefully checked
to see the effect of NULL values generated for unmatched records,
which can prevent the ASJ from being removed.
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Figure 11: Union All Patterns in S/4HANA

Figure 10(c) shows the case when selection is placed on the
augmenter relation. The ASJ optimization is applicable when the
augmenter predicate subsumes the anchor predicate. Otherwise,
some anchor records will be augmented with NULL values, which
don’t exist in the source table, preventing the ASJ from being re-
moved.

Table 3 summarizes how the five selected optimizers handle the
basic ASJ queries in Figure 10. Except for the SAP HANA optimizer,
the rest ignores the self-join optimization opportunity.

Table 3: ASJ Optimization Status

HANA  Postgres System X SystemY System Z

Fig. 10(a) Y - - - -
Fig. 10(b) Y - - - -
Fig. 10(c) Y - - - -

6 Optimization for Union All in VDM
6.1 Union All Patterns in VDM

Figure 11 shows three frequent patterns of Union All, encountered
in the VDM. Figure 11(a) illustrates a query design pattern, where
each child represents a distinct subset of the same relation, formu-
lated with a selection operation. This pattern usually occurs when
each child is a complex view, where multiple joins exist in-between.

493

SIGMOD-Companion ’25, June 22-27, 2025, Berlin, Germany

T keym TT bid. key. x
M key = rkey X1 bid = rbid and Ikey = rkey
IT key. m.n % TT bid, key. x. v Y
. 47t s o y=2023 Oy 2024 . PR S TT 2 bid. key.a.b TTd bid, key. a. b
Y \ Y .
v _ A 2!
A T kevav) T keyay — “So.- Ta (key. a.b) Td (key, a. b)

(a) UAJ with Disjoint Union All (b) UAJ with Union All on Composite Key

Figure 12: Unused Augmentation Join with Union All

Figure 11(b) illustrates a table design pattern to support RESTful
communication between apps and users [33]. Modern cloud apps
typically employ a stateless communication model, allowing in-
coming requests to be distributed across multiple backend servers
for load balancing, elastic scaling, and availability. Although the
backend app servers are stateless, applications are stateful from
the user’s perspective, meaning user-entered data must be stored,
validated, and enriched throughout the business process flow. This
in-progress data is temporarily stored in a separate database table,
called the Draft table. While analytical queries operate solely on
the Active table, operational queries combine data from the Active
table with session-specific data from the Draft table.

Figure 11(c) occurs although it seems pointless due to the infor-
mation gap between the application and the database. Since apps
are usually designed in an object-oriented way, they may represent
Supplier and Customer as two subclasses of a common Company
class in a B2B context, which are then mapped to two separate
database tables [41, 43]. In this setup, Union All of Supplier and
Customer becomes meaningful to consolidate information from
both entities.

6.2 Union All and UAJ Optimization

Union All can appear in augmentation joins, requiring advanced
optimizer logic for effective UAJ optimization. Figure 12 illustrates
two forms of augmentation joins with Union All, which can be
optimized out when unused.

Figure 12(a) depicts a left outer join with a Union All operation
over two distinct subsets of table T. If T .key is a unique field of T,
its uniqueness is preserved after this form of Union All operation.
This ensures the join is purely augmentative, enabling the UAJ
optimization.

Figure 12(b) depicts a left outer join with a Union All operation
following the pattern shown in Figure 11(b) or (c). If T,.key and
T;.key are unique fields of T, and Ty, respectively, the composite
join fields <bid, key> are unique because bid (branch ID) is uniquely
assigned to each Union All child. This property enables the UAJ
optimization. Note that the five-way Union All in Figure 3 follows
the pattern of Figure 11(c) and is removed by UAJ optimization in
Figure 4.

Table 4 summarizes the extent to which the five optimizers im-
plement UA]J optimization involving Union All. Apart from SAP
HANA, none of the optimizers were found to support these opti-
mizations.
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Table 4: UAJ Optimization Status for Union All

TIANA  Postgres System X SystemY System Z
Y - - - -
Y - - - -

Fig. 11(a)
Fig. 11(b)

6.3 Union All and ASJ Optimization

Union All also appears in the context of AS] optimization. Figure 13
illustrates two such patterns encountered in SAP S/4HANA VDM
queries.

In Figure 13(a), a Union All operation appears in the anchor
relation, and the self-join table is present in both children of the
Union All This Union All follows the pattern described in Figure
11(a). The ASJ optimization logic can be easily extended for this
query. It begins by determining that the left outer join is purely
augmentative because T.key is unique. It then traverses the left
subgraph to identify ASJ optimization opportunities. Upon encoun-
tering the Union All, it checks if each child of the Union All forms a
self join. In this query, both children involve T and form a self join.
Consequently, AS] optimization is applied, producing the optimized
query plan shown on the right side of Figure 13(a).

In Figure 13(b), Union All operations appear on both sides of
a join operation, theoretically forming an ASJ. This AS]J pattern
occurs when the draft table pattern, shown in Figure 11(b), is com-
bined with the custom fields extension. From the application’s
perspective, the Union All of Active and Draft tables (T, and Ty) is
regarded as a single logical table. The custom fields extension adds
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an extension field (ext) to this logical table, resulting in the ext field
being added to both T, and T. Then, an ASJ with this logical table
is introduced to expose ext, as depicted in Figure 8.

Recognizing this ASJ pattern involving Union All operations
on both sides of a join is complex and challenging, though not
impossible. Furthermore, it is not a practical trade-off to increase
the query optimization time by routinely checking this optimization
opportunity in every Union All scenario because this pattern is
relatively uncommon.

To address this challenge, we introduced a mechanism for ap-
plication developers to explicitly indicate the intention to perform
an ASJ with a Union All operation. This is achieved through an
extension to the HANA SQL syntax with a new join type called a
case join, specifically designed to express an ASJ involving multiple
relations [35]. With the AS] intention explicitly indicated, execut-
ing more complex optimizer logic becomes a highly advantageous
trade-off. While it increases query optimizing time, it results in a
significantly reduced query execution time, yielding substantial
performance benefits.

Figure 14 demonstrates the impact of this AS]J optimization ex-
tension on query execution time. A simple paging query, "select *
from V 1limit 10", was executed, replacing V with two forms of 100
VDM views: the original view and an extension view that include a
custom field. Ideally, both queries, one on the original view and the
other on the extension view, should exhibit similar execution times,
while the latter involves an additional query optimization overhead
and a minor execution time increase to project the custom field.
In such an ideal scenario, data points representing the execution
times would align along the diagonal line.

The desired result was achieved, as shown in Figure 14(b), after
properly implementing the new case join on the database side and
adopting it on the application side. The average execution time
were measured on the application server over five runs, excluding
the query optimization time. Any deviations from the diagonal line
are considered measurement errors.

Figure 14(a) exhibits the challenges encountered when attempt-
ing to recognize AS]J patterns involving Union All without knowing
the AS] intention. While some ASJ patterns using Union All were
successfully recognized and optimized, many were not, as evidenced
by many data points significantly above the diagonal line. When
patterns were not recognized, queries on extended views were up
to 2~3 orders of magnitude slower than those on the original views.

Explicitly indicating the ASJ intention in a query is crucial to
query optimization when Union All is involved. A Union All sub-
graph can take various forms during query optimization due to
various query transformations such as filter pushdown, projection
pullup, join through union all, and so on [48]. Checking for AS]
optimization opportunities in every variant of Union All is com-
putationally expensive. By explicitly indicating the AS] intention,
the query optimizer can preserve the augmenter-side Union All
subgraph, restricting query transformations with the Union All
suggraph unless clearly advantageous. This approach significantly
reduces the number of alternative query plans to consider, making
it easier to identify AS] optimization opportunities.

Since other query optimizers do not implement ASJ optimization,
as shown in table 3, they also lack its extension for Union All,
making this optimization unique to the SAP HANA query optimizer.



Application-Database Co-Innovation for Hybrid Transactional/Analytical Processing

100,000
o)
2 10,000
g
P
53
2
-
@ 1,000
=]
&}
-3
54
=}
5
2 100
o
o
& \
2]
£
5 10 (97ms, 100ms) => no slowdown
2
=
=
& (3ms, 336ms) => 112x slowdown
e
z 1
=3
o
0
0 1 10 100 1,000 10,000 100,000
Query response time for original CDS views (msec)
(a) without an SQL extension
100,000
o)
2 10,000 L
g &
v L]
5 5*
21000 S’
2. K
o ¥
o
5| °
: v
£ 100 g
. "
- e
] 4
g o
=
=}
2
2
= 1
=
o
0
0 1 10 100 1,000 10,000 100,000

Query response time for original CDS views (msec)

(b) with an SQL extension

Figure 14: Performance Impact of Optimization for Custom
Fields Extension

7 SQL Extension Requirements in VDM

This section presents SQL extension requirements encountered
during the development of analytical HTAP queries. Over time,
ANSI SQL has been extended multiple times to support analytical
queries, introducing features such as rollup and grouping sets. Here,
we address additional requirement that emerged from our work.

7.1 Aggregation Pushdown across Decimal
Rounding

Aggregation pushdown is a powerful optimization technique that
can dramatically reduce the number of records to process, thereby
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speeding up subsequent operations. However, we encountered un-
expectedly slow VDM queries, where decimal rounding blocked
this optimization to avoid discrepancies in insignificant trailing
decimal digits. Addressing this issue requires an SQL extension to
allow controlled precision loss in aggregated decimal values, such
as monthly revenue or yearly revenue.

Decimal rounding is common in business applications and care-
fully handled to ensure consistent and accurate results. For example,
an 11% tax on a $119.95 item calculates to $13.1945, which is then
rounded to $13.19. Another important scenario for rounding is for-
eign currency conversion, such as converting an amount in USD to
EUR using the exchange rate on a specific date. These conversions
are often performed dynamically during query processing, look-
ing up exchange rate tables. Note that different business scenarios
may require different conversion dates, such as transaction dates
or quarter-end closing dates, affecting exchange rates.

Decimal rounding is not interchangeable with addition, thereby
preventing the pushdown of the sum aggregation. For instance,
round(1.3) +round(2.4) evaluates to 3 when rounding is performed
first, whereas round(1.3 + 2.4) evaluates to 4 when addition is per-
formed first. Similarly, sum(round(price=1.11,2)) cannot be rewrit-
ten into the seemingly more efficient form round(sum(price) *
1.11,2).

However, many analytical users are not concerned with minor
discrepancies in aggregated decimal values and prioritize enabling
aggregation pushdown across decimal rounding to improve query
performance. To meet this need, SAP HANA introduced an SQL ex-
tension, named allow_precision_loss, allowing users to explicitly
indicate their preference for query performance over minor inaccu-
racies in decimal aggregates on a per-query basis. By leveraging
this, SAP HANA can interchange addition and decimal rounding
and enumerate more alternative query plans. For example, SAP
HANA treats the following two queries as equivalent.

select allow_precision_loss(
sum(round(price*1.11,

2))
from SalesOrder

equivalent query by allow_precision_loss
select round(sum(price)*1.11, 2))
from SalesOrder

7.2 Reusing Calculation Formulas over
Aggregates

VDM views often expose calculation formulas as view fields, ab-
stracting their complexity from end-users and enabling formula
reuse without repetition. For instance, TPC-H calculates revenue
as sum(extendedprice = (1 — discount)). By exposing this calcula-
tion as a distinct view field (e.g., revenue), queries become more
concise and readable. Once revenue is defined in an aggregated,
order-level view, higher-level aggregations such as monthly rev-
enues can be easily computed using sum(revenue) in conjunction
with an appropriate GROUP BY clause.

However, this approach doesn’t extend to non-additive calcu-
lations over aggregate values. For example, margin is typically
calculated as sum(profit)/sum(revenue), a ratio of two aggregate
values that is inherently non-additive. In such cases, higher-level
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aggregates (e.g., monthly margins) cannot be derived from lower-
level aggregates (e.g., daily margins). Consider a simple example: a
10% margin on $100 revenue on day 1 and a 20% margin on $900
revenue on day 2. The average of 10% and 20% is 15%, but the correct
overall margin is 19%, reflecting the revenue weighting.

To support calculation formulas over aggregate values, SAP
HANA introduced the concept of expression macros, inspired by
macros in programming languages. The following query exam-
ple illustrates how expression macros define complex aggregate
expressions once and reuse them across queries.

-- Define expression macros once
create view vlLineitem as
select *
from lineitem join partsupp on l_partkey =
ps_partkey and 1l_suppkey = ps_suppkey
with EXPRESSION MACROS (
1 - sum(ps_supplycost)/sum(
1_extendedpricex(1-1_discount))
as margin)

-- Reuse expression macros across queries

select o_custkey, EXPRESSION_MACRO(margin)
from viLineitem

group by o_custkey

7.3 Specifying Join Cardinality

As demonstrated in this paper, identifying whether a join is purely
augmentative is crucial for optimizing analytical VDM queries and
achieving reasonable query performance. While augmentation joins
can often be inferred from uniqueness constraints, these constraints
are not always practical or suitable for every application.

Uniqueness constraints introduce storage and computational
overheads, as they typically require the creation of an index that
must be accessed for each record update [14]. Furthermore, they
can impose unnecessary restrictions on application design. Appli-
cations often validate data toward the end of a transaction, but
uniqueness constraints demand that every SQL statement adhere
to the constraints prior to being committed. This rigid enforcement
can significantly limit design flexibility.

To address the need for formulating augmentation joins without
solely relying on uniqueness constraints, SAP HANA extends the
join syntax to support join cardinality specifications. For instance,
aregular left join, R left outer join S, can be enhanced with
a cardinality specification, such as R left outer many to one
join S. This indicates that a record in R can join with zero or one
record in S, achieving the same effect as uniqueness constraints
without the associated overhead.

Unlike uniqueness constraints, join cardinality specifications
are not enforced by the database system, leaving their use to the
discretion—and risk —of application developers. To mitigate the
risk, SAP HANA offers a tool that verifies whether the specified
join cardinality in a query aligns with the actual data. This tool
enables application developers to ensure data consistency while
enjoying greater design flexibility and performance optimization.

8 Related Work

HTARP is still a relatively new area of study. While recent surveys
have examined HTAP database systems [27, 42, 52], there is limited
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research on the workloads that HTAP databases are expected to
support in the context of comprehensive enterprise applications
such as SAP S/4HANA. Distributed transactional workloads in SAP
R/3, a decades-old predecessor to SAP S/4HANA, has been studied
[9, 51], but comparable studies for HTAP scenarios are limited.

This paper presents practical insights into analytical HTAP
queries, emphasizing the critical role of advanced query optimizers
in eliminating unnecessary operations. The elimination of redun-
dant relational operations has been extensively studied in database
research. Redundant joins, for instance, frequently arise in scenarios
involving queries over views [4, 6, 21, 26] or queries generated by
front-end tools [11, 12]. However, as this paper demonstrates, such
optimizations are still not fully realized in today’s query optimiz-
ers. A similar optimization principle underlies late materialization
techniques in columnar databases [1].

Additionally, this paper presents the need for SQL extensions to
support analytical HTAP queries. A recent SQL extension proposal,
AS MEASURE [16], marks a meaningful step in this direction. It
enables the reuse of calculation formulas over aggregates, described
in section 7.2. It also enables formulating multi-row calculations
(such as year-over-year growth when each row corresponds to
a different year), which is referred to as calculated measures in
multidimensional query languages [28, 47] and partially supported
in SQL through window functions.

9 Conclusion

The co-innovation of SAP S/4HANA and SAP HANA demonstrates
how modern enterprise systems can unify transactional and analyt-
ical processing to deliver real-time analytical insights. The Virtual
Data Model simplifies query formulation, empowering HTAP ap-
plication developers while introducing unique challenges for query
optimizers. By addressing expansive join views, augmentation joins,
augmentation self-joins, and their combination with Union All, this
paper highlights the critical role of advanced query optimizers in
achieving efficient query execution. Moreover, the proposed SQL
extensions, such as specifying join cardinalities and enabling ag-
gregation pushdown across decimal rounding, further enhance
the adaptability and performance of HTAP systems. These innova-
tions underscore the necessity of continued collaboration between
applications and database systems to meet the evolving needs of
enterprise users.
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