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Given the continuing e-commerce boom, the design of efficient and effective home delivery services is
increasingly relevant. From a logistics perspective, attended home delivery, which requires the customer
to be present when the purchased goods are delivered, is particularly challenging. To facilitate the de-
livery, the service provider and the customer typically agree on a specific time window for service. In
designing the service offering, service providers face complex trade-offs between customer preferences
and profitable service execution. In this paper, we map these trade-offs to different planning levels and
demand management levers, and structure and synthesize corresponding literature according to different
demand management decisions. Finally, we highlight research gaps and future research directions and
discuss the linkage of the different planning levels.
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1. Introduction

The COVID-19 pandemic has boosted the demand for online
shopping and home delivery across the globe, and it is likely that
some shifts in demand will also have long-lasting effects (OECD,
2020). For example, the global online share of grocery annual sales
increased from 7% before the pandemic to 10% at its peak and re-
mains at a high level of 9%, even after the peak.! Fulfilling this
growing demand requires effective and cost-efficient last-mile de-
livery operations. While the last mile is generally recognized as the
most challenging part of the fulfillment process, this is especially
true for attended home delivery (AHD), where the customer must
be present to receive the goods.

AHD is common for home services and products that require
special handling, such as groceries, large appliances, or furniture.
To reduce missed deliveries and waiting times, service providers
typically let customers choose a delivery time from a menu of time
windows or deadlines (referred to as service options). This step in-
volves the customer directly in the service creation process, a char-
acteristic that is typical of the field of service operations manage-
ment (see, e.g., Coltman & Devinney, 2013).

* Corresponding author.
E-mail address: katrin.wassmuth@uni-mannheim.de (K. Waffmuth).
1 Statista, https://bit.ly/3h4kiXG. Accessed on February 14, 2022.
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The concept of AHD is especially well established in the con-
text of online grocery retailing, which is a particularly challeng-
ing sector, as profit margins are low, and the delivery of fresh
or even frozen goods requires special care in planning and ex-
ecution. Consequently, many online supermarkets are struggling
to create a profitable business.?-> To manage profitability, ser-
vice providers can manage both supply and demand. The supply-
side levers involve traditional supply chain planning tasks, such
as network design, inventory management, and vehicle routing. In
general, these levers seek the most cost-efficient fulfillment of a
given demand (see, e.g., Han et al.,, 2017). Demand management fo-
cuses on managing customer demand to maximize profitability of
a given supply. Typical levers include the specific service options
and prices offered to customers. Through these levers, demand
management can enhance profits in two ways. First, by increas-
ing revenues by prioritizing high-value customers or by serving
more customers due to better capacity utilization. Second, demand
management may reduce costs by facilitating more efficient order
delivery. In addition to profit maximization, demand management
can also contribute to other goals, such as prioritizing specific
customer groups when demand exceeds capacity (Schwamberger
et al.,, 2022) or steering customers toward more sustainable deliv-
ery times (Agatz et al., 2021).

2 Tagesspiegel, https://bit.ly/3vpokhZ. Accessed on February 14, 2022.
3 Chicago Tribune, https://bit.ly/3t3ZXEM. Accessed on February 14, 2022.
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While traditional supply-oriented approaches have been studied
for decades, demand management has only started to attract sub-
stantial attention in the research community more recently. Tech-
nological advances have been driving this development by allow-
ing for a better understanding of customer behavior and by pro-
viding the flexibility to change offered services and prices in real
time. When considering current practice, we observe that different
e-grocers make different choices regarding their service offerings.
In the Netherlands, for example, Albert Heijn offers up to 15 differ-
ent time windows per day with various lengths (one to six hours)
and different delivery fees, whereas Picnic offers any customer a
single, free, one-hour time window for each day of the week. We
also observe a dynamic development in terms of business models,
including on-demand grocery delivery, as offered by Gorillas and
Flink. Given the recent progress in the field, the time appears right
for a review of demand management for AHD to synthesize the
current knowledge and identify relevant open questions.

Demand management generalizes the concept of revenue man-
agement, which aims to maximize revenues (Strauss et al., 2018).
Costs are generally sunk or proportional to demand in traditional
revenue management settings (Klein et al.,, 2020). In contrast, de-
livery costs in AHD cannot simply be attributed to individual or-
ders but depend on the specific set of accepted orders (Snoeck
et al,, 2020). Demand management in AHD involves deciding on
the assortment of the delivery service options. This links the topic
to the field of assortment planning of physical products across dif-
ferent retail channels (see, e.g., Bernstein et al., 2019).

This paper contributes to the existing literature in the follow-
ing ways. First, we refine and extend the framework by Agatz
et al. (2013) and classify different demand management decisions
along strategic, tactical, and operational planning levels. Thereby,
our work is the first to explicate the different interrelated plan-
ning levels in demand management for AHD. Second, we structure
and synthesize the current literature according to the different de-
mand management decisions and planning levels. This provides an
up-to-date overview of the literature and identifies research gaps
and directions for future research. Third, we introduce a consistent
terminology to help bring together different strands of research
within the fields of revenue management and vehicle routing. In
this way, our work complements previous review papers on on-
line order fulfillment and customer behavior (Nguyen et al., 2018)
and integrated demand and revenue management in vehicle rout-
ing (Fleckenstein et al., 2023; Snoeck et al., 2020).

The remainder of this paper is organized as follows. In
Section 2, we define and structure the field of demand manage-
ment and develop our classification framework to structure the
academic research field systematically. Based on this framework,
we review the demand management literature in detail and cluster
them into different research streams (Sections 3-5). In Section 6,
we highlight our observations and identify gaps and future re-
search opportunities for each planning level. We also discuss the
connection between planning levels in that section. Finally, we
conclude this literature review in Section 7 by summarizing our
main findings and pointing out general avenues for future research.

2. Demand management framework

In this section, we structure the field of demand management
for AHD and embed it into a planning framework. To this end,
we first highlight important structural elements of the fulfillment
process (Section 2.1). Second, we characterize the different plan-
ning levels and identify the related demand management levers
(Section 2.2). We use the resulting framework to structure our lit-
erature review in Sections 3-5.
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2.1. Order fulfillment process

Demand management for AHD aims to generate customer de-
mand and, at the same time, shape it in a way that benefits the
fulfillment process. To identify the potential of demand manage-
ment in this context, we thus need to understand the fulfillment
process. At a broad level, it involves activities in sourcing, ware-
housing, delivery, and sales (Agatz et al., 2008). However, in our
context, the most relevant part of the fulfillment process is the
one that follows the interaction with the customer, i.e., the cus-
tomer order decoupling point. This downstream part comprises
three main steps, namely, order capture, order assembly, and or-
der delivery (Campbell & Savelsbergh, 2005). In what follows, we
briefly discuss each of these steps (Section 2.1.1) and how to coor-
dinate them for multiple orders (Section 2.1.2).

2.1.1. Fulfillment steps

During order capture, the customer and the service provider
mutually agree on when and where the order is to be deliv-
ered. To reach such an agreement, the service provider commonly
presents an assortment of service options from which the cus-
tomer can choose. The offered service options may differ in their
timing within and across days, their lengths, and their associated
delivery prices. Some providers offer the same set of options to
all customers, while others tailor them to the customer’s shop-
ping history, delivery location, or basket composition. To ensure a
smooth booking process, the service provider must decide on the
offered service assortment very quickly, within, at most, a few sec-
onds. Customers choose from the offered options according to their
preferences - not placing an order if none of the options meets
their expectations. Once the customer chooses a service option, the
service provider confirms the order, and the delivery agreement is
fixed. It is illustrative to position this process relative to adjacent
research fields: In the terminology of the production planning lit-
erature, the described process is denoted as real-time single-order
capture (Meyr, 2009), while service operations management classi-
fies it as nonsequential offering (Liu et al., 2019).

Order assembly denotes all warehousing operations that are re-
quired to prepare an order for delivery, including order picking,
sorting, and packaging. Handling the items may be demanding de-
pending on the product category. For example, grocery orders may
contain dry, fresh, refrigerated, and even frozen food. This makes
order picking quite time consuming. Many service providers there-
fore seek economies of scale by consolidating the order assembly
in larger fulfillment centers that allow for (semi-)automated pick-
ing processes. This, however, usually moves the order assembly lo-
cation further away from the delivery areas, thereby increasing the
overall fulfillment lead time. Constraints on innercity space fur-
ther exacerbate this effect. Service providers that compete on short
click-to-door times may therefore opt for a different approach, re-
lying on smaller fulfillment centers situated near customer loca-
tions. In particular, on-demand service providers often use a dense
network of small innercity depots or even assemble orders in phys-
ical stores.

Order delivery refers to the physical delivery of purchased prod-
ucts to customers’ homes within a certain time frame. As this step
typically involves assigning customer orders to vehicles and deter-
mining the delivery sequence, it can be modeled as a vehicle rout-
ing problem (VRP). Service providers often run a proprietary deliv-
ery fleet; only a few use external carriers. The fleet can be com-
posed of trucks, vans, cars, or bicycles that visit one or more cus-
tomers along a specified route. The service includes delivery to the
customer’s doorstep, and thus, delivery includes a service time for
handover, parking, unloading and - for apartment buildings - car-
rying the order upstairs. For online supermarkets, the service time
is approximately 10 minutes (Klein et al., 2019).
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Fig. 1. Illustration of fulfillment process design alternatives.

2.1.2. Fulfillment process design

For a single customer order, the three steps of the fulfillment
process naturally follow the sequence outlined above. However,
the service provider has multiple options to coordinate these steps
across multiple orders. For example, the order assembly litera-
ture discusses wave and waveless release times, where the former
means that incoming orders are held back to be later released in
larger batches, whereas in the latter, arriving orders are released
immediately and individually (see, e.g., Ceven & Gue, 2017). Sim-
ilar options apply to order delivery, as discussed in the literature
on dynamic consolidation by means of dispatch waves (see, e.g.,
Klapp et al., 2018). For AHD, we distinguish between a periodic and
order-based design of the fulfillment process.

In a periodic fulfillment process, the service provider defines pe-
riodic cut-off times, after which all captured orders are assembled
and delivered. In other words, there is a fixed period for assem-
bly and delivery that does not overlap with the respective order
capture period. This approach exploits economies of scale by con-
solidating orders in the assembly and delivery steps. The resulting
efficiency benefit comes at the expense of a longer click-to-door
time since captured orders have to wait until the cut-off time be-
fore being further processed. The service provider can choose the
cut-off frequency to manage the speed|/efficiency trade-off. For on-
line groceries, daily or semi-diurnal cut-offs are common.

In an order-based fulfillment process, the service provider de-
cides dynamically on each customer request whether to initiate the
assembly and delivery of orders captured up to that time. In par-
ticular, this includes the option to assemble and deliver each order
individually immediately after capture. Intuitively, this process de-
sign is common for businesses that compete aggressively on speed.
It is worth pointing out that a ‘same-day delivery’ service does not
necessarily imply an order-based fulfillment process. In fact, under
periodic fulfillment, a cut-off time early in the day may also allow
for deliveries later on that same day. Thus, from a planning per-
spective, there is a greater distinction between periodic and order-
based processes than between ‘same-day’ and ‘next-day’ delivery.
We illustrate this point with specific examples below and visualize
it in Fig. 1.

The Dutch grocery retailer Albert Heijn follows a periodic ful-
fillment process with cut-off times at noon for deliveries the next
morning, and at midnight for deliveries the next afternoon.* Af-
ter each cut-off, delivery routes are planned, and order assembly
takes place in one of five online fulfillment centers.”> Similar to Al-
bert Heijn, the German e-grocer REWE also operates a periodic ful-
fillment process. REWE uses a cut-off time of 1 pm, which allows
orders to be delivered in the late afternoon on the same day. To
enable fast delivery and handling of more than 20,000 products,

4 Albert Heijn, https://bit.ly/3gsLv6x. Accessed on February 14, 2022.
5 Ahold Delhaize, https://bit.ly/3q49]ap. Accessed on February 14, 2022.
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the company invests in semi-automated fulfillment centers close
to delivery areas.®

In contrast, the German beverage delivery service Flaschenpost
does not communicate periodic cut-off times but guarantees deliv-
ery within 120 minutes for every incoming order - a service propo-
sition that requires a particularly fast fulfillment process. To meet
this requirement, Flaschenpost operates 23 fulfillment centers to
distribute an assortment of approximately 2000 products to more
than 150 German cities.” Each of these facilities is equipped with
approximately 70 vans that deliver up to ten orders per trip.®> We
denote this fulfillment approach as order-based with dynamic or-
der consolidation.

Further speeding up the fulfillment process, German start-up
Gorillas offers on-demand grocery delivery within 10 minutes. To
meet the extremely short delivery times, the company sets up mi-
cro fulfillment centers in each delivery area and limits the offered
product assortment to 2500 products. In addition, they hand-pick
each captured order immediately and deliver it by bicycle.? Such a
fulfillment process is order-based without consolidation.

2.2. Demand management decisions

In the previous subsection, we highlighted the main steps of
the fulfillment process in AHD services. How efficiently a company
can execute these steps depends on the properties of individual
orders, such as their click-to-door time (e.g., Ulmer, 2017) and de-
livery time specificity (e.g., Lin & Mahmassani, 2002), as well as
on the temporal and geographical distribution of the overall set of
captured orders (e.g., Ehmke & Campbell, 2014). At the same time,
these factors are intimately linked to customer preferences and
thus to the popularity of delivery service options. Demand man-
agement aims to manage the resulting trade-offs between captured
demand (revenue) and assembly and delivery efficiency (costs). In
this sense, Fig. 2 illustrates the interdependence between demand
management and the steps of the fulfillment process and the im-
plied impact on revenue and costs.

Demand management encompasses a diverse set of different
decisions. We propose mapping these out along two dimensions,
distinguishing three planning levels (strategic, tactical, and opera-
tional) and two levers (offering and pricing). This approach gives
rise to six different sets of demand management decisions, as
shown in Table 1. In what follows, we briefly discuss both dimen-
sions of this framework.

6 REWE, https://bit.ly/2SepFd2. Accessed on February 14, 2022.

7 Flaschenpost, https://bit.ly/3gx0B9U. Accessed on February 14, 2022.

8 Flaschenpost, https://bit.ly/3xbrira. Accessed on February 14, 2022.

9 Supermarktblog, https://bit.ly/3eNUBsb. Accessed on February 14, 2022.
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Table 1
Demand management framework.

Offering
design & availability

Pricing
incentives

Strategic Strategic offering Strategic pricing
demand potential

Tactical Tactical offering Tactical pricing
demand forecast

Operational Operational offering Operational pricing

actual demand

2.2.1. Planning levels

As is common in many areas of supply chain planning and op-
erations management (Fleischmann et al., 2015), we distinguish be-
tween different hierarchically-linked planning levels, i.e., strategic,
tactical, and operational. We define these levels based on their aim,
their time horizon, and their relation to the fulfillment process
timeline. Strategic decisions are design choices specified over a
long horizon, while tactical and operational decisions consider the
management of service options over a shorter time span. Strategic
and tactical decisions take place before order capture while op-
erational decisions are based on real-time information on actual
demand. In what follows we elaborate on each of these levels in
some more detail.

Strategic demand management defines the boundaries within
which tactical and operational demand management are embed-
ded. It constitutes a special case of the service design stage in ser-
vice operations management (see, e.g., Roth & Menor, 2003) and
also bears resemblance with structural decisions in revenue man-
agement (Talluri & van Ryzin, 2004). Strategic demand manage-
ment reflects the overall business strategy and, to gain a competi-
tive advantage, must be carefully aligned with the competitive en-
vironment, customer preferences and willingness to pay, and op-
erational implications. Respective decisions determine the target
markets and design the general service assortment, based on a
market’s demand potential. This includes selecting the service re-
gion and pricing model, designing the service options, and defining
appropriate service segments for subsequent tactical planning. The
term service segment refers to a customer group that should re-
ceive the same service assortment (e.g., a geographical area).

The subsequent planning levels address the management of the
designed service assortment within the established boundaries. We
classify any such decisions taken before order capture as tactical
demand management. Tactical decision-making is based on (ag-
gregated) demand forecasts and exploits the heterogeneity of cus-
tomers in the delivery market. Corresponding decisions include
differentiation of service options and prices for different service
segments. Moreover, tactical planning can be applied to simplify
short-term operational planning, for which only limited computa-
tional time is available.

We denote any decisions made during order capture as opera-
tional demand management, i.e., decisions that are made in real
time, based on detailed information on actual customer orders.
Thus, operational decisions are highly time-critical and directly af-
fect the interaction with the customer. They include accepting cus-
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tomer orders and adjusting the availability of service options and
attached prices in the short term. For order-based fulfillment pro-
cesses, these decisions are additionally combined with simultane-
ous fulfillment planning, as the order capture step overlaps with
order assembly and delivery. This differs from periodic designs,
where fulfillment planning can be postponed until after the cut-off.
Both tactical and operational demand management share analogies
with traditional revenue management (Agatz et al.,, 2013; Snoeck
et al., 2020).

In this subsection, we introduced the planning levels top-down
from strategic to operational, thereby reflecting the natural se-
quence of decision-making. However, we observe that the corre-
sponding literature is evolving in the opposite direction, with many
demand management approaches starting at the operational level
and gradually providing insights to the strategic level. We follow
this development in Sections 3 to 5 and review the demand man-
agement literature bottom-up, from operational to strategic plan-
ning.

2.2.2. Levers

The demand management levers, offering and pricing, capture
the main characteristics of the delivery service. Offering refers to
both the design of service options and the management of their
availability. The latter are binary decisions (an option is either of-
fered or not offered) that can (i) ensure feasibility and (ii) steer
customer choice by intentionally withholding some feasible op-
tions. Service providers can also manage demand through pricing
decisions. We use ‘pricing’ to denote a variety of monetary and
non-monetary incentives to steer customer choice and generate
additional revenue by exploiting differences in willingness to pay.
The pricing lever allows a more fine-grained demand management
since prices can be chosen from a continuous interval, rather than
from a binary set. Previous research in the context of e-grocery
suggests that small incentives may suffice to change customer be-
havior (Campbell & Savelsbergh, 2006).

Offering and pricing can be used as substitutes to steer de-
mand. However, it should be noted that customers might perceive
them very differently, as the willingness to pay is generally low
(Goethals et al., 2012). Furthermore, the two levers also have com-
plementary features and constitute building blocks that can be
combined into an overarching demand management approach. For
example, in the case of operational demand management, pricing
usually builds on the feasibility decision, i.e., the service provider
first determines which options could be offered, and then sets
prices for the feasible set of options. Therefore, and in line with
the dichotomy of quantity- and price-based revenue management
(Talluri & van Ryzin, 2004), we present and discuss offering and
pricing separately in what follows.

3. Operational demand management

In this section, we review the literature on operational de-
mand management, distinguishing offering and pricing decisions.
We provide an overview of the corresponding literature in Table 2.
We characterize published work with respect to the considered
problem setting, the decision-making process, and the computational
study. We further elaborate on these characteristics below. They
then lead us to identifying clusters of closely related papers that
we discuss in Sections 3.1 and 3.2.

We distinguish different problem settings for operational de-
mand management by the design of the fulfillment process (peri-
odic or order-based; see Section 2.1.2) and by the type of service
options offered to the customer, i.e., time window or deadline.

To characterize the decision-making process, we highlight the
service provider's assortment decision approach, that is making
decisions either independently for individual service options or
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Table 2

Operational demand management.

Problem setting

Decision-making process

Computational study

Assortment decision

Order assessment

Order assessment components

Fulfillment Service Decision Choice Fulfillment Order Order Order Opportunity Demand Business
process options approach behavior feasibility value assembly delivery costs data sector
Offering Ehmke & Campbell (2014) Periodic Time window Indep. - INS - v Synthetic E-grocery
Casazza et al. (2016) Periodic Time window Indep. - ADV Service v Synthetic Service
Hungerldnder et al. (2017) Periodic Time window Indep. - ADV - v Synthetic E-grocery
Ko6hler & Haferkamp (2019) Periodic Time window Indep. - APR - v Empirical E-grocery
Visser et al. (2019) Periodic Time window Indep. - ADV - v Synthetic E-grocery
Kohler et al. (2020) Periodic Time window Indep. - INS Cost v Empirical E-grocery
Truden et al. (2022) Periodic Time window Indep. - ADV - v Synthetic E-grocery
van der Hagen et al. (2022) Periodic Time window Indep. - APR - v Synthetic E-grocery
Campbell & Savelsbergh (2005) Periodic Time window Indep. - INS Profit v v Synthetic E-grocery
Mackert (2019) Periodic Time window Joint RUT INS Profit v v Synthetic E-grocery
Avraham & Raviv (2021) Periodic Time window Joint RUT INS Cost v v Synthetic Service
Lang et al. (2021a) Periodic Time window Joint RUT INS Profit v v Empirical E-grocery
Lang et al. (2021b) Periodic Time window Joint RUT APR Profit v v Empirical E-grocery
Azi et al. (2012) Order-based Time window Indep. - ADV Profit v v v Synthetic E-grocery
Klapp et al. (2020) Order-based Deadline Indep. - ADV Cost v v v Synthetic Same-day
Pricing Campbell & Savelsbergh (2006) Periodic Time window Joint EXO INS Profit v Synthetic E-grocery
Yang et al. (2016) Periodic Time window Joint RUT INS Profit v v Empirical E-grocery
Klein et al. (2018) Periodic Time window Joint RUT INS Profit v v Synthetic E-grocery
Koch & Klein (2020) Periodic Time window Joint RUT INS Profit v v Synthetic E-grocery
Asdemir et al. (2009) Periodic Time window Joint RUT APR Revenue v v - E-grocery
Yang & Strauss (2017) Periodic Time window Joint RUT APR Profit v v Empirical E-grocery
Vinsensius et al. (2020) Periodic Time window Joint EXO - Profit v v Synthetic E-grocery
Lebedev et al. (2021) Periodic Time window Joint RUT APR Profit v v - E-grocery
Strauss et al. (2021) Periodic TW bundle Joint RUT APR Profit v v Synthetic E-grocery
Prokhorchuk et al. (2019) Order-based Deadline Joint RUT INS Profit v v Synthetic Same-day
Ulmer (2020) Order-based Deadline Joint RUT INS Profit v v Synthetic Same-day
Klein & Steinhardt (2023) Order-based Deadline Joint RUT ADV Profit v v Synthetic Same-day
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jointly for a set of options. Related to this aspect, some papers
explicitly model customer choice behavior, either through exoge-
nous substitution rates (EXO) or based on random utility theory
(RUT). The remaining papers do not model customer choice but as-
sume demand to be independent of the service offering. We also
consider two attributes concerning the assessment of an incoming
order. First, the service provider must verify the fulfillment feasi-
bility of each service option, given the available fulfillment capac-
ity and the previously committed orders. The feasibility check can
be based on either a functional approximation (APR) or a tenta-
tive route plan, using simple insertion heuristics (INS) or more ad-
vanced routing methods (ADV). Note that for each paper only one
of possibly several methods applied is given in the table. In ad-
dition to checking feasibility, the service provider may assess the
present order value according to different metrics, including cost,
service, revenue, and profit. If no order value is considered, they
make decisions based on feasibility only. Papers also differ in the
components of the fulfillment process that they consider in the as-
sessment of the current order. These may include subsequent order
assembly and order delivery. In addition, papers may or may not
consider the impact on the fulfillment of future orders, reflected in
opportunity costs.

For the computational study, we list the type of demand data
(synthetic or empirical) and the business sector of the motivating
application.

3.1. Operational offering

Operational offering decisions determine the service options to
offer to a customer during order capture. To structure our discus-
sion, we cluster papers with similar characteristics as shown in the
upper part of Table 2. In particular, we identify three clusters based
on the design of the fulfillment process and the consideration of op-
portunity costs in the order assessment.

Periodic fulfillment with focus on order delivery assessment.
Most papers that focus on operational offering decisions consider
periodic fulfillment. We can further classify these papers based on
whether or not they take into account opportunity costs and thus
future orders. Table 2 shows that the papers that ignore the op-
portunity costs consider single time windows independently and
do not explicitly model customer choice behavior. Most of these
papers focus on assessing fulfillment feasibility.

One of the challenges of integrating routing aspects into op-
erational demand management is to quickly obtain good solu-
tions to allow for real-time feasibility checks. Hungerldnder et al.
(2017) develop an adaptive neighborhood search heuristic (ANS)
to determine feasible time windows during order capture. The au-
thors tailor their ANS to the specific time window problem struc-
ture to find better solutions in less time. Truden et al. (2022) study
a number of different solution methods for the AHD setting. In
line with Hungerldnder et al. (2017), they show that it is beneficial
to adapt time window heuristics to the specific problem settings.
Kohler & Haferkamp (2019) compare various vehicle routing meth-
ods to facilitate fast high-quality assessments of the available ful-
fillment capacity. The authors also introduce an acceptance mech-
anism based on Daganzo (1987) to approximate expected travel
times. Using real-world booking data of an online supermarket,
they show that the delivery area and expected demand impacts
the performance of different approaches. Visser et al. (2019) study
a setting in which multiple customers interact with the booking
system simultaneously. It is therefore not only important to do
a fast initial time slot feasibility check but also a second check
when the customer commits to a certain time slot. Their detailed
computational study shows that combining a fast insertion heuris-
tic with a sophisticated background procedure ultimately leads to
more accepted orders. van der Hagen et al. (2022) study the use

806

European Journal of Operational Research 311 (2023) 801-815

of machine learning (ML) methods to predict the fulfillment fea-
sibility by framing the problem as a binary classification problem.
Their results suggest that ML methods can generate accurate fea-
sibility assessments in a fraction of the time needed for common
heuristic-based methods.

Another challenge of delivery-oriented order assessment is to
account for uncertainty at the time of decision-making. Ehmke &
Campbell (2014) seek a reliable feasibility assessment in a set-
ting with uncertain travel times. They compare assessment meth-
ods, including a novel insertion-based heuristic that accounts for
time-dependent and stochastic travel times. Based on a compu-
tational study using real travel data, they find that considering
time-dependent travel times is especially valuable in suburban ar-
eas, whereas buffers against travel time uncertainty are effective
in downtown areas. In addition to feasibility checks, some papers
also estimate the present order value using cost and service met-
rics to maximize the number of orders accepted. In contrast to the
cost metric, the service metric explicitly measures customer satis-
faction with respect to the service options. Casazza et al. (2016) try
to insert a new customer into the current route plan. If this is in-
feasible, the service provider does not reject the order, but shifts
or enlarges the delivery time window. The authors use a dynamic
programming algorithm to assess feasibility in real-time and eval-
uate several decision policies based on different service measures.
The results highlight the trade-off between customer service and
increasing the number of accepted orders. Kohler et al. (2020) in-
troduce flexibility mechanisms that incorporate myopic informa-
tion about routing efficiency and delivery locations to dynamically
decide whether to offer a long or short time window to a given
customer. Their results confirm that the more customers book long
time windows, the more flexibility can be maintained for the ful-
fillment, which increases the availability of time windows for later
customers.

Periodic fulfillment with opportunity cost assessment.
Within the second cluster, we find literature that considers oppor-
tunity costs in the assessment of a given order so as to better steer
customers to more profitable or cost-efficient options. Contrary to
the first cluster, most of the papers simultaneously consider multi-
ple time windows and explicitly model customer choice behavior.
However, the techniques applied to test fulfillment feasibility are
simpler than in the previous cluster.

In contrast to other papers in this cluster, Campbell & Savels-
bergh (2005) decide on individual time window offers indepen-
dently but are the first to provide a rough estimate of future prof-
its. In particular, for each new request, they solve a routing in-
stance including already accepted customers, the current customer
under consideration, and a number of expected future customers.

The remaining papers explicitly model customer choice behav-
ior based on random utility theory. Incorporating customer choice
behavior is crucial for joint assortment decisions. However, it is
challenging to incorporate a detailed customer choice model tak-
ing into account choices and substitution across multiple days,
time windows, and delivery prices. Therefore, these models try
to balance modeling detail and computational effort. To this end,
Mackert (2019) apply a generalized attraction model (GAM) which
ranks each time window offer based on the customer’s perceived
attractiveness. The authors use the choice probabilities in combi-
nation with a mixed-integer programming (MIP) based profit esti-
mation to determine the subset of most profitable time windows
for a given customer. They conclude that applying the GAM can
lead to a more accurate estimation of customer choice than ap-
plying the most frequently used multinomial logit (MNL) model
(e.g., Avraham & Raviv, 2021; Lang et al., 2021a; 2021b). Lang et al.
(2021a) propose several methods for anticipatory profit estimation
using, inter alia, extensive offline training based on samples of ex-
pected demand and value function approximation (VFA; see, e.g.,
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Powell, 2016). They highlight the modular composition of the as-
sociated routing and revenue management techniques. Lang et al.
(2021b) additionally account for multiple short- and long-term
revenue metrics, including basket value, the visibility of branded
trucks, and popularity among influential customers. In contrast,
Avraham & Raviv (2021) focus on efficient multi-day assortment
decisions. Different from the previous work, the authors anticipate
future demand to maximize the number of expected accepted cus-
tomers. They use tentative route information both for feasibility
checks and as features of a VFA jointly predicting route efficiency
over multiple consecutive days. The presented results show that
taking into account inter-day dependencies create more efficient
fulfillment routes that allows for more accepted orders.

Order-based fulfillment. The third cluster addresses offering
decisions in order-based fulfillment systems. To date, only a few
publications pertain to this stream of demand management liter-
ature. The work in this cluster presents sophisticated order deliv-
ery methods for order assessment and also takes rough proxies of
order assembly into account. We conjecture that the importance
of considering all fulfillment steps in the offering decision stems
from the order-based fulfillment setting itself, and is due to the
high time pressure in this setting.

Azi et al. (2012) consider a setting in which new customer re-
quests arrive during the execution of the routes of previously ac-
cepted customers. There are no predetermined cut-off times. How-
ever, new customers can only be inserted into time windows of
routes that have not yet started. To the best of our knowledge, this
is the first paper to integrate vehicle dispatching and order cap-
ture. By assuming a load-dependent setup time, this paper also
models the interaction between order capture and order assem-
bly. The authors formulate a dynamic decision model in which the
acceptance of a customer request depends on a scenario-based op-
portunity costs. The embedded routing problem is solved with an
ANS heuristic. Instead of time windows, Klapp et al. (2020) con-
sider the acceptance of requests that must be delivered no later
than the end of the operating day, which constitutes a common
delivery deadline. The objective is to minimize the sum of ex-
pected travel costs and penalties for rejecting a request. The au-
thors approach this problem as an extension to the dynamic dis-
patch waves problem (Klapp et al., 2018), adding efficient request
acceptance as a demand management decision. They evaluate ful-
fillment feasibility based on dispatch plans that include a constant
parameter representing assembly time, and construct and upgrade
the plans using neighborhood search heuristics.

3.2. Operational pricing

Operational pricing involves dynamically adjusting the prices
of the service options offered during the order capture step. This
means setting (customer-specific) delivery prices or other incen-
tives associated with the service options that are displayed when
customers arrive over time. Such incentives can stimulate efficient
fulfillment operations and maximize revenue in the short term.

We present the literature for operational pricing in three clus-
ters, based on the attributes displayed in the lower part of Table 2.
Even across clusters, the available operational pricing models have
many aspects in common. Intuitively, each of them accounts for
joint assortment decisions and some form of customer choice be-
havior. We especially highlight the work of Yang et al. (2016) who
calibrate an MNL choice model based on a large amount of real
booking data from an e-grocer. Many subsequent publications re-
fer to this model and its data to capture customer choice behav-
ior. Other common features among operational pricing approaches
are the use of revenue-based metrics (revenue or profit) for or-
der value assessment and accounting for order delivery as well
as opportunity costs in the order assessment. These characteris-
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tics largely correspond to those of the second operational offering
cluster, which also focuses on the anticipatory steering of customer
choice. Within this overall picture, we identify three clusters of
publications that differ in terms of the fulfillment process design
and the method for the fulfillment feasibility assessment.

Periodic fulfillment with tentative route plans. Similar to of-
fering, the vast majority of the operational pricing literature as-
sumes a periodic fulfillment process. Within this relatively homo-
geneous group, the approaches differ mainly in the way they deter-
mine fulfillment feasibility. The papers in the first cluster perform
a tentative route planning, using insertion heuristics. The tenta-
tive route information is also used to estimate profits for assessing
the present order value - with or without considering opportunity
costs.

Campbell & Savelsbergh (2006) do not consider opportunity
costs but estimate the profit contribution of a given order as the
sales margin minus the insertion cost, taking into account already
accepted customers. An incentive optimization model then trades
off price discounts against the increased likelihood that customers
will choose time windows with higher profit expectations. More
recent approaches seek to also capture opportunity costs, i.e., the
impact of demand management decisions on future demand (man-
agement). To this end, they typically model the decision prob-
lem as a stochastic dynamic program. Yang et al. (2016) are the
first to present such a formulation, taking into account the fulfill-
ment costs incurred in the order delivery step. Since this problem
is computationally intractable, the authors propose an approxima-
tion to compute optimal prices for feasible options in real time.
Similar to Campbell & Savelsbergh (2006), the approximation re-
lies on insertion cost estimates, which are offset against the im-
mediate profit before fulfillment. However, the authors incorpo-
rate estimates of future demand as they draw on pools of route
plans that involve already existing orders and samples of expected
future order locations. Koch & Klein (2020) replace the anticipa-
tory insertion cost by a linear VFA that uses the information re-
trieved from tentative route planning as features. While the for-
mer method can only account for cost-related effects in the op-
portunity cost estimation, this one accounts for both cost- and
revenue-related displacement effects. Instead of applying statisti-
cal learning, Klein et al. (2018) choose a model-based approach to
capture these effects. Their MIP formulation combines myopic in-
sertion costs derived from tentative route plans with anticipatory
seed-based routing that draws its information from a choice-based
demand prediction model.

A major challenge in using tentative route information is com-
putational complexity: The insertion cost calculation is a primary
bottleneck (Yang et al., 2016), and it may be necessary to periodi-
cally recalculate opportunity costs to decrease online computation
times (Klein et al., 2018).

Periodic fulfillment with capacity approximation. The second
operational pricing cluster relies on static capacity controls to as-
sess feasibility instead of using tentative route plans. Alternatively,
they skip the feasibility checks altogether and incur penalty costs
on capacity shortage. The papers use different approaches to cap-
ture the routing aspects of the order delivery step. In addition, they
differ in how they link the approximation method used for feasi-
bility assessment to the method used to assess the present order
value - in terms of profit or revenue.

Asdemir et al. (2009); Lebedev et al. (2021) study the structure
of an optimal pricing policy under MNL customer choice, assuming
static capacity controls. Asdemir et al. (2009) assess the present or-
der value using a revenue metric assuming sunk fulfillment costs.
They introduce a balanced capacity utilization constraint to im-
plicitly model the order delivery step. Lebedev et al. (2021) ac-
count for delivery costs in the terminal state of their dynamic pro-
gramming formulation and refer to route approximation methods
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(Daganzo, 1987) to determine the assumed capacity controls. The
studies show that optimal delivery prices increase dynamically as
fulfillment capacities are depleted during order capture (Asdemir
et al., 2009), and are monotonic in the number of accepted cus-
tomers (Lebedev et al., 2021).

The other work in this cluster presents solution methods to the
operational pricing problem that involve capacity approximation.
Yang & Strauss (2017) build their solution method around Daganzo
(1987). Specifically, they use this approximation method not only
to determine static capacity controls for feasibility assessment, but
also to train an affine VFA to anticipate profit based on the current
number of accepted customers and the time remaining for order
capture. Strauss et al. (2021) incorporate a similar feasibility as-
sessment but tailor it to a setting with flexible time windows. In
particular, they consider a setting in which customers select mul-
tiple delivery time windows that are acceptable to them. The cus-
tomer receives a discount for providing the service provider with
more flexibility in order fulfillment. The authors estimate profit
through an anticipatory linear program that uses the capacity in-
formation from the approximate feasibility assessment. In contrast,
Vinsensius et al. (2020) completely ignore feasibility checks at the
order capture phase. Instead, they account for infeasibilities in or-
der delivery by means of penalty costs. Yet, the authors incorpo-
rate routing properties faced during order delivery: Similar to Yang
& Strauss (2017), they estimate profits using VFA. However, rather
than relying on approximations, they train their VFA with solutions
to a VRP variant with service choice. In particular, they perform the
training on simulated historical data and solve the VRP instances
using a minimum regret construction heuristic. Thus, although the
authors apply explicit route planning within the offline training,
they do not perform tentative route planning during the decision-
making process, as for example Koch & Klein (2020) do.

Order-based fulfillment. Analogous to operational offering, op-
erational pricing literature addressing order-based fulfillment is
scant. In contrast to periodic order fulfillment, delivery decisions
are dynamic and stochastic. In what follows, we point out how pa-
pers in this cluster deal with this aspect. We also explain how they
use tentative route information for assessing opportunity costs. In-
terestingly, different from the cluster of order-based operational of-
fering literature, none of the considered papers takes order assem-
bly into account.

Ulmer (2020) dynamically set prices for one-hour and four-hour
delivery deadlines. Their model optimizes both the pricing strat-
egy and dynamic route dispatch times, where the former aims
to maintain fleet flexibility while charging customers according to
their expected willingness to pay. The solution method uses ten-
tative route information obtained from an insertion heuristic that
is based on already existing orders only. Besides facilitating feasi-
bility checks, the myopic route information is used to derive fleet
flexibility measures as features for a linear VFA that assists profit
anticipation. Prokhorchuk et al. (2019) extend this work and aim
to make pricing decisions for reliable service assortments to re-
duce the number of missed deadlines and increase long-term cus-
tomer loyalty. To this end, they integrate penalties for late deliv-
eries and account for stochastic travel times that materialize while
delivery routes are executed. Similar to the above study, the au-
thors build on myopic route information and apply a linear VFA us-
ing flexibility- and reliability-based features for anticipatory profit
estimation. In contrast, Klein & Steinhardt (2023) apply a more ad-
vanced tentative routing procedure and consider future orders in
both profit estimation and route planning. Compared to previously
applied insertion heuristics in combination with route-based VFA,
the authors perform a sample-scenario state value approximation
that involves heuristically solving a profitable multi-trip VRP with
release and due times for every sampled scenario.
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4. Tactical demand management

Table 3 lists the literature on tactical offering (upper part)
and tactical pricing (lower part). Similar to the previous section,
we categorize the publications based on their problem setting, the
decision-making process, and the computational study. However, the
attributes considered within each of these categories differ from
those used to structure the operational literature. Again, the table
entries allow us to identify clusters of closely related publications,
which we discuss in Sections 4.1 and 4.2.

First, we distinguish different problem settings underlying tacti-
cal demand management in terms of the number of service options
from which an individual customer can choose (single or multiple)
and the service segments for which different offering and pricing
decisions are made (individual customers or aggregated customer
groups).

Second, we consider the forecast-based, tactical decision-
making process. Corresponding demand management methods ap-
ply different optimization approaches and demand forecasting
methods. Optimization approaches differ in terms of the linkage
between planned shifts, i.e., they determine the decisions either
independently for single shifts or jointly for multiple shifts. Fur-
ther, we distinguish different model decisions, including assortment
decisions, price decisions, and availability controls. While assort-
ment decisions assign sets of service options to the given ser-
vice segments, availability controls (e.g., booking limits) are set for
given assortments with the aim of simplifying subsequent opera-
tional decisions. Finally, we list the model objective (cost, revenue,
or profit) and the type of service and capacity constraints, if any.
In the case of a cost objective, service constraints ensure an exoge-
nously imposed service level with respect to the number of service
options (frequency), the distribution of service times (balance), or
subsets of service options that can be either continuous (interval)
or discrete (candidates). Capacity constraints capture the necessary
fulfillment operations and are represented by continuous approxi-
mation models (CA), simulation (SIM), or routing models that can
be either explicit (ROUTE) or seed-based (SEED). Note that for each
paper only one of the possibly several methods applied is given in
the table. Concerning the demand forecast, we distinguish between
a deterministic and stochastic demand model and indicate whether
papers explicitly model customer choice behavior based on random
utility theory (RUT). Other papers do not model customer choice
but assume demand to be independent of the service offering.

Third, analogous to the operational planning models, informa-
tion on the computational study includes the type of demand data
(synthetic or empirical) and the business sector of the motivating
application.

4.1. Tactical offering

Tactical offering decisions determine the availability of service
options before the order capture step. In other words, they allo-
cate the corresponding fulfillment capacity to different service seg-
ments, based on demand forecasts. In the upper part of Table 3, we
observe three clusters of publications that share similarities with
respect to the considered service segments and model decisions. As
discussed below, each of the clusters represents a specific planning
task within the domain of tactical offering - from the simplifica-
tion of short-term operational planning to service differentiation
and long-term customer agreements.

Availability controls. The first cluster focuses on establishing
availability controls for a given assortment of service options, i.e.,
thresholds that guide the decision on the availability of service
options for different service segments. This simplifies operational
decision-making and resembles the concept of allocation planning
in supply-constrained production planning (Meyr, 2009).
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Table 3

Tactical demand management.

Computational study

Decision-making process

Problem setting

Demand forecast

Optimization approach

Business
sector

Demand

data

Choice

Demand
model

Model Service Capacity

Model

Planned
shifts

Service

Service
options

behavior

constraints constraints

objective

decisions

segments

E-grocery

Synthetic

Deterministic
Stochastic

SIM

Revenue

Avail. controls
Avail. controls

Aggregated  Indep.

Multiple
Single

Cleophas & Ehmke (2014)

Offering

E-grocery

Synthetic

ROUTE
CA

Revenue

Indep.

Aggregated

Visser & Savelsbergh (2019)

Agatz et al. (2011)

Empirical  E-grocery

Deterministic

Aggregated  Indep. Assortment Cost Frequency

Multiple

Retail

Synthetic

Deterministic
Stochastic

ROUTE
ROUTE
ROUTE
SEED

Frequency
Balance

Cost

Assortment
Assortment
Assortment
Assortment

Joint

Aggregated

Multiple
Multiple
Multiple
Multiple

Hernandez et al. (2017)
Bruck et al. (2018)
Coté et al. (2019)

Service
Retail

Empirical

Cost

Joint
Joint

Aggregated

Frequency Stochastic Empirical

Cost

Aggregated

Synthetic E-grocery
B2B

RUT

Deterministic

Profit
Cost

Indep.

Aggregated

Mackert et al. (2019)

Synthetic
Synthetic

Stochastic

ROUTE
ROUTE
ROUTE
SEED

Interval

Assortment
Assortment
Assortment

Single Individual Indep.
Price

Single
Single

Spliet & Gabor (2015)

B2B

Stochastic

Candidates
Interval

Cost

Indep.

Individual

Spliet & Desaulniers (2015)

Spliet et al. (2018)
Klein et al. (2019)

B2B

Synthetic

Stochastic

Cost

Indep.

Individual

E-grocery

Synthetic

RUT

Deterministic

Profit

Aggregated  Indep.

Multiple

Pricing
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In this vein, Cleophas & Ehmke (2014) propose an iterative al-
gorithm to allocate the fulfillment capacities of a geographically
differentiated service assortment to value-based customer groups.
They first simulate the order capture phase based on historical
booking data and by applying customer acceptance rules from the
literature (Ehmke & Campbell, 2014). From the simulation results,
they derive booking thresholds for each time window and deliv-
ery area. The authors then refine the thresholds for discrete order
value buckets using the expected marginal seat revenue (EMSR)
heuristic, a classical revenue management tool (Belobaba, 1987).
The computational results show that the proposed method can
generate significant revenue gains in the case of heterogeneous or-
der values. In contrast, Visser & Savelsbergh (2019) focus on fore-
sighted delivery routes to maximize the generated revenue. In-
spired by Dutch e-grocer Picnic, which offers a single time win-
dow per day for each delivery area, they present an approach to
(i) determine the specific time window to offer in each area and
(ii) establish an operational control mechanism to determine when
time windows should be closed. Both decisions are guided by a
priori routes that are constructed over a set of delivery points with
known order volumes and revenues. Order placement and order
sequence are uncertain. The authors develop a two-stage stochastic
program, where routes are determined in the first stage and gener-
ated revenue is simulated in the second stage. To reduce complex-
ity, the study assumes a single vehicle, thereby turning the rout-
ing problem into a traveling salesperson problem (TSP). The study
presents insight into the structure of optimal a priori routes.

Assortment decisions for aggregated customer groups. Papers
in the second cluster determine an assortment of service options
for each geographical area within the service region. In particular,
by differentiating the assortment over different areas, the service
provider can spatially cluster demand but also temporally sequence
the clusters to facilitate efficient delivery routes.

In this light, Agatz et al. (2011) determine the service assort-
ment per shift across days for different geographic areas. They as-
sign a fixed number of service options out of a given pool of op-
tions to each service area with the objective of minimizing the
expected fulfillment cost. To decompose the problem per shift,
the authors assume weekly demand to be evenly distributed over
the service assortment. Additionally, expected demand is known
and independent of the service assortment. The paper proposes
two solution approaches, one based on continuous approximation
(Daganzo, 1987) and the other based on integer programming. The
authors evaluate the resulting assortments by simulation on the
operational level and based on real demand data. The results show
a reduction in delivery costs compared to uniform assortments,
which is most significant if delivery capacity allows a vehicle tour
to span several time windows. Mackert et al. (2019) extend the in-
teger programming-based method with a finite-mixture customer
choice model that accounts for heterogeneous revenues and prefer-
ences. Furthermore, they eliminate the specification of exogenous
service requirements by moving from cost minimization to profit
maximization. The authors linearize the choice-based MIP to ap-
ply a standard solver and propose a decomposition heuristic for
large instances. The computational results confirm that incorpo-
rating customer choice behavior can increase profits. The effect is
amplified when preferences are more heterogeneous. The authors
also investigate the impact of predefined service requirements on
profit and find that an inadequate specification can reduce profits.
Hernandez et al. (2017) consider independent demand but account
for interdependencies between service assortments over consecu-
tive days. Thus, the assortment decision does not decompose by
shift, and the authors use a periodic vehicle routing approach to
assign weekly assortments to geographic areas. Routes are mod-
eled at the aggregated area level rather than at individual customer
locations. The computational study focuses on the performances of
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two tabu search-based solution methods, which are also compared
to an exact solution method.

In another subset of papers, uncertainties in demand forecasts
are explicitly considered. Bruck et al. (2018) discuss the business
case of an Italian gas provider that cannot apply operational de-
mand management but must ensure service to all customers at
regulated prices. The authors make assortment decisions by as-
signing capacities (i.e., technicians) to a given pool of time win-
dows and ensure service quality by balancing the assortment over
all the days of an operating week. The customers’ time window
choice is uncertain yet independent of the assortment offered. The
authors incorporate the stochastic choice in a simulation stage that
is part of a two-stage stochastic program. Combined with a multi-
depot multiple TSP, this stage enables the evaluation of first-stage
assortment decisions. Using real-life booking instances of the in-
dustry partner, the authors demonstrate that their method reduces
delivery and penalty costs compared to the company’s manual pro-
cess. Coté et al. (2019) extend the degree of uncertainty to cus-
tomer locations, basket sizes, and service times. They evaluate an
assortment’s delivery and penalty costs in the second stage of a
two-stage stochastic program using a vehicle routing approach that
accounts for multiple interrelated periods. The authors perform a
computational study on real instances of a Canadian retail com-
pany, the results of which show the effectiveness of their method,
which outperforms the manual solution obtained by the company.

Assortment decisions for individual customers. The third
cluster is concerned with the assignment of single service options
to individual customers, which can be interpreted as long-term
customer agreements - a special case of service differentiation. The
set of customers is fixed and known in advance, and all customers
have to be served.

Spliet & Desaulniers (2015); Spliet & Gabor (2015) consider a
business-to-business (B2B) case inspired by a Dutch retailer. In
this context, ‘customers’ refer to retail stores that are replenished
periodically. The supplier assigns to each store a time window
in which it will receive deliveries. This assignment decision is
driven by stochastic demand volumes. The authors present a two-
stage stochastic linear program that evaluates assignment decisions
based on a vehicle routing model. The objective is to minimize de-
livery costs subject to the stores’ preferred delivery time intervals
(Spliet & Gabor, 2015) or candidate options (Spliet & Desaulniers,
2015). Both formulations are solved to optimality using a branch-
and-price-and-cut algorithm with route relaxations. In subsequent
work, Spliet et al. (2018) add time-dependent travel times and seek
arrival time consistency. The authors propose an exact solution
method and evaluate its performance.

4.2. Tactical pricing

We define tactical pricing as the planned differentiation of
prices across both customer groups (e.g., by geographic location or
order value) and service options (e.g., premiums for evening deliv-
ery). While tactical offering limits an assortment’s breadth, tactical
pricing steers customers to favorable options within a (potentially
broader) assortment. As seen in the lower part of Table 3, we are
aware of one single publication focused on tactical pricing.

Klein et al. (2019) consider price differentiation between time
windows offered in given geographic areas, with the objective of
maximizing total profit. Assortments are fixed, but prices can be
selected from a finite price list. Akin to the majority of operational
pricing studies, the authors explicitly model customer choice be-
havior based on random utility theory. Specifically, they apply a
non-parametric rank-based model that captures a customer seg-
ment’s choice behavior through preference lists over all possible
service options, including non-purchase. The authors formulate the
pricing problem as an MIP that either features aggregate vehicle
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routes or cost approximations with respect to the geographic ar-
eas. The computational results confirm the benefits of differenti-
ated pricing over uniform pricing. For industry-sized instances, the
authors recommend their approximation-based approach since it is
able to find good solutions in a limited amount of time.

5. Strategic demand management

The studies on operational and tactical demand management
discussed in the preceding sections make assumptions regarding
the setting defined by strategic-level decisions. These include deci-
sions on the service region, appropriate service segments, the ser-
vice design, and the pricing model. Interestingly, publications that
address these decisions in their own right are few and far between.
Therefore, rather than creating a literature table similar to those
in Sections 3 and 4, we present the problem- and methodology-
related focus of the current state-of-the-art literature on strategic
demand management at a glance in Table 4. We discuss the rele-
vant aspects of key strategic planning tasks and contextualize cur-
rent perspectives in the literature. As in the preceding sections, we
distinguish between offering and pricing levers.

5.1. Strategic offering

Strategic offering refers to identifying target markets and de-
signing an appropriate service proposition, which translates to
three major planning tasks that guide our discussion: The selection
of the service region, service design, and the definition of service
segments (cf. Roth & Menor, 2003).

We start with the literature that sheds light on the choice of
service region. Here, a decision has to be made whether to offer
service in a densely or sparsely populated area. The former in-
cludes mostly metropolitan areas and inner cities with dense road
networks and high demand potential but also more fierce com-
petition. The latter is characterized by sparser road networks and
lower customer density but may allow the retailer to achieve a
monopoly. In this vein, several studies have examined the oper-
ational implications of urban and rural service regions (Belavina
et al,, 2017; Boyer et al., 2009; Lin & Mahmassani, 2002; Ramaek-
ers et al., 2018) and conclude that customer density has a signif-
icant positive effect on route efficiency. Beyond strategic demand
management literature, Jiang et al. (2019) discuss general chal-
lenges of last-mile delivery in rural, more sparsely populated ar-
eas. In the operational demand management literature, Ehmke &
Campbell (2014); Kohler & Haferkamp (2019) show that the char-
acteristics of the service region also influence which real-time or-
der evaluation method is most appropriate.

Second, we consider the literature addressing service design.
This planning problem refers to a broad spectrum of design el-
ements that characterize a delivery service offer and its service
level. This includes decisions on delivery speed (e.g., click-to-door
time), precision (e.g., time window length), and service frequency.
Further design decisions concern possible interactions between
service assortment and physical assortment, customer flexibility
in terms of changes in the time window and shopping basket,
and value-added services such as returns management. To gain
a competitive advantage, it is important to understand both the
sales impact and operational implications of different service de-
signs (Amorim et al., 2020). Thus, on the one hand, many em-
pirical studies have investigated customer preferences and expec-
tations regarding particular delivery service attributes (Amorim
et al, 2020; de Magalhdes, 2021; Milioti et al., 2020; Wilson-
Jeanselme & Reynolds, 2006). Most recently, Rodriguez Garcia et al.
(2022) present a framework on how to map value proposition to
logistics strategy, thereby qualitatively assessing operational impli-
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Table 4
Strategic demand management .
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Planning task

Main methodology

Service region

Service design

Service segments Pricing model

Offering Lin & Mahmassani (2002) v
Wilson-Jeanselme & Reynolds (2006)
Boyer et al. (2009)

Ulmer (2017)

Manerba et al. (2018)

Ramaekers et al. (2018)

Amorim et al. (2020)

Bruck et al. (2020)

Milioti et al. (2020)

Fikar et al. (2021)

de Magalhdes (2021)

Phillipson & van Kempen (2021)
Rodriguez Garcia et al. (2022)
Glimiis et al. (2013)

Belavina et al. (2017)

Agatz et al. (2021)

Wagner et al. (2021)

v

Pricing

ENENENENENENEN

ANENENENEN

Simulation
Empirical
Simulation
Simulation
Scenario evaluation
Scenario evaluation
Empirical
Prescriptive
Empirical
Simulation
Empirical
Simulation

Case study
Game-theoretic
Game-theoretic
Simulation
Prescriptive

ANENENEN

cations of a service design. All of these studies shed light on how
service design attributes affect the generated demand volume.

On the other hand, there is a wide field of exploratory research
that examines the operational implications of a service design.
Starting in the early 2000s, Lin & Mahmassani (2002) show by
simulation that increasing the time window length can reduce ve-
hicle idle time, lower total miles traveled, and allow for more cus-
tomers to be served. Boyer et al. (2009) support their results, and
Ramaekers et al. (2018) report similar effects for both delivery and
assembly operations. Ulmer (2017) focus on the impact of offer-
ing delivery deadlines, and Manerba et al. (2018) investigate both
click-to-door time and time window length from an environmen-
tal perspective. Agatz et al. (2011) perform a sensitivity analysis on
the choice of service frequencies, and Mackert et al. (2019) show
that an inadequate specification can reduce profits. Very recently,
Phillipson & van Kempen (2021) have assessed the cost implica-
tions of allowing customers to change their chosen time window
before the delivery day, and Fikar et al. (2021) have examined the
integration of product shelf-life options into demand management
decisions. Some of these findings have already been picked up in
operational demand management: Casazza et al. (2016) perform
dynamic service design adjustments, and Campbell & Savelsbergh
(2006); Kohler et al. (2020) offer and price time windows depend-
ing on their length.

Lastly, we present literature that concerns defining appropriate
service segments which form the basis for tactical service differenti-
ation (see Section 2.2.1). It should be noted that these segments do
not necessarily coincide with the customer segments used to cap-
ture different preference structures within customer choice mod-
els. Tactical demand management commonly assumes given ser-
vice segments based on geographic characteristics such as a cus-
tomer’s zip code affiliation; only Cleophas & Ehmke (2014) addi-
tionally group customers based on their basket value (see Table 3).
We are aware of just a single contribution that determines opti-
mal service segments in this context. Bruck et al. (2020) extend
the tactical approach of Bruck et al. (2018) and integrate strate-
gic offering. They determine optimal service segments by solving a
P-median facility location problem to group municipalities within
the considered service region. A service constraint handles poten-
tial imbalances among segments’ total expected demand. The au-
thors evaluate their approach using real industry data and empha-
size its value for assessing entry into new service regions and an-
alyzing past service segment configurations.
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5.2. Strategic pricing

Strategic pricing refers to the overall pricing model and de-
pends on the competitive environment, customer preferences, and
price sensitivities within the target market. Determining a pricing
model includes decisions about free or paid delivery, whether to
use a delivery charge per order or a subscription fee per service
period, and other incentive schemes. Tactical and operational de-
mand management commonly assume a per-order pricing model
within a given price range to steer customer choice. However, we
are aware of several studies that shed light on the impact of spe-
cific pricing models.

Belavina et al. (2017) consider grocery delivery and build a
stylized model to examine per-order and subscription-based pric-
ing models with respect to equilibrium customer behavior and re-
sulting profit and environmental performance. Their results show
that subscription-based models lead to more frequent delivery re-
quests, which in turn impact the provider’s revenue, route effi-
ciency, and food waste. The authors conclude that the subscrip-
tion model tends to be more environmentally friendly because the
reduction in food waste emissions outweighs the increase in de-
livery emissions, but they still recommend the per-order model
for high-margin providers that operate in sparsely populated ar-
eas. Wagner et al. (2021) show that on average, the increased or-
der frequency entails a profit loss as the increase in assembly and
delivery costs outweighs the increase in revenue. The authors ex-
plain this effect as a result of higher expectations of subscription
customers; i.e., they choose narrower and more popular time win-
dows. In addition, the authors develop a data-driven algorithm that
predicts the expected post-subscription profitability to determine
whether a particular customer should be offered a subscription
plan. The algorithm is trained and evaluated based on real order
data from a large omnichannel grocery retailer. The authors re-
port that observed product assortment size and basket value are
the strongest predictors of post-subscription profitability. In con-
trast, Glimiis et al. (2013) investigate the joint design of a pricing
model for product and delivery service. They analyze the compet-
itive dynamics of price partitioning, where delivery and product
prices are displayed separately in a partitioned setting, and free
shipping is advertised in a non-partitioned setting because the de-
livery cost is already included in the product price. The authors de-
termine the equilibrium market structure and validate their theo-
retical results through empirical analyses. In addition to traditional
pricing models, Agatz et al. (2021) focus on non-monetary incen-
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tives and study the impact of displaying green labels for environ-
mentally friendly service options on customer behavior and oper-
ational performance. From their empirical experiments and simu-
lation study, the authors verify that green labels effectively steer
customer choice, also in combination with price incentives and for
less attractive time windows.

6. Discussion

In this section, we synthesize our findings from reviewing the
literature, highlight key challenges and potential future research
for each planning level, and elaborate on the connection between
the planning levels.

There is a growing number of academic contributions on oper-
ational demand management, predominantly directed at e-grocery.
The computational challenges make it an active field of research
in operations research. Most work in this area focuses on sophis-
ticated solution methods for specific parts of the real-time deci-
sion problem, e.g., feasibility assessment, value anticipation, or cus-
tomer choice behavior. In general, vehicle routing heuristics and
dynamic programming can be identified as methodological corner-
stones.

Building on the current body of research, we see several av-
enues for future research. First, given the modular structure of
operational decision-making, there is a need for comprehensive
benchmarks that guide the selection of suitable building blocks
of solution methods. Lang & Cleophas (2020); Ulmer (2019) of-
fer valuable starting points for this purpose. Second, in light of
very limited computation time, there is still a need for fast solu-
tion methods. One potential research avenue is the application of
machine and reinforcement learning in this context. Such methods
have already been adapted for feasibility assessment (van der Ha-
gen et al, 2022) and value anticipation (e.g., Koch & Klein, 2020)
but have not yet been applied to predict customer choice. Alterna-
tively, it may be beneficial to change the fulfillment process design
to simplify operational planning. We see valuable starting points
in the recent literature: Schwamberger et al. (2022) define an in-
verted order capture process in which the service provider proac-
tively approaches customers with the opportunity to place an or-
der, and Yildiz & Savelsbergh (2020) explore the possibility of in-
centivizing accepted customers to change their chosen time win-
dow after the order capture cut-off time.

We see fewer contributions to tactical demand management
that, however, cover a variety of planning problems from long-
term customer agreements to short-term availability control. From
a methodological perspective, MIP, two-stage stochastic program-
ming, and simulation are prevalent and customer choice behavior
is rarely modeled explicitly. Besides, we observe that tactical ap-
proaches are mainly tailored to specific business sectors and that
the research is often conducted in collaboration with an industry
partner, which indicates the practical relevance of the topic.

We see a need for future research, especially for innovative AHD
concepts. Service providers that perform order-based fulfillment
within a deadline benefit from tactical offering and pricing deci-
sions: Different delivery deadlines can be offered in different geo-
graphic areas at different prices (e.g., longer and/or more expensive
deadlines in peripheral areas). Stroh et al. (2021)’s tactical vehicle
dispatch policies may serve as a starting point. Moreover, there is
great potential for tactical offering under a subscription-based pric-
ing model. Spliet et al. (2018); Spliet & Desaulniers (2015); Spliet
& Gabor (2015) provide relevant insights from the business-to-
business context that can be transferred to customers who are al-
lowed to reserve a time window as part of their subscription plan.

Contributions to strategic demand management provide insight
into many different aspects of strategic planning. The set of ap-
plied methodologies is much more diverse which we explain by
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the strong interdependencies with other domains. For example,
selecting a service region interacts with location planning, deter-
mining service segments is influenced by delivery districting (e.g.,
Banerjee et al., 2022; Haugland et al., 2007), and service design
and pricing models strongly depend on marketing and competitive
considerations. As a consequence, we see that comprehensive de-
cision support is still missing. Other reasons that might promote
this gap are that (i) strategic demand management decisions are
considered to have less leverage compared to strategic decisions
in other research fields (e.g., network design) since they are less
long-term and more easily reversible. (ii) Competitive constraints
may leave only limited room for optimization. (iii) From a practi-
tioner’s perspective, decision-making responsibilities are more dis-
persed and located at a higher managerial level than they are for
tactical and operational demand management.

We see the opportunity for strategic demand management to
provide comprehensive decision support to capture the greatest
possible demand potential and to do so profitably. Thereby, impor-
tant issues of competitive pressure and market share should also
be addressed. Looking to adjacent research fields confirms this po-
tential. Metters & Walton (2007) provide strategic decision support
by proposing a service sector typology for multi-channel e-tailing.
They develop a matrix of competitive positions along the dimen-
sions of inventory pooling and shipping consolidation, and identify
four types of strategies that can be adopted by multi-channel e-
tailers. The authors also emphasize that e-tailers should align their
supply chain configuration with their strategic objectives. For the
express delivery business sector, Li et al. (2021) propose a two-
dimensional decision matrix to select the most suitable delivery
service mode among direct and indirect options. They measure the
expected customer utility and calculate the expected cost of deliv-
ery service to map different service modes to the decision matrix.

We conclude our discussion with a few observations concern-
ing the interaction between the different planning levels reviewed
separately in Sections 3-5. Conceptually, longer-term decisions set
the boundaries for decisions on the shorter term. One challenge is
that actual performance can only be observed once orders materi-
alize. Appropriately anticipating this performance impact is a core
issue for long-term decisions. Given the scarcity of strategic de-
mand management research highlighted in Section 5, the impact
of corresponding long-term decisions on tactical and operational
demand management is largely an open issue to date. Most contri-
butions to the tactical and operational literature make assumptions
on the strategic system design, based on choices observed in prac-
tice. However, the appropriateness of these choices, including the
service region, service design, and service segments has received
limited attention thus far.

As a potential starting point for future research in this di-
rection, some studies consider the sensitivity of tactical or op-
erational decisions and their performance to changes in selected
strategic choices. Examples are strategic choices between suburban
and downtown service regions (e.g., Ehmke & Campbell, 2014) and
between different time window lengths (e.g., Campbell & Savels-
bergh, 2005; Coté et al., 2019). Conceptually, these studies follow a
what-if approach to strategic-level decisions. A next step would be
to turn the analysis into a systematic optimization approach that
selects strategic options based on their impact on day-to-day oper-
ations and performance. For example, Agatz et al. (2021) conducted
operational-level simulations to assess the potential of new ways
for steering customer behavior. Their strategic concept of green la-
bels can be incorporated in tactical and operational pricing, com-
plementing the current monetary incentives.

Interactions between the tactical and operational planning lev-
els have received more attention in the literature. This is primarily
driven by the fact that operational demand management decisions
must be made in real time to facilitate a smooth order capture pro-
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cess. This limits the available time for computations on the oper-
ational level. There is, however, more time to support tactical de-
cisions. We observe two approaches in the literature that exploit
this relation.

First, tactical decisions can pre-structure and thereby simplify
operational decisions by limiting the decision space on the opera-
tional level. In the reviewed literature, this holds true for service
and price differentiation. To be effective, such approaches must
capture the link with the operational level. The extent to which
this is the case depends on the decision-making flexibility assumed
at this level. Long-term service agreements (e.g., Spliet & Gabor,
2015), legal regulations (Bruck et al., 2018), or business policies
(Coté et al., 2019) may severely limit operational levers. In these
cases, we observe more accurate routing formulations and the use
of two-stage stochastic programs to hedge against forecast errors.
If, on the other hand, operational demand management opportu-
nities are more extensive, the demand model and operational im-
pacts are more coarsely estimated (Agatz et al., 2011; Hernandez
et al.,, 2017; Klein et al., 2019; Mackert, 2019). However, operational
performance may be tested outside of the decision model, through
simulation studies (e.g., Agatz et al.,, 2011).

Second, it may be beneficial, or even necessary, to shift some
decisions from the operational to the less time-constrained tacti-
cal planning level altogether. Essentially, this implies a choice be-
tween an elaborate ex-ante planning model and a simpler heuris-
tic using real-time information. Given the discussed computational
limits, it makes sense to reserve real-time planning to those deci-
sions for which the available real-time information really makes a
difference. One example of shifting decisions to the tactical level is
the ex-ante calculation of availability controls such as booking lim-
its for specific time slots (Cleophas & Ehmke, 2014). Corresponding
literature uses simulation and two-stage stochastic programming
to capture the effects on the operational level (Cleophas & Ehmke,
2014; Visser & Savelsbergh, 2019).

7. Conclusion

This review paper introduced a framework for classifying de-
mand management decisions for AHD with respect to different
planning levels and demand management levers. For each plan-
ning level, we presented and classified prescriptive analytics meth-
ods in the literature and identified research gaps. The following
are our main observations. We have seen a rich set of studies on
operational demand management, aimed at extracting the great-
est potential from real-time decisions. Because manifold opportu-
nities for real-time decision-making differentiate AHD from tradi-
tional brick-and-mortar retail, the appeal of this line of research is
intuitive. The ensuing computational challenges have triggered so-
phisticated algorithmic contributions. However, all decisions clearly
do not benefit equally from real-time information. In this light, we
see yet unlocked opportunities for tactical demand management to
simplify and prestructure operational decisions. Finally, there is a
striking lack of research on underlying long-term, design-level de-
cisions. Hence, we see great potential for future contributions to
strategic demand management for AHD.

Taking a more general perspective, we highlight four topical
themes that we believe hold opportunities for innovative and rel-
evant future research on demand management for AHD. These
themes give rise to novel analytics issues at all planning levels.

First, a natural direction concerns innovative business models
and services in AHD. While research on standard ‘next-day’ gro-
cery delivery is maturing, researchers have only started to study
new delivery trends. On the one hand, on-demand e-grocery star-
tups (e.g., Gorillas and Flink) promise ‘instant’ grocery delivery
within a few minutes. This fundamentally different service offering
challenges many assumptions of the current fulfillment strategies
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and corresponding demand management. On the other hand, es-
tablished businesses are exploring novel customer interaction pro-
cesses that deviate from the current standard process reflected in
Section 2.1. Examples include long-term subscription agreements
and proactive customer contacting. These developments give rise
to novel decisions and call for corresponding analytics models and
approaches.

Second, more research that addresses new objectives in demand
management for AHD is needed. To date, the majority of publi-
cations focus on profit maximization as the primary goal of ser-
vice providers. Given the expansion race between emerging on-
demand e-grocery businesses, research should recognize market
share as a relevant alternative objective. Furthermore, consider-
ing environmental objectives has become a standard in many re-
search fields, and delivery services are subject to particular public
scrutiny with regard to sustainability (Siragusa & Tumino, 2022).
Belavina et al. (2017); Manerba et al. (2018) are the first to in-
vestigate the leverage of demand management in light of envi-
ronmental objectives. Future research should expand this devel-
opment and explore the impact of multiple conflicting objectives,
for example, related to social responsibility toward internal stake-
holders (e.g., delivery workers) and external stakeholders (e.g., cus-
tomers, residents, and administrators). Recent literature has under-
lined the relevance of this perspective: Belanche et al. (2021) show
that customers’ purchase intentions depend on their perception of
the working conditions for delivery workers, Chen et al. (2022);
Soeffker et al. (2017) investigate demand management regarding
fairness to customers, and Bjergen et al. (2021) discuss the inte-
gration of e-grocery logistics into urban spaces. The rapid expan-
sion of micro depots to support instant grocery deliveries, so-called
‘dark stores’, have already sparked public and political debate: The
Dutch cities of Amsterdam and Rotterdam recently restricted the
opening of new facilities because of noise and the blocking of
pedestrian walkways.'?

Third, we see potential for demand management addressing the
interaction between the delivery service and the product assort-
ment. Fikar et al. (2021); Glimiis et al. (2013) provide initial work
in this direction. Future research may strengthen the integration
of product assortment-related aspects into demand management
and extend demand management levers accordingly. For example,
while existing levers have been shown to effectively reserve fulfill-
ment capacity for more valuable customers, the inventory rationing
literature demonstrates a similar effect with respect to product
availability by reserving inventory for high-margin customers (e.g.,
Jimenez G et al., 2020). In addition, integrating the product assort-
ment naturally draws attention to the order assembly process. We
have seen few contributions that explicitly account for order as-
sembly in demand management methods. Among those is research
exploring the impact of time windows on both assembly and de-
livery (Ramaekers et al., 2018) and research presenting operational
offering for order-based fulfillment (Azi et al., 2012; Klapp et al.,
2020). Product-related demand management requires new analyti-
cal models and approaches that enable integrated decision-making
at all planning levels.

Fourth, we call for more empirical validation of demand man-
agement for AHD. On the one hand, we recognize that results
based on empirical instances alone are difficult to generalize and
should therefore be supported by carefully generated synthetic
data. The classification of demand data presented in Tables 2 and
3 is intended to shed light on this crucial aspect, even though the
observed situation is more nuanced than a strict dichotomy. While
research on supply-oriented levers can more easily base the com-
putational results on synthetic instances, empirical data are partic-

10 Reuters, https://reut.rs/3HRBLhI. Accessed on February 14, 2022.
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ularly important for demand management because of the strong
role of customer interaction in this context. Many of the assump-
tions required for demand management relate to customer behav-
ior, which is difficult to model realistically without empirical data.
In addition, customer behavior changes over time, so empirical val-
idation should be reviewed regularly.

To conclude, we expect demand management for AHD to con-
tinue to gain importance and to witness significant innovations to
emerge. We hope that this review contributes to stimulating future
research into this dynamic field.
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