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1. Abstract 

Mild cognitive impairment (MCI), an early stage of Alzheimer’s disease, is associated not only with 

cognitive decline but also with social vulnerabilities, including heightened susceptibility to deception 

and withdrawal from relationships. Because trust is a cornerstone of social life, understanding how it 

changes in MCI is essential for both theory and practice. 

This dissertation investigates the psychological and neural mechanisms of trust in older adults 

with MCI within the neuropsychoeconomic framework of trust, which integrates affect, motivation, 

social cognition, and executive cognition. It addresses three central questions: (1) Trust propensity (TP): 

Does MCI alter initial willingness to trust strangers, and which large-scale resting-state networks 

account for such differences?; (2) Structural underpinnings: Do gray matter reductions in MCI explain 

lower TP, and if so, through which psychological components do they exert their influence?; and (3) 

Trust dynamics: How does MCI affect the ability to build, maintain, and withdraw trust during repeated 

social interactions, and what neural and computational mechanisms underlie these alterations? 

To answer these questions, three empirical studies were conducted. Experiment 1 combined a 

one-shot trust game with resting-state functional magnetic resonance imaging (fMRI) and connectome-

based predictive modeling, showing that individuals with MCI exhibited reduced TP, explained by 

heightened betrayal sensitivity and increased reliance on the salience network. In contrast, healthy 

controls relied on social cognition and default-mode network connectivity. Experiment 2 used structural 

magnetic resonance imaging and voxel-based morphometry, revealing that atrophy in the anterior insula 

and thalamus mediated reduced trust in MCI through increased affective sensitivity to betrayal. 

Experiment 3 employed a multi-round trust game, computational reinforcement-learning modeling, and 

task-based fMRI. Results showed preserved trust-building with cooperative partners via compensatory 

activation in executive and social networks, but impaired trust reduction with non-cooperative partners, 

marked by slower updating, larger prediction errors, and disrupted executive–social connectivity. 

Together, these studies demonstrate that MCI reduces initial trust through affective hyper-

sensitivity and undermines adaptive trust updating through social and executive dysfunction, while 

compensatory mechanisms support trust in supportive contexts. These findings advance the 

neuroscience of trust by extending an integrative model to a clinical population, identify neural markers 
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of social vulnerability in MCI, and highlight trust as a potential target for early detection and intervention. 
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2. General Introduction 

2.1 Trust as a Cornerstone of Social Life 

Trust is a cornerstone of social life, enabling cooperation, reciprocity, and the functioning of complex 

societies despite uncertainty and risk (Coleman, 1990; Fukuyama, 1996; Hardin, 2002). At the 

interpersonal level, trust allows individuals to reduce social complexity (Luhmann, 1979), engage in 

mutually beneficial exchanges (Mayer et al., 1995), and sustain long-term relationships (Rousseau et al., 

1998). Without trust, social interactions are limited to rigid rules or constant monitoring, which makes 

cooperative life inefficient and fragile (Gambetta, 1988; Putnam, 2000). 

From a neuroscientific perspective, trust can be understood as a multi-component process that integrates 

affect, motivation, social cognition, and executive control (Krueger & Meyer-Lindenberg, 2019) 

(Figure 1). Each of these components has been linked to large-scale brain networks. The salience 

network (SAN), anchored in the anterior insula and dorsal anterior cingulate cortex, detects uncertainty 

and signals the relevance of emotionally salient information (Menon, 2015; Seeley et al., 2007). The 

reward network (RWN), including the ventral striatum and ventromedial prefrontal cortex (vmPFC), 

evaluates expected benefits and costs (Haber & Knutson, 2010). The default-mode network (DMN), 

involving medial prefrontal cortex (mPFC) and temporoparietal junction (TPJ), supports social 

cognition and mentalizing (Mars et al., 2012; Schilbach et al., 2008). Finally, the central-executive 

network (CEN), anchored in the dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex, 

regulates top-down control and integrates feedback for adaptive decision-making (Menon, 2011; Seeley 

et al., 2007). Together, these networks form the neurocognitive foundation of trust. 
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Figure 1. Neural model of trust formation and its core components. Trust formation relies on the 
dynamic integration of four core components: affect, motivation, social cognition, and executive 
cognition. Each component engages specific brain regions within large-scale domain-general networks. 
Trust emerges when the perceived probability of betrayal (affective system; salience network, SAN) 
conflicts with expectations of reciprocity (motivational system; reward, RWN), generating uncertainty 
that reflects the inherent vulnerability of trust. To resolve this uncertainty, the SAN acts as a neural 
switch, directing cognitive resources toward either the central executive network (CEN) for externally 
focused processing or the default mode network (DMN) for internally focused processing. When guided 
by extrinsic motivations, individuals rely on executive cognition (CEN) to pursue context-dependent 
strategies that maximize personal gains through economic rationality. When guided by intrinsic 
motivations, they draw on social cognition (DMN) to evaluate trustworthiness and promote relational 
success through social rationality. Adapted from Krueger & Meyer-Lindenberg (2019). 

 

2.2 Dimensions of Trust: Propensity and Dynamics 

Trust is not a unitary construct but can be distinguished into at least two dimensions that are central for 

both theoretical and empirical study. Trust propensity (TP) refers to a baseline tendency to trust strangers, 

independent of specific partners or contexts (Mayer et al., 1995; Rotter, 1967). TP reflects dispositional, 

trait-like aspects of trust that influence whether individuals are willing to initiate social exchanges. In 

contrast, trust dynamics describe how trust evolves over time, including the building, maintaining, or 

withdrawing of trust during repeated interactions. This dynamic dimension depends on feedback 

learning, adaptation to partner behavior, and flexible updating of expectations (Berg et al., 1995; Bohnet 

& Huck, 2004). 

Both dimensions can be measured using the trust game, a widely employed economic paradigm 

introduced by Berg et al. (1995). In the one-shot version, an investor decides how much money to send 

to a trustee, which is then tripled, and the trustee decides how much to return. The amount invested 
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reflects TP, while the trustee’s behavior reflects trustworthiness (Figure 2A). In multi-round versions 

of the trust game, trust dynamics can be observed as investors adjust their investments based on the 

trustee’s prior returns (King-Casas et al., 2005) (Figure 2B). By combining behavioral measures with 

neuroimaging and computational modeling, the trust game provides a powerful tool to dissect the 

psychological and neural mechanisms underlying TP and trust dynamics (Delgado et al., 2005; Kosfeld 

et al., 2005; Krueger et al., 2007). 

 

Figure 2. Conceptual model of the one-shot and multi-round trust games. (A) One-shot trust game. 
Two players (trustor and trustee) each make a single decision. In the decision stage, the trustor chooses 
an investment amount (X) from their endowment, which is then multiplied and transferred to the trustee. 
The trustee decides how much to return (Y) to the trustor. The amount invested reflects trust propensity 
(TP). (B) Multi-round trust game. Two players (trustor and trustee) interact repeatedly across multiple 
rounds. In each round, the trustor invests an amount (X), which is multiplied and transferred to the 
trustee, who then decides how much to return (Y). The trustor observes the trustee’s decision in the 
feedback stage and adjusts subsequent investments accordingly. Changes in investments across rounds 
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reflect trust dynamics (trust building, maintenance, and withdrawal). 

 

2.3 Trust in Aging and MCI 

Aging is associated with both cognitive decline and changes in social functioning. Older adults often 

maintain or even increase TP, reflecting a “positivity bias” in social processing (Carstensen & Mikels, 

2005; Castle et al., 2012). However, this can come at the cost of increased vulnerability to fraud and 

exploitation (Shao et al., 2019; Spreng et al., 2017). In the context of mild cognitive impairment (MCI), 

a prodromal stage of Alzheimer’s disease, these vulnerabilities are magnified. Individuals with MCI 

show not only memory and executive dysfunction (Gauthier et al., 2006; Petersen, 2004) but also 

reduced social engagement (Li et al., 2019) and impaired decision-making (Zamarian et al., 2011). 

Studies have shown that older adults with MCI are more susceptible to deception and financial 

exploitation (Han et al., 2016; Martin et al., 2019). 

Trust impairments may help explain this pattern. Lower TP could reduce willingness to form new 

relationships, contributing to social withdrawal, while impaired trust dynamics could prevent 

appropriate responses to betrayal, increasing susceptibility to fraud. Despite this importance, the 

mechanisms of trust dysfunction in MCI remain poorly understood. Addressing this gap requires an 

integrative approach that links behavior, neural function, and structural decline. 

2.4 Neural Mechanisms of Trust in Healthy Adults 

Neuroimaging studies in healthy adults have provided substantial insight into the neural substrates of 

trust decisions. Functional magnetic resonance imaging (fMRI) using the trust game has identified 

activation in multiple large-scale networks. The SAN, particularly the anterior insula and dorsal anterior 

cingulate cortex, is consistently engaged during the anticipation of betrayal and the evaluation of risk 

(Aimone et al., 2014; King-Casas et al., 2005; Krueger et al., 2007). The RWN, including the ventral 

striatum and vmPFC, responds to reciprocated trust, encoding the positive value of cooperation and 

reinforcing future trust decisions (Delgado et al., 2005; Fareri et al., 2012). The DMN, particularly the 

mPFC and TPJ, supports social cognition by enabling perspective-taking and the attribution of intentions 

to others (Rilling et al., 2004; Schilbach et al., 2008; Van Den Bos et al., 2009). Finally, the CEN, 

centered on the dlPFC and posterior parietal cortex, regulates top-down control and facilitates the 
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flexible adjustment of trust in response to partner behavior (Krueger & Meyer-Lindenberg, 2019). 

In addition to functional activation, structural and connectivity studies in healthy individuals support the 

role of these networks. Gray matter volume (GMV) in vmPFC and striatal regions correlates with 

individual differences in TP (Haas et al., 2015a; Safari et al., 2024). Resting-state functional connectivity 

(RSFC) among the amygdala, striatum, TPJ, and dlPFC predicts the tendency to maintain cooperation 

in repeated exchanges (Bellucci et al., 2019; Lu et al., 2019). These findings converge on the idea that 

trust decisions in healthy adults are shaped by an interplay between affective vigilance (SAN), 

motivational valuation (RWN), social inference (DMN), and executive regulation (CEN). 

2.5 Neural Mechanisms of Trust in MCI 

In MCI, neurocognitive changes in these same networks are likely to disrupt TP. Neuroimaging studies 

of MCI and early Alzheimer’s disease have revealed structural and functional alterations across SAN, 

DMN, and CEN regions. Atrophy in the anterior insula and thalamus, key nodes of the SAN, has been 

associated with impaired emotional regulation and heightened sensitivity to negative stimuli (Yang et 

al., 2012; J. Zhang et al., 2021). Functional hyperactivation of SAN regions has also been observed in 

MCI, suggesting compensatory or maladaptive responses to uncertainty (Song et al., 2021). In contrast, 

the DMN shows reduced connectivity and activity, impairing social cognition and theory of mind (Bora 

& Yener, 2017; Li et al., 2015). Similarly, CEN dysfunction in MCI undermines executive control and 

flexible adaptation to changing circumstances (Li et al., 2015; Traykov et al., 2007). 

These network-level changes are consistent with behavioral findings that individuals with MCI exhibit 

emotional hyper-sensitivity and deficits in social and executive cognition. For example, studies have 

reported increased attention to negative information (Berger et al., 2015; Döhnel et al., 2008), reduced 

ability to infer others’ intentions (Morellini et al., 2022), and impaired regulation of responses (Zamarian 

et al., 2011). Compensation may occur under low-demand conditions: MCI individuals can sometimes 

recruit additional prefrontal or parietal resources to support task performance (Li et al., 2015). However, 

these mechanisms often collapse under high cognitive or emotional load (de Rover et al., 2011). 

Taken together, these findings suggest that MCI disrupts the balance among affective, social, and 
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executive components of trust. Increased reliance on the SAN and reduced engagement of the DMN and 

CEN may explain both reduced baseline TP and impaired adjustment to betrayal. At the same time, 

compensatory activation can provide support under low-demand conditions (e.g., cooperative contexts) 

but typically breaks down under higher cognitive or emotional load (e.g., non-cooperative contexts).  

This pattern underscores the complexity of trust processes in clinical populations. 

2.6 Structural Underpinnings of Trust 

Beyond functional activation, structural brain integrity plays an important role in trust decisions. GMV 

in regions such as the vmPFC, striatum, TPJ, and anterior insula has been associated with individual 

differences in TP (Haas et al., 2015a; Safari et al., 2024). For example, Haas et al. (2015) found that 

greater GMV in vmPFC predicted higher TP, while structural variability in striatal regions has been 

linked to differences in reward-based trust behavior. The TPJ, central to mentalizing and perspective-

taking, has also been implicated in structural studies of trust (Morishima et al., 2012). 

In clinical populations, structural decline in these areas is linked to altered trust behavior. In Alzheimer’s 

disease and MCI, atrophy in the anterior insula and thalamus has been reported (Yang et al., 2012; Zhang 

et al., 2021). The insula, a hub of the SAN, integrates interoceptive and affective information, while the 

thalamus coordinates sensory and emotional processing (Menon, 2015). In major depressive disorder, 

gray matter reductions in the insula have been linked to heightened sensitivity to negative information 

(Schnellbächer et al., 2022). Structural degeneration in these regions may therefore amplify betrayal 

sensitivity and diminish baseline TP. At the same time, atrophy in prefrontal and parietal cortices reduces 

executive and social cognitive resources needed for adaptive trust regulation (Castle et al., 2012; Spreng 

& Turner, 2019). 

These findings suggest that GMV alterations provide a potential neuroanatomical basis for impaired 

trust in MCI. Importantly, structural deficits may exert their effects indirectly, by heightening affective 

sensitivity or weakening social inference capacities. Understanding these pathways requires integrative 

approaches that link brain structure to specific psychological components of trust. 
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2.7 Trust Dynamics, Learning, and Prediction Error 

While TP captures baseline willingness to engage in social exchange, trust dynamics reflect the ability 

to adjust behavior in response to partner feedback. Computational approaches, particularly 

reinforcement learning models, provide tools to quantify these processes (Zhang et al., 2020). Two 

parameters are especially important: learning rate, which determines how quickly individuals update 

their expectations, and prediction error, which signals the difference between expected and actual 

outcomes. In healthy adults, higher learning rates and accurate prediction error signaling enable flexible 

adjustment of trust to cooperative or non-cooperative partners (Haiyan, 2019; Nihonsugi et al., 2015). 

Neuroimaging studies show that prediction errors during trust interactions are encoded in the striatum 

and vmPFC, regions within the RWN (Delgado et al., 2005; Fareri et al., 2012). The dmPFC and TPJ 

contribute to integrating these signals into social inferences about partner intentions (Rilling et al., 2004; 

Van Den Bos et al., 2009). The dlPFC supports executive regulation of behavior in light of feedback, 

consistent with the role of the CEN in adaptive decision-making (Krueger & Meyer-Lindenberg, 2019). 

In MCI, evidence suggests that reinforcement learning mechanisms are disrupted. Studies have reported 

slower learning rates and exaggerated prediction errors in reinforcement tasks (Wang et al., 2013; Zhang 

et al., 2025). These impairments may reflect weakened integration of the CEN and DMN, which 

undermines flexible updating (Eyler et al., 2019; Yang et al., 2023). As a result, individuals with MCI 

may fail to reduce trust even in the face of repeated non-cooperation, leaving them vulnerable to 

exploitation. 

Together, reinforcement learning models and neuroimaging findings provide a mechanistic framework 

for studying trust dynamics. By quantifying learning and prediction error processes, researchers can 

identify specific deficits in MCI and link them to underlying neural dysfunction. This approach allows 

for a fine-grained analysis of how trust evolves over time and how neurodegenerative changes distort 

adaptive social behavior. 

2.8 Theoretical Framework 

To integrate the diverse findings on trust, this dissertation adopts the neuropsychoeconomic model of 
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trust (Krueger & Meyer-Lindenberg, 2019). This framework conceptualizes trust as the outcome of 

interactions among four psychological components, each supported by a distinct large-scale brain 

network. Affective processing, linked to the SAN, evaluates potential risk and betrayal (Menon, 2015; 

Seeley et al., 2007). Motivational processes, associated with the RWN, compute expected benefits and 

reinforcement of reciprocity (Haber & Knutson, 2010). Social cognition, supported by the DMN, 

enables perspective-taking and inference of intentions (Mars et al., 2012; Schilbach et al., 2008). Finally, 

executive control, subserved by the CEN, regulates top-down control and adapts behavior to changing 

contexts (Menon, 2011; Seeley et al., 2007). 

The model provides a systematic lens for understanding how TP and trust dynamics emerge from the 

coordinated operation of these components. For instance, SAN hyperactivation may bias decisions 

toward betrayal sensitivity, whereas disruption of the DMN and CEN compromises social inference and 

information integration. At the same time, Compensatory recruitment within DMN and CEN regions 

may temporarily support adaptive trust in cooperative contexts, but collapse under non-cooperative 

conditions. The RWN integrates reward prediction errors with motivational drives, further shaping trust 

learning and updating. 

By framing trust within this four-component system, the model highlights both vulnerabilities and 

compensatory mechanisms. It also allows the translation of psychological constructs into testable neural 

hypotheses. Applied to MCI, the framework predicts that structural decline and functional imbalance 

across these networks will alter TP and trust dynamics. In this way, the neuropsychoeconomic model 

provides the theoretical backbone for the present dissertation and guides the formulation of specific 

research questions and hypotheses. 

2.9 Overview and Research Questions 

Building on the neuropsychoeconomic framework of trust (Krueger & Meyer-Lindenberg, 2019), this 

dissertation investigates how MCI alters TP and trust dynamics across behavioral, structural, functional, 

and computational levels. To achieve this, three complementary experiments were conducted (Figure 

3). 
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 Experiment 1 combined a one-shot trust game with resting-state fMRI and connectome-based 

predictive modeling to test whether TP is reduced in MCI and which large-scale networks predict 

this change. 

 Experiment 2 employed structural magnetic resonance imaging (MRI) and voxel-based 

morphometry to examine whether gray matter atrophy in SAN and related regions explains reduced 

TP, and whether trust-related psychological components mediate these effects. 

 Experiment 3 used a multi-round trust game, reinforcement-learning modeling, and task-based 

fMRI to assess how trust dynamics are disrupted in MCI, particularly the ability to build, maintain, 

and withdraw trust under cooperative and non-cooperative conditions. 

Together, these studies were designed to address three overarching research questions: 

1. Trust propensity: Does MCI alter initial willingness to trust strangers, and which resting-state 

networks explain this change? 

2. Structural underpinnings: Do gray matter alterations in MCI underlie reduced TP, and through 

which psychological components do they exert their influence? 

3. Trust dynamics: How does MCI affect the ability to build, maintain, and withdraw trust during 

repeated social interactions, and what psychological and neural mechanisms explain failures to 

update trust? 
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Figure 3. Conceptual overview of resting-state functional magnetic resonance imaging (fMRI), 
structural magnetic resonance imaging (MRI), and task-based fMRI, and their application in this 
dissertation. (A) Resting-state fMRI: Participants rest without an explicit task (eyes closed). 
Spontaneous blood oxygenation level dependent (BOLD) fluctuations are analyzed for interregional 
correlations, quantifying large-scale networks. In this dissertation, resting-state functional connectivity 
was used to predict trust propensity (TP). (B) Structural MRI. High-resolution anatomical images 
assess gray and white matter. Measures such as gray matter volume identify the structural underpinnings 
of TP in MCI. (C) Task-based fMRI. Participants perform repeated trust game decisions during 
scanning. Task-evoked BOLD responses and connectivity changes are analyzed, in combination with 
computational models, to assess trust dynamics, including trust building, maintenance, and withdrawal. 

 

Overall Hypothesis 

Compared with healthy controls, older adults with MCI would show impairments in both TP and trust 

dynamics, reflecting a shift from social-cognitive and executive mechanisms toward affective hyper-

sensitivity and SAN over-reliance. Specifically, structural decline in the anterior insula and thalamus 

would amplify betrayal sensitivity, while disrupted integration of executive and social networks would 

impair adaptive trust updating. Compensation by executive and social systems would allow partial 

preservation of trust in cooperative contexts but would fail under conditions of betrayal or non-
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cooperation. 

Working Hypotheses 

Based on prior behavioral, neuroimaging, and computational studies, the following hypotheses were 

formulated for each experiment: 

 WH1 (Experiment 1): Individuals with MCI will show reduced TP compared to healthy controls, 

driven by heightened betrayal sensitivity and greater reliance on the SAN. In contrast, controls will 

rely more on social cognition supported by the DMN (Chen et al., 2024). 

 WH2 (Experiment 2): GMV reductions in the anterior insula and thalamus will predict reduced TP 

in MCI. This effect will be mediated by betrayal sensitivity, consistent with evidence that structural 

decline in SAN regions amplifies affective hyper-sensitivity (Schnellbächer et al., 2022; Zackova et 

al., 2021). 

 WH3 (Experiment 3): In cooperative contexts, older adults with MCI will show near-normal trust 

behavior supported by compensatory recruitment of CEN and DMN regions (Li et al., 2015). In 

non-cooperative contexts, however, they will fail to reduce trust appropriately, showing slower 

learning rates, exaggerated prediction errors, and disrupted connectivity between executive and 

social networks (Wang et al., 2013; Zhang et al., 2025). 

By testing these hypotheses, the dissertation seeks to clarify how MCI alters trust at multiple levels of 

analysis, extend the neuropsychoeconomic model of trust to a clinical population, and identify potential 

behavioral and neural markers of social vulnerability in aging. 
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3. Experiment 1. Resting-state Functional Connectivity and Trust Propensity in Mild Cognitive 

Impairment 

 
“Connectome-based prediction of decreased trust propensity in older adults with mild cognitive 

impairment: A resting-state functional magnetic resonance imaging study” 

Chen, Y., He, H., Ding, Y., Tao, W., Guan, Q., & Krueger, F. (2024). Connectome-based prediction of 

decreased trust propensity in older adults with mild cognitive impairment: a resting-state functional 

magnetic resonance imaging study. NeuroImage, 292, 120605. 

https://doi.org/10.1016/j.neuroimage.2024.120605 
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4. Experiment 2. Gray Matter Atrophy and Trust Propensity in Mild Cognitive Impairment  

 
“Linking gray matter structure to trust in mild cognitive impairment: a voxel-based 

morphometry study” 

Chen, Y., He, H., Ding, Y., Tao, W., Guan, Q., & Krueger, F. (2025). Linking gray matter structure to 

trust in mild cognitive impairment: a voxel-based morphometry study. Cerebral Cortex, 35(7). 

https://doi.org/10.1093/cercor/bhaf140 
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5. Experiment 3. Psychological and Neural Mechanisms of Trust Dynamics in Mild Cognitive 

Impairment 

 
“Compensatory and impaired trust updating in mild cognitive impairment: Evidence from 

computational modeling and fMRI” 

Chen, Y., He, H., Ding, Y., Tao, W., Guan, Q., & Krueger, F. (2025). Compensatory and impaired trust 

updating in mild cognitive impairment: Evidence from computational modeling and fMRI. [Manuscript 

submitted for publication]  
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Abstract 

Trust dynamics—how trust is formed, maintained, and adjusted—are essential to interpersonal 

functioning. Older adults with mild cognitive impairment (MCI) are known to exhibit social 

vulnerabilities, but the evolution of trust over time and its neural basis in this population remain unclear. 

Here, we combined computational modeling with task-based functional magnetic resonance imaging 

(fMRI) to investigate trust updating during a multi-round trust game (MTG). Behaviorally, MCI 

participants showed slower trust reduction, larger prediction errors (PE), lower learning rates, and 

greater interference when interacting with non-cooperative partners, while responding similarly to 

cooperative ones compared to healthy controls. Neurally, fMRI analyses revealed increased activation 

in executive and social cognition networks—including the right middle frontal gyri, precuneus, and 

temporoparietal junction (TPJ)—during cooperative interactions, suggesting compensatory recruitment. 

In contrast, MCI participants showed reduced activation in the superior frontal gyri (SFG) and middle 

temporal gyrus during non-cooperative interactions. Critically, PE-modulated psychophysiological 

interaction (PPI) analyses revealed diminished functional connectivity between the SFG and TPJ under 

non-cooperative conditions. These findings suggest that while older adults with MCI can compensate 

during supportive interactions, they struggle to adapt trust in adverse contexts. This impaired updating 

may underlie heightened susceptibility to social exploitation and declining interpersonal functioning.  

Keywords: mild cognitive impairment, trust dynamics, trust game, reinforcement learning, social 

cognition, functional magnetic resonance imaging, prediction error, computational modeling 
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1. Introduction 

Mild cognitive impairment (MCI) is a transitional stage between normal aging and dementia, marked 

by cognitive decline that exceeds age-related expectations but does not yet interfere with daily 

independence [1]. While much research has focused on cognitive deficits in MCI, emerging evidence 

highlights broader social impairments in this population. Older adults with MCI are more susceptible to 

deception [2], engage less in social activities [3], and tend to experience shrinking social networks [4], 

underscoring potential deficits in interpersonal functioning. 

Trust dynamics—the process of building, maintaining, and adjusting trust across repeated 

interactions—are fundamental to healthy interpersonal relationships and are shaped by past experience 

[5]. Although older adults with MCI exhibit clear social vulnerabilities, few studies have investigated 

whether their ability to regulate trust over time is disrupted. Even fewer have explored the psychological 

and neural mechanisms that may underlie such impairments. 

Trust involves a social dilemma: while it enables reciprocity and cooperation, it also entails the risk 

of betrayal [6]. It is commonly defined as a willingness to accept vulnerability based on expectations 

about another person's intentions and behavior [7]. Scholars distinguish between trust propensity—a 

stable tendency to trust unfamiliar others—and trust dynamics, which refer to how trust evolves across 

repeated interactions [5]. The latter can be studied using multi-round trust games (MTGs), which 

simulate real-world social exchanges and capture how individuals form, maintain, or withdraw trust in 

response to cooperative or exploitative behavior [8]. 

According to a neuropsychoeconomic framework, trust behavior arises from the interaction of 

affective, motivational, executive, and social cognitive processes, supported by distinct large-scale brain 

networks [9]. Specifically, the salience network (SAN), including the anterior insula and dorsal anterior 

cingulate cortex, mediates betrayal aversion and threat sensitivity [10], while the reward network (RWN), 

including the ventral striatum and ventromedial prefrontal cortex, supports anticipation of reciprocity 

and reward learning [11]. Trust updating under uncertainty also engages executive functions via the 

central executive network (CEN)—including the dorsolateral prefrontal cortex (dlPFC) and posterior 

parietal cortex—and social cognition via the default mode network (DMN), encompassing the medial 

prefrontal cortex, posterior cingulate cortex, and temporoparietal junction (TPJ) [12,13]. 
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In MTGs, individuals initially rely on calculus-based trust, a cautious strategy shaped by betrayal 

risk and cost-benefit reasoning. With repeated interactions, they shift toward knowledge-based trust, 

drawing on CEN and DMN resources to integrate contextual and partner-specific information. 

Eventually, trust may evolve into identification-based trust, motivated more by social bonding and 

anticipated reward than by risk aversion [9]. 

Older adults with MCI show disruptions across all key components of trust behavior. Prior studies 

have linked MCI to reduced trust propensity, heightened betrayal sensitivity, increased SAN activity 

[12], and functional impairments in reward-related brain regions [13]. These biases may lead older adults 

with MCI to enter social interactions with increased distrust and affective reactivity. 

Despite impairments in executive [14] and social cognition [15], older adults with MCI may 

partially compensate by recruiting additional brain resources within the CEN and DMN [16]. This 

compensatory activation may allow them to maintain trust during relatively low-stress, cooperative 

interactions. However, compensatory mechanisms often fail under greater cognitive load—such as in 

interactions with non-cooperative partners—leading to reduced neural activation and impaired 

behavioral adjustment [17]. Such interactions pose greater betrayal risk [18], elicit stronger negative 

affect [19], and demand more cognitive resources, which may challenge the bounded rationality required 

for adaptive trust updating. 

Computational modeling offers a powerful approach to uncover latent mechanisms of trust behavior, 

especially those not directly observable from behavior alone [20]. In trust games, reinforcement learning 

simulate how individuals update expectations based on feedback and generate trial-by-trial estimates of 

learning rate, prediction error (PE), risk sensitivity, and interference [21,22,23,24]. These parameters 

can be integrated with neuroimaging data to explore how behavioral adaptation is supported by 

underlying neural processes through model-based fMRI and psychophysiological interaction (PPI) 

analyses [25,26] . 

To investigate the psychological and neural mechanisms underlying trust dynamics in older adults 

with MCI, we combined computational modeling with task-based fMRI during an MTG. A belief-based 

reinforcement learning model was used to simulate participants’ trust behavior, with parameters that 

reflect core trust components—affect, motivation, executive cognition, and social cognition. We then 
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examined brain activation patterns and PE-modulated connectivity during cooperative and non-

cooperative interactions. 

Based on prior findings, we hypothesized that older adults with MCI would exhibit: (1) lower initial 

trust, higher PEs, slower trust reduction, and reduced learning rates during non-cooperative interactions; 

(2) compensatory activation in CEN and DMN regions during cooperative interactions; and (3) 

diminished PE-modulated activation and connectivity under non-cooperative conditions. These findings 

may provide critical insight into social vulnerability in MCI and inform interventions aimed at 

improving interpersonal functioning in aging populations. 

2. Results 

2.1 Behavioral results 

Demographic and Neuropsychological Comparisons 

Group comparisons revealed no significant differences between the MCI and normal healthy control 

(NHC) groups in age, gender distribution, or education. Specifically, the mean age did not differ 

significantly between the MCI group (M = 67.79, SD = 6.51) and the NHC group (M = 67.22, SD = 

5.44), t = 0.22, p = 0.829. Gender distribution was nearly identical across groups (MCI: 69% female; 

NHC: 69% female), z = 0.28, p = 0.978. The groups also did not differ substantially in years of education 

(MCI: M = 10.54, SD = 3.32; NHC: M = 11.87, SD = 3.45), z = -1.78, p = 0.075. In contrast, significant 

group differences emerged on all neuropsychological measures. The MCI group scored lower across 

domains of memory, executive function, attention, language, and visuospatial ability (Tab. 1), 

confirming expected cognitive impairment.\ 

 

  



Experiment 3 

 

50 

Table 1. Group differences in demographics, cognitive function, Geriatric Depression Scale scores, and 

trust paradigm–related components between the mild cognitive impairment (MCI) and normal healthy 

control (NHC) groups. 

Domain Measure 
MCI (n=41) 

(Mean [SD] ) 
NHC (n=45) 
(Mean [SD]) 

t/Z p 

Demographics 

 

Age (year) 67.79 (6.51) 67.22 (5.44) 0.21 0.829 

Gender 
(Percentage of 

females) 
0.69 (0.47) 0.69 (0.47) 0.28 0.978 

Education 
(year) 

10.53 (3.32) 11.87 (3.45) -1.78 0.075 

Cognitive functions 

 MMSE 25.95 (2.38) 28.09 (1.40) -4.37 <0.001 

Memory 

Rey-recall 8.51 (6.12) 16.93 (8.00) -4.68 <0.001 

AVLT 20.31 (7.43) 28.38 (8.05) -4.15 <0.001 

DST 9.51 (1.76) 12.60 (6.57) -4.19 <0.001 

Executive 
cognition 

TMT-B (ms) 261.67 (99.78) 
144.09 
(53.20) 

5.98 <0.001 

Stroop (ms) 108.33 (33.86) 
74.09 

(19.69) 
4.98 <0.001 

Attention 

TMT-A (ms) 90.33 (41.35) 
53.80 

(13.47) 
5.56 <0.001 

SDMT 23.97 (10.74) 
38.71 

(11.99) 
-5.19 <0.001 

Language 
CVFT 37.02 (8.91) 46.80 (9.28) -4.36 <0.001 

BNT 19.72 (4.47) 23.53 (2.88) -4.79 <0.001 

visuospatial 
ability 

Rey-copy 29.79 (5.92) 35.09 (1.55) -5.02 <0.001 

CDT 21.98 (6.44) 26.06 (4.48) -3.47 <0.001 

Risk 
propensity 

Lottery game 4.92 (2.62) 5.11 (2.44) -0.48 0.634 

 

Note: Values are presented as mean (standard deviation). t or Z values indicate the test statistic from 

independent-samples t-tests or Mann–Whitney U tests (as appropriate). MMSE = Mini-Mental State 

Examination; Rey-recall = Rey–Osterrieth Complex Figure Recall Test; AVLT = Auditory Verbal 

Learning Test; DST = Digit Span Test; TMT–A/B = Trail Making Test–Part A/B; SDMT = Symbol Digit 
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Modalities Test; CVFT = Category Verbal Fluency Test; BNT = Boston Naming Test; Rey-copy = Rey–

Osterrieth Complex Figure Copy Test; CDT = Clock Drawing Test. 

Higher scores indicate better performance on all cognitive tests, except for TMT–A/B, Stroop, and the 

executive function composite, where lower scores indicate better performance. 

Investment Behavior in the Trust Game 

Mean investment levels across the MTG were analyzed using an Aligned Rank Transform ANOVA with 

group (MCI vs. NHC) and partner condition (cooperative vs. non-cooperative) as factors. There was no 

significant main effect of group on investment, with MCI participants (M = 6.25, SD = 1.16) and NHC 

participants (M = 5.82, SD = 1.60) showing similar overall investment levels, F(1, 84) = 0.03, p = 0.86, 

η²ₚ < 0.001. A significant main effect of partner condition was observed, with higher investments made 

toward cooperative partners (M = 6.99, SD = 1.54) than non-cooperative partners (M = 5.05, SD = 2.02), 

F(1, 84) = 17.23, p < 0.001, η²ₚ = 0.17. Importantly, a significant group-by-condition interaction emerged, 

F(1, 84) = 4.97, p < 0.05, η²ₚ = 0.06. Post hoc rank-sum comparisons showed that in the cooperative 

condition, there was no significant difference between MCI (M = 6.85, SD = 1.33) and NHC (M = 7.11, 

SD = 1.71) participants, z = 0.99, p = 0.32, r = 0.11. However, under the non-cooperative condition, 

MCI participants made significantly higher investments (M = 5.67, SD = 1.66) than the NHC group (M 

= 4.52, SD = 2.17), z = -2.69, p < 0.01, r = 0.29. These results indicate that while cooperative behavior 

was interpreted similarly across groups, the MCI group exhibited reduced trust retraction in the face of 

exploitation. 

Reaction Times 

Reaction times (RTs) during the MTG were examined using a repeated-measures ANOVA. The main 

effect of group was not statistically significant, with MCI participants showing numerically longer RTs 

(M = 3.50, SD = 0.74) compared to NHC participants (M = 3.23, SD = 0.65), F(1, 84) = 2.74, p = 0.10, 

η²ₚ = 0.03. However, a significant main effect of partner condition emerged, with longer RTs during non-

cooperative interactions (M = 3.62, SD = 0.74) than cooperative ones (M = 3.13, SD = 0.63), F(1, 84) = 

39.88, p < 0.001, η²ₚ = 0.33. Furthermore, a significant group-by-condition interaction was observed, 

F(1, 84) = 5.60, p < 0.05, η²ₚ = 0.07. Follow-up independent-samples t-tests revealed no significant 

group difference in the cooperative condition (MCI: M = 3.15, SD = 0.63; NHC: M = 3.10, SD = 0.62), 

t(84) = 0.33, p = 0.74, Cohen’s d = 0.08. In contrast, the MCI group showed significantly longer RTs 

under the non-cooperative condition (MCI: M = 3.85, SD = 0.77; NHC: M = 3.40, SD = 0.68), t(84) = 
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3.38, p < 0.01, Cohen’s d = 0.62, indicating increased decision conflict or cognitive load. 

Trial-by-Trial Investment Patterns 

Group differences in initial trust were assessed using investment on the first trial of the MTG. No 

significant group difference was found between MCI (M = 6.77, SD = 2.55) and NHC (M = 5.69, SD = 

2.88) participants, z = 1.70, p = 0.09, r = 0.18. Trial-by-trial investment behavior was further analyzed 

using Wilcoxon rank-sum tests with cluster-based permutation correction. Under the non-cooperative 

condition, MCI participants invested significantly more than NHC participants during trials 20–25 and 

27–30 (corrected cluster-level p < 0.05; Fig. 1A). No significant group differences were observed in the 

cooperative condition after correction. Group comparisons on post-experiment questionnaire items also 

revealed no significant differences (ps > 0.05). 
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Figure 1. Behavioral performance and prediction error (PE) dynamics during the multi-round 
trust game (MTG). A. Investment behavior. Upper panel: Mean trial-by-trial investment amounts for 
participants with mild cognitive impairment (MCI) and normal healthy controls (NHC), shown 
separately for cooperative and non-cooperative partners. Error bars represent standard errors. Lower 
panel: Trial-wise group differences in investment were assessed using Wilcoxon rank-sum tests. 
Clusters of consecutive trials with significant differences (p < 0.05, cluster-based permutation corrected) 
are highlighted with dashed red rectangles. MCI participants invested significantly more than controls 
when interacting with the non-cooperative partner during trials 20–25 and 27–30. B. Prediction error 
(PE) estimates. Upper panel: Trial-by-trial average PE values, derived from computational modeling, 
are shown for MCI and NHC groups across partner conditions. Lower panel: Trial-wise group 
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differences in PE values were analyzed via Wilcoxon rank-sum tests. Significant clusters (p < 0.05, 
cluster-corrected) are highlighted in dashed rectangles. MCI participants showed significantly larger 
absolute PE values for the non-cooperative partner across all trials, indicating less accurate outcome 
predictions. 
 
2.2 Computational model results 

Prediction Error Dynamics 

Trial-by-trial PE values derived from the computational model were compared between groups. Under 

the non-cooperative condition, MCI participants exhibited significantly larger absolute PE values than 

NHCs across trials 1–30 (corrected cluster-level p < 0.05; Fig. 1B), indicating less accurate expectation 

updating. No group differences in PE were observed in the cooperative condition. 

Model Parameters 

Parameter estimates from the belief-based reinforcement learning model revealed selective group 

differences. The learning rate for non-cooperative partners (α_bad) was significantly lower in the MCI 

group (M = 0.43, SD = 0.30) compared to the NHC group (M = 0.60, SD = 0.37), Z = 3.09, p = 0.001. 

Additionally, the MCI group exhibited a significantly higher interference factor (η), indicating greater 

cognitive spillover between partner evaluations (MCI: M = 0.63, SD = 0.61; NHC: M = 0.33, SD = 

0.48), Z = -2.17, p = 0.03. No significant group differences were found for the learning rate for 

cooperative partners (α_good: MCI: M = 0.45, SD = 0.26; NHC: M = 0.47, SD = 0.28; Z = 1.13, p = 

0.87), inverse temperature (β: MCI: M = 6.69, SD = 3.97; NHC: M = 7.13, SD = 3.94; Z = 0.71, p = 

0.24), reward sensitivity (γ: MCI: M = 0.63, SD = 0.98; NHC: M = 0.65, SD = 0.70; Z = 0.99, p = 0.84), 

or risk sensitivity (λ: MCI: M = 1.35, SD = 1.08; NHC: M = 1.70, SD = 1.06; Z = 1.04, p = 0.15; Tab. 

2). 
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Table 2. Group differences in belief-based reinforcement learning parameters between mild cognitive 

impairment (MCI) and normal healthy control (NHC) participant 

Parameter 
MCI 

(Mean [SD]) 
NHC 

(Mean [SD]) 
Z P 

Learning rate (good) 0.34 (0.34) 0.41 (0.31) -1.09 0.274 

Learning rate (bad) 0.20 (0.23) 0.34 (0.32) -2.41 0.016 

Inverse temperature 7.68 (3.79) 8.87 (2.73) -1.72 0.084 

Reward sensitivity 0.41 (0.29) 0.35 (0.23) 0.64 0.524 

Risk sensitivity 1.85 (1.19) 2.22 (1.08) -1.12 0.264 

Interference factor 0.22 (0.35) 0.08 (0.23) 2.81 0.005 

 

Note: Values are presented as mean (standard deviation). Group comparisons were performed using 
Mann–Whitney U tests; Z and p-values are reported. SD = standard deviation. 
Parameters include: Learning rates for cooperative (“good”) and non-cooperative (“bad”) partners; 
Inverse temperature (β): decision consistency; Reward sensitivity (γ): non-linear transformation of 
expected utility; Risk sensitivity (λ): aversion to outcome variance; Interference factor (η): cross-partner 
learning interference. 
 
Parameter-Cognition Correlations 

Correlation analyses between model parameters and relevant behavioral or neuropsychological 

measures showed a significant positive relationship between the interference factor and executive 

cognition as measured by TMT-B (r = 0.33, p = 0.002). Risk sensitivity (λ) was significantly and 

negatively correlated with risk aversion as measured by the one-shot lottery game (r = -0.21, p = 0.047), 

providing convergent support for the model’s construct validity. 

2.3 Control analysis results for computational modeling 

Control analyses confirmed the reliability and explanatory value of the computational model. Restricted 

model comparisons showed that each individual parameter—learning rates (α_good, α_bad), inverse 

temperature (β), reward sensitivity (γ), risk sensitivity (λ), and interference factor (η)—significantly 

contributed to model fit. Furthermore, a parameter recovery analysis demonstrated that key parameters, 

specifically the learning rates for cooperative and non-cooperative partners (α_good and α_bad) and the 
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inverse temperature (β), were robustly recovered, supporting the identifiability and reliability of the 

model estimates (see Supplementary Materials S4). 

2.4 Model-based fMRI activation results 

Feedback Phase: Cooperative Partner Condition 

Model-based activation analyses were conducted to compare brain activations between older adults with 

MCI and NHCs under cooperative and non-cooperative partner conditions of the MTG. During the 

feedback phase, in the cooperative partner condition, the MCI group showed significantly greater 

activations in the right middle frontal gyrus (MFG; MNI: 34, 62, 4; k = 98; T = 4.41; p = 0.01), precuneus 

(MNI: 2, -44, 42; k = 99; T = 4.45; p = 0.01), and angular gyrus (MNI: 60, -52, 30; k = 91; T = 4.38; p 

= 0.01), which also belong to the TPJ [27] (Fig. 2A, Table 3). Increased activation was also observed in 

the left cerebellum (CRB; MNI: -6, -84, -40; k = 68; T = 4.41; p = 0.05). The MFG, specifically within 

the dlPFC, is a key component of the CEN and is involved in behavioral regulation and strategy updating 

[28]. The precuneus and angular gyrus are key components of the DMN, associated with social cognition 

and self-referential processing [30,31]. These results suggest compensatory recruitment of CEN and 

DMN regions in older adults with MCI to support adaptive trust behavior during cooperative social 

interactions. 
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Figure 2. Group differences in brain activation during feedback and decision phases of the multi-
round trust game. A. Feedback phase – cooperative partner. Compared to the NHC group, the MCI 
group showed significantly greater activation in the right middle frontal gyrus, precuneus, and angular 
gyrus—overlapping with the temporoparietal junction (TPJ). B. Feedback phase – non-cooperative 
partner. MCI participants exhibited significantly reduced activation in the right superior frontal gyrus 
(SFG) and left middle temporal gyrus relative to the NHC group. C. Decision phase – cooperative 
partner. The MCI group demonstrated significantly lower activation than the NHC group in the right 
SFG and left inferior frontal gyrus (opercular part). D. Decision phase – non-cooperative partner. MCI 
participants showed significantly reduced activation in the right inferior frontal gyrus and right MFG 
compared to controls. Statistical maps are displayed on a standard MNI template (surface rendering), 
thresholded at p < 0.001 (voxel-level, uncorrected) and p < 0.05 (cluster-level, FWE corrected). Color 
bars represent t-values; L = left, R = right.  
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Table 3. Significant clusters from group-level activation analyses during the feedback and decision 

phases of the multi-round trust game. 

 MNI 
(x,y,z) 

k T p Hemisphere region 

Feedback phase 

Cooperative 
(positive) 

-6 -84 -40 68 4.41 0.05 L CRB 

 2 -44 42 99 4.45 0.01 R Precuneus 

 34 62 4 98 4.41 0.01 R MFG 

 60 -52 30 91 4.38 0.01 R 
Angular 
Gyrus 

Non-
cooperative 
(negative) 

-66 -32 -15 77 4.82 0.05 L MidTG 

 24 20 51 149 4.11 0.001 R SFG 

Decision phase 

Cooperative 
(negative) 

32 60 9 141 4.75 <0.001 R SFG 

 -56 20 38 89 4.56 0.02 L IFGoper 

Non-
cooperative 
(negative) 

-40 42 4 181 4.54 <0.001 L IFGtri 

 22 50 4 101 4.46 0.01 R MFG 

 

Note: Coordinates are reported in Montreal Neurological Institute (MNI) space. k = cluster size in voxels; 
T = peak t-value; p = cluster-level family-wise error (FWE) corrected p-value. L = left hemisphere; R = 
right hemisphere. 
Abbreviations: CRB = cerebellum; MFG = middle frontal gyrus; MidTG = middle temporal gyrus; SFG 
= superior frontal gyrus; IFGoper = inferior frontal gyrus, opercular part; IFGtri = inferior frontal gyrus, 
triangular part. 

 

Feedback Phase: Non-Cooperative Partner Condition 

In the non-cooperative partner condition, participants in the MCI group showed significantly less 
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activation in the left middle temporal gyrus (MNI: -66, -32, -15; k = 77; T = 4.82; p = 0.05) and right 

SFG (MNI: 24, 20, 51; k = 149; T = 4.11; p = 0.001) compared to the NHC group (Fig. 2B, Tab. 3). The 

middle temporal gyrus, as part of the DMN, is involved in semantic processing and conceptual 

integration [31], and has been shown in quantitative reviews to exhibit strong connectivity with the TPJ, 

contributing to theory of mind processes [27]. In contrast, the SFG are components of the CEN, 

contributing to working memory and conflict control [32]. These findings suggest that although MCI 

participants may fail to engage brain regions necessary for social-contextual inference and executive 

monitoring under negative feedback conditions. 

Decision Phase: Cooperative Partner Condition 

During the decision phase under the cooperative partner condition, the MCI group showed significantly 

reduced activation in the right SFG (MNI: 32, 60, 9; k = 141; T = 4.75; p < 0.001) and the left inferior 

frontal gyrus, opercular part (IFGoper; MNI: -56, 20, 38; k = 89; T = 4.56; p = 0.02), compared to the 

NHC group (Fig. 2C, Tab. 3). Both regions are part of the CEN [33], with the SFG involved in working 

memory and top-down control [32], and the IFGoper playing a role in language-related executive 

functions and inhibition. The reduction in activation during the decision phase—despite increased 

activation during feedback—suggests that MCI participants may struggle to maintain stable recruitment 

of cognitive control resources when making trust-related choices, even in cooperative contexts. 

Decision Phase: Non-Cooperative Partner Condition 

In the non-cooperative partner condition during the decision phase, MCI participants showed 

significantly reduced activation in both the left inferior frontal gyrus, pars triangularis (IFGtri; MNI: -

40, 42, 4; k = 181; T = 4.54; p < 0.001) and the right SFG (MNI: 22, 50, 4; k = 101; T = 4.46; p = 0.01) 

compared to the NHC group (Fig. 2D, Tab. 3). The IFGtri is part of the broader inferior frontal cortex 

and has been associated with strategic planning and higher-level cognitive control during socially 

complex decisions [34]. Taken together, these decision-phase results support the interpretation that under 

increased cognitive load and uncertainty—especially when facing a potentially untrustworthy partner—

older adults with MCI have difficulty engaging frontal networks involved in trust regulation and social 

judgment. 
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2.5 PE-Modulated Activation and Functional Connectivity 

PE-Modulated Activation 

During the feedback phase, model-based fMRI analyses were conducted to identify brain regions whose 

activity was modulated by trial-by-trial PE values. In the cooperative partner condition, the MCI group 

showed significantly greater PE-modulated activation in the right fusiform (MNI: 18, -62, -3; k = 67; T 

= 4.97; p = 0.05) than the NHC group (Fig. 3A, Tab. 4). The fusiform gyrus, which is part of the ventral 

visual pathway, plays a crucial role in high-level visual processing [35]. According to meta-analytic 

evidence, it also contributes to PE tracking in socially relevant contexts, which guides adaptive behavior 

[36]. This result suggests that MCI participants may recruit this region more strongly to compensate for 

cognitive demands when updating trust under cooperative conditions. 

In contrast, in the non-cooperative partner condition, MCI participants exhibited significantly 

reduced PE-modulated activation in the right SFG (MNI: 10, 8, 69; k = 66; T = 4.63; p = 0.05) relative 

to the NHC group (Fig. 3B, Tab. 4). The SFG is implicated in top-down control processes and PE-based 

belief updating within the CEN [32]. Reduced activation in this area reflects diminished responsiveness 

to negative social feedback, which likely contributes to impaired trust recalibration. 
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Figure 3. Prediction error (PE)-modulated activation and functional connectivity results. A. PE-
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modulated activation – cooperative partner. Compared to the NHC group, the MCI group showed 
significantly greater PE-modulated activation in the right Fusiform during interactions with the 
cooperative partner. B. PE-modulated activation – non-cooperative partner. Under the non-
cooperative partner condition, the MCI group exhibited significantly greater PE-modulated activation 
in the right superior frontal gyrus (SFG) relative to the NHC group. C. PE-modulated 
psychophysiological interaction (PPI) – non-cooperative partner. The MCI group displayed 
significantly reduced PE-modulated functional connectivity between the right SFG (seed region) and 
the right temporoparietal junction (TPJ) compared to the NHC group during non-cooperative 
interactions. All statistical maps are projected on a standard MNI surface brain template. Thresholding 
was applied at p < 0.001 (voxel-level, uncorrected) and p < 0.05 (cluster-level, FWE corrected). Color 
bars represent t-values; L = left hemisphere, R = right hemisphere. 
 

Table 4 Significant clusters from group-level prediction error (PE)–modulated activation and 

psychophysiological interaction (PPI) analyses during the feedback phase. 

 MNI K T p Hemisphere region 

Activation 

Cooperative 
(positive) 

18 -62 -3 67 4.97 0.05 R Fusiform 

Non-
cooperative 
(negative) 

10 8 69 66 4.63 0.05 R SFG 

PPI 

Non-
cooperative 
(negative) 

60 -42 8 300 5.01 <0.001 R STG 

 14 -75 -28 90 4.69 0.02 R CRB 

 
Note: Coordinates are reported in Montreal Neurological Institute (MNI) space. k = cluster size in voxels; 
T = peak t-value; p = cluster-level family-wise error (FWE) corrected p-value. L = left hemisphere; R = 
right hemisphere. 
Abbreviations: SFG = superior frontal gyrus; STG = superior middle temporal gyrus; CRB = cerebellum. 

 

Psychophysiological Interaction Results 

PPI analyses were conducted to examine functional connectivity patterns modulated by PE during the 

feedback phase. The right SFG, identified from PE-modulated activation under the non-cooperative 

condition, was selected as the seed region. Results revealed that, compared to NHC participants, the 

MCI group showed significantly reduced PE-modulated functional connectivity between the right SFG 

and the right superior temporal gyrus (MNI: 60, -42, 8; k = 300; T = 5.01; p < 0.001), a region also 
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belonging to the TPJ [27] (Fig. 3C, Tab. 4). Additional reductions in connectivity were observed in the 

right cerebellum (MNI: 14, -75, -28; k = 90; T = 4.69; p = 0.02). The SFG and TPJ are core nodes of the 

CEN and DMN, respectively [28,30], and their interaction is essential for integrating executive control 

and social cognitive processes such as mentalizing and perspective-taking [37]. 

Impairments in this connectivity suggest that MCI participants may have difficulty coordinating 

executive and social systems when processing PE signals in adverse social contexts. As a result, they 

may fail to update beliefs about untrustworthy partners, leading to persistent overtrust behavior and 

reduced behavioral flexibility. 

3. Discussion 

3.1 Overview of Findings 

Our study combined computational modeling and task-based fMRI to investigate the psychological and 

neural alterations underlying trust dynamics in older adults with MCI. At the behavioral level, older 

adults with MCI exhibited a similar pattern of trust behavior to healthy controls when interacting with 

cooperative partners. In contrast, they demonstrated slower trust reduction, more negative PE, lower 

learning rates, and greater interference during interactions with non-cooperative partners. These 

behavioral findings were accompanied by dissociable neural responses. During cooperative interactions, 

MCI participants exhibited increased activation in the CEN regions such as the right MFG, and in the 

DMN regions such as the right precuneus and TPJ. During non-cooperative interactions, however, they 

showed decreased activation in the SFG and left middle temporal gyrus. Consistently, model-based 

fMRI analyses revealed increased PE-modulated activation in the right fusiform in the MCI group during 

cooperative feedback, but decreased PE-modulated activation in the right SFG and reduced connectivity 

between the right SFG and the right TPJ during non-cooperative feedback. These results suggest that 

while older adults with MCI can compensate for cognitive deficits in supportive interactions, their 

impaired executive and social cognition limits the ability to transform the probability of betrayal (affect) 

into updated expectations (motivation), leading to sustained overtrust in risky social contexts. 

3.2 Neural Compensation During Cooperative Interactions 

As predicted, older adults with MCI performed similarly to healthy controls when interacting with 

cooperative partners. Computationally, learning rates and PE values were comparable across groups 
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under these conditions. Neurally, however, MCI participants exhibited greater activation than controls 

in key CEN and DMN regions—including the right MFG, precuneus, and TPJ—suggesting functional 

compensation. The MFG, located within the dlPFC, is essential for behavioral flexibility and updating 

decision strategies [28]. A recent meta-analysis also demonstrated the involvement of the dlPFC in PE 

processing during reward learning tasks [38], consistent with our finding of increased PE-modulated 

activation in the right MFG during cooperative feedback. 

The precuneus and TPJ are central DMN nodes involved in social cognition and self-referential 

processing [30,31,38]. Their increased engagement in the MCI group may reflect enhanced reliance on 

mentalizing to maintain positive expectations about others. Together, these results suggest that older 

adults with MCI are capable of drawing on additional executive and social-cognitive resources to 

support trust formation in low-conflict situations. 

This interpretation is in line with prior research showing compensatory brain activation in MCI 

populations across various domains, including memory [40], activities of daily living [41], and theory-

of-mind tasks [42]. Such compensation reflects the brain’s plasticity and capacity for functional 

adaptation despite underlying degeneration [43]. Our findings extend this literature by demonstrating 

that MCI-related compensation also supports adaptive social behavior. Importantly, these compensatory 

mechanisms may serve as targets for interventions to bolster social functioning in early-stage 

neurodegeneration. 

3.3 Impairments in Trust Updating During Non-Cooperative Interactions 

As hypothesized, MCI participants exhibited significantly impaired behavior when interacting with non-

cooperative partners. They demonstrated a slower reduction in trust, elevated PE signals, and lower 

learning rates compared to controls. These behavioral deficits were accompanied by diminished neural 

responses. During the feedback phase, MCI participants showed reduced activation in the SFG and 

middle temporal gyrus—regions linked to conceptual integration [31] and theory of mind [27]. During 

decision-making, they also showed reduced activation in the right SFG and inferior frontal gyrus, 

consistent with impaired engagement of cognitive control systems under elevated uncertainty [44]. 

The computational model further revealed increased interference between partner representations 

in the MCI group, suggesting difficulty in maintaining distinct mental models across changing social 
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contexts. Correlations between this parameter and executive function scores support its interpretive 

validity. These deficits are consistent with prior studies showing that older adults with MCI are more 

vulnerable to scams and social manipulation [2,45]. By failing to reduce trust even in the face of repeated 

betrayal, MCI individuals may be especially prone to exploitation in real life. Our findings underscore 

the importance of recognizing trust behavior as a potential early marker of social dysfunction in this 

population. 

3.4 Disrupted PE-Driven Network Interactions 

In addition to altered activation, MCI participants also showed impaired PE–modulated functional 

connectivity during feedback. Specifically, PPI analyses revealed reduced connectivity between the right 

SFG and the right TPJ under non-cooperative partner conditions. The SFG and TPJ are core nodes of 

the CEN and DMN, respectively [29,32], and their interaction supports the integration of top-down 

control with social inference [37]. This SFG–TPJ connectivity is thought to be crucial for generating 

context-sensitive mental models of others during uncertain or ambiguous interactions. 

Reduced PE-modulated connectivity in the MCI group suggests a breakdown in this executive–

social interface, consistent with their observed failure to revise expectations under threat. Although MCI 

participants may compensate within isolated regions during cooperative interactions, their ability to 

flexibly coordinate across large-scale networks appears limited under negative social contingencies. 

These findings highlight PE-based connectivity as a mechanistic marker of vulnerability in social 

decision-making, particularly when trust must be dynamically recalibrated in response to betrayal. 

3.5 Differences in Initial Trust between One-and Multi-round Trust Game 

Interestingly, we did not find significant group differences in initial trust during the first round of the 

MTG. This contrasts with previous findings showing reduced trust propensity in MCI using one-round 

paradigms [12]. One likely explanation is that trust decisions in the MTG reflect a mix of trust propensity 

and instrumental trust—that is, expectations about long-term cooperation [69]. In repeated interactions, 

betrayal is not final, and participants may perceive greater control or reversibility, reducing reliance on 

affective cues in early trials. 

Moreover, our computational model indicated no group differences in risk sensitivity, and 

parameter recovery confirmed model validity [50]. These findings suggest that the observed deficits in 
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MCI are less driven by baseline trust (trait) and more by impaired updating based on social feedback. 

This distinction between static and dynamic trust mechanisms may explain inconsistencies across 

paradigms and highlights the unique contribution of MTG-based approaches. 

Limitations and Future Directions 

Several limitations should be acknowledged. First, our computational model was validated indirectly 

via correlations with neuropsychological and behavioral measures. Future studies should include task-

based assessments of affect (e.g., emotional arousal [46]), motivation (e.g., reward sensitivity [47]), and 

social cognition (e.g., theory of mind [42]) to directly map model parameters to psychological constructs. 

Second, although our partner manipulation was effective, real human partners may produce more 

nuanced responses. Future studies could simulate realistic trustee behavior using large-scale behavioral 

datasets [22]. Third, our design did not include real-life social functioning measures. Including 

instruments like the Social Participation Questionnaire [48], Social Engagement Scale [49], or Lubben 

Social Network Scale [50] could clarify how trust deficits in MCI relate to everyday social vulnerability. 

Despite these limitations, our study offers novel insights into the dynamic mechanisms of trust in 

cognitively vulnerable populations. It demonstrates how behavior, computation, and brain connectivity 

jointly contribute to adaptive social learning and where these processes may break down. 

3.6 Conclusion and Practical Implications 

In sum, this study combined a MTG, computational modeling, and fMRI to examine how trust dynamics 

are impacted by MCI. The results reveal a dissociation between preserved behavior and compensatory 

activation under cooperative conditions and impaired learning, reduced activation, and weakened 

connectivity under non-cooperative conditions. These impairments likely limit the ability of individuals 

with MCI to update expectations and reduce trust when facing betrayal. 

Our findings have practical implications for caregivers, clinicians, and policymakers. Caregivers 

should monitor shifts in trust behavior as early warning signs of vulnerability. Clinicians could 

incorporate social decision-making tasks into assessments. Policymakers should consider structural 

safeguards to reduce the exploitation risk for older adults with cognitive impairment. By identifying the 

mechanisms underlying trust dysregulation, we take a step toward more targeted interventions that 

support autonomy and social safety in aging populations. 
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4. Methods 

4.1 Participants 

Eighty-nine older adults were recruited from community centers in Shenzhen, China. Following 

neuropsychological screening and fMRI quality control, three participants were excluded due to 

excessive head motion, resulting in a final sample of 86 participants: 45 in the NHC group and 41 in the 

MCI group. 

All participants were right-handed, had normal or corrected-to-normal vision, and reported no 

history of neurological, psychiatric, or head trauma conditions. The two groups did not differ 

significantly in demographic characteristics. The MCI group had a mean age of 65.98 years (SD = 7.87) 

and a mean education level of 9.79 years (SD = 3.72), with 28 females. The NHC group had a mean age 

of 65.05 years (SD = 6.46) and a mean education level of 10.10 years (SD = 3.12), with 31 females. 

Written informed consent was obtained from all participants. The study protocol was approved by 

the Institutional Review Board of Shenzhen University (PN-202200120) and conducted in accordance 

with the Declaration of Helsinki. Participants were financially compensated based on their performance 

in the MTG, receiving between 56 and 82 Chinese Yuan (approximately 7.89–11.55 USD). 

To ensure task engagement and ecological validity, only participants who reported in the post-

experiment questionnaire that they believed the MTG partners were real individuals were included in 

the final analyses. 

4.2 Diagnosis of mild cognitive impairment 

Participants were classified into the MCI or NHC group based on a structured, multi-step diagnostic 

protocol adapted from Petersen’s criteria for MCI [51]. Individuals with dementia or significant 

functional impairment were excluded. 

Cognitive status was initially screened using the Chinese version of the Mini-Mental State Examination 

(MMSE) [52]. A minimum score of 24 was required to rule out global cognitive impairment consistent 

with dementia. Functional independence was assessed using the combined Chinese versions of the 

Physical Self-Maintenance Scale and the Instrumental Activities of Daily Living (ADLs) scale [53]. 

Only participants who scored zero—indicating no impairment in daily functioning—were included. 

Domain-specific cognitive performance was assessed using an extensive battery of standardized 
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neuropsychological tests covering five cognitive domains: memory, executive function, attention, 

language, and visuospatial ability. Memory was assessed using the Auditory Verbal Learning Test (AVLT) 

[54], Rey-Osterrieth Complex Figure Recall Test (Rey-Recall) [55], and the Digit Span Test (DST) [56]. 

Executive function was evaluated using the Trail Making Test Part B (TMT-B) [57] and the Stroop Test 

[58]. Attention was measured using the Trail Making Test Part A (TMT-A) [58] and the Symbol Digit 

Modalities Test (SDMT) [59]. Language abilities were assessed with the Category Verbal Fluency Test 

(CVFT) [60] and the Boston Naming Test (BNT) [61]. Visuospatial ability was evaluated using the Rey-

Osterrieth Complex Figure Copy Test (Rey-Copy) [55] and the Clock Drawing Test (CDT) [62]. 

A cognitive domain was considered impaired if the participant’s performance on both tests within 

that domain was at least 1.5 standard deviations below age- and education-adjusted normative means, 

based on Chinese population norms [63]. Participants who met this criterion in at least one domain, 

while maintaining an MMSE score ≥ 24 and intact ADLs, were classified as having MCI. Participants 

with normal cognitive performance across all domains were assigned to the NHC group. This 

classification procedure ensured objective and reliable group assignment based on established diagnostic 

benchmarks. 

Experimental Paradigm 

Participants completed a multi-stage experimental protocol involving both behavioral assessments and 

neuroimaging. Within three months prior to the fMRI session, all participants completed an extensive 

neuropsychological battery at the research facility to determine group classification (MCI vs. NHC). 

On the day of the MRI session, participants performed three behavioral tasks in a fixed sequence 

before entering the scanner. The sequence included: (1) a one-shot dictator game (results reported in a 

separate study [12,64]); (2) either a one-shot lottery game (assessing risk propensity) or a one-shot trust 

game (see Supplementary Materials S1 and S2 for task details); and (3) whichever task was not 

administered in the second slot. The order of the lottery and trust games was counterbalanced across 

participants by gender and diagnostic group. 

The neuroimaging session consisted of four sequential components: (i) an 8-minute resting-state 

functional MRI scan; (ii) an 18-minute MTG performed during task-based fMRI acquisition; (iii) a 7-

minute high-resolution T1-weighted structural MRI scan; and (iv) a 5-minute T2-weighted MRI scan 
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for clinical assessment. Following the scan, participants completed a debriefing questionnaire to assess 

their comprehension of the task instructions and their subjective psychological state during the 

experiment. Critically, this questionnaire included items verifying whether participants believed the 

partners in the one-shot trust game and the MTG were real individuals. Only participants who indicated 

belief in the partner manipulation were included in the final sample for analysis. 

4.3 Experimental paradigm 

A modified MTG examined trust dynamics in older adults [8]. The task was programmed in MATLAB 

(2021b) using Psychtoolbox [65]. On each trial, participants’ investment decisions and response times 

were recorded. In each round, participants interacted with one of two virtual partners, who were 

presented randomly and identified by the surnames “Wang” and “Li.” Assignment of partner roles (i.e., 

which partner served as cooperative or non-cooperative), the order of task phases, and the hand used for 

responses (left vs. right) were counterbalanced across participants by diagnostic group (MCI vs. NHC) 

and gender to control for potential confounds. 

Cooperative and non-cooperative partner behaviors were systematically manipulated [66]. Initially, 

both partners had equal return probabilities of 33% for each of three return levels. Cooperative partners 

could return 100%, 150%, or 200% of the participant’s investment, while non-cooperative partners could 

return 100%, 75%, or 50%. For cooperative partners, increases in participant investment raised the 

probability of the 200% return by 10% and simultaneously reduced the 100% and 150% return 

probabilities by 5% each. This adjustment continued until the maximum probability for the highest 

return reached 93%. For non-cooperative partners, increasing investments similarly raised the 

probability of the 50% return by 10% while decreasing the other two probabilities by 5% each, also 

capped at 93%. 

Each trial began with a 2-second fixation cross, followed by the partner’s surname displayed for 

1.5 seconds (Fig. 4). Participants then selected an investment amount from five randomly ordered 

options: no investment (0 points), low (1–3 points), medium (4–6 points), high (7–9 points), or full 

investment (10 points). Specific values within each range were randomly assigned per trial. Using one 

hand, participants moved the selection frame left or right with designated buttons and confirmed their 
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choice with the other hand. Once confirmed, the selection frame turned red and the choice was locked 

in. 

  

 

Figure 4. Task design of the multi-round trust game (MTG). A. Task schematic of the MTG. Each 
round begins with the display of a partner’s surname. Participants (trustors) are told they are interacting 
with two distinct human trustees, though both are controlled by a computer algorithm. One trustee is 
programmed to behave cooperatively; the other non-cooperatively. Across 60 rounds (30 per partner), 
participants choose an investment amount from five options presented in random order: none (0 points), 
low (1–3), medium (4–6), high (7–9), or full (10). The investment is tripled and sent to the trustee, who 
returns a portion. Cooperative trustees return 100%, 150%, or 200% of the investment; non-cooperative 
trustees return 100%, 75%, or 50%. B. Dynamic adjustment of return probabilities.  

 

The invested amount was then tripled and transferred to the partner, who determined how much to 

return. After a jittered delay of 3 to 5 seconds (mean = 4 s), the return amount was shown using two 

colored bars: red for the amount returned and blue for the amount retained by the partner. A second 

jittered fixation screen (3–5 seconds) followed each trial. All intervals were pseudo-randomly drawn 

from five durations (3, 3.5, 4, 4.5, 5 seconds) and optimized to reduce correlation across experimental 

conditions. 
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The full task consisted of 60 trials, each involving a randomized interaction with one of the two 

virtual partners. Partner presentation followed a pseudo-random sequence, with each partner appearing 

in 30 trials. The task was divided into two phases of 30 trials each. To control for confounding variables, 

partner assignment (cooperative vs. non-cooperative), task phase order, and response hand mapping 

were fully counterbalanced across gender and group. For example, one male MCI participant might 

complete Phase 1 followed by Phase 2 with “Li” as the cooperative partner using left-hand selection and 

right-hand confirmation, while another participant might complete the reverse order with the same 

partner mapping—ensuring full coverage of all eight possible counterbalancing permutations. 

To ensure task comprehension, participants completed a structured practice session before entering 

the scanner. First, they solved hypothetical payoff calculations; participants who responded incorrectly 

repeated the task until they achieved full accuracy. Next, they completed 15 practice trials with 

randomized, computer-generated feedback from fictitious partners to familiarize themselves with the 

game mechanics. To enhance believability, participants were explicitly informed that their MTG partners 

were real older adults from the Shenzhen community. They were also told that their final payment would 

be based on performance in the formal task, using a fixed exchange rate (10 points = 1 CNY). 

4.4 Experimental procedure 

Participants followed a multi-stage experimental protocol. Within three months prior to scanning, they 

completed a comprehensive neuropsychological battery at the research facility. 

On the day of the MRI session, and prior to scanning, participants completed three behavioral tasks in a 

fixed sequence: (1) a one-shot dictator game (data from this task are reported in a separate study [12,64]); 

(2) either a one-shot lottery game (measuring risk propensity) or a one-shot trust game (see 

Supplementary Materials S1 and S2 for task details); and (3) the remaining task. The order of the lottery 

game and trust game was counterbalanced across gender and diagnostic group. 

The neuroimaging session included four sequential components: (i) an 8-minute resting-state fMRI 

scan, (ii) an 18-minute MTG performed during fMRI acquisition, (iii) a 7-minute high-resolution 

structural MRI (T1-weighted), and (iv) a 5-minute clinical T2-weighted MRI scan for routine medical 

assessment. Following the scan, participants completed a debriefing questionnaire that assessed their 

understanding of the task instructions and their psychological state during the experiment. Critically, the 
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questionnaire included items designed to verify whether participants believed that the partners in the 

one-shot trust game and the MTG were real individuals. Only those who affirmed belief in the partner 

manipulation were retained in the final sample. Participants then received monetary compensation based 

on their performance in the MTG. 

4.5 Computational modeling  

According to the neuropsychoeconomic model of trust [9], trust behavior is shaped by four key 

components: affect, motivation, executive cognition, and social cognition. To quantitatively characterize 

dynamic trust behavior and assess abnormalities in these components among older adults with MCI, we 

employed a belief-based reinforcement learning model [23] tailored to participants’ choices in the MTG. 

Previous studies have shown that individuals learn at different rates when they experience positive 

or negative outcomes [67]. Thus, two separate learning rates—αgood (range 0 to 1, initial value = 0.5) 

and αbad (range 0 to 1, initial value = 0.5)—were included to represent the learning rates associated with 

cooperative (good) and non-cooperative (bad) partners, respectively. Initial expected value (EV) about 

cooperative partner returns (��
����

 ) and about non-cooperative partner returns (��
��� ) equal to 0.5, 

indicating no bias. Interference factor (η, range 0 to 1, initial value = 0.5) accounted for cognitive 

spillover effects due to the randomized presentation of partners (cooperative / non-cooperative) in the 

MTG. This parameter quantified how belief updates about one partner affected updates about the other, 

and served as an index of executive control in maintaining partner-specific evaluations. The 

corresponding value updating formula was  
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Participants made investment decisions based on updated EV and individual biases in the decision 

phase. First, the expected returns EU(x) for each possible investment amount x were calculated as 

follows: 

��(�) = (10 − �) + 3� ⋅ �� 

Utility U(x), which incorporates motivational sensitivity, risk sensitivity, and subjective preference, 

was then calculated using the following transformation: 

�(�) = ��(�)� − � ⋅ �� ⋅ (x/10)� 
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The function included two key parameters: Reward sensitivity exponent (γ, range 0 to 1, initial 

value = 0.5), representing motivational sensitivity through a non-linear transformation of expected utility. 

This captures diminishing marginal utility or increased sensitivity to larger rewards. The risk sensitivity 

parameter (λ, range 0 to 3, initial value = 1.5) adjusted expected utility by penalizing the variance of 

partner returns. Higher values of λ indicated greater risk aversion, reflecting higher expected costs of 

partner betrayal. �� captures trial-wise uncertainty in partner returns within our experimental setting: it 

is the variance of the feedback (return-ratio) distribution determined by partner type (cooperative vs. 

non-cooperative) and response level, computed from discrete outcomes and their probabilities probs. 

Higher �� indicates more volatile, less predictable returns on that trial and increases the influence of 

risk sensitivity (λ); lower �� indicates concentrated probability on a specific return mode and reduce the 

influence of risk sensitivity.  

A SoftMax decision function translated these value estimates into probabilistic investment 

decisions. 

�(�) = ���(� ⋅ �(�))/ � ���(� ⋅ �(�′))
��

 

The inverse temperature parameter (β, range 0 to 10, initial value = 5), which controlled the balance 

between exploration and exploitation, with higher values reflecting more deterministic decisions and 

lower values indicating greater randomness, thus representing participants' social cognition, i.e., their 

ability to construct mental models of partners. 

Individual model parameters—including learning rates (αgood, αbad), inverse temperature (β), 

reward sensitivity (γ), risk sensitivity (λ), and interference (η)—were estimated for each participant 

using maximum likelihood estimation (MLE). To evaluate the contribution of each parameter to model 

performance, restricted model comparisons were conducted. In each reduced model, one parameter from 

the full model was fixed at its initial value, while the remaining parameters were freely estimated. Each 

reduced model was then independently refitted to participants’ behavioral data. 

Model fit for each reduced version was compared to that of the full model using two standard 

information criteria: the Akaike Information Criterion (AIC) and the Bayesian Information Criterion 

(BIC). Paired-sample t-tests were conducted to statistically compare AIC and BIC values between each 

reduced model, the full model, and a null model that included no learning or social-cognitive structure. 
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These comparisons allowed us to assess whether fixing a given parameter significantly reduced model 

fit, and therefore whether that parameter meaningfully contributed to explaining observed behavior. 

Importantly, in every reduced model, only one parameter was held constant at a time, allowing all 

other parameters to vary freely. This ensured that the impact of each parameter could be isolated while 

controlling for potential interactions among the remaining components. This parameter sensitivity 

analysis [68] provided a systematic method for quantifying the relative importance of each factor in 

capturing individual differences in trust learning and decision-making across cooperative and non-

cooperative contexts. 

4.6 Parameter recovery analysis 

To assess the reliability and identifiability of the model parameters, we conducted a parameter recovery 

analysis (see Supplementary Materials S3). Synthetic behavioral datasets were generated using known 

parameter values, and the model was then re-fitted to these simulated datasets using the same estimation 

procedure applied to empirical data. Recovery accuracy was evaluated by computing correlations 

between the true and recovered parameter values. High correspondence confirmed that each parameter 

could be robustly estimated and reliably distinguished from the others [68]. 

4.7 Behavioral analysis 

Independent-sample t-tests or Mann–Whitney rank-sum tests (when the Kolmogorov–Smirnov test 

revealed that assumptions of normality had been violated) were conducted using MATLAB 2021b 

(www.mathworks.com) to statistically evaluate group differences between older adults with MCI and 

NHCs in demographic characteristics and neuropsychological test scores. A two-tailed significance level 

(p < 0.05) was applied for all statistical analyses. 

The Kolmogorov–Smirnov test indicated that mean investment values significantly deviated from 

normality, while the distribution of RTs did not. Accordingly, an Aligned Rank Transform ANOVA was 

used to analyze mean investment, and a standard repeated-measures ANOVA was used to analyze RTs, 

with both group (MCI vs. NHC) and partner condition (cooperative vs. non-cooperative) entered as 

factors. Partial eta squared (η²ₚ) was reported as the effect size for all ANOVA results. When a significant 

interaction effect was observed, post hoc comparisons were conducted using Wilcoxon rank-sum tests 

for non-normally distributed variables (i.e., mean investment), and independent-samples t-tests for 
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normally distributed variables (i.e., RTs). Effect sizes were reported as r for rank-sum tests and Cohen’s 

d for t-tests. 

Because participants selected investment amounts from five predefined options, group differences 

(MCI vs. NHC) on each trial were assessed using Wilcoxon rank-sum tests. To capture group differences 

in initial trust, the first trial of the MTG was analyzed separately. In addition, trial-by-trial investment 

behavior was examined separately for cooperative and non-cooperative partner interactions. 

To address multiple comparisons across consecutive trials, a cluster-based permutation correction 

procedure was applied. For each observed cluster of significant differences, its size (defined as the 

number of contiguous significant trials) was compared against a null distribution generated through 

10,000 random permutations of group labels. This yielded corrected p-values at the cluster level. The 

same analytical approach was used to test for group differences in trial-by-trial PE values for cooperative 

and non-cooperative partner conditions. The resulting significant clusters identified specific segments 

of the MTG during which investment and PE values differed reliably between the MCI and NHC groups. 

To clarify the cognitive and psychological significance of the computational model parameters, 

correlation analyses were conducted between each estimated parameter and its corresponding 

neuropsychological or behavioral measure. Specifically, learning rates between (α good, α bad), inverse 

temperature (β), reward sensitivity (γ), risk sensitivity (λ), and interference factor (η) were correlated 

with individual difference measures targeting affect (one-shot lottery game), motivation (a subscale of 

the Geriatric Depression Scale, GDS), social cognition (one-shot dictator game), and executive 

cognition (Trail Making Test Part B and the Stroop test).  

As the Kolmogorov–Smirnov test revealed that all model parameters significantly violated 

assumptions of normality, Spearman’s rank-order correlations were used for all analyses. Significant 

associations between parameters and corresponding psychological measures were interpreted as 

evidence for the cognitive validity and interpretability of the model. 

Finally, group differences on two MTG-related debriefing questionnaire items—(1) whether 

participants believed their partners were real individuals, and (2) whether they could distinguish between 

the two partners in the task—were tested using chi-square analyses. 
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4.8 Image Acquisition. 

Neuroimaging data were acquired using a 3T SIEMENS MAGNETOM Prisma scanner equipped with 

a 64-channel head coil at Shenzhen University. High-resolution structural brain images were collected 

using a T1-weighted 3D MPRAGE sequence (TR = 1.9 s, TE = 2.23 ms, flip angle = 8°, field of view 

[FOV] = 220 × 220 mm², voxel size = 1.1 × 1.1 × 1.1 mm³, 224 slices). Task-based fMRI images were 

acquired using a multiband EPI sequence (TR = 1.5 s, TE = 30 ms, flip angle = 75°, FOV = 192 × 192 

mm², voxel size = 2 × 2 × 2 mm³, 72 slices, slice thickness = 2 mm, multiband factor = 4, acceleration 

factor = 2). The total number of volumes acquired was 660 for the task-based scan. 

4.9 Image Preprocessing 

Functional and structural neuroimaging data were preprocessed using Statistical Parametric Mapping 

software (SPM12) [69] implemented in MATLAB 2021b (www.mathworks.com). Preprocessing 

followed standard procedures and included the following steps: (1) Realignment: Functional images 

were realigned to correct for head motion across time. (2) Slice timing correction: Temporal alignment 

was applied to adjust for differences in acquisition time across slices due to interleaved scanning. (3) 

Co-registration: The high-resolution structural T1-weighted image was co-registered to the mean 

functional image from the realignment step to ensure anatomical alignment between structural and 

functional data. (4) Segmentation: Co-registered structural images were segmented into gray matter, 

white matter, and cerebrospinal fluid (CSF) using affine regularization based on the International 

Consortium for Brain Mapping (ICBM) template for European brains. (5) Normalization: Functional 

images were spatially normalized to Montreal Neurological Institute (MNI) space using deformation 

fields derived from the segmentation step. Functional volumes were resampled to an isotropic voxel size 

of 3 × 3 × 3 mm³. (6) Smoothing: The normalized functional images were smoothed using an 8 mm full-

width at half-maximum (FWHM) Gaussian kernel to increase signal-to-noise ratio and meet the 

assumptions of random field theory for subsequent statistical analyses. 

4.10 Model-based functional magnetic resonance imaging analysis 

First-level general linear models (GLMs) were constructed to characterize trial-by-trial neural responses 

associated with trust-related decision-making and belief updating processes during the MTG (Fig. 5A–

F). Specifically, neural activation during the feedback phase was modeled for two experimental 
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conditions: interactions with cooperative versus non-cooperative partners. Trial-by-trial PEs (denoted 

as δ) derived from the computational model were entered as parametric modulators for each condition. 

To account for potential motion-related confounds, six head motion parameters from the 

realignment preprocessing step were included in the GLMs as covariates of no interest. All task-related 

regressors (i.e., partner condition and corresponding PE modulators) were convolved with the canonical 

hemodynamic response function (HRF). A high-pass temporal filter with a cutoff of 1/128 Hz was 

applied to each voxel’s time series to remove low-frequency drift and noise. 

At the second level, random-effects analyses were used to examine between-group differences in 

brain activation during the feedback phase. Specifically, two-sample t-tests were conducted to compare 

MCI and NHC participants on brain activation associated with each partner condition, as well as on PE-

modulated activation for both cooperative and non-cooperative partners. 

Statistical maps were thresholded at a voxel-wise level of p < 0.001 (uncorrected), and a cluster-

level family-wise error (FWE) correction at p < 0.05 was applied to control for multiple comparisons. 
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Figure 5. Procedures for model-based activation and psychophysiological interaction (PPI) 
analyses. A. Task design. Behavioral data were collected from each participant during the multi-round 
trust game (MTG), where the invested amount was tripled and returned in varying proportions by a 
cooperative or non-cooperative partner. B. Computational modeling. Participants’ behavior was 
modeled individually using a belief-based reinforcement learning model. C. Trial-by-trial prediction 
errors (T by T PE). T by T PE were estimated for each trial. D. Trial onset extraction. Feedback onset 
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times and partner identities were extracted from experimental logs. E. Model-based GLM construction. 
General linear models (GLMs) were created using condition-specific onset times as regressors, trial-by-
trial PEs as parametric modulators, and motion parameters as nuisance covariates. F. Model-based 
activation analysis. Individual-level GLMs were convolved with the canonical hemodynamic response 
function (HRF) to identify brain regions encoding PE signals. Group-level comparisons assessed 
differential PE-related activation between MCI and control participants. G. PPI seed selection. Regions 
showing significant group differences in PE-modulated activation were used as seed regions for PPI 
analysis. H. PPI design matrix. For each participant, the deconvolved BOLD signal (physiological 
variable), the convolved PE (psychological variable), and their interaction (PPI term) were entered into 
a GLM along with motion regressors. I. PPI connectivity analysis. At the individual level, model-based 
PPI analyses were performed to identify voxels whose connectivity with the seed region was modulated 
by PE. Group-level contrasts revealed regions with significant group differences in PE-dependent 
functional connectivity. 
 

4.11 Psychophysiological interaction analysis 

To examine group differences in the modulatory effects of trial-by-trial PEs on task-related functional 

connectivity, a generalized PPI analysis was conducted using SPM12 (Fig. 5G–I). Seed regions of 

interest (ROIs) were defined based on brain regions that showed significant between-group differences 

(MCI vs. NHC) in PE-modulated activation during the feedback phase. Each ROI was extracted as a 

sphere with a 6 mm radius centered on the peak voxel coordinates in MNI space, identified from the 

first-level parametric modulation analyses. 

For each participant, the subject-level PPI model included three key regressors: (1) the deconvolved 

BOLD time series from the seed ROI (physiological regressor), (2) trial-by-trial PE values during the 

feedback phase (psychological regressor), and (3) the interaction term (PPI regressor), computed as the 

element-wise product of the physiological and psychological regressors. 

Before multiplication, PE values were mean-centered and convolved with the canonical 

hemodynamic response function (HRF). Six motion parameters from preprocessing and task onset 

regressors were also included as nuisance covariates to control for motion-related and task-related 

confounds. 

First-level GLMs were estimated for each participant to model PE-modulated changes in functional 

connectivity. The resulting contrast images for the PPI regressors were entered into second-level 

random-effects analyses. Two-sample t-tests were used to compare MCI and NHC groups. Statistical 

maps were thresholded at an uncorrected voxel-level threshold of p < 0.001, and a cluster-level family-

wise error (FWE) correction at p < 0.05 was applied to control for multiple comparisons. 
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Supplementary Material 

S1. One-shot Trust Game 

A one-shot trust game (TG) was administered to assess trust propensity (TP), involving two players: a 

trustor and a trustee (Fig. 1A). Both players began with an initial endowment of 10 points (equivalent 

to 30 CNY). The trustor selected an amount (X) between 0 and 10 points to send to the trustee. The 

transferred amount was tripled (3·X) by the experimenter before being delivered to the trustee. The 

trustee then determined how much to return to the trustor (Y), with possible values ranging from 0 to 

3·X. Final payoffs were computed as follows: the trustor received 10 − X + Y points, and the trustee 

received 10 + 3·X − Y points. The amount invested by the trustor (X) served as the behavioral index of 

trust propensity. 

To ensure task comprehension, participants completed a practice exercise in which they 

calculated payoffs for both roles. For example, if the trustor sent 2 points and the trustee returned 4, both 

would receive 12 points. If the response was incorrect, the practice was repeated until the participant 

responded correctly. After completing the exercise, participants were informed that they would play in 

the role of the trustor, while another older adult undergoing the next fMRI scan would serve as the 

trustee. 

S2 One-shot lottery game 

A one-shot lottery game was administered to assess risk propensity (Fig. 1B). Participants and a 

computerized system each began with an endowment of 10 points (equivalent to 30 CNY). Participants 

chose an amount (X) between 0 and 10 points to invest in the lottery. The invested amount was tripled 

(3·X) and passed to the computer, which randomly returned an amount ranging from 0 to 3·X points. 

The participant’s final payoff was calculated as 10 − X + returned amount. The amount invested (X) 

served as the behavioral measure of risk-taking. 

To ensure task comprehension, participants completed a practice trial in which they calculated 

hypothetical payoffs for different investment and return scenarios. For instance, if 2 points were invested 

and 4 were returned, the final payoff would be 12 points. Participants repeated the exercise until they 

responded correctly. 
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Figure 1. Task schematics for the one-shot trust and lottery games. A. One-shot trust game (TG): 
The participant (trustor) decides how much of their 10-point endowment (X) to send to a trustee. The 
transferred amount is tripled (3·X), and the trustee determines how much to return (Y). Final payoffs 
are calculated as: trustor = 10 − X + Y; trustee = 10 + 3·X − Y. B. One-shot lottery game: The 
participant chooses an investment amount (X) from their 10-point endowment. The invested amount is 
tripled and submitted to a lottery controlled by a computer, which returns a random amount from 0 to 
3·X. The participant’s final payoff is 10 − X + returned amount. 
 
S3 Parameter recovery analysis 

To evaluate the reliability and validity of the parameters estimated by the belief-based learning model, 

a parameter recovery analysis was conducted. This procedure assessed whether the model could 

accurately recover known parameter values from simulated behavioral data generated using predefined 

inputs (Wilson & Collins, 2019). 

First, simulated datasets were generated based on the belief-based model described above. A 

total of 200 parameter sets were randomly sampled within predefined ranges to represent 200 virtual 

participants. These included learning rates for cooperative (αgood) and non-cooperative (αbad) partners, 

inverse temperature (β), reward sensitivity exponent (γ), risk sensitivity parameter (λ), and interference 

factor (η).  

These parameters were used to simulate trial-by-trial investment behavior in the MTG. On each trial, 

expected utilities were computed based on the participant’s current expected value (EV) (Qt) for the 

partner (initially set [Q0] to 0.5 for the first trial). A SoftMax function converted utilities into choice 
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probabilities, which determined investment decisions. Partner return probabilities dynamically changed 

based on consecutive investment behavior toward the same partner type (e.g., repeated investments 

toward a cooperative partner increased the likelihood of high returns). After each trial, prediction errors 

were computed, and Q-values were updated according to the belief-update formula described earlier. 

Parameter recovery was evaluated by examining the correlation between the true parameter 

values used to generate synthetic data and the corresponding estimated values obtained from model 

fitting. Higher correlations indicate better parameter recovery and thus greater identifiability of the 

model parameters. This approach provides a standard and widely accepted assessment of the model's 

ability to recover underlying parameter values in computational modeling studies [1].  

S4 Restricted model comparation and parameter recovery results 

The restricted model comparisons revealed that fixing any single parameter resulted in increased Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) values, indicating a decline in 

model fit. Notably, the learning rates (αα_good, α_bad), inverse temperature (β), and reward sensitivity 

exponent (γ) exerted the strongest influence on model performance (see Table 1). 
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Table 1. Results of restricted model comparisons.  

parameter AIC P value BIC P value 

Full model 175.85  171.18  

good Learning rate (�good) 178.53 <0.05 186.17 <0.05 

bad Learning rate (�bad) 184,70 <0.01 192.22 <0.001 

inverse temperature parameter (β) 207.13 <0.001 209.51 <0.001 

reward sensitivity exponent (�) 205.46 <0.001 207.78 <0.001 

risk sensitivity (λ) 181.50 0.06 183.34 0.08 

interference factor (η) 174.75 0.35 176.56 0.38 

Null model 209.62 <0.001 213.77 <0.001 

Comparison of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values 

for the full model, reduced models (with one parameter fixed), and the null model. Higher AIC and BIC 

values indicate worse model fit. Significant increases in AIC/BIC reflect the relative contribution of 

each parameter to the model’s explanatory power. 

 

The parameter recovery analysis indicated that moderate to strong correlations were observed 

between the true and recovered values for most parameters, such as learning rates (α_good, α_bad), risk 

sensitivity (λ), and interference factor (η), indicating reasonable parameter identifiability. However, 

greater variability and evidence of boundary estimates were observed for inverse temperature parameter 

(β) and risk sensitivity (λ), suggesting that recovery accuracy for these parameters was limited. Notably, 

the parameters with poor recovery rates are not involved in the main results of the present study and 

thus do not impact the key conclusions. 
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Figure 2. Parameter recovery results. Scatter plots show the relationship between the true (x-axis) 
and estimated (y-axis) parameter values for each model parameter. The red dashed line (y = x) indicate 
perfect recovery. Each point corresponds to a simulated subject. Overall, most parameters show 
moderate to strong correspondence between the true and estimated values, though some parameters 
exhibit more estimation noise and boundary effects. 
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6. General Discussion 

6.1 Summary of Studies and Research Questions 

The primary aim of this dissertation was to clarify how MCI alters the psychological and neural 

mechanisms of trust. Guided by the neuropsychoeconomic framework of trust, which integrates affect, 

motivation, social cognition, and executive cognition, the work was structured around three central 

questions: (1) Trust propensity: Does MCI alter initial willingness to trust strangers, and which large-

scale resting-state networks explain this change?; (2) Structural underpinnings: Do gray matter 

reductions in MCI underlie reduced TP, and through which psychological components do these effects 

operate?; and (3) Trust dynamics: How does MCI impact the ability to build, maintain, and withdraw 

trust during repeated social interactions, and what psychological and neural mechanisms explain failures 

to update trust? 

To address these questions, three complementary experiments were conducted. Experiment 1 combined 

a one-shot trust game with resting-state fMRI and connectome-based predictive modeling, showing that 

individuals with MCI had lower TP than healthy controls, driven by heightened betrayal sensitivity and 

greater reliance on the SAN. In contrast, controls relied more on social cognition and DMN connectivity. 

Experiment 2 used structural MRI and voxel-based morphometry, revealing that atrophy in the anterior 

insula and thalamus predicted reduced TP in MCI, and this effect was mediated by affective sensitivity 

to betrayal. Experiment 3 employed a multi-round trust game with computational reinforcement-

learning modeling and task-based fMRI, demonstrating that older adults with MCI behaved nearly 

normally in cooperative contexts through compensatory recruitment of executive and social networks, 

but failed to reduce trust in non-cooperative contexts, showing slower updating, larger prediction errors, 

reduced activation of the CEN and DMN, and disrupted executive–social connectivity. 

Together, these findings provide convergent evidence that MCI reduces initial trust through affective 

hyper-sensitivity and impairs adaptive trust updating through social and executive dysfunction, while 

compensation helps preserve cooperation in supportive contexts. 
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6.2 Trust Propensity in MCI 

The first research question asked whether MCI alters TP, and if so, which large-scale resting-state 

networks account for this change. 

Experiment 1 addressed this question by combining a one-shot trust game with resting-state fMRI and 

connectome-based predictive modeling. The findings revealed that older adults with MCI exhibited 

reduced TP compared to healthy controls, and this difference was associated with heightened sensitivity 

to betrayal probability. At the neural level, the connectome-based model showed that TP in the MCI 

group was predicted primarily by negative networks, reflecting inhibitory influences. In particular, the 

SAN, associated with affective processing, was a key predictor of TP in MCI, whereas in the control 

group, positive network models predicted TP and implicated the DMN, linked to social cognition. 

These results suggest that individuals with MCI rely more on SAN-driven affective processing when 

making trust decisions, while controls engage DMN-based social cognition to transform betrayal 

probability into reciprocity expectations. This interpretation is consistent with prior evidence that older 

adults with MCI show increased attention to negative social information (Berger et al., 2015; Döhnel et 

al., 2008) and impaired emotional regulation (Apostolova & Cummings, 2008; Mah et al., 2021). It also 

aligns with studies showing that the SAN reflects excessive emotional responses to negative stimuli 

(Baur et al., 2013; Edwards et al., 2024). By contrast, the DMN’s role in social cognition may be 

diminished in MCI, preventing the use of social bounded rationality to support positive expectations of 

reciprocity. 

Taken together, these findings highlight that reduced TP in MCI is not simply a general decline in social 

willingness but reflects a shift in the balance of neural mechanisms. Greater reliance on the SAN and 

reduced engagement of the DMN indicate that trust behavior in MCI is driven more by affective hyper-

sensitivity than by social reasoning. This mechanism provides a plausible explanation for why older 

adults with MCI may hesitate to form new social relationships and may be more vulnerable to 

withdrawal from social interactions. Importantly, reduced TP may serve as both a behavioral marker of 

social vulnerability and a neurofunctional signature of altered decision-making in MCI. 



General Discussion 

 

95 

6.3 Structural Underpinnings of Trust in MCI 

The second research question asked whether GMV loss in MCI impacts TP, and through which trust-

related components these effects are mediated. 

Experiment 2 addressed this by combining structural MRI with assessments of trust-related components. 

Prior research has shown that GMV in regions such as the anterior insula, vmPFC, and TPJ correlates 

with individual differences in TP (Haas et al., 2015b; Safari et al., 2024). At the same time, meta-

analyses indicate that MCI is associated with gray matter atrophy across multiple trust-related regions, 

including the anterior insula and thalamus within the SAN (Yang et al., 2012; Zhang et al., 2021). These 

findings raised the critical question of whether such structural decline affects TP in MCI and, if so, 

through which psychological components. 

The results of Experiment 2 showed that reduced GMV in the anterior insula and thalamus predicted 

diminished TP in older adults with MCI. Mediation analysis revealed that this relationship was explained 

by affective sensitivity to betrayal: atrophy in SAN regions amplified emotional reactivity, which in turn 

led to lower TP. Notably, other trust-related components such as motivation, executive cognition, and 

social cognition did not mediate this relationship, underscoring the specificity of affective mechanisms 

in linking brain structure to trust behavior. 

These findings provide strong evidence that structural alterations in SAN regions underlie reduced TP 

in MCI. The anterior insula is crucial for integrating interoceptive and affective signals (Uddin et al., 

2017), while the thalamus serves as a relay hub for sensory and emotional information (Jones, 2012). 

Atrophy in these regions likely heightens betrayal sensitivity, biasing trust decisions toward caution and 

undermining baseline trust. This interpretation aligns with evidence that insular atrophy impairs emotion 

regulation and interoceptive awareness (Jones et al., 2010), while thalamic decline disrupts affective 

integration (Biesbroek et al., 2024). 

From a theoretical perspective, these findings refine the neuropsychoeconomic model of trust by 

demonstrating that structural degeneration in SAN regions not only alters affective processing but also 

mediates its downstream effects on trust behavior. Clinically, they highlight the potential of SAN 
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atrophy as a biomarker for identifying older adults at heightened risk of social withdrawal and 

exploitation. Interventions aimed at modulating betrayal sensitivity—such as emotion regulation 

training or caregiver strategies that emphasize consistent positive reinforcement—may help buffer 

against these vulnerabilities. 

In sum, Experiment 2 demonstrates that gray matter atrophy in the anterior insula and thalamus 

contributes to reduced TP in MCI, mediated specifically through affective sensitivity to betrayal. This 

provides convergent evidence that structural degeneration of the SAN translates into behavioral deficits 

in trust, establishing a key link between neurodegeneration and social vulnerability. 

6.4 Trust Dynamics in MCI 

The third research question asked how MCI affects the ability to build, maintain, and withdraw trust 

during repeated interactions, and which psychological and neural mechanisms underlie these changes. 

Experiment 3 addressed this question with a multi-round trust game, reinforcement-learning modeling, 

and task-based fMRI. Behaviorally, individuals with MCI showed slower trust reduction, larger 

prediction errors, and lower learning rates than controls in non-cooperative contexts. By contrast, their 

behavior was relatively preserved in cooperative interactions. Neurally, cooperative contexts elicited 

compensatory hyperactivation in the CEN and DMN, consistent with evidence that older adults with 

MCI recruit additional cortical resources to sustain performance (Li et al., 2015). In contrast, during 

non-cooperative interactions, MCI participants exhibited reduced activation in the superior frontal gyri 

(SFG) and middle temporal gyrus, and diminished connectivity between executive and social regions, 

such as the SFG and TPJ. These patterns indicate that while cooperation can be maintained through 

compensation, withdrawal of trust under betrayal conditions is impaired. 

This interpretation aligns with prior research. Computational and model-based fMRI studies have shown 

that reinforcement-learning mechanisms—particularly learning rate and prediction error—are central to 

trust updating (Haiyan, 2019; Nihonsugi et al., 2015). Evidence also indicates that MCI is marked by 

deficits in executive and social cognition (Bora & Yener, 2017; Corbo & Casagrande, 2022). Although 

compensatory activation can sustain cooperative behavior, these mechanisms often collapse under high 
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cognitive load (de Rover et al., 2011). Non-cooperative interactions amplify betrayal risk (Bohnet & 

Zeckhauser, 2003) and evoke strong negative affect (Delgado et al., 2005). Because individuals with 

MCI struggle to translate betrayal signals into negative reciprocity expectations, they persist in trusting 

uncooperative partners. This vulnerability aligns with findings that MCI increases susceptibility to 

deception in complex social settings (Han et al., 2016; Martin et al., 2019). 

Taken together, Experiment 3 demonstrates that trust dynamics in MCI are context-dependent. 

Cooperation can be maintained via compensatory recruitment of social and executive networks, but 

adaptation under betrayal fails due to impaired integration of affective signals with social and executive 

cognition. This imbalance between emotional reactivity and cognitive updating explains why MCI 

patients remain overly trusting in risky contexts, leaving them vulnerable to fraud and exploitation. 

6.5 Integration Across Studies 

The three experiments in this dissertation provide convergent evidence that trust dysfunction in MCI 

arises from abnormalities in affective, social, and executive components. Together, they reveal a unified 

pattern: reduced TP due to affective hyper-sensitivity, and impaired trust dynamics due to failures in 

executive–social integration. 

Experiment 1 showed that MCI individuals relied more heavily on the SAN to guide trust, with reduced 

engagement of the DMN. This reliance on affective rather than social cognition mechanisms aligns with 

findings that MCI individuals exhibit heightened emotional reactivity (Berger et al., 2015; Döhnel et al., 

2008) and impaired emotion regulation (Apostolova & Cummings, 2008; Mah et al., 2021), as well as 

SAN hyperactivation (Song et al., 2021). In contrast, the DMN supports social cognition and 

perspective-taking (Amodio & Frith, 2006; Bressler & Menon, 2010), and its reduced influence in MCI 

is consistent with reports of social-cognitive impairments and DMN hypoconnectivity in this population 

(Bora & Yener, 2017; Eyler et al., 2019). Experiment 2 extended these results by demonstrating that 

gray matter atrophy in the anterior insula and thalamus predicted reduced TP, mediated specifically by 

betrayal sensitivity. This is consistent with evidence that MCI involves structural degeneration in SAN 

regions (Yang et al., 2012; Zhang et al., 2021), and that insular atrophy undermines interoceptive 

awareness and emotional regulation (Jones et al., 2010). Together, Experiments 1 and 2 establish both 
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functional and structural bases for affect-driven reductions in TP. 

Experiment 3 then demonstrated that, in cooperative contexts, MCI participants could preserve trust 

through compensatory recruitment of CEN and DMN regions. This pattern reflects the broader literature 

on neural compensation in MCI, in which additional cortical resources are recruited to sustain 

performance across cognitive domains (Clément & Belleville, 2010; Li et al., 2015). However, under 

non-cooperative conditions, these compensatory mechanisms failed. Individuals with MCI showed 

reduced activation in executive and social regions and weakened connectivity between the CEN and 

DMN, leaving them unable to translate betrayal cues into adaptive reductions in trust. These findings 

align with prior evidence that executive and social cognition deficits are core features of MCI (Bora & 

Yener, 2017; Traykov et al., 2007), and that compensation is limited under high cognitive or emotional 

load (de Rover et al., 2011). 

Taken together, the three studies converge on a model in which SAN-driven affective hyper-sensitivity 

lowers baseline TP, structural atrophy in the insula and thalamus exacerbates this vulnerability, and 

disrupted CEN–DMN integration undermines trust updating in adverse contexts. At the same time, 

partial compensation in supportive contexts shows that trust is not globally impaired, but rather context-

dependent. This synthesis refines Krueger and Meyer-Lindenberg’s (2019) neuropsychoeconomic 

framework by demonstrating how MCI shifts the balance between affective, executive, and social 

processes, providing a mechanistic account of selective vulnerability in trust. 

These three experiments provide complementary perspectives on how MCI alters TP and trust dynamics 

across behavioral, structural, and functional levels. Figure 4 provides an integrated summary of the 

experimental design, changes in trust-related components, and the neural alterations that converge on 

trust dysfunction in MCI. 
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Figure 4. Summary of experiments and integrated model of trust dysfunction in MCI. (A) 
Overview of research studies. Experiment 1 tested trust propensity (TP) with a one-shot trust game 
and resting-state fMRI. Experiment 2 examined structural underpinnings of TP using voxel-based 
morphometry and mediation analyses. Experiment 3 investigated trust dynamics in multi-round trust 
games with reinforcement-learning modeling and task-based fMRI. (B) Changes in trust-related 
components. TP and trust dynamics are shaped by affect, motivation, social cognition, and executive 
cognition. In MCI, affective sensitivity is heightened (red upward arrows), while motivation, social 
cognition, and executive cognition are reduced (blue downward arrows). This imbalance impairs the 
transformation of betrayal probability into reciprocity expectations within bounded rationality (outer 
rings: dashed = social, dash–dot = economic). (C) Neural alterations and impact on trust. In one-shot 
games, healthy controls (HC) leverage social cognition and the default mode network (DMN) to enact 
socially bounded rationality, transforming affective signals into expectations of reciprocity and thereby 
fostering trust formation. By contrast, individuals with MCI show impairments in social and economic 
bounded rationality that constrain timely regulation of affect, leading them to rely more on affective 
component and salience network (SAN)–driven processes during trust decisions. Concomitantly, 
reduced SAN gray matter volume (GMV) heightens sensitivity to betrayal, further diminishing their TP. 
In multi-round games, cooperative contexts elicit compensatory activation in social and executive 
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systems, recoding affective signals into positive expectations of reciprocity, supporting trust updating 
and promoting the establishment of trust. Conversely, in non-cooperative contexts, task demands exceed 
compensatory capacity, hindering the translation of betrayal signals into negative expectations of 
reciprocity; consequently, individuals fail to down-regulate (update) trust, maintain prior trust levels, 
and overtrust defectors.  

TP, trust propensity; GMV, gray matter volume; RSFC, resting-state functional connectivity; SAN, 
salience network; DMN, default mode network; CEN, central executive network; HC, healthy controls; 
MCI, mild cognitive impairment. 

 

As shown in Figure 4, MCI is characterized by heightened affective sensitivity, structural decline in the 

SAN regions, and disrupted executive–social integration, which together reduce baseline trust and 

impair adaptive updating. This synthesis illustrates how the three studies jointly extend the 

neuropsychoeconomic model of trust to a clinical population. 

From a broader perspective, this integrated model highlights trust as a multidimensional construct that 

is especially sensitive to neurodegenerative changes. Because trust supports both social engagement and 

protection against exploitation, the mechanisms identified here have important clinical implications. 

Reduced TP may serve as an early behavioral marker of social isolation (Chen et al., 2025), SAN atrophy 

could provide a structural biomarker for diagnosis, and impaired trust dynamics may help explain the 

heightened risk of fraud and manipulation in individuals with MCI (Han et al., 2016; Martin et al., 2019). 

These findings not only advance the theoretical neuroscience of trust but also lay the groundwork for 

translational applications in aging research, clinical assessment, and caregiver interventions. 

6.6 Contributions of the Dissertation 

This dissertation makes several contributions to the study of trust and MCI at theoretical, methodological, 

and clinical levels. By combining behavioral experiments with multimodal neuroimaging and 

computational modeling, it advances both basic science and translational perspectives on social 

dysfunction in MCI. 

Theoretical contributions. The findings refine and extend the neuropsychoeconomic model of trust 

(Krueger & Meyer-Lindenberg, 2019) by showing how MCI alters the balance among affective, social, 

and executive components of trust. Experiment 1 demonstrated that reduced TP in MCI reflects a shift 

toward SAN–driven affective hyper-sensitivity rather than DMN–based social cognition, consistent with 
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prior evidence of altered emotional regulation in MCI (Apostolova & Cummings, 2008; Berger et al., 

2015; Ismail et al., 2018). Experiment 2 further established that gray matter atrophy in the anterior insula 

and thalamus underlies this vulnerability, providing structural evidence for affective mechanisms of 

trust dysfunction (Yang et al., 2012; Zhang et al., 2021). Experiment 3 extended these insights into 

dynamic interactions, showing that while cooperative trust can be preserved through compensatory 

recruitment of the CEN and DMN (Clément & Belleville, 2012; Gigi et al., 2010; Li et al., 2015), 

adaptation fails under betrayal, reflecting impaired integration of executive–social pathways (Bora & 

Yener, 2017; Traykov et al., 2007). Together, these studies advance theoretical understanding by 

identifying trust as a selective and context-dependent domain of vulnerability in MCI. 

Methodological contributions. This work demonstrates the value of integrating diverse approaches to 

study complex social behavior in clinical populations. Experiment 1 applied connectome-based 

predictive modeling of resting-state fMRI to predict individual differences in TP, extending prior 

research on baseline trust (Feng et al., 2021; Lu et al., 2019) and providing a tool for cross‑population 

comparisons of trait‑level neural mechanisms. Experiment 2 employed voxel-based morphometry with 

whole‑brain mediation (Wager et al., 2008) and moderated‑mediation analyses (Preacher & Hayes, 2004) 

to link gray matter atrophy to trust-related components, clarifying the structural basis of behavioral 

differences. Experiment 3 integrated reinforcement‑learning models with task‑based fMRI (Delgado et 

al., 2005; Fouragnan et al., 2013) to characterize prediction error–related dysregulation and its neural 

correlates in the trust dynamics of older adults with MCI. By combining these methods, the dissertation 

shows how multimodal evidence converges on a coherent account of trust dysfunction in MCI. This 

integrative methodological approach represents a contribution to both the neuroscience of trust and the 

study of clinical populations, illustrating how combining behavioral, neural, and computational levels 

yields richer insights than any single approach alone (Fareri, 2019). 

Clinical contributions. Finally, this dissertation provides clinically relevant insights into social 

vulnerability in MCI. Reduced TP, linked to betrayal sensitivity, may serve as an early behavioral 

marker of risk for social withdrawal and exploitation (Bartley et al., 2024; Ishikawa et al., 2022). 

Structural atrophy in SAN regions such as the anterior insula and thalamus could serve as 
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neuroanatomical biomarkers for early detection of social dysfunction (Seeley et al., 2009). Impaired 

trust dynamics, especially the inability to reduce trust under betrayal, may explain why older adults with 

MCI are particularly susceptible to fraud and manipulation (Han et al., 2016; Spreng et al., 2016). These 

findings highlight potential targets for interventions: caregiver strategies that emphasize consistent 

positive interactions, emotion regulation training to reduce betrayal sensitivity, and policy measures to 

protect vulnerable individuals in financial and interpersonal contexts. By situating trust as a clinical 

marker, this work bridges basic neuroscience with applied concerns in aging and dementia research. 

In sum, the dissertation contributes to theory by extending the neuropsychoeconomic model of trust to 

a clinical population, to methodology by demonstrating the power of multimodal integration, and to 

practice by identifying trust as a marker and intervention target for vulnerability in MCI. 

6.7 Practical Implications 

The findings of this dissertation carry several important practical implications for clinicians, caregivers, 

and policymakers who support older adults with MCI. 

Health care professionals. For clinicians, the results underscore the importance of proactively 

cultivating trust with older adults with MCI. This population shows reduced TP, especially when 

confronted with potential betrayal, but the findings also reveal that compensatory mechanisms allow 

them to maintain trust in supportive contexts. This suggests that early establishment of a strong trust 

relationship between patients and providers can be a critical strategy for improving therapeutic 

engagement. Indeed, trust in medical professionals has been linked to adherence, satisfaction, and 

overall treatment outcomes (Grimes & Grimes, 2013; Polinski et al., 2014). Importantly, building this 

foundation of trust may also help clinicians detect subtle early-stage vulnerabilities that are not captured 

by standard cognitive assessments, making trust behavior a potential “soft marker” of social dysfunction. 

Clinicians should therefore be encouraged to integrate trust-building strategies into routine care, such as 

clear communication, consistent emphasis on the benefits and rationale of treatment, and validation of 

patients’ concerns. 

Caregivers. For caregivers, fostering and maintaining trust has direct benefits for daily interactions and 
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quality of life. Trust supports emotional well-being, social participation, and life satisfaction in later life 

(Awaworyi Churchill & Mishra, 2017; Poulin & Haase, 2015). By strengthening trustful bonds, 

caregivers can help older adults with MCI maintain social engagement, which is known to protect 

against loneliness and may slow cognitive decline (Zhou et al., 2025). The dissertation findings also 

show that individuals with MCI struggle to reduce trust in non-cooperative contexts, meaning they may 

persist in trusting unreliable or manipulative partners. This dual pattern — reduced baseline TP but 

excessive trust in risky contexts — calls for careful caregiver attention. Interventions could include 

emotion regulation training to reduce betrayal sensitivity, structured routines to provide consistent social 

reinforcement, and monitoring systems to detect potentially harmful social interactions. Caregivers play 

a dual role: encouraging healthy trust in supportive environments while actively safeguarding against 

misplaced trust that could lead to exploitation. 

Policy. At the societal level, the findings highlight the urgency of structural safeguards to protect 

cognitively impaired older adults from exploitation and abuse. While individual- and caregiver-level 

strategies are essential, broader systems are equally important. For example, financial institutions could 

develop fraud detection systems tailored to patterns of vulnerability in older adults, and governments 

could implement legal protections that require stricter oversight of financial transactions involving 

individuals with MCI. Public awareness campaigns could educate families and communities about the 

risks of misplaced trust and the importance of early intervention. At the same time, policies that 

encourage positive social engagement — such as community-based programs that foster safe social 

interaction — may help strengthen the trust capacity that individuals with MCI can maintain under 

supportive conditions. By linking social-cognitive and neural mechanisms of trust dysfunction to real-

world risks, this dissertation provides an evidence base for designing interventions that operate across 

multiple levels of society. 

Cross-cutting implications. Taken together, these results emphasize that trust is not merely a 

theoretical construct but a practical determinant of health, well-being, and safety for individuals with 

MCI. Clinicians must build and sustain trustful therapeutic relationships, caregivers must balance trust 

promotion with protection, and policymakers must design safeguards that reduce systemic vulnerability. 
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Trust thus emerges as a cross-cutting theme that connects clinical care, everyday life, and public policy. 

By integrating trust considerations into these domains, it may be possible to reduce social vulnerability, 

strengthen resilience, and improve quality of life in this at-risk population. 

6.8 Limitations and Future Directions 

Despite providing novel insights into trust abnormalities in older adults with MCI, several limitations 

of this dissertation should be acknowledged. 

Limitations. First, the measurement of trust-related components relied primarily on self-reports, which 

lack objective and independent validation in real trust dilemmas. Questionnaires may not fully capture 

affective, motivational, executive, and social processes as they occur during decision-making. This 

limitation constrains the ecological validity of the findings. Second, the neuroimaging approach was 

limited to resting-state connectivity, structural MRI, and task-based fMRI. While these methods yielded 

valuable insights, other modalities such as diffusion tensor imaging (DTI) could clarify white matter 

integrity underlying trust-related networks (Le Bihan et al., 2001), and electroencephalography (EEG) 

could provide fine-grained temporal resolution of neural activity during trust decisions (Fu et al., 2018). 

Third, although trust games simulate social interactions, they may not fully capture real-world 

interpersonal functioning. The findings were not directly linked to everyday social behaviors, such as 

social engagement or network size, reducing external validity. Finally, the studies were cross-sectional. 

This limits the ability to track how trust processes evolve across time and whether they predict 

conversion from MCI to dementia. 

Future Directions. Future research should incorporate task-based paradigms to directly measure trust-

related components, such as affective responses (e.g., emotional arousal; Sohn et al., 2015), motivation 

(e.g., reward sensitivity; Zebrowitz et al., 2018), and social cognition (e.g., theory of mind; Baglio et al., 

2012). This would improve construct validity and help clarify the psychological meaning of 

computational modeling parameters. Expanding multimodal imaging to include DTI, EEG, and 

potentially other techniques would provide a more comprehensive account of the structural, functional, 

and temporal mechanisms underlying trust. Future work should also include validated measures of daily-

life social functioning, such as the Social Engagement Scale (Qiang et al., 2022), the Lubben Social 
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Network Scale (Lubben, 1988), and everyday activity measures (Van Der Aalst et al., 2005), to better 

link laboratory findings to real-world outcomes. Longitudinal designs will be crucial for tracking 

trajectories of trust over time and testing whether abnormalities predict progression to dementia. Prior 

evidence suggests that reduced social participation and shrinking networks are risk factors for 

Alzheimer’s disease (Fan et al., 2021; Zhou et al., 2025). It is therefore important to examine whether 

trust dysfunction accelerates decline via impaired social functioning. Additionally, future research 

should integrate trust measures into predictive modeling and machine learning approaches. Multimodal 

data combining cognitive, biological, and social-cognitive markers have been shown to improve 

prediction and classification of MCI (Rathore et al., 2017; Zheng et al., 2018). Finally, translational 

studies are needed to transform mechanistic insights into interventions. This could include caregiver 

training programs that promote effective trust relationships, as well as prevention strategies aimed at 

reducing susceptibility to financial exploitation. Neurobiological interventions such as neuromodulation 

could also be explored as potential ways to improve trust functioning and social engagement. 

In summary, although the present dissertation provides strong initial evidence that MCI alters both TP 

and trust dynamics, future studies should address its methodological, ecological, and longitudinal 

limitations. Such efforts will deepen our understanding of how trust dysfunction contributes to social 

vulnerability in aging, and how it might serve as a marker and target for clinical intervention. 

6.9 Conclusion 

This dissertation set out to investigate how MCI alters TP and trust dynamics, and to identify the 

psychological and neural mechanisms underlying these changes. Guided by the neuropsychoeconomic 

framework of trust (Krueger & Meyer-Lindenberg, 2019), three complementary studies were conducted. 

Experiment 1 showed that TP was significantly reduced in individuals with MCI, driven by heightened 

betrayal sensitivity and increased reliance on the SAN, whereas healthy controls engaged the DMN to 

support social cognition. Experiment 2 extended these findings by demonstrating that gray matter 

atrophy in the anterior insula and thalamus predicted reduced TP in MCI, with affective sensitivity 

mediating this relationship. Experiment 3 revealed that while trust building in cooperative contexts could 

be preserved through compensatory recruitment of executive and social networks, trust reduction under 
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betrayal failed due to impaired learning rates, exaggerated prediction errors, and disrupted connectivity 

between the CEN and DMN. 

Together, these findings provide convergent evidence that MCI alters trust through both affective and 

cognitive (social and executive) pathways. Reduced baseline TP reflects an overreliance on affective 

hyper-sensitivity and structural decline in SAN regions, while impaired trust dynamics emerge from 

disrupted executive–social integration and weakened adaptive updating in non-cooperative contexts. At 

the same time, compensatory mechanisms demonstrate that trust is not globally lost, but selectively 

vulnerable depending on the social environment. 

The results carry important theoretical, methodological, and clinical significance. Theoretically, they 

extend the neuropsychoeconomic model of trust to a clinical population, identifying selective 

vulnerabilities in affective and executive–social components. Methodologically, they demonstrate the 

value of integrating resting-state fMRI, structural imaging, computational modeling, and task-based 

fMRI to examine social cognition in MCI. Clinically, they highlight trust as both a behavioral marker 

and a potential intervention target for reducing social vulnerability in older adults at risk of dementia. 

In conclusion, this dissertation provides novel evidence that MCI disrupts TP and dynamics through 

affective and executive–social mechanisms. These insights not only advance our understanding of social 

dysfunction in cognitive impairment but also suggest practical avenues for clinical screening, caregiver 

strategies, and policy interventions aimed at preserving autonomy and safety in aging populations. By 

framing trust as a cross-cutting theme that links neuroscience with clinical and societal concerns, this 

work establishes a foundation for future studies to develop targeted interventions and to explore trust as 

an early marker of disease progression. 

 

. 
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