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Abstract

Multi-task learning (MTL) enables a single neural network to solve multiple tasks simultaneously, offering efficiency and
improved generalization potential through shared representations. A central challenge in MTL is balancing task-specific losses
during training to avoid performance degradation. While uncertainty-based loss weighting (UW) is a popular and competitive
approach, we argue that it suffers from several limitations, including overfitting, rigid homoscedastic assumptions, and a lack
of theoretical grounding for various loss functions. Therefore, we propose Soft Optimal Uncertainty Weighting (UW-SO), a
novel loss weighting method that builds on UW by deriving analytically optimal weights and applying softmax normalization
with adaptable temperature parameter, thereby alleviating several of the shortcomings of UW. Through extensive experiments
across diverse datasets and architectures, we show that UW-SO achieves superior and robust performance compared to a
variety of existing loss weighting methods. Additionally, we provide insights into the effects of temperature selection and
propose measures to reduce computational demand.
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1 Introduction

Multi-task learning (MTL) has emerged as a powerful
paradigm in deep learning, enabling a single model to learn
and perform multiple tasks simultaneously by leveraging
shared representations across related objectives (Caruana,
Lukas Schott and Jan M. Kéhler are Joint senior authors. 1997; Ruder, 2017; Vandenhende, Georgoulis, Van Gans-
beke, Proesmans, Dai, & Van Gool, 2021). This approach
has gained increasing traction both in academic research
and real-world applications, particularly in domains such as
autonomous driving and robotics, where real-time inference
and limited computational resources demand efficient, multi-
functional neural networks (Ishihara, Kanervisto, Miura, and
Hautamaéki, 2021). By jointly training on several tasks, MTL
offers the potential for improved generalization, resource
efficiency, and knowledge transfer. However, despite its
promise, MTL introduces new challenges—most notably,
the difficulty of balancing task performance during training.
Without careful coordination, some tasks may dominate or
be neglected, resulting in suboptimal overall performance.
1 University of Mannheim, Mannheim, Germany While recent work has explored solutions ranging from archi-
tectural innovations (Hu & Singh, 2021; Heuer, Mantowsky,
Bukhari, and Schneider, 2021) to gradient-based optimiza-
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tion techniques (Liu, Liu, Jin, Stone, and Liu, 2021; Yu,
Kumar, Gupta, Levine, Hausman, and Finn, 2020), one of the
most straightforward yet impactful strategies is loss weight-
ing, where task-specific contributions to the overall training
objective are dynamically adjusted.

Despite the simplicity of assigning equal weights to all
tasks—commonly referred to as Equal Weighting (EW)—
this approach suffers from several critical shortcomings. In
practice, different tasks often rely on distinct loss functions,
such as L loss for regression and cross-entropy loss for
classification, each with inherently different scales. More-
over, task difficulty, data noise, and prediction uncertainty
can vary substantially across tasks, even when the same loss
function is used, resulting in imbalanced loss magnitudes.
These discrepancies make it necessary to dynamically adjust
task weights during training. As a result, numerous methods
have been proposed to address this issue through adaptive
loss weighting schemes (Liu, Li, Kuang, Xue, Chen, Yang,
Liao, and Zhang, 2021; Chen, Ngiam, Huang, Luong, Kret-
zschmar, Chai, and Anguelov, 2020; Javaloy & Valera, 2022;
Yu, Kumar, Gupta, Levine, Hausman, and Finn, 2020; Liu,
Liu, Jin, Stone, and Liu, 2021; Kendall, Gal, and Cipolla,
2018; Baijiong, Feiyang, and Yu, 2021; Chennupati, Sistu,
Yogamani, and A Rawashdeh, 2019; Liu, Johns, and Davi-
son, 2019; Chen, Badrinarayanan, Lee, and Rabinovich,
2018). Among them, the method of Uncertainty Weight-
ing (UW) by Kendall et al. (2018) has gained particular
attention for its theoretical grounding and strong empiri-
cal results. UW learns task-specific weights by modeling
homoscedastic uncertainty. However, we identify and empir-
ically demonstrate several limitations of this approach—such
as its susceptibility to overfitting, the restrictive assumption
of purely homoscedastic uncertainty, and its lack of theoret-
ical justification for many commonly used loss functions in
deep learning—ultimately hindering its robustness and reli-
ability across diverse datasets and settings.

In this work, we make two key contributions. First, we
conduct a thorough investigation of Uncertainty Weighting,
identifying and analyzing several of its core limitations. Sec-
ond, we introduce a novel loss weighting method-Soft Opti-
mal Uncertainty Weighting (UW-SO), which builds upon
UW while addressing its shortcomings. Rather than learning
task weights via gradient descent under the homoscedastic
assumption, we derive the analytical solution of UW, reveal-
ing that optimal task weights correspond to the inverse of task
losses. We then apply a softmax normalization with a tem-
perature parameter to these weights, enabling controlled and
balanced task weighting throughout training. Our extensive
experiments across multiple datasets and network architec-
tures demonstrate that UW-SO consistently outperforms UW
and exhibits improved robustness, notably mitigating over-
fitting. Following the recommendations of Xin et al. Xin et
al. (2022), we further ensure the validity and comparability
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of our results by applying method-specific tuning of learn-
ing rate and weight decay, which was often overlooked in
previous works.

This paper presents an extended and revised version of our
earlier work (Kirchdorfer, Elich, Kutsche, Stuckenschmidt,
Schott, and Kohler, 2024), in which we introduced the first
version of our UW-SO method for weighting losses in MTL.
The current paper builds upon that foundation in three major
directions. First, we substantially deepen the discussion on
uncertainty-based loss weighting by identifying and analyz-
ing arange of theoretical and empirical limitations inherent to
the UW approach. Second, we provide a more comprehensive
theoretical analysis of the UW-SO method, explicitly high-
lighting how it addresses the shortcomings of UW. Third,
we extend our experimental evaluation and ablation studies
by exploring different strategies for determining the optimal
softmax temperature and by examining the effect of batch
size on the performance of several loss weighting methods.

The remainder starts with discussing related work in Sec-
tion 2, followed by an in-depth investigation of uncertainty-
based loss weighting in Section 3. Then, Section 4 details
our proposed loss weighting method UW-SO, before report-
ing on several evaluation experiments in Section 5. Finally,
Section 6 concludes the paper.

2 Related Work

Research on MTL can broadly be categorized into three main
areas. The first line of work focuses on neural network archi-
tectures, particularly on how features should be shared across
tasks to maximize performance (Duong, Cohn, Bird, and
Cook, 2015; Yang & Hospedales, 2016; Misra, Shrivastava,
Gupta, and Hebert, 2016; Liu, Johns, and Davison, 2019; Xu,
Ouyang, Wang, and Sebe, 2018; Maninis, Radosavovic, and
Kokkinos, 2019). In this work, we use a neural backbone
with a separate prediction head for each task, sharing the
lower-layer parameters across tasks. The second area investi-
gates task affinities, also referred to as task groupings, which
aim to capture interdependencies between tasks and lever-
age them to improve joint training (Li, Sharma, and Zhang,
2024; Fifty, Amid, Zhao, Yu, Anil, and Finn, 2021; Stan-
dley, Zamir, Chen, Guibas, Malik, and Savarese, 2020; Li,
Ju, Sharma, and Zhang, 2023). The third area, multi-task
optimization (MTO), focuses on how to appropriately bal-
ance tasks during training to mitigate issues such as negative
transfer and imbalance in task progress. This can be further
divided into two subcategories: loss-weighting and gradient-
based methods.

Loss weighting methods address the challenge of weight-
ing task-specific losses appropriately. Most relevant for
our work, Uncertainty Weighting (UW) (Kendall, Gal, and
Cipolla, 2018) weights different losses by learning the
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respective task-specific homoscedastic uncertainty. We adapt
this by computing task weights based on the analytically opti-
mal solution of UW and normalizing the results through
a softmax function (see Section 4.2). In contrast to the
weighted sum of losses, the geometric loss strategy (GLS)
computes the geometric mean of task losses (Chennupati,
Sistu, Yogamani, and A Rawashdeh, 2019). This approach
eliminates the need for additional hyperparameters, but its
multiplicative nature makes it numerically unstable when
applied to a large number of tasks. Dynamic Weight Aver-
aging (DWA) assigns higher weights to tasks whose losses
decrease more slowly relative to others, thereby encouraging
the model to focus on harder or slower-learning tasks (Liu,
Johns, and Davison, 2019). In contrast to UW, DWA is
a heuristic method and, similarly to our approach, relies
solely on the temporal dynamics of task losses. However,
our method is grounded in the underlying assumptions of
UW that tasks with lower uncertainty should receive higher
weights. Impartial Multi-Task Learning (IMTL-L) (Liu, Li,
Kuang, Xue, Chen, Yang, Liao, and Zhang, 2021) aims to
ensure that all tasks contribute equally to training by learn-
ing task-specific scaling factors for the losses. These scaling
factors are optimized via gradient descent such that the scaled
losses remain constant across tasks throughout training. The
brute force method Scalarization (Xin, Ghorbani, Garg,
Firat, and Gilmer, 2022) searches all possible combinations
of fixed loss weights. While Scalarization has empirically
demonstrated strong performance compared to current auto-
mated MTO methods, recent theoretical work shows that the
approach is generally incapable of fully tracing out the Pareto
front over the individual task losses (Hu, Xian, Wu, Fan, Yin,
and Zhao, 2023). Random Sampling of Loss Weights (RLW)
is a stochastic weighting strategy in which task-specific
weights are sampled per batch, typically from a Gaussian
distribution and normalized, e.g., via softmax. We consider
it a baseline as proposed by Baijiong et al. (2021). Other loss
weighting methods are proposed in (Lakkapragada, Sleiman,
Surabhi, and Wall, 2023; Lin, Jiang, Ye, Zhang, Chen, Chen,
Liu, and Kwok, 2023; Fan, Chen, Tian, Li, He, and Jin, 2022;
Guo, Haque, Huang, Yeung, and Fei-Fei, 2018; Vasu, Sax-
ena, and Tuzel, 2021).

Gradient-based methods leverage task-specific gradi-
ents to either compute scaling factors applied directly to each
task’s gradient (Chen, Badrinarayanan, Lee, and Rabinovich,
2018; Sener & Koltun, 2018; Liu, Li, Kuang, Xue, Chen,
Yang, Liao, and Zhang, 2021; Navon, Shamsian, Achituve,
Maron, Kawaguchi, Chechik, and Fetaya, 2022; Mao, Wang,
Liu, Lin, and Xie, 2022; Senushkin, Patakin, Kuznetsov, and
Konushin, 2023), or to manipulate gradients in order to miti-
gate conflicts in their directions (Liu, Li, Kuang, Xue, Chen,
Yang, Liao, and Zhang, 2021; Chen, Ngiam, Huang, Luong,
Kretzschmar, Chai, and Anguelov, 2020; Javaloy & Valera,
2022; Shi, Li, Zhang, Chen, and Wu, 2023; Liu, Feng, Stone,

and Liu, 2023). These methods vary in how they handle
gradient conflicts, for example by projecting gradients onto
the normal plane (Yu, Kumar, Gupta, Levine, Hausman, and
Finn, 2020), or optimizing for trade-offs between average
and worst-case task performance (Liu, Liu, Jin, Stone, and
Liu, 2021). A key drawback of gradient-based approaches
is their computational overhead, as they require computing
task-wise gradients during training. In this work, we focus
on loss weighting methods instead, as they have been shown
to outperform gradient-based alternatives in practice (Xin,
Ghorbani, Garg, Firat, and Gilmer, 2022; Kurin, Palma,
Kostrikov, Whiteson, and Mudigonda, 2022), with notably
shorter training times (Chen, Ngiam, Huang, Luong, Kret-
zschmar, Chai, and Anguelov, 2020).

3 Background

In this section, we first formally introduce the general MTL
problem statement, which we use in this work. Next, we
describe the UW method, which serves as the foundation
for our work, providing a comprehensive discussion of its
potential limitations.

3.1 MTL Problem Statement

In MTL, we aim to resolve K tasks for some input data point
x € X. For this, x is mapped to labels {yx € Vi}ke[1,k]
simultaneously using specific mappings {fx : X — Yk}
Thus, we consider the typical scenario of a single input
domain X for multiple tasks /. We assume hard task-shared
parameters 6 in a hydra-like neural network architecture.
This means all tasks receive the same intermediate feature
z = f(x;0) from the shared backbone and each task head
yields the output fi (x) = f;(z; 6x) with task-specific param-
eters 6 (Ruder, 2017).

The network is trained by considering all tasks’ losses L.
Naively summing up these losses (the EW method) typically
leads to imbalanced learning as tasks with high gradient mag-
nitude might dominate the training. The goal is thus to find
optimal (dynamic) loss weights wy for all tasks to optimize
the loss L = ), wx L in a way that all tasks benefit w.r.t.
their final performance metrics.

3.2 Uncertainty-Based Loss Weighting

Uncertainty-based weighting of task losses in MTL, as pro-
posed by the UW method (Kendall, Gal, and Cipolla, 2018),
has emerged as one of the most widely adopted approaches.
Its popularity is largely attributed to its simplicity, compu-
tational efficiency, and strong empirical performance (see
section 5). The core assumption underlying UW is that task
losses can be adaptively weighted based on its aleatoric
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homoscedastic uncertainty. To provide the necessary context,
we begin by briefly reviewing key concepts and assumptions
of uncertainty in deep learning, after which we detail the UW
method and critically examine its potential limitations.

3.2.1 Uncertainties in Bayesian Deep Learning

In Bayesian deep learning, uncertainty quantification plays
a critical role in enhancing model robustness and inter-
pretability, particularly in safety-critical applications such
as autonomous driving or medical imaging. There are two
principal types of uncertainty that can be modeled: epistemic
uncertainty and aleatoric uncertainty (Kendall & Gal, 2017).
Epistemic uncertainty It captures uncertainty in the model
parameters and reflects the model’s ignorance due to lim-
ited training data. It can be resolved with the availability of
more data. Epistemic uncertainty is particularly significant in
regions of the input space that are underrepresented during
training and is typically modeled by placing a prior distribu-
tion over the model’s weights.

Aleatoric uncertainty In contrast, aleatory uncertainty cap-
tures the inherent noise in the observations—uncertainty that
persists even with unlimited data. This type of uncertainty
arises from factors such as sensor noise or intrinsic variabil-
ity in the data-generating process. Aleatoric uncertainty can
be further subdivided into two categories:

e Heteroscedastic (data-dependent) uncertainty, which
varies with the input data and is typically modeled as
an additional output of the network.

e Homoscedastic (task-dependent) uncertainty, which is
independent of the input data but may differ between
tasks. This form of uncertainty is not input-dependent
and may be modeled using a single parameter per task.

3.2.2 Uncertainty Weighting

Building upon the concept of homoscedastic uncertainty,
Kendall et al. (2018) proposed the Uncertainty Weight-
ing (UW) method as a principled approach for balancing
task losses in MTL. Rather than relying on manually tuned
weights, UW leverages homoscedastic uncertainty to adap-
tively learn the weighting of each task’s loss during training.
The key idea is to model the likelihood of each task out-
put using a probabilistic formulation, where, e.g., regression
tasks that are evaluated by the L, loss follow a Gaussian
distribution, such that

POk | fir(x) = N(fi(x), o), 4))

where crk2 is assumed to represent the task-specific homoscedas-

tic uncertainty. Minimizing the negative log-likelihood for
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the above regression task yields the task loss

1
Ly = —2Lk + log 0. ()
20¢

The term # acts as an adaptive weight, reducing the
k

influence of noisier tasks, while log oy serves as a regularizer
to avoid the trivial solution 0 — oo. Here, Lj refers to an
L3 1oss || fi(x; 0) = ylf3.

It is important to note that the exact loss formulation in the
UW method depends on the nature of the task, or more pre-
cisely, on the associated loss function. While the derivation
presented above holds for regression tasks evaluated using
the L, loss, it does not directly apply to regression tasks
employing the L loss, or to classification tasks, which are
typically optimized using the cross-entropy loss. For exam-
ple, an L;-based regression task corresponds naturally to a
Laplace likelihood, which leads to a modified task loss of the
form:

1
Ly = —Li +logoyg, 3
Ok

where Ly refers to an Lp loss || fx(x;60) — y||;. Having
outlined the UW method, we now proceed to identify and
critically examine potential limitations of the approach and
its underlying assumptions.

Probabilistic interpretation A key assumption of UW is
that each task loss naturally corresponds to some likelihood.
Thus, UW requires each task loss Ly to be interpreted as
the negative log-likelihood under a specific noise model. For
instance, following the derivation of Kendall et al. (2018),
we showed above that in a regression setting, there is a natu-
ral connection between the Gaussian distribution and the L,
loss, thus providing a link between loss and task uncertainty.
The same was shown to hold for the Laplace distribution and
the L loss.

However, many loss functions used in deep learning do
not naturally correspond to such likelihoods. As a result, the
probabilistic interpretation—central to the UW method—
is not naturally applicable to such losses. This mismatch
can lead to suboptimal weighting, because the underlying
assumptions about the data distribution and its noise prop-
erties may not accurately reflect the behavior of the task.
For instance, cosine similarity loss has no natural link to
a distribution, making it inapplicable to be used in the
uncertainty-based weighting formulation (Liu, Li, Kuang,
Xue, Chen, Yang, Liao, and Zhang, 2021). Furthermore,
Kendall et al. (2018) extend their UW method to classifi-
cation tasks by interpreting task uncertainty as a temperature
scaling of the softmax function, which however requires
a simplifying assumption to derive an uncertainty-based
weight formulation for classification tasks with cross-entropy
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loss. Specifically, the authors define the likelihood as a scaled
softmax function

1
p(y | f(x), o) = Softmax(—7 f (x)). “

This scaling controls the confidence of the model’s pre-
dictions: larger o> (higher uncertainty) yields a flatter and
more evenly distributed softmax (lower confidence), and vice
versa. The corresponding log-likelihood is given by:

1 1,
log p(y = ¢ | f(x).0) = — fe(x) ~log ) _exp (;f,;(x)) ,
)

where f, is the logit corresponding to the true class. This
expression depends on ¢ in both terms, making it nonlinear
and complex to optimize, especially because the log-sum-exp
term is difficult to handle analytically when scaled. There-
fore, the authors introduce a simplifying assumption

1/0?
1
D exp (;f;oc)) ~ (Z eXp(fC’(x))> : ©)

Introducing this approximation, the loss formulation can
be derived as follows:

1
L, = —2Lk + log o%. (7)
Ok

However, this approximation only holds true for o — 1,
and it is more valid when the logits f/(x) are close in value,
i.e., when the softmax distribution is close to uniform. In this
case, raising the sum of exponentials to a power is close to
summing the individually scaled exponentials. However, the
approximation fails to hold in cases where o differs signif-
icantly from 1, especially when large or very small, or the
logits f/(x) are highly variable, i.e., when one class has a
dominant logit, and others are near zero or negative. In such
cases, the nonlinearity of the exponential function ampli-
fies errors introduced by approximating the sum of scaled
exponentials with a powered sum. This can cause significant
deviations in the estimated loss values.

In summary, the probabilistic foundation of UW—which
assumes that each task loss corresponds naturally to a specific
likelihood function—does not extend to many commonly
used loss functions in deep learning. As a result, the resulting
task weights may be suboptimal or theoretically inconsistent.
Homoscedastic assumption In UW, the aleatoric uncer-
tainty is assumed to be homoscedastic, meaning it is constant
for all data points within a given task k € KC:

or(x) = o Vax. (8)

However, in real-world applications, noise is often het-
eroscedastic, i.e., data dependent. For example, correctly
identifying a traffic sign in sunny weather is much more
certain than detecting it under foggy conditions. Further-
more, given that UW assumes task uncertainty to be purely
aleatoric, itignores epistemic uncertainty, which captures the
model’s confidence in its own predictions. In practice, both
types of uncertainty are intertwined - limited data or model
capacity can lead to uncertainty that is epistemic in nature but
gets absorbed into the estimated 6. A single global parameter
per task may therefore fail to capture the true variability in
the uncertainty.

To show this, Figure 1 depicts the results of a simple
toy experiment, where a neural network learns a function
f(x) = x+e,withe ~ N (0, o) accounting for homoscedas-
tic uncertainty in the data. The gray hyperplane in the plot
represents the optimal prediction for which 6 = o. We can
observe that 6 deviates significantly from the true value o
in settings with few data points or small networks, for which
the epistemic uncertainty is high.

Focus on tasks with low uncertainty

Under UW, tasks with smaller estimated o are prioritized
because their losses receive higher weight due to inverse scal-
ing. However, if the epistemic uncertainty is high, the model
may compensate by learning a larger o when it struggles to
fit the data. Consequently, tasks perceived as having higher
noise—due to a mismatch between the model’s assump-
tions and actual noise—get down-weighted and effectively
neglected during optimization. This imbalance can degrade
overall performance, especially when noise varies systemat-
ically across the input domain.

Task weight independence In UW, the uncertainties across
different tasks are assumed to be independent. This assump-
tion allows the joint likelihood to be factorized as

K
Py B =[] px | o)), ©)
k=1

which leads to a total loss as a weighted sum over indi-
vidual task losses (here tasks with L loss; see Equation 3):

1
L= —Li+logoy. (10)
Ok
kekC

However, in real-world MTL scenarios, this indepen-
dence assumption is often violated. Tasks commonly share
intermediate representations and structural cues, leading to
correlated predictions and errors. For instance, in computer
vision, the tasks of surface normal prediction and depth
estimation are inherently linked: surface normals can be com-
puted from the depth map, and both rely on similar geometric

@ Springer
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Fig.1 Learned UW & values
(last training epoch) for
different noise std deviations o
across different sized datasets
and neural networks. With
increasing amount of data and
growing network capacity, &
converges towards o. The gray
hyperplane defines the area for
which6 = o

0.1

esl‘d)

features in the image. Consequently, an error in depth esti-
mation (e.g., due to occlusions or ambiguous depth cues) can
propagate to surface normal predictions.

Caruana’s seminal work on MTL (Caruana, 1997) high-
lights that task interdependence can also serve as a beneficial
inductive bias, improving generalization through auxiliary
tasks. Ignoring such correlations by modeling tasks with
independent noise can yield suboptimal weighting in the UW
scheme. In particular, if two tasks are strongly correlated but
modeled independently, the task with a smaller estimated
uncertainty oy will receive a disproportionately high weight.
This can dominate the optimization process and suppress
learning signals from related tasks, even though joint train-
ing would ideally balance their influence.

Inertia While the limitations discussed above were derived
from a rather theoretical perspective, we now examine the
limitation of inertia from an empirical standpoint. We refer to
inertia as the phenomenon of slow update steps of the learned
uncertainty parameters. Specifically, when uncertainty-based
task weights are initialized equally across tasks, this can
hinder the convergence to optimal values for each task and
epoch during gradient descent, causing a slow adaptation to
the true value of o. This issue is particularly pronounced
when the ideal task weights differ by orders of magnitude.
To empirically illustrate this phenomenon, we analyze the
evolution of task weights w; on the NYUv2 dataset using
two different initialization strategies (Figure 2). In the first
setting (blue line, UW S1), we apply the standard initializa-
tion wy = 0.8 (Lin & Zhang, 2023). In the second setting
(orange line, UW S2), we initialize each task weight to the
final value of wy obtained from a previous training run. The
results show that task weight trajectories differ significantly
depending on the initialization. Notably, it takes approxi-
mately 100 epochs—around one-quarter of the total training
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duration—before the weights converge, at which point the
blue and orange curves begin to behave similarly. Since both
experiments are exposed to identical unweighted task losses
from the beginning of the training, we would expect the
weights wy to rapidly adapt to the task-specific losses, effec-
tively overriding any suboptimal initialization. However, this
is not the case. This delay in adaptation highlights the impact
of non-optimal initialization on training dynamics, driven by
the update inertia of the task weights. In contrast, our UW-
SO method is not affected by update inertia as it computes
the task weights directly from the losses instead of learning
it via gradient descent.

Overfitting In our experiments, we find that UW is prone to
overfitting, as indicated by a substantial gap between training
and test losses (see Section 5). We attribute this behavior to
several factors. First, as discussed above, UW relies on the
strong assumption of homoscedastic task uncertainty, i.e.,
task uncertainty is constant across all inputs. This assump-
tion often fails to capture the inherent variability in data
complexity and label noise such as heteroscedasticity, lead-
ing to miscalibrated uncertainty estimates. As a result, UW
may overfit to the training data by overemphasizing tasks that
appear easy to optimize during training, while underperform-
ing on more challenging or noisy examples at test time. A
further contributing factor may be the tendency of the learned
uncertainty parameters oy to shrink during training as the
model becomes increasingly confident. This results in dispro-
portionately large task weights—without any explicit upper
bound—which causes the model to aggressively optimize
certain tasks, typically those with easily minimized losses,
at the expense of generalization. The built-in regularization
term log o} may be too weak to sufficiently counteract this
over-confidence, leading to loss weights that are overly tai-
lored to the training data and ineffective for unseen inputs.
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Fig. 2 Comparison of the learning procedure of task weights for a)
semantic segmentation, b) depth estimation, and c) surface normals on
NYUvV2 using SegNet for two different initializations of oy for UW.
Equal starting parameter values in blue (UW S1) as in (Lin & Zhang,

Having discussed uncertainty-based loss weighting and its
limitations, we now introduce a novel loss weighting method
that builds upon UW while addressing several of the afore-
mentioned shortcomings.

4 Our Approach

In this section, we outline our proposed loss weighting
method Soft Optimal Uncertainty Weighting (UW-SO). For
this, we first derive the analytically optimal solution of UW
in Section 4.1, before describing its softmax extension in
Section 4.2.

4.1 UW-0 Derivation

In Section 3, we outlined that UW estimates homoscedas-
tic task uncertainty via gradient descent to adaptively weigh
each task k € K. However, as discussed, this learning-based
approach introduces several limitations, including update
inertia—i.e., a delayed or suboptimal adaptation of task
weights during training—and susceptibility to overfitting
due to miscalibrated uncertainty estimates. To address these
issues, we propose to derive the analytical solution for UW,
thereby replacing the learned uncertainty parameters with
closed-form expressions.

Recall Equation 3 where we defined the uncertainty-based
weighted loss for tasks captured by the L loss. We can write
the optimization objective as

1
min — Ly + log oy,
ox Oy

(1)

where we minimize the UW loss function with respect to
oy. Taking the derivative and solving for oy results in an

Training Epoch

(b) Depth

Training Epoch
(¢) Normal

2023); higher starting values (values of last epoch from a previous run)
in orange (UW S2). The plots do not show o} values, but actual task
1

weights wp = 307 We plot the mean task weight of 5 random seeds

with the standard deviation as shaded area

analytically optimal solution:

0 1 1 1
— —Lj; +logoy = ——sz—l—— (12)
doy o oy Ok
1 1
——Lg+—=0 (13)
of Ok
ox = L (14)

We assume oy, to be positive and therefore only allow for
positive losses. Note that this limitation comes from UW
which only works for losses that are positive and are based
on a location scale distribution.

Replacing o} with its analytical solution L in the total
loss function gives the following loss:

3

kelC 58

Ly +logsg[Lil, 15)

[Lk]

where we denote s g as the stopgradient operator to avoid zero
gradients of the network updates. Since we do not compute
any gradient of the second part of the loss, we can simplify
the term, such that each loss is effectively weighted by its
inverse:

1
L= Z Ly. (16)
S s8lLi]

For later reference, we name this intermediate result Opti-
mal Uncertainty Weighting (UW-0), where optimal refers to
the analytical loss minimum. Note that although the analyt-
ical solution for tasks using L or cross-entropy loss differs
by a factor of 2 in the denominator (see Kirchdorfer et al.
(2024)), we adopt Equation 16 as the weighting scheme for
all tasks for the sake of simplicity and empirically observed
robustness. Interestingly, we found that there exist three

@ Springer



8 Page80of19

International Journal of Computer Vision (2026) 134:8

approaches that introduce related concepts: 1) IMTL-L (Liu,
Li, Kuang, Xue, Chen, Yang, Liao, and Zhang, 2021) aims
to have each weighted loss wy Ly scaled to 1, though, they
learn wy using gradient descent. 2) Dual-balancing (Lin,
Jiang, Ye, Zhang, Chen, Chen, Liu, and Kwok, 2023) trans-
forms the loss to log L to normalize over different scales.
Taking the gradient of log L is equivalent to taking the gra-
dient of sg[;Lk]Lk (Lin, Jiang, Ye, Zhang, Chen, Chen, Liu,
and Kwok, 2023, Sec. 3.1) which is 1 for all tasks k € ;
for the L = || - ||1 loss it is equivalent to Equation 16. Thus,
in dual-balancing the gradient is scaled whereas we scale
the loss L. 3) EMA (Lakkapragada, Sleiman, Surabhi, and
Wall, 2023) scales the loss by the Exponential Moving Aver-
age which is identical to the inverse loss in UW-O when the
hyperparameter 8 = 1.

4.2 UW-SO

While UW-O offers a simple and cost-efficient scheme by
scaling each task loss to 1, we propose to enhance it by apply-
ing a softmax normalization, yielding UW-SO. Inspired by
the findings of Xin et al. (2022), who demonstrate that manu-
ally tuned task weights wy in an exhaustive grid-search such
that ) ", . wx = 1 (a method known as Scalarization) can
outperform existing MTO methods, UW-SO introduces a sin-
gle temperature parameter T to control the smoothness of the
weight distribution. This enables improved performance, as
shown in our experimental results in Section 5, while avoid-
ing the computational cost of tuning K separate weights, as
required by Scalarization.

Formally, UW-SO computes the task weights using a tem-
pered softmax over the analytically derived inverse losses:

1
L= wLi=) exP(‘g[L“{T) Li. (17)
ik iex 2jek exP (e /T)

The temperature T controls the sharpness of the weight-
ing: higher values produce more uniform weights, while
lower values yield more selective weighting. Unlike Scalar-
ization, which becomes impractical for a large number of
tasks, UW-SO is scalable to arbitrary many tasks.

The (tempered) softmax function is widely used in the
field of MTL. For instance, the MTO methods RLW and
DWA also use softmax normalization with 7 = 1 and T =
2, respectively. Other domains related to discrete selection
also make use of the tempered softmax: Caccia et al. (2019)
uses it to control the quality-diversity trade-off of generated
samples in GANs. Hinton et al. (2015) use it in knowledge
distillation to provide softer outputs from the teacher model.
Other usages are out-of-distribution detection (Liang, Li, and
Srikant, 2018) or confidence calibration (Guo, Pleiss, Sun,
and Weinberger, 2017). Works in hash learning (Tan, Liu,
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Zhao, Yang, Zhou, and Hu, 2020) and Neural-Architecture
search (Chang, Zhang, Guo, Meng, Xiang, and Pan, 2019)
both use the Gumbel-Softmax with temperature (Jang, Gu,
and Poole, 2016).

Beyond the intuitive motivation for applying a softmax,
as discussed above, we now examine several properties of
UW-SO, which by help of the softmax function address key
limitations of the UW method outlined in Section 3.

4.2.1 Properties of UW-SO

Modeling task interdependence The softmax normaliza-
tion inherently couples the tasks together by enforcing the
weights to sum up to 1:

Za)kZI. (18)

kelC

Astask weights need tobein [0, 1], the optimization of one

task’s weight directly influences the others, creating a trade-
off among tasks. This constraint enforces a dynamic, where
increasing the importance of one task necessitates decreas-
ing the importance of others. By introducing this normalized
weighting scheme, UW-SO alleviates a key limitation of
UW-—namely, the independent treatment of task weights—
and instead better models interdependencies between tasks,
which is more aligned with the core motivation of MTL:
improving generalization through shared learning.
Balancing task prioritization via 7 The temperature
parameter 7' controls the sensitivity of the weight allocation
to task losses: lower values of 7' cause the weights to concen-
trate more heavily on a few tasks, while higher values spread
them more uniformly. A higher value of T can therefore mit-
igate the limitation of UW where tasks with low uncertainty
are prioritized. Moreover, T can be adjusted dynamically
during training, drawing an analogy to the exploration—ex-
ploitation trade-off in Reinforcement Learning or the shifting
focus characteristic of Curriculum Learning.
Mitigating the homoscedasticity assumption of UW UW
assumes homoscedastic task uncertainty, modeling each
task’s noise level with a single learnable parameter and
thereby ignoring variability across individual samples. UW-
SO mitigates this limitation by determining task weights on
the actual observed losses within a batch, rather than relying
on static, task-specific parameters. Since the loss function
aggregates information across individual samples, variations
in sample difficulty or noise can influence the task weight
indirectly. This introduces a form of data-driven adaptivity
that reflects changing uncertainty patterns without requiring
explicit modeling of per-sample heteroscedasticity.
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4.2.2 Strategies for Determining the Softmax Temperature
T

The temperature parameter 7 plays a critical role in the per-
formance of UW-SO and, as we will demonstrate in our
experiments, its optimal value varies significantly across
datasets. In the following, we identify and discuss several
strategies for selecting an appropriate temperature.
Strategy 1: Tune as hyperparameter The most straight-
forward approach to selecting the temperature 7T is inspired
by the Scalarization method, as described above: perform-
ing a grid search over a predefined range. In this case,
T is treated as a static hyperparameter, determined prior
to training and kept fixed throughout. As our experiments
will demonstrate, this approach is the most robust one by
yielding superior performance across various datasets and
architectures. While it substantially reduces the computa-
tional burden of Scalarization—by requiring the tuning of
only one single hyperparameter—it remains more costly than
UW, which involves no hyperparameter at all. To address this,
we discuss two alternative strategies for deriving the value
of T.

Strategy 2: Solve analytically The first cost-efficient alter-
native we explore is an analytical solution to the optimization
problem for T. The corresponding loss function under the
UW-SO weighting scheme is given by:

L(T) =) wx(T)Ly, (19)
kel

ag
exp( -+
)t =
Zjexcoxp( )
optimal temperature 7', we differentiate L(7") with respect
toT:

where wi (T) = @. To find the

dL d
— = 4ok Lg. (20)
daTr ar
kel
Using the chain rule and the definition of wy(7T), we
obtain:

1
— =o 0 X’:Cajwj(T)—ak . Q1)
j€

Thus, the derivative of the loss is:

dL 1
= Z i (T) [a(T) — ax] Ly, (22)

kelC

where o(T) = 3~ ajw;(T). Setting 3—% = 0 gives the
necessary condition:

> (1) [a(T) — ax] L = 0. (23)
kelC

Since wy(T) depends on exp(ar/T) and appears in the

denominator of a sum, solving for T explicitly is not pos-
sible with elementary functions. The resulting equation is
transcendental, meaning that T cannot be solved in a closed-
form.
Strategy 3: Learn via gradient descent Since 7' does not
admit a closed-form solution, we also investigate the pos-
sibility of learning it dynamically via gradient descent. To
this end, we treat T as an additional learnable parameter
of the neural network, initialized to its default value of 1.
However, directly optimizing the UW-SO formulation from
Equation 17 can lead to degenerate solutions where 77 — 0,
concentrating all weight on the task with the smallest loss
magnitude and effectively ignoring the others. To mitigate
this, we extend the UW-SO loss with a regularization term
that penalizes excessively small temperatures:

exp(ogrg/T) 1

L= i Ly + T’
ik 2 jek exp(sgrr/T)

(24)

where the additive term % serves as a regularizer to discour-
age the collapse of the temperature and promote balanced
task weighting.

5 Experiments and Results

This section presents the experiments used to evaluate the
performance of our UW-SO method for weighting tasks in
MTL scenarios. In the remainder, Section 5.1 describes the
experimental setup, followed by the discussion of the results
in Section 5.2, and various ablation studies in Section 5.3.

5.1 Experimental Setup

In the following, we provide details about the datasets,
network architectures, metrics, evaluation setups, and hyper-
parameters employed in our experiments.
Datasets We use three common computer vision MTL
datasets: two datasets for scene understanding—NYUv2
(Nathan Silberman et al., 2012) and Cityscapes (Cordsts,
Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke,
Roth, and Schiele, 2016)—and a binary attribute dataset
CelebA (Liu, Luo, Wang, and Tang, 2015).

NYUv2 contains 464 indoor scenes recorded in three dif-
ferent cities, resulting in 636 images for training, 159 for
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validation, and 654 images for testing. The dataset comprises
three tasks: 13-class semantic segmentation, depth estima-
tion, and surface normal prediction. For training, we follow
previous work Liu et al. (2021, 2019) and resize the images
to 288x384 and apply image augmentations. The augmen-
tations include randomly scaling the images (ratio=1.0, 1.2,
1.5) and randomly flipping them.

Cityscapes consists of urban street scenes from 50 dif-
ferent cities yielding 2380 images for training, 595 for
validation, and 500 images for testing. The dataset has 2
tasks: 7-class semantic segmentation and depth estimation.
We resize the images to 128x256 and apply the same aug-
mentation techniques used for NYUv2.

CelebA is a dataset of celebrity faces with different
attributes of 10,177 identities. We cast it as an MTL dataset
by viewing the available 40 binary attributes, e.g., glasses
and smiling as individual classification tasks. The train, val-
idation, and test set contain 162,770, 19,867, and 19,962
samples, respectively.

Architectures For NYUv2, we use a SegNet (Badrinarayanan,
Kendall, and Cipolla, 2017), ImageNet pretrained ResNet-50
/ResNet-101 with a DeepLabHead, and the MTAN on top of
the SegNet (Liu, Johns, and Davison, 2019). For Cityscapes,
we use a SegNet, a DeepLabV3+ (Chen, Zhu, Papandreou,
Schroff, and Adam, 2018) network with pre-trained ResNet-
50 / ResNet-101 backbones, and again the MTAN/SegNet.
All Single-Task Learning (STL) baselines are trained with
the SegNet. For CelebA, we use a ResNet-18, also for STL.
Metrics To compare models, we use task-specific metrics
and the established A,,-metric (Maninis, Radosavovic, and
Kokkinos, 2019), which measures the average relative per-
formance gain of the multi-task model M,, w.r.t. a single-task
baseline Mj:

K
1
Am= I;(—IY'f(Mm,k — M)/ Mp., (25)

where /i is 1/0 if a higher / lower value is better for criterion
M.

Two evaluation setups Several papers (e.g., Liu et al. (2021,
2019); Yu et al. (2020); Navon et al. (2022)) have used
a fixed training protocol for NYUv2 and Cityscapes, with
no hyperparameter tuning, averaging results over the last
10 test epochs. In contrast, other studies (e.g., Xin et al.
(2022); Kurin et al. (2022); Sener and Koltun (2018)) advo-
cate for method-specific hyperparameter tuning, which is
more relevant for practitioners. Following Xin et al. (2022),
we perform a thorough hyperparameter search for all meth-
ods, selecting the best combination based on the A,, score
and using early stopping on the validation set. For final eval-
uation, we train on 5 random seeds and report the mean test
performance. However, acknowledging other works, we also
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provide results using the fixed protocol with MTAN/SegNet
on NYUV2 and Cityscapes.

All models are trained with the Adam optimizer which has

been shown to perform advantageous on MTL setups (Elich,
Kirchdorfer, Koehler, and Schott, 2024). Similar to Liu et
al. (2021), we decay the learning rate after 100 epochs by a
factor of 2 for both NYUv2 and Cityscapes. In CelebA, we
halve it after 30 epochs. As batch size, we use 2 / 8 / 256 for
NYUv2/Cityscapes/CelebA. Compared to Liu et al. (2021),
we increase the number of epochs for NYUv2 / Cityscapes
to 400 / 600 epochs. CelebA remains at 100 epochs as there
is no further improvement.
Hyperparameters For tuning the Learning Rate (LR) and
Weight Decay (WD), and the hyperparameters of the MTO
method, we employ a sequential line search by first tun-
ing the LR together with the MTO hyperparameters using
a fixed WD, followed by tuning the WD. For NYUv2 and
Cityscapes, we use the following search space for the LR
yand WD A: y € [1073,5% 1074, 1074, 5 % 107>, 1077]
and A € [0,107%, 107>, 107, 1073, 102]. For CelebA, the
search space looks as follows: y € [5 % 1072,1072,5 x
1073,1073,5%107*, 10~*]and 1 € [0, 1075, 1074, 1073].
In our main benchmark, we employ the hyperparameter tun-
ing strategy for determining 7" in UW-SO. We search T with
a step size of 5 and then employ a finer search around the
optimum. Note that in an ablation study, we will compare
this to the strategy of learning T via gradient descent. For
Scalarization, we first test each possible combination of task
weights with a step size of 0.1. If no proper result could be
achieved (e.g., for Cityscapes), we further test values around
the previously found optimum with a step size of 0.02. For
DWA, we follow Liu et al. (2019) and set T = 2.

5.2 Benchmark of Common Loss Weighting Methods

We compare our method UW-SO to the most common loss
weighting approaches. Overall, UW-SO consistently per-
forms best or second-best across all datasets and architectures
w.r.t. the A, metric. This holds for the hyperparameter-
tuned experiments as well as for those with the fixed training
protocol. Occasionally, our method gets beaten by the com-
putationally expensive Scalarization approach, especially
when using the SegNet architecture. Although differences
between MTO algorithms decrease for larger networks, UW-
SO consistently outperforms UW in all experiments.

Cityscapes On Cityscapes, UW-SO achieves the best A,
score when trained on both ResNet architectures as well as on
the MTAN/SegNet with the fixed hyperparameters, and the
second-best behind Scalarization when trained on the SegNet
(see Table 1). In contrast to NYUv2 (see Table 2), the per-
formance of Scalarization decreases for larger networks due
to weak results on the difficult and highly sensitive relative
depth error. While an even more fine-grained search of task
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Table 1 Test data results on Cityscapes with SegNet, ResNet-50,
ResNet-101, and MTAN. Our method UW-SO is underlined. For the
first 3 architectures, we report the average over 5 runs, for A,, including
=+ one std. dev. The best score is in bold, the second best is underlined.
We report the best LR and WD values for each experiment. WD and LR
are abbreviated as: a: 0.0,b: 107%,¢: 5 x 107°,d: 1075, e: 5 x 10*5, f:

1074, 5% 1074, h: 1073, i: 5 x 10*3,j: 1072, The best softmax tem-
perature for the 4 architectures is 7 = 20,/28/48/22. For Scalarization,
best weights are equal for the first 3 architectures with w = [0.02, 0.98]
and for MTAN with @ = [0.04, 0.96] for segm. and depth. Addition-
ally, we report results over 3 seeds based on the training protocol that
uses MTAN+SegNet with fixed hyperparameters.

A. E. Method Ir wd Segmentation | Depth |
mloU PixAcc AbsErr RelErr Ep A% |

STL g f,d 0.723 0.927 0.0124 24.5

SegNet early stopping Scalar f d 0.707 0.919 0.0123 25.7 531.2 1.9+0.9
EW g d 0.731 0.928 0.0157 76.7 560.8 59.9£5.0
RLW f f 0.722 0.926 0.0170 107.1 529.6 93.8 £ 14.8
DWA f f 0.729 0.927 0.0158 85.9 584.4 69.6 £9.7
GLS g d 0.717 0.923 0.0129 27.5 564.2 45£0.6
IMTL-L h d 0.715 0.922 0.0128 335 568.6 10.6 £3.6
uw h d 0.718 0.923 0.0128 32.1 550.6 9.0£3.0
UW-SO g d 0.674 0.907 0.0130 25.2 544.0 44+0.9

ResNet-50 early stopping Scalar h a 0.738 0.929 0.0117 283 417.2 214+14
EwW h a 0.757 0.936 0.0119 31.9 448.4 53+£0.7
RLW g a 0.757 0.936 0.0119 327 486.6 6.1 £1.1
DWA g a 0.758 0.936 0.0118 314 404.6 44+0.7
GLS h b 0.755 0.934 0.0115 29.1 495.8 1.7+£1.2
IMTL-L g a 0.754 0.935 0.0113 28.6 350.8 0.7+0.9
Uw h a 0.752 0.934 0.0113 28.3 415.0 0.5+0.8
UW-SO g a 0.748 0.933 0.0112 28.0 363.4 03+1.3

ResNet-101 early stopping Scalar f d 0.740 0.931 0.0115 31.6 462.4 4.8+4.7
EW h a 0.749 0.933 0.0121 32.8 427.0 7.0+0.7
RLW g a 0.752 0.934 0.0119 327 482.0 6.3+0.8
DWA g b 0.753 0.935 0.0118 322 457.6 56+£09
GLS g a 0.743 0.931 0.0116 28.9 408.6 2.1+£0.6
IMTL-L h b 0.743 0.931 0.0116 28.2 374.2 1.6+14
uw h b 0.744 0.931 0.0116 28.5 337.8 1.8+ 1.0
UW-SO g a 0.749 0.933 0.0113 28.7 357.6 1.1+09

MTAN/SegNet avg. last 10 ep. Scalar f a 0.721 0.927 0.0130 27.7 avg —0.7+ (1.2)
EW f a 0.743 0.932 0.0158 444 avg 17.8 £ (3.1)
RLW f a 0.736 0.931 0.0159 453 avg 19.1 £ (1.8)
DWA f a 0.743 0.933 0.0159 45.6 avg 19.1 £ (2.7)
GLS f a 0.729 0.930 0.0136 29.7 avg 1.9+ (0.7)
IMTL-L f a 0.744 0.934 0.0146 33.8 avg 6.5+ (0.3)
uw f a 0.746 0.934 0.0145 349 avg 7.2+ (1.9)
UW-SO f a 0.711 0.920 0.0127 26.9 avg —1.4+£(0.6)

weights might yield better results, we argue that our weight
search with step size going down to 0.02 was performed ade-
quately well to keep the computational cost feasible.

NYUv2 We observe comparable results on NYUv2 in Table
2, where UW-SO is again always best or second-best behind
Scalarization. Both methods perform particularly well on the
normal task, while still achieving strong results on the other
two tasks. The fixed training protocol with MTAN (see last

block in Table 2) leads to a slightly different order of good-
ness, especially IMTL-L ranks lower compared to the SegNet
results.

CelebA Considering a more challenging setup with 40 tasks,
UW-SO is clearly exceeding the performance of all other
methods with a A, score of —4.0 and an average error of
8.95 (see Table 3). In contrast to the other two datasets, we
did not include Scalarization due to the infeasibility of per-
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Table 3 Test data results on

CelebA with ResNet-18. We A E Method rwd  AwebBrl B An% |

show the average test error (5 STL e £ 9.24

runs) over all 40 tasks. The )

chosen softmax temperature for ResNet-18 early stop. EW j f 9.00 332 —24+04

UW-SO is T = 100. We exclude RLW h f 9.01 54.4 —2.5+0.6

GLS and .Scalarizatiohn dpe to DWA i f 9.01 392 25407

iz)f(tt:amblhty, see details in the IMTLL h A .18 50 124009
Uuw g h 9.26 6.0 —0.1£0.7
UW-SO g f 8.95 61.2 —4.0+0.2

forming a grid search over 40 task weights. While we tried to
run 50 different random weight combinations, we were not
able to beat the EW performance and thus omit to report these
results. Furthermore, GLS is also not reported as the losses
diverge due to numerical instabilities for a large number of
tasks. In contrast to our previous results on other datasets,
EW, RLW, and DWA show strong performance compared
to UW and IMTL-L. We attribute this observation to UW
and IMTL-L being prone to overfitting on some tasks, as
indicated by how early the validation A,, score reaches its
minimum (e.g., epoch 6 for UW). We analyze the overfitting
behavior of UW in comparison to UW-SO later in this sec-
tion. As indicated by the negative A,, score, one achieves
a positive transfer by training on multiple tasks simultane-
ously. Examining the task-level performance to verify that
the enhanced average performance of UW-SO is not solely
attributable to a limited set of tasks, it is noteworthy that
UW-SO surpasses UW/UW-O/IMTL-L/RLW/EW/DWA in
34/34/31/27/24/24 out of 40 tasks.

Overfitting of UW Following our results in Table 3, UW
achieves the worst A,, score for CelebA. We investigate
the reasons: Figure 3 shows the train and test loss as well
as the weight ratio of the Bald task for UW and UW-SO.
UW is subject to strong overfitting, as indicated by the huge
gap between train and test loss. Contrary, UW-SO steadily
decreases its training loss on the bald task, achieving its best
test loss of 0.026 at epoch 31 whereas UW has its best test
loss of 0.028 at epoch 5. For CelebA, for 34 out of 40 tasks,
UW-SO achieves a lower test loss than UW and we assume
this is due to overfitting—for most tasks, the train loss for
UW drops to nearly 0. Related to this, we observe that UW
distributes much of the relative weight to only a few tasks,
as can be seen for the Bald task in Figure 3a.

Stronger networks and MTO approaches In Tables 1 and
2, our empirical analysis reveals an interesting trend: as
network architectures increase in capacity, the influence of
the MTL weighting method diminishes, e.g., the difference
between best and worst A,, score on NYUv2 is 13.0 on
the SegNet, but only 3.4/3.1 on ResNet-50 / ResNet-101.
This finding raises the question about the necessity of loss

weighting methods for networks with large capacity. Further
research in this direction is necessary.

5.3 Ablations

In the following, we present various ablation studies further
analyzing our method UW-SO and providing some general
insights about MTL methods.

Influence of softmax To demonstrate the influence of the
softmax function on the inverse loss weights, we compare the
A, scores using UW-0 and UW-SO across all datasets and
architectures in Table 4. UW-SO outperforms UW-O in all
experiments, indicating the performance gain provided by the
tempered softmax function. However, we want to emphasize
that this is not due to a significantly worse performance of
UW-O compared to other MTO methods. Therefore, we also
present the results using IMTL-L, which, like UW-O, aims
to scale each weighted task loss to 1, but unlike UW-O, it
learns rather than computing the weights. Interestingly, none
of the two methods can outperform the other one, indicating
that despite UW-O’s simplicity, it still provides reasonable
results compared to existing methods.

Influence of temperature 7 While our approach UW-SO
achieves consistently strong results, its performance depends
on the value of T'. In Figure 4, we show how the performance
changes when the temperature T is tuned for Cityscapes with
a SegNet. The best run was achieved for 7 = 20, but values
close to it are also performing well. We conducted a line
search for T in steps of 5 and further with a step size of 2
around the optimum. We conclude that it is possible with
acceptable tuning effort to find a good value for 7.
Development of validation metric for different 7 Dur-
ing analyses of the data, we observed that tuning of the
hyperparameter T can be eased by the following finding: Fig-
ure 4bshows the validation A,, score for different 7' values
over all epochs. Non-optimal 7' values are clearly identifi-
able after around 100 epochs as having constantly a higher
A, score compared to favorable T values. For instance, in
this setup, it is reasonable to stop the runs for all initial T
values with step size of 5 except for T = 5 and T = 10,
and then proceed with a finer search around the optimum of
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Fig. 3 Comparison of weight ratio and loss development of UW and generalize to unseen data (increasing test loss). UW-SO puts less weight

UW-SO0 for the Bald task of CelebA. While UW shows superior train- on the task and alleviates the overfitting.
ing performance caused by putting a high weight on the task, it fails to

Table 4 Comparison of test A,

scores of UW-O, UW-SO, and Method NYUv2 Cityscapes CelebA
IMTL-L across all evaluated SN RN-50 RN-101 SN RN-50 RN-101 RN-18
datasets.
IMTL-L 0.3 7.7 -103 10.6 0.7 1.6 -1.2
UW-O 0.0 -9.1 -11.9 5.5 2.1 2.8 -0.6
UW-SO -23 -9.8 -12.3 44 0.3 1.1 —4.0
40
®e
30
30
J
°
5 * ¢ g 20
o c
2 g
210 — =
© ° o ® g 10
>
0 °
Coeo® 0
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Temperature T Epoch
(a) Cityscapes SegNet (b) NYUv2 SegNet

Fig. 4 Performance of UW-SO for different choices of 7' on the validation data. a) shows a clear, reasonably flat minimum for Cityscapes that
eases the optimization of 7. b) shows the A,, development for different 7' values for NYUv2, indicating the optimal configuration already after
around 100 epochs

which T = 3 is best. This reduces computational resources T via gradient descent—thereby heavily reducing the com-
by a large amount. putational complexity—can achieve comparable results for
Learning 7 via gradient descent While we determined the  different datasets. Table 5 compares the results of UW-SO
value of T in our benchmark experiments by means of a  for the two strategies for determining 7. Notably, learning
grid search, we now want to investigate whether learning  the temperature via gradient descent yields better results
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Table 5 Comparison of test A, scores for UW-SO with T being determined by grid search vs. T being learned via gradient descent. For the latter,
we show the learned T of the last training epoch. We use the ResNet-50 for NYUv2 and Cityscapes, and ResNet-18 for CelebA.

Method NYUv2 Cityscapes CelebA

Ay T A T Am T
grid search 98+02 2.0 03+13 28.0 -40+£02 100.0
gradient descent -10.0 +0.4 3.8 30+£1.0 26.3 31.7 £4.3 13.1

Task weight
Task weight

Task weight
am

(a) Segmentation

(b) Depth

(c) Normal

Fig.5 Weight development of various MTO algorithms for the NYUv2 tasks using the SegNet

than using a grid search on the NYUv2 dataset, and only
slightly worse results for Cityscapes. Remarkably, the final
learned value of T closely matches the value found through
grid search for both datasets. However, for CelebA, we can
observe a substantial performance decrease when learning 7
compared to tuning it. We suspect that CelebA is the most
difficult of the three datasets—indicated by a large number
of tasks (40) and the large optimal value of 7' (100). Since the
learned T value does not come above 13.1, the resulting task
weights are far from optimal, yielding abad overall A, value.
In summary, learning 7 via gradient descent shows promis-
ing results but fails in certain settings, especially when a very
large T is required.

Oscillation of MTO methods The authors of the IMTL-
L approach argue that weighting by the inverse of the loss
results in "severe oscillations" (Liu, Li, Kuang, Xue, Chen,
Yang, Liao, and Zhang, 2021, sec. 3.2). Our experiments
confirm that the gradient-based methods IMTL-L and UW
have smoother loss weight updates than UW-O and UW-SO
(see Figure 5). However, we argue that oscillations of the task
weight wy itself are not problematic as it is the weighted loss
i Lk, which determines the parameter update. Looking at
the standard deviation over weighted losses from all batches
within one epoch (Figure 6), it turns out that UW-SO, and
Scalarization are less affected by oscillations than IMTL-L
(UW-O has a standard deviation of 0 by design).

Influence of batch size Since UW-O and UW-SO compute
task weights based on the loss of each individual batch,
we examine how batch size influences test performance on
Cityscapes, NYUv2, and CelebA (see Table 6). Across all
datasets, UW, UW-0, and UW-SO show sensitivity to batch

size, with UW-SO being the most affected. For example, on
CelebA and Cityscapes, UW-SO exhibits substantially larger
performance fluctuations compared to UW and UW-O. In
contrast, UW-O is less susceptible to changes in batch size,
indicating that the softmax-based weighting in UW-SO may
amplify this sensitivity. Importantly, LR, WD, and T were
kept constant across all batch sizes, which may further con-
tribute to the observed sensitivity.

Influence of learning rate and weight decay Building on
prior work in MTL—where LR and WD were often not tuned
individually per method (e.g., Liuetal. (2021, 2019); Yuetal.
(2020); Navon et al. (2022))—we empirically highlight the
importance of tuning both hyperparameters to ensure a fair
comparison. As shown in Figure 7, different loss weighting
strategies require distinct learning rates to reach optimal per-
formance, even on the same dataset. This effect is particularly
pronounced on Cityscapes and CelebA, where the optimal
LR varies significantly across weighting methods. Figure 8
further illustrates the interaction between LR and WD on the
NYUv2 dataset. While both hyperparameters influence per-
formance, we observe that for sufficiently small WD values
(i.e., < 0.0001), the variation in performance due to changes
in WD is minimal when LR is fixed. In summary, LR plays a
crucial role in determining performance, whereas WD has a
comparatively minor effect when appropriately constrained.

6 Conclusion

In this work, we investigated Uncertainty Weighting (UW),
examining its properties, underlying assumptions, and limita-
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Table6 A,, scores across

o . Dataset Batch Size Uuw UW-O UW-SO
different batch sizes—averaged
over three SCIE(:{SU_ZH ‘hz Cityscapes 2 15.14 £ 327 9.88 + 3.55 17.42 + 2.47
ityscapes, V2, an

CelebA test datasets. The 12.30 £2.76 10.48 + 3.16 11.83 £ 3.77

experiments are conducted for 8 8.90 + 5.81 445 +2.54 5.49 £ 0.59

a) Cityscapes with SegNet, b) 16 5.66 + 0.79 4.06 + 1.44 2.48 +0.79

NYUv2 with ResNet-50, and c¢)

CelebA with ResNet-18, with 32 N 8.69 + 1.58 4.91 + 0.83 2.79 +0.38

the respective hyperparameters Variation 9.48 6.42 14.94

specified in Table 1, Table 2, NYUv2 2 -6.94 + 0.32 9.32 4 0.09 -9.57 £0.32

and Table 3. Test performance is 4 2937 + 0.09 11.84 + 0.06 1278 + 0.38

reported at the epoch with the ’ ’ —_— . -

best validation performance, 8 -9.12 +0.07 -12.58 +0.03 -12.96 + 0.52

selected independently for each 16 -7.58 £0.32 -12.00 = 0.09 -12.26 £ 0.10

method, batch size, and seed. Variation 2.43 326 339

The Variation indicates the ) ' )

performance range (max-min) CelebA 32 -2.15 +0.80 2.21 +0.96 13.66 £ 2.82

across batch sizes for each 64 -1.66 £ 0.91 1.44 £ 1.52 443 £ 2.31

method, reflecting its sensitivity 128 -1.71 £ 0.59 1.61 +0.72 -1.90 + 0.41

to this hyperparameter. 256 0.25 + 1.69 033 +0.87 372 +£1.49
512 2.85 +5.37 1.34 +1.96 -248 +1.14
Variation 5.00 1.88 17.38
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Fig. 7 A,, scores on the test data for different choices of the learning rate with a fixed weight decay (for (a) and (b): WD = 1073; for (c):
WD = 10~*). We show results for a) NYUv2 with SegNet, b) Cityscapes with SegNet, and c) CelebA with ResNet-18
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Fig.8 Results on NYUv2 with ResNet-50 backbone when varying learning rate and weight decay

tions. Building on these insights, we introduced Soft-Optimal
Uncertainty Weighting (UW-S0O), a novel method for loss
weighting in Multi-Task Learning (MTL). UW-SO is derived
from the analytical solution of UW and leverages the tem-
pered softmax function applied to the inverse of task losses
to determine task weights. This approach addresses sev-
eral of UW’s limitations, such as mitigating overfitting
and explicitly modeling task interdependencies. Through an
extensive benchmark involving three datasets, up to four
architectures per dataset, and eight loss weighting strate-
gies (focusing exclusively on pure loss weighting rather than
gradient-based methods), we demonstrated that UW-SO con-
sistently outperforms existing methods. The only approach
that occasionally matches UW-SO is brute-force Scalar-
ization; however, its reliance on extensive hyperparameter
tuning renders it impractical for settings with many tasks.
Additionally, our experiments highlight the critical role of
temperature selection in the tempered softmax. Our proposed
method for learning the temperature parameter 7' via gradi-
ent descent—instead of tuning 7 via grid search—reveals
already promising results.

To further improve performance, future work could
explore dynamic strategies for adjusting the temperature
parameter T based on the model’s current training behav-
ior. Inspired by concepts from Reinforcement Learning and
Curriculum Learning (Bengio, Louradour, Collobert, and
Weston, 2009), T could be adapted over time to balance
exploitation—using lower values of T to prioritize a few low-
loss tasks—and exploration—using higher values to assign
more uniform weights across tasks regardless of their loss.
It is also important to note that UW-SO does not fully
address all identified limitations of UW. For instance, the
lack of theoretical justification for the cosine similarity loss
remains an open issue in both methods. Nevertheless, UW-
SO applies a consistent weighting scheme across tasks in
practice. Therefore, to further validate its broader applica-
bility, future research should investigate the generalization
capabilities of UW-SO on more real-world datasets involv-
ing diverse types of task loss functions.
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