
Encoding Preferences for
Representation Learning in

Computer Vision Tasks

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

M.Sc. Steffen Jung
aus Viernheim

Mannheim, 2025

Dekan: Prof. Dr. Claus Hertling, Universität Mannheim
Referent: Prof. Dr.-Ing. Margret Keuper, Universität Mannheim
Korreferent: Prof. Dr. Michael Möller, Universität Siegen
Korreferent: Prof. Dr. Bernt Schiele, Universität des Saarlandes

Tag der mündlichen Prüfung: 18. Dezember 2025

Erklärung zum Einsatz von
Generativen Textmodellen
In der Erstellung dieser Arbeit wurde das generative Textmodell ChatGPT eingesetzt, um die
schriftliche Präsentation dieser Thesis zu verbessern. In diesem Zusammenhang wurden einzelne
und bereits formulierte Sätze und Textpassagen sprachlich und grammatikalisch überarbeitet,
umformuliert, strukturiert und/oder von diesen Modellen zusammengefasst. Die erstellten
Texte wurden zudem manuell geprüft und häufig weiter überarbeitet. Die Modelle wurden
nicht dazu eingesetzt, neue Inhalte zu generieren. Insbesondere wurden alle in dieser Thesis
eingeführten Methoden, Experimente und Resultate eigenständig – beziehungsweise mit oder
von den jeweils gekennzeichneten Autoren – erarbeitet.

i

Abstract
Machine learning is the backbone of modern computer vision systems. The increasing availability
of computational power, large-scale datasets, and advances in learning algorithms have enabled
models to learn complex patterns directly from data, moving beyond traditional rule-based
programming. A key factor in this success is representation learning, which transforms data into
compact, meaningful representations for tasks such as image classification, segmentation, and
synthesis. However, the No Free Lunch (NFL) theorems state that no universal algorithm can
perform well across all tasks without incorporating task-specific knowledge. To build effective
models, practitioners must introduce inductive biases that guide learning toward desirable
solutions. Regularization is a central tool for this purpose, as it constrains the solution space
and encodes preferences into the learning process. This thesis presents novel regularization
techniques to guide representation learning in computer vision, focusing on three complementary
strategies.

In the first part of this thesis, we encode discrete constraints in the representations learned
by graph and image representation-learning models. These constraints, derived from the mini-
mum cost multicut problem (a combinatorial problem partitioning graphs into subgraphs), are
incorporated as penalty terms in the training loss to improve prediction consistency. For this,
we first develop a method for training Graph Neural Network (GNN)-based solvers for the
multicut problem itself. Then, we show that the same principle promotes closed contours in
edge detection models.

In the second part of this thesis, we explore regularization strategies for generative models
that match feature distributions between synthesized images and training images. First, we
leverage pretrained image representations and demonstrate that using the widely adopted
Fréchet Inception Distance (FID) as a regularizer reveals its limitations. Second, we show that
images generated by Generative Adversarial Networks (GANs) lack fidelity in the spectral do-
main. Introducing an additional discriminator that extracts frequency-domain features improves
generalization in this regard.

In the final part of this thesis, we study regularization by judging the importance of training
data instances while training a model. This weighting induces biases that align model behavior
with specific preferences. We apply this strategy to the discrete image synthesis model Vector
Quantized Variational Autoencoder (VQ-VAE), enabling preference-driven control over gener-
ated images, such as enhancing facial attributes like smiling. We further develop a generative
Neural Architecture Search (NAS) approach that balances accuracy with additional targets, such
as efficiency and robustness, showing that generative architecture search can be aligned with
multiple goals simultaneously.

ii

Zusammenfassung
Maschinelles Lernen ist das Rückgrat moderner Systeme des maschinellen Sehens. Durch
gestiegene Rechenleistung, große Datensätze und Fortschritten bei Lernalgorithmen können
Modelle komplexe Muster direkt aus Daten extrahieren. Ein Faktor für diesen Erfolg ist das
Repräsentationslernen, das Daten in kompakte Darstellungen für Aufgaben wie Bildklassifika-
tion, Segmentierung und Synthese transformiert. Die No-Free-Lunch-Theoreme besagen jedoch,
dass kein universeller Algorithmus existieren kann, der ohne aufgabenspezifisches Wissen über
alle Aufgaben hinweg gut funktioniert. Um effektive Modelle zu entwickeln, müssen Praktiker
induktive Verzerrungen einbringen, die das Lernen in Richtung gewünschter Lösungen lenken.
Regularisierung ist hierfür ein zentrales Werkzeug, da sie den Lösungsraum einschränkt und
Präferenzen in den Lernprozess einbringt. Diese Arbeit stellt neuartige Regularisierungstech-
niken vor, die das Repräsentationslernen im Bereich des maschinellen Sehens gezielt steuern
und dabei drei sich ergänzende Strategien verfolgen.

Im ersten Teil dieser Arbeit kodieren wir diskrete Nebenbedingungen in das Training von
Graph- und Bildrepräsentationslernmodellen. Diese Bedingungen, die sich aus dem kombi-
natorischen Minimum-Cost-Multicut-Problem ableiten, werden als Strafterme in den Train-
ingsverlust integriert, um die Konsistenz der Vorhersagen zu verbessern. Hierzu entwickeln
wir eine Methode zum Training von graphbasierten Netzwerken für das Multicut-Problem
selbst. Anschließend zeigen wir, dass sich mit demselben Prinzip geschlossene Konturen in
Kantendetektionsmodellen fördern lassen.

Im zweiten Teil untersuchen wir Regularisierungsstrategien für generative Modelle, die
Merkmalverteilungen zwischen synthetisierten und Trainingsbildern abgleichen. Zunächst
nutzen wir vortrainierte Bildrepräsentationen und zeigen, dass die weit verbreitete Fréchet-
Inception-Distanz als Regularisierer verwendet werden kann und damit deren Schwächen als
Metrik offenbart. Zweitens zeigen wir, dass von generativ adversären Netzen erzeugte Bilder eine
geringe Treue im Frequenzbereich aufweisen. Die Einführung eines zusätzlichen Diskriminators,
der Merkmale im Frequenzbereich extrahiert, verbessert in dieser Hinsicht die Generalisierung.

Im letzten Teil befassen wir uns mit Regularisierung durch die Bewertung der Relevanz
einzelner Trainingsdateninstanzen. Diese Gewichtung induziert eine Verzerrung, die das Mod-
ellverhalten gezielt an spezifische Präferenzen anpasst. Wir wenden diese Strategie auf ein
diskretes Bildsynthesemodell an und ermöglichen so eine präferenzgesteuerte Kontrolle der
generierten Bilder. Darüber hinaus entwickeln wir einen generativen Ansatz zur Suche von
neuronalen Netzen, der Klassifikationsgenauigkeit mit weiteren Zielen wie Effizienz und Robus-
theit ausbalanciert und zeigen, dass sich Architektursuche mit mehreren Optimierungszielen
gleichzeitig vereinbaren lässt.

iii

Acknowledgements
First and foremost, I would like to express my sincere gratitude to everyone who supported me
throughout my PhD journey. Thank you for the interesting talks, fruitful discussions, exciting
conferences, inspiring retreats, and meaningful connections we shared during this time.

Most importantly, I am deeply grateful to my supervisor, Margret Keuper, for her guidance,
encouragement, and trust over the years. She not only gave me the opportunity to pursue a
PhD, but also the freedom to venture into different directions that ultimately culminated in this
dissertation. Her support and feedback profoundly shaped both this work and my development
as a researcher. In the same spirit, I want to thank Bernt Schiele for giving me the opportunity to
be part of the outstanding research environment at the Max Planck Institute for Informatics, and
for the support that enabled my research throughout these years.

I also sincerely thank my examination committee (Margret Keuper, Michael Möller, Bernt
Schiele, and Simone Ponzetto) for their time, careful evaluation, and constructive feedback.

I am grateful to all the colleagues and friends I met during my time at the Max Planck
Institute for Informatics, the University of Siegen, and the Data and Web Science group at the
University of Mannheim. In particular, I would like to thank my teammates and collaborators
(in alphabetical order): Shashank Agnihotri, Mishal Fatima, Julia Grabinski, Max Kahl, Jovita
Lukasik, Tejaswini Medi, and Katharina Prasse. You contributed to making my day-to-day work
both enjoyable and intellectually stimulating. Thank you for the shared ideas and teamwork, for
accompanying me on my drives to Saarbrücken and Siegen, and for being there during those
busy periods leading up to deadlines.

I am also grateful to everyone who helped improve this dissertation through careful proof-
reading and thoughtful comments. In particular, I thank Julie Naegelen, along with Shashank,
Tejaswini, Katharina, and Jovita, for their detailed feedback, which significantly strengthened
the final manuscript.

Finally, I want to thank my family and friends for their continued support and encouragement
through all the ups and downs I experienced during my PhD. In particular, I thank Navadha,
whose endless support carried me through the finish line and beyond. Words cannot do justice
to the gratitude I feel; thank you for being in my life.

iv

Contents

Abstract ii

Zusammenfassung iii

Acknowledgements iv

List of Figures x

List of Tables xiv

List of Acronyms xvi

Mathematical Notations xix

1 Introduction 1
1.1 Thesis Structure and Publications . 2
1.2 Additional Publications . 6

2 Background 7
2.1 Representation Learning in Machine Learning . 8
2.2 Representation Learning in Computer Vision . 10

2.2.1 Image Classification . 10
2.2.2 Pixel-Wise Classification . 14
2.2.3 Image Synthesis . 17
2.2.4 Transfer Learning . 24

2.3 Generalization and Regularization . 25
2.3.1 Overfitting, Underfitting, and the Bias-Variance Tradeoff 25
2.3.2 No Free Lunch and Inductive Biases . 27

2.4 Regularization Approaches in Representation Learning 28
2.4.1 Optimization-Based Regularization . 29
2.4.2 Architecture-Based Regularization . 30
2.4.3 Loss-Modifying Regularization . 32
2.4.4 Data-Based Regularization . 34

2.5 Summary . 36

I Penalize: Regularization with Discrete Constraints 37

3 Representation Learning in Graphs with Discrete Constraints 39
3.1 Introduction . 40

v

vi CONTENTS

3.2 The Minimum Cost Multicut Problem . 41
3.3 Message Passing Neural Networks . 42
3.4 Multicut Neural Network . 43

3.4.1 Training Datasets . 46
3.4.2 Test Datasets . 48

3.5 Experiments . 48
3.5.1 Ablation Studies on Update Function Modifications 50
3.5.2 Ablation Study on Network Size . 50
3.5.3 Ablation Study of the Cycle Consistency Penalty Term 50
3.5.4 Evaluation on Test Data . 51

3.6 Conclusion and Outlook . 55

4 Edge Detection with Discrete Constraints 57
4.1 Introduction . 58
4.2 Related Work . 59
4.3 Penalizing Networks with Cycle Constraints . 60

4.3.1 Cycle Constraints in the Multicut Problem 60
4.3.2 Incorporating Cycle Constraints into a CRF 61
4.3.3 Cooling Mean-Field Updates . 62
4.3.4 Penalizing Image Segmentation Networks 64

4.4 Experiments . 65
4.4.1 Berkeley Segmentation Dataset and Benchmark 65
4.4.2 Neuronal Structure Segmentation . 70

4.5 Conclusion and Outlook . 72

II Match: Regularization via Feature Matching 75

5 Learned Representations to Penalize Image Synthesis 77
5.1 Introduction . 78
5.2 Related Work . 79
5.3 Training with Fréchet Inception Distance . 80

5.3.1 Fréchet Inception Distance . 80
5.3.2 Minimizing Fréchet Inception Distance . 81

5.4 Further Analysis of Fréchet Inception Distance . 83
5.5 Conclusion and Outlook . 88

6 Spectral Distribution-Aware Image Synthesis 91
6.1 Introduction . 92
6.2 Related Work . 93
6.3 Spectral Properties of Image Generation . 93

6.3.1 Spectral Effects of Upsampling . 94
6.3.2 Analysis of Real Data Distribution . 95
6.3.3 Evaluation in the Frequency Domain . 95

6.4 Learning to Regularize Spectral Distributions . 97
6.5 Experiments . 99

CONTENTS vii

6.6 Conclusion and Outlook . 104

III Judge: Learning to Weight Data to Regularize Models 107

7 Biasing Discrete Representations for Image Synthesis 109
7.1 Introduction . 110
7.2 Discrete Latent Space Optimization . 112

7.2.1 Discrete Latent Variables . 112
7.2.2 Global Optimization in Discrete Latent Spaces 112
7.2.3 Weighted Retraining . 113

7.3 Experiments . 113
7.4 Conclusion and Outlook . 116

8 Biasing Generative Neural Architecture Search 119
8.1 Introduction . 120
8.2 Related Work . 122
8.3 Architecture Generative Model . 123
8.4 Experiments . 125

8.4.1 Experiments on Tabular Benchmarks . 125
8.4.2 Experiments on Surrogate Benchmarks . 126
8.4.3 Experiments on Hardware-Aware Benchmark 131
8.4.4 Ablation Studies . 133

8.5 Conclusion and Outlook . 137

9 Data for Robust Neural Architecture Design 139
9.1 Introduction . 140
9.2 Related Work . 141
9.3 Dataset Generation . 142

9.3.1 Architectures in NAS-Bench-201 . 142
9.3.2 Robustness to Adversarial Attacks . 143
9.3.3 Robustness to Common Corruptions . 146

9.4 Dataset Use Cases . 146
9.4.1 Training-Free Measurements for Robustness 146
9.4.2 NAS on Robustness . 149
9.4.3 Effect of Architecture Design on Robustness 153

9.5 Conclusion and Outlook . 153

10 Conclusion 155
10.1 Thesis Summary . 155
10.2 Open Problems and Future Directions . 157

Bibliography 159

A Appendix to Chapter 3 187
A.1 Multicut Segmentation Example . 187
A.2 Training Dataset Statistics . 190

viii CONTENTS

A.3 Test Datasets . 191
A.4 Training Curves on RandomMP . 192
A.5 Finetuning Experiments . 193
A.6 Embedding Space Visualizations . 194

B Appendix to Chapter 4 199
B.1 Training Details . 199
B.2 Qualitative Results on BSDS500 . 201

C Appendix to Chapter 5 205
C.1 Implementation Details to Minimizing FID . 206
C.2 Generated Images (DCGAN/FFHQ) . 207
C.3 Generated Images (SNGAN/FFHQ) . 211
C.4 Generated Images (DCGAN/CIFAR10) . 214
C.5 Generated Images (SNGAN/CIFAR10) . 218
C.6 FIDs when substituting backbone networks on ImageNet-C 221
C.7 Deep Fake Detection with FID . 226

D Appendix to Chapter 6 227
D.1 High Frequency Artifacts . 227
D.2 Evaluation of Generated Power Spectra . 228
D.3 Training Details for Cloaking Score . 232
D.4 Sample images generated from the Proposed Model and the Baselines 232

E Appendix to Chapter 7 241
E.1 Details on Face Image Dataset . 241
E.2 Details on VQ-VAE . 242
E.3 Details on VAE . 243

F Appendix to Chapter 8 245
F.1 Search Space Representations . 246

F.1.1 NAS-Bench-101 . 246
F.1.2 NAS-Bench-201 . 247
F.1.3 DARTS Search Space . 248
F.1.4 NAS-Bench-NLP . 249
F.1.5 Hardware-Aware-NAS-Bench . 250

F.2 Additional Ablation Studies . 251
F.2.1 Oracle Ablation . 251
F.2.2 Latent Space Ablations . 252
F.2.3 Predictor Ablation – Local Solution . 253

F.3 Experiments: Implementation Details . 257
F.3.1 Surrogate Model . 257
F.3.2 Search Algorithm . 257
F.3.3 NAS-Bench-101 . 257
F.3.4 NAS-Bench-201 . 257

CONTENTS ix

F.3.5 DARTS Search Space . 257
F.3.6 NAS-Bench-NLP . 262
F.3.7 Hardware-Aware NAS-Bench . 263

F.4 Generator Details . 263
F.5 Hyperparameters . 266

F.5.1 Generator . 266
F.5.2 Surrogate Model . 266

F.6 Latent Space Optimization Visualization . 268

G Appendix to Chapter 9 269
G.1 Dataset Generation . 269

G.1.1 NAS-Bench-201 . 269
G.1.2 Dataset Gathering . 269
G.1.3 Dataset Structure, Distribution, and License 272
G.1.4 Structure . 272
G.1.5 Confidence . 275
G.1.6 Confusion Matrix . 275

G.2 Correlations between Image Datasets . 279
G.3 Example image of corruptions in CIFAR-10-C . 280
G.4 Main Paper Figures for other Image Datasets . 281
G.5 Analysis of Architectural Choices . 288

G.5.1 Best Architectures . 288
G.5.2 Cell Kernel Parameter Count . 288
G.5.3 Gains and Losses by Single Changes . 290

List of Figures

1.1 Regularization strategies in this thesis. 3
1.2 Structure of this thesis. 4

2.1 Possible pipelines that map from input data to an output. 7
2.2 XOR-inspired classification dataset example. 9
2.3 MLP on the XOR-inspired classification dataset. 9
2.4 Inception v3 architecture. 11
2.5 Vision Transformer architecture. 13
2.6 Edge detection and different types of segmentation tasks. 15
2.7 Encoder-decoder architecture. 16
2.8 Architectures of different autoencoders. 19
2.9 GAN training process. 21
2.10 Bias-variance tradeoff and NFL theorem. 26

3.1 Example for message aggregation. 44
3.2 Samples of the IrisMP dataset. 47
3.3 Samples of the RandomMP dataset. 47
3.4 Ablation of modifications to message update functions. 49
3.5 Ablation on network depths. 51
3.6 Ablation on regularization strength. 51
3.7 Visualization of clustering and embeddings. 54

4.1 Example test image and results. 59
4.2 Example of an infeasible solution to the multicut problem. 61
4.3 Function ϕ plotted for different values of exponent k. 63
4.4 RCF-CRF training process. 64
4.5 Training progress of the proposed method. 67
4.6 BSDS edge detection precision-recall curves. 68
4.7 Example test images and results. 69
4.8 BSDS segmentation precision-recall curves. 71

5.1 Images generated by different models trained on FFHQ. 78
5.2 Simplified depiction of the Inception v3 architecture. 78
5.3 Different settings to train generator networks. 80
5.4 Results of training DCGAN and SNGAN. 83
5.5 FID between corrupted ImageNet validation datasets. 85
5.6 Effect of flips and translation on FID. 85
5.7 Substituting the feature extractor of FID. 86
5.8 Images generated by StyleGAN2. 87

x

LIST OF FIGURES xi

6.1 Frequency profiles from FFHQ images. 96
6.2 Comparison of spectral profiles. 97
6.3 Training process of the proposed model. 98
6.4 Comparison of training stability. 101
6.5 Results on FFHQ64. 102
6.6 Resulting spectral profiles on FFHQ64 and StyleGAN2. 103
6.7 Mean absolute differences of 2D power spectra. 104

7.1 Proposed Framework. 111
7.2 Comparison between discrete and continuous LSO variants. 115
7.3 Examples for generated images. 116

8.1 Visualization of the proposed search method. 121
8.2 Procedure of training the generator. 123
8.3 Neural architecture search on NAS-Bench-101. 127
8.4 Neural architecture search on NAS-Bench-201. 129
8.5 Neural architecture search on NAS-Bench-301. 130
8.6 Neural architecture search on NAS-Bench-NLP. 132
8.7 Exemplary searches on HW-NAS-Bench. 134

9.1 NAS-Bench-201 macro architecture. 142
9.2 Boxplots for different adversarial attacks (CIFAR-10). 144
9.3 Correlation between attacks on CIFAR-10. 145
9.4 Boxplots for different corruption types. 147
9.5 Correlation between corruptions on CIFAR-10. 148
9.6 Correlation between robustness measurements. 150
9.7 Top-20 architectures with limited kernel parameter count. 153

A.1 Image segmentation as a multicut problem instance. 188
A.2 Example graph. 188
A.3 Multicuts of different solvers. 189
A.4 Multicuts and resulting segmentations of the example graph. 189
A.5 Results of training runs of GCN_W_BN on RandomMP. 192
A.6 Visualization of clustering and embeddings. 194
A.7 Visualization of clustering and embeddings. 195
A.8 Visualization of clustering and embeddings. 196
A.9 Visualization of clustering and embeddings. 197

B.1 Function ϕ plotted for different values of k. 200
B.2 Example image 196062 from BSDS500. 202
B.3 Example image 41029 from BSDS500. 203
B.4 Example image 157032 from BSDS500. 204

C.1 DCGANG+D trained on FFHQ64. 207
C.2 DCGANFID

G+D trained on FFHQ64. 208
C.3 DCGANFID

G trained on FFHQ64. 209
C.4 DCGAN-UpFID

G trained on FFHQ64. 210
C.5 SNGANG+D trained on FFHQ64. 211
C.6 SNGANFID

G+D trained on FFHQ64. 212
C.7 SNGANFID

G trained on FFHQ64. 213

xii LIST OF FIGURES

C.8 DCGANG+D trained on CIFAR10. 214
C.9 DCGANFID

G+D trained on CIFAR10. 215
C.10 DCGANFID

G trained on CIFAR10. 216
C.11 DCGAN-UpFID

G trained on CIFAR10. 217
C.12 SNGANG+D trained on CIFAR10. 218
C.13 SNGANFID

G+D trained on CIFAR10. 219
C.14 SNGANFID

G trained on CIFAR10. 220
C.15 FID for different corruptions at severity 1. 221
C.16 FID for different corruptions at severity 2. 222
C.17 FID for different corruptions at severity 3. 223
C.18 FID for different corruptions at severity 4. 224
C.19 FID for different corruptions at severity 5. 225

D.1 Example for high frequency artifacts. 227
D.2 Average FFT magnitude differences. 228
D.3 Experiments on FFHQ64. 229
D.4 Experiments on FFHQ128. 230
D.5 Experiments on FFHQ256. 231
D.6 Deep fake detection with a logistic regression. 232
D.7 Generated images by DCGAN (642). 233
D.8 Generated images by spectral DCGAN (642). 234
D.9 Generated images by LSGAN (642). 235
D.10 Generated images by spectral LSGAN (642). 236
D.11 Generated images by DCGAN (1282). 237
D.12 Generated images by spectral DCGAN (1282). 238
D.13 Generated images by LSGAN (1282). 239
D.14 Generated images by spectral LSGAN (1282). 240

F.1 Cell representation in NAS-Bench-101. 246
F.2 Cell representation in NAS-Bench-201. 247
F.3 Cell representation in DARTS. 248
F.4 Cell representation in NAS-Bench-NLP. 249
F.5 Architecture search on NAS-Bench-101. 251
F.6 Ablation on LSO (NAS-Bench-101). 253
F.7 Ablation on LSO (NAS-Bench-201, CIFAR-10). 255
F.8 Ablation on LSO (NAS-Bench-201, CIFAR-100). 255
F.9 Ablation on LSO (NAS-Bench-201, ImageNet16-120). 256
F.10 Architecture search in the degenerate setting. 256
F.11 Searches on HW-NAS-Bench. 264
F.12 Architecture search on HW-NAS-Bench. 264
F.13 Visualization of the latent space optimization technique. 268

G.1 Example of two isomorphic graphs in NAS-Bench-201. 270
G.2 Diagram showing the gathering process. 271
G.3 Excerpt of meta.json. 274
G.4 Excerpt of files containing results. 274
G.5 Excerpt of file containing confidences. 274
G.6 Mean confidence scores on clean images. 276
G.7 Mean label confidence scores on attacked images. 277

LIST OF FIGURES xiii

G.8 Mean prediction confidence scores on attacked images. 278
G.9 Aggregated confusion matrices. 278
G.10 Correlation between all clean and adversarial accuracies. 279
G.11 Example image of CIFAR-10-C. 280
G.12 Boxplots for different adversarial attacks (CIFAR-100). 281
G.13 Boxplots for different adversarial attacks (ImageNet16-120). 282
G.14 Boxplots for CIFAR-10-C. 283
G.15 Boxplots for CIFAR-100-C. 284
G.16 Correlation between attacks on CIFAR-100. 285
G.17 Correlation between attacks on ImageNet16-120. 286
G.18 Correlation between corruptions on CIFAR-100. 287
G.19 Best architectures in NAS-Bench-201. 289
G.20 Mean robust vs. clean accuracies on CIFAR-10. 289
G.21 Mean robust accuracies by kernel parameters on CIFAR-10. 289
G.22 Top-20 architectures with limited kernel parameter count. 291
G.23 Influence of singular changes on performance. 292

List of Tables

2.1 Examples of regularization techniques. 29

3.1 Modifications to MPNNs. 45
3.2 Ablation study on CCL. 49
3.3 Results on test datasets. 53
3.4 Comparison to MP solvers. 54

4.1 BSDS edge detection results. 70
4.2 ISBI segmentation results. 71

5.1 Combined results of trained models. 82
5.2 Fake detection with Inception v3 features. 87

6.1 Investigated discriminator losses. 99
6.2 Evaluation of architectural changes. 101
6.3 Evaluation of the proposed discriminator. 102
6.4 Evaluation of the finetuned StyleGAN2. 104

7.1 Ablation study results. 114

8.1 Results on NAS-Bench-101. 127
8.2 Neural architecture search on NAS-Bench-201. 128
8.3 Neural architecture search on NAS-Bench-201. 128
8.4 Neural architecture search on NAS-Bench-301. 130
8.5 Neural architecture search on NAS-Bench-NLP. 132
8.6 Neural architecture search on DARTS. 135
8.7 Results for searches on HW-NAS-Bench. 136
8.8 Ablation study results. 137

9.1 Neural architecture search results. 152

A.1 IrisMP statistics. 190
A.2 RandomMP statistics. 191
A.3 BSDS300 statistics. 191
A.4 CREMI statistics. 191
A.5 Domain specific training of GCN_W_BN. 193

E.1 VQ-VAE encoder architecture. 242
E.2 VQ-VAE decoder architecture. 242
E.3 Training hyperparameters of VQ-VAE experiments. 242

xiv

LIST OF TABLES xv

E.4 Encoder architecture of VAE. 243
E.5 Decoder architecture of VAE. 243
E.6 Training hyperparameters of VAE experiments. 244

F.1 Neural architecture search on the AG-Net latent space. 254
F.2 Architecture search on NAS-Bench-101. 260
F.3 Results on NAS-Bench-301. 260
F.4 Architecture Search on NAS-Bench-201. 261
F.5 Results on NAS-Bench-NLP. 262
F.6 Generator Abilities and training costs. 265
F.7 Hyperparameters of the generator model. 266
F.8 Hyperparameters for the performance surrogate model. 267
F.9 Hyperparameters for both surrogate models. 267

G.1 Hyperparameter settings of adversarial attacks evaluated. 270
G.2 Keys for attacks and corruptions evaluated. 272
G.3 Files and their possible content. 273

List of Acronyms
AG-Net Architecture Generative Network

AP Average Precision

APGD Adaptive Projected Gradient Descent

BCE Binary Cross Entropy

BDCN Bi-Directional Cascade Network

BN Batch Normalization

BO Bayesian Optimization

CCL Cycle Consistency Loss

CE Cross Entropy

CNN Convolutional Neural Network

COB Convolutional Oriented Boundaries

CRF Conditional Random Field

CS Cloaking Score

DAG Directed Acyclic Graph

DCGAN Deep Convolutional Generative Adversarial Network

DNN Deep Neural Network

EI Expected Improvement

FCN Fully Convolutional Neural Network

FFHQ Flickr-Faces-HQ

FGSM Fast Gradient Sign Method

FID Fréchet Inception Distance

GAEC Greedy Additive Edge Contraction

GAN Generative Adversarial Network

GCN Graph Convolutional Network

GIN Graph Isomorphic Network

GMMN Generative Moment Matching Network

GNN Graph Neural Network

xvi

LIST OF TABLES xvii

GTN Graph Transformer Network

HED Holistically-Nested Edge Detection

ICC Intervening Contour Cue

ILP Integer Linear Program

IS Inception Score

KLD Kullback-Leibler Divergence

KLj Kernighan-Lin with Joins

LP Linear Program

LR Logistic Regression

LSGAN Least Squares Generative Adversarial Network

LSO Latent Space Optimization

MCG Multiscale Combinatorial Grouping

MIO Mixed-Integer Optimization

MLP Multilayer Perceptron

MMD Maximum Mean Discrepancy

MP Minimum Cost Multicut Problem

MPNN Message Passing Neural Network

MS Multiscale Version

NAS Neural Architecture Search

NFL No Free Lunch

NLR Number of Linear Regions

NTK Neural Tangent Kernel

ODS Optimal Dataset Scale

OIS Optimal Image Scale

PGD Projected Gradient Descent

PP Polynomial Program

RCF Richer Convolutional Features

RGGCN Residual Gated Graph Convolutional Network

RL Reinforcement Learning

RNN Recurrent Neural Network

xviii LIST OF TABLES

SD Spectral Difference

SGCN Signed Graph Convolutional Network

SGD Stochastic Gradient Descent

SNGAN Spectral Normalization Generative Adversarial Network

SVGe Smooth Variational Graph embeddings

SVM Support Vector Machine

UCM Ultrametric Contour Map

VAE Variational Autoencoder

ViT Vision Transformer

VQ-VAE Vector Quantized Variational Autoencoder

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein Generative Adversarial Network with Gradient Penalty

XGB XGBoost

Mathematical Notations

Functions and Representation Learning.

f (·) A function f .

fθ(·) A parameterized function f with parameters θ.

θ Set of parameters of a function / model.

f ◦ g(·) Composition of functions f and g.

f ∗ g(·) Convolution of functions f and g.

F (·) Fourier transform.

σ̂(·) Non-linear activation function.

σ(·) Sigmoid activation function.

ReLU(·) Rectifier activation function.

1(·) Indicator function.

p(·), q(·) Probability distributions.

N (0, 1) Standard normal distribution.

Ep[·] Expectation with respect to p.

DKL(p∥q) Kullback-Leibler divergence from p to q.

sg[·] Stop-gradient operator.

sign(·) Returns the sign of the input.

clipϵ,x(·) Clips input x in range [x− ϵ, x + ϵ].

Numbers and Tensors.

a ∈ R A scalar.

a ∈ Rn(×m×···) A vector or tensor.

A ∈ Rn×m(×···) A matrix or tensor.

A[i,j,···] ∈ R Scalar value at location [i,j,···] of tensor A ∈ Rn×m×···.

I ∈ Rn×n Square identity matrix.

1 ∈ Rn A vector of ones.

0 ∈ Rn A vector of zeros.

a || b Concatenation of two vectors.

a⊙ b Element-wise multiplication of two vectors.

∥ · ∥p p-norm of a vector.

Continued on next page.

xix

xx LIST OF TABLES

tr(·) Trace of a matrix.

λi[·] Returns the ith eigenvalue of a matrix.

J (x) Jacobian matrix with respect to input x.

H(x) Hessian matrix with respect to input x.

Data and Images.

pdata, pdata(x) Data distribution a dataset is sampled from.

x ∼ pdata Sample from pdata.

x ∈ RH×W(×D) Input image of height H, width W, and D channels.

x̂ ∼ pθ Synthesized image from model pθ .

x̃ = x + ϵ Image perturbed with perturbation ϵ.

x́ ∈ Ru·W×u·H(×D) Image upsampled by some factor u.

F (x) = xF ∈ CH×W Fourier-transformed image.

y ∈N Image label.

D A dataset.

D = {(xi)}N
i=1 An unlabeled (image) dataset.

D = {(xi, yi)}N
i=1 A labeled (image) dataset.

Model Training and Regularization.

CE(·, ·) Function computing cross-entropy loss.

L,L(·) The loss as a value or function.

Ω(·) Function computing a penalty term.

ΠC(x) Projection operator, projecting a point x onto set C.

C ⊆ Rn Set of feasible values.

Continued on next page.

LIST OF TABLES xxi

Graphs.

G = (V, E) A graph. Throughout this thesis we mainly
encounter undirected graphs and mention it
otherwise.

V Set of nodes of the graph.

u ∈ V Node u of the graph.

N (u) ⊆ V Set containing all nodes connected to node u
(neighborhood).

N+(u) ⊆ N (u) Set containing all nodes connected via positively
weighted edges to node u.

N−(u) ⊆ N (u) Set containing all nodes connected via negatively
weighted edges to node u.

E Set of edges of a graph.

E− ⊆ E Subset of E with negative edge weights.

E+ ⊆ E Subset of E with positive edge weights.

e = (u, v) ∈ E Some edge in E connecting nodes u and v.

deg(u) Degree of node u.

deg(u) Signed degree of node u.

A Graph adjacency matrix.

D Graph degree matrix.

D Signed graph degree matrix.

L = I−D−1/2AD−1/2 Symmetric normalized graph Laplacian.

Minimum Cost Multicut Problem.

y ∈ {0, 1}|E| Binary decision vector.

ỹ ∈ {0, 1}|E| Optimal decision vector.

y+ ∈ {0, 1}|E| Decision vector removing all positive edges.

y− ∈ {0, 1}|E| Decision vector removing all negative edges.

ŷ ∈ [0, 1]|E| Relaxed decision vector.

ye, ỹe, ŷe A corresponding decision variable of edge e.

w ∈ R|E| Vector containing weights assigned to each edge.

wu,v ∈ R, we ∈ R Weight of edge e = (u, v).

c = c(y) = wTy Objective value c given by objective function c(·)
and decision vector y.

cr = c(y)/c(ỹ) Ratio of the objective value to the optimal solution.

cc(G) Set of all chordless cycles in G.

Continued on next page.

xxii LIST OF TABLES

cc(G, l) Set of chordless cycles in G, where the length of each
cycle is at most l.

C ∈ cc(G) A chordless cycle C in G.

Graph Neural Networks.

xu ∈ R∗ Node feature vector of some dimensionality.

hu ∈ R∗ Node representation of node u.

xu,v ∈ R∗ Edge feature vector of edge (u, v).

hu,v ∈ R∗ Edge representation of edge (u, v).

fe Edge representation mapping function.

fc Edge classification function.

fr Mapping to set of feasible solutions.

Conditional Random Fields (CRFs).

E(x | y) Energy function defining the CRF.

ψU , ψCycle CRF potentials.

Chapter 1

Introduction

IN AN ERA where technology shapes nearly every aspect of our lives, machine learning emerged
as a central driver of innovation. It is the major backbone of systems in computer vision

that enables autonomous vehicles to navigate complex urban environments [Jan+20], supports
medical professionals in the early diagnosis of diseases through advanced imaging analysis
[Est+21], and assists conservationists in remotely monitoring and protecting endangered species
[Tui+22]. Elevated by increased computational power, large datasets, and breakthroughs in
learning algorithms, machine learning allows systems to learn patterns directly from data [HB20].
This marked a transition away from traditional rule-based programming [GBC16], whereas
representation learning is one of the most important factors enabling this transition [BCV13].

Representation Learning. The aim of representation learning is to automatically discover
expressive and useful representations [BCV13] of data to facilitate downstream tasks such
as classification, regression, clustering, or even synthesis of new data. Instead of relying on
handcrafted features, representation learning allows models to learn features directly from
raw data, often revealing underlying structures and relationships [BCV13; LBH15; GBC16].
Consequently, representation learning is particularly effective in domains like computer vision,
where raw data is high-dimensional and complex [TIF24]. The hope is that automatically
extracted features generalize well across multiple tasks and datasets. By transferring learned
features, this reduces the need for large labeled datasets or the training of feature extractors on
new (niche) tasks [PY10].

No Free Lunch. At the same time, the No Free Lunch (NFL) theorems state that there cannot
be a universal learning algorithm performing better than random guessing when averaged over
all possible tasks [WM97; Wol02]. Wolpert and Macready [WM97] emphasize the »importance of
incorporating problem-specific knowledge into the behavior of the algorithm«. Sterkenburg and
Grünwald [SG21] argue that learning algorithms in the context of machine learning are model-
dependent and require a model as input that represents a bias for the task at hand. Therefore,
for a practitioner in machine learning, it is necessary to choose an algorithm by providing
preferences over its bias. In the context of this thesis, a (learning) algorithm is a representation-
learning neural network with its hyperparameters and training settings, such as training data,
data sampling, and other related settings. The collection of all choices about the network and its
training constitutes the bias we choose for our learning algorithm [SG21].

Inductive Bias. In machine learning, training a model can be understood as searching through a
space of possible functions to find one that fits the training data [Mit97]. By building preferences
about the function into the algorithm, we constrain this space, guiding the search toward
functions that reflect our assumptions about the problem [SB14; GBC16]. This reflects the bias
that arose from the NFL theorems and is called the inductive bias of a model. As defined by
Mitchell [Mit80], the inductive bias is a set of inherent assumptions that a model has in order to
infer solutions for inputs it has not seen before. This corresponds to the model having preferences
for certain types of solutions over others.

1

2 CHAPTER 1. INTRODUCTION

Regularization. The restriction of the explorable function space (by expressing preferences
over solutions) is what we refer to as regularization [GBC16]. By regularizing, we modify the
inductive bias of a model. For models that learn representations from data, regularization can
express preferences for the structure of learned representations, by favoring certain features
over others. A straightforward way to regularize a model is to add an additional term to its
training loss function [Bis06]. Other regularization techniques may affect different parts of the
model training. For example, early stopping [Pre96] regularizes the optimization itself, while
data augmentation affects the distribution of the training data. Some regularization effects arise
implicitly and are part of the network architecture, as for example batch normalization layers
[IS15], which are argued to smoothen the optimization landscape [LRP19]. All these types of
regularization influence the inductive bias of a model, and therefore its inherent preference for
certain types of solutions [Mit80].

Thesis Outline. In this thesis we demonstrate novel ways to regularize the training of repre-
sentation learning models for selected computer vision tasks. During this journey, we expand
our regularization strategy from regularization via manually designed penalty terms (Part I), to
regularization by matching distributions of extracted features (Part II), and finally to regulariza-
tion via data augmentation (Part III). We visualize key differences between these approaches in
Figure 1.1. In particular, we divide this thesis into the following parts.

• (Part I): Here, we penalize graph representation-learning networks and image representation-
learning networks by incorporating discrete constraints as penalty terms into their training
loss function in order to express preferences over the configuration of their predictions.

• (Part II): In this part, we regularize image synthesizing models by matching distributions of
extracted features between synthesized images and training data. By this means, we show
that evaluating image synthesis with Fréchet Inception Distance (FID) is flawed, and express
preferences over underexplored aspects of image quality.

• (Part III): In the last part of this thesis, we induce biases in generative models by augmenting
and judging the importance of their training data. This approach allows us to impose a model
bias through the assessment of training data instance importance.

1.1 Thesis Structure and Publications

The current chapter provides an introduction and outline to this thesis (see Figure 1.2 for
a visualization). Then, in Chapter 2, we introduce fundamental concepts relevant for this
thesis. These include representation learning, computer vision tasks addressed, as well as
fundamental regularization concepts. The remainder of the thesis is divided into three parts
that each represents a different regularization approach studied in the context of computer
vision tasks, and that each introduces novel regularization approaches in their respective scope.
Chapters in these parts are each based on a publication and include additional related work
sections to introduce further concepts relevant to the respective topic. The parts are structured in
the following way.

Part I: Penalize. In the first part of this thesis, we encode discrete constraints in the represen-
tations learned by graph representation-learning models and image representation-learning
models. Both edge detection and image segmentation have a rich history of methods formulating

1.1. THESIS STRUCTURE AND PUBLICATIONS 3

Loss-BasedData-Based

(I) Penalize

(II) Match

(III) Judge

ModelData

Sampler

Training
instance Prediction

J

F

Importance

Regularization

Figure 1.1: Visualization of the regularization strategies in this thesis. First, in Part I, we
incorporate manually-designed penalties into the training of models. Second, in Part II, we
regularize via a feature matching component (F) that provides a loss by distinguishing training
and output feature distributions. Last, in Part III, we assign importance scores (ω) to training
data instances via a score-assigning component (J), implicitly shaping the bias of the model.

these tasks as discrete optimization problem, and more specifically, as graph partitioning prob-
lem [SM00; KAB15; Keu17; And+11; And+13]. One of these formulations is the minimum cost
multicut problem, which can be formulated as Integer Linear Program (ILP) [BBC04; Dem+06]
and contains binary constraints defining feasible solutions thereof. In particular, in this part of
the thesis, we incorporate these binary constraints as penalty terms in the loss during training of
discriminative models. We develop a method incorporating these constraints in the training of a
Graph Neural Network (GNN)-based [Gil+17] solver for the minimum cost multicut problem
itself in Chapter 3. Then, in Chapter 4 we show that regularizing edge detection models with the
same core concept improves the boundary consistency of their predictions. The following author
publications contribute to this part.

[JK22] S. Jung and M. Keuper. “Learning to solve Minimum Cost Multicuts efficiently
using Edge-Weighted Graph Convolutional Neural Networks”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. 2022

[Jun+22] S. Jung, S. Ziegler, A. Kardoost, and M. Keuper. “Optimizing Edge Detection for
Image Segmentation with Multicut Penalties”. In: German Conference on Pattern
Recognition (GCPR). 2022

Part II: Match. Generative Adversarial Networks (GANs) [Goo+14] are trained via a minimax
game between a generator network and a discriminator network. The goal of the generator
network is to produce images that are as close to the training data distribution as possible,
attempting to fool the discriminator network. In this part we develop new approaches to
regularize the training of generator networks by comparing extracted features from synthesized
images and training images. In Chapter 5 we leverage pretrained image representations to

4 CHAPTER 1. INTRODUCTION

Part III: Data-BasedPart I: Penalty-Based Part II: Feature Matching

Chapter 6:

Spectral Distribution-Aware

Image Synthesis,

AAAI 2021 [JK21b]

Chapter 5:

Learned Representations to
Penalize Image Synthesis,

NeurIPS W 2021 [JK21a]

Chapter 7:

Biasing Discrete

Representations for

Image Synthesis

CVPR W 2023 [JSSK23]

Chapter 3:

Representation Learning

in Graphs with Discrete

Constraints,
ECML 2022 [JK22]

Chapter 4:

Edge Detection with

Discrete Constraints,

GCPR 2022 [JZKK22]

Chapter 8:

Biasing Generative Neural

Architecture Search,

ECCV 2022 [LJK22]

Chapter 1: Introduction

Chapter 2: Background

Chapter 10: Conclusion

Regularization Strategies

Chapter 9:

Data for Robust Neural

Architecture Design,

ICLR 2023 [JLK23]

Figure 1.2: Visualization of the structure of this thesis. Part I addresses the topic of regular-
ization by incorporating discrete constraints into the training of models that extract learned
representations from graphs and images. Part II introduces approaches to regularize Generative
Adversarial Networks (GANs) based on matching extracted features in the task of image synthe-
sis. Part III investigates the potential of simultaneously augmenting and weighting training data
as a form of regularization in the tasks of image synthesis and Neural Architecture Search (NAS).

1.1. THESIS STRUCTURE AND PUBLICATIONS 5

guide the regularization process. We show that the popular (and still actively used) metric
FID [Heu+17] measuring the quality of synthesized images is flawed by incorporating it as a
regularizer when training generator networks. In Chapter 6 we show that GANs lack fidelity
in the spectral domain of images and have to be regularized to generalize well under this
aspect. For this, we introduce an additional discriminator network that extracts spectral features,
encouraging the generator to match the spectral statistics of the data distribution. The following
author publications contribute to this part.

[JK21a] S. Jung and M. Keuper. “Internalized Biases in Fréchet Inception Distance”. In:
Advances in Neural Information Processing Systems (NeurIPS) Workshop on Distribu-
tion Shifts: Connecting Methods and Applications. 2021

[JK21b] S. Jung and M. Keuper. “Spectral Distribution Aware Image Generation”. In:
Association for the Advancement of Artificial Intelligence (AAAI). 2021

Part III: Judge. In the last part of this thesis, we focus on regularizing models by augmenting
their training data and judging the importance of each training instance towards specific pref-
erences. This weighting of the training data [TDH20] induces a bias into the model that aligns
its behavior with our preference. First, in Chapter 7 we enable this data-based regularization
method in the discrete image synthesizing model Vector Quantized Variational Autoencoder
(VQ-VAE) [OVK17]. On a case-study task, we investigate aligning the model with an increase
in the degree of smiling when synthesizing images of faces. We show that this is an effective
framework to optimize VQ-VAEs for arbitrary preferences. Second, in Chapter 8 we introduce a
novel, generative Neural Architecture Search (NAS) approach that is able to optimize architecture
design choices for the task of image classification while aligning it with multiple different target
metrics. Exemplary, we find architectures that are performant on their original task (having
high accuracy in image classification), while simultaneously are optimized for low latency on
target hardware devices. Another desirable property of image classification models is robustness
towards adversarial [GSS15] as well as common [HD19] perturbations. In this context, we
introduce a robustness dataset in Chapter 9, enabling our NAS algorithm to find performant as
well as robust architectures. The following author publications contribute to this part.

[LJK22] J. Lukasik*, S. Jung*, and M. Keuper. “Learning where to look–generative nas is
surprisingly efficient”. In: European Conference on Computer Vision (ECCV). 2022

[JLK23] S. Jung*, J. Lukasik*, and M. Keuper. “Neural Architecture Design and Robust-
ness: A Dataset”. In: International Conference on Learning Representations (ICLR).
2023

[Jun+23] S. Jung, J. C. Schwedhelm, C. Schillings, and M. Keuper. “Happy People–Image
Synthesis as Black-Box Optimization Problem in the Discrete Latent Space of
Deep Generative Models”. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshop: Generative Models for Computer Vision. 2023

[LJK22] and [JLK23] are equal contributions with Jovita Lukasik. For [LJK22] we jointly
developed the idea and wrote the paper. Jovita provided the generative model and latent space
optimization on single targets, and Steffen provided latent space optimization on multiple
targets. For [JLK23] we jointly wrote the paper. Jovita provided experiments on training-free
measurements and NAS results. Steffen developed the idea, implemented the dataset framework
and evaluations, aggregated the dataset, and performed the initial analysis. The NAS results for
the chapter in this thesis are revised by Steffen.

6 CHAPTER 1. INTRODUCTION

We provide outlines for each part on their respective part title page, and additionally short
outlines of each publication-based chapter on the respective chapter opener. In the last chapter
of this thesis, Chapter 10, we summarize our findings and provide an outlook from our work
towards remaining challenges and future research directions.

1.2 Additional Publications

The author of this thesis is also an author of the following publications that are not substantially
contributing to this thesis.

[Gra+22] J. Grabinski, S. Jung, J. Keuper, and M. Keuper. “FrequencyLowCut Pooling
- Plug and Play Against Catastrophic Overfitting”. In: European Conference on
Computer Vision (ECCV). 2022

[Pra+23b] K. Prasse, S. Jung, Y. Zhou, and M. Keuper. “Local Spherical Harmonics Improve
Skeleton-Based Hand Action Recognition”. In: German Conference on Pattern
Recognition (GCPR). 2023

[Pra+23a] K. Prasse, S. Jung, I. B. Bravo, S. Walter, and M. Keuper. “Towards Understanding
Climate Change Perceptions: A Social Media Dataset”. In: Advances in Neural
Information Processing Systems (NeurIPS) Workshops: Tackling Climate Change with
Machine Learning. 2023

[AJK24] S. Agnihotri†, S. Jung†, and M. Keuper. “CosPGD: an efficient white-box ad-
versarial attack for pixel-wise prediction tasks”. In: International Conference on
Machine Learning (ICML). 2024

[MJK25] T. Medi, S. Jung, and M. Keuper. “FAIR-TAT: Improving Model Fairness Using
Targeted Adversarial Training”. In: Winter Conference on Applications of Computer
Vision (WACV). 2025

[Gav+25] P. Gavrikov, J. Lukasik, S. Jung, R. Geirhos, B. Lamm, M. J. Mirza, M. Keuper,
and J. Keuper. “Can We Talk Models Into Seeing the World Differently?” In:
International Conference on Learning Representations (ICLR). 2025

[FJK25] M. Fatima, S. Jung, and M. Keuper. “Corner Cases: How Size and Position
of Objects Challenge ImageNet-Trained Models”. In: Transactions on Machine
Learning Research (TMLR) (2025)

Chapter 2

Background

CONSIDER the task of identifying whether an email is spam or not. In a traditional system,
we might write rules like »if the subject contains win money or free offer, classify it as spam«.

In contrast, a classic machine learning approach would involve manually extracting features
from the email, such as the frequency of specific keywords (e.g., win, offer, free), the presence
of suspicious links, or whether the email comes from an untrusted domain. These handcrafted
features are then used to train a machine learning model, such as a logistic regression or decision
tree, on a labeled dataset of emails marked as spam or not spam. The model learns to associate
patterns in these features with the likelihood of an email being spam. In representation learning,
however, the process is more automated and not reliant on manual feature engineering. For
example, a neural network can be trained on the raw email text and metadata without predefined
features. The model learns to represent the text as high-dimensional vectors, capturing patterns
such as word relationships, contextual meanings, and stylistic differences between spam and
legitimate emails. This approach reduces the need for human intervention in defining features
and enables the system to adapt more quickly. With enough training data, a representation
learning model can outperform traditional methods by identifying subtle and complex patterns
that handcrafted rules or features might miss. Figure 2.1 sketches the described differences
between those approaches.

Handcrafted

features

Handcrafted

features

Handcrafted

mapping

Learned

mapping

Learned
features

Learned

mapping

Rule-based programs

Classic machine learning

Representation learning

Figure 2.1: Possible pipelines that map from input data x to output ŷ. Gray boxes depict
components that automatically learn from data via training signals (blue lines), while white
boxes are handcrafted components [GBC16; Sze22].

An important aspect of representation learning approaches is the choice of training signals. In
this thesis, we introduce new approaches to providing such signals by regularizing representation
learning models in computer vision tasks. The current chapter serves as introduction to relevant

7

8 CHAPTER 2. BACKGROUND

topics in this context. We keep explanations brief and illustrative, providing more detail only
when it is essential for understanding the framework of this thesis. Related work is discussed in
more depth in the respective chapters. First, Section 2.1 introduces the concept of representation
learning in general. Second, Section 2.2 transfers this concept to the field of computer vision and
describes different tasks therein. Last, Section 2.3 motivates regularization in machine learning,
and describes different ways to regularize models with a larger focus on computer vision.

2.1 Representation Learning in Machine Learning

Representation learning is one of the core concepts of modern machine learning. Its goal is to
automatically discover meaningful representations from raw input data [BCV13]. In the context
of this thesis, we define representation learning as a parametrized function fh(x) that, given
some input x, produces an n-dimensional feature vector h ∈ Rn:

fh : x 7→ h ∈ Rn.

In practice, this learning of features mostly happens implicitly as part of a neural network
that is trained on a certain downstream task. We can consider a neural network that is trained on
a downstream task as a composition of two functions ft ◦ fh(x), where fh(·) is the parametrized
function learning to extract features from input data x, and ft(·) is a parametrized function that
learns to map from the extracted features to the desired, task-dependent output ŷ:

ŷ = f (x) = ft (fh (x)) . (2.1)

Solving the XOR-Problem with Representation Learning. As a demonstrative example, the
XOR (exclusive OR) problem [MP69] is a classic case in the study of neural networks that
illustrates the difficulty of learning non-linearly separable data. For this problem, non-linear
models like Multilayer Perceptrons (MLPs) (paired with non-linear activation functions) are
required to learn non-linear decision boundaries [Cyb89]. In Figure 2.2, we depict an XOR-
inspired dataset with decision boundaries learned by both a logistic regression [HLS13] and
an MLP. The MLP trained here (depicted in Figure 2.3 (left)) has one hidden layer consisting
of two neurons. We can assume the MLP here to be a composition as noted in Equation 2.1,
whereas activations h after the hidden layer are the result of its implicit feature extraction:
h = fh(x) = σ̂(x⊤wh), where σ̂(·) is a non-linear activation function, and wh is a vector of
parameters of this layer. The last layer of this MLP then performs the classification task like a
logistic regression: ŷ = ft(h) = σ(h⊤wt), where σ(·) is the sigmoid function and wt again are
parameters of this layer. When we plot the extracted features (see Figure 2.3 (right)), we can
observe that the 2-dimensional, linearly non-separable input data is transformed into a space
where the features now are linearly separable. Hence, the implicit feature extractor of this MLP,
fh(·), has learned to process the raw input data in a way to facilitate the network component
concerned about the downstream classification task (ft(·)).

The composition noted in Equation 2.1 expresses a fundamental principle that is present in
most neural network-based approaches in machine learning. In the following section, we further
elaborate on this concept in the light of different computer vision tasks relevant for this thesis.

2.1. REPRESENTATION LEARNING IN MACHINE LEARNING 9

21012
x1

2

1

0

1

2

x 2 0.5

y=0
y=1

0.0

0.5

1.0

2 1 0 1 2
x1

2

1

0

1

2

x 2

0.5

0.5

y=0
y=1

0.0

0.5

1.0

Figure 2.2: An XOR-inspired classification dataset with two classes (blue and orange), which
(left) cannot be linearly separated by a logistic regression, but (right) can be separated by an
Multilayer Perceptron (MLP) having non-linear activation functions. Lines represent decision
boundaries, whereas data points in light gray areas are assigned to class 1 and data points in
dark gray areas are assigned to class 0.

0 2 4 6
h1

0

1

2

3

4

5

6

h 2

0.5

y=0
y=1

0.0

0.5

1.0

Figure 2.3: (left) The Multilayer Perceptron (MLP) in our example has one hidden layer consisting
of 2 neurons with ReLU [NH10] activations. We can understand the activations of this hidden
layer h = fh(x) to be the result of its implicit feature extraction. (right) The activations of the
hidden layer (h1 and h2) can be understood as features extracted for the last layer, acting as
logistic regression: ŷ = ft(h). Both classes are now linearly separable.

10 CHAPTER 2. BACKGROUND

2.2 Representation Learning in Computer Vision

In 2012, AlexNet [KSH12] was the first Deep Neural Network (DNN) applied to the large
scale visual recognition challenge ImageNet [Den+09] and achieved unprecedented results in
classifying images. In its core, AlexNet follows the same principle of representation learning
models as presented in Equation 2.1. By showcasing the feasibility of training such models
on large-scale problems, AlexNet started a paradigm shift from manually engineered features,
such as SIFT [Low04] or SURF [BTG06], towards methods based on representation learning
[BCV13]. This shift allowed for the automatic extraction of features from raw image data, making
it foundational for many computer vision applications today [Sze22; TIF24].

In the following subsections, we describe different computer vision tasks and concepts
relevant for this thesis. Subsection 2.2.1 introduces classification on image instance level, whereas
Subsection 2.2.2 introduces classification on pixel level. Further, we introduce image synthesis in
Subsection 2.2.3 and conclude this section by describing principle ideas of transfer learning in
Subsection 2.2.4.

2.2.1 Image Classification

Image classification is one of the fundamental tasks in computer vision, where the goal is to
assign a label to an input image based on the presence of an object class [Sze22; TIF24]. It
serves as a cornerstone for numerous real-world applications, ranging from facial recognition
[Mas+18] to medical image analysis [Li+23], and forms the foundation for more complex tasks
like image segmentation [Sze22]. In image classification, we usually want our model to learn the
composition from Equation 2.1 in such a way that ŷ = f (x) ∈ [0, 1]C represents a conditional
probability distribution over C classes, where

ŷc = p(y = c | x)

denotes the predicted probability of image x belonging to class c ∈ {1, . . . , C}. The final classifi-
cation can then be obtained via ŷ = arg maxc ŷc.

Given a labeled dataset D = {(xi, yi)}N
i=1 with N instances, where xi is an image instance

with corresponding label yi, we can train such a model with the Cross Entropy (CE) loss [Bis06]:

LCE = − 1
N

N

∑
i=1

C

∑
c=1

1(yi = c) log p(y = c | xi),

where 1(yi = c) is an indicator function that is 1 if yi = c and 0 otherwise. Representation
learning plays a critical role for state-of-the-art image classification models such as Convolutional
Neural Networks (CNNs) and Vision Transformers (ViTs), described further below.

Convolutional Neural Networks. A CNN is a type of deep neural network that is specifically
designed to process data that has a grid-like structure, such as images [Lec+98]. CNNs use
convolutional layers to extract hierarchical features that are subsequently combined into broader
concepts while preserving spatial information (up to a certain degree). A single (in this example
2-dimensional) feature map is computed via:

H[i,j] =
Hk−1

∑
h=0

Wk−1

∑
w=0

D−1

∑
d=0

X[i+h,j+w,d] · K[h,w,d] + b. (2.2)

2.2. REPRESENTATION LEARNING IN COMPUTER VISION 11

3x

35x35x288

Inception

Module A

5x

17x17x768

Inception

Module B

2x

8x8x2048

Inception

Module C

Convolutions

& PoolingImage

299x299x3

Pool &
Softmax

1x1x1000

Figure 2.4: Inception v3 architecture [Sze+16] trained on ImageNet [Den+09]. Images and
features are tensors of size H ×W × D, whereas H ×W is the spatial resolution (width and
height) and D is the number of channels. Each inception module performs multiple convolution
operations in parallel, with the outputs of these operations subsequently concatenated to form
the final output. After the last inception module, feature maps are collapsed into a feature vector
via average pooling and then fed into a softmax classifier [Bis06].

Here, H[i,j] is the resulting 2-dimensional feature map at spatial location [i, j], X ∈ RH×W×D is
the 3-dimensional input tensor to the convolutional layer, K is the convolutional kernel of height
Hk, width Wk, and depth D, and b is a bias term. We omitted extensions like padding and stride
for brevity. Usually, the convolutional kernel and the bias are learned parameters of a layer, and
a layer contains multiple learned kernels that result in a stack of feature maps [GBC16].

Due to their local connectivity and weight sharing, convolutional layers are well-suited for
processing image data [GBC16]. Local connectivity ensures that neurons are connected only to
spatially nearby pixels, allowing CNNs to focus on localized patterns (like edges) in an image.
Weight sharing enables the same convolutional filters to be applied across different regions of the
image, reducing the number of parameters and ensuring that learned features are translational
equivariant. This allows CNNs to recognize objects regardless of their position within the image.
Assumptions like these that are encoded in the model design are called inductive biases [Sze22].
We discuss inductive biases and their role in regularization more in Section 2.3.

A common network design for CNNs is to stack multiple convolutional layer and gradually
reduce the grid size of the resulting feature maps while the number of channels of intermediate
representations increases. As an example, Figure 2.4 depicts the architecture of Inception v3
[Sze+16] with the respective resolutions and number of feature maps. This design enables
CNNs to learn a hierarchy of features of different granularity [ZF14]. A visualization of learned
features in different depths of a CNN can be found in Zeiler and Fergus [ZF14]. They show
that early layers of the network learn to capture edges, gradients, and colors. These features are
shared across a wide range of images and tasks, potentially making them good candidates for
generalizable features [Yos+14]. Deeper layers of the network learn to detect localized patterns,
such as shapes, parts of objects, or textures. When, for example, classifying animals, these
features might correspond to parts like eyes, ears, or tails.

Various CNN architectures have been proposed over the years. Popular choices include
AlexNet [KSH12], which popularized CNNs in computer vision by winning the 2012 ImageNet
challenge [Den+09]. It combined ReLU [NH10] activations with training techniques like dropout
[Sri+14] and data augmentation to mitigate overfitting. VGGNet [SZ15] emphasized small kernel
sizes of 3× 3 convolutions, showing that increasing depth enhances feature representation by
showing that learned features generalise to other datasets. GoogLeNet [Sze+15] introduced
Inception modules, which used multi-scale feature extraction within the same layer, improving
efficiency over VGGNet. Later versions of Inception (v2 and v3 [Sze+16], v4 [Sze+17]) refined
the architecture with factorized convolutions and batch normalization [IS15], further reducing
computational cost and improving the training process. ResNet [He+16], one of the most

12 CHAPTER 2. BACKGROUND

influential architectures, introduced residual connections. Residual connections allow the output
Hl of a layer l to be directly added to the output of the transformation of the next layer fl+1(·),
forming a skip connection expressed as Hl+1 = fl+1(Hl) + Hl . This allowed networks to be
deeper than before by mitigating the vanishing gradient problem [BSF94]. DenseNet [Hua+17]
built upon ResNet by introducing dense connectivity, where each layer receives feature maps
from all preceding layers (permitted by resolution), leading to improved parameter efficiency
and gradient flow. MobileNet [How+17] introduced depthwise separable convolutions, which
split a standard convolution into two operations. First, a depthwise convolution applies a
single filter per input channel, then a pointwise convolution combines the results. This reduces
computational cost and makes the model efficient for mobile and edge devices. EfficientNet
[TL19] introduced compound scaling, which systematically balances depth, width, and resolution
of the network. They show that this scaling can improve performance over other network designs
while requiring fewer number of parameters. More recently, ConvNeXt [Liu+22] modernized
CNN architectures by removing redundant complexities from ResNet, incorporating transformer-
like design principles, and enhancing optimization hyperparameters. In Chapter 9 we evaluate
the effect of architectural design choices of CNNs on their performance in the context of Neural
Architecture Search (NAS).

Vision Transformers. Due to their inductive bias, CNNs generalize well from limited data and
efficiently learn hierarchical feature representations [WW23]. However, while these inductive
biases are advantageous for many tasks, they also limit the ability of CNNs towards long-range
dependencies. This limitation stems from the fact that convolutions operate within a restricted
receptive field [GBC16]. Due to the availability of large image datasets, a new paradigm emerged
as an alterantive to CNNs in recent years: Vision Transformers (ViTs) [Kol+21]. This model
adapts the principles of the Transformer model [Vas+17] (originally developed for natural
language processing) to computer vision tasks. The core innovation of Transformers is their
self-attention mechanism, which enables the model to attend to different parts of the input
sequence and capture global dependencies.

For images, ViTs directly model global relationships by treating an image as a sequence of
image patches. Each patch is treated as a token, analogous to words in a sentence, enabling the
self-attention mechanism to capture interactions across the entire image. Usually, image tokens
z0 are linear projections from an image patch, such that:

z0
i = Wpxi + ei,

where xi is the flattened image patch at position i, Wp is a learnable projection matrix, and ei is a
positional encoding to retain spatial information. The image is then expressed as a sequence of
tokens of length N + 1:

Z0 = [z0
class; z0

1; z0
2; . . . ; z0

N],

where z0
class is a learnable class token that serves as global image representation. This sequence is

passed through multiple transformer encoder layers, whereas each layer modifies the containing
tokens via self-attention weights:

Attention(Q, K, V) = softmax

(
QK⊤√

dk

)
V,

2.2. REPRESENTATION LEARNING IN COMPUTER VISION 13

Vision Transformer

Image
Tokenizer LN MLP

AttentionLN LN MLP

Transformer Encoder Layer

Transformer
Encoder

Figure 2.5: (top) Depiction of the Vision Transformer [Kol+21] architecture. An image x is
tokenized by projecting image patches to image tokens and adding positional information. These
image tokens are modified via L Transformer encoder layers. Then, class token zL

class is extracted
and layer normalized (LN) before performing classification via an MLP. (bottom) Depiction of
a Transformer encoder layer. Token embeddings ZL are modified via self-attention and then
passed through an MLP. Layer normalizations (LN) and skip connections in-between improve
gradient flow.

where dk is a scaling factor to improve gradient flow, and matrices:

Q = ZlWQ, (Query matrix)

K = ZlWK, (Key matrix)

V = ZlWV , (Value matrix)

where WQ, WK, and WV are learnable projection matrices, and Zl is the token sequence after
layer l. To compute the token sequence of the next layer Zl+1, the transformer encoder layer
passes the attention output through an MLP, with residual connections and layer normalizations
in-between. For image classification, the class token zL

class after the last transformer encoder layer
is used as input to an MLP (or a linear classifier). We depict the whole process in Figure 2.5.

Different ViT architectures and improvements have been developed in recent years. The
Vision Transformer [Kol+21] was the first model to successfully apply the Transformer architec-
ture to vision tasks by tokenizing images into fixed-size patches and processing them similarly
to words, demonstrating state-of-the-art performance on larger-scale datasets like JFT-300M
[Sun+17] but struggling with data efficiency. The Data-efficient image Transformer (DeiT)
[Tou+21] addressed the data inefficiency problem by introducing knowledge distillation with a
teacher-student training approach. Here, a vision transformer is combined with a distillation
token that learns from a CNN teacher. This enables efficient training on smaller datasets like
ImageNet without requiring large-scale pretraining. The Shifted Window Transformer (Swin)
[Liu+21] introduced hierarchical feature maps and localized attention using non-overlapping
shifted windows, making it computationally efficient and scalable for high-resolution images.
The Cross-Attention Vision Transformer (CrossViT) [CFP21] enhances ViTs by using patch em-
beddings from different image patch sizes and cross-attention mechanisms. In this context,
cross-attention refers to an attention process where the query matrix Q from one scale attends to

14 CHAPTER 2. BACKGROUND

the key K and value V matrices from another scale. This allows the model to simultaneously cap-
ture fine-grained and global image features. The Token-to-Token Vision Transformer (T2T-ViT)
[Yua+21] refined patch tokenization by progressively aggregating tokens through overlapping
convolutions, reducing redundancy and improving feature representation, leading to better data
efficiency and performance on smaller datasets.

From Image-Level to Pixel-Level Classification. While image classification assigns a single
label to an entire image, many real-world applications require a more detailed, pixel-level
understanding. Here, a class or value is assigned to each individual pixel in an image. This
is important, for example, in applications such as medical imaging [Est+21], environmental
monitoring [Tui+22], and autonomous driving [Jan+20], where precise localization of structures
or objects is essential. In the next subsection, we introduce pixel-wise classification tasks, as well
as key methodologies to generate high-resolution predictions.

2.2.2 Pixel-Wise Classification

Pixel-wise classification is the fundamental problem in computer vision, where each pixel in an
image is assigned a class label. To assign a label to each pixel, commonly, our network learns a
conditional probability for each pixel location such that:

ŷ[i,j,c] = p(y = c | x), ŷ ∈ [0, 1]H×W×C,

where W and H are width and height of an input image x ∈ RH×W×D, [i, j] is a pixel location,
and C is the number of classes. Generally, we want to produce an output that matches the
resolution of the input image1.

We visualize different possible pixel-wise classification tasks in Figure 2.6. One of the most
basic pixel-wise classification tasks is edge detection. Here, the goal is to binary classify each
pixel in an image whether it belongs to an object boundary or not. The result is an edge map
(a), which can then be used to form coherent regions of pixels (segments) that belong together.
The task of finding arbitrary groups of pixels (clusters) that belong together is called image
segmentation (b). Edge detection and image segmentation are connected, as we can transform
an edge map to a partition an image, and vice versa. When we assign an object label to each
pixel in an image, for example tree, horse, or grass, then this task is called semantic segmentation
(c). When we instead want to differentiate between individual instances of the same object class,
then this task is called instance segmentation (d). Last, we can combine semantic and instance
segmentation, where both a class label and an instance is assigned to each pixel, into panoptic
segmentation (e).

Encoder-Decoder Networks. CNNs are subsequently reducing the resolution when extracting
features (see Subsection 2.2.1) and hereby encode an image into features. Consequently, when
using networks like CNNs for pixel-wise classification tasks, we have to increase the resolution
after a certain point in the network again to (better) match the resolution of output to input. This
part of the network is called upsampling and (if learned) a decoder. There are multiple ways to
achieve upsampling, whereas common approaches include encoder-decoder structures [LSD15]
as depicted in Figure 2.7. In the context of CNNs for pixel-wise classification, these are typically
Fully Convolutional Neural Networks (FCNs) [LSD15; RFB15]. In contrast to conventional CNNs

1While it might be generally desired that input and output resolutions match, this is not a hard requirement and can
depend on the resolution of ground truth labels provided or other factors.

2.2. REPRESENTATION LEARNING IN COMPUTER VISION 15

(c) Semantic Segmentation

Tree

Grass

Horse Horse

(d) Instance Segmentation

Horse #1 Horse #2

(e) Panoptic Segmentation

Tree #1

Grass #1

Horse #1 Horse #2

(b) Image Segmentation

(1)

(2)

(3) (4)

(a) Edge Map

Input Image

Figure 2.6: The results of edge detection and different types of segmentation tasks on an input
image from BSDS300 [Mar+01]. (a) Edge detection produces edge maps that assign a binary label
for each pixel, indicating whether it belongs to an edge or not. (b) The edge map in (a) can be
used to partition the image into different regions. (c) Each pixel in the image is assigned a class
label. (d) Each pixel in the image is assigned an instance id for a certain class, identifying which
instance it belongs to (or none). (e) The combination of (c) and (d) produces a class label for each
pixel in the image, as well as an instance id.

16 CHAPTER 2. BACKGROUND

Encoder Decoder

Figure 2.7: Visualization illustrating an encoder-decoder architecture. Given an input image
x ∈ RH×W×D the encoder part fEnc of the network downsamples the feature resolutions leading
up to a bottleneck representation h. This representation is then subsequently upsampled in
resolution by decoder fDec until the desired output resolution is obtained, leading to output
ŷ ∈ RH×W×D (assuming C classes). Optional skip connections (dotted lines) preserve finer
details from earlier layers of the encoder network.

for image classification, FCNs are designed without fully-connected layers and can therefore
handle arbitrary input resolutions.

Upsampling in the decoder can be achieved through different techniques. Transposed convo-
lutions [ZF14] work by reversing the process of a standard convolutional layer (see Equation 2.2).
Instead of reducing spatial dimensions, they expand feature maps by inserting learnable weights
and overlapping filters to generate a higher-resolution output. This enables trainable upsampling
but can introduce checkerboard artifacts [ODO16]. An alternative approach is interpolation of
feature maps, for example via nearest-neighbor or bilinear upsampling [GW18]. Here, pixel
values are computed based on the value of surrounding pixels. Since no learnable parameters
are introduced, interpolation is less adaptive compared to transposed convolutions. This can be
mitigated, for example, by combining bilinear upsampling with a subsequent standard convolu-
tional layer as demonstrated by Odena, Dumoulin, and Olah [ODO16]. There are also methods
that reverse the pooling operation from the encoder network in the decoder. For example Badri-
narayanan, Kendall, and Cipolla [BKC17] proposed using the max-pooling indices from the
encoder to perform non-learned upsampling, which places activations back into their original
spatial locations. This produces sparse feature maps that are then densified through trainable
convolutional layers.

Chapter 4 covers the tasks of edge detection and image segmentation. Hence, we focus the
following related works on these two subjects.

Edge Detection Methods. Solving the task of edge detection relied on classical techniques
such as the Sobel operator [KVB88], Canny edge detector [Can86], and Laplacian of Gaussian
[MH79], which use handcrafted filters to detect edges based on image gradients. However,
image gradients are sensitive to noise and varying illumination conditions [GW18]. More recent
edge detection methods are based on representation learning-neural networks that can learn to
extract more robust features in this regards [BST15; She+15; XT15; Man+16a; Liu+19; He+19;
Pu+22]. For example, Bertasius, Shi, and Torresani [BST15] combine the Canny edge detector
with a CNN classifying contour candidates. Shen et al. [She+15] categorize image patches into
possible contour shapes (or no contour) with a CNN. Holistically-Nested Edge Detection (HED)
[XT15] is a CNN that uses side outputs at multiple layers to learn hierarchical edge features.
Resulting edge maps from side outputs are upsampled via bilinear interpolation and aggregated

2.2. REPRESENTATION LEARNING IN COMPUTER VISION 17

to compute a final output. Richer Convolutional Features (RCF) [Liu+19] extends HED by
aggregating hierarchical features across all convolutional layers, instead of only selected ones.
In Chapter 4 we improve the training scheme of RCF with penalty terms that encourage closed
contours, resulting in finer-grained edge contours.

Image Segmentation Methods. The goal of image segmentation is to partition an image into
coherent regions. For this, classical methods like Watershed Transform [Beu79; VS91] define
segmentation as a topographic watershed problem, using image gradients to separate regions.
Image segmentation can also be understood as clustering pixels in the image. Hence, some
methods are based on clustering approaches such as Mean Shift [CM02], or based on graph-
partitioning methods such as Normalized Cuts [SM00; Arb+14] and methods formulating image
segmentation as Minimum Cost Multicut Problem (MP) [BBC04; Kim+11; And+11; And+13;
BHK15; Keu+15]. Here, the MP is defined on a weighted graph that is partitioned by removing
edges. The optimal partitioning is given by minimizing the sum of the weights of edges that are
removed. For example, Andres et al. [And+11] propose a probabilistic approach that connects
superpixels based on adjecancy and assigns edge weights based on learned boundary probabili-
ties. Beier et al. [Bei+16] extend this approach by introducing higher-order edges, improving
segmentation quality in complex images. The MP is essential for Chapter 3 and Chapter 4, as it
gives rise to discrete constraints that define valid solutions for it. We formulate penalty terms
based on these constraints in both chapters, where we also provide a formal definition of the MP.

Any of the beforementioned methods that predict edge maps can also be used for image
segmentation. For this, predicted edge maps have to be transformed into segmentations [Arb+09].
For example Arbelaez et al. [Arb+09] compute initial regions via a watershed transform and then
construct a Ultrametric Contour Map (UCM) [Arb06], which is a hierarchy merging local regions
based on their similarity. Arbeláez et al. [Arb+14] extends this idea by considering multiple
image resolutions.
From Categorical to Continuous Outputs. While pixel-wise classification assigns a discrete
label to each pixel, some tasks require continuous values at pixel level. These are necessary
for applications such as depth estimation, optical flow, surface normal estimation, and image
synthesis [Sze22; GBC16]. Since image synthesis is the key task for Chapter 5, Chapter 6, and
Chapter 7, we are introducing principles and architectures thereof in the following subsection.

2.2.3 Image Synthesis

Unlike discriminative computer vision models (which predict labels from images), generative
computer vision models for image synthesis produce new images [TIF24]. Such models learn
an approximate distribution of the training images and can sample novel images from this
distribution. Hence, given an image dataset D = {xi}N

i=1 that originates from an underlying
data distribution pdata(x), we are interested in learning its approximate distribution pθ(x̂, h) ≈
pdata(x) over a latent representation space, where h ∼ p(h) is the latent representation of an
image sampled from a prior distribution p(h). We can then sample new images via:

x̂ = fGen(h),

where x̂ is the generated image and fGen is a function that maps from the latent representation
space to the image space. While this formulates the setting of unconditional image synthesis,
there is also a conditional setting for which we model pθ(x̂, h, c) ≈ pdata(x | c) and generate
samples via x̂ = fGen(h, c) for some conditioning c [TIF24]. Here, the image generation process
is guided by additional information, such as class labels [MO14] or natural text descriptions

18 CHAPTER 2. BACKGROUND

[Man+16b]. In the context of this thesis, we primarily focus on the unconditional image synthesis
task. Hence, for simplicity, we assume the unconditional setting throughout the remainder of
this thesis.

In recent years, several generative frameworks have been developed for image synthesis,
each with different strategies for modeling the data distribution pθ(x̂, h). Prominent approaches
that are relevant for this thesis are Variational Autoencoders (VAEs) [KW14], Vector Quantized
Variational Autoencoders (VQ-VAEs) [OVK17], and Generative Adversarial Networks (GANs)
[Goo+14]. We briefly introduce each of these, and additionally mention diffusion-based models
[Soh+15], which are the generative backbone of many modern image synthesis methods [Ram+22;
Sah+22a; Rom+22]. Finally, we discuss common metrics for evaluating image synthesis quality
[Sal+16; Heu+17].

Variational Autoencoders. VAEs are a fundamental approach to image synthesis introduced by
Kingma and Welling [KW14]. A VAE consists of an encoder-decoder pair of networks (forming
an autoencoder architecture [HS06], see Figure 2.8) with a stochastic element: The encoder
fEnc(x) models a probabilistic mapping qθ(h|x) from an input image to a latent representation,
and the decoder fDec(h) models a generative function pθ(x̂|h) reconstructing an image from
the latent sample drawn. In practice, the encoder produces parameters (for example, mean
and variance) of a simple distribution (typically a centered isotropic multivariate Gaussian
pθ(h) = N (h; 0, I)) in a low-dimensional latent space. A random latent vector is then sampled
(using the reparameterization trick [KW14] for differentiability during training), and passed
through the decoder to reconstruct the image. We can define this process as follows:

h = µθ(x) + σθ(x) · ϵ, where ϵ ∼ N (0, I),

and µθ(x) and σθ(x) are mean and standard deviation produced by fEnc(x). The model is trained
by maximizing a variational lower bound of the data likelihood. Given the Kullback-Leibler
Divergence (KLD) DKL(p∥q) between two distributions p and q, the loss is computed via:

LVAE = Eqθ(h|x)[− log pθ(x̂ | h)] + DKL(qθ(h | x) ∥ p(h)).

This objective balances two terms: (1) a reconstruction term that encourages the decoded image
to match the input image, and (2) a regularization term that pushes the latent distribution toward
a chosen prior (usually a standard normal). By this means, VAEs learn an explicit probabilistic
model of the data. One can then sample the latent prior distribution and feed it to the decoder to
generate new images.

VAEs provide a principled framework for generative modeling with latent variables. They
often produce images that capture the coarse structures of the data, but tend to be blurrier
compared to other generative methods. Dosovitskiy and Brox [DB16] attribute this blurriness to
the reconstruction error, which becomes equivalent with the squared Euclidean error in VAEs
when the latent space is assumed to be Gaussian distributed. Despite this, VAEs are valuable
for their explicit representation of uncertainty in the latent space and the ability to interpolate
between images by traversing the smooth latent space [KW14]. Numerous extensions and follow-
up works [Gul+17b; Hig+17; OVK17; Chi21] to VAEs exist to improve, for example, generation
quality. One of these extensions that we use in Chapter 7 are VQ-VAEs, which we discuss next.

Vector Quantized Variational Autoencoders. VQ-VAEs is a variant of the variational autoen-
coder that introduces a discrete latent space, combining ideas from VAEs and discretization via
vector quantization. Proposed by Oord, Vinyals, and Kavukcuoglu [OVK17], VQ-VAE replaces
the continuous latent variables of a standard VAE with d-dimensional latent code vectors drawn

2.2. REPRESENTATION LEARNING IN COMPUTER VISION 19

Quantization

Encoder Decoder

Codebook

(c) Vector Quantized Variational Autoencoder

(b) Variational Autoencoder

Encoder Decoder

(a) Autoencoder

Encoder Decoder

Figure 2.8: Visualization comparing the architectures of autoencoders, VAEs, and VQ-VAEs. (a)
An encoder fEnc maps input image x ∈ RH×W×D to latent representation h from which fDec
reconstructs image x̂. (b) Instead of mapping to a latent representation directly, fEnc computes
parameters of a latent distribution from which h is sampled. (c) Here, the output of encoder fEnc
is quantized (via a finite codebook containing K learnable latent code vectors ek) into a grid of
categorical latent variables z, whereas z[i,j] = arg mink ∥ĥ[i,j] − ek∥2. For the decoder, each latent
variable is replaced with the corresponding codebook vector h[i,j] = ez[i,j] .

20 CHAPTER 2. BACKGROUND

from a finite codebook {ek}K
k=1, ek ∈ Rd of length K. In a VQ-VAE, the encoder fEnc outputs

a continuous latent representation ĥ ∈ Rh×w×d given an input image xH×W×D, which is then
quantized (see Figure 2.8). Each latent vector is replaced by the nearest learnable codebook

z[i,j] = arg min
k
∥ĥ[i,j] − ek∥2

2, z ∈ {1, . . . , K}h×w, h[i,j] = ez[i,j] ,

where [i, j] is the spatial location of the feature vector, and z is a grid of categorical latent variables.
The decoder then takes these codebook embeddings as input to reconstruct the image via:

x̂ = fDec(h).

Because the latent space is discrete, the VQ-VAE training uses a straight-through estimator or
a codebook update mechanism (instead of the reparameterization trick) to propagate gradients
through the quantization step. The total loss for VQ-VAE consists of three terms:

L = Lrecon + Lvq + Lcommit,

Lrecon = ∥x− x̂∥2
2,

Lvq = ∥sg[ĥ]− h∥2
2,

Lcommit = β∥ĥ− sg[h]∥2
2,

where sg[·] is the stop-gradient operator, which prevents gradients from flowing into the encoder,
and hyperparameter β controls the strength of the commitment loss. The reconstruction loss
measures how well the decoder reconstructs x, the vector quantization loss ensures latent vectors
are replaced by their nearest codebook vectors, and the commitment loss encourages the encoder
output ĥ to stay close to the selected codebook vector h.

During training, the prior distribution of VQ-VAEs is typically uniform [OVK17]. After
training, a learned autoregressive prior can be fitted for high-quality image generation, for
example using a PixelCNN [Oor+16]. This two-stage approach has proven effective, for example
in advanced image synthesis systems like DALL-E [Ram+21]. In Chapter 7 of this thesis, we
bias the discrete latent space of VQ-VAEs by sampling globally optimal codes from it, based on
user-defined preferences.

Generative Adversarial Networks. GANs are a class of generative models introduced by
Goodfellow et al. [Goo+14]. A GAN consists of two neural networks, a generator network and a
discriminator network, that play a minimax (zero-sum) game against each other. The generator
network takes a random input (noise vector) and learns to produce real images (from the training
distribution), while the discriminator network tries to distinguish between real images and
images produced by the generator (see Figure 2.9). Through this adversarial training process,
the generator ideally learns to generate images that are indistinguishable from the training data.

Formally, generator network fG learns to produce images from randomly sampled represen-
tations h ∼ p(h), whereas a common choice for p(h) is the standard normal distributionN (0, 1).
Discriminator network fD is a binary classifier, mapping input samples x to realness probabilities
fD : x → [0, 1]. While fD is trained to maximize its ability to distinguish real from generated
samples, fG is trained to minimize it. Formulated as a minimax game [Goo+14]:

min
fG

max
fD

V(fG, fD), with objective function

V(fG, fD) = Ex∼pdata(x)[log fD(x)] + Eh∼ph(h)[log(1− fD(fG(h)))].

2.2. REPRESENTATION LEARNING IN COMPUTER VISION 21

(a) Discriminator Training

(b) Generator Training

Figure 2.9: Visualization of GAN training. Discriminator network fD is distinguishing training
data samples x from generated samples x̂. Blue lines indicate the backpropagation target. (a) The
discriminator network is trained to predict whether an image is from the training data or not.
(b) The generator network fG tries to fool the discriminator by generating samples close to the
training data, while the discriminator provides the training signal to the generator network.

The core idea of GAN training is that the generator network does not receive direct super-
vision on how far its output is from a ground-truth image, but instead it improves by learning
to make the discriminator network unable to tell training data images and generated images
apart. This indirect training signal can yield sharp and detailed results, as the generator is
encouraged to model high-fidelity details that convince the discriminator [Kar+20b; BDS19].
However, training GANs can be challenging due to unstable training dynamics. For example,
the generator might collapse to producing limited varieties of images (mode collapse), when
discriminator and generator are not synchronized well during training [Goo+14].

Since their introduction, numerous improvements have been proposed for GANs to enhance
their stability and sample quality. For example, Deep Convolutional Generative Adversarial
Network (DCGAN) [RMC15] introduced a guideline for CNN-based GAN architectures that
improve training stability over fully-connected GANs. Mao et al. [Mao+17] attribute vanish-
ing gradients to the sigmoid loss in the typical loss formulation [Goo+14]. They introduce
Least Squares Generative Adversarial Network (LSGAN), which replaces the standard binary
cross-entropy loss with a least squares loss for the discriminator, improving training stabil-
ity and sample quality further. Similarly, for Wasserstein Generative Adversarial Network
(WGAN) [ACB17] and Wasserstein Generative Adversarial Network with Gradient Penalty
(WGAN-GP) [Gul+17a], the Jensen-Shannon divergence used in standard GANs is replaced
with the Wasserstein distance to improve training stability. Spectral Normalization Generative
Adversarial Network (SNGAN) [Miy+18] stabilize training by controlling the Lipschitz constant
of the discriminator with spectral normalization, which constraints the spectral norm of each
weight matrix. Karras et al. [Kar+17] introduces a progressively growing architectural design

22 CHAPTER 2. BACKGROUND

for GANs, which gradually increases image resolution over the duration of the training. This
enables to produce images with higher resolution than before. BigGAN [BDS19] scales GAN
to larger models, enabling class-conditioned generation of high-resolution images based on
ImageNet [Den+09]. They also introduce the truncation trick, which limits the range of the
noise vector an image is sampled from, trading off sample diversity for quality. In StyleGAN
[KLA19; Kar+20b], the generator samples from an additional (style-based) latent space, which
enables fine-grained control over image synthesis. In Projected GAN [Sau+21], the discriminator
network uses features extracted by pretrained image classification networks, which leads to
a substantial reduction in training runtime. In Chapter 5 we also use pretrained features to
penalize GANs, and in Chapter 6 we add an additional discriminator network in the frequency
domain of images to cover this blind spot of existing GAN architectures.

All previously mentioned approaches employ parameterized functions implemented as
neural networks to discriminate between training data images and generated images. Another
line of approaches compares distributions of both image sources by comparing their statistics
in a distance-based manner instead [LSZ15; Li+17]. Generative Moment Matching Networks
(GMMNs) replace the learned discriminator in traditional GANs with a statistical test based on
Maximum Mean Discrepancy (MMD), essentially employing a parameter-free discriminator. Li,
Swersky, and Zemel [LSZ15] train the generator to produce samples that match all moments of
the training data distribution by minimizing MMD using a fixed kernel, for example a Gaussian
kernel. This design eliminates adversarial dynamics and enables stable training, but comes at
the cost of quadratic computational complexity with respect to the number of samples when
evaluating the objective. Similarly, in Chapter 5 we employ a parameter-free discriminator by
using Fréchet Inception Distance (FID) as distance metric comparing features extracted by a
parameterized but fixed feature extractor to train generative models.

Challenges, such as the discussed training instabilities leading to mode collapse, remain
fundamental limitations of GANs. In contrast, diffusion-based models [Soh+15] have emerged
as an alternative, leveraging a probabilistic denoising process to generate high-quality samples
with improved stability and sample diversity [DN21]. While not a part of this thesis, we briefly
introduce the idea behind diffusion models for completeness in the next section.

Diffusion-Based Models. Diffusion models are a newer class of deep generative models that
have grown in importance for image synthesis [Soh+15; Che+25]. These models generate images
by learning to iteratively denoise random noise. During training, noise is gradually added
to images, transforming the data distribution into pure noise. The model learns to invert this
process by iteratively removing noise to recover the original data. Once trained, image synthesis
is performed by starting from a random noise sample that is progressively denoised using
the learned reverse process. Ho, Jain, and Abbeel [HJA20] demonstrate with their Denoising
Diffusion Probabilistic Model (DDPM) that diffusion-based generators can produce high-quality
images. In fact, Dhariwal and Nichol [DN21] show that diffusion models can achieve image
sample quality comparable to or even surpassing GANs on certain benchmarks. However, a
downside of these models is that generating an image is typically slower, as it requires many
iterative denoising steps. Despite this, due to their high synthesis quality, stable training, and
scalability to large datasets [DN21], they became the underlying approach of recent high-profile
systems [Ram+22; Rom+22; Sah+22b; Kar+22; Xie+25].

Image Synthesis Evaluation Metrics. Evaluating the quality of generated images is a non-
trivial task, as it involves assessing both how realistic the images are and how diverse they are
relative to the training data. Human evaluation is the gold standard for judging image realism,

2.2. REPRESENTATION LEARNING IN COMPUTER VISION 23

but it is time-consuming and not scalable. Instead, the research community relies on a few
quantitative evaluation metrics to compare generative models. Two of the most commonly used
metrics in image synthesis are Inception Score (IS) [Sal+16] and FID [Heu+17].

Inception Score. IS [Sal+16] uses a pretrained Inception-v3 image classification network
[Sze+16] to evaluate generated images. The basic idea is that a good generative model should pro-
duce images that (a) look like clear examples of some recognizable object/class (high confidence
predictions from the classifier, meaning the predicted label distribution of each image has low
entropy), and (b) collectively cover a wide variety of classes (the overall distribution of predicted
labels across many generated images has high entropy, indicating diversity). Mathematically, we
can formalize IS as:

IS = exp
(
Ex̂∈D

[
KL
(

p(y|x̂) ∥ p(y)
)])

,

where Ex̂∈D is the expectation over a dataset of generated images D = {x̂i}N
i=1, p(y|x̂) is the

conditional label distribution for a generated image x̂, p(y) is the marginal class distribution,
and KL(p(y|x̂)∥p(y)) is the Kullback-Leibler divergence between the conditional and marginal
distributions. Intuitively, it rewards images that the classifier finds distinct and classifiable and
penalizes lack of diversity. A higher IS suggests better quality and diversity. However, IS has
some known shortcomings, for example its sensitivity to the specific weights of the pretrained
classifier and its unreliable behavior when applied to datasets beyond those it was trained on
[BS18]. It also evaluates only the generated images without directly comparing them to training
data [Heu+17]. To overcome these shortcomings, Heusel et al. [Heu+17] propose an alternative
metric called Fréchet Inception Distance (FID).

Fréchet Inception Distance. The FID has become the de facto standard for evaluating image
synthesis in recent years [Heu+17; Bor22; Jay+24]. FID also leverages a pretrained Inception
network, but compares extracted image features instead of predicted labels. Concretely, a set of
generated images and a set of training data images are passed through the Inception v3 model
fh(·) to obtain feature representations. The FID treats the set of Inception features for training
images and for generated images as two distributions (modeled as multivariate Gaussians) and
computes the Fréchet distance between both:

FID = ∥µD1
− µD2

∥2
2 + tr(ΣD1 + ΣD2 − 2

√
ΣD1 ΣD2),

between two image sources D1 and D2, where tr(·) is the trace operator, and

µD =
1
|D| ∑

x∈D
fh(x) and ΣD = ∑

x∈D

(fh (x)− µD) (fh (x)− µD)
⊤

|D| − 1

are the mean vector and covariance matrix of feature vectors of dataset D.
The resulting distance reflects the difference in feature means and covariance between real

and generated image sets. Lower FID indicates that the generated images are more similar to
real images in the feature space, hence higher fidelity and diversity of the generation. FID has
been shown to correlate better with human judgment compared to IS [Heu+17]. However, FID is
also criticized for certain biases and shortcomings, which we discuss further in Chapter 5.

24 CHAPTER 2. BACKGROUND

2.2.4 Transfer Learning

In traditional machine learning, we train a model from scratch for each new task, assuming
training and test data come from the same data distribution [PY10; SB14]. Transfer learning, by
contrast, facilitates learnings that were made from previous tasks [GBC16]. Formally, Pan and
Yang [PY10] define transfer learning as aiming to improve the target predictive function f on the
target task TT in target domain DT using knowledge from a source domain DS and source task
TS, where either the domains or tasks are not the same (hence, either DS ̸= DT or TS ̸= TT , or
both). In other words, transfer learning is applicable when the data distribution differs between
domains, or the learning objectives or label space differs. In the case of matching tasks, hence
TS = TT , but distinct data distributions, hence DS ̸= DT (for example from daytime to nighttime
images), transfer learning is also called domain adaptation [PY10]. It is particularly useful in
representation learning, where training models from scratch requires substantial computational
resources and large datasets. In computer vision, where datasets are often high-dimensional and
complex, transfer learning has become an essential technique [JT21] by extracting features from
pretrained models or by using their weights as initialization for training.

Feature Extraction. Pretrained models, trained on diverse datasets like ImageNet [Den+09],
provide feature representations that can be reused for different vision tasks [Raz+14; Yos+14].
The idea is to take advantage of the representations learned from the source task by extracting
them from some layer of a network and feeding them into a new classifier or regressor for the
target task. Feature extraction is effective when the source and target tasks are sufficiently related
such that the learned representations are relevant [Yos+14]. Razavian et al. [Raz+14] showed that
off-the-shelf features from a pretrained ImageNet CNN achieve good performance on various
image recognition tasks, often outperforming traditional hand-crafted features like SIFT [Low04].
Feature extraction plays a crucial role in transfer learning for GANs, which we examine further
in Chapter 5.

Finetuning. Initializing a model with pretrained weights often leads to faster convergence
during training and can also help to advoid overfitting [JT21]. The pretrained model provides a
sensible starting point such that the training on the new task can focus on refining these features
rather than learning from random ones. A common technique is to pretrain the backbone of
vision models on a large benchmark like ImageNet, then adapt it to the specific vision task
[Zop+20]. For example, Girshick et al. [Gir+14] demonstrated that using a CNN pretrained
on the ImageNet dataset and then finetuning it on a small object detection dataset led to an
improvement in detection accuracy over training the CNN from scratch. For CNNs, a common
recipe is to freeze early layers and finetune only the higher layers initially, since lower layers are
often universally useful [Yos+14; Lon+15].

In the next section we conclude Chapter 2 with a fundamental discussion about generalization
and regularization in representation learning.

2.3. GENERALIZATION AND REGULARIZATION 25

2.3 Generalization and Regularization

When training a model for a given task, we are usually interested in its ability to generalize.
Generalization is the ability of a model to perform well on unseen data [GBC16]. One way of
estimating generalization performance is using a separate test dataset that the model did not
see during training. A low error on this dataset then indicates good generalization towards this
distribution. The test dataset can then either be a disjunct sample of the training data distribution
(in-distribution), or a variation thereof (out-of-distribution) [TIF24]. When we are interested in a
model that performs well on variations of its training data distribution, specifically in terms of
common perturbations in images and adversarial perturbations that are crafted to fool a model,
we call it robust [GSS15; HD19; Cro+21]. We introduce common corruptions and adversarial
perturbations in more detail in Chapter 9, where we introduce a dataset evaluating robustness of
different image classification network architectures.

Two of the fundamental concepts that can explain conditions necessary for models to gener-
alize well are the bias-variance tradeoff [GBD92] and the No Free Lunch (NFL) [WM97] theorem.
We discuss both below.

2.3.1 Overfitting, Underfitting, and the Bias-Variance Tradeoff

Two common problems that practitioners in machine learning are confronted with when training
models are overfitting and underfitting. The bias–variance tradeoff [GBD92] is a fundamental
concept explaining the balance between these two problems. Here, the assumption is that we
train the same model multiple times with a squared loss, each time using a different dataset
that is independently sampled from the same underlying data distribution [Bis06]. Evaluating
the expected predictions over all of these models, we can decompose the expected loss of this
ensemble into [Bis06]:

expected loss = (bias)2 + variance + noise,

where the noise term is constant for a given dataset. This decomposition describes the balance
between two extremes. Bias measures the differences between the expected predictions and the
true function, reflecting the error caused by incorrect assumptions or oversimplified models.
For example, fitting a linear model to nonlinear data results in systematic off-target predictions,
and therefore high bias. Models with high bias underfit the data, achieving high errors on both
the training dataset as well as the test dataset. Variance measures how much predictions vary
in-between all models on the same input, reflecting the error caused by sensitivity to noise in
the training data. High variance corresponds to overfitting, which happens when a model is too
complex relative to the amount of training data, so it memorizes the training data (including
noise) instead of learning more generalizable features. Because of that, an overfit model has low
training error but high test error.

For example, Zhang et al. [Zha+17a] show that deep networks can fit randomly shuffled
labels on training images, achieving near-zero training error. Similarly, Kawaguchi, Bengio, and
Kaelbling [KBK22] show that a large network trained on only a few hundred images can overfit
by memorizing each image. These examples demonstrate how severe overfitting is possible
when model complexity far exceeds the informative content of the data.

Bias-Variance Tradeoff. By changing model complexity, we can trade off between bias and
variance (see Figure 2.10 (left)). As we increase model complexity, bias tends to decrease but
variance tends to increase. The tradeoff is that we cannot simultaneously minimize both bias and

26 CHAPTER 2. BACKGROUND

Model complexity

Er
ro

r

Variance

Generalization

Bias

Problem class

Pe
rfo

rm
an

ce

Generalist Model

Specialist Model

Figure 2.10: Inspired by [LS08]: (left) Depiction of the bias-variance tradeoff. The generalization
error of a model is decomposed into a variance component and a bias component. The tradeoff
between these two can be steered by changing model complexity. (right) The NFL theorem states
that (i) no algorithm is superior over another algorithm averaged over all problem classes, and
hence (ii) if an algorithm performs well on one problem class, it is offset by lower performance
on other problem classes. The area under both curves are equal.

variance, since making the model more flexible to reduce bias will typically increase variance,
and vice versa. The optimal model complexity is usually the one that achieves the lowest total
generalization error (bias + variance) [GBC16].

Regularization Steers the Bias-Variance Tradeoff. One way of adjusting complexity of a
model is to change the number of its parameters. Another way is to modify its flexibility via
regularization [DFO20]. As Goodfellow, Bengio, and Courville [GBC16] state: »[W]e might find
[...] that the best fitting model (in the sense of minimizing generalization error) is a large model
that has been regularized appropriately«. Regularization techniques add bias to reduce variance:
By favoring simpler models (for example, by adding a penalty or constraint), we accept more
bias (the solution may not fit perfectly) in exchange for lower variance (the model is not fitting
every training example). By doing so, regularization helps control generalization by managing
the trade-off between underfitting and overfitting. For instance, penalizing the magnitude of
weights in a neural network via weight decay trades off fitting the training data exactly and the
weights being small [GBC16]:

Lregularized = Ldata + λ ·∑
i

w2
i ,

where Ldata is the original loss (e.g., cross-entropy or mean squared error), wi are the model
parameters, and λ > 0 is a hyperparameter that controls the regularization strength. This is an
example for a regularization technique where we incorporate our assumptions about the weights
of the model into the loss function. In this case, we encode a preference for small model weights.

While the bias-variance tradeoff highlights the challenge of balancing model complexity to
achieve optimal generalization on a specific task, it assumes that the underlying data distribution
is fixed and learnable [Bis06]. However, it is not concerned about whether any learning algorithm
can perform well on all possible data distributions. The NFL theorem [WM97] addresses this
from a theoretical perspective, showing that no learning algorithm can outperform others when
averaged over all possible data distributions. In the next section, we discuss the NFL theorem
and its implications about regularization further.

2.3. GENERALIZATION AND REGULARIZATION 27

2.3.2 No Free Lunch and Inductive Biases

The NFL theorem [WM97] is a fundamental concept in optimization and machine learning that
states: No single learning algorithm performs optimally on all possible data distributions. In other
words, when averaging the performance of any algorithm over all possible problems, every
possible algorithm will perform random guessing on average. The implication is that the success
of any algorithm is bound to specific assumptions it makes about the problem at hand. The NFL
theorem thus highlights the importance of adding problem-specific knowledge to the algorithm.
Sterkenburg and Grünwald [SG21] corroborate that learning algorithms in machine learning
are also dependent on a model, not only data distributions, and are therefore restricted by the
inductive bias of the model. There, the term inductive bias describes any assumption that a
learning algorithm has to predict outputs for inputs it has not yet seen [Mit80]. For example,
CNNs assume local spatial coherence in images, an assumption that is powerful for vision tasks,
but might not help for arbitrary data. In essence, adding tailored assumptions into a model is
necessary to perform well on specific data (see Figure 2.10 (right)).

Regularization as Inductive Bias. In the context of this thesis, we define a learning algorithm
as a representation-learning neural network and the collection of its hyperparameters and
training settings, including the sampled data it is trained on and how the data is sampled.
Training this model can be viewed as a search over a hypothesis space to find a function
that best fits the training data [Mit97]. We can restrict this hypothesis space by encoding
preferences about the function into the model or its training, which modifies the inductive bias
of the model [SB14; GBC16]. For instance, with CNNs we assume local connectivity, or when
applying weight decay prefer learned parameters having a smaller magnitude. In general, We can
encode such preferences via regularization, which Goodfellow, Bengio, and Courville [GBC16]
describe as »[...] any modification we make to a learning algorithm that is intended to reduce its
generalization error but not its training error«. Kukačka, Golkov, and Cremers [KGC17] argue
that the definition is too restrictive given that regularization techniques can also reduce the
training error, such as when applying weight decay. They instead define regularization as »any
supplementary technique that aims at making the model generalize better, i.e. produce better
results on the test set.«. In this thesis, we follow their definition. In summary, by encoding our
preferences into the model (regularization) we enable it to align the assumptions it has (inductive
bias) with the structure of the problem it tries to solve (specialization).

Soft Constraints vs. Hard Constraints. One way to distinguish certain regularization tech-
niques is by how strictly a model is required to follow an imposed constraint. We can differentiate
between hard constraints that must strictly be satisfied and soft constraints that are encouraged
but not enforced [MSF17; Beu+21; CCL25]. Soft constraints encourage the model towards a
certain behavior, for example by adding penalties to the loss function, such as weight decay.
Consequently, these constraints are not guaranteed, but they guide the learning process such
that the model favors solutions that align more with the encoded structure of the problem. Hard
constraints, on the other side, are enforced by design and offer guarantees that an expected
behavior is achieved [MSF17; Beu+21; CCL25]. This prunes out nonsensical predictions by, for
example, satisfying physical constraints of possible solutions [MSF17].

Explicit vs. Implicit Regularization. Machine learning literature focusing on regularization
techniques sometimes distinguishes these by how assumptions are imposed on a model. Loosely
summarized, assumptions can be directly encoded (explicitly), for example as penalties, or
emerge from network design choices and training dynamics (implicitly). Unfortunately, existing

28 CHAPTER 2. BACKGROUND

literature lacks justification about what constitutes explicit vs. implicit regularization, mostly
relying on intuitive understanding [NTS15; Zha+17a; WKM20; Zha22]. To the best of our
knowledge, the article by Hernández-García and König [HK20] is the only instance of an attempt
to define both terms and their relation, albeit still criticized for its vagueness by its reviewers.
Here, they define explicit regularization as techniques that affect the representational capacity of
a network, and implicit regularization as any other effect that affects its effective capacity. They
follow the definitions given by Goodfellow, Bengio, and Courville [GBC16] for these terms.
There, representational capacity is the space of functions that a model is hypothetically able
to learn. However, due to limitations of training complex models, the capacity of a model is
restricted to its effective capacity. The lack of literature on the topic solidifies the assumption that
finding a clear distinction between explicit and implicit regularization is hard, and separating
lines become fuzzy. Therefore, we use the terms explicit and implicit according to the sentiment
that is reflected by recent literature.

Taxonomy for Regularization. Kukačka, Golkov, and Cremers [KGC17] infer a taxonomy for
regularization by observing the objective in typical machine learning problems:

arg min
θ

1
|D| ∑

(xi ,yi)∈D
Ldata

(
f θ(xi), yi

)
+ Lpenalty

They divide their taxonomy into elements of the training objective that influence generalization.
For this they identify: (a) training data (xi, yi) ∈ D for data-based regularization, (b) the model
family f for regularization via the network architecture, (c) regularization via the error function
Ldata, (d) regularization via the penalty term Lpenalty, and last (e) the optimization arg minθ itself
for optimization-based regularization. For this thesis, we combine (c) and (d) into loss-modifying
regularization, and adopt the rest (mostly) as is. In the next section, Section 2.4, we describe
some of the common regularization techniques found in representation learning for computer
vision, and we structure the section based on this taxonomy. At some points we deviate from
their categorizations and provide justification for doing so.

2.4 Regularization Approaches in Representation Learning

In this section, we provide descriptions for a selection of commonly used methods to regularize
representation learning approaches in computer vision, structured in the taxonomy of Kukačka,
Golkov, and Cremers [KGC17]. The selection is not complete (as this would overwhelm the
scope of this thesis) and intends to give an overview over methods that already exist and are
important in computer vision. While some topics are more general, other topics are quite specific
(for example multiple discriminators and weighted retraining), because they are key topics of
upcoming chapters and intend to provide context for these. Table 2.1 provides an overview
of discussed techniques, indicating those that constitute a primary focus in the subsequent
chapters. First, we start with optimization-based regularization techniques in Subsection 2.4.1,
where we describe implicit regularizing effects of optimization algorithms, early stopping, and
projection of model parameters. Subsection 2.4.2 contains architecture-based regularization
techniques, which includes the general choice of network architecture, but also more specifically
projection layers, dropout, and batch normalization. Further, in Subsection 2.4.3 we describe
regularization techniques that modify the loss function, namely penalty terms and adding
additional discriminator networks in GANs. Last, in Subsection 2.4.4 we dive into data-based
regularization, where we discuss data augmentation and weighted retraining.

2.4. REGULARIZATION APPROACHES 29

Table 2.1: Examples of regularization techniques in the taxonomy by Kukačka, Golkov, and
Cremers [KGC17]. We also indicate which parts of this thesis focus on the respective technique.

Optimization-Based Architecture-Based

Subsection 2.4.1:
• Optimizer bias
• Early stopping
• Parameter projection

Subsection 2.4.2:
• Architectural design choices
• Projection layers
• Batch normalization
• Dropout

Loss-Modifying Data-Based

Subsection 2.4.3:
• Weight norm penalties
• Penalty terms (Part I)
• Discriminators (Part II)

Subsection 2.4.4:
• Data augmentation
• Weighted retraining (Part III)

2.4.1 Optimization-Based Regularization

Optimizer Biases. The choice of optimization algorithm influences the training dynamics, and
therefore the final performance of the trained model. Potential biases of the optimizer might be
reflected in the result, for example when using the commonly used and well-studied optimizer
Stochastic Gradient Descent (SGD). There are several works that study implicit regularizing
effects arising from optimization with SGD: Goodfellow, Bengio, and Courville [GBC16] argue
SGD provides implicit regularization due to noisy gradient updates, especially when combined
with small batch sizes. Keskar et al. [Kes+17] claim that SGD with small batch size tends to
converge to flatter minima (as compared to sharper minima with larger batch sizes) that often
generalize better, while Barrett and Dherin [BD21] attribute this to an implicit gradient penalty of
SGD. The effect of this implicit regularization in overparameterized networks is studied by Peleg
and Hein [PH24], who show that increasing the width of a network improves generalization,
but not increasing its depth. In contrast, Andriushchenko et al. [And+23] demonstrate that
the commonly assumed correlation between flatter minima and generalization itself does not
necessarily hold when factors such as data distributions, parameter initialization, and function
families are taken into account.

In summary, these findings suggest that the choice of optimization algorithm can bias which
solution a network converges to. There is evidence that SGD implicitly penalizes large gradients,
which in turn biases the optimizer toward flatter minima. Consequently, the choice of SGD as
optimizer inherently encodes a preference for such solutions. However, the relationship between
flatter minima and generalization remains not well understood.

Early Stopping. Early stopping monitors the performance of the model on a validation dataset
during training. When the validation error starts increasing while the training error decreases,
training is halted to prevent overfitting [Pre96]. The intuition behind early stopping is that we
select the model parameters from an earlier epoch before the model starts to fit to the noise in
the training data, thereby restricting its flexibility.

30 CHAPTER 2. BACKGROUND

Bishop [Bis06] states that the effective number of degrees of freedom of a network starts small
and grows during training, concluding: »Halting training before a minimum of the training
error has been reached then represents a way of limiting the effective network complexity.«
Goodfellow, Bengio, and Courville [GBC16] highlight that early stopping has the practical
advantage of automatically choosing the degree of regularization, whereas penalties such as
weight decay require manual tuning of the regularization strength.

In summary, applying early stopping encodes our preference towards a model that performs
well on validation data early in training, for which we hope the model generalizes better to
unseen data.

Projecting Parameters onto a Feasible Set. One form of regularization that is not considered
yet in the taxonomy of Kukačka, Golkov, and Cremers [KGC17] is projecting parameters onto a
feasible set. The feasible set C is the set of all points that satisfy certain constraints we have about
our problem. Projection onto the feasible set then means finding the closest point within C to a
potentially arbitrary point outside C that we are given. Formally, given a feasible set C ⊆ Rn,
the projection operation of a point x /∈ C onto C with some distance measure d(·, ·) (typically
Euclidean) can be defined as [BV04]:

ΠC(x) = arg min
z∈C

d(z, x).

This operation ensures that the projected parameters stay within the feasible region, strictly
enforcing constraints we have about them. This acts as a form of regularization because it restricts
the space of solutions, and thus the flexibility of the network. We categorize imposing such
constraints as optimization-based regularization technique, as it affects the training dynamics of
the optimizer without modifying the loss, in contrast for example to weight decay.

Projecting model parameters to a feasible set an be used to enforce hard constraints about
them, such as non-negativity, boundedness, or unit norm [FNW07; VR22]. Srivastava et al.
[Sri+14] show that constraining the parameter norm of a network during training via max-
norm regularization is useful when training networks in combination with dropout. For this,
parameters are rescaled (projected back onto the feasible set) after each update. In this sense,
max-norm regularization can be seen as a hard-constraint version of weight decay, since weight
vectors can only grow up to a fixed, specified norm. Another example is weight clipping
[ACB17]. Here, after each gradient update during training, all parameters are clipped to lie
within a predefined interval, typically [−τ, τ] for some constant τ > 0. This procedure ensures
that no parameter can grow beyond the specified bounds. One notable use case of weight
clipping is in Wasserstein Generative Adversarial Networks (WGANs) [ACB17], where it is
used to enforce the Lipschitz continuity condition required for the theoretical foundations of the
Wasserstein distance.

In summary, by defining a feasible set that reflects our preference over model parameters, we
can directly enforce that the model adheres to these constraints.

2.4.2 Architecture-Based Regularization

Network Architecture Design Choices. According to the universal approximation theorem
[Cyb89], fully-connected MLPs can, in principle and under certain conditions, approximate any
function given sufficient capacity. While this is a promising result, it does not provide guidance
on how to learn such functions efficiently from data. By designing the connectivity of the units
in a neural network in specific ways, we can incorporate prior assumptions about the task.

2.4. REGULARIZATION APPROACHES 31

Hence, the architecture of a neural network can already steer the model toward certain classes
of solutions that align with these assumptions, potentially improving learning efficiency and
generalization. For example, due to weight sharing in the convolutional layers of CNNs, the
same filter weights are applied at every image location. This design encodes the assumption that
the same features can appear anywhere in an image, resulting in models that are equivariant to
translation [GBC16]. In addition to incorporating this prior knowledge, weight sharing also has a
regularizing effect by reducing the number of parameters compared to fully-connected networks.
As a result, data efficiency is improved [GBC16], provided that the translational equivariance
assumption holds.

Similarly, using pooling layers in CNNs (an example was shown in Figure 2.4) can provide
approximate translational invariance, for which the exact position of a feature matters less after
pooling [GBC16]. This acts as a regularizer by limiting the model to focus on whether a feature is
present rather than its precise location, reducing sensitivity to shifts in images. This is particularly
helpful for classification networks, where we can encode that the exact location of the object is
not relevant for our task.

In summary, designing the network architecture of our model allows us to directly encode
preferences about the structure of the input data and the nature of the task, thereby guiding the
learning process toward more efficient and generalizable solutions.

Projecting Layer Outputs onto a Feasible Set. In some cases, it is desirable to incorporate hard
constraints directly into the network architecture, ensuring that the model adheres to known
properties of the problem. For example, Beucler et al. [Beu+21] incorporate constraints as custom
layers throughout the network that guarantee the satisfaction of physical conservation laws. This
ensures that the model cannot produce physically implausible outputs, regardless of the data.
Enforcing such hard constraints via network design choices limits the flexibility of the model.

Another common design is to constrain the output of a network by incorporating a projection
as final layer [Che+18; Blo19; PM20; Hua+21; CFL24]. The network produces an unconstrained
output (such as a vector of real numbers), and then this output is projected onto a feasible set
C, representing the space of valid labels or structures. For example, if the task is to predict a
probability distribution, the feasible set C can be the probability simplex. Projecting an arbitrary
score vector x onto the probability simplex yields a proper probability distribution. Effectively,
this is what the softmax layer does implicitly. In more complex structured predictions, the feasible
set C might be defined by a combinatorial structure. In such cases, the prediction by the network
can be guaranteed to satisfy constraints by, for example, implementing the projection layer
via an additional solver [DTP21], or rounding of relaxed solutions with subsequent repairing
of violated constraints [TKD25]. In Chapter 3 we project relaxed solutions provided by the
proposed minimum cost multicut solver to integer solutions.

In summary, by projecting the outputs of a model onto a feasible set, we can encode our pref-
erence for valid solutions that strictly adhere to problem-specific constraints, thereby improving
reliability and applicability of the model in constrained prediction tasks.

Dropout. Dropout [Sri+14] is a regularization technique developed for neural networks, where
a subset of activations is set to zero during training. Formally, a network layer fh at layer t
computes the next representations ht given representations ht−1 from a previous layer

without dropout: ht = fh(ht−1), and

with dropout: h̃t = fh(ht−1 ⊙m), m ∼ Bernoulli(p),

32 CHAPTER 2. BACKGROUND

where representations h̃t are now noisy, because ht−1 is multiplied with a binary mask m
that is sampled from a Bernoulli distribution given probability p. This effectively creates an
ensemble of smaller networks, reducing interdependence among neurons, and can thus improve
generalization [Sri+14]. At test time, no units are dropped. Instead, the weights are scaled down
to account for the averaging effect.

Batch Normalization. Batch Normalization (BN) [IS15] is primarily introduced to stabilize and
accelerate training by normalizing layer inputs h via:

h̃[i] = γ[i] ·
h[i] −E[h[i]]√

Var[h[i]]
+ β[i],

where h̃ are normalized representations, and γ and β are learnable scale and shift parameters.
Mean and variance are computed as moving averages during training with mini-batches (for
example with SGD). Statistics are kept fixed during inference to enable determinism.

Ioffe and Szegedy [IS15] argue that BN mitigates exploding gradients, because it prevents
activations to grow in magnitude, which in turn allows for higher learning rates. Additionally,
because BN normalizes based on batch statistics, each mini-batch introduces noise in the estima-
tion of of mean and variance, especially when the batch size is small [GBC16]. This noise can
be similar to the effect of dropout, preventing the network from becoming too sensitive to the
absolute scale of certain neurons. Ioffe and Szegedy [IS15] observe that BN provides sufficient
regularization on its own, making dropout obsolete. Luo, Ren, and Peng [LRP19] note that BN
improves generalization in addition to speeding up convergence. Their reasoning is that BN
smooths the optimization landscape and also adds slight noise to activations, which together
help avoid overfitting.

Categorization of Dropout and Batch Normalization. Kukačka, Golkov, and Cremers [KGC17]
categorize dropout and batch normalization as data-based regularization techniques, because
these methods transform intermediate representations (in a stochastic sense) within the network.
However, they also acknowledge the ambiguity that these can also be seen as part of the network
architecture, as they are often referred to as layers. We choose the latter, and describe both
techniques in the current section.

2.4.3 Loss-Modifying Regularization

Weight Norm Penalty Terms. Weight norm penalties (such as weight decay) encode a prefer-
ence for small parameter values into the objective function by penalizing their magnitude. The
general form of a regularized loss function is:

L(θ) = Ldata(θ) + λ ·Ω(θ),

where θ are model parameters, Ldata(θ) is the training objective loss, and Ω(θ) is the regularizer
whose strength is controlled via hyperparameter λ. Common choices for weight norm penalties
are:

L1 Penalty (Lasso): Ω(θ) = ∥θ∥1, and

L2 Penalty (weight decay): Ω(θ) = ∥θ∥2
2.

Weight decay (L2) is commonly used during training of neural networks and encourages small
parameter values, as the gradients of the penalty shrink the parameters with each update [GBC16].

2.4. REGULARIZATION APPROACHES 33

The L1 penalty, on the other hand, encourages weights to become exactly zero and therefore
promotes sparsity [Tib96]. This is caused by constant gradients, which apply uniform pressure on
all weights regardless of their magnitude (in contrast to weight decay, where gradients depend
on the magnitude of weights). As such, L1 regularization can also be used to perform variable
selection [Tib96].

Representation-Based Penalty Terms. While weight norm penalties explicitly penalize model
parameters, it is also possible to construct penalty terms that involve feature representations of
the model. By doing so, we can directly encode preferences we have over features learned by the
model. For example, an L1 penalty on feature representations Ω(h) = λ · ∥h∥1 again encourages
sparsity in the feature representations the model extracts. This is, for example, applied to the
code layer of sparse autoencoders [Le+12], where we want the autoencoder to compress input
data into a sparse representation.

One can also penalize properties of representations, such as their sensitivity to input changes
as done in contractive autoencoders [Rif+11]. These are trained with the following penalty term:

Ω(h) = ∥∇xh∥2
F. (2.3)

Here, the penalty term is composed of the Frobenius norm ∥ · ∥F applied to the Jacobian of
the output representations of the encoder with respect to the input. This penalty encourages
representation h to only allow small local changes for small perturbations in input x, which in
essence means the network learns more robust features that are less sensitive to small input
perturbations [JG18].

The idea of penalizing certain structures in representations is widely adopted. For example,
Cogswell et al. [Cog+16] penalize the covariance of representations of a layer, and thereby
encourages decorrelated features. They claim that such a penalized model is less prone to
overfitting and can improve generalization.

Output-Based Penalty Terms. An example of penalizing the output of a network is label
smoothing [Sze+16]. This technique modifies the (usually) one-hot encoded ground truth vector
by mixing it with a uniform distribution over classes:

ỹ = (1− α) · y + α · 1
C
· 1, (2.4)

where α is the smoothing parameter, C is the number of classes, and 1 ∈ RC is a vector of ones.
Considering cross-entropy CE(·, ·) as loss function, we can rewrite the loss of the model by
treating ỹ as targets:

L = CE(ỹ, ŷ)
(2.4)
= (1− α) ·CE(y, ŷ) + α ·CE

(
1
C
· 1, ŷ

)
.

This can be interpreted as adding a penalty term that is proportional to the KL divergence
between the predicted distribution and a uniform prior [Sze+16]. This encourages the network
to avoid overconfident predictions and promotes softer probability distributions. Pereyra et al.
[Per+17] extend this idea by explicitly adding an entropy-based penalty term to the loss, showing
that both label smoothing and explicit penalty improve generalization. Label smoothing is
another instance for which we deviate from the taxonomy by Kukačka, Golkov, and Cremers
[KGC17]. While categorized as data augmentation there, we follow the interpretation that label
smoothing penalizes the outputs of the model.

34 CHAPTER 2. BACKGROUND

In this thesis, we design output-based penalty terms in both chapters of Part I. In both
cases, we incorporate discrete constraints defining feasible compositions of the output vector as
penalties, encouraging the minimum cost multicut solver in Chapter 3 to produce more feasible
solutions, and the edge detection network in Chapter 4 to predict more consistent edgemaps.

Multiple Discriminators in GANs. While the training of GANs usually consists of a single
generator that is trained alongside a single discriminator network, an emerging line of research
instead uses multiple discriminator networks to improve training stability and generative perfor-
mance. The core idea is that the generator network is trained by an ensemble of discriminator
networks, which has been shown to alleviate common GAN pathologies like mode collapse and
discriminator overfitting [Goo+14]. Training with multiple discriminator networks changes the
training objective, and therefore acts as loss-modifying regularization technique.

For example Durugkar, Gemp, and Mahadevan [DGM17] extend GAN training to K discrimi-
nators and aggregate their feedback (e.g. via weighted average). They show that this stabilizes
training using the original minimax GAN loss and also accelerates convergence. Nguyen et al.
[Ngu+17] propose using two discriminator networks with complementary objectives. One
discriminator encourages the generator to produce samples similar to real data, while the other
one rewards generated data that diverges from the real distribution. They show that this scheme
is able to capture multiple modes of the data and thereby alleviates mode collapse. Albuquerque
et al. [Alb+19] frame the training of GANs with multiple discriminators as multi-objective op-
timization problem, and achieve a better trade-off between sample quality and training cost
compared to naive averaging of multiple discriminator network training signals. They also show
that quality and diversity of samples increases with the number of discriminators. Choi and
Han [CH22] propose multiple discriminator training, where each discriminator specializes on
a subset of the real data distribution, while sharing a common backbone network. Again, this
encourages the generator to cover the entire data distribution while mitigating mode collapse.

All these approaches have in common that discriminators are trained simultaneously along-
side the generator network. The training loss for the generator is typically a combination (sum,
average, or weighted aggregate) of the losses from each discriminator, which means the generator
can only be successful by fooling all discriminator networks at the same time. The common
motivation behind this approach is to mitigate mode collapse and thereby improve sample
diversity. Another effect is that ensembling discriminators provides more robust gradients. Even
if one discriminator overfits and its feedback vanishes at some region, another discriminator
may still provide a signal.

In Chapter 6, we add an additional discriminator network that acts in the spectral domain in
order to encourage the model towards increased fidelity in this domain.

2.4.4 Data-Based Regularization

Data Augmentation. One powerful regularizer in computer vision to improve generalization is
data augmentation [GBC16; Hen+20]. By transforming input images in ways that preserve their
label, we can effectively multiply the training set size and expose the model to a wider variety of
situations. Common augmentations include random crops, horizontal flips, rotations, color jitter,
scaling, cutouts, to name just a few [SK19]. With data augmentation, the model cannot simply
memorize the training set, because each epoch it is shown altered versions of the training images.
Goodfellow, Bengio, and Courville [GBC16] emphasize that »[t]he best way to make a model
generalize better is to train it on more data«, and notes that injecting noise or perturbations into
inputs is effectively a form of data augmentation. Augmentation can be seen as imposing prior

2.4. REGULARIZATION APPROACHES 35

knowledge that certain transformations should have no influence on the class label, introducing
a bias into the model towards which invariances it should learn. However, augmentations must
be applied carefully, as semantically altering transformations can degrade performance [SK19].

Modern augmentation strategies learn policies that optimize the selection of transformations
applied on a given dataset [Cub+19; Cub+20; Hen+20]. Other lines of augmentations, like mixup
[Zha+18a], create virtual training samples composed out of multiple training instances (including
the class label).

In summary, data augmentation not only improves generalization by increasing the amount
of data, but also encodes our preferences for which input variations the model should learn to be
invariant to.

Weighted Retraining. Instead of treating items in the training data set uniformly, we may
have tasks where certain data items are more informative than others. In such cases, we may
want to assign importance to data, which implicitly tells the model what we care about. Tripp,
Daxberger, and Hernández-Lobato [TDH20] showed that weighting training data and retraining
a pretrained generative model with the weighted data can be used to optimize its latent space.
Intuitively, the latent space of the generative model is optimized in such a way that the model
produces training instances that are assigned higher importance with higher probability. Tripp,
Daxberger, and Hernández-Lobato [TDH20] argue that weighted retraining corresponds to
training with a weighted emirical mean:

Lweighted =
n

∑
i=1

ωi · Ltrain(yi, ŷi), (2.5)

where ωi is the weight for training sample i, yi are the true labels, and ŷi are the predictions.
However, in order to employ weighted retraining with SGD, it is implemented by sampling each
training item from the dataset according to its assigned weight (with replacement) [TDH20].
In contrast to transforming the content of data items as done in data augmentation, here we
transform the sampling distribution of the dataset.

Sampling from the dataset in a weighted manner can be interpreted as incorporating a prior
belief that certain samples are more informative or valuable. This acts as a form of regularization,
because it changes the inductive bias of the model and potentially leads to better generalization
on tasks where certain examples are more descriptive of the desired outcome. The taxonomy by
Kukačka, Golkov, and Cremers [KGC17] is not covering the case where the way that training
data is sampled is modified in such a way. While weighted retraining could be categorized as
optimization-based regularization (see Equation 2.5), in essence, we encode a preference over
how we sample from the training dataset. Hence, we classify it as data-based regularization.

In Part III, we use weighted retraining to perform latent space optimization in the discrete
latent space of VQ-VAEs in Chapter 7, and to perform neural architecture search with a generative
model in Chapter 8.

36 CHAPTER 2. BACKGROUND

2.5 Summary

In this chapter, we introduced key concepts from representation learning, computer vision tasks,
and regularization. We motivated the importance of regularization as a tool to encode knowledge
in the form of preferences about the features a model learns, or how it learns them. Then, we
described different approaches of regularization techniques that are applied in computer vision
via the taxonomy introduced by Kukačka, Golkov, and Cremers [KGC17]. This taxonomy
illustrates the range of possibilities available to encode our preferences into the model. In Part I
we incorporate binary constraints from a combinatorial optimization problem into the training
of representation-learning networks. Although these are hard constraints for the underlying
integer linear program of the problem, we reformulate them into penalty terms (loss-modifying
regularization), hence into soft constraints that the model is encouraged but not enforced to
adhere to. However, since we need feasible integer solutions for inference in Chapter 3, we
also incorporate a component into the model that projects the relaxed outputs of the proposed
minimum cost multicut solver onto integer-valued solutions (architecture-based regularization).
In Part II we regularize generative models via methods that match extracted features of generated
images with the training data. These also modify the loss of the respective generator and
encode our preferences towards certain aspects of quality in the generated images. Lastly, in
Part III we discuss methods that employ weighted retraining (data-based regularization), and
thereby encode preferences about the latent space of these generative models. Most of the other
techniques discussed here, like data augmentation, early stopping, batch normalization, and
also optimizer biases, are key components of most modern computer vision approaches. And,
although not specifically discussed, these are also applied throughout upcoming chapters. We
now proceed with the first part of the thesis.

Part I

Penalize:
Regularization with
Discrete Constraints

Chapter 3: Representation Learning in Graphs with Discrete Constraints 39
Chapter 4: Edge Detection with Discrete Constraints 57

In the first part of this thesis we explore how discrete constraints that define feasible solutions
of the minimum cost multicut problem can be used to regularize representation learning ap-
proaches. The minimum cost multicut problem is a combinatorial optimization problem in which
edges are removed from a graph, and by that, the graph is decomposed into subgraphs. This
problem can be defined as integer linear program with cycle consistency constraints. These con-
straints ensure that for each removed edge the formerly connected nodes are assigned to distinct
components. We first incorporate cycle consistency constraints as penalty term in the training of
a graph representation learning-based solver for the multicut problem itself in Chapter 3. Here,
we demonstrate that the graph representations learned by the regularized network facilitate
the feasibility of proposed solutions. Second, in Chapter 4, we incorporate cycle consistency
constraints as penalty term into the training of convolutional neural networks in the task of
edge detection. Here, these constraints encourage the network to predict edgemaps in which
object contours are closed. We show that this leads to cleaner edgemaps, and hence, better image
segmentation results.

37

This page intentionally left blank.

Chapter 3

Representation Learning in Graphs with Dis-
crete Constraints
Contents of This Chapter

4.1 Introduction . 58

4.2 Related Work . 59

4.3 Penalizing Networks with Cycle Constraints . 60
4.3.1 Cycle Constraints in the Multicut Problem . 60
4.3.2 Incorporating Cycle Constraints into a CRF . 61
4.3.3 Cooling Mean-Field Updates . 62
4.3.4 Penalizing Image Segmentation Networks . 64

4.4 Experiments . 65
4.4.1 Berkeley Segmentation Dataset and Benchmark . 65
4.4.2 Neuronal Structure Segmentation . 70

4.5 Conclusion and Outlook . 72

Chapter Topic. This chapter is based on Jung and Keuper [JK22]. Here, we investigate how
discrete constraints from combinatorial optimization can regularize graph-based representation
learning methods. In particular, a graph neural network-based solver for the minimum cost
multicut problem is developed. This problem decomposes a graph into subgraphs by removing
edges and gives rise to cycle consistency constraints that define the composition of feasible,
integer solutions. The introduced approach integrates these constraints, encouraging the network
to learn representations that provide feasible solutions. Experiments demonstrate that this
regularization enhances the performance and generalization of the learned representations in
various segmentation tasks.

Chapter Outline. We first introduce this chapter in Section 3.1. Then, we briefly review the
minimum cost multicut problem in Section 3.2, and provide an overview on graph neural
networks and their application in combinatorial optimization in Section 3.3. In Section 3.4, we
present the proposed approach for solving the minimum cost multicut problem with graph
neural networks, including model adaptations and the derivation of the proposed penalty term.
Section 3.5 provides an empirical evaluation of the proposed approach, after which we conclude
this chapter in Section 3.6.

39

40 CHAPTER 3. GRAPH REPRESENTATION LEARNING

3.1 Introduction

RECENT years have shown great advances of neural network-based approaches in various
application domains from image classification [KSH12] and natural language processing

[Vas+17] up to very recent advances in decision logics [Ara+21]. While these successes indicate
the importance and potential benefit of learning from data distributions, other domains such as
symbolic reasoning or combinatorial optimization are still dominated by classical approaches.
Recently, first attempts have been made to address NP-hard combinatorial problems in a learning-
based setup [Sel+19; Dai+17b; LCK18; Pra+19]. Specifically, such papers employ (variants
of) Message Passing Neural Networks (MPNNs) [Gil+17] defined on graphs [Sca+09; Mic09;
KW17] in order to model, for example, the boolean satisfiability of conjunctive normal form
formulas (SAT) [Sel+19], or address the travelling salesman problem [Pra+19] (both highly
important NP-complete combinatorial problems). These first advances employ the ability of
graph convolutional networks to efficiently learn representations of entities in graphs and prove
the potential to solve hard combinatorial problems.

In this chapter, we address the Minimum Cost Multicut Problem (MP), also known as
the weighted correlation clustering problem [Dem+06; BBC04]. This grouping problem is
substantially different from the aforementioned examples as it aims to assign binary edge labels
based on a signed edge cost function. Such graph partitioning problems are ubiquitous in
practical applications such as image segmentation [SM00; Arb+11; And+11; And+12; Keu+15],
motion segmentation [Keu17; KAB15], stereo matching [Kap+15a], inpainting [Kap+15a], object
tracking [Keu+20; Ho+20], pose tracking [Ins+16], or entity matching [OB19]. We provide an
illustrative example in Section A.1 in Appendix A.

The MP is NP-hard, as well as APX-hard [BBC04], which makes it a particularly challenging
subject to explore. Its main difficulty lies in the exponentially growing number of constraints that
define feasible solutions, especially whenever non-complete graphs are considered. Established
methods solve its binary linear program formulation or linear program relaxations [Kap+15a].
However, deriving optimal solutions is oftentimes intractable for large problem instances. In
such cases, heuristic, iterative solvers are used as a remedy [Keu+15]. A significant disadvantage
of such methods is that they can not provide gradients that would allow to train downstream
tasks in an end-to-end way.

To address this issue, we propose a formulation of the minimum cost multicut problem as an
MPNN. While the formulation of the multicut problem as a graph neural network seems natural,
most existing MPNN-based approaches are designed to aggregate node features, potentially
under edge constraints [SK17]. In contrast, instances of the multicut problem are purely defined
through their edge weights. Graph Convolutional Networks (GCNs) [KW17] rely on diverse node
embeddings normalized by the graph Laplacian and an isotropic aggregation function. Yet,
edge weights in general, and signed edge weights in particular, are not modelled in standard
GCNs. In this chapter, we propose an extension of GCNs and show that the signed graph
Laplacian can provide sufficiently strong initial node embeddings from signed edge information.
This, in conjunction with an anisotropic update function which takes into account signed edge
weights, facilitates GCNs to outperform more recent models such as Signed Graph Convolutional
Networks (SGCNs) [DMT18], Graph Isomorphic Networks (GINs) [Xu+19] as well as models
that inherently handle real-valued edge weights, such as Residual Gated Graph Convolutional
Networks (RGGCNs) [JLB19] and Graph Transformer Networks (GTNs) [Shi+21] on the multicut
problem.

To facilitate effective training, we consider a polynomial programming formulation of the
minimum cost multicut problem to derive a penalty term that encourages the network to issue

3.2. THE MINIMUM COST MULTICUT PROBLEM 41

valid solutions. Since currently available benchmarks for the minimum cost multicut problem
are notoriously small, we propose two synthetic datasets with different statistics, for example
w.r.t. the graph connectivity, which we use for training and analysis. We further evaluate our
models on the public benchmarks BSDS300 [Mar+01], CREMI [Bei+17], and Knott3D [And+12].

3.2 The Minimum Cost Multicut Problem

The MP [CR93; DL97] is a binary edge labelling problem defined on a graph G = (V, E), where
the connectivity is defined by edges e ∈ E ⊆ (V

2), i.e. G is not necessarily complete. It allows
for the definition of real-valued edge costs we∀e ∈ E. Its solutions decompose G such as to
minimize the overall cost. Specifically, the MP can be defined by the following Integer Linear
Program (ILP) [CR93]: For a simple, connected graph G = (V, E) and an associated cost function
c : E→ R, written below is an instance of the multicut problem

min
y∈{0,1}|E|

c(y) = yTw = ∑
e∈E

weye, (3.1)

with y subject to the linear constraints

∀C ∈ cycles(G), ∀e ∈ C : ye ≤ ∑
e′∈C\{e}

y′e, (3.2)

where cycles(·) enumerates all cycles in graph G. The resulting y is a vector of binary decision
variables for each edge. Equation 3.2 defines the cycle inequality constraints and ensures that
if an edge is cut between two nodes, there can not be another path in the graph connecting
them. Chopra and Rao [CR93] further showed that the facets of the MP can be sufficiently
described by cycle inequalities on all chordless cycles of G. The problem in Equation 3.1-3.2 can
be reformulated in a more compact way as a Polynomial Program (PP):

min
y∈{0,1}|E|

∑
e∈E

weye + K ∑
C∈cc(G)

∑
e∈C

ye ∏
e′∈C\{e}

(1− y′e), (3.3)

where K is a sufficiently large penalty constant. The above problem is well behaved for complete
graphs where it suffices to consider all cycles of length three and Equation 3.3 becomes a
quadratic program. For sparse graphs, sufficient constraints may have arbitrary length ≤ |V|
and their enumeration might be practically infeasible. Finding an optimal solution is NP-hard
and APX-hard [BBC04]. Therefore, exact solvers are intractable for large problem instances.
Linear program relaxations as well as primal feasible heuristics have been proposed to overcome
this issue, which we briefly review in the following.

Related Work on Multicut Solvers. To solve the ILP from Equation 3.1-3.2, one can use general
purpose linear program solvers, like Gurobi [Gur21] or CPLEX, such that optimal solutions
might be in reach for small instances if the enumeration of constraints is tractable. However, no
guarantees on the runtime can be provided. To mitigate the exponentially growing number of
constraints, various cutting-plane [Kap+11; Kim+11; Kim+14] or branch-and-bound [And+12;
Kap+15a] algorithms exist. For example, [Kap+11] employ a relaxed version of the ILP in
Equation 3.1 without cycle constraints. In each iteration, violated constraints are searched and
added to the ILP. This approach provides optimal solutions to formerly intractable instances - yet
without any runtime guarantees. Linear program relaxations [Kim+11; Kap+15a; SA17] increase

42 CHAPTER 3. GRAPH REPRESENTATION LEARNING

the tightness of the relaxation, for example using additional constraints, and provide optimality
bounds. While such approaches can yield solutions within optimality bounds, their computation
time can be slow and the proposed solution can be arbitrarily poor in practice. In contrast,
heuristic solvers can provide runtime guarantees and have shown good results in many practical
applications. The primal feasible heuristic Kernighan-Lin with Joins (KLj) [Keu+15] iterates over
pairs of partitions and computes local moves which allow to escape local optima. Competing
approaches have been proposed, for example by Beier et al. [Bei+14] and Kardoost and Keuper
[KK18] or Beier et al. [Bei+16]. The highly efficient Greedy Additive Edge Contraction (GAEC)
[Keu+15] approach aggregates nodes in a greedy procedure with an O(|E|log|E|) worst case
complexity. While such primal feasible heuristics are highly efficient in practice, they share one
important draw-back with ILP solvers that becomes relevant in the learning era: they can not
provide gradients that would allow for backpropagation, for example to learn edge weights.

In contrast, a third order conditional random field based on the PP in Equation 3.3 has been
proposed by Song et al. [Son+19] and adapted by Jung et al. [Jun+22] (discussed in Chapter 4),
which can be optimized in an end-to-end fashion using mean field iterations. This approach
expects optimization on complete graphs. Our approach employs MPNNs to overcome this
limitation and provides a general purpose end-to-end trainable multicut approach.

3.3 Message Passing Neural Networks

Gilmer et al. [Gil+17] provide a general framework to describe convolutions for graph data
spatially as a message-passing scheme. In each convolutional layer, each node is propagating
its current node features via edges to all of its neighboring nodes and updates its own features
based on the messages it receives. The update is commonly described by an update function

h(t)
u = g(t)

h(t−1)
u , ˆ∑

v∈N (u)
f (t)
(

h(t−1)
u , h(t−1)

v , xv,u

) , (3.4)

where h(t)
u ∈ RF is the feature representation of node u in layer t with dimensionality F, and xv,u

are edge features. Here, f and g are differentiable functions, and Σ̂ is a differentiable, permutation
invariant aggregation function, mostly sum, max, or mean. Commonly, the message function f
and the update function g are parameterized, and apply the same parameters at each location in
the graph, similar to weight sharing in Convolutional Neural Networks (CNNs).

Various formulations have been proposed to define g. GCN [KW17] normalizes messages
with the graph Laplacian and linearly transforms their sum to update node representations.
SGCN [DMT18] aggregates messages depending on the sign of the connectivity and keeps
two representations per node, one for balanced paths and one for unbalanced paths. GIN
[Xu+19] learns an injective function by defining message aggregation as a sum and learning
the update function as an Multilayer Perceptron (MLP). RGGCN [JLB19] computes edge gates
to aggregate messages in an anisotropic manner and learns to compute the residuals to the
previous representations. Edge conditioned GCNs [SK17] aggregate node features using dynamic
weights computed from high-dimensional edge features. GTN [Shi+21] also aggregate messages
anisotropically by learning a self-attention model based on the transformer models in NLP
[Vas+17]. While the latter three can directly handle real-valued edge weights, all are tailored
towards aggregating meaningful node features. In the following, we review recent approaches
to employ such models for combinatorial optimization.

3.4. MULTICUT NEURAL NETWORK 43

MPNNs and Combinatorial Optimization. Recently, MPNNs have been applied to several
hard combinatorial optimization problems, such as the minimum vertex cover [LCK18], max-
imal clique [LCK18], maximal independent set [LCK18], the satisfiability problem [LCK18],
and the travelling salesman problem [JLB19]. Their objective is either to learn heuristics such
as branch-and-bound variable selection policies for exact or approximate inference [Gas+19;
Din+20], or to use attention [VFJ15], reinforcement learning [Bel+17; Dai+17b], or both [Naz+18;
KHW19; Ma+20] in an iterative, autoregressive procedure. Joshi, Laurent, and Bresson [JLB19]
address the 2D Euclidean travelling salesman problem using the RGGCN model to learn edge
representations. Other recent approaches address combinatorial problems by decoding, using
supervised training such as Chen and Zhang [CZ20]. The proposed approach is related to the
work of Joshi, Laurent, and Bresson [JLB19], since we cast the minimum cost multicut problem as
a binary edge classification problem that we address using MPNN-based approaches, including
RGGCN. We train our model in a supervised way, yet employing a dedicated penalty term
which encourages feasible solutions w.r.t. Equation 3.2.

3.4 Multicut Neural Network

We cast the multicut problem into a binary edge classification task, where label yu,v = 1 is
assigned to an edge (u, v) if it is cut, and yu,v = 0 otherwise. The task of the model is to learn a
probability distribution ŷu,v = p(yu,v = 1 | G) over the edges of a given graph, inferring how
likely it is that an edge is cut. Based on these probabilities, we derive a configuration of edge
labels, y = {0, 1}|E|. In contrast to existing autoregressive MPNN-based models in combinatorial
optimization, we derive a solution after a single forward pass over the graph to achieve an efficient
bound on the runtime of the model. In this scenario, our model can be defined by three functions,
i.e., y = fr(fc(fe(G, w))). First, fe is the edge representation mapping, assigning meaningful
embeddings to each edge in the graph given a multicut problem instance. This function is
learned by an MPNN. Second, fc assigns to every edge its probability to be cut. This function is
learned by an MLP. Last, function fr translates the resulting configuration of edge probabilities
to a feasible configuration of edge labels, hence, computes a feasible solution.

Edge Representation Mapping. Given a multicut problem instance (G, w), the edge represen-
tation mapping fe learns to assign meaningful edge embeddings via MPNNs. One specific case
of MPNN is GCN [KW17], where the node representation update function is defined as follows:

h(t)
u = g(t)θ

h(t−1)
u + ∑

v∈N (u)
L[v,u]h

(t−1)
v

 , (3.5)

where h(t)
u ∈ RF denotes the feature representation of node u in layer t with channel size F.

In each layer, node representations of all neighbors of u are aggregated and normalized by
L[v,u] = 1/

√
deg(u)deg(v), where L = D̃1/2ÃD̃1/2 is the normalized graph Laplacian with

additional self-loops in the adjacency matrix Ã = A + I and degree matrix D̃. Conventionally,
h(0)

u is initialized with node features xu. Intuitively, we expect normalization with the graph
Laplacian to be beneficial in the MP setting, since B1) its eigenvectors encode similarities of
nodes within a graph [SM00] and B2) even sparsely connected nodes can be assigned meaningful
representations [Arb+11]. However, MP instances consist of real-valued edge-weighted graphs
and the normalized graph Laplacian is not defined for negative node degrees.

44 CHAPTER 3. GRAPH REPRESENTATION LEARNING

D

A

C

B

[1]

[1] [1]

[1]

A:1
B:1
C:1
D:1

A: 1+1+1+1=4
B: 1+1+1=3
C: 1+1+1+1=4
D: 1+1+1=3

1/4
1/3
1/4
1/3

* =
A:1
B:1
C:1
D:1

D

A

C

B

-1 2

-2

1

1[1]

[1] [1]

[1]

A:1
B:1
C:1
D:1

1/4
1/3
1/4
1/3

* =
1/2
4/3
1/2
-2/3

Message Aggregation Mean

Mean

A: 1+1+1-1= 2
B: 1+1+2= 4
C: 1+2+1-2= 2
D: 1-2-1=-2

Message Aggregation

(a)

(b)

Figure 3.1: Example for message aggregation in an undirected, weighted graph where node
features are initialized as h0 = 1. (a) Standard message aggregation in an isotropic fashion leads
to no meaningful node embeddings, hence h1 = h0. (b) Our proposed method takes edge weights
into account leading to anisotropic message aggregation and meaningful node embeddings. A
simple decision boundary at h = 0 can now partition the graph.

Real-valued Edge Weights. Hence, our first task is to enable negative-valued edge weights in
GCN. We can achieve this via the signed normalized graph Laplacian [Hou05; Kun+10]:

L[v,u] =
(

D1/2W̃D1/2
)
[v,u]

= wv,u ·
(

deg(u)deg(v)
)−1/2

, (3.6)

where W̃ is the weighted adjacency matrix and D is the signed node degree matrix with deg(u) =
∑v∈N (u) |wu,v|. Gallier [Gal16] shows that this formulation preserves the desired properties from
the graph Laplacian w.r.t. encoding pairwise similarities as well as representation learning on
sparsely connected nodes (see B1) and B2) above).

Incorporating Equation 3.6 into Equation 3.5, we get

h(t)
u = g(t)θ

(
h(t−1)

u + ∑
v∈N (u)

w[v,u] ·
(

deg(u)deg(v)
)−1/2

· h(t−1)
v

)
. (3.7)

Here, we can observe two new terms. First, each message is weighted by the edge weight wv,u
between two nodes enabling an anisotropic message-passing scheme. Figure 3.1 motivates
why this is necessary. While Xu et al. [Xu+19] show that Graph Neural Networks (GNNs) with
mean aggregation have theoretical limitations, they also note that these limitations vanish in
scenarios where node features are diverse. Additionally, Xu et al. [Xu+19] only consider the case
where neighboring nodes are aggregated in an isotropic fashion. As we show here, diverse node
features are not necessary when messages are aggregated in the anisotropic fashion we propose.
The resulting node representations enable distinguishing nodes in the graph despite the lack of
meaningful node features. This is important in our case, since the multicut problem does not
provide node features. Second, we are now able to normalize messages via the Laplacian in
real-valued graphs. The normalization acts stronger on messages that are sent to or from nodes
whose adjacent edges have weights with large magnitudes. Large magnitudes on the edges
usually indicate a confident decision towards joining (for positive weights) or cutting (negative
weights). Thus, the normalization will allow nodes with less confident edge cues to converge to

3.4. MULTICUT NEURAL NETWORK 45

Table 3.1: Modifications (blue) to MPNNs to account for signed edge weights.

Network Modified Update Function

GCN
h(t)

u = g(t)θ

(
h(t−1)

u +

∑v∈N (u) wv,u ·
(

deg(u)deg(v)
)−1/2

· h(t−1)
v

)

SGCN

hB(t)
u = gB(t)

θ

(
hB(t−1)

u +

∑v∈N+(u)
wv,u ·hB(t−1)

v
|N+(u)| + ∑v∈N−(u)

wv,u ·hU(t−1)
v

|N−(u)|

)

hU(t)
u = gU(t)

θ

(
hU(t−1)

u +

∑v∈N+(u)
wv,u ·hU(t−1)

v
|N+(u)| + ∑v∈N−(u)

wv,u ·hB(t−1)
v

|N−(u)|

)

GIN h(t)
u = g(t)θ

((
1 + ϵ(t)

)
· h(t−1)

u + ∑v∈N (u) wv,u · h(t−1)
v

)

a meaningful embedding while, without such normalization, the network would notoriously
focus on embedding nodes with strong edge cues, i.e. on easy decisions.

In addition to GCN [KW17], we extend SGCN [DMT18] and GIN [Xu+19] in a similar way
to enable these to handle real-valued edge weights too. Table 3.1 shows our modifications to
update functions of MPNNs we consider in this chapter that cannot handle real-valued edge
weights by default.

Node Features. Conventionally, node representations at timestep 0, h(0)
u , are initialized with

node features xu. However, multicut instances describe the magnitude of similarity or dissimilar-
ity between two items via edge weights and provide no node features. Therefore, we initialize
node representations with a two-dimensional vector of node degrees as:

xu =

 ∑
v∈N+(u)

wu,v, ∑
v∈N−(u)

wu,v

, (3.8)

where N+(u) is the set of neighboring nodes of u connected via positive edges, and N−(u) is
the set of neighboring nodes of u connected via negative edges.

Node-to-Edge Representation Mapping. To map two node representations to an edge repre-
sentation, we use concatenation hu,v = fe(hu, hv) = (hu

hv
) ∈ R2·F, where hu,v is the representation

of edge (u, v) and F is the dimensionality of node embeddings. Since we consider undirected
graphs, the order of concatenation is ambiguous. Therefore, we generate two representations for
each edge, one for each direction. This doubles the number of edges to be classified. The final
classification is then averaged over both representations.

46 CHAPTER 3. GRAPH REPRESENTATION LEARNING

Edge Classification. We learn edge classification function fc via an MLP that computes likeli-
hoods ŷ ∈ [0, 1]|E| for each edge in graph G, expressing the confidence whether an edge should
be cut. A binary solution y ∈ {0, 1}|E| is retrieved by thresholding the likelihoods at 0.5.

Projection to Feasible Solution. Since there is no strict guarantee that the edge label configu-
ration y is feasible w.r.t. Equation 3.2, we postprocess y to round it to a feasible solution via a
heuristical mapping fr. For this, we compute a connected component labelling on G after remov-
ing cut edges from E and reinstate removed edges for which both corresponding nodes remain
within the same component. For efficiency, we implement the labelling as a message-passing
layer and can therefore assign cluster identifications to each node efficiently on the GPU.

Cycle Consistency Loss. Since we cast the multicut problem to a binary edge labelling problem,
we can formulate a supervised training process that minimizes the Binary Cross Entropy (BCE)
loss w.r.t. the optimal solution ỹ, which we denote LBCE. The BCE loss encodes feasibility only
implicitly by comparison to the optimal solution. To explicitly learn feasible solutions, we take
recourse to the PP formulation of the multicut problem in Equation 3.3 and formulate a feasibility
penalty term that we denote Cycle Consistency Loss (CCL):

LCCL = α · ∑
C∈cc(G,l)

∑
e∈C

ŷe ∏
e′∈C\{e}

(1− ŷ′e), (3.9)

where α is a hyperparameter, balancing BCE and CCL, and cc(G, l) is a function that returns
all chordless cycles in G of length at most l. The CCL term effectively penalizes infeasible edge
label configurations during training. It adds a penalty of at most α for each chordless cycle that
is only cut once. In practice, we only consider chordless cycles of maximum length l, and we
only consider a cycle if e is cut, hence ŷe ≥ 0.5. This is necessary to ensure practicable training
runtimes. The total training loss is given by L = LBCE + LCCL.

3.4.1 Training Datasets

While the multicut problem is ubiquitous in many real world applications, the amount of
available annotated problem instances is scarce and domain specific. Therefore, in order to train
and test a general purpose model, we generated two synthetic datasets, IrisMP and RandomMP.
Both have complementary connectivity statistics (see Section A.2 in Appendix A) of 22 000
multicut instances each. In the following, we describe their generation process in more detail.

IrisMP. The first dataset we generated, IrisMP, consists of multicut problem instances on com-
plete graphs based on the Iris flower dataset [Fis36]. This dataset is a well-known multivariate
dataset containing 4 different measurements, namely the width and length of sepal and petal for
3 different species of flowers. For each species the dataset contains 50 samples. For each graph
we drew 2 dimensions uniformly at random, and then uniformly drew 16 to 24 data points that
we used as nodes. We connected all nodes and computed edge weights for each connection.
Edge weights are computed in three steps. First, we computed the L2 distance between two
nodes. Then we used a Gaussian kernel with σ = 0.6 to convert the distances into similarity
measures. Since the resulting similarity is in [0, 1], we applied the logit function to retrieve
positive as well as negative edge weights. Since all graphs are fully connected it is sufficient for
this dataset to only consider triangles to ensure cycle consistency. Since the number of edges
increases quadratically with the number of nodes in complete graphs, we kept the number of
drawn nodes small. IrisMP instances consist of 20 nodes on average. The resulting dataset

3.4. MULTICUT NEURAL NETWORK 47

(a) Graph 1. (b) Graph 2. (c) Graph 3.

(d) OPT 1. (e) OPT 2. (f) OPT 3.

Figure 3.2: Samples of the IrisMP dataset. (a)-(c) Depict problem instances, where red edges have
negative weights, and black edges have positive weights. (d)-(f) Depict optimal solutions. Gray
edges are cut, and black edges retained.

(a) Graph 1. (b) Graph 2. (c) Graph 3.

(d) OPT 1. (e) OPT 2. (f) OPT 3.

Figure 3.3: Samples of the RandomMP dataset. (a)-(c) Depict problem instances, where red edges
have negative weights, and black edges have positive weights. (d)-(f) Depict optimal solutions.
Gray edges are cut, and black edges retained.

48 CHAPTER 3. GRAPH REPRESENTATION LEARNING

contains 20 000 instances for training, and 1000 graphs each for validation and test splits. Three
graphs with their respective optimal solutions are depicted in Figure 3.2.

RandomMP. To complement IrisMP, we generated a second dataset that contains sparse but
larger problem instances in terms of the number of nodes, called RandomMP. To generate this
dataset, we employed the following procedure. First, we sampled the number of nodes from a
normal distribution with µ = 180 and σ = 30. Then, for each node, we sampled its coordinates
on a 2D plane uniformly in [0, 1] for each coordinate. We connected nodes based on the k nearest
neighbors, where k is drawn from a normal distribution with µ = 6 and σ = 2. However, we
constrained the minimum number of neighbors of each node to 1 so that the graph is connected.
We computed edge weights based on the L2 distance on the plane. Then, we subtracted the
median from all edge weights to achieve an approximate distribution of 50% positive and 50%
negative connections. Again, we generated a training dataset with 20 000 instances and splits of
1000 for validation and test. Examples are shown in Figure 3.3.

3.4.2 Test Datasets

We evaluate our models on three segmentation benchmarks. First, a graph-based image seg-
mentation dataset [And+11] based on the Berkeley Segmentation Dataset (BSDS300) [Mar+01]
consisting of 100 test instances. Second, a graph-based volume segmentation dataset (Knott3D)
[And+12] containing 24 volumes. And last, 3 additional test instances based on the challenge
on Circuit Reconstruction from Electron Microscopy Images (CREMI) [Bei+17] that contains
volumes of electron microscopy images of fly brains. BSDS300 and Knott3D instances are avail-
able as part of a benchmark containing discrete energy minimization problems, called OpenGM
[Kap+15a]. We provide statistics for each of these datasets in Section A.3 in Appendix A.

3.5 Experiments

First, in Subsection 3.5.1 we ablate our proposed modifications to the message-passing update
function of GCN as well as the update functions of models described in Table 3.1. Then, in
Subsection 3.5.2 we ablate the impact of the number of convolutional layers, and in Subsec-
tion 3.5.3 we analyze the impact of our penalty term CCL and its hyperparameter α. Last, in
Subsection 3.5.4 we evaluate all models trained on IrisMP and RandomMP on different test
datasets and provide runtime as well as objective value evaluations, where we compare the
proposed GCN to GIN and SGCN-based, edge-weight enabled models as well as to RGGCN
[JLB19] and GTN [Shi+21]. Throughout our experiments (if not stated otherwise), we use the
optimal objective ratio as the performance metric achieved by a model (higher is better), which we
denote as follows:

optimal objective ratio = max(0, c(y)/c(ỹ) ∈ [0, 1],

where ỹ is the optimal solution of a given multicut problem. Here, we set model solutions to 0 if
they would incur any positive cost, since such unfavorable edge configurations can always be
avoided by not cutting any edge.

3.5. EXPERIMENTS 49

Table 3.2: Ablation study with GCN [KW17] trained on IrisMP without CCL. Additional
comparison to vanilla versions of GIN [Xu+19], and MPNN [Gil+17]. We report performance on
test data in terms of optimal objective ratio ↑.

Variant IrisMP RandMP BSDS300 CREMI Knott

GCN Not applicable: Laplacian may not exist.
- Laplacian 0.41 0.18 0.00 0.49 0.00
+ edge weights 0.95 0.18 0.40 0.57 0.19
+ signed norm. 0.96 0.67 0.75 0.74 0.68

= GCN_W 0.96 0.67 0.75 0.74 0.68
- edge weights 0.64 0.05 0.00 0.48 0.00

GIN0 0.41 0.04 0.07 0.48 0.00
MPNN 0.93 0.45 0.48 0.49 0.06

0 1 2 3 4 5
M graphs

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Training Loss (BCE)

GCN
GCN_W
GCN_W_BN

0 1 2 3 4 5
M graphs

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Training Loss (BCE)

SGCN
SGCN_W
SGCN_W_BN

0 1 2 3 4 5
M graphs

0
1
2
3
4
5
6 Training Loss (BCE)

GIN0
GIN0_W
GIN0_W_BN

(a) GCN training loss. (b) SGCN training loss. (c) GIN training loss.

0 1 2 3 4 5
M graphs

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Evaluation Loss (BCE)

GCN
GCN_W
GCN_W_BN

0 1 2 3 4 5
M graphs

0.1
0.2
0.3
0.4
0.5
0.6

Evaluation Loss (BCE)

SGCN
SGCN_W
SGCN_W_BN

0 1 2 3 4 5
M graphs

0
1
2
3
4
5
6 Evaluation Loss (BCE)

GIN0
GIN0_W
GIN0_W_BN

(d) GCN evaluation loss. (e) SGCN evaluation loss. (f) GIN evaluation loss.

Figure 3.4: Comparison of the training (a)-(c) and evaluation (d)-(f) losses of the networks with
(indicated by _W) and without modified update functions, as well as with batch normalization
(indicated by _W_BN).

50 CHAPTER 3. GRAPH REPRESENTATION LEARNING

3.5.1 Ablation Studies on Update Function Modifications

First, we determine the impact of each adjustment to the GCN update function. In Table 3.2
we show the results of this ablation study. While vanilla GCN is not applicable in the MP
setting, simply removing the Laplacian from Equation 3.5 provides a first baseline. We observe
that adding edge weights to Equation 3.5 improves the performance on the test split of the
training data substantially. However, the model is not able to generalize to different graph
statistics. By adding the signed normalization term we arrive at Equation 3.7, achieving improved
generalizability. Removing edge weights from Equation 3.7 deteriorates performance and
generalizability. Thus both changes are necessary to enable GCN in the MP setting.

In Figure 3.4 we show the training and evaluation loss curves of training multicut networks
with the modified update functions (see Table 3.1) in comparison to their vanilla versions, as
well as to adding batch normalization to the modified versions. We trained on IrisMP with 12
message-passing iterations, set the dimensionality of node embeddings to 128, and performed
edge classification with an MLP that consists of 2 hiddens layers with 256 neurons each. No
CCL was applied. Optimization was performed with Adam [KB15] (0.001 learning rate, 5 · 10−4

weight decay, (0.9, 0.999) betas) and a batch size of 200. We see again that edge weighting is
necessary for GCN to be able to learn meaningful edge representations in our setting. In fact, the
original GCN is not able to provide any meaningful features for the edge classification network.
Additionally, while vanilla SGCN is able to learn meaningful edge representations, we can still
improve these by adding edge weights into their update function. For both networks, GCN as
well as SGCN, adding batch normalization improves performance further. For GIN on the other
hand, additional regularization via batch normalization is necessary to stably train the network.
We conclude from this ablation study that our modifications to the update functions of these
MPNNs are favorable in our MP setting. Additionally, regularizing these networks via batch
normalization additionally improves performance and training stability.

3.5.2 Ablation Study on Network Size

Next, we evaluate the effect of depth of the GCN model when trained on the IrisMP dataset
and evaluated on IrisMP, RandomMP, as well as BSDS300. Figure 3.5 (a) shows the results
after varying the depth in increasing step sizes up to a depth of 40. The results suggest that
increasing the depth improves the objective value up to a certain point. In the case of IrisMP
graphs with diameter 1 and lengths of chordless cycles of at most 3, increasing the depth beyond
10 has no obvious effect. This is an important observation, because [LHW18] raise concerns that
GCN models can suffer from over-smoothing such that learned representations might become
indistinguishable. Our modifications to the update function of GCN seem to mitigate this issue,
as additional depth has no deteriorating effect in our setting.

3.5.3 Ablation Study of the Cycle Consistency Penalty Term

Here, we evaluate the effect of applying the penalty term from Equation 3.9 by comparing models
where CCL is applied after 3M instances to models solely trained without CCL. Figure 3.6 (a) and
Figure 3.6 (b) show the progress of the ratio of feasible solutions and ratio of optimal solutions
found during training. As soon as CCL is applied, the ratio of feasible solutions increases
while the ratio of optimal solutions decreases. Hence, CCL induces a trade-off between finding
feasible and optimal solutions, where the model is forced to find feasible solutions to avoid the
penalty, and as a consequence, settles for suboptimal relaxated solutions. However, the objective

3.5. EXPERIMENTS 51

1 4 8 12 16 20 24 28 32 36 40
Depth

0.2

0.4

0.6

0.8

1.0
Opt. obj. ratio

Iris
Random
BSDS300

1.05 1.10 1.15
M graphs

0.4
0.5
0.6
0.7
0.8
0.9

Opt. obj. ratio

= 0
= 10 1
= 10 2
= 10 3

(a) Ablation of depth. (b) Ablation of hyperparameter α.

Figure 3.5: (a) Results in terms of optimal objective ratio on the evaluation data of IrisMP, Ran-
domMP, and BSDS300 when training GCN_W_BN with varying depths on IrisMP. (b) Training
progress of the optimal objective ratio for different values of α when training GCN_W_BN on
RandomMP and applying CCL after 1M instances.

2.6 2.8 3.0
M graphs

0.64
0.66
0.68
0.70
0.72
0.74

Feasibility
No CCL
CCL

2.6 2.8 3.0
M graphs

0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59 Opt. Solutions

No CCL
CCL

2.6 2.8 3.0
M graphs

0.94
0.95
0.96
0.97
0.98
0.99
1.00 Opt. obj. ratio

No CCL
CCL

(a) Feasibility. (b) Optimality. (c) Objective.

Figure 3.6: (a) Ratio of feasible solutions before rounding, (b) ratio of optimal solutions, and (c)
optimal objective ratio, for GCN_W_BN on IrisMP, applying CCL after 3M instances.

value after rounding improves (see Figure 3.6 (c)), which is most relevant because these values
correspond to feasible solutions. This indicates that the model’s upper bound on the optimal
energy is higher while the relaxation is tighter when CCL is employed. Additionally, we ablate
the effect of the hyperparameter α, tuning the strength of the penalty term (see Figure 3.5 (b)).
Here, we set α ∈ {0, 10−1, 10−2, 10−3}. From this graph we derive two conclusions. First, adding
our penalty term improves the objective value (after rounding) in comparison to not adding it
(setting α = 0). Second, α is a hyperparameter that has to be chosen carefully, since increasing it
further a certain point deteriorates performance (in our case, α = 10−1 is too strong).

3.5.4 Evaluation on Test Data

We train the proposed MPNN-based solvers with (adapted) GCN, GIN, SGCN, RGGCN and
GTN backbones in different settings, where we uniformly set the node representation dimen-
sionality to 128. We set the depth of the MPNN to 12 for IrisMP and 20 for RandomMP. CCL is
applied with α ∈ {0, 10−2, 10−3} and chordless cycle length up to 8. All of our experiments are
conducted on MEGWARE Gigabyte G291-Z20 servers with NVIDIA Quadro RTX 8000 GPUs.
Training curves of training runs on RandomMP are provided in Section A.4 in Appendix A.

52 CHAPTER 3. GRAPH REPRESENTATION LEARNING

Results on Benchmarks. In Table 3.3, we show the results on all test datasets of the best models
based on the evaluation objective value after rounding, and thereby compare models trained
on IrisMP and models trained on RandomMP. In general, sparser problems (RandomMP and
established test datasets) are harder for the solvers to generalize to. This is likely due to the longer
chordless cycles that the model needs to consider to ensure feasibility. Overall, our GCN-based
model provides the best generalizability over all test datasets both when trained on IrisMP and
RandomMP. We compare the GNN-based solvers to different baselines. First, we train logistic
regressions (LR) and MLPs as edge classifiers directly on the training data by concatenating node
features and edge weights. All our learned models outperform these baselines substantially.
This indicates that MPNNs provide meaningful topological information to the edge classifier
that facilitates solving MP instances. Second, we compare against Branch & Cut Linear Program
(LP) and ILP solvers as well as GAEC. In terms of objective value, MPNN-based solvers are on
par with heuristics and LP solvers on complete graphs, even when trained on sparse graphs.
On general graphs, ILP solvers and GAEC issue lower energies, and, as expected, training on
complete graphs does not generalize well to sparse graphs. However, the wall-clock runtime
comparison shows that MPNN-based solvers are faster than ILP and LP solvers by an order
of 103. They are also substantially faster than the fast and greedy GAEC heuristic. We further
compared to a time-constrained version of GAEC, where we set the available time budget to the
runtime of the MPNN-based solver. The result shows that the trade-off between smaller energies
and smaller runtime is in favor of the MPNN-based solver. We report additional experiments
for our proposed MPNN-based model on domain specific training and show that task specific
priors can be learned efficiently from only a few training samples in Section A.5 in Appendix A.

3.5.
EX

PER
IM

EN
TS

53
Table 3.3: Results on the test datasets. We compare different GNN variants, heuristics (GAEC) [Keu+15], LP-solver [Kap+15a], and
ILP-solver [Kap+15a]. The performance is evaluated as optimal objective ratio ↑ and is averaged over all datasets via harmonic mean to
account for generalizability. The last column shows the total runtime ↓ over all datasets in milliseconds. OOM indicates insufficient
memory. OOT indicates no termination within 24hrs. Neither OOM nor OOT are considered in the runtime (marked with *).

Solver Test Dataset Runtime [s]
Variant Depth α l IrisMP RandomMP BSDS300 CREMI Knott h.mean forward total

Pr
op

os
ed

le
ar

ne
d

so
lv

er
s

Ir
is

M
P

GCN_W_BN 12 0.001 3 0.9834 0.7188 0.8912 0.7255 0.6902 0.7865 0.5 4.4
GIN0_W_BN 12 0.01 3 0.9905 0.7387 0.8474 0.5464 0.0000 0.0000 0.0 4.0

Signed_W_BN 12 0.01 3 0.9878 0.2526 0.6451 0.5154 0.3808 0.4510 1.3 5.3
RGGCN_HE 12 0.01 3 0.7976 0.1449 0.4655 0.1544 0.1735 0.2218 0.1 4.1

GT 12 0.001 3 0.7940 0.2964 0.6360 0.4037 0.6038 0.4836 0.1 4.0

LR 0.6769 0.1118 0.6824 0.2689 0.0366 0.1164 N/A
MLP 0.6626 0.3127 0.7139 0.2789 0.1493 0.3051 N/A

R
an

do
m

M
P

GCN_W_BN 20 0.01 8 0.9762 0.9041 0.9204 0.8440 0.7870 0.8815 0.9 4.8
GIN0_W_BN 20 0.01 8 0.9528 0.8693 0.9109 0.4812 0.0000 0.0000 0.0 4.0

Signed_W_BN 20 0.01 8 0.9709 0.8695 0.8825 0.4653 0.6408 0.7120 2.3 6.3
RGGCN_HE 20 0.01 8 0.9703 0.8787 0.8352 0.5593 OOM - 0.1 2.7*

LR 0.8035 0.3938 0.7958 0.9260 0.7335 0.6681 N/A
MLP 0.8985 0.3099 0.6804 0.4845 0.1517 0.3457 N/A

GAEC 0.9836 0.9780 0.9997 0.9958 0.9968 0.9907 23.2
Time-bounded GAEC 0.3642 0.0034 0.0000 0.1516 0.0000 0.0000 6.3

LP solver 0.9882 0.9525 0.9979 0.9998 OOT - 31 918.8*
ILP solver 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 24 361.2

54 CHAPTER 3. GRAPH REPRESENTATION LEARNING

Table 3.4: Wall-clock runtime ↓ and objective values ↓ of MPNN-based solver vs. GAEC, LP and
ILP on a growing, randomly-generated graph. OOT indicates no termination within 24hrs.

Nodes GAEC LP ILP GCN_W_BN
|V| [ms] Objective [ms] Objective [ms] Objective [ms] Objective

101 0 −29 6 −24 11 −30 29 −29
102 4 −327 191 −246 273 −330 26 −276
103 24 −3051 6585 −2970 1299 −3093 29 −2643
104 228 −32 264 688 851 −31 531 18 604 −32 682 78 −27 552
105 2534 −323 189 OOT 2 171 134 −328 224 557 −269 122
106 35 181 −3 401 783 OOT OOT 8713 −2 182 589

0

1 2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

19

20
176 14131918 0 16 4 8 2 9 20 5 7 3 11 1 101215

0.5

0.0

0.5

1.0

1.0

2 1 0 1 2 3 4

PC1

1

0

1

2

3

PC
2

0

12
3

4

5
6

7

8

9
1011
12 131415

16

171819
20

Clustering by model

Cluster 0
Cluster 1
Cluster 2

(a) Clustered nodes. (b) Node embeddings.

Figure 3.7: (a) Node clustering of the proposed GCN_W_BN on a complete graph (c(ŷ) = −220.6)
from IrisMP and the ordered cosine similarity between all learned node embeddings. (b) The
first two principal components for each node embedding of (a). Node 4 (circled) is part of the
green cluster in the optimal solution (c(ỹ) = −222.9). The closeness of both solutions is reflected
in the embedding.

3.6. CONCLUSION AND OUTLOOK 55

Scalability. Next, we conduct a scalability study on random graphs with an increasing number
of nodes, generated according to the RandomMP dataset generation process. Results are shown
in Table 3.4. While GAEC is fast for small graphs, the MPNN-based solver scales better and
returns solutions substantially faster for larger graphs. LP and ILP solvers are not able to provide
solutions within 24hrs for larger instances. It is noteworthy that MPNN-based solvers spend
75-99% of their runtime rounding the solutions. Hence, MPNN-based solvers are already more
scalable and still have a large potential for improvement in this regard, while GAEC and LP/ILP
solvers are already highly optimized for runtime.

Meaningful Embeddings. In Figure 3.7 we visualize the node embedding space given by our
best performing model on an IrisMP instance. Plotting the cosine similarity between all nodes
reflects the resulting clusters. This shows that the model is able to distinguish nodes based on
their connectivity. We show further examples in Section A.6 in Appendix A.

3.6 Conclusion and Outlook

Summary. In this chapter, we addressed the minimum cost multicut problem using feed
forward MPNN. To this end, we provided appropriate model and training loss modifications.
Our experiments on two synthetic and two real datasets with various GCN architectures showed
that the proposed approach provides highly efficient solutions even to large instances and scales
better than highly optimized primal feasible heuristics (GAEC), while providing competitive
energies. Another significant advantage of our learning-based approach is the ability to provide
gradients for downstream tasks, which we assume will inherently improve inferred solutions.

Feasibility and Optimality Guarantees. The proposed regularization term (CCL) is a soft
constraint encouraging feasibility. In its current design, it cannot offer guarantees in terms of
feasibility or formal bounds in terms of an optimality gap. To ensure feasibility of solutions,
proposed compositions of decision variables are rounded. Possible future research could focus
on developing methods that provide guarantees for feasible solutions (without rounding) and
solution quality. Several follow-up works proposed methods in this context. For example, Abbas
and Swoboda [AS24] integrate representation learning with an MPNN into a provably correct
solver. This creates an end-to-end trainable framework that maintains formal guarantees like
dual feasibility and monotonic lower bounds. Another example is Li et al. [Li+24], who combine
reinforcement learning with an MPNN to solve multicut instances. They ensure feasible solutions
by contracting partial solutions in an autoregressive manner. Our method could be applied in
a similar way, where edges that our model is most confident about are iteratively contracted.
On the downside of this extension, autoregressive edge contractions require forward passes for
each edge contraction iteration to recompute node and edge representations. This introduces an
additional trade-off between feasibility and efficiency.

Computational Cost of Cycle Consistency Constraints. In general graphs, enumerating all
chordless cycles can become intractable, as their number can grow exponentially with the number
of nodes in the graph. Consequently, our proposed regularizer CCL shares the same limitation
in terms of efficiency as other MP solvers that consider cycle consistency constraints. As a first
remedy, we limited the length of considered cycles and precomputed cycles up to this length
to facilitate training. Nevertheless, we observed an increase in training runtime by a factor of
100 when applying CCL. The large number of additional (and output-based) terms added to the
loss function increases the computational graph substantially, and therefore the computational

56 CHAPTER 3. GRAPH REPRESENTATION LEARNING

time of backpropagating through this graph. As a second remedy, we only gradually introduced
these penalty terms into the loss function toward the end of training. Future research could
try to improve training efficiency by carefully selecting which cycle constraints to add to the
loss function (instead of all of them). For example, prior works have shown that selecting top-k
[Yan+19; Sin+20] of potential loss terms can improve performance. In a similar fashion, we could
incorporate such a selection strategy based on the confidence of edge removals for violated
constraints. For example, by only adding the top-k most confidently violated constraints, as well
as the top-k least confidently non-violated constraints.

Tightness of Constraint Relaxations. While we already saw improvements in terms of feasi-
bility and objective value of predicted solutions when applying CCL (see Figure 3.6), it can be
speculated that making the LP relaxation of our approach tighter could improve these results
further. Hence, future research could also investigate how to incorporate additional tightening
constraints, for example wheel and bicycle inequalities [CR93], into the regularizer. Swoboda
and Andres [SA17] observe that odd-wheel constraints can tighten the relaxation, albeit in
their case the tightness decreases when the sparsity of the graph increases. We believe this is a
promising direction, as it could also be combined with the selection strategy suggested above.
These additional constraints could help keep the relaxations tight in the face of missing cycle
constraints.

Chapter 4

Edge Detection with Discrete Constraints
Contents of This Chapter

5.1 Introduction . 78

5.2 Related Work . 79

5.3 Training with Fréchet Inception Distance . 80
5.3.1 Fréchet Inception Distance . 80
5.3.2 Minimizing Fréchet Inception Distance . 81

5.4 Further Analysis of Fréchet Inception Distance . 83

5.5 Conclusion and Outlook . 88

Chapter Topic. This chapter is based on Jung et al. [Jun+22]. Similar as in Chapter 3, here we
adapt cycle consistency constraints from the minimum cost multicut problem and incorporate
them as penalty term into the training of convolutional neural networks for edge detection. In
the context of images, graph cycles are created by connecting three neighboring pixels (nodes)
forming a triangle. The resulting constraints penalize predicted image edges that pass through
only one edge of these triangles, hence are discontinued. These penalties encourage the network
to predict closed object contours. Experiments on an image segmentation benchmark as well as
on electron microscopic recordings show that this approach yields more precise edge detection
and segmentation results compared to unregularized baseline approaches.

Chapter Outline. We introduce this chapter in Section 4.1. Then, we recap the minimum
cost multicut problem in the context of edge detection and image segmentation in Section 4.2.
In Section 4.3, we describe how to incorporate cycle consistency constraints as penalty terms
in the training process of edge detection networks. We demonstrate the effectiveness of this
formulation on segmentation benchmarks in Section 4.4, and conclude this chapter in Section 4.5.

57

58 CHAPTER 4. EDGE DETECTION

4.1 Introduction

IMAGE segmentation is the task of partitioning an image into multiple disjoint components
such that each component is a meaningful part of the image. While there are many differ-

ent approaches for image segmentation [Arb+09], formulations based on the Minimum Cost
Multicut Problem (MP) [CR93; DL97] were successful in the past [Kap+11; And+13; BHK15;
Keu+15]. In this formulation, the number of components is unknown beforehand and no bias
is assumed in terms of component sizes. The resulting segmentation is only determined by an
input graph [Keu+15] built upon image pixels or superpixels, for which edge features can be
generated by an edge detector such as Convolutional Neural Networks (CNNs) predicting edge
probabilities.

A feasible solution to the MP decomposes the graph into disjoint subgraphs via a binary edge
labeling. The decomposition is enforced by cycle consistency constraints in general graphs. If a
path exists between two nodes where the direct edge between both is cut, then this constraint
is violated. Song et al. [Son+19] introduced relaxed cycle constraints, i.e. constraints evaluated
on non-binary network predictions, as higher-order potentials in a Conditional Random Field
(CRF) to allow for end-to-end training of graph-based human pose estimation. By doing so, cycle
constraint violations become a supervision signal for pose tracking. We transfer this approach to
image segmentation, where we implement such constraints as penalization to encourage that
object contours are closed. Yet, we observe that optimizing non-binary network predictions
instead of binary edge labels only leads to few additionally closed contours. This is consistent
with prior works, which show that relaxations of the cycle constraints to non-binary edge labels
are too loose in practice [Kap+11]. In the CRF formulation, we propose to alleviate this issue by
enforcing "more binary" (i.e. closer to 0 or 1) edge predictions that lead to less violated cycle
constraints after discretization.

Our contributions are twofold. We are the first to address learnable, boundary-driven image
segmentation using multicut constraints. To this end, we combine a CRF with the neural edge
detection model Richer Convolutional Features (RCF) [Liu+19] to design an end-to-end trainable
architecture that inputs the original image and produces a graph with learnable edge probabilities
optimized by the CRF. Second, we propose an approach that progressively uses "closer to
binary" boundary estimates in the optimization of the CRF and thus resolves progressively more
boundary conflicts. In consequence, the end-to-end trained network yields more and more certain
predictions throughout the training process while reducing the number of violated constraints.
We show that this approach yields improved results for edge detection and segmentation on
the BSDS500 benchmark [Arb+11] and on neuronal structures [Arg+15]. An example is given in
Figure 4.1. Compared to the plain RCF model as well as to the RCF with the CRF by Song et al.
[Son+19], our approach issues cleaner, less cluttered edge maps with closed contours.

4.2. RELATED WORK 59

(a) Example Image (b) RCF

(c) RCF-CRF (basic) (d) RCF-CRF (adaptive)

Figure 4.1: (a) Example BSDS500 [Arb+11] test image, (b) the edge map produced with the RCF
edge detector [Liu+19], (c) the edge map by RCF-CRF using the basic CRF, and (d) the edge
map from RCF-CRF using our adaptive CRF. The adaptive CRF promotes closed contours and
removes trailing edges.

4.2 Related Work

Edge detection in the context of image segmentation is usually based on learning-driven ap-
proaches to learn to discriminate between object boundaries and other sources of brightness
change such as textures. Structured random forests have been employed by Dollár and Zitnick
[DZ13]. Xie and Tu [XT15] proposed a CNN-based approach called Holistically-Nested Edge
Detection (HED) that leverages multiple edge map resolutions. Similarly, Kokkinos [Kok17]
propose an end-to-end CNN for low-, mid- and high-level vision tasks such as boundary de-
tection, semantic segmentation, region proposal generation, and object detection in a single
network based on multiscale learning. Convolutional Oriented Boundaries (COB) [Man+16a]
compute multiscale oriented contours and region hierarchies in a single forward pass. Such
boundary orientations are needed as input along with the edge maps to compute hierarchi-
cal image segmentations in frameworks such as Multiscale Combinatorial Grouping (MCG)
[Arb+14; Pon+17] or gpb-owt-ucm [Arb+11]. He et al. [He+19] propose a Bi-Directional Cascade
Network (BDCN) for edge detection of objects in different scales, where individual layers of a
CNN model are trained by labeled edges at a specific scale. Similarly, to address edge detection
in multiple scales and aspect ratios, Liu et al. [Liu+19] provide an edge detector using RCF by
exploiting multiscale and multilevel information of objects. Although BDCN provides slightly
better edge detection accuracy on the BSDS dataset [Arb+11], we base our approach on the RCF
edge detection framework because of its more generic training procedure.

60 CHAPTER 4. EDGE DETECTION

The multicut approach has been extensively used for image and motion segmentation
[Kap+15b; Kap+11; Keu+15; Arb+11; BHK15; And+11; KAB15; Keu17; Kar+20a; Lev+23; AS21].
Due to the NP-hardness of the MP, segmentation has often been addressed on pre-defined super-
pixels [And+13; Kap+11; Kap+16; BHK15]. While Kappes et al. [Kap+15b] utilize multicuts as a
method for discretizing a grid graph defined on the image pixels, where the local connectivity of
the edges define the join/cut decisions and the nodes represent the image pixels, Keuper et al.
[Keu+15] proposed long-range terms in the objective function of the multicut problem defined on
the pixel grid. An iterative fusion algorithm for the MP has been proposed by Beier, Hamprecht,
and Kappes [BHK15] to decompose the graph. Andres et al. [And+11] propose a graphical model
for probabilistic image segmentation and globally optimal inference on the objective function
with higher orders. A similar higher order approach is also proposed by Kappes et al. [Kap+16]
and Kim et al. [Kim+14] for image segmentation. Jung and Keuper [JK22] introduce a general
solver for multicut problems based on graph convolutional neural networks and Kardoost and
Keuper [KK21] extend the heuristic from Keuper et al. [Keu+15] to facilitate the estimation of
uncertainties.

4.3 Penalizing Networks with Cycle Constraints

4.3.1 Cycle Constraints in the Multicut Problem

The MP is based on a graph G = (V, E), where every pixel (or superpixel) is represented by
an individual node or vertex v ∈ V. Edges e ∈ E encode whether two pixels belong to the
same component or not. The goal is to assign every node to a cluster by labeling the edges
between all nodes as either "cut" or "join" in an optimal way based on real-valued edge costs
we, where positive edge costs are attractive and negative edge costs are repulsive. One of the
main advantages of this approach is that the number of components is not fixed beforehand,
contrary to other clustering algorithms, and is determined by the input graph instead. Since the
number of segments in an image cannot be foreseen, the MP is a well-suited approach. The MP
can be formulated as an integer linear program [CR93; DL97] with objective function c : E→ R

as follows:
min

y∈{0,1}E
c(y) = y⊤w = ∑

e∈E
weye (4.1)

subject to
∀C ∈ cc(G), ∀e ∈ C : ye ≤ ∑

e′∈C\{e}
y′e, (4.2)

where ye is the binary labeling of an edge e that can be either 0 (join) or 1 (cut), and cc(G)
represents the set of all chordless cycles in the graph. If the cycle inequality constraint in
Equation 4.2 is satisfied, the MP solution results in a decomposition of the graph and therefore in
a segmentation of the image. Informally, cycle inequality constraints ensure that there cannot be
exactly one cut edge in any chordless cycle. However, computing an exact solution is not tractable
in many cases due to the NP-hardness of the problem. Relaxing the integrality constraints
such that y ∈ [0, 1]E can improve tractability, however, valid edge label configurations are not
guaranteed in this case. An example can be seen in Figure 4.2, where node B is supposed to be in
the same component as A and C, however, A and C are considered to be in different components.
Infeasible solutions have to be repaired in order to obtain a meaningful segmentation. This can
be achieved by using heuristics [Bei+14; KK18; Keu+15; Pap+17].

4.3. PENALIZING NETWORKS WITH CYCLE CONSTRAINTS 61

4.3.2 Incorporating Cycle Constraints into a CRF

To improve the validity of relaxed solutions, Song et al. [Son+19] reformulate the MP as an
end-to-end trainable CRF based on a formulation as Recurrent Neural Network (RNN) by Zheng
et al. [Zhe+15]. By doing so, they are able to impose costs for violations of cycle inequality
constraints during training. This is accomplished by first transforming the MP into a binary
cubic problem, considering all triangles in the graph:

min
y∈{0,1}E

∑
e∈E

ceye + γ · ∑
{u,v,w}∈(V

3)

(yu,vyv,wyu,w + yu,vyv,wyu,w + yu,vyv,wyu,w).

This formulation moves cycle inequalities into the objective function by incurring a large cost γ
whenever there is an invalid edge label configuration like (cut, join, join) in a clique (as shown in
Figure 4.2 – all other orders implied). The binary cubic problem is then transformed to a CRF by
defining a random field over edge variables y = (y1, y2, ..., y|E|), which is conditioned on image
x. The cycle inequality constraints are incorporated in the form of higher-order potentials as they
always consider three edge variables. Combining unary and third-order potentials yields the
following energy function defining the CRF:

E(y | x) = ∑
i

ψU
i (yi) + ∑

c
ψ

Cycle
c (yc).

The energy function E(y | x) combines unary and higher-order (cycle-based) potentials. For the
higher-order terms, Song et al. [Son+19] used pattern-based potentials proposed by Komodakis
and Paragios [KP09]:

ψ
Cycle
c (yc) =

{
γyc if yc ∈ Pc

γmax otherwise
,

where Pc is the set of valid edge label configurations containing (join, join, join), (join, cut, cut),
and (cut, cut, cut). The only invalid edge label configuration is (cut, join, join). The potential
assigns a high penalty γmax to invalid configurations, and a low cost γyc to valid ones, depending
on label pattern yc.

Such CRFs can be made end-to-end trainable using mean-field inference, as proposed by
Zheng et al. [Zhe+15]. This approach introduces an auxiliary distribution q over y that is

A

B C

join

join

cut
A

B C

0.4

0.4

0.6

Figure 4.2: An example of an infeasible solution to the multicut problem depicting a violated
cycle consistency constraint. (left) In the integer solution, the cycle inequality constraint covers
the infeasibility. (right) Example of a relaxed solution that results in (left) when rounded and is
feasible according to cycle inequality constraints.

62 CHAPTER 4. EDGE DETECTION

optimized to minimize the Kullback-Leibler Divergence (KLD) [Csi75; Csi+07] between q and
the true posterior distribution of y. Optimizing q(yi) instead of the discrete variable yi can
be interpreted as a form of relaxation. Rather than enforcing hard constraints on binary edge
variables (as in Equation 4.1), this method operates over soft assignments by optimizing the
probabilities q(yi = l), which lie in the interval [0, 1]. These probabilities represent the belief of
the model that node i takes label l.

Zheng et al. [Zhe+15] reformulate the update steps as individual CNN layers and repeat this
stack multiple times to perform mean-field iterations. The repetition is treated as a recurrent
process like in RNNs, and enables full trainability via backpropagation. Vineet, Warrell, and Torr
[VWT14] extend this idea by incorporating higher-order potentials in the form of pattern-based
potentials and co-occurrence potentials. For the CRF by Song et al. [Son+19], the corresponding
update rule becomes:

qt
i(yi = l) =

1
Zi

exp

− ∑
c∈C

γp ·

valid labeling case gets low costs︷ ︸︸ ︷
∑

p∈Pc|yi=l

(
∏

j∈c,j ̸=i
qt−1

j (yj = pj)

)

+ γmax ·
(

1−
(

∑
p∈Pc|yi=l

(
∏

j∈c,j ̸=i
qt−1

j (yj = pj)

)))
︸ ︷︷ ︸

inverse of the valid labeling case gets high costs

, (4.3)

where qt
i(yi = l) ∈ [0, 1] denotes the probability that edge i takes label l ∈ {cut, join} at iteration

t. Pc|yi=l denotes the subset of valid edge label configurations in cycle c where the label of edge i
is fixed to l, as defined by Equation 4.2. Looking at the case where yi = 1 (i.e. the edge is cut),
possible valid configurations are (yi, 0, 1), (yi, 1, 0), and (yi, 1, 1). For each valid labeling, the
update rule considers the product of the marginal label probabilities qt−1

i (yi = pj) for the other
two variables yj ̸=i in the clique c. These products are summed over all valid configurations and
then scaled by the valid labeling cost γp. The inverse of this aggregated probability mass is then
scaled by the cost for invalid labelings γmax. This formulation is equivalent to summing over all
invalid configurations for the given fixed label of yi. The final potential is accumulated over all
cliques C that include the edge variable yi. After computing the unnormalized log-probabilities
for each label, a softmax function is applied to project the resulting values into the interval [0, 1],
yielding the updated marginal distribution qt

i(yi = l). Costs γp and γmax are considered as
trainable parameters. The update rule is fully differentiable with respect to both the current
marginals q(yi = l) and the cost parameters. Because the marginals are non-binary, the penalty
for invalid configurations becomes smaller with uncertainty about the predicted label (i.e., when
q(yi = l)→ 0.5).

4.3.3 Cooling Mean-Field Updates

There have been various efforts to tighten the relaxation of the MP. For example, Swoboda
and Andres [SA17] incorporate odd-wheel inequalities, while Kappes et al. [Kap+16] propose
additional terminal cycle constraints. Although such constraints yield tighter solution bounds,
they involve a large number of edges. A formulation of such constraints to higher-order CRFs,
particularly those of order four or higher, becomes computationally intractable. Therefore, we
choose a more straight forward and tractable alternative by interpreting the network predictions
q(y) as relaxed edge label assignments and progressively pushing them closer toward binary

4.3. PENALIZING NETWORKS WITH CYCLE CONSTRAINTS 63

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

(p
)

k=1.00
k=1.25
k=1.50
k=1.75
k=2.00

Figure 4.3: Function ϕ plotted for different values of exponent k.

values (i.e., 0 and 1) during mean-field updates. For this, we modify the mean-field update in
Equation 4.3 by replacing the term qt−1

i (yi = pj) with a transformed value ϕ
(

qt−1
j (yj = pj), k

)
,

where ϕ(·) is a newly introduced sharpening function defined as follows:

ϕ(q, k) =

{
1− (1− q)k if q >= 0.5
qk otherwise.

Here, q ∈ [0, 1] represents the current edge probability, and k is an exponent that controls
the strength of the sharpening and can be adapted during training. The function ϕ pushes
probabilities greater than or equal to 0.5 closer to 1, and probabilities below 0.5 closer to 0. In
doing so, it narrows the distribution around the two binary extremes and thus reduces the
integrality gap. Consequently, the model is encouraged towards more confident predictions and
violations of the multicut cycle constraints are penalized mores strictly, providing a stronger
training signal. This effect is amplified the larger the exponent k becomes. Figure 4.3 depicts ϕ(·)
and the resulting cooling effect for different values of k.

Choosing a large value for exponent k at the beginning of finetuning can be problematic, as
the network would need to adjust abruptly to produce near-binary outputs. We thus introduce
a dynamic schedule for k throughout the training process that gradually sharpens predictions.
The aim is to focus more on confidently violated constraints in the beginning, and progressively
strengthen constraints on less confident predictions over time. We therefore propose a cooling
schedule that incrementally increases k based on a constraint satisfaction criterion:

k =

{
k + 0.05 if N(Cinv) < a
k otherwise,

(4.4)

where N(Cinv) is the average number of invalid cycles (that do not adhere to the cycle inequality
constraints) across all images, and the hyperparameter a specifies the maximum number of
allowed cycle constraint violations before increasing the exponent k. With this cooling schedule,
k is increased after every epoch in which the number of invalid (relaxed) cycles falls below the
threshold a. This strategy progressively tightens the relaxation and encourages the model to
produce increasingly binary edge predictions, while maintaining training stability in the early
stages.

64 CHAPTER 4. EDGE DETECTION

RCF

Image

Edge Groundtruth Edgemap

Masked Edgemap

Non Maximum
Suppression &

Watershed Filter

RCF Loss
Intervening Contour

Cue

CRF
reweighting

Intervening Contour
Cue

RCF Penalty

Edgemap Graph

A

B C

0.6

0.6

0.2

A

B C

1.0

1.0

0.0

Label Graph Reweighted Graph

A

B C

0.8

0.8

0.1

RCF Loss

CRF Penalty

Figure 4.4: The RCF-CRF training process is depicted, where blue highlights the RCF loss and
purple highlights the additional CRF penalty.

To leverage the mean-field update for image segmentation, we require an edge detection
network that produces prediction values for the CRF potentials. A suitable learning-based
approach that provides high quality edge estimates is the RCF [Liu+19] architecture. In practice,
the edge detection network is first pretrained until convergence independently of the CRF, and
then finetuned with the CRF. The sharpening exponent k is initialized to 1 and progressively
updated during training according to the schedule defined in Equation 4.4.

4.3.4 Penalizing Image Segmentation Networks

The RCF architecture for edge detection was introduced by Liu et al. [Liu+19]. Their main idea
is based on the HED framework [XT15], which adapts an image classification architecture like
VGG16 [SZ15] by dividing them into five stages and removing fully-connected layers. Each stage
produces a side output, which is supervised by an individual loss function. These side outputs
are subsequently fused by a learnable weighted fusion layer. In contrast to HED, which only
considers the last convolutional layer from each stage, the RCF architecture aggregates features
from all convolutional layers within each stage (hence the term richer convolutional features). Each
side output is transformed via sigmoid activation to produce a probability map.

RCF-CRF Architecture. Figure 4.4 depicts the complete proposed architecture, where the CRF
is combined with RCF to encourage consistent boundary predictions. In the first stage, edge
probability maps Pb are generated from the input image using the RCF, and the corresponding
RCF loss is applied during training. To apply the CRF penalty, we construct a pixel graph
in which edges represent potential boundaries, with associated weights derived from edge

4.4. EXPERIMENTS 65

probabilities. For each pixel, edges of the 8-connectivity are added for distances ranging from 2
to 8 pixels, yielding a large number of cycles. To efficiently compute edge weights for the graph,
we apply non-maximum suppression to the output of the pretrained RCF and then generate
Watershed boundaries. This preprocessing step is performed only once and is used to mask
subsequent RCF predictions, enabling efficient retrieval of edge weights as they are updated
during training. We use the Intervening Contour Cue (ICC) [LM98] to compute edge weights.
Specifically, the weight of an edge between pixels i and j is computed as wi,j = max(Pb(ρ) |
ρ ∈ Li,j), where Pb(ρ) is the edge probability at pixel coordinate ρ, and Li,j denotes the set of all
pixel coordinates along the line connecting i and j (including endpoints). Potential locations of
these maximum values can be precomputed using the Watershed masks to improve efficiency.

Edge ground truth labels are generated on-the-fly similar to ICC by checking if an edge exists
along the line connecting two pixels in the ground truth edge map to determine their cut/join
label. The RCF loss follows the original formulation in Liu et al. [Liu+19], which is based on
cross-entropy. It excludes ambiguous edge pixels that have been annotated by fewer than half of
the annotators. The total loss for training, referred to as RCF-CRF loss, is computed as the sum
of the RCF loss and the CRF penalty. After training, the model can produce segmentations by
applying either hierarchical approaches such as MCG [Arb+14], or multicut solvers [Keu+15].

4.4 Experiments

We evaluate our approach in two different image segmentation applications. First, we show
experiments and results on the BSDS500 [Arb+11] dataset for edge detection and image segmen-
tation. Second, we consider the segmentation of electron microscopic recordings of neuronal
structures [Arg+15].

4.4.1 Berkeley Segmentation Dataset and Benchmark

BSDS500 [Arb+11] contains 200 train, 100 validation, and 200 test images that show colored
natural photography often depicting animals, landscapes, buildings, or humans. Due to its
large variety in objects with different surfaces and different lighting conditions, it is generally
considered a difficult task for edge detection as well as image segmentation. Several human
annotations are given per image. The RCF is pretrained on the augmented BSDS500 data used
by Liu et al. [Liu+19] and Xie and Tu [XT15]. After convergence, it is finetuned with our CRF
using only the non-augmented BSDS images to reduce training time. We evaluate the impact of
finetuning the CRF in different training settings:

• Baseline RCF: Further training of the RCF without CRF.

• Baseline CRF: Finetuning the RCF network without cooling scheme.

• Adaptive CRF: Finetuning with cooling scheme.

Additionally, we consider two settings where we enforce more binary solutions by introducing
temperature decay in the softmax [HVD15] that is applied after each mean field iteration. Here,
we consider two cases:

• Softmax Linear: Decaying the temperature by 0.05 after each epoch.

• Softmax Adaptive: Updating temperature according to the same adaption process as in
Equation 4.4.

66 CHAPTER 4. EDGE DETECTION

We provide more training implementation details in Section B.1 in Appendix B.

Invalid Cycles. Figure 4.5 (b) depicts the number of violated cycle inequalities during fine-
tuning of the RCF network in different settings. There, it can be seen that Baseline CRF is able
to reduce the number of violations rapidly to around 500 invalid cycles per image on average.
During training, it constantly stays at this level and does not substantially change anymore. Due
to this observation, we set parameter a in the cooling scheme of Adaptive CRF and softmax
temperature decay to 500. When training Adaptive CRF with this parameter setting, the number
of violations further decreases to zero. The impact of reduced uncertainty can furthermore be
seen when looking at the number of invalid cycles after rounding edge probabilities to binary
edge labels. As Figure 4.5 (c) shows, only the settings Adaptive CRF and Softmax Linear are able
to reduce the number of invalid cycles after rounding. However, Softmax Linear is not able to
reduce the number of violations before rounding in contrast to Adaptive CRF. This indicates
that the cooling scheme of Adaptive CRF provides a better training signal for the RCF, which
is also confirmed considering RCF training loss depicted in Figure 4.5 (a). Only Adaptive CRF
is able to provide sufficiently strong training signals such that the RCF network can further
decrease its training loss. Interestingly, the number of invalid rounded cycles as well as constraint
violations start increasing again after some training iterations for the Adaptive CRF. This shows
the trade-off between the RCF loss and the penalization by the CRF.

Edge Detection. Table 4.1 shows evaluation scores on the BSDS500 test set. The F-measure
at the Optimal Dataset Scale (ODS) and the Optimal Image Scale (OIS) as well as the Average
Precision (AP) are reported. The Multiscale Version (MS) is computed similar to Liu et al.
[Liu+19] with scales 0.5, 1.0 and 1.5. Adaptive CRF achieves substantial improvements in terms
of ODS and OIS to all other training settings. Figure 4.6 shows the precision recall curves for
edge detection on the BSDS500 test set. The proposed Adaptive CRF yields the highest ODS
score and operates at a higher precision level than other models. AP decreases slightly with the
CRF models, which is expected since the CRF removes uncertain edges that do not form closed
components and therefore affects the high recall regime. Qualitative examples are shown in
Figure 4.7.

4.4. EXPERIMENTS 67

5 10 15 20
Epoch

75000

80000

85000

90000

95000

B
C
E

RCF Loss

Baseline RCF
Baseline CRF
Adaptive CRF
Softmax Linear 0.05
Softmax Adaptive 0.05

(a) RCF Loss

5 10 15 20
Epoch

0
100

101

102

103

104

105

C
yc

le
s

Invalid Cycles (Ineq.)

5 10 15 20
Epoch

4000

6000

8000

10000

C
yc

le
s

I nvalid Cycles (Rounded)

(b) Invalid Cycles (c) Invalid Cycles (rounded)

Figure 4.5: (a) Training progress in terms of RCF loss when training in different settings. Only
Adaptive CRF is able to reduce the RCF loss further, while all other settings provide insufficient
training signal to further improve on the basic RCF model. (b) Number of invalid cycle inequal-
ities during training. Adaptive CRF substantially outperforms all other training settings. (c)
Number of invalid cycle inequalities after rounding the solution during training. Adaptive CRF
and Softmax CRF are able to improve on baselines substantially.

68 CHAPTER 4. EDGE DETECTION

Figure 4.6: Boundary precision recall curves for edge detection on the BSDS500 test set. RCF
models all have the VGG backbone. Models that were optimized with the CRF yield steeper
curves.

4.4. EXPERIMENTS 69

Input Edge Map UCM Segmentation

R
C

F
O

ur
s

R
C

F
O

ur
s

R
C

F
O

ur
s

R
C

F
O

ur
s

Figure 4.7: Example BSDS500 [Arb+11] test images and resulting edgemaps, UCMs, and segmen-
tations. The edge map optimized with Adaptive CRF is less cluttered and accurately localizes
contours compared to Baseline RCF. More examples are shown in Section B.2 in Appendix B.

70 CHAPTER 4. EDGE DETECTION

Table 4.1: Edge Detection and Segmentation results on the BSDS500 test set. All RCF models are
based on VGG16 [SZ15]. Results reported for Baseline RCF are computed for a model trained by
us and are slightly worse than the scores reported by Liu et al. [Liu+19].

Edge Detection Segmentation
Models ODS OIS AP ODS OIS AP

Baseline RCF 0.811 0.827 0.815 0.803 0.829 0.832
Baseline RCF (MS) 0.812 0.830 0.836 0.808 0.832 0.849
Baseline CRF (ours) 0.810 0.827 0.815 0.804 0.828 0.831
Baseline CRF (MS) (ours) 0.812 0.831 0.836 0.808 0.831 0.849
Softmax Linear (ours) 0.810 0.826 0.815 0.803 0.829 0.831
Softmax Linear (MS) (ours) 0.812 0.831 0.836 0.808 0.831 0.849
Adaptive CRF (ours) 0.815 0.830 0.812 0.808 0.830 0.828
Adaptive CRF (MS) (ours) 0.817 0.835 0.833 0.813 0.834 0.847

Image Segmentation. To obtain a hierarchical segmentation using the predicted edge maps,
we compute MCG [Arb+14] based Ultrametric Contour Map (UCM) [Arb+11] that generate
hierarchical segmentations based on different edge probability thresholds. Edge orientations
needed for MCG were computed using the standard filter operations. In contrast to Liu et al.
[Liu+19] we do not use the COB framework but use pure MCG segmentations to allow for a
more direct assessment of the proposed approach. Results for all training settings are reported in
Table 4.1. Again, Adaptive CRF models outperform all other models in ODS, while AP is only
slightly affected. Multiscale information additionally improves results.

Figure 4.8 depicts the segmentation precision recall curves comparing the RCF-based methods
to other standard models. Similar to the edge map evaluation, the curves are steeper for the CRF-
based model compared with the plain RCF, thereby following the bias of human annotations (i.e.,
approaching the green marker). Depending on when the curves start to tilt, the corresponding
F-measure can be slightly lower as it is the case for the basic CRF. Adaptive CRF, however, also
yields a considerably higher F-score improving over the baseline from 0.808 to 0.813. This result
shows that employing cycle information is generally beneficial to estimate closed boundaries.

4.4.2 Neuronal Structure Segmentation

Next, we conduct experiments on the segmentation of neuronal structures [Arg+15]. The data
was obtained from a serial section Transmission Electron Microscopy dataset of the Drosophila
first instar larva ventral nerve cord [Car+10; Car+12]. This technique captures images of the
Drosophila brain with a volume of 2× 2× 1.5µ and a resolution of 4× 4× 50nm/pixel. The
volumes are anisotropic, i.e. while the x- and y-directions have a high resolution, the z-direction
has a rather low resolution [Arg+15]. Both, training and test set consist of a stack of 30 consecutive
grayscale images. The goal of the challenge is to produce a binary map that corresponds to the
membranes of cells in the image.

Beier et al. [Bei+17] have applied a multicut approach to this application. Their pipeline first
produced an edge map from the original images by using either a cascaded random forest or a
CNN. In order to reduce complexity, they aggregated individual pixels to superpixels by using
the distance transform watershed technique [Ach+13]. Based on these superpixels they solve the
multicut and the lifted multicut problem using the fusion moves algorithm [BHK15].

4.4. EXPERIMENTS 71

Figure 4.8: Precision recall curves for segmentation on the BSDS500 test set. The proposed RCF
model with Adaptive CRF yields the highest ODS score and operates at a higher precision level
than other models.

Table 4.2: Results of the ISBI challenge on the test set.

Models VRand VInfo

Baseline [Bei+17] 0.9753 0.9874
Basic-CRF-optimized (ours) 0.9784 0.9889
Adaptive-CRF-optimized (ours) 0.9808 0.9887

72 CHAPTER 4. EDGE DETECTION

In this context, we apply Adaptive CRF as a post-processing method to an existing graph
without training the underlying edge detection. Edge weights for the test set are computed using
a random forest in the simple (not lifted) multicut pipeline from [Bei+17] and define a graph. We
optimize these graph weights with the proposed approach and subsequently decompose the
graph using the fusion move algorithm as in Beier et al. [Bei+17]. The number of mean-field
iterations was set to 20 and for Adaptive CRF the update threshold a was set to 100. Since the
CRF is not trained but used only for optimizing the graph once, the update threshold is evaluated
after every mean-field iteration rather than every epoch.

The graph obtained from Beier et al. [Bei+17] for the test set contained 74 485 cycles in
total. Before applying the CRF, 61 099 of them violated the cycle inequality constraints and
38 283 cycles were invalid after rounding. Afterwards, both cycle counts were close to zero.
Table 4.2 contains the results obtained for the not-modified edge weights (Baseline), the edge
weights optimized with Baseline CRF and the edge weights optimized with Adaptive CRF.
For evaluation, we also refer to the ISBI challenge [Arg+15] that indicates two measures: (i)
The foreground-restricted Rand Scoring after border thinning VRand, and (ii) the foreground-
restricted Information Theoretic Scoring after border thinning VInfo. Both CRF models were
able to improve the segmentation result in both evaluation metrics. While the differences in
VInfo score are rather small, Adaptive CRF increased the VRand score by 0.005 compared to the
baseline. Taking into account that the baseline is already very close to human performance, this
is a very good result. Comparing the two CRF models it can be seen that the VInfo score is almost
the same for both approaches. In terms of VRand score, Adaptive CRF improves stronger over the
baseline than Baseline CRF. Overall, this experiment shows that applying the CRF is beneficial
for image segmentation even without training for edge extraction. Accordingly, our approach
can be applied even as a post-processing step without an increase in training time.

4.5 Conclusion and Outlook

Summary. We introduced an adaptive higher-order CRF that can be applied as penalty for an
edge detection network. This penalty encodes a preference for closed contours in the edge maps
by encouraging compliance with the cycle constraints defined by the MP. Combining this CRF
with the RCF model [Liu+19] for edge detection yields sharper edge maps and promotes closed
contours on BSDS500. Precision recall curves show that CRF penalized models yield steeper
curves having a higher precision level. Similarly, the resulting segmentations show that the
approach is able to generate more accurate and valid solutions. Moreover, the CRF can be used
as post-processing to optimize a graph for cycle constraints as shown on the electron microscopy
data. This has shown considerable improvement in the evaluation metrics without increasing
training time.

Solution Quality Guarantees. Similar to Chapter 3, we incorporate MP constraints as regular-
izer into the training of the model. These constraints are again encoded softly and encourage
the model to learn closed and thin object contours, but do not enforce them. Consequently, this
regularizer cannot guarantee the absence of disconnected contours. However, the approach of
encoding disconnected contours as violated constraints allows us to count them and to provide
an approximation of the solution quality in this context. Future research could facilitate this
aspect and provide confidences about possible contours and their quality in addition to edge
probabilities.

4.5. CONCLUSION AND OUTLOOK 73

Computational Cost of Cycle Consistency Constraints. In the proposed regularization ap-
proach, we treat every pixel in the image as a node of the resulting MP instance. Since it is
sufficient to enumerate all triangles for cycle consistency constraints [GW90] when MP instances
are defined as complete graphs, it would make sense to connect every pixel with each other pixel
in the image. However, this yields an intractable amount of potentials for the proposed CRF.
Hence, designing a mapping from the prediction map provided by the RCF model to an MP
instance is not trivial. We decided to connect each pixel with its 8-connectivity (for a range of
pixel distances from 2 up to 8) to create a sparse graph. For the CRF penalty, we then consider
triangles for cycle consistency constraints. As a result, this decision leaves (longer) chordless
cycles of the graph unaccounted for. This is similar in fashion to our Graph Convolutional
Network (GCN)-based approach in Chapter 3, where we only considered paths up to a certain
length. Future research could investigate the influence of this approximation, and similarly, find
ways to strategically select and incorporate cycles into the penalty to improve computational
efficiency further.

Flexibility to Train from Scratch. The current approach precomputes a mask for the ICC step
based on initial predictions by the pretrained RCF (once) to improve training compute time. This
design choice limits the proposed RCF-CRF model in two ways. First, it can only be applied to
provide a training signal for finetuning (or to refine edge weights during inference). Second,
when edge predictions deviate from the ground truth, the penalty term could promote incorrect
edges, potentially working against the classification loss. Another reasonable approach would
be to use the ground truth as a mask for ICC instead, which enables the model to be trained
from scratch. Future work could investigate this alternative design choice further. Combined
with strategic selection of computed constraints for improve training efficiency, this could allow
training a model from scratch instead of only finetuning existing ones.

This page intentionally left blank.

Part II

Match:
Regularization via Feature Matching

Chapter 5: Learned Representations to Penalize Image Synthesis 77
Chapter 6: Spectral Distribution-Aware Image Synthesis 91

This part of the thesis focuses on regularizing the training of Generative Adversarial Networks
(GANs) by penalizing discrepancies between features of generated samples and those of the
training data. In contrast to Part I, were we considered penalty terms based on prediction outputs,
here we penalize based on (learned) feature distributions comparing synthesized images with
their corresponding training data. First, in Chapter 5, pretrained image representations are
leveraged by incorporating the image quality metric Fréchet Inception Distance (FID) as a
training regularizer. This reveals flaws of the widely adopted metric that we discuss further.
Second, Chapter 6 shows that GANs overfit in the spatial domain and benefit from regularization
in the frequency domain. For this, we add a discriminator network that extracts spectral features
from images and learns to distinguish synthesized images from training data in the frequency
domain. Applied as an additional loss alongside the spatial discriminator during generator
training, this formulation encourages the generator to align synthesized images with training
images across both spectral and spatial domains, thereby promoting better generalization.

75

This page intentionally left blank.

Chapter 5

Learned Representations to Penalize Image
Synthesis
Contents of This Chapter

6.1 Introduction . 92

6.2 Related Work . 93

6.3 Spectral Properties of Image Generation . 93
6.3.1 Spectral Effects of Upsampling . 94
6.3.2 Analysis of Real Data Distribution . 95
6.3.3 Evaluation in the Frequency Domain . 95

6.4 Learning to Regularize Spectral Distributions . 97

6.5 Experiments . 99

6.6 Conclusion and Outlook . 104

Chapter Topic. This chapter is based on Jung and Keuper [JK21a]. It explores how learned
representations from pretrained image classification networks can regularize the training of
generative adversarial networks for image synthesis. For this, we incorporate a penalty term
based on Fréchet Inception distance, a metric commonly used to evaluate image quality in image
synthesis tasks. This penalty compares the distribution of learned features between the training
and a batch of synthesized images. Based on experiments with this learned penalty approach,
the chapter identifies inherent limitations using Fréchet Inception distance as a metric for image
quality. We demonstrate that rankings on this metric are not necessarily aligned with human
judgement.

Chapter Outline. We introduce this chapter in Section 5.1. We start by summarizing recent
works on generative adversarial networks and their evaluation metrics in Section 5.2. Then, in
Section 5.3 we introduce different training settings that incorporate Fréchet Inception distance as
additional penalty term and discuss their results. We discuss further considerations about the
reliability of Fréchet Inception distance as image quality metric in Section 5.4 and conclude the
chapter in Section 5.5.

77

78 CHAPTER 5. LEARNED REPRESENTATIONS

5.1 Introduction

THE generation of photo-realistic, unseen images has made substantial progress with the
introduction of Generative Adversarial Networks (GANs) [Goo+14]. Since then, many

architectures emerged competing with each other to provide the best performance [BDS19;
Kar+20b; Kar+17]. With it arose the question how their performance should be measured to
provide a ranking between different approaches. Metrics like Inception Score (IS) and Fréchet
Inception Distance (FID) were proposed to evaluate image distributions automatically. These
metrics are based on extracting features from images that are provided by the Inception v3 image
classification network [Sze+16], and hence inspired their names. While IS was proven to be not
useful to compare different models [BS18], its successor FID is now widely adopted within the
GAN community. FID compares the distribution of features between two image datasets that
are estimated from training data and samples from the generator network.

Well-performing generators are supposed to produce images that match the feature distri-
bution of the underlying training data. Some theoretical and practical shortcomings of FID are
already discussed in the literature. For example, a bias due to different sample sizes [CF20],
and inconsistent downsampling implementations between different image processing libraries
[PZZ22]. However, none of these works discuss the shortcomings that come with its underlying
feature extractor. If FID is a well-defined metric in terms of image quality, incorporating it as a
training signal seems to be a reasonable approach. To this end, we incorporate FID as a learned
penalty term into the training of different GAN architectures. However, by examining the image
quality of resulting generators networks, we show that FID is not aligned with human judgement
(see Figure 5.1 for an example).

FID: 6.00

SNGANG+D

FID

FID: 9.44

SNGANG+D

FID

FID: 7.74

SNGANG+D

FID

FID: 7.89

DCGANG+D

FID

FID: 8.27

DCGANG+D

FID

FID: 28.72

DCGANG+D

FID

FID: 17.85

SNGANG+D

FID: 10.82

DCGANG+D

FID

Figure 5.1: FID [Heu+17] is commonly used to decide if one model is superior to another in
terms of producing images that are close to the training distribution. Here, we show images
generated by different models trained on FFHQ [KLA19] (left) and CIFAR10 [Kri09] (right) with
their respective FID (lower is better).

3x

35x35x288

Inception

Module A

5x

17x17x768

Inception

Module B

2x

8x8x2048

Inception

Module C

Convolutions

& Pooling

Image

299x299x3

Features

1x2048

Average

Pooling

Figure 5.2: Simplified depiction of the Inception v3 architecture (grid size reductions omitted).

5.2. RELATED WORK 79

5.2 Related Work

Generative Adversarial Networks. GANs were originally formulated by Goodfellow et al.
[Goo+14] and defined the state-of-the-art in realistic image generation before the introduction of
diffusion networks [Rom+22] (see also introduction in Subsection 2.2.3). The training progress
of GANs is an optimization problem, where the goal of the generative model is to approximate
a real data distribution pdata with a surrogate data distribution pθ . To this end, Goodfellow
et al. [Goo+14] propose to minimize the Jensen-Shannon divergence between both data dis-
tributions. Limitations with respect to the training stability and distribution metrics have for
example been discussed by Biau et al. [Bia+20], Li et al. [Li+18a], and Mescheder, Geiger, and
Nowozin [MGN18]. Recent works towards improving GANs propose improved loss functions,
regularization techniques, and latent space constraints for better training stability [Gul+17a;
Mao+17; Gul+17a; Miy+18; MO14; DKD17; GSV17; DKK20; BDS19; Kod+17] and high image
resolutions [Kar+17; Kar+20b; Kar+20b]. Such models can generate appealing images that are
often indistinguishable from real images.

Evaluation Metrics. Measuring the quality of generative models is a long-standing problem
[TOB16]. Due to the popularity of GANs, a significant amount of research efforts is spent
to provide metrics for the case of image data. An extensive overview of available metrics is
provided by Borji [Bor19; Bor22].

Driven by the urge to evaluate the performance of GANs automatically, Salimans et al.
[Sal+16] proposed a metric called IS that measures the variety of image feature vectors provided
by the Inception v3 image classification network [Sze+16] trained on ImageNet [Den+09]. This
score ranges in [1, 1000] [BS18], where generator networks that produce images resulting in
larger scores are considered more desirable. However, Barratt and Sharma [BS18] criticize IS for
its sensitivity to small perturbations of the parameters of the underlying Inception network as
well as its careless usage in practice. They show that the assumptions of IS are not met when the
score is used to compare models that are trained on different datasets than the feature extractor
network Inception.

FID [Heu+17] has established itself as standard metric to compare GAN architectures. This
metric compares features statistics of generated images to training images extracted by the
Inception v3 image classification network. The mean as well as the covariance of generated
image features are compared to the real data distribution by computing the Wasserstein-2
distance. When computing FID, a certain number of images, N, is drawn from the generator on
which its performance evaluation is based. Different works employ different sample sizes, for
example Gulrajani et al. [Gul+17a] compute FID10k generating 10k samples, whereas Karras et al.
[Kar+20b; Kar+17] compute FID50k generating 50k samples. Unfortunately, these differences in
evaluation protocols make it hard to compare different models, since Grover et al. [Gro+19] show
that FID has a bias related to the number of samples. They advise that to be able to compare
different generators in an unbiased fashion, the asymptotic FID∞ should be estimated. Therefore,
they provide a protocol to regress FID∞ based on different sample sizes.

Since Inception v3 is used in FID as feature extractor, all images are resized to 2992 (see
Figure 5.2) before being fed through the network. However, Parmar, Zhang, and Zhu [PZZ22]
show that this introduces practical problems when comparing FID between papers due to
differences in the used image libraries that resize input images. They compared different
implementations of resizing operations and showed that commonly used deep learning libraries,
like PyTorch and Tensorflow, are introducing aliasing artifacts during downsampling.

80 CHAPTER 5. LEARNED REPRESENTATIONS

Generator Training Settings

GANG+D GANFID
G+D GANFID

G

D

G

GAN

D

G

FID

GAN

G

FID

(a) Vanilla Training (b) With FID Penalty (c) Only FID Penalty

Figure 5.3: Different settings to train generator networks. (a) Vanilla generator training is denoted
by GANG+D. Here, the training signal is provided by a discriminator network. (b) In the setting
of GANFID

G+D, we add an additional penalty term based on FID (see Equation 5.1). (c) In GANFID
G ,

we drop the discriminator network and train the generator solely by minimizing the penalty.

5.3 Training with Fréchet Inception Distance

5.3.1 Fréchet Inception Distance

To compute FID between two image datasets, image features are extracted by sampling images
from those datasets and feeding them into the pretrained Inception v3 [Sze+16] image classi-
fication network. In the following, we denote Inception v3 by function fh that returns feature
column vectors given input images and feature matrices with samples on rows given input
batches of images. FID is then computed via the Wasserstein-2 distance

FID = ||µD1
− µD2

||22 + tr(ΣD1) + tr(ΣD2)− 2 · tr(
√

ΣD1 ΣD2) (5.1)

between two image datasets D1 and D2, where tr(·) is the trace operator, and

µD =
1
|D| ∑

x∈D
fh(x) and ΣD = ∑

x∈D

(fh (x)− µD) (fh (x)− µD)
⊤

|D| − 1
(5.2)

are the mean vector and covariance matrix of feature vectors of dataset D. The motivation of
FID is that, given a sufficiently large number of samples, the first two moments of the feature
distributions should match if the images are sampled from the same dataset. Hence, the closer
the generator network gets to reproducing the Inception v3 feature distribution of the training
data, the smaller FID becomes.

5.3. TRAINING WITH FRÉCHET INCEPTION DISTANCE 81

5.3.2 Minimizing Fréchet Inception Distance

Settings. If FID is a metric that aligns with human judgement, we can assume that the visual
appearance of images generated by any GAN model should improve if we optimize the generator
by minimizing FID [MH21]. But can this assumption hold? To verify, we train two GAN
architectures, Deep Convolutional Generative Adversarial Network (DCGAN) [RMC15] and
Spectral Normalization Generative Adversarial Network (SNGAN) [Miy+18], on FFHQ [KLA19]
downscaled to 642 image resolution (further called FFHQ64) and CIFAR10 [Kri09]. We consider
three training procedures that we depict in Figure 5.3. These are: (a) GANG+D where we train
the model in its common setting in which a discriminator network provides the training signal
for the generator network (baseline), (b) GANFID

G+D where we extend (a) by adding an additional
penalty term for the generator network given by Equation 5.1 (further called FID penalty), and (c)
GANFID

G where we drop the discriminator network and train the generator solely by minimizing
the FID penalty.

To improve training efficiency, we adopt the method of calculating the matrix square root
when computing FID (see Equation 5.1) as proposed by Mathiasen and Hvilshøj [MH21]. Specifi-
cally, we consider that tr(

√
ΣD1 ΣD2) can be reformulated as:

tr(
√

ΣD1 ΣD2) =
n

∑
i=1
|
√

λi

[
CD1 ΣD2 C⊤D1

]
|, (5.3)

where CD1 =
(

fh (D1)− µD1

)
is the centered feature matrix of dataset D1 and λi[·] denotes the

ith eigenvalue of the given matrix. Originally, computing the matrix square root in Equation 5.1
involves an eigendecomposition of the matrix product ΣD1 ΣD2 ∈ R2048×2048, where the dimen-
sionality corresponds to the feature dimensionality of Inception v3. In contrast, the reformulation
in Equation 5.3 applies the eigendecomposition to matrix CD1 ΣD2 CT

D1
∈ Rn×n, where n is the

number of data samples. Hence, as long as we sample less than 2048 images to approximate the
FID penalty, Equation 5.3 is more efficient.

In each iteration that we minimize FID directly, we generate 400 images for DCGAN and 360
images for SNGAN to approximate the current FID. During training we measure FID to track
the training progress after each epoch by sampling 10 000 images from the generator. We provide
the complete details to our implementation in the Appendix in Section C.1.

Training Results. The progress for each training setting is shown in Figure 5.4. Given the
training curves provided by evaluating FID after each epoch, one could assume that applying
FID penalty stabilizes the training. We could go even further and assume that the discriminator
is not even necessary for GAN training, since the results measured by FID differ only slightly.
However, the story changes after examining the images each of these models generate (we
provide an overview of all results with example images in Table 5.1 and more example images
in Appendix C). By inspecting image samples, we observe no visual improvement in image
quality between GANG+D and GANFID

G+D despite the large gaps in terms of FID. We even argue
that images produced by GANFID

G+D contain more artifacts and are less visually pleasing, which
we see as a sign of fitting to the FID penalty. We hypothesize that the generator learns to produce
features to match the training data distribution on average. This observation becomes more
severe in the case of GANFID

G . Here, we notice that the missing discriminator leads to spatially
incoherent feature distributions. For example SNGANFID

G adds mostly single eyes and aligns
facial characteristics in a daunting manner. We assume that this is the result of the choice of layer
that features are extracted from Inception v3. Features are spatially pooled and therefore lose

82 CHAPTER 5. LEARNED REPRESENTATIONS

Table 5.1: Combined results of trained models from Subsection 5.3.2. More generated images are
provided in the Appendix in Sections C.2-C.5.

Data Resolution Model FID↓ Images

FFHQ 642

DCGANG+D 14.86

DCGANFID
G+D 5.38

DCGANFID
G 7.89

SNGANG+D 9.44

SNGANFID
G+D 6.00

SNGANFID
G 7.74

CIFAR10 322

DCGANG+D 28.72

DCGANFID
G+D 8.27

DCGANFID
G 10.82

SNGANG+D 17.85

SNGANFID
G+D 8.07

SNGANFID
G 11.66

5.4. FURTHER ANALYSIS OF FRÉCHET INCEPTION DISTANCE 83

all spatial information before they are extracted. While human annotators would surely prefer
images produced by SNGAND+G over SNGANFID

G (in cases where data fidelity is preferred over
art), we see that this is not reflected by FID. Hence, FID is not aligned with human perception.
We argue that discriminative features provided by image classification networks are not sufficient
to provide the basis of a meaningful metric. To further emphasize on this point, we analyze the
role of the choice of feature-extracting backbone for FID in the next section. There, we substitute
Inception v3 by an extensive choice of different image classification networks. Additionally,
we evaluate FID on ImageNet-C at different severities for each backbone network. Here we
see that biases present in Inception v3 are also widely present in other classification networks.
Additionally, we see that different networks would produce different rankings in-between
corruption types.

5.4 Further Analysis of Fréchet Inception Distance

FID and Model Robustness. While pretrained feature extractors can facilitate certain tasks in
meaningful ways, like object recognition or detection, we argue that caution needs to be taken
in the context of comparing image distributions. The Inception v3 network is trained on the
ImageNet object recognition challenge [Den+09], where the task is to classify images into 1000
distinct classes. Hence, the network learns to extract features from images that discriminate
classes found in ImageNet. For this task, it is beneficial for the network to become robust against
several distribution shifts, like color or intensity changes and diverse spatial transformations. A
common way to equip image classification networks with robustness against before-mentioned
shifts is to augment the training data. For example, Inception v3 was trained with the following
augmentation pipeline [Goo21a]: (a) Cropping the input image with a random scale (8%-100%)
and aspect ratio (3/4 to 4/3), (b) randomly flipping the input image horizontally, and (c) randomly
introducing color distortions in terms of hue, saturation, brightness, and contrast. Consequen-
tially, we assume that the network is at least robust to some degree of corruption. In the following,
we investigate (i) how robust Inception v3 is against certain corruption types, and (ii) how these
findings impact the applicability of FID as a metric.

0 20 40 60 80 100
Epoch

0

10

20

30

40

50

FI
D

DCGAN Training
DCGAN: D+G
DCGAN: D+G, FID
DCGAN: G, FID

0 20 40 60 80 100
Epoch

0

10

20

30

40

50

FI
D

SNGAN Training
SNGAN: D+G
SNGAN: D+G, FID
SNGAN: G, FID

Figure 5.4: Results of training DCGAN and SNGAN with different settings. FID penalty stabi-
lizes training and achieves better performances (i.e. smaller FID), whereas the discriminator only
marginally improves generator performance.

84 CHAPTER 5. LEARNED REPRESENTATIONS

We first investigate how different kinds of corruptions influence FID. Research in the area of
robustness has produced several benchmark dataset collections, one of which is ImageNet-C
[HD19]. This collection contains the ImageNet [Den+09] validation images with 19 corruption
types at 5 severity levels, hence, a total of 95 image datasets. On this benchmark, we can uncover
which types of corruptions influence the feature distribution provided by Inception v3 (and
therefore FID) to which degree. In Figure 5.5 we depict the corresponding FID between the
original ImageNet validation images and all datasets in ImageNet-C. We interpret larger FID
as indicator that the distribution of features extracted by Inception v3 is influenced more by
certain corruptions, and hence that the model is more sensitive to these types of corruptions.
We can make the following observations from Figure 5.5: First, Inception v3 is mostly robust to
deviations in brightness, saturation, and contrast up to a certain degree. While information about
colors and intensities is lost in these cases, edges are mostly preserved. In the frequency domain,
we can see these corruptions acting on low frequencies [Yin+19a], while high frequencies are
mostly untouched. Second, Inception v3 is sensitive to noise that acts on the high frequency
spectrum, either by adding high frequency artifacts (impulse noise, shot noise, speckle noise), or
by removing high frequency information (glass blur, Gaussian blur). These observations lead us
to the assumption that Inception v3 has a bias towards extracting features based on edges and
textures rather than color and intensity information. This aligns with its augmentation pipeline
that introduces color distortions, but keeps high frequency information intact. Consequently,
FID inherits this bias. When used as ranking metric, generative models reproducing textures
well might be preferred over models that reproduce colors well.

Sensitivity to Translation. Since ImageNet-C contains no corruptions that test robustness
to translations, we further investigate this aspect by introducing additional corruptions (see
Figure 5.6). We are interested in knowing how FID is influenced by (a) flipping images either
horizontally or vertically, and (b) by translating the images in certain directions. Our results
indicate that Inception v3 is mostly robust towards horizontal flips and translations, while being
more sensitive in the vertical direction. Again, this fits well with the training data augmentation
of Inception v3 that reinforces robustness via random horizontal flips [Goo21a].

Substituting the Backbone. We provide an overview similar to Figure 5.5 with an extensive
list of substitute networks evaluated on ImageNet-C at severity 1 in Figure 5.7. Here we see that
biases present in Inception are also widely present when we use different classification networks
instead. However, we also see that different networks would produce different rankings in-
between corruption types. We additionally provide this overview for all other severities of
ImageNet-C in the Appendix in Section C.6.

FID is related to Deep Fake Detection. Should features extracted in the context of comparing
image distributions be robust after all? To answer this question, we need to discuss the premise
under which two image datasets should be considered equal. We argue that a meaningful metric
should be at least visually aligned with human perception. Hence, if a human can be fooled by a
generator network, than this generator should be considered superior to one that is not able to do
so. In this sense, we believe that measuring the performance of GANs and deep fake detection is
interconnected. In Table 5.2 we show results of training logistic regressions to distinguish images
from FFHQ and images generated by StyleGAN2 without latent space truncation (ψ = 1.0) and
with truncation (ψ = 0.5), solely based on features provided by Inception v3. Training and testing
are performed on different splits (we provide more implementation details in the Appendix in
Section C.7). We see that truncation decreases FID substantially, and consequently improves the
ability of detecting StyleGAN2 generated images as fake. In contrast, we show exemplary images
produced by StylegAN2 without and with truncation in Figure 5.8. By inspecting these images,

5.4. FURTHER ANALYSIS OF FRÉCHET INCEPTION DISTANCE 85

br
ig

ht
ne

ss
co

nt
ra

st
de

fo
cu

s_
bl

ur
el

as
tic

_t
ra

ns
fo

rm fo
g

fro
st

ga
us

sia
n_

bl
ur

ga
us

sia
n_

no
ise

gl
as

s_
bl

ur
im

pu
lse

_n
oi

se
jp

eg
_c

om
pr

es
sio

n
m

ot
io

n_
bl

ur
pi

xe
la

te
sa

tu
ra

te
sh

ot
_n

oi
se

sn
ow

sp
at

te
r

sp
ec

kl
e_

no
ise

zo
om

_b
lu

r

1

2

3

4

5

Se
ve

rit
y

inception

0

20

40

60

80

100

120

Image

Impulse
Noise

Speckle
Noise

Fog

Snow

Contrast

Brightness

Saturate

Frost

Glass
Blur

Figure 5.5: (left) Color-coded FID between 19 corrupted ImageNet validation datasets with
5 severity levels [HD19] to their originals. Colors and circle sizes are normalized over all
corruptions and severities. (right) Examples of different corruptions at severity 5.

ho
riz

on
ta

l_f
lip

ve
rti

ca
l_f

lip

tra
ns

la
tio

n_
x

tra
ns

la
tio

n_
y

tra
ns

la
tio

n_
xy

1

2

3

4

5

Se
ve

rit
y

inception

0

5

10

15

20

25

30

35

Figure 5.6: Corruptions introduced by transforming CIFAR10 [Kri09] test images a) with in-
creasing likelihood of horizontal or vertical flips and b) by moving the image in x, y, or both
directions up to an increasing distance (reflection padding). The figure depicts the FID between
a corruption at a certain level with the original CIFAR10 test dataset.

86
C

H
A

PTER
5.

LEA
R

N
ED

R
EPR

ESEN
TA

TIO
N

S

br
ig

ht
ne

ss

co
nt

ra
st

de
fo

cu
s_

bl
ur

el
as

tic
_t

ra
ns

fo
rm fo

g

fro
st

ga
us

sia
n_

bl
ur

ga
us

sia
n_

no
ise

gl
as

s_
bl

ur

im
pu

lse
_n

oi
se

jp
eg

_c
om

pr
es

sio
n

m
ot

io
n_

bl
ur

pi
xe

la
te

sa
tu

ra
te

sh
ot

_n
oi

se

sn
ow

sp
at

te
r

sp
ec

kl
e_

no
ise

zo
om

_b
lu

r

pca
inception

bninception
deit_s
deit_t

densenet121
inceptionresnetv2

nasnetamobile
polynet

resnet101
resnet50

vgg11
vgg16

Ne
t

ImageNet-C, Severity: 1

0.0

largest

Figure 5.7: Color- and size-coded FID between ImageNet validation images and 19 corrupted versions thereof provided by ImageNet-C
[HD19]. Inception v3 is substituted by different classification networks [SZ15; He+16; Zha+17c; Zop+18; Sze+17; Hua+17; IS15; Sze+16]
to investigate whether the ranking is affected by the feature extractor. All corruptions are at severity 1. Colors and circle sizes depend
on the largest observed FID per network. Additionally, PCA features are shown, which provide descriptive features with different
sensitivity to corruptions compared to image classification networks. We can see that rankings are inconsistent in-between different
feature extractors.

5.4. FURTHER ANALYSIS OF FRÉCHET INCEPTION DISTANCE 87

Table 5.2: Results of fake detection of two logistic regressions trained on features provided by
Inception v3 [Sze+17], either on images generated with the truncation trick (Ψ = 0.5) or without
(Ψ = 1.0). Although applying the truncation trick improves image quality (see Figure 5.8), FID
deteriorates and fake detection is more accurate in discriminating those images.

Model Data FID↓ Accuracy↑ Precision↑ Recall↑ F1↑Resolution

StyleGAN2 FFHQ 2.65 .71 .70 .72 .71
ψ = 1.0 10242

StyleGAN2 FFHQ 57.77 .98 .98 .98 .98
ψ = 0.5 10242

Seed 1 Seed 2 Seed 3

Ψ
=

1.
0

Ψ
=

0.
5

Figure 5.8: Images generated by StyleGAN2 for different seeds. For the same seed the truncation
trick [KLA19] is either applied (Ψ = 0.5) or not (Ψ = 1.0). The truncation trick pulls style vectors
toward an average latent vector, resulting in higher-quality but less diverse outputs.

88 CHAPTER 5. LEARNED REPRESENTATIONS

we observe that truncation removes textures (and also artifacts). We hypothesize that its bias
towards textures facilitates Inception to extract features that allow almost perfect detectability
(98% when truncation is applied). However, we expect humans to be easier fooled by truncated
images than untruncated ones. Hence, we argue that this is a hint towards that FID is not aligned
with human perception.

5.5 Conclusion and Outlook

Summary. We provided an overview of inherent biases in FID that are present due to the
design choice to use Inception v3 as feature extractor. We showed that the way Inception v3 was
trained encouraged it to become robust to corruptions related to color, intensity, saturation, and
horizontal translations, while being sensitive to corruptions affecting textures and to vertical
translations. These biases influence the ranking when different image-synthesizing models
are compared and need to be considered. Additionally, we showed that FID as a metric is not
aligned with human perception by minimizing FID as a penalty term. Here, we showed that
generators trained with FID penalty produce images with substantially improved FID, but worse
visual appearance. The plotted training curves showing the development of validation FID are
misleading in those cases. Finally, we showed that substituting Inception v3 with another image
classification network would simply interchange different biases. Hence, we hope to inspire
further research to close the gap towards a humanly aligned and unbiased metric that enables to
fairly rank image-generative models.

Parameter-free vs. Parameterized Discriminators. In this chapter we considered FID as
parameter-free discriminator that adds a batch-wise penalty comparing the distance of image
features statistics between training images and generated images during training. Learned
representations by Inception v3 are transferred for this task. While we argued before that com-
puting feature statistics to compare them directly becomes computationally expensive, another
possibility is to train another model to compare those image features. This corresponds to adding
a discriminator network to the adversarial training of GANs that facilitates pretrained feature
extractors. While former work explored this idea in the context of image manipulation [Sun+18],
some succeeding works exist now that explored this idea further for image synthesis [Sau+21;
Kum+22]. In this context, Sauer et al. [Sau+21] employ a discriminator that projects images
into multiple learned feature spaces at different scales, providing feedback to the generator and
improving training stability and image quality. Kumari et al. [Kum+22] extend this idea by
ensembling representations from multiple feature extractors. Beyond GANs, diffusion models
[HJA20] have emerged as competitors for generative modeling. Here, Dhariwal and Nichol
[DN21] incorporate pretrained classification networks to class-condition the denoising process.

Approximation of FID and its Efficiency. Even though we improve efficiency of computing
FID by reformulating the matrix square root computation, applying FID as regularization during
training remains expensive. It requires not only passing large batches of generated images
through the backbone feature extractor, but also computing the covariance matrix of the extracted
features at each iteration, which itself is a costly operation. As a consequence, we were only
able to approximate FID as a training signal on at most 400 images each iteration, since GPU
memory restricts the batch size. This limits the scalability of FID as a regularizer, particularly
for higher-resolution image synthesis where large batch sizes are prohibitive. At the same
time, prior work has shown that FID estimates improve with larger sample sizes [CF20]. One
workaround could be to offload parts of the computation, such as covariance estimation, to the

5.5. CONCLUSION AND OUTLOOK 89

CPU. This, however, comes at the cost of significantly slower training. Future research could
investigate possibilities to improve computational efficiency of FID-based regularizer. Examples
could be online algorithms [Wel62] to compute necessary feature statistics, as well as gradient
accumulation [Lam21] to achieve larger effective batch sizes.

Benchmarking FID Alternatives for Human Perception. Since the publication of this chapter,
a number of alternative approaches to FID have been proposed [Alf+22; Kyn+23; Jaj+24; Luz+24;
Jay+24]. The main critique points covered by these approaches are either the backbone of
FID providing feature representations, or the assumption that representations are Gaussian
distributed made by the Wasserstein-2 distance underlying FID. Especially feature extractors
like CLIP [Rad+21] or adversarially [GSS15] trained networks seem promising as replacements
for Inception v3. In comparison, CLIP is trained on a substantially larger dataset and with a
different objective, namely the alignment of images with their corresponding text descriptions
(created by humans). It is argued that CLIP features are therefore more aligned with human
judgment [Zal+25]. Adversarially trained networks are also argued to learn features that are
more aligned with human perception [Tsi+19]. Unfortunately, none of the proposed alternatives
adequately address the aspect of human perception in a holistic way. While Jayasumana et al.
[Jay+24] use CLIP features and provide a human evaluation study, it is limited to comparing a
single model to an earlier checkpoint of itself.

Future research should take rankings provided by human annotators into account when
proposing an alternative to FID. Such considerations are already reflected in related metrics
comparing two images (rather than two image distributions). For example, Zhang et al. [Zha+18c]
train a perceptual similarity metric based on a dataset of human judgments. To collect this dataset,
they distort image patches twice and ask annotators which distorted version is closer to the
original patch. Similarly, Fu et al. [Fu+23] collect a dataset of human judgment about semantic
similarity of two images. For this, annotators had to choose between two images, deciding
which of the two is more similar to a reference image. We argue that the next most important
necessary step towards future work on an FID successor is to create a benchmark on which
possible candidates can demonstrate in which aspects they improve.

This page intentionally left blank.

Chapter 6

Spectral Distribution-Aware Image Synthesis
Contents of This Chapter

7.1 Introduction . 110

7.2 Discrete Latent Space Optimization . 112
7.2.1 Discrete Latent Variables . 112
7.2.2 Global Optimization in Discrete Latent Spaces . 112
7.2.3 Weighted Retraining . 113

7.3 Experiments . 113

7.4 Conclusion and Outlook . 116

Chapter Topic. This chapter is based on Jung and Keuper [JK21b]. It investigates spectral
distribution fidelity of generated images as an essential aspect of generalization in image syn-
thesis. For this, we extend learned regularization into the spectral domain by introducing an
additional discriminator network that extracts spectral features from images. With these features,
the network learns to distinguish synthesized images from their corresponding training data. By
providing an additional training signal for the generator network, it acts as a learned regular-
izer in the spectral domain. Experiments show that this approach substantially improves the
alignment of images in the spectral domain, while keeping similar image quality in the spatial
domain compared with unregularized models.

Chapter Outline. We introduce this chapter in Section 6.1. Then, we summarize related works
on image synthesis in Section 6.2, focusing on flaws in the generation process that materialize in
the spectral domain. In Section 6.3, we discuss properties of image generation in the spectral
domain by discussing the role of upsampling, analyzing spectral training data distributions, and
proposing a method to assess spectral fidelity of synthesized images. In Section 6.4 we introduce
our approach which learns to regularize in the spectral domain directly via an additional
discriminator network. We show experimental results comparing this approach to baselines in
Section 6.5, and conclude this chapter in Section 6.6.

91

92 CHAPTER 6. SPECTRAL DISTRIBUTION-AWARE

6.1 Introduction

IMAGE generation using Generative Adversarial Networks (GANs) has made substantial
progress in recent years. Especially the generation of photo-realistic images at high res-

olution has arrived at a level where it becomes hard for humans to distinguish between real
and generated images. While the training data distribution appears to be well learned in the
model’s latent space, it is surprising how reliably real and generated images can be distinguished
even when various cloaking techniques such as blurring or compression are applied [YDF19].
In recent works on the detection of generated images [Fra+20; DKK20] it was argued that this
effect, at least partially, is due to artifacts introduced during the generation process itself. In fact,
commonly used upsampling schemes seem to cause these artifacts which are mostly in the high
frequency domain and cannot be corrected by the network itself [Fra+20; DKK20; Bai+20]. Such
artifacts are undesired, not only because generated images can easily be identified as such, but
also because they might be perceivable, for example, as grid patterns on the generated images
(see Section D.1 in Appendix D).

Durall, Keuper, and Keuper [DKK20] propose a GAN regularization approach as a remedy.
They argue that a generator network, given a sufficient amount of convolutional layers, can
generate images with realistic frequency spectra if they are penalized for deviating from the
average frequency spectrum of the real images during training. Their proposed regularization
allowed to produce more realistic frequency spectra, however, the resulting spectra were still not
able to match the distribution of the real data.

In this chapter, we address this problem in a different way. Instead of introducing a regular-
ization term, we propose to use a second discriminator which directly acts on the power spectra
of real and generated images. This way, the generator network is not forced to produce images
with average power spectra as in Durall, Keuper, and Keuper [DKK20], but is enabled to learn
the distribution of frequency spectra from training data. Since the training of GANs is compu-
tationally expensive, we argue that an additional discriminator should be lightweight so that
diverse architectures can easily adopt it. We therefore base our discriminator on one-dimensional
(1D) projections of the frequency spectra instead of acting on the full two-dimensional data.
We show that the resulting model can be trained with different commonly used GAN losses
and evaluate its ability to fit the real images’ frequency spectra in terms of a proposed cloaking
score as well as in terms of the performance of frequency-based detection methods of generated
images [DKK20]. We make the following contributions:

• We propose to learn to generate images with a higher fidelity to the real images’ frequency
distribution by employing a discriminator that acts on the frequency spectra.

• The proposed discriminator is efficient and modular and can be trained stably with different
GAN losses.

• We propose a measure for the spectral distribution fidelity which allows to assess how well
generated images can be distinguished from real ones by their frequency spectra.

• We show in various experiments that the proposed approach enables generating images
with realistic frequency spectra and therein outperforms the recent method from Durall, Ke-
uper, and Keuper [DKK20] without sacrificing image quality in terms of Fréchet Inception
Distance (FID).

6.2. RELATED WORK 93

6.2 Related Work

Generative Adversarial Networks. Generative networks have recently been successful in a
wide range of applications, such as the generation of photo-realistic images at high resolution
[Kar+17; BDS19; KLA19; Kar+20b] to style transfer [Iso+17; Zhu+17a; Zhu+17b; Hua+18], and
more generally in image-to-image translation [Pat+16; ISI17; Zhu+17b; Cho+18; MCS19; KLA19]
and text-to-image translation [Ree+16; Dai+17a; Zha+17b; Zha+18b]. GANs [Goo+14] play a
crucial role in this context. They aim to approximate a latent-space model of the underlying data
distributions from training images in a zero-sum game between a generator and a discriminator
network. From this latent data distribution model, new samples can be generated by sampling.
Recent works towards improving GANs proposed different loss functions, regularizations, or
latent space constraints [Gul+17a; Mao+17; Gul+17a; Miy+18; MO14; DKD17; GSV17; DKK20;
BDS19; Kod+17] to improve training stability and aim at high image resolutions [Kar+20b].

Image Synthesis in the Frequency Domain. Generated images are hard to distinguish from
real images by the human eye. On the one end, automatically detecting generated images helps
to protect content authenticity in the context of deep fakes. On the other hand, it can help to
improve the generation process itself as it allows to find systematic mistakes currently made
by image generation networks. One such systematic mistake seems to be especially apparent
in the frequency spectra of generated images [Dur+20; Wan+20; Fra+20; Bai+20]. Surprisingly
high detection rates can be achieved by feeding the Fourier transform (or the discrete cosine
transform) of generated images into a deep network [ZKC19] (or simpler learning models such
as support vector machines [Dur+20] or ridge regression [Fra+20]). As analyzed, for example,
in Durall et al. [Dur+20] and Frank et al. [Fra+20], these systematic artifacts in the frequency
domain are an effect of the generation process itself, more precisely in the up-convolutions. In
Durall, Keuper, and Keuper [DKK20], a regularization approach acting on the frequency spectra
of generated images has been proposed, which supports the training process by penalizing
whenever a generated image’s spectrum deviates from the average spectrum of the real data.
Our approach is related to Durall, Keuper, and Keuper [DKK20]. However, we argue that a
pointwise regularization of all generated spectra w.r.t. the average spectrum of real images is
suboptimal since it does not properly allow to learn the data distribution. Instead, we propose to
use a discriminator on the power spectra in order to learn the generation of images according to
both, the distribution of the real data in spatial as well as in frequency domain.

6.3 Spectral Properties of Image Generation

Generative neural network architectures, like GANs, create high-dimensional outputs (such as
high-resolution images) from low-dimensional latent space samples. Therefore, they rely on
stepwise up-scaling mechanisms which successively increase the output resolution, followed by
convolutional layers. Such upsampling can be done for example using "bed of nails" [DV18],
nearest neighbor or bilinear interpolation, all of which have different effects on the properties
of the resulting upsampled feature map or image. The spectral properties of an image x can be
analyzed by its discrete Fourier transform as follows:

xF[k,ℓ] =
M−1

∑
m=0

N−1

∑
n=0

e−2πi·m·kM e−2πi· n·ℓN · x[m,n], (6.1)

for k = 0, . . . , M− 1, ℓ = 0, . . . , N − 1,

94 CHAPTER 6. SPECTRAL DISTRIBUTION-AWARE

which transforms a 2D image x into a 2D array xF of its spatial frequency components. During
upsampling, the frequency spectrum of an image is altered depending on the upsampling method.
While bilinear interpolation results in smooth images with few high frequency components, the
more commonly used "bed of nails" interpolation upsampling, which fills the missing values with
zeros, initializes the upsampled image (or feature map) with many high frequency components.
Durall, Keuper, and Keuper [DKK20] provide a theoretic analysis of the effect of upsampling
using bed of nails interpolation, which we summarize below.

6.3.1 Spectral Effects of Upsampling

For simplicity, Durall, Keuper, and Keuper [DKK20] consider in their analysis the case of one-
dimensional signals, which generalizes to higher dimensions. For a signal a the discrete Fourier
transform aF is given by

aFk =
N−1

∑
j=0

e−2πi· jk
N · aj, for k = 0, . . . , N − 1. (6.2)

Let á be the version of a that is upsampled by a factor of 2, then:

áFk̄ =
2·N−1

∑
j=0

e−2πi· jk̄
2·N · áj

=
N−1

∑
j=0

e−2πi· 2·jk̄2·N · aj +
N−1

∑
j=0

e−2πi· 2·(j+1)k̄
2·N · bj, (6.3)

for k̄ = 0, . . . , 2N − 1, where bj = 0 for "bed of nails" interpolation (and bj = aj for nearest
neighbor interpolation). The first term in Equation 6.3 is similar to the original Fourier Transform
while the second term is zero for bj = 0. It can be seen that when the spatial resolution is
increased by a factor of 2, the frequency axes are scaled by 1/2. From sampling theoretical
considerations [DKK20], it is

(6.3) =
2·N−1

∑
j=0

e−2πi· jk̄
2·N ·

∞

∑
t=−∞

áj · δ(j− 2t). (6.4)

The point-wise multiplication with the Dirac impulse comb removes exactly the values for which
á = 0. In order to apply the convolution theorem [Kat04], one has to assume a being a periodic
signal. Then, it is

áFk̄ =
1
2
·

∞

∑
t=−∞

(
∞

∑
j=−∞

e−2πi· jk̄
2·N áj

)(
k̄− t

2

)
(6.3)
=

1
2
·

∞

∑
t=−∞

(
∞

∑
j=−∞

e−2πi· jk̄
N · aj

)(
k̄− t

2

)
. (6.5)

Thus, the frequency spectrum áF will contain replica of the frequency spectrum of a. More
precisely, all frequencies beyond N/2 are upsampling artifacts which can only be removed if the
upsampled signal is smoothed appropriately.

In addition to these theoretic considerations, Durall, Keuper, and Keuper [DKK20] also show
practically that the correction of the resulting spectra is not possible with the commonly used
3× 3 convolutional filters.

6.3. SPECTRAL PROPERTIES OF IMAGE GENERATION 95

6.3.2 Analysis of Real Data Distribution

In order to analyze the distributions of real and generated images’ frequency spectra, we consider
an aggregate representation as in Durall, Keuper, and Keuper [DKK20]. Assuming square images,
we compute the magnitude of the 2D spectral frequencies and integrate over circles of constant
radius in the frequency domain to obtain a 1D profile of the power spectrum, commonly referred
to as the azimuthal integral:

AI(ωk) =
∫ 2π

0
∥xF (ωk · cos (ϕ) , ωk · sin(ϕ)) ∥2dϕ

for k = 0, . . . , M/2− 1 , (6.6)

where ωk denotes the radial spatial frequency. As pointed out in Durall, Keuper, and Keuper
[DKK20], this notation is abusive for discrete xF . In practice, the integral is implemented as
sum over interpolated values. Figure 6.1 (a) shows examples of real images from the Flickr-
Faces-HQ (FFHQ) [KLA19] dataset and their corresponding frequency profiles computed using
Equation 6.6.

From these examples, one can see that the frequency profiles of such images are diverse
and can vary substantially, especially in the high frequency regime. Figure 6.1 (b) shows the
average frequency profiles after clustering the images of FFHQ by the magnitude of their
highest frequency. The profiles can be well clustered into two groups just by looking at the
highest frequency, which indicates that the frequency distribution of the real data cannot be well
approximated by a uni-modal Gaussian distribution as done by Durall, Keuper, and Keuper
[DKK20]. Since the true distribution is unknown, we argue that a suitable way of generating
images with a higher spectral fidelity is to use a learned regularization approach. Our model
therefore contains an additional discriminator, taking as input the frequency profile of real and
generated images.

6.3.3 Evaluation in the Frequency Domain

In general, the evaluation of the quality of generated images by GANs is highly subjective.
Therefore, Heusel et al. [Heu+17] introduced FID to provide a method of comparing different
image generating models. Since its proposal, this quality measure is widely adopted as one of
the key indicators to proof the qualitative performance of GANs. At the time of its publication,
StyleGAN2 [Kar+20b] was the best performing model trained on the FFHQ dataset according to
FID. Subjectively, generated images by StyleGAN2 are hard to distinguish from real images. This
is reflected by a low FID score of 2.84± 0.03. However, recent advances in deep fake detection
[Dur+20; DKK20; Fra+20] showed that it is possible to recognize such images using frequency
domain representations. Figure 6.2 shows the averaged profiles of a real data distribution,
represented by FFHQ, and the corresponding images drawn from the learned distribution by
StyleGAN2. It is visible that the power spectrum is misaligned throughout most frequencies.
Images produced by StyleGAN2 contain high frequency components, which can be observed
by a rapid increase in the power spectrum of the last frequencies. Such behavior indicates the
presence of grid artifacts and high frequency noise. Thus, we argue that generated images
should not only be assessed by FID but also by their spectral distribution fidelity and propose a
supplementary metric to evaluate this alignment in the frequency domain.

96 CHAPTER 6. SPECTRAL DISTRIBUTION-AWARE

0 250 500 750
Frequency

0.0

0.5

1.0

P
o
w
e
r

0 250 500 750
Frequency

0.0

0.5

1.0

P
o
w
e
r

0 250 500 750
Frequency

0.0

0.5

1.0

P
o
w
e
r

(a) Example images from FFHQ with their respective frequency profiles.

0 100 200 300 400 500 600 700
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w

e
r

sp
e
ct

ru
m

FFHQ Cluster 1
FFHQ Cluster 2

720 721 722 723 724
0.00

0.05

0.10

0.15 zoomed region

(b) Clustering of FFHQ spectral profiles.

Figure 6.1: (a) The frequency profiles from the FFHQ images are diverse, suggesting that their
distribution is not uni-modal. (b) Average spectral profiles of the real data (FFHQ) after clustering
with k-means (k=2). In the highest frequencies, the profiles can be well separated in two clusters.

6.4. LEARNING TO REGULARIZE SPECTRAL DISTRIBUTIONS 97

0 100 200 300 400 500 600 700
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

P
o
w

e
r

sp
e
ct

ru
m

Average profile: StyleGAN2 (psi=1.0)

Figure 6.2: Average spectral profiles of real data (FFHQ) and data generated by Style-
GAN2 [Kar+20b]. High frequency components in the generated images indicate grid artifacts or
noise, which was not removed by the discriminator.

For this, we transform images into spectral profiles (Equation 6.6), and then train a logistic
regression on profiles given by all images taken from the real distribution, and a corresponding
number of generated images given by a model. We measure how close the model is to random
guessing via:

Cloaking Score = 1− 2 · |Accuracy− 0.5|. (6.7)

The Cloaking Score (CS) ranges in [0, 1], where a score of 1.0 indicates perfect spectral alignment,
and a score of 0.0 indicates that generated images can be linearly separated from real images in
the spectral domain. For the example in Figure 6.2, the CS is 0.042 after 1000 epochs, 0.022 after
10 000 epochs, and 0.018 after 40 000 training epochs. Since this evaluation method gives rise to a
trade-off between preciseness and runtime, we settled for 1000 epochs. In our experiments the
runtime for 140k 642-sized images is around 3 minutes when all images are read from disk. We
provide training details for the involved logistic regression in Section D.3 in Appendix D.

6.4 Learning to Regularize Spectral Distributions

Generative adversarial networks are trained in a minimax game between generator and discrimi-
nator networks, where the discriminator wants to recognize generated images and the generator
wants the discriminator to perform poorly, i.e. to generate images which the discriminator can
not tell apart from real ones, leading to objectives such as [Goo+14]:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log(D(x))] + Eh∼ph(h)[log (1− D(G(h)))].

Durall, Keuper, and Keuper [DKK20] propose to add a penalty term, a Spectral Regularization, to
the generator to reduce discrepancies between the real and generated spectral distributions. This
regularization is implemented as a cross entropy loss on the Equation 6.6 profiles of the generator

98 CHAPTER 6. SPECTRAL DISTRIBUTION-AWARE

Optimizer

Data

Discriminator Generator

Optimizer

DS DF DS DF

G

Optimizer

Azimuthal
Integration

Logistic
Regression

G

Fr
eq

ue
nc

y
D

is
cr

im
in

at
or

 (D
F)

Loss Loss Loss Loss

Figure 6.3: Training process of the proposed model. Losses are computed based on predictions
representing the realness score of the given image in the spatial domain (ŷDS) as well as the fre-
quency domain (ŷDF). Both spatial (DS) and frequency (DF) discriminators are trained separately
by individual optimizers. When training generator G, both resulting losses are averaged.

output, to minimize the difference of the generated images’ spectra to the mean spectrum of real
images. Hence, the generator tries to minimize this penalty by forcing each image to reflect the
same average profile. In our experiments, this leads to an unstable training progress resulting in
mode collapse (we discuss this later). As we have shown above in the example for FFHQ, the
real spectral distribution of a dataset is not necessarily a uni-modal Gaussian distribution around
the average profile. Instead, there are certain characteristics that the generator needs to be able to
learn. The regularizer by Durall, Keuper, and Keuper [DKK20] seems suboptimal in this respect.
Therefore, we argue that instead of learning one average profile, the generator should be taught
to generate images according to the real data distribution in spatial as well as in spectral domain.

We propose to use a second discriminator network (DF) for this purpose (see Figure 6.3).
While one could obviously consider to use full 2D power spectra and a convolutional archi-
tecture as in the original discriminator, we argue that an additional discriminator should be
as lightweight and modular as possible. The proposed frequency spectrum discriminator DF
takes as input real or generated images which then go through a spectral transformation layer
ψ that computes the magnitude of their Fourier transform. Afterwards, the azimuthal integral
(Equation 6.6) is computed, projecting the 2D spectrum onto a 1D vector. Then, we add a fully
connected layer with Sigmoid activation function, which is trained to discriminate between real
and generated images.

Such a simple discriminator can in principle be trained with any of the commonly used GAN
loss functions. To investigate the dependency of the discriminator performance on the employed

6.5. EXPERIMENTS 99

loss, we consider models with the commonly used loss functions in Table 6.1 and focus on simple
architectures (i.e. Deep Convolutional Generative Adversarial Network (DCGAN) [RMC15],
Least Squares Generative Adversarial Network (LSGAN) [Mao+17], Wasserstein Generative
Adversarial Network (WGAN) [ACB17], and Wasserstein Generative Adversarial Network with
Gradient Penalty (WGAN-GP) [Gul+17a]).

We train both the spatial (DS) and the frequency (DF) discriminators separately, applying the
same loss function (e.g. BCE in case of DCGAN). For training generator G, both resulting losses
are combined by averaging (see Figure 6.3). Additionally, we keep the proposed architectural
suggestions by Durall, Keuper, and Keuper [DKK20], namely increasing the kernel size of the
last upconvolutional layer to 8× 8, and adding an additional block of three 5× 5 convolutional
layers to the end of the generator network. This, as they argue empirically, is necessary to provide
the network with the capacity to "repair" the spectral artifacts.

Implementation Details. The memory consumption of the proposed discriminator depends on
the image width and height and, assuming square images where W = H, adds only ⌈W/

√
2⌉+ 1

parameters. We evaluate it with different architectures. DCGAN, LSGAN and WGAN-GP were
trained using Adam optimizer, for WGAN, we used RMSprop, with a learning rate of 0.0002
and a batch size of 128 for 500 epochs. In all cases, we apply the same loss function on both
discriminators.

Table 6.1: Investigated discriminator losses.

LDCGAN −Ex[log(D(x))] − Ex̂[log(1− D(x̂))]
LLSGAN −Ex[(D(x)− 1)2] + Ex̂[D(x̂)2]
LWGAN −Ex[D(x)] + Ex̂[D(x̂)]
LWGAN−GP LWGAN + λEx̂

[
(∥∇D(αx + (1− α)x̂)∥2 − 1)2]

6.5 Experiments

Experiments are conducted on the FFHQ dataset, which contains 70 000 high-quality face images
at 1024× 1024 resolution showing large variations in terms of age, ethnicity, and backgrounds.
From this dataset, we downsample three versions in resolution 64× 64, 128× 128, and 256× 256.
We evaluate all experiments on 10k examples in terms of FID and the proposed CS. If the
distribution of the real data is matched in both spatial and frequency domain, the resulting FID
should be low while CS should be high. Additionally, we report the sum of absolute differences
between the average profile of 10k generated images with the average profile of all real images,
denoted as Spectral Difference (SD). This measure is similar to the regularization in Durall,
Keuper, and Keuper [DKK20].

Architectural Adjustment. First, we validate the impact of adding additional convolutional
layers with filter sizes of 5× 5 as suggested by Durall, Keuper, and Keuper [DKK20] on DCGAN
and LSGAN (see Table 6.2). In both cases, the modification leads to an improved FID and a lower
spectral difference. Yet, the cloaking score is even lower than the one of the baseline approach,
indicating that the generated distributions are still linearly separable from their integrated
frequency spectra (Equation 6.6). This leads to two observations: First, increasing the amount

100 CHAPTER 6. SPECTRAL DISTRIBUTION-AWARE

of convolutions at the highest resolution can increase image quality of simple GAN methods.
Second, the conventional spatial discriminator does not provide the necessary signal to bring the
spectral distributions closer together. From these observations, we continue with the modified
networks to investigate whether the proposed spectral discriminator can provide the necessary
training signal, and is able to use the network capacity to assimilate the generated images’
frequency spectra to the real distribution.

Effect on Training Stability. We compare the training stability of the proposed method with
the one from Durall, Keuper, and Keuper [DKK20]. We show in Figure 6.4 (top) the FID over 500
training epochs for five training runs the model from Durall, Keuper, and Keuper [DKK20]. Two
out of five of these runs collapsed before reaching epoch 200. On the other hand, in Figure 6.4
(bottom), we show the same experiment for the proposed model, where not only the training
runs stably but also the resulting FID is lower.

Comparison of Loss Functions. To evaluate the proposed spectral discriminator DF in the
context of diverse losses, we train variants of DCGAN [RMC15], LSGAN [Mao+17], WGAN
[ACB17], and WGAN-GP [Gul+17a] with and without DF. While the modified DCGAN and
LSGAN models can generate images at up to 2562 pixel resolution, the training behavior of
the Wasserstein GANs becomes easily unstable. Thus, we only consider them until 1282 pixels
resolution. Additionally, to evaluate scalability to high resolutions, we finetune a pretrained
state-of-the-art model, StyleGAN2 [Kar+20b], with additional DF.

The resulting FID over the training epochs as well as the spectral differences are displayed in
Figure 6.5 (a) and Figure 6.5 (b), respectively. It can be seen that the proposed discriminator has
a relatively small impact on the FID during training while the spectral difference is substantially
reduced by our method. The effect on the spectrum can be assessed in Table 6.3 (left block) and
in Table 6.4. For all models and resolutions, the FID is on par with the plain version without
additional discriminator while the spectral difference is considerably decreased and the cloaking
score increased when DF is added. The spectral regularization proposed by Durall, Keuper, and
Keuper [DKK20] yields higher FID and lower cloaking score than the proposed approach.

Effect on Deep Fake Detection. In Table 6.3 (right block), we further evaluate the effect of
the proposed discriminator on the detectability of the generated images using recent methods
from Durall, Keuper, and Keuper [DKK20] and Wang et al. [Wan+20]. While Durall, Keuper,
and Keuper [DKK20] leverage the 1D spectra in a simple Support Vector Machine (SVM) or
Logistic Regression (LR) classifier and require retraining in every setting, Wang et al. [Wan+20]
train a CNN on generated images as a "universal" detector. We evaluate the method from Durall,
Keuper, and Keuper [DKK20] in two scenarios: First, in Table 6.3 (right block), indicated with
the asterix, we train on the data without spectral discriminator and evaluate in the transfer
setting. Second, we train separately for every setting. As can be seen, the detection is almost
random in the transfer setting for the approach by Durall, Keuper, and Keuper [DKK20] as well
as for our approach in all tested GAN settings and resolutions, while the generated images from
[DKK20] can still be detected with about 80% accuracy when a model is trained specifically on
this data. With respect to the universal detector by Wang et al. [Wan+20], both methods decrease
the detection accuracy substantially. This confirms that the removed frequency artifacts can be
perceived in the image domain and their removal is to be desired.

6.5. EXPERIMENTS 101

Table 6.2: Evaluation of the architectural change by Durall, Keuper, and Keuper [DKK20] on
the image generation quality for DCGAN and LSGAN at 642 pixel resolution. In both cases, the
changed upsampling and additional convolutional layers lead to an improved FID and Spectral
Difference (SD), while the Cloaking Score (CS) is low.

Model FID ↓ SD ↓ CS ↑
DCGANorig 17.749 1.510 0.35
DCGAN 15.257 1.293 0.16

LSGANorig 18.423 1.602 0.28
LSGAN 15.518 0.468 0.04

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

600

FI
D

Durall et al. (CVPR 2020)
Run 1
Run 2
Run 3
Run 4
Run 5

0 100 200 300 400 500
Epoch

0

100

200

300

400

500

600

FI
D

SpectralGAN
Run 1
Run 2
Run 3
Run 4
Run 5

Figure 6.4: Comparison of the training stability of Durall et al. (top) and our proposed method
(bottom). The training was run for 500 epochs on 642 resolutions using the DCGAN loss. Our
approach not only achieves lower FID values, but also results in more stable training runs.

102 CHAPTER 6. SPECTRAL DISTRIBUTION-AWARE

0 100 200 300 400 500
Epoch

0
100
200
300
400
500
600

FI
D

DCGAN
LSGAN
WGAN
DCGAN, Spectral
LSGAN, Spectral
WGAN, Spectral

0 100 200 300 400 500
Epoch

0
2
4
6
8

10

SD

DCGAN
LSGAN
WGAN
DCGAN, Spectral
LSGAN, Spectral
WGAN, Spectral

(a) Resulting FID scores are similar, and the
training is stable.

(b) Spectral differences are considerably re-
duced with the proposed discriminator DF.

Figure 6.5: FID and SD with our models trained on FFHQ64. Spectral indicates that DF was used,
and omitted otherwise.

Table 6.3: Evaluation of the proposed discriminator in terms of GAN quality measures and
generated image detection scores.

GAN Quality Detection Accuracy
Durall et al.∗ Durall et al. Wang et al.

Model FID ↓ SD ↓ CS ↑ SVM ↓ LR ↓ SVM ↓ LR ↓ ACC ↓

642

DCGAN 15.3 1.3 0.16 0.89 0.89 0.89 0.89 0.81
DCGAN (D) 29.9 0.3 0.25 0.51 0.49 0.79 0.82 0.67
DCGAN (S) 15.6 0.0 0.84 0.50 0.50 0.59 0.58 0.66

LSGAN 15.5 0.5 0.04 0.94 0.94 0.94 0.94 0.67
LSGAN (S) 15.5 0.0 0.86 0.51 0.50 0.55 0.56 0.64

WGAN 47.7 1.3 0.01 0.99 0.99 0.99 0.99 0.79
WGAN (S) 47.9 0.0 0.85 0.50 0.50 0.62 0.65 0.79

WGAN-GP 39.4 0.6 0.18 0.92 0.94 0.92 0.94 0.76
WGAN-GP (S) 39.4 0.3 0.54 0.51 0.51 0.75 0.76 0.65

1282

DCGAN 19.9 1.6 0.00 0.99 0.99 0.99 0.99 0.82
DCGAN (D) 41.9 0.4 0.08 0.51 0.51 0.98 0.98 0.87
DCGAN (S) 19.9 0.1 0.72 0.51 0.50 0.66 0.69 0.81

LSGAN 20.9 3.8 0.01 0.99 0.99 0.99 0.99 0.81
LSGAN (S) 19.0 0.1 0.76 0.50 0.50 0.82 0.83 0.80

WGAN 20.8 2.0 0.01 0.99 0.99 0.99 0.99 0.83
WGAN (S) 24.6 0.1 0.66 0.52 0.53 0.61 0.60 0.81

WGAN-GP 47.6 2.3 0.02 0.99 0.99 0.99 0.99 0.96
WGAN-GP (S) 42.7 0.3 0.38 0.50 0.50 0.82 0.83 0.62

2562

DCGAN 20.1 9.8 0.00 1.00 1.00 1.00 1.00 0.96
DCGAN (D) 29.8 0.8 0.01 0.50 0.50 1.00 0.99 0.99
DCGAN (S) 20.9 0.2 0.50 0.50 0.50 0.89 0.93 0.85

LSGAN 19.9 6.0 0.00 1.00 1.00 1.00 1.00 0.85
LSGAN (S) 19.9 0.2 0.46 0.50 0.50 0.77 0.82 0.72

6.5. EXPERIMENTS 103

0 10 20 30 40
Frequency

0

1
P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64 DCGAN 64 DCGAN Spectral

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64 LSGAN 64 LSGAN Spectral

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64 WGAN 64 WGAN Spectral

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64 WGAN-GP 64 WGAN-GP Spectral

0 200 400 600
Frequency

0

1

P
o
w
e
r Real

Fake

0 200 400 600
Frequency

0

1

P
o
w
e
r Real

Fake

StyleGAN2 StyleGAN2 Spectral

Figure 6.6: Resulting spectral profiles of experiments with our models trained on FFHQ64 and
StyleGAN2. Spectral indicates that DF was applied. With the spectral discriminator, the mean
and standard deviation of the spectral profiles fit almost perfectly.

104 CHAPTER 6. SPECTRAL DISTRIBUTION-AWARE

Table 6.4: Evaluation of the finetuned StyleGAN2.

GAN Quality
Size Model FID ↓ SD ↓ CS ↑

10242 StyleGAN2 2.73 32.25 0.09
StyleGAN2, Spectral 3.33 5.98 0.24

64 DCGAN 64 LSGAN 64 WGAN 64 WGAN-GP 128 DCGAN 128 LSGAN 128 WGAN 128 WGAN-GP

64 DCGAN 64 LSGAN 64 WGAN 64 WGAN-GP 128 DCGAN 128 LSGAN 128 WGAN 128 WGAN-GP

Figure 6.7: Mean absolute differences of 2D power spectra of real and generated images. (top
row) Differences for the original, unregularized models, and (bottom row) differences for the
models with spectral discriminator DF. While the differences of the original models follow a
characteristic pattern, our modified models show less specific differences and lower magnitudes.

Power Spectrum Visualizations. Figure 6.6 depicts a visualization of the resulting average
frequency profiles with our approach as an overlay on the average frequency of real images.
With the proposed discriminator, the average frequencies fit almost perfectly. Figure 6.7 shows
the average differences of real and generated 2D power spectra in log-space (compare the
visualization in Wang et al. [Wan+20]). It can be seen that all tested GANs show specific
differences. When the proposed discriminator, acting on the 1D projection of the spectra, is
employed, the differences become more diffuse and have lower magnitudes. This indicates that,
on average, the generated images have less perceivable sampling artifacts. In Section D.2 of
Appendix D we show a comparison to the method by Durall, Keuper, and Keuper [DKK20] in
terms of 2D differences, as well as 1D differences for higher resolutions. Additionally, we show
example images generated by our approach in Section D.4.

6.6 Conclusion and Outlook

Summary. In this chapter, we proposed an adversarial image generation approach that enables
to generate images with a substantially reduced amount of spectral artifacts. The proposed
method employs a simple discriminator on the 1D projections of frequency spectra of real and
generated images. Thus, the generator aims to match the real data distribution not only in the
image domain but also in the frequency domain. Our approach is very lightweight and allows
for a stable training, as we experimentally show for different loss functions and resolutions. It
generates images that can not easily be distinguished from real ones by frequency artifacts and
improves, in this respect, over the recent method by Durall, Keuper, and Keuper [DKK20].

6.6. CONCLUSION AND OUTLOOK 105

Effect of Architectural Design Choices. Durall et al. [Dur+20] suggest modifying the generator
network architecture by adding additional convolutional layers and using larger kernel sizes
to enable the network to better compensate for high-frequency components. We adopt these
architectural changes and focus on improving the training signal by incorporating input from
the frequency domain via a spectral discriminator. Schwarz, Liao, and Geiger [SLG21] show in
their follow-up work that different upsampling operations inherently bias the generator towards
specific spectral properties. In particular, nearest neighbor and bilinear upsampling tend to favor
the generation of limited high-frequency content, which can actually be advantageous when
working with natural images due to their typically exponential spectral decay. Conversely, zero
insertion and reshaping methods introduce a tendency towards checkerboard artifacts. They also
conclude that while the discriminator generally struggles with frequencies of low magnitude,
high frequencies are not inherently more difficult to detect. However, they find that none of the
convolutional-based discriminator architectures are able to provide artifact-free supervision in
their experiments. This suggests that further research improving spatial discriminators may be
necessary to eliminate the need for additional frequency-domain discriminators. Future research
could investigate this aspect, for example by employing aliasing-free downsampling operations
[Gra+22] in discriminator networks.

Spectral Properties of Diffusion Models. The suggested regularization in the spectral domain
facilitates the fidelity of generated images in the spectral domain, as it was also confirmed by
follow-up works [SLG21]. However, while providing a step into the right direction, it does not
solve the problem completely. This can be seen in Figure 6.1 and was also confirmed by Schwarz,
Liao, and Geiger [SLG21]. As argued earlier, one reason could be architectural biases. Since
GANs were mostly succeeded by diffusion models [HJA20; DN21; Rom+22] for image synthesis
in recent years, the question arises whether this model family inherently is more capable to
provide spectral fidelity. Works in the realm of detection of diffusion-generated images [Bam24;
Ric+24; Chu+25; Kar+25] hint towards the existence of spectral artifacts, whereas the specific type
of artifacts seem to depend on the model in question [Cor+23]. Additionally, Ricker et al. [Ric+24]
show that universal detectors, for example Wang et al. [Wan+20], trained on diffusion-generated
images can still detect GAN-generated images, but not the other way around. Hence, albeit
diffusion networks still contain artifacts, they are less prone than in GANs. However, generating
artifact-free images seems to be still an open problem and requires more research to provide
fidelity in the spectral domain.

1D vs. 2D Power Spectra. Our approach is focused on providing a lightweight method to
improve spectral fidelity. As such, reducing the power spectra to 1D profiles offers the advantage
of lowering computational overhead. However, this simplification likely leads to a loss of
information that may limit the effectiveness of the spectral discriminator. Hence, the next natural
step would be to extend our approach to the full 2D power spectrum to capture more detailed
spectral characteristics. Follow up work [SLG21] indicates that using the full Fourier transform
can indeed improve image fidelity, but scaling such methods to real-world scenarios remains
challenging, particularly due to the increased complexity and computational demands associated
with processing full 2D spectral information. Luo et al. [Luo+23] build on this idea by introducing
a ViT-based architecture that transforms image patches to their 2D spectrum instead of the full
image. This design enables the method to scale effectively to high-resolution images. They
show that this approach improves over the 1D approach in the context of super-resolution tasks.
However, this improvement comes at the cost of substantial increased computational complexity
and an increase in the number of model parameters.

This page intentionally left blank.

Part III

Judge:
Learning to Weight Data

to Regularize Generative Models

Chapter 7: Biasing Discrete Representations for Image Synthesis 109
Chapter 8: Biasing Generative Neural Architecture Search 119
Chapter 9: Data for Robust Neural Architecture Design 139

In former parts of this thesis, we regularize the output of representation learning-based
approaches either directly via penalty terms in Part I, or by matching extracted features between
synthesized and training data in Part II. In this final part, we investigate data-based regularization
approaches for generative models. For this, we augment the training data for a model with its
own output and retrain it in such a way that its behavior aligns with preferences that we specify
about the data. For this, each training data instance is judged by its importance, represented
by a score that we provide. In Chapter 7, we apply this regularization method to optimize the
representation space of discrete variational autoencoders. We demonstrate the effectiveness in
guiding image synthesis by providing scores for the smiling degree of face images. Chapter 8
presents a generative neural architecture search approach that optimizes image classification
architectures for multiple target attributes, like accuracy, hardware latency, and robustness to
adversarial and common perturbations. This is supported by a newly introduced robustness
dataset in Chapter 9.

107

This page intentionally left blank.

Chapter 7

Biasing Discrete Representations for Image
Synthesis
Contents of This Chapter

8.1 Introduction . 120

8.2 Related Work . 122

8.3 Architecture Generative Model . 123

8.4 Experiments . 125
8.4.1 Experiments on Tabular Benchmarks . 125
8.4.2 Experiments on Surrogate Benchmarks . 126
8.4.3 Experiments on Hardware-Aware Benchmark . 131
8.4.4 Ablation Studies . 133

8.5 Conclusion and Outlook . 137

Chapter Topic. This chapter is based on Jung et al. [Jun+23]. Here, we present a novel frame-
work to regularize discrete variational autoencoders by weighting their training data. This
method allows us to regularize the model by directly encoding preferences in terms of a score
that we assign to training data instances. We specifically investigate regularizing the discrete
representation space to synthesize images that conform to particular preferences. In particular,
we choose the degree of smiling in face images as a proxy task. By utilizing tree-based models
that are trained to predict the smiling degree, we can synthesize globally optimal training images.
Augmenting the training dataset with these samples and retraining the model optimizes the
representation space towards this attribute. We show that this data-driven regularization method
improves the smiling degree substantially over the course of retraining the model.

Chapter Outline. We introduce this chapter in Section 7.1. In Section 7.2, we detail our opti-
mization approach for discrete latent spaces. For this, we first summarize former work in discrete
latent models. Then, we describe how we make use of tree-based models for global optimal data
samples, and the weighted retraining strategy for latent space optimization. Experiments in
Section 7.3 demonstrate the effectiveness of this method, particularly in the image synthesis task
of generating face images with emphasis on their smiling degree. The chapter concludes with a
concise summary in Section 7.4.

109

110 CHAPTER 7. BIASING IMAGE SYNTHESIS

7.1 Introduction

MANY problems in science and engineering can be formulated as optimization of a costly-to-
evaluate black-box function over high-dimensional or structured input domains. Notable

examples are drug design, which typically requires expensive, time-consuming laboratory
experiments for evaluation, neural architecture search, where every potential network solution
with variable complexity must be trained and tested, or image synthesis, which can be framed as
a black-box optimization problem whose objective function is a human judgment.

In the last few years, Latent Space Optimization (LSO) has been established [Góm+18], which
tackles black-box optimization problems in a two-step procedure: First, a deep generative model
is trained on the input data, and second, standard optimization methods such as Bayesian
Optimization (BO) [Sha+16; BCF10] are used in the low-dimensional and continuous latent space
learned by the model. Despite great successes in application fields such as chemical design
[Góm+18; JBJ20] and automatic machine learning [Lu+18], LSO lacks in performance if the
training data of the model mainly consists of low-scoring points and the true global optimum
lies far away from this data [TDH20]. To address these weaknesses, Tripp, Daxberger, and
Hernández-Lobato [TDH20] have proposed a method to boost the efficiency and performance of
LSO by iteratively retraining an encoder-decoder-based model (e.g., a Variational Autoencoder
(VAE)) [KW14]) on data points queried along the optimization trajectory and weighting those
data points according to their objective value. This can be understood as an induced domain
shift of a generative model.

By building on Tripp, Daxberger, and Hernández-Lobato [TDH20], this chapter demonstrates
the applicability of such distribution shifts induced by weighted retraining on black-box op-
timization problems involving unstructured image data. In particular, we implement Tripp,
Daxberger, and Hernández-Lobato [TDH20] on a generative model involving a discrete latent
space, namely Vector Quantized Variational Autoencoder (VQ-VAE) [OVK17] which constitute
very powerful yet simple to train alternatives to VAEs. In contrast to VAEs, VQ-VAEs can gen-
erate images at high quality without overly smooth details. Classical black-box optimization
approaches such as BO are typically based on Gaussian processes [RW05] or neural networks
[Sno+15] and thus assume fully continuous input domains. To allow for targeted optimization
within the discrete latent space, this work transfers the LSO process from continuous to categori-
cal input domains by utilizing tree-based ensembles as surrogate objective model in the latent
space, encoding their predictions as mathematical optimization programs and solving those
programs deterministically using state-of-the-art global solvers, see Figure 7.1. As we show in
Section 7.3, the proposed framework improves results compared to continuous LSO via standard
VAEs, and generates high-quality images that have substantially higher objective function values
than the training data.

7.1. INTRODUCTION 111

Training data

Categorical
latents

Tree-based model training

Global Solver

MIO encoding

(a
) W

ei
gh

te
d

R
et

ra
in

in
g

of
 V

Q
-V

A
E

(b
) G

lo
ba

l O
pt

im
iz

at
io

n
in

 C
at

eg
or

ic
al

 L
at

en
t S

pa
ce

add to

training data

evaluate

ojective

add to latents

sample

restrict

MIO

determines

Figure 7.1: Proposed Framework. (a) The encoder and decoder of a VQ-VAE are initially
pretrained and periodically finetuned on weighted training data. Images are encoded in a
discrete latent space. (b) Optimization is performed in the categorical latent space: a tree-based
ensemble model is learned from the categorical latent training data representations {zi}, encoded
as a constrained mixed integer optimization problem, and globally solved to determine the next
(optimal) query point z∗ according to the black-box evaluation function f . This procedure
is repeated r times before the VQ-VAE is finetuned on the queried data points. For this, the
corresponding decoded images x∗ = fDec(f−1

CB (z
∗)) are added to the training data and the weight

for each training image is updated.

112 CHAPTER 7. BIASING IMAGE SYNTHESIS

7.2 Discrete Latent Space Optimization

Although learning representations with continuous variables has been the focus of many previous
works [Che+16a; DGF16; Vin+10], Oord, Vinyals, and Kavukcuoglu [OVK17] has demonstrated
that discrete representations learned by VQ-VAEs capture important features of the data with a
more natural fit for images. Thus, we provide a solution to transfer the LSO from continuous to
discrete latent spaces in order to leverage the expressiveness of VQ-VAEs to generate high-scoring
images with good quality. Then, we apply weighted retraining [TDH20] to induce a distribution
shift in the generator distribution. These two steps can be alternated until convergence to train
generators with desired target distributions.

7.2.1 Discrete Latent Variables

Here, we first recap the VQ-VAE model [OVK17] introduced in Subsection 2.2.3. The full VQ-VAE
model consists of a discrete latent codebook {ek}K

k=1, an encoder fEnc, and a decoder fDec, where
each codebook representation vector ek ∈ Rd is a learnable embedding and K is the total number
of vectors. The shared codebook and encoder enable each input image x ∈ RH×W×D to be
represented as a grid z ∈ {1, . . . , K}h×w of discrete latent variables. These are obtained via vector
quantization from the encoder output ĥ = fEnc(x) ∈ Rh×w×d:

z[i,j] = arg min
k∈{1,...,K}

∥ĥ[i,j] − ek∥2
2,

where [i, j] refers to the spatial location in the latent feature map. Here, H ×W and h× w denote
the spatial dimensions of the input image and the latent feature map, respectively. For the
decoder, each latent variable is replaced with the latent representation from the codebook given
the corresponding codebook entry. The decoder then reconstructs an image via:

x̂ = fDec(h) with h[i,j] = ez[i,j] .

7.2.2 Global Optimization in Discrete Latent Spaces

Our method performs optimization in the categorical latent space of a VQ-VAE, which is
pretrained on some input dataset D. To this end, a latent objective model fobj(·) is con-
structed to approximate the black-box function f (·) at the output of the decoder fDec(·), i.e.
fobj(z) ≈ f (fDec(z)) for all z ∈ {1, . . . , K}h×w. Objective model fobj can be trained by using the
encoder fEnc and the learned codebook fCB, which together map every f -evaluated input image
x to a corresponding categorical latent representation z = fCB(fEnc(x)).

When dealing with categorical feature spaces, tree-based ensemble models like random
forests [Bre01] or gradient-boosting trees [Fri01] are popular choices for fobj, since they naturally
support various data types. Thus, we train a decision tree ensemble model to predict the objective
value of a given image sample from its discrete latent representation. Interestingly, Thebelt et al.
[The+21] propose an intricate approach that allows to encode the trained tree-based model with
a Mixed-Integer Optimization (MIO) formulation, which allows the optimization of the discrete
latent code w.r.t. the objective value, the tree-based model has been trained to predict. Please
refer to Thebelt et al. [The+21] for the theoretical proof. By solving the resulting MIO program
deterministically using a global solver [Kra88], fobj can be optimized to determine the next latent
query point z∗.

7.3. EXPERIMENTS 113

During latent optimization, the solution z∗ has to be restricted to stay sufficiently close to
latent representations of the training data. Otherwise, without any constraints on the latent
variables, the decoded version x∗ = fDec(z∗) of the query point z∗ most likely has bad quality.
This happens because values of those latent variables not having an impact on image regions
that determine the objective function value can be chosen arbitrarily in the optimization process,
which may lead to highly distorted image features. We address this problem as follows: First, a
single training sample xr is randomly drawn and mapped to its latent representation zr. Second,
only those t ∈ N latent variables having the highest feature importance under the trained
tree-based model are free to be globally optimized, while the remaining h · w − t variables
are fixed to the respective entries of zr. Taking into account the optimization result z∗ and
function f−1

CB (·) mapping from categorical variables to codebook representations, we can collect
the corresponding objective function evaluation f (x∗) of its decoded version x∗ = fDec(f−1

CB (z
∗)).

Then, fobj is refit after every iteration. We provide an ablation study on the number of free latent
variables in Section 7.3.

7.2.3 Weighted Retraining

Subsection 7.2.2 introduces a technique to perform LSO in discrete latent spaces. However, as
identified in Tripp, Daxberger, and Hernández-Lobato [TDH20], the underlying model does not
necessarily learn a latent space that is amenable to efficient optimization of the objective function,
especially in cases where the global optimum is far away from the training data. To resolve this
issue, we follow Tripp, Daxberger, and Hernández-Lobato [TDH20] and weight the training
data points {xi}N

i=1 according to their objective values { f (xi)}N
i=1: The higher a value f (x) is, the

more probability mass the training distribution should place on the corresponding input point x.
This weighting scheme requires assigning a weight ωi ∈ R with ∑N

i=1 ωi = 1. In this work, we
adopt the rank-based function from Tripp, Daxberger, and Hernández-Lobato [TDH20].

To propagate information on new points acquired during the iterative LSO process to the
VQ-VAE, where it could potentially help to uncover new promising regions that an optimization
algorithm can exploit, the VQ-VAE is periodically finetuned after every r ∈N LSO iterations.

7.3 Experiments

Here, we provide an empirical evaluation of the proposed discrete LSO with weighted retraining,
as introduced in Section 7.2. First, we define a challenging optimization task using the face
dataset CelebA [Liu+15]. Based on this image synthesis task, we evaluate the ability of our model
to compete with continuous LSO via standard VAEs [TDH20].

Optimization Task. We employ 64× 64 resolution face images from CelebA (see Section E.1
in Appendix E for further details) for an image synthesis task which can be viewed as black-box
optimization problem. Our goal is to generate smiling faces by optimizing for the respective
attribute degree in the space of colored 64× 64 face images. To represent the smiling attribute on
a continuous scale, we make use of the extended CelebA-Dialog dataset [Jia+21], which includes
fine-grained labels for five selected CelebA attributes that cannot be accurately described by
binary labels. In particular, the smiling attribute is divided into six levels (0− 5) that describe the
degree in ascending order. For unseen face images, we estimate the degree of smiling by using
a probability-weighted average f̂smile : R64×64×3 → [0, 5] of class predictions coming from the
ResNet-50 [He+16] classifier used in the official implementation of Jiang et al. [Jia+21], which is
pretrained on CelebA-Dialog.

114 CHAPTER 7. BIASING IMAGE SYNTHESIS

Table 7.1: Ablation study results. Top10 and Top50 scores are reported as mean final score ± one
standard deviation after reaching the query budget of 500.

t FID Top10 Top50

4 42.69 2.72± 0.07 2.42± 0.04
8 41.69 2.85± 0.07 2.50± 0.05

16 43.70 2.88± 0.06 2.58± 0.02

We discard points with high objective values from the training data to make the problem
more challenging and to represent the situation where the optimum (degree 5) lies far outside
the training distribution. Specifically, only images with a smiling degree ≤ 2 are kept in the training
set.

Implementation Details. Throughout this work, we assume a query budget of 500 and
a retrain frequency of r = 5. For the underlying VQ-VAE, we use the Convolutional Neural
Network (CNN) encoder-decoder architecture as in Oord, Vinyals, and Kavukcuoglu [OVK17]
(see Section E.2 for further details). We assume a discrete latent space of size 8× 8 (64 latent
variables in total). Moreover, we consider K = 256 embedding vectors with a dimensionality
of D = 64 each. The tree-based model fobj is chosen to be an ensemble of 800 gradient-boosted
regression tree and an interaction depth of 2, following Thebelt et al. [The+21]. The minimum
number of samples in one leaf equals 20, and the maximum number of leaves per tree is set to 5.

Continuous LSO with VAEs is implemented by employing a neural network as latent objective
model, as done by Snoek et al. [Sno+15] (see Section E.3 for further details). Motivated by Ghosh
et al. [Gho+20], local optimization in the continuous latent space is constrained using ex-post
density estimation via Gaussian Mixture Models, and new query points are restricted to stay
sufficiently close to the estimated distribution. Optimization is performed using the SLSQP
algorithm [Kra88].

Evaluation Metrics. Following common practice for BO [Sha+16; TDH20], we show the
worst of the 10 and 50 best novel smiling degree predictions obtained up until query m =
1, . . . , 500, which is denoted as Top10 and Top50 score function, respectively. To ensure statistical
significance, the mean ± one standard deviation across 20 runs with different random seeds is
reported. Furthermore, we use Fréchet Inception Distance (FID) scores [Heu+17] as quantitative
assessment of the quality of generated images. Since our goal is to find faces that have a higher
smiling degree than the best point in the training data, we compute FID scores between all 10 000
generated images from the 20 runs and the subset of CelebA faces having a smiling degree
between 3 and 5.

Ablation Study on the Number of Free Variables. First, we measure the impact of the number
t of free LSO variables on the performance of our proposed method. For this purpose, we test
4, 8, and 16 free variables for 20 optimization runs each. FID scores as well as final Top10 and
Top50 scores after 500 optimization iterations are reported in Table 7.1. As we can observe,
selecting t = 8 appears to offer an optimal trade-off: While generated faces have substantially
lower quality if t is increased (comparing FID values of 41.69 vs. 43.70), a reduction of t leads
to lower smiling degrees (according to Top10: 2.85 vs. 2.72). Hence, we set t = 8 for all further
experiments.

Results on Smiling Face Synthesis. Figure 7.2 presents quantitative comparison between
our approach and continuous LSO via standard VAEs. Corresponding visual results are shown
in Figure 7.3. Even if weighted retraining is applied, the Top50 scores resulting from LSO with

7.3. EXPERIMENTS 115

Figure 7.2: Quantitative comparison between discrete and continuous LSO variants: VQ-VAE
with weighted retraining (green), VQ-VAE without weighted retraining (red), and VAE with
weighted retraining (yellow). Evaluation metrics: (top) Top50 score function, where the blue
dashed line depicts the best smiling degree in the training data. VQ-VAE as well as weighted
retraining improve the degree of smiling substantially. (bottom) Fréchet Inception Distance (FID)
scores, where the dashed lines show the respective scores of testing against the subset of CelebA
images having an unseen smiling degree (3− 5), and the markers show testing against each
training data subset with the corresponding unseen smiling degree (3, 4, and 5; background
images depict training data samples for these smiling degrees). In all cases, VQ-VAE with
weighted retraining achieves the best result.

116 CHAPTER 7. BIASING IMAGE SYNTHESIS

Figure 7.3: In contrast to previous LSO approaches (middle), our proposed method is able to
synthesize smiling faces with high quality and less artifacts (bottom). Furthermore, the generated
images have a substantially higher degree of smiling compared to the best points in the restricted
training dataset (top, restricted to smiling degree ≤ 2) that was used to train the models. LSO
is performed to maximize smiling degree, and FID to the target distribution (unseen smiling
degrees 3− 5) improves from 50.51 to 41.69.

VAEs are strictly below the value 2.0 that corresponds to the best training images (mean final
score: 1.70). Even without weighted retraining of the VQ-VAE, our method outperforms VAEs
by a large margin (mean final score: 2.42). Weighted retraining further improves the final Top50
score from 2.42 to 2.50 on average.

Moreover, the FID results show that our method successfully leverages the expressiveness of
VQ-VAEs to generate images with higher quality compared to standard VAEs. The FID score
can be decreased by 21%, from 50.51 to 41.69. Again, weighted retraining hereby has a positive
effect and leads to a substantial improvement of 5%. In addition, we tested against three separate
subsets containing all images having a smiling degree of 3, 4, and 5, respectively, to detect
potential biases among the generated faces. However, for all considered LSO variants, the results
are as expected: higher smiling degrees in the target distribution lead to higher FID scores.
Overall, the level of FID scores is relatively high, which can likely be attributed to the following
reason: the target distribution (degrees 3− 5) is different from the distribution the VQ-VAE is
pretrained on (degrees 0− 2), which prevents direct comparison to other generative models that
are explicitly designed and trained to generate samples that resemble the given training data.

7.4 Conclusion and Outlook

We propose a method for efficient black-box optimization in the discrete latent space of VQ-VAEs,
which combines (i) choosing a tree-based ensemble as latent objective model, (ii) encoding its
predictions as an MIO problem that is solved globally to determine the next query point and (iii)
iteratively finetuning the underlying VQ-VAE on weighted data. With the challenging task of
generating smiling faces that are not contained in the training distribution, we demonstrate that
our method notably outperforms continuous LSO with VAEs in terms of both image quality and
optimization of the objective function. To the best of our knowledge, this is the first work that
successfully applies LSO in discrete latent spaces on image synthesis tasks.

Scalability. Our experiments are performed on 642 resolution images. This has the welcome
property that the discrete latent space of the VQ-VAE trained on this resolution is quite small
having 64 latent variables (see Section E.2). Likewise, the continuous latent space optimization

7.4. CONCLUSION AND OUTLOOK 117

with the VAE was also performed on 64 variables (see Section E.3). In comparison, stable
diffusion-based networks [Rom+22] have 4k variables, modern successors even 16k [Ess+24]. We
can rightfully assume that scaling the global optimization methods of selecting the next best
latent point up to these large number of variables becomes infeasible. Future research could
investigate how to mitigate this problem, for example by compressing the latent space further.
Another idea could be to facilitate the learned predictor to identify which variables are most
informative for the property to be optimized for. This could be done by fitting decision trees or
linear models, or via interpretability methods in the case of neural networks.

Predictor Performance. One requirement for the method in this chapter to work is a well-
performing predictor. For this we either need a pretrained predictor, or ground truth data to
train a predictor on. In either case, the whole method relies (i) on the fact that the predictor has
learned which attribute we want to optimize for, and (ii) that the predictors performs well. If
this is not the case, because we cannot know how well the predictor performs (if we have no
ground truth data), or the ground truth data is noisy, then our assumption about the property
we want to encode and the property the predictor infers may not be aligned. This is especially
pronounced in tasks where the property is hardly measurable and subjective (as for example
with smiling degrees). This can have unexpected consequences, as the differences in results
might be subtle. In essence, we have no guarantee that the model is optimized for what we
expect. Future research could elaborate on this limitation, for example by considering calibrated
methods [Guo+17] as predictors that provide confidence levels with their predictions. With these
methods it would be possible to also incorporate the predictor’s confidence into the weighting of
training data, and thus mitigate some of the risk.

This page intentionally left blank.

Chapter 8

Biasing Generative Neural Architecture Search
Contents of This Chapter

9.1 Introduction . 140

9.2 Related Work . 141

9.3 Dataset Generation . 142
9.3.1 Architectures in NAS-Bench-201 . 142
9.3.2 Robustness to Adversarial Attacks . 143
9.3.3 Robustness to Common Corruptions . 146

9.4 Dataset Use Cases . 146
9.4.1 Training-Free Measurements for Robustness . 146
9.4.2 NAS on Robustness . 149
9.4.3 Effect of Architecture Design on Robustness . 153

9.5 Conclusion and Outlook . 153

Chapter Topic. This chapter is based on Lukasik*, Jung*, and Keuper [LJK22]. Here, we
develop a generative approach for neural architecture search. For this, we utilize a graph neural
network-based generator that learns representations over possible neural architectures. In a
similar way as in Chapter 7, we regularize this representation space towards desired target
properties of neural architectures via retraining of the generator on its own output during the
search process. Architectures that are proposed by the model are trained and evaluated on a
target task. The model is then regularized by assigning importance scores to training instances
based on these results. Accuracy on image classification is the common optimization goal in
existing neural architecture search benchmarks, and we outperform several other methods on
multiple benchmarks when optimizing for only this property. Additionally, our approach is
able to optimize for multiple desired properties by combining multiple scores. In particular, we
combine scores for accuracy with hardware efficiency. In this multiobjective setting, we show
the effectiveness of regularizing architecture representations in the proposed data-driven way.

Chapter Outline. We introduce this chapter in Section 8.1, and summarize related work about
neural architecture search and generative graph neural networks in Section 8.2. Then, we describe
our proposed graph generative search process and the regularization method in Section 8.3. Ex-
perimental results on several neural architecture search benchmarks are presented in Section 8.4.
Lastly, we conclude this chapter in Section 8.5.

119

120 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

8.1 Introduction

THE first image classification network [KSH12] applied to the large-scale visual recognition
challenge ImageNet [Den+09] achieved unprecedented results. Since then, the main driver

of improvement on this challenge are new architecture designs [SZ15; Sze+15; Sze+16; He+16]
that ultimately lead to architectures surpassing human performance [He+15]. Since manual
architecture design requires good intuition and a huge amount of trial-and-error, the automated
approach of Neural Architecture Search (NAS) receives growing interest [Rea+17; Zop+18;
Yin+19b; DY20; Kly+22; Li+21]. Well-performing architectures can be found by applying common
search practices like random search [BB12], evolutionary search [Rea+17; Rea+19], Bayesian
Optimization (BO) [Kan+18; Ru+21; WNS21a], or local search [WNS21b] on discrete architecture
search spaces, such as NAS-Bench-101, NAS-Bench-201, DARTS and NAS-Bench-NLP [Yin+19b;
DY20; LSY19; Kly+22]. However, these methods are inefficient because they require to evaluate
thousands of architectures, resulting in impracticable search times. Recent approaches avoid
this problem by training surrogate models to approximate the performance of an architecture
[LSY19; CZH19] or by generating architectures based on learned architecture representation
spaces [Zha+19; Luk+21]. Improving query efficiency is crucial in NAS, since every query implies
a full training and evaluation of the neural architecture on the target dataset.

This trade-off between query efficiency and resulting high-scoring architectures is an active
research field. Yet, no attempts were made so far to leverage the advantages of both search
paradigms. Therefore, we propose a model that incorporates the focus of promising architectures
already in the architecture generation process by optimizing the latent space directly: We let
the generator learn in which areas of the data distribution to look for promising architectures.
This way, we reduce the query amount even further, resulting in a query efficient and very
effective NAS method. Our proposed method is inspired by a Latent Space Optimization (LSO)
technique [TDH20], originally used in the context of variational autoencoders [KW14] to optimize
generated images or arithmetic expressions using BO. We adapt this concept to NAS and pair it
with an architecture performance predictor in an end-to-end learning setting, so that it allows
us to iteratively reshape the architecture representation space. Thereby, we promote desired
properties of generated architectures in a highly query-efficient way, i.e. by learning expert
generators for promising architectures. Since we couple the generation process with a surrogate
model to predict desired properties (such as high accuracy or low latency), there is no need in
our method for BO in the generator’s latent space, making our method more efficient.

In practice, we pretrain, on a target space of neural architectures, a Graph Neural Network
(GNN)-based generator network, which does not rely on any architecture evaluation and is
therefore fast and query-free. The generator is trained in a novel generative setting that directly
compares generated architectures to randomly sampled architectures using a reconstruction loss
without the need of a discriminator network as in Generative Adversarial Networks (GANs)
[Goo+14] or an encoder as in Variational Autoencoders (VAEs) [KW14]. We use an MLP as a
surrogate to rank performances and hardware properties of generated architectures. In contrast,
previous generative methods either rely on training and evaluating supernets [HC21], which
are expensive to train and dataset specific, or pretrain a latent space and search within this
space directly using BO [Zha+19; Yan+20; Luk+21], Reinforcement Learning (RL) [Rez+21] or
gradient based methods [Luo+18]. These methods incorporate either GANs, which can be hard
to train or VAEs, which are biased by the regularization, whereas our plain generative model
is easy to train. In addition we enable backpropagation from the performance predictor to the
generator. Thereby, the generator can efficiently learn which part of the architecture search space
is promising with only few evaluated architectures.

8.1. INTRODUCTION 121

Generate

Evaluated
Data

Predict

top k

evaluate &
collect

weighted
retraining

in

3x31x1

out

(a) Proposed search method.

0.0 0.5 1.0
Val. Acc.

evaluated: 0
= 0.839

max = 0.942

0.0 0.5 1.0
Val. Acc.

evaluated: 16
= 0.932

max = 0.946

0.0 0.5 1.0
Val. Acc.

evaluated: 48
= 0.934

max = 0.949

(b) Architecture accuracy covering the representation space.

Figure 8.1: (a) Our search method generates architectures from points in an architecture repre-
sentation space that is iteratively optimized. (b) The architecture representation space is biased
towards better-performing architectures with each search iteration. After only 48 evaluated ar-
chitectures, our generator produces state-of-the-art performing architectures on NAS-Bench-101.

By extensive experiments on common NAS benchmarks [Yin+19b; DY20; Zel+22; Kly+22;
Li+21] as well as ImageNet [Den+09], we show that our method is effective and sample-efficient.
It reinforces the generator network to produce architectures with improving validation accuracy
(see Figure 8.1), as well as in improving on hardware-dependent latency constraints (see Fig-
ure 8.7) while keeping the number of architecture evaluations small. In summary, we make the
following contributions:

• We propose a simple model that learns to focus on promising regions of the architecture
space. It can thus learn to generate high-scoring architectures from only a few queries.

• We learn architecture representation spaces via a novel generative design that is able to
generate architectures stochastically while being trained with a simple reconstruction loss.
Unlike VAEs [KW14] or GANs [Goo+14], no encoder network nor discriminator network
is necessary.

• Our model allows sample-efficient search and achieves state-of-the-art results on several
NAS benchmarks as well as on ImageNet. It allows joint optimization w.r.t. hardware
properties in a straightforward way.

122 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

8.2 Related Work

Neural Architecture Search. Intrinsically, NAS is a discrete optimization problem seeking
the optimal configuration of operations (such as convolutions, poolings, and skip connections)
in a constrained search space of computational graphs. To enable benchmarking within the
NAS community, different search spaces have been proposed. The tabular benchmarks NAS-
Bench-101 [Yin+19b] and NAS-Bench-201 [DY20] provide both an exhaustive covering of metrics
and performances. NAS-Bench-NLP [Kly+22] provides a search space for natural language
processing. In addition to tabular benchmarks, NAS-Bench-301 [Zel+22] is a surrogate benchmark
that allows for fast evaluation of NAS methods on the DARTS [LSY19] search space by querying
the validation accuracy. NAS-Bench-x11 [Yan+21] is another surrogate benchmark providing full
training information for each architecture in all four mentioned benchmarks. NAS-Bench-Suite
[Meh+22] facilitates reproducible search on these NAS benchmarks.

Early NAS approaches are based on discrete encodings of search spaces, such as in the form
of adjacency matrices, and can be distinguished by their search strategy. Examples are random
search [BB12; LT19], RL [ZL17; Li+18b], evolutionary methods [Rea+17; Rea+19], local search
[WNS21b], and BO [Kan+18; Ru+21]. Recent NAS methods shift from discrete optimization
to faster weight-sharing approaches, resulting in differentiable optimization methods [Pha+18;
LSY19; Ben+18; CZH19; Xie+19b; Zel+20]. Several approaches map the discrete search space into
a continuous architecture representation space [Luo+18; Zha+19; Yan+20; Luk+21] and search or
optimize within this space using, for example, BO (e.g. Yan et al. [Yan+20]) or gradient-based
point operation [Luo+18]. In this chapter, we also learn continuous architecture representation
spaces. However, in contrast to former works, we propose to optimize the representation space,
instead of performing point optimization within a fixed space such as e.g. Luo et al. [Luo+18]. A
survey of different strategies can be found in Elsken, Metzen, and Hutter [EMH19].

All NAS approaches are dependent on performance estimation of intermediate architectures. To
avoid the computation heavy training and evaluation of queries on the target dataset, methods
to approximate the performance have been explored [Whi+21]. Common approaches include
neural predictors that take path encodings [WNS21a] or graph embeddings learned by GNNs
[Shi+20; Wen+20] as input. WeakNAS [Wu+21] proposes to progressively evaluate the search
space towards finding high-performing architectures using a set of weak predictors. In our
method, we integrate a weak expert predictor with a generator to yield an efficient interplay
between predicting for high-performing architectures and generating them.

Graph Generative Models. Most graph generation models in NAS employ VAEs [KW14]. Luo
et al. [Luo+18] uses an LSTM-based VAE, coupled with performance prediction for gradient-
based architecture optimization. Note that Luo et al. [Luo+18] optimizes the latent point in a
fixed latent space while our approach optimizes the latent space itself. Zhang et al. [Zha+19]
use GNNs with asynchronous message-passing to train a VAE for BO. Huang and Chu [HC21]
combines a generator with a supernet and searches for neural architectures for different device
information. Yan et al. [Yan+20] facilitates Xu et al. [Xu+19] with an MLP decoder. Lukasik et al.
[Luk+21] proposes Smooth Variational Graph embeddings (SVGe) using two-sided GNNs to
capture the information flow within a neural architecture.

Our proposed model’s generator is inspired by SVGe with the aim to inherit its flexible
applicability to various search spaces. Yet, similar to Yan et al. [Yan+20], due to the intrinsic dis-
cretization and training setting, SVGe does not allow for backpropagation. Recently, Rezaei et al.
[Rez+21] facilitates GNNs in a GAN [Goo+14] setting, where the backpropagation issue is cir-
cumvented using reinforcement learning. In contrast, our proposed GNN generator circumvents

8.3. ARCHITECTURE GENERATIVE MODEL 123

in

GNN

MLP

GNN

in

1x1

in

3x31x1

out

MLP

in

1x1

out

in

1x1

out

Generator Search Space

Sampler

Architecture

Representation

Space

Figure 8.2: Representation of the training procedure for our generator in Architecture Generative
Network (AG-Net). The input is a randomly sampled latent vector h ∈ Rd. First, the input
node is generated, initialized and input to a GNN to generate a partial graph representation.
The learning process iteratively generates node scores and edge scores using h and the partial
graph representation until the output node is generated. The target for this generated graph is a
randomly sampled architecture.

the intermediate architecture discretization and can therefore be trained by a single reconstruc-
tion loss using backpropagation. Its iterative optimization is inspired by Tripp, Daxberger, and
Hernández-Lobato [TDH20], who proposes to use a VAE with weighted retraining w.r.t. a target
function to adapt the latent space for the optimization of images and arithmetic functions using
BO. Our model transfers the idea of weighted retraining to NAS. It uses our plain generator and
improves sample efficiency by employing a differentiable surrogate model on the target function
such that, in contrast to Tripp, Daxberger, and Hernández-Lobato [TDH20], no further black-box
optimization step is needed. Next, we describe the proposed generator network.

8.3 Architecture Generative Model

Preliminaries. We aim to generate neural networks represented as Directed Acyclic Graphs
(DAGs). This representation is in line with the cell-based architecture search spaces commonly
used as tabular benchmarks [Yin+19b; DY20]. Each cell is a DAG denoted by G = (V, E) with
nodes v ∈ V and edges e ∈ E. The graph representations differ between the various benchmarks
in terms of their labeling of operations. For example, in NAS-Bench-101 [Yin+19b] each node is
associated with an operation, whereas in NAS-Bench-201 [DY20] each edge is associated with an
operation.

Generative Network. Commonly used graph generative networks are based on VAEs [KW14].
In contrast, our proposed network is a purely generative network, pG (see Figure 8.2). To generate
valid graphs, we build our model similar to the graph decoder from the VAE approach SVGe
[Luk+21]. The generator takes a randomly sampled variable h ∼ N (0, 1) as input and recon-
structs a randomly sampled graph from the cell-based search space. The model iteratively builds
the graph: it starts with generating the input node v0, followed by adding subsequent nodes vi
and their labels and connecting them with edges ej,i, j < i, until the end node vT with the label

124 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

output is generated. Additionally, we want to learn a surrogate for performance prediction on
the generated data and allow for end-to-end training of both. To allow for backpropagation, we
need to adapt several details of the generator model. We initialize the node-attributes for each
node by one-hot encoded vectors, which are initialized during training using an MLP with two
layers to replace the learnable look-up table proposed in SVGe. The output of our generator
is a vector graph representation consisting of a concatenation of generated node scores and
edge scores. It is important to note that the iterative generation process is independent of the
ground truth data, which are only used as a target for the reconstruction loss. Note that the
end-to-end trainability of the proposed generator is a prerequisite for our model: It allows to
pair the generator with a learnable performance predictor such that information on the expected
architectures’ accuracy can be learned by the generator. This enables a stronger coupling with the
predictor’s target for the generation process and higher query efficiency (see Subsection 8.4.4). In
contrast, previous models such as Huang and Chu [HC21], Lukasik et al. [Luk+21], and Yan et al.
[Yan+20] are not fully differentiable and do not allow such optimization. Our generative model
is pretrained on the task of reconstructing neural architectures, where for each randomly drawn
latent space sample, we evaluate the reconstruction loss to a randomly drawn architecture. This
simple procedure is facilitated by the heavily constrained search spaces of neural architectures,
making it easy for the model to learn to generate valid architectures without being supported
by a discriminator model as in GANs [Goo+14]. An evaluation of the generation ability of our
model and its implementation details are provided in Section F.4 of Appendix F.

Performance Predictor. This generative model is coupled with a simple surrogate model, a
4-layer MLP with ReLU non-linearities, for target predictions C. These targets can be validation
or test accuracy of the generated graph, or the latency with respect to a certain hardware. For
comparison, we also include a tree-based method, XGBoost (XGB) [CG16] as an alternative
prediction model. XGB [CG16] is used as a surrogate model in NAS-Bench-301 [Zel+22] and
shows high prediction abilities. The input to XGB is the vector representation of the architectures.
Since this method is non-differentiable, we additionally include a gradient estimation for rank-
based metrics [Rol+20]. This way, we are able to include gradient information to the generator.
Yet, it is important to note that this approach is not fully differentiable. This comparison will allow
us to measure the trade-off between using supposedly stronger predictors over the capability to
allow for full end-to-end learning.

Training Objectives. The generative model pG learns to reconstruct a randomly sampled
architecture G from search space pD given a randomly sampled latent vector h ∼ N (0, 1). The
objective function for this generation process can be formulated as the sum of node-level loss LV
and edge-level loss LE:

LG(G̃, G) = LV + LE; G̃ ∼ pG(h); G ∼ pD, (8.1)

where LV is the cross entropy loss between the predicted and the ground truth nodes and LE is
the binary cross entropy loss between the predicted and ground truth edges of the generated
graph G̃. This training step is completely unsupervised. Figure 8.2 presents an overview of
the training process. To include the training of the surrogate model, the objective function is
reformulated to:

L(G̃, G) = (1− α)LG(G̃, G) + αLC(G̃, G), (8.2)

where α is a hyperparameter trading off generator loss LG and prediction loss LC for prediction
targets C of graph G. We use mean squared error as predictor loss. Furthermore, each loss is
optimized using mini-batch gradient descent.

8.4. EXPERIMENTS 125

Generative Latent Space Optimization. To facilitate the generation process, we optimize
the architecture representation space via weighted retraining [TDH20], resulting in a sample
efficient search algorithm. The intuition of this approach is to place more probability mass on
high-scoring latent points, (e.g. high performing or low latency architectures) and less mass on
low-scoring points. Thus, this strategy is not discarding low-scoring architectures completely,
which would be inadequate for proper learning. The generative model is trained on a data
distribution that systematically increases the probability of high-scoring latent points. This
can be done by assigning a weight ωi to each data point Gi ∼ pD, indicating its likelihood to
occur during batch-wise training. In addition, the training objective is weighted via a weighted
empirical mean ∑Gi∼pD

ωi L for each data point. As for the weights itself, Tripp, Daxberger, and
Hernández-Lobato [TDH20] proposed a rank-based weight function

w(G; pD, k) ∝
1

kN + rank f ,pD(G)
,

rank f ,pD(x) = |{Gi : f (Gi) > f (G), Gi ∼ pD}|,
(8.3)

where f (·) is the evaluation function of the architecture Gi; for NAS-Bench-101 [Yin+19b] and
NAS-Bench-201 [DY20] it is the tabular benchmark entry, for NAS-Bench-301 [Zel+22] and
NAS-Bench-NLP [Kly+22] it is the surrogate benchmark prediction. Similar to Tripp, Daxberger,
and Hernández-Lobato [TDH20], we set k = 10−3. The retraining procedure itself then consists
of finetuning the pretrained generative model coupled with the surrogate model, where loss
functions and data points are both weighted by w(G; pD, k). We provide an intuition of our
approach in Section F.6.

8.4 Experiments

We evaluate the proposed Architecture Generative Network (AG-Net) on the two commonly
used tabular benchmarks NAS-Bench-101 [Yin+19b] and NAS-Bench-201 [DY20], the surrogate
benchmarks NAS-Bench-301 [Zel+22] evaluated on the DARTS search space [LSY19], NAS-
Bench-NLP [Kly+22], and the first hardware device-induced benchmark [Li+21]. Additionally,
we perform experiments on the ImageNet [Den+09] classification task and show state-of-the-art
performance on the DARTS search space. In our experiments on the Hardware-Aware Benchmark
we consider the latency information for the NAS-Bench-201 search space. Details about each
search space can be found in Appendix F in Section F.1. Additionally, we report implementation
details and hyperparameters in Section F.3 and Section F.5 respectively.

8.4.1 Experiments on Tabular Benchmarks

NAS-Bench-101. For our experiments on NAS-Bench-101, we first pretrain our generator to
generate valid graphs on the NAS-Bench-101 search space. This step does not require information
about the performance of architectures and is therefore inexpensive. The pretrained generator is
then used for all experiments on NAS-Bench-101. Our NAS algorithm is initialized by randomly
sampling 16 architectures from the search space, which are then weighted by the weighting
function W = w(G)G∼pD

. Then, latent space optimized architecture search is performed by
iteratively retraining the generator coupled with the MLP surrogate model for 15 epochs and
generating 100 architectures of which the top 16 (according to their accuracy prediction) are
evaluated and added to the training data. This step is repeated until the desired number of

126 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

queries is reached. When generating architectures, we sample from a grid containing the 99%-
quantiles from N (0, 1) uniformly distributed. This way, we sample more distributed latent
variables for better latent space coverage. We compare our method to the VAE-based search
method Arch2vec [Yan+20] and predictor-based model WeakNAS [Wu+21], as well as state-of-
the-art methods such as NAO [Luo+18], random search [LT19], local search [WNS21b], Bayesian
optimization [Sno+15], regularized evolution [Rea+19], and BANANAS [WNS21a]. Additionally,
we compare the proposed AG-Net applying an XGB predictor instead of an MLP (see Section F.3).
The results of this comparison are listed in Table 8.1. Here, we report the mean over 10 runs.
Results including the standard deviation can be found in the Appendix. Note, we search for
the architecture with the best validation accuracy and report the corresponding test accuracy.
Furthermore, we plot the search progress in Figure 8.3. As we can see, our model AG-Net
improves over all state-of-the-art methods, not only after querying 300 data points, reaching a
top-1 test accuracy of 94.2%, but is also almost any time better during the search process.

A direct comparison to the recently proposed GANAS [Rez+21] on NAS-Bench-101 is difficult,
since GANAS searches on NAS-Bench-101 until they find the best architecture in terms of
validation accuracy, whereas we limit our search to a maximal amount of 192 queries and are
able to find high-performing architectures already in this small query setting. The comparison
of AG-Net to the generator paired with an XGB [CG16] predictor shows that our end-to-end
learnable approach is favorable even over potentially stronger predictors.

NAS-Bench-201. This benchmark contains three different image classification tasks: CIFAR-10,
CIFAR-100 [Kri09], and ImageNet16-120 [CLH17]. For the experiments on NAS-Bench-201[DY20]
we retrain AG-Net in the weighted manner for 30 epochs. In this setting, we also compare
AG-Net to two recent generative models [Rez+21; HC21]. SGNAS [HC21] trains a supernet by
uniform sampling, following SETN [DY19a]. Additionally a Convolutional Neural Network
(CNN)-based architecture generator is trained to search architectures on the supernet. When
comparing with Yan et al. [Yan+20], we also adopt their evaluation scheme of adding only
the best-performing architecture (top-1) to the training data instead of top-16 as in our other
experiments.

We report the search results for different numbers of queries for the NAS-Bench-201 dataset in
Table 8.2 and Table 8.3. In addition, we plot the search progress in terms of queries in Figure 8.4.
Our method provides state-of-the-art results on all datasets for a varying number of queries.
Most importantly, AG-Net shows strong performance in the few-query regime compared to Yan
et al. [Yan+20] with the exception of CIFAR-100, proving its high query efficiency.

8.4.2 Experiments on Surrogate Benchmarks

We furthermore apply our search method on larger search spaces as DARTS [LSY19] and NAS-
Bench-NLP [Kly+22] without ground truth evaluations for the whole search space, making use
of surrogate benchmarks as NAS-Bench-301 [Zel+22], NAS-Bench-X11 [Yan+21] and NAS-Bench-
Suite [Meh+22].

NAS-Bench-301. Here, we report experiments on the cell-based search space DARTS [LSY19]
using the surrogate benchmark NAS-Bench-301 [Zel+22] for the CIFAR-10 [Kri09] image clas-
sification task. The exact search procedure using the cells individually is described in Subsec-
tion F.3.5. The results are described in Table 8.4 and visualized in Figure 8.5. Our method is
comparable to other state-of-the-art methods in this search space.

8.4. EXPERIMENTS 127

Table 8.1: Results on NAS-Bench-101 for the search of the best architecture in terms of validation
accuracy on CIFAR-10 (mean over 10 trials).

NAS Method Val. Acc (%) Test Acc (%) Queries

Optimum* 95.06 94.32 -

Arch2vec + RL [Yan+20] - 94.10 400
Arch2vec + BO [Yan+20] - 94.05 400

NAO ‡[Luo+18] 94.66 93.49 192
BANANAS† [WNS21a] 94.73 94.09 192

Bayesian Optimization† [Sno+15] 94.57 93.96 192
Local Search† [WNS21b] 94.57 93.97 192
Random Search†[LT19] 94.31 93.61 192

Regularized Evolution†[Rea+19] 94.47 93.89 192
WeakNAS [Wu+21] - 94.18 200

XGB (ours) 94.61 94.13 192
XGB + ranking (ours) 94.60 94.14 192

AG-Net (ours) 94.90 94.18 192

Figure 8.3: Architecture search evaluations on NAS-Bench-101.

128 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

Table 8.2: NAS on NAS-Bench-201. We report validation accuracies over the mean of 10 trials for
searching the architecture with the highest validation accuracy on CIFAR-10 (CF-10), CIFAR-100
(CF-100), and ImageNet16-120 (IN16).

NAS Method CF-10 ↑ CF-100 ↑ IN16-120 ↑ Queries

Optimum∗ 91.61∗ 73.49∗ 46.77∗ -

SGNAS [HC21] 90.18 70.28 44.65 Supernet

Arch2vec + BO [Yan+20] 91.41 73.35 46.34 100
AG-Net (ours) 91.55 73.20 46.31 96

AG-Net (ours, topk=1) 91.41 73.14 46.42 100

BANANAS† [WNS21a] 91.56 73.49∗ 46.65 192
BO† [Sno+15] 91.54 73.26 46.43 192

RS † [LT19] 91.12 72.08 45.87 192
XGB (ours) 91.54 73.10 46.48 192

XGB + Ranking (ours) 91.48 73.20 46.40 192
AG-Net (ours) 91.60 73.49∗ 46.64 192

GANAS [Rez+21] - - - 444
AG-Net (ours) 91.61∗ 73.49∗ 46.73 400

Table 8.3: NAS on NAS-Bench-201. We report test accuracies over the mean of 10 trials for
searching the architecture with the highest validation accuracy on CIFAR-10 (CF-10), CIFAR-100
(CF-100), and ImageNet16-120 (IN16).

NAS Method CF-10 ↑ CF-100 ↑ IN16-120 ↑ Queries

Optimum∗ 94.37∗ 73.51∗ 47.31∗ -

SGNAS [HC21] 93.53 70.31 44.98 Supernet

Arch2vec + BO [Yan+20] 94.18 73.37 46.27 100
AG-Net (ours) 94.24 73.12 46.20 96

AG-Net (ours, topk=1) 94.16 73.15 46.43 100

BANANAS† [WNS21a] 94.30 73.50 46.51 192
BO† [Sno+15] 94.22 73.22 46.40 192

RS † [LT19] 93.89 72.07 45.98 192
XGB (ours) 94.34 72.93 46.08 192

XGB + Ranking (ours) 94.25 73.24 46.16 192
AG-Net (ours) 94.37∗ 73.51∗ 46.43 192

GANAS [Rez+21] 94.34 73.28 46.80 444
AG-Net (ours) 94.37∗ 73.51∗ 46.42 400

8.4. EXPERIMENTS 129

Figure 8.4: Architecture search evaluations on NAS-Bench-201.

130 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

Table 8.4: Results on NAS-Bench-301 (mean validation accuracy over 50 trials).

NAS Method Val. Acc (%) Queries

BANANAS† [WNS21a] 94.77 192
Bayesian Optimization† [Sno+15] 94.71 192

Local Search† [WNS21b] 95.02 192
Random Search† [LT19] 94.31 192

Regularized Evolution† [Rea+19] 94.75 192

XGB (ours) 94.79 192
XGB + Ranking (ours) 94.76 192

AG-Net (ours) 94.79 192

Figure 8.5: Architecture search evaluations on NAS-Bench-301.

8.4. EXPERIMENTS 131

NAS-Bench-NLP. Next, we evaluate AG-Net on NAS-Bench-NLP [Kly+22] for the language
modeling task on Penn TreeBank [Mik+10]. We retrain AG-Net coupled with the surrogate model
for 30 epochs to predict the validation perplexity. Note, since the search space considered in NAS-
Bench-NLP is too large for a full tabular benchmark evaluation, we make use of the surrogate
benchmark NAS-Bench-X11 [Yan+21] and NAS-Bench-Suite [Meh+22] instead of tabular entries.
For fair comparison we compare our methods to the same state-of-the-art methods as in previous
experiments. The results are reported in Table 8.5 and visualized in Figure 8.6. Our AG-Net
improves over all state-of-the-art methods by a substantial margin and using XGB as a predictor
even improves the search further.

ImageNet Experiments. The previous experiment on NAS-Bench-301 [Zel+22] shows the ability
of our generator to generate valid architectures and to perform well in the DARTS [LSY19] search
space. This allows for searching a well-performing architecture on ImageNet [Den+09]. Yet,
evaluating up to 300 different found architectures on ImageNet is extremely expensive. Our first
approach is to retrain the best found architectures on the CIFAR-10 [Kri09] image classification
task from the previous experiment on NAS-Bench-301 (AG-Net and the XGB adaptions) on
ImageNet [Den+09]. Our second approach is based on a training-free neural architecture search
approach. The recently proposed TE-NAS [CGW21] provides a training-free neural architecture
search approach, by ranking architectures via analysing the Neural Tangent Kernel (NTK) and the
Number of Linear Regions (NLR) of each architecture. These two measurements are training-free
and do not need any labels. The intuition between those two measurements is their implication
towards trainability and expressivity of a neural architecture and also their correlation with
the neural architecture’s accuracy; NTK is negatively correlated and NLR positively correlated
with the architecture’s test accuracy. We adapt this idea for our search on ImageNet and search
architectures in terms of their NTK value and their number of linear regions instead of their
validation accuracy. We describe the detailed search process in Subsection F.3.5.

Table 8.6 shows the results. Note that our latter described search method on ImageNet is
training-free (as TE-NAS [CGW21]) and the amount of queries displays the amount of data
we evaluated for the zero cost measurements. Other query information include the amount of
(partly) trained architectures. Furthermore, the displayed differentiable methods are based on
training supernets which can lead to expensive training times. The best found architectures on
NAS-Bench-301 [Zel+22] (CIFAR-10) result in comparable error rates on ImageNet to former
approaches. As a result, our search method approach is highly efficient and outperforms previous
methods in terms of needed GPU days. The result in terms of top-1 and top-5 error rates are
even improving over the one from previous approaches when using the training-free approach.

8.4.3 Experiments on Hardware-Aware Benchmark

Next, we apply AG-Net to the Hardware-Aware NAS-Benchmark [Li+21]. We demonstrate in
two settings that AG-Net can be used for multi-objective learning. The first setting (Joint=1) is
formulated as constrained joint optimization:

max
G∼pD

f (G) ∧ min
G∼pD,

gh(G) s.t. gh(G) ≤ L, ∃ h ∈ H, (8.4)

where f (·) evaluates architecture G for accuracy and gh(·) evaluates for latency given a hardware
h ∈ H and a user-defined latency constraint L. The second setting (Joint=0) is formulated as
constraint objective:

max
G∼pD

f (G) s.t. gh(G) ≤ L, ∃ h ∈ H, (8.5)

132 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

Table 8.5: Results on NAS-Bench-NLP (mean validation perplexity over 100 trials).

NAS Method Val. Perplexity (%) Queries

BANANAS† [WNS21a] 95.68 304
Bayesian Optimization† [Sno+15] – –

Local Search† [WNS21b] 95.69 304
Random Search† [LT19] 95.64 304

Regularized Evolution† [Rea+19] 95.66 304

XGB (ours) 95.95 304
XGB + Ranking (ours) 95.92 304

AG-Net (ours) 95.86 304

Figure 8.6: Architecture search evaluations on NAS-Bench-NLP.

8.4. EXPERIMENTS 133

where we drop the optimization on latency and only optimize accuracy with the latency con-
straint. The loss function to train our generator is updated from Equation 8.2 to:

L(G̃, G) =(1− α)LG(G̃, G) + α
[
λLC1(G̃, G) + (1− λ)LC2(G̃, G)

]
, (8.6)

where α is a hyperparameter trading off generation and prediction loss, and λ is a hyperparameter
trading off prediction targets C1 (accuracy) and C2 (latency).

To perform LSO in the joint objective setting from Equation 8.4, we rank the training data
D for both accuracy and latency jointly by summing both individual rankings. To fulfill the
optimization constraint, we further penalize the ranks via a multiplicative penalty if the latency
does not fulfill the constraint. This overall ranking is then used for the weight calculation
in Equation 8.3. The LSO for the constraint objective setting from Equation 8.5 only ranks
architectures by accuracy and penalizes architectures with infeasible latency property. We choose
random search as a baseline in this setting as it is generally regarded as a strong baseline in
NAS [LT19]. Figure 8.7 (top) depicts searches with our model in both optimization settings
on Pixel 3 with different latency conditions. More results on different hardware and latency
constraints are shown in Table 8.7. We observe that either optimization setting outperforms the
random search baseline in almost all tasks. Additionally, our method is able to find the optimal
architecture for a task regularly (in 15 out of 20 tasks), which random search was not able to
provide. When considering mean accuracy and feasibility of the best architectures of all runs,
we see that Joint=1 is able to improve the ratio of feasible architectures found during the search
substantially. This is to be expected given that the latent space is explicitly optimized for latency
in this setting. Consequently, Joint=1 is able to find better-performing architectures compared to
Joint=0 if the constraint restricts the space of feasible architectures strongly (see results on Raspi
4). The feasibility ratio of random search is an indicator on how restricted the space is. In most
cases, the latency penalization seems to be sufficient to find enough well-performing and feasible
architectures, as can be seen by the feasibility of Joint=0 which improves compared to random
search. We show the development of feasibility over time from Table 8.7 in Figure 8.7 (bottom).

8.4.4 Ablation Studies

In this section we analyse the impact of the LSO technique and the backpropagation ability to
the search efficiency. Therefore, we compare our AG-Net with the latter named adaptions on the
tabular benchmarks NAS-Bench-101 [Yin+19b] and NAS-Bench-201 [DY20]. The results of our
ablation study are reported in Table 8.8. As we can see, the lack of weighted retraining decreases
the performance of the search substantially. In addition, the results without backpropagation
support that the coupling of the predictor’s target and the generation process enables a more
efficient architecture search over different search spaces. Thus, the combination of LSO and
a fully differentiable approach improves the effectiveness of the search. We report additional
ablation studies in Section F.2.

134 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

0 2 4 6 8 10
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48
Va

l.
Ac

c.
Pixel3 Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

Functions Evaluated

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Fe
as

ib
le

 A
rc

hi
te

ct
ur

es

Random
Joint=0
Joint=1
Optimum

Figure 8.7: (top) Exemplary searches on HW-NAS-Bench for image classification on ImageNet16
with 192 queries on Pixel 3 and latency conditions L ∈ {2, 4, 6, 8, 10} (y-axis zoomed for visibility).
(bottom) Amount of architectures generated and selected in each search iteration (at most 16)
that satisfy the latency constraint. In this example we searched on Edge GPU with L = 2.

8.4. EXPERIMENTS 135

Table 8.6: ImageNet error of neural architecture search on DARTS. We mark methods in the
following way: CF for architecture search on CIFAR-10, IN for architecture search on ImageNet,
and † for our methods.

NAS Method Top-1↓ Top-5↓ Queries Search
GPU days

Mixed Methods

NASNET-A CF [Zop+18] 26.0 8.4 20 000 2000
PNAS CF [Liu+18] 25.8 8.1 1160 225
NAO CF [Luo+18] 24.5 7.8 1000 200

Differentiable Methods

DARTS CF [LSY19] 26.7 8.7 - 4.0
SNAS CF [Xie+19b] 27.3 9.2 - 1.5

PDARTS CF [Che+19] 24.4 7.4 - 0.3
PC-DARTS CF [Xu+20] 25.1 7.8 - 0.1
PC-DARTS IN [Xu+20] 24.2 7.3 - 3.8

Predictor-Based Methods

WeakNAS IN [Wu+21] 23.5 6.8 800 2.5
XGB (NB-301) CF, † 24.1 7.4 304 0.02

XGB + Ranking (NB-301) CF, † 24.1 7.2 304 0.02
AG-Net (NB-301) CF, † 24.3 7.3 304 0.21

Training-Free Methods

TE-NAS CF [CGW21] 26.2 8.3 - 0.05
TE-NAS IN [CGW21] 24.5 7.5 - 0.17

AG-Net CF, † 23.5 7.1 208 0.02
AG-Net IN, † 23.5 6.9 208 0.09

136
C

H
A

PTER
8.

BIA
SIN

G
N

EU
R

A
L

A
R

C
H

ITEC
TU

R
E

SEA
R

C
H

Table 8.7: Results for searches with at most 200 queries on HW-NAS-Bench [Li+21] with varying devices and latency (Lat.) constraints in
two multi-objective settings: Joint=0 optimizes accuracy under latency constraint, while Joint=1 optimizes for accuracy and latency jointly.
We report the best found architecture out of 10 runs with their corresponding latency, as well as the mean of these runs. Feasibility (Feas.)
is the proportion of evaluated architectures that satisfy the latency constraint. The optimal architecture (*) is the architecture with the
highest accuracy satisfying the latency constraint.

Settings Best out of 10 runs Mean
Constraint Joint=0 Joint=1 Random Joint=0 Joint=1 Random Optimum*

Device Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Feas.↑ Acc.↑ Feas.↑ Acc.↑ Feas.↑ Acc.↑ Lat.↓

Edge GPU 2 0.406* 1.90 0.406* 1.90 0.397 1.78 0.397 0.29 0.391 0.31 0.372 0.05 0.406 1.90
Edge GPU 4 0.448* 3.49 0.448* 3.49 0.437 3.35 0.428 0.29 0.433 0.43 0.417 0.22 0.448 3.49
Edge GPU 6 0.458 5.29 0.464* 5.96 0.458 5.29 0.453 0.64 0.450 0.79 0.449 0.72 0.464 5.96
Edge GPU 8 0.465 6.81 0.468* 6.81 0.464 7.44 0.463 0.98 0.462 0.99 0.457 1.00 0.468 6.81

Raspi 4 2 0.355* 1.58 0.355* 1.58 0.348 1.60 0.346 0.28 0.347 0.30 0.339 0.08 0.355 1.58
Raspi 4 4 0.431 3.83 0.436* 3.79 0.427 3.85 0.420 0.47 0.428 0.50 0.419 0.37 0.436 3.79
Raspi 4 6 0.449 5.95 0.452* 5.29 0.445 5.95 0.440 0.56 0.441 0.57 0.432 0.55 0.452 5.29
Raspi 4 8 0.456 6.33 0.455 7.96 0.457 7.97 0.451 0.69 0.449 0.79 0.447 0.76 0.465 7.43
Raspi 4 10 0.466 8.66 0.465 8.62 0.464 8.72 0.464 0.77 0.454 0.94 0.454 0.90 0.468 8.83
Raspi 4 12 0.468* 8.83 0.463 9.05 0.464 8.72 0.465 0.91 0.457 0.98 0.456 0.96 0.468 8.83

Edge TPU 1 0.468* 0.96 0.466 0.97 0.464 1.00 0.464 0.74 0.457 0.82 0.454 0.79 0.468 0.96

Pixel 3 2 0.413* 1.30 0.413* 1.30 0.400 1.50 0.409 0.48 0.405 0.59 0.388 0.30 0.413 1.30
Pixel 3 4 0.460* 3.55 0.446 3.01 0.447 3.23 0.453 0.69 0.441 0.77 0.438 0.64 0.460 3.55
Pixel 3 6 0.464 5.92 0.465* 5.95 0.458 4.68 0.457 0.77 0.452 0.94 0.451 0.88 0.465 5.57
Pixel 3 8 0.468* 6.65 0.465 7.88 0.461 7.13 0.464 0.87 0.457 0.99 0.454 0.97 0.468 6.65
Pixel 3 10 0.466 6.70 0.461 8.48 0.464 8.01 0.464 0.96 0.455 1.00 0.456 0.99 0.468 6.65

Eyeriss 1 0.452* 0.98 0.449 0.98 0.447 0.98 0.445 0.49 0.436 0.53 0.433 0.23 0.452 0.98
Eyeriss 2 0.465 1.65 0.465 1.65 0.464 1.65 0.463 0.87 0.457 0.99 0.457 0.95 0.468 1.65

FPGA 1 0.440 1.00 0.440 0.97 0.438 0.97 0.433 0.65 0.433 0.80 0.429 0.58 0.444 1.00
FPGA 2 0.465* 1.60 0.460 1.60 0.463 1.97 0.462 0.82 0.451 0.99 0.453 0.97 0.465 1.60

8.5. CONCLUSION AND OUTLOOK 137

Table 8.8: Ablation study results. Search with AG-Net on NAS-Bench-101 (101) and NAS-Bench-
201 (201). We ablate the influence of backpropagation (BP) and LSO, and report the mean over
10 trials with a maximal query amount of 192.

NB Dataset Metric Optimum∗ AG-Net w/o LSO w/o BP

10
1 CIFAR-10 Val. 95.06 94.90 94.38 94.71

CIFAR-10 Test 94.32 94.18 93.78 94.12

20
1

CIFAR-10 Val. 91.61 91.60 91.15 91.60
CIFAR-10 Test 94.37 94.37∗ 93.84 94.30

CIFAR-100 Val. 73.49 73.49∗ 71.72 73.38
CIFAR-100 Test 73.51 73.51∗ 71.83 73.22

ImageNet16 Val. 46.77 46.64 45.33 46.62
ImageNet16 Test 47.31 46.43 45.04 46.13

8.5 Conclusion and Outlook

Summary. We propose a simple architecture generative network (AG-Net), which allows us to
directly generate architectures without any additional encoder or discriminator. AG-Net is fully
differentiable, allowing to couple it with surrogate models for different target predictions. In
contrast to former works, it enables to backpropagate the target information from the surrogate
predictor into the generator. By iteratively optimizing the latent space of the generator, our model
learns to focus on promising regions of the architecture space, so that it can generate high-scoring
architectures directly in a query- and sample-efficient manner. Extensive experiments on common
NAS benchmarks demonstrate that our model outperforms state-of-the-art methods at almost
any time during architecture search and achieves state-of-the-art performance on ImageNet. It
also allows for multi-objective optimization on the Hardware-Aware NAS-Benchmark.

Improving the Surrogate Model. To improve the query-efficiency of our method, we couple the
generator with a surrogate model to predict promising candidate architectures to evaluate. In an
ablation study in Table F.1, we demonstrate how essential the performance-predicting surrogate
model for our search method is. Using a small MLP guiding the search we can improve over
random search and even localized heuristics. At the same time, this means that our approach
is sensitive to the effectiveness of the surrogate model, as the search outcome is dependent on
its accuracy. Future research can improve this aspect of the search algorithm by improving the
predictive ability of the surrogate model. For example, although XGBoost [CG16] is a strong
predictor as shown by Zela et al. [Zel+22], we show in Table F.2 that our MLP-based approach
outperforms it as surrogate model in our case. We contribute this to the fact that we cannot
(or only approximately) backpropagate through this predictor, as XGBoost is not differentiable.
However, Marton et al. [Mar+24] recently introduced a differentiable decision tree ensemble.
Using this model in our search seems like a promising refinement for our method. Additionally,
future research could investigate the effectiveness of ensembling multiple predictors. Taking
confidence estimates into account could mitigate the risk of overly committing to certain regions
in the latent space [LPB17]. One could even explore possible regularization methods when
training the surrogate model, for example penalizing overconfident predictions.

138 CHAPTER 8. BIASING NEURAL ARCHITECTURE SEARCH

Further Improving Query Efficency. In the current search approach, the generator is given
random noise to produce architectures. These architectures are then assessed by the surrogate
model, and the best candidates (according to the surrogate model) are selected for training
and evaluation. Due to weighted retraining, the architecture latent space is biased towards
architectures improving on the target function, which increases the likelihood to (randomly)
sample well-performing architectures. Another possible future research direction could be to
(also) optimize this sampling from the architecture search space. For example, in Chapter 7 we
are able to select the globally optimal latent code by optimizing it via Mixed-Integer Optimization
(MIO). Given the differentiable tree ensemble by Marton et al. [Mar+24], we could adapt a similar
approach here. Another option would be gradient-based optimization, given any differentiable
surrogate model is employed.

Search Space Dependency. Our model requires a generator that is pretrained to generate valid
architectures for each search space individually. This limits the transferability of our approach.
A natural improvement would be to incorporate more flexibility in terms of the generative
modeling. Future research could investigate this aspect, for example by encoding operations in
neural architectures as a dictionary of tokens and autoregressively sampling a computational
graph like it is done in large language models [Vas+17; Bro+20].

Chapter 9

Data for Robust Neural Architecture Design
Contents of This Chapter

10.1 Thesis Summary . 155

10.2 Open Problems and Future Directions . 157

Chapter Topic. This chapter is based on Jung*, Lukasik*, and Keuper [JLK23]. It introduces
a dataset designed to facilitate the research of robustness of neural architectures. This dataset
is created by evaluating the whole search space of NAS-Bench-201 for several adversarial
attacks and common corruptions. We discuss possible use cases of this dataset, among them is
benchmarking of training-free robustness prediction metrics, but also neural architecture search.
In particular, we use this dataset to apply the neural architecture search method proposed in
Chapter 8 to find robust architectures optimized for multiple robustness measurements.

Chapter Outline. We introduce this chapter in Section 9.1. Then, in Section 9.2 we introduce
evaluation metrics for robustness that we are interested in when creating the proposed dataset.
We further elaborate on the dataset creation in Section 9.3, where we describe the evaluated
architecture search space NAS-Bench-201 [DY20] in more detail and detail which robustness
measurements we collect. In Section 9.4, we present interesting use cases for our dataset.
In particular, we show the results of applying the search method proposed in Chapter 8 by
optimizing for multiple robustness measurements. Lastly, we conclude this chapter in Section 9.5.

139

140 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

9.1 Introduction

ONE factor in the ever-improving performance of deep neural networks is based on innova-
tions in architecture design. The starting point was the unprecedented result of AlexNet

[KSH12] on the visual recognition challenge ImageNet [Den+09]. Since then, the goal is to find
better performing models, surpassing human performance. However, human design of new
better performing architectures requires a huge amount of trial-and-error and a good intuition,
such that the automated search for new architectures (Neural Architecture Search (NAS)) receives
rapid and growing interest [ZL17; Rea+17; Yin+19b; DY20]. The release of tabular benchmarks
[Yin+19b; DY20] led to a research change; new NAS methods can be evaluated in a transparent
and reproducible manner for better comparison.

The rapid growth in NAS research with the main focus on finding new architecture designs
with ever-better performance is recently accompanied by the search for architectures that are
robust against adversarial attacks and corruptions. This is important, since image classification
networks can be easily fooled by small perturbations, which are invisible for humans. This leads
to false predictions of the neural network with high confidence.

Robustness in NAS research combines the objective of high performing and robust archi-
tectures [DY19b; Dev+21; Don+25; HYX21; Mok+21]. However, there was no attempt so far to
evaluate a full search space on robustness, but rather architectures in the wild. This paper is
a first step towards closing this gap. We are the first to introduce a robustness dataset based
on evaluating a complete NAS search space, such as to allow benchmarking neural architec-
ture search approaches for the robustness of the found architectures. This will facilitate better
streamlined research on neural architecture design choices and their robustness. We evaluate all
6466 unique pretrained architectures from the NAS-Bench-201 benchmark [DY20] on common
adversarial attacks [GSS15; KGB17; CH20] and corruption types [HD19]. We thereby follow
the argumentation in NAS research that employing one common training scheme for the entire
search space will allow for comparability between architectures. Having the combination of
pretrained models and the evaluation results in our dataset at hand, we further provide the
evaluation of common training-free robustness measurements, such as the Frobenius norm of
the Jacobian matrix [HRY19] and the largest eigenvalue of the Hessian matrix [Zha+20], on the
full architecture search space and use these measurements as a method to find the supposedly
most robust architecture. To show the application of our dataset in neural architecture search
for robust models we perform several common NAS algorithms on the clean as well as on
the robust accuracy of different image classification tasks. Additionally, we conduct an initial
analysis of how architectural design choices affect robustness with the potential of doubling the
robustness of networks with the same number of parameters. This is only possible since we
evaluate the whole search space of NAS-Bench-201 [DY20], enabling us to investigate the effect
of small architectural changes. To our knowledge we are the first paper to introduce a robustness
dataset covering a full (widely used) search space allowing to track the outcome of fine-grained
architectural changes. In summary we make the following contributions:

• We present the first robustness dataset evaluating a complete NAS search space.

• We present different use cases for this dataset; from training-free measurements for robust-
ness to neural architecture search.

• Lastly, our dataset shows that a model’s robustness against corruptions and adversarial
attacks is highly sensitive towards the architectural design, and carefully crafting architec-
tures can substantially improve their robustness.

9.2. RELATED WORK 141

9.2 Related Work

Common Corruptions. While neural architectures achieve results in image classification that
supersede human performance [He+15], common corruptions such as Gaussian noise or blur
can cause this performance to degrade substantially [DK17]. For this reason, Hendrycks and
Dietterich [HD19] propose a benchmark that enables researchers to evaluate their network design
on several common corruption types.

Adversarial Attacks. Szegedy et al. [Sze+14] showed that image classification networks can be
fooled by crafting image perturbations, so called adversarial attacks, that maximize the networks’
prediction towards a class different to the image label. Surprisingly, these perturbations can
be small enough such that they are not visible to the human eye. One of the first adversarial
attacks, called Fast Gradient Sign Method (FGSM) [GSS15], tries to flip the label of an image
in a single perturbation step of limited size. This is achieved by maximizing the loss of the
network and requires access to its gradients. Later gradient-based methods, like Projected
Gradient Descent (PGD) [KGB17], iteratively perturb the image in multiple gradient steps. To
evaluate robustness in a structured manner, Croce and Hein [CH20] propose an ensemble of
different attacks, including an adaptive version of PGD called Adaptive Projected Gradient
Descent (APGD) [CH20], and a blackbox attack called Square Attack [And+20] that has no access
to network gradients. Croce et al. [Cro+21] conclude the next step in robustness research by
providing an adversarial robustness benchmark, RobustBench, tracking state-of-the-art models
in adversarial robustness.

Neural Architecture Search. NAS is an optimization problem with the objective to find an op-
timal combination of operations in a predefined, constrained search space. Early NAS approaches
differ by their search strategy within the constraint search space. Common NAS strategies are
evolutionary methods [Rea+17; Rea+19], Reinforcement Learning (RL) [ZL17; Li+18b], ran-
dom search [BB12; LT19], local search [WNS21b], Bayesian Optimization (BO) [Kan+18; Ru+21;
WNS21a]. Recently, several NAS approaches use generative models to search within a continu-
ous latent space of architectures [Luk+21; Rez+21; LJK22]. To further improve the search strategy
efficiency, the research focus shift from discrete optimization methods to faster differentiable
search methods, using weight-sharing approaches [Pha+18; LSY19; Ben+18; CZH19; Xie+19b;
Zel+20]. In order to compare NAS approaches properly, NAS benchmarks were introduced and
opened the path for fast evaluations. The tabular benchmarks NAS-Bench-101 [Yin+19b] and
NAS-Bench-201 [DY20] provide exhaustive evaluations of performances and metrics within
their predefined search space on image classification tasks. TransNAS-Bench-101 [Dua+21]
introduces a benchmark containing performance and metric information across different vision
tasks. We will give a more detailed overview about the NAS-Bench-201 [DY20] benchmark in
Subsection 9.3.1.

Robustness in NAS. With the increasing interest in NAS in general, the aspect of robustness of
the optimized architectures has become more and more relevant. Devaguptapu et al. [Dev+21]
provide a large-scale study that investigates how robust architectures, found by several NAS
methods such as Liu, Simonyan, and Yang [LSY19], Cai, Zhu, and Han [CZH19], and Xu et al.
[Xu+20], are against several adversarial attacks. They show that these architectures are vulnerable
to various different adversarial attacks. Guo et al. [Guo+20] first search directly for a robust
neural architecture using one-shot NAS and discover a family of robust architectures. Dong
et al. [Don+25] constrain the architectures’ parameters within a supernet to reduce the Lipschitz

142 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

image conv residual
block cell x N residual

block cell x N global
avg poolcell x N

in

1

2 out

Cell Operations
1x1 convolution
3x3 convolution
3x3 avg. pooling

skip connect
zeroize

1x1
3x3
avg

1

2

3

4

5

6

Figure 9.1: (top) Macro architecture. Gray highlighted cells differ between architectures, while
the other components stay fixed. (bottom) Cell structure and the set of possible, predefined
operations. (Figure adapted from [DY20])

constant and therefore increase the resulting networks’ robustness. Few prior works such as
Carlini et al. [Car+19], Xie et al. [Xie+19a], Pang et al. [Pan+21], and Xie et al. [Xie+21] propose
more in-depth statistical analyses. In particular, Su et al. [Su+18] evaluate 18 ImageNet models
with respect to their adversarial robustness. Ling et al. [Lin+19] and Dong et al. [Don+20] provide
platforms to evaluate adversarial attacks. Tang et al. [Tan+21] provide a robustness investigation
benchmark based on different architectures and training techniques on ImageNet. Recently a new
line of differentiable robust NAS arose, namely including differentiable network measurements
to the one-shot loss target to increase the robustness [HYX21; Mok+21]. Hosseini, Yang, and
Xie [HYX21] define two differentiable metrics to measure the robustness of the architecture,
certified lower bound and Jacobian norm bound, and searches for architectures by maximizing
these metrics, respectively. Mok et al. [Mok+21] propose a search algorithm using the intrinsic
robustness of a neural network being represented by the smoothness of the network’s input loss
landscape, i.e. the Hessian matrix.

9.3 Dataset Generation

9.3.1 Architectures in NAS-Bench-201

NAS-Bench-201 [DY20] is a cell-based architecture search space. Each cell has in total 4 nodes
and 6 edges. The nodes in this search space correspond to the architecture’s feature maps
and the edges represent the architectures operation, which are chosen from the operation set
O = { 1× 1 conv., 3× 3 conv., 3× 3 avg. pooling, skip, zero } (see Figure 9.1). This search
space contains in total 56 = 15 625 architectures, from which only 6466 are unique, since the
operations skip and zero can cause isomorphic cells (see Figure G.1, appendix), where the latter
operation zero stands for dropping the edge. Each architecture is trained on three different image
datasets for 200 epochs: CIFAR-10 [Kri09], CIFAR-100 [Kri09] and ImageNet16-120 [CLH17].
For our evaluations, we consider all unique architectures in the search space and test splits of
the corresponding datasets. Hence, we evaluate 3 · 6466 = 19 398 pretrained networks in total.
Section G.1 in Appendix G describes technical details about the generation and structure of our
dataset. In the following, we describe evaluations we collect.

9.3. DATASET GENERATION 143

9.3.2 Robustness to Adversarial Attacks

We start by collecting evaluations on different adversarial attacks, namely FGSM, PGD, APGD,
and Square Attack. Following, we describe each attack and the collection of their results.

FGSM. Given function sign(·) returning the sign of its input, FGSM [GSS15] finds adversarial
examples via

x̃ = x + ϵ · sign
(
∆xL(θ, x, y)

)
, (9.1)

where x̃ is the adversarial example, x is the input image, y the corresponding label, ϵ the
magnitude of the perturbation, and θ the network parameters. L(θ, x, y) is the loss function used
to train the attacked network. In the case of architectures trained for NAS-Bench-201, this is
Cross Entropy (CE). Since attacks via FGSM can be evaluated fairly efficient, we evaluate all
architectures for ϵ ∈ EFGSM = {.1, .5, 1, 2, . . . , 8, 255}/255, so for a total of |EFGSM| = 11 times
for each architecture. We use Foolbox [RBB17] to perform the attacks, and collect (a) accuracy,
(b) average prediction confidences, as well as (c) confusion matrices for each combination of
network and perturbation magnitude ϵ.

PGD. While FGSM perturbs the image in a single step of size ϵ, PGD [KGB17] iteratively
perturbs the image via

x̃n+1 = clipϵ,x

(
x̃n − α · sign

(
∆xL(θ, x̃n, y)

))
, x̃0 = x, (9.2)

where x̃n is the adversarial example at iteration n, α the step size in each iteration, and clipϵ,x(·)
is a function clipping to range [x− ϵ, x + ϵ]. Due to its iterative nature, PGD is more efficient
in finding adversarial examples, but requires more computation time. Therefore, we find it
sufficient to evaluate PGD for ϵ ∈ EPGD = {.1, .5, 1, 2, 3, 4, 8}/255, so for a total of |EPGD| = 7
times for each architecture. Same as for FGSM, we use Foolbox [RBB17] to perform the attacks
using their L∞ PGD implementation and keep the default settings, which are α = 0.01/0.3 for 40
attack iterations. We collect (a) accuracy, (b) average prediction confidences, and (c) confusion
matrices for each network and ϵ combination.

APGD. AutoAttack [CH20] offers an adaptive version of PGD that reduces its step size over
time without the need for hyperparameters. We perform this attack using the L∞ implementation
provided by Croce and Hein [CH20] on CE and choose EAPGD = EPGD. We kept the default
number of attack iterations that is 100. We collect (a) accuracy, (b) average prediction confidences,
and (c) confusion matrices for each network and ϵ combination.

Square Attack. In contrast to the before-mentioned attacks, Square Attack is a blackbox attack
that has no access to the networks’ gradients. It solves the following optimization problem using
random search:

min
x̃
{ fy,θ(x̃)−maxc ̸=y fc,θ(x̃)}, s.t. ∥x̃− x∥p ≤ ϵ, (9.3)

where fc,θ(·) are the network predictions for class c. We perform this attack using the L∞
implementation provided by Croce and Hein [CH20] and choose ESquare = EPGD. We kept
the default number of search iterations at 5000. We collect (a) accuracy, (b) average prediction
confidences, and (c) confusion matrices for each network and ϵ combination.

144 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

Summary. Figure 9.2 shows aggregated evaluation results on the before-mentioned attacks
on CIFAR-10 w.r.t. accuracy. Growing gaps between mean and max accuracies indicate that the
architecture has an impact on robust performances. Figure 9.3 depicts the correlation of ranking
all architectures based on different attack scenarios. While there is larger correlation within the
same adversarial attack and different values of ϵ, there seem to be architectural distinctions for
susceptibility to different attacks. We depict these results for CIFAR-100 and ImageNet16-120 in
Section G.4 in Appendix G.

0 0.1 0.5 1 2 3 4 5 6 7 8 255
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 FGSM accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 PGD accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 AA_APGD-CE accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 AA_SQUARE accuracies

Figure 9.2: Accuracy boxplots over all 6466 unique architectures in NAS-Bench-201 for different
adversarial attacks (FGSM [GSS15], PGD [KGB17], APGD [CH20], Square [And+20]) and pertur-
bation magnitude values ϵ, evaluated on CIFAR-10. Red line corresponds to guessing. The large
spread indicates towards architectural influence on robust performance.

9.3. DATASET GENERATION 145

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

clean, e=0
fgsm, e=0.1
fgsm, e=0.5

fgsm, e=1
fgsm, e=2
fgsm, e=3
fgsm, e=4
fgsm, e=5
fgsm, e=6
fgsm, e=7
fgsm, e=8

fgsm, e=255
pgd, e=0.1
pgd, e=0.5

pgd, e=1
pgd, e=2
pgd, e=3
pgd, e=4
pgd, e=8

aa_apgd-ce, e=0.1
aa_apgd-ce, e=0.5

aa_apgd-ce, e=1
aa_apgd-ce, e=2
aa_apgd-ce, e=3
aa_apgd-ce, e=4
aa_apgd-ce, e=8
aa_square, e=0.1
aa_square, e=0.5

aa_square, e=1
aa_square, e=2
aa_square, e=3
aa_square, e=4
aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9.3: Kendall rank correlation coefficient between clean accuracies and robust accura-
cies on different attacks and magnitude values ϵ on CIFAR-10 for all unique architectures in
NAS-Bench-201. There seem to be architectural distinctions for susceptibility to different attacks.
We depict these correlations for CIFAR-100 and ImageNet16-120 in Section G.4 in Appendix G.

146 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

9.3.3 Robustness to Common Corruptions

To evaluate all unique NAS-Bench-201 [DY20] architectures on common corruptions, we evaluate
them on the benchmark data provided by Hendrycks and Dietterich [HD19]. Two datasets are
available: CIFAR10-C, which is a corrupted version of CIFAR-10 and CIFAR-100-C, which is a
corrupted version of CIFAR-100. Both datasets are perturbed with a total of 15 corruptions at 5
severity levels (see Section G.3 in Appendix G for an example). The training procedure of NAS-
Bench-201 only augments the training data with random flipping and random cropping. Hence,
no influence should be expected of the training augmentation pipeline on the performance of the
networks to those corruptions. We evaluate each of the 15 · 5 = 75 datasets individually for each
network and collect (a) accuracy, (b) average prediction confidences, and (c) confusion matrices.

Summary. Figure 9.4 depicts mean accuracies for different corruptions at increasing severity
levels. Similar to Figure 9.2, a growing gap between mean and max accuracies for most of the
corruptions can be observed, which indicates towards architectural influences on robustness to
common corruptions. Figure 9.5 depicts the ranking correlation for all architectures between
clean and corrupted accuracies. Ranking architectures based on accuracy on different kinds of
corruption is mostly uncorrelated. This indicates a high diversity of sensitivity to different kinds
of corruption based on architectural design. We depict these results for CIFAR-100 in Section G.4
in Appendix G.

9.4 Dataset Use Cases

9.4.1 Training-Free Measurements for Robustness

Recently, a new research focus in differentiable NAS shifted towards finding not only high-
scoring architectures but also adversarially robust architectures against several adversarial
attacks [HYX21; Mok+21] using training characteristics of neural networks. On the one hand,
Hosseini, Yang, and Xie [HYX21] uses Jacobian-based differentiable metrics to measure robust-
ness. On the other hand, Mok et al. [Mok+21] improves the search for robust architectures by
including the smoothness of the loss landscape of a neural network. In this section, we evaluate
these training-free gradient-based measurements with our dataset.

Jacobian-Based Robustness Predictions. To improve the robustness of neural architectures,
Hoffman, Roberts, and Yaida [HRY19] introduced an efficient Jacobian regularization method
with the goal to minimize the network’s output change in case of perturbed input data, by
minimizing the Frobenius norm of the network’s Jacobian matrix, J . Let fθ : RD → RC be a
neural network with weights denoted by θ and let x ∈ RD be the input data. Let x̃ = x + ϵ
be a perturbed input, with ϵ ∈ RD being a perturbation vector. The output of the neural
network shifts then to fθ,c(x + ϵ)− fθ,c(x). The input-output Jacobian matrix can be used as a
measurement for the networks stability against input perturbations [HRY19]:

fθ,c(x + ϵ)− fθ,c(x) ≈
D

∑
d=1

ϵd ·
∂ fθ,c

∂xd
(x) =

D

∑
d=1
Jθ,c;d(x) · ϵd, (9.4)

according to Taylor-expansion. From Equation 9.4, we can directly see that the larger the Jacobian
components, the larger is the output change and thus the more unstable is the neural network
against perturbed input data. In order to increase the stability of the network, Hoffman, Roberts,

9.4. DATASET USE CASES 147

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 brightness accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 contrast accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 defocus_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 elastic_transform accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 fog accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 frost accuracy

Figure 9.4: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different
corruption types at different severity levels, evaluated on CIFAR-10-C. Red line corresponds
to guessing. All corruptions can be found in Figure G.14. The large spread indicates towards
architectural influence on robust performance.

148 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

cle
an

br
ig

ht
ne

ss
, s

=3
co

nt
ra

st
, s

=3
de

fo
cu

s_
bl

ur
, s

=3
el

as
tic

_t
ra

ns
fo

rm
, s

=3
fo

g,
 s=

3
fro

st
, s

=3
ga

us
sia

n_
no

ise
, s

=3
gl

as
s_

bl
ur

, s
=3

im
pu

lse
_n

oi
se

, s
=3

jp
eg

_c
om

pr
es

sio
n,

 s=
3

m
ot

io
n_

bl
ur

, s
=3

pi
xe

la
te

, s
=3

sh
ot

_n
oi

se
, s

=3
sn

ow
, s

=3
zo

om
_b

lu
r,

s=
3

clean
brightness, s=3

contrast, s=3
defocus_blur, s=3

elastic_transform, s=3
fog, s=3

frost, s=3
gaussian_noise, s=3

glass_blur, s=3
impulse_noise, s=3

jpeg_compression, s=3
motion_blur, s=3

pixelate, s=3
shot_noise, s=3

snow, s=3
zoom_blur, s=3 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9.5: Kendall rank correlation coefficient between clean accuracies and accuracies on differ-
ent corruptions at severity level 3 on CIFAR-10-C for all unique architectures in NAS-Bench-201.
The mostly uncorrelated ranking indicates towards high diversity of sensitivity to different kinds
of corruption based on architectural design.

9.4. DATASET USE CASES 149

and Yaida [HRY19] proposes to decrease the Jacobian components by minimizing the square
of the Frobenius norm of the Jacobian. Following Hosseini, Yang, and Xie [HYX21], we use
the efficient algorithm presented in Hoffman, Roberts, and Yaida [HRY19] to compute the
Frobenius norm based on random projection for each neural network in the NAS-Bench-201
[DY20] benchmark.

Jacobian Benchmarking Results. The smaller the Frobenius norm of the Jacobian of a network,
the more robust the network is supposed to be. Our dataset allows for a direct evaluation of this
statement on all 6466 unique architectures. We use 10 mini-batches of size 256 of the training as
well as test dataset for both randomly initialized and pretrained networks and compute the mean
Frobenius norm. The results in terms of ranking correlation to adversarial robustness is shown in
Figure 9.6 (top), and in terms of ranking correlation to robustness towards common corruptions
in Figure 9.6 (bottom). We can observe that the Jacobian-based measurement correlates well with
rankings after attacks by FGSM and smaller ϵ values for other attacks. However, this is not true
anymore when ϵ increases, especially in the case of APGD.

Hessian-Based Robustness Prediction. Zhao et al. [Zha+20] investigate the loss landscape of
a regular neural network and robust neural network against adversarial attacks. Let L(fθ(x))
denote the standard classification loss of a neural network fθ for clean input data x ∈ RD

and L(fθ(x + ϵ)) be the adversarial loss with perturbed input data x + ϵ, ϵ ∈ RD. Zhao et al.
[Zha+20] provide theoretical justification that the latter adversarial loss is highly correlated with
the largest eigenvalue of the input Hessian matrix H(x) of the clean input data x, denoted by
λmax. Therefore, the eigenspectrum of the Hessian matrix of the regular network can be used
for quantifying the robustness: large Hessian spectrum implies a sharp minimum resulting in
a more vulnerable neural network against adversarial attacks. Whereas in the case of a neural
network with small Hessian spectrum, implying a flat minimum, more perturbation on the input
is needed to leave the minimum. We make use of Chatzimichailidis et al. [Cha+19] to compute
the largest eigenvalue λmax for each neural network in the NAS-Bench-201 [DY20] benchmark.

Hessian Benchmarking Results. For this measurement, we calculate the largest eigenvalues of
all unique architectures using the Hessian approximation in Chatzimichailidis et al. [Cha+19].
We use 10 mini-batches of size 256 of the training as well as test dataset for both randomly
initialized and pretrained networks and compute the mean largest eigenvalue. These results are
also shown in Figure 9.6. We can observe that the Hessian-based measurement behaves similarly
to the Jacobian-based measurement.

9.4.2 NAS on Robustness

In this section, we perform different NAS algorithms, among them the method introduced in
Chapter 8, on the clean accuracy and robust accuracies for different adversarial attacks (with L∞
perturbation maximum ϵ = 1/255) in the NAS-Bench-201 [DY20] search space for CIFAR-10. We
evaluate the best found architectures on provided clean and robust accuracies, as well as common
corruptions. Searches are performed with random search [LT19], regularized evolution [Rea+19],
local search [WNS21b], and our generative search method (see Chapter 8) with a maximal query
amount of 300. Performing search with AG-Net allows us to optimize for multiple objectives at
the same time. Here, we evaluate settings where we optimize for clean accuracy combined with
each of the adversarial attacks. Additionally, we evaluate one setting where we optimize for all
target accuracies. The results are shown in Table 9.1.

150 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

hessian_test, pretrained
hessian_test, random

hessian_train, pretrained
hessian_train, random

jacobian_test, pretrained
jacobian_test, random

jacobian_train, pretrained
jacobian_train, random 1.0

0.5

0.0

0.5

1.0
cle

an
, s

=3
br

ig
ht

ne
ss

, s
=3

co
nt

ra
st

, s
=3

de
fo

cu
s_

bl
ur

, s
=3

el
as

tic
_t

ra
ns

fo
rm

, s
=3

fo
g,

 s=
3

fro
st

, s
=3

ga
us

sia
n_

no
ise

, s
=3

gl
as

s_
bl

ur
, s

=3
im

pu
lse

_n
oi

se
, s

=3
jp

eg
_c

om
pr

es
sio

n,
 s=

3
m

ot
io

n_
bl

ur
, s

=3
pi

xe
la

te
, s

=3
sh

ot
_n

oi
se

, s
=3

sn
ow

, s
=3

zo
om

_b
lu

r,
s=

3
hessian_test, pretrained

hessian_test, random
hessian_train, pretrained

hessian_train, random
jacobian_test, pretrained

jacobian_test, random
jacobian_train, pretrained

jacobian_train, random 1.0

0.5

0.0

0.5

1.0

Figure 9.6: Kendall rank correlation coefficient between Jacobian- and Hessian-based robustness
measurements computed on all unique NAS-Bench-201 architectures to corresponding rankings
given by (top) different adversarial attacks and (bottom) different common corruptions. Measure-
ments and accuracies are computed on CIFAR-10 / CIFAR-10-C. Measurements are computed
on randomly initialized and pretrained networks contained in NAS-Bench-201. Jacobian-based
and Hessian-based measurements correlate well for smaller ϵ values, but not for larger ϵ values.

9.4. DATASET USE CASES 151

Single-Objective Setting. Comparing different optimization targets in the single-objective set-
ting, we can see that clean accuracy decreases as soon as we optimize for adversarial robustness.
This is unsurprising at first, given that Tsipras et al. [Tsi+19] showed there is an inherent trade-off
between performance on clean images and adversarial robustness of a model. We also see
that this result reflects the correlation between clean and robust accuracies shown in Figure 9.3.
However, it is interesting to see that this trade-off not only exists when adversarially training
networks, but also when modifying their architecture while solely training on unperturbed data,
as shown here. Furthermore, it is interesting that methods performing localized changes (evolu-
tionary search, local search) can (mostly) improve robustness over random search, hence are able
to find paths that modify networks in ways improving their adversarial robustness. This result
indicates that tweaking the design of network architectures can improve adversarial robustness.
Additionally, we can see that our generative search method performs best in all single-objective
settings, hinting towards the efficiency that latent space optimization combined with predictor
guidance provides. We assume that our network learns faster which design choices are important
to improve the optimization target, as it is not restricted to produce architectures that are one
edit distance away (changing only one operation, like it is the case for evolutionary search and
local search).

Localized Changes on PGD. One exceptional result is the performance of localized methods
on PGD. Here we see that random search outperforms both, and outperforms local search
substantially. We hypothesize that this is the result of noise in the dataset, as evaluations are
only performed once and not as an aggregate over multiple training runs. Both methods seem
to get stuck at a local optimum, which is too far away in edit distance from architectures that
perform better on PGD. For local search this effect is more prone than for evolutionary search,
as it is initialized with a smaller population. We tried increasing the initial population size of
local search, but it was still not on par with random search. From the results on APGD we can
see that optimizing on this target seems to provide a more direct path towards network designs
performing well in both targets, PGD as well as APGD.

Multi-Objective Setting. In the multi-objective setting we can see that AG-Net tries to find
a trade-off between both targets, generally improving in regards to clean accuracy when also
optimizing an adversarial attack, as opposed to only optimizing for the corresponding attack.
However, albeit to be expected, this comes at the cost of decreasing adversarial robustness
towards this attack. This is, again, especially pronounced with PGD and APGD, where robust
accuracies substantially decrease. Overall, it seems that our method puts more emphasis on
clean accuracy compared to the adversarial optimization target. This might be caused by the
predictors, for which we assume that clean accuracy is easier to learn (as shown by the variances
in Figure 9.2). This, in turn, reflects the difficulties evolutionary search and local search face when
optimizing PGD. Additionally, the fact that FGSM and Squares are more strongly correlated with
clean accuracy than with PGD and APGD (see Figure 9.3) implies that performance decreases
on these targets are less substantial. This is again reflected in the setting where we optimize
all the discussed targets simultaneously. From these results, we conclude that our generative
search method effectively enables multiobjective optimization. However, target values should
be normalized and decorrelated (a direction we leave for future work).

152 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

Table 9.1: Neural architecture search optimizing for clean test accuracy and adversarial robustness
under several attacks (with L∞ maximum perturbation magnitude ϵ = 1/255). We highlight
optimization targets with a light gray background. The search is performed by the listed methods
on CIFAR-10 in the NAS-Bench-201 search space (mean over 100 runs). Results are the mean
accuracies of the best architectures found and the mean accuracy over all corruptions and severity
levels for common corruptions (CIFAR-10-C).

Test Accuracy (ϵ = 1/255)
Method Clean FGSM PDG APGD Squares Clean

CIFAR-10 CF-10-C

Optimum 94.68 69.24 58.85 54.02 73.61 58.55

C
le

an

Random Search [LT19] 94.08 62.73 39.28 17.32 67.89 55.34
Regularized Evolution [Rea+19] 94.48 64.39 42.14 19.82 69.98 56.88

Local Search [WNS21b] 94.53 64.61 43.10 20.68 70.63 57.79
AG-Net (Chapter 8) 94.55 64.84 42.86 20.48 70.50 57.45

FG
SM

Random Search [LT19] 93.55 66.53 45.77 21.02 68.25 55.00
Regularized Evolution [Rea+19] 93.74 68.75 48.18 22.79 69.09 56.03

Local Search [WNS21b] 93.54 68.52 47.72 23.38 69.51 56.75
AG-Net (Chapter 8) 94.07 69.18 46.38 21.76 70.25 57.80

PG
D

Random Search [LT19] 82.03 57.07 57.36 52.21 63.76 52.14
Regularized Evolution [Rea+19] 83.06 57.81 57.07 50.76 64.34 52.97

Local Search [WNS21b] 86.57 60.79 54.67 42.67 66.66 54.12
AG-Net (Chapter 8) 82.72 57.94 58.21 53.00 64.52 53.05

A
PG

D

Random Search [LT19] 81.80 57.15 57.49 52.50 63.49 52.01
Regularized Evolution [Rea+19] 82.00 57.69 58.11 53.21 63.95 52.60

Local Search [WNS21b] 82.17 57.80 58.27 53.32 64.33 53.36
AG-Net (Chapter 8) 81.33 57.48 58.07 53.59 62.95 52.13

Sq
ua

re

Random Search [LT19] 91.58 59.30 46.33 29.50 70.50 52.76
Regularized Evolution [Rea+19] 92.26 61.62 48.95 31.62 72.19 54.31

Local Search [WNS21b] 92.28 61.62 49.12 31.77 72.74 53.90
AG-Net (Chapter 8) 92.95 62.88 49.39 31.21 72.83 54.99

Jo
in

t

AG-Net (Chapter 8)

94.20 68.19 45.15 21.23 70.48 57.02
93.99 66.25 47.75 24.06 69.86 55.45
94.00 66.29 47.92 24.29 69.77 55.12
94.57 65.26 43.88 21.27 71.05 58.05
94.05 67.65 46.75 22.71 70.24 56.99

9.5. CONCLUSION AND OUTLOOK 153

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

0.380

0.385

0.390

0.395

0.400

M
ea

n
Ad

ve
rs

ar
ia

l A
cc

ur
ac

y

1 2 3 4 5 6
Operation

#5926
#4015
#944
#11286
#325
#4911
#9587
#1912
#12295
#258
#11226
#14272
#959
#448
#9193
#16
#6555
#2947
#6187
#11693

ar
ch

ite
ct

ur
e

Figure 9.7: Top-20 architectures (out of 408) with exactly two 3× 3 convolutions and no 1× 1
convolutions according to mean adversarial accuracy on CIFAR-10. The operation number (1-6)
corresponds to the edge in the cell, see Figure 9.1 for cell connectivity and operations. Stacking
convolutions seems to be an important part of robust architectural design.

9.4.3 Effect of Architecture Design on Robustness

In Figure 9.7, we show the top-20 performing architectures (color-coded, one operation for
each edge) with exactly two 3× 3 convolutions and no 1× 1 convolutions (hence, the same
parameter count), according to the mean adversarial accuracy over all attacks as described in
Subsection 9.3.2 on CIFAR-10. It is interesting to see that there are no convolutions on edges 2 and
4, and additionally no dropping (operation zeroize) or skipping (operation skip-connect) of edge
1. In the case of edge 4, it seems that a single convolutional layer connecting input and output
of the cell increases sensitivity of the network. Hence, most of the top-20 robust architectures
stack convolutions (via edge 1, followed by either edge 3 or 5), from which we hypothesize that
stacking convolution operations can improve robustness (in contrast to combining parallel ones)
when designing architectures. At the same time, skipping input to output via edge 4 seems
not to affect robustness negatively, as long as the input feature map is combined with stacked
convolutions. Further analyses can be found in Section G.5. We find that optimizing architecture
design can have a substantial impact on the robustness of a network. In this setting, where
networks have the same parameter count, we can see a large range of mean adversarial accuracies
[0.21, 0.4] showing the potential of doubling the robustness of a network by carefully crafting its
topology. Important to note here is that this is a first observation, which can be made by using
our provided dataset. This observation functions as a motivation for how this dataset can be
used to analyze robustness in combination with architecture design.

9.5 Conclusion and Outlook

Summary. We introduce a dataset for neural architecture design and robustness to provide
the research community with more resources for analyzing what constitutes robust networks.

154 CHAPTER 9. ROBUST NEURAL ARCHITECTURE SEARCH

We have evaluated all 6466 unique architectures from the commonly used NAS-Bench-201
benchmark against several adversarial attacks and image dataset corruptions. With this full
evaluation at hand, we presented three use cases for this dataset: First, the correlation between
the robustness of the architectures and two differentiable architecture measurements. We showed
that these measurements are a good first approach for the architecture’s robustness, but have
to be taken with caution when the perturbation increases. Second, neural architecture search
directly on the robust accuracies, which indeed finds more robust architectures for different
adversarial attacks. And last, an initial analysis of architectural design, where we showed that it
is possible to improve robustness of networks with the same number of parameters by carefully
designing their topology.

Adversarially Trained Networks. Adversarial training is a standard method to harden neural
networks against adversarial attacks [GSS15; Mad+18]. While it is interesting to investigate how
neural architectures can be designed to naturally resist adversarial attacks, investigating the
interplay between neural architecture design and adversarial training offers another direction for
future research. Subsequent work evaluated this aspect by enriching our dataset with evaluations
of architectures from NAS-Bench-201 [DY20] that were adversarially trained [Wu+24]. This
opens up further possibilities for future work, investigating whether the findings of this chapter
transfer when the same architectures are trained against adversarial attacks.

Further Distribution Shifts. While the evaluations on NAS-Bench-201 [DY20] that we provide
are based on adversarial attacks [GSS15; KGB17; CH20] and common corruptions [HD19], there
are further distribution shifts that would be interesting to investigate from the perspective
of architecture design. For example, future research could collect and investigate robustness
towards lense distortions [MBK23], or evaluate the shape vs. texture bias [Gei+19] of networks
in NAS-Bench-201.

Class-Wise Fairness. Another interesting direction for future investigation is fairness. Specifi-
cally, the potential bias a classification network may learn by sacrificing performance on one class
to improve performance on another. Blakeney et al. [Bla+22] introduce two metrics to measure
fairness considerations. Extending the introduced dataset with fairness metrics could enable
future research to investigate the influence of architecture design on fairness.

Evaluations on Multiple Seeds. When we collected all evaluations as described in this chapter,
we relied on the pretrained checkpoints provided by NAS-Bench-201 [DY20]. While some archi-
tectures are trained on multiple different seeds, this is not true for all architectures. Consequently,
we decided to only evaluate one of the seeds that was available for all architectures. At the same
time, White, Nolen, and Savani [WNS21b] argue that training and evaluating a network only
once during neural architecture search instead of multiple times introduces noise. They show
that the search results of local search improve substantially when the performance of found
architectures is averaged over multiple training runs. This makes intuitively sense given the
randomness that is involved with initializing and training neural networks. Hence, there is a
strong case for future work to retrain and evaluate the search space across multiple random
seeds to reduce the impact of noise in the dataset.

Chapter 10

Conclusion

REPRESENTATION LEARNING has become a cornerstone of modern computer vision, enabling
models to extract informative, task-relevant features directly from raw data. Yet, despite

substantial advances, challenges remain in guiding these models to learn representations that
are not only accurate but also generalizable, robust, and aligned with task-specific objectives
[Gav+25; Man+25; Zhu+24]. This thesis was motivated by the realization that learning algorithms
require carefully designed inductive biases to achieve such goals. The No Free Lunch (NFL)
theorems [WM97] remind us that there is no universally optimal learning method. Instead,
effective models must be steered using domain knowledge and assumptions about the structure
of learned representations. Throughout this work, we explored how regularization strategies
can serve as vehicles for encoding such assumptions.

In particular, this thesis explored encoding assumptions through three complementary reg-
ularization strategies: (Part I) manually designed penalty terms, (Part II) matching extracted
features, and (Part III) augmenting and assigning importance to data. Each of these parts con-
tributed novel methods that inject inductive biases into representation learning models. We
summarize these contributions in Section 10.1, and then discuss key findings and open research
questions with possible directions for further academic efforts in Section 10.2.

10.1 Thesis Summary

Part I: Penalty-Based Regularization. In the first part of the thesis, we derived penalty terms
from the combinatorial Minimum Cost Multicut Problem (MP) [CR93; DL97] to regularize
representation learning neural networks.

In Chapter 3, cycle consistency constraints from the MP were incorporated as penalty terms
into training of a graph neural network-based solver for the same problem, encouraging it to
produce feasible solutions. For this, we additionally proposed architectural modifications to
common Message Passing Neural Network (MPNN) [Gil+17; KW17] to account for real-valued
edge weights that are necessary to learn MP graph instances. Due to the lack of available large-
scale training data for the MP, we introduced two synthetic datasets, IrisMP and RandomMP,
that our models were trained on. Experiments on these datasets and real-world benchmarks
showed that our model provides efficient and competitive solutions and scales better than highly
optimized heuristics (i.e. Greedy Additive Edge Contraction (GAEC) [Keu+15]). Compared to
heuristics, this representation learning-based method has the ability to provide gradients for
downstream tasks. Applying the proposed penalty term steers the model towards more feasible
solutions with the cost of finding less optimal ones (encoded by the edge classification loss on the
ground truth optimal solutions during training). This demonstrated that we successfully encoded
a preference for feasible solutions, introducing a steerable trade-off. Overall, this yielded edge
representations that more reliably satisfied the discrete optimization constraints, and thereby
improving the validity of solutions.

155

156 CHAPTER 10. CONCLUSION

In Chapter 4, cycle consistency constraints were injected into the training loss of a convolu-
tional network for edge detection. For this, we introduced an adaptive higher-order Conditional
Random Field (CRF) and combined it with the Richer Convolutional Features (RCF) [Liu+19]
model. The CRF energy function is defined by unary and pattern-based potentials that resemble
cycle consistency constraints of the MP on the edge maps produced by the RCF model. Our
experiments showed that combining the proposed CRF penalty with the RCF model results in
sharper edge maps and closed contours. Due to its general design, the CRF can also be applied as
a post-processing method for edge maps. We showed that this is effective in the case of electron
microscopy data.

Together, Chapter 3 and Chapter 4 demonstrated that manually designed penalty terms
encoding structural (cycle consistency) constraints can effectively regularize both graph-based
and image-based representations, yielding outputs that align with our encoded preferences for
feasible solutions and closed contours in edge maps.

Part II: Regularization via Feature Matching. In the second part of the thesis, we regularized
generative models by penalizing discrepancies between features of generated samples and those
of the training data.

Chapter 5 leveraged pretrained feature representations by directly incorporating the Fréchet
Inception Distance (FID) [Heu+17] into the Generative Adversarial Network (GAN) [Goo+14]
training objective. By minimizing FID during training, the generator was steered using learned
features as a proxy for visual quality. This approach revealed intriguing flaws in the FID metric
itself. We showed that a generator optimized for FID can achieve intriguingly high quality
evaluation results (according to FID itself), while synthesized images clearly not align with the
training data from a human perspective. Additionally, we showed that a ranking in terms of
image quality provided by FID is highly subjective to the feature extractor used. In particular,
data augmentations the feature extractor is trained with play a crucial role into which types of
image corruptions FID is more or less sensitive to. These results highlight the need for caution
when using aggregate feature distances as evaluation metrics.

In Chapter 6, we addressed a specific under-researched aspect of GAN output quality: the
frequency distribution of generated images in the spectral domain. We found that standard
GANs exhibit distribution mismatches in the spectral domain. To counter this, we introduced an
additional spectral discriminator network that learns to distinguish training data from generated
images based on frequency spectra. The training signal provided by this discriminator encour-
ages alignment of generated images with training images across both spatial and frequency
domains. This spectral regularization strategy led to better generalization, yielding synthetic
images with frequency statistics nearly matching the training data.

Overall, Part II demonstrated that minimizing the discrepancy between extracted features
from generated images and training images can be an effective tool to encode a preference for
certain features over others. By stepping away from comparing outputs directly, we were able to
set a focus on certain aspects of generated images, such as discriminative features from Inception
v3 and frequency spectra.
Part III: Data-Based Regularization. In the final part, we moved beyond regularized loss terms
and feature matching to impose preferences by weighting and augmenting training data. This
strategy treats the selection and importance of training instances as a vehicle for regularization,
shaping the bias of the model towards desired properties through data itself.

Chapter 7 introduced a novel framework to regularize Vector Quantized Variational Autoen-
coders (VQ-VAEs). In particular, we optimized the categorical representation space of a VQ-VAE

10.2. OPEN PROBLEMS AND FUTURE DIRECTIONS 157

for image synthesis by biasing the training data toward a desired attribute: the smiling intensity
in face images. For this, we generate additional training examples with globally optimal values
of the smiling attribute using an external predictor as a judge. By assigning importance to each
training instance and retraining the model on this modified data distribution, we successfully
guided the representation space to produce images with increased smiling degrees. This data-
driven biasing method effectively encoded a high-level preference without altering the model
architecture or adding an explicit term to the training loss.

Chapter 8 extended the idea of preference-driven data weighting and retraining to Neural
Architecture Search (NAS). Here, we introduce a novel generative NAS approach by combining
a generator network +with a performance predictor to optimize the latent space of the generator
towards attributes we seek in neural architectures. Trivially, this can be accuracy for image
classification networks. However, with this approach we can also encode multiple objectives
at the same time by employing multiple predictors. We demonstrated the effectiveness of this
approach by optimizing for accuracy as well as minimal latency. The supporting Chapter 9
contributed a robustness benchmarking dataset of neural architecture design that can be used in
NAS, providing measurements of model performance under various perturbations and attacks.
This facilitated the NAS procedure in Chapter 8 to search for neural architectures with improved
robustness against multiple adversarial attacks, while balancing the trade-offs between them.

In summary, Part III demonstrated that weighting and augmenting training data can encode
desired properties in the latent space of generative models.

Across these three parts, the thesis introduced a spectrum of techniques to encode prefer-
ences into representation learning models. By introducing penalty terms, feature matching,
and preference-based weighted retraining, we have shown how representation learning can
be steered toward solutions that are more consistent and aligned with specified criteria. Al-
though implemented in different tasks across computer vision, they share the common theme
of improving generalization in specific aspects by integrating inductive biases into the training
process.

10.2 Open Problems and Future Directions

We discussed chapter-specific insights and research outlooks in each respective chapter. Here, we
want to draw common conclusions and provide future directions from a higher-level perspective.

Computational Overhead of Regularization. Regularization often comes with a computational
price, raising important questions about efficiency. We can see this throughout the methods
described in this thesis. For example, we discussed the overhead of enumerating many cycle
consistency constraints in Section 3.6. This can become intractable, as the number of constraints
can grow exponentially. Even after enumerating possible constraints, we also have to add
those penalties to the loss (possibly hundreds to thousands), which substantially increases the
computational graph, and therefore the complexity of backpropagation. Similar is true for the
penalties in Chapter 4. In both cases, we resort to approximations of the cycle constraints, which
means we leave potential mistakes unpenalized. Additionally, for both approaches we resort to
finetuning the model with penalties, and pretraining them on the unregularized task to improve
training times. For our FID-based regularizer, we discuss limitations in Section 5.5. Also here
we resort to approximate FID on small batch sizes because of memory constraints. For these
methods, we are only able to penalize approximations of the actual structures we are trying to
encode (cycle consistency constraints, FID on large batch sizes). For the spectral discriminator in

158 CHAPTER 10. CONCLUSION

Chapter 6, we extract 1D features to reduce the number of parameters and keep the discriminator
lightweight. This might have diminishing effects as discussed in Section 6.6. In Chapter 7 we
discussed that the selecting the next optimal latent space for data augmentation might become
infeasible with higher-resolution models. These cases exemplify a general trade-off that we
see, namely that more advanced regularization tends to improve model quality at the cost of
extra computation or memory requirements. This overhead can make otherwise promising
regularizers impractical for large-scale use. Future research could investigate these methods to
find possible levers that improve efficiency. We discussed some possibilities in the respective
chapters.

A Model is the Sum of its Biases. The NFL theorems motivate the necessity of encoding
our preferences into the model via inductive biases [WM97; SG21]. As we have seen in Sec-
tion 2.4, there is a large number of possibilities to influence the inductive bias of a model, from
architectural design, to penalty terms, optimization, and data augmentation. This can be an
explicit choice by encoding preferences, like we did throughout this thesis. However, this can
also be implicit and easily overlooked. For example, in Subsection 2.4.2 we discussed implicit
regularizing effects that architectural design choices induce, such as batch normalization. Or
in Subsection 2.4.1 we discussed implicit effects of Stochastic Gradient Descent (SGD), which
are still not fully understood and being investigated until today [Gal+25]. All the decisions
we make about a model and its training are reflected in its inductive bias, and we might not
even be aware of some of them. Examples are the lack of spectral fidelity that we tackled in
Chapter 6, or the lack of human alignment of FID that we uncovered in Chapter 5. The more
subtle a misalignment between inductive biases of a model and our expectations of its behavior
is, the longer it might take to be uncovered.

One example of such a misalignment is the story of susceptibility of representation learning
networks to noise, in particular the susceptibility to adversarial attacks [GSS15]. While barely
visible to the human eye, these crafted perturbations enforce model decisions that are not
understandable from a human perspective. We have seen in Chapter 9 that improving robustness
towards these attacks comes with a trade-off with performance on clean images [Tsi+19]. A
straightforward solution to this problem seems to be augmenting the training data with such
perturbations [CH20]. Indeed, it has been shown that adversarial training not only hardens the
models, but also leads to model decisions that are more aligned with human reasoning [GKK23].
However, albeit our intention is simply to harden the network against adversarial attacks, it
was shown that this comes at the cost of sacrificing performance of some classes over others,
leading to a class-wise performance imbalance [Ben+21]. This is an example of an inductive
bias, where regularization (adversarial training) not only has the intended effect of improving
robustness, but also side effects that has to be taken into account. In our work on this topic by
Medi, Jung, and Keuper [MJK25], we propose a method to improve class-wise fairness when
training networks adversarially.

In summary, cases like the misalignment with human ranking in FID (due to data augmenting
the backbone), as well as the effect on fairness when training adversarially have shown us that
we should take caution when regularizing models to encode preferences. We need a holistic view,
and might need to take more metrics and benchmarks into account when training representation
learning models under the pretext of guiding them. Since we have seen, a model is the sum of
all its inductive biases.

Bibliography
[ACB17] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein Generative Adversarial

Networks”. In: International Conference on Machine Learning (ICML). 2017.

[Ach+13] P. Acharjya, A. Sinha, S. Sarkar, S. Dey, and S. Ghosh. “A new Approach of Water-
shed Algorithm Using Distance Transform Applied to Image Segmentation”. In:
International Journal of Innovative Research in Computer and Communication Engineering
1.2 (2013), pp. 185–189.

[AJK24] S. Agnihotri†, S. Jung†, and M. Keuper. “CosPGD: an efficient white-box adversar-
ial attack for pixel-wise prediction tasks”. In: International Conference on Machine
Learning (ICML). 2024.

[Alb+19] I. Albuquerque, J. Monteiro, T. Doan, B. Considine, T. Falk, and I. Mitliagkas.
“Multi-Objective Training of Generative Adversarial Networks with Multiple Dis-
criminators”. In: International Conference on Machine Learning (ICML). 2019.

[Alf+22] M. Alfarra, J. C. Pérez, A. Frühstück, P. H. S. Torr, P. Wonka, and B. Ghanem. “On
the Robustness of Quality Measures for GANs”. In: European Conference on Computer
Vision (ECCV). 2022.

[And+11] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Hamprecht. “Probabilistic
Image Segmentation with Closedness Constraints”. In: International Conference on
Computer Vision (ICCV). 2011.

[And+12] B. Andres, T. Kroeger, K. L. Briggman, W. Denk, N. Korogod, G. Knott, U. Koethe,
and F. A. Hamprecht. “Globally Optimal Closed-Surface Segmentation for Connec-
tomics”. In: European Conference on Computer Vision (ECCV). 2012.

[And+13] B. Andres, J. Yarkony, B. S. Manjunath, S. Kirchhoff, E. Turetken, C. Fowlkes, and
H. Pfister. “Segmenting Planar Superpixel Adjacency Graphs w.r.t. Non-planar Su-
perpixel Affinity Graphs”. In: Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops. 2013.

[And+20] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. “Square Attack: A
Query-Efficient Black-Box Adversarial Attack via Random Search”. In: European
Conference on Computer Vision (ECCV). 2020.

[And+23] M. Andriushchenko, F. Croce, M. Müller, M. Hein, and N. Flammarion. “A Modern
Look at the Relationship between Sharpness and Generalization”. In: International
Conference on Machine Learning (ICML). 2023.

[Ara+21] E. Arakelyan, D. Daza, P. Minervini, and M. Cochez. “Complex Query Answering
with Neural Link Predictors”. In: International Conference on Learning Representations
(ICLR). 2021.

[Arb+09] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. “From Contours to Regions: An
Empirical Evaluation”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2009.

[Arb+11] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. “Contour Detection and Hierarchi-
cal Image Segmentation”. In: Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 33.5 (2011), pp. 898–916.

159

160 BIBLIOGRAPHY

[Arb+14] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. “Multiscale Combina-
torial Grouping”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2014.

[Arb06] P. Arbelaez. “Boundary Extraction in Natural Images Using Ultrametric Contour
Maps”. In: Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
2006.

[Arg+15] I. Arganda-Carreras, S. C. Turaga, D. R. Berger, D. Cireşan, A. Giusti, L. M. Gam-
bardella, J. Schmidhuber, D. Laptev, S. Dwivedi, J. M. Buhmann, T. Liu, M. Seyed-
hosseini, T. Tasdizen, L. Kamentsky, R. Burget, V. Uher, X. Tan, C. Sun, T. D. Pham,
E. Bas, M. G. Uzunbas, A. Cardona, J. Schindelin, and H. S. Seung. “Crowdsourcing
the creation of image segmentation algorithms for connectomics”. In: Frontiers in
Neuroanatomy 9 (2015), p. 142.

[AS21] A. Abbas and P. Swoboda. “Combinatorial Optimization for Panoptic Segmentation:
A Fully Differentiable Approach”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2021.

[AS24] A. Abbas and P. Swoboda. “DOGE-Train: Discrete Optimization on GPU with End-
to-end Training”. In: Association for the Advancement of Artificial Intelligence (AAAI).
2024.

[Bai+20] Y. Bai, Y. Guo, J. Wei, L. Lu, R. Wang, and Y. Wang. “Fake Generated Painting
Detection via Frequency Analysis”. In: International Conference on Image Processing
(ICIP). 2020.

[Bam24] Q. Bammey. “Synthbuster: Towards Detection of Diffusion Model Generated Im-
ages”. In: IEEE Open Journal of Signal Processing 5 (2024), pp. 1–9.

[BB12] J. Bergstra and Y. Bengio. “Random Search for Hyper-Parameter Optimization”. In:
Journal of Machine Learning Research (JMLR) 13.10 (2012), pp. 281–305.

[BBC04] N. Bansal, A. Blum, and S. Chawla. “Correlation Clustering”. In: Machine Learning
56.1–3 (2004), pp. 89–113.

[BCF10] E. Brochu, V. M. Cora, and N. d. Freitas. A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. 2010. arXiv: 1012.2599.

[BCV13] Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Review and
New Perspectives”. In: Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 35.8 (2013), pp. 1798–1828.

[BD21] D. Barrett and B. Dherin. “Implicit Gradient Regularization”. In: International Con-
ference on Learning Representations (ICLR). 2021.

[BDS19] A. Brock, J. Donahue, and K. Simonyan. “Large Scale GAN Training for High
Fidelity Natural Image Synthesis”. In: International Conference on Learning Represen-
tations (ICLR). 2019.

[Bei+14] T. Beier, T. Kroeger, J. Kappes, U. Köthe, and F. Hamprecht. “Cut, Glue, & Cut: A
Fast, Approximate Solver for Multicut Partitioning”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2014.

[Bei+16] T. Beier, B. Andres, U. Köthe, and F. A. Hamprecht. “An Efficient Fusion Move
Algorithm for the Minimum Cost Lifted Multicut Problem”. In: European Conference
on Computer Vision (ECCV). 2016.

https://arxiv.org/abs/1012.2599

BIBLIOGRAPHY 161

[Bei+17] T. Beier, C. Pape, N. Rahaman, T. Prange, S. Berg, D. D. Bock, A. Cardona, G. W.
Knott, S. M. Plaza, L. K. Scheffer, U. Koethe, A. Kreshuk, and F. A. Hamprecht.
“Multicut brings automated neurite segmentation closer to human performance”.
In: Nature Methods 14.2 (2017), pp. 101–102.

[Bel+17] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio. “Neural Combinatorial
Optimization with Reinforcement Learning”. In: International Conference on Learning
Representations (ICLR) Workshops. 2017.

[Ben+18] G. Bender, P. Kindermans, B. Zoph, V. Vasudevan, and Q. V. Le. “Understanding
and Simplifying One-Shot Architecture Search”. In: International Conference on
Machine Learning (ICML). 2018.

[Ben+21] P. Benz, C. Zhang, A. Karjauv, and I. S. Kweon. “Robustness May Be at Odds
with Fairness: An Empirical Study on Class-wise Accuracy”. In: Advances in Neural
Information Processing Systems (NeurIPS) Workshops. 2021.

[Beu+21] T. Beucler, M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine. “Enforcing Analytic
Constraints in Neural Networks Emulating Physical Systems”. In: Physical Review
Letters 126 (9 2021), p. 098302.

[Beu79] S. Beucher. “Use of Watersheds in Contour Detection”. In: Proceedings of the Interna-
tional Workshop on Image Processing. 1979.

[BHK15] T. Beier, F. A. Hamprecht, and J. H. Kappes. “Fusion Moves for Correlation Cluster-
ing”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2015.

[Bia+20] G. Biau, B. Cadre, M. Sangnier, and U. Tanielian. “Some Theoretical Properties of
GANs”. In: Annals of Statistics 48.3 (2020), pp. 1539–1566.

[Bis06] C. Bishop. Pattern Recognition and Machine Learning. Vol. 4. Springer New York,
2006.

[BKC17] V. Badrinarayanan, A. Kendall, and R. Cipolla. “SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation”. In: Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 39.12 (2017), pp. 2481–2495.

[Bla+22] C. Blakeney, G. Atkinson, N. Huish, Y. Yan, V. Metsis, and Z. Zong. “Measuring Bias
and Fairness in Multiclass Classification”. In: International Conference on Networking,
Architecture and Storage (NAS). 2022.

[Blo19] M. Blondel. “Structured Prediction with Projection Oracles”. In: Advances in Neural
Information Processing Systems (NeurIPS). Curran Associates Inc., 2019.

[Bor19] A. Borji. “Pros and Cons of GAN Evaluation Measures”. In: Computer Vision and
Image Understanding 179 (2019), pp. 41–65.

[Bor22] A. Borji. “Pros and Cons of GAN Evaluation Measures: New Developments”. In:
Computer Vision and Image Understanding 215 (2022), p. 103329.

[Bre01] L. Breiman. “Random Forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[Bro+20] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T.
Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Rad-
ford, I. Sutskever, and D. Amodei. “Language Models are Few-Shot Learners”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2020.

162 BIBLIOGRAPHY

[BS18] S. T. Barratt and R. Sharma. “A Note on the Inception Score”. In: International
Conference on Machine Learning (ICML) Workshops. 2018.

[BSF94] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies with
gradient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2 (1994),
pp. 157–166.

[BST15] G. Bertasius, J. Shi, and L. Torresani. “DeepEdge: A Multi-Scale Bifurcated Deep
Network for Top-Down Contour Detection”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2015.

[BTG06] H. Bay, T. Tuytelaars, and L. V. Gool. “SURF: Speeded Up Robust Features”. In:
European Conference on Computer Vision (ECCV). 2006.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[Can86] J. Canny. “A computational approach to edge detection”. In: Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 6 (1986), pp. 679–698.

[Car+10] A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, P. Tomancak,
and V. Hartenstein. “An Integrated Micro- and Macroarchitectural Analysis of the
Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy”. In:
PLOS Biology 8.10 (2010), e1000502.

[Car+12] A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, M. Longair,
P. Tomancak, V. Hartenstein, and R. J. Douglas. “TrakEM2 software for neural
circuit reconstruction”. In: PLOS One 7.6 (2012), e38011.

[Car+19] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. J. Goodfel-
low, A. Madry, and A. Kurakin. On Evaluating Adversarial Robustness. 2019. arXiv:
1902.06705.

[CCL25] G. E. Constante-Flores, H. Chen, and C. Li. Enforcing Hard Linear Constraints in Deep
Learning Models with Decision Rules. 2025. arXiv: 2505.13858.

[CF20] M. J. Chong and D. Forsyth. “Effectively Unbiased FID and Inception Score and
Where to Find Them”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2020.

[CFL24] H. Chen, G. E. C. Flores, and C. Li. “Physics-informed neural networks with hard lin-
ear equality constraints”. In: Computers & Chemical Engineering 189 (2024), p. 108764.

[CFP21] C. R. Chen, Q. Fan, and R. Panda. “CrossViT: Cross-Attention Multi-Scale Vision
Transformer for Image Classification”. In: International Conference on Computer Vision
(ICCV). 2021.

[CG16] T. Chen and C. Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: Interna-
tional Conference on Knowledge Discovery and Data Mining. 2016.

[CGW21] W. Chen, X. Gong, and Z. Wang. “Neural Architecture Search on ImageNet in Four
GPU Hours: A Theoretically Inspired Perspective”. In: International Conference on
Learning Representations (ICLR). 2021.

[CH20] F. Croce and M. Hein. “Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks”. In: International Conference on Machine
Learning (ICML). 2020.

[CH22] J. Choi and B. Han. “MCL-GAN: Generative Adversarial Networks with Multiple
Specialized Discriminators”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2022.

https://arxiv.org/abs/1902.06705
https://arxiv.org/abs/2505.13858

BIBLIOGRAPHY 163

[Cha+19] A. Chatzimichailidis, J. Keuper, F. Pfreundt, and N. R. Gauger. “GradVis: Visual-
ization and Second Order Analysis of Optimization Surfaces during the Training
of Deep Neural Networks”. In: Workshop on Machine Learning in High Performance
Computing Environments (MLHPC). 2019.

[Che+16a] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. “InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative
Adversarial Nets”. In: Advances in Neural Information Processing Systems (NeurIPS).
2016.

[Che+16b] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. “14.5 Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks”. In: International
Solid-State Circuits Conference (ISSCC). 2016.

[Che+18] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas, and M.
Morari. “Approximating Explicit Model Predictive Control Using Constrained
Neural Networks”. In: Annual American Control Conference (ACC). 2018, pp. 1520–
1527.

[Che+19] X. Chen, L. Xie, J. Wu, and Q. Tian. “Progressive Differentiable Architecture Search:
Bridging the Depth Gap Between Search and Evaluation”. In: International Confer-
ence on Computer Vision (ICCV). 2019.

[Che+25] H. Chen, Q. Xiang, J. Hu, M. Ye, C. Yu, H. Cheng, and L. Zhang. “Comprehen-
sive exploration of diffusion models in image generation: a survey”. In: Artificial
Intelligence Review 58.4 (Jan. 2025).

[Chi21] R. Child. “Very Deep VAEs Generalize Autoregressive Models and Can Outperform
Them on Images”. In: International Conference on Learning Representations (ICLR).
2021.

[Cho+18] Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo. “StarGAN: Unified Gener-
ative Adversarial Networks for Multi-Domain Image-to-Image Translation”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2018.

[Chu+25] B. Chu, X. Xu, X. Wang, Y. Zhang, W. You, and L. Zhou. “FIRE: Robust Detection
of Diffusion-Generated Images via Frequency-Guided Reconstruction Error”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2025.

[CLH17] P. Chrabaszcz, I. Loshchilov, and F. Hutter. A Downsampled Variant of ImageNet as an
Alternative to the CIFAR datasets. 2017. arXiv: 1707.08819.

[CM02] D. Comaniciu and P. Meer. “Mean Shift: A Robust Approach Toward Feature Space
Analysis”. In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 24.5
(2002), pp. 603–619.

[Cog+16] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Batra. “Reducing Overfitting
in Deep Networks by Decorrelating Representations”. In: International Conference
on Learning Representations (ICLR). 2016.

[Cor+23] R. Corvi, D. Cozzolino, G. Poggi, K. Nagano, and L. Verdoliva. “Intriguing Prop-
erties of Synthetic Images: From Generative Adversarial Networks to Diffusion
Models”. In: Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.
2023.

[CR93] S. Chopra and M. R. Rao. “The Partition Problem”. In: Mathematical Programming
59.1 (1993), pp. 87–115.

https://arxiv.org/abs/1707.08819

164 BIBLIOGRAPHY

[Cro+21] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti, N. Flammarion, M. Chi-
ang, P. Mittal, and M. Hein. “RobustBench: a standardized adversarial robustness
benchmark”. In: NeurIPS Datasets and Benchmarks. 2021.

[Csi+07] I. Csiszár, G. O. H. Katona, G. Tardos, and G. Wiener. Entropy, Search, Complexity.
Vol. 16. Springer Science & Business Media, 2007.

[Csi75] I. Csiszár. “I-Divergence Geometry of Probability Distributions and Minimization
Problems”. In: The Annals of Probability (1975), pp. 146–158.

[Cub+19] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. “AutoAugment:
Learning Augmentation Policies from Data”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2019.

[Cub+20] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. “RandAugment: Practical automated
data augmentation with a reduced search space”. In: Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops. 2020.

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In: Math-
ematics of Control, Signals, and Systems 2.4 (Dec. 1989), pp. 303–314.

[CZ20] Y. Chen and B. Zhang. Learning to Solve Network Flow Problems via Neural Decoding.
2020. arXiv: 2002.04091.

[CZH19] H. Cai, L. Zhu, and S. Han. “ProxylessNAS: Direct Neural Architecture Search on
Target Task and Hardware”. In: International Conference on Learning Representations
(ICLR). 2019.

[Dai+17a] B. Dai, S. Fidler, R. Urtasun, and D. Lin. “Towards Diverse and Natural Image
Descriptions via a Conditional GAN”. In: International Conference on Computer Vision
(ICCV). 2017.

[Dai+17b] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song. “Learning Combinatorial
Optimization Algorithms over Graphs”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2017.

[DB16] A. Dosovitskiy and T. Brox. “Generating Images with Perceptual Similarity Metrics
based on Deep Networks”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2016.

[Dem+06] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. “Correlation Clustering in
General Weighted Graphs”. In: Theoretical Computer Science 361.2–3 (2006), pp. 172–
187.

[Den+09] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-
Scale Hierarchical Image Database”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2009.

[Dev+21] C. Devaguptapu, D. Agarwal, G. Mittal, P. Gopalani, and V. N. Balasubramanian.
“On Adversarial Robustness: A Neural Architecture Search perspective”. In: Inter-
national Conference on Computer Vision (ICCV) Workshops. 2021.

[DFO20] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for Machine Learning.
Cambridge University Press, 2020.

[DGF16] E. L. Denton, S. Gross, and R. Fergus. “Semi-Supervised Learning with Context-
Conditional Generative Adversarial Networks”. In: CoRR abs/1611.06430 (2016).
arXiv: 1611.06430.

https://arxiv.org/abs/2002.04091
https://arxiv.org/abs/1611.06430

BIBLIOGRAPHY 165

[DGM17] I. Durugkar, I. Gemp, and S. Mahadevan. “Generative Multi-Adversarial Net-
works”. In: International Conference on Learning Representations (ICLR). 2017.

[Din+20] J. Ding, C. Zhang, L. Shen, S. Li, B. Wang, Y. Xu, and L. Song. “Accelerating Primal
Solution Findings for Mixed Integer Programs Based on Solution Prediction”. In:
Association for the Advancement of Artificial Intelligence (AAAI). 2020.

[DK17] S. F. Dodge and L. J. Karam. A Study and Comparison of Human and Deep Learning
Recognition Performance Under Visual Distortions. 2017. arXiv: 1705.02498.

[DKD17] J. Donahue, P. Krähenbühl, and T. Darrell. “Adversarial Feature Learning”. In:
International Conference on Learning Representations (ICLR). 2017.

[DKK20] R. Durall, M. Keuper, and J. Keuper. “Watch your Up-Convolution: CNN Based
Generative Deep Neural Networks are failing to reproduce Spectral Distributions”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2020.

[DL97] M. M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer, 1997.

[DMT18] T. Derr, Y. Ma, and J. Tang. “Signed Graph Convolutional Networks”. In: IEEE
International Conference on Data Mining. 2018.

[DN21] P. Dhariwal and A. Nichol. “Diffusion Models Beat GANs on Image Synthesis”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2021.

[Don+20] Y. Dong, Q. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, and J. Zhu. “Benchmarking
Adversarial Robustness on Image Classification”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2020.

[Don+25] M. Dong, Y. Li, Y. Wang, and C. Xu. “Adversarially Robust Neural Architectures”.
In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 47.5 (2025),
pp. 4183–4197.

[DTP21] P. Dragone, S. Teso, and A. Passerini. “Neuro-Symbolic Constraint Programming
for Structured Prediction”. In: International Workshop on Neural-Symbolic Learning
and Reasoning. 2021.

[Dua+21] Y. Duan, X. Chen, H. Xu, Z. Chen, X. Liang, T. Zhang, and Z. Li. “TransNAS-
Bench-101: Improving Transferability and Generalizability of Cross-Task Neural
Architecture Search”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2021.

[Dur+20] R. Durall, M. Keuper, F. Pfreundt, and J. Keuper. Unmasking DeepFakes with simple
Features. 2020. arXiv: 1911.00686.

[DV18] V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. 2018.
arXiv: 1603.07285.

[DY19a] X. Dong and Y. Yang. “One-Shot Neural Architecture Search via Self-Evaluated
Template Network”. In: International Conference on Computer Vision (ICCV). 2019.

[DY19b] X. Dong and Y. Yang. “Searching for a Robust Neural Architecture in Four GPU
Hours”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[DY20] X. Dong and Y. Yang. “NAS-Bench-201: Extending the Scope of Reproducible
Neural Architecture Search”. In: International Conference on Learning Representations
(ICLR). 2020.

[DZ13] P. Dollár and C. L. Zitnick. “Structured Forests for Fast Edge Detection”. In: Interna-
tional Conference on Computer Vision (ICCV). 2013.

https://arxiv.org/abs/1705.02498
https://arxiv.org/abs/1911.00686
https://arxiv.org/abs/1603.07285

166 BIBLIOGRAPHY

[EMH19] T. Elsken, J. H. Metzen, and F. Hutter. “Neural Architecture Search: A Survey”. In:
Journal of Machine Learning Research (JMLR) 20.1 (2019), pp. 1997–2017.

[Ess+24] P. Esser, S. Kulal, A. Blattmann, R. Entezari, J. Müller, H. Saini, Y. Levi, D. Lorenz,
A. Sauer, F. Boesel, D. Podell, T. Dockhorn, Z. English, K. Lacey, A. Goodwin, Y.
Marek, and R. Rombach. Scaling Rectified Flow Transformers for High-Resolution Image
Synthesis. 2024. arXiv: 2403.03206.

[Est+21] A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu, E. Topol,
J. Dean, and R. Socher. “Deep learning-enabled medical computer vision”. In: npj
Digital Medicine 4.1 (2021), p. 5.

[Fis36] R. A. Fisher. “The use of multiple measurements in taxonomic problems”. In: Annals
of Eugenics 7.2 (1936), pp. 179–188.

[FJK25] M. Fatima, S. Jung, and M. Keuper. “Corner Cases: How Size and Position of
Objects Challenge ImageNet-Trained Models”. In: Transactions on Machine Learning
Research (TMLR) (2025).

[FL19] M. Fey and J. E. Lenssen. “Fast Graph Representation Learning with PyTorch
Geometric”. In: International Conference on Learning Representations (ICLR) Workshops.
2019.

[FNW07] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. “Gradient Projection for Sparse
Reconstruction: Application to Compressed Sensing and Other Inverse Problems”.
In: IEEE Journal of Selected Topics in Signal Processing 1.4 (2007), pp. 586–597.

[Fra+20] J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer, D. Kolossa, and T. Holz. “Lever-
aging Frequency Analysis for Deep Fake Image Recognition”. In: International
Conference on Machine Learning (ICML). 2020.

[Fri01] J. H. Friedman. “Greedy function approximation: A gradient boosting machine.”
In: The Annals of Statistics 29.5 (2001), pp. 1189–1232.

[Fu+23] S. Fu, N. Y. Tamir, S. Sundaram, L. Chai, R. Zhang, T. Dekel, and P. Isola. “DreamSim:
learning new dimensions of human visual similarity using synthetic data”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2023.

[Gal+25] T. Galanti, Z. S. Siegel, A. Gupte, and T. A. Poggio. “SGD with Weight Decay Secretly
Minimizes the Ranks of Your Neural Networks”. In: Conference on Parsimony and
Learning. 2025.

[Gal16] J. Gallier. Spectral Theory of Unsigned and Signed Graphs. Applications to Graph Cluster-
ing: a Survey. 2016. arXiv: 1601.04692.

[Gas+19] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. “Exact Combinatorial
Optimization with Graph Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2019.

[Gav+25] P. Gavrikov, J. Lukasik, S. Jung, R. Geirhos, B. Lamm, M. J. Mirza, M. Keuper, and
J. Keuper. “Can We Talk Models Into Seeing the World Differently?” In: International
Conference on Learning Representations (ICLR). 2025.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[GBD92] S. Geman, E. Bienenstock, and R. Doursat. “Neural Networks and the Bias/Variance
Dilemma”. In: Neural Computation 4.1 (Jan. 1992), pp. 1–58.

[Gei+19] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Bren-
del. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness. 2019.

https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/1601.04692

BIBLIOGRAPHY 167

[Gho+20] P. Ghosh, M. S. M. Sajjadi, A. Vergari, M. J. Black, and B. Schölkopf. “From Vari-
ational to Deterministic Autoencoders”. In: International Conference on Learning
Representations (ICLR). 2020.

[Gil+17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. “Neural Message
Passing for Quantum Chemistry”. In: International Conference on Machine Learning
(ICML). 2017.

[Gir+14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2014.

[GKK23] P. Gavrikov, J. Keuper, and M. Keuper. “An Extended Study of Human-Like Be-
havior Under Adversarial Training”. In: Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. 2023.

[Góm+18] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-
Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and
A. Aspuru-Guzik. “Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules”. In: ACS Central Science 4.2 (2018), pp. 268–276.

[Goo+14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative Adversarial Networks”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2014.

[Goo21a] Google LLC. Advanced Guide to Inception v3 on Cloud TPU. Accessed: 2021-10-08.
2021. URL: https://cloud.google.com/tpu/docs/inception-v3-advanced.

[Goo21b] Google LLC. Edge TPU Compiler. Accessed: 2021-11-17. 2021. URL: https://coral.
ai/docs/dev-board/get-started/.

[Goo21c] Google LLC. Pixel 3. Accessed: 2021-11-17. 2021. URL: https://g.co/kgs/pVRc1Y.

[Gra+22] J. Grabinski, S. Jung, J. Keuper, and M. Keuper. “FrequencyLowCut Pooling - Plug
and Play Against Catastrophic Overfitting”. In: European Conference on Computer
Vision (ECCV). 2022.

[Gro+19] A. Grover, J. Song, A. Agarwal, K. Tran, A. Kapoor, E. Horvitz, and S. Ermon.
“Bias Correction of Learned Generative Models Using Likelihood-Free Importance
Weighting”. In: Advances in Neural Information Processing Systems (NeurIPS). 2019.

[GSS15] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial
Examples”. In: International Conference on Learning Representations (ICLR). 2015.

[GSV17] S. Gurumurthy, R. K. Sarvadevabhatla, and R. B. Venkatesh. “DeLiGAN: Generative
Adversarial Networks for Diverse and Limited Data”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2017.

[Gul+17a] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. “Improved
Training of Wasserstein GANs”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2017.

[Gul+17b] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. Courville.
“PixelVAE: A Latent Variable Model for Natural Images”. In: International Conference
on Learning Representations (ICLR). 2017.

[Guo+17] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. “On Calibration of Modern Neural
Networks”. In: International Conference on Machine Learning (ICML). 2017.

https://cloud.google.com/tpu/docs/inception-v3-advanced
https://coral.ai/docs/dev-board/get-started/
https://coral.ai/docs/dev-board/get-started/
https://g.co/kgs/pVRc1Y

168 BIBLIOGRAPHY

[Guo+20] M. Guo, Y. Yang, R. Xu, Z. Liu, and D. Lin. “When NAS Meets Robustness: In Search
of Robust Architectures Against Adversarial Attacks”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2020.

[Gur21] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2021. URL: https:
//www.gurobi.com.

[GW18] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Pearson, 2018.

[GW90] M. Grötschel and Y. Wakabayashi. “Facets of the clique partitioning polytope”. In:
Mathematical Programming 47.1 (1990), pp. 367–387.

[HB20] D. Hernandez and T. B. Brown. Measuring the Algorithmic Efficiency of Neural Net-
works. 2020. arXiv: 2005.04305.

[HC21] S. Huang and W. Chu. “Searching by Generating: Flexible and Efficient One-Shot
NAS With Architecture Generator”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2021.

[HD19] D. Hendrycks and T. Dietterich. “Benchmarking Neural Network Robustness to
Common Corruptions and Perturbations”. In: International Conference on Learning
Representations (ICLR). 2019.

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”. In: International Conference
on Computer Vision (ICCV). 2015.

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recogni-
tion”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

[He+19] J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang. “Bi-Directional Cascade Net-
work for Perceptual Edge Detection”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2019.

[Hen+20] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan.
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty. 2020.

[Heu+17] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. “GANs
Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2017.

[Hig+17] I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: International Conference on Learning Representations
(ICLR). 2017.

[HJA20] J. Ho, A. Jain, and P. Abbeel. “Denoising Diffusion Probabilistic Models”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). 2020.

[HK20] A. Hernández-García and P. König. Data augmentation instead of explicit regularization.
2020. arXiv: 1806.03852.

[HLS13] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant. Applied Logistic Regression. Wiley
Series in Probability and Statistics. Wiley, 2013.

[Ho+20] K. Ho, A. Kardoost, F. Pfreundt, J. Keuper, and M. Keuper. “A Two-Stage Minimum
Cost Multicut Approach to Self-Supervised Multiple Person Tracking”. In: Asian
Conference on Computer Vision (ACCV). 2020.

[Hou05] Y. P. Hou. “Bounds for the Least Laplacian Eigenvalue of a Signed Graph”. In: Acta
Math Sinica 21.4 (2005), pp. 955–960.

https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2005.04305
https://arxiv.org/abs/1806.03852

BIBLIOGRAPHY 169

[How+17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. 2017. arXiv: 1704.04861.

[HRY19] J. Hoffman, D. A. Roberts, and S. Yaida. Robust Learning with Jacobian Regularization.
2019. arXiv: 1908.02729.

[HS06] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with
Neural Networks”. In: Science 313.5786 (2006), pp. 504–507.

[Hua+17] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. “Densely connected
convolutional networks”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2017.

[Hua+18] X. Huang, M. Liu, S. Belongie, and J. Kautz. “Multimodal Unsupervised Image-to-
Image Translation”. In: European Conference on Computer Vision (ECCV). 2018.

[Hua+21] D. Huang, H. Zhang, X. Song, and R. Shibasaki. Differentiable Projection for Con-
strained Deep Learning. 2021. arXiv: 2111.10785.

[HVD15] G. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural Network. 2015.
arXiv: 1503.02531.

[HYX21] R. Hosseini, X. Yang, and P. Xie. “DSRNA: Differentiable Search of Robust Neural
Architectures”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2021.

[Ins+16] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele. “DeeperCut:
A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model”. In: European
Conference on Computer Vision (ECCV). 2016.

[IS15] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”. In: International Conference on Machine Learning
(ICML). 2015.

[ISI17] S. Iizuka, E. Simo-Serra, and H. Ishikawa. “Globally and Locally Consistent Image
Completion”. In: ACM Transactions on Graphics (ToG) 36.4 (2017), p. 107.

[Iso+17] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. “Image-to-Image Translation with Condi-
tional Adversarial Networks”. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2017.

[Jaj+24] D. Jajeśniak, P. Kościelniak, P. Klocek, and M. Mazur. “Interpoint Inception Distance:
Gaussian-Free Evaluation of Deep Generative Models”. In: International Conference
on Computational Science (ICCS). 2024.

[Jan+20] J. Janai, F. Güney, A. Behl, and A. Geiger. “Computer Vision for Autonomous
Vehicles: Problems, Datasets and State of the Art”. In: Foundations and Trends in
Computer Graphics and Vision 12.1–3 (2020), pp. 1–308.

[Jay+24] S. Jayasumana, S. Ramalingam, A. Veit, D. Glasner, A. Chakrabarti, and S. Kumar.
“Rethinking FID: Towards a Better Evaluation Metric for Image Generation”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2024.

[JBJ20] W. Jin, R. Barzilay, and T. Jaakkola. “Junction Tree Variational Autoencoder for
Molecular Graph Generation”. In: Artificial Intelligence in Drug Discovery. The Royal
Society of Chemistry, 2020.

[JG18] D. Jakubovitz and R. Giryes. “Improving DNN Robustness to Adversarial Attacks
Using Jacobian Regularization”. In: European Conference on Computer Vision (ECCV).
2018.

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1908.02729
https://arxiv.org/abs/2111.10785
https://arxiv.org/abs/1503.02531

170 BIBLIOGRAPHY

[Jia+21] Y. Jiang, Z. Huang, X. Pan, C. C. Loy, and Z. Liu. “Talk-to-Edit: Fine-Grained Facial
Editing via Dialog”. In: International Conference on Computer Vision (ICCV). 2021.

[JK21a] S. Jung and M. Keuper. “Internalized Biases in Fréchet Inception Distance”. In:
Advances in Neural Information Processing Systems (NeurIPS) Workshop on Distribution
Shifts: Connecting Methods and Applications. 2021.

[JK21b] S. Jung and M. Keuper. “Spectral Distribution Aware Image Generation”. In: Associ-
ation for the Advancement of Artificial Intelligence (AAAI). 2021.

[JK22] S. Jung and M. Keuper. “Learning to solve Minimum Cost Multicuts efficiently
using Edge-Weighted Graph Convolutional Neural Networks”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. 2022.

[JLB19] C. K. Joshi, T. Laurent, and X. Bresson. An Efficient Graph Convolutional Network
Technique for the Travelling Salesman Problem. 2019. arXiv: 1906.01227.

[JLK23] S. Jung*, J. Lukasik*, and M. Keuper. “Neural Architecture Design and Robustness:
A Dataset”. In: International Conference on Learning Representations (ICLR). 2023.

[JT21] L. Jing and Y. Tian. “Self-Supervised Visual Feature Learning With Deep Neural
Networks: A Survey”. In: Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 43.11 (2021), pp. 4037–4058.

[Jun+22] S. Jung, S. Ziegler, A. Kardoost, and M. Keuper. “Optimizing Edge Detection for
Image Segmentation with Multicut Penalties”. In: German Conference on Pattern
Recognition (GCPR). 2022.

[Jun+23] S. Jung, J. C. Schwedhelm, C. Schillings, and M. Keuper. “Happy People–Image Syn-
thesis as Black-Box Optimization Problem in the Discrete Latent Space of Deep Gen-
erative Models”. In: Conference on Computer Vision and Pattern Recognition (CVPR)
Workshop: Generative Models for Computer Vision. 2023.

[KAB15] M. Keuper, B. Andres, and T. Brox. “Motion Trajectory Segmentation via Minimum
Cost Multicuts”. In: International Conference on Computer Vision (ICCV). 2015.

[Kan+18] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and E. P. Xing. “Neural Ar-
chitecture Search with Bayesian Optimisation and Optimal Transport”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2018.

[Kap+11] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schnörr. “Globally Optimal
Image Partitioning by Multicuts”. In: Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. 2011.

[Kap+15a] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim,
B. X. Kausler, T. Kröger, J. Lellmann, N. Komodakis, B. Savchynskyy, and C. Rother.
“A Comparative Study of Modern Inference Techniques for Structured Discrete
Energy Minimization Problems”. In: International Journal of Computer Vision (IJCV)
115.2 (2015), pp. 155–184.

[Kap+15b] J. H. Kappes, P. Swoboda, B. Savchynskyy, T. Hazan, and C. Schnörr. “Probabilistic
Correlation Clustering and Image Partitioning Using Perturbed Multicuts”. In: Scale
Space and Variational Methods in Computer Vision. 2015.

[Kap+16] J. H. Kappes, M. Speth, G. Reinelt, and C. Schnörr. “Higher-order Segmentation via
Multicuts”. In: Computer Vision and Image Understanding 143 (2016), pp. 104–119.

[Kar+17] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing of gans for
improved quality, stability, and variation”. In: International Conference on Learning
Representations (ICLR). 2017.

https://arxiv.org/abs/1906.01227

BIBLIOGRAPHY 171

[Kar+20a] A. Kardoost, K. Ho, P. Ochs, and M. Keuper. “Self-supervised Sparse to Dense
Motion Segmentation”. In: Asian Conference on Computer Vision (ACCV). 2020.

[Kar+20b] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. “Analyzing and
Improving the Image Quality of StyleGAN”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2020.

[Kar+22] T. Karras, M. Aittala, T. Aila, and S. Laine. “Elucidating the Design Space of
Diffusion-Based Generative Models”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2022.

[Kar+25] D. Karageorgiou, S. Papadopoulos, I. Kompatsiaris, and E. Gavves. “Any-
Resolution AI-Generated Image Detection by Spectral Learning”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2025.

[Kat04] Y. Katznelson. An Introduction to Harmonic Analysis. Cambridge University Press,
2004.

[KB15] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: Interna-
tional Conference on Learning Representations (ICLR). 2015.

[KBK22] K. Kawaguchi, Y. Bengio, and L. Kaelbling. “Generalization in Deep Learning”.
In: Mathematical Aspects of Deep Learning. Cambridge University Press, Dec. 2022,
pp. 112–148.

[Kes+17] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. “On
Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima”.
In: International Conference on Learning Representations (ICLR). 2017.

[Keu+15] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and B. Andres. “Efficient
Decomposition of Image and Mesh Graphs by Lifted Multicuts”. In: International
Conference on Computer Vision (ICCV). 2015.

[Keu+20] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele. “Motion Segmentation
Multiple Object Tracking by Correlation Co-Clustering”. In: Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 42.1 (2020), pp. 140–153.

[Keu17] M. Keuper. “Higher-Order Minimum Cost Lifted Multicuts for Motion Segmenta-
tion”. In: International Conference on Computer Vision (ICCV). 2017.

[KGB17] A. Kurakin, I. J. Goodfellow, and S. Bengio. “Adversarial Machine Learning at
Scale”. In: International Conference on Learning Representations (ICLR). 2017.

[KGC17] J. Kukačka, V. Golkov, and D. Cremers. Regularization for Deep Learning: A Taxonomy.
2017. arXiv: 1710.10686.

[KHW19] W. Kool, H. V. Hoof, and M. Welling. “Attention, Learn to Solve Routing Problems!”
In: International Conference on Learning Representations (ICLR). 2019.

[Kim+11] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. “Higher-Order Correlation Clustering
for Image Segmentation”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2011.

[Kim+14] S. Kim, C. Yoo, S. Nowozin, and P. Kohli. “Image Segmentation Using Higher-Order
Correlation Clustering”. In: Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 36 (9 2014), pp. 1761–1774.

[KK18] A. Kardoost and M. Keuper. “Solving Minimum Cost Lifted Multicut Problems by
Node Agglomeration”. In: Asian Conference on Computer Vision (ACCV). 2018.

https://arxiv.org/abs/1710.10686

172 BIBLIOGRAPHY

[KK21] A. Kardoost and M. Keuper. “Uncertainty in Minimum Cost Multicuts for Image
and Motion Segmentation”. In: Conference on Uncertainty in Artificial Intelligence
(UAI). 2021.

[KLA19] T. Karras, S. Laine, and T. Aila. “A Style-Based Generator Architecture for Genera-
tive Adversarial Networks”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2019.

[Kly+22] N. Klyuchnikov, I. Trofimov, E. Artemova, M. Salnikov, M. Fedorov, A. Filippov,
and E. Burnaev. “NAS-Bench-NLP: Neural Architecture Search Benchmark for
Natural Language Processing”. In: IEEE Access 10 (2022), pp. 45736–45747.

[Kod+17] N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On Convergence and Stability of GANs.
2017. arXiv: 1705.07215.

[Kok17] I. Kokkinos. “Ubernet: Training a Universal Convolutional Neural Network for
Low-, Mid-, and High-Level Vision Using Diverse Datasets and Limited Memory”.
In: Conference on Computer Vision and Pattern Recognition (CVPR). 2017.

[Kol+21] A. Kolesnikov, A. Dosovitskiy, D. Weissenborn, G. Heigold, J. Uszkoreit, L. Beyer,
M. Minderer, M. Dehghani, N. Houlsby, S. Gelly, T. Unterthiner, and X. Zhai. “An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”. In:
International Conference on Learning Representations (ICLR). 2021.

[KP09] N. Komodakis and N. Paragios. “Beyond pairwise energies: Efficient optimization
for higher-order MRFs”. In: Conference on Computer Vision and Pattern Recognition
(CVPR). 2009.

[Kra88] D. Kraft. A Software Package for Sequential Quadratic Programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungs-
bericht. Wiss. Berichtswesen d. DFVLR, 1988.

[Kri09] A. Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In:
University of Toronto. 2009.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2012.

[Kum+22] N. Kumari, R. Zhang, E. Shechtman, and J. Zhu. “Ensembling Off-the-shelf Models
for GAN Training”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2022.

[Kun+10] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. W. D. Luca, and S. Albayrak.
“Spectral Analysis of Signed Graphs for Clustering, Prediction and Visualization”.
In: SIAM International Conference on Data Mining. 2010.

[KVB88] N. Kanopoulos, N. Vasanthavada, and R. L. Baker. “Design of an image edge
detection filter using the Sobel operator”. In: Journal of Solid-State Circuits 23.2
(1988), pp. 358–367.

[KW14] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: International
Conference on Learning Representations (ICLR). 2014.

[KW17] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: International Conference on Learning Representations (ICLR).
2017.

https://arxiv.org/abs/1705.07215

BIBLIOGRAPHY 173

[Kyn+23] T. Kynkäänniemi, T. Karras, M. Aittala, T. Aila, and J. Lehtinen. “The Role of
ImageNet Classes in Fréchet Inception Distance”. In: International Conference on
Learning Representations (ICLR). 2023.

[Lam21] J. Lamy-Poirier. Layered gradient accumulation and modular pipeline parallelism: fast
and efficient training of large language models. 2021. arXiv: 2106.02679.

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning”. In: Nature 521.7553 (2015),
p. 436.

[LCK18] Z. Li, Q. Chen, and V. Koltun. “Combinatorial Optimization with Graph Convo-
lutional Networks and Guided Tree Search”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2018.

[Le+12] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and
A. Y. Ng. “Building High-level Features Using Large Scale Unsupervised Learning”.
In: International Conference on Machine Learning (ICML). 2012.

[Lec+98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[Lev+23] E. Levinkov, A. Kardoost, B. Andres, and M. Keuper. “Higher-Order Multicuts
for Geometric Model Fitting and Motion Segmentation”. In: Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) 45.1 (2023), pp. 608–622.

[LHW18] Q. Li, Z. Han, and X. Wu. “Deeper Insights into Graph Convolutional Networks for
Semi-Supervised Learning”. In: Association for the Advancement of Artificial Intelli-
gence (AAAI). 2018.

[Li+17] C. Li, W. Chang, Y. Cheng, Y. Yang, and B. Póczos. “MMD GAN: Towards Deeper
Understanding of Moment Matching Network”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2017.

[Li+18a] J. Li, A. Madry, J. Peebles, and L. Schmidt. “On the Limitations of First-Order
Approximation in GAN Dynamics”. In: International Conference on Machine Learning
(ICML). 2018.

[Li+18b] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. W. Battaglia. Learning Deep Generative
Models of Graphs. 2018. arXiv: 1803.03324.

[Li+21] C. Li, Z. Yu, Y. Fu, Y. Zhang, Y. Zhao, H. You, Q. Yu, Y. Wang, C. Hao, and Y. Lin.
“HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark”. In:
International Conference on Learning Representations (ICLR). 2021.

[Li+23] M. Li, Y. Jiang, Y. Zhang, and H. Zhu. “Medical image analysis using deep learning
algorithms”. In: Frontiers in Public Health 11 (2023).

[Li+24] Z. Li, X. Yang, Y. Zhang, S. Zeng, J. Yuan, J. Liu, Z. Liu, and H. Han. “Deep Graph
Reinforcement Learning for Solving Multicut Problem”. In: Transactions on Neural
Networks and Learning Systems (2024), pp. 1–14.

[Lin+19] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang. “DEEPSEC: A Uniform
Platform for Security Analysis of Deep Learning Model”. In: IEEE Symposium on
Security and Privacy (SP). 2019, pp. 673–690.

[Liu+15] Z. Liu, P. Luo, X. Wang, and X. Tang. “Deep Learning Face Attributes in the Wild”.
In: International Conference on Computer Vision (ICCV). 2015.

[Liu+18] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li, L. Fei-Fei, A. L. Yuille, J.
Huang, and K. Murphy. “Progressive Neural Architecture Search”. In: European
Conference on Computer Vision (ECCV). 2018.

https://arxiv.org/abs/2106.02679
https://arxiv.org/abs/1803.03324

174 BIBLIOGRAPHY

[Liu+19] Y. Liu, M. Cheng, X. Hu, J. Bian, L. Zhang, X. Bai, and J. Tang. “Richer Convolu-
tional Features for Edge Detection”. In: Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 41.8 (2019), pp. 1939–1946.

[Liu+21] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. “Swin Trans-
former: Hierarchical Vision Transformer using Shifted Windows”. In: International
Conference on Computer Vision (ICCV). 2021.

[Liu+22] Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. “A ConvNet for the
2020s”. In: Conference on Computer Vision and Pattern Recognition (CVPR). 2022.

[LJK22] J. Lukasik*, S. Jung*, and M. Keuper. “Learning where to look–generative nas is
surprisingly efficient”. In: European Conference on Computer Vision (ECCV). 2022.

[LM98] T. Leung and J. Malik. “Contour continuity in region based image segmentation”.
In: European Conference on Computer Vision (ECCV). 1998.

[Lon+15] M. Long, Y. Cao, J. Wang, and M. Jordan. “Learning Transferable Features with
Deep Adaptation Networks”. In: International Conference on Machine Learning (ICML).
2015.

[Low04] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Inter-
national Journal of Computer Vision (IJCV) 60.2 (2004), pp. 91–110.

[LPB17] B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2017.

[LRP19] P. Luo, J. Ren, and Z. Peng. “Towards Understanding Regularization in Batch
Normalization”. In: International Conference on Learning Representations (ICLR). 2019.

[LS08] U. von Luxburg and B. Schoelkopf. Statistical Learning Theory: Models, Concepts, and
Results. 2008. arXiv: 0810.4752.

[LSD15] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic
segmentation”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2015.

[LSY19] H. Liu, K. Simonyan, and Y. Yang. “DARTS: Differentiable Architecture Search”. In:
International Conference on Learning Representations (ICLR). 2019.

[LSZ15] Y. Li, K. Swersky, and R. Zemel. “Generative Moment Matching Networks”. In:
International Conference on Machine Learning (ICML). 2015.

[LT19] L. Li and A. Talwalkar. “Random Search and Reproducibility for Neural Architec-
ture Search”. In: Conference on Uncertainty in Artificial Intelligence (UAI). 2019.

[Lu+18] X. Lu, J. Gonzalez, Z. Dai, and N. Lawrence. “Structured Variationally Auto-
encoded Optimization”. In: International Conference on Machine Learning (ICML).
2018.

[Luk+21] J. Lukasik, D. Friede, A. Zela, F. Hutter, and M. Keuper. “Smooth Variational
Graph Embeddings for Efficient Neural Architecture Search”. In: International Joint
Conference on Neural Networks (IJCNN). 2021.

[Luo+18] R. Luo, F. Tian, T. Qin, E. Chen, and Tie-Yan Liu. “Neural Architecture Optimiza-
tion”. In: Advances in Neural Information Processing Systems (NeurIPS). 2018.

[Luo+23] X. Luo, Y. Zhu, S. Xu, and D. Liu. “On the Effectiveness of Spectral Discriminators
for Perceptual Quality Improvement”. In: International Conference on Computer Vision
(ICCV). 2023.

https://arxiv.org/abs/0810.4752

BIBLIOGRAPHY 175

[Luz+24] L. Luzi, H. Jenne, C. O. Marrero, and R. Murray. “Using Skew to Assess the Quality
of GAN-generated Image Features”. In: Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) (2024).

[Ma+20] Q. Ma, S. Ge, D. He, D. Thaker, and I. Drori. “Combinatorial Optimization by Graph
Pointer Networks and Hierarchical Reinforcement Learning”. In: Association for the
Advancement of Artificial Intelligence (AAAI) Workshops. 2020.

[Mad+18] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. “Towards Deep
Learning Models Resistant to Adversarial Attacks”. In: International Conference on
Learning Representations (ICLR). 2018.

[Man+16a] K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool. “Convolutional Oriented
Boundaries”. In: European Conference on Computer Vision (ECCV). 2016.

[Man+16b] E. Mansimov, E. Parisotto, J. L. Ba, and R. Salakhutdinov. “Generating Images from
Captions with Attention”. In: International Conference on Learning Representations
(ICLR). 2016.

[Man+25] L. Manduchi, K. Pandey, C. Meister, R. Bamler, R. Cotterell, S. Däubener, S. Fel-
lenz, A. Fischer, T. Gärtner, M. Kirchler, M. Kloft, Y. Li, C. Lippert, G. d. Melo,
E. Nalisnick, B. Ommer, R. Ranganath, M. Rudolph, K. Ullrich, G. V. d. Broeck,
J. E. Vogt, Y. Wang, F. Wenzel, F. Wood, S. Mandt, and V. Fortuin. On the Challenges
and Opportunities in Generative AI. 2025. arXiv: 2403.00025.

[Mao+17] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley. “Least Squares
Generative Adversarial Networks”. In: International Conference on Computer Vision
(ICCV). 2017.

[Mar+01] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A Database of Human Segmented
Natural Images and its Application to Evaluating Segmentation Algorithms and
Measuring Ecological Statistics”. In: International Conference on Computer Vision
(ICCV). 2001.

[Mar+24] S. Marton, S. Lüdtke, C. Bartelt, and H. Stuckenschmidt. “GRANDE: Gradient-
Based Decision Tree Ensembles for Tabular Data”. In: International Conference on
Learning Representations (ICLR). 2024.

[Mas+18] I. Masi, Y. Wu, T. Hassner, and P. Natarajan. “Deep Face Recognition: A Survey”.
In: Conference on Graphics, Patterns and Images (SIBGRAPI). 2018.

[MBK23] P. Müller, A. Braun, and M. Keuper. “Classification Robustness to Common Optical
Aberrations”. In: International Conference on Computer Vision (ICCV). 2023.

[MCS19] S. Mo, M. Cho, and J. Shin. “Instance-aware Image-to-Image Translation”. In: Inter-
national Conference on Learning Representations (ICLR). 2019.

[Meh+22] Y. Mehta, C. White, A. Zela, A. Krishnakumar, G. Zabergja, S. Moradian, M. Safari,
K. Yu, and F. Hutter. NAS-Bench-Suite: NAS Evaluation is (Now) Surprisingly Easy.
2022. arXiv: 2201.13396.

[MGN18] L. Mescheder, A. Geiger, and S. Nowozin. “Which Training Methods for GANs do
actually Converge?” In: International Conference on Machine Learning (ICML). 2018.

[MH21] A. Mathiasen and F. Hvilshøj. Backpropagating through Fréchet Inception Distance.
2021. arXiv: 2009.14075.

[MH79] D. C. Marr and E. C. Hildreth. “Theory of edge detection”. In: Proceedings of the
Royal Society of London. Series B. Biological Sciences 207 (1979), pp. 187–217.

https://arxiv.org/abs/2403.00025
https://arxiv.org/abs/2201.13396
https://arxiv.org/abs/2009.14075

176 BIBLIOGRAPHY

[Mic09] A. Micheli. “Neural Network for Graphs: A Contextual Constructive Approach”.
In: Transactions on Neural Networks 20.3 (2009), pp. 498–511.

[Mik+10] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. “Recurrent
neural network based language model”. In: Conference of the International Speech
Communication Association. 2010.

[Mit80] T. M. Mitchell. The Need for Biases in Learning Generalizations. Tech. rep. Rutgers
University, 1980.

[Mit97] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[Miy+18] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. “Spectral Normalization for
Generative Adversarial Networks”. In: International Conference on Learning Represen-
tations (ICLR). 2018.

[MJK25] T. Medi, S. Jung, and M. Keuper. “FAIR-TAT: Improving Model Fairness Using
Targeted Adversarial Training”. In: Winter Conference on Applications of Computer
Vision (WACV). 2025.

[MO14] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets. 2014. arXiv:
1411.1784.

[Moc74] J. Mockus. “On Bayesian Methods for Seeking the Extremum”. In: Optimization
Techniques, IFIP Technical Conference. Springer, 1974.

[Mok+21] J. Mok, B. Na, H. Choe, and S. Yoon. “AdvRush: Searching for Adversarially Robust
Neural Architectures”. In: International Conference on Computer Vision (ICCV). 2021.

[MP69] M. Minsky and S. Papert. Perceptrons; an Introduction to Computational Geometry. MIT
Press, 1969.

[MSF17] P. Márquez-Neila, M. Salzmann, and P. Fua. “Imposing Hard Constraints on Deep
Networks: Promises and Limitations”. In: Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. 2017.

[Naz+18] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takac. “Reinforcement Learning for
Solving the Vehicle Routing Problem”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2018.

[Ngu+17] T. Nguyen, T. Le, H. Vu, and D. Phung. “Dual Discriminator Generative Adversarial
Nets”. In: Advances in Neural Information Processing Systems (NeurIPS). 2017.

[NH10] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann
Machines”. In: International Conference on Machine Learning (ICML). 2010.

[NTS15] B. Neyshabur, R. Tomioka, and N. Srebro. “In Search of the Real Inductive Bias: On
the Role of Implicit Regularization in Deep Learning”. In: International Conference
on Learning Representations (ICLR) Workshops. 2015.

[NVI21] NVIDIA. Jetson TX2. Accessed: 2021-11-17. 2021. URL: https://www.nvidia.com/
en-us/autonomous-machines/embedded-systems/jetson-tx2/.

[OB19] Y. Oulabi and C. Bizer. “Extending Cross-Domain Knowledge Bases with Long Tail
Entities using Web Table Data”. In: Advances in Database Technology. 2019.

[ODO16] A. Odena, V. Dumoulin, and C. Olah. “Deconvolution and Checkerboard Artifacts”.
In: Distill (2016). URL: http://distill.pub/2016/deconv-checkerboard/.

[Oor+16] A. van den Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K.
Kavukcuoglu. “Conditional Image Generation with PixelCNN Decoders”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). 2016.

https://arxiv.org/abs/1411.1784
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
http://distill.pub/2016/deconv-checkerboard/

BIBLIOGRAPHY 177

[OVK17] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. “Neural Discrete Representation
Learning”. In: Advances in Neural Information Processing Systems (NeurIPS). 2017.

[Pan+21] T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu. “Bag of Tricks for Adversarial Training”.
In: International Conference on Learning Representations (ICLR). 2021.

[Pap+17] C. Pape, T. Beier, P. Li, V. Jain, D. D. Bock, and A. Kreshuk. “Solving large multicut
problems for connectomics via domain decomposition”. In: International Conference
on Computer Vision (ICCV) Workshops. 2017.

[Pas+19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch:
An Imperative Style, High-Performance Deep Learning Library”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2019.

[Pat+16] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. “Context en-
coders: Feature learning by inpainting”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2016.

[Per+17] G. Pereyra, G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton. “Regularizing Neural
Networks by Penalizing Confident Output Distributions”. In: International Confer-
ence on Learning Representations (ICLR) Workshops. 2017.

[PH24] A. Peleg and M. Hein. “Bias of Stochastic Gradient Descent or the Architecture:
Disentangling the Effects of Overparameterization of Neural Networks”. In: Inter-
national Conference on Machine Learning (ICML). 2024.

[Pha+18] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. “Efficient Neural Architecture
Search via Parameter Sharing”. In: International Conference on Machine Learning
(ICML). 2018.

[PM20] J. A. Paulson and A. Mesbah. “Approximate Closed-Loop Robust Model Predictive
Control With Guaranteed Stability and Constraint Satisfaction”. In: IEEE Control
Systems Letters 4.3 (2020), pp. 719–724.

[Pon+17] J. Pont-Tuset, P. Arbelaez, J. T.Barron, F. Marques, and J. Malik. “Multiscale Com-
binatorial Grouping for Image Segmentation and Object Proposal Generation”.
In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 39.1 (2017),
pp. 128–140.

[Pra+19] M. O. R. Prates, P. H. C. Avelar, H. Lemos, L. Lamb, and M. Vardi. “Learning to
Solve NP-Complete Problems - A Graph Neural Network for the Decision TSP”. In:
Association for the Advancement of Artificial Intelligence (AAAI). 2019.

[Pra+23a] K. Prasse, S. Jung, I. B. Bravo, S. Walter, and M. Keuper. “Towards Understanding
Climate Change Perceptions: A Social Media Dataset”. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS) Workshops: Tackling Climate Change with Machine
Learning. 2023.

[Pra+23b] K. Prasse, S. Jung, Y. Zhou, and M. Keuper. “Local Spherical Harmonics Improve
Skeleton-Based Hand Action Recognition”. In: German Conference on Pattern Recog-
nition (GCPR). 2023.

[Pre96] L. Prechelt. “Early Stopping-But When?” In: Neural Networks: Tricks of the Trade.
Ed. by Genevieve B. Orr and Klaus-Robert Müller. Vol. 1524. Lecture Notes in
Computer Science. Springer, 1996, pp. 55–69.

178 BIBLIOGRAPHY

[Pu+22] M. Pu, Y. Huang, Y. Liu, Q. Guan, and H. Ling. “EDTER: Edge Detection With
Transformer”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2022.

[PY10] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE Transactions on
Knowledge and Data Engineering 22.10 (2010), pp. 1345–1359.

[PZZ22] G. Parmar, R. Zhang, and J. Zhu. “On Aliased Resizing and Surprising Subtleties in
GAN Evaluation”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2022.

[Rad+21] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A.
Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning Transferable Visual
Models From Natural Language Supervision. 2021.

[Ram+21] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I.
Sutskever. “Zero-Shot Text-to-Image Generation”. In: International Conference on
Machine Learning (ICML). 2021.

[Ram+22] A. Ramesh, P. Dhariwal, A. Nichol, C. C., and M. Chen. Hierarchical Text-Conditional
Image Generation with CLIP Latents. 2022. arXiv: 2204.06125.

[Ras21] Raspberry Pi Foundation. Raspberry Pi 4. Accessed: 2021-11-17. 2021. URL: https:
//www.raspberrypi.org/products/raspberry-pi-4-model-b/.

[Raz+14] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. “CNN Features Off-the-
Shelf: An Astounding Baseline for Recognition”. In: Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops. 2014.

[RBB17] J. Rauber, W. Brendel, and M. Bethge. “Foolbox: A Python toolbox to benchmark
the robustness of machine learning models”. In: International Conference on Machine
Learning (ICML) Workshops. 2017.

[Rea+17] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin.
“Large-Scale Evolution of Image Classifiers”. In: International Conference on Machine
Learning (ICML). 2017.

[Rea+19] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. “Regularized Evolution for Im-
age Classifier Architecture Search”. In: Association for the Advancement of Artificial
Intelligence (AAAI). 2019.

[Ree+16] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. “Generative
Adversarial Text to Image Synthesis”. In: International Conference on Machine Learning
(ICML). 2016.

[Rez+21] S. S. C. Rezaei, F. X. Han, D. Niu, M. Salameh, K. G. Mills, S. Lian, W. Lu, and
S. Jui. “Generative Adversarial Neural Architecture Search”. In: International Joint
Conference on Artificial Intelligence (IJCAI). 2021.

[RFB15] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: Medical Image Computing and Computer-
Assisted Intervention (MICCAI). 2015.

[Ric+24] J. Ricker, S. Damm, T. Holz, and A. Fischer. “Towards the Detection of Diffusion
Model Deepfakes”. In: International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISAPP). 2024.

[Rif+11] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. “Contractive Auto-Encoders:
Explicit Invariance During Feature Extraction”. In: International Conference on Ma-
chine Learning (ICML). 2011.

https://arxiv.org/abs/2204.06125
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

BIBLIOGRAPHY 179

[RMC15] A. Radford, L. Metz, and S. Chintala. “Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks”. In: International Conference
on Learning Representations (ICLR). 2015.

[Rol+20] M. Rolínek, V. Musil, A. Paulus, M. Vlastelica, C. Michaelis, and G. Martius. “Op-
timizing Rank-Based Metrics With Blackbox Differentiation”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2020.

[Rom+22] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-Resolution
Image Synthesis With Latent Diffusion Models”. In: Conference on Computer Vision
and Pattern Recognition (CVPR). 2022.

[Ru+21] B. Ru, X. Wan, X. Dong, and M. Osborne. “Interpretable Neural Architecture Search
via Bayesian Optimisation with Weisfeiler-Lehman Kernels”. In: International Con-
ference on Learning Representations (ICLR). 2021.

[RW05] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, Nov. 2005.

[SA17] P. Swoboda and B. Andres. “A Message Passing Algorithm for the Minimum Cost
Multicut Problem”. In: Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

[Sah+22a] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour,
B. K. Ayan, S. S. Mahdavi, R. G. Lopes, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi.
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. 2022.

[Sah+22b] C. Saharia, W. Chan, S. Saxena, L. Lit, J. Whang, E. Denton, S. K. S. Ghasemipour,
B. K. Ayan, S. S. Mahdavi, R. Gontijo-Lopes, T. Salimans, J. Ho, D. J. Fleet, and
M. Norouzi. “Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding”. In: Advances in Neural Information Processing Systems (NeurIPS).
2022.

[Sal+16] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. “Im-
proved Techniques for Training GANs”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2016.

[Sau+21] A. Sauer, K. Chitta, J. Müller, and A. Geiger. “Projected GANs Converge Faster”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2021.

[SB14] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, 2014.

[Sca+09] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. “The Graph
Neural Network Model”. In: Transactions on Neural Networks 20.1 (2009), pp. 61–80.

[Sel+19] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill. “Learning a
SAT Solver from Single-Bit Supervision”. In: International Conference on Learning
Representations (ICLR). 2019.

[SG21] T. F. Sterkenburg and P. D. Grünwald. “The no-free-lunch theorems of supervised
learning”. In: Synthese 199.3-4 (Dec. 2021), pp. 9979–10015.

[Sha+16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking the
Human Out of the Loop: A Review of Bayesian Optimization”. In: Proceedings of the
IEEE 104.1 (2016), pp. 148–175.

[She+15] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. “DeepContour: A Deep Con-
volutional Feature Learned by Positive-sharing Loss for Contour Detection”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2015.

180 BIBLIOGRAPHY

[Shi+20] H. Shi, R. Pi, H. Xu, Z. Li, J. T. Kwok, and T. Zhang. “Bridging the Gap between
Sample-based and One-shot Neural Architecture Search with BONAS”. In: Advances
in Neural Information Processing Systems (NeurIPS). 2020.

[Shi+21] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun. “Masked Label Pre-
diction: Unified Message Passing Model for Semi-Supervised Classification”. In:
International Joint Conference on Artificial Intelligence (IJCAI). 2021.

[Sin+20] S. Sinha, Z. Zhao, A. Goyal, C. Raffel, and A. Odena. “Top-k training of GANs:
improving GAN performance by throwing away bad samples”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2020.

[SK17] M. Simonovsky and N. Komodakis. “Dynamic Edge-Conditioned Filters in Convo-
lutional Neural Networks on Graphs”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2017.

[SK19] C. Shorten and T. M. Khoshgoftaar. “A survey on Image Data Augmentation for
Deep Learning”. In: Journal of Big Data 6.1 (July 2019).

[SLG21] K. Schwarz, Y. Liao, and A. Geiger. “On the Frequency Bias of Generative Models”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2021.

[SM00] J. Shi and J. Malik. “Normalized Cuts and Image Segmentation”. In: Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) 22.8 (2000), pp. 888–905.

[Sno+15] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary,
M. Prabhat, and R. Adams. “Scalable Bayesian Optimization Using Deep Neural
Networks”. In: International Conference on Machine Learning (ICML). 2015.

[Soh+15] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. “Deep Unsuper-
vised Learning using Nonequilibrium Thermodynamics”. In: International Confer-
ence on Machine Learning (ICML). 2015.

[Son+19] J. Song, B. Andres, M. Black, O. Hilliges, and S. Tang. “End-to-end Learning for
Graph Decomposition”. In: International Conference on Computer Vision (ICCV). 2019.

[Sri+14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal
of Machine Learning Research (JMLR) 15.56 (2014), pp. 1929–1958.

[Su+18] D. Su, H. Zhang, H. Chen, J. Yi, P. Chen, and Y. Gao. “Is Robustness the Cost
of Accuracy? - A Comprehensive Study on the Robustness of 18 Deep Image
Classification Models”. In: European Conference on Computer Vision (ECCV). 2018.

[Sun+17] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. “Revisiting Unreasonable Effective-
ness of Data in Deep Learning Era”. In: International Conference on Computer Vision
(ICCV). 2017.

[Sun+18] D. Sungatullina, E. Zakharov, D. Ulyanov, and V. Lempitsky. “Image Manipulation
with Perceptual Discriminators”. In: European Conference on Computer Vision (ECCV).
2018.

[SZ15] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-
Scale Image Recognition”. In: International Conference on Learning Representations
(ICLR). 2015.

[Sze+14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus. “Intriguing properties of neural networks”. In: International Conference on
Learning Representations (ICLR). 2014.

BIBLIOGRAPHY 181

[Sze+15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. “Going Deeper with Convolutions”. In: Conference on
Computer Vision and Pattern Recognition (CVPR). 2015.

[Sze+16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethinking the In-
ception Architecture for Computer Vision”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2016.

[Sze+17] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi. “Inception-v4, Inception-ResNet
and the Impact of Residual Connections on Learning”. In: Association for the Ad-
vancement of Artificial Intelligence (AAAI). 2017.

[Sze22] R. Szeliski. Computer Vision: Algorithms and Applications. 2nd. Springer, 2022.

[Tan+21] S. Tang, R. Gong, Y. Wang, A. Liu, J. Wang, X. Chen, F. Yu, X. Liu, D. X. Song, A. L.
Yuille, P. H. S. Torr, and D. Tao. RobustART: Benchmarking Robustness on Architecture
Design and Training Techniques. 2021. arXiv: 2109.05211.

[TDH20] A. Tripp, E. Daxberger, and J. M. Hernández-Lobato. “Sample-Efficient Optimiza-
tion in the Latent Space of Deep Generative Models via Weighted Retraining”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2020.

[The+21] A. Thebelt, J. Kronqvist, M. Mistry, R. M. Lee, N. Sudermann-Merx, and R. Misener.
“ENTMOOT: A Framework for Optimization over Ensemble Tree Models”. In:
Computers & Chemical Engineering 151 (2021), p. 107343.

[Tib96] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the
Royal Statistical Society. Series B (Methodological) 58.1 (1996), pp. 267–288.

[TIF24] A. Torralba, P. Isola, and W.T. Freeman. Foundations of Computer Vision. Adaptive
Computation and Machine Learning series. MIT Press, 2024.

[TKD25] B. Tang, E. B. Khalil, and J. Drgoňa. Learning to Optimize for Mixed-Integer Non-linear
Programming with Feasibility Guarantees. 2025. arXiv: 2410.11061.

[TL19] M. Tan and Q. Le. “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks”. In: International Conference on Machine Learning (ICML). 2019.

[TOB16] L. Theis, A. van den Oord, and M. Bethge. “A note on the evaluation of generative
models”. In: International Conference on Learning Representations (ICLR). 2016.

[Tou+21] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jegou. “Training
data-efficient image transformers & distillation through attention”. In: International
Conference on Machine Learning (ICML). 2021.

[Tsi+19] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. “Robustness May
Be at Odds with Accuracy”. In: International Conference on Learning Representations
(ICLR). 2019.

[Tui+22] D. Tuia, B. Kellenberger, S. Beery, B. R. Costelloe, S. Zuffi, B. Risse, A. Mathis,
M. W. Mathis, F. v. Langevelde, T. Burghardt, R. Kays, H. Klinck, M. Wikelski, I. D.
Couzin, G. v. Horn, M. C. Crofoot, C. V. Stewart, and T. Berger-Wolf. “Perspectives
in Machine Learning for Wildlife Conservation”. In: Nature Communications 13.1
(2022), p. 792.

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. “Attention is All You Need”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2017.

https://arxiv.org/abs/2109.05211
https://arxiv.org/abs/2410.11061

182 BIBLIOGRAPHY

[VFJ15] O. Vinyals, M. Fortunato, and N. Jaitly. “Pointer Networks”. In: Advances in Neural
Information Processing Systems (NeurIPS). 2015.

[Vin+10] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. “Stacked Denoising
Autoencoders: Learning Useful Representations in a Deep Network with a Local
Denoising Criterion”. In: Journal of Machine Learning Research (JMLR) 11 (2010),
pp. 3371–3408.

[VR22] T. Vu and R. Raich. “On Asymptotic Linear Convergence of Projected Gradient
Descent for Constrained Least Squares”. In: IEEE Transactions on Signal Processing
70 (2022), pp. 4061–4076.

[VS91] L. Vincent and P. Soille. “Watersheds in digital spaces: an efficient algorithm based
on immersion simulations”. In: Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI) 13.6 (1991), pp. 583–598.

[VWT14] V. Vineet, J. Warrell, and P. H. S. Torr. “Filter-based mean-field inference for random
fields with higher-order terms and product label-spaces”. In: International Journal of
Computer Vision (IJCV) 110.3 (2014), pp. 290–307.

[Wan+20] S. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros. “CNN-Generated Images
Are Surprisingly Easy to Spot... for Now”. In: Conference on Computer Vision and
Pattern Recognition (CVPR). 2020.

[Wel62] B. P. Welford. “Note on a Method for Calculating Corrected Sums of Squares and
Products”. In: Technometrics 4.3 (1962), pp. 419–420.

[Wen+20] W. Wen, H. Liu, Y. Chen, H. H. Li, G. Bender, and P. Kindermans. “Neural Predictor
for Neural Architecture Search”. In: European Conference on Computer Vision (ECCV).
2020.

[Whi+21] C. White, A. Zela, B. Ru, Y. Liu, and F. Hutter. “How Powerful are Performance Pre-
dictors in Neural Architecture Search?” In: Advances in Neural Information Processing
Systems (NeurIPS). 2021.

[WKM20] C. Wei, S. Kakade, and T. Ma. “The Implicit and Explicit Regularization Effects of
Dropout”. In: International Conference on Machine Learning (ICML). 2020.

[WM97] D. Wolpert and W. Macready. “No Free Lunch Theorems for Optimization”. In:
IEEE Transactions on Evolutionary Computation 1.1 (1997), pp. 67–82.

[WNS21a] C. White, W. Neiswanger, and Y. Savani. “BANANAS: Bayesian Optimization
with Neural Architectures for Neural Architecture Search”. In: Association for the
Advancement of Artificial Intelligence (AAAI). 2021.

[WNS21b] C. White, S. Nolen, and Y. Savani. “Exploring the loss landscape in neural architec-
ture search”. In: Conference on Uncertainty in Artificial Intelligence (UAI). 2021.

[Wol02] D. H. Wolpert. “The Supervised Learning No-Free-Lunch Theorems”. In: Soft Com-
puting and Industry: Recent Applications. Springer London, 2002, pp. 25–42.

[Wu+19] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K.
Keutzer. “FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search”. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2019.

[Wu+21] J. Wu, X. Dai, D. Chen, Y. Chen, M. Liu, Y. Yu, Z. Wang, Z. Liu, M. Chen, and L.
Yuan. “Stronger NAS with Weaker Predictors”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2021.

BIBLIOGRAPHY 183

[Wu+24] Y. Wu, F. Liu, C. Simon-Gabriel, G. Chrysos, and V. Cevher. “Robust NAS under
adversarial training: benchmark, theory, and beyond”. In: International Conference
on Learning Representations (ICLR). 2024.

[WW23] Z. Wang and L. Wu. “Theoretical Analysis of the Inductive Biases in Deep Convo-
lutional Networks”. In: Advances in Neural Information Processing Systems (NeurIPS).
2023.

[Xie+19a] C. Xie, Y. Wu, L. van der Maaten, A. L. Yuille, and K. He. “Feature Denoising for
Improving Adversarial Robustness”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2019.

[Xie+19b] S. Xie, H. Zheng, C. Liu, and L. Lin. “SNAS: Stochastic Neural Architecture Search”.
In: International Conference on Learning Representations (ICLR). 2019.

[Xie+21] C. Xie, M. Tan, B. Gong, A. Yuille, and Q. V. Le. Smooth Adversarial Training. 2021.
arXiv: 2006.14536.

[Xie+25] E. Xie, J. Chen, J. Chen, H. Cai, H. Tang, Y. Lin, Z. Zhang, M. Li, L. Zhu, Y. Lu, and
S. Han. “SANA: Efficient High-Resolution Text-to-Image Synthesis with Linear
Diffusion Transformers”. In: International Conference on Learning Representations
(ICLR). 2025.

[Xil21a] Xilinx Inc. Vivado High-Level Synthesis. Accessed: 2021-11-17. 2021. URL: https:
//www.xilinx.com/products/design-tools/vivado/integration/esl-design.
html.

[Xil21b] Xilinx Inc. Zynq 7000 SoC ZC706 Evaluation Kit. Accessed: 2021-11-17. 2021. URL:
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html.

[XT15] S. Xie and Z. Tu. “Holistically-Nested Edge Detection”. In: International Conference
on Computer Vision (ICCV). 2015.

[Xu+19] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. “How Powerful are Graph Neural
Networks?” In: International Conference on Learning Representations (ICLR). 2019.

[Xu+20] Y. Xu, L. Xie, X. Zhang, X. Chen, G. Qi, Q. Tian, and H. Xiong. “PC-DARTS: Partial
Channel Connections for Memory-Efficient Architecture Search”. In: International
Conference on Learning Representations (ICLR). 2020.

[Yan+19] T. Yang, M. D. Collins, Y. Zhu, J. Hwang, T. Liu, X. Zhang, V. Sze, G. Papandreou,
and L. Chen. DeeperLab: Single-Shot Image Parser. 2019. arXiv: 1902.05093.

[Yan+20] S. Yan, Y. Zheng, W. Ao, X. Zeng, and M. Zhang. “Does Unsupervised Architecture
Representation Learning Help Neural Architecture Search?” In: Advances in Neural
Information Processing Systems (NeurIPS). 2020.

[Yan+21] S. Yan, C. White, Y. Savani, and F. Hutter. “NAS-Bench-x11 and the Power of
Learning Curves”. In: Advances in Neural Information Processing Systems (NeurIPS).
2021.

[YDF19] N. Yu, L. Davis, and M. Fritz. “Attributing Fake Images to GANs: Learning and
Analyzing GAN Fingerprints”. In: International Conference on Computer Vision (ICCV).
2019.

[Yin+19a] D. Yin, R. G. Lopes, J. Shlens, E. D. Cubuk, and J. Gilmer. “A Fourier Perspective
on Model Robustness in Computer Vision”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2019.

https://arxiv.org/abs/2006.14536
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://arxiv.org/abs/1902.05093

184 BIBLIOGRAPHY

[Yin+19b] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter. “NAS-Bench-
101: Towards Reproducible Neural Architecture Search”. In: International Conference
on Machine Learning (ICML). 2019.

[Yos+14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. “How transferable are features
in deep neural networks?” In: Advances in Neural Information Processing Systems
(NeurIPS). 2014.

[Yua+21] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan.
“Tokens-to-Token ViT: Training Vision Transformers From Scratch on ImageNet”.
In: International Conference on Computer Vision (ICCV). 2021.

[Zal+25] A. Zalcher, N. Wasserman, R. Beliy, O. Heinimann, and M. Irani. Don’t Judge Before
You CLIP: A Unified Approach for Perceptual Tasks. 2025. arXiv: 2503.13260.

[Zel+20] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter. “Understanding
and Robustifying Differentiable Architecture Search”. In: International Conference on
Learning Representations (ICLR). 2020.

[Zel+22] A. Zela, J. N. Siems, L. Zimmer, J. Lukasik, M. Keuper, and F. Hutter. “Surrogate
NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS Bench-
marks”. In: International Conference on Learning Representations (ICLR). 2022.

[ZF14] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Net-
works”. In: European Conference on Computer Vision (ECCV). 2014.

[Zha+16] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. “Joint Face Detection and Alignment Using
Multitask Cascaded Convolutional Networks”. In: IEEE Signal Processing Letters
23.10 (2016), pp. 1499–1503.

[Zha+17a] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. “Understanding deep
learning requires rethinking generalization”. In: International Conference on Learning
Representations (ICLR). 2017.

[Zha+17b] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas. “Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks”. In: International Conference on Computer Vision (ICCV). 2017.

[Zha+17c] X. Zhang, Z. Li, C. Change Loy, and D. Lin. “Polynet: A pursuit of structural
diversity in very deep networks”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2017.

[Zha+18a] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. “mixup: Beyond Empirical
Risk Minimization”. In: International Conference on Learning Representations (ICLR).
2018.

[Zha+18b] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas. “Stack-
gan++: Realistic image synthesis with stacked generative adversarial networks”.
In: Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 41.8 (2018),
pp. 1947–1962.

[Zha+18c] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. “The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric”. In: Conference on Computer
Vision and Pattern Recognition (CVPR). 2018.

[Zha+19] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen. “D-VAE: A Variational Autoen-
coder for Directed Acyclic Graphs”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2019.

https://arxiv.org/abs/2503.13260

BIBLIOGRAPHY 185

[Zha+20] P. Zhao, P. Chen, P. Das, K. N. Ramamurthy, and X. Lin. “Bridging Mode Connec-
tivity in Loss Landscapes and Adversarial Robustness”. In: International Conference
on Learning Representations (ICLR). 2020.

[Zha22] D. Zhao. “Combining Implicit and Explicit Regularization for Efficient Learning in
Deep Networks”. In: Advances in Neural Information Processing Systems (NeurIPS).
2022.

[Zhe+15] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. S. Torr. “Conditional Random Fields as Recurrent Neural Networks”. In:
International Conference on Computer Vision (ICCV). 2015.

[Zhu+17a] J. Zhu, T. Park, P. Isola, and A. A. Efros. “Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks”. In: International Conference on Com-
puter Vision (ICCV). 2017.

[Zhu+17b] J. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and E. Shechtman. “To-
ward Multimodal Image-to-Image Translation”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2017.

[Zhu+24] K. Zhu, J. Wang, J. Zhou, Z. Wang, H. Chen, Y. Wang, L. Yang, W. Ye, Y. Zhang,
N. Gong, and X. Xie. “PromptRobust: Towards Evaluating the Robustness of Large
Language Models on Adversarial Prompts”. In: ACM Workshop on Large AI Systems
and Models with Privacy and Safety Analysis. 2024.

[ZKC19] X. Zhang, S. Karaman, and S. Chang. “Detecting and Simulating Artifacts in GAN
Fake Images”. In: International Workshop on Information Forensics and Security (WIFS).
2019.

[ZL17] B. Zoph and Q. V. Le. “Neural Architecture Search with Reinforcement Learning”.
In: International Conference on Learning Representations (ICLR). 2017.

[Zop+18] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. “Learning Transferable Architectures
for Scalable Image Recognition”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2018.

[Zop+20] B. Zoph, G. Ghiasi, T. Lin, Y. Cui, H. Liu, E. D. Cubuk, and Q. V. Le. “Rethinking
Pre-training and Self-training”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2020.

This page intentionally left blank.

Chapter A

Representation Learning in Graphs with Dis-
crete Constraints
In this supplementary material, we provide several additional details, ablations and visualiza-
tions. We provide:

• Section A.1: An example graph from an image segmentation problem, providing some
intuition on the practical quality of results.

• Section A.2: Shows statistics of the contributed training datasets IrisMP and RandomMP.

• Section A.3: Details on additional test datasets used.

• Section A.5: Experiments for domain specific finetuning of our models. While the domain
specific training data is very scarce, these experiments show the promise of learnable
multicut solvers.

• Section A.6: Additional embedding space visualizations (as in Figure 3.7).

• Section A.4: Training curves of training runs on RandomMP.

A.1 Multicut Segmentation Example

For visualization purposes, we generate a small graph based on image segmentation of a training
sample from the Berkeley Segmentation Dataset, BSDS300 [Mar+01], given in Figure A.1(a).
First, the gradients of the original image are computed using a Sobel filter. Then, the watershed
transformation is computed with 50 desired markers, and a compactness of 0.0014. This results in
the image consisting of 54 segments as shown in Figure A.1(b). Then the image is superpixelated
computing the mean color of each resulting segment. E.g., ci = ∑x∈Si

x/|Si| is the mean color
of superpixel i, where Si is the set of pixels it contains. x is the color information of a pixel,
yielding Figure A.1(c). From these superpixels the adjacency graph is constructed by connecting
superpixels with a squared spatial distance less than 2. A positive weight wij between two
superpixels i and j is calculated using color similarity by applying a Gaussian kernelwith σ = 0.1
on their color distance: wij = e−|ci−cj |/σ. The resulting graph is shown in Figure A.2. From
positive weights that represent superpixel similarity, positive and negative edge weights for the
multicut problem can be derived using the logit function.

Since the graph is small, we can compute its optimal solution using an ILP solver (see
Figure A.3(a)). The optimal objective value is denoted by cOPT . The optimal solution yields an
objective value of cOPT = −106.998, while Greedy Additive Edge Contraction (GAEC) performs
slightly worse with c = −106.587, thus providing optimality ratio cr = 0.9961.
For comparison, we show multicuts computed by a two of our models in Figure A.4. While
the resulting optimality ratios are lower, the results are still of comparable practical quality,
especially when considering the model trained on RandomMP.

187

188 APPENDIX A. APPENDIX TO CHAPTER 3

(a) Original image. (b) Watershed transformed.

(c) Superpixel image. (d) Regional adjacency graph.

Figure A.1: Expressing image segmentation by superpixelization as a multicut problem instance.

1.0

0.0 0.1

1.0

0.0

1.00.00.0
1.0

0.0

0.
0 0.0

1.0

0.0

0.9

0.00.1

0.9

0.
1 1.0

0.9

1.0 1.0
1.00.8

1.0 0.9

0.90.8

1.0

1.00.80.
9

1.0

0.9

1.0 0.8

0.11.0
1.0

0.90.8 0.
6

0.9

0.
0 1.0 1.
0

0.9

0.6

0.
9

0.8 0.1

1.0
0.3

1.00.9

0.8

0.7

0.0 0.8

0.9 1.0

1.0

0.6

0.9

1.00.
8

1.0

0.91.0
1.0 0.

9 0.61.0

0.4

0.7 0.1

0.1

1.0 0.4
0.00.70.1

1.0 0.5

0.0 1.0

0.
8

0.3

0.60.3 0.
9

0.
8 0.8

0.8

0.0

0.9

0.6

0.10.1

0.
2 0.8

0.
9

0.
4

0.11.0

0.30.
4

0.0
0.2 0.5

0.0

0.
2

0.2 0.3

0.9

0.3

0.
7 0.6

0.4

0.70.
80.60.

4

0.90.4

1.0 1.00.7 0.9 1.00.9 1.00.9

3.4 3.5 3.3 5.9 3.0 2.5 2.4
4.4

2.6

3.3 5.9
3.01.5

6.2 2.7

2.91.6

4.2

3.61.31.
8

4.8

2.5

3.3 1.4

3.0
5.8

2.51.2 0.
5

2.9

4.0 4.
5

2.5

0.3

1.
8

1.7

5.6

3.62.0

1.5

0.8 1.7

2.2 4.7

3.9

0.6

2.5

4.41.
5

3.2

2.15.8
3.9 2.

8 0.46.2

1.1

3.7

0.7

4.9 0.1

3.6

1.
1

0.32.
9

1.
1 1.2

1.32.5

0.61.5

2.
1

3.2

0.2

2.2

1.
0 0.4

0.81.
60.4

2.2

4.2 4.81.0 2.7 4.22.5 3.42.7

-3.1

-2.9

-3.6

-3.4-4.
3

-4.1

-3
.6 -3.9

-3.7

-3.7-2.
9

-2
.7

-2.3

-3
.2

-2.7

-0.8

-4.8

-0.3

-2.4

-2.
4 -0.4

-3.1

-2.
9-3.3

-0.8

-1.0

-4.4-2.6

-1.9

-1
.7 -0

.4

-2.9

-1.0-0
.2

-3.9
-1.5

-4.4

-1
.1

-1.3 -1.0

-0.8 -0.3

-0
.4

-0.3

(a) Similarities (b) real-valued weights

Figure A.2: Example graph. (a) Weights are similarities based on a Gaussian kernel. (b) Weights
are log-odds of (a) and define a multicut problem instance.

A.1. MULTICUT SEGMENTATION EXAMPLE 189

(a) ILP solution. (b) GAEC solution.

(c) ILP segmentation. (d) GAEC segmentation.

Figure A.3: Multicuts of the graph using different solvers. (a) shows the optimal cut, and (b)
shows the cut computed with GAEC. Dotted, gray lines indicate that the edge is cut, and solid,
black lines indicate otherwise. (c) and (d) depict the resulting segmentations.

(a) GCN_W_BN, IrisMP, depth = 12, cr = 0.8948.

(b) GCN_W_BN, RandomMP, depth = 20, cr = 0.9899.

Figure A.4: Multicuts and resulting segmentations of the example graph by two of our trained
models. Highlighted edges are removed by the model without partitioning the corresponding
nodes. Hence, those cuts violate cycle consistencies and the edges are reinstated after rounding.

190 APPENDIX A. APPENDIX TO CHAPTER 3

A.2 Training Dataset Statistics

Table A.1 and Table A.2 show statistics of the IrisMP and RandomMP datasets. Measures denoted
with an overline show the corresponding mean and standard deviation over all instances in the
split. Cardinalities |V| and |E| denote the number of nodes and edges in the graph. We show the
minimal weight denoted by wmin, the average weight denoted by wavg, and the maximal weight
denoted by wmax. The optimal objective value is denoted by c(ỹ), where ỹ is the decision vector
given by the optimal solution. Additionally, we show upper and lower bounds for the objective
values. The lower bound is given by cutting all negative edges, denoted by c(y−), where y− is
the decision vector containing ye = 1 if the edge weight of e is negative, and ye = 0 otherwise.
The upper bound is, correspondingly, given by cutting all positive edges and denoted by c(y+).
We also include the value of the trivial solution (cutting all edges), denoted by c(1). Statistics
denoted by c(·) are normalized by the number of edges.

Table A.1: IrisMP statistics.

Graph Stats

Split Train Eval Test

|D| 20 000 1000 1000

|V| 20± 3 20± 3 20± 3
|E| 194± 50 196± 49 192± 50

Weights

wmin −4.51± 0.29 −4.51± 0.33 −4.51± 0.31
wavg −0.41± 0.41 −0.42± 0.41 −0.40± 0.42
wmax 4.57± 0.12 4.57± 0.12 4.57± 0.11

Objective Values

c(y−) −1.169 −1.177 −1.168
c(ỹ) −1.103 −1.111 −1.100
c(1) −0.407 −0.426 −0.405

c(y+) 0.762 0.751 0.762

A.3. TEST DATASETS 191

Table A.2: RandomMP statistics.

Graph Stats

Split Train Eval Test

|D| 20 000 1000 1000

|V| 180± 30 180± 29 179± 31
|E| 686± 115 685± 114 684± 118

Weights

wmin −9.36± 1.09 −9.37± 1.08 −9.39± 1.12
wavg −0.00± 0.10 0.00± 0.10 0.00± 0.10
wmax 9.38± 1.09 9.37± 1.10 9.38± 1.10

Objective Values

c(y−) −1.196 −1.193 −1.195
c(ỹ) −0.844 −0.842 −0.841
c(1) −0.001 0.002 0.002

c(y+) 1.196 1.195 1.197

A.3 Test Datasets

Table A.3 and Table A.4 show statistics of the additional test datasets used in our experiments.

Table A.3: BSDS300 statistics.

Graph Stats

|D| 100

|V| 1551± 777
|E| 4432± 2269

Weights

wmin −10.77± 3.74
wavg 0.48± 0.57
wmax 10.27± 2.32

Objective Values

c(y−) −0.738
c(ỹ) −0.669
c(1) 0.497

c(y+) 1.235

Table A.4: CREMI statistics.

Graph Stats

|D| 3

|V| 31 988± 4769
|E| 212 686± 24 767

Weights

wmin −6.91± 0.00
wavg −0.15± 0.26
wmax 79.52± 12.63

Objective Values

c(y−) −1.013
c(ỹ) −1.002
c(1) −0.135

c(y+) 0.878

192 APPENDIX A. APPENDIX TO CHAPTER 3

A.4 Training Curves on RandomMP

Figure A.5 shows mean evaluation plots of five training runs of GCN_W_BN on 3.15M instances
of RandomMP. No Cycle Consistency Loss (CCL) was applied in the first 3M instances. Then, α
was linearly increased over 100k instances to α = 0.01. Afterwards, the training continued for
50k instances with α = 0.01. The node embedding dimensionality was set to 128 and the number
of Message Passing Neural Network (MPNN) layers to 20. The Multilayer Perceptron (MLP)
edge classifier consists of 2 hidden layers with 256 neurons. Optimization was performed with
Adam [KB15] (0.001 learning rate, 5 · 10−4 weight decay, (0.9, 0.999) betas) and a batch size of
200. Each training was performed on a MEGWARE Gigabyte G291-Z20 server on one NVIDIA
Quadro RTX 8000 GPU and took 24hrs on average, whereof the training time of the last 150k
(CCL) instances took around 18hrs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M graphs

0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36

Evaluation Loss (BCE)

mean
std

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M graphs

0
2
4
6
8

10
12
14
16

Evaluation Loss (CCL)

mean
std

0.0 0.5 1.0 1.5 2.0 2.5 3.0
M graphs

0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925

Opt. obj. ratio

mean
std

(a) BCE (b) CCL (c) Objective

Figure A.5: Mean and standard deviation of (a) BCE evaluation loss, (b) CCL evaluation loss,
and (c) evaluation optimal objective ratio of 5 training runs of GCN_W_BN on RandomMP.

A.5. FINETUNING EXPERIMENTS 193

A.5 Finetuning Experiments

Originally, generating synthetic training data for our method was mainly driven by the lack of
suitable training data available. The benchmark datasets mentioned consist of only a few problem
instances (BSDS300: 100, CREMI: 3, Knott: 24). Although BSDS300 consists of 100 training
and 100 testing images, the multicut problem instances provided by the OpenGM benchmark
are solely based on the test images. This is the case, because training images were used to
train a model that derives edge weights for the testing images and are discarded afterwards.
Nevertheless, we consider it interesting to see how the model behaves in this environment of
scarce training data, and whether finetuning can help to boost model performance on a specific
task. Therefore, we ran the following additional experiments:

1) We trained GCN_W_BN from scratch on training splits of these datasets.

2) We finetuned the best performing model of Table 1 (GCN_W_BN trained on RandomMP -
referred to as RMP in the following) on training splits of these datasets.

We split BSDS300 into 70/20/10 (train/eval/test), CREMI into 2/1 (train/eval) and Knott into
18/6 (train/eval). The performance after training is evaluated on the eval split and compared to
the performance as optimality ratio of the RandomMP trained GCN_W_BN (RMP) on the eval
split. Results are given in Table A.5. Please note that these results can not be directly compared
to Table 3.3 since the whole datasets were evaluated in Table 3.3.

Table A.5: Domain specific training of GCN_W_BN from scratch and finetuned on the scarce
available training data for each task, compared to the general purpose model trained on Ran-
domMP (RMP). Results show that domain specific properties can be learned from few samples
but pretraining can help in general.

RMP from scratch RMP + finetuned

BSDS300 0.8818 0.8834 0.8818
Knott 0.8386 0.8335 0.9249

CREMI 0.9068 0.8081 0.9365

Still, the results indicate that when trained on BSDS300 from scratch, the model improves
on the eval split from 0.8818 to 0.8834. We were not able to find models that outperform RMP
trained on Knott and CREMI. For finetuning we tried three different settings: i) retraining all
parameters (MPNN and edge classifier), ii) only retraining edge classifier parameters and iii)
only retraining the last layer of the edge classifier. We found that setting iii) worked best overall.
As shown in Table A.5, we found models that improved on Knott and CREMI. Yet, finetuning
did not help to improve performance on BSDS300.

194 APPENDIX A. APPENDIX TO CHAPTER 3

A.6 Embedding Space Visualizations

Figure A.6 depicts results of our model (GCN_W_BN) on an IrisMP graph (#0).

(a) Graph cut by model. (b) Optimal solution.

0

1

23

4

5

6

7
8

9

10

11

12

13

14

15

16

17
18

19

20

0

1

23

4

5

6

7
8

9

10

11

12

13

14

15

16

17
18

19

20

(c) Node clustering by model. (d) Optimal solution.

3 2 1 0 1 2 3 4

PC1

2

1

0

1

2

PC
2

0

1
23

4

5

6
78

9

10

11

12

13

14

1516

17
18

19

20

Clustering by model

Cluster 0
Cluster 1
Cluster 2

6 121018 8 4 7 1720 9 5 161913 0 1511 2 3 14 1
6

12
10
18

8
4
7

17
20

9
5

16
19
13

0
15
11

2
3

14
1

Cosine similarity between node embeddings

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Node clustering by model. (f) Node embeddings.

Figure A.6: (a) Graph cut solution computed by the model. (b) Graph cut of this graph according
to the optimal solution. (c) Clustering of nodes according to the models’ graph cut. (d) Clustering
of nodes according to the optimal solution. (e) Node embeddings projected into a 2D space using
PCA. Node colors according to the model prediction. (f) Cosine similarity between all node
embeddings, ordered by similarity.

A.6. EMBEDDING SPACE VISUALIZATIONS 195

Figure A.7 depicts results of our model (GCN_W_BN) on an IrisMP graph (#1).

(a) Graph cut by model. (b) Optimal solution.

0

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17
18

19

20

21

0

1

2

3

4

5

6

7

8
9

10

11

12
13

14

15

16

17
18

19

20

21

(c) Node clustering by model. (d) Optimal solution.

4 3 2 1 0 1 2 3 4

PC1

2

1

0

1

2

3

PC
2

0

12

3

4 5

6

7
8

9 10

11

12 13
14

15

16

17 18

19

20
21

Clustering by model
Cluster 0
Cluster 1
Cluster 2

4 11 2 16 8 9 12 3 171013 6 1814 0 20 7 2119 1 5 15
4

11
2

16
8
9

12
3

17
10
13

6
18
14

0
20

7
21
19

1
5

15

Cosine similarity between node embeddings

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Node clustering by model. (f) Node embeddings.

Figure A.7: (a) Graph cut solution computed by the model. (b) Graph cut of this graph according
to the optimal solution. (c) Clustering of nodes according to the models’ graph cut. (d) Clustering
of nodes according to the optimal solution. (e) Node embeddings projected into a 2D space using
PCA. Node colors according to the model prediction. (f) Cosine similarity between all node
embeddings, ordered by similarity.

196 APPENDIX A. APPENDIX TO CHAPTER 3

Figure A.8 depicts results of our model (GCN_W_BN) on an IrisMP graph (#16).

(a) Graph cut by model. (b) Optimal solution.

01

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

01

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(c) Node clustering by model. (d) Optimal solution.

2 1 0 1 2 3 4

PC1
2

1

0

1

2

3

PC
2

0
1

2

3
4

5

6

7
8

9

10

11

12

13

14
15
16

Clustering by model

Cluster 0
Cluster 1
Cluster 2

5 7 10 3 8 14 9 4 0 11 15 1 13 16 12 2 6
5
7

10
3
8

14
9
4
0

11
15

1
13
16
12

2
6

Cosine similarity between node embeddings

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Node clustering by model. (f) Node embeddings.

Figure A.8: (a) Graph cut solution computed by the model. (b) Graph cut of this graph according
to the optimal solution. (c) Clustering of nodes according to the models’ graph cut. (d) Clustering
of nodes according to the optimal solution. (e) Node embeddings projected into a 2D space using
PCA. Node colors according to the model prediction. (f) Cosine similarity between all node
embeddings, ordered by similarity.

A.6. EMBEDDING SPACE VISUALIZATIONS 197

Figure A.9 depicts results of our model (GCN_W_BN) on an IrisMP graph (#17).

(a) Graph cut by model. (b) Optimal solution.

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

0

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

(c) Node clustering by model. (d) Optimal solution.

3 2 1 0 1 2 3 4

PC1

1

0

1

2

3

4

PC
2

0

1
234

5

6 7
8

9
10

11 12
13

14

15
1617

18

19
2021

Clustering by model

Cluster 0
Cluster 1
Cluster 2
Cluster 3

7 2 9 3 1916171213 5 0 14 4 6 11 1 1510201821 8
7
2
9
3

19
16
17
12
13

5
0

14
4
6

11
1

15
10
20
18
21

8

Cosine similarity between node embeddings

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(e) Node clustering by model. (f) Node embeddings.

Figure A.9: (a) Graph cut solution computed by the model. (b) Graph cut of this graph according
to the optimal solution. (c) Clustering of nodes according to the models’ graph cut. (d) Clustering
of nodes according to the optimal solution. (e) Node embeddings projected into a 2D space using
PCA. Node colors according to the model prediction. (f) Cosine similarity between all node
embeddings, ordered by similarity.

This page intentionally left blank.

Chapter B

Edge Detection with Discrete Constraints
In this supplementary material, we provide several additional details and visualizations:

• Section B.1: Additional details to our training settings.

• Section B.2: Additional qualitative results on BSDS500.

B.1 Training Details

Adaptive CRF. By reformulating mean field updates from Equation 4.3 with our adaptive
function ϕ (see Subsection 4.3.3), we get:

Qt
i(yi = l) =

1
Zi

exp

− ∑
c∈C


∑

p∈Pc|yi=l

(
∏

j∈c,j ̸=i
ϕ
(

Qt−1
j (yj = pj), k

))
γp +

(
1−

(
∑

p∈Pc|xi=l

(
∏

j∈c,j ̸=i
ϕ
(

Qt−1
j (yj = pj), k

))))
γmax

, (B.1)

where function ϕ modifies probabilities such that their values are pushed closer to 0 or 1,
depending on their current value. Figure B.1 (a) shows a plot of this function with different
values of k. During training, k is initialized with 1.0 and then increased based on the cooling
scheme defined in Equation 4.4. When training Adaptive CRF on BSDS500 for 20 epochs, we
observe that k is increased each epoch with the exception of the last one (see Figure B.1 (b)).

199

200 APPENDIX B. APPENDIX TO CHAPTER 4

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

(p
)

k=1.00
k=1.25
k=1.50
k=1.75
k=2.00

5 10 15 20
Epoch

1.0

1.2

1.4

1.6

1.8

k

Adapt. CRF

5 10 15 20
Epoch

0.2

0.4

0.6

0.8

1.0

t

Lin. Softmax
Adapt. Softmax

(a) Cooling function (b) Cooling factor (c) Softmax temperature

Figure B.1: (a) Function ϕ plotted for different values of k. (b) Value of k during 20 epochs of
training Adaptive CRF. (c) Values of t during 20 epochs of training Linear Softmax and Adaptive
Softmax.

Linear Softmax and Adaptive Softmax. The purpose of ϕ is to push values towards 1 or 0,
and therefore enforce multicut constraints more strictly. However, this should also be possible
by considering temperature decay in the softmax function that is called after each mean field
update iteration. Hence, instead of

Qt
i(yi = l) =

exp
{

Q̃t
i(yi = l)

}
∑l exp

{
Q̃t

i(yi = l)
}

we compute

Qt
i(yi = l) =

exp
{

Q̃t
i(yi = l)/t

}
∑l exp

{
Q̃t

i(yi = l)/t
} ,

where we initialize t = 1.0 and decay each epoch in the case of Linear Softmax by 0.05. In the case
of Adaptive Softmax we use the same condition as for Adaptive CRF (see Equation 4.4), where t
is only decayed by 0.05 if the average number of violated cycle inequalities is ≤ 500. Figure B.1
(c) shows the temperature decaying schemes during training of 20 epochs on BSDS500.

Training Runs. We train each model on one RTX8000 GPU with batch size 10, and optimize
with SGD with learning rate 10−6, momentum 0.9, weight decay 2 · 10−4, stepsize 3, gamma 0.1
for 20 epochs.

B.2. QUALITATIVE RESULTS ON BSDS500 201

B.2 Qualitative Results on BSDS500

We provide additional examples of BSDS500 images in Figure B.2-B.4, their respective edge maps
as well as the corresponding UCM segmentation. We compare plain RCF results with models
optimized with the basic CRF and the adaptive CRF which both encourage valid cycles that
comply with the cycle inequality constraints of the Minimum Cost Multicut Problem. It can be
seen that applying the CRFs during training results in cleaner edge maps where trailing edges are
removed and contours are more likely to be closed. The effect is amplified for the adaptive CRF.
The corresponding segmentations suffer less from oversegmented backgrounds and individual
components are more precise compared to the plain RCF. The additional examples illustrate that
promoting closed contours when learning edge maps yields more accurate segmentations.

202 APPENDIX B. APPENDIX TO CHAPTER 4

(a) Example Image

Baseline RCF Baseline CRF Adaptive CRF

(b) Edge maps

(c) UCM Segmentations

(d) UCM Segmentations (Threshold=0.5)

Figure B.2: Example image 196062 from BSDS500, and resulting edge maps and segmentations
for baseline models and the proposed adaptive CRF model.

B.2. QUALITATIVE RESULTS ON BSDS500 203

(a) Example Image

Baseline RCF Baseline CRF Adaptive CRF

(b) Edge maps

(c) UCM Segmentations

(d) UCM Segmentations (Threshold=0.5)

Figure B.3: Example image 41029 from BSDS500, and resulting edge maps and segmentations for
baseline models and the proposed adaptive CRF model.

204 APPENDIX B. APPENDIX TO CHAPTER 4

(a) Example Image

Baseline RCF Baseline CRF Adaptive CRF

(b) Edge maps

(c) UCM Segmentations

(d) UCM Segmentations (Threshold=0.5)

Figure B.4: Example image 157032 from BSDS500, and resulting edge maps and segmentations
for baseline models and the proposed adaptive CRF model.

Chapter C

Learned Representations to Penalize Image
Synthesis
In this supplementary material, we provide several additional details, ablations and visualiza-
tions. We provide:

• Section C.1: Implementation details to minimizing FID.

• Section C.2: Visualizations of generated images by DCGAN under different training
settings, trained on FFHQ64.

• Section C.3: Visualizations of generated images by SNGAN under different training set-
tings, trained on FFHQ64.

• Section C.4: Visualizations of generated images by DCGAN under different training
settings, trained on CIFAR10.

• Section C.5: Visualizations of generated images by SNGAN under different training set-
tings, trained on CIFAR10.

• Section C.6: Overview of FID comparing different corruptions based on ImageNet-C, for
all severities, when substituting different backbone networks.

• Section C.7: Implementation details on deep fake detection with FID.

205

206 APPENDIX C. APPENDIX TO CHAPTER 5

C.1 Implementation Details to Minimizing FID

We train each of the models for 48 hours and report the best FID measured during training. FID
is measured after each epoch. We train DCGAN with the minimax loss

LG = Ez∼N(0,1)[log(1− D(G(z)))], (C.1)

LD = −Ex∼data[log(D(x))] − Ez∼N(0,1)[log(1− D(x̂)], (C.2)

and for optimization we use Adam with β = (0.5, 0.999), ϵ = 10−8, learning rate = 0.0002, and
weight decay = 0.

We train SNGAN with the hinge loss

LG = −Ez∼N(0,1)[D(G(z))], (C.3)

LD = −Ex∼data[min(0,−1 + D(x))]−Ez∼N(0,1)[min(0,−1− D(G(z)))]. (C.4)

and for optimization we use Adam with β = (0.0, 0.9), ϵ = 10−8, learning rate = 0.0002, and
weight decay = 0. We combine all results in the following table.

C.2. GENERATED IMAGES (DCGAN/FFHQ) 207

C.2 Generated Images (DCGAN/FFHQ)

Figure C.1: DCGANG+D trained on FFHQ64. FID: 14.86.

208 APPENDIX C. APPENDIX TO CHAPTER 5

Figure C.2: DCGANFID
G+D trained on FFHQ64. FID: 5.38.

C.2. GENERATED IMAGES (DCGAN/FFHQ) 209

Figure C.3: DCGANFID
G trained on FFHQ64. FID: 7.89.

210 APPENDIX C. APPENDIX TO CHAPTER 5

Figure C.4: DCGAN-UpFID
G (upsampling instead of transpose convolutions) trained on FFHQ64.

FID: 7.61.

C.3. GENERATED IMAGES (SNGAN/FFHQ) 211

C.3 Generated Images (SNGAN/FFHQ)

Figure C.5: SNGANG+D trained on FFHQ64. FID: 9.44.

212 APPENDIX C. APPENDIX TO CHAPTER 5

Figure C.6: SNGANFID
G+D trained on FFHQ64. FID: 6.00.

C.3. GENERATED IMAGES (SNGAN/FFHQ) 213

Figure C.7: SNGANFID
G trained on FFHQ64. FID: 7.74.

214 APPENDIX C. APPENDIX TO CHAPTER 5

C.4 Generated Images (DCGAN/CIFAR10)

Figure C.8: DCGANG+D trained on CIFAR10. FID: 28.72.

C.4. GENERATED IMAGES (DCGAN/CIFAR10) 215

Figure C.9: DCGANFID
G+D trained on CIFAR10. FID: 8.27.

216 APPENDIX C. APPENDIX TO CHAPTER 5

Figure C.10: DCGANFID
G trained on CIFAR10. FID: 10.82.

C.4. GENERATED IMAGES (DCGAN/CIFAR10) 217

Figure C.11: DCGAN-UpFID
G (upsampling instead of transpose convolutions) trained on CIFAR10.

FID: 10.77.

218 APPENDIX C. APPENDIX TO CHAPTER 5

C.5 Generated Images (SNGAN/CIFAR10)

Figure C.12: SNGANG+D trained on CIFAR10. FID: 17.85.

C.5. GENERATED IMAGES (SNGAN/CIFAR10) 219

Figure C.13: SNGANFID
G+D trained on CIFAR10. FID: 8.07.

220 APPENDIX C. APPENDIX TO CHAPTER 5

Figure C.14: SNGANFID
G trained on CIFAR10. FID: 11.66.

C.6. FIDS WHEN SUBSTITUTING BACKBONE NETWORKS ON IMAGENET-C 221

C.6 FIDs when substituting backbone networks on ImageNet-C

br
ig

ht
ne

ss

co
nt

ra
st

de
fo

cu
s_

bl
ur

el
as

tic
_t

ra
ns

fo
rm fo

g

fro
st

ga
us

sia
n_

bl
ur

ga
us

sia
n_

no
ise

gl
as

s_
bl

ur

im
pu

lse
_n

oi
se

jp
eg

_c
om

pr
es

sio
n

m
ot

io
n_

bl
ur

pi
xe

la
te

sa
tu

ra
te

sh
ot

_n
oi

se

sn
ow

sp
at

te
r

sp
ec

kl
e_

no
ise

zo
om

_b
lu

r

pca
inception

bninception
deit_s
deit_t

densenet121
inceptionresnetv2

nasnetamobile
polynet

resnet101
resnet50

vgg11
vgg16

Ne
t

ImageNet-C, Severity: 1

0.0

largest

Figure C.15: Color- and size-coded FID between ImageNet validation images and 19 corrupted
versions thereof provided by ImageNet-C [HD19]. Inception v3 is substituted by different
classification networks [SZ15; He+16; Zha+17c; Zop+18; Sze+17; Hua+17; IS15; Sze+16] to
investigate whether the ranking is affected by the feature extractor. All corruptions are at severity
1. Colors and circle sizes depend on the largest observed FID per network. Additionally, PCA
features are shown, which provide descriptive features with different sensitivity to corruptions
compared to image classification networks. We can see that rankings are inconsistent in-between
different feature extractors.

222 APPENDIX C. APPENDIX TO CHAPTER 5

br
ig

ht
ne

ss

co
nt

ra
st

de
fo

cu
s_

bl
ur

el
as

tic
_t

ra
ns

fo
rm fo

g

fro
st

ga
us

sia
n_

bl
ur

ga
us

sia
n_

no
ise

gl
as

s_
bl

ur

im
pu

lse
_n

oi
se

jp
eg

_c
om

pr
es

sio
n

m
ot

io
n_

bl
ur

pi
xe

la
te

sa
tu

ra
te

sh
ot

_n
oi

se

sn
ow

sp
at

te
r

sp
ec

kl
e_

no
ise

zo
om

_b
lu

r

pca
inception

bninception
deit_s
deit_t

densenet121
inceptionresnetv2

nasnetamobile
polynet

resnet101
resnet50

vgg11
vgg16

Ne
t

ImageNet-C, Severity: 2

0.0

largest

Figure C.16: Color- and size-coded FID between ImageNet validation images and 19 corrupted
versions thereof provided by ImageNet-C [HD19]. Inception v3 is substituted by different
classification networks [SZ15; He+16; Zha+17c; Zop+18; Sze+17; Hua+17; IS15; Sze+16] to
investigate whether the ranking is affected by the feature extractor. All corruptions are at severity
2. Colors and circle sizes depend on the largest observed FID per network. Additionally, PCA
features are shown, which provide descriptive features with different sensitivity to corruptions
compared to image classification networks. We can see that rankings are inconsistent in-between
different feature extractors.

C.6. FIDS WHEN SUBSTITUTING BACKBONE NETWORKS ON IMAGENET-C 223

br
ig

ht
ne

ss

co
nt

ra
st

de
fo

cu
s_

bl
ur

el
as

tic
_t

ra
ns

fo
rm fo

g

fro
st

ga
us

sia
n_

bl
ur

ga
us

sia
n_

no
ise

gl
as

s_
bl

ur

im
pu

lse
_n

oi
se

jp
eg

_c
om

pr
es

sio
n

m
ot

io
n_

bl
ur

pi
xe

la
te

sa
tu

ra
te

sh
ot

_n
oi

se

sn
ow

sp
at

te
r

sp
ec

kl
e_

no
ise

zo
om

_b
lu

r

pca
inception

bninception
deit_s
deit_t

densenet121
inceptionresnetv2

nasnetamobile
polynet

resnet101
resnet50

vgg11
vgg16

Ne
t

ImageNet-C, Severity: 3

0.0

largest

Figure C.17: Color- and size-coded FID between ImageNet validation images and 19 corrupted
versions thereof provided by ImageNet-C [HD19]. Inception v3 is substituted by different
classification networks [SZ15; He+16; Zha+17c; Zop+18; Sze+17; Hua+17; IS15; Sze+16] to
investigate whether the ranking is affected by the feature extractor. All corruptions are at severity
3. Colors and circle sizes depend on the largest observed FID per network. Additionally, PCA
features are shown, which provide descriptive features with different sensitivity to corruptions
compared to image classification networks. We can see that rankings are inconsistent in-between
different feature extractors.

224 APPENDIX C. APPENDIX TO CHAPTER 5

br
ig

ht
ne

ss

co
nt

ra
st

de
fo

cu
s_

bl
ur

el
as

tic
_t

ra
ns

fo
rm fo

g

fro
st

ga
us

sia
n_

bl
ur

ga
us

sia
n_

no
ise

gl
as

s_
bl

ur

im
pu

lse
_n

oi
se

jp
eg

_c
om

pr
es

sio
n

m
ot

io
n_

bl
ur

pi
xe

la
te

sa
tu

ra
te

sh
ot

_n
oi

se

sn
ow

sp
at

te
r

sp
ec

kl
e_

no
ise

zo
om

_b
lu

r

pca
inception

bninception
deit_s
deit_t

densenet121
inceptionresnetv2

nasnetamobile
polynet

resnet101
resnet50

vgg11
vgg16

Ne
t

ImageNet-C, Severity: 4

0.0

largest

Figure C.18: Color- and size-coded FID between ImageNet validation images and 19 corrupted
versions thereof provided by ImageNet-C [HD19]. Inception v3 is substituted by different
classification networks [SZ15; He+16; Zha+17c; Zop+18; Sze+17; Hua+17; IS15; Sze+16] to
investigate whether the ranking is affected by the feature extractor. All corruptions are at severity
4. Colors and circle sizes depend on the largest observed FID per network. Additionally, PCA
features are shown, which provide descriptive features with different sensitivity to corruptions
compared to image classification networks. We can see that rankings are inconsistent in-between
different feature extractors.

C.6. FIDS WHEN SUBSTITUTING BACKBONE NETWORKS ON IMAGENET-C 225

br
ig

ht
ne

ss

co
nt

ra
st

de
fo

cu
s_

bl
ur

el
as

tic
_t

ra
ns

fo
rm fo

g

fro
st

ga
us

sia
n_

bl
ur

ga
us

sia
n_

no
ise

gl
as

s_
bl

ur

im
pu

lse
_n

oi
se

jp
eg

_c
om

pr
es

sio
n

m
ot

io
n_

bl
ur

pi
xe

la
te

sa
tu

ra
te

sh
ot

_n
oi

se

sn
ow

sp
at

te
r

sp
ec

kl
e_

no
ise

zo
om

_b
lu

r

pca
inception

bninception
deit_s
deit_t

densenet121
inceptionresnetv2

nasnetamobile
polynet

resnet101
resnet50

vgg11
vgg16

Ne
t

ImageNet-C, Severity: 5

0.0

largest

Figure C.19: Color- and size-coded FID between ImageNet validation images and 19 corrupted
versions thereof provided by ImageNet-C [HD19]. Inception v3 is substituted by different
classification networks [SZ15; He+16; Zha+17c; Zop+18; Sze+17; Hua+17; IS15; Sze+16] to
investigate whether the ranking is affected by the feature extractor. All corruptions are at severity
5. Colors and circle sizes depend on the largest observed FID per network. Additionally, PCA
features are shown, which provide descriptive features with different sensitivity to corruptions
compared to image classification networks. We can see that rankings are inconsistent in-between
different feature extractors.

226 APPENDIX C. APPENDIX TO CHAPTER 5

C.7 Deep Fake Detection with FID

We map 70 000 images from FFHQ and 70 000 images generated by StyleGAN2 (with and
without truncation) into the Inception v3 feature space by using the FID PyTorch implementation.
We split each into 60 000 training and 10 000 testing images, and hence, end up with balanced
training datasets containing 120 000 images and balanced test datasets containing 20 000 images.
We train sklean logistic regression models and report the accuracy on the test dataset. A selection
of corresponding images is shown in Figure 5.8. We argue that a meaningful metric should
be visually aligned with human perception. Hence, if a human can be fooled by a generator
network, then this generator should be considered superior to one that is not able to do so. We see
that truncation decreases FID substantially, and consequently improves the ability of detecting
StyleGAN2 generated images as fake. In contrast, we show images produced by StylegAN2
without and with truncation in Figure 5.8. By inspecting the images we observe that truncation
removes textures (and also artifacts). We hypothesize that its bias towards textures facilitates
Inception v3 to extract features that allow almost perfect detectability (98% when truncation
is applied). However, we expect humans to be more easily fooled by truncated images than
untruncated ones. Hence, we argue that this is a hint towards that FID is not aligned with human
perception.

https://github.com/mseitzer/pytorch-fid
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Chapter D

Spectral Distribution-Aware Image Synthesis
In this supplementary material, we provide several additional details and visualizations:

• Section D.1: An example showing high frequency artifacts generated by a model trained
without spectral regularization.

• Section D.2: Further visualizations of differences in power spectra.

• Section D.3: Details about training the logistic regression involved in the proposed cloaking
score.

• Section D.4: Samples of generated images by different models trained with our approach.

D.1 High Frequency Artifacts

In the proposed paper, we show that frequency artifacts in generated images can be substantially
removed be using a simple spectral discriminator. Here, we want to emphasize again why a peak
in the high frequency regime of the generated images’ power spectra are undesired. We provide
an example in Figure D.1, showing a face in front of what appears to be a mostly homogeneous
background. Yet after applying a sharpening operation (Figure D.1 (b)), grid artifacts become
obvious even in these supposedly flat regions. At a close look, they can also be seen in the plain
images without sharpening (Figure D.1 (c)).

(a) DCGAN (b) sharpened (c) zoomed in

Figure D.1: Sample from DCGAN, 1282. Peaks in the high frequencies which we measure in the
power spectrum correspond to grid artifacts in the images. After applying an image sharpening
operation on a generated image (a), they become obvious (b) but at a close look, they can also be
perceived in the original generated images (c).

227

228 APPENDIX D. APPENDIX TO CHAPTER 6

64 DCGAN
Baseline

0

1

2

3

4

64 DCGAN

(a) DCGAN 64× 64 (b) Durall et al. (c) DCGAN Spectral

Figure D.2: Average magnitude differences of the 2D FFT between real and generated images.
We compare (a) DCGAN without additional loss or regularization, (b) DCGAN with the regular-
ization proposed in [DKK20] and (c) the proposed model with spectral discriminator.

D.2 Evaluation of Generated Power Spectra

2D Power Spectra. Figure D.2 shows the mean absolute differences of the 2D power spectra of
real and generated images. Here, we compare the spectra resulting from DCGAN (Figure D.2
(a)), from DCGAN with the spectral regularization from Durall, Keuper, and Keuper [DKK20]
(Figure D.2 (b)) and our proposed model (Figure D.2 (c)). With the proposed model, the mean
differences are substantially smaller even in the 2D power spectral, although the discriminator
only operates on 1D projections of the spectra. The 2D spectra of the reference method [DKK20]
still exhibit strong deviations.

1D Power Spectra. In Figures D.3, D.4, and D.5 we report the mean and standard deviation of
the spectral profiles (azimuthal integrals) of the proposed model for higher resolution images. As
shown in the main paper for images of resolution 64× 64, the distributions fit almost perfectly
when our proposed discriminator is use. The 1D projections of the power spectra are very
similarly distributed when our model is used while they show obvious differences otherwise.

D.2. EVALUATION OF GENERATED POWER SPECTRA 229

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64× 64 DCGAN DCGAN Spectral

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64× 64 LSGAN LSGAN Spectral

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64× 64 WGAN WGAN Spectral

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

0 10 20 30 40
Frequency

0

1

P
o
w
e
r Real

Fake

64× 64 WGAN-GP WGAN-GP Spectral

Figure D.3: Experiments with our models trained on FFHQ64. Spectral indicates that DF was
applied. Without the spectral discriminator, the spectral profiles of real and generated images
are substantially different in their distribution. With the spectral discriminator, the mean and
standard deviation of the spectral profiles fit almost perfectly.

230 APPENDIX D. APPENDIX TO CHAPTER 6

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0
Po

we
r s

pe
ct

ru
m

Average profile: 128, DCGAN
Real
Fake

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 128, DCGAN, Spectral
Real
Fake

128× 128 DCGAN DCGAN Spectral

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 128, LSGAN
Real
Fake

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 128, LSGAN, Spectral
Real
Fake

128× 128 LSGAN LSGAN Spectral

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 128, WGAN
Real
Fake

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 128, WGAN, Spectral
Real
Fake

128× 128 WGAN WGAN Spectral

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 128, WGAN-GP
Real
Fake

0 20 40 60 80
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 128, WGAN-GP, Spectral
Real
Fake

128× 128 WGAN-GP WGAN-GP Spectral

Figure D.4: Experiments with our models trained on FFHQ128. Spectral indicates that DF was
applied. Without the spectral discriminator, the spectral profiles of real and generated images
are substantially different in their distribution. With the spectral discriminator, the mean and
standard deviation of the spectral profiles fit almost perfectly.

D.2. EVALUATION OF GENERATED POWER SPECTRA 231

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, DCGAN
Real
Fake

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, DCGAN, Spectral
Real
Fake

256× 256 DCGAN DCGAN Spectral

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, LSGAN
Real
Fake

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, LSGAN, Spectral
Real
Fake

256× 256 LSGAN LSGAN Spectral

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, WGAN
Real
Fake

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, WGAN, Spectral
Real
Fake

256× 256 WGAN WGAN Spectral

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, WGAN-GP
Real
Fake

0 25 50 75 100 125 150 175
Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r s
pe

ct
ru

m

Average profile: 256, WGAN-GP, Spectral
Real
Fake

256× 256 WGAN-GP WGAN-GP Spectral

Figure D.5: Experiments with our models trained on FFHQ256. Spectral indicates that DF was
applied. Without the spectral discriminator, the spectral profiles of real and generated images
are substantially different in their distribution. With the spectral discriminator, the mean and
standard deviation of the spectral profiles fit almost perfectly.

232 APPENDIX D. APPENDIX TO CHAPTER 6

D.3 Training Details for Cloaking Score

Figure D.6 shows the training progress of our regression model used in the cloaking score
computation in the section GAN Evaluation in the Frequency Domain of the main paper. Training
and testing accuracy are almost identical. Training accuracy increases progressively to 0.949 after
100 epochs, 0.979 after 1 000 epochs, 0.989 after 10 000 epochs, and 0.991 after 40 000 epochs. We
stopped training at this point.

0 20 40 60 80 100
Epoch

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94
A

cc
u
ra

cy
Detection accuracy

Train

Test

Figure D.6: Training and test accuracy of a Logistic Regression (LR) trained on 120k training
images, 60k taken from FFHQ and 60k generated by StyleGAN2. 20k images are used for testing.
The real and generated images can be distinguished to a large degree using LR.

D.4 Sample images generated from the Proposed Model and
the Baselines

In Figures D.7 to D.14, we show examples of images generated with DCGAN and LSGAN
without and with the proposed spectral discriminator for different resolutions. In all cases, the
generated images are visually appealing and diverse.

D.4. SAMPLE IMAGES GENERATED FROM THE PROPOSED MODEL AND THE BASELINES233

Figure D.7: Generated images by DCGAN (642).

234 APPENDIX D. APPENDIX TO CHAPTER 6

Figure D.8: Generated images by spectral DCGAN (642).

D.4. SAMPLE IMAGES GENERATED FROM THE PROPOSED MODEL AND THE BASELINES235

Figure D.9: Generated images by LSGAN (642).

236 APPENDIX D. APPENDIX TO CHAPTER 6

Figure D.10: Generated images by spectral LSGAN (642).

D.4. SAMPLE IMAGES GENERATED FROM THE PROPOSED MODEL AND THE BASELINES237

Figure D.11: Generated images by DCGAN (1282).

238 APPENDIX D. APPENDIX TO CHAPTER 6

Figure D.12: Generated images by spectral DCGAN (1282).

D.4. SAMPLE IMAGES GENERATED FROM THE PROPOSED MODEL AND THE BASELINES239

Figure D.13: Generated images by LSGAN (1282).

240 APPENDIX D. APPENDIX TO CHAPTER 6

Figure D.14: Generated images by spectral LSGAN (1282).

Chapter E

Biasing Discrete Representations for Image
Synthesis
In this supplementary material, we provide several additional details and visualizations. We
provide:

• Section E.1: Details of the dataset used in our experiments.

• Section E.2: Encoder and decoder architecture as well as hyperparameters for experiments
with Vector Quantized Variational Autoencoders (VQ-VAEs).

• Section E.3: Encoder and decoder architecture as well as hyperparameters for experiments
with Variational Autoencoders (VAEs).

E.1 Details on Face Image Dataset

We focus on the facial part of CelebA images by using pretrained Multitask Cascaded Con-
volutional Networks (MTCNN) [Zha+16] to localize faces in the input plane, and cropping
images according to the predicted bounding box. Furthermore, the data is resized to 64× 64 via
resampling using pixel area relation.

241

242 APPENDIX E. APPENDIX TO CHAPTER 7

E.2 Details on VQ-VAE

Table E.1: VQ-VAE encoder architecture. ResBlock = ResNet Block, LReLU = Leaky ReLU.

Layer Shape In Shape Out Filters Kernel Padding Stride
(H0, W0, D0) (H1, W1, D1) K F P S

1 Conv (64, 64, 3) (32, 32, 64) 64 4 1 2
LReLU

2 Conv (32, 32, 64) (16, 16, 128) 128 4 1 2
LReLU

3 Conv (16, 16, 128) (8, 8, 256) 256 4 1 2
LReLU

4 Conv (8, 8, 256) (8, 8, 256) 256 3 1 1
LReLU

5 ResBlock (8, 8, 256) (8, 8, 256)
6 ResBlock (8, 8, 256) (8, 8, 256)

7 Conv (8, 8, 256) (8, 8, 64) 64 1 0 1
LReLU

Table E.2: VQ-VAE decoder architecture. ResBlock = ResNet Block, LReLU = Leaky ReLU.

Layer Shape In Shape Out Filters Kernel Padding Stride
(H0, W0, D0) (H1, W1, D1) K F P S

1 Conv (8, 8, 64) (8, 8, 256) 256 3 1 1
LReLU

2 ResBlock (8, 8, 256) (8, 8, 256)
3 ResBlock (8, 8, 256) (8, 8, 256)

4 ConvT (8, 8, 256) (16, 16, 128) 128 4 1 2
LReLU

5 ConvT (16, 16, 128) (32, 32, 64) 64 4 1 2
LReLU

6 ConvT (32, 32, 64) (64, 64, 3) 3 4 1 2

Table E.3: Training hyperparameters of VQ-VAE experiments.

Hyperparameter Value

Latent Dimension 64
Embedding Dimension D 64
Categories K 256
Batch Size 128
Epochs 70
Optimizer Adam
Learning Rate 0.001

β 0.25

E.3. DETAILS ON VAE 243

E.3 Details on VAE

Table E.4: Encoder architecture of VAE. ResBlock = ResNet Block, LReLU = Leaky ReLU.

Layer Shape In Shape Out Filters Kernel Padding Stride
(H0, W0, D0) (H1, W1, D1) K F P S

1 Conv (64, 64, 3) (32, 32, 32) 32 3 1 2
LReLU
BatchNorm

2 Conv (32, 32, 32) (16, 16, 64) 64 3 1 2
LReLU
BatchNorm

3 Conv (16, 16, 64) (8, 8, 128) 128 3 1 2
LReLU
BatchNorm

4 Conv (8, 8, 128) (4, 4, 256) 256 3 1 2
LReLU
BatchNorm

5 Conv (4, 4, 256) (2, 2, 512) 512 3 1 2
LReLU
BatchNorm

6 Flatten (2, 2, 512) 2048
Dense 2048 64

Table E.5: Decoder architecture of VAE. ResBlock = ResNet Block, LReLU = Leaky ReLU.

Layer Shape In Shape Out Filters Kernel Padding Stride
(H0, W0, D0) (H1, W1, D1) K F P S

1 Dense 64 2048
LReLU
BatchNorm

2 Unflatten 2048 (2, 2, 512)
ConvT (2, 2, 512) (4, 4, 256) 256 3 1 2
LReLU
BatchNorm

3 ConvT (4, 4, 256) (8, 8, 128) 128 3 1 2
LReLU
BatchNorm

4 ConvT (8, 8, 128) (16, 16, 64) 64 3 1 2
LReLU
BatchNorm

5 ConvT (16, 16, 64) (32, 32, 32) 32 3 1 2
LReLU
BatchNorm

6 ConvT (32, 32, 32) (64, 64, 32) 32 3 1 2
LReLU
BatchNorm

7 Conv (64, 64, 32) (64, 64, 3) 3 3 1 1

244 APPENDIX E. APPENDIX TO CHAPTER 7

Table E.6: Training hyperparameters of VAE experiments.

Hyperparameter Value

Latent Dimension 64
Batch Size 64
Epochs 30
Optimizer Adam
Learning Rate 0.0001

βstart 10−6

βfinal 0.215
β Warm-up 5000
β Step 1.1
β Step Frequency 50

Chapter F

Biasing Generative Neural Architecture Search
In this supplementary material, we provide several additional details and visualizations:

• Section F.1: An overview of the graph representations for each search space we consider in
the main paper.

• Section F.2: Additional ablation studies.

• Section F.3: Implementation details about the experimental settings.

• Section F.4: Details about the generator network.

• Section F.5: Hyperparameter settings of our experiments.

• Section F.6: Visual intuition of the latent space optimization technique.

245

246 APPENDIX F. APPENDIX TO CHAPTER 8

F.1 Search Space Representations

In this section we give more details about the search spaces we consider.

F.1.1 NAS-Bench-101

NAS-Bench-101 is the first tabular benchmark designed for benchmarking Neural Architecture
Search (NAS) methods. This search space is a cell-based search space and contains 423 624 unique
neural networks. Each architecture is trained 3 times on CIFAR-10 [Kri09] for image classification.
The cell topology is limited to the number of nodes |V| ≤ 7 (including input and output nodes)
and edges |E| ≤ 9. The nodes represent the architecture layers and intermediate nodes can take
any operation from the operation set O = { 1× 1 conv., 3× 3 conv., 3× 3 max pooling }. For
visualization purposes, we present in Figure F.1 exemplary a Directed Acyclic Graph (DAG) from
the NAS-Bench-101 search space with its corresponding node attribute matrix and its adjacency
matrix. Note, a concatenation of the flattened node attribute matrix and the flattened upper
triangular adjacency matrix is the representation our generator model is trained to learn; this
holds for all search spaces.

We show experiments on NAS-Bench-101 in Subsection 8.4.1.

Figure F.1: Exemplary cell representation from the NAS-Bench-101 search space. (left) DAG
representation of a graph with 7 nodes. (right) The top shows the node attribute matrix of the
DAG and the bottom shows its adjacency matrix.

F.1. SEARCH SPACE REPRESENTATIONS 247

F.1.2 NAS-Bench-201

NAS-Bench-201 [DY20] is another cell-structured search space, which consists of 15 625 archi-
tectures. Each architecture is trained for 200 training epochs on CIFAR-10 [Kri09], CIFAR-100
[Kri09], and ImageNet16-120 [CLH17]. This benchmark provides validation and test accuracy
information for each of the three datasets. The cell structure is different compared to NAS-Bench-
101: Each cell has |V| = 4 nodes and |E| = 6 edges, where the former represent feature maps and
the latter denote operations chosen from the setO = { 1× 1 conv., 3× 3 conv., 3× 3 avg. pooling,
skip, zero }. Figure F.2 visualizes a DAG of the NAS-Bench-201 search space in the provided
variant with edge attributes, as well as our adapted representation where the edge attributes are
changed to node attributes. This is similar to the representation in Yan et al. [Yan+20].

We show experiments on NAS-Bench-101 in Subsection 8.4.1.

3x3 3x3

skip
3x3

3x3 1x1

in

1x1

3x3

out

3x3

3x3

3x3

skip

0 1 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

Nodes

N
od

es

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

[out in 1x1 3x3 ap skip none]

Node Operations

N
od

es

Figure F.2: Exemplary cell representation from the NAS-Bench-201 search space. (top) The left
part visualizes the DAG representation with node attributes instead of edge attributes. The right
part shows the true DAG representation in the NAS-Bench-201 search space. (bottom) The left
part shows the node attribute matrix to the DAG and the right part shows its adjacency matrix.

248 APPENDIX F. APPENDIX TO CHAPTER 8

F.1.3 DARTS Search Space

NAS-Bench-301 [Zel+22] is the first surrogate benchmark, which evaluates several surrogate
models on in total 60 000 sampled architectures from the DARTS [LSY19] search space on the
CIFAR-10 [Kri09] image classification task. The DARTS search space consists of 1018 neural
networks, where each network consists of two cells; a normal cell and a reduction cell. Each
cell is limited by the number of nodes |N| = 7 and the number of edges |E| = 12, where 4 of
these edges connect the intermediate nodes (excluding the input nodes) to the output node. Each
edge denotes an operation from the set O = { 3× 3 sep. conv., 5× 5 sep. conv., 3× 3 dil. conv.,
5× 5 dil. conv., 3× 3 avg. pooling, 3× 3 max pooling, identity, zero }. Each intermediate edge
is connected to two predecessor nodes. Each cell also contains two input nodes, which are the
output nodes from the previous two cells. The overall network is created by stacking the normal
and reduction cell.

In order to train our generative model to generate valid cells, we additionally randomly
sample 500k architectures from the DARTS search space. We train our generative model to
learn to generate valid cells independently of being a normal or reduction cell. In Figure F.3 we
visualize the adapted node attribute matrix and the adapted adjacency matrix to an exemplary
DAG in the DARTS search space [LSY19]. This is similar to the representation in Yan et al.
[Yan+20].

We show experiments in the DARTS search space in Subsection 8.4.2.

Figure F.3: Exemplary cell representation from the DARTS search space, where (top) visualizes
the DAG representation in the DARTS search space, and (bottom) visualizes the node attribute
matrix on the left and the respective adjacency matrix on the right.

F.1. SEARCH SPACE REPRESENTATIONS 249

F.1.4 NAS-Bench-NLP

Figure F.4: Exemplary cell representation from NAS-Bench-NLP. (left) DAG representation of a
graph with 12 nodes. (right) The top part shows the node attribute matrix to the DAG and the
bottom part shows its adjacency matrix.

NAS-Bench-NLP [Kly+22] is the first Recurrent Neural Network (RNN)-derived benchmark
for language modeling tasks. From the total 1053 possible architectures in the complete search
space, 14 322 architectures are trained on Penn TreeBank [Mik+10] (PTB) and provided in this
benchmark. The cell search space is constrained by the number of nodes |V| ≤ 24, the number
of hidden states |H| ≤ 3 and the number of linear input vectors ≤ 3. The nodes represent the
architecture operational layer and are chosen from the set O = { linear, elementwise blend-
ing, elementwise product, elementwise sum, Tanh activation, Sigmoid activation, LeakyReLU
activation }.

For the experiments on NAS-Bench-NLP [Kly+22] we make use of the surrogate benchmark
NAS-Bench-X11 [Yan+21] and the additional implementation in NAS-Bench-Suite [Meh+22].
Note, for the NAS-Bench-X11 evaluations, each architecture from the NAS-Bench-NLP search
space must be trained for three epochs to use the surrogate model, whereas NAS-Bench-Suite
provides the surrogate model for NAS-Bench-NLP without learning curve information, but
also accompanying a lower Kendall Tau rank correlation. For fast evaluations we use the
latter surrogate for our experiments. In order to use the surrogate benchmark, the architecture
representation is the same used in Yan et al. [Yan+21] with the modification that each hidden
node is connected to the output node. An exemplary architecture representation is visualized in
Figure F.4. A next step is to analyse the 14 332 provided architectures on uniqueness, which leads

250 APPENDIX F. APPENDIX TO CHAPTER 8

to 12 107 unique architectures. Furthermore, since Yan et al. [Yan+21] and Mehta et al. [Meh+22]
only provide a surrogate model, which only considers architectures with up to 12 nodes, we
also restrict our training data to this subset leading to a total of 7 258 architectures. We show
experiments on NAS-Bench-NLP in Subsection 8.4.2.

F.1.5 Hardware-Aware-NAS-Bench

The recently introduced HW-NAS-Bench [Li+21] is the first public dataset for hardware NAS. It
extends two representative NAS search spaces, NAS-Bench-201 [DY20] and FBNet [Wu+19], by
providing measured and estimated hardware costs (i.e. latency and/or energy) for each device
for all architectures in both search spaces. For this, HW-NAS-Bench considers six hardware
devices: Edge GPU [NVI21], Raspi 4 [Ras21], Edge TPU [Goo21b], Pixel 3 [Goo21c], ASIC-Eyeriss
[Che+16b] and FPGA [Xil21a; Xil21b]. In our experiments in Subsection 8.4.3, we consider the
latency information on the NAS-Bench-201 search space.

F.2. ADDITIONAL ABLATION STUDIES 251

F.2 Additional Ablation Studies

In this section we give an overview of ablation studies with respect to the proposed AG-Net.

F.2.1 Oracle Ablation

As we have seen in the previous section, our model AG-Net is able to find high-scoring archi-
tectures in various search spaces of different sizes and with different objectives. In addition,
including the supposedly stronger predictor XGB [CG16] leads to improvements for the search
on NAS-Bench-NLP [Kly+22]. In this section, we include an even stronger architecture accuracy
evaluation model, i.e. the benchmark query input itself (oracle).

The comparison of the oracle benchmark (also including the ranking metric as for XGB in
the main paper) to our AG-Net and XGB modifications are visualized in Figure F.5. This figure
demonstrates the high performance of our model in the low query area.

Figure F.5: Architecture search on NAS-Bench-101. Reported is the mean over 10 trials for the
search of the best architecture in terms of validation accuracy on the CIFAR-10 image classification
task compared to strong predictor models.

252 APPENDIX F. APPENDIX TO CHAPTER 8

F.2.2 Latent Space Ablations

As we showed in Subsection 8.4.1, AG-Net improves over state-of-the art methods. For additional
comparisons, we investigate different search methods in the latent space of the generative model,
with samples h from a grid and also include baselines using the Latent Space Optimization
(LSO) approach. For the first experiment we use the generator solely as a data sampler from the
generator’s latent space without any retraining, for the latter baseline we retrain the generator
during the search. For the optimization, we use Bayesian optimization, local search, and random
search.

Bayesian Optimization. We use DNGO [Sno+15] as our uncertainty prediction model for
the Bayesian optimization search strategy, with the basis regression network being a one-layer
Multilayer Perceptron (MLP) with a hidden dimensionality of 128, which is trained for 100
epochs and Expected Improvement (EI) [Moc74] as our acquisition function, which is mostly
used in NAS. We set the best function value for the EI evaluation as the best validation accuracy
of the training data. We sample 16 initial random latent space variables h ∼ U [−3, 3] and decode
them to graphs using our pretrained generative model. These latent space variables and their
corresponding validation architecture performances are then inputs for the DNGO model for
training. Again, the best 16 architectures are selected using EI in each round to be evaluated and
added to the training data. This search ends when the total query amount of 300 is reached.

Random and Local Search. In addition to Bayesian Optimization as a comparison, we also
include a random search [LT19] and local search investigation. Recently, White, Nolen, and
Savani [WNS21b] show that local search is a powerful NAS baseline, resulting in competitive
results. Local search [WNS21b] evaluates samples and their neighborhood uniformly at random.
An option to define the neighborhood is the set of architectures which differ from a sampled
architecture by one node or edge. This can be done only in the discrete search space, given for
example by the tabular NAS-Benchmarks. We have to adapt the neighborhood definition in
our latent space for local search in this space. We sample a latent space variable h ∼ U [−3, 3],
decode it and evaluate the generated neural architecture. Here, we define neighborhood as the
Euclidean space around the sampled latent variable Uϵ(z) = {y ∼ U [−3, 3]|d(z, y) < ϵ}, with ϵ
being sufficiently small. This neighborhood is then investigated until a local optimum in terms
of validation accuracy is reached. Furthermore, we include a random search and local search
comparison using weighted retraining. Here, we retrain the generative model in each search
iteration for 1 epoch with the weighted objective function, ceteris paribus.

To compare with weight-sharing approaches, we also compare to the supernet from Huang
and Chu [HC21] for the NAS-Bench-201 search space. To compare our AG-Net with SGNAS, we
use the supernet as our surrogate model to predict the architectures performance while retraining
the generative model in the weighted manner. The results of our ablation studies are reported
in Table F.1. AG-Net improves over search methods on the latent space with and without LSO
on both benchmarks, demonstrating that our generator in combination with our MLP surrogate
model learns to adapt the distribution shift constructed by the weighted retraining best.

For further visualizations we also plot different ablation search methods over different query
numbers in Figure F.6 for NAS-Bench-101 and Figures F.7, F.8, and F.9 for NAS-Bench-201. These
figures demonstrates the high any-time performance of our method on both search spaces. For
any number of available queries, our model is better in finding high-performing architectures
from the latent space than other latent space based methods.

F.2. ADDITIONAL ABLATION STUDIES 253

F.2.3 Predictor Ablation – Local Solution

Our proposed method, consisting of the generative and surrogate model combined with latent
space optimization encourages the architecture search to focus on promising regions in the search
space. This method could be trapped in local solutions, which we investigate experimentally
in the following. First, the previous section points out that AG-Net improves over both local
search methods with and without the latent space optimization approach. Thus, we assume
that the latent space optimization learns properties of high-scoring architectures without being
easily trapped in poor local solutions. The amount of samples drawn in each search iteration
also provides a trade-off between diversity versus specificity. To investigate further how easily
AG-Net could be trapped in a local solution, we test our method when it only uses in total the
best k (predicted) architectures from our test samples and the training data as a new training
set for the next search iteration (degenerative) and is thereby encouraged to forget about worse
performing architectures. Figure F.10 shows the search behavior of the degenerative model with
k = 16 and k = 32. Even in this case, AG-Net is not easily trapped in poor solutions.

Figure F.6: Ablation: NAS on NAS-Bench-101 over 10 trials. We compare AG-Net to Random
Search (RS), Local Search (LS), and Bayesian Optimization (BO) with and without additional
Latent Space Optimization (LSO).

254
A

PPEN
D

IX
F.

A
PPEN

D
IX

TO
C

H
A

PTER
8

Table F.1: Ablation: Search results on NAS-Bench-101 and NAS-Bench-201 on the AG-Net latent space (mean over 10 trials with a query
budget of 300).

NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120

Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimum* 95.06 94.32 91.61 94.37 73.49 73.51 46.77 47.31

Random Search 94.27 93.65 91.37 93.92 72.55 72.49 46.09 46.05
Local Search 94.31 93.66 91.28 94.01 72.52 72.59 45.89 46.07

Bayesian Optimization 94.27 93.62 91.30 93.99 72.23 72.35 46.09 46.01
Random Search + LSO 94.64 94.20 91.61* 94.37* 73.49* 73.51* 46.77* 45.47

Local Search + LSO 94.17 93.50 91.30 93.96 72.43 72.58 45.83 45.95
Bayesian Optimization +LSO 94.50 93.96 91.43 94.17 72.64 72.67 46.30 45.91

SGNAS [HC21] + LSO - - 91.61* 94.37* 73.04 73.12 46.56 46.32
AG-Net (ours) 94.96 94.20 91.61* 94.37* 73.49* 73.51* 46.67 46.22

F.2. ADDITIONAL ABLATION STUDIES 255

Figure F.7: Ablation: NAS on NAS-Bench-201 (CIFAR-10) over 10 trials. We compare AG-Net to
Random Search (RS), Local Search (LS), Bayesian Optimization (BO), and SGNAS [HC21] with (+
LSO) and without retraining.

Figure F.8: Ablation: NAS on NAS-Bench-201 (CIFAR-100) over 10 trials. We compare AG-Net to
Random Search (RS), Local Search (LS), Bayesian Optimization (BO), and SGNAS [HC21] with (+
LSO) and without retraining.

256 APPENDIX F. APPENDIX TO CHAPTER 8

Figure F.9: Ablation: NAS on NAS-Bench-201 (ImageNet16-120) over 10 trials. We compare
AG-Net to Random Search (RS), Local Search (LS), Bayesian Optimization (BO), and SGNAS
[HC21] with (+ LSO) and without retraining.

Figure F.10: Architecture search on NAS-Bench-101 in the degenerate setting. Reported is the
mean over 10 trials.

F.3. EXPERIMENTS: IMPLEMENTATION DETAILS 257

F.3 Experiments: Implementation Details

F.3.1 Surrogate Model

In this section, we present details about the surrogate models used in the main paper. The
MLP surrogate model used for our AG-Net is a 4-layer MLP with ReLU activation functions.
The hidden size equals the input size. The input to the MLP surrogate model is the vector
representation ∈ Rn of our graphs: a concatenation of the flattened node attribute matrix and
flattened upper triangular matrix of the adjacency matrix, which presents the edge scores, see
Section F.1 for visualizations. Note, the vector dimension n differs across the search spaces due
to the different maximal amount of nodes. Our AG-Net passes the output of our generator, i.e. a
generated vector representation, as the direct input to our MLP surrogate model.

We consider XGB [CG16] as an alternative surrogate prediction model. The input to this
prediction model is the vector representation of the architecture.

F.3.2 Search Algorithm

High-level descriptions of the unconstrained (Subsection 8.4.1) and constrained (Subsection 8.4.3)
versions of our search algorithm are depicted in Algorithm 1 and Algorithm 2 respectively.

F.3.3 NAS-Bench-101

Table F.2 is the detailed version of Table 8.1 including standard deviation.

F.3.4 NAS-Bench-201

Table F.4 is the version of Table 8.2 and Table 8.3 including standard deviation.

F.3.5 DARTS Search Space

Table F.3 is the detailed version of Table 8.4 including standard deviation.

Search Process using NAS-Bench-301. For experiments in the DARTS [LSY19] search space, we
first train our generative model on generating valid cells, as visualized in Figure F.3; here we do
not distinguish between generating a normal or a reduction cell. Having a pretrained generative
model for generating valid cell representations in the DARTS search space allows for searching
well-performing architectures. Here we describe the search process for architectures evaluated
on CIFAR-10 using the surrogate benchmark NAS-Bench-301 [Zel+22]. Since the DARTS search
space is defined by a normal and reduction cell, we have to adapt the search process, compared
to the search in the tabular benchmark search spaces, where the architectures differ between the
DAG. We begin the search by randomly sampling 16 architectures from NAS-Bench-301. Next,
we generate one normal cell. This cell is used to search for the best reduction cell in terms of the
accuracy given by the surrogate benchmark NAS-Bench-301, in combination with the randomly
sampled cell. This search procedure then follows the same steps as for the tabular benchmarks
and stops after we reach a query amount of 155. Now, we can use the best found reduction cell as
a fixed starting point to search for the best normal cell in the same manner as before. The overall
search stops after a maximal amount of 310 queries. The search outcome differs between starting

258 APPENDIX F. APPENDIX TO CHAPTER 8

Algorithm 1: Unconstrained Search Algorithm.
Input: (i) Search space pD
Input: (ii) Pretrained generator G
Input: (iii) Untrained performance predictor P
Input: (iv) Query budget b
Input: (v) e epochs to train G and P
▷ Initialize training data

1 D← {}
2 while |D| < 16 do
3 D← D ∪ {d ∼ pD}
4 end
▷ Evaluate architectures (get accuracies on target image dataset)

5 D← eval(D)
▷ Randomly initialize predictor weights

6 P← init(P)
▷ Search loop

7 while |D| < b do
▷ Weight training data by performance

8 Dw ← weight(D)
▷ Train generator and predictor

9 train(G, P, Dw, e)
▷ Generate 100 candidates

10 Dcand ← {}
11 while |Dcand| < 100 do
12 h ∼ U [−3, 3]
13 Dcand ← Dcand ∪ G(h)
14 end

▷ Select top-16 candidates with P
15 Dcand ← select(Dcand, P,16)

▷ Evaluate and add to data
16 D← D ∪ eval(Dcand)
17 end

F.3. EXPERIMENTS: IMPLEMENTATION DETAILS 259

Algorithm 2: Constrained Search Algorithm.
Input: (i) Search space pD
Input: (ii) Pretrained generator G
Input: (iii) Untrained performance predictor Pa
Input: (iv) Set of constraint predictors Pc
Input: (v) Query budget b
Input: (vi) e epochs to train G and P
Input: (vii) Set of constraints C
▷ Initialize training data

1 D← {}
2 while |D| < 16 do
3 D← D ∪ {d ∼ pD}
4 end
▷ Evaluate architectures (get accuracies and constraints on target image

dataset)
5 D← eval(D)
▷ Randomly initialize predictor weights

6 Pa ← init(Pa)
7 foreach P ∈ Pc do
8 P← init(P)
9 end
▷ Search loop

10 while |D| < b do
▷ Weight train data by performance and constraints

11 Dw ← weight(D, C)
▷ Train generator and predictors

12 train(G, Pa, Pc, Dw, e)
▷ Generate 100 candidates

13 Dcand ← {}
14 while |Dcand| < 100 do
15 h ∼ U [−3, 3]
16 Dcand ← Dcand ∪ G(h)
17 end

▷ Select top16 candidates with Pa and Pc
18 Dcand ← select(Dcand, Pa, Pc,16)

▷ Evaluate and add to data
19 D← D ∪ eval(Dcand)
20 end

260 APPENDIX F. APPENDIX TO CHAPTER 8

Table F.2: Architecture search on NAS-Bench-101. Reported is the mean ± standard deviation
over 10 trials for the search of the best architecture in terms of validation accuracy on the CIFAR-
10 image classification task compared to state-of-the-art methods.

NAS Method Val. Acc Test Acc Queries

Optimum∗ 95.06∗ 94.32∗ –

Arch2vec + RL [Yan+20] – 94.10 400
Arch2vec + BO [Yan+20] – 94.05 400

NAO ‡[Luo+18] 94.66± 0.14 93.49± 0.59 192
BANANAS† [WNS21a] 94.73± 0.17 94.09± 0.19 192

Bayesian Optimization† [Sno+15] 94.57± 0.20 93.96± 0.21 192
Local Search† [WNS21b] 94.57± 0.15 93.97± 0.13 192
Random Search† [LT19] 94.31± 0.15 93.61± 0.27 192

Regularized Evolution* [Rea+19] 94.47± 0.11 93.89± 0.20 192
WeakNAS [Wu+21] – 94.18± 0.14 200

XGB (ours) 94.61± 0.04 94.13± 0.11 192
XGB + Ranking (ours) 94.60± 0.08 94.14± 0.19 192

AG-Net (ours) 94.90± 0.22 94.18± 0.10 192

Table F.3: Results on NAS-Bench-301 (mean ± standard deviation over 50 trials) for the search of
the best architecture in terms of validation accuracy compared to state-of-the-art methods.

NAS Method Val. Acc Queries

BANANAS† [WNS21a] 94.77± 0.10 192
Bayesian Optimization† [Sno+15] 94.71± 0.10 192

Local Search† [WNS21b] 95.02± 0.10 192
Random Search† [LT19] 94.31± 0.12 192

Regularized Evolution† [Rea+19] 94.75± 0.11 192

XGB (ours) 94.79± 0.13 192
XGR + Ranking (ours) 94.76± 0.14 192

AG-Net (ours) 94.79± 0.12 192

F.3.
EX

PER
IM

EN
TS:IM

PLEM
EN

TA
T

IO
N

D
ETA

ILS
261

Table F.4: Architecture Search on NAS-Bench-201. We report the mean ± standard deviation over 10 trials for the architecture with the
highest validation accuracy. For comparable numbers of queries, AG-Net performs similarly or better than the previous state of the art.

NAS Method CIFAR-10 CIFAR-100 ImageNet16-120 Queries
Val. Acc Test Acc Val. Acc Test Acc Val. Acc Test Acc

Optimum∗ 91.61∗ 94.37∗ 73.49∗ 73.51∗ 46.73∗ 47.31∗ -

SGNAS [HC21] 90.18± 0.31 93.53± 0.12 70.28± 1.20 70.31± 1.09 44.65± 2.32 44.98± 2.10 -

Arch2vec + BO [Yan+20] 91.41± 0.22 94.18± 0.24 73.35± 0.32 73.37± 0.30 46.34± 0.18 46.27± 0.37 100
AG-Net (ours) 91.55± 0.08 94.24± 0.19 73.20± 0.34 73.12± 0.40 46.31± 0.33 46.20± 0.47 96

AG-Net (ours with topk=1) 91.41± 0.30 94.16± 0.31 73.14± 0.56 73.15± 0.54 46.42± 0.14 46.43± 0.30 100

BANANAS† [WNS21a] 91.56± 0.14 94.3± 0.22 73.49∗ ± 0.00 73.50± 0.00 46.65± 0.13 46.51± 0.11 192
BO† [Sno+15] 91.54± 0.06 94.22± 0.18 73.26± 0.19 73.22± 0.27 46.43± 0.35 46.40± 0.35 192

RS † [LT19] 91.12± 0.26 93.89± 0.27 72.08± 0.53 72.07± 0.61 45.87± 0.39 45.98± 0.41 192
XGB (ours) 91.54± 0.09 94.34± 0.10 73.10± 0.51 72.93± 0.74 46.48± 0.13 46.08± 0.79 192

XGB + Ranking (ours) 91.48± 0.12 94.25± 0.15 73.20± 0.36 73.24± 0.34 46.40± 0.28 46.16± 0.64 192
AG-Net (ours) 91.60± 0.02 94.37∗ ± 0.00 73.49∗ ± 0.00 73.51∗ ± 0.00 46.64± 0.12 46.43± 0.34 192

GANAS [Rez+21] - 94.34± 0.05 - 73.28± 0.17 - 46.80± 0.29 444
AG-Net (ours) 91.61∗ ± 0.00 94.37∗ ± 0.00 73.49∗ ± 0.00 73.51∗ ± 0.00 46.73∗ ± 0.00 46.42± 0.00 400

262 APPENDIX F. APPENDIX TO CHAPTER 8

Table F.5: Results on NAS-Bench-NLP (mean ± standard deviation over 100 trials) for the search
of the best architecture in terms of validation perplexity compared to state-of-the-art methods.

NAS Method Val. Perplexity Queries

BANANAS† [WNS21a] 95.68± 0.16 304
Local Search† [WNS21b] 95.69± 0.18 304
Random Search† [LT19] 95.64± 0.19 304

Regularized Evolution† [Rea+19] 95.66± 0.21 304

XGB (ours) 95.95± 0.20 304
XGR + Ranking (ours) 95.92± 0.19 304

AG-Net (ours) 95.86± 0.18 304

with a reduction or the normal cell. The search procedure starting with a random reduction
cell is analogous. In the main paper, we report the search outcome for NAS-Bench-301 [Zel+22]
starting with a random reduction cell.

Search Process using TENAS. As we described in the previous section, the search in the
DARTS [LSY19] search space needs adaptions in the search procedure. Here we describe the
further adaption of using training free measurements instead of the NAS-Bench-301 prediction.
The training free measurements are based on the recent paper TE-NAS [CGW21], which ranks
architectures by analysing the neural tangent kernel, by its condition number (KN), and the
number of linear regions (NLR) of each architecture. Concretely, for the search on ImageNet
[Den+09] we search for architectures in terms of their KN value and their number of linear
regions instead of their validation accuracy. In the beginning of our search we generate three
random normal cells. These cells are used to search for an optimal reduction cell optimizing both
KN and NLR measurements. In each search iteration we generate reduction cells and calculate
the KN and NLR for each combination of normal cell and reduction cell. The reduction cells
are ranked according to their mean KN and their mean NLR (mean in terms of all three normal
cells). The 16 best ranked reduction cells are then used for the next iteration of reduction cell
search. The reduction cell search stops, when a maximum of 104 queries is reached. After that
we use the best found reduction cell in terms of the lowest KN and the highest NLR for the next
search for a normal cell. The next steps use this best found reduction cell as a starting point and
searches for the best normal cell in the same manner as before. The search stops after a total of
208 queries and outputs an overall normal and reduction cell combination, leading to a DARTS
[LSY19] architecture, which we train on ImageNet [Den+09] using the same training pipeline as
Chen, Gong, and Wang [CGW21].

F.3.6 NAS-Bench-NLP

Table F.5 is the detailed version of Table 8.5 including standard deviation.

F.4. GENERATOR DETAILS 263

F.3.7 Hardware-Aware NAS-Bench

In comparison to the experiments for NAS-Bench-101 [Yin+19b] and NAS-Bench-201 [DY20],
the search on the Hardware-Aware NAS-Bench [Li+21] changes to be a multi-objective learning
procedure. We compare two different objective settings: i) a joint constrained optimization in
Equation 8.4 and ii) a constrained optimization in Equation 8.5. For both settings we need to
adapt the surrogate model by including an additional predictor g(·) for latency. We implement
g(·) equally to the performance predictor f (·), whereas both predictors share weights in our
experiments. We give a detailed overview of the hyperparameter settings in Section F.5. Since
we include an additional predictor, the training objective needs to be updated, as seen in
Equation 8.6 with multiple targets. The risk of including multiple targets to the training objective
is an exploding loss leading to reduced valid generation ability of our generative network. In
order to overcome this problem, we scale each loss term by the largest one, such that each term
is at most 1. This way, we have a more stable training.

Exemplary Searches for Other Devices. In Figure 8.7 we showed an exemplary search result
comparing random search with both of our constrained algorithm settings in the case of different
latency constraints on a Pixel3. In the following, we show more examples on different devices
in Figure F.11. These plots show that both methods Joint=1 and Joint=0 outperform the random
search baseline in all different device experiments. The same results as in the main paper holds
therefore for all other devices too; Joint=1 is able to find better performing architectures compared
to Joint=0 if the latency constraint L restricts the feasible search space strongly.

Search Progress and Baselines. Local search [WNS21b] is considered a strong baseline in NAS.
In the case of constrained searches (as in HW-NAS-Bench), we noticed that it cannot perform well
without adaptation. The vanilla local search algorithm expects as input a single randomly drawn
architecture. However, this architecture is not guaranteed to be feasible as its latency can be
larger than the latency constraint. To circumvent this, we performed local search in the following
settings: (a) local search vanilla setting with one randomly drawn architecture, and (b) local
search initialized with 16 randomly drawn architectures. In each setting, local search continues
to search the neighborhood of the next best architecture that satisfies the latency constraint.
We noticed that initializing local search with 16 randomly drawn architectures improves its
performance substantially, however, it is still not on par with random search [LT19] in this setting.
Consequently, we only show random search as the baseline in Table 8.7 to improve readability.
In Figure F.12 we show the progress of our algorithms (Joint=0 and Joint=1) compared to random
search and local search.

F.4 Generator Details
Generator Evaluation. We examine the generation ability of our generator [Yan+20; Luk+21].
The training on the surrogate benchmarks is a priori only on a subset of the overall dataset. For
that we train on 90% of the overall dataset and keep a hold-out dataset of 10%. Then, we sample
10 000 random variables z ∼ N (0, 1) and decode them to graphs. We report the results of this
investigation in Table F.6. Here, validity describes the ratio of valid graphs our generator model
generates, uniqueness describes the portion of unique graphs from the valid generated graphs,
and novelty is the portion of generated graphs not in the training set. It is not surprising for the
NAS-Bench-301 and NAS-Bench-NLP search spaces that our model is able to generate 100%
unique and novel graphs given the large size of both search spaces. This demonstrates that our
generator model is able to generate valid graphs with high novelty and, consequently, is able to
cover a substantial part of the search space.

264 APPENDIX F. APPENDIX TO CHAPTER 8

0 2 4 6 8 10
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

edgegpu Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

0 2 4 6 8 10 12 14
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

raspi4 Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

eyeriss Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Latency

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

Va
l.

Ac
c.

fpga Accuracies on ImageNet16

Optimum
Joint=0
Joint=1
Random

Figure F.11: Exemplary searches on HW-NAS-Bench for image classification on ImageNet16
with 192 queries on Edge GPU, Raspi4, Eyeriss, FPGA and latency conditions L ∈ {2, 4, 6, 8, 10},
L ∈ {2, 4, 6, 8, 10, 12, 14} and L ∈ {1, 2} (y-axis zoomed for visibility).

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

Functions Evaluated

0.6

0.7

0.8

0.9

1.0

Op
tim

al
ity

Mean of 10 runs

Joint=0
Joint=1
Random
Local Search
Local Search (16)
Optimum

16 32 48 64 80 96 11
2

12
8

14
4

16
0

17
6

19
2

20
8

22
4

24
0

25
6

27
2

28
8

30
4

32
0

Functions Evaluated

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Op
tim

al
ity

Mean of 10 runs

Joint=0
Joint=1
Random
Local Search
Local Search (16)
Optimum

Figure F.12: (left) Optimality for all search parameters in Table 8.7 at any time during the search
progress in terms of the number of evaluated architectures (up to 320). Optimality is the mean
validation accuracy of 10 runs per algorithm, normalized by the optimal value for each parameter
setting (hence, optimum is at 1.0). (right) zoomed y-axis

F.4. GENERATOR DETAILS 265

Table F.6: Generator Abilities and training costs. The proposed generator generates architectures
with high validity and uniqueness scores. The novelty scores are in a similar range as for previous
methods [Luk+21].

Search Space Validity Uniqueness Novelty Training Time
% % % (GPU days)

NAS-Bench-101 71.69 97.92 62.30 0.4
NAS-Bench-201 99.97 73.61 10.03 0.3
NAS-Bench-301 42.27 100.00 100.00 0.9

NAS-Bench-NLP 57.95 100.00 100.00 0.7

Generator Implementation Details. In this section we present more details about the genera-
tion model SVGe from Lukasik et al. [Luk+21]. The pseudo algorithm is described in Algorithm 3.
The modules finitNode, faddNode, faddEdges, fEmbedding used in this code are two-layer MLPs with
ReLU activation functions. Note, in contrast to SVGe, we don’t sample within the generation
process, in order to allow for end-to-end learning with the prediction model for AG-Net.

Algorithm 3: Graph Generation.

Input: hin ∼ N (0, 1)
Output: random sampled reconstructed graph G̃ = (Ṽ, Ẽ)

1 initialize one-hot encoded InputNode v0, with embedding h0 ← finitNode(hin, fEmbedding)

2 V ← {v0}, E← ∅, hG ← hin,
3 while |V| ≤ Max Number of Nodes do
4 vt+1 ← faddNode(hin, hG)
5 V ← V ∪ {vt+1}
6 ht+1 ← finitNode(hin, hG, fEmbedding(vt+1)])

7 for vj ∈ V \ vt+1 do
8 saddEdges(j, t + 1)← faddEdges(ht+1, ht, hG, hin)

9 e(j,t+1) ∼ Eval(saddEdges(j, t + 1)) ; ▷ evaluate whether to add edge
10 if e(j,t+1) = 1 then
11 E← E ∪ {e(j,t+1) = (vj, vt+1)}
12 end
13 end
14 ht ← concat(ht, ht+1)
15 G← (V, E)
16 ht ← (ht, G) ; ▷ update node embeddings
17 hG ← aggregate(ht) ; ▷ update graph embedding
18 t← t + 1
19 end
20 V ∼ Categorical(V) ; ▷ Sample node types
21 E ∼ Ber(E) ; ▷ Sample edges
22 G̃ = (V, E)

266 APPENDIX F. APPENDIX TO CHAPTER 8

F.5 Hyperparameters

In this section we give a detailed overview about the hyperparameter settings for our generative
network. We use Pytorch [Pas+19] and Pytorch Geometric [FL19] for all our implementations.

F.5.1 Generator

Table F.7 presents all used hyperparameters for the generator training. We train our generator in
a ticked manner; after every 5 000 training data samples, we evaluate our generator for validity.
The used pretrained checkpoint for our search is then the one, which has the highest validity
(defined by randomly sampling 10 000 latent vectors z ∈ R32 and decoding architectures). The
training is the same for all different search spaces.

Table F.7: Hyperparameters of the generator model.

Hyperparameter Default Value

Node Embedding 32
Latent Vector 32

MLP Node Embedding layer 2
GNN layer 2
Batch Size 32
Optimizer Adam [KB15]

Learning Rate 0.0002
Betas (0.5, 0.999)
Ticks 500

Tick Size 5,000

F.5.2 Surrogate Model

The overall surrogate is an MLP with ReLU activations. Table F.8 and Table F.9 list all hyperpa-
rameters for the search experiments in the main paper for the simple performance surrogate
model and the multi-objective surrogate model for the additional hardware objective. The
hyperparameters for XGB [CG16] are the same as in Mehta et al. [Meh+22].

F.5. HYPERPARAMETERS 267

Table F.8: Hyperparameters for the performance surrogate model f (·).

Hyperparameter Dataset

NB101 NB201 NB301 NBNLP

α 0.9
MLP Layers 4
MLP Hidden 56 84 176 559

Epochs 15 30 15 30
Optimizer Adam [KB15]

LR 0.001
Betas (0.5, 0.999)

weight factor 0.001
batch size 16

loss L2

Table F.9: Hyperparameters for both surrogate models f (·) and g(·) for the multi-objective search
in the Hardware-Aware Benchmark.

Hyperparameter Hardware-Aware NASBench

α 0.95
λ 0.5

MLP Layers 4
MLP Hidden 82

Epochs 30
Optimizer Adam [KB15]

LR 0.002
Betas (0.5, 0.999)

weight factor 0.001
penalty term 1000

batch size 16
loss L2

268 APPENDIX F. APPENDIX TO CHAPTER 8

F.6 Latent Space Optimization Visualization

A more descriptive visualization of the latent space optimization technique used for our AG-Net
neural architecture search is displayed in Figure F.13.

LSO

Latent space

before LSO

Latent space

after LSO

Figure F.13: The latent space is reshaped in a way that promotes desired properties of generated
architectures (here: accuracy). Consequently, it becomes more likely for the generator to generate
architectures satisfying this property.

Chapter G

Data for Robust Neural Architecture Design
In this supplementary material, we provide several additional details and visualizations:

• Section G.1: Details about the generation and structure of the dataset.

• Section G.2: Figure depicting the correlations between evaluated image datasets.

• Section G.3: Example images for the corruptions in CIFAR-10-C.

• Section G.4: Figures that are presented in the main chapter for CIFAR-10 are here shown
for CIFAR-100 and ImageNet16-120.

• Section G.5: Analysis of the effect of architectural design choices on robustness of a network.

G.1 Dataset Generation

G.1.1 NAS-Bench-201

We base our evaluations on the NAS-Bench-201 [DY20] search space. It is a cell-based architecture
search space. Each cell has in total 4 nodes and 6 edges. The nodes in this search space correspond
to the architecture’s feature maps and the edges represent the architectures operation, which
are chosen from the operation set O = { 1 × 1 conv., 3 × 3 conv., 3 × 3 avg. pooling, skip,
zero } (see Figure 9.1). This search space contains in total 56 = 15 625 architectures, from
which only 6466 are unique, since the operations skip and zero can cause isomorphic cells (see
Figure G.1), where the latter operation zero stands for dropping the edge. Each architecture is
trained on three different image datasets for 200 epochs: CIFAR-10 [Kri09], CIFAR-100 [Kri09]
and ImageNet16-120 [CLH17]. For our evaluations, we consider all unique architectures in the
search space and test splits of the corresponding datasets. Hence, we evaluate 3 · 6466 = 19 398
pretrained networks in total.

G.1.2 Dataset Gathering

We collect evaluations for our dataset for different corruptions and adversarial attacks (as
discussed in Subsection 9.3.2 and Subsection 9.3.3) following Algorithm 4. This process is also
depicted in Figure G.2. Hyperparameter settings for adversarial attacks are listed in Table G.1.
Due to the heavy load of running all these evaluations, they are performed on several clusters.
These clusters are comprised of either (i) compute nodes with Nvidia A100 GPUs, 512 GB RAM,
and Intel Xeon IceLake-SP processors, (ii) compute nodes with NVIDIA Quadro RTX 8000 GPUs,
1024 GB RAM, and AMD EPYC 7502P processors, (iii) NVIDIA Tesla A100 GPUs, 2048 GB RAM,
Intel Xeon Platinum 8360Y processors, and (iv) NVIDIA Tesla A40 GPUs, 2048 GB RAM, Intel
Xeon Platinum 8360Y processors.

269

270 APPENDIX G. APPENDIX TO CHAPTER 9

in

1

2 out3x3

3x3

avg
1x1

1x1

991

in

1

2 out1x1

avg

3x3
3x3

1x1

3365

Figure G.1: Example of two isomorphic graphs in NAS-Bench-201. Due to the skip connection
from node in to node 1, both computational graphs are equivalent, but their identification in the
search space is different. For this dataset, we evaluated all non-isomorphic graphs (#991 was
evaluated and #3365 was not).

Table G.1: Hyperparameter settings of adversarial attacks evaluated.

Attack Hyperparameters

FGSM ϵ ∈ {.1, .5., 1, 2, 3, 4, 5, 6, 7, 8, 255}/255

PGD ϵ ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255
α = 0.01/0.3
40 attack iterations

APGD ϵ ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255
100 attack iterations

Square ϵ ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255
5 000 search iterations

Algorithm 4: Robustness Dataset Gathering.
Input: (i) Architecture space A (NAS-Bench-201).
Input: (ii) Test datasets D (CIFAR-10, CIFAR-100, ImageNet16-120).
Input: (iii) Set of attacks and/or corruptions C.
Input: (iv) Robustness Dataset R.

1 for a ∈ A do
▷ Load pretrained weights for a.

2 a.load_weights(d)
3 for d ∈ D do
4 for c(·, ·) ∈ C do

▷ Corrupt dataset d.
5 dc ← c(a, d)

▷ Evaluate architecture a with dc.
6 Accuracy, Confidence, ConfusionMatrix← eval(a, dc)

▷ Extend robustness dataset with evaluations.
7 R[d][c]["accuracy"][a]← Accuracy
8 R[d][c]["confidence"][a]← Confidence
9 R[d][c]["cm"][a]← ConfusionMatrix

10 end
11 end
12 end

G.1. DATASET GENERATION 271

NAS-Bench-201

Robustness

Dataset

Evaluation

Dataset

Corruption

Accuracy

Confidence

Confusion Matrix

Corrupted Data

Architecture

(trained)

Load

Parameters

Architecture

(untrained)

CIFAR-10

CIFAR-100

ImageNet16-120

Common

Corruptions

Adversarial
Attacks

Data

Attack

Figure G.2: Diagram showing the gathering process for our robustness dataset. (i) An non-
isomorphic architecture contained in NAS-Bench-201 is created and its parameters are loaded
from a provided checkpoint, dependent on the dataset evaluated. (ii) Given the evaluation
dataset, an attack or corruption, and the trained network, the evaluation dataset is corrupted
and (iii) the resulting corrupted data is used to evaluate the network. (iv) The evaluation results
are stored in our robustness dataset.

272 APPENDIX G. APPENDIX TO CHAPTER 9

Table G.2: Keys for attacks and corruptions evaluated.

Clean Adversarial Common Corruptions

clean aa_apgd-ce brightness
aa_square contrast
fgsm defocus_blur
pgd elastic_transform

fog
frost
gaussian_noise
glass_blur
impulse_noise
jpeg_compression
motion_blur
pixelate
shot_noise
snow
zoom_blur

G.1.3 Dataset Structure, Distribution, and License

Files are provided in json format to ensure platform-independence and to reduce dependency
on external libraries (e.g. Python has built-in json-support). We publish code that accompanies
our dataset on GitHub. The dataset itself will be linked from GitHub and is hosted on an
institutional cloud service. This ensures longtime availability and the possibility to version the
dataset. Dataset and code are published under GNU GPLv3.

G.1.4 Structure

The dataset consists of 3 folders, one for each dataset evaluated. Each folder contains one json
file for each combination of key and measurement. Keys refer to the sort of attack or corruption
used (Table G.2 lists all keys). Measurements refer to the collected evaluation type (accuracy,
confidence, cm). Clean and adversarial evaluations are performed on all datasets, while common
corruptions are evaluated on cifar10 and cifar100.

Metadata. The meta.json file contains information about each architecture in NAS-Bench-201.
This includes, for each architecture identifier, the corresponding string defining the network
design (as per [DY20]) as well as the identifier of the corresponding non-isomorphic architecture
from [DY20] that we evaluated. The file also contains all ϵ values that we evaluated for each
adversarial attack. An excerpt of this file is shown in Figure G.3.

Files. All files are named according to "{key}_{measurement}.json". An exemplary excerpt
of such file is shown in Figure G.4. Each file contains nested dictionaries stating the dataset,
evaluation key and measurement type. For evaluations with multiple measurements, e.g. in
the case of adversarial attacks for multiple ϵ values, the results are concatenated into a list.
Files and their possible contents are described in Table G.3. We showed some analysis and
possible use-cases on accuracies in the main paper. In the following, we elaborate on and show
confidence and confusion matrix (cm) measurements.

G.1. DATASET GENERATION 273

Table G.3: Files and their possible content.

File Description

clean_accuracy one accuracy value for each evaluated net-
work

clean_confidence one confidence matrix for each evaluated net-
work and collection scheme

clean_cm one confusion matrix for each evaluated net-
work

{attack}_accuracy list of accuracies, where each element corre-
sponds to the respective ϵ value

{attack}_confidence list of confidence matrices, where each ele-
ment corresponds to the respective ϵ value

{attack}_cm list of confusion matrices, where each element
corresponds to the respective ϵ value

{corruption}_accuracy list of accuracies, where each element corre-
sponds to the respective corruption severity

{corruption}_confidence list of confidence matrices, where each ele-
ment corresponds to the respective corruption
severity

{corruption}_cm list of confusion matrices, where each ele-
ment corresponds to the respective corruption
severity

274 APPENDIX G. APPENDIX TO CHAPTER 9

{
" ids " : {

. . . ,
" 21 " : {

" nb201− s t r i n g " : "|nor_conv_1x1~0|+|none~0|none~1|+|nor_conv_1x1~0|nor_conv_3x3~1|none~2| " ,
" isomorph " : " 21 "

} ,
. . . ,
" 1832 " : {

" nb201− s t r i n g " : "|nor_conv_1x1~0|+|nor_conv_1x1~0|none~1|+|nor_conv_1x1~0| skip_connect ~1|none~2| " ,
" isomorph " : " 309 "

} ,
. . .

} ,
" e p s i l o n s " : {

" aa_apgd−ce " : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 8 . 0] ,
" aa_square " : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 8 . 0] ,
" fgsm " : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 , 2 5 5 . 0] ,
"pgd" : [0 . 1 , 0 . 5 , 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 , 8 . 0]

}
}

Figure G.3: Excerpt of meta.json showing meta information of architectures #21 and #1832, as
well as ϵ values for each attack. Architecture #21 is non-isomorphic and points to itself, while
architecture #1832 is an isomorphic instance of #309.

{
" c i f a r 1 0 " : {

" c lean " : {
" accuracy " : {

" 0 " : 0 . 8 5 6 ,
. . .

}
}

}

{
" c i f a r 1 0 " : {

"pgd" : {
" accuracy " : {

" 0 " : [0 . 8 1 2 , 0 . 5 8 2 , 0 . 2 9 5 , 0 . 0 3 4 , 0 . 0 0 2 , 0 . 0 , 0 . 0] ,
. . .

}
}

}

Figure G.4: Excerpt of files containing results for (left) clean_accuracy.json and (right)
pgd_accuracy.json for dataset cifar10 for the architecture #0. Numbers are rounded to im-
prove readability.

{
" c i f a r 1 0 " : {

" c lean " : {
" conf idence " : {

" 0 " : {
" l a b e l " : [[. . .]] ,
" argmax " : [[. . .]] ,
" p r e d i c t i o n " : [. . .]

}
}

}
}

Figure G.5: Excerpt of clean_confidence.json for cifar10. Numbers are not shown to improve
readability.

G.1. DATASET GENERATION 275

G.1.5 Confidence

We collect the mean confidence after softmax for each network over the whole (attacked) test
dataset evaluated. We used 3 schemes to collect confidences (see Figure G.6). First, confidences
for each class are given by true labels (called label). In case of cifar10, this results in a 10× 10
confidence matrix, for cifar100 a 100× 100 confidence matrix, and ImageNet16-120 a 120× 120
confidence matrix. Second, confidences for each class are given by the class predicted by the
network (called argmax). This again results in matrices of sizes as mentioned. Third, confidences
for correctly classified images as well as confidences for incorrectly classified images (called
prediction). For all image datasets, this results in a vector with 2 dimensions. Each result is
saved as a list (or list of list), see Figure G.5.

Figure G.7 shows a progression of label confidence values for class label 0 on cifar10 from
clean to fgsm with increasing values of ϵ. Figure G.8 shows how prediction confidences of
correctly and incorrectly classified images correlate with increasing values of ϵ when attacked
with fgsm.

G.1.6 Confusion Matrix

For each evaluated network, we collect the confusion matrix (key: cm) for the corresponding
(attacked) test dataset. The result is a 10× 10 matrix in case of cifar10, a 100× 100 matrix in case
of cifar100, and a 120× 120 matrix in case of ImageNet16-120. See Figure G.9 for an example,
where we summed up confusion matrices for all networks on cifar10.

276 APPENDIX G. APPENDIX TO CHAPTER 9

0 1 2 3 4 5 6 7 8 9
True Class

0

1

2

3

4

5

6

7

8

9

Pr
ed

ict
ed

 C
la

ss

0.89

0.01

0.03

0.01

0.01

0.00

0.00

0.00

0.03

0.01

0.01

0.94

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.03

0.02

0.00

0.84

0.03

0.03

0.02

0.03

0.01

0.00

0.00

0.01

0.00

0.03

0.77

0.03

0.10

0.03

0.02

0.01

0.01

0.01

0.00

0.02

0.03

0.88

0.02

0.02

0.02

0.00

0.00

0.00

0.00

0.02

0.09

0.02

0.83

0.01

0.02

0.00

0.00

0.01

0.00

0.02

0.03

0.01

0.01

0.91

0.00

0.00

0.00

0.01

0.00

0.01

0.02

0.03

0.03

0.00

0.90

0.00

0.00

0.03

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.93

0.01

0.01

0.04

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.92

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9
Argmax Class

0

1

2

3

4

5

6

7

8

9

Pr
ed

ict
ed

 C
la

ss

0.95

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.97

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.00

0.93

0.01

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.90

0.01

0.04

0.01

0.01

0.00

0.00

0.00

0.00

0.01

0.01

0.94

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.01

0.04

0.01

0.93

0.00

0.01

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.00

0.96

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.00

0.96

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.97

0.01

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.96

0.0

0.2

0.4

0.6

0.8

1.0

Corrent Incorrect
Classification Result

0.97 0.79

0.0

0.2

0.4

0.6

0.8

1.0

Figure G.6: Mean confidence scores on clean CIFAR-10 images for all non-isomorphic networks
in NAS-Bench-201. (top: label) For each true class label. (middle: argmax) For each predicted
class label. (bottom: prediction) For correct and incorrect classifications.

G.1. DATASET GENERATION 277

0 1 2 3 4 5 6 7 8 9
0

0 1 2 3 4 5 6 7 8 9

0.
1

0 1 2 3 4 5 6 7 8 9

0.
5

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1 2 3 4 5 6 7 8 9

4

0 1 2 3 4 5 6 7 8 9

5

0 1 2 3 4 5 6 7 8 9

6

0 1 2 3 4 5 6 7 8 9

7

0 1 2 3 4 5 6 7 8 9

8

0 1 2 3 4 5 6 7 8 9

25
5

0.0 0.2 0.4 0.6 0.8 1.0
Class

0.0

0.2

0.4

0.6

0.8

1.0
Ep

sil
on

Class Label 0: Confidence Progression

Figure G.7: Mean label confidence scores on FGSM-attacked CIFAR-10 images for different ϵ
for all non-isomorphic networks in NAS-Bench-201. Only confidence scores for class label 0 are
shown. Networks lose prediction confidence for the true label when ϵ increases.

278 APPENDIX G. APPENDIX TO CHAPTER 9

0.84 0.86 0.88 0.90 0.92 0.94 0.96
Correct Classification Confidence

0.80

0.82

0.84

0.86

0.88

0.90

In
co

rre
ct

 C
la

ss
ifi

ca
tio

n
Co

nf
id

en
ce

0

0.1

0.5

1
23

4
5

6
7

8

255

Figure G.8: Mean prediction confidence scores on FGSM-attacked CIFAR-10 images for different
ϵ (on top of points) for all non-isomorphic networks in NAS-Bench-201. Networks become less
confident in their prediction if their prediction is correct when ϵ increases. Networks become
more confident in their prediction if their prediction is incorrect, however, only up to a certain ϵ
value. When ϵ further increases, confidence drops again.

0 1 2 3 4 5 6 7 8 9
True Class

0

1

2

3

4

5

6

7

8

9

Pr
ed

ict
ed

 C
la

ss

6e+6

4e+4

1e+5

6e+4

4e+4

9e+3

2e+4

3e+4

2e+5

7e+4

4e+4

6e+6

6e+3

1e+4

4e+3

4e+3

9e+3

7e+3

4e+4

2e+5

1e+5

4e+3

6e+6

2e+5

2e+5

1e+5

2e+5

5e+4

3e+4

2e+4

6e+4

2e+4

2e+5

5e+6

2e+5

6e+5

2e+5

9e+4

4e+4

4e+4

4e+4

6e+3

1e+5

1e+5

6e+6

9e+4

1e+5

1e+5

1e+4

8e+3

3e+4

7e+3

1e+5

5e+5

1e+5

5e+6

5e+4

1e+5

1e+4

1e+4

3e+4

9e+3

1e+5

2e+5

6e+4

5e+4

6e+6

2e+4

9e+3

1e+4

5e+4

4e+3

6e+4

1e+5

1e+5

1e+5

1e+4

6e+6

9e+3

2e+4

2e+5

5e+4

3e+4

3e+4

9e+3

7e+3

1e+4

8e+3

6e+6

6e+4

8e+4

2e+5

1e+4

2e+4

6e+3

5e+3

1e+4

1e+4

7e+4

6e+6

0

1

2

3

4

5

6

1e6

Figure G.9: Aggregated confusion matrices on clean CIFAR-10 images for all non-isomorphic
networks in NAS-Bench-201.

G.2. CORRELATIONS BETWEEN IMAGE DATASETS 279

G.2 Correlations between Image Datasets

In Figure G.10 we show the correlation between all clean and adversarial accuracies over all
datasets collected. This plot shows a positive correlation between the image datasets for the
one-step FGSM attack, whereas for all other multi-step attacks, the correlation becomes close to
zero or even negative.

cif
ar

10
, c

le
an

, e
=0

cif
ar

10
0,

 c
le

an
, e

=0
Im

ag
eN

et
16

-1
20

, c
le

an
, e

=0
cif

ar
10

, f
gs

m
, e

=0
.1

cif
ar

10
0,

 fg
sm

, e
=0

.1
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=0
.1

cif
ar

10
, f

gs
m

, e
=0

.5
cif

ar
10

0,
 fg

sm
, e

=0
.5

Im
ag

eN
et

16
-1

20
, f

gs
m

, e
=0

.5
cif

ar
10

, f
gs

m
, e

=1
cif

ar
10

0,
 fg

sm
, e

=1
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=1
cif

ar
10

, f
gs

m
, e

=2
cif

ar
10

0,
 fg

sm
, e

=2
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=2
cif

ar
10

, f
gs

m
, e

=3
cif

ar
10

0,
 fg

sm
, e

=3
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=3
cif

ar
10

, f
gs

m
, e

=4
cif

ar
10

0,
 fg

sm
, e

=4
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=4
cif

ar
10

, f
gs

m
, e

=5
cif

ar
10

0,
 fg

sm
, e

=5
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=5
cif

ar
10

, f
gs

m
, e

=6
cif

ar
10

0,
 fg

sm
, e

=6
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=6
cif

ar
10

, f
gs

m
, e

=7
cif

ar
10

0,
 fg

sm
, e

=7
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=7
cif

ar
10

, f
gs

m
, e

=8
cif

ar
10

0,
 fg

sm
, e

=8
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=8
cif

ar
10

, f
gs

m
, e

=2
55

cif
ar

10
0,

 fg
sm

, e
=2

55
Im

ag
eN

et
16

-1
20

, f
gs

m
, e

=2
55

cif
ar

10
, p

gd
, e

=0
.1

cif
ar

10
0,

 p
gd

, e
=0

.1
Im

ag
eN

et
16

-1
20

, p
gd

, e
=0

.1
cif

ar
10

, p
gd

, e
=0

.5
cif

ar
10

0,
 p

gd
, e

=0
.5

Im
ag

eN
et

16
-1

20
, p

gd
, e

=0
.5

cif
ar

10
, p

gd
, e

=1
cif

ar
10

0,
 p

gd
, e

=1
Im

ag
eN

et
16

-1
20

, p
gd

, e
=1

cif
ar

10
, p

gd
, e

=2
cif

ar
10

0,
 p

gd
, e

=2
Im

ag
eN

et
16

-1
20

, p
gd

, e
=2

cif
ar

10
, p

gd
, e

=3
cif

ar
10

0,
 p

gd
, e

=3
Im

ag
eN

et
16

-1
20

, p
gd

, e
=3

cif
ar

10
, p

gd
, e

=4
cif

ar
10

0,
 p

gd
, e

=4
Im

ag
eN

et
16

-1
20

, p
gd

, e
=4

cif
ar

10
, p

gd
, e

=8
cif

ar
10

0,
 p

gd
, e

=8
Im

ag
eN

et
16

-1
20

, p
gd

, e
=8

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=0
.1

cif
ar

10
0,

 a
a_

ap
gd

-c
e,

 e
=0

.1
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=0

.1
cif

ar
10

, a
a_

ap
gd

-c
e,

 e
=0

.5
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=0
.5

Im
ag

eN
et

16
-1

20
, a

a_
ap

gd
-c

e,
 e

=0
.5

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=1
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=1
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=1

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=2
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=2
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=2

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=3
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=3
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=3

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=4
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=4
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=4

cif
ar

10
, a

a_
ap

gd
-c

e,
 e

=8
cif

ar
10

0,
 a

a_
ap

gd
-c

e,
 e

=8
Im

ag
eN

et
16

-1
20

, a
a_

ap
gd

-c
e,

 e
=8

cif
ar

10
, a

a_
sq

ua
re

, e
=0

.1
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=0

.1
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=0
.1

cif
ar

10
, a

a_
sq

ua
re

, e
=0

.5
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=0

.5
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=0
.5

cif
ar

10
, a

a_
sq

ua
re

, e
=1

cif
ar

10
0,

 a
a_

sq
ua

re
, e

=1
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=1
cif

ar
10

, a
a_

sq
ua

re
, e

=2
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=2

Im
ag

eN
et

16
-1

20
, a

a_
sq

ua
re

, e
=2

cif
ar

10
, a

a_
sq

ua
re

, e
=3

cif
ar

10
0,

 a
a_

sq
ua

re
, e

=3
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=3
cif

ar
10

, a
a_

sq
ua

re
, e

=4
cif

ar
10

0,
 a

a_
sq

ua
re

, e
=4

Im
ag

eN
et

16
-1

20
, a

a_
sq

ua
re

, e
=4

cif
ar

10
, a

a_
sq

ua
re

, e
=8

cif
ar

10
0,

 a
a_

sq
ua

re
, e

=8
Im

ag
eN

et
16

-1
20

, a
a_

sq
ua

re
, e

=8

cifar10, clean, e=0cifar100, clean, e=0ImageNet16-120, clean, e=0cifar10, fgsm, e=0.1cifar100, fgsm, e=0.1ImageNet16-120, fgsm, e=0.1cifar10, fgsm, e=0.5cifar100, fgsm, e=0.5ImageNet16-120, fgsm, e=0.5cifar10, fgsm, e=1cifar100, fgsm, e=1ImageNet16-120, fgsm, e=1cifar10, fgsm, e=2cifar100, fgsm, e=2ImageNet16-120, fgsm, e=2cifar10, fgsm, e=3cifar100, fgsm, e=3ImageNet16-120, fgsm, e=3cifar10, fgsm, e=4cifar100, fgsm, e=4ImageNet16-120, fgsm, e=4cifar10, fgsm, e=5cifar100, fgsm, e=5ImageNet16-120, fgsm, e=5cifar10, fgsm, e=6cifar100, fgsm, e=6ImageNet16-120, fgsm, e=6cifar10, fgsm, e=7cifar100, fgsm, e=7ImageNet16-120, fgsm, e=7cifar10, fgsm, e=8cifar100, fgsm, e=8ImageNet16-120, fgsm, e=8cifar10, fgsm, e=255cifar100, fgsm, e=255ImageNet16-120, fgsm, e=255cifar10, pgd, e=0.1cifar100, pgd, e=0.1ImageNet16-120, pgd, e=0.1cifar10, pgd, e=0.5cifar100, pgd, e=0.5ImageNet16-120, pgd, e=0.5cifar10, pgd, e=1cifar100, pgd, e=1ImageNet16-120, pgd, e=1cifar10, pgd, e=2cifar100, pgd, e=2ImageNet16-120, pgd, e=2cifar10, pgd, e=3cifar100, pgd, e=3ImageNet16-120, pgd, e=3cifar10, pgd, e=4cifar100, pgd, e=4ImageNet16-120, pgd, e=4cifar10, pgd, e=8cifar100, pgd, e=8ImageNet16-120, pgd, e=8cifar10, aa_apgd-ce, e=0.1cifar100, aa_apgd-ce, e=0.1ImageNet16-120, aa_apgd-ce, e=0.1cifar10, aa_apgd-ce, e=0.5cifar100, aa_apgd-ce, e=0.5ImageNet16-120, aa_apgd-ce, e=0.5cifar10, aa_apgd-ce, e=1cifar100, aa_apgd-ce, e=1ImageNet16-120, aa_apgd-ce, e=1cifar10, aa_apgd-ce, e=2cifar100, aa_apgd-ce, e=2ImageNet16-120, aa_apgd-ce, e=2cifar10, aa_apgd-ce, e=3cifar100, aa_apgd-ce, e=3ImageNet16-120, aa_apgd-ce, e=3cifar10, aa_apgd-ce, e=4cifar100, aa_apgd-ce, e=4ImageNet16-120, aa_apgd-ce, e=4cifar10, aa_apgd-ce, e=8cifar100, aa_apgd-ce, e=8ImageNet16-120, aa_apgd-ce, e=8cifar10, aa_square, e=0.1cifar100, aa_square, e=0.1ImageNet16-120, aa_square, e=0.1cifar10, aa_square, e=0.5cifar100, aa_square, e=0.5ImageNet16-120, aa_square, e=0.5cifar10, aa_square, e=1cifar100, aa_square, e=1ImageNet16-120, aa_square, e=1cifar10, aa_square, e=2cifar100, aa_square, e=2ImageNet16-120, aa_square, e=2cifar10, aa_square, e=3cifar100, aa_square, e=3ImageNet16-120, aa_square, e=3cifar10, aa_square, e=4cifar100, aa_square, e=4ImageNet16-120, aa_square, e=4cifar10, aa_square, e=8cifar100, aa_square, e=8ImageNet16-120, aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure G.10: Kendall rank correlation coefficient between all clean and adversarial accuracies
that are evaluated in our dataset.

280 APPENDIX G. APPENDIX TO CHAPTER 9

G.3 Example image of corruptions in CIFAR-10-C

ga
us

sia
n_

no
ise

sh
ot

_n
oi

se

im
pu

lse
_n

oi
se

de
fo

cu
s_

bl
ur

gl
as

s_
bl

ur

m
ot

io
n_

bl
ur

zo
om

_b
lu

r

sn
ow

fro
st

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic
_t

ra
ns

fo
rm

pi
xe

la
te

jp
eg

_c
om

pr
es

sio
n

1

2

3

4

5

Se
ve

rit
y

Figure G.11: An example image of CIFAR-10-C [HD19] with different corruption types at
different severity levels. CIFAR-100-C [HD19] consists of images with the same corruption types
and severity levels.

G.4. MAIN PAPER FIGURES FOR OTHER IMAGE DATASETS 281

G.4 Main Paper Figures for other Image Datasets

CIFAR-100 Adversarial Attack Accuracies (Figure 9.2).

0 0.1 0.5 1 2 3 4 5 6 7 8 255
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 FGSM accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 PGD accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 AA_APGD-CE accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 AA_SQUARE accuracies

Figure G.12: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different
adversarial attacks (FGSM [GSS15], PGD [KGB17], APGD [CH20], Square [And+20]) and pertur-
bation magnitude values ϵ, evaluated on CIFAR-100. Red line corresponds to guessing.

282 APPENDIX G. APPENDIX TO CHAPTER 9

ImageNet16-120 Adversarial Attack Accuracies (Figure 9.2).

0 0.1 0.5 1 2 3 4 5 6 7 8 255
epsilon

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

ImageNet16-120 FGSM accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

ImageNet16-120 PGD accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

ImageNet16-120 AA_APGD-CE accuracies

0 0.1 0.5 1 2 3 4 8
epsilon

0.0

0.1

0.2

0.3

0.4

ac
cu

ra
cy

ImageNet16-120 AA_SQUARE accuracies

Figure G.13: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different
adversarial attacks (FGSM [GSS15], PGD [KGB17], APGD [CH20], Square [And+20]) and pertur-
bation magnitude values ϵ, evaluated on ImageNet16-120. Red line corresponds to guessing.

G.4. MAIN PAPER FIGURES FOR OTHER IMAGE DATASETS 283

CIFAR-10-C Common Corruption Accuracies (Figure 9.4).

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 brightness accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 contrast accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 defocus_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 elastic_transform accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 fog accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 frost accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 gaussian_noise accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 glass_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 impulse_noise accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 jpeg_compression accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 motion_blur accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 pixelate accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 shot_noise accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 snow accuracy

0 1 2 3 4 5
severity

0.2

0.4

0.6

0.8

ac
cu

ra
cy

cifar10 zoom_blur accuracy

Figure G.14: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different
corruption types at different severity levels, evaluated on CIFAR-10-C. Red line corresponds to
guessing.

284 APPENDIX G. APPENDIX TO CHAPTER 9

CIFAR-100-C Common Corruption Accuracies (Figure 9.4).

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 brightness accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 contrast accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 defocus_blur accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 elastic_transform accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 fog accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 frost accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 gaussian_noise accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 glass_blur accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 impulse_noise accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 jpeg_compression accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 motion_blur accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 pixelate accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 shot_noise accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 snow accuracy

0 1 2 3 4 5
severity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

cifar100 zoom_blur accuracy

Figure G.15: Accuracy boxplots over all unique architectures in NAS-Bench-201 for different
corruption types at different severity levels, evaluated on CIFAR-100-C. Red line corresponds to
guessing.

G.4. MAIN PAPER FIGURES FOR OTHER IMAGE DATASETS 285

CIFAR-100 Adversarial Attack Correlations (Figure 9.3).

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

clean, e=0
fgsm, e=0.1
fgsm, e=0.5

fgsm, e=1
fgsm, e=2
fgsm, e=3
fgsm, e=4
fgsm, e=5
fgsm, e=6
fgsm, e=7
fgsm, e=8

fgsm, e=255
pgd, e=0.1
pgd, e=0.5

pgd, e=1
pgd, e=2
pgd, e=3
pgd, e=4
pgd, e=8

aa_apgd-ce, e=0.1
aa_apgd-ce, e=0.5

aa_apgd-ce, e=1
aa_apgd-ce, e=2
aa_apgd-ce, e=3
aa_apgd-ce, e=4
aa_apgd-ce, e=8
aa_square, e=0.1
aa_square, e=0.5

aa_square, e=1
aa_square, e=2
aa_square, e=3
aa_square, e=4
aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure G.16: Kendall rank correlation coefficient between clean accuracies and robust accura-
cies on different attacks and magnitude values ϵ on CIFAR-100 for all unique architectures in
NAS-Bench-201.

286 APPENDIX G. APPENDIX TO CHAPTER 9

ImageNet16-120 Adversarial Attack Correlations (Figure 9.3).

cle
an

, e
=0

fg
sm

, e
=0

.1
fg

sm
, e

=0
.5

fg
sm

, e
=1

fg
sm

, e
=2

fg
sm

, e
=3

fg
sm

, e
=4

fg
sm

, e
=5

fg
sm

, e
=6

fg
sm

, e
=7

fg
sm

, e
=8

fg
sm

, e
=2

55
pg

d,
 e

=0
.1

pg
d,

 e
=0

.5
pg

d,
 e

=1
pg

d,
 e

=2
pg

d,
 e

=3
pg

d,
 e

=4
pg

d,
 e

=8
aa

_a
pg

d-
ce

, e
=0

.1
aa

_a
pg

d-
ce

, e
=0

.5
aa

_a
pg

d-
ce

, e
=1

aa
_a

pg
d-

ce
, e

=2
aa

_a
pg

d-
ce

, e
=3

aa
_a

pg
d-

ce
, e

=4
aa

_a
pg

d-
ce

, e
=8

aa
_s

qu
ar

e,
 e

=0
.1

aa
_s

qu
ar

e,
 e

=0
.5

aa
_s

qu
ar

e,
 e

=1
aa

_s
qu

ar
e,

 e
=2

aa
_s

qu
ar

e,
 e

=3
aa

_s
qu

ar
e,

 e
=4

aa
_s

qu
ar

e,
 e

=8

clean, e=0
fgsm, e=0.1
fgsm, e=0.5

fgsm, e=1
fgsm, e=2
fgsm, e=3
fgsm, e=4
fgsm, e=5
fgsm, e=6
fgsm, e=7
fgsm, e=8

fgsm, e=255
pgd, e=0.1
pgd, e=0.5

pgd, e=1
pgd, e=2
pgd, e=3
pgd, e=4
pgd, e=8

aa_apgd-ce, e=0.1
aa_apgd-ce, e=0.5

aa_apgd-ce, e=1
aa_apgd-ce, e=2
aa_apgd-ce, e=3
aa_apgd-ce, e=4
aa_apgd-ce, e=8
aa_square, e=0.1
aa_square, e=0.5

aa_square, e=1
aa_square, e=2
aa_square, e=3
aa_square, e=4
aa_square, e=8 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure G.17: Kendall rank correlation coefficient between clean accuracies and robust accuracies
on different attacks and magnitude values ϵ on ImageNet16-120 for all unique architectures in
NAS-Bench-201.

G.4. MAIN PAPER FIGURES FOR OTHER IMAGE DATASETS 287

CIFAR-100-C Common Corruption Correlations (Figure 9.5).

cle
an

br
ig

ht
ne

ss
, s

=3
co

nt
ra

st
, s

=3
de

fo
cu

s_
bl

ur
, s

=3
el

as
tic

_t
ra

ns
fo

rm
, s

=3
fo

g,
 s=

3
fro

st
, s

=3
ga

us
sia

n_
no

ise
, s

=3
gl

as
s_

bl
ur

, s
=3

im
pu

lse
_n

oi
se

, s
=3

jp
eg

_c
om

pr
es

sio
n,

 s=
3

m
ot

io
n_

bl
ur

, s
=3

pi
xe

la
te

, s
=3

sh
ot

_n
oi

se
, s

=3
sn

ow
, s

=3
zo

om
_b

lu
r,

s=
3

clean
brightness, s=3

contrast, s=3
defocus_blur, s=3

elastic_transform, s=3
fog, s=3

frost, s=3
gaussian_noise, s=3

glass_blur, s=3
impulse_noise, s=3

jpeg_compression, s=3
motion_blur, s=3

pixelate, s=3
shot_noise, s=3

snow, s=3
zoom_blur, s=3 1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure G.18: Kendall rank correlation coefficient between clean accuracies and accuracies
on different corruptions at severity level 4 on CIFAR-100-C for all unique architectures in
NAS-Bench-201.

288 APPENDIX G. APPENDIX TO CHAPTER 9

G.5 Analysis of Architectural Choices

In this section, we first depict the best architectures in NAS-Bench-201 [DY20] in Subsection G.5.1,
then show the effect of parameter count on robustness and the magnitude of potential gains in
robustness in a limited parameter count setting in Subsection G.5.2, and lastly show the effect of
single changes to the best performing architecture according to clean accuracy in Subsection G.5.3.

G.5.1 Best Architectures

Figure G.19 visualizes the best architectures in the NAS-Bench-201 [DY20] search space in
terms of clean accuracy, mean adversarial accuracy, and mean common corruption accuracy
on CIFAR-10 and their respective edit distances. The edit distance is defined by the number of
changes, either node or edge, to change the graph to the target graph. In the case of NAS-Bench-
201 architectures, an edit distance of 1 means that exactly one operation differs between two
architectures. So in order to modify the best performing architecture in terms of clean accuracy
(#13714) into the best performing architecture according to mean corruption accuracy (#3456),
we need to exchange two (out of six) operations: (i) exchange operation 2 from 3× 3 convolution
to zero and (ii) exchange operation 5 from 1× 1 convolution to 3× 3 convolution.

G.5.2 Cell Kernel Parameter Count

Figure G.20 displays the mean adversarial robustness accuracies (left) and the mean corruption
robustness accuracies (right) against the clean accuracy, color-coded by the number of cell kernel
parameters. We count 1 for each 1× 1 convolution and 9 for each 3× 3 convolution contained
in the cell, hence, their number ranges in [0, 54]. Since these are multipliers for the parameter
count of the whole network, we coin these cell kernel parameters. Overall, we can see that the
cell kernel parameter count matters in terms of robustness, hence, that networks with large
parameter counts are more robust in general. We can also see that the number of cell kernel
parameters are more essential for robustness against common corruptions, where the correlation
between clean and corruption accuracy is more linear. Also in terms of adversarial robustness,
there seems to be a large magnitude of possible improvements that can be gained by optimizing
architecture design.

Limited Cell Parameter Count. To further investigate the magnitude of possible improvements
via architectural design optimization, we look into the scenario of limited cell parameter count.

In Figure G.21, we depict all unique architectures in NAS-Bench-201 by their mean adversarial
robustness and cell kernel parameter count. Networks with parameter count 18 (408 instances
in total) are highlighted in orange. As we can see, there is a large range of mean adversarial
accuracies [0.21, 0.4] for the parameter count 18 showing the potential of doubling the robustness
of a network with the same parameter count by carefully crafting its topology. In Figure G.22
we show the top-20 performing architectures (color-coded, one operation for each edge) in
the mentioned scenario of a parameter count of 18, according to (top) mean adversarial and
(bottom) mean corruption accuracy. It is interesting to see that in both cases, there are (almost)
no convolutions on edges 2 and 4, and additionally no dropping or skipping of edge 1. In
the case of edge 4, it seems that a single convolution layer connecting input and output of the
cell increases sensitivity of the network. Hence, most of the top-20 robust architectures stack
convolutions (via edge 1, followed by either edge 3 or 5), from which we hypothesize that
stacking convolutions operations might improve robustness when designing architectures. At

G.5. ANALYSIS OF ARCHITECTURAL CHOICES 289

in

1

2 out3x3

1x1
3x3

3x3

13714

in

1

2 out3x3

1x1

3x3

3x3

6118

in

1

2 out

3x3

3x3

3456
3x3 3x3 3x3

3x3

 distance = 2

 distance = 2 distance = 3

Figure G.19: Best architectures in NAS-Bench-201 according to (left) clean accuracy, (middle)
mean adversarial accuracy (over all attacks and ϵ values as described in Subsection 9.3.2), and
(right) mean common corruption accuracy (over all corruptions and severities) on CIFAR-10.
See Figure 9.1 for cell connectivity and operations.

0.5 0.6 0.7 0.8 0.9
Clean

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Ad

ve
rs

ar
ia

l R
ob

us
tn

es
s

0

10

20

30

40

50

pa
ra

m
et

er
s

0.5 0.6 0.7 0.8 0.9
Clean

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
M

ea
n

Co
rru

pt
io

n
Ro

bu
st

ne
ss

0

10

20

30

40

50

pa
ra

m
et

er
s

Figure G.20: (left) Mean adversarial robustness accuracies and (right) mean corruption robust-
ness accuracies vs. clean accuracies on CIFAR-10 for all unique architectures in NAS-Bench-201.
Scatter points are colored based on the number of kernel parameters of a single cell (1 for each
1× 1 convolution, 9 for each 3× 3 convolution).

0 10 20 30 40 50
Cell Kernel Parameters

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Ad

ve
rs

ar
ia

l A
cc

ur
ac

y

Figure G.21: Mean robust accuracy over all attacks as described in Subsection 9.3.2 on CIFAR-10
by kernel parameters ∈ [0, 54] for all unique architectures in NAS-Bench-201. Orange scatter
points depict all architectures with kernel parameter count 18, hence, architectures with exactly
2 times 3× 3 convolutions. Although having exactly the same parameter count, the mean
adversarial robustness of these networks ranges in [0.21, 0.40].

290 APPENDIX G. APPENDIX TO CHAPTER 9

the same time, skipping input to output via edge 4 seems not to affect robustness negatively,
as long as the input feature map is combined with stacked convolutions. Important to note
here is that this is a first observation, which can be made by using our provided dataset. This
observation functions as a motivation for how this dataset can be used to analyze robustness in
combination with architecture design.

G.5.3 Gains and Losses by Single Changes

The fact that our dataset contains evaluations for all unique architectures in NAS-Bench-201
enables us to analyze the effect of small architectural changes. In Figure G.23, we depict again
all unique architectures by their clean and robust accuracies on CIFAR-10 [Kri09]. The red data
point in both plots shows the best performing architecture in terms of clean accuracy (#13714,
see Figure G.19), while the orange points are its neighboring architectures with edit distance
1. The operation changed for each point is shown in the legend. As we can see in the case of
adversarial attacks, we can trade-off more robust accuracy for less clean accuracy by changing
only one operation. While some changes seem obvious (adding more parameters as with 13 and
14), it is interesting to see that exchanging the 3× 3 convolution on edge 3 with average pooling
(and hence, reducing the amount of parameters) also improves adversarial robustness. In terms
of robustness towards common corruptions, each architectural change leads to worse clean and
robust accuracy in this case. Changing more than one operation is necessary to improve common
corruption accuracy of this network (as we have seen in Figure G.19).

G.5. ANALYSIS OF ARCHITECTURAL CHOICES 291

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

0.380

0.385

0.390

0.395

0.400

M
ea

n
Ad

ve
rs

ar
ia

l A
cc

ur
ac

y

1 2 3 4 5 6
Operation

#5926
#4015
#944
#11286
#325
#4911
#9587
#1912
#12295
#258
#11226
#14272
#959
#448
#9193
#16
#6555
#2947
#6187
#11693

ar
ch

ite
ct

ur
e

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

ze
ro

ize sk
ip

co
nv

_1
x1

co
nv

_3
x3 av
g

0.540

0.545

0.550

0.555

0.560

M
ea

n
Co

rru
pt

io
n

Ac
cu

ra
cy

1 2 3 4 5 6
Operation

#15365
#4128
#546
#10399
#3972
#11693
#2745
#7789
#5334
#14416
#3678
#6483
#2528
#42
#1617
#258
#12617
#11226
#12295
#15081

ar
ch

ite
ct

ur
e

Figure G.22: Top-20 architectures with cell kernel parameter count 18 (hence, architectures with
exactly 2 times 3× 3 convolutions) according to (top) mean adversarial accuracy and (bottom)
mean corruption accuracy on CIFAR-10. See Figure 9.1 for cell connectivity and operations (1-6).

292 APPENDIX G. APPENDIX TO CHAPTER 9

0.5 0.6 0.7 0.8 0.9
Clean

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n
Ad

ve
rs

ar
ia

l

0.925 0.930 0.935 0.940 0.945
Clean

0.34

0.36

0.38

0.40

0.42

1
2

3

4

5

6

7

8
910

11

12

13
14

1516

17

18

19

20

21

22

23

24

 1: [1] nor_conv_3x3~0 -> nor_conv_1x1~0
 2: [1] nor_conv_3x3~0 -> skip_connect~0
 3: [1] nor_conv_3x3~0 -> avg_pool_3x3~0
 4: [1] nor_conv_3x3~0 -> none~0
 5: [2] nor_conv_3x3~0 -> nor_conv_1x1~0
 6: [2] nor_conv_3x3~0 -> skip_connect~0
 7: [2] nor_conv_3x3~0 -> avg_pool_3x3~0
 8: [2] nor_conv_3x3~0 -> none~0
 9: [3] nor_conv_3x3~1 -> nor_conv_1x1~1
10: [3] nor_conv_3x3~1 -> skip_connect~1
11: [3] nor_conv_3x3~1 -> avg_pool_3x3~1
12: [3] nor_conv_3x3~1 -> none~1
13: [4] skip_connect~0 -> nor_conv_3x3~0
14: [4] skip_connect~0 -> nor_conv_1x1~0
15: [4] skip_connect~0 -> avg_pool_3x3~0
16: [4] skip_connect~0 -> none~0
17: [5] nor_conv_1x1~1 -> nor_conv_3x3~1
18: [5] nor_conv_1x1~1 -> skip_connect~1
19: [5] nor_conv_1x1~1 -> avg_pool_3x3~1
20: [5] nor_conv_1x1~1 -> none~1
21: [6] nor_conv_3x3~2 -> nor_conv_1x1~2
22: [6] nor_conv_3x3~2 -> skip_connect~2
23: [6] nor_conv_3x3~2 -> avg_pool_3x3~2
24: [6] nor_conv_3x3~2 -> none~2

0.5 0.6 0.7 0.8 0.9
Clean

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n
Co

rru
pt

io
n

0.925 0.930 0.935 0.940 0.945
Clean

0.52

0.53

0.54

0.55

0.56

0.57

0.58

12

34
5

6

7

8

9

10

11

12

13

14

15
16

1718

19

20

21

22

23

24

 1: [1] nor_conv_3x3~0 -> nor_conv_1x1~0
 2: [1] nor_conv_3x3~0 -> skip_connect~0
 3: [1] nor_conv_3x3~0 -> avg_pool_3x3~0
 4: [1] nor_conv_3x3~0 -> none~0
 5: [2] nor_conv_3x3~0 -> nor_conv_1x1~0
 6: [2] nor_conv_3x3~0 -> skip_connect~0
 7: [2] nor_conv_3x3~0 -> avg_pool_3x3~0
 8: [2] nor_conv_3x3~0 -> none~0
 9: [3] nor_conv_3x3~1 -> nor_conv_1x1~1
10: [3] nor_conv_3x3~1 -> skip_connect~1
11: [3] nor_conv_3x3~1 -> avg_pool_3x3~1
12: [3] nor_conv_3x3~1 -> none~1
13: [4] skip_connect~0 -> nor_conv_3x3~0
14: [4] skip_connect~0 -> nor_conv_1x1~0
15: [4] skip_connect~0 -> avg_pool_3x3~0
16: [4] skip_connect~0 -> none~0
17: [5] nor_conv_1x1~1 -> nor_conv_3x3~1
18: [5] nor_conv_1x1~1 -> skip_connect~1
19: [5] nor_conv_1x1~1 -> avg_pool_3x3~1
20: [5] nor_conv_1x1~1 -> none~1
21: [6] nor_conv_3x3~2 -> nor_conv_1x1~2
22: [6] nor_conv_3x3~2 -> skip_connect~2
23: [6] nor_conv_3x3~2 -> avg_pool_3x3~2
24: [6] nor_conv_3x3~2 -> none~2

Figure G.23: (top) Scatter plot clean accuracy vs. mean adversarial accuracy (over all attacks
and ϵ values as described in Subsection 9.3.2) on CIFAR-10. (bottom) Scatter plot clean accuracy
vs. mean common corruption accuracy (over all corruptions and severities) on CIFAR-10. The
red data point shows the best performing architecture according to clean accuracy on CIFAR-10.
The orange data points are neighboring architectures, where exactly one operation differs. The
change of operation is depicted in the legend. The number in brackets refers to the edge where
the operation was changed. See Figure 9.1 for cell connectivity and operations (1-6).

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Mathematical Notations
	Introduction
	Thesis Structure and Publications
	Additional Publications

	Background
	Representation Learning in Machine Learning
	Representation Learning in Computer Vision
	Image Classification
	Pixel-Wise Classification
	Image Synthesis
	Transfer Learning

	Generalization and Regularization
	Overfitting, Underfitting, and the Bias-Variance Tradeoff
	No Free Lunch and Inductive Biases

	Regularization Approaches in Representation Learning
	Optimization-Based Regularization
	Architecture-Based Regularization
	Loss-Modifying Regularization
	Data-Based Regularization

	Summary

	I Penalize: Regularization with Discrete Constraints
	Representation Learning in Graphs with Discrete Constraints
	Introduction
	The Minimum Cost Multicut Problem
	Message Passing Neural Networks
	Multicut Neural Network
	Training Datasets
	Test Datasets

	Experiments
	Ablation Studies on Update Function Modifications
	Ablation Study on Network Size
	Ablation Study of the Cycle Consistency Penalty Term
	Evaluation on Test Data

	Conclusion and Outlook

	Edge Detection with Discrete Constraints
	Introduction
	Related Work
	Penalizing Networks with Cycle Constraints
	Cycle Constraints in the Multicut Problem
	Incorporating Cycle Constraints into a CRF
	Cooling Mean-Field Updates
	Penalizing Image Segmentation Networks

	Experiments
	Berkeley Segmentation Dataset and Benchmark
	Neuronal Structure Segmentation

	Conclusion and Outlook

	II Match: Regularization via Feature Matching
	Learned Representations to Penalize Image Synthesis
	Introduction
	Related Work
	Training with Fréchet Inception Distance
	Fréchet Inception Distance
	Minimizing Fréchet Inception Distance

	Further Analysis of Fréchet Inception Distance
	Conclusion and Outlook

	Spectral Distribution-Aware Image Synthesis
	Introduction
	Related Work
	Spectral Properties of Image Generation
	Spectral Effects of Upsampling
	Analysis of Real Data Distribution
	Evaluation in the Frequency Domain

	Learning to Regularize Spectral Distributions
	Experiments
	Conclusion and Outlook

	III Judge: Learning to Weight Data to Regularize Models
	Biasing Discrete Representations for Image Synthesis
	Introduction
	Discrete Latent Space Optimization
	Discrete Latent Variables
	Global Optimization in Discrete Latent Spaces
	Weighted Retraining

	Experiments
	Conclusion and Outlook

	Biasing Generative Neural Architecture Search
	Introduction
	Related Work
	Architecture Generative Model
	Experiments
	Experiments on Tabular Benchmarks
	Experiments on Surrogate Benchmarks
	Experiments on Hardware-Aware Benchmark
	Ablation Studies

	Conclusion and Outlook

	Data for Robust Neural Architecture Design
	Introduction
	Related Work
	Dataset Generation
	Architectures in NAS-Bench-201
	Robustness to Adversarial Attacks
	Robustness to Common Corruptions

	Dataset Use Cases
	Training-Free Measurements for Robustness
	NAS on Robustness
	Effect of Architecture Design on Robustness

	Conclusion and Outlook

	Conclusion
	Thesis Summary
	Open Problems and Future Directions

	Bibliography
	Appendix to Chapter 3
	Multicut Segmentation Example
	Training Dataset Statistics
	Test Datasets
	Training Curves on RandomMP
	Finetuning Experiments
	Embedding Space Visualizations

	Appendix to Chapter 4
	Training Details
	Qualitative Results on BSDS500

	Appendix to Chapter 5
	Implementation Details to Minimizing FID
	Generated Images (DCGAN/FFHQ)
	Generated Images (SNGAN/FFHQ)
	Generated Images (DCGAN/CIFAR10)
	Generated Images (SNGAN/CIFAR10)
	FIDs when substituting backbone networks on ImageNet-C
	Deep Fake Detection with FID

	Appendix to Chapter 6
	High Frequency Artifacts
	Evaluation of Generated Power Spectra
	Training Details for Cloaking Score
	Sample images generated from the Proposed Model and the Baselines

	Appendix to Chapter 7
	Details on Face Image Dataset
	Details on VQ-VAE
	Details on VAE

	Appendix to Chapter 8
	Search Space Representations
	NAS-Bench-101
	NAS-Bench-201
	DARTS Search Space
	NAS-Bench-NLP
	Hardware-Aware-NAS-Bench

	Additional Ablation Studies
	Oracle Ablation
	Latent Space Ablations
	Predictor Ablation – Local Solution

	Experiments: Implementation Details
	Surrogate Model
	Search Algorithm
	NAS-Bench-101
	NAS-Bench-201
	DARTS Search Space
	NAS-Bench-NLP
	Hardware-Aware NAS-Bench

	Generator Details
	Hyperparameters
	Generator
	Surrogate Model

	Latent Space Optimization Visualization

	Appendix to Chapter 9
	Dataset Generation
	NAS-Bench-201
	Dataset Gathering
	Dataset Structure, Distribution, and License
	Structure
	Confidence
	Confusion Matrix

	Correlations between Image Datasets
	Example image of corruptions in CIFAR-10-C
	Main Paper Figures for other Image Datasets
	Analysis of Architectural Choices
	Best Architectures
	Cell Kernel Parameter Count
	Gains and Losses by Single Changes

