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Abstract

This paper explores the novel application of large language models (LLMs) as evaluators
for structured scientific summaries—a task where traditional natural language evalua-
tion metrics may not readily apply. Leveraging the Open Research Knowledge Graph
(ORKG) as a repository of human-curated properties, we augment a gold-standard dataset
by generating corresponding properties using three distinct LLMs—Llama, Mistral, and
Qwen—under three contextual settings: context-lean (research problem only), context-rich
(research problem with title and abstract), and context-dense (research problem with multi-
ple similar papers). To assess the quality of these properties, we employ LLM evaluators
(Deepseek, Mistral, and Qwen) to rate them on criteria, including similarity, relevance,
factuality, informativeness, coherence, and specificity. This study addresses key research
questions: How do LLM-as-a-judge rubrics transfer to the evaluation of structured sum-
maries? How do LLM-generated properties compare to human-annotated ones? What are
the performance differences among various LLMs? How does the amount of contextual
input affect the generation quality? The resulting evaluation framework, KGEval, offers a
customizable approach that can be extended to diverse knowledge graphs and application
domains. Our experimental findings reveal distinct patterns in evaluator biases, contextual
sensitivity, and inter-model performance, thereby highlighting both the promise and the
challenges of integrating LLMs into structured science evaluation.

Keywords: LLMs; structured science; evaluation framework; KGEval

1. Introduction

Knowledge bases such as the Open Research Knowledge Graph (ORKG) [1] are crucial
for making scientific findings FAIR (findable, accessible, interoperable, and reusable) [2].
By providing structured summaries of research contributions, these KGs enable efficient
comparison and retrieval of scholarly work. However, populating such knowledge graphs
is inherently costly and time-consuming, as it relies heavily on manual curation by do-
main experts.

Large language models (LLMs) have shown great promise in automating the construc-
tion of structured representations, potentially alleviating the burden of manual annota-
tion [3]. Despite their potential, evaluating the quality of LLM-generated outputs in the
scientific domain poses unique challenges. Traditional NLP metrics such as BLEU [4] and
ROUGE [5] are primarily designed to assess surface-level text matching and do not capture
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deeper semantic meaning or the task-specific nuances required for structured science sum-
marization. For example, while these metrics can measure word overlap between generated
and reference texts, they fail to assess whether the generated properties accurately and
comprehensively reflect the underlying research problem.

To address these challenges, we introduce KGEval, a novel framework that lever-
ages LLMs both as generators and as evaluators (i.e., as LLM-as-a-judge [6]) of structured
scientific summaries. KGEval is built with a modular architecture that enables the inter-
changeability of LLMs and allows for customization of prompts and evaluation criteria.
This flexibility is essential for systematically investigating how various context types and
evaluation strategies influence the quality of generated properties in a domain as complex
as scientific research.

Specifically, our work investigates the following research questions:

RQ1. Transferability of Qualitative Rubrics: How effectively do LLM-as-a-judge
evaluation rubrics capture the quality of structured summaries, given that these
outputs lack the conventional sentence structures found in natural language?

RQ2. Comparison with Human Annotations: How do the properties generated by
LLMs compare to human-annotated properties in terms of relevance, consistency, and
other evaluation criteria?

RQ3. Inter-Model Performance: How do different LLMs (e.g., Qwen, Mistral, and
Llama) perform in generating properties, and how does their performance compare?

RQ4. Impact of Context: How does the amount and type of contextual input (research
problem only vs. research problem with one abstract vs. research problem with
multiple abstracts) affect the quality of the generated properties?

In this paper, we focus primarily on the evaluation of structured outputs. By leverag-
ing LLMs as both generators and evaluators, KGEval systematically assesses the quality
of generated scientific properties while addressing challenges such as scientific domain
complexity and the high cost of manual evaluation. Our contributions are threefold. First,
we introduce a robust evaluation framework that repurposes LLMs as evaluators, over-
coming the limitations of traditional metrics. Second, we provide a comparative analysis
between LLM-generated properties and expert-annotated ORKG properties, highlighting
both strengths and areas for improvement. Third, we examine how varying contextual
inputs influence the performance of different LLMs, thereby offering insights into the
scalability and adaptability of automated structured science summarization.

In the following sections, we detail the KGEval framework, describe our dataset and
experimental setup, and present an in-depth analysis of our results.

2. Related Work

In the NLP community, developing evaluation metrics that reliably measure the
quality of tasks such as translation or summarization has long been a fundamental concern.
In recent decades, a plethora of different paradigms have been suggested. These range
from (1) lexical overlap metrics such as BLEU [4] and ROUGE [5], which are inherently
limited, to (2) semantic similarity metrics like BERTScore [7] and MoverScore [8]; (3) text
generation-based metrics such as BARTScore [9] and PRISM [10]; (4) natural language
inference metrics like MENLI [11], which promise to increase robustness; and (5) prompting-
based metrics such as GEMBA [12] which rely on LLMs and their prompts for judging
the quality of outputs. While these metrics have been explored for ‘standard’ tasks like
summarization and machine translation, their potential for evaluating structured science
summaries remains fundamentally underexplored. In this work, we fill this gap, focusing
primarily on prompt-based metrics to evaluate structured science summaries.
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Several recent studies have adopted the LLM-as-a-judge paradigm to assess generated
content by correlating LLM evaluations with human judgments using pairwise preference
evaluations [13-17]. Building on these methods, some approaches have incorporated rubric-
based techniques—such as G-Eval [17] for summarization and GPTScore [18] for flexible
prompt-based evaluation—to capture nuanced aspects of generated text. In addition,
frameworks such as FLASK [19] and Prometheus [20] have advanced the state of the art by
emphasizing fine-grained rubrics that assess robustness, correctness, efficiency, factuality,
and readability. Together, these studies underscore the evolving landscape of LLM-based
evaluation frameworks and motivate our extension of the paradigm to the domain of
structured science summarization.

Our previous work [21] laid the groundwork by exploring the feasibility of using
LLMs to recommend research properties for structured science summarization in the ORKG.
That study employed methods such as semantic alignment and deviation assessments,
fine-grained property-to-dimension mappings, embeddings-based evaluations, and human
surveys to compare LLM-generated dimensions with expert-curated ORKG properties.
Building upon these findings, our current work extends the LLM-as-a-judge paradigm
through the KGEval framework, integrating both generation and evaluation in a unified
system while systematically examining evaluator biases and context effects.

In summary, while a range of evaluation metrics and frameworks have been proposed
in the literature, our work contributes by extending prompting-based evaluation to the
domain of structured science summarization. By building on the advancements in LLM-
based evaluation rubrics and our previous findings, we provide a robust, open-science
framework that is adaptable to diverse scientific KGs.

3. The KGEval Framework

In this section, we present KGEval, a modular framework designed to both generate
and evaluate structured scientific properties. The framework is built around two primary
modules: an LLM generator and an LLM evaluator. This modular design enables KGEval
to handle various input contexts and property sources flexibly, making it adaptable to a
wide range of KGs and evaluation tasks.

3.1. Framework Overview and Workflow

KGEval is structured as a two-module system that operates in a sequential yet modular
fashion. The first module, the LLM generator, accepts diverse forms of input context, such
as research questions, abstracts, full papers, articles, or even multiple related papers.
Regardless of the context—whether context-lean (research problem only), -rich (research
problem with title and abstract), or -dense (research problem with multiple abstracts)—the
generator utilizes customizable prompts (which remain consistent across scenarios, with
only the input context varying) to produce structured representations, hereafter referred to
as properties. Once these properties are generated, they are forwarded to the second module,
the LLM evaluator.

The evaluator module is designed to assess the quality of the properties based on a
comprehensive, unified prompt that incorporates multiple qualitative criteria. This module
accepts properties generated by the LLM generator as well as those obtained from external
sources, such as human-annotated entries from a KG (e.g., ORKG). The evaluator then
outputs a quantitative score reflecting the quality of the input properties according to
criteria such as similarity, relevance, factuality, informativeness, coherence, and specificity.
Both modules leverage a shared LLM management system that supports various models
(e.g., Deepseek, Llama, Mistral, and Qwen), which can be run locally or accessed via APL
Figure 1 illustrates the KGEval pipeline, showing how context (research question, abstract,
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and papers) and prompts feed into the generator, how the generated properties and human-
annotated properties (from a KG) are then evaluated against defined criteria, and how the
evaluator produces a final score.
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Figure 1. Overview of the KGEval workflow.

3.2. Evaluation Scenarios and Criteria

KGEval supports two primary evaluation scenarios: direct assessment and pairwise
ranking. In the direct assessment scenario, a single set of properties—either generated by
the LLM or curated by humans—is evaluated against the qualitative criteria. This process
yields individual scores that reflect the properties’ relevance, factuality, informativeness,
coherence, and specificity. In contrast, the pairwise ranking scenario directly compares
two sets of properties. For example, KGEval compares properties generated using a
research problem alone (context-lean) against those generated with additional contextual
information (rich or dense context), as well as comparing LLM-generated properties against
human-annotated ones from the ORKG. These comparisons are conducted on a Likert scale
(ranging from 1 to 5), enabling a fine-grained evaluation of how different contexts and
sources influence the quality and consistency of the structured representations.

The evaluation process is streamlined by incorporating all the qualitative criteria into
a single prompt used by the LLM evaluator. This approach not only saves on API calls
but also ensures a standardized assessment method across different property sets. The six
criteria—similarity, relevance, factuality, informativeness, coherence, and specificity—are
operationalized within this prompt to provide a comprehensive evaluation of each property
set. As a result, KGEval is capable of systematically comparing outputs across different
contexts and sources, yielding insights into the strengths and limitations of both LLM-
generated and human-curated scientific representations.

Overall, the KGEval framework provides a robust and adaptable method for evaluat-
ing structured scientific data. Its modular architecture, combined with a unified evaluation
strategy, allows for flexible integration with a variety of LLMs and input contexts, ultimately
facilitating a deeper understanding of how qualitative rubrics transfer to the evaluation of
structured summaries.

4. Experimental Dataset and Setup

Our evaluation dataset is based on the gold-standard annotations extracted from the
ORKG. We constructed this dataset by curating a selection of ORKG comparisons and later
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extended it with associated abstracts to provide additional contextual information. These
comparisons were chosen from those created by experienced ORKG users with diverse
research backgrounds. The selection criteria mandated that each comparison contain at
least three properties and a minimum of five contributions. This ensured that the properties
represented a rich and structured depiction of research problems rather than a sparse or
superficial summary. Applying these criteria yielded a dataset of 103 ORKG comparisons,
encompassing 1317 papers across 35 research fields and covering over 150 distinct research
problems. The highly multidisciplinary dataset includes examples from domains such as
Earth Sciences, Natural Language Processing, Medicinal Chemistry, Operations Research,
Systems Engineering, Cultural History, and the Semantic Web.
The LLMs and their identifiers used in the experiments were as follows:

e meta-llama-3.1-70b-instruct (referred to in text as “Llama”);
*  deepseek-rl-distill-1lama-70b (DeepSeek);

® mistral-large-instruct (Mistral);

e qwen2.5-72b-instruct (Qwen).

Inference was performed through the Academic Cloud Chat AI API (https://
academiccloud.de accessed on 15 March 2025). The generation parameters were left at
the API defaults for our runs, in particular, temperature = 0.8 and top_p = 0.9. If re-
producibility requires absolute stability of generated outputs, we note that running with
explicit sampling seeds and setting parameters such as temperature = 0 or assigning a
fixed value to max_tokens will reduce randomness; these options were not used in the
presented experiments.

Since evaluator judgments are obtained via LLM inference, runtime and monetary
cost are dominated by the chosen model and by input context length (lean/rich/dense) and
will differ between hosted-API and local deployments. As our experiments used a hosted
API, we cannot report provider hardware footprints; all other framework computations
(preprocessing, prompt assembly, and aggregation) are negligible in comparison. Users
who require concrete latency, token usage, or cost estimates for their environment should
measure per-call latency and token counts against their chosen deployment.

4.1. LLMs as Generators

For the task of property generation, we employ three different LLMs: Llama, Mistral,
and Qwen. These models are tasked with generating structured representations (i.e.,
properties) from various forms of context. The generation module of KGEval accepts a
range of input types, including research problems, titles, abstracts, as well as multiple
related papers. Although the underlying prompt structure remains consistent, only the
input context varies among the three scenarios: lean context, rich context, and dense context.

The prompts used for generation are designed with a structured format that includes
specific tags such as <role>, <task>, <context-input>, and <output-response-format>.
In the <role> tag, the LLM is assigned the role of a researcher whose objective is to an-
alyze and identify common properties that characterize significant contributions across
research studies. The <task> tag instructs the model to generate a list of properties that
succinctly capture the salient aspects of the research problem. The <context-input>
tag provides the necessary context—varying according to the scenario—while the
<output-response-format> tag enforces a strict output structure (a list data structure)
to ensure consistency. Detailed descriptions of these prompts, along with their variations
for different contexts, are provided in Appendix A.
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4.2. LLMSs as Evaluators

For the evaluation of the generated properties, KGEval employs a set of LLMs, includ-
ing Deepseek, Mistral, and Qwen. The evaluator module is designed to assess the quality of
properties based on a unified evaluation prompt that integrates several qualitative criteria:
relevance, factuality, informativeness, coherence, and specificity. The evaluation framework
supports two scenarios: direct assessment and pairwise ranking. In direct assessment, a single
set of properties—whether generated by an LLM or sourced from ORKG—is evaluated
against the input context. In pairwise ranking, two sets of properties are compared directly
to determine their similarity.

The evaluation prompts follow a structured format similar to the generation prompts.
They include tags such as <role>, where the LLM is assigned the role of an evalua-
tor, and <task>, which outlines the criteria and steps for evaluation. Additional tags,
such as <input> (which provides the context and the properties to be evaluated) and
<output_format> (which specifies the desired feedback format, including both qualitative
feedback and quantitative scores) ensure that the evaluation is both standardized and
comprehensive. These prompts, along with detailed guidelines for rating each criterion on
a Likert scale, are also presented in Appendix A.

In summary, our experimental setup leverages a multidisciplinary, gold-standard
dataset derived from the ORKG and employs LLMs in dual roles—as generators and
evaluators—within the KGEval framework. The use of structured yet customizable prompts
in both modules enables a systematic investigation into the quality of structured scientific
representations across different context scenarios and evaluation tasks.

4.3. Example Instance

To illustrate our experimental setup, consider an example using Llama as the generator
in the rich context scenario. For this example, the research problem is “Etching of silicon,”
and the paper is titled “Modified TMAH based etchant for improved etching characteristics
on Sif1 0 0} wafer.” The ORKG properties for this paper, as manually curated by domain ex-
perts, are as follows: ‘Measured at temperature’, ‘Etching rate’, “Type of etching’, ‘Research
problem’, ‘Substrate’, “Type of etching mixture’, ‘Miller index’.

In contrast, Llama generated the following properties in the rich scenario: ‘Etchant
composition’, ‘Etching rate’, ‘Surface morphology’, ‘Undercutting characteristics’, ‘Etch depth’.

These properties were subsequently evaluated by three different LLM evaluators using
our five defined criteria. The scores for the ORKG properties were as follows:

e Deepseek: [4,5,4,5,4];
e  Mistral: [4,5, 3,4, 3];
e Qwen:[3,4,3,4,3].

For the Llama-generated properties, the corresponding evaluation scores were as follows:
e Deepseek: [5,5,4,5,4];

e  Mistral: [4,5, 3,4, 3];
e Qwen:[3,4,3,4,3].

This example demonstrates the process of generating structured scientific properties
using LLMs and evaluating them using multiple criteria with different evaluators. It
thereby highlights both the strengths and challenges of aligning LLM-generated outputs
with expert-curated annotations.

5. Results

In this section, we report the outcomes of our experimental evaluation of generated
and human-curated properties. We present the results from direct assessment and pairwise
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ranking experiments, quantify evaluator self-preference using Cohen’s d, and compare
LLM evaluators to human judgments via Spearman rank correlations.

5.1. Direct Assessment

The direct assessment experiments yielded evaluation scores across five criteria (rel-
evance, factuality, informativeness, coherence, and specificity) on a 1-5 Likert scale. For
each context scenario, the evaluations were conducted by three different LLM evaluators
(Deepseek, Mistral, and Qwen) on properties generated by Llama, Mistral, and Qwen,
as well as on human-annotated properties (ORKG). In addition to numerical scores, the
evaluation prompt elicits free-text justifications for each rating, so the underlying rationales
are available and could be systematically coded to derive an error taxonomy. Note that
ORKG entries were created by domain experts from the full paper text (title, abstract, and
body), which corresponds most closely to our “rich” context; therefore, ORKG properties
were evaluated only in the rich scenario so that comparisons to human curation are made
under equivalent information conditions. All scores reported in Table 1 are averaged over
all evaluated properties. Complete per-scenario results with scores reported as mean +
standard deviation, are provided in Appendix B. To facilitate interpretation of the numerical
results in Table 1, Figure 2 provides a heatmap visualization of criterion-averaged direct
assessment scores across generators, evaluators, and context scenarios.

Across scenarios, the following stable patterns are evident from the aggregated scores
(see Appendix B for full tables): (1) generated properties produced by modern LLMs
routinely receive high average ratings on relevance and informativeness; (2) factuality
and specificity are consistently rated lower than relevance and informativeness, indicating
persistent difficulty in producing precise, domain-specific details; and (3) human-curated
ORKG properties receive lower mean ratings from human validators in the rich scenario
(see the Human Evaluation subsection below for details).

Table 1. Direct assessment scores. Columns R, F, I, C, and S indicate the relevance, factuality,
informativeness, coherence, and specificity scores, respectively.

Generator Evaluator Lean Scenario Rich Scenario Dense Scenario
R F 1 C S R F 1 C S R F I C S

ORKG Deepseek 359 412 297 366 281

Llama Deepseek 469 492 446 488 405 460 485 4.09 478 395 467 490 419 481 4.01
Mistral Deepseek 463 488 410 480 363 470 490 409 480 4.07 472 492 407 479 395
Qwen Deepseek 448 486 410 478 341 475 492 423 483 418 473 492 420 482 4.06
ORKG Mistral 283 353 214 317 212

Llama Mistral 486 497 482 499 464 457 489 428 487 425 449 486 423 484 413
Mistral Mistral 474 495 452 495 424 463 493 426 488 430 455 490 420 485 4.19
Qwen Mistral 455 491 435 494 396 477 497 454 495 454 468 492 445 491 440
ORKG Qwen 289 404 252 331 244

Llama Qwen 432 496 379 477 365 417 492 355 453 351 396 473 344 436 3.23
Mistral Qwen 423 493 355 468 346 426 491 352 458 358 403 479 337 438 324
Qwen Qwen 392 483 331 452 3.03 437 492 370 464 372 413 482 353 442 338
ORKG Human 260 230 220 220 1.80

Llama Human 410 410 340 420 3.10

Mistral Human 420 450 310 390 3.00

Qwen Human 450 460 340 430 3.30

https://doi.org/10.3390/info17010035


https://doi.org/10.3390/info17010035

Information 2026, 17, 35

8 of 21

Lean Scenario Rich Scenario Dense Scenario

w
°

ORKG 1 ORKG ORKG

Eal
)

E +
[EI-

Criterion-Averaged Score

Uama - 4.60 4.86 4.30 Uama Uama-{ 4.52 4.51

w

w
o

Mistral 4 4.41 4.68 417 Mistral Mistral 1 4.49 4.54 25
2.0
15
owen] 433 454 Qwen owen{ 4.55  4.67
10
S > & >t > L S
@Q«Pz' é\b}& o ‘»)é‘b QQ'PE' ‘}\é" Rl &@b
N & &

Figure 2. Criterion-averaged direct assessment scores across generators, evaluators, and context
scenarios.

Self-Preference Bias

Since both Mistral and Qwen were used as generators and evaluators, we can assess
self-preference bias by comparing how these models rate their own outputs versus outputs
from other generators. We compute scenario-level, criterion-averaged Cohen’s d using
the aggregated mean + SD values in Appendix B. The resulting effect sizes are shown in
Figure 3. In the lean scenario, Mistral shows near-zero bias (d = —0.037) while Qwen
exhibits a moderately negative bias (d = —0.508), suggesting weak or even reversed self-
preference when context is limited. In the rich scenario, both evaluators demonstrate strong
positive bias (Mistral d = 0.888; Qwen d = 0.855), indicating clear preference for their
own outputs when more context is available. In the dense scenario, self-preference largely
disappears (Mistral 4 = —0.078; Qwen d = 0.166), possibly due to increased uniformity
of outputs or reduced recognizability of one’s own generation patterns. Overall, self-
preference is highly context-dependent: weak or negative in lean and dense contexts and
strong in the rich context, with model-specific differences that vary by scenario rather than
indicating a systematic dominance of one evaluator. Negative values suggest evaluators
may undervalue their own outputs under certain conditions, reflecting a conservative
evaluation tendency.

Scenario-Level Cohen's d for Self-Preference Bias
0.89

0.85 Evaluator
mm Mistral
m— Qwen

Cohen's d
o
N

Lean Rich Dense
Context Scenario

Figure 3. Scenario-level, criterion-averaged Cohen’s d quantifying self-preference bias for Mistral
and Qwen evaluators across lean, rich, and dense contexts. Positive values indicate a preference for
evaluating their own outputs more favorably.

5.2. Human Evaluation

To assess the extent to which LLM-based evaluators align with human judgments,
we conducted a small-scale human validation experiment in the rich context scenario.
Human annotators evaluated properties generated by Llama, Mistral, and Qwen, as well
as human-authored ORKG properties. For each of the four sources, the first 25 instances
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were selected, and each instance was rated across the five evaluation criteria, resulting in a
total of 500 human evaluation scores. As with the LLM evaluators, human annotators were
blinded to the origin of the properties to avoid potential bias.

We then computed Spearman rank correlation coefficients between the human scores
and the corresponding scores produced by each LLM evaluator (Deepseek, Mistral, and
Qwen). For each evaluator and criterion, scores were first averaged per generator, resulting
in one aggregated score for each of the four generators (ORKG, Llama, Mistral, and Qwen).
Correlations were then calculated across these four generator-level scores, both separately
for each criterion and averaged across criteria. The results are summarized in Table 2.

Overall, the LLM evaluators show strong rank-order agreement with human judg-
ments in the rich scenario. Criterion-averaged Spearman correlations range from p = 0.836
(Qwen) to p = 0.910 (Mistral), with an overall average correlation of p = 0.878. For rele-
vance, both Deepseek and Mistral exhibit perfect rank correlation with human judgments
(o = 1.000), while factuality correlations are similarly high for Deepseek and Mistral and
moderately lower for Qwen. Informativeness shows consistently strong correlations across
evaluators, whereas coherence and specificity exhibit moderate but stable agreement.

It is important to note that these correlations are computed over only four data points
(one per generator) and should therefore be interpreted as descriptive rather than confirma-
tory. Nevertheless, the consistently high correlations across evaluators and criteria suggest
that, in information-rich settings, LLM-based evaluators capture ranking preferences that
are largely aligned with human judgments.

Finally, we observe that ORKG properties are rated substantially lower than LLM-
generated properties by human annotators across all criteria. Possible explanations include
the more conservative and template-driven nature of ORKG property descriptions, higher
variance across human authors leading to stylistic and conceptual inconsistency, and
potential schema alignment issues that reduce perceived relevance and specificity compared
to LLM-generated content.

Table 2. Spearman rank correlation (p) between LLM evaluators and human judgments in the rich
context scenario, computed over generator-level averaged assessment scores.

Evaluator Relevance Factuality Informativeness Coherence Specificity Avg.
Deepseek 1.000 1.000 0.833 0.800 0.800 0.887
Mistral 1.000 1.000 0.949 0.800 0.800 0.910
Qwen 1.000 0.632 0.949 0.800 0.800 0.836

5.3. Pairwise Ranking

Complementing the direct assessment, the pairwise ranking experiments (Table 3)
provide further insight into the structural alignment of properties across different contexts
and between human-annotated and LLM-generated outputs. In these experiments, the
similarity score represents the Similarity criterion, and the values are averaged over all
properties. Pairwise similarity scores reveal that properties generated with richer contexts
(rich and dense) are more similar to each other than those generated in the lean scenario. For
instance, in the case of Llama-generated properties, the similarity score for Llama between
rich and dense contexts was 3.38, which is higher than the scores observed between lean
and rich (2.76) or lean and dense (2.76). A similar pattern is observed for both Mistral and
Qwen, where rich versus dense comparisons yield scores in the range of 3.38 to 3.6, while
lean versus rich/dense scores remain around 2.66 to 2.77.

The similarity scores are consistently lower when comparing human-annotated
(ORKG) properties with LLM-generated properties. For example, the similarity between
ORKG properties and Llama-generated properties in the lean context is as low as 1.96, indi-
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cating a substantial structural divergence. This trend holds across all models, suggesting
that while richer contexts help stabilize and align LLM outputs with each other, they do
not fully bridge the gap to human-curated representations.

Table 3. Pairwise ranking similarity scores.

Properties Set 1 Properties Set 2 Similarity
Llama (lean) Llama (rich) 2.76
Llama (rich) Llama (dense) 3.38
Llama (lean) Llama (dense) 2.76
Mistral (lean) Mistral (rich) 2.66
Mistral (rich) Mistral (dense) 3.38
Mistral (lean) Mistral (dense) 2.66
Qwen (lean) Qwen (rich) 2.71
Qwen (rich) Qwen (dense) 3.60
Qwen (lean) Qwen (dense) 2.77
ORKG Llama (lean) 1.96
ORKG Llama (rich) 2.05
ORKG Llama (dense) 2.04
ORKG Mistral (lean) 2.13
ORKG Mistral (rich) 2.06
ORKG Mistral (dense) 2.11
ORKG Qwen (lean) 2.30
ORKG Qwen (rich) 2.15
ORKG Qwen (dense) 2.21

5.4. Key Findings and Implications

Across all experiments, several consistent patterns emerge that clarify both the
strengths and limitations of LLM-based property generation and evaluation. First, LLM-
generated properties achieve consistently high mean scores for relevance and informa-
tiveness across lean, rich, and dense scenarios (Table 1; Appendix B). This indicates that
contemporary LLMs are generally effective at producing structured summaries that capture
the central themes of scientific texts, particularly when assessed at an aggregate level.

At the same time, informativeness and specificity remain consistently weaker dimen-
sions. These criteria exhibit lower average scores and greater variability across evaluators
and scenarios, suggesting that precise, domain-specific claims and fine-grained distinctions
are more difficult for current models to capture reliably. This pattern persists even as
contextual richness increases, highlighting an important limitation of automated property
generation for knowledge graph construction.

Evaluator behavior further reveals that assessment outcomes are not purely model-
agnostic. Using scenario-level, criterion-averaged Cohen’s d, we find that self-preference
bias is strongly context-dependent. In the rich scenario, both Mistral and Qwen show
large positive self-preference effects (Mistral d = 0.888; Qwen d = 0.855), indicating
that evaluators tend to rate their own outputs substantially higher when more contextual
information is available. In contrast, self-preference is weak or absent in the lean and dense
scenarios (lean: Mistral d = —0.037, Qwen d = —0.508; dense: Mistral d = —0.078, Qwen
d = 0.166), suggesting that minimal context or highly redundant information weakens
evaluator familiarity effects. Notably, negative values imply that under some conditions,
evaluators may rate other models” outputs more favorably than their own.

Despite these biases, LLM evaluators exhibit strong alignment with human judgments
in information-rich settings. In the rich scenario, Spearman rank correlations between LLM
evaluators and human assessments are high across all criteria, with criterion-averaged
correlations of p = 0.887 for Deepseek, p = 0.910 for Mistral, and p = 0.836 for Qwen
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(overall p = 0.878). These results indicate that, at least at the level of generator ranking,
LLM evaluators capture preference structures that are broadly consistent with human
evaluators. However, because these correlations are computed over only four generators,
they should be interpreted as descriptive rather than confirmatory.

The human validation experiment also reveals a systematic difference between LLM-
generated and human-curated content. ORKG properties are rated substantially lower
than LLM-generated properties across all criteria. Possible explanations include the more
concise and template-driven nature of ORKG entries, higher stylistic and conceptual vari-
ance across human authors, and schema alignment mismatches between ORKG property
formulations and the evaluation rubric, which may disadvantage human-authored content
in this assessment framework.

Taken together, these findings suggest that KGEval-style LLM evaluation pipelines
are a viable and scalable tool for assessing structured scientific summaries, particularly in
rich-context settings where evaluator-human agreement is high. At the same time, the
presence of context-dependent self-preference and persistent weaknesses in factual precision
and specificity motivate a hybrid workflow. Automated LLM evaluation is well suited for
screening large volumes of candidate properties and identifying high-level quality patterns,
while targeted human review remains essential for validating factual correctness, resolving
evaluator disagreement, and ensuring alignment with domain-specific knowledge standards.

6. Discussion and Future Work

The results demonstrate that LLMs can effectively generate and evaluate structured
scientific representations, while also revealing important limitations that must be addressed
in practical deployments. Within the KGEval framework, LLM-generated properties
consistently score highly on relevance, factuality, and coherence but remain weaker on
informativeness and specificity. Moreover, evaluator behavior is not model-agnostic: self-
preference effects emerge in information-rich contexts, underscoring the need to interpret
evaluation results in light of evaluator identity and context conditions.

KGEval also addresses key shortcomings of traditional NLP evaluation metrics such
as BLEU or ROUGE, which are poorly suited to structured outputs and semantic adequacy.
By leveraging LLMs as evaluators, KGEval enables task-specific, semantically informed
assessment. This approach is empirically supported by the strong rank-order agreement
observed between LLM evaluators and human judgments in rich contexts. At the same time,
the results highlight clear boundaries: agreement is strongest at the level of relative ranking
rather than absolute correctness, and factual precision remains a persistent challenge.

These observations have direct methodological implications for the design of evalua-
tion pipelines. Rather than treating LLM evaluators as substitutes for human judgment,
our results suggest they are most effective when embedded within hybrid workflows
that exploit their scalability while accounting for their biases. In particular, evaluator
self-preference and sensitivity to context indicate that evaluator choice and configuration
should be treated as experimental factors rather than neutral instruments. This perspective
reframes LLM evaluation from a purely automated alternative to human assessment into a
controllable component of a broader curation process.

Future work will therefore focus on validating KGEval across external knowledge
graphs with diverse schemas, mitigating evaluator bias through ensembling or evaluator
separation, and improving informativeness and specificity via tighter evidence grounding
and retrieval-aware evaluation prompts. By explicitly addressing these limitations, KGEval
can serve as a robust component of hybrid workflows that combine the scalability of
LLM-based evaluation with the reliability of targeted human oversight.
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Cross-KG Validation (ClaimsKG)

Although our experiments focus on the ORKG, KGEval is designed to generalize
beyond a single knowledge graph. Its prompt-driven architecture and rubric-based evalua-
tion make it applicable to a wide range of research KGs, including SoftwareKG, Springer
SciGraph, ClaimsKG, and others. While the same core evaluation criteria can be reused
across domains, our findings suggest that prompt design, evaluator choice, and context
configuration play a critical role in shaping outcomes. As a result, portability across KGs
requires not only schema adaptation but also careful calibration of evaluation settings.

To further probe the generalizability of KGEval beyond the ORKG, we conducted
an additional pilot study on ClaimsKG. We assembled a small dataset of 30 news articles
and corresponding claims mentioning military conflict and adapted our direct assessment
evaluation prompt (Appendix A.4) by replacing references to “properties” and “research
papers” with “facts” and “articles,” respectively. This minimal prompt modification reflects
the intended portability of KGEval across knowledge graphs with differing semantic units
but comparable evaluation needs. We then applied the evaluator module using Deepseek
as the LLM evaluator and performed a parallel human evaluation on the same dataset.

The resulting averaged scores show close agreement between LLM and human as-
sessments. For the LLM evaluator, the mean scores were relevance = 5.0, factuality = 2.4,
informativeness = 2.8, coherence = 5.0, and specificity = 5.0, while the corresponding human
scores were relevance = 5.0, factuality = 2.4, informativeness = 2.5, coherence = 5.0, and
specificity = 5.0. Since the dataset intentionally included both correct and false claims, factu-
ality and informativeness exhibited substantial variance, whereas relevance, coherence, and
specificity remained consistently high, as all claims were explicitly stated in their source
articles. Spearman rank correlation computed over the criteria with non-zero variance
(factuality and informativeness, averaged over 30 items) yields a high agreement between
LLM and human judgments p = 0.93, indicating strong alignment in ranking behavior
where discrimination is required.

While limited in scale, this experiment provides initial empirical support for the
applicability of KGEval to a fact-checking-oriented knowledge graph with different
structural assumptions than ORKG. At the same time, it reinforces observations from
the main study: evaluation outcomes remain sensitive to prompt formulation, evaluator
choice, and context configuration. Future work will extend this validation to larger and
more diverse datasets across multiple knowledge graphs and evaluators, enabling a
more systematic assessment of how evaluation criteria and prompt adaptations interact
with domain-specific haracteristics.

7. Conclusions

This paper introduced KGEval, a modular framework for generating and evaluating
structured scientific properties using large language models. We studied the transferability
of qualitative evaluation rubrics, inter-model differences among LLMs, and the impact of
contextual richness on both generation quality and evaluation behavior.

Our results show that LLM-generated properties generally achieve high scores on
relevance, factuality, and coherence, while informativeness and specificity remain persistent
challenges. Evaluator behavior is context-sensitive: self-preference effects are pronounced
in rich contexts but weak or absent in lean and dense settings, and Spearman correlations
indicate strong rank-order agreement between LLM evaluators and human judgments
in the rich scenario. These findings support the use of LLM-based evaluation for large-
scale ranking, but not as a replacement for targeted human validation, particularly for
factual accuracy.
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This study is subject to limitations, including small sample sizes for some analyses,
reliance on aggregated statistics, and schema-alignment effects that disadvantage human-
authored ORKG entries under the evaluation rubric. Future work will focus on mitigating
evaluator bias, improving factual precision, and validating KGEval across additional
knowledge graphs with diverse schemas.

Overall, KGEval provides a practical step toward scalable evaluation of structured
scientific content, with the greatest utility in hybrid human-LLM workflows that combine
automated ranking with expert oversight.
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Appendix A. Prompts Used in KGEval

Below, we provide the complete code for the prompts utilized in our framework.
These prompts are used both for generating research dimensions under various context
conditions and for evaluating the generated properties.

Appendix A.1. Zero-Shot Prompt for Lean Context

def property_generation_lean_context_prompt (df_row) :
research_problem = df_row["research_problem"]
prompt = f£"""<role>

You are a researcher analyzing how various research studies contribute to solving

a specific research problem. Your task is to identify and document shared

properties that characterize significant contributions across these studies.
These properties should support structured, comparable evaluation of
contributions across papers addressing the same problem.

</role>

<task>

For the given research problem, list three or more common properties that would
structure the salient aspects of research addressing the given problem. These
properties should be consistently relevant across multiple studies to
facilitate an effective comparison.

</task>

<research-problem-input>
{research_problem}

</research-problem-input>

<output-response-format>
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Provide your response strictly in the format of a list data structure. Example: [’
propertyl’, ’property2’, ’property3’] or [’propertyl’, ’property2’, °
property3’, ’property4’]. Do not include any additional text or explanation.

</output-response-format>

return prompt

Appendix A.2. Zero-Shot Prompt for Rich Context

def property_generation_rich_context_prompt (df_row) :
research_problem = df_row["research_problem"]
title = df_row["title"]
abstract = df _row["abstracts"]
prompt = f£"""<role>

You are a researcher analyzing how various research studies contribute to solving

a specific research problem. Your task is to identify and document shared

properties that characterize significant contributions across these studies.
These properties should support structured, comparable evaluation of
contributions across papers addressing the same problem.

</role>

<task>

For the given research problem, along with the title and abstract of a research
paper, list three or more common properties that would structure the salient
aspects of research addressing the given problem. Consider the given title
and abstract as additional context information about the research addressing
the research problem. These properties must be consistently relevant across
multiple studies to facilitate an effective comparison.

</task>

<context-input>

Research problem: {research_problem}

Title: {title}
Abstract: {abstract}
</context-input>

<output-response-format>

Provide your response strictly in the format of a list data structure. Example: [’
propertyl’, ’property2’, ’property3’] or [’propertyl’, ’property2’, °
property3’, ’property4’]. Do not include any additional text or explanation.

</output-response-format>

return prompt

Appendix A.3. Zero-Shot Prompt for Dense Context

def property_generation_dense_context_prompt (df_row) :
research_problem = df_row["research_problem"]
placeholder = " |#]|"
titles = df _row["title"].split(placeholder)
abstracts = df_row["abstracts"].split(placeholder)
num_papers = len(titles)
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context_input = ""

for i in range(num_papers) :
context_input += £"Title {i + 1}: {titles[i]l}\n"
context_input += f"Abstract {i + 1}: {abstracts[i]}\n\n"

prompt = f£"""<role>
You are a researcher analyzing how various research studies contribute to solving
a specific research problem. Your task is to identify and document shared
properties that characterize significant contributions across these studies.
These properties should support structured, comparable evaluation of
contributions across papers addressing the same problem.
</role>

<task>

For the given research problem, along with the titles and abstracts of related
research papers, list three or more common properties that would structure
the salient aspects of research addressing the given problem. Consider the
given titles and abstracts as additional context information about the
research addressing the research problem. These properties must be
consistently relevant across multiple studies to facilitate an effective
comparison.

</task>

<context-input>

Research problem: {research_problem}

{context_input}
</context-input>

<output-response-format>

Provide your response strictly in the format of a list data structure. Example: [’
propertyl’, ’property2’, ’property3’] or [’propertyl’, ’property2’, ’
property3’, ’property4’]. Do not include any additional text or explanation.

</output-response-format>

return prompt

Appendix A.4. Direct Assessment Evaluation Prompt

def direct_assessment_prompt(context, properties):
prompt = f£"""<role>

You are an evaluator tasked with assessing the quality of properties generated
for a given context. Your task is to evaluate these properties against the
provided input context, which may include various context types such as
research papers, technical documents, or problem statements. Your assessment
should focus on multiple evaluation criteria to ensure the properties
accurately reflect the context and are well-constructed.

</role>

<task>

You will evaluate the generated properties based on five evaluation criteria:

1. *xRelevance**: How well do the properties align with the input context (e.g.,
title, abstract, or research problem)?

2. *xFactuality**: Do the properties preserve factual statements from the source

context without introducing inaccuracies?
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Provide detailed feedback for each criterion and assign a score between 1 (lowest)

**Informativeness**: How well do the properties capture the key ideas and
contributions described in the input context?

**Coherence**: Do the properties form a logically consistent and readable set

of information?

**Specificity**: Are the properties specific to the input context, or are they
overly generic and applicable to a wide range of research problems?

and 5 (highest) for each.

</task>

<rating_scale>

For
1 =

a b w N
1]

each criterion, use this scale:

Very bad
Bad
Moderate
Good
Very good

Detailed guidelines:

- **Relevance**

1: No connection to context

2: Occasional relevance

3: General relevance with lapses

4: Consistent relevance

5: Deep contextual understanding
- *xFactuality**

1: Significant inaccuracies

2: Multiple errors

3: Minor inaccuracies

4: Mostly accurate

5: Perfect integrity

- **Informativeness*x*

1: Misses all key ideas
2: Focuses on trivial details
3: Basic coverage
4: Effective coverage
5: Comprehensive capture
- **Coherencex*x*
1: Disjointed/contradictory
2: Frequent inconsistencies
3: Occasional issues
4: Minor flaws
5: Seamless narrative
- **Specificity**
1: Completely generic
2: Limited specificity
3: Partial specificity
4: Mostly specific
5: Unique tailoring

</rating_scale>

https://doi.org/10.3390/info17010035


https://doi.org/10.3390/info17010035

Information 2026, 17, 35 17 of 21

<evaluation_steps>

1. Carefully read the input context to understand the core ideas and
contributions.

2. Review the generated properties and compare them to the input context.

3. For each criterion, analyze how well the properties align with the input and
fulfill the criterion’s requirements.

4. Provide detailed feedback explaining your reasoning for each criterion.

5. Assign a score between 1 and 5 for each criterion based on your analysis.

</evaluation_steps>

<input>
<context>
{context}
</context>
<properties>
{properties}
</properties>
</input>

<output_format>

Feedback:

- Relevance: (Feedback on relevance)

- Factuality: (Feedback on factuality)

- Informativeness: (Feedback on informativeness)
- Coherence: (Feedback on coherence)

- Specificity: (Feedback on specificity)

Scores:

- Relevance: (1-5)

- Factuality: (1-5)

- Informativeness: (1-5)
- Coherence: (1-5)

- Specificity: (1-5)
</output_format>

return prompt

Appendix A.5. Pairwise Ranking Evaluation Prompt

def pairwise_ranking_prompt (properties_set_1, properties_set_2):
prompt = f"""<role>

You are an evaluator tasked with comparing two sets of properties based on
specific criteria. Your goal is to evaluate these sets against each other to
identify their similarity and differences.

</role>

<task>
You will evaluate two sets of properties using this criterion:
1. **Similarity**: Assess direct overlap and mutual content coverage between sets.
Consider:
- Explicit matches between properties
- How well each set captures the other’s key ideas
- Bidirectional alignment of concepts and details
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Provide detailed feedback explaining your evaluation.

between 1 (lowest) and 5 (highest).

</task>

<rating_scale>

For Similarity criterion, use this scale:

g > W N

= Very bad

= Bad

= Moderate

= Good

= Very good

Detailed guidelines:

1.

*xVery bad (1)x*x*:
- No meaningful property matches
- Sets address fundamentally different concepts

- Major content gaps (>70% missing) in both directions

. *xBad (2)*x*:

- Limited overlap (<30% matches)
- One set misses >507, of the other’s key ideas

- Weak bidirectional alignment

. **Moderate (3)x*x*:

- Partial overlap (30-60% matches)
- Misses notable aspects (>25} gaps)
- Basic alignment with inconsistent depth

. *xGood (4)**:

- Strong overlap (60-80% matches)
- Captures most key ideas (<15}, gaps)

- Clear alignment with minor omissions

. **Very good (5)x*x*:

- Near-complete overlap (>80% matches)
- Comprehensive coverage in both directions

- Nuanced alignment of complementary aspects

</rating_scale>

<evaluation_steps>

ilg
2.

D O W

Analyze both property sets independently
Identify:

a. Direct property matches

b. Equivalent concepts with different phrasing
c. Missing elements in each direction

Assess coverage quality and alignment depth
Determine percentage-based overlap estimates
Provide feedback using rating descriptors

Assign final similarity score (1-5)

</evaluation_steps>

<input>

<properties_set_1>

{properties_set_1}

</properties_set_1>

Assign a single score
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<properties_set_2>
{properties_set_2}
</properties_set_2>
</input>

<output_format>
Feedback:
- Similarity: (Feedback using scale descriptors. Example: "Very good: Sets show

near-complete overlap...")

Scores:
- Similarity: (1-5)
</output_format>

return prompt

Appendix B. Full Direct Assessment Results

This appendix reports the complete direct assessment results for the lean, rich, and
dense context scenarios. Scores are shown as mean + standard deviation and are aver-
aged over all evaluated properties for each generator—evaluator pair. Evaluations were
performed on a 1-5 Likert scale across five criteria: relevance, factuality, informativeness,
coherence, and specificity. Then, 95% confidence intervals were computed for all reported
means based on the corresponding scenario-level sample sizes (N = 326 for lean, N = 2861
for rich, and N = 2230 for dense) but are omitted from the tables for readability.

Table A1. Direct assessment results for the lean context scenario (mean + standard deviation).

Generator  Evaluator Relevance Factuality Informativeness Coherence Specificity
Llama Deepseek 4.69 = 0.65 4.92 +0.39 4.46 = 0.64 4.88 +0.36 4.05+0.83
Mistral Deepseek 4.63 +0.58 4.88 +0.39 410 +0.67 4.80 +0.44 3.63+0.83
Qwen Deepseek 4.48 +0.61 4.86 +0.41 410+0.71 4.78 + 0.46 341+0.84
Llama Mistral 4.86 = 0.41 497 +0.17 4.82 +0.50 499 +0.11 4.64+0.76
Mistral Mistral 4.74 + 0.56 4.95+0.25 4.52+0.75 4.95+0.22 4.24 +0.99
Qwen Mistral 4.55+0.71 491 +0.31 4.35+0.83 495 +0.24 3.96 £ 1.14
Llama Qwen 4.32 +0.62 4.96 +0.24 3.79+0.83 4.77 £ 0.42 3.65+0.96
Mistral Qwen 4.23 +0.61 493 +0.29 3.55+0.70 4.68 +0.47 3.46 +0.88
Qwen Qwen 3.92 +0.67 4.83 +0.38 3.31+0.64 4.53 + 0.54 3.03+0.86

Table A2. Direct assessment results for the rich context scenario (mean + standard deviation).

Generator  Evaluator Relevance Factuality Informativeness Coherence Specificity
ORKG Deepseek 3.59 +0.74 412 +0.89 297 £0.77 3.66 + 0.97 2.81+0.82
Llama Deepseek 4.60 +0.63 4.85+0.45 4.09 +0.71 4.78 £ 0.48 3.95 +0.90
Mistral Deepseek 4.70 + 0.58 4.90 +0.37 4.09 +0.64 4.80+0.45 4.07 +0.84
Qwen Deepseek 4.75 + 0.59 492 +0.35 4.23 + 0.66 4.83 + 0.41 4.18 + 0.84
ORKG Mistral 2.83+0.72 3.53+0.85 2.14+0.78 3.17+£0.95 212+0.78
Llama Mistral 4.57 £ 0.65 4.89 +0.33 428 +0.94 4.87 £0.39 4.25+£0.98
Mistral Mistral 4.63 +0.63 4.93 +0.32 4.26 +0.90 4.89 +0.36 4.30 + 0.96
Qwen Mistral 4.78 £ 0.49 497 £0.21 4.54 £0.74 4.95+0.23 454 +0.82
ORKG Qwen 2.89 £ 0.57 4.04 +0.46 2.53 £ 0.58 3.31£0.68 2.44 + 0.60
Llama Qwen 4.17 £ 0.63 492 +0.32 3.55 +0.65 4.53 + 0.52 3.51 +0.80
Mistral Qwen 4.26 = 0.61 491 +0.29 3.52 £ 0.61 4.58 +0.51 3.59 £0.76
Qwen Qwen 4.37 +0.60 492 +0.29 3.70 £ 0.65 4.64 +0.50 3.72+0.79
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Table A3. Direct assessment results for the dense context scenario (mean + standard deviation).

Generator  Evaluator Relevance Factuality Informativeness Coherence Specificity
Llama Deepseek 4.67 +0.59 4.90 + 0.38 419 +£0.72 4.81 + 0.45 4.02 + 0.90
Mistral Deepseek 4.72 +0.52 492 +0.34 4.07 =0.63 4.79 = 0.48 3.95+0.85
Qwen Deepseek 4.73 + 0.56 492 +0.33 4.20 £ 0.67 4.82 +0.42 4.06 +0.86
Llama Mistral 4.49 +0.73 4.86 + 0.41 4.23+097 4.84 + 0.41 4.13 +1.06
Mistral Mistral 455+072  4.90+035 4.20 +0.96 485+039  4.19+1.04
Qwen Mistral 4.68 + 0.61 492 +0.32 4.45 +0.84 491 +0.32 4.40 + 0.93
Llama Qwen 3.96 + 0.71 4.73 + 0.45 3.44 + 0.63 4.36 + 0.56 3.23+0.84
Mistral Qwen 4.03 £0.70 4.79 £ 0.41 3.37 £ 0.58 4.38 £ 0.56 3.24 +£0.79
Qwen Qwen 413 +0.68 4.82 +0.39 3.53 +0.64 4.42 + 0.56 3.38 +0.83
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