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In this article, we investigate the optimal strategies in the Werewolf Game—a widely played strategic social
deduction game involving two opposing factions—from a game-theoretic perspective. We consider two
scenarios: the game without a prophet and the game with a prophet. In the scenario without a prophet, we
propose an enhanced strategy called “random strategy+” that significantly improves the werewolf group’s
winning probability over conventional random strategies. In the scenario with a prophet, we reformulate the
game as an extensive-form Bayesian game under a specific constraint, and derive the prophet’s optimal strategy
that induces a Perfect Bayesian Equilibrium (PBE). This study provides a rigorous analytical framework for
modeling the Werewolf Game and offers broader insights into strategic decision-making under asymmetric
and incomplete information.
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1 Introduction
1.1 Game Description
Werewolf Game, also known asMafia Game, originated from a Russian social deduction game created
by Dimitry Davidoff in 1986. It has since evolved into a widely played game of strategic reasoning,
deception, and incomplete information. Typically involving 8–16 players, each is assigned a hidden
role belonging to one of two opposing factions: the citizen group and the werewolf group.

The citizen group aims to eliminate all werewolves via public daytime voting, while the werewolf
group strives to reduce the number of citizens to zero by secretly eliminating one player each
night. To add complexity and entertainment value to the game, the citizen group is often assigned
a prophet who can check one player’s group affiliation each night.

This game dynamic creates a rich environment for studying strategic decision-making under
uncertainty. Players must reason not only with their own information, but also infer the intentions
and beliefs of others, balancing short-term risks with long-term outcomes. In particular, the timing
of the prophet’s information revelation plays a pivotal role: revealing too early risks premature
death and wasted influence, while revealing too late may allow the werewolf group to seize control.
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1.2 Literature Review
Academic research on the Werewolf Game typically falls into three main categories:

(1) Probability and GameTheory: Studying relevant strategies, equilibria, and winning rates
of both groups under specific game settings.

(2) Social and Behavioral Sciences: Studying phenomena in social psychology within games,
such as group behavior, persuasion, and deception. This includes analyzing how players
interact during the game, and examining the factors that influence their decisions and actions.

(3) Artificial Intelligence and Algorithms: Using the Werewolf Game as a testbed for algo-
rithm design, or leveraging in-game dialogue to train and evaluate artificial intelligence in
assessing information authenticity.

This study models the Werewolf Game assuming fully rational agents and does not incorporate
psychological or behavioral considerations.The subsequent literature review, therefore, concentrates
on prior work in probability and game theory, which are most relevant to the present analysis.

Braverman et al. [2008] suggested that in theWerewolf Gamewithout a prophet, if both the citizen
group and the werewolf group adopt a random strategy, then the two groups have comparable
winning probabilities when the werewolves’ size is of the order of the square root of the total
players’ size. In the Werewolf Game with prophets, the two groups have comparable winning
probabilities when the werewolves’ size and total players’ size are linearly related. Regarding the
game without a prophet, Yao [2008] corrected the mathematical flaws of the probability boundary
function in the original theorem of Braverman et al. [2008] and gave a more precise recursive
formula and probability upper and lower bounds of players’ winning probability. Migdał (2013)
calculated the analytical solution of winning probability for the Werewolf Game without a prophet.
The above articles (Braverman et al. [2008]; Yao [2008]; Migdał (2013)) all assumed that in the
Werewolf Game without a prophet, “random strategy”, i.e., the werewolf group eliminates a citizen
randomly during the night and all players vote to eliminate a player randomly during the day is
the optimal strategy for both groups, but we will revise this assumption. Bi and Tanaka [2016]
calculated the Nash equilibrium of the game under certain limitations and concluded that the
“stealth werewolf” strategy, i.e., werewolves pretending to be citizens, is not a good strategy. Xiong
et al. [2017] used the Game Refinement Measure, a measure to qualify the sophistication of a game,
to measure the Werewolf Game and concluded that too many players in a single game may make
the game overly complex and less engaging.

This article investigates the optimal strategies for both groups in the Werewolf Game under
settings with and without the presence of a prophet. For games without a prophet, our main
contribution is the proposal of an improved strategy for the werewolf group, which achieves a
higher winning probability than conventional approaches commonly used in practice. For games
with a prophet, we develop a recursive Bayesian gamemodel that captures the prophet’s information
structure and strategic considerations. Based on this model, the prophet can compute an optimal
strategy under any given circumstance, including scenarios that rarely occur in standard gameplay.

2 Background of the Werewolf Game
In this section, we provide a formal introduction to the fundamental rules of the Werewolf Game,
which lay the foundation for our subsequent modeling and analysis.

2.1 Role Set Configuration and Role Assignment
At the outset of the game, the total number of players and the composition of the role set (i.e., the
number of players assigned to each role type) are common knowledge, while each player’s specific
role remains private information.
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Table 1. Different Types of Roles

Role Group Special power
Villager Citizen No special power
Werewolf Werewolf No special power
Prophet Citizen Check one player’s group affiliation every night

Players are typically divided into two opposing factions: the citizen group and the werewolf
group. Within the citizen group, those without special power are referred to as villagers, while
others may possess special powers. For example, a citizen who can check another player’s group
affiliation (citizen or werewolf) once per night is referred to as a prophet. Some versions of the
game also permit werewolves to possess special powers, but such extensions are not considered in
our model. A simple role set might be two villagers, one prophet, and two werewolves, forming a
five-player game.

In some variants of the Werewolf Game, the exact role set may be uncertain. Nevertheless, even
in these cases, the probability distribution over possible role sets is still common knowledge.

To facilitate subsequent analysis, players are assigned serial numbers in a clockwise order. When
a player is eliminated from the game, the serial numbers of all remaining players with higher
numbers are adjusted downward to close the gap. For example, if player 4 is eliminated, then player
5 becomes player 4, player 6 becomes player 5, and so on.

2.2 Gameplay Process
With the initial setup complete, players formally begin the game according to the established rules.
Although there are many versions of the Werewolf Game, each with slightly different rule sets, we
present a representative version that serves as the basis for our analysis. The game proceeds in a
sequence of rounds, each consisting of a night phase followed by a day phase.

Before detailing the game procedure, we briefly introduce the possible roles in the version of the
Werewolf Game considered in this article.

On the first night, the werewolves learn each other’s identities. During the night phase, the
werewolf group collectively selects one player to eliminate. This player is removed from the game
at the beginning of the following day. If a prophet is present, they may check the group affiliation
of one player each night. It is worth noting that the werewolves’ elimination takes effect after
the night; therefore, the prophet may end up checking the group affiliation of a player who is
simultaneously being eliminated during that same night.

During the day phase, each player has one opportunity to publicly announce amessage to all other
players. These announcements occur simultaneously, and no private communication is permitted.
Following the announcements, all players simultaneously vote to eliminate one player. The player
receiving the highest number of votes is immediately removed from the game. In the event of a
tie, one of the tied players is randomly chosen for elimination. The next night phase then begins.

Importantly, the group affiliations of eliminated players—whether eliminated by the werewolves
or by public vote—are not revealed to the remaining players. This feature marks a key distinction
between our game model and those studied in Braverman et al. [2008] and Yao [2008]. In their
model, the prophet voluntarily sacrifices themselves in a specific round to validate their identity
and securely convey checking information to the verified citizens, assuming the availability of
private communication channels. Clearly, such a strategy is not feasible under our assumptions.

The game begins with a night phase and alternates between night and day until all players from
one faction—either the citizen group or the werewolf group—are eliminated. The surviving group
is then declared the winner.
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Fig. 1. Process of the Werewolf game.

3 Game without a Prophet
We now turn to the simplest and most widely discussed case:TheWerewolf Game without a prophet.
In this setting, we assume that all citizens are villagers and that all werewolves possess no special
powers.

As mentioned above, in game without a prophet, many previous studies (eg., Braverman et al.
[2008]; Yao [2008]; Migdał (2013)) have assumed that the optimal strategy for citizens (comprising
only villagers) is to request all players to vote randomly during the day, while the optimal strategy
for werewolves is to randomly eliminate a citizen during the night. This assumption stems from
the absence of any information that would justify targeting specific players.

However, the assumption of “all players voting randomly” during the day encounters a practical
challenge in real gameplay: it is difficult to verify whether players are truly voting at random.
Werewolves, in particular, have incentives to avoid voting for their teammates and may collude
to target specific players during the night. This behavior increases the likelihood of eliminating
citizens while reducing the risk of werewolves being voted out. Nonetheless, werewolves can still
claim that their votes were cast randomly—just like honest citizens—making it hard to distinguish
between the two.
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Fortunately, the citizen group has a natural mechanism to counter this issue. An implicit rule,
often accepted by all players without the need for explicit agreement, is employed to enforce
random voting. According to this rule, during the phase in which each player “simultaneously
announces messages”, every player simultaneously selects a natural number. The sum of all selected
numbers is then computed, and the result is taken modulo the total number of players. The player
whose serial number corresponds to the result of the modulo operation is designated as the target
for elimination in the subsequent vote. Any player who fails to support their declared number or
votes against the modulo result is immediately identified as a werewolf and eliminated during the
voting in the next round.

This mechanism ensures that even though the citizens (an uninformed majority) lack knowl-
edge about others’ roles, they can still enforce fair and verifiable random voting. Meanwhile,
the werewolves (an informed minority) are forced to conform to the rule to avoid suspicion and
exposure.

More precisely, the process proceeds as follows: Each player 𝑖 ∈ {1, 2, … , 𝑛} simultaneously
selects a natural number 𝑥𝑖 ∈ ℕ during the message announcement phase. All chosen numbers are
then publicly disclosed, and their sum 𝑆 = ∑𝑛

𝑖=1 𝑥𝑖 is computed. The player whose serial number
equals 𝑆 mod 𝑛 (interpreting 0 as 𝑛) is selected as the elimination target.

Formally, define

𝑡 = {
𝑆 mod 𝑛, if 𝑆 mod 𝑛 ≠ 0,
𝑛, if 𝑆 mod 𝑛 = 0,

(1)

then player 𝑡 becomes the designated elimination target.
The strategy described above, commonly referred to as the “random strategy”, has been regarded

as optimal for both factions in prior works by Braverman et al. [2008]; Yao [2008]; and Migdał
(2013). However, we propose an enhanced strategy for the werewolf group that improves their
winning probability, particularly in games with a small number of players.

The improved strategy operates as follows: when the number of werewolves equals the number of
remaining citizens during the voting phase, if the player designated for elimination via the modulo
operation is a citizen, the werewolf group simply follows the voting rule and secures an immediate
victory, as their number then exceeds that of the citizens. In contrast, if the designated player is a
werewolf, the werewolf group may adopt an “all-in strategy”. This entails pre-coordinating during
the previous night to unanimously vote for a specific citizen, thereby forcing a tie in the voting
outcome. If the tie is resolved in favor of eliminating the targeted citizen (e.g., with probability
1
2 ), the werewolf group wins. If the werewolf is eliminated instead, the remaining werewolves
eliminate a citizen during the following night and repeat the “all-in strategy” in the next round,
continuing this cycle until the game concludes.

Naturally, once this strategy is employed, the citizens can infer the identities of all werewolves.
In the following rounds, they can coordinate directly to vote for one of the werewolves, resulting
in a tie with the werewolves’ votes.

We refer to the combination of the “random strategy” and the “all-in strategy” as the “ran-
dom strategy+”. We will now demonstrate that “random strategy+” induces a Perfect Bayesian
Equilibrium (PBE) in game without a prophet.

As discussed earlier, during the day phase, the citizen group lacks sufficient information to make
informed decisions. Consequently, their only viable strategy is to ensure the integrity of the random
voting process, enforced via the modulus mechanism. This makes the strategy the uniquely optimal
choice for the citizen group.

We now demonstrate that “random strategy+” is also optimal for the werewolf group. Suppose
that at the end of the day phase and the beginning of the night phase, there are 𝑛 players
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Fig. 2. Schematic diagram illustrating the werewolf group’s “all-in strategy”.

remaining, of whom 𝑚 are werewolves. Let 𝑤(𝑛, 𝑚) denote the probability that the werewolf group
ultimately wins the game when employing the “random strategy+”. Then 𝑤(𝑛, 𝑚) satisfies the
following recursive formula:

𝑤(𝑛, 𝑚) =
⎧⎪

⎨
⎪
⎩

0, if 𝑚 = 0,
1, if 𝑚 ≥ 𝑛 − 𝑚,
1 − ( 12)

𝑚+1
if 𝑛 − 1 = 2𝑚, and 𝑛 ≥ 5,

𝑛−1−𝑚
𝑛−1 𝑤(𝑛 − 2, 𝑚) + 𝑚

𝑛−1𝑤(𝑛 − 2, 𝑚 − 1), otherwise.

(2)

Interestingly, when the number of werewolves is equal to the number of citizens and the desig-
nated player is a werewolf during the voting phase, for the werewolf group, employing the “all-in
strategy” immediately is mathematically equivalent to obeying the “random strategy” rule until
the number of werewolves reduces to 2. From the perspective of obeying the “random strategy”
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(assuming 𝑚 > 2), we observe

𝑤(2𝑚 + 1,𝑚) =
2𝑚 + 1 − 1 − 𝑚

2𝑚
𝑤(2𝑚 − 1,𝑚) +

𝑚
2𝑚 + 1 − 1

𝑤(2𝑚 − 1,𝑚 − 1)

=
1
2
+
1
2
𝑤(2𝑚 − 1,𝑚 − 1). (3)

From the perspective of the werewolf group employing “all-in strategy” (assuming 𝑚 > 2), we have

𝑤(2𝑚 + 1,𝑚) = 1 − (
1
2)

𝑚
=

1
2
+
1
2 (

1 − (
1
2
)𝑚−1) =

1
2
+
1
2
𝑤(2𝑚 − 1,𝑚 − 1). (4)

Therefore, in order to simplify the formula, 𝑤(𝑛, 𝑚) can also be written as

𝑤(𝑛, 𝑚) =
⎧⎪
⎨
⎪
⎩

0, if 𝑚 = 0,
7
8 , if 𝑛 = 5 and 𝑚 = 2,
1, if 𝑚 ≥ 𝑛 − 𝑚,
𝑛−1−𝑚
𝑛−1 𝑤(𝑛 − 2, 𝑚) + 𝑚

𝑛−1𝑤(𝑛 − 2, 𝑚 − 1), otherwise.

(5)

Analogously, we can derive the recursion of the werewolf group winning probability when the
werewolf group employs the “random strategy”. Suppose that at the end of the day phase and
the beginning of the night phase, there are 𝑛 players remaining, of whom 𝑚 are werewolves. Let
𝑣(𝑛, 𝑚) denote the probability that the werewolf group ultimately wins the game when employing
the “random strategy”. Then 𝑣(𝑛, 𝑚) satisfies the following recursive formula:

𝑣(𝑛, 𝑚) =
⎧
⎨
⎩

0 if 𝑚 = 0
1 if 𝑚 ≥ 𝑛 − 𝑚
𝑛−1−𝑚
𝑛−1 𝑣(𝑛 − 2, 𝑚) + 𝑚

𝑛−1 𝑣(𝑛 − 2, 𝑚 − 1) otherwise.
(6)

Now we prove that the “random strategy +” weakly dominates the “random strategy”:

When 𝑛 is even, the “all-in strategy” would never happen, then 𝑤(𝑛, 𝑚) = 𝑣(𝑛, 𝑚) for all 𝑛, 𝑚.
When 𝑛 is odd, for all 𝑛 ≥ 5 and 𝑚 ≥ 2, 𝑤(𝑛, 𝑚) or 𝑣(𝑛, 𝑚) can be written as the linear form of
𝑤(5, 2) or 𝑣(5, 2):

𝑤(𝑛𝑖, 𝑚𝑗) = 𝑐𝑖𝑗 + 𝛼𝑖𝑗 ⋅ 𝑤(5, 2), (7)
𝑣(𝑛𝑖, 𝑚𝑗) = 𝑐𝑖𝑗 + 𝛼𝑖𝑗 ⋅ 𝑣(5, 2). (8)

Since we get 𝑤(5, 2) = 7
8 ≥ 𝑣(5, 2) = 3

4 , then 𝑤(𝑛, 𝑚) ≥ 𝑣(𝑛, 𝑚) for all odd 𝑛 ≥ 5 and 𝑚 ≥ 2. Easy
to verify, when 𝑛 < 5 or 𝑚 < 2, 𝑤(𝑛, 𝑚) = 𝑣(𝑛, 𝑚).

In summary, 𝑤(𝑛, 𝑚) ≥ 𝑣(𝑛, 𝑚) for all 𝑛 and 𝑚. We have proven that the “random strategy+”
weakly dominates the “random strategy” in all cases for the werewolf group.The “random strategy+”
is the optimal strategy for both groups and thus can indeed induce a PBE. The following figure
illustrates the difference in the werewolf group’s winning probability under these two strategies.
Bar colors are used solely for visual clarity.

Finally, we prove that the werewolf group’s strategy of self-killing during the night is strictly
dominated. This proof is necessary because, in all previous analyses, we implicitly assumed that the
werewolves would not adopt such a strategy. Providing a formal justification for this assumption is
essential to completing the proof that the “random strategy+” is indeed the optimal strategy for the
werewolf group.

Claim 1. In a game without a prophet, the werewolf group’s strategy of killing themselves during
the night is strictly dominated.
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Fig. 3. Winning probability improvement for the werewolf group under the “random strategy+” compared to
the “random strategy”.

Proof. For 𝑛 ≥ 2𝑚 + 1 ≥ 7, we have the following equation from (5):

(𝑛 − 1 − 𝑚)[𝑤(𝑛 − 2, 𝑚) − 𝑤(𝑛, 𝑚)] = 𝑚[𝑤(𝑛, 𝑚) − 𝑤(𝑛 − 2, 𝑚 − 1)]. (9)

Rearranging the equation, we get:

(𝑛 − 1)[𝑤(𝑛, 𝑚) − 𝑤(𝑛 − 2, 𝑚 − 1)] = (𝑛 − 1 − 𝑚)[𝑤(𝑛 − 2, 𝑚) − 𝑤(𝑛 − 2, 𝑚 − 1)]. (10)

Therefore,

𝑤(𝑛 − 2, 𝑚) > 𝑤(𝑛, 𝑚) ⟺ 𝑤(𝑛, 𝑚) > 𝑤(𝑛 − 2, 𝑚 − 1) ⟺ 𝑤(𝑛 − 2, 𝑚) > 𝑤(𝑛 − 2, 𝑚 − 1). (11)

Suppose the werewolf group eliminates one of their own members during the night exactly
once, and then proceeds with the “random strategy+” afterward. Let 𝑤 ′(𝑛, 𝑚) denote their winning
probability under this modified strategy. Then

𝑤 ′(𝑛, 𝑚) =
𝑚 − 1
𝑛 − 1

𝑤(𝑛 − 2, 𝑚 − 2) +
𝑛 − 𝑚
𝑛 − 1

𝑤(𝑛 − 2, 𝑚 − 1). (12)

We now compare 𝑤(𝑛, 𝑚) and 𝑤 ′(𝑛, 𝑚):

𝑤(𝑛, 𝑚) − 𝑤 ′(𝑛, 𝑚) = (
𝑛 − 𝑚 − 1
𝑛 − 1 )𝑤(𝑛 − 2, 𝑚) − (

𝑚 − 1
𝑛 − 1 )

𝑤(𝑛 − 2, 𝑚 − 2)

+ (
2𝑚 − 𝑛
𝑛 − 1 )𝑤(𝑛 − 2, 𝑚 − 1).

(13)

Since
𝑤(𝑛 − 2, 𝑚) > 𝑤(𝑛 − 2, 𝑚 − 1) > 𝑤(𝑛 − 2, 𝑚 − 2), (14)

it follows that
𝑤(𝑛, 𝑚) − 𝑤 ′(𝑛, 𝑚) > 0. (15)

The remaining cases with smaller values of 𝑛 or 𝑚 can be easily verified through direct
enumeration.
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Fig. 4. Winning probability of the werewolf group in a game without a prophet.

Therefore, we conclude that for the werewolf group, any strategy involving self-killing during
the night is strictly dominated. This completes the justification for the “random strategy+” as the
optimal strategy.

We now conduct a quantitative analysis of the winning probability of the werewolf group
employing the “random strategy+”.

From the analysis above, we have established that𝑤(𝑛, 𝑚) > 𝑤(𝑛, 𝑚−1) and𝑤(𝑛+2, 𝑚) < 𝑤(𝑛, 𝑚).
However, the relationship between 𝑤(𝑛, 𝑚) and 𝑤(𝑛 − 1, 𝑚) remains undetermined.

To illustrate this, we present a line plot showing the winning probability of the werewolf group
in games with 1 to 3 werewolves and up to 20 total players.

It is easy to observe from the figure that 𝑤(2𝑘, 𝑚) > 𝑤(2𝑘 − 1, 𝑚) when 𝑘 ≥ 4 and 𝑘 > 𝑚. A
similar property also holds under the “random strategy”, as noted by Migdał (2013).

From a game-theoretic perspective, we offer the following intuitive explanation: when the total
number of players 𝑛 is odd, adding one more citizen (making 𝑛 even) does not trigger an additional
round of voting. However, this added citizen reduces the per-round probability that a werewolf
is voted out. Consequently, for a fixed number of werewolves 𝑚, the werewolf group’s winning
probability increases as the total number of players changes from an odd to the next even number.

Now, we proceed to prove by mathematical induction that for all integers 𝑘 ≥ 4 and 𝑚 < 𝑘, the
inequality 𝑤(2𝑘, 𝑚) > 𝑤(2𝑘 − 1, 𝑚) holds.

Base Case. Let 𝑘 = 4. We verify the inequality for 𝑚 = 1, 2, 3 by explicit computation:

𝑤(8, 1) =
48
105

> 𝑤(7, 1) =
5
16

, (16)

𝑤(8, 2) =
27
35

> 𝑤(7, 2) =
39
55

, (17)

𝑤(8, 3) =
33
35

> 𝑤(7, 3) =
15
16

. (18)

Thus, the base case holds.
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Inductive Hypothesis. Assume that for some 𝑘 ≥ 4, and for all 𝑚 < 𝑘, we have:

𝑤(2𝑘, 𝑚) > 𝑤(2𝑘 − 1, 𝑚). (19)

Inductive Step. We aim to prove:

𝑤(2𝑘 + 2, 𝑚) > 𝑤(2𝑘 + 1, 𝑚), for all 𝑚 < 𝑘 + 1. (20)

We first show that the inequality holds for all 𝑚 < 𝑘. From the recurrence relations, we have:

𝑤(2𝑘 + 2, 𝑚) =
2𝑘 + 1 − 𝑚
2𝑘 + 1

𝑤(2𝑘, 𝑚) +
𝑚

2𝑘 + 1
𝑤(2𝑘, 𝑚 − 1), (21)

𝑤(2𝑘 + 1, 𝑚) =
2𝑘 − 𝑚
2𝑘

𝑤(2𝑘 − 1, 𝑚) +
𝑚
2𝑘

𝑤(2𝑘 − 1, 𝑚 − 1). (22)

By the inductive hypothesis:

𝑤(2𝑘, 𝑚) > 𝑤(2𝑘 − 1, 𝑚) > 𝑤(2𝑘 − 1, 𝑚 − 1), (23)
𝑤(2𝑘, 𝑚 − 1) > 𝑤(2𝑘 − 1, 𝑚 − 1). (24)

Moreover, the coefficients satisfy:

2𝑘 + 1 − 𝑚
2𝑘 + 1

>
2𝑘 − 𝑚
2𝑘

. (25)

Combining these observations, we conclude:

𝑤(2𝑘 + 2, 𝑚) > 𝑤(2𝑘 + 1, 𝑚), for all 𝑚 < 𝑘 + 1. (26)

We now consider the boundary case 𝑚 = 𝑘. When 𝑘 ≥ 4, we have:

𝑤(2𝑘 + 2, 𝑘) =
𝑘 + 1
2𝑘 + 1

𝑤(2𝑘, 𝑘) +
𝑘

2𝑘 + 1
𝑤(2𝑘, 𝑘 − 1) =

𝑘 + 1
2𝑘 + 1

+
𝑘

2𝑘 + 1
𝑤(2𝑘, 𝑘 − 1), (27)

𝑤(2𝑘 + 1, 𝑘) =
1
2
𝑤(2𝑘 − 1, 𝑘) +

1
2
𝑤(2𝑘 − 1, 𝑘 − 1) =

1
2
+
1
2
𝑤(2𝑘 − 1, 𝑘 − 1). (28)

To establish 𝑤(2𝑘 + 2, 𝑘) > 𝑤(2𝑘 + 1, 𝑘), it suffices to show:

𝑤(2𝑘, 𝑘 − 1) > 𝑤(2𝑘 − 1, 𝑘 − 1). (29)

Since 𝑤(8, 3) > 𝑤(7, 3), the argument extends analogously to all larger 𝑘.
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Fig. 5. The process of werewolf group choosing the eliminating target.

Therefore, by the principle of mathematical induction, we conclude that for all 𝑘 ≥ 4 and all
𝑚 < 𝑘, the inequality 𝑤(2𝑘, 𝑚) > 𝑤(2𝑘 − 1, 𝑚) holds.

4 Game with a Prophet
In this section, we focus on the game with a prophet and aim to derive the optimal strategies for
both groups. These strategies collectively induce a PBE.

4.1 Game under Honesty Rule
First, let us consider a simplified but instructive game setting. Assume that neither the villagers
nor the werewolves can convey false information when announcing messages publicly during the
day. We refer to this constraint as the honesty rule. Under this rule, it is evident that before the
prophet actively reveals the checked information, the “random strategy +” discussed previously
is the optimal strategy for both groups. Once the prophet reveals all information obtained from
previous nights in a given round, due to the restriction that neither werewolves nor villagers
can impersonate the prophet, all players will recognize the identity of the prophet and base their
subsequent actions on the revealed information.

For the villagers, this means urging all players to vote out the revealed werewolves. Once all
revealed werewolves are voted out, villagers will revert to random voting, excluding those who
have been verified to be villagers by the prophet. The werewolves, in contrast, would prioritize
eliminating the revealed prophet during the first night to prevent further information revelation.
Subsequently, they will focus on eliminating the checked villagers during future nights, thereby
reducing the likelihood of werewolves being voted out during the day. Naturally, if the number
of werewolves equals the number of villagers and one of the werewolves is about to be voted out,
the werewolf group will decisively employ the “all-in strategy”, as they do in the game without a
prophet.

We illustrate the whole game process with a representative example as follows:
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Fig. 6. The process of the citizen group choosing the voting target.

Table 2. One Possible Process of Game with 9 Villagers, 2 Werewolves, and 1 Prophet

Initial role assignment: Player 1: Villager, Player 2: Villager, Player 3: Villager, Player 4: Werewolf, Player 5:
Villager, Player 6: Villager, Player 7: Villager, Player 8: Villager, Player 9: Werewolf, Player 10: Villager, Player
11: Villager, Player 12: Prophet
Night: The Werewolf group eliminated Player 6 (reason: random eliminating citizen)
Remaining Player Profile: 8 Villagers, 2 Werewolves, and 1 Prophet
Night: The Prophet checked Player 11, result: Villager
Day: Player 2 was voted out (reason: random voting out)
Remaining Player Profile: 7 Villagers, 2 Werewolves, and 1 Prophet
Night: The Werewolf eliminated Player 10 (reason: random eliminating citizen)
Remaining Player Profile: 6 Villagers, 2 Werewolves, and 1 Prophet
Night: Player 12, the Prophet checked Player 4, result: Werewolf
Day: The Prophet revealed information: Player 4 is a Werewolf, Player 11 is a Villager
Day: Player 4 was voted out (reason: voting out the revealed werewolf)
Remaining Player Profile: 6 Villagers, 1 Werewolves, and 1 Prophet
Night: The Werewolf group killed Player 12 (reason: prioritizing eliminating the revealed prophet)
Remaining Player Profile: 6 Villagers, 1 Werewolves, and 0 Prophet
Day: Player 1 was voted out (reason: random voting out except the revealed Villager Player 11)
Remaining Player Profile: 5 Villagers, 1 Werewolves, and 0 Prophet
Night: The Werewolf eliminated Player 11 (reason: prioritizing eliminating the revealed villager)
Remaining Player Profile: 4 Villagers, 1 Werewolves, and 0 Prophet
Day: Player 4 was voted out (reason: random voting out)
Remaining Player Profile: 4 Villagers, 0 Werewolves, and 0 Prophet
Game Over: The Citizen group won!

In this game, the prophet fortunately checked a werewolf and revealed it in time, which played a
crucial role in the final victory of the citizen group.

4.2 Rule of Thumb in Revealing Information
The central strategic challenge is to determine the optimal timing for the prophet to reveal their
verified information. We begin by considering a fixed, ex-ante strategy in which the prophet
commits in advance to disclosing all known information on the 𝑥th day of the game.

ACM Games, Vol. 4, No. 1, Article 1. Publication date: December 2025.



Optimal Strategy in the Werewolf Game: A Theoretical Study 1:13

Table 3. Best Round 𝑓 (ℎ, 𝑚) of Prophet Revealing Information and the Citizen Group’s Winning Probability
(with 95% CI)

Number of werewolves
Citizen Group

Winning Probability
(95% CI)

1 2 3 4

N
um

be
r
of

vi
ll
ag

er
s

4 R1, 70% (68.9, 70.7) R2, 37% (35.8, 37.6) R2, 17% (16.3, 17.7) R1, 5% (4.5, 5.3)
5 R2, 74% (72.5, 74.2) R2, 46% (45.0, 46.9) R2, 22% (20.7, 22.4) R3, 8% (7.9, 8.9)
6 R2, 77% (76.4, 78.1) R2, 49% (48.3, 50.2) R3, 27% (26.0, 27.8) R2, 12% (10.9, 12.1)
7 R2, 76% (75.3, 77.0) R3, 52% (51.1, 53.1) R3, 31% (30.3, 32.2) R3, 14% (13.7, 15.1)
8 R3, 76% (75.4, 77.0) R3, 56% (55.0, 56.9) R4, 33% (32.4, 34.3) R3, 19% (17.9, 19.4)
9 R3, 78% (77.5, 79.1) R3, 56% (54.7, 56.7) R3, 36% (35.3, 37.2) R4, 23% (21.7, 23.4)
10 R3, 79% (78.3, 79.9) R4, 58% (57.0, 58.9) R4, 40% (38.5, 40.4) R4, 26% (24.7, 26.4)
11 R3, 79% (78.2, 79.8) R4, 60% (58.8, 60.8) R4, 42% (40.6, 42.5) R5, 27% (26.4, 28.1)
12 R4, 80% (79.0, 80.6) R5, 61% (60.2, 62.1) R5, 44% (42.9, 44.9) R5, 30% (29.1, 30.9)

Given a configuration (ℎ, 𝑚), where ℎ denotes the number of villagers and 𝑚 the number of
werewolves, our objective is to define a mapping that maximizes the expected winning probability
of the citizen group when the prophet reveals all checked information on day 𝑥.

Let 𝐻(ℎ, 𝑚, 𝑥) denote the probability that the citizen group wins given ℎ villagers, 𝑚 werewolves,
and a prophet who reveals all previously obtained information on day 𝑥. We define a function
𝑓 ∶ ℕ2 → ℕ, where the input (ℎ, 𝑚) returns the optimal revelation round 𝑥 ∈ ℕ. Formally:

𝑓 (ℎ, 𝑚) = argmax
𝑥∈ℕ

𝔼[𝐻(ℎ, 𝑚, 𝑥)].

In essence, the mapping 𝑓 (ℎ, 𝑚) identifies the round 𝑥 that maximizes the citizen group’s ex-ante
probability of winning.

To evaluate the ex-ante optimal strategy for the prophet’s revelation, we conduct 10,000 inde-
pendent Monte Carlo simulations for each (ℎ, 𝑚) configuration. For each combination, we estimate
the expected citizen winning probability under different revelation rounds and select the round
that yields the highest expected probability. To account for sampling variability, we compute a
95% confidence interval (CI) for the citizen winning probability using the standard error of a
Bernoulli process. The simulation code is available at: https://zenodo.org/records/16366976

In standard gameplay, even if the prophet does not strive to follow an interim optimal strategy,
simply adhering to the “rule of thumb” outlined in the table above significantly increases the citizen
group’s likelihood of winning, compared to scenarios where no prophet is present. Here, we provide
a comparison between games with and without a prophet, given the same number of citizens.

Judging from the comparison results, the presence of a prophet significantly increases the winning
probability of the citizen group.

4.3 PBE under Honesty Rule
We aim to construct a strategy that induces a PBE and maximizes the citizen group’s winning
probability under the honesty rule. To achieve this, we observe that both before and after the prophet
reveals information, all players—including villagers and werewolves—adhere to predetermined
strategic patterns as outlined in Section 4.1. Hence, the entire game can be equivalently reformulated
as a dynamic game with incomplete information involving only the prophet as an active player.
For the prophet, there exist multiple possible role profiles of other players in present (referred
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Fig. 7. Winning probabilities of the citizen group
with and without a prophet in games with two
werewolves.

Fig. 8. Winning probabilities of the citizen group
with and without a prophet in games with three
werewolves.

to as nodes), and the probabilistic distribution over these profiles defines the prophet’s current
information set.

Let us denote the information set 𝐼𝑡 possessed by the prophet (if still present) regarding the role
profiles of other players at round 𝑡 before the message announcement phase as

𝐼𝑡 = ∑
𝑖
𝛼𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖), (30)

where
— (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) represents the different nodes in this information set.
—𝐻𝑖 denotes the number of remaining villagers in node (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖).
—𝑀𝑖 denotes the number of remaining werewolves in node (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖).
— ℎ𝑖 denotes the number of checked villagers in node (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖).
—𝑚𝑖 denotes the number of checked werewolves in node (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖).
— 𝛼𝑖 is the probability of node (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) in information set 𝐼𝑡, with ∑𝑖 𝛼𝑖 = 1.

Any two nodes (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) and (𝐻𝑗, 𝑀𝑗, ℎ𝑗, 𝑚𝑗) within the same information set must satisfy
the following conditions:

𝐻𝑖 +𝑀𝑖 = 𝐻𝑗 +𝑀𝑗, (31)
ℎ𝑖 = ℎ𝑗, (32)
𝑚𝑖 = 𝑚𝑗. (33)

For example, suppose a prophet currently holds the information set

𝐼𝑡 =
1
3
(5, 2, 1, 1) +

2
3
(6, 1, 1, 1).

Here, (5, 2, 1, 1) and (6, 1, 1, 1) represent different nodes in information set 𝐼𝑡. This means the
prophet knows that among the remaining 7 players, there is a 1

3 chance of having 5 villagers and 2
werewolves, and a 2

3 chance of having 6 villagers and 1 werewolf. In either case, the prophet has
already identified one specific player as a villager and another as a werewolf.

The requirement that ℎ𝑖 = ℎ𝑗 and 𝑚𝑖 = 𝑚𝑗 holds is straightforward: if the number of confirmed
villagers and confirmedwerewolves differs across nodes, then the prophet could distinguish between
them. As a result, these nodes would not belong to the same information set.

ACM Games, Vol. 4, No. 1, Article 1. Publication date: December 2025.



Optimal Strategy in the Werewolf Game: A Theoretical Study 1:15

Suppose there exists a mapping 𝑔 ∶ 𝐼𝑡 → 𝒜, where 𝒜 = {Hiding, Revealing}. Then the prophet’s
optimal action is determined by

𝑔(𝐼𝑡) = argmax
𝑥∈𝒜

𝑅(𝑥, 𝐼𝑡), (34)

where 𝑅(𝑥, 𝐼𝑡) represents the winning probability of the citizen group if the prophet chooses action
𝑥 given the information set 𝐼𝑡. For notational convenience, we denote 𝑅(𝑔(𝐼𝑡), 𝐼𝑡) ∶= 𝑅(𝑔, 𝐼𝑡).

The detailed construction of 𝑅(Hiding, 𝐼𝑡) and 𝑅(Revealing, 𝐼𝑡) is provided in the Appendix.
In summary, we have the analytical formula of 𝑅(Revealing, 𝐼𝑡):

𝑅(Revealing, 𝐼𝑡) = 𝑠(𝐼𝑡) = 𝑠 (∑
𝑖
𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)) = ∑

𝑖
𝛼𝑖𝑠(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖), (36)

𝑠(𝐻 ,𝑀, ℎ, 𝑚) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑀
𝐻−ℎ+𝑀 ( 12)

𝑀 , if 𝑀 = 𝐻 + 1 and 𝑚 = 0,
( 12)

𝑀 , if 𝑀 = 𝐻 + 1 and 𝑚 ≥ 1,
1 − 𝑤(𝐻 + 𝑀 + 2 − 2𝑚,𝑀 − 𝑚), if 𝑀 < 𝐻 + 1 and 𝑚 ≥ ℎ + 1,
𝑢(𝐻 + 1 − 𝑚,𝑀 − 𝑚, ℎ + 1 − 𝑚), if 𝑀 < 𝐻 + 1 and ℎ + 1 > 𝑚 ≥ 1,

𝑀
𝐻−ℎ+𝑀𝑢(𝐻 ,𝑀 − 1, ℎ) + 𝐻−ℎ

𝐻−ℎ+𝑀𝑢(𝐻 − 1,𝑀, ℎ), if 𝑀 < 𝐻 + 1 and 𝑚 = 0,

(37)

where

𝑢(𝐻 ′, 𝑀′, ℎ′) =

⎧
⎪⎪

⎨
⎪⎪
⎩

1, if 𝑀′ = 0,
𝐻 ′−ℎ′

𝐻 ′+𝑀 ′−ℎ′ 𝑢(𝐻
′ − 2,𝑀′, ℎ′ − 1) + 𝑀 ′

𝐻 ′+𝑀 ′−ℎ′ 𝑢(𝐻
′ − 1,𝑀′ − 1, ℎ′ − 1), if ℎ′ ≥ 1,𝑀′ ≥ 1, and 𝐻 ′ > 𝑀′,

1 − 𝑤(𝐻 ′ +𝑀′ + 1,𝑀′), if ℎ′ = 0,𝑀′ ≥ 1, and 𝐻 ′ > 𝑀′,
𝑀 ′

𝐻 ′−ℎ′+𝑀 ′ ( 12)
𝑀 ′

, if 𝐻 ′ = 𝑀′ and 𝑀′ ≥ 1,
0, if 𝐻 ′ < 𝑀′ and 𝑀′ ≥ 1.

(38)

Through recursive computation, all expressions of 𝑅(Hiding, 𝐼𝑡) can eventually be written in the
following form:

𝑅(Hiding, 𝐼𝑡) = 𝑒(𝐼𝑡) +∑
𝑟
𝛾𝑟𝑅(𝑔, 𝐼 𝑟𝑡+1), (39)

where 𝑒(𝐼𝑡) denotes a constant term that differs for each information set 𝐼𝑡, and 𝐼 𝑟𝑡+1 denotes potential
information sets in round 𝑡 + 1.

In the above discussion, we assumed that the self-killing strategy is not viable for the werewolf
group. Now we need a rigorous proof to demonstrate that the proposed strategy for the prophet,
𝑔(𝐼𝑡), indeed induces a PBE.

Claim 2. Under the honesty rule, the strategy in which the werewolf group deliberately eliminates
one of its own members is strictly dominated.

The proof of Claim 2 is provided in the Appendix.

4.4 Example
Now, we give an example in which we solve the strategy for a prophet in a specific information set
inducing PBE.

Suppose the prophet is in the information set 𝐼𝑡 = 2−√2
2 (5, 1, 1, 1) + √2

2 (4, 2, 1, 1). In general
games, this information set is impossible to exist, but this does not prevent us from calculating the
optimal strategy of the prophet under this information set.

First, we calculate 𝑅(Revealing, 𝐼𝑡) = 𝑠(𝐼𝑡) = 0.6464 through (37) and (38). Then we calculate
𝑅(Hiding, 𝐼𝑡) = 0.0918 + ∑11

𝑟=1 𝛾𝑟𝑅(𝑔, 𝐼
𝑟
𝑡+1) through (39). The reason why 𝑟 goes up to 11 is that one
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Table 4. Summary of Information Sets 𝐼 𝑟𝑡+1

𝑟 𝛾𝑟 Nodes in 𝐼 𝑟𝑡+1 Coefficients of nodes in 𝐼 𝑟𝑡+1
𝑟 𝛾𝑟 Nodes in 𝐼 𝑟𝑡+1 Coefficients of nodes in 𝐼 𝑟𝑡+1
1 0.0273 (3,1,0,1), (2,2,0,1) 0.3064, 0.6936
2 0.0630 (3,1,1,1), (2,2,1,1) 0.3986, 0.6014
3 0.0189 (2,2,0,2) 1
4 0.0443 (4,0,1,0), (3,1,1,0) 0.3152, 0.6848
5 0.0734 (4,0,2,0), (3,1,2,0) 0.3803, 0.6197
6 0.0050 (3,1,0,1) 1
7 0.0152 (3,1,1,1) 1
8 0.2084 (3,1,1,1), (2,2,1,1) 0.5152, 0.4848
9 0.1579 (3,1,2,1), (2,2,2,1) 0.6800, 0.3200
10 0.0505 (2,2,1,2) 1
11 0.0253 (2,2,0,2) 1

information set constructed by nodes (3, 1, −1, 2) and (2, 2, −1, 2) is impossible.

After further calculation, we obtain that

𝑔(𝐼 𝑟𝑡+1) = Revealing

for all 𝑟 = 1, 2, … , 11. The corresponding values are:

𝑅(Revealing, 𝐼 1𝑡+1) = 0.5916, 𝑅(Revealing, 𝐼 2𝑡+1) = 0.6993, 𝑅(Revealing, 𝐼 3𝑡+1) = 1,

𝑅(Revealing, 𝐼 4𝑡+1) = 0.7717, 𝑅(Revealing, 𝐼 5𝑡+1) = 1, 𝑅(Revealing, 𝐼 6𝑡+1) = 1,

𝑅(Revealing, 𝐼 7𝑡+1) = 1, 𝑅(Revealing, 𝐼 8𝑡+1) = 0.7576, 𝑅(Revealing, 𝐼 9𝑡+1) = 1,

𝑅(Revealing, 𝐼 10𝑡+1) = 1, 𝑅(Revealing, 𝐼 11𝑡+1) = 1.

Hence, we compute:

𝑅(Hiding, 𝐼𝑡) = 0.0918 +
11
∑
𝑖𝑖=1

𝛽𝑖𝑖𝑅(𝑔, 𝐼 𝑖𝑖𝑡+1) = 0.6903 > 𝑅(Revealing, 𝐼𝑡) = 0.6464.

Therefore, in the information set 𝐼𝑡 = 2−√2
2 (5, 1, 1, 1)+ √2

2 (4, 2, 1, 1), Hiding is an optimal strategy.

5 Conclusion
This study presents a rigorous analytical framework for modeling the Werewolf Game and opens
promising directions for research on decision-making under asymmetric and incomplete informa-
tion. The mechanisms and equilibria derived—particularly in contexts involving strategic signaling
and partial observability—reflect challenges found in real-world domains such as cybersecurity,
political negotiation, and competitive markets.

Moreover, the Werewolf Game embodies core features shared by a wide class of social deduction
games: asymmetric information, hidden roles, strategic deception, and public communication.
As such, the equilibrium analysis and signaling mechanisms developed here are not limited to
the Werewolf Game but offer a general modeling framework applicable to other games like The
Resistance, Secret Hitler, and Among Us. For instance, roles such as Liberals and Fascists in Secret
Hitler, or Spies in The Resistance, mirror the citizen/werewolf dichotomy in the Werewolf Game.
Across these games, strategic communication—often involving limited opportunities for truthful
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revelation or deliberate misdirection through voting—is a central mechanic. This makes our prophet
signaling model broadly applicable in capturing how private information can be credibly conveyed
under constraints.

In addition, the analytical tools employed in this study—such as PBE—are suitable for any dy-
namic game involving evolving information sets and belief-based strategy selection. The algorithm
developed to compute optimal strategies for the prophet, grounded in recursive belief updates
and decision trees, is also transferable to other roles in similar games. For example, roles like
the Engineer or Scientist in Among Us, who possess private insights but limited communication
opportunities, face decision problems structurally analogous to the prophet’s.

Finally, we propose several open questions to guide future research efforts:

(1) Multiple Prophets
The current analysis focuses primarily on scenarios involving a single prophet. When two
or more prophets participate, the game dynamics become substantially more intricate. Key
questions arise regarding how the prophets should coordinate their revelation strategies to
maximize their collective effectiveness. Furthermore, what would characterize an optimal
equilibrium strategy for the citizen group in this multi-prophet setting?

(2) Absence of Honesty Rule
Without the honesty rule, players are no longer bound to truthful public communication.
This dramatically enlarges the strategic space, as all messages may be deceptive. Even in such
more complex or realistic settings, the prophet’s decision of when and with what probability
to reveal truthful information remains critical. In a sequential speaking framework, the timing
and order of communication may significantly influence the outcome. For the citizen group,
a natural fallback strategy is to disregard all messages and revert to the “random strategy+”
employed in prophet-free games. However, this raises several further inquiries:
—Are there alternative strategies that can outperform this fallback approach in terms of citizen

winning probability? If such strategies exist, should they be pure or mixed, depending on
the player’s role and specific conditions? Intuitively, mixed strategies might provide greater
robustness in deceptive environments, but formal analysis is required to substantiate this.

— How does the order of speaking affect the information structure and confer strategic
advantages to different players?

(3) Introduction of Additional Roles
Beyond werewolves, villagers, and prophets, common gameplay often includes other roles
such as the guard, who can protect a player from elimination by werewolves during the night.
How do these additional roles alter the strategic landscape and dynamics of the game?
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Appendix
Construction of 𝑅(𝑥, 𝐼𝑡)
Denote 𝑅(Revealing, 𝐼𝑡) = 𝑠(𝐼𝑡). After the prophet reveals the information, the winning probability
of the citizen group is the weighted sum of winning probabilities in each node, because the same
action patterns are adopted by both the citizen group and the werewolf group:

𝑠(𝐼𝑡) = 𝑠 (∑
𝑖
𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)) = ∑

𝑖
𝛼𝑖𝑠(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖). (35)

We consider two different cases of 𝑠(𝐻 ,𝑀, ℎ, 𝑚), namely, when the number of werewolves that
have been checked is greater than or equal to the number of villagers that have been checked plus
the number of prophets, and when the number of werewolves that have been checked is smaller
than the number of villagers that have been checked plus the number of prophets. The former case
is relatively simple and can be directly transformed into the form of the game without a prophet.
The latter case is a little more complex, in which there exist some checked villagers and no checked
werewolves after some rounds processed by the action patterns adopted by both groups. Then we
obtain the recursive formula:

𝑠(𝐻 ,𝑀, ℎ, 𝑚) =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑀
𝐻−ℎ+𝑀 ( 12)

𝑀 , if 𝑀 = 𝐻 + 1 and 𝑚 = 0,
( 12)

𝑀 , if 𝑀 = 𝐻 + 1 and 𝑚 ≥ 1,
1 − 𝑤(𝐻 + 𝑀 + 2 − 2𝑚,𝑀 − 𝑚), if 𝑀 < 𝐻 + 1 and 𝑚 ≥ ℎ + 1,
𝑢(𝐻 + 1 − 𝑚,𝑀 − 𝑚, ℎ + 1 − 𝑚), if 𝑀 < 𝐻 + 1 and ℎ + 1 > 𝑚 ≥ 1,

𝑀
𝐻−ℎ+𝑀𝑢(𝐻 ,𝑀 − 1, ℎ) + 𝐻−ℎ

𝐻−ℎ+𝑀𝑢(𝐻 − 1,𝑀, ℎ), if 𝑀 < 𝐻 + 1 and 𝑚 = 0.

(36)

where

𝑢(𝐻 ′, 𝑀′, ℎ′) =

⎧
⎪⎪

⎨
⎪⎪
⎩

1, if 𝑀′ = 0,
𝐻 ′−ℎ′

𝐻 ′+𝑀 ′−ℎ′ 𝑢(𝐻
′ − 2,𝑀′, ℎ′ − 1) + 𝑀 ′

𝐻 ′+𝑀 ′−ℎ′ 𝑢(𝐻
′ − 1,𝑀′ − 1, ℎ′ − 1), if ℎ′ ≥ 1,𝑀′ ≥ 1, and 𝐻 ′ > 𝑀′,

1 − 𝑤(𝐻 ′ +𝑀′ + 1,𝑀′), if ℎ′ = 0,𝑀′ ≥ 1, and 𝐻 ′ > 𝑀′,
𝑀 ′

𝐻 ′−ℎ′+𝑀 ′ ( 12)
𝑀 ′

, if 𝐻 ′ = 𝑀′ and 𝑀′ ≥ 1,
0, if 𝐻 ′ < 𝑀′ and 𝑀′ ≥ 1.

(37)
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The function 𝑢(𝐻 ′, 𝑀′, ℎ′) characterizes the behavior of both groups after the prophet reveals
information identifying ℎ′ villagers, with no werewolves exposed. Here, 𝐻 ′ denotes the total
number of villagers, 𝑀′ the total number of werewolves, and ℎ′ the number of villagers whose
group affiliations have been verified by the prophet.

This function reflects the citizen group’s strategy to avoid voting out the confirmed villagers
during the day, while the werewolf group, in turn, prioritizes eliminating these revealed villagers
during the night.

Now, we give the recursive formula of 𝑅(𝐻 𝑖𝑑𝑖𝑛𝑔, 𝐼𝑡).

𝑅(𝐻 𝑖𝑑𝑖𝑛𝑔, 𝐼𝑡) =∑
𝑖
𝛼𝑖𝑃17(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)(1 − 𝑤(𝐻𝑖 +𝑀𝑖, 𝑀𝑖))

+∑
𝑖
𝛼𝑖𝑃18(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)(1 − 𝑤(𝐻𝑖 +𝑀𝑖, 𝑀𝑖))

+∑
𝑖
𝛼𝑖𝑃19(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)(1 − 𝑤(𝐻𝑖 +𝑀𝑖, 𝑀𝑖 − 1))

+∑
𝑖
𝛼𝑖𝑃20(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)(1 − 𝑤(𝐻𝑖 +𝑀𝑖, 𝑀𝑖 − 1))

+∑
𝑖
𝛼𝑖𝑃21(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)(1 − 𝑤(𝐻𝑖 +𝑀𝑖, 𝑀𝑖))

+
8
∑
𝑖𝑖=1

(∑
𝑖
𝛼𝑖𝑃𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)𝑅 (𝑔,∑

𝑖

𝛼𝑖𝑃𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)𝑛𝑜𝑑𝑒𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)
∑𝑖 𝛼𝑖𝑃𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)

))

+
12
∑
𝑖𝑖=9

(∑
𝑖
𝛼𝑖(𝑃𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) + 𝑃𝑖𝑖+4(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖))⋅

𝑅(𝑔,∑
𝑖

𝛼𝑖𝑃𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) ⋅ 𝑛𝑜𝑑𝑒𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)

∑𝑖 𝛼𝑖(𝑃𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) + 𝑃𝑖𝑖+4(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖))

+∑
𝑖

𝛼𝑖𝑃𝑖𝑖+4(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) ⋅ 𝑛𝑜𝑑𝑒𝑖𝑖+4(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)

∑𝑖 𝛼𝑖(𝑃𝑖𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) + 𝑃𝑖𝑖+4(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖))
)).

,

(38)
where
𝑃𝑖𝑖 denotes the probability of (𝐻 ,𝑀, ℎ, 𝑚) turning into 𝑛𝑜𝑑𝑒𝑖𝑖(𝐻 ,𝑀, ℎ, 𝑚).
𝑃17 denotes situation where prophet is voted out during the day.
𝑃18 denotes situation where checked villager is voted out during the day and prophet is eliminated
during the night.
𝑃19 denotes situation where checked werewolf is voted out during the day and prophet is
eliminated during the night.
𝑃20 denotes situation where unchecked werewolf is voted out during the day and prophet is
eliminated during the night.
𝑃21 denotes situation where unchecked villager is voted out during the day and prophet is
eliminated during the night.
𝑛𝑜𝑑𝑒1(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked villager voted out-Villager checked-Checked villager
eliminated;
𝑛𝑜𝑑𝑒2(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked villager voted out-Villager checked-Unchecked villager
eliminated;
𝑛𝑜𝑑𝑒3(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked villager voted out-Werewolf checked-Checked villager
eliminated;
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𝑛𝑜𝑑𝑒4(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked villager voted out-Werewolf checked-Unchecked villager
eliminated;
𝑛𝑜𝑑𝑒5(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked werewolf voted out-Villager checked-Checked villager
eliminated;
𝑛𝑜𝑑𝑒6(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked werewolf voted out-Villager checked-Unchecked villager
eliminated;
𝑛𝑜𝑑𝑒7(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked werewolf voted out-Werewolf checked-Checked villager
eliminated;
𝑛𝑜𝑑𝑒8(𝐻 ,𝑀, ℎ, 𝑚) is induced by Checked werewolf voted out-Werewolf checked-Unchecked
villager eliminated;
𝑛𝑜𝑑𝑒9(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked werewolf voted out-Villager checked-Checked villager
eliminated;
𝑛𝑜𝑑𝑒10(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked werewolf voted out-Villager checked-Unchecked
villager eliminated;
𝑛𝑜𝑑𝑒11(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked werewolf voted out-Werewolf checked-Unchecked
villager eliminated;
𝑛𝑜𝑑𝑒12(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked werewolf voted out-Werewolf checked-Checked
villager eliminated;
𝑛𝑜𝑑𝑒13(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked villager voted out-Villager checked-Checked villager
eliminated;
𝑛𝑜𝑑𝑒14(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked villager voted out-Villager checked-Unchecked
villager eliminated;
𝑛𝑜𝑑𝑒15(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked villager voted out-Werewolf checked-Unchecked
villager eliminated;
𝑛𝑜𝑑𝑒16(𝐻 ,𝑀, ℎ, 𝑚) is induced by Unchecked villager voted out-Werewolf checked-Checked villager
eliminated.

The specific expressions of the variable are as follows:

𝑃1(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝐻𝑖 − 1) − (ℎ𝑖 − 1)
(𝐻𝑖 − 1) + 𝑀𝑖 − (ℎ𝑖 − 1) − 𝑚𝑖

⋅
ℎ𝑖
𝐻𝑖

, (39)

𝑃2(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝐻𝑖 − 1) − (ℎ𝑖 − 1)
(𝐻𝑖 − 1) + 𝑀𝑖 − (ℎ𝑖 − 1) − 𝑚𝑖

⋅
𝐻𝑖 − 1 − ℎ𝑖

𝐻𝑖
, (40)

𝑃3(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝑀𝑖 − 𝑚𝑖
(𝐻𝑖 − 1) + 𝑀𝑖 − (ℎ𝑖 − 1) − 𝑚𝑖

⋅
ℎ𝑖 − 1
𝐻𝑖

, (41)

𝑃4(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝑀𝑖 − 𝑚𝑖
(𝐻𝑖 − 1) + 𝑀𝑖 − (ℎ𝑖 − 1) − 𝑚𝑖

⋅
(𝐻𝑖 − 1) − (ℎ𝑖 − 1)

𝐻𝑖
, (42)

𝑃5(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝐻𝑖 − ℎ𝑖
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − (𝑚𝑖 − 1)

⋅
ℎ𝑖 + 1
𝐻𝑖 + 1

, (43)

𝑃6(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝐻𝑖 − ℎ𝑖
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − (𝑚𝑖 − 1)

⋅
𝐻𝑖 − ℎ𝑖
𝐻𝑖 + 1

, (44)

𝑃7(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝑀𝑖 − 1) − (𝑚𝑖 − 1)
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − (𝑚𝑖 − 1)

⋅
ℎ𝑖

𝐻𝑖 + 1
, (45)

𝑃8(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝑀𝑖 − 1) − (𝑚𝑖 − 1)
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − (𝑚𝑖 − 1)

⋅
𝐻𝑖 − ℎ𝑖
𝐻𝑖 + 1

, (46)
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𝑃9(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑀𝑖 − 𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝐻𝑖 − ℎ𝑖
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − 𝑚𝑖

⋅
ℎ𝑖 + 1
𝐻𝑖 + 1

, (47)

𝑃10(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑀𝑖 − 𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝐻𝑖 − ℎ𝑖
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − 𝑚𝑖

⋅
𝐻𝑖 − (ℎ𝑖 + 1)

𝐻𝑖 + 1
, (48)

𝑃11(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑀𝑖 − 𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝑀𝑖 − 1) − 𝑚𝑖
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − 𝑚𝑖

⋅
𝐻𝑖 − ℎ𝑖
𝐻𝑖 + 1

, (49)

𝑃12(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑀𝑖 − 𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝑀𝑖 − 1) − 𝑚𝑖
𝐻𝑖 + (𝑀𝑖 − 1) − ℎ𝑖 − 𝑚𝑖

⋅
ℎ𝑖

𝐻𝑖 + 1
, (50)

𝑃13(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝐻𝑖 − ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝐻𝑖 − 1) − ℎ𝑖
(𝐻𝑖 − 1) + 𝑀𝑖 − ℎ𝑖 − 𝑚𝑖

⋅
ℎ𝑖 + 1
𝐻𝑖

, (51)

𝑃14(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝐻𝑖 − ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

(𝐻𝑖 − 1) − ℎ𝑖
(𝐻𝑖 − 1) + 𝑀𝑖 − ℎ𝑖 − 𝑚𝑖

⋅
(𝐻𝑖 − 1) − (ℎ𝑖 + 1)

𝐻𝑖
, (52)

𝑃15(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝐻𝑖 − ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝑀𝑖 − 𝑚𝑖
(𝐻𝑖 − 1) + 𝑀𝑖 − ℎ𝑖 − 𝑚𝑖

⋅
(𝐻𝑖 − 1) − ℎ𝑖

𝐻𝑖
, (53)

𝑃16(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝐻𝑖 − ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

𝑀𝑖 − 𝑚𝑖
(𝐻𝑖 − 1) + 𝑀𝑖 − ℎ𝑖 − 𝑚𝑖

⋅
ℎ𝑖
𝐻𝑖

, (54)

𝑃17(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
1

𝐻𝑖 +𝑀𝑖 + 1
, (55)

𝑃18(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

1
𝐻𝑖 − 1 + 1

, (56)

𝑃19(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

1
𝐻𝑖 + 1

, (57)

𝑃20(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝑀𝑖 − 𝑚𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

1
𝐻𝑖 + 1

, (58)

𝑃21(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) =
𝐻𝑖 − ℎ𝑖

𝐻𝑖 +𝑀𝑖 + 1
⋅

1
𝐻𝑖 − 1 + 1

, (59)

𝑛𝑜𝑑𝑒1(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖 − 1,𝑚𝑖), (60)

𝑛𝑜𝑑𝑒2(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖, 𝑚𝑖), (61)

𝑛𝑜𝑑𝑒3(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖 − 2,𝑚𝑖 + 1), (62)

𝑛𝑜𝑑𝑒4(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖 − 1,𝑚𝑖 + 1), (63)

𝑛𝑜𝑑𝑒5(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖, 𝑚𝑖 − 1), (64)

𝑛𝑜𝑑𝑒6(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖 + 1,𝑚𝑖 − 1), (65)

𝑛𝑜𝑑𝑒7(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖 − 1,𝑚𝑖), (66)
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𝑛𝑜𝑑𝑒8(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖, 𝑚𝑖), (67)

𝑛𝑜𝑑𝑒9(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖, 𝑚𝑖), (68)

𝑛𝑜𝑑𝑒10(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖 + 1,𝑚𝑖), (69)

𝑛𝑜𝑑𝑒11(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖, 𝑚𝑖 + 1), (70)

𝑛𝑜𝑑𝑒12(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 1,𝑀𝑖 − 1, ℎ𝑖 − 1,𝑚𝑖 + 1), (71)

𝑛𝑜𝑑𝑒13(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖, 𝑚𝑖), (72)

𝑛𝑜𝑑𝑒14(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖 + 1,𝑚𝑖), (73)

𝑛𝑜𝑑𝑒15(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖, 𝑚𝑖 + 1), (74)

𝑛𝑜𝑑𝑒16(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖 − 1,𝑚𝑖 + 1), (75)

𝑛𝑜𝑑𝑒17(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖 − 2,𝑀𝑖, ℎ𝑖, 𝑚𝑖), (76)

𝑛𝑜𝑑𝑒18(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖) = (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖 + 1). (77)
Now we introduce the transformation criteria for information sets. If the current information set

𝐼𝑡 satisfies any of the following conditions, it should first be transformed into an equivalent form,
as defined below, before being substituted into (39).

If no valid nodes remain within the information set after applying this transformation, the
prophet’s decision-making process is considered complete. The game effectively terminates for the
prophet.

(1) There exists some node in the information set 𝐼𝑡 such that the werewolf group wins directly.
For the information set 𝐼𝑡 = ∑𝑖 𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖), if there exists any 𝑖 such that 𝐻𝑖 + 1 < 𝑀𝑖,
let 𝐽 be the set of such indices. Then we rewrite:

𝑅(Hiding, 𝐼𝑡) = (∑
𝑖∉𝐽

𝛼𝑖)𝑅(Hiding,∑
𝑖∉𝐽

𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)
∑𝑖∉𝐽 𝛼𝑖

) . (78)

Naturally, if the prophet instead chooses the Revealing strategy, the werewolf group will still
win in these nodes, which is already captured in 𝑅(Revealing, 𝐼𝑡).

(2) There exists some node in the information set 𝐼𝑡 such that the citizen group wins directly.
For the information set 𝐼𝑡 = ∑𝑖 𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖), if there exists any 𝑖 such that 𝑀𝑖 = 0, let 𝐾
be the set of such indices. Then we rewrite:

𝑅(Hiding, 𝐼𝑡) = ∑
𝑖∈𝐾

𝛼𝑖 + (∑
𝑖∉𝐾

𝛼𝑖)𝑅(Hiding,∑
𝑖∉𝐾

𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)
∑𝑖∉𝐾 𝛼𝑖

) . (79)
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Fig. 9. Flowchart of calculating 𝑅(Hiding, 𝐼𝑡).

(3) There exists some node in the information set 𝐼𝑡 such that the werewolf group would directly
employ the “all-in strategy”.
For the information set 𝐼𝑡 = ∑𝑖 𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖), if there exists any 𝑖 such that 𝐻𝑖 + 1 = 𝑀𝑖,
let 𝐿 be the set of such indices. Then we rewrite:

𝑅(Hiding, 𝐼𝑡) = ∑
𝑖∈𝐿

𝛼𝑖 (
1
2)

𝑀𝑖+1
+∑

𝑖∉𝐿
𝛼𝑖𝑅(Hiding,∑

𝑖∉𝐿

𝛼𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖)
∑𝑖∉𝐿 𝛼𝑖

) . (80)

Combining the recursive formulation of 𝑅(Hiding, 𝐼𝑡) with the transformation criteria discussed
above, we observe that each information set 𝐼𝑡 can generate at most twelve successor information
sets at time 𝑡 + 1. Denote these potential information sets by {𝐼 𝑟𝑡+1}𝑟. Then, (39) can be written as

𝑅(Hiding, 𝐼𝑡) = 𝑒(𝐼𝑡) +∑
𝑟
𝛾𝑟𝑅(𝑔, 𝐼 𝑟𝑡+1), (39)

where 𝑒(𝐼𝑡) denotes a constant term that differs for each information set 𝐼𝑡.
The value 𝑅(𝑔, 𝐼𝑡) is defined as the maximum between 𝑅(Revealing, 𝐼𝑡) and 𝑅(Hiding, 𝐼𝑡). As shown

in (39), the value of 𝑅(Hiding, 𝐼𝑡) is a linear combination of all 𝑅(𝑔, 𝐼 𝑟𝑡+1) for 𝐼
𝑟
𝑡+1 ∈ {𝐼 𝑟𝑡+1}𝑟. For each

𝑅(𝑔, 𝐼 𝑟𝑡+1), we apply the same process recursively, just as we did for 𝑅(𝑔, 𝐼𝑡).
Through dynamic programming, we can calculate the prophet’s optimal strategy given any

information set in the game. Moreover, the entire process can be regarded as a Markov Decision
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Process (MDP), meaning that no matter how the prophet arrives at a certain information set, as
long as the information set is the same, the optimal action should also be the same. We can even
derive optimal actions in certain information sets that cannot be reached through regular gameplay,
such as those involving irrational node probabilities. The entire proc

Proof of Claim 2
Proof. First, consider the scenario where the werewolf group might self-kill during the night,
which can be divided into two cases:

—The prophet has revealed the checking results;
—The prophet has not yet revealed the checking results.

The case where the prophet has revealed their information is straightforward to analyze. Once
the prophet has revealed the information set 𝐼𝑡 = ∑𝛼𝑖(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖), the winning probability of the
citizen group is ∑𝑖 𝛼𝑖𝑠(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖). For any 𝑠(𝐻𝑖, 𝑀𝑖, ℎ𝑖, 𝑚𝑖), it can be regarded as a variation of
the game without prophets. Therefore, any strategy involving self-killing for the werewolf group is
dominated in this case.

The case where the prophet has not yet revealed their information can be further divided into
two subcases:

—The prophet has been eliminated either by werewolf elimination or by being voted out;
—The prophet is still present.

If the prophet has been eliminated, the game reduces to one without a prophet. In this situation,
the werewolf group self-killing during the night is a strictly dominated strategy, which has been
proven in Section 3.

If the prophet is still present, the situation becomes more complex, and we provide a detailed
proof below.

Given the complexity of the recursive model introduced earlier, along with its multiple ter-
mination conditions, directly analyzing the potential payoffs for the prophet across various
information sets is challenging. To address this, we adopt a Dynamic Adjustment Process ap-
proach, similar to that used in the Cournot duopoly model, where both parties continuously
adapt to each other’s strategies, iteratively adjusting their actions until convergence to an
equilibrium.

Suppose the information set of the prophet after the checking and before the werewolf elimination
is ∑𝑛

𝑖=1 𝛽𝑖 ⋅ (𝐻𝑖, 𝑀𝑖, ℎ, 𝑚). Assume that in the prophet’s belief, the probability of the werewolf group
adopting a self-killing strategy at node (𝐻𝑖, 𝑀𝑖, ℎ, 𝑚) is 𝑞̂𝑖. Let the vector 𝑄̂ = [𝑞̂1, … , 𝑞̂𝑛] represent
these independent probabilities. If the actual probability vector of the werewolf group’s self-killing
actions equals 𝑄̂, we denote the expected winning probability of the citizen group under strategy
profile 𝑄̂ as 𝐴𝑅(𝑄̂). Formally, this can be expressed as

𝐴𝑅(𝑄̂) =∑
𝑖
𝛽𝑖𝑞̂𝑖

𝑚
𝑀𝑖

𝑅(𝑔,∑
𝑖

𝛽𝑖𝑞̂𝑖 𝑚𝑀𝑖
(𝐻𝑖, 𝑀𝑖 − 1, ℎ, 𝑚 − 1)
∑𝑖 𝛽𝑖𝑞̂𝑖

𝑚
𝑀𝑖

)

+∑
𝑖
𝛽𝑖 (𝑞̂𝑖

𝑀𝑖 − 𝑚
𝑀𝑖

+ (1 − 𝑞̂𝑖)
𝐻𝑖 − ℎ
𝐻𝑖 + 1)

⋅ 𝑅 (𝑔,∑
𝑖

𝛽𝑖 (𝑞̂𝑖
𝑀𝑖−𝑚
𝑀𝑖

(𝐻𝑖, 𝑀𝑖 − 1, ℎ, 𝑚) + (1 − 𝑞̂𝑖)
𝐻𝑖−ℎ
𝐻𝑖+1

(𝐻𝑖 − 1,𝑀𝑖, ℎ, 𝑚))

∑𝑖 𝛽𝑖 (𝑞̂𝑖
𝑀𝑖−𝑚
𝑀𝑖

+ (1 − 𝑞̂𝑖)
𝐻𝑖−ℎ
𝐻𝑖+1)

)
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+∑
𝑖
𝛽𝑖(1 − 𝑞̂𝑖)

1
𝐻𝑖 + 1 (

1 − 𝑤(𝐻𝑖 +𝑀𝑖 + 1,𝑀𝑖))

+∑
𝑖
𝛽𝑖(1 − 𝑞̂𝑖)

ℎ
𝐻𝑖 + 1

𝑅(𝑔,∑
𝑖

𝛽𝑖(1 − 𝑞̂𝑖) ℎ
𝐻𝑖+1

(𝐻𝑖 − 1,𝑀𝑖, ℎ − 1, 𝑚)

∑𝑖 𝛽𝑖(1 − 𝑞̂𝑖) ℎ
𝐻𝑖+1

) . (81)

It is straightforward to see that 𝐴𝑅(𝑄̂) is monotonically increasing with respect to each compo-
nent of 𝑄̂. This implies that when the probability distribution of the werewolf group’s actions is
fully known to the prophet, self-killing strategies cannot mislead the prophet’s judgment. Instead,
such strategies only decrease the werewolf group’s winning probability.

Suppose the actual probability of the werewolf group self-killing is 𝑄 = [𝑞1, … , 𝑞𝑛] and the actual
expectation of the citizen group’s winning probability, when the prophet takes the optimal strategy
given belief 𝑄̂, is 𝐷𝑅(𝑄, 𝑄̂). When 𝑄 ≤ 𝑄̂, we have

𝐷𝑅(𝑄, 𝑄̂) ≤ 𝐴𝑅(𝑄) ≤ 𝐴𝑅(𝑄̂), (82)

with equality holding if and only if 𝑄 = 𝑄̂.
From the perspective of the werewolf group, given any 𝑄̂ from the prophet, they could choose

𝑄 < 𝑄̂ to reduce the citizen group’s winning probability. Similarly, from the prophet’s perspective,
given any 𝑄 from the werewolf group, the prophet can ensure 𝑄̂ = 𝑄. Thus, we conclude 𝑄 = 𝑄̂ = 0⃗,
meaning that in any case, the probability of the werewolf group adopting a self-killing strategy is
zero.
Proof complete.
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