Action Refinement in End-Based Choice Settings

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universiait Mannheim

vorgelegt von
Diplom-Mathematiker Harald Fecher
aus Offenbach

Mannheim, 2003

Dekan: Professor Dr. Herbert Popp, Univexsilannheim
Referent: Professor Dr. Mila Majster-Cederbaum, Univatditannheim
Korreferent: Professor Dr. Franz Stetter, Univérsilannheim

Tag der niindlichen Piaifung: 7. Juli 2003

Contents

List of Figures
List of Tables

1 Introduction

1.1 Reactive Systems for Concurrency
1.2 Hierarchical SystemDesign

1.3 End-Based and Start-Based View of the Choice Operator

1.4 ContributionsofthisThesis
1.5 OutlineofthisThesis

2 Preliminaries

21 Notations
2.1.1 Set ...
2.1.2 Relationand Function

2.2 Transition System

2.3 Complete PartialOrders

2.4 Approximation Closedness
241 Proofs.

3 Standard Action Refinement

3.1 DifferentApproaches

3.2 Syntax e

3.3 Denotational True Concurrency Semanticsfdy,
3.3.1 Bundle Event Structures oL
3.3.2 Closed Bundle Event Structur€ésBES)
3.3.3 Operatorso@®€BES
3.3.4 Denotational Meaning fé&tA,, L.

1

CONTENTS

3.4 Operational SemanticsfBA;, o 40
3.4.1 Modified Operational Semantics 44
3.5 DISCUSSION o e e 45
3.6 Proofs 46
3.6.1 Proofof Theorem3.10 46
3.6.2 Proofof Proposition3.18, 47
3.6.3 Proofof Theorem3.25 48
Modeling the End-Based View inCBES 57
4.1 An End-Based Refinement Operator@BES 57
4.2 Equivalences 60
4.2.1 Standard Equivalence Notions 60
4.2.2 ICT-Equivalenceo®BES 62
4.2.3 Ul-BisimilarityonCBES 64
4.2.4 FUI-BisimilarityonCBES 65
4.2.5 Comparisonof Equivalences 66
426 CoarsestCongruence v v i i 67
4.3 DISCUSSION e e e 68
4.4 Proofs e 69
4.4.1 Proof ofthe CongruenceResults 69
4.4.2 ProofofProposition4.20 75
4.4.3 Proofof Proposition4.22o 7
Terminating by Action Execution 79
51 Motivation 79
5.2 Syntax 80
5.3 Operational SemanticsfBA; L 81
5.4 Denotational SemanticsfBA, L 83
5.4.1 Termination Bundle Event StructufEBES) 84
5.4.2 Extended Termination Bundle Event StructE#EBES) 85
543 OperatorsoRTBES 90
5.4.4 Denotational MeaningfdtA,, L. 93
5.4.5 Extended Termination Precursor Event Structdg&88KES) 94
5.4.6 Correspondence betwedeiBES andETPES. 97
55 DISCUSSION o 98
56 Proofs e 98

CONTENTS 3

5.6.1 Proofof Theorem5.28.. a8
5.6.2 Proofof Theorem5.36.. 103
5.6.3 Proofof Proposition5.39. 104
5.6.4 Proofof Theorem5.40.. 106

6 End-Based View inETBES 109
6.1 An End-Based Refinement OperatorldbfBES 109
6.2 EquivalencesfaETBES 110
6.2.1 ICT-EquivalenceoRTBES 111
6.2.2 FUI-Equivalence oRTBES 112
6.2.3 Comparisonof Equivalences 114

6.3 DISCUSSION 114
6.4 Proofs e 115
6.4.1 ProofofLemma6.2, 115
6.4.2 Proofs of the Coarsest Congruence Results 115.

7 Start-Based together with End-Based Choice 121

7.1 Motivation e e 121
7.2 SYNAX e e 122
7.3 Denotational Semantics fBA.. 122
7.3.1 Start-End Bundle Event Structur8&BES) 122
7.3.2 OperatorsoSEBES L. 125
7.3.3 Denotational MeaningfétAs. L. 127

7.4 Operational SemanticsfBA,. o 127
7.5 Consistency of the SemanticsfX,. 135
7.6 Equivalence 137
7.7 Axiomatization e 138
7.7.1 Soundness e 142
7.7.2 Completeness 145

7.8 Proofs e 146
7.8.1 Proof ofthe ConsistencyResults 146
7.8.2 Proof ofthe CongruenceResults 159
7.8.3 Proofof Theorem7.34 160
7.8.4 Proofof Theorem7.39 161

8 Conclusion 165

4

CONTENTS
Bibliography 167
Index 179

Zusammenfassung 185

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

5.1
5.2
5.3
5.4

Nuclear Power PlantExample 11
A Transition System Example, 21
Trace-Equivalent but not Bisimilar Transition Systems 22
ABundle Event Structure 32
An Extended Bundle Event Structure Lo 33
Transition System Derived fro@dBES 36
lllustration of theRef® Operator 38
Examples of the Denotational Semantic&xfPs, 39
Example of a Process Derivation with respectte:5., 43
Start-Based versus End-Based Refinement 58.
End-Based Refinement@BES (1) 60
Trace Equivalent but not Bisimilarcbes 61
End-Based Refinement@BES (2), 62
Some Closed Bundle Event Structures 62
Non ICT-Equivalentcbes, 63
ICT-Equivalentcbes 63
ICT-Equivalent and Ul-Equivalentcbes 65
FUI-Equivalence Differs from Ul-Equivalence 66
Relations Between the Equivalences 67.
Counterexample of Coarsest Congruence 68.
Some Extended Termination Bundle Event Structures 87.
Transition System Derived frol@TBES 89
Some Extended Termination Precursor Event Structures 95.
Transition System Derived froBTPES 96

5

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2

8.1
8.2

LIST OF FIGURES

End-Based RefinementBITBES 111
Non ICT-EquivalenteTbes 112
ICT-EquivalenteThbes 112
FUI-EquivalenteTbes (1) i it et 113
FUI-EquivalenteTbes (2) i o 113
Relations Between the Equivalences 114
Some Start-End Bundle Event Structures 124
lllustration of the Stack Technique 128
Relations Between the Equivalences 165

Hierarchy of Event Structures 166

List of Tables

3.1 TransitionRulesfor—{., 42
3.2 Modified Transition Rulesfor—5., 45
3.3 Event-Based Transition Rules with respectte»., 50
5.1 TransitionRulesfor—{ , 82
5.2 Event Based Transition Rules with respectte>’., 100
7.1 Transition Rulesfor—¢., (1) 132
7.2 Transition Rulesfor—¢.,(2) 133
7.3 Transition Rulesfor—§.,(3) 134
7.4 Transition Rulesfor—7., (1) 140
7.5 Transition Rulesfor—7.,(2) 141
7.6 Axioms for the Non-RefinementOperators. 143
7.7 Axioms for the Refinement Operators 144
7.8 Event Based Transition Rules with respecttesg., (1) 147
7.9 Event Based Transition Rules with respecttes§., (2) 148
7.10 Event Based Transition Rules with respectte:§., (3) 149

LIST OF TABLES

Chapter 1

Introduction

Formal methods in computer science, like methods for specification and verifigatiave
become more and more important [51, 55], as the complexity of programs and processes that
have to be controlled by machines has enormously increased over the years. No system designer
can consider the totality of a program/process of a system in detail. Therefore, communication
between different people about programs/processes has to take place. This communication
usually subject to misunderstandings. Hence, it is important to possess formalisms that allow
to talk more precisely about programs/processes, for example about the properties they should
satisfy. Such languages are called specification formalisms. They allow to describe processes
or properties of programs. Examples of specification languages are

o descriptive/property-basefbrmalisms. Typical examples are logical frameworks, e.g.
[100, 123, 124, 167]. They have the advantage of being intuitive, concise and abstract,
i.e. they only consider the relevant details.

e imperative/operational-basefbrmalisms. Examples are transition systems [121, 179],
process algebras [18, 27, 84, 108, 138] or finite automata [110, 154]. They have the
advantage of being close to actual implementations. Especially process algebras can be
considered as action-based programming languages. Consequently, design descriptions
are less likely to omit required attributes of the intended design, as it is possible in the
property-based approaches to specification.

For safety critical tasks, for example air traffic control or the supervision of nuclear power
plants, it is essential to guarantee the correctness of the involved program, i.e. verification (e.g.
[83, 105]) becomes necessary. Furthermore, it is important to eliminate system design errors
as early as possible, since they produce huge costs [161]. Such an error reduction can be
achieved by verification based on tHeal language approacfsee for example [101, 151]),

i.e. by using different description languages (a property- together with an operational-based
one) in the system design phase and verifying their consistency, e.g. bymesdej checking

[24, 52].

Lverification means the correctness of a program relative to the considered mathematical model. It can never
guarantee the correctness of a program running on a concrete computer, as this also depends on further circum-
stances.

10 CHAPTER 1. INTRODUCTION

For concurrent processes, i.e. systems where each process may proceed more or less inde-
pendently, it is important to use formal methods, since their interaction is not easily handled,
especially when communication or synchronization takes place. The formal methods that are
important for this thesis are discussed in Section 1.1 and in Section 1.2. Section 1.1 introduces
the kind of systems that are considered, namely reactive true concurrent systems. Section 1.2
motivates the necessity of hierarchical system design in specification formalism. The new for-
malism on which the thesis is based is illustrated in Section 1.3. The contribution of the thesis

is given in Section 1.4, and the outline of the thesis is given in Section 1.5.

1.1 Reactive Systems for Concurrency

Reactive systems are systems whose behavior depends on the environment, which means that
the environment is able to influence the future behavior of such a system. In other words, the
environment interacts with the system. Consider for example a computer system that controls
a nuclear power plant. It runs continuously until the environment demands a shut down, for
example by human demand or because the temperature of the reactor reaches a critical state.

Reactive systems are usually modeled by means of actions in order to describe the different
activities of the system and of the environment, i.e. the system communicates with the en-
vironment via actions. Actions are usually considered to be atomic [34, 112] (they have no
intermediate states) and instantaneous, i.e. durationless. Consequently, they can only be ob-
served at a specific point in time. Furthermore, actions are divided into observable actions and
internal actions. The execution of observable actions depends on the environment, whereas the
environment has no influence on the execution of internal actions.

In the above nuclear power plant example the actions may,e'the reactor runs for another
minute’, a;= ‘a human being demands the shut down of the reacig#, ‘the temperature of

the reactor has reached a critical state’ apé ‘the reactor is shutting down’. The reactive
system can be described by the causal dependencies of these actions. This is done for example

by:

e describing all possible (finite) execution sequences of the system. This description is
called thetrace semanticsf a system, e.g. [48, 107].

e describing the actions each state allows (those which may be executed at a state) together
with the information to which state the execution of the actions will lead. Typical models
arelabeled transition systemwhich are introduced in Section 2.2. The labeled transition
system obtained from the above nuclear power plant example is depicted in Figure 1.1.

In this thesis, we will consider concurrent reactive systems. This means that actions may be
executed in parallel. Different models of concurrency are for example presented in [179]. These
models can be divided into two different approaches:

- Interleaving Here the parallelism between actions means that the execution of these
actions can happen in any order. This is useful, if e.g. a sequential program has to be
specified where the programmer is allowed to have a much greater degree of flexibility
in order to carry out the implementation. So the programmer may decide the order of the
execution of the actions. Transition systems are typical interleaving models.

1.1. REACTIVE SYSTEMS FOR CONCURRENCY 11

ay

as

Figure 1.1: Nuclear Power Plant Example

- True concurrency Here, actions may be executed simultaneously. This is necessary,
e.g. if physical processes, where actions may happen simultaneously, have to be spec-
ified. When an implementation is realized on a system with more than one processor,
true concurrency within the model is essential for specification. Typical models for true
concurrent computations are for exampédri netg155], event structuregl77], pomsets
[153] andcausal tree$61].

Process algebras are typically used as specification languages for concurrent reactive systems.
The best known process algebras are

e theCalculus of Communicating Syste(@&CS) [138],
e theCommunicating Sequential Proces$€SP) [106, 108],

the Theory of Communicating Sequential Proceg3&3SP) [47],

the Algebra of Communicating Procesq@¢CP) [25, 26] and

theLanguage of Temporal Ordering Specificatih©TOS) [32].

It is necessary to give meanings, i.e. semantics, to languages. In general, three different kinds
of semantics are used:

Operational semanticslt expresses the meaning of terms by execution steps, for example the
observable behavior of a machine when it runs the program. The operational semantics of
process algebras is typically given by transition rules in the style of Plotkin [9, 150], which
yield transition systems.

Denotational semanticsProcess expressions are interpreted in a mathematical model where
the meaning of an expression is defined in terms of the meanings of its components, i.e. it
is derived compositionally. Denotational true concurrency semantics of process algebras are
given, for example in terms of event structures [36, 125, 145, 178].

Axiomatic semanticsHere, properties of process terms can be derived. This is typically done
by axiom systems. In particular, axiomatic semantics are used for verification.

Standard process algebras can only describe the functional behavior of a system, i.e. the order
of the execution of the actions. This is only suitable for a limited number of applications, since
applications might be influenced by time and probability aspects. The examination of these
further aspects is usually called performance analysis. For the purpose of performance analysis,
process algebras are extended by

12 CHAPTER 1. INTRODUCTION

e time Here, time may pass between actions. Some approaches allow actions with a fixed
duration [10, 57, 99], i.e. actions are not necessarily instantaneous. There are discrete
time versions [17, 103, 143] and dense time versions [17, 77, 128, 164, 175]. Classifi-
cation properties of timed process algebras are given in [142].

e priority: Formalisms are added to the basic process algebras such that some executions of
actions have priority over others, as for examples in [50, 53, 129]. Such approaches can
be classified by static versus dynamic priorities and by global pre-emption versus local
pre-emption [54].

e probability. Here, a probabilistic choice operator is used to model probabilistic behavior.
This choice operator contains numbers, which determines the probability that the first
(respectively the second) process is chosen. Examples are [88, 115, 129, 165].

e stochastic The actions are considered to have a duration and this duration may vary. The
duration of an action is given by a distribution. Examples of stochastic process algebras
can be found in [11, 45, 104].

e combinations For example in [29, 43], the above features are modeled in single process
algebras.

1.2 Hierarchical System Design

Whether a system satisfies a formula is automatically decidable by means of model checking
techniques if the underlying transition model has a finite number of states. Nevertheless, most
systems have too many sates, hence model checking techniques cannot be used directly (the
calculation takes too much time). This problem is usually calledsthte explosion problem

[24, 52, 148].

Hierarchical system design [109] , a design that is developed on different levels of abstraction,
can be used in order to handle the state space explosion problem. For example, a developer
divides the intended design (usually complex) into various ‘sub-designs’. He will develop the
sub-designs by enriching them step by step with details, i.e. changing the level of abstraction.
If the properties are preserved in some sense for every step between the levels of abstraction, it
may be sufficient to verify the most abstract level, which has in general less states, to show the
property of the concrete level. Design formalisms have to support hierarchical system design
styles, as argued in [13, 55, 135, 169].

In reactive system models, hierarchical system design is usually done by action refinement
operator§[7, 91, 98]. Intuitively, action refinement means the refinement of actieris .(.),

in a process’ by more complex processeB,(P, ...). In other words, the occurrence of action

a in the behavior of is replaced by the behavior 6f,. How action refinement can be exploited

for verification can be seen e.g. in [82, 111, 130, 132, 134, 162].

2In some approaches action refinement is not considered to be a usual operator as in [158], where it is considered
to be an implementation relation.

1.3. END-BASED AND START-BASED VIEW OF THE CHOICE OPERATOR 13
1.3 End-Based and Start-Based View of the Choice Operator

In models of concurrent systems, actions are usually considered to be instantaneous, i.e. du-
rationless, as mentioned before. However, if real time aspects of systems have to be modeled
and/or action refinement operators are employed, we have to take into account that actions con-
sume timé.

A standard operator for modeling reactive systems is the choice between two proé¢gsses (

P,), i.e. if P, executes the next actio®; is disabled and vice versa. If durational actions are
considered, it is not clear when an action has to be considered to be executed. In particular, it
is not clear at which point in time an action triggers a choice — at the beginning, at the end or
anywhere in the middle of its duration?

The consequence of this decision is illustrated by the following example. Consider a process
that consists of a choice between actiarendb. The duration of: is 3 and the duration df

is 1. In addition, actiorm may start at time 0 and actidnmay start at time 1. If the choice is
triggered at the beginning, thentriggers the choice beforestarts. On the other hand, if the
choice is triggered by the end of an action, the choice is triggerédi®. a does not finish.

In the standard approach, a choice is triggered by the start of an involved event (action) [10, 99,
133, 141, 174]. But it is reasonable to consider approaches where choices are determined by
the ending of actions:

e In stochastic approaches, it is common to consid@ca policyapproach [12, 29, 104],
i.e. the fastest action triggers the choice. Consequently, a choice has to be triggered at
the end of the action’s duration, since it is usually not known a priori which action is the
fastest.

e The end-based point of view is of interest for hierarchical system development, where
complex activities are specified by single actions in the first system design steps. This is
illustrated by the following example.

Example 1.1 Consider the example of a plane that runs into problems and has to land
as fast as possible. Two airports (in the same city) come into consideration for the emer-
gency landing. The pilot sends an SOS-signal to both airports. Both airports start their
preparations for the emergency landing. The pilot will choose the airport that is the first
to respond to be ready. On an abstract level the pilot can be modeled by

Py = send; ((oky; L1) + (oka; L))

wheresend denotes the sending of the SOS-Sigol,s the response of the i-th airport

A; (that runs in parallel toP,, synchronizing oveok;), and L; denotes the landing on
the i-th airport. Furthermore; denotes the sequential composition of two processes. The
choice inP,, is either triggered byk; or by ok, as usual.

In practice, the airports will send more detailed information, e.g. that the maneuvering
area s free, fire service is ready, and so on. In other words, acténandok, are time-
consuming. Then the choice i, has to be considered as end-based, since the choice
should be made when the first airport has completed its preparations.

3Action refinement operators can, for example, split an action into a start- and an end-action, hence the action’s
duration can be modeled in some sense.

14 CHAPTER 1. INTRODUCTION

This is easily understood when we consider the next system design phase, whéye the
actions are specified in more detail, i.e. they are refined by a prot&ssThe choice

of the pilot is triggered when eithe¥/; or M, terminates and not when the first action

is executed by/; or M,. In particular, the actions of\/, that are executed before the
termination ofM; remain visible, i.e. they are not made undone after the termination of
M, and vice versa. This makes clear that the end-based choice can be viewed as some
kind of parallelism, wheréd/; and M- run in parallel until one of them terminates.

The possibility of late decisions is also motivated and examined in Z [166].

1.4 Contributions of this Thesis

The goal of this thesis is to make a first step to establish the end-based choice operator in

reactive true concurrent systems. More precisely, we want to establish an end-based choice
operator in untimed reactive systems that contain action refinement operators. This is done by

investigating a process algebra that contains these operators and by giving a semantic foundation
(operational, denotational, axiomatic) to this process algebra. Furthermore, the consequences
of considering an end-based rather than a start-based choice are examined, in particular with
respect to equivalence notions.

The contributions of this thesis are explained in more detail in the following. We have to give
operational semantics to a process algebra that contains end-based choice and action refinement
operators. This leads to some problems which we first consider in the start-based setting: Action
refinement operators in event structures where the choice is considered as start-based are well
established. A corresponding definition for the operational semantics of process algebras is
not obvious when non-atomic action refinement is considered. The typical approach to the
substitution of the refining process (either statically or dynamically) [5, 144], sometimes called
syntactical action refinementloes not always correspond to the refinement of event structures
[93]. In this thesis, a new possibility to define an operational semantics for action refinement
that corresponds to the denotational semantics is given in a start-based choice setting. Here, it
is not necessary to introduce new syntactic terms in order to give the operational semantics.

Furthermore, by considering the end-based view in bundle event structures, we have recognized

that bundle event structures [125, 126] fail to be a complete partial‘'oitleerefore, we present

a new technique in order to define complete partial orders for event structures that are based on

the bundle technique. This is necessary in this thesis, since we use event structures that are
based on the bundle technique as denotational semantics for our end-based process algebra.
These new techniques will be applied first in the start-based setting.

The first step to the end-based approach is the definition of an action refinement operator on
(extended) bundle event structures where the conflict relation is considered as end-based. Fur-
thermore, new equivalences are defined in order to obtain equivalences that are congruences for
the end-based action refinement operator, since the standard equivalences are no congruences
for this operator. The new equivalences fail to be the coarsest with respect to trace and bisim-
ulation equivalence. This results from the fact that processes terminate by the execution of a
special termination action and not by the execution of the ‘final’ executed action.

4The theory of complete partial orders allows to define denotations of recursive processes.

1.5. OUTLINE OF THIS THESIS 15

Before we continue to present a process algebra with an end-based choice operator, we take
a closer look at the termination philosophy that a process should terminate by the execution
of its ‘final’ action and not (as usual) by an additional termination action. We will argue that
this termination philosophy is especially of interest if process algebras with a disrupt operator
(as it is implicitly the case for process algebras that contain action refinement and end-based
choice operators) are considered. Therefore, two new kinds of event structures, which allow
more general disabling, are given to obtain denotational semantics of process algebras that
contain disruption and model termination by the execution of the ‘final’ action. One event
structure models the ‘non-disabling’ of events rather than the disabling of events. This is done
by making use of a witness relation. The other event structure is a generalization of Winskel's
event structures. We show that there is consistency [19, 68] between the operational and the
denotational semantics of a process algebra which contains disruption and which is based on
the new termination philosophy. The expressive power of our new kind of event structure is
also examined: We verify that these structures have the same expressive power and they are
more expressive than the standard event structures with respect to event traces. Furthermore,
we adapt the equivalences that are defined in the context of the end-based view to this new type
of event structures. We show that one of the adapted equivalences is the coarsest congruence for
the end-based refinement operator with respect to trace (respectively bisimulation) equivalence.

We argue that it is useful to have also a start-based choice operator whenever an end-based
choice operator is considered, since an end-based choice can model a kind of start-based choice
in the case of synchronized parallel execution. Therefore, we will finally consider a process
algebra that includes a start-based and an end-based choice together with an action refinement
operator. A class of event structures with two relations for disabling is introduced in order to
give a denotational semantics. An operational semantics, which is consistent with the deno-
tational semantics, is given. We define the coarsest congruence with respect to bisimulation
equivalence and we present an axiom system for this equivalence. Moreover, we show that the
axiom system is sound and complete for guarded and finite state processes.

Parts of this thesis are published in [78, 80].

1.5 Outline of this Thesis

Chapter 2 contains some preliminaries: First the notions used in this thesis are introduced.
Then transition systems and parts of the partial orders theory are presented. The final section
of Chapter 2 contains the results of the new approximation closedness property, which is later
used in order to define classes of event structures that yield complete partial orders.

In Chapter 3, the standard action refinement operator, i.e. the one that is based on the start-based
choice, is presented and examined. That chapter includes the new operational semantics and the
modification of bundle event structures that yield a complete partial order.

The action refinement operator that considers an end-based choice is given in Chapter 4. It
is defined on the modified extended bundle event structures mentioned before. Congruences
for this refinement operator will be introduced. We show that none of the new equivalences is
the coarsest one with respect to trace/bisimulation equivalence. It is also argued that extended
bundle event structures are not appropriate to model the end-based view. In addition, some
standard equivalences are summarized in this chapter.

16 CHAPTER 1. INTRODUCTION

In Chapter 5, we investigate a process algebra that includes a disrupt operator. Here, termination
is determined by the execution of the ‘final’ action. In this chapter, the classes of event struc-
tures that allow more general disabling are introduced and their expressive power are examined.
Chapter 5 also contains a denotational semantics in the class of event structures based on the
witness approach. A consistency result between the operational and the denotational semantics
is shown,

The end-based view, introduced in Chapter 4, is adapted in Chapter 6 to one of the classes of
event structures presented in Chapter 5. Here, the adapted equivalences of Chapter 4 are the
coarsest congruences with respect to trace (respectively bisimulation) equivalence. We also
argue that some kinds of start-based choices can be modeled with an end-based choice operator
together with a parallel operator where some actions have to be synchronized.

A process algebra that contains a start-based and an end-based choice operator at the same
time is introduced in Chapter 7. A denotational semantics of this process algebra, which also
contains a refinement operator, is presented there. Moreover, a consistent operational semantics
is given. Chapter 7 also contains the definition and the axiom system of the coarsest congruence
with respect to bisimulation equivalence.

Finally, a conclusion is given in Chapter 8.

Chapter 2

Preliminaries

2.1 Notations

In this section, we present some basic notations that are used in this thesis. Subsection 2.1.1
considers notions related to sets, whereas Subsection 2.1.2 considers notions related to relations
and functions. In this sectiod/, M,, M, and M3 denote arbitrary sets.

211 Set

e IN* denotes theositive natural numbers.e.IN without 0.
o Mi\My={me€ M |m ¢ M}

e |M| denotes theardinality of set M.

e M is countablef |M| < |IN|.

e P(M)={A| AC M}

o Prin(M) ={AC M []A] < |IN|}

® Peount(M) = {A C M | [A] < [IN[}

o M"=Mx---x M={(my,--,my,) | m; € M} wheren € IN*,
—_—
n-times

e M™ denotes theset of all strings— including theempty stringe — over setM/. Here, a
stringof M is a finite sequence of elements/af. We sometimes write strings;...m,,
wherem,; = m for all i asm™.

Furthermore, ifn € M, 0 € M* with o = m; ---m,, andi € IN with i < n then
— thei-th element ob is denoted by |[i].

-—m-o=mmy---my,

17

18 CHAPTER 2. PRELIMINARIES

— o\i denotes the deletion of thieh element of, i.e.
O'\Z =T M1 0 - M.

— o £ (i, m) denotes the replacement of théh element ot by m, i.e.
ox (iv m) =T M1 MM 1 - - - My

— the length ofr is denoted byo

e |o| =n.

The following definition introduces a universe @fents Events are used in the following to
denote different occurrences of actions. We need this universe in order to guarantee that event
structures, which are defined in the following chapters, are sets rather than classes. This enables
us to apply the theory of complete partial orders, which is presented in Section 2.3, directly.

Definition 2.1 (Universe of Events)Lete, x;, x, andx be arbitrary, but fixed, pairwise differ-
ent symbols. Then theniverse of evenidenoted/, is an arbitrary, but fixed, countable set
suchthate € U, x ¢ U andVe, e €U : (e, €'), (x1,¢), (%o, €), (%, €), (e,x) € UL,

We uses;...s,® wheres; € U U {1, x2, %} as an abbreviation fofsy, (sa,...(s,, ®)...)).

2.1.2 Relation and Function

e For any binary relation C M; x M, we write
— mafmy if and only if (mq, ms) € § and
— _fmy, for the set{m € M; | migma}.

e Id” C M x M denotes thédentity relation i.e.1d™ = {(m,m) | m € M}. The index
M is omitted if it is clear from the context.

o If 1y C M; x My andiy, C M, x Ms; are two binary relations, then o f, denotes the
binary relation given by{ (m;, m3) € My x M3 | Imy € My : mifiymg A moliams}

e (M, C) denotes the set/ ordered by the partial ordér.

e M, — M, (or MQMl) denotes the set of all functions frofd; to M. We denote thaf
is a function fromM/; to M, by f : M; — M,. The function fromM/; to M, that maps
every element of\/; to m € M, is denoted byons M2 where indexM; — M, is
omitted if itis clear from the context. Furthermorefit M, — M, andf” : My, — M
then

— f" o f is the function from\/; to M; given by (f” o f)(m) = f"(f(m)).

— f(M), whereM C M, denotes thémage of M under f, i.e. f(M) = {f(m) |
m e M}.

— [| M whereM C M, is the function fromM to M, with (f | M)(m) = f(m)
foranym € M.

1)t is clear that such a¥ exists.

2.1. NOTATIONS 19

— flm1 — ms] wherem,; € M, my € M, is the function fromM; to M, with

(flm1 — ms])(m) = { f(m) it m#m

mo otherwise °

— if f is bijective, thenf~! denotes thénverse functiorof f, i.e. f~! : My, — M,
with f~!(mg) = my & f(m1) = ma.

e M; — M, denotes the set of gllartial functionsfrom M; to M,. We denote thaf is
a partial function fromM/; to M, by f : M; — M,. The partial function from\/; to
M, that is everywhere undefined is denotedlby: —*2, The partial function from\/; to
M, that maps every element frof; to m € M, is denoted byons1 =2, The index
M, — M, is omitted in both cases if it is clear from the context.

Furthermore, iff, f’ : My — M,, f" : My — Mz and f"” : Ms — M, then

— thedomainof f, denoted bylom(f), is the sef{m € M, | f(m) is defined.
— We definef U f’ by consideringf and f’ as relations.

— [o f is the partial function from\/; to M3 given by (f” o f)(m) = f"(f(m)) if
m € dom(f) A f(m) € dom(f”) and undefined otherwise.

— f(M), whereM C M, denotes thémage of M under f, i.e. f(M) = {f(m) |
m e M}.

— We write f(my) ~ f"”'(ms3) to denote thaf (m,) is defineds f'(ms) is definedA
f(my) is defined=- f(my) = " (ms).
f ~ f"holds if and only ifYm, € M; : f(my) ~ f'(mq).

— f | M whereM C M, is the partial function from\V/; to M, with (f [M)(m) ~
f(m) whenevem € M and undefined otherwise.

— flm1 — my| wherem; € My, my € M, is the partial function from/; to M, with

. o fm) ifm#Em

(flma — ma])(m) = { Mo otherwise °

— f is injective (surjective bijective from M| C M, to M, C M, if and only if
dom(f) = Mj, f(M{) € M, andf | M; is an injective function from\/] to
M, (respectively surjective, bijective). We cdllinjectiveif f is injective between
dom(f) and M.

— if f is bijective, thenf~! denotes thénverse partial function of, i.e. f~! : M, —
My with f=1(my) ~my <= f(my1) = mo.

e M —J™ IN denotes the set of all functions from to the natural numbers that differs
only finitely often from0, i.e. M -/ N = {f: M — IN | {m € M | f(m) # 0}] <

e M, — M, denotes the set of all functions froid; to the set of all strings ovel/, that
differs only finitely often from the empty string, i.84, — M, = {f : M; — M |
[{m € M, | f(m) # e}| < oo}

The function that maps every element o, to the empty string of\/} is denoted by
1 M—=M The index)M; — M, is omitted if it is clear from the context.

e 7, denotes th@rojectionto the:-th component of a Cartesian product

20 CHAPTER 2. PRELIMINARIES

e s used to denote isomorphism of structures, i.e. a structure preserving bijective func-
tion.

e A binary relationf C M x M is preserved byn operatorr” : M — M if and only if
mifime = F(mq)iF (m2). Furthermoref is preserved byan operatoi,, : M" — M if
and only if £, (myq, ..., my)0 F, (MY, ..., m},) whenevem,;gm; fori = 1,..,n. F is called
monotonidor the special case wheris a partial order.

Definition 2.2 Let=C M x M and letF be a set of operators where for evefyc F there
existsi € IN such thatf : M — M. Then

e = is acongruencéor F if and only if= is an equivalence relation and is preserved by
all operators ofF

e =.C M x M is thecoarsest congruender F with respect ta= if and only if

- =.C=
— =.is a congruence fof

— whenevee='C M x M is a congruence foff such that="C= then='C=,

2.2 Transition System

Labeled transition systemsriginally introduced by [121] under the name ‘named transition
systems’, represent a model to describe the behavioral character of a process. This is done by
abstracting complex activities into a single action. The duration of actions is often neglected,
i.e. the actions are considered to be instantaneous, in order to obtain a simpler, time independent
model. Transition systems are used to describe to which state the execution of an action may
lead.

Definition 2.3 (Transition System) A (labeled) transition system a quadruple(S, L, —, s)
with

e S, a non-empty set cftates
e [, a set oflabels

e —C § x L x S, atransition relation

e 5 c S, theinitial state

We will writep —— ¢ rather than(p, v, ¢) €—. The class of all transition systems is denoted
by TS.

2.2. TRANSITION SYSTEM 21

aq

oY

al

N

aq

Figure 2.1: A Transition System Example

The intuitive meaning op —— ¢ is that the execution of in statep may lead to state. It is

not necessarily uniquely determined to which state the executigriroktatep leads, since it

is possible thap —— ¢’ is another transition of the transition system. Examples of transition
systems are shown in Figure 1.1 and in Figure 2.1, where the initial state is marked by an arrow
without a source.

Transition systems, as well as other models, are often considered as too concrete descriptions.
Therefore, equivalences are defined on transition systems in order to identify those which we
consider to display the same behavior in some sense.

Two basic equivalences have been defined for transition systémarse equivalencgl108],
which considers the possible sequences of observable behavidrisamdlation equivalence
[136], which also takes the branching structure into account.

Definition 2.4 (Trace Equivalence) The set oftracesof a transition systeniS, L, —, s) is
defined by

T(S,L,—,5) = {(V)icn | n €ENATsg, -+, 5, ESAsg=5AYi <n:s — 5.4}

We sometimes writé(s) if S, L, — are clear from the context.

Two transition systemgS, L, —,s) and (S’, L, —', §’) over the same set of labels are
trace equivalentwhich is denoted byS, L, —,5) ~, (S', L,—',5") or 5 ~, § for short, if
T(s)=T(5).

Definition 2.5 (Bisimilarity) Two transition system§S, L, —,s) and (S’, L, —', §') over
the same set of labels abésimilar (or bisimulation equivalent), denoted ¥, L, —, 5) ~;
(S, L,—',5") or s ~, & for short, if there is ebisimulation i.e. a relationR C S x S” such
that(s,5') € R and for each(sy, s]) € R we have:

. . /
e if s; — sy, then there i, such that(s,, s,) € R ands;, — s,

o if s/ ' 5, then there is:» such that(ss, s) € R ands; — ss.

Remark 2.6 Bisimilar transition systems are also trace equivalent.

22 CHAPTER 2. PRELIMINARIES

a2

ai

)
0

as

Figure 2.2: Trace-Equivalent but not Bisimilar Transition Systems

The transition systems from Figure 1.1 and Figure 2.1 are bisimilar and therefore also trace
equivalent. The transition systems presented in Figure 2.2 are trace equivalent but not bisimilar.

Various other equivalences have been defined for transition systems. An overview over equiva-
lences that lie between trace and bisimulation equivalences with respect to their discriminating
power is given in [86, 170]

2.3 Complete Partial Orders

To obtain denotational semantics for systems that include recursion, it is usually necessary to
employ model with fixpoint theoryComplete metric spacesith contractingfunctions, e.g.

[74], denote a class where fixpoints always exist. They are used for example in [21, 65, 117] to
define a denotational semantics of recursive systems. Another class where fixpoints always exist
is given by thgw-)complete partial ordergcpo) withcontinuoudunctions. An overview of this

theory is given in [3]. Complete partial orders are used for example in [4, 21, 76, 147, 149, 178]
to obtain a denotational semantics of recursive systems. The definition and the results that are
used in the following chapters are summarized in this section. For further details consult [3].
Here, the general cpo theory is restricted todhepo theory, because the latter is sufficient for

our purpose.

Definition 2.7 (w-complete partial order) A setD with the partial orderC is a (pointed)w-
complete partial ordgicpo) if

e D has aleast elemenfl) with respecttd_,i.e.vde D : 1L Cd

o for everyw-chain (d;);en, i.€. V5 € IN : d; T d;44, there exists deast upper bound
(LUien di) in D, ie.
—VJ E]Nd] El_le]Ndl
-VdeD:(VjeN:d;Cd)=|]ndi Ed
Definition 2.8 (w-continuous functions) A functionf between cpd® and cpoF,i.e.f : D —

E, isw-continuougor continuoudor short) if it preserves the least upper boundssethains,
i.e. for all w-chains(d;);cv of D we havef (| |, di) = | ;e f(di)-

2.4. APPROXIMATION CLOSEDNESS 23
In particular, every continuous function is monotonic.

Theorem 2.9 Let M be a setand letD, Cp) and(E, Cg) be cpa. Then

e the function spacd/ — D with thepointwise orderi.e.g C ¢ < Vm € M : g(m) Cp
g'(m), is a cpo. Moreovel, |, 9i = g, Whereg(m) = | |,c gi(m).

e and the Cartesian produdd x E with thecomponentwise order.e.(d,e) C (d',¢') &
(dEp d NeEge€), isacpo. Moreovet, |, (di,e;) = (Uien & Lien €i)-

Lemma2.10 Let D, D', Ebe cpaandf : (D x D') — E. Thenf is continuous if and only if
it is componentwise continuouse. for alld’ € D’ : fcg,l) :D — E, Wherefé,l)(d) = f(d,d'),
is continuous and for alt € D : £* : D’ — E, similarly defined, is continuous.

Theorem 2.11 Let D be a cpo and lef : D — D be a continuous function, thehhas aleast
fixpoint fix(f), which is given by |, ¢ f*(L).

2.4 Approximation Closedness

In this section, we define when a et C P(F) is approximation closed. These sets are used
to guarantee that an-chain ofevent structurestroduced in later chapters will have a least
upper bound.

Definition 2.12 Let E be a countable set. #nite, monotone approximatiasf £ is a sequence
(Ei)ie]N such thane]N E,=FEAVEk:E,C Ek:-i—l A |Ek| < 0.

It is obvious that every countable set has a finite, monotone approximation.

Definition 2.13 Let ' be a countable set antl/ C P(FE). We say that\/ is approximation
closed with respect t& if

e X € M whenever
X C E and there is a finite, monotone approximati@ti);c of £ such thatvk € IN :

Example 2.14If E is finite, then every/ C P(F) is approximation closed with respect i
Another example i®(IN), which is approximation closed with respectlto

On the other handPy;,(IN) is not approximation closed with respect, sincevVn € IN :
{meIN|m <n} € Pp(IN) butIN ¢ Py;,,(IN). AlsoP(IN)\{0} is not approximation closed
with respect tdN.

Proposition 2.15 Supposé\/,, M, are approximation closed with respectib ThenM; N M,
and M, U M, are approximation closed with respect kb

24 CHAPTER 2. PRELIMINARIES

Proof: The proof is given in Subsection 2.4.1. O

For the following proofs, it is necessary to have further set constructions that yield approxi-
mation closed sets. In order to verify the approximation closedness, we construct aaet

of a sequencéX,,),cn of sets (whereX,, € M). We show that this constructed is in M
wheneverM is approximation closed. The constructionXfis generalized in the sense that

X is constructed out of two given sequences. This generalization is needed in some of the
approximation closedness proofs.

Definition 2.16 Let £ be a set ands; : IN — E; such thatk; is bijective forj = 1,2.
Furthermore, letX ¢) = (X,(f))nG]N be a sequence of elementsRifE;) for j = 1,2.
Define X (XM k1, X® ko) = (Upew AL, Uren AY)) where A7) € E; and NY) € N is
given byA(" = AP =0, N = NV = N = N and forj = 1,2

N(0+)1 = Néz)
i—1 i . .
N(j)1 = loe Nf(bjfrl) | £5(n) € ngj')} if rj(n) €, Uizk,zeNfLQ—f) Xz'(j)
" (€ NV | my(n) ¢ X} otherwise
A0 { AP U{rym)} if w5(n) € M Upspienon XV
n+1 ;

AS{) otherwise

Note that|N\"| is always infinite, since:;(n) €), Uispiento-n XY holds exactly when

n+1

k;(n) € XY for infinitely manyi € NY-Y.

Proposition 2.17 Supposé\/; is approximation closed with respect ig, X0 = (X,(Lj))ne]N
is a sequence of elements/df andx; : IN — E' is a bijective function forj = 1,2. Then

Wj(X(X(l),Kl,X(2)752)> S Mj forj =1,2.

Proof: The proof is given in Subsection 2.4.1. O

As a consequence of Proposition 2.17 we obtain the following corollaries. Their proofs are
given in Subsection 2.4.1.

Corollary 2.18 Supposél/ is approximation closed with respectiand £/ C E. Then
{XNFE|XeM}

is approximation closed with respect i.

Corollary 2.19 Supposé\l;, M, are approximation closed with respectf Then
{Xi1UXo | X5 € My ANXy € My}

is approximation closed with respect i

2.4. APPROXIMATION CLOSEDNESS 25

Corollary 2.20 SupposéV/; is approximation closed with respecti) for : = 1, 2. Then

{{(61,62) EEl XEQ ’ €1 EX1A€2€X2}|X1 eM1/\X2€M2}7
{{(61762) € Fy X By ’ €; EXz} | 1€ {1,2}/\X1 c Mz} and
{{(61762) EEl ><E2’61 €X1V€QEX2}|X1 EMl/\XQEMQ}

are approximation closed with respectky x FEs.

Corollary 2.21 SupposéV/ is approximation closed with respectfand for alle € F let E,
be a set and\//, be a collection of subsets such thdt is approximation closed with respect to

E.. Then
{{(e,é) |lee X Néee X} | XeMAYee E: X, € M.}

is approximation closed with respect{¢e,é) |e € EAé € E.}.

2.4.1 Proofs

Proof of Proposition 2.15:

M; N M,: SupposeX C F and(E,).~ be a finite monotone approximation afsuch that
VneN:3dX, : X, € MiANX, € Mo,ANXNE, =X,NE,. By the approximation
closedness a#/; we obtain thatX € M;, which completes this case.

M; U My SupposeX C F and(FE,).e is a finite monotone approximation éf such that
VYn e IN:3X, : (X, € MqVX, € M))AXNE, = X,NE,. LetN; = {n € IN | X,, € M;}.
ThenN; or N, has to be infinite. Without loss of generality, [€t be infinite (the other case
follows analogously). ThefE,).cn, IS a finite monotone approximation @ such that
Vne N, : X, e M\ ANXNE,=X,NE,. ThusX € M, by the approximation closedness
of M. O

Proof of Proposition 2.17: Let AY and N be defined as in Definition 2.16.
DefineEY = AY U [(Urgn{/{j(r)}) \ (Uizn,iezvfgl” X}”)]. ThentY C EY), and

Vn : ki(n) € UE;J') (2.1)

which is verified as follows. Supposg(n) € (), Uz’Zk,iefo:ll) X9, then k;(n) € AEZL-

Hence,;(n) € U, BY. Now supposes;(n) ¢ M, U, ..yu-n X" Then there is & such
. =" n+1)

thatx;(n) ¢ UiZk’ieN&?) XZ,(J)_ Definem = max{k,n}. We getx;(n) ¢ Uizm,z’ENg{;p xY

sinceNY 1) € NU Y. Hence;(n) € EY which establishes (2.1).
VneN:vge NIV AY c x0) (2.2)

This can be proven by induction, where the claim is easily seen to hold in the base case. Now
suppose; € NYY thenq € NY" and so by inductiom?’ ¢ X If AY) = AD, the

26 CHAPTER 2. PRELIMINARIES

claim follows. Therefore, suppos;ﬁéj')1 = A(j)u{/@j(n)} Thenk;(n) cN.U

FromN.,") € NY)| and the definition ofV), we getx;(n) € X", which verifies (2.2).

(4)
i>k 16N<j D X

Now we show J, Ay € M:

50U, 45 = (470U, A@) U ([Unantms D (Uissenon X7)| 01U, 4P) =
AP U <A£ﬁ1 <U2>,HGN<J 1>X >) by definition. Furthermore(), Uizk,ieNflﬂ;” X(J) C
Uizn JENUD X9 which y|eldsAn]l1 C U. i>nieNU=D X9 with (2.2) and the fact thaf\fnﬁll)|
is infinite. HenceE ﬂU AY) = AY). Onthe other hand, lgte N " with ¢ > n. Such &
exists, smcé o)| is infinite. Then by (2.2) and from the fact thﬁé” C Uz>m€N(J 1 X(2

we haveX, U Y — (X(j ﬂA) (X(J) N [(Urgn{'?j(r)}) \ <Uz>nz€N(] b X())D -

AD, Hence,Xq(” NnEY = EY n U, A . Therefore, by the approximation closednesd/bf
we getlJ, A U e M, smce(ET(L))ne]N is a finite, monotone approximation &f, which follows
from (2. 1) O

Proof of Corollary 2.18: DefineM’' = {X NE"| X € M}. SupposeX’ C E' and(E))nen
is a finite, monotone approximation &f such that'n : 3X; e M': X, NE, = X'NE).

By the definition ofM’, for all n € IN there existsX,, € M suchthatX,, N E/, = X' N E!.

If £ is finite, the proof is trivial. Therefore, let : IN — E be bijective. Then by Proposition
2.17 we haver; (X (X, k, X, k)) € M, whereX = (X,)nen. Let AL and N be defined as
in Definition 2.16.

It remains to prove thak’ N (X(X, x, X, x)) = X' by which thenX’ € M’.

C: Suppose: € E' N |J, Ay, Then there existg € IN such thats(g) = e. Moreover,

there exists: such thati(g) € E;, sincer(g) € E'. Fromx(g) € U, A we getr(g) €
N Ul>kz€N<o> X;, which is a subset (U ey Xi. Then there is an € IN such that
reNg 1

i > nandk(g) € X;. Thusk(g) € X; N E, = X,NENE =X NE NE,. Hence,
k(g) € X'.

D: Suppose: € X'. Then there iy € IN such thatx(g) = e. Moreover, there is an
such thats(g) € E!, sinceX’ C E’. Then for alli > n we havex(g) e X'NE,

X'NENE, =X;NENE,. Thusvk : k(g) € U5, ieN®, X, since| N, +1| is |nf|n|te
(1)
Hencex(g) € N, Uizk,ieNﬁl X;. And so by definition:(g) € A, €U, AW, 0

Proof of Corollary 2.19: SupposeX C E and(E,).cn is a finite monotone approximation

of Esuchthatrn € N: 33X\ € M;: XN E, = (X" UXP) N E,.
If E is finite, the proof is trivial. Therefore, let : IN — E be bijective. Then by Proposmon

2.17 we haver;(X(X® x, X® r)) € M;, whereX® = (X\),cn. Let A and N\ be

2.4. APPROXIMATION CLOSEDNESS 27

defined as in Definition 2.16. It remains to prove that

C: Suppose: € (U, 4") U (U, AY). Thene € |, Ay for somej € {1,2}. Letg € N
such thats(g) = e and Ietn € IN such thatx(g) € E,. From n() € UPAZ(,” we get
i(9) € MU spgent v Xg”, which is a subset o) ., _ i-v X, Then there exists

¢ € N such thaty > n andk(g) € X\, Thusk(g) € (X('uxMnge, "2 (xOu
XMNE,NE,=XNE,NE,. Henceg = x(g) € X.

aENT

D: Suppose: € X. Letg € IN such that<(g) = e and letn € IN such that:(g) € E,,. Then
for all ¢ > n we haves(g) € X N E, = X N E,N E, = (X" UX{)Nn E, N E,. Hence,
Vie N, i>n=r(g) e XM Uux®,

Supposes(g) € X\” for infinitely manyi € N\, Thenvk : x(g) € Ui g sen® x®
2RAENg 1

hencex(g) € U, AY.

Now suppose:(g) € 2) for finitely manyi € N, g+1 Thenk(g) € X) for infinitely many

i e NY,. Thenvk : /@() € Upspien, XV, sinceN}; € N,. Hencex(g) € U, A}
- b g
O

Proof of Corollary 2.20: Consider the first set: SuppoXeg El x Fy and(~n)ne]N is a finite
monotone approximation df; x E, such that'n € IN : 3X € Ml,X() ¢ My: XNE, =
{(e1,e2) € Ey | €1 € XM A, € XT } If £ is finite, the proof is much S|mpler Therefore,
letx; : IN — E; be bijective. Then by Proposmon 2.17 we han;é/’\,’(Xl, K1, XQ, K2)) € M,
whereX (X,(L]))nE]N Let A and N\” be defined as in Definition 2.16. It remains to prove
that

X ={(e1,e2) | e1 € m(X(X1,, k1, Xa, k2)) A e € ma(X (X1, k1, X, K2))

C: Suppos€ri(g1), ra(g2)) € X. Letn € IN such that(k,(g1), & (gg>) € E,. Then for
all ¢ > n we have(ki(g1),ka(g2)) € XNE, = XNE,NE, = {(e1,e2) € E, |
> n =

er € XY Aey € XY E Hence,Vi € Néﬂj) X ki(g;) € X9, Then

VE : ki(g;) € UiZkJeN(] » XY hencex; i(9;) €U, AD.

D: Supposesi (g1) € U, Ay andra(ge) € U, AS. Thuss;(g;) € AY, . From (2.2) we
have
¥neN:Vge NV rlgy) € X9, (2.3)

Letn € IN such that(m(gl) ka(g2)) € E,. Then by (2.3) there ig; > n with ¢; € Ngﬂé)
andx;(g;) € X Deflneq to beq, if g; > ¢, and otherwise to bg,. Then

/ﬁll(gl) S Xél) A\ /*ig(gg) S X(SQ) (2.4)

28 CHAPTER 2. PRELIMINARIES

which can be seen as follows. ¢f > ¢, thenNg2+2 - N(1+2 and ifg; < ¢o thenNg1+2 C

Ng(;)H. Hence, (2.4) is an immediate consequence of (2.3).

Therefore, we havér,(g1), k2(g2)) € {(e1,e2) | e1 € XY Aey e X }m E, iz

{(er,e2) € Eyler e XSV Neye XY NE, =X NE,.

For the proof of the approximation closedness of the second and the third set of Corollary 2.20
we defineM/! = {{(e1,e2) € Ey x By | ¢; € X;} | X; € M;}. Then from the approximation
closedness of the first set of Corollary 2.20 and from the fact that tRg5gis approximation
closed with respect td’; we obtain that)/; is approximation closed with respect f x
E5. Then the approximation closedness of the second set follows from Proposition 2.15, since
{{(e1,e2) € Ey X Ey | ¢; € X;} | i € {1,2} AN X; € M;} = M; U M. Furthermore,
the approximation closedness of the third set follows from Corollary 2.19, $ifeg, e;) €
EixEy|lene XiVey € Xo} | X1 € M AN Xy € My} ={XjUX) | X] € M] ANX), € M}

O

Proof of Corollary 2.21: Let E = {(e, é) |e € EAé € E.} and definer (X X)={¢é]| (e) €
X}fore e EandX C E. SupposeX C E and(n)nG]N be a finite monotone approximation

of Esuchthatn € N : 3X, € M, X\” € M, : XNE, ={(e,é) € E, | e € X, Né € X}7}.
Without loss of generality, let’ be infinite, since otherwise the proof is much simpler. There-
fore, letx : IN — E. Then by Proposition 2.17 we have(X (X, x, X,x)) € M, where

X = (Xn)nen- Let N be defined as in Definition 2.16. First we prove

X={(e,e) e E|leecm (XX, kX, Kk)AéeET(X)} (2.5)

Fromé' € m.(X) we obtain(e’, ¢’) € X, which establishes of (2.5). Now supposée’, é') €
X. Letq € IN such that’ = /<;() and letn € IN such that(¢/, &) € E,. Then for aIIz >n

we have(k(q),é) € XNE, = XNENE, ={(e.é) € Ei |ec X;ne e XINE,.
Hence,Vk : E q) E_)UiZk,ieNéj_)lX Thusk(q) € N, Uizk,ieNgi)lX And so by definition
k(q) € m (X (X, r, X, k)), which establishes (2.5).

It remains to prove that

¢ e m(X(X, kX, k) = m(X) € M, (2.6)

We haver, (X) N 7w (E,) = 7(X N E,) = 7u({(e,¢) € E, | e € X, Aé € X)) =
X N ry(E,) whenevere € X,. Frome' € m(X(X,k, X,) we obtain that’ € X,
for infinitely manyn. And so (2.6) follows from the approximation closedness property, since
(7o (En))nen, WhereN = {n € IN | ¢’ € X, }, is a finite monotone approximation &f,. O

Chapter 3

Standard Action Refinement

In this chapter, we first sketch the different action refinement approaches in scientific literature.
Then we illustrate the common approach on a concrete setting, i.e. we give a denotational and
operational semantics to a process algebra that contains an action refinement operator. Before
we present the action refinement operator on extended bundle event structures [125] (used as
the denotational model), we will show that the event structures based on the bundle technique
fail to yield a complete partial order (with the standard ordering). Therefore, we introduce

a new subclass of extended bundle event structures that yields a complete partial order with
respect to the standard ordering. This subclass is defined by using the approximation closedness
techniques introduced in Section 2.4.

Furthermore, a new technique is used in this section to define an operational semantics that
corresponds to the denotational semantics. This technique has the advantage of handling the
disrupt expression in a feasible way and of avoiding any further syntactical expression.

3.1 Different Approaches

As mentioned in the introduction, in software design it is useful to hat@gpadown system
design[180], i.e. to change the level of abstraction until the implementation is obtained from the
specification. Expressing simple actions by more concrete processes,amitadrefinement
reflects this methodology in the context of process algebraic settings.

Different approaches for action refinement can be distinguished:

e atomic action refinemen84, 64, 69, 94, 97], where the proceBsto which the action
is refined has to be considered atomic, i.e. there are no observable states in between
the execution steps aP (all-or-nothing). Motivations for this approach are given in
[34, 69, 98].

e non-atomic action refinemef8, 31, 49, 60, 70, 90, 111, 114, 122, 144, 157, 173], where,
as opposed to the above approach, the process to which the action is refined may interleave
with the original system (or with other refinements).
This approach is on the whole more popular than the atomic approach. For example, if
two actionsz, b are completely independent, it seems unreasonable to impose a restriction
stating thab stays idle while the refinement afis executed.

29

30 CHAPTER 3. STANDARD ACTION REFINEMENT

e relaxed formg113, 159, 176]. Here, the causal ordering after the refinement of actions
is relaxed if the involved actions are considered to be independent. For example, suppose
actionb has to be preceded by actiamanda is refined by the sequential compaosition
of actionsa; andas. Thena; may interleave with actioh if a; andb are defined to be
independent.

e vertical action refinemen94, 156, 158]. Here, refinement is regarded to be an imple-
mentation relation instead of being an operator, as it is done in the above cases.

For a more detailed overview over the different methods of action refinement consult [91, 98].

In this thesis, we consider non-atomic action refinement. The theory of action refinement is
well established for denotational, true concurrency semantics of process algebras, i.e. refine-
ment operators are employedanent structuregetri netsand in other models of concurrency

[42, 62, 63, 72, 82, 91, 172]. When presenting an operational semantics of process algebras
with a refinement operator in terms of transition systems, the action refinement operator is of-
ten handled on the process term leveldyntactic substitutiofb, 6, 144]. In general, this type

of operational semantics is incompatible with the standard denotational semantics [93]. Ap-
proaches to obtain operational semantics that correspond to the denotational ones are given in
[70, 98, 157].

The common non-atomic action refinement approach is illustrated in the rest of this chapter.
It also contains a new technique to define an operational semantics that is consistent with the
denotational semantics.

3.2 Syntax

We choose a process algebra that is closmtic LOTO$32] except that the symbols are rather
taken from [117] and that the process algebra contains an expression for action refinement.

Let \/ andr be two different elements, which indicate tle@minationand theinternal action
Furthermore, leDbs be a set such thay, 7 ¢ Obs and|Obs| > |IN|. We callObs the set of
observable actionsTheset of all actionsAct,, is defined byAct , = {4/, 7} U Obs. Assume a
fixed countable set girocess variable¥ar which is disjoint fromAct, .

The process algebra expressidi¥P,, (; = start-based, £ refinement) are defined by the
following BNF-grammar.

B := 0|1|aB|r.B|B+B|B;B|B[>B|B|.B| Bl(a — B)**] | B\A|

wherexr € Var, a € Obs andA C Obs with |A| < |IN|*. A process with respect BXP, is a
pair (decl, B) consisting of adeclarationdecl : Var — EXP, and an expressioB € EXP,.
Let PA,, denote the set of all processes with respe&Xé,.

An expressionB € EXP,, is also called a processdtkcl is clear from the context. We some-
times omitl in an expression, i.e. we writeinstead ofu.1.

1The action relabeling operator [138] can be modeled by the action refinement operator in our process algebra,
since| A| may be infinite.

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PAsg 31

The intuitive meanings of the expressions are as foll@us.the inactive process, i.e. it can not
execute any actionl is the process that can terminate immediately. The action prefix process
a.B (7.B) is the process that executegrespectivelyr) and revolves to proces8. Process

B; + By is a choice between the behaviors describedbynd B;. The choice is determined

by the first action that is execute®;; B, is the sequential composition, i.B; proceeds until

it terminates, after whicl3, takes over.B; [> B; is the disruption of3; by B,, i.e. any action

from B, may disableB; as long asB; has not terminated. On the other hand, the termina-
tion of B disablesB,. B;||4B, describes the parallel composition Bf and B, where both
processes have to synchronize on actionsl @nd on./ (i.e. the parallel composition termi-
nates if and only if both sides terminate). The intuitive meaning of the refinement expression
Bl(a — B,)*4] is that it behaves like procegs except that every execution of actiarin A

is substituted by the behavior &f,. The hiding proces$\ A behaves likeB except that all
actions ofA are renamed with. The behavior of: is given by the declaration.

3.3 Denotational True Concurrency Semantics foilPA,,

Event structures are typically used as denotational true concurrency models for process algebras.
(Extended) bundle event structures are investigated in [126, 125] as a denotational model for
LOTOS, on which our process algebra is based. Unfortunately, the set of all (extended) bundle
event structures does not yield arcomplete partial order (cpo) with the standard order. We
remedy this problem by defining a subclass of the class of extended bundle event structures that
yields a cpo.

This section is organized as follows: Subsection 3.3.1 contains the definition of (extended)
bundle event structures. We show that they do not yield a cpo with the standard order. The subset
that yields a cpo is introduced in Subsection 3.3.2. The operators on these event structures are
defined in Subsection 3.3.3. These operators are used in Subsection 3.3.4 in order to present the
denotational meaning of a process.

3.3.1 Bundle Event Structures

(Extended) bundle event structures are introduced in [125, 126]. Later on, they are extended
to timed versions [39, 40, 120], to stochastic versions [45, 118] and to a probabilistic version
[119]. See also [46].

Definition 3.1 (Bundle Event Structure) A bundle event structurdesfor short, (£, £, —, ()
is an element oP(U) x P(U x U) x P(P(U) xU) x (U — Act,/) such that

8 C (F x E)andiis irreflexive and symmetric
e ~CPE)XE
e dom(l) = F

e VXCFEeclE: X—e= (Ve "eX e #=ete)

32 CHAPTER 3. STANDARD ACTION REFINEMENT

Figure 3.1: A Bundle Event Structure

E'is called the set of eventsthe (irreflexive)symmetric conflict relation— thebundle relation
and! theaction-labeling functiorof the beq F, £, —,). X is called a bundle of if and only if
X e

The intuitive meaning oX' — e is that before: is enabled, an event of has to be executed.

e’te means that the execution efdisables:’ forever, and vice versa. The action that may be
observed when an event is executed is given by the action-labeling function. The last constraint
in the definition of bundle event structures is calldhdle stability constraintIt guarantees

the absence afausal ambiguityi.e. exactly one event of a bundle ©fs executed before is
enabled, and so no confusion which event causeses. Bundle event structures and flow nets
[35, 38] have exactly the same expressiveness [37].

Bundle event structures can be used as a semantic model for expressiotiy,othat do not
contain disrupt operators. For example, in [125] the expresior- b.0)| (o) (a.c + a)) ;d is
modeled by the bes depicted in Figure 3.1. There, events are illustrated by circles labeled with
their corresponding action names; dashed lines indicate conflicts between events and for each
bundleX — e we draw one arrow from all events ii to e.

A bundle event structures has a symmetric conflict relation. Therefore, it is not clear how dis-
ruption, for example:.b [> ¢, can be modeled as a bes, since disruption is not a symmetrical
property. Therefore, [125] introduces extended bundle event structures, where the conflict rela-
tion does not need to be symmetric.

Definition 3.2 (Extended Bundle Event Structure) Anextended bundle event structyehes
for short,& = (E,~,—,l)isan element oP(U) x P(U xU) x P(P(U) xU) x (U — Act,y)
such that

e ~C (E x E) and~ is irreflexive
o —C 'P(E) X F
e dom(l) =F

e VX CFEecFE: X—e= Ve,e"eX:e#e"=¢e~€")

Let EBES denote the set of all extended bundle event structures.

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PAsg 33

Figure 3.2: An Extended Bundle Event Structure

~> is called the (irreflexiveasymmetric conflict relatiarHereafter, we considet to be(E, ~
1), & to be(E;,~;,—, ;) and in general to be(Eg,~¢, ¢, le).

The intuitive meaning of’ ~ e is that the execution af disables’ forever, but not vice versa.
Furthermore, an event can not be in conflict with itself, which is expressed by the irreflexivity
of ~. In [125] the expressiof{a.b) [>¢) ; d is modeled by the ebes shown in Figure 3.2. There
the conflicts are depicted as dashed arrows or depicted as dashed lines if they are symmetrical.

Remark 3.3 The bundle stability constraint of extended bundles event structures are dropped
to obtain more general class of event structures. The event structures obtained aredcalled
event structurefl16]. They allow causal ambiguity, which is examined in [127].

The standard order for (extended) bundle event structures is introduced as follows.

Definition 3.4 (Restriction of a ebes)Supposef is an extended bundle event structure and
E’' C E. Then theestriction of€ to £/, denoted bt | £, is (E',~ N(E' x E'),—',1 | E')
where—'= {(X N E'je) |e € E' N X + e}.

Remark 3.5 A restriction of a restricted ebes is equal to the restriction of that ebes, i.e. if
E=(E,~,—,l)isanebesand’; C E; C E,then(E | Ey) | By =& | E;.

Definition 3.6 (Order on EBES) Leté&;, € EBES. Then&, < & if and only if E; C E, and
& =61 F

Remark 3.7 Two different ebes which are comparable with respectitmust have different
sets of events, i.€; <& A Ey, C E, impliesé; = &,.

Langerak [125] constructs the following minimal upper bound obachain.

Definition 3.8 Let(&;);en, Whereg; = (E;, ~, —, 1;), be anw-chain with respect tad. Then
define| |, &; to be the ebegJ, E;, |, ~,—, U, ;) where—= {(X,e) | Vk : e € E; =
(X N Ek) —r 6}.

34 CHAPTER 3. STANDARD ACTION REFINEMENT

Non-Completeness of EBES, <).

(EBES, <) does not yield a cpo, as there avechains with more than one minimal upper
bound. This situation can arise, for example(M N Ej e IS strictly increasing and each
(X N Eg,e) is a bundle of€; whenever; > k. We illustrate this by an example, where we
considenN to be a subset @f by identifyingx"e with n € IN.

Let £, be the ebes where the set of events consists of the elemehis ef {1,...,n} and an
additional elemen¢. Furthermore, the bundles efare all subsets af/,,. Formally,

~

En = (M, U{e}, M, x M,\Id, {(X,e) | X € P(M,)}, cons,)

for n € IN, whereld denotes thédentity relation

It is obvious that £,),c is a chain in(EBES, <), hencd | &, is a minimal upper bound of
(En)nen With respect tod. From Definition 3.8 we get

| |€, = (INU{e}, N x N\1d, {(X,e) | X € P(IN)}, cons,).

In words, any subset of the natural numbers combinedaigla bundle ir} |, &.. If we restrict
the bundles to the finite subsets of the natural numbers, i.e.

ENm — (INU {e},IN x N\ Id, {(X,e) | X € Pyin(IN)}, cons,),

we also get a minimal upper bound (@,). with respect tod. Furthermore£/ and| |, €,

are incomparable with respectoby Remark 3.7. Hence, thechain(&,),cn does not have
a least upper bound and therefdEBES, <) fails to be a cpo.

The above counterexample is also a counterexample for the non-completeness of the class of
bundle event structures under the given partial order, since every event structure in the example
is a bundle event structure.

3.3.2 Closed Bundle Event StructuresCBES)

We want to restrict the ebes we have just considered in such a way that only one of the minimal
upper bounds from the counterexample of Subsection 3.3.1 is allowed. Therefore, we only take
those ebes into account which are closed under some special kind of finite approximation and
thus rule out/™. We define this closedness property by using the resuléppfoximation
closednessitroduced in Section 2.4.

Definition 3.9 (Closed Bundle Event Structure) A closed bundle event structufebed £ =
(E,~,—,l)isanelementoP(U) x P(U x U) x P(P(U) xU) x (U — Act,/) such that

e wC (Ex E)andVe € E: =(e~ e)
e ~CP(E)XE

e dom(l) = F

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PAsg 35

e VXCFEecE: X—e= (Ve "eX :e#£=¢e~e)

e Ve € [: _+— eis approximation closed with respect i

Let CBES denote the set of all closed bundle event structures.

Since every cbes is also an ebes (only a further constraint is added), We B C EBES.
Furthermore, every ebes that has a finite set of events satisfies the closedness condition, and
therefore is an element @BES. Hence, the ebes shown in Figure 3.2 is also a cbes. Further-
more,| | &, from the counterexample of Subsection 3.3.1 is a ches, whéféais not, which

follows from Example 2.14.

Theorem 3.10 (Complete Partial Order) The ordered sefCBES, <) is anw-complete par-
tial order, wherel |, &, from Definition 3.8 is the least upper bound.

Proof: The proof is given in Subsection 3.6.1. O

Remark 3.11 The set of bundle event structures can be restricted in the same VEBES
to obtain a cpo.

Remark 3.12 There is another possibility of defining an orderBBES that yields a complete

partial order: An ebes is smaller than another one if it has less events but more bufidtes) (

Eie) | X —oeNe€ E} C—),i.e.events in the greater ebes can be enabled earlier as in
the smaller one. There, the ebes do not have to satisfy the approximation closedness constraints
to yield a complete partial order, i. & EBES with this order yields a cpo. But not all standard
operators (compare Subsection 3.3.3) are continuous with respect to this order.

Transition system from a cbes.

Here, we describe how to obtain a transition system from a cbes, which is later used to establish
a consistency result for the denotational and the operational semantics. First, we specify the
initial events i.e. those events which do not have a causal constraint, then we specify the events
that correspond to termination.

Definition 3.13 The set ofinitial eventsof cbesf is defined by
nit(€) ={e€ £ | ~(3X : X — e)}.
The set ofsuccessful termination everdécbese is defined by

exit(&) ={e € E | l(e) = /}.

In order to obtain a transition system from a cbes, itmainder[20, 126, 131] of a cbes
with respect to an initial event is defined. The remainder denotes the event structure after the
execution of this initial event. Remainders are used to obtain a transition relatiQBBIS.

36 CHAPTER 3. STANDARD ACTION REFINEMENT

Figure 3.3: Transition System Derived froadBES

Definition 3.14 (Remainder of a ches)Let € CBES ande € init(£). Then theremainder
& is given by(E',~', ', 1") where

E = {ecE|d#eNn-(e~e€)}

~' = ~NE' X E)

= = {(XNE,d)| e E'NX—é Ned¢ X}
Vo= I E

Lemma 3.15 Let£ € CBES ande < init(£). Then&, € CBES.

Proof: Defineé = (E,~,{(X,¢é) €—| e ¢ X},1). We will show thatf ¢ CBES. Let
X C F and(E,),en be a finite, monotone approximation bfsuch thatrn : 3X,, : X,,/~é A
XNE,=X,NE,. Thenthereisn € IN such thae € F,,. Thus,e ¢ X. Furthermore, we
haveX — é by the approximation closedness conditiorfoHence X +¢.

Itis easy to check thal, = £ | Ee,,. And so the result follows by Lemma 3.27. O

Definition 3.16 The transition relation—C CBES x Act,, x CBES is defined by—=
{(&,l(e), &) | £ € CBES Ae € init(£)}.

An example of a transition system obtained fremis given in Figure 3.3.

3.3.3 Operators onCBES

Here, we present the operators OBES that are later used to define the denotational seman-
tics. They are taken from [125] except for some slight modifications. For example, we model
the disjoint union directly and we introduce more conflicts. This is done in order to obtain

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PAsg 37

a closer connection between the operational and the denotational semantics. The refinement
operator, which does not appear in [125], is an adapted version of [79, 133].

Definition 3.17 (Operators on€) Let A C Obs. Then define

~:(ObsU {r}) x CBES — CBES witha~€ = ({e} U ({*} x E),<>,>, 1) where
{((x1,€), (x1,€)) | (e,€") e~}

= {({x} x X, (0,) [(X, ¢) €= U{{(e}, (x1,¢)) | e € init(€)}
i B { lle) ifée=(%,e€)

T ¢
|

—~
QN

~
|

a ife=e

T : CBES x CBES — CBES with £,5&, = (E,~», =, 1) where

E = ({*x1} x E1) U ({*2} x Ep)

== {((xi,e), (xj.€5)) [# G A ey € mit(E)) U {((xi,€), (ks €)) | €~ €'}
== () x X, (xi,e) | X =i e}

U((%is€)) = li(e)

7 : CBES x CBES — CBES with &, 78, = (E,~, %, 1) where

= ({1} x E1) U ({52} x Ep)
= {((xi,€), (*i,€')) e~ e V(i=1Ne#e Ne €exit(&))}
= {({*x} x X, (x,€)) | X —; e} U
{({*1} x exit(&r), (x2,€)) | € € init(&) }
{ lile) ifi=1Ae¢ exit(&)
((xire)) =

T ¢y

1 T ifi=1Ae€exit(&)

[> : CBES x CBES — CBES with & [>&, = (E,~>,+>,1) where

= ({x} x E1) U ({2} x E»)

= {((x,€), (*i,€')) | e~ €U ({*1} x Er)) x ({*2} x init(&)) U
({x2} X E3)) x ({x1} x exit(&7))

== () x X, (xi,e) | X —ie}

I((xi,e)) = Li(e)

¢t e

|4 : CBES x CBES — CBES with & || 4&; = (E,~>, =, 1) where

E = (Bl x{HHU{x x EHUES
El = {ecEi|l(e)¢ AU{V}}
Es = {(61,62) c E1 X E2 | ll(el) = 12(62) € AU {\/}}
o= {((e1,e2), (e1,€5)) [er~1 €] Veg~g ey V
(er =i £ xheseh) V(e =ch#xNer #¢))
== {({<6/17 6/2) € E| eg € Xz}v (61762)) | Xi ei}
Z~((e ¢)) _ ll(el) if €9 = %
b2 ly(es) otherwise

38 CHAPTER 3. STANDARD ACTION REFINEMENT

Et P Ref{ (€7, (a — &)
Go- - - - - o0 ai Al — - - - p Q1
\\\ ///
N
(05} (05} i\,x,/: (05}
/7 >=< N\
/// \\\
vV TR T

dashed arrows from;-nodes tor-nodes are omitted

Figure 3.4: Illustration of thékef* Operator

Ref%, : CBES x (A — CBES) — CBES with Ref*(£,6) = (E,~>,~, 1) where
E = {(e,é)|e€ EAl(e) € ANé € Epyren} U
{(e;e) e EX E | l(e) ¢ A}
~ = {((61, é1>, (Gg,ég)) | e~ eV (61 =e9 A l(el) e AN €1 7é €y N\
(€1 ~0(1(er)) €2 V €2 € exit(0(I(e1)))))}
== {({e} x X', (e,€)) [le) € AN X" ey €U
{N(X, (e,é)) | X X e (l(e) € A= ¢ € init(0(l(e))))A
X={(,¢)eE|deXN()eA=¢ cexit(d(l(e))))}}
) l(e) ifl(e) ¢ A
I((e;€)) = § loaep(€) fl(e) € ANIpuey(€) # v/
T if l(e) c AN lg(l(e))(é) = \/

\A: CBES — CBES with \ A = (E,~»,—,]) where

= lle) ifl(e)¢ A
le) = {T() :fzgeiiA

A small example that illustrates how the refinement oper&igr' behaves is given in Figure
3.4. There{a — &;2) denotes the function frofu} to CBES that maps: to &,.

Proposition 3.18 All operators of Definition 3.17 are well defined, i.e. they really yield ele-
ments ofCBES. Moreover all operators from Definition 3.17 are continuous with respect to
<.

Proof: The proof is given in Subsection 3.6.2. O

3.3.4 Denotational Meaning forPA,

First, we define the denotational semantics of expressioxB,() with respect to variable as-
signments, i.e. functions frorsiar to CBES. Then variable assignments are derived from
declarations, which are used to define the denotational semantics of proé#sses (

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PAsg 39

(@ +0.0) (/a3 (alloa.c) (a.b)[>c
a b vV
O—’Q—'O\\\ ‘ ///
\\\ ///
‘%’—’O\/

Figure 3.5: Examples of the Denotational SemantidsX#.,

Definition 3.19 Let[_]_: EXP,, x (Var — CBES) — CBES be defined as follows (where
p: Var — CBES)

[[0]]/3 - (Q)a ?(2)7@) [[1]]/) = {.}7(2)7@7{(.7\/)})
[a.B], = a™[B], R [7.B], =7"1B],

[[Bl + BQHP = [[Blﬂpi'\[[Bﬂ]p [[Bl; B2]]p = [[Bl]]pTAﬂBﬂ]p
[B1 [> Ba], = [Bi],[>[B:], [Bil|aB2], = [Bi],pllalBa],
[Bl(a — B)*A], = Ref3(IBl,: (o — [Bal,)*<Y)

[[B\A]]p = B]]p\A [[xﬂp = p(x)

Examples of how_] _ behaves are given in Figure 3.5.
To apply the cpo theory we need the following lemma.

Lemma 3.20 [B]_is continuous for everys € EXP,.

Proof: By structural induction. We only present the cdse+ B..
[B1 + Ba]j, s = F(IBilu, pis [Baly, o)
by induction -~
Y= +(|_|[[Bl]]pi’|_|[[32]]pi)

7 7

Theorem 2.9 (B, [B2n)

Prop. 3.18 |_| ;C([[Bl]]m, HB2]]pi)

7

- |_|[[Bl+B2]]P¢

(2

The other cases follow analogously. O
Now we are ready to give the meaning of a declaration.

Supposelecl : Var — EXPy,. Then definefyeq : (Var — CBES) — (Var — CBES) with
Facel(p) () = [decl(z)],,. From Lemma 3.20 it follows tha,. is continuous. Therefore, from
Theorem 2.11 we gef.]} : (Var — EXP,) — (Var — CBES) with {[decl]} = fix(Fiea) =
LI, Fita(L) is well defined.

We define the denotation of a process as follows.

40 CHAPTER 3. STANDARD ACTION REFINEMENT

Definition 3.21 (Denotational Semantics)
Define[[,]] : PAsr — CBES by [[(decl, B>]] = HBH{[decl]}-

3.4 Operational Semantics forPA,,

Operational semantics that coincide with the denotational semantics have been given for process
algebras with action refinement in [70, 98, 157]. Operational semantics for the ST-approache
which can be straightforwardly adjusted to operational semantics for action refinement, have
been examined in [44, 49, 98, 102]. The papers based on the ST-approach do not explicitly ex-
amine consistency between denotational and operational semantics. The underlying languages
used in the cited papers do not contain disruption. Moreover, most of the operational semantics
defined in these papers are inappropriate for languages that contain disruption like our language
does. This is argued as follows.

In [44, 49, 70], a refinement expressidtic —] is modeled by invoking) in parallel with

the remaining process wheneveis activated inB. This leads to problems if a disrupt operator
is involved. For example, actiom can be disrupted during its execution. But in the above
approachy) is executed, even thoughis disrupted.

On the other hand, in [98, 157] the execution of an action is only allowed if all active actions
are still executable afterwards. This is not a reasonable approach if a language with a disrupt
operator is considered, since this operator can remove active actions in a reasonable way.

The operational semantics mentioned above have to extend the syntax of the underlying lan-
guages in order to define the operational semantics for refinement: Further syntactical operators
have to be added to the languages in [44, 49, 70]. And [98, 157] extends the syntactical expres-
sions by moving to an event-based language, which leads to a very discriminating theory.

We will present a new approach to an operational semantics that corresponds to the denotational
semantics. This approach can handle the disrupt operator and, moreover, no extension of the
syntactical expressions is necessary.

The operational semantics is defined by using transition rules that simulate the execution of a
refined action within the refinement construction. For example, the préedsga — a;.as]

evolves into(a.B)[a — as] by executinga; provideda does not occur irB. If a occurs in

B as ina.a and if we proceed in the same way, we lose the information to which term the
as occurring in B have to be refined, i.€a.a)[a — a;y.a5] must not evolve tda.a)[a — as]

by executinga;. To circumvent this problem, we rename the executed actiby a fresh

action name:’ and extend the refinement by an additional refinement{d.e)[a — a;.as]
evolves into(a’.a)[(a — ay.as), (a’ — ag)] by executinga;, wherea' # a. This is still not
sufficient, since we have to trigger the choice when an action is renamed in the choice operator,
i.e. (b+ (a.B))[a — aj.a5] evolves into(a’.B)[(a — aj.as),(a’ — a3)] by executinga;.
Otherwise (b + (a.B))[a — a1.as] would be able to executeaftera,. This is counterintuitive,

and therefore the choice has to be triggered. We model the renaming of the action by extending
the transition relation using additional transition labels. The choices are also triggered by those
additional transition labels.

2In the ST-approach, the execution of an action is split into the two different events of the start and the ending
(termination) of an action, where the ending is uniquely related to its start.

3.4. OPERATIONAL SEMANTICS FOR PAsg 41

Before we introduce the transition rules foXP,,, we have to determine all actions which occur

in a given expression. We need this in order to determine a fresh action name for the renaming
of an action. Furthermore, we neédbs| > |IN| to guarantee the existence of a fresh action
name.

Definition 3.22 The function : EXP,, — Pount(Obs) is defined as follows.

L(0)=L(1)=L(x)=0 L(a.B)={a} UL(B)

L(r.B) = L(B) L(By||aB) = L(B,) UL(B,)U A

L(By + By) = L(By; By) = L(By [> By) = L(By) U L(By)
L(B\A)=L(B)UA L(Bl(a — B,)*")) = L(B)UAUU,c4 L(B,)

Then, define : PA;, — Pooune(Obs) by L£((decl, B)) = L(B) U, cy., £(decl(z)).

The setA has to be added in the cases of the parallel operator and the hiding operator, since
otherwise confusion may arise. For example, if actidis renamed in al/(;31, we obtain a
change in the behavior, since the process is deadlocked after the renaming.

The transition rules of—3.,C EXPg x (Act,,U (Obs x Obs)) x EXP,, are presented in Table
3.1, wherey is an element ofdct,, U (Obs x Obs). We write —* if decl is clear from the

context. Here@ means that one executable actiois renamed and that all choices which

would be triggered by the execution of thisire taken“”, can be interpreted that actiarhas
been started and that this actiemill finish by executing actiorb.

In rule A,, actiona is relabeled by. Rule C' makes no difference between labels frotnt
and(Obs x Obs). Hence, in both cases the choice is triggered.

The disrupt operatof> also disrupts the process if &m, b) transition takes place, since in this
chapter the start of an action triggers the disruption.

The parallel operator works asynchronously exactly for those actions which areAot{igy}.
For synchronization purpose@, b) is regarded to be ial if and only if a € A. The rule for
synchronization is divided int®, and P;, since in the case whe(e, b) is executed, we have to
take care that further derivations will synchronizebon

Rule Re f; considers the case when an action is executed which is not refined. In this case, only
the term which is refined is modified. RuRef; considers the case when an actiowhich

is refined by a non-terminating process is executed. Heagrenamed with a fresh action
name, which is ensured ly¢ A U L((decl, B)). Such ab always exists, sincébs| > |IN|.
Furthermore, we keep all present refinements and add a new refinement for the executed action
a, which is now labeled witld. The case when the refined process terminates is considered in
rule Ref3. In this caseq terminates. Therefore, it has to be removed, which is done by taking
the transition labeled with. The refinement remains unaffected.

The remaining rules are the standard ones [32].
Rules P, Ps, Re f1, Res; sometimes derive processes with undesired behavior by executing

(a,b). For exampleq ||;)1 @ bl|(531, which deadlocks. The undesired behavior can only
appear if actio occurs in the considered process. Such undesired behavior does not cause any
problems, since we are only interested in transitions labeled with elemedig of The only
situation where we need, b) transitions is in ruleRe f5, but there we take care thiats fresh.

42 CHAPTER 3. STANDARD ACTION REFINEMENT

Y /
T : 7 Ay ———— AQ:%I))OIDS C: Bl—>§ -
10 a.B— B a.B 2% b.B B+ By — B
By + B, -4 B’
v / \/ /
Bl;BQ L) 31732 Bl;BQ L> BQ
B, - B! B, - B B, L B!
L 1 —— Dy 77&\/ I 1 — Dy Iy 2—>72
B, [>B; - B [>B, B [>B, Y B, B, [>B, - B},
b Bi-5 Bl v ¢ {/}UAU(AxObs)
1 -
Bi|[aBy = Bi||aB>
Bs| 4By — Bol[aB]
b Bi-5B B-L By ye{JtuA L, BB BB acA
92 . 3 - a
Bi|aB; == Bi|l4B, ByllaBs “2 Bl aogs B
BB ~¢ AU(Ax Obs)
Refl: acA 2 / acA
B[(a - Ba)] — B [(a - Ba)]
Ref BB aecA b¢ AUL((dec, BY) By - B" v+
2 B[(CL _ Ba>a€A] L} B’[(a N Ba)aeA,(bH B”)]
Refy : B-.B acA B,-L B
3 - B[(a R Ba)aeA] L} B’[(a _ Ba)aeA]
Y ! a /
Resl:B—>B ’y%ALf(AXObS) R682:B—>BT CLIEA
B\A—>B\A B\A—>B\A
Y /
Rec - decl(x)7 —>/B
r— B

Table 3.1: Transition Rules for—3_

Example 3.23 We illustrate the transition rules by presenting a derivation path of the process
(allgay(a +0.0)) [a — c][c — d] in Figure 3.6. In the first step, actiomis renamed-. This
seems to be strange, sine&vill be refined tod. But it does not cause a problem, because the
operational semantics refinego ¢ before it gets under the influence[of— d]. The choice is
triggered by the renaming transition as it is illustrated by the first derivation step.

3.4. OPERATIONAL SEMANTICS FOR PAsg 43

(aH{a}(a + b.O)) l[a — c|[c — d]

d

(o) [a— 6 e — 1]
("lfaeend) la = ;e = " = e —d, ¢ — 1]

T

(1H{a,c,c~}1) [a—c,c—d, " —1][c = d,d — 1]

|v

(Oll{a,c.n0) [a = c;c — ¢ ¢ = e — d, ¢! — 1]
Figure 3.6: Example of a Process Derivation with respectte,

Definition 3.24 (Operational Semantics)The operational semantic®® : PA, — TS is
given byO*((decl, B)) = (EXPs, Act./, — s, B) where — ps= —5. N(EXP, x Act,/ x
EXPy,).

We still have to argue that the presented operational semantics is reasonable. The fact that the
transitions labeled with elements Obs x Obs always generate an infinite transition system is
problematic. More precisely, if processcan execute € Obs then it can executén, b) for ev-

eryb € Obs, which yields a transition system with uncountably infinite branches. Moreover, it

ay az) (az ait1)
. H .

is also possible to derive undesirable infinite derivations, for example
Nevertheless, this does not cause any problem since only the transitions Iabeled W|th elements
of Act,, are used to define the operational semantics (Definition 3.24).

But we still have an infinitely branching transition system by rikef,, for exampleaja —
ay.as] = bla — aj.as,b — ay] for all b € Obs\{a}. This is also no problem, since all the
expressions are-equivalen{22], i.e. they can be translated into each other by action renaming
of the bound actions. In other words, in rute f», it is notimportant whiclh ¢ AUL((decl, B))

is chosen, since all choices yieldequivalent expressions.

It is also possible to apply techniques, similar to [44], in order to obtain unique action renam-
ing, which makesxy-conversion obsolete. This technique is used in Chapter 7 to obtain an
operational semantics (Section 7.4).

Our operational semantics is a meaningful semantics with respect to the denotational seman-
tics, since the transition system derived from the denotational semantics is bisimilar to the
operational semantics.

Theorem 3.25 (Consistency)Let (decl, B) € PA.. Then the transition systeni®’ ((decl, B))
and(CBES, Act,/, —, [(decl, B)]) are bisimilar.

Proof: The proof is given in Subsection 3.6.3. O

44 CHAPTER 3. STANDARD ACTION REFINEMENT

3.4.1 Modified Operational Semantics

The operational semantics we have just presented yields unnecessarily long terms, since we
have to copy each refinement, even though it is used only once. Consider, for example, the
processa.B')[a — aj.as.---a,.1]. Then we havda.B')[a — aj.ay.---a,.1] — - =%
(a.B[(a — a1.a9.---a,.1), (aM — ag.---a,.1),---, (e — a;4y.---a,.1)] fori < nand
suitable actiona’). Here, the refinementaf’) — a;,,. - - - a,.1is an unnecessary information

for all j < i, sincea') does not occur itia”. B').

Our operational semantics does not only yield unnecessary long terms, it also yields infinite
transition systems in cases where finite ones would be sufficient. For examplel(ef) =
a.X,thenX|[a — b] (LL) Xla — b,a® — 1,---a® — 1]. Therefore, we get an infinite
transition system. But it is sufficient thaf[a — b] evolves toX[a — b] by executing(br)?,
sinceX[a — b] contains all necessary information.

To circumvent the unnecessary copy of the refinement, we d@idento two parts. One part
(Obs,) is used for active actions, i.e. actions which have been renamed. The othedlgarx (
is used for actions in the original expression, i.e. in the expression on which the transition
rules were applied. We then know that an executable acti@bgf only appears ‘once’ in the

process. More precisely, suppaBeonly contains actions dbsp and B ~l> Ly L
B", whereb € Obs, andc ¢ L((decl, B')). ThenB'[b — B] ~ B”[c — B]. This gives us the
advantage of keeping actions@bs, unrenamed.

Furthermore, when an action Obs, finishes, we remove it from those positions in the expres-
sions in which they were inserted by rulg and Re f;. Therefore we obtain the advantage of
generating more finite state transition systems. This can also be achieved wh&omngersion

is considered, for example by choosing always the ‘smallest’ actiQbgf that does not occur
for action renaming.

The ideas mentioned above are formalized as follows.Aba, Obs, C Obs with |Obsp| =
|Obs,| = |IN] andObsp N Obs, = (. Then the modified transition rules are those of Table 3.1
whereA,, P, Ref, and Re f3 are replaced by the transition rules presented in Table 3.2.

In rule A7, it is now only possible to start (renaming) actionsGifsp, since actions 00bs,
are considered to be active, and therefore they can not be started again. Furthermore, the action
a in rule A7 can only be replaced by an action©@fs,, Sincea becomes active.

Rule P, is modified by removing action from the synchronization set if it is an active action.
This is possible, since terminates in this rule, and therefore it does not appeds; i B,
when it is fromObs,.

The ruleRef, is split into two rules. Ruldef}", considers the case when an actiorDokp is

refined. In this case the rule stays the same. AndRélg", considers the case when an active
action is refined. Here we do not rename the action nor do we change the expression which gets
refined at all, i.e. we do not change We only check that is an initial action, which is done

by B -+ B'. This is necessary for the soundness, since we have a disrupt operator, and so not
every started action which has not terminated has to be active. The change in the refinement in
rule Re % is directly done at, i.e.a is refined byB”.

In rule Ref;* we remove, similar to rule?;", actiony from the expression if it is an active
action.

3.5. DISCUSSION 45

gm . A€ Obsp b€ Obs,
2 (a.b)
a.B—b.B
pm. Bi—= B By By ye{/}UA A =A\({y}N0Obs,)
? Biy||aB; = Bi||laBj
R B @O B ae AnObsp b¢ AUL((decl, B)) By - B" v #
2.1 - B[(CL - Ba)aeA] L} B’[(a _ Ba)aEA,(b—> B//)]
Refim B-%B a€AnObs, By—-B" ~+#+
2.2 ¢ B[(CL . Ba)aeA] l) B[(a _ Ba)aeA\{d},(d _ B//)]
pom B2 B €A B, -5 B’ A= A\({a}NObs,)
6f3 : ac€Ay T / acA’
Bl(a — B,)*"] — B'[(a — B,)*""]

Table 3.2: Modified Transition Rules for—,

The modified transition rules and the original transition rules yield bisimilar transitions systems:

Theorem 3.26 Supposédecl, B) € PA,, and £({(decl, B)) C Obsp.
ThenQ;,((decl, B)) and(CBES, Act,,, —, [(decl, B)]) are bisimilar, whereD;, is derived as
O7 except that the modified transition rules are used.

Proof: Similar to the proof of Theorem 3.25. O

3.5 Discussion

In this chapter, we have reproduced the standard action refinement approach (the choice is con-
sidered to be start-based) in order to give an introduction to the subject of action refinement.
We had to define a subclass of (extended) bundle event structures, called closed bundle event
structures, to yield a reasonable complete partial order on these kinds of event structures. Fur-
thermore, we have presented a new technique to define an operational semantics on process
algebras containing action refinement operators such that the operational and the denotational
semantics are consistent. With this technique it is not necessary to extend the syntactical ex-
pressions of the process algebra in order to define the operational semantics.

In the following chapter, we take a first look on the end-based view. More precisely, we define an
action refinement operator on closed bundle event structures that considers the conflict relation
to be end-based triggered. We show that the start-based and the end-based views lead to different
theories, for example the standard equivalences are not preserved by the end-based refinement
operator. Therefore, we introduce new equivalences that are congruences for the end-based

46 CHAPTER 3. STANDARD ACTION REFINEMENT

refinement operator. Finally, we argue that closed bundle event structures are not appropriate to
be used for the end-based view.

3.6 Proofs

3.6.1 Proof of Theorem 3.10

First we show thaCBES is closed under restriction.
Lemma 3.27 Let€ e CBES andE’ C E. Thenf | £/ € CBES.

Proof: Is an immediate consequence of Corollary 2.18. O

The following lemma is later used to verify the uniqueness of the minimal upper bounds in
CBES.

Lemma 3.28 Two cbes are equal if and only if they coincide on every finite restriction, i.e.
VE,E'eCBES : (E=E'ANVE€Ppp(E):ETE=ETE)E=E.

Proof: It is easy to check that the conflict relations and the action-labeling functions coincide.
Let (E,).en be a finite, monotone approximation 8f SupposeX — e (the other inclusion
follows by symmetrical arguments). There E,, = (X N E, ¢, €). From the assumption
we get—g¢ g, =—¢5,. Hence X —' e by the approximation closedness conditiortaf O

Proof of Theorem 3.10: We have to verify the following facts (whete=| | &,):
Reflexivity: Obvious.

Transitivity: Follows from Remark 3.5.
Antisymmetry: This is an immediate consequence of Remark 3.7.
Least elementit is easily seen that),), 0,) is a least element.

£ is a cbes:The only non-trivial fact is the approximation closedness condition.

Supposes € E, X C E and(E})ien is a finite, monotone approximation @& where
XNE, e{X'NnE} | X" — e} holds.

From the definition of |, £, we get that for allk there is aX;, C |J,.n £» Such that
XyNE, = XNE,andVn : e € E, = (XxNE,) —, e. Now suppose € E,, then we have
(XkNE,NE}) —e, \(E.nE,) € Whenevek € E,. FurthermoreX;,NE,NE, = XNE,NE;.
Therefore,X N E,, ., e, since&, € CBES and (E, N E})rew is a finite, monotone
approximation ofF,,. And so by definitionX — e.

3.6. PROOFS 47

& is an upper boundTrivial, except for the bundle relation.
SupposeX — e ande € Ej. Then(X N Ej) —, e by definition of| | &,.

SupposeX, —y e. Let® : IN — P(E) such thatb(n) = X, NE,if n < kandifn > k
then®(n) € {X' | X' —, e ANX'NE,.; = &(n — 1)}. The existence of such a kind
of function follows from the axiom of choice, sinég_; < &, implies that the above set is
nonempty.

Furthermore, we show by induction th&f, N ®(i) = ®(n) wheneveri > n. If i = n, then
the statement follows, sinck(j) C E,. Supposé > nthenE, N®(i) = E,NE;,_1N®(i) =
E, N ®(i — 1) and the rest follows by induction.

Therefore,E, N |, ®(i) = ®(n), since(®(i));ew is monotone. And from the definition of
¢ we haved(n) —,, e whenever € E,. Hence| J, (i) — e andE, N Y, (i) = X.

£ is the least upper boundupposern : £, <E'. ThenE C E’. Hence&’ | E € CBES by
Lemma 3.27.

Supposel € Py, (E). Then there is am such thate C E,. Therefore (&' | E) | E =
ETE=ETE)IE=& E=(ETE,)E=E]FE.Hencef' | E =& byLemma
3.28,i.ef <€ O

3.6.2 Proof of Proposition 3.18

First, we show the well definedness and then the continuity.

Lemma 3.29 All operators of Definition 3.17 are well defined, i.e. they really yield elements of
CBES.

Proof: We only present the cases of the parallel and the refinement operator. The well-
definedness of the other operators can be easily checked.

ElﬂAEQ: Let (é1,65) € E&HA& Define M; = {X | X —; ¢&}. ThenM;, is approximation
closed with respect t&; U {x}. Thus by Corollary 2.20//" = {{(e1,e2) € (E; U {x}) X
(Bo U{*}) | e; € X;} | i € {1,2} A X; € M,;} is approximation closed with respect to
(B U {*}) x (E5 U {x}). And so the approximation closedness-ef ; ., follows from

Corollary 2.18, sincd X | X e A (é1,62)} = {X'N Ee .6 | X' e M'}.

Refi‘(é', (9) Let (6,, é/) S ERef‘Z(S,@)- DefineM = {X ’ X — 6/} and

M, = {e} x X | X oy €3 ifl(e) < A _
0 otherwise
Then M, is approximation closed with respect ¢ ¢). Furthermore, let
| Eyueyy ifle)e A _f {exit(0(l(e)))} ifl(e)e A
Ee _{ {e} otherwise andiM, = {{e}} otherwise
Obviously, M. is approximation closed with respect&).

From Corollary 2.21 we obtain that
Mo — { 0 if i(e) € ANé ¢ init(0(l(e)))
Tl e, é)lee XnéeX) | XeMAX, € M} otherwise
is approximation closed with respect &+ 0. And so the approximation closedness of
> reys, (£,0) fOllows from Proposition 2.15, sinceX’ | X' = pgeps (e,0) (€', €')} = My U M.

48 CHAPTER 3. STANDARD ACTION REFINEMENT

The other conditions are easy to check. O
To simplify the verification of the continuity, we use Winskeadsntinuity on eventgl78].

Definition 3.30 Let D be a cpo. An operatoF’ : D — CBES is continuous on evenisand
only if Fis monotonic and for every-chain (d;)ien in D we havelr(| 4,y C E |, F(d,)-

Lemma 3.31 Let D be acpo and lef’ : D — CBES. ThenF is continuous if and only if’
IS continuous on events.

Proof: LetC be the partial order ab. Continuity on events is obviously implied by continuity.
Now let (d;);ew be anw-chain inD. Then

Viid C| |di TSN i F(d) S F(di)

F' continuous on events
e “ L F(d) S F(di) A Erqy,ay € By, ron

)

Rem%k 3.7 |_|F(dl) _ F(U d2)7

1

which completes the proof. O
Lemma 3.32 All operators from Definition 3.17 are continuous with respectito

Proof: It is straightforward to check that every operator from Definition 3.17 considered com-
ponentwise is continuous on events. Hence, the statement follows by Lemma 3.31 and Lemma
2.10. O

3.6.3 Proof of Theorem 3.25

We introduce an event-based transition relation. Then we show that its corresponding transition
system is bisimilar t@*((decl, B)) and that it is bisimilar td CBES, Act ./, —, [(decl, B)]).

And so Theorem 3.25 follows by the transitivity of bisimilarity [138, page 90]. The event-based
transition relation is particularly introduced to handle unguarded recursion.

Event-Based Transition Systems.

We want to define event-based transition rules such that the corresponding action occurrence
is denoted by the event which corresponds to this action occurrence in the denotational seman-
tics. Therefore, the information of the original positions (events) has to be kept in the derived
expressions. This is done by defining the expressioftX€t,, which contains exactly those
elements generated by

C u= B|C;B|C[>B|C[4C]| Clla— C) | C\A|[CT;

3.6. PROOFS 49

wherea € Obs, B € EXPg,, i € {1,2} andA C Obs with |A| < |IN|. The symbols in the
definition of EXPS,, e.g. [>, are overloaded, since they are also used in the definiti@XBf, .

Hence, the unique derivation of an expressioBXP¢, is contradicted. Nevertheless, it does not
harm our theory (both have the same transition rule) and therefore, we use the same symbols,

especially in order to reduce the numbers of the transition rules.
We do not need to extend the declaration, i.e. we défikie= (Var — EXP,,) x EXPE..
The function is adapted t&’ : PAS, — P,u.:(Obs) as follows.

L'({decl, B)) = L((decl, B))

L'({decl, C; B)) = L'({(decl, C' [> B)) = L'({decl, C)) U L'({decl, B))
L'({decl, C1]|aC%)) = L'({decl, C1)) U L'({decl, Cs)) U A

L' ({decl, C[(a — C,)“GAD) = L'({decl, C)) UAUJ,c4 £'((decl, Cy))
L'({decl, C\A)) = L'({decl,C)) U A

L'({decl, [(5)) = £'({decl, C))

The event transition rules—/,,C EXP¢, x ((Act,,U Obs x Obs) x U) x EXPg, are presented

in Table 3.3. The elements of in the transitions labels encode the position of the execution
such that they correspond exactly to the events labeled by the denotational semantics. The
original event positions are kept by using the; expressions. Another possibility to encode

this information is presented in [38].

The First Bisimilarity Result.

We define a relation betwedtXP:, and EXP,, which yields a bisimulation. An expression
C of EXP, and an expressiols of EXP, are related ifC' results inB by removing all|_]
expressions. This is formalized by the following function, where we also court treymbols
inC.

Definition 3.33 = : IN x EXP,, — P(EXP?,) is defined as follows

(0.B)={B})
(n+1,B)={[C];|ie{1,2} NC € Z(n,B)}
if Be€{0,1,a.By,7.By, B + By, x}

(n+1,Bi; By) = {[C1; | i € {1,2} AC € Z(n, By; By)} U

{Cl;BQ | C, e E(n + 1,31)}
(n+1,B,[>By) ={[Cli|i € {1,2} AC € Z(n, B, [>By)} U

{Ol [> By | () e E(TL:}‘ 1,31)} B
(n+1,B1||aBs) ={[C; | i€ {1,2} NC € E(n, By||aB2)} U

{C1|aC2 | ImeIN:m <n+1ANC, € Z(m,B)) NCy € Z(n+1—m, By)}
(n+ 1, B[(a — B,)*4]) = {[C7; | i € {1,2} AC € Z(n, B[(a — B,)*4])} U

{Clla— C.)*4 | 3m € N, (Ma)aca E N* i+ 3 yma=n+1A

Co € E(my, B,) NC € Z(m, B)}

Z(n+1,B\A) = {[C; | i€ {1,2} AC € Z(n, B\A)}U
{C\A|C e€=Z(n+1,B)}

[1] [1]

[1] [1] [1]

(1]

50 CHAPTER 3. STANDARD ACTION REFINEMENT

N
T: — Ay Ay 0D EObs aEb)ObS cr L
1 Y0 a.B < [B]; w.B %%y B By + By [Ch

By + By (*;Tey [C2

Si_C—>C/ v # St C%C/

C:B5C": B C; By [Bla
p. 00 AEY e cbe . BB
C>Bu=C'[>B C[> By [0, C[>B&7 B
P CL72C v ¢ {/}UAUA X Obs
' C1l[4Ce (%@ 14Cs
Col|ACt > Ca|[AC
. G0 G e—>c’ ve{ytua o, G P 02 Wt acA
2 Ch|[ACs 2 C || 4C ’ / /
1laCe @ A ClHACQ <ee> =y Chll augny O
Ref! - C 2—C" ¢ AUAxObs
1Ol — G @ C'l(a — Ca)*Y
Refr: O e aeA b AUL((decl.C)_Ca Y,
!

Clla — Co)*™] @ C'(a — Co)*4, (b — C")]

Rt C L0 aeA o Lo
°TOl(a — Co)* Y e C'[(a — Cu)™Y

Res! - C 2=C" ¢ AUAxObs Res, C a—>C’T’ aleA
C\A -=C\A O\A —=C"\A

Cdecl(z) =C o
X —>C (CL(*) [Cl—|

oy
9y
O\

Table 3.3: Event-Based Transition Rules with respectte;,,

The well-definedness df is easily seen. Furthermorg, has no effect on the action names
occurred in the processes, i.e.

Lemma 3.34 C € =(n, B) = L({decl, B)) = £'({decl, C))

Proof: By structural induction orB combined withn. O

3.6. PROOFS 51

Lemma 3.35Let B € EXP,, then O°({decl, B)) is bisimilar to (EXP¢

sr?

Act\/, —>IOS, B)

@ /
whereC —,, C' & 3e el : C <=, C.

Proof: DefineR = {(B,(C) € EXPy x EXPE | 3n : C' € Z(n, B)}. In order to verify thatR
is a bisimulation, we show

8l /
(B —*B'AC €Z(n,B)) = 3e,C',m:C <= C'NC" € Z(m, B (3.1)

The proof of (3.1) works by induction on the depth of inferenceBof"~ B’, combined with
the value ofn. Then (3.1) can be easily checked with the following procedure:

e applying ruleN whenevelC' = [C];. In these cases is reduced by one an# s p
is unaffected. Therefore the hypothesis concludes the result.

e applying the correspondent rules Bf s B’ wheneverC is different from[C];. In
these cases the depth of inference is reducednagdts not increased. Therefore the
hypothesis concludes the result. In the case of Rél§,, we also use Lemma 3.34 for the
conclusion.

Another fact is
v
(C 2 C'ACe€Emn,B)) =3B, m:B —* B AC' € E(m,B) (3.2)

This equation can be seen by induction on the depth of inferenCe 6f~ (. In the case of
rule Ref}, we also use Lemma 3.34.
Now we are ready to verify that is a bisimulation:

e ltis clear that B, B) € R.

e Suppos€ By, () € R and B, —%0s By. ThenB; Lsdecl Bs by definition. Hence,

36, CQ, m : Cl %/ CQ/\CQ € E(m, Bg) by (31) Tthl —>/Os C2 and(Bg, CQ) €ER,
as required.

e SupposéB;, () € RandC, —. Cy. ThenC, o C, for somee. Hence 3By, m :

By —%4eq Ba A Cy € Z(m, By) by (3.2). ThusB, —%¢s By and(B,, Cs) € R, as
required. O

Remark 3.36 The transition systems mentioned in Lemma 3.35 are not isomorphic. Consider,
for exampledecl with decl(z) = a;x. Then the expressianyields a finite transition system
with respect taD®, whereas an infinite one is derived with respectte-/,..

52 CHAPTER 3. STANDARD ACTION REFINEMENT

The Second Bisimilarity Result.

First, we show that the denotation of a variable is the same as the denotation of its corresponding
expression.

Lemma 3.37 Letdecl : Var — EXPg, andz € Var. Then[(decl, x)] = [(decl, decl(x))].

Proof: We have[(decl,)] = [2]gdaecay = {[decl}(z) = fix(Faea)(®) = Faea({{decl]})(z) =
[decl(z)] qaca = [(decl, decl(x))]. O

We extend the denotational semantic®4g,.

Definition 3.38 (Denotational semantics oPAS))

%i : CBES — CBES with %i(g) = ({xi} x E,~, 1) where
= {((*i’e)a (*iv 6/)) | (6’ el> G’\/?}

= {{{x} X X, (x,0)) | (X, €) €=}

(*h 6) = l(e)

Furthermore, defing_]’ : PA:, — CBES by

Te g

~

[(decl, B)]" = [(decl, B)]

[(decl, C; B)]" = [(decl, C}]]’T[[/(iiecl, B)]

[{decl, C'[> B)]" = [{(decl, C)]]’[>A[[<decl, B)]

[{decl, C1[[aC2)]" = [(decl, C1)['[| a[(decl, Co)]’

[{decl, Cl(a — Co)**PI" = Ref?y([{decl, OV, (a — [(decl, Co)]')*<)
[(decl, C\A)]' = Mdicl, Cy)]'\A
[{decl, [CT)]" = Shaft,([(decl, C)]')

It is clear that]_]' is well defined.

Lemma 3.39 Suppos€gdecl, C) € PAS

¢, b € Obsandb ¢ L'({decl,C)). Then for alle €
El(dect,cy We havegec oy () # b.

Proof: First we show for anylecl : Var — EXP, that for alln € IN andB € EXP,, we have

b¢ L({decl, B)) = Ve € m([Blry, 1) : b # ma([Blog) () (3.3)

This can be easily checked by induction earcombined with the structure a8 where the
lexicographic order is used.

The main statement follows by structural induction@nWe onIy present the case = B €
EXP,.. By Lemma 3.20 we get thd{decl, B)] = | |,[B]#» (). Then there isn such that
e € m([B]zr (1))- And so the result follows by (3.3). O

We introduce the following definition in order to obtain an adequate transition relat©BIAS
which is labeled with elements @fbs x Obs.

3.6. PROOFS 53

Definition 3.40 Let£ € CBES, b € Obs ande € init(£) such that/(e) € Obs. Then& ;) of
Eisgiven by(E’,~' ' I") where
E = {deE|-(~e)}
~' = ~N(E x E)
= = {(XNE)e)| e EPNX—¢€}
AR
) = { b if e =e

[(¢)) otherwise

Lemma3.41 Let€ € CBES, b € Obs ande < init(£) such thatl(e) € Obs. Then&,, €
CBES.

Proof: Define€ = (E,~»,—, 1) with l(e) = bandve' € E\{e} : I(¢/) = I(¢'). Itis obvious
thaté € CBES. Furthermore;ﬁ’[e/b] = & | (&) And so the result follows by Lemma
3.27. a

Lemma 3.42 Suppos€, &1, &, E, € CBES. Then

(@€ = S (E)
(51152)[(*i,e)] ShZﬁ (z[e])

~ ShzftQ(Sg) if [1(e) =/ Ae € init(&)
(17 8)in.0) { Egg T Es otherwise

12

12

o~

([Shift,(E1) fli(e) =/ Ai=1
(E1[>E) (e

gl[e][>€2 if ll(e) 7é \//\Z =1

[Shifty(Eye) i =2

([Siela&e fea=xAl(er) ¢ AU{V)
if e1 = x A ly(e) ¢ AU{/}

L Eifenlla&apes) 1 li(er) = la(e2) € AU{V/}

{ Ref*(E.0) 1 (louien(€) = v/ A ¢ € init(8(i(e)))) V

12

(E11|4&2) ((ex e2)]

12
n
=

e
S

12

Refi}(gv 9)[(e,é)] (l() §é ANe=)

Ref oy (Epes) 0 U (b, 0(1(e)) e))} if logey (€) # v/
wheneveb ¢ AAVé € E :l(é) #

(E\A) g E\A
Shifti <5> [(x:,6)] = Shlﬁz (5[6])

12

Proof: Straightforward. O

Lemma 3.43 Suppos€’, &1, &>, E, € CBES andb € Obs. Then

(af&')[./b] = b€ ifae€ Obs

(E1FE) eyt = Shlft(Eite/)
(E158) ke~ Erepy)s Ea

54 CHAPTER 3. STANDARD ACTION REFINEMENT

—~ S [>E ifi—1
(E1[>E)(xpersn) = /”@[? L
ShlftQ(gg[e/b]) ifi=2
_ Exernlla&x if 2 =% Ali(er) ¢ AU{y/}
(Ella&)iereann = Eillaopeapy if e =% Alo(es) ¢ AU{V/}

51[e1/b]||Au{b}52[e2/b] if l1(61) = l2(€2) € AU {\/}
whenb ¢ AAYi € {1,2} :Ve € E; : l;(e) #

{ Ref*(Ee,0) ifl(e) ¢ ANe=¢
Ref 3o (Eepp), 8 ULV, 0(U(€))ee) }) ifl(e) € A
whenevel' ¢ AAVe € E:1(é) # 1V

(E\A)epyy = Eep\A whenb ¢ ANI(e) ¢ A
Shifti(g)[(*i7e)/b] ~ Shifti<5[e/b])

12

Ref (€, 0) (.00

12

Proof: Straightforward. ad

Lemma 3.44 Supposédecl, C') € PAS andC 2 ¢". Then

(y=1(a,b) Ab¢ L'((decl,C))) = eemit(E)Alle) =an& = Eep
yeAct, = ecinit(E)ANlle) =yNE =&y

with £ = [(decl, C)]" and&" = [(decl, C")]'.

Proof: We use induction on the depth of inferencef-— C’. Then the equation can be
verified by case analysis on the derivation rules, where Lemma 3.42 and Lemma 3.43 are used.
In the cases oF;, Ref; andRes’, we also use Lemma 3.39. And in the caséiet’, we make

use of Lemma 3.37. O

Lemma 3.45 Let (decl, C) € PAS

sr?

e € init([(decl, C')]") anda = ljea,cyy (). Then
30" € EXPE : €' 2~ O A (a € Obs = Wb € Obs : 3C" € EXPS. : ¢ 2% o)

Proof: First we show for anylecl : Var — EXP,:

Vn € IN: VB € EXPg, : e € init([B]#r (1)) A a = m([Blzr_1))(e)

b 3.4
= 30" € EXPS, : B 2~ (' A (a € Obs = Vb € Obs : 3C” € EXPE, : B %) G4

This is done by induction on combined with the structure @, where the lexicographic order
is used. Furthermore, a case analysis on the structubei®imade. Here, we only present the
caseB = z: e € init([x]]fn L) 1y) implies thatn > 0. Therefore[z]zy (1) = Fia(L)(z) =
[decl(x)]]fg_llm. The rest follows by induction, sinceis reduced. Thus (3.4) is established.
The main statement follows now by structural inductioncénWe only present the case =

B € EXP,. By Lemma 3.20 we get thdtdecl, B)] = | |,[B]z: (). Thenitis easily seen

that there is amn such thate € init([B]z» (1)) anda = my([B]#= (1)). And so the result
follows by (3.4). O

3.6. PROOFS 55

Lemma 3.46 Let (decl, C') € PAg,, then the transition systemEXPs,, Act.;, —.,C) and

sr? Sr?

(CBES, Act,/, —, [(decl, C)]') are bisimilar, where—,, is defined as in Lemma 3.35.

Proof: DefineR = {(C’, [(decl,C")]’) | C" € EXPS}. Then(C, [(decl, C)]") € R by defini-
tion.

Suppose&”; € EXPE, andC; —(,. Cs. ThenC; o C, for somee. Hence, by Lemma 3.44
[(decl, C)] < [(decl, C,)]', as required.

Suppose’; € EXPe and[(decl, C})] <> &,. Then there i € init([(decl, C})]') such that
& = [(decl, C1)]i,, andar = my([{decl, C1)]")(e). From Lemma 3.45 we get the existence of
Cy € EXPE, such that” 2 . Moreover,[(decl, C1)]i, = [{decl, C2)]" by Lemma 3.44,
which concludes the proof. O

56

CHAPTER 3. STANDARD ACTION REFINEMENT

Chapter 4

Modeling the End-Based View INnCBES

A choice in concurrent systems is usually taken by the start of actions. In this chapter, we pro-
pose the alternative view that a choice is determined by the ending of actions, called end-based
view, as this alternative has relevant applications and interesting implications, as illustrated in
Section 1.3.

Another advantage of the end-based approach is that it can simplify the action refinement ap-
proach for timed systems. More precisely, an action refinement operator for timed bundle event
structures [116, 120] is presented in [81, 133]. The authors extend(@acha refinement

Pla — @] by an additional internal event, which corresponds to the stagt. ofhis is neces-

sary in order to guarantee the start-based choice, i.e. to guarantee that the choice is triggered at
the start of) (at the time when action starts to be executed iR). In other words, the choice

is not triggered when) executes its first action, which may be executed after a time period has
passed. This approach is reasonable if generative systeatiser than reactive systems, are
considered. The problem is that an undesired internal choice may be introduced by action re-
finement in reactive systems, for example refinirtg «’ andb to ¢’ in a + b yieldsr.a’ + 7.0’ in

[81, 133]. We have the opinion that the introduction of additional internal events can be avoided
in an end-based choice setting.

The different points of view (start-based vs end-based) lead to different refinement operators
on CBES. We introduce a refinement operator on closed bundle event structures for the end-
based view. Furthermore, we show that the standard equivalences are not preserved by this
refinement operator. Therefore, we introduce and study new equivalences that are preserved by
our refinement operator.

4.1 An End-Based Refinement Operator oifCBES

The decision at which time a choice is triggered does not influence the theory of most untimed
semantic models. This situation changes when models that contain an action refinement op-
erator are considered. Action refinement can, for example, split an action into a start- and an

1Generative systems are systems that are considered independently of the environment, i.e. the behavior is
generated. Consequently, the branching structure is considered with respect to the abstractions of the internal
actions.

57

58 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Ref?a} (5a+b’ (CL - 512))

a1
a) \\
gatd E12 ARG
T _ - _ % b
Ao~~~ — ob ai
start-based
as
Ref 3 (E°, (a — &12))
v
ay
a9, \\ N
T8 &b
end-based

Figure 4.1: Start-Based versus End-Based Refinement

end-action. More precisely, if actianis refined toa; followed byas,, i.e. a; executes afteti,

in a process consisting of a choice between actioasdb, then the execution sequenceb is

allowed in an end-based setting, which is not the case in a start-based setting. This example is
illustrated in Figure 4.1, where we depict extended (or closed) bundle event structures (see Sub-
section 3.3.1 and Subsection 3.3.2) after the refinement in the start-based and in the end-based
approaches. It can be seen in this figure thas in conflict withb in the start-based approach,
whereas it is possible that precede$ in the end-based approach (a non-symmetric relation is
used, depicted by dashed arrows). Thus the sequgn&eés only a trace of the event structure
corresponding to the end-based view.

In the standard approach to action refinement, a choice is triggered by the start of actions, for
example in [6, 63, 91, 98, 133, 172]. Here, we develop an action refinement operator for an

untimed event structure with respect to the end-based point of view. Two constraints have to

be imposed on the event structure in order to give a reasonable definition of such a refinement
operator.

1. Each event in an event structure represents a unique occurrence of an action. This is
necessary, since otherwise the occurrence of an action could be started more than once.
In prime event structuregl45] such a unique representation can not be guaranteed, as
pointed out, for example, in [91, Section 2.3].

2. An event structure must allow to model disruption, since a disrupt operation can result
from the end-based refinement operator, which will be discussed in more detail later
in this section. This is for example not the case fome event structureglow event
structureq36, 38] andstable event structurg478].

Therefore, we choose to define the end-based refinement operatosed bundle event struc-
tures(CBES), which are introduced in Subsection 3.3.2.

4.1. AN END-BASED REFINEMENT OPERATOR ON CBES 59

The definition of the end-based refinement operator differs from the classical definition (Def-
inition 3.17) with respect to the conflict relation: Only the termination events of the refining
processes are used in our approach to define the conflict relation whereas every event (or every
initial event) is used in the standard approach. More precisely, in the classical definition we
have: Ife is in conflict withe’ ande (¢’ respectively) is refined té, (€. respectively), then

every (initial) event off, is placed in conflict with every (initial) event &, and vice versa.

In our definition, we place every event &f in conflict with the termination events &}, i.e.

they may only be executed if they are executed before every termination ev@nt Ahd, of
course, we put every event 8f in conflict with the termination events éf. By this approach,

we guarantee that a choice is triggered by the ending of actions, i.e. by a termination event of
the refining process. Formally:

Let 7, Obs, Act , andVar be defined as in Section 3.2.

Definition 4.1 (Refinement Operator) Let A C Obs. Then define .
Ref€, : CBES x (A — CBES) — CBES by Ref(€,0) = (E,~»,+,1) where

E = {(e,é)|e€ ENl(e) € ANéE Eyurep} U
{ere) € B x E|1(e) ¢ A}
~ = {((e1,€1), (e2,82)) | (e1 ~ e2 A(l(e2) € A = &3 € exit(0(I(e2))))) V
(e1 =ea Nl(er) € ANEy # ey N (€1~ €2V €2 € exit(0(l(e1)))))}
S = {{e} X X () | e) € AN X ey 6} U
{(X(e,0) [IX : X —en(l(e) e A :> é € init(0(l(e))))A
X—{(e.e)eF|cdeXAe)e A= cexit(0i()))}
) l(e) if l(e) ¢ A
l((e,€)) = q louen(@) ifl(e) € ANlguey(€) # v/
T if i(e) € AN loaey(€) =/

Lemma 4.2 The refinement operatdtef© is well defined, i.e. it yields elements@©BES.

Proof: The approximation closedness B&f¢ (£, 0) follows from the approximation closed-
ness ofRef* (€, 0) (Lemma 3.18), since they do not differ in their bundle relations. The other
conditions are easy to check. O

Example 4.3 Figure 4.2 illustrates how the refinement operat®&e(“) behaves. For a better
understanding, we augment the examples by process term descriptions of the systems (see Sec-
tion 3.2). Furthermore(a — &;5) denotes the function froqu} to CBES that maps: to &;5.

The effect of the classical (start-based) action refinement operator on this example is depicted

in Figure 3.4.

Figure 4.2 illustrates that the events labeled dayare not in conflict with each other iﬁ+
Only the events that correspond to the terminatio#gf(they are labeled by in £) dlsable

the other actions. In other words, both actiomsn &7, may start and execute their actions
independently until one of them terminates.

Remark 4.4 Our refinement operator allows the modeling of a disrupt mechanism as it is used,
for example, in LOTOS [32] and in Chapter 3: Suppose the process descrilgahy disrupt

60 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

+ e +
ET Era Erp = Ref(y(E7, (a — &12))
Go- - - - - o0 ai a1 ax
N 7/
N e
5] a2 I a2
7/ > N
/// \\\
vV TS a7
a.0 +a.0 ap.az

Figure 4.2: End-Based RefinementGBES (1)

o~ o~

the process described I8, i.e. £ [>&; where[> is introduced in Definition 3.17. Then let
£1FE° be the process that is obtained by taking a choice betwigeand the event structure

o~

£® from Figure 4.4 where label does not appear i&;. Then the event structurés[>E&, and
Ref{,y (&1 + & (a — &)) posses the same behavior.

4.2 Equivalences

First, we give a short overview of some standard equivalence notions and argue that they are
not reasonable for an end-based action refinement operator, since they are not preserved by
the end-based refinement operator. Then we introduce new equivalences that are preserved
by the end-based refinement operator. These equivalences are examined with respect to their
discriminating power. Finally, the issue concerning the coarsest equivalence with respect to
trace (respectively bisimulation) equivalence is discussed.

4.2.1 Standard Equivalence Notions

Traceandstrong bisimulation equivalencésr CBES are defined as follows.

Definition 4.5 (Trace Equivalence) Two&, £’ € CBES aretrace equivalendenoted by ~;
g, if and only if the transition system&EBES, Act,/,,—,€) and (CBES, Act /,—, &)
(where— is defined in Definition 3.16) are trace equivalent (Definition 2.4).

Definition 4.6 (Strong Bisimulation Equivalence) Two £, &’ € CBES are strong bisimilar
(or strong bisimulation equivalent), denoted y~;, &', if and only if the transition systems
(CBES, Act,/,—,€) and(CBES, Act,/, —, £') are bisimilar (Definition 2.5).

The cbes obtained frorfu + 0.0)|| (4} (a||pa.c), depicted in Figure 3.5 (and in Figure 3.3), and
the cbes obtained from0 + a.c.0 and fromb.0 + a.c.0 + «.0, depicted in Figure 4.3 are all
trace equivalent, whereas only the first and the third one are strong bisimilar.

Further equivalences that are based on interleaving [86, 89, 170] can be defined in a straightfor-
ward manner for cbes if one uses their corresponding transition system.

4.2. EQUIVALENCES 61

b.0 + a.c.0 b.0+ a.c.0+ a.0
b b
A pot
7 A / | N
g \\C d | \\C
aF——0 CLC(—‘;O
\\ | //

a

Figure 4.3: Trace Equivalent but not Bisimilar cbes

ST semantics, originally defined in [92], turns out to be the coarsest congruence for action
refinement in the start-based setting [6, 85, 96, 173]. In the ST-approach, actions are not con-
sidered to be atomic, as in standard interleaving semantics. Instead, the execution of an action
is split into the two distinguished events of the start and the ending (termination) of an action,
where the ending is uniquely related to its start.

Further true concurrency equivalences are:

Step equivalenceHere, a finite multiset of actions, i.e. a finite set of events, may be executed
at once, as opposed to the interleaving approach, where only single actions may be executed
at once. In [152] trace and bisimulation versions of this equivalence have been proposed.

Pomset equivalencddere a finite partially ordered set of events, more precisely a pomset
[153], may be executed. Pomsets are equivalence classes with respect to the action label-
ing and the order. The order of a pomset corresponds to the causality order of the events. In
[33] trace and bisimulation versions of this equivalence have been proposed.

History preserving equivalencéiere, the causal order in which events have been executed is
additionally taken into account. There are different versions depending on to what degree
the past information is taken into account. There existak, normabkndhereditary history
preserving bisimulationf23, 67, 91].

[91] examines which equivalence notions are preserved by a start-based action refinement oper-
ator in a configuration structure setting. There it is shown that pomset trace equivalence, history
preserving bisimulation and hereditary history preserving bisimulation are preserved by a start-
based action refinement operator. As mentioned before, the ST-equivalence is also preserved by
a start-based action refinement. All other equivalences of this subsection are not preserved by a
start-based action refinement.

The action refinement operator in an end-based setting is not compatible with the equivalence
notions mentioned. This can be seen as follows: In the case of the end-based refinement operator
(Ref©) any equivalence that implies trace equivalence (Definition 4.5) and that identdies

a + a (like all the equivalences mentioned do) is not preserved. This is the case, because
&r.; from Figure 4.4 antijgf from Figure 4.2 are not trace equivalent. Resource bisimulation

[58, 59], which is defined on transition systems, is the only equivalence known to us that does
not identifya + a anda.

In the following subsections, we present new equivalences which are indeed congruences for
our refinement operator. For simplicity, we introduce the following definition, which determines

62 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

& &1 Erey = Ref(1(E% (a — &E12))
oa ay ay
(05} (05}
v r
a.0 ap.az

Figure 4.4: End-Based RefinementGBES (2)

gb+ gba ga\b Sint
b b as ob b oo - pa
a /\ a I a a Ii/ o \j b
b.(a.0 + a.0) b.a.0 a.0]|b.0 a.b.0 + b.a.0

Figure 4.5: Some Closed Bundle Event Structures

the initial events of an event structure with respect to their labels.

Definition 4.7 Defineinit, () = {e € init(€) | I(e) € A}, whereA C Act,,. Furthermore,
we writeinit, (£) as a short hand fomit,, (£).

4.2.2 ICT-Equivalence onCBES

The first considered equivalence notion is derived from trace equivalence. An equivalence no-
tion which is a congruence for the end-based refinement operator has to distinguish &tween
from Figure 4.2 and’® from Figure 4.4. One way to achieve this is to guarantee that the number
of the initial events which are labeled by the same action have to be equéland&’ can only

be equivalent ifinit, (£)| = |init,(E)| for all a € Obs. Moreover, we also have to guarantee a
relationship between the numbers of the initial events with the same label of the corresponding
remainders of the event structures. For example, consideand£% from Figure 4.5. Then
(b,a1,a1) € T(Ref?a}(é'b*, (a — &12))) but (b,ay,a1) ¢ T(Ref?a}(é'b“, (a — &12))), where

T(€) are the traces (Definition 2.4) of the derived transition systegh(@bmpare with Defini-

tion 4.5). HenceRef(,,(E", (a — &12)) and Ref(,,(E™, (a — &£12)) are not trace equivalent.

Further difficulties become evident by a closer lool€dt and£™ from Figure 4.5:£%° and
£ satisfy our above criterion, b, b, a,) € T(Ref{,,(€™, (a — &12))) and(a,b,a1) ¢
T(Ref?a}(ga‘b, (a — &12))), i.e. our tentative relation is not a congruence for the refinement.

Therefore, we introduce thaitial event tracesof a cbes. They consist of an event execution
sequence and of a subset of the initial events for every execution step. Twclaes &,

4.2. EQUIVALENCES 63

(c/’wl (c/’w2
Qo - —__ o a Qo — - - _ o0 a
biib bT *ib

Figure 4.6: Non ICT-Equivalent cbes

gbl 8b2
Qo —--- 00 a o ___~a
\\jb b I/ \\jb
a.0 +a.b.0 a.b.0 +a.b.0

Figure 4.7: ICT-Equivalent cbes

are considered to be equivalent if every initial event trac& afan be mapped by an injective
function f to an initial event trace of, and vice versa. Furthermore, this function has to be
labeling preservingi.e. Ve, € E : l1(e;) = l2(f(e1)). The equivalence is precisely given by
the following definition, where,; is defined in Definition 3.14.

Definition 4.8 (ICT-equivalence) Let £ € CBES. Then thenitial event trace®f £ are de-
fined byT"(€) = {(e;,Vi)i<n | n € NATEy, -+, Ens1 : E0 =EAVE <N : &eg = Ei1 Ayi €
Pin(initops(&i)) }-

Two cbes£ and &, are initial corresponding trace equivaleiCT-equivalent), denoted by
E ~ror & if

o for every(e;,v:)i<n € T*(E) there exists an injective, labeling-preserving functjpn
(Uicn (i U {ei})) — E" such that(f(e;), f(7i))i<n € T*(€’) and

o for every(el,v!)i<, € T™(E’) there exists an injective, labeling-preserving functjon
(Uzgn(f)/z/ U {6;})) — F such that(f/(e;), f,<7;))z§n c Tzc((c:)

E and &, and alsag?® and £ from Figure 4.5 are not ICT-equivalent. In addition, the
event structures from Figure 4.6 are not ICT-equivalent either. This holds, sirft# iit is
possible that both events labelediblyecome enabled, which is not the casef6t. Examples
of ICT-equivalent event structures are given in Figure 4.7 and in Figure 4.8.

Proposition 4.9 Two ICT-equivalent cbes are also trace equivalent, g C ~;.

Proof: It follows from the fact that every trace is also an initial trace, where the second compo-
nent is always empty. O

64 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Theorem 4.10 ICT-equivalence is a congruence for the refinement oper&tgf, i.e.£ ~;or
E'NVa € A:0(a) ~icr 0'(a) implies thatRef$ (£, 0) ~rcr Ref$(E',0"). Moreover, it is also
a congruence for the operatofs T, 7, [>, |4 and\ A, which are defined in Definition 3.17.

Proof: The proof is given in Subsection 4.4.1. O

We are also interested in a congruence which implies strong bisimilarity (Definition 4.6). ICT-
equivalence does not yield such an equivalence.

Lemma 4.11 Strong bisimilarity does not follow from ICT-equivalence.

Proof: The cbest®! and£® from Figure 4.7 are not bisimilar but ICT-equivalent. 0

4.2.3 Ul-Bisimilarity on CBES

An equivalence that is derived from bisimulation equivalence and that is a congruence for the
end-based refinement operator has to relate the initial events, as it is done by ICT-equivalence.
Therefore, we extend the definition of a bisimulation relation by a third component which de-
notes a bijection between the initial events.

Definition 4.12 (Ul-Bisimulation) A unique initial bisimulation(UI-bisimulation)R is a sub-
set of CBES x CBES x (U — U) such that wheneveE,, &,) € R, then

[J dom(f) = iIlitObs(gl),
e fis alabeling-preserving bijection betweatitops(&;) andinitops(E2),

e ¢; € init(&) implies that there is, and f’ such that/;(e;) = la(e2) and f U f’ is an
injective function and&.,, £pe,), f') € R andli(e;) € Obs = e = f(e1)

e ¢y € init(&;) implies that there ig; and f’ such thatl;(e;) = lx(ex) and f U f' is an
injective function and&,, £pe,), f') € R andly(ez) € Obs = e = f(e)

We say that, & are Ul-bisimilar (or Ul-equivalen}, denoted by, ~y; &, if and only if
there is a Ul-bisimulatiomR and anf : &/ — U such that &y, &, f) € R.

The event structures from Figure 4.7 are not Ul-equivalent, whereas the event structures from
Figure 4.8 are Ul-equivalent.

The condition in Definition 4.12 thatU f” has to be a function ensures that the identification of
the initial events of; is preserved after the execution, ife] (initows(£1) N initops(Eifey))) =

f" T (initops(E1) Ninitops(&1jey)))- The condition thay U f' is aninjectivefunction guarantees
that an initial event’ of &, is kept after the execution if and only ff ¢}) is kept after the corre-
sponding execution, i.} € initows(£1)Ninitows(Eife,)) < f(€]) € initops(E2)Ninitops(Eafes])-
This means that the identification of the initial event€ois also preserved after the execution,
i.e. f_l [(initObs(Sg) N initobs(gQ[ez])> = f,_l [(initObs(é'g) N initObs(E/‘Q[eﬂ)).

4.2. EQUIVALENCES 65

a.b.0+¢b.0

Figure 4.8: ICT-Equivalent and Ul-Equivalent cbes

Proposition 4.13 Two Ul-equivalent cbes are also strong bisimilar, kg;; C~s.

Proof: It follows from the fact that every Ul-bisimulation restricted to its first and second
component is a bisimulation. O

Theorem 4.14 Ul-equivalence is a congruence for the refinement oper&igf‘, i.e.£ ~y;
E'NVa € A:0(a) ~ys 0'(a) implies thatRef (€, 0) ~yr RefS(E',6"). Moreover, itis also a
congruence for the operatof +, 7, [>, ||+ and\ A, which are defined in Definition 3.17.

Proof: The proof is given in Subsection 4.4.1. O

4.2.4 FUI-Bisimilarity on CBES

Ul-equivalence has to preserve the correspondence of all initial events. This condition is not
necessary in order to obtain a congruence that is contained in strong bisirhildiigysufficient

to guarantee that the correspondence of any finite subset of the initial events is preserved. This
is formalized by the following definition.

Definition 4.15 (FUI-Bisimulation) A finite unique initial bisimulation{FUI-bisimulation) R
is a subset ob€BES x CBES x (U — U) such that wheneveg€, &, f) € R, then

e dom(f) = initops(&1)
e fis alabeling-preserving bijection betweetitops(€;) andinitops(Es)

e ¢; € it(&) AL € Pry(initons(€1)) implies that there exists, and f’ such that
l1<€1) = l2(62) and (51[61],82[62],f/> € R and ll(el) € Obs = €y = f(el) and
ST (I Ninitops(E1fey))) = f/ T Tand f~1 [(f(1) Ninitops(Eapey)) = f1 T f(I)

o ¢y € init(E) A1 € Prin(initons(E2)) implies that there exists, and f” such that; (e;) =
lg(@g) and (51[61]752[62],f/) € R and lg(@g) € Obs = €y = f(@l) andf r (f71<]) N
nitops (E1jey))) = f 1 f7H(I) and f~1 [(I Ninitops(Eopey))) = f71 11

We say that,, & are FUI-bisimilar (or FUI-equivalen}), denoted by, ~ i1 &, if and only if
there is a FUI-bisimulatiorik and anf : &/ — U such that &, &, f) € R.

2Nevertheless, Ul-equivalence is of interest if infinite events can be executed at a single execution step.

66 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

ao ao ao ao A |nf|n|te|y a ao a,o CLO st Inflnlt6|y
GI
(= (a.0)]lpz), x) ((z = (a.0)[|pz), (a.a.0)[[pz)

Figure 4.9: FUI-Equivalence Differs from Ul-Equivalence

Remark 4.16 Obviously, any cbes with a finite set of events is Ul-equivalent if and only if it
is FUl-equivalent. Furthermore, Ul-equivalence differs from FUI-equivalence, since the event
structures from Figure 4.9 are FUI-equivalent but not Ul-equivalent.

Proposition 4.17 Two FUIl-equivalent cbes are also strong bisimilar, k€z;; C~y,.

Proof: It follows from the fact that every FUI-bisimulation restricted to its first and second
component is a bisimulation. O

Theorem 4.18 FUI-equivalence is a congruence for the refinement oper&tgr, i.e.£ ~py;
E'NYa € A:0(a) ~pyr 0'(a) implies thatRef (€, 6) ~pyr RefS(E',0"). Moreover, it is also
a congruence for the operatofs +, 7, [>, |4 and\ A, which are defined in Definition 3.17.

Proof: The proof is given in Subsection 4.4.1. O

Remark 4.19 In Theorem 4.10, Theorem 4.14 and Theorem 4.18 the general parallel operator
is allowed, i.e. no restriction on the synchronization set is made. But this operator has to be
handled carefully, since it is not clear if it matches the intuitive meaning for an end-based
setting: It is reasonable that the parallel operator introduces some start-based choices. For
example, we expect that the expression- a)||(,1a.0 can only start one-action whereas its
corresponding event structure, which is isomorphi€todepicted in Figure 4.2, can start two
a-actions.

This problem can be solved by the requirement demanding that actions which can be potentially
refined must not appear in the synchronization set. A solution where no restriction on the
synchronization set is necessary is obtained if one considers start-based together with end-
based disabling in a single setting, which is done in Chapter 7.

4.2.5 Comparison of Equivalences

First, the connection between ICT-equivalence, Ul-equivalence and FUI-equivalence is pre-
sented.

4.2. EQUIVALENCES 67

~UI

~FUI

7N\

~ICT ~b

N

Figure 4.10: Relations Between the Equivalences

Proposition 4.20 If two cbes are Ul-equivalent, then they are also FUI-equivalent and if two
cbes are FUI-equivalent, then they are also ICT-equivalent, i.e.

~urC~rurC~jor -

Proof: The proof is given in Subsection 4.4.2. O

From Proposition 4.17 and Lemma 4.11, we obtain that the second inclusion in Proposition
4.20 is strict. The strictness of the first inclusion follows from Remark 4.16. From Lemma 4.11
and from the fact that anda + a are bisimilar but not ICT-equivalent, we obtain that ICT-
equivalence is not comparable with strong bisimilarity. Furthermore, all equivalence notions
from Section 4.2.1 can not be containechino. Consequently, they can not be contained in
~y1 orin ~pyy, since they identifyr anda + a. All connection between the equivalences that
have been introduced is summarized in Figure 4.10: If two equivalences are connected via a
line, then the lower one identifies more elements than the upper one.

4.2.6 Coarsest Congruence

In this subsection, we define the coarsest congruence for the refinement op&yatevith
respect to strong bisimilarity. It is different from FUI-equivalence, i.e. FUI-equivalence is not
the coarsest congruence with respect to strong bisimilarity. Furthermore, ICT-equivalence fails
to be the coarsest congruence with respect to trace equivalence.

Definition 4.21 Define~.C CBES x CBES by &; ~. & if and only if VA C Obs : V0 :
A — CBES : Ref(&E1,0) ~p Ref$(E2,0).

Proposition 4.22 The relation~.. is the coarsest congruence for the refinement operatgf
with respect tov,,.

Proof: The proof is given in Subsection 4.4.3. O

Unfortunately, FUI-equivalence is a proper subsetgfi.e. FUI-equivalence is not the coarsest
congruence foRef“. This is illustrated by the following example.

68 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

S
IS
>§
S
S

S
Q

Figure 4.11: Counterexample of Coarsest Congruence

Example 4.23 Consider£<! and£<2 from Figure 4.11. They are not ICT-equivalent. Therefore,
they are not FUI-equivalent either, since after executing actipithe number of the initial
actions does not coincide. B&t! ~. £, which can be seen as follows. dfis not refined,

then both cbes, which are bisimilar, keep unchanged under the refinement. Now suppose that
a is refined. Then we do not have a problem to find a corresponding bisimilar process for
every execution step as long as the refinement dbes not terminate. When the refinement
terminates, the process executedf ‘£’ executes this, then €?’ can execute its shown

on the left to yield a bisimilar cbes. 1E%?’ executes this, then €¢!’ can execute its shown

on the right to yield a bisimilar cbes.

In addition, ICT-equivalence is not the coarsest congruenct with respect to-,, since
~. Is a congruence foRef“ and~.C~,C~; but~.Z~;cr by Example 4.23.

4.3 Discussion

The reason why~;-7 and~ gy fail to be the coarsest congruences ftiaf© stems from the

fact that Ref® renames events labeled Ry to 7. This renaming is necessary for the well-
definedness of this operator, since a definition that removes these events will not result in an
element of CBES or will not respect the intuitive meaning.

Nevertheless, it seems reasonable to have a refinement operator without such a relabeling. This
corresponds to the philosophy that the ‘final’ executed action terminates the process [14, 28].
This kind of action refinement operator can only be defined in event structures where it is
possible that sets of events rather than single events can disable other events. Therefore, we first

4.4. PROOFS 69

establish such a kind of event structures in Chapter 5 before we examine process algebras with
an end-based choice operator. In Chapter 5, the new event structures are considered only in the
context of disruption. The action refinement operator with the end-based choice view is applied
on the new event structures in Chapter 6.

4.4 Proofs

4.4.1 Proof of the Congruence Results

We introduce an event-based refinement, which is used to verify Theorem 4.10. This refinement
differs from Ref“, because it assigns event structures to each event and not only to action names.

Definition 4.24 Ref*, : CBES x (U — CBES) — CBES with Ref* (£,9) = (E, <, =, 1)
Where
= {(e;é)|ece ENl(e) e ANé € Eyi} U
{(e;e) e ExX E | l(e) ¢ A}
o= {((er,€1), (€2,62)) | (1~ ea A (l(e2) € A = &5 € exit(V(eq)))) V
(e1 =ea Nl(e1) € ANE # 3 N (61 ~y(e,) €2V €2 € exit(P(er))))}
{({e} x X' (e,€)) | l(e) € ANX" —y() e} U
{(,(e,e)) | X X e (I(e) € A :> é € init(d(e)))A
X = {(e, &) € E lee X A (l(e) € A= ¢ € exit(d(e)))}}

) lle) iflle)¢ A
l((e,€)) = { Lo (6) ifl(e) € ANIlye)(e) #/
T if l(e) e AN llg(e)(é) = \/

The advantage oRef is that event execution d’ief (€,9) can be reduced to the event exe-
cution of £ and?, as |t is shown in the following len Iemma

Lemma 4.25 Suppos€ € CBES andd : Y — CBES. Then

Ref*, (€ 9) iflle) ¢ ANe=¢é
R_efi(g, V) [(e.6)] = Ref (&g, Ve = v(e)g]) i lyey(é) =/ Al(e) € A
Refo (€. 0l — D))} i loo(é) # v/ Ale) € A

Furthermore,Ref, (€, U[e — E£']) = Ref*, (¢, V) holds for anye’ € CBES.

Proof: Straightforward. O

In order to simplify the proof of Theorem 4.10 we introduce a variant of the initial corresponding
traces:

Definition 4.26 Let £, & ¢ CBES. Then defind“(£) = {((ei,Vi)i<n-1,7) | 7 € IN A
350, tee 75n . 50 =ENVL S n—1: gz’[ei] = 5¢+1 A \V/] S n o9 € me(initObs(Ej))}.
Furthermore, defin€ ~;-r &' if

70 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

o for every((e;,%i)i<n—1, 1) € T7(£) there is an injective, labeling-preserving function
folmUUicn1 (i Udei})) — E"suchthat((f(e;), f(7i))i<n—1, [(7)) € T*(E")

e and symmetrically as in Definition 4.8.

Lemma 4.27 Theinitial corresponding trace equivalenceincides with the equivalence de-
fined in Definition 4.26, i.ex~;cr=~1c7.

Proof: Supposee;, v:)i<n € T*(E) and€ ~yor E'. Then((e;, vi)i<n, 0) € T(€), and so
there isf : (U<, (7 U {ei})) — E' such that((f(e:), f(7:))i<n,0) € T*(£’). This implies
(f(e), f(7:))i<n € T™(E"), as required.

Now suppos€((e;, Vi)i<n—1,Vn) € Tic(g) and& ~ror €. We proceed by making a case
analysis:

~» = 0: Similar to the above reasoning.

Yo 7 0: Lete, € v,. Then(e;,vi)i<n € T(E) and so there is a functiofi : (U, (: U

{ei})) — E'suchthat f(e;), f(7:))i<n € T*(E"). This implies((f(e:), f(7:))i<n—1,7m) €
T°¢(€') which completes the proof, singg,_,, (v; U {ei}) = 7 U U,y (7 U {ei})- O

Proof of Theorem 4.10: Here, we only present the proof for the refinement oper&igr,
since the other cases are easier.

Let ¥ be a function such thate € E : l(e) € A = ¥(e) = 6(I(e)), and letd’ be a function
suchthatre’ € £/ : l'(¢) € A = '(¢') = 0'(I'(¢')). Obviously,Ref*, (€,7) = Ref% (£,) and

Ref€ (€',9'") = Ref(E',0'). For simplicity, we write€ for Ref¢, (&, 6) and&’ for Ref(£',6')
respectively.

Suppose((e;, é;), i)i<n € T(€). The case in which an element f¢(£’) is taken follows

by symmetrical arguments. As an immediate consequence of Lemma 4.25 we know that there
existéy, ..., E,1 anddy, ..., 9,41 such that for < n we have

(lile)) & A= (Eifey) = Eir1 ANU; = Vig1)) A
((Li(e:) € ANy (&) = V) = (Eifes) = Ei1 A Vilei — Diles)] =
((li(ei) € ANly,e(&) # V) = (& = Eipa AN iler — Vi(ei)ey] = Vi)

Definel = {i € {0,---,n} | l(e;)) ¢ AV ly,e)(&) = /}. Assume{ky,....kj-1} = 1
andk; < k1. Then we haveg,, = & andé’kj[ekj] = &,,,. Furthermore, defing,, =

<Ur‘nin{kj,n}<7T1(5/i) U {ei})> N initops(E,) for j < |I| wherek_; = —1 andkj; = n + 1.

l>kj71
Hence, ((ex,, Yk,)j<|1]: Ynt1) € Tic(é). From& ~;or & and Lemma 4.27 we know that
there exists an injective, labeling preservifig: (vn+1 U U 5(, U {ex;})) — E’ such

that ((f(ex,), f(3w))i<itts (1)) € T(E").

Now definel® = {j € {0,---,n} [e =¢;} fore € Ewithi(e) € A. Let{kf, ..., k{7, } = I°

with kf < kf,,. Defineyj. = U;fz;]j’j’n}{é | (e,8) € 7 A ly,(e)(¢) € Obs} for j < |I°|, where

4.4. PROOFS 71

k¢, = —landkf; = n + 1. Furthermore, we havé(e) = 6(l(e)) andﬁk;(e)[éke] Ve, (€).
Hence,((eki,yki)mlq,%3“) e T (0(l(e))). Fromé(l(e)) ~rcr 0 (I(e)) and Lemma 4.27 we
know that there exists an injective, labeling preservifig (v;, 1 U U, 1) (7, U {éxc})) —
Ep(1(ey) such that((f(éxe), f* (v))jcirers S (1)) € T(E'(1(e)))-

Definef : (U, (% U{(es, &)})) — E’ as follows:

fledy - { Y} i) ¢4

(f(e), fe(é)) otherwise °

Then itis easily seen thdtis an injective and labeling-preserving function. Furthermore, define
& =E& 0, =17 and

o {%v ey EU(fe)) & AV Lysien (f(&)) =V
i+1

I s otherwise
2, = { v it U(f(e) ¢ A
o Vil f(e:) — 0i(f(€:))seiery] otherwise
& andv’; are well defined, becaus(efe(ék;),fe(y,%))jwq,fe(ygﬂ)) c T"C(e’(l(e))) and
((F(ex,), F(m))jeiats f(min)) € T(E'). More precisely, for anyi and anye € E with
l(e) € A, we haveg = 5,; (e andﬁ;,? (f(e)) = 19;&(']6(6))[]06@16;)}'

Furthermore, defing! = RefA(E{,Gg) fori < n-+1. Then, = £ and&;,, = E’f(.y Which
follows by Lemma 4.25.

Suppos€e, é) € 4. Letm € {0,...,|I|} such that,,_, < ¢ < k,,. Hence,e € ~,,, which
implies f(e) € f(m,,) C init(&;,). And so from the definition of we getf(e) € init(&]),
sincek,,,—1 < i < ky,. Furthermore, if(e) € A, then taken < |I¢| such thatt, |, < i < kS,.
Hencege € v; ,WhICh impliesf<(¢) € f(v;,,) € init(J. (f(e))). And so from the definition

of ¥/, we getf(é) € init(v(f(e))). Therefore f(e, é) € init(E]).
Thus, we have showty (;, &), f(3:))i<n € T(E'), which completes this proof. O

Proof of Theorem 4.14: We only present here the proof for the refinement oper&tgr,
since the other cases are easier.

Let R andR, be unique initial bisimulations such th@t(a), ' (a), g.) € R, and(E,&’,g) €
R. Then define

RefS(€.0),)| 3f - (£,€.f) eR A

(6) € ANE ¢ init(E)) = () 0(1(€))) A
(@) e ANE ¢1D1(~) = 0'(&) = 0'U())) A
Ve € E:3f.: (e € nita(§) = (I(e), V' (f(e)), fe) € Riey) A

Fle,é) ~ { (e), f(e)) ifee 1n1t(5))/\

Rier =1 (Bef(€,D),
-

/ .
(F(e), f.(¢)) if e € inito(€

72 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Supposé Ref* (£,7), Ref,(£',1), f) € Rpes and letf, f. be the corresponding functions.

Obviously, f is always an isomorphism betwegtitoss(Ref (£,1)) andinitops(Ref, (£/,7"))
in the above definition. Furthermorgjs labeling-preserving.

In the following, we will show thatRr.; is a Ul-bisimulation. Therefore, suppose ¢) €
init(Ref, (€,1)). We proceed by making a case analysis.

I(e) ¢ AVl (é) =+/ From Lemma 4.25 we gefef*, (€, 79) (ed)] = Ref* (,9). Since
(E,€.f) € R there is¢ and f’ such thati(e) = I'(¢) and (5[61,5[’6],1"’) € R andl() €
Obs = f(e) = éandf U f is an injective function.

Let f, = { ?ﬂ Icf)té(ggw:isce”\ ¢ ¢ init(€) . Definef’ as follows

J?/(el é/) { ((/) (/)) if ¢ € init(é[ej) VAN l~(e’) € ObS\A~
’ (&) if ¢ € inita(Ep) A€ € initops(V(e'))

Then f’ and f coincide ONinitops(Ref*, (€, c 9)) N initops (Ref, (€,9) (), SinCe we have
f 1 (initops(&E1) N mltObs(El[el) = f"1 <1n1t0b5<51) N initops(E1fe,1)). Thus, f'U fis a
)=

function. Supposéf’ U f)(¢',&) = (f'U f)(e”,&"). Then(f' U f)(¢') = (f' U f)(e") and
thereforee’ = ¢”. The equallty o’ andé” can now be easily derived from the injectivity of

f"orof f. Thus,f’ U f is an injective function.

Supposd(¢') € A, thene’ ¢ init(€ %) = J(e/) = 0(I(¢')). Additionally, we conclude from
e ¢ init () that f'(e') ¢ init(£'), sincef U f' is injective. And so we get’ ¢ init(€ °) =

I (f1(e) = 0'(I'(f'(¢)- Thus,e’ € init(E) Al(e) € A = (I(), 0'(f'(e)), fir) € Ry
Hence,(Ref*, (€, 9), Ref,(El;, V), [') € Rey by definition.

Moreover,i(e) ¢ A impliesi’(¢) ¢ A. From Lemma 4.25 we obtain th&/* (£/,,7') =
Ref (E,7) o) Furthermorel . s (¢, €) € Obs = f(e,e) = (f(e), fe)) = (¢,é).

Now consider the case whéte) € A A l;, (¢) = v/ Aé € init(d(e)). Then we have
(9(e), 7' (f(e)), f) € Ry, Hence, there existse init(J'(f(e))) such thaty, ;.. (é) = /.
ThusRef* (£, V') = Ref (E e V() = V' (f(e)) = Ref,(E',9)15(e),9) by Lemma
4.25. This completes the case, sifigg. z j (e, €) & Obs.

I(€) € ANl (é) # /: By Lemma 4.25 we geRef* (£, 0)(c.cy) = Ref, (€, e — D(e)a)).
Furthermore,(i(e), V'(f(e)), f.) € Ry, And so there is and f/ such thatl;(¢) =
Ly ey (€) and(ﬁ(e)[é],ﬁ’(f(ez)[é], fe) € Ry, andi;,(é) € Obs = é = f/(é) and f. U . is
an injective function. Defing’ by

) (f(e), f(e)) if € € initops Eg) I(e) ¢ A i
fle,é)~ < (f(e), fu(&)) ife e init4(€) A€ € in 1t0b5(19(e’)) Ne #e
(f(e), fi(¢")) if € € initops(V(e)jg) Ne' =€

Then f’ and f coincide oninitops(Ref*, (£,) N initows(Ref (€, 9) (). Thus, f U fis
a function. Supposéf’ U f)(¢/,¢') = (f U f)(e”,¢"). Thenf(e') = f(e”) by definition,

4.4. PROOFS 73

hencee’ = ¢". If I(e I(¢/) ¢ A, thené’ = ¢’ immediately follows. Ifi(e’)~e ANe # e,

then f(¢’, A’) = f'(¢/,¢), and so¢’ = ¢" follows by the injectivity of f. Now suppose

I(e) e A/\ ¢ =e. Then(fé U f)(é) = (fLU fe)(€”), henced’ = é”. Therefore,f' U f is

an injective function.

Thus,(R_efZ(é Dle — J(e)g)), Ref*, (' [f(e) — I(f(e))al), f') € Rres by definition.

Moreover,l(e) € A5, (6) #VAé€E init(J(e)) implies thatl’(f(e)) € ANrpen(€) #

/. And so by Lemma 4 25 we ha\IEfA(E’, ﬁ’[f(e) — 9(f(e)gl) = R_efi(c‘,”, V') [(£(e).6)]-

This completes the case, Siﬂ&&z(gﬂg)(e, é) € Obs = f(e,é) = (f(e),é).
The last condition of the Ul-bisimulation can be derived by symmetrical arguments. Thus, we
proved thatR x.; is a unique initial bisimulation.

Obviously, Ref, (£,70) = Ref(€,0) wheneveNe € E : l(e) € A = J(e) = 0(I(e)). Define

(e, &) ~ { (g(€e),g(e) if ¢’ € initops(E) Nl(e) ¢ A
T (9(€) quen(€)) if el e init(E) Al(ef) € ANE € initos(G(I(€')))

Then(Ref(&,0), Ref4(E',0'), §) € Rrey, which completes this proof. 0

Proof of Theorem 4.18: We only present here the proof for the refinement operatgf, the
other cases are easier.

Let R andR, be unique initial bisimulations such th@t(a), ' (a), g.) € R, and(E,&’,g) €
R. Then define

,Ref (&, 0),) | 3f : 3 € Ppin(inita()) : IF U — (U = U) :

(€) € A=d(e) = 0(i(e)) A (¢ € nit(E) = F(€) = gjz)) A
(@) e A= 0@ =0'(E) A
(€)), F'(€)) € Rie)) N
Ve e 1n1t() : ¢ A= F(€) = consfg) A
Fle,é) ~ { l(J (e),F(e)(é)) if (e, €) € initops(Ref(E, V))

ndefined otherwise

(€,
(ve
(ve'
(ve
(

o,

First, we observe that for allRef,(£,9), Ref,(€',7'), f) € Rpey We have: f is always an
isomorphism betweemitops(Ref* (£, 7)) andinitops(Ref, (£, 7)), [is labeling-preserving
and

) = (1) F(FH() 7€) (4.1)
wheref, F are its corresponding functions. This holds, sifi¢¢g ' (¢/), F(f~1(e)) (&) =
(¢,).
Suppose Ref* (£, 1), Ref (€',7), f) € Ry, let I be the corresponding set and Jef be
the corresponding functions.

In the following, we will show thatR ., is a FUI-bisimulation. Therefore, suppoeé) €
init(Ref*,(€,9)) AT € Pyip(initoss(Ref,(€,7))). We proceed by making a case analysis.

74 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

I(e) ¢ A: Thené = e and from Lemma 4.25 we g@ef* (£, 7). = Ref* (£, V).

Define I’ = I U m(I). Since(&, €, f) € R AT € Pyiy(initops(€)), there ise’ and f'
such thatl(e) = I’

(e)and(g’[e],é’[’e,],f’) € Randl(e) € Obs = f(e) = ¢ andf |
(I' Ninitows(Eg)) = f 1 I'and f~1 | (f(I') Ninitows(El) = f~ 1 f(T).
We havel(e) ¢ A impliesl’(¢) ¢ A. And so by Lemma 4.25 we obtaifte/*, (£/,, V') =
Ref*, (£',9") (e - Furthermore, the labels 6, ¢') and(e, e) coincide andp, ;- z 5 (€. €) €
Obs = f(e,e) = (f(e), f(e)) = (¢/,¢).
Now we defineF” and f’ by
Fle") = consg) if I(€”) §Z ANe" € init(€)
F(e) otherwise
filen e = { (P, PU@) T () € niton(Bef"(Ei9.0) (4

undefined otherwise

(4.2)

Then(R_dZ(E’[e],@),R_d;(é[’e,], V'), ') € Riey Wherel’ N initops(Ejy) is its corresponding
set andf’,F” are its corresponding functions.

Furthermore, from/ | (I’ N initows(€)) = f' | I’ we obtain thatf’ and f coincide on
In initObs(R_ef:(E, 19)[(67@)]).

Supposge”’, &”) € initops(fef, (£, S ") (ere))Nf(I). Then from (4.1) and from the fact that
! [(f([’)mmtObs(S[e,])) = (I’) we obtain the following equatiofi ~* (", ") =
(f/ 1(///) F/(f/ 1(I//)) (N)) (1(6///)’F(f71(6///)) (A//I)) _ f' (" ’\///) Wthh

completes this case.

I(e) € ANy ((é) = v: By Lemma 4.25Ref (€,0)(cey) = Ref (£, 0[e — D(e)g)) =
Ref (8[€]7)
Define I’ = Iy m (!))
such thati(e) = I'(¢/) and (5[61,5[6/]) € Randl(e) € Obs = f(e) = ¢ and f |

). Since(€,&',f) € R AT € Ppin(initoss(€)), there ise’ and f’

) a
(I’ ﬂlnltObs(S[e) = f'1I'andf* (F) ﬂinitObs(S’e,) = frt I ().

J'(e

V' (e’

Furthermore(?(e),
such that; ., (€) = I;

). F(e)) € Ry ande € init (9

e) Hence there existd € init (1)
n(€) andl;,,(€) € Obs = F(e)(é

)-
) =
Ref (€',9") ey Furthermore,
(e,6) € " Obs |mpI|es thatf(e,é) =

By Lemma 4.25 we geRef, (£, V[’ — V'(¢)e1]
the labels of(¢’,¢’) and (e, e) commde anleefe 5 5
(f(e), F(e)(@) = (¢, &).

Now defineF” and f’ as in (4.2) and (4.3). The(e/*, (€, 19) (e.)]> Feef (& ~)[(e/,é/)],f’) =
(Ref (£, 0), Ref (€, 9"), ') € Rer Wherel’ N initows(E) is its corresponding set
and f’,F" are its corresponding functions (please note &hatEg[e]).

) =
)

Furthermore, fromf | (I’ N initows(€)) = f' | I’ we obtain thatf’ and f coincide on
initObs(R_efeA(g, 79)[(@,é)}) Nnlr.

4.4. PROOFS 75

Supposée”, ") € initops(Lef, (&, 19’) (.en))Nf(I). Thenfrom (4.1) and from the fact that
FUT (F(I) Ninitops(€ [e,])) =11 f(I") we obtain the following equatiofi ' (¢, ¢"") =
(f,_1<€,//),F,(f, 1(///)) l(elll)) — (f 1(6///) F(f 1(61/1)) (/l/)) _ f (" A///) WhICh

completes this case.

I(e) € AAly,,(é) #/: By Lemma 4.25 we geRef*, (£, = Ref, (&, J]e — D(e)q]).

i,
Definel® = {¢" | (¢, ") € I}. Sincel® € me(lmtObs(())) and(@(), 0 ((e)),F(e)) €
Ry there exists’ € init(?(f(e))) and f such tha(J(e)[e], "(f(e)er, f) e Ry, and
l§<e>(A) (e (€') @ndi,) (€) € Obs = F(e)(é) = ¢ and () I (I°Ninitops (U(e)[e])) =
f1I¢andF(e)™ [(F(e)(I€> Ninitoss (9'(f(e))en)) = /" 1 F(e)(I°).
From Lemma 4.25 we obtailef“ (£',9'[f(e) — U'(f(e))[e/]) = Ref(£.7)
Furthermore, the labels @ff (¢),¢’) and (e, ¢
fle.&) = (fle), Fe)(e)) = (f(e),&).
Now definef’ by

[(F(e).eN"
) coincide andRiefA(gﬂ;)(e,é) € Obs implies

(" e = (f(e”),F(e”)(é”)) if (e”,e") € initops(Ref” (5[61, N #e .

undefined otherwise

{ (f(e), f(e") if (e”, ") € initops(Llef* (5[61,19) Ne' =e

Then (Ref* (€, 0]e — J(e)a)), (Ref (£, 0'[f(e) — V'(f(€))en)), f')) € Rpey Wherel U

A

{e} is its corresponding set angF” = F[e — f] are its corresponding functions.

Furthermore, fromF'(e) | (I¢ N initops(9(e Jie))) = f | I¢ we obtain thatf’ and f coincide
on initObs(R_efZ(g, ﬁ)[(eyé) NnI.

Supposge”, é”) € initows(Ref (€, 9")e,en) N f(I). Then from (4.1) and from the fact
thatF'(e)~! [(F(e)(I°) mmtObS(ﬁ’(f(e))en)) = f~' | F(e)(I°) we obtainf"~' (e",&") =
(f‘ (///) F/(f (l//)) 1(6/1/)) — (f 1(6"’),F(f_l(el”))_l(e”/)) — f_l(e/”,é”/).
The last condition of the FUI-bisimulation can be derived by symmetrical arguments. Thus, we
have proved thaR . ; is a FUI-bisimulation.
Obviously, Ref*, (€, 9) = Ref4(€,0) whene\{eNe € E:l(e) e A= v(e) =0(l(e)). Define
consye) if l(e) € AN " € init(E)

F(e) =14 aque if 1(e) ¢ ANe” €init(€) and
1 otherwise
[(gle),F(e)(€)) if (e,é) € initops(Ref(E,0)) -
f(e,é) = { undefined otherwise . Then it is easy to check that
(Ref°(€,0), Ref¢(£',0"), f) € Rres, Wherel) is its corresponding set and I’ are its corre-
sponding functions. O

4.4.2 Proof of Proposition 4.20

Before we present the proof of Proposition 4.20, we establish the following lemma.

76 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Lemma4.28 For all &', &,,E,, €0,en—1, f and for all I € Py, (U) and for all FUI-
bisimulationR such thatvi < n — 1 : &1 = &, and (&,&', f) € R there is a function

9 (INU<, initows(&:)) UlU,<,_11ei}) — E' such thal is injective, labeling-preserving and
Vz <n:dg: (51,5[9 (co)] [g(ez_l)],gl) €ERAg | (initops(&E) NI) = g; | (initops(&E;) N 1).

Proof: We use induction on.

n = 0: The result follows immediately if we chooge= f |

n+1: Definel = (I N Ui<n initoss(&:)) U U<, {ei}- Then by induction there exisg :
(In Ui<n 1n1t0bs(i)) UlUi<n_11ei}) — E' such thag is injective, labeling-preserving and
Vi < n:dg g | (initops(&) N I) = ¢; | (initops(&;) N I~) A (&, €L gi) € R, where

& = 5fg<eo>1---[g<ei_1>}-

From (£,,€,9,) € R andI’ € Py, (initops(E,)), Wherel’” = T N initops(E,), We oOb-
tain the existence of’ and g,,+1 such thatlo(e,) = '(¢) and (€n41, &0, gns1) € R
andly(e,) € Obs = ¢ = gn(en) andg, | (f’ N initops(Ent1)) = Gne1 | I andg, ' |
(gn(I') N initops(Eh41)) = Gnin | gn(I'). Define

S gley ifeel .
gle) = { gn1(e) if e € (I N (initows(En1))\I

It is easily seen thaj is labeling-preserving and that it coincides withon initops(&;) N 1
forany: <n + 1.

The injectivity of g can be seen as follows: Suppose thereasmd é such thatg(e) =
g(€) A e # é. Thisis only possible it € I ande € (I N (initops(E,11))\J, Since otherwise
a contradiction to the injectivity of or g, follows. Frome € initops(E,41) We obtain
e € Obs, henceé¢ € Obs by the labeling preserving gf and g, ;. Furthermore, there
existsj < n such that € init(;), thusg(é) € initows(E;). Moreover,j(é) = gni1(e) €
initows (&), ,,). Henceg(é) € initows(£;,) by the definition of the remainder. This implies that
é e initows(En), hencej(é) gn(f)ﬂinitObs(E;LH). From the fact thag(é) = g,,(¢) and that
g,' andg, !, coincide ong, (") N initops(£., ;) We obtaine = ¢, which is a contradiction.

O

Proof of Proposition 4.20: The inclusion~;C~py; is easily seen.

Suppose€ ~pyr € and(e;, v;)i<n € T(E). Define&y = € and&;q = &, fori < n,
which is well defined sincée;, vi)i<, € T°(E). And let R be a FUI-bisimulation such that
(£,€', f) € R. Furthermore, definé = | J,_,(v: U {e;}). Then by Lemma 4.28 we obtain a
functiong : I — E’ such thay is injective, labeling-preserving anvd < n : 3g; : (&, &/, ;) €

R A g [(initops(€;) N 1I) = g; | (initows(E;) N 1), whereE; = & ioer 1)

From (&, &/, 9;) € R and from~; C initops(€;) We obtain thaiy;(v;) C initows(E]). Hence,
(g(ei), 9(7i))in € T*(E"), sinceg(v;) = gi(vi)- O

4.4. PROOFS 77

4.4.3 Proof of Proposition 4.22

We use the following lemmas:

Lemma 4.29 Supposel C Obs and#,, 6, : A — CBES such thatva € A : 6;(a) ~ 02(a).
ThenRef (€, 61) ~, Ref(E,0,) foranyE € CBES.

Proof: First, we show
(Ve €U : D1(e) ~y Va(e)) = Ref,(E, 1) ~ Ref, (€, 1) (4.4)
Let R. be a corresponding bisimulation fog(e) ~, J2(e). Define
R = {(Ref ,(E,01), Ref*,(E,75) | £ € CBES AVe € U : (¥(e),V5(e)) € Re}

By using Lemma 4.25, it is easy to check tiats a bisimulation, which establishes (4.4).
Moreover,?); can be easily derived fro} such that); satisfies the requirement of (4.4) and
that Ref (€, 0;) = Ref* (€, 7;). O
Lemma 4.30 Supposed, A’ C Obs, 6 : A — CBES, ¢ : A’ - CBES and¢” : (AU A’) —

” | Ref%(0(a),0) ifacA . . o
CBES such that?”’(a) = { o (a) ifaeANA ThenRef, (Ref%(€,0),0") is
isomorphic toRef, 4 (£,0") for anyE € CBES.

Proof: The isomorphism: : ERese, (Refe,(£.0).6") — ERefZUA,(g’(,,,) is given by

(e,€) ifl(e) g AUA
oo) (e) if i(e) € A\A
A€ E) =N (e (66) iflle)c Aned A
(e,(e,¢)) iflle)e Anee A
The proof that is an isomorphism is straightforward. O

Proof of Proposition 4.22: We have~,.C~,, since€ is isomorphic toRef(€, 6). Therefore,
it is only left to prove that-. is a congruence, since every congruence which is belgwas
to satisfy the constraint of..

Suppose; ~. &, A C ObsandVa € A : 0y(a) ~. O2(a). We have to verifyRef (&1, 01) ~.
Ref (&2, 0,). Therefore, letA” C Obs andd : A” — CBES.

Definedl(a) = { Befly (0:(a),60) facA fori € {1,2}. FromVa € A : 6,(a) ~.

8(a) if a € A\A
05(a) we get
Vae AUA : 01 (a) ~p 05(a). (4.5)
Lemma 4.30 and Lemma 4.
Therefore, we obtain thatef%, (Ref%(£1,601),0) 2= Ref< (&, 0;) &P e kgmme 20
a 4.3

E1roeEs Lemm

0 .
Refou(E1,04) 7~y Refa (€2, 6)) = Ref %/ (Ref% (&2, 0,),0), as required O

78

CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Chapter 5

Terminating by Action Execution

In this chapter, an alternative approach to process termination, where a process is considered
to terminate by executing its ‘final’ action [14, 28], is considered. This approach is ¢alled
approachin the following. In addition to the transition relation a predicate for termination with
respect to action names is used. This termination approach is also used in many event-based
models, like those mentioned in [91], where termination is indicated by maximal configurations
and not by termination events.

Two new kinds of event structures are introduced in order to give a true concurrency model
for process algebras based on the fa-philosophy. One type of event structure models the ‘non-
disabling’ of events instead of disabling by using a witness relation. The other type of event
structure models disabling by indicating sets of precursor events. We show that both types
of event structures have the same expressive power and are more expressive with respect to
event traces than the standard event structures. A consistency result of an operational and a
denotational semantics is shown.

5.1 Motivation

Disrupt mechanisms are important in order to model many realistic systems. Hence they have
found their way into various process algebras [14, 15, 73, 75]. The disrupt operator of LOTOS
[32], called disabling operator, is denotedBy|[> B,. Here, any action executed B disables

B, and the termination oB; disablesB, (see also Chapter 3). Disrupt mechanisms are e.g.
used to model timeouts, which represent an important concept for many applications.

In the definition of an operational semantics, the disrupt operator has to be described. Therefore
it is necessary to specify when a process terminates. This can be achieved in two ways:

e By providing an additional syntactical expressibto indicate the process that may termi-

nate immediately. For the operational description, an additional agtievhich indicates

termination, and a rule .. are used. This approach is taken in Chapter 3 and in

[47, 32]%, for example.

1These papers only differ with respect to the handling of sequential composition. For example, the sequential
operator removes actioyl in [47], whereas it is replaced with the internal action in LOTOS [32].

79

80 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Unfortunately, some interesting and important ways of using disrupt mechanisms are ex-
cluded by the approach described above, as itis argued by the following generic example.

Example 5.1 Consider a nuclear power plant. Lét,; be a process that controls the
shutdown of the reactor and l€t,, be the process that describes the normal running
behavior of the reactor. In proceds,. an action namedtop may be activated by the
environment. Ifstop is executed, the normal behavié},,. is terminated and?,, may

only terminate in this way. Th&op-action indicates the controlled shutdown demand of

a worker and is in general not allowed at every execution step,ofi.e. it can not be
modeled by disruption. Then, a simple specification of a nuclear power plant is given by

Pnr;Psd

where; denotes the sequential composition. A more realistic specification of a nuclear
power plant may invoke the shutdown procéss for various other reason, e.g. if the
temperature reaches a critical point. In addition, the shutdown may be combined with
other activities, e.g. that of setting off an alarm.

Let us consider a nuclear power plant with the action namieg and a shutdown which

is triggered by temperature and that also invokes an alarm. In any system run either
a normal termination ofP,, by stop or a disruption of P,,. by a critical temperature
message may happen, but it should be prevented that both occur. In particular, once
the stop-action has been taken, no alarm should be set off. Let ac¢taenote that the
temperature of the reactor reaches the critical point and let actidenote that an alarm

is set off. The natural representation of the reactor control in LOTOS is given by

((Par [>1); Pea)ll g1y (£ @)

where B, || 4 B, denotes the parallel execution 8f and B, with synchronization on the
actions inA. However, according to the semantics of LOT®8an happen aftestop.
This originates in the fact that th¢/-action (and not thestop-action) terminates?,,..
Hence, an alarm with expensive consequences may be unnecessarily set off.

¢ An alternative approach to the problem of dealing with termination is to specify that a
process terminates when it executes its ‘final’ action [14, 28]. For example, the process
allpb terminates by executing if b was executed before or it terminates by executing
if a was executed before. This approach, which is caledpproachin the following,
leads to the expected behavior of the process considered in the above example. The fa-
approach is modeled by using a predicate for termination with respect to action names in
the transition system. There is no need to extend the syntactical expressions by further
expressions, lika, in order to handle termination.

5.2 Syntax

Let 7, Obs and Var be defined as in Section 3.2. The set of all actiohs is defined by
Act = {7} U Obs. A relabeling functionf is a function fromAct to Act such thatf(r) = .
We denote the set of all labeling functions 5y.

5.3. OPERATIONAL SEMANTICS FOR PAst 81

The process algebra expressi@¢P.; (s = start-based, = fa-termination) are defined by the
following BNF-grammar.

B = 0|a|B+B|B;B|B[>B|B|.B| B[f]| B\A| =

wheref € F;, x € Var,a € Act andA C Obs. A process with respect tBXPy; is a pair
(decl, B) consisting of a declaratiodecl : Var — EXPg and an expressioB € EXP. Let
PA,; denote the set of all processes. We sometimes call an expréssideX Py, also a process
if decl is clear from the context.

The expressions have the following intuitive meaningis the process that executesand
terminates. B; [> B, is the disruption ofB; by B,, i.e. any action fromB, disablesB; as
long asB; has not terminated. On the other hand, the terminatiaB,alisablesB,. B || B>
describes the parallel execution Bf and B,, where both processes have to synchronize on
actions ofA. The process terminatesif; and B, terminate in the case of synchronization or if
one terminates and the other one has already terminated. The relabeling @?ofjesssecutes
actionf(a) if B executes action. The restriction procesB8\\ A executes action if B executes
actiona, provideda is not contained iml. The behavior of the inactive processof the choice
operator+, of the sequential compositiorand of variabler is described in Section 3.2.

Process algebras, like [32, 98] or the one used in Chapter 3, that are based on the synchronization
we have just presented and which contain an expression for a termination process (denoted by
1) can model a restriction operator in terms of the parallel operdgr (). Since we do not
introduce an expression for a termination process, we include the restriction operator, as in
[25, 138]. As it turns out, the restriction operator plays also a crucial role for the operational
definition of the parallel operator in our setting.

5.3 Operational Semantics forPA;

As stated in the beginning of this chapter, we adopt the philosophy that the ‘final’ executed
action terminates the process. Therefore, we have to distinguish between ‘final’ actions and
‘non-final’ actions. In transition systems, the fa-philosophy is usually modeled by using a
predicate for every actiomto determine that the process can terminate by executjhg, 28].

The non-terminating action execution is modeled by the usual transition relation. We take a
different approach using additional labels. More precisely, we allow transitions to be labeled
with elements ofdct” = Act U (Act x {/}), where label(a, /) indicates that the process
terminates by executing actiani.e.« is a ‘final’ action of that process. Actions gfct x {/}

are calledtermination actions Our approach leads to a decrease in the number of transition
rules and allows a simplification of the definition of bisimulation and of the related proofs. The
transition rules of —?_,C EXPg x Act? x EXPg with respect talecl : Var — EXPg, are
presented in Figure 5.1. We writg/ instead of(a, /).

In the following, we explain the rules which deviate from the standard ones: Proce=ss
executez and terminates by executing this action. The process which results in a deadlock after
executinga can be modeled by; 0, for example. The transition rule for the choice operator is
the standard CCS-rule [138]. Please note that no distinction between actions and termination
actions is made. If the first process of the sequential composition terminates by executing

82 CHAPTER 5. TERMINATING BY ACTION EXECUTION

In the following lety be an element afict” anda be an element ofict
. B, — B’
Ay ay/ 2l /
a— 0 Bl + B2 — B
By, + B, 4 B
B, -% B! B, . B!
S L — o L——
Bl;BZL)Bi§BQ BIQB2L’BZ
. B, - B ;. BB . B,-L B,
1- a 2 - 3!
B, [>By; % B} [>B, B [>Bs v, B B, [>B, - B}
p. BI-“B agA B YB a¢A
1 a 2 - a
Bil|aBy — Bi|aB2 Bil|aB, — Bx\\A
Bal[aB) == B aBj BollaB1 — Bx\\A
. Bi-oB B,-“B, acA BB B, B, acA
3 - a 4 - a
BillaBy — BillaB; BillaBy — By\A
Bs|| 4By —% B)\\A
p BB BB acA
5 - @
BilaBs 0
B-“ B B, B
Lab, : @ Labs : oM
B[f] = B'[f] Blf] = B'[f]
a a\/
ReslzB—>Ba, a/eéA R€323B—>'§:/ ag A
B\A — B"\\A B\A % B\ A
Y /
Pec - decl@l —>/ B
r— B

Table 5.1: Transition Rules for—?_,

(rule S,), thenB;; B, executes: without termination. The rules for the disrupt operator are as
they were expected, in particularf; terminates by executing so doesB; [> B,.

In the case of the parallel operator, we have to distinguish whether or not the actions that are
executed by the subprocess are termination actions. The second rule states that if a subpro-
cess executes a non-synchronizing termination action, then this process has to be removed and

5.4. DENOTATIONAL SEMANTICS FOR PAst 83

all actions in the synchronization set have to be forbidden for the remaining process. If both
processes execute a termination action of the synchronization set, the resulting pr@gess is
since after the termination of both processes the parallel process has terminated, and no further
actions will be executed.

The rules for the relabeling operator and the restriction operator only depend on the action name
and preserve termination, as expected.

Remark 5.2 It is easily seen by induction on the depth of inference that after the execution of
a termination action no further actions may be executed, i.e.

ay/ v
VB,B' a: B —'4q B' = (Vy,B" : =(B' —'4.a B").

5.4 Denotational Semantics folPA;

A denotational semantics 6\, that corresponds to the operational semantics can not be given
in the standard event structures. This is argued as follows.

Prime event structurgd.45], flow event structurel86] andstable event structurg&78] require

a symmetric conflict relation which makes it hard to model disruption. In addtooriigura-
tions[87, 177] do not provide a smooth way to model disruption. Consider, for example, pro-
cessB, which consists of the disruption ef b by actionc (i.e. B = (a;b) [>¢). An intuitive
approach is to assume thBthas three events denoted byb, c. The setd), {a}, {c},{a,b}

can be considered to be configurations, but what abeut}? Assuming it is not a configura-
tion contradicts the existing executiefi-——. On the other hand, assuming tHat c} is also

a configuration leads to the interpretation that the executien— is legaf, which contra-
dicts the branching structure &, since after the disruption (k) no further actions from the
left-hand process may be executed.

Closed bundle event structur€Subsection 3.3.2), which can be used to give a denotational
semantics to LOTOS, ardlial event structurel 16] (Remark 3.3) allow the modeling of dis-
ruption, since the symmetry condition for the conflict relation is dropped. If (and how) these
types of event structures could be used to define a denotational semantics that also incorporates
the fa-philosophy is highly questionable. Consider, for example, the préckgs [> c: If we

put ¢ in conflict with a, thenc can be disabled beforehappens and by symmetry the same
argument holds fob. But ¢ has to be in conflict with some action, since otherwisgould

remain enabled after the executionaodindb.

Therefore, a conflict relation that is based on a binary relation on events is not appropriate to
model this kind of disrupt operator in the context of the fa-philosophy.

In this section, we present two new classes of event structures that are suitable to model the
fa-philosophy and study their properties. The first one, which is cakended termination
bundle event structurenoves from a conflict approach tonatnessapproach by introducing a
relation (-) between sets of events and events+.€. P(FE) x E. Awitness conditionf > ¢)
indicates that eventis not disabled in a system run if no event from the system run is contained

2by the common definition [177, 87]

84 CHAPTER 5. TERMINATING BY ACTION EXECUTION

in Z. In other words, a system run disables an eveifitach witness-bundl& of e (7 > ¢)
contains an element of the system run. As long as there is a witness cortitiofny whereZ
does not contain an element of the system run safarnot disabled” is considered to be a
witnessof this fact.

The extended termination bundle event structures follow the philosophy of bundle event struc-
tures [126] that each bundle either from causality or from the witness relation is interpreted
existentially, i.e. the execution of any event of a bundle is sufficient to fulfill the requirement
denoted by the bundle.

The other new class of event structures, which is cadgended termination precursor event
structure follows the contrary approach that each bundle (callegursorin these event struc-
tures) is universally quantified, i.e. every event of a precursor-bundle has to be executed to fulfill
the requirement. More precisely, the conflict relatier) {s given as a relation between sets of
events and events, i.e. C P(E) x E. An evente is disabled by a system run if and only if
there is a precursdf of e (Z~e¢) such that all events of are contained in the system run. The
causality relation of an extended termination precursor event structure is also defined with the
universal quantification philosophy, as in Winskel’s event structures [178].

The rest of this section is organized as follows: First we neglect disruption and only concentrate
on the fa-philosophy. Therefore, termination bundle event structures, which represent a gener-
alization of bundle event structures, are presented in Subsection 5.4.1. They allow the modeling
of the fa-philosophy. In Subsection 5.4.2 the class of extended termination bundle event struc-
tures, which can also handle disruption, is introduced. This Subsection contains the result that
this class of event structures is more expressive than the standard event structures with respect
to event traces. Operators on extended termination bundle event structures are defined in Sub-
section 5.4.3. These operators are used in Subsection 5.4.4 to define the denotational semantics
of PA,;. There the consistency between the denotational semantics and the operational seman-
tics is also given. The class of extended termination precursor event structures is introduced in
Subsection 5.4.5. In Subsection 5.4.6, it is shown that the class of extended termination bundle
event structures and the class of extended termination precursor event structures have the same
expressive power with respect to event traces.

5.4.1 Termination Bundle Event Structure (FBES)

Bundle event structures (Definition 3.1) indicate the termination of a process by additional
events that are labeled with the termination symygolThese events are maintained by sequen-

tial composition, where they are relabeled with the internal action. This is not appropriate for
models of process algebras that are based on the fa-philosophy, since contrary to the semantics
of LOTOS, no internal action is executed when the first process terminates in the sequential
composition.

Therefore, we do not allow events labeled with the termination symbol. Consequently, we have
to model termination in a different way. Our approach is to consider the termination event to be
fictitious, and therefore we collect the bundles of the termination event without pointing directly
to an event. This means that we add an additional component that consists of a collection of
bundles, i.e. consists of a collection of subsets of events, to bundle event structures.

5.4. DENOTATIONAL SEMANTICS FOR PAst 85

Definition 5.3 (Termination Bundle Event Structure) A termination bundle event structuyre
Tbesfor short, (E, §,+—,T,1) is an element 0P (U) x P(U xU) x P(P(U) xU) x P(P(U)) x
(U — Act) such that

e 1 C E x E and{is irreflexive and symmetric
e ~CPE)xE
o T CP(E)andT # ()

dom(l) = F
e Ve € [: _+— eis approximation closed with respect i

e T'is approximation closed with respect i

Let TBES denote the set of all termination bundle event structures.

We call E the set of events: the conflictrelation,— the causalityrelation, T’ the termination
setand! theaction-labelingfunction.

The intuitive meaning of a Tbes is the following: If two eventg’ are in conflict, i.eefie/,

then only one of them can appear in a system run. The meaninig of e is that beforee

may be executed, an event &f has to be executed. A system run of a Thes is terminated if

all bundles in the termination set are satisfied, i.e. every eleméhtoointains an event of the
system run. The constraifit # () on the termination set ensures that an Thes is not able to
terminate immediately, i.e. it can only terminate by executing an action. Howgwvenght

consist of the empty set only. The labeling function indicates which action is observable when
the event is executed. The two approximation closedness constraints are used to guarantee that
the standard order yields a complete partial order.

TBES can be used as a denotational semantics for the procesBés, dhat do not contain
disrupt expressions. The operators BBES have to vary from those of the original bundle
event structure (Definition 3.17 or [125, 126]). This is necessary, since the original bundle event
structure (Definition 3.1) allows any number of events for termination, whereas our approach
has exactly one event (the fictive one) for termination. We do not present the operators for
TBES. They can be easily obtained by adapting the operators for extended termination bundle
event structures presented in Definition 5.20.

Remark 5.4 The original bundle event structures (Definition 3.1) contain an additional con-
dition, calledbundle stability constrainfcompare with Remark 3.3). It can also be added to
the condition of a Tbes, since it is an invariant for all operators needed in the denotational
semantics. We omit this constraint, since it is not important for the theory presented here.

5.4.2 Extended Termination Bundle Event Structure ETBES)

In extended termination bundle event structutles non-disabling of events rather than the
disabling is modeled, which is done by a relation between sets of events and events. The non-
disabling modeling follows the philosophy of bundle event structures, where each bundle (ob-
tained from causality) is existentially quantified, i.e. the execution of any event of a bundle is

86 CHAPTER 5. TERMINATING BY ACTION EXECUTION

sufficient to fulfill the requirement denoted by the bundle. In Section 5.4.5 we present a different
approach, where every bundle is universally quantified.

Definition 5.5 (Extended Termination Bundle Event Structure) An extended termination
bundle event structureTbedor short,€ = (E, -, —,T,1) is an element oP (L) x P(P(U) x
U) x P(PU) xU) x P(P(U)) x (U — Act) such that

o ~CPE)xEandVec E:3Z:Z - eand¥(Z,e) e=:ec Z
e —CPE)xE

e TCP(E)andT #

e dom(l) = E

Ve € E : _ > elis approximation closed with respect i

e Ve € E : _+— eis approximation closed with respect i

T is approximation closed with respect £

Let ETBES denote the set of all extended termination bundle event structures.

> is called thewitnessrelation. The attributeextendedn the name of the event structures
defined above is used to emphasize (as it is done for extended bundle event structures) that
these event structures can model disruption.

The intuitive meaning of a witness-bundieof e (7 > ¢) is that event is not disabled in a
system run if no event from the system run is contained.irA system run disables an event

e if all witness-bundles of contain an element of the system run. The constraints imposed on
the witness relation are: Firstly, every eveninust have a witness-bundle, since otherwise
would never be enabled and hence, could be omitted. Secondly, every witness-bunidées of

to containe, since the execution of an event disables itself, i.e. every event can be executed only
once. Furthermore, the witness relation also has to satisfy approximation closedness constraints
to guarantee that the standard order yields a complete partial order.

Example 5.6 Some eTbes are shown in Figure 5.1. Here, the events are depicted as dots and
their corresponding action names appears close by the dots (we do not name the events explicitly
and we identify them with the action names if no confusion arises). The witness relation is
illustrated by wavy lines. More precisely, a withess-burile e is depicted by a wavy arrow

from the elements df\{e} to e. In the special case whefi consists only of, we use a wavy

arrow from the empty-set ta. Sometimes, the same wavy lines are used in different witness-
bundles, for example the witness-bundle&gmare {a, b, c} > a,{a,b,c} = band{a,b,c} > c.

The causality relation is depicted similarly to the witness relation, except that straight lines are
used instead of wavy lines. A termination 3éts displayed by surrounding its events by a
closed line.

5.4. DENOTATIONAL SEMANTICS FOR PAst 87

allgb (allpb); c
0 God
o At

& &
a+b (a+0b);c
a a ’ a
' b b
&, &s Eo

Figure 5.1: Some Extended Termination Bundle Event Structures

Hereafter, we considérto be(E, -, —,T,1), & to be(E;, =, —;, T;,1;) and in generaf to be

(Ee, >¢,—¢,Te, le). Furthermoreinit(£) denotes the set of events which are ready to execute
andY (T, e) holds if and only ife is atermination eventvith respect tdl’, i.e. £ terminates by
executinge. Formally:

Definition 5.7 Let& be an eTbes. The set wmiitial eventsof £ is defined by

nit(£) ={e€ £ | -(3X : X — e)}.

Thetermination predicat& C P(P(U)) x U is defined by

YT(T,e) <= VX e€T:ecX.

Remark 5.8 Please note, that the events of an eTbes are labeled with eleme#ts ahd not
of Act?, i.e. events must not be labeled, for examplegby This is necessary, since we do
not know a priori if an event is a termination event of a system run.&sée Figure 5.1, for
example.

Transition system from an eTbes.

Here, we describe how to obtain a transition system from an eTbes, which is later used to ana-
lyze the expressive power B TBES and to establish a consistency result for the denotational

and the operational semantics. In order to obtain a transition system from an eTbes, we define
the remainder of an eTbes with respect to an initial event. The remainder with respect to event

88 CHAPTER 5. TERMINATING BY ACTION EXECUTION

e describes the system after the execution.ofherefore, we remove all events which are dis-
abled bye, i.e. we only keep those events that have a witness-bundle which does not contain
e. Please remember that an event has to be an element of all its witness-bundles. Hence, it
disables itself. Furthermore, all bundles (from causality, witness or termination) that contain

e are removed, since the executioncofulfills the requirements specified by those bundles,

i.e. the bundle contains an element of the system run. In the definition of the termination set,
we consider the case that an eTbes terminates by execusiegarately in order to guarantee

that the remainder of an eTbes is an eTbes. This distinction is necessary, since otherwise the
termination set would become the empty set, which is not allowed for an eTbes.

Definition 5.9 (Remainder of an eTbhes)LetE € ETBES ande <€ init(€). Then theemain-
der&y, of £ is given by(E', ', —',T",1") where

E = {de€FE|3Z2:Z~eNe¢ Z}

= = {(ZNE.,d) | e ENZ - Ne¢ Z}
= = {(XNE,d)| e E'NX—é Ned X}
o JAXOE[XeTneg X} if -T(Te)

{0} otherwise
I = I E

It can be shown that the remainder of an eTbes is also an eTbes.
Lemma5.10 Let€ € ETBES ande < init(£). Then&, € ETBES.

Proof: The approximation closedness conditions are an immediate consequence of Corollary
2.18. The other conditions can be easily checked. O

The remainders are used in the following definition to obtain an interleaving semantics for
ETBES.

Definition 5.11 The transition relation—C ETBES x Act” x ETBES is defined by

= {(£,7,€) | £ € ETBES A ¢ € init(€) Ay = { ;gg\/ f f“(rT(;,)e) Y

The transition system obtained frafp of Figure 5.1 is presented in Figure 5.2.

Remark 5.12 According to the definition of the remainder, it is possible that further events
may be executed after the execution of a termination event. This effect also arose in the original
bundle event structures. It is possible to circumvent this effect by considering only those eTbes
where every event set that leads to termination also disables every event. Formally¢ dilises

to satisfy (remember that- e = {Z | Z > e}):

Vee E:VE'CE:- (VX €T :ENX#0)=NVZe_»e:ZNE #0).

5.4. DENOTATIONAL SEMANTICS FOR PAst 89

b gm0 € cy/
o Q‘\
: -

0,0,0,{0},0)

Figure 5.2: Transition System Derived frddfilBES

Expressive Power.

The expressive power of event structures can be measured by comparing the set of event traces
described by them. Here, we present the definition of event traces with resge&tR&S.
The event traces for the other event structures are similarly defined.

Definition 5.13 Anevent traceof £, € ETBES is a finite sequence of events (..., e,,) such
that there are eThes,, ..., £,,1 With &) = &;41 for all j < n. Theset of all event tracesf
& is denoted byfr¢(&y).

A setM of finite sequences of events (set of event traces) is descrid@dBES if there exists
& € ETBES such that\ = Tr¢(&).

For simplicity, we neglect the termination information when we compare the expressive power.
The termination information can be easily included by dividing the set of event traces into
terminated and non-terminated traces.

Example 5.14 The set of event traces &f from Figure 5.1 is
Tr*(&s) = {(a), (), (¢), (a,b), (b, a), (a,c), (b,c)}.

Theorem 5.15 Every set of event traces that is described by prime [145], flow [36], stable
[178], bundle, extended bundle or dual event structures [116] is also described by extended
termination bundle event structures, but not vice versa.

Proof: From [116] we know that every set of event traces described by a cited class of event
structures is also described by dual event structures. The inclusion of dual event structures
in extended termination bundle event structures is shown by mapping the dual event structure
(E,~,—,1) 10 (E,>,—,{0},1) where= {({¢/ € E | e ~ €} U{e},e) | e € E}.
Furthermore, the causality relation has to be extended such that it is approximation closed with
respect toF. This extension does not change the set of event traces if the least extension is
used.

On the other hand, the set of event traces obtained &pof Figure 5.1 can not be described
by a dual event structure. O

90 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Complete Partial Order.

In order to give a semantics ®A,;, we turnETBES into anw-complete partial order. First,
we present the definition and results concerning the restriction of an eTbes, which is used to
define an order o TBES.

Definition 5.16 (Restriction of an eTbes)Suppos&€ € ETBES and E' C E. Then there-
striction of £ to £, denoted by | £, is given by(E’, =’ —' T’ I') where

= = {(ZNEe)|deE'NZ ¢}

= = {(XNE,d)|ee B NX ¢}

T = {XNFE | XeT}

' = 1]F

Lemmab.17 Let€ €e ETBES andE’ C E. Thenf | E' € ETBES.
Proof: Is an immediate consequence of Corollary 2.18. O

Definition 5.18 (Order on ETBES) Let&; € ETBES. Then&, <& if By C E; andé; =
& | E.

Theorem 5.19 The set of all eTbes ordered ky is anw-complete partial order, where the
least upper bound of an-chain (&;);en is given by |. & = (U, Ei, =, —, T, |J, l;) with

- = {(Z,e)|Vk:e€ Ey = (ZNEg) = e}
— = {(X,e)|Vk:e€ Ey= (XNE)) —ye} .

Proof: It works analogously to the proof of Theorem 3.10. O

5.4.3 Operators onETBES

Here, we present the operatorsiBi'BES that are later used to define the denotational seman-
tics.

Definition 5.20 (Operators onETBES) Let A C Obs. Then define
T : ETBES x ETBES — ETBES with &, F&, = (E, =,+,T,1) where

= ({x1} x E1) U ({x2} x E3)
= {(({x} x 2) U ({x;} x init(&))), (xi,€)) | Z =i e Ni# j}
= {({x} x X, (xi,€)) | X e}
= {({*1} X Xl) U ({*2} X XQ) ‘ X1 € T1 A XQ - TQ}
*i,€)) = li(e)

Y3 oy

o~
—~
—~

5.4. DENOTATIONAL SEMANTICS FOR PAst 91

7 :ETBES x ETBES — ETBES with £, 7&, = (E, =, =, T,1) where

= ({x1} X E1) U ({%2} x E3)
= {{x} x(ZUX),(*x1,€)) | Z=1eNX €T} U
{({x2} X Z, (x2,€)) | Z =2 e}
== {({xi} x X, (ki 0)) | X —=iep U
. {({x1} x X1, (*2,€)) | e € init(E) A Xy € Th}
T = {{x}xX2| X; €T}
I((%ise)) = li(e)

Yo e

[>: ETBES x ETBES — ETBES with &, [>& = (E, <,+=, T, 1) where

E = ({1} x E1) U ({2} x E)

= = {(({x1} x Z2) U ({32} x nit(Er)), (x1,€)) [Z =1 e} U
{({x1} x X)(U({*2} X 2), (%2,€)) | X €ETINZ =5 €}

== {({} x X, (xi,e) | X —ie}

T = {({xa}t xX)U({x} xX) | X1 €Th A Xy € To}

U(xi,e)) = li(e)

-~ ~ o~

|1+ : ETBES x ETBES — ETBES with & |[4& = (E, &, <, T, 1) where

E (Bf x () U ({*} x EDY U E*
El = {e€E |le) ¢ A}

&
I

{(61,62) € E1~X E2 | ll(el) = lg(@g) € A}
= {({(6’1,6/2) S EJ | 6/1 IS4 UXl}, (61,*)) | Z1=1e1NXq € Tl} U
({(6’1,6/2) ek ‘ 6,2 € 7y UXQ}, (‘k, 62)) | Zy =93 N Xg € TQ} U
({(eh,e5) | ey € Z1U Xy Vey € Zp U Xo}, (€1, €2)) |
(61,62) €~E'S/\Zl —1e1ANX] ETINZy GQAXQETQ}
({(e1,e5) € E| €} € Xi}, (e1,€2)) | Xi s ei}
{(61,62) cF ‘ e; € Xz} | Xl S T‘z}

~ . ll (61) |f €y = %
l((e1,e2)) = { I»(e5) otherwise

SCHRE

(
(
= 4
(
)

Lab : (ETBES x F;) — ETBES with Lab(€, f) = (E,=,—,T, f o l).

\A:ETBES — ETBESwith& VA =& [{e € E | l(e) ¢ A}.

We will give some comments on the definition of these operators: The definitions of the set
of events, the causality relation and the relabeling function are the standard ones [125], except
that the disjoint union is explicitly used (see Subsection 3.3.3). An dvgnt) from £,+&,

has to be disabled if an event corresponding-tois executed, where the event B has to

be necessarily an initial event 6f. Therefore, the witness-bundles @, ¢) are obtained by
extending the original ones withit(E,). And, of course, similarly defined fdk,, ¢) events.

The termination set of; +&, is obtained by taking any combination of the elements of the two
termination sets. This is intuitive, since an event is a termination evefjtief, if and only if

it is a termination event of; or &,.

92 CHAPTER 5. TERMINATING BY ACTION EXECUTION

An event(xs,) from &; 5 &, can not be disabled by events frgin and therefore we only take

the original witness-bundles. On the other hand, we additionally disable an(eyantby the
termination ofg;. This is done in order to achieve consistence with the operational semantics.
&1 & terminates if and only if a termination event frdpis executed. Hence, the termination
set of&; 7 &, is defined as the termination set&Hf

The witness-bundle relation @[;52 is a combination of the ideas & +&, and of&; = &,

—~

since the(xq, e) events of, [>&, are disabled by anfx,)-event and &x, e)-event is disabled
by a termination event &f,. Furthermore, the set of termination is similar&er-Es.

~

An evente = (e, e9) Of & ||4&; is disabled ife; or e, is disabled or if another event where

one component is equal to a component ofike (eq, €}), is executed. Furthermore,is also
disabled if one side of the parallel operator terminates arsgda synchronization event, i.e.

e1, €2 # *. This is intuitive, since a process that terminates can not execute any further action.
Therefore, no synchronization can take place. The disabling mechanism described above is
obtained by taking any conlbination of the corresponding sets, as it can be seen in the definition.
The set of termination fof; | 4 is obtained by taking the union of the termination sets of its
components, where we have to guarantee that all corresponding synchronization events are
contained in this union.

The witness-bundles and the termination are unaffected by the labeling operator. The restriction
operator removes all forbidden events, i.e. those labeled with elemeAtsTdiis is also done
in the witness-bundles and in the termination set.

Lemma 5.21 All operators of Definition 5.20 are well defined, i.e. they really yield elements of
ETBES.

Proof: The well-definedness o/ﬁA follows from Lemma 5.17. The approximation closedness
conditions of the witness relation of the sequential operator are a consequence of Corollary
2.19. The other conditions are easily seen except for the approximation closedness conditions
of the parallel operator.

Therefore, le€ = & |[4&..

{0} if e/ =

{Z;, UX; | Zi =; ¢, N X; € T;} otherwise
Then M, is approximation closed with respectipu {x} by Corollary 2.19. From Corollary
2.20 we obtain that/’ = {{(e1,e2) € (E1U{*}) x (EsU{x}) | e1 € X1Ves € Xo} | X €
M; N Xy € My} is approximation closed with respect(td; U {x}) x (Es U {x}). And so
the approximation closednesseffollows from Corollary 2.18, sincéX | X= (¢!, e5)} =
{(X'NE| X" e M'}.

~i Let (e}, eh) € Egy . DefineM; =

+: The proof is similar to the one of Lemma 3.18.

T: Analogous to=. 0
Lemma 5.22 All operators of Definition 5.20 are continuous with respectto

Proof: Analogous to the proof of Lemma 3.18. O

5.4. DENOTATIONAL SEMANTICS FOR PAst 93

Remark 5.23 Thebundle stability constrairfsee Remark 5.4) of an eTh€san be formalized

by
VX eTUm(—): Ve, e X:VZ:Z =e=¢€ € Z.

But contrary toTBES, this constraint is to restrictive, since it is not preserved by the dis-
rupt operator. This can be seen as follows. Consifleiof Figure 5.1. Therf; does not
satisfy the bundle stability constraint, sine,c} € 75 but {b,c} = c¢. Furthermore,&; =

51[/;({0}, {({e},9)},0,{{e}},{(e,c)}), where both components satisfy the bundle stability
constraint.

5.4.4 Denotational Meaning forPA;

First, we define the denotational semantics of expressiokB,() with respect to variable as-
signments, i.e. functions froMar to ETBES. Then variable assignments are derived from
declarations, which are used to define the denotational semantics of proé¥sses (

Definition 5.24 Let[_]_: EXPg x (Var — ETBES) — ETBES be defined as follows (where
p : Var — ETBES)

HOHP = (07 0,0, {@}7 @ [[a]]P = ({.}7 { {.}’ .)}7 0, {{.}}’ {(.7 a)})
[B: + B2]]p = HBI]]/);"\[[Bﬂ]p [B1; B2]]p = [[Blﬂp?ﬂBﬂ]p

[[Bl [> BQ]]p/i[[Bl]]p[>ﬂBQ]]p [[BIHAB?]]p = [[Bl]]\p| A[[B2]]p

ﬁ[f]]]p = ?ab([[B]]m f) [B\A], = [Bl, \4

2], = p(z

Remark 5.25 [B]_ is continuous with respect tg for everyB € EXP;.

Assumedecl : Var — EXPg. Then definefy. : (Var — ETBES) — (Var — ETBES)
With Fei (p) () = [decl(x)],. From Remark 5.25 it follows tha,.., is continuous. Therefore,
from the complete partial order theory we def : (Var — EXPy) — (Var — ETBES) with
{[decll} = fix(Faear) = ||, Fia (L) is well defined.

Definition 5.26 (Denotational Semantics)
Define[[,]] :PAy — ETBES by [[(decl, B>]] = [[B]]{[decl}}-

Example 5.27 The denotational semantics of some processes is illustrated in Figure 5.1.

The denotational semantics is consistent with the operational semantics, since the transition
system derived from the denotational semantics is bisimilar to the operational semantics.

Theorem 5.28 (Consistency)Supposédecl, B) € PAy. Then(EXPg, Act”, —!_,, B) and
(ETBES, Act”, —, [(decl, B)]) are bisimilar.

Proof: The proof is given in Subsection 5.6.1. O

94 CHAPTER 5. TERMINATING BY ACTION EXECUTION

5.4.5 Extended Termination Precursor Event Structures ETPES)

An evente of an eThes is caused (or disabled) in a system run if the run contains an element of
everycausality (respectively withess) bundieof e (bundle approach). Another contrary way

of modeling causality is Winkel's quantification approach [178]: An eveistcaused if there
existsa ‘causality set’X of e such that all elements of occur in the system run. Since this
approach is a popular one, we introduce in this section another class of event structures, which
again use a relation-() between sets of events and events in order to model disabling. But
this time, the causality and the disabling relation are interpreted with Winskel's quantification
approach. We show in Subsection 5.4.6 that these event structures and the extended termination
bundle event structures are equivalent.

Definition 5.29 M is finitely determinedvith respect ta¥ if

e Fis acountable set
e M isupper closedvith respect ta?, i.e. VX, X' : (X CX'ANX eM)= X' e M
eVXeM:3X' e M : X' C X A|X'| < |N|

Definition 5.30 (Extended Termination Precursor Event Structure) Anextended termina-

tion precursor event structyreTpesfor short, & = (E, =+, T, 1) is an element oP (U) x
PPU) xU) x P(PU) xU) x P(P(U)) x (U — Act) such that

e = CP(E)x EandVe € E : —~(0%¢) andVe € E : {e}=e

/\

o = CP(E) x
e TCPE)and(¢ T
o dom([) —E

e Ve € E: e is finitely determined with respect o

Ve € E : e is finitely determined with respect 0

T is finitely determined with respect o

Let ETPES denote the set of all extended termination precursor event structures.

~ is called theprecursor conflictrelation. The other components are called the same as those
of the extended termination bundle event structures. The intuitive meaning of the precursor
conflict relation is that event is disabled in a system run if there is a conflict precurgor

e (Z=e¢) such that the system run contains all element& ofThe intuitive meaning of the
causality relation”> and of the termination sét is similar to>-. For example, a system run of
an eTpes is terminated if there is an elem&nof 7', where every element of appears in the
system run.

The constraints imposed on the precursor conflict relation are: no event is immediately disabled
(—(@=e)), since otherwise the event can be omitted. Furthermore, the execution of an event

5.4. DENOTATIONAL SEMANTICS FOR PAst 95

allgh (allgb); c
o} () a 0
ot () b 0
&1 &o

Figure 5.3: Some Extended Termination Precursor Event Structures

disables itself {e}¢), i.e. every event can happen only once. The constfhaigt7 on the
termination set ensures that a precursor event structure may not terminate immediately, i.e. it
can only terminate by executing an action. The three finitely determined constraints are used to
guarantee that the order introduced later in this subsection yields a complete partial order.

Example 5.31 Some eTpes are shown in Figure 5.3. The five components are displayed simi-
larly to the components of an eTbes (see Example 5.6), i.e. the conflict relation is depicted as
wavy lines, the causality as straight lines. We depict a termination precursor by surrounding its
events by a closed line. Furthermore, we do not draw the conflict precursors of th¢dgrm

and we omit the upper sets, e.gdinwe do not draw the termination precursofs, c}, {b, c}

and{a, b, c}, which can be derived from the termination precur$of.

Hereafterf is considered to beE, =, v, T 1), §; to be(E;, =;,+;, T;,1;) and in generaf is
considered to beFg, =¢, =g, Tk, lg).

Definition 5.32 Let& be an eTpes. The set wiitial eventsof £ is defined by
nit(§) = {e € E | 0e).
Thetermination predicatd C P(P(U)) x U is defined by

T(T,e) < {e}eT.

In the following two subsections, we derive a transition system from an eTpes and provide a
complete partial order BBTPES. These concepts will be used for the comparisoBDBES
andETPES.

Transition Systems from an eTpes.

The remainder of an eTpes is given as follows.

Definition 5.33 (Remainder of an eTpes)Let § € ETPES ande € Bi\t(@. Then there-

mainderé , of £ is given by(£', =", ', 1", I') where

96 CHAPTER 5. TERMINATING BY ACTION EXECUTION

0,0,0,0,0)

bty

Figure 5.4: Transition System Derived frddTPES

B = {deE|-({e}=e))

s = {(Z,€) | € e BANZ CENIZ:Z5 NZ = Z\{e}}
== (X)€@ € EAX CEATX Xivel AX = X\{e}}
o { [(X'|X'CENIXeT: X' =X\{e}} f-T(Te)
0 otherwise
I = 11~

All events which are disabled lyare removed. Please remember thgt-c. Henceg disables

itself. After the execution of, we keep exactly those precursors that are completely contained

in £’ U {e}, since the other ones can not be contained in further system runs. In the definition of
the termination set, we consider the case when an eTpes terminates by exesapagately in

order to guarantee that the remainder of an eTpes is also an eTpes. This separation is necessary,
since otherwise the empty set would be contained in the termination set, which is not allowed
for an eTpes.

Lemma 5.34 Let§ € ETPES ande € init(§). Thenf; € ETPES.

Proof. Straightforward. O

Analogous to Definition 5.11, the remainder can be used to define an interleaving semantics
for ETPES, which is omitted here. The transition system obtained féinof Figure 5.3 is
presented in Figure 5.4.

Complete Partial Order.

We define the following order oRTPES.

Definition 5.35 Let§; € ETPES. Then§, ¢, if

>

A

o 1) C Ly
) le{(X,e)Eﬁ-ﬂXgEl/\eEEl}
.*;1: (Z,€)€;2|ZQE1/\€GE1}

5.4. DENOTATIONAL SEMANTICS FOR PAst 97

.le{X€T2|X§E1}

~ A

L4 1=Z2TE1

Theorem 5.36 The set of all eTpes ordered tiyisA an w-complete partial order, where the
least upper bound of an-chain (§;);e is given by |.&; = (U, Ei, =, =, T, U, &;) with

= = {(Ze) e P(U B) x (U, E) | 37 : (20 Ej)=je}
= = {(X,e) e P(U; £o) x (U, £3) | 37 : (X N Ej)=je}
T = {XePUE)|3j: (XnE)eT)
Proof: The proof is given in Subsection 5.6.2. O

5.4.6 Correspondence betweeRTBES and ETPES.

We show that there is a continuous function frelif BES ordered by< to ETPES ordered
by < and vice versa. This result is used to show B&tBES and ETPES have the same
expressive power with respect to event traces.

Definition 5.37 Let Fp : P(P(E)) — P(P(E)) be defined by
Fp(M)={X e P(E) |[VX e M: XN X #(}.

DefineF : M — M, whereM = {(E,>,—,T,1) | T C P(E) Adom(l) = EA =, —C
P(E) x E}, by

F(E, =, —,T,1)=(E,{(Z,e) | Z € Fg(_ = e)},{(X,e) | X € Fg(_— €)}, Fg(T),1).

Example 5.38 The transformation of; of Figure 5.1 is§; of Figure 5.3, i.e F (&) = §s.
The transformation of ; yields&; except that all upper sets are included in the conflict relation
(respectively in the causality relation and the termination set), for exafaple ¢} is contained

in the termination set.

Proposition 5.39 Function / | ETBES is a continuous function frofiETBES, <) into
(ETPES, <) and function7 | ETPES is a continuous function froETPES, <) into
(ETBES,).

Proof: The proof is given in Subsection 5.6.3. O

Theorem 5.40 Every set of event traces that is describedB¥BES is also described by
ETPES and vice versa. More precisely, for @le ETBES it holds that€ andF (&) describe

the same set of event traces, and foréale ETPES it holds thatf and F(§) describe the
same set of event traces.

Proof: The proof is given in Subsection 5.6.4. O

98 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Corollary 5.41 Every set of event traces that is described by prime, flow, stable, bundle, ex-
tended bundle or dual event structures is also described by extended termination precursor
event structures, but not vice versa.

Proof: Is an immediate consequence of Theorem 5.15 and Theorem 5.40. a

Remark 5.42 Of course it is possible to u6TPES instead ofETBES as a model of the
denotational semantics for our process algebra. The necessary operators can be defined explic-
itly, as it is done in Subsection 5.4.3 fBTBES. Another possibility is to define the operators

on ETPES through the operators oETBES, i.e. define, for example, the parallel operator

|4 oNETPES by £|| 48 = F(F(&)||aF(£')). These operators are continuous by Proposition
5.39 and Lemma 5.22. The denotational semantics that is obtained in this way is illustrated in
Figure 5.3.

5.5 Discussion

In this chapter, we have investigated new kinds of event structures in order to give denotational
semantics to process algebras that are based on the fa-philosophy and that contain disruption.
The motivation of such an approach results from the fact that it is more reasonable to have an
fa-philosophy in end-based settings, since otherwise the intuitive equivalences fail to be the
coarsest (Subsection 4.2.6). Note that it is possible to model disruption with action refinement
in end-based settings.

Sets of events may disable events in both event structures presented in this chapter. One of these
event structures is based on the bundle technique the other one is based on Winskel's approach.
We have shown that these two event structures are equivalent approaches. Furthermore, we
have used one of them to give a denotational semantics to a process algebra that is based on
the fa-philosophy and that contains disruption. Moreover, we have shown that this denotational
semantics is consistent with the standard operational semantics.

In the following chapter, we define the action refinement operatdE®BES with respect

to the end-based view. In addition, we adapt two of the newly introduced equivalences of
Chapter 4 tdcTBES and show that they yield the coarsest equivalences with respect to trace
(respectively bisimulation) equivalence for the end-based action refinement operator.

5.6 Proofs

5.6.1 Proof of Theorem 5.28.

The proof is analogous to the proof of Theorem 3.25, i.e. we introduce an event based transition
relation. Then we show that this transition system is bisimilafB%P;, Act”, —_,, B)

and that it is, in addition, bisimilar ttETBES, Act”, —, [(decl, B)]). Hence, Theorem 5.28
follows by the transitivity of bisimilarity.

5.6. PROOFS 99

Event Based Transition System.

Let EXPS, be the set that contains exactly those elements generated by
C u= B|C;B[C[>B[ClaC|Cf]|C\A[C:

whereB € EXPg, f € Fr, 1 € {1,2,l,r} and A C Obs. We do not need to extend the
declaration, i.e. we defineAg, = (Var — EXPg) x EXPE,.

In Table 5.2, the event transition rules~/,_,C EXPE, x (Act” x U) x EXPS, are presented.

The First Bisimilarity Result.

An expressiorC' of EXPE, and an expressioR of EXP,, are related if we obtaif by removing
all [_] expressions frond’. This is formalized by the following function, where we also count
the [_] symbols inC.

Definition 5.43 = : IN x EXPs — P(EXPS,) is defined as follows, whete= {1,2,1,7}.

(0.B)={B}]
(n+1,B)={[C;|ieINC€e€ZE(n,B)} ifBec{0,a,B;+ By, x}
(n+1,By;By) ={[C; | i € INC € E(n, By; By)} U

{Cl;BQ | C, e E(n+ 1731)}
(n+1,B,[>By) ={[Cl; | i€ INC € Z(n, B, [>By)} U

{Cl [>BQ | C1 c E(n—i— l,Bl)}
(n+1,B1||aBs) ={[Cli|i€ INC € Z(n, By||aB2)} U

{C|aC2 | Im e IN:m <n+1ANCy € Z(m,B;) ANCy € Z(n+1—m, By)}
(n+1,B[f]) ={[C]:| i€ INC € E(n,B[f))} U{C[[] | C € E(n+ 1, B)}
(n+1,B\A) ={[C;|ieINCe=Z(nB\A)}U{C\A|CeEZE(n+1,B)}

(11 [1 [1]

(1]

(1]

—_—
—
—
—_
—
—

The well-definedness & is easily seen.

Lemma 5.44 Let B € EXPg,, then(EXP, Act”, —_;, B) and (EXPS,, Act”, —", B) are
bisimilar, whereC' -5 C" & e € U : C et C.

Proof: DefineR = {(B, () € EXPy x EXP, | 3n : C' € E(n, B)}. In order to verify thaiR
is a bisimulation, we show

.,
(B —!'B'AC€En,B))=3e,C",m:C =3a C'NC' €Z(m,B") (5.1)

.
The proof of (5.1) works by induction on the depth of inferencé3of—' B’ combined with
the value ofn. Then (5.1) can be easily checked through the following procedure:

e applying ruleNy, or N,; wheneverC = (C*]Z-. In these cases, is reduced by one and

“
B —! B’ remains unaffected. Therefore, the hypothesis yields the result.

100 CHAPTER 5. TERMINATING BY ACTION EXECUTION

In the following lety be an element afict” anda be an element ofict

A . B]_ e—)C/
N
a 50 By + By *1,5) (Ch
By + By <*;T>> [C"]2
Sl . C %Ci SQ . C C/
C;B(HT))C;B CaB(*LE) (B—I
7. C==C I, C“C’ 7. B=C
1+ a N 2 - 3 Y /
C>BaoC'[>B C[>B&5 [0, C[>Baao [C:
P - Clg—>C{ CL¢A . Ole Cl ag_fA
1- oy 2 -
Cil|aCs @9 =7 C1][aCy Ci[laC2 @ ([Ca]r) WA
Col|4Cy wa Cal|aCy Col| 401 ma ([Co]1)\\A
P Cl el O/ CQ 62 CN a &€ A Cl '51 Cl 02 62 C/ a <€ A
3 / / 4 - /
ClHAcz(eW’C HACQ ClHAC2<e1 Tea) ([01)\\A
Col| aCheriear ([C5]0)\\A
P Cl 61 Ol CQ 62 Ol a E A
5 °
C1||A02(eﬁ0
Lab, : —C ch Laby, : —C f_%c'
Clf] == C'[f] Clf] == C'[f]
Resl:C%C/ a/eéA Resq C C/ ag A
C\A4 == C"\A O\\A 50N\ A
7_> / e BINpY) _) /
Rec : decl(z) ,O Nig : ¢ = C, e ¢ O,
x —’C (C’—IZ(*) (C—‘ [C—‘r (*e) (C—‘
[Cy @ [CT,

Table 5.2: Event Based Transition Rules with respecttel,

Y ~
e applying the corresponding rules of—! B’ wheneverC is different to[C7;. In these
cases, the depth of inference is reducedagets not increased. Therefore, the hypoth-
esis yields the result.

5.6. PROOFS 101

Another fact is

.,
(C +=4a C'NC €Z(n,B)) =3B ,m: B —' B ANC' € Z(m,B) (5.2)

This equation can be proved by induction on the depth of inference af .. C'.
Now we are ready to verify that is a bisimulation:

e ltis clear that B, B) € R.

.,
e SupposeB;,C;) € RandB, —t B,. Then3de,Cy,m : C1 —ea Co A Cy €
=(m, By) by (5.1). ThusC, ERINGG and(B,, Cy) € R, as required.

e SupposeB;,Cy) € R andC, 2" ¢, ThenCy L=y C, for somee. Hence,
Y

HBQ,TI’L - By —t By A 02 € E(m,Bg) by (52) O

The Second Bisimilarity Result.

First, we show that the denotation of a variable is the same as the denotation of its corresponding
expression.

Lemma 5.45 Letdecl : Var — EXPg; andz € Var. Then[(decl, z)] = [(decl, decl(z))].

Proof: Similar to the proof of Lemma 3.37.
We extend the denotational semantic®4q,.

Definition 5.46 (Denotational semantics oPAS,) Leti € {1,2} then
Shift, : ETBES — ETBES with Shift,(€) = (B, =,+=, T, 1) where
B = {5} xE

= {({x} x Z,(%i,€)) [Z - ¢}

= {({*l} X X7 (*ive)) | X = 6}

= {{x}xX|XeT}
i 6) = l(e)

el Y

~
—~
*

Shift, : ETBES — ETBES with Shift, (€) = (

\'Djl
\-Yz
T

) where

E = {x}xE

= = {({x} xZ,(%xe)| Z e}
';: = {({*} X X7 (*v 6)) | X = 6}
T = {{x}xXeT}

l(x,e) =1(e)

Shift, : ETBES — ETBES with Shift,(&) = (E, =,+, T 1) where
f = Ex{x}
{(Z x {x},(e,%) | Z - e}
= {(X x{x},(e,%) | X —i ¢}
= [Xx{x | XeT}
e,x) =l(e)

T EIR N 5

l

—~

102 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Furthermore, defing_]' : PA:, — ETBES by

[(decl, B)]' = [(decl, B)] N [{decl, C; B)]" = [(decl, C)]'7 [(decl, B)]’
(decl,C [> B)]" = [(decl, C)]'[>[(decl, B)['
(decl, Cy HACQ>]]’/:\[[<decl, CO] la[(decl, Co)]’ N
(decl, C[f])]' = Tab([(decl, O, f) [{decl, C\ A = [(decl, C) A
{

[
[
[[—_—

[{dec, [C12)] = Shift([(decl, OO)

It is easy to check thdt]’ is well defined.

Lemma 5.47 Suppos€, &, &, € ETBES. Then

(E1FE) (i) Shlﬁz ile])

~ Shifty(E2) if e € init(E1) A Y (11, e)
E17E)) (w0 . ’
(€175 &) E1je 5 & otherwise

Shifty(Eye) i =2

(51[/;52)[(*2-,@)] o~ 5%1(51[6) ifi=1AT(1T1,e)
& e}[>62 otherwise
(51/||\A52) ~ @ﬂ”A& TY(The) Ailer) ¢ 4
(1) Shift,(E2) WA if 1 € init(€1) A T(Ty,e0) Als(en) & A
(51/H\A52) ~ %52[62] if =TTy, e2) Alalez) ¢ A
((rez)] Shifty(E1) WA if €3 € init(E,) A T (Th, e2) Aly(ez) ¢ A
& eI]||A52[ez} T =T(Th, 1) AT (T, e0)
(51/||\A52)[(e)] Shzﬂ (& 62]) \\ if 1 € init(&1) AT (11, e1) A 2T(T3, €2)
Do Shzftl(gl 61]) \\ if € € ll’llt(52> AN T<T27 62) A _'T<T17 61)
(0,0,0,{0},0) i Y(T1,e1) AY(Tn, e2)
whenevel, (e;) = ly(e;) € A
Lab(&, f)qg =~ Lab(&y, f)
~ Ea\A ifl(e) ¢ A
E\A) =~ [e] A\S :
(ENA)ge { undefined otherwise

%i(5>[(*i7e)] b{hi\ﬁfi(g[e]) whenever € {1,2}
Shift, (E)wey = Shift, (&)
Shift)(E) ey = Shifty(Ee)

12

Proof: Straightforward. O

Lemma 5.48 Supposédecl, C) € PAS, andC' ~—4.q C'. Then

C CE) NE =y Ny ¢ et o YT i) = { T 7S

with & = [(decl, OY]’ and&’ = [(decl, C")]'.

5.6. PROOFS 103

Proof: We use induction on the depth of inference(®df-=—4.. C’. Then the equation can be
verified by case analysis on the derivation rules, where Lemma 5.47 is used. In the Base of
we make use of Lemma 5.45. O

Lemma 5.49 Let (decl, C) € PAS, € = [(decl, C)]" ande € init(€). Then

) . , , (e if =71 T7€
3C" € EXPS, : €' e C M:{ zEe;\/ ifr(T(e))

Proof: First we show for anylecl : Var — EXPy;:
Wn € IN: VB € EXPy : ¢ € nit([B] (1)) = (30/ € EXPS, : B "0/

_ { m5([Blry, w)(e) i =Y (m([Bl w),e)) (5.3)
s ([Blrg,)(e)v i T(ma([Bz,) e)

This is done by induction on combined with the structure @& where the lexicographical order
is used. Furthermore, a case analysis on the structukeisfused. We only present here the
caseB = z: e € init([z]zr (1)) implies thatn > 0. ThereforeJz]z (1) = Fi.q(L)(z) =
[[decl(x)]]fge_dlm. The rest follows by induction, sinceis reduced. Thus (5.3) is established.
The main statement follows now by structural induction(énWe only present the case =

B € EXPg. By Remark 5.25 we géft{decl, B)] = | |,[B]#r (). Then itis easily seen that
there ism such thak € init([B]#» (1)) andy = m5([B]#r_(1)). And so the result follows by
(5.3). O

Lemma 5.50 Let (decl, C) € PAZ, then the transition systen{&XP¢,, Act”,—", C) and
(ETBES, Act”, —, [(decl, C)]') are bisimilar, where—" is defined as in Lemma 5.44.

Proof: DefineR = {(C’, [(decl,C")]’) | C" € EXPS}. Then(C, [(decl, C)]") € R by defini-

tion.

Suppose’; € EXPS, andC, 2" ¢y, ThenCy 2=, C, for somee. Hence, by Lemma 5.48

we get[(decl,)]’ <5 [(decl, C,)]', as required.

Suppose’; € EXPe, and[(decl, ()] < &. Then there is € init([(decl, C;)]') such that
_ / _ [Ule) HT(Te)

& = [(decl, C1)]f, andy = { l(e)y/ if T(T,e)

of Cy € EXPS, such thatC;, <. C,. Moreover,[(decl,)iy = [(decl, C5)]' by Lemma

5.48, which concludes the proof. O

. From Lemma 5.49 we get the existence

5.6.2 Proof of Theorem 5.36.

Itis easily seen thatl is a partial order withi),),), , () as its least element. Furthermq@;@
is an eTpes. In the following, we only considEr The cases- and~ follow analogously.

Upper bound:Obviously,7; C {X € T | X C E,}.
Let X C |J, E; such thatX C E; and3i : (X N E;) € T;.
If i > j then§&;<E;. ThusX N E; = X, henceX e T;. Moreover,X € T}, since; <&,;.

If i < j then&;<§;. Thus(X N E;) € Tj. SinceT; is finitely determined, we gek =
(X NE;) el

104 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Least upper boundtet § be an eTpes such thé<§” for all i € IN. Then|J, E; C E'.

Let X € T. Thend; : (X N E,) € T;. Hence,(X N E;) € T, since§,;<¢. ThusX € T7,
since7” is finitely determined.

Let X € 7" such thatX C |J, E;. SinceT” is finitely determined, there i&’ € 7" such that
X' C X AN |X'| < |IN|. Therefore, there existse IN such thatX’ C E;. Hence X' € T).
Then by definitionX’ € 7. ThusX e T, sinceT is finitely determined.

Hence, Theorem 5.36 is established.

5.6.3 Proof of Proposition 5.39.

The following lemmas show that the constraints on eTbes are transformed into the constraints
on eTpes and vice versa.

Lemma 5.51 We have
(i) M#£0 < 0 ¢ Fg(M)

(i) VX eM:e€cX) < {e} € Fg(M)
(i) 0¢ M < Fp(M)#£0
(iv) {e} € M = (VX € F,(M):e € X)

V) {e} ¢ MAD¢E M) = (3X € F(M):e¢ X)
Proof: Straightforward. O

Lemma 5.52 If M is approximation closed with respectibthenFz (M) is finitely determined
with respect tav.

Proof: SupposeX & Fg(M). From the definition of; it follows that all upper sets ak are
in Fip(M). Now supposeX| = [IN|. Let X = {e; | i € IN}. DefineX’ = {e; | 3X € M :

e, € X A\Vj<i:e;j¢ X}. ThenX' C X andX’ € Fg(M).

Assume|X’| = |IN|. Then for alle; € X’ there existsX; € M such thate; € X; and
{er, e N Xy = 0. LetX = X((Xy),,c x5, (Xi) o ez, k), Wheres : IN — E be bijective.
ThenX only contains elements that are contained infinitely ofteip), .z, by the definition
of X' (Definition 2.16. FurthermoreX € M by Proposition 2.17. Therefore; : ¢; ¢ X, since
e; only appears finitely often iQX;), . ¢,. Hence,X N X = (), which contradictsX' € Fj(M).

Thus|X’| < |IN| as required. O

Lemma 5.53 If M is finitely determined with respectE)thenFE(M) is approximation closed
with respect tav.

5.6. PROOFS 105

Proof: SupposeX C FE and(E;);c is a finite, monotone approximation &f such that
VEeIN:3X, : X, NE,=XNE,ANX eM: X,NnX #£0). (5.4)

Let X € M. Then there is{’ € M such thatX’ C X A |X’| < |IN|, sinceM is finitely

/

determined. Thus, theresise IN such thatX’ C E,. From (5.4) we obtaifl # X, NX'" C
X, NE,NX' =XNE,NX CXNX CXNX. HencevX € M : XNX # 0, as
required. O

Proof of Proposition 5.39: That #(ETBES) C ETPES and 7 (ETPES) C ETBES is
an immediate consequence of Lemma 5.51, Lemma 5.52 and Lemma 5.53.

It is left to show the continuity of | ETBES andF | ETPES, i.e.|;|i]-“(€i) = F(, &) for
everyw-chain(&;),ew With respect to< and| |, F(§;) =]—"(|;|i£2-) for everyw-chain(&;);en

with respect to<. The coincidence of the sets of events and the labeling function is easily
seen. In the following, we only consider the termination set, since the conflict and the causality
relation follow analogously. We have

Tyrey) = X13:VX T : XNE;NX #0} (5.5)
Truen = {XWXGPUE (Vk:XNE €Ty = XNX£0} (56)
T, 7)) = {X|Vk:VX€Tk:XﬂEkﬂX7é®} (5.7)
Triey = {X|VX€7’(UEZ-):(Hj:(XmEj)ezy);»XmX%w} (5.8)

TI_I Fe) S Try, &) SupposeX € TI_I f(g)

ThenXNX DX NE;N(E;NX) 7é 0.

Let X € P(, E;) such thatvk : X N Ej, € T.

TI_I FE) 2 T, &) SupposeX € Trqy,e)- SinceF(]; &) is an eTpes, there X’ e

T'F(y, &) Such thatX’ C X A |X’| < |IN|. Hence, there ig such thatX’ C E,.
Let X e T}, then by Theorem 5.19 thered§’ € | |, &; (i.e.Vk : X' N Ey, € T};) such that

/

X'NE =X.ThusX NE;NnX D X'NENX =X NENX CEJX’HX’;AQ)

~

T 7y C Ty SupposeX € T}, f((gl) Let X € P(U, E;) suchthaBj : (XNE;) € T;.

FUk)"
ThenX N X D X NE;N(E;NX) 7é 0.

T, 760 2 Try) SUPPOSEX € T Let X € T}, thenX = X N E,. Hence X N

L1
Ekmf(:XﬂX#(Z). m

106 CHAPTER 5. TERMINATING BY ACTION EXECUTION

5.6.4 Proof of Theorem 5.40.

In order to prove thaETBES and ETPES have the same expressive power with respect to
event traces, we define remainders with respe(8(E)), as follows.

Definition 5.54 Supposé:’ C E. DefineRempg x : P(P(E)) x E — P(P(E")) by
Rempg p(M,e) ={X'CFE |3IX e M : X' =XNE Ne ¢ X}

andRemp g : P(P(E)) x E — P(P(E')) by

Remp (M, e) = {X' C E'|3X € M : X' = X\{e}}.

The remainders defined above coincide with respeét:to
Lemma 5.55 Suppose ¢ £’ andE’ C E. Then
(|) FEI(RGIHE’E/(M, 6)) = RalE7E/(FE(M), 6)
(i) Fe(Remp g (M, e)) = Remp g (Fp(M), e).
Proof:
(i): We haveX’ € Fp/(Remp (M, e)) if and only if
X' CEAVX' eP(E):BXeM: X'=XNEAe¢ X)=X'NX'#0 (5.9)
andX’ € Remp g (Fi(M), e) if and only if

X' CEANIXePE):VXeM: XNX 40 AX =X\{e} (5.10)

C: SupposeX’ € F/(Remp (M, e)). DefineX = X’ U {e}. LetX € M. If e € X then
X N X # 0. Therefore, suppose ¢ X. From (5.9) we gef £ (X N E') N X' =
X n X “E° X n X, which establishes (5.10).

O: SupposeX’ € Remp p (Fg(M),e). Then by (5.10) there iX € P(E) such that
VX eM:XNX #0andX’ = X\{e}. Let X’ € P(E') such thadX € M : X' =

XNE'Ae ¢ X. Hence X'nX' = (XnE)NX' VEY XnX' = xn(X\{e}) “E xnX
which is non-empty by (5.10). Hence, (5.9) is concluded.

(ii): We haveX’ € Fiz(Remp (M, e)) if and only if
X' CEANVX ePE):(3X eM: X' =X\{e}) = X' NX 40 (5.11)

andX’ € Rempg g/ (Fr(M),e) if and only if

X' CEANIXePE):VXeM: XNX##NDAX' =XNEANe¢ X (512

5.6. PROOFS 107

C: SupposeX’ € FE/(RalE,E/(M, e)) DefineX = X' U(E\(E'U{e})). ThenX N E’ =
X"ande ¢ X, sinceX’' C E'ande ¢ E'. Let X € M.
If X C E'U{e} thenX’ N (X\{e}) # 0 by (5.11). FurthermoreX N X 2 X' N X =
X'Nn(X\{e}), sinceX’' C E"ande ¢ E'.
If X ¢ E'U{e} then there exists € X such that ¢ E'U{e}. Hencet € X N(E\(E'U
{e})) CXNX.
Thus (5.12) is established.

D: SupposeX’ € Remp g (Fg(M),e). Then by (5.12) there i € P(E) such that
VXeM: XNX#PandX' =X NE ande ¢ X.

Let X' € P(E') suchthaBX € M : X' = X\{e}. ThenX' N X' = X nE'n X' * =¥
XNX =Xn(X\{e}) “E X n X which is non-empty, sinceX € A : X N X # 0.
Hence, (5.11) is concluded. O

Before we continue, we give a modified version of the remainddi ®BES. There we guar-
antee in the case of termination thats upper closed.

Definition 5.56 Let€ € ETBES ande < init(£). Then& . is given by(E', ', " T", '),
whereE’, ~', —’ and!’ are defined as in Definition 5.9 and

T {XNE | XeThne¢g X} ift-Y(T,e)
| P(E) otherwise

Lemma 5.57 Let€ € ETBES. Then the event traces obtained by Definition 5.9 and by Defi-
nition 5.56 are identical. Moreover the corresponding labels of the event executions coincide.

Proof: This follows from the fact thal’ does not influence the event traces. It only determines
the fact when an event becomes a termination event. After termination no further termination
may happen by both remainders. This holds, sihisin the termination set. O

The remainders oRTBES andETPES coincide:

Proposition 5.58 Leté € ETBES and§ € ETPES. ThenF (&) ~]—“(8)@ and]—“(&;[fe\]) ~
F(&)pey-

Proof: Let&” = & and¢’ = & Then itis easy to check that

= = {(Z',¢)| e € E'NZ € Rempp(_ = ¢ e)}
= = {(X',¢)| ¢ € E'ANX €Rempp(— ¢, e)}
T — RemE’El (T, 6) if _|T(T, 6)
P(E") otherwise
and . _
= {(Z',¢)| ¢ € E'NZ" € Remy p (=€,)}

== (X,) | ¢ € B'A X' € Remy, (¢ e)}

P Remp z,(T,e) if =T(T,e)
0 otherwise

108 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Furthermoreg € init(£) <= —(IX : X —) “E2" 05 p0e <= e € mit(F(E)) and

e € mit(f) — e L2 —EX : X opp €) < e € mit(F(£)). Hence,F (&) is
defined if and only it7—"(€)[A is defined, and~(¢{’) is defined if and only itF (). is defined.

]
We haver' € Erey <= ¢ € B = (3Z:Z = ¢ Ne¢ Z) "2 —({e} S pee) —
e e Ef(,g)ﬁ ande’ € Ergy <= ¢ € B/« —({e}5e) "3 37 Z s pip € Ne ¢
Z <= ¢ € Erg),,,

The rest follows from Lemma 5.55 and the fact that(0) = P(E') and P (P(E")) = 0. O
Theorem 5.40 is an immediate consequence of Lemma 5.57 and Proposition 5.58.

Chapter 6

End-Based View InETBES

As in Chapter 4, we consider the view that a choice is determined by the ending of actions
(end-based view), which is contrary to the usual approach, where the start of an action triggers
the choice. A motivation for an end-based approach is given in Section 1.3.

In this chapter, we apply the end-based approadiE®BES and not toCBES, as it is done in
Chapter 4. More precisely, we define an end-based refinement operaldrBIES such that

the refinement terminates by its ‘final’ executed event (action) and not with an additional event,
asitis done in Chapter 4. The end-based approach is adjudEHBIS, because the intuitive
equivalences (ICT- and FUI) fail to be the coarsest for the end-based refinement operator in the
CBES-setting (Subsection 4.2.6).

We adjust the definition of the ICT- and the FUI-equivalence (Section 4.2) t&THBES

setting. The Ul-equivalence can also be adjusted tadES setting in a straightforward

way, which is omitted here. We show that the ICT- (and the FUI-) equivalence is indeed the
coarsest congruence for the end-based refinement operator with respect to trace (respectively
bisimulation) equivalence in thETBES setting. This circumstance underpins the fact that
extended termination bundle event structures represent a reasonable extension of the standard
event structures. Furthermore, we show that the hierarchy of the equivalences considered in the
ETBES setting is the same as in teéBES setting.

6.1 An End-Based Refinement Operator oETBES

The differences between refinement operators in start-based and in end-based settings is illus-
trated in Section 4.1. There, we also argue that an event structure suitable for an end-based
refinement operator has to allow the modeling of disruption. This is true for extended termi-
nation bundle event structures (eTbes), which are introduced in Subsection 5.4.2. Hence, they
represent a suitable model for introducing an end-based refinement operator. This operator is
given in the following definition.

Let 7, Obs andVar be defined as in Section 3.2 and Mt be defined as in Section 5.2.

Definition 6.1 Let A C Obs. Then defingkef : ETBES x (A — ETBES) — ETBES
by Ref<l (£,0) = (E,=,~,T,1) where

109

110 CHAPTER 6. END-BASED VIEW IN ETBES

E = {(e,)|€EE/\Z()€A/\§€E@(1(6))}U
{(e,e)EExE|l()¢A}

= = {(Z,(e,e))|3Z:Z=eNTf:Z—PU):
(ve'e Z:(I(e') ¢ ANf(e) ={e'}) v (i(e) e ANe # e A fle)ETez(e/))\/

((’)EA/\e—e/\EIXETg(l 2 (€)= ZUX A Z mguiery €))A

Z=A{(,&)eE|eecZNe€Efle)}}

== {({Q}XX'(e)) [lle) € AN X" =) €} U
{(X,(e,e)) | (Ife) e A= é cmit(@l(e)))AIX : X —eATf: X — PU) :
(€ X () € 4 16) = () V() € ARS€) € T

. X={(¢)eL|eeXneef))
T = {X[3XeTA3f: X —PU): (Ve €X:(I(e) ¢ AN F(¢) = {¢}V
(I(e) € AN F(E) € Togen)) A X = {(€,&) € B | €' € X A& € f(e)}}
(ee) = | 16 if l(e) ¢ A
©e = lg(l(e))(é) if l(e) €A

We give some comments on the definition. A witness-bundle derived from the witness-Bundle

of e (i.e. Z > e) of event(e, é) has to contain all events of a termination-bundle of the refinement

of an event’ (different toe) thatis inZ. This is done in order to guarantee that bundles derived
from Z can not be used as a withesseofwhen e’ terminates. Ife’ is equal toe, then the
witness-bundles (instead of the termination bundles) of the refinement are considered. This
guarantees that the events of the refinement become disabled, as specified by the refinement. A
termination-bundle of the refinementdis used in the causality relation wheneweappears in

the causality bundl& of the unrefined event structures, since the refinement has to terminate
before the constraint specified By is fulfilled. This is also the case in the definition of the
termination set.

Lemma 6.2 The refinement operatoRef’ is well defined, i.e. it really yields elements of
ETBES.

Proof: The proof is given in Subsection 6.4.1. ad

An example that illustrates how the refinement operdtgi’ behaves is given in Figure 6.1.

For a better understanding, we augment the examples by process term descriptions of the sys-
tems (see Section 5.2). Furthermofe,— &,) denotes the function fronja} to ETBES

that maps: to £1,. Moreover, if an event’ is a necessary causality ef i.e. e can only be
executed after the executiondf we sometimes omit in the witness bundles ef, since it has

no consequence for the behavior. For example?éﬁ?f} (€T (a — &19)) of Figure 6.1, the
witness bundles to events labeled withhave to contain both events labeled with

As in Remark 4.4, the reflnement operaftaf! allows the modeling of the disrupt operator

[> of Definition 5.20, i. e£1[>52 and Ref{,, (&1 + [a], (a — &;)) have the same behavior if
labela does not appear if;.

6.2 Equivalences forETBES

As in Section 4.2, we examine congruence equivalence®#pt’. We are particularly inter-
ested in the coarsest congruence with respect to trace / strong bisimulation equivalences, where

6.2. EQUIVALENCES FOR ETBES 111

5*“ (912 R@f??;} (g-‘,—a’ (CL — 512))
A Qa0 al 1]
(b
a+a ay; Gz

Figure 6.1: End-Based RefinementHt'BES

trace and strong bisimulation equivalences is obtained, as usual, from the derived transition
system introduced in Definition 5.11. Formally:

Definition 6.3 (Trace Equivalence) Two £,&’ € ETBES are trace equivalentdenoted by
& ~, &', ifand only if the transition systenfETBES, Act, —, £) and(ETBES, Act, —,&’),
where— is defined in Definition 5.11, are trace equivalent (Definition 2.4).

Definition 6.4 (Strong Bisimulation Equivalence) Two &, £’ € ETBES are strong bisimilar
(or strong bisimulation equivalent), denoted 8y~;, &’, if and only if the transition systems
(ETBES, Act,—,) and(ETBES, Act,—, £’) are bisimilar (Definition 2.5).

6.2.1 ICT-Equivalence onETBES

ICT-equivalence from Subsection 4.2.2 is adapteBTBES as follows.

Definition 6.5 (ICT-equivalence) Let £ € ETBES. Then theinitial event tracesf £ are
defined byl"“(€) = {((e;,v3),Vi)i<n | n € NAZEy, -+, En1 1 Eg = EAVE <02 Ejey =
8i+1 A\ (T(gl, 62‘) =V = \/) N € me(inito[)s(&))}.

Two &, & € ETBES are initial corresponding trace equivaleiCT-equivalent), denoted by
E ~or & if

o for every((e;,v;),7:)i<n € T(E) there is an injective, labeling preserving functign
(Uicn(vi U{ei})) — E' suchthat((f(e;), vi), f(7i))i<n € T*(E') and

e for every((e},v;),7})i<n € T™(E’) there is an injective, labeling preserving function
f'o Uicn (i U{ei})) — E suchthat((f'(e;), vi), f'(7]))i<n € T™(€)

The eTbes from Figure 6.2 are not ICT equivalences, whereas the eThes from Figure 6.3 are
ICT equivalent.

Proposition 6.6 Two ICT-equivalent eTbes are also trace equivalentqhgyr C~;.

Proof: It follows from the fact that every trace is also an initial trace, where the second compo-
nent is always empty. O

112 CHAPTER 6. END-BASED VIEW IN ETBES

0 gen~~An~0ad

b+a a;b+b;a
Figure 6.2: Non ICT-Equivalent eTbes

a %
a+b;a a;b+a;b

Figure 6.3: ICT-Equivalent eTbes

Theorem 6.7 ICT-equivalence is a congruence for the refinement opet@tgf’, i.e.£ ~cr
E' ANVa € A:0(a) ~er 0 (a) implies thatRef (£, 0) ~rcr Ref (£,6).

Proof: It works analogously to the proof of Theorem 4.10. O

Contrary to theCBES setting, ICT-equivalence is the coarsest congruenceRfgf’ with
respect to trace equivalence.

Theorem 6.8 ICT-equivalence is the coarsest congruencefof’ with respect to trace equiv-
alence. Moreover, VA, 0 : Ref< (£,0) ~, Ref< (£',0) then& ~or &

Proof: The proof is given in Subsection 6.4.2. O

6.2.2 FUI-Equivalence onETBES

FUIl-equivalence from Subsection 4.2.4 is adapteBTBES as follows.

Definition 6.9 (FUI-Bisimulation) A finite unique initial bisimulationFUI-bisimulation) R
is a subset oETBES x ETBES x (U — U) such that whenevéE,, &, f) € R, then

o dom(f) = initons(&1),
e fis alabeling preserving isomorphism betweéeito,s(€1) andinitops(Es)

o ¢; € init(&;) AT € Pyin(initops(£1)) implies that there exist, and f’ such that; (e;) =
lg(eg) andT(Tl, 61) <~ T(T27 62) andl1 (61) € Obs = €y = f(el) and (81[61]7 52[62], f/) €
Randf [(INinitobs(Eifey))) = f* [Tand f~4 [(f(I) Ninitops(Exge,))) = f1 [f(I)

6.2. EQUIVALENCES FOR ETBES 113

)
(a+c);b

Figure 6.4: FUI-Equivalent eTbes (1)
& = [((z — allpz), =
@@ @Q) @(]} @@ -+ - infinitely

EM = [((x — aljpz), (a; a)||ox)]

@@ @@ @@ . infinitely
2330

Figure 6.5: FUI-Equivalent eTbes (2)

o ¢y € init(&) A I € Pyin(initops(E2)) implies that there exist; and f/ such that; (e;) =
lg(eg) andT(Tl, 61) <~ T(T27 62) andl1 (61) € Obs = €y = f(el) and (51 le1]s 52 62] f) €
Randf | (I Ninitows(E1fey))) = f T Tand f~1 [(f(1) Ninitops(Eapey))) = f T f(I)

We say that;, & are FUI-bisimilar (or FUI-equivalen}, denoted by, ~ry; &, if and only if
there is a FUI-bisimulatioriR and anf : &/ — U such that &y, &, f) € R.

The eTbes from Figure 6.3 are not FUI-equivalent, whereas the eTbes from Figure 6.4 are FUI-
equivalent. Moreover, the eTbes from Figure 6.5 are also FUI-equivalent.

FUl-equivalence yields a congruence.

Theorem 6.10 FUl-equivalence is a congruence fdtef’, i.e. £ ~py; £ AVa € A :
6(a) ~pys 0'(a) implies thatRef< (£,0) ~py; Ref (E,6").

Proof: It works analogously to the proof of Theorem 4.18.

Contrary to theCBES setting, FUI-equivalence is the coarsest congruenceRfgf” with
respect to bisimulation equivalence.

114 CHAPTER 6. END-BASED VIEW IN ETBES

Figure 6.6: Relations Between the Equivalences

Theorem 6.11 FUI-equivalence is the coarsest congruence Ref " with respect to bisimu-
lation equivalence. Moreover,¥A, 6 : Ref< (£,6) ~y Ref< (£',0) then€ ~py; £

Proof: The proof is given in Subsection 6.4.2. O

6.2.3 Comparison of Equivalences

Theorem 6.12 All valid relations between the equivalences ~;cr, ~y, ~ry; are presented
in Figure 6.6: If two equivalences are connected via a line, then the lower one identifies more
elements than the upper one.

Proof: ~ry1C~yC~y and~ ;o7 C~, is obvious.

Supposee ~py; £, then by Theorem 6.10 we havel, 6 : Ref< (£,0) ~rur Ref< (£',0).
Since~ pyrC~pCrvy, We obtainv A, 6 = Ref4 (€,0) ~; Ref< (£',6). Thus by Theorem 6.8 it
follows that€ ~;cor &'

The strictness ofvr;;C~;cr follows from the event structure depicted in Figure 6.5. The
strictness ofv, C~; is well known. And the other strictness follows from the fact that the event
structures corresponding &canda + a are bisimilar but not ICT-equivalent. O

6.3 Discussion

It is now straightforward to give a denotational semantics to process algebras that contain end-
based choice operators together with action refinement operators as long as no parallel operator
with action synchronization is contained in the process algebra.

For process algebras that also contain a parallel operator with action synchronization, it is rea-
sonable that some start-based choices are modeled. For example, we expect that the expression
(a+ a)||;sya may only start one-action, since the process on the right hand side can only start
onea-action. Hence, a start-based choice is modeled for the process on the left hand side. Such
a circumstance arises, for example, if the left hand side demands processor resources and the
right hand side specifies the administration of the processor resource, where onlgambée
executed.

Therefore, it is more reasonable to consider process algebras that contain both choice operators,
i.e. end-based and start-based choice operators. Such a process algebra is intensively examined
in the following chapter.

6.4. PROOFS 115

6.4 Proofs

6.4.1 Proof of Lemma 6.2

The constraints which are different to the approximation closedness are easy to check. Let

5 oT . E@(l(e)) if 1(6) € A
E = Ref3 (€,0) andE. = { {e} otherwise -
=: Supposée’,¢') € E. DefineM = {Z | Z - ¢'}. Furthermore, let

{{e}} if i(e) ¢ A
M, = Tg(l(e)) if l(e) eANe £e .

{Z U X ’ 7 >0(l(e)) e'N X € Te(l(e))} if l(e) cANE =€
From Corollary 2.19 we obtain that, is approximation closed with respect .
Furthermore M = {{(e,é) |e € X Aé € X.} | X € M A X, € M.} is approximation
closed with respect t& by Corollary 2.21. Hence>> is approximation closed with respect

to F, since{Z | Z=(¢/, &)} = M.

: Supposde’, ¢') € E. DefineM = {Z | Z — ¢’} and

M, — { {{6/} X X | X o(i(e’)) é/} if l(e/) €A

1 — . .

0 otherwise

Then/; is approximation closed with respectfb Furthermore, let
Afz{ﬁd}gﬂ@¢A_

¢ Tg(l(e)) if l(e) e A
Obviously, M, is approximation closed with respect£3.

From Corollary 2.21 we obtain that
Mo — { 0 if i(e) € ANé ¢ init(0(l(e)))
7l e, é)leeXnéeX) | XeMAX, € M} otherwise
is approximation closed with respectf And so the approximation closedness-offol-
lows from Proposition 2.15, sindeX | X+=(¢/,¢')} = My U M,.
T: Let
Afz{ﬂd}u@¢A |
© Tg(l(e)) if l(e) €A
Obviously, M, is approximation closed with respect k).

Furthermore M = Hle,e)[ee XANee X} | X € MA X, € M} is approximation
closed with respect t&’ by Corollary 2.21. Hence]' is approximation closed with respect
to E, sinceT = M.

Thus Lemma 6.2 is established.

6.4.2 Proofs of the Coarsest Congruence Results

We introduce an event-based refinement. This refinement differsRgfd by assigning event
structures to each event and not only to action names.

Definition 6.13 Ref : ETBES x ({ — ETBES) — ETBES with

116 CHAPTER 6. END-BASED VIEW IN ETBES

Refl(€,0) = (E,=,~,T,I) where

é)|lee EN l()EA/\éEEﬁ(e)}U

€ ExE|l(e) ¢ A}

,())|HZ Z=eNIf: Z—PU):

Vo€ 2 (Ie) ¢ AN () = (D V () € ANE £ e A F(e) € TV
((/)EA/\e_e/\HXGT,&()Z fle) = ZUX/\Z>,9(,3/)é))/\
={(¢.¢)eE|deZne e f)}}

({e}xX’(é))\l()eA/\X () €} U

(X ())|(()€A:>e€1n1t(19()))/\EIX:X»—)B/\EIf:X—>73(Ll):

(Ve' € X : (I(e)) ¢ ANf(e) = {6’})\/(1(6’)GAAf(e')ETa(ef)))/\

X (e eBleexare fion)

T = {X]EIXET/\Hf.X—>73(Z/l)~. (Ve'e X : (I(e") € AN f(e) ={e'})V

() e ANf(e)eTyen))NX ={(e,é)e E|e e XNe e f()}}
il 0) — l(e) ifl(e) ¢ A
(.6 = { (&) ifl(e) € A

e e N e
Q
[
~—

==
{

The advantage oRefeT is that the event execution @fef 6T(<€) can be reduced to the event
execution of€ andv, as it is shown in the following Iemma

Lemma 6.14 Suppos€ € ETBES, ¢ : Y — ETBES. Then

R_efi;;(é‘[e],) ifl(e) ¢ ANe=eé
Ref (€, 9) e = R_efgr(s[e}, de — d(e)g]) ifl(e) € AN (Tye, é)
R_eff4 (5,"&[6 — ﬁ(e)[éﬂ)} if l(e) € A/\ﬁT(Tlg(e),é)
Furthermore,Ref ! (£, Ve — E']) ~ Ref (£, ¥) holds for anye” € ETBES.
Moreover,

R T(T,e) iflle) ¢ ANe=
T (Treps ey (€:€)) < { V(T e) AT (T, 8) ifl(e) € A

>

Proof: Straightforward and left to the reader. O

Proof of Theorem 6.8: Suppos€ (e;, v;),7:)i<n € T°(E). We define a refinemenit which is
used to construct a corresponding trace.

Therefore, lets : &/ — IN be an isomorphism. Furthermore, defifie= Ui<n(7i U {ei}) and
E, = {e € E | l(e) = a}. Additionally, defines : E — IN by d(e) = 1+ |{i | e € vi}|.
Moreover, letA C Act be the set of all action-names occurringior in ', i.e. A = {i(e)|e €
E}YyU{l'(e)|e’ € E'}. And lety : E x IN — Obs\ A be an injective function. Such a function
exists.

Our idea of¢’ is that we replace any eventof £ by the sequential composition of actions
wle, 1), ..., u(e, d(e) + 1). Sinced’ only maps action-names instead of events, we take the sum

6.4. PROOFS 117

of all the corresponding events, i#(a) = £, where
E = {*2 *{o\eEEA1<j<(5()}
{({(#E %y 0|k # (FU x5« 0}, 45 %] 8) | e € B, A1 < j<d(e)},
{({+519 4 o} %5 Wit o) e € By A1 < j < d(e)},
{3595 o e € B},
{5 5 o (e) | e € EuAL < j < 8())).
The sequenceg; «] o are considered to be right bracketed and therefore to be eleméiits of
Letm =n+)", |v| and define_; = v, ands_; = 0 and fori € {0, ...,m — 1}

o If Iy # (Z), thenSi =s;,_1,1; = Ii,l\{e} andéi = (6,*5(6) *\1{j|j§8i71/\€€7j}| 0), wheree
is an element of,_;

o |f I, = @, thenSi =s_1+1, 1= Vs; and

G — (651-717 Cs;_ 1) 5 if l(esi—l) =T
' (es, 1,*';(651 1)*1(6‘”*1) e) otherwise
- €ns €n if lle,) =1
andén = { Ee *”()e") K)o oth<erv)vise '
ny 12 1

Itis easily seen thar, (&) | i € {0,...,m}} = E. Define&, = Ref (£,0') and&iy = Eie

for i < m. The&, are well defined which, can be seen by induction, as follows. Obviously for
i = 0. SUPPOSE; = (e, x1“«]e). By Lemma 6.14 we obtain thaf = Ref ! (Eegl.fen, 1] V5,
whered(e) = ¢'(l(e)) NN withg = [{j | e = m(&;) ANl(e) #TNj <i}| It

is easily seen tha(te,*Z(°) *1 o), ..., (e, *g@) x~1 o) appears in the sequence befére Thus
x5« o € init((c)). Furthermoree,, , € init(Epy).fe,, , 1)), SINCE((ej,5),%)j<n €
T“(€). Henceg; € &,. Furthermore, by Lemma 6.14 we obtaln

Y(E, &) e Tj,é: 6= (e;,6) Avy =/ A(l(e;) =7V é =9 29 o). (6.1)

r(e)

[*5 xle],...,

From the definition of; it follows that (o) i<y € T(Ref< (€,6')), whereq, is defined by

o = TAa T . N . Therefore, we geta;)i<my € T(Ref (£',0")),

{ Lneger e (E)y/ i T(E6) i) <m) (Refiy (£7,67))

sinceRef% (£,0') ~; Ref< (£,0'). Hence, there exists’,) ;<. such that, = Ref< (£, ¢’
A A (i<m) A

~ ~ . l el (cr gr () If _|’I‘(5/ ~/>
and&/,, = £, are well defined and, = { 4 0) S
+1 EA { Lpeper e, 9,(Ny IfT(ELE)

From the injectivity ofu we getvi < m : m1(&) # 7 = m(&) = m(€}). Definee, = (&)

wherei is chosen such thde; = (ej,*;()*‘f(eﬂ) o)V (l(e) =TNE = (ej,ej)). Now, we
verify by induction that
= Re f@T(e[e

v _ [OmE) i (x5
whered(¢') = { 0'(I'(¢')) otherwise

Obviously fori = 0. We proceed by making a case analysis:

L), (6.2)

Si_1— 1

*1 o) :ej

118 CHAPTER 6. END-BASED VIEW IN ETBES

l(m1(é;)) = 7: By induction and Lemma 6.14 we gét,; = RefET(é” 07,

leg]-- es - m1(E)]
which is equal toRefZT(S[’eH o Vi)
— s

é = (ej,*g(ej) <) o) ThenY (¥}, m(¢})), sinceé; andé! have the same label apds injec-

tive. Thus by induction and Lemma 6.14 we get
Elir = Ref (€l e yimeepy Vi Im(E) = 9 (m1 (@) maep])-

Furthermore, there i8 < i such tha€), = (m(é}), *2()*1 e), since otherwise! ¢ init(&!).
From the injectivity ofu we obtain thatrl(el) = m1(€x), Sinceé, andé), have the same label.
Hence £/, , = Ref! (&] o) e, 1»9%,1), as required.

Otherwise: Then—Y (9%, my(€})). Thus by induction and Lemma 6.14 it follows ttﬁ;l =
R_efeT(é", o Ui m(€;) — 07 (m1(€))) ma(ery]). Furthermore, there is < ¢ such that

e, = (m(é), *2() *1), since otherwise; ¢ init(£/). From the injectivity ofy we obtain
thatm, (&;) = m1(é). Hence£l,, = R_quT(S[’%]“[e,A? 1, 97,1), as required.

From (6.2) we obtain that, (¢;) = m(¢;) < m.(€;) = m1(€}). Hence, the functiorf : E—F
with f(e) = m(é}) wheneverk = 7, (¢;) is well defined, Iabellng preserving and injective.
Additionally, (6.2) becomes§! = RefeT((el (esy_y 1) > U7), whered” is defined by (e') =
Pi(fH(e)) if f7(e) is defined

{ o(I'(e") otherwise . Furthermore, by Lemma 6.14 we get

E|j . Wl(éj) = €s,_1 AN T(gl e’

))
J .7
n(egl 1) 5(631._1)) .

T (C/’/ bl Si—1 <:>

([f(eo)]--[f (es; _y~1)] fesis)) (U(m1(€))) = 7V m2(€;) = %, *1
Therefore, by (6.1) we obtalli (€7, (.. ./ (€sim1)) & vi = /. From this and (6.2) it
follows that((f(e:), v:), f(7i))i<n € T*(E).

The other case can be shown by symmetrical arguments. O

Proof of Theorem 6.11: We verify the stronger statement claiming that there is a refinement
function®’ such thatRef<’ (£,6') ~, Ref (£',0") impliesE ~py; £
Define A C Act to be the set of all action-names occurringgiror in £, i.e. A = {i(e)|e €
EYyu{l'(e)e € E'}. Letp : {1,2} x A x IN — Act\A be an injective function. Such a
function exists. We define for all € A an eTbe<,,, which corresponds to the process algebra
term X = u(1,a,0); 1u(2,a,0) + X[f], wheref(u(i,a,n)) = u(i,a,n + 1). In the definition
the sequences; *;, ;e are considered to be right bracketed and therefore to be eleméiits of
Ea =({*3xxe[nelNAie{l,2}}

{({(35 %1 %10 | n € N\{j}} U {51 %}, 4] %1 %i0) | € N Ad € {1,2}},

{({*5 %1 * @}, x5 x1 x2@) | n € IN},

{{*} x1 x90 | n. € IN}},

{(*g *1 % ®, M(Z7 a, n)) | nelNAie {17 2}})
Defined’ : A — ETBES by ¢'(a) = &,. Furthermore, definé(@™ by

g(am) = ({*g *1 *2.}’ {({*g *1 *2.}7 *g *1 *2.)}7 (2)7 {{*g *1 *2.}}’ {(*g *1 K20, :u(2> a, n))})

6.4. PROOFS 119

Let R, be a strong bisimulation such thigef<’ (£, 0'), Ref< (£',6')) € R,. Without loss of
generality, R, contains only elements which can be derived fr@af<’ (£,60'), Ref< (£',0").
Furthermore, let : &/ — IN be an isomorphism. We define the relatiBey ,,,; by

Rrvr = {(E,€, f) | f : initops(€) — initoss(€’) is a labeling preserving isomorphism
VI € Pyun(initons(£)) : 37 € Py (initons(€)) : L S T A 30,0
Y o if e € E\J
Ur(FE©) ifee J
”» if ¢ € E'\f(J))A
@) if o € F(.J)

- E
Ve ¢ E :¥(e) =
e e e

In the following we show thaRef ,.,;; is a FUI-bisimulation. Therefore, suppogg &', f) €
Ref pyr-

Then f is such a required isomorphism by definition. Now suppése init(€) and] €
Pin(initops(£)). Thenthere is/ suchthat U{e} C J, and(Ref < (€,7), Ref<[(E',7')) € R,
whered, ¢ are the corresponding functions. We proceed by making a case analysis:

21(6 K(

I(e) € Obs A =T (£,€): ThenRef[' (€, 0y " 'R Ref' (€,) by Lemma 6.14, since
I(e) € A. Furthermore, because of the fact tia is a strong bisimulation, there exists
such that(Ref*!' (€1, 9), Ref | (€',0')1) € Ry andlpger ey (€) = p(2,1(e), k(f(€)))-

Thus, m(e/) = f(€) and l’(m(")) = I(¢) by the injectivity of x. Moreover, we have
Ref(E',0") ey = Ref [(€[, 7", whered = my(¢/).

I(e) =7 A=Y(E,€): ThenRef(£,9) — Ref! (£4,9) by Lemma 6.14. From the fact that
R is a strong bisimulation, there existssuch that(Ref (£, 7), Ref (€',9")) € Ry
and i per (@ 3y (€') = 7. Thus,/'(¢') = 7 and Ref* (£',9") ey = Ref<[(€[, "), where
¢ =m(e).

The cases wheff' (£, €) holds are carried out analogously. Furthermore, we ha\& ¢) <

T(&', ¢') by Lemma 6.14.

So it remains to find a functionf : initObs(S[e]) = initObs(g[’e,]) that satisfies the necessary

constraints. Therefore, define functloﬁsand eTbest;, & with i € IN as follows: f, =

£ (J Ninitops(E)), €0 = Ref < (£, Y) and&) = RefeT(gt,],ﬁ')

for2n + 1: If k1 (n) ¢ 1n1t0b5<g[a) or fo, (k7 1(n)) is defined, therfani1 = fon, Eoni1 = Ean
and&;, ., = &;,.

If x=!(n) € initops(El) A fon(n"(n)) is undefined, thefr ™ (n), 5 1 x1e) € initops(Ean).
Hence, there ig}, with the same label such thé‘t‘gn[e% S%[~,2n]) € Ry, Wheree,, =

(F&_l(), x5 x1 %18). Deflnef2n+1 f2n U{(k"(n), m(&,)}, 32n+1 = 52n[é2n] andgén+1 =
g/

2nlé,,]

for 2n + 2 If k7' (n) ¢ initows(Efy;) OF f5,! (v (n)) is defined, thenfy,i1 = fon, E2n1 =
Eop andEl, = &y

120 CHAPTER 6. END-BASED VIEW IN ETBES

If K71(n) € initows(Ef) A f2, (57 (n)) is undefined, thetk ™! (n), 3 x1x1@) € initops(E3,).
Hence, there ig,, with the same label such théfgn[@n},gén[e) € Ry, Whereé,, =

2 -
<~/€_1(7’L), *g’ *1 *1.). Definef2n+1 = fgn U {(Wl(ézn), H_l(n))}, 82n+1 = €2n[égn] andSénH =
Eoniey)

f is defined byf = U, . fu-

f is a partial function, sincgi-g/fl(n)) is defined implies that its correspondiggdoes not
possess events labeled pyl,i(x~'(n)),n). Hence, it is not defined twice. Moreovef,is

a labeling preserving isomorphism betweeitops () — initObs(S[’é,]), since every event of
both sides will be considered in the definition.

By definition, the restriction of to .J N initops () is equal tof if it is restricted to this set.
This restriction constraint also holds fgr, since otherwiséeef“ (£, V) andRef“! (£, V')

can not be bisimilar.

It remains to prove tha(té[é},c‘f[’é,],f) € Rpus. Therefore, letl € Ppy, (initops(Ejz))). Define

m = max({2n +1 € N | k' (n) € I}) andJ = dom(f,,). Furthermore(&,,, £,,) € R, and
Em, &) satisfies the requirements. Hen@ﬂa,c‘?[’a], f) € Rrur-

The third requirement of the FUI-bisimulation follows by symmetrical arguments. Thus we
have proved thakef .;;; is a FUI-bisimulation.

The construction of a functiofi such thal(&, &', f) € Ref 1y, is analogous to the construction
of f. Hencef£ ~py;r £'. O

Chapter 7

Start-Based Choice together with
End-Based Choice

In this chapter, a process algebra that contains action refinement together with three choice
operators is introduced. Similar to Chapter 5, termination is determined by the ‘final’ executed
action.

In order to give a true concurrency denotational semantics, event structures with two different
conflict relations corresponding to the start-based and respectively to the end-based determina-
tion are introduced. An operational semantics, which corresponds to the denotational semantics,
is presented.

Furthermore, the coarsest congruence with respect to bisimilarity is given. An axiom system
that is sound and complete for finite state processes is investigated for this equivalence.

7.1 Motivation

Motivations of an end-based choice)(i.e. a choice that is triggered when an action finishes,
have already been given in Section 1.3. It is reasonable that process algebras which contain
an end-based choice operator and a parallel operator with action synchronization lead to some
start-based choices, as it is discussed in Section 6.3.

A start-based choice), i.e. a choice that is triggered as soon as an action starts, is the usual
kind of choice in process algebras, e.g. as in [10, 99, 133, 141, 174]. An example of a start-
based choice is the following: a person standing in front of a fork has to decide immediately
which direction she should take, i.e. she does not follow both directions at the same time and
then make a decision depending on where she arrives.

Sometimes, it is also useful to have a choi¢e ¢alled end-start choice) that is end-based and
start-based triggered. More precisely, it is a choice that is triggered when its right process starts
an action and it is triggered when its left process finishes an action. This is for example useful
to model some special kinds of disruption, described as follows. Consider the process that
executes: followed by b (a; b). This process should be allowed to be disrupted by the start of
actionc as long as action runs, i.e. after the ending afno disruption by is allowed. This
disruption is modeled byu; b)+-c.

121

122 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

The usefulness of these three kinds of choices is illustrated in the following example.

Example 7.1 Let us consider a nuclear power plant that consists of two reactors which can
burn uranium or plutonium fuel rods. When the power plant gets the instructions to produce
electricity, it warms up its two reactors and starts to burn either uranium or plutonium in the
reactor that warms up first. The process can be disrupted during the warm-up phase. The phase
during which the fuel rods are carried into the reactor is critical and may not be disrupted. This
process is specified as follows in a process algebra setting. The actions considered are:

w; = ‘warm up thei-th reactor’,

¢ £ ‘cancel the warm-up phase’,

u; = ‘carry a uranium fuel rod to theé-th reactor’, and

p; = ‘carry a plutonium fuel rod to theé-th reactor’.

All actions are considered as abstractions of more concrete processes, i.e. they are refined by
more concrete processes in a next specification level. Furthermpeienotes the specification

of the working behavior of reactar which includes, for example, disruption possibilities. Then

the nuclear power plant is specified by the process algebra expression

P = ((w1; (w1 4+ p1); N1) @ (wo; (u2 + p2); N2)>JEC-

7.2 Syntax

Let 7, Obs andVar be defined as in Section 3.2 and Mt be defined as in Section 5.2.

The process algebra expressidi¥P.. (; = start-based, £ end-based) are defined by the
following BNF-grammar.

B = 0|a|B+B|B+B|B®B|B;B|B|4B|B\A| Bl(a — B)**] |«

wherex € Var, a € Act andA C Obs. A process with respect tBXPy. is a pair(decl, B)

consisting of a declaratiotecl : Var — EXP,, and an expressioB € EXP,.. Let PA.. denote
the set of all processes. We sometimes call an expregsianEXP,. also a process ifecl is

clear from the context.

The intuitive meaning of the end-based choigg é@nd of the end-start choice) is given
in Section 7.1. The intuitive meaning of the refinement expressifn — B,)*<4] is that

it behaves like procesB except that every execution of actianin A is substituted by the
behavior ofB,. The other operators are explained in Section 5.2.

7.3 Denotational Semantics folPA..

7.3.1 Start-End Bundle Event Structures SEBES)

Event structures that are used as denotational modél8pthave to handle a start-based and
an end-based choice. Therefore, we introduce two relations for conflicts, one for the start-based

7.3. DENOTATIONAL SEMANTICS FOR PAgg 123

and another for the end-based conflict. We use the witness approach (Subsection 5.4.2) for the
end-based conflict, since we follow the fa-approach, i.e. termination is determined by the action
that is finally executed (see Chapter 5). The start-based conflict is modeled in the classical way,
i.e. by a binary relation between events. Therefore stagi-end bundle event structurase a
combination of closed bundle event structures (Definition 3.9) and extended termination bundle
event structures (Definition 5.5):

Definition 7.2 (Start-End Bundle Event Structure) A start-end bundle event structusebes
for short, & = (E,~,=,—,T,l) is an element oP(U) x P(U x U) x P(PU) x U) x
PPU) xU) x P(P(U)) x (U — Act) such that

e wC Ex FandVe € E: =(e~>e)

o ~CPE)xEandVec E:3Z:Z - eand¥(Z,e) e=:ec Z
e ~CPE)xE

e TCPE)andT # 0

dom(l) = F

Ve € E: _ > eis approximation closed with respect i
e Ve € E: _+ eis approximation closed with respect 0

T is approximation closed with respect i

LetSEBES denote the set of all start-end bundle event structures.

We call £ the set of events;» the (irreflexive)(start) conflictrelation, - the (end) witness
relation,— the causalityrelation, 7’ thetermination seind! the action-labelingfunction.

The intuitive meaning of the components of a sebes is given in Section 5.4 and in Section 3.3.

Remark 7.3 A tuple (E,~, >=,+—,T,l) is a sebes if and only ifE, ~,+—,T,1) is an eTbes
(Definition 5.5) and~C E x E andVe € E : =(e ~ e).

Example 7.4 Some sebes are depicted in Figure 7.1. The different components of a sebes is
depicted as described in Example 5.6 and Subsection 3.3.1.

Hereafter, we considérto be(E,~», -, —,T,1), & to be(E;, ~;, =i, —, T;,1;) and in general

E to be (Eg,~¢, =¢,—¢,Te,le). Furthermorejnit(£) denotes the set of events which are
ready to be executed an{ 7', e) holds if and only ife is a termination event with respect1q
i.e. £ terminates by executing Formally:

Definition 7.5 Let& be a sebes. The set ofitial eventsof £ is defined by
nit(£) ={e€ £ | ~(3X : X — e)}.

Thetermination predicat& C P(P(U)) x U is defined by
YT(T,e) < VX e€T:ecX.

124 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

ata (ata)a — aq; as

Figure 7.1: Some Start-End Bundle Event Structures

Complete Partial Order

First, we present the definition and the properties of the restriction of a sebes, which are used to
define an order oSEBES.

Definition 7.6 (Restriction of a sebes)Suppos&€ € SEBES and £/ C E. Then therestric-
tion of £ to £/, denoted by | E', is (E',~', ',/ T" ') where

~' = ~NE X E)

= = {(ZNFE,)| e E'NZ ¢}
= = {(XNE,d)| e ENX ¢}
T" = {XNE|XeT}

UV = 1F

Lemma 7.7 Let€ € SEBES andE’' C E. Thenf | E' € SEBES.
Proof: Is an immediate consequence of Corollary 2.18. O

Definition 7.8 (Order on SEBES) Leté&; € SEBES. Then&;, < & ifand only if E; C Ey
and&, =& | E.

Remark 7.9 Supposé&, & € SEBES, thené&; < &, if and only if~;=~», N(E; x E;) and
(E1, >=1,—1,11,1) is less than or equal tOF,, =2, 9, Ts, l5) with respect to the order defined
in Definition 5.18.

Theorem 7.10 The set of all sebes ordered kyis anw-complete partial order, where the least
upper bound of aw-chain (&;),ew is| |, & = (U, Ei, U, ~i, >, —, T, U, ;) with

- = {(Ze)|Vk:e€ Ey = (ZNEg) =, e}
— = {(X,e)|Vk:e€ E, = (XNE) —ye}
T = {X|Vk:XNE eTy)

Proof: Is an immediate consequence of Theorem 5.19, Remark 7.3 and Remark 7.9. O

7.3. DENOTATIONAL SEMANTICS FOR PAgg 125

7.3.2 Operators onSEBES

Here, we present the operators SEBES that will be used later to define the denotational
semantics.

Definition 7.11 (Operators onSEBES) Let A C Obs. Then define

T : SEBES x SEBES — SEBES with £, &, = (E,~>, =, +,T,1) where

E = ({xi} x E)U({*2} x E3)
~ = {0k ei), Ogreg)) i # g Aei € nit(E) } U{((%i€), (x5, €)) [€~ €}
= = {(({x} x 2) U ({*;} x init(E}))), (xi,e)) | Z =i e Ni# j}
== () x X, (xi,e) | X —ie}
~T = {({x} xX)U{{*} xXo) | Xi €TINXy €T}
I((%ise)) = li(e)
1 : SEBES x SEBES — SEBES with & 1€, = (E,<, &5, T, 1) where
E = ({x1} x Ey) U ({2} x E)
~ = {((a,e1), (2, e2)) | €5 € it(E;) } U {((x, €), (ks €)) | €~ €))
= = {(({x} x 2) U ({*;} x init(E}))), (xi,e)) | Z =i e Ni# j}
'L: = {({*z} X X, (*276)) | X =y 6}
~T = {({*1} X Xl) U ({*2} X Xg) ‘ X1 < T1 /\X2 € TQ}
I((%ise)) = li(e)

& : SEBES x SEBES — SEBES with £,8&, = (E,~>, =+, T,1) where

E = ({x} x E1) U ({x} x Ey)

= = {((ki,e), (ki,€)) | e~ €)}

= = {(({xi} x 2) U ({%;} x init(E)), (xi,e)) | Z =i e Ni# j}
== {({} x X, (xi,e) | X —ie}

T = {{*} xX)U{*x}xX) | X1 €Ti ANXy €T}
U((%is€)) = li(e)

7 : SEBES x SEBES — SEBES with £, 78, = (E,~, &,/ T,1) where

E = ({x1} X E1) U ({*2} x Ey)

~ = {((xi,e), (ki,€')) [e~ €}

= = {{x1} x (ZUX),(*x1,e)) | Z =1 enX €T} U
{({x2} X Z, (x2,€)) | Z =2 e}

o= {({xi x X, (ki e) | X =ief U

) {({*1} x X1, (x2,€)) | € € init(&) A Xy € T1}
T = {{x}xXp| X, €D}
((xi,€)) = li(e)

126 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

|A SEBES x SEBES — SEBES with 81||A52 (B, % T,1) where
E = (Bl x{HHu(x x EHUES
Bl = {ecE|lle) ¢ A}
E® = {(61,62) € B x B, | ll(el) = lg(@g) S A}
~ = {((e1,€2), (€}, €3)) [e1 1 € Vey ~p e V
(1 =€y #*xNeaF#ey) V(ea =€) #*xNer# e}
= = {({(e,er) € B ey € Z1U X1}, (e1,%) | Zt =1es N Xy € Ti U
{({(6’1,6/2) cF | 6/2 € Zy UXQ}, (*, 62)) | Zo =93 N\ Xg € TQ} U
{({(6’1,6/2) | 6/1 e ZiUX, Vv 6/2 € 7y UX2}7 (61,62)) |
(61,62) < E‘i/\ Zi =11 NX1 ETINZy =93 N Xy € T2}
{({(el, e3) € E | €} € Xi}, (e1,€2)) | Xi i €5}

f;> pu—

T = {{(ees) EE|e; € X} | X; €T3}
7 - ll(el) if €y = %
Her,e2)) = l,(es) otherwise

\A: SEBES — SEBESwith& WA =& [{e € F|(e) ¢ A}

Ref%f : SEBES x (A — SEBES) — SEBES by Ref" (£,0) = (E,~,=,+,T,1) where
E = {(e,é)|e€c ENl(e) € ANé € Epyrey} U

{(ee)EExE|l()¢A}
~ = {((e,6),(¢,€)) [e~ e V(e=eNlle) € ANE~guey €)}
= = {(Z, (e,))|EIZ Z=eNIf: Z—PU):
(ve'e Z:(I(e") ¢ ANf(e) ={e'}) v (I(e) e ANe # e fle)ETez(e/)W
((/)EA/\G—G/\HXETQ(I()),Z f() ZUX/\Z>-9 é))
—{(¢,&¢)eE|eecZNE € [fe)}}
o= {({e}xX’ (e,))|l()€A/\X —o((e)) €} U
{(X, (e,))\(()6Az>e€1n1t((())))/\EIX X—eANIf: X —-PU):
(Ve eX:(U(e) g ANf(€) = {6'}) (I(e") € AN f(€) € Toq(ery)))N

) X={(¢,¢)eE|eecXNeE [}
T = {X|3IXeTA3f: X —PU): (Ve e X: ()¢ ANf(e') = {e'})V
(i) € AN f(e) € Tygey)) A X ={(¢,&) e E | € X N& € f(&)}}
f(e.¢) = I(e) if i(e) ¢ A
T baen (@) ifl(e) € A

The definitions of these operators are similar to those presented in Subsection 5.4.3, Subsec-
tion 3.3.3 and Section 6.1. For comments on these operators, please consult the subsections
mentioned.

Lemma 7.12 All operators of Definition 7.11 are well defined, i.e. they really yield elements of
SEBES.

Proof: The conditions of the start conflict relation are easy to check. The rest is an immediate
consequence of Lemma 5.21, Lemma 6.2 and Remark 7.3 ad

Lemma 7.13 All operators of Definition 7.11 are continuous with respectito

Proof: Analogous to the proof of Lemma 3.18. O

7.4. OPERATIONAL SEMANTICS FOR PAgg 127

7.3.3 Denotational Meaning forPA,,

As in Subsection 3.3.4, we define the denotational semantics of expredskdng)(relatively
to variable assignments, i.e. functions frofar to SEBES. Variable assignments are derived
from declarations, which are used to define the denotational semantics of proéégses (

Definition 7.14 Let[_]_: EXP x (Var — SEBES) — SEBES be defined as follows (where
p: Var — SEBES)

a]]pI({M@{({} >}@{{ 1 (e a)})
2l = [

Remark 7.15 [B]_ is continuous for every3 € EXP,. This follows analogously to Lemma
3.20, where Lemma 7.13 is used.

Assumedecl : Var — EXPg.. Then defineFy. : (Var — SEBES) — (Var — SEBES) with
Facal(p)(z) = [decl(x)],. From Remark 7.15 it follows thak,.., is continuous. Therefore, we
get{_|} : (Var — EXPs) — (Var — SEBES) with {[decl]} = fix(Faea1) = L], Fioar(L) IS
well defined from the cpo theory (Section 2.3).

Definition 7.16 (Denotational Semantics)
Define[[,]] : PAse — SEBES by [[(decl, B)ﬂ = [[BH{[decl}}-

Example 7.17 The denotational semantics of some processes is illustrated in Figure 7.1.

7.4 Operational Semantics forPA.

Similarly to the ST semantics, we distinguish between the start and the ending of actions and
relate the ending uniquely to the start of the corresponding action. There are different techniques
of encoding the history (executed events or started events) in operational semantstativia
nameg[6, 44], via pointers[49, 61, 95, 96], viadynamic name§44, 140] and via thestack
techniqud44]. We adapt the stack technique to our process algebra, since it has the following
advantages:

e it produces finite transition systems for a wide class of processes. Hence bisimulation
equivalence is decidable for this class of processes. Moreover, the transition system de-
rived from the stack technique needs less states than the transition system derived from
the other techniques.

128 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

a;0||a; 0

/\

a=;0|a; 0 a;0[a=;0

e e

0]|a;0 a";0]la";0 a;0[a";0 a;0[|0

ay ap
at _ _ at
ag Qg

0|la—;0 a=;0]0

X7

0//0

Figure 7.2: lllustration of the Stack Technique

e it is compositional, i.e. the transition system of a process can be derived from the tran-
sition system of its components. This has the advantage of simplifying the derivation of
an axiomatization (see Section 7.7). More precisely, the standard axiom set developed by
Milner [138] can be extended in order to obtain an axiomatization.

e it yields an appropriate method to handle refinement operators, as it can be seen in [98].

The intuitive idea behind the stack techniques is the following: the start of an actidDbs is
denoted in the transition system by; and the termination of an actienc Obs is denoted by

a,’, where the natural numberindicates that exactly — 1 manya-actions that are started after
the start of the corresponding action are still active. In other words, if anaction starts at
positiont,* and finishes with,, at positiont, then the number of the-actions that are started
after positiort, and that are not finished before positigris exactlyn — 1. An illustration that
may help to understand this approach is given in Figure 7.2. The numbealled theelative
active numbenf the action corresponding tg,. We do not split internal actions’), i.e. they
executer as usual. This is different to [44], where an internal action is split into two internal
actions.

In order to define transition rules, we have to encode the information stating when the active
actions were started in the expressions. For example, we have to know whetherdreckiin

started before the rightin «—; 0||a~; 0 or not (compare with Figure 7.2). This can be encoded

by extending each operator that allows more than one process to be active by the information
indicating to which subcomponent (and also to which relative position of the subcomponents)

LIn this context, positions are considered with respect to the execution order.

7.4. OPERATIONAL SEMANTICS FOR PAgg 129

then-th activea-action corresponds. In other words, the operator has to be extended by a func-
tion from Obs x IN to the natural numbers combined with the possible subcomponents. For
example, the parallel operator has to be extended by a funtierx IN — {l,r}, wherel
indicates the left process amdndicates the right process of the parallel operator. Such func-
tions have to be changed dynamically after every execution. In order to simplify the dynamical
changes, these functions are encoded by strings, i.e. by a functiotseto the set of strings

over the possible subcomponents. For example, the parallel operator is extended by a function
M : Obs — {l,r}*. Thena~;0|ya”;0 whereM (a) = Ir indicates that the-action on the

right hand side has been started beforedtt@etion on the left hand side.

The process algebra expressi@x&P2 for the operational semantics are defined by the follow-
ing BNF-grammar.

C == B|b |C+B|CaynC|C;B|CllamC | C\mA |
Cl(a — B)**, (a — C)*u,
¢ == c|c-C

where B € EXP,, b € Obs, A C Obs, A € Py;,(A), M : Obs — {I,7} andM, : Obs —
((AxIN*)U{0,b}), where— is defined in Subsection 2.1.2. We consider funcfior- (/)24

to be the functiorfa — (GUE))GGA wherea maps onto the empty string)(if and only ifa ¢ A.

The symbols in the definition dXP2, e.g.+, are overloaded, since they are also used in the
definition of EXP,.. Hence, the unique derivation of an expressiot¥P? is contradicted.
Nevertheless, it does not harm our theory (both have the same transition rule) and therefore, we
use the same symbols, especially to reduce the number of transition rules.

The intuitive meaning that differs from those given in Section 7.2 is the followingndicates

that actiorb is active, i.e. it has been started, but it has not been finished yet. It is able to execute
b, . The end-based choice operator is extendeti/bgince both components may contain active
actions. This is not the case for the end-start choice, where only the left hand side may be an
active process. The parallel operator is also extended byictions of the synchronization set

are not relevant in/, since they have to be uniquely executed on both sides. The restriction
operatorC'\\ ;A is also extended by/, since it is used in some cases to maintain ifie
information of the parallel and the end-based choice expressions. The refinement operator
Cl(a — B,)*€4, (a — C,)*4],;, contains additional strings of active processgs) for each

a € A to encode the execution state of each active actiafl.irFurthermore, the refinement
operator has to be extended bj), to encode the corresponding position of the active actions,
where(a, i) refers to thei-th position inC,, 0 refers toC andb is a default value used when
active actions are disrupted.

As mentioned in the beginning of this section, we have to adagind M 4 after every action
execution. Therefore, the following functions are defined, wherer ando\: are defined in
Subsection 2.1.1.

_+-:(Obs x W) x (Obs — W*) — (Obs — W*) with
w-M(a) ifa=0b
(la, w] - M)(b) = { M (b) otherwise

_: (Obs — W*) x (Obs x IN) — (Obs — W*) with
(M\(a,))(b) =~ { %E))\z ifa—b

otherwise

130 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Function_- _ puts valuew in front of stringM (a) and is used when an action is started. Function
_\. removes the-th position in string)/(a) and is used when an action finishes.

In the case of the refinement operatéifa — B,)*<*, (a — C,)*<4],,,, further functions are
needed. They are necessary, since the relative pointers have to be changed when the length
of C, changes, which is the case as soon as an actiohisfstarted inC' or a process i,
terminates. These functions are given as follows, wheréthelement of a string is denoted

by oli].

~:(Obs — ((Ax IN*) U{0,5}})*) x A — (Obs — ((A x IN*) U{0,b})*) with
a,i+1) if Ma(b)[k] = (a,i
(Maoa))lF 2{ 5\4/4(1))[/{;] ohomien

t:(0Obs — ((Ax IN")U{0,b})*) x (Ax INT) — (Obs — ((A x IN) U {0,b})*) with
b if Ma(b)[k] = (a,)

(a,i—1) if Ma(b)[k] = (a,i) Nj<i

Ma(b)[k] otherwise

(Ma 1 (a,j))(b)[k] ~

Function_ o a is used to shift the relative pointers @foy one when a process is addedtp
Function_t (a, j) is used when thg-th process of’, is removed. It reduces the relative pointers

to C, by 1 if it is greater thary.

It is also necessary to obtain the active number of an aetibpom M/ when the active number

i of its subcomponent is given. This is done by counting the elements that are in front of the
i-th occurrence op in M (a). Formally:

Supposer € W* then define

7: W x Nt = IN" with
5w i):{ min{j | o[j] = w} if i =1

“ min{j | o[j]=wAj>0c(w,i —1)} otherwise
We will also use the function that permuteand/ in M:

-:(Obs — {l,7}*) — (Obs — {I,r}*) with
I if M(a)[i] =7

M(“W]—{ v if M(a)i] = I

Furthermore (' is considered to be a string. Hencg)i] determines theé-th component if it
exists,C'\i removes the-th component and’ + (i, C) replaces theé-th component by if it
exists.

The operational semantics for a process with respeEXte.. is given by a transition system
where the set of states consists of the elemenB&X#f2, and the transition labels a, =

{7,(1,4/)} U (Obs x ({+} UNU (IN x {\/})))- e’

Remark 7.18 In [44] the internal actionr is split into its start and into its end. This is not
necessary, since the internal action can not be refined and therefore the observer can not detect
the start and the ending of this action.

7.4. OPERATIONAL SEMANTICS FOR PAgg 131

The transition rules—¢_, with respect tadecl : Var — EXP,, are presented in Table 7.1,
except for the transition rules of the parallel operator and those of the restriction operator, which
are presented in Table 7.2, and except for the transition rules of the refinement operator, which
are presented in Table 7.3. In these tabledenotes an element df., | denotes the function

that maps every action to the empty string dnds either an element dEXP2 or of EXP...
Furthermore, we write™ instead of(a, +), a,, instead of(a, n), a,, / instead of(a, n, /) and

7/ instead of 7, /). To reduce the number of rules, we use the notation wiyésan brackets.

It means that either all bracketed are considered ag or all bracketed /s are ignored. For

example, rule”hg of Table 7.1 encodes the following two rules

C - Raaye
Cy @y Co — Ci\um0 Cy@em Oy 1> C1\n0

Cy Bas Oy — C\570 Oy @ O 2 CIN\70

We give some comments on the transition rulesAdn an observable action starts by executing
a™ and results into the process that can finish thisy executingz; /, which is described in
Acy. The internal action is handled in rule:;.

The transition rule for the start-based choi¢&:f) is the standard one. Any action from the
right term triggers the end-start choigg/(*), whereas only the non-starting actions of the left
term trigger the end-start choic€ ts, Chl%).

String M (a) of the end-based choice expression is extended whenewveaetion starts('hs).
The case when an action finishes is described/if), where the corresponding relative active

—

number is calculated by/(a)(l,7). Furthermore, the relative active numbers have to be kept
after this execution, which triggers the choice. This is done by using the restriction operator,
where the information of the executed action is removed/irand no action is forbidden. In

the case where the right process triggers the chditéas to be transposed, i.&l is taken,

since the restriction operator considers the encoding by left to be active. The internal action is
handled in a similar way((%5). RuleC'h{ embed€XP,. expressions by adding the information

that no action is active.

The transition rules of the sequential operat®y, (S;) are the standard ones, i.e. the execution

is given to the second process if and only if the first one terminates. The rules of the parallel
operator have to changé, as it is done in the end-based choice rules. Furthermore, if one side
terminates, it is removed (compare with the transition rules presented in Section 5.3). In this
case, the relative active numbers are kept as in the case of the end-based choice, except that the
actions of the synchronization set is forbidden. The restriction operator deald/litte the
end-based and the parallel operator.

RulesR;, R, and R; consider the cases when the execution of the action is independent of the
refinement. The case when an action that is not starts, is considered iR;. There,M 4 is
extended by the information that the started action results from the process that gets refined. In
R, the ending of an action is considered, whéfg is modified in the usual way.

The case when an action that gets refined starts, is considefed Ry and Rg. Rule R con-
siders the special case when the refinement terminates because of the execution of the internal

action. In this case, alsO has to finish the started action, which is describeuﬂ‘bf}ﬂ) c”.

132 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE
Acl:%Obs ACQ:T Acs : 7
a2 a” b~ 1_\/> 0 7T—0
ons . BL—Cf h. By — (Y
‘ Bl + BQ L> Ci ! Dl*EBQ — Cé
By + B,
at
Chh - D, — Cf Chh.DIL)Ci 7 ¢ Obs x {+}
2 at , 3 D B Y Cl
D1<|:Bg — Cl<|:BQ 1“: 22— U
+
e.BEBBL)CI e . Cld_}Cl
Cho' Bl J_BZ 2l ' Chl at /1
1D by — C1 @M Co — C] Bpapm Co
at
Cy @&y C1 — Cy Bpaym O
Chs e re s G RG
' a_— (V) 3 W)
C1 @y Oy M@EY C{\\M\(%m(l’i))@ C1®u C2 T(—\/; C1\\arl
a;/{(\)()(\/) 02 Dum Cl — C{\\M@
a)(r,i /

Coby ¢ — Cl\\ﬂ\(a,m(r,i))(b

g D; 5 C; a€{r}U(Obs x {+})U (Obs x IN)
. Dy; By = C1; By
s, 01 ay e ({7} x {V}) U (Obs x N x {/})
Dy; By — By
Y v
Pec decl(x)7 —>/ C
r—C

Table 7.1: Transition Rules for—¢_ (1)

Furthermorey does not change, since the started process is terminated. In the other/tases (
and R;) the process that corresponds:t@B,) is activated and therefore attachedstaFurther-
more, the pointers correspondingddave to be increased by onei,, since their positions

in p is changed by one. This is done By, ¢ a. Furthermore, we only consider here starting
actions and internal actions fét,, since an expression &XP. has no active actions. The case

when an observable action of the refinement is star&dli C?), is considered imk4. The
active function is adapted as usual.

RulesR;, Rs and Ry consider the case when the active refinemehekecutes an action that is
different to a termination action, i.e. the process remains active. Before the active process may

7.4.

OPERATIONAL SEMANTICS FOR PAsg

CliC{ (Z%A

- Byl|a,1 B e

2 a®
Bi||aB; — C" Cilla,mCo — Ot afa-mC2
a+
C2||A,MCI - C2||A,[a,r].MC{
P2 : Cl L Ci a ¢ A
M@ (L)
Cill €) Cill v\ o 77700 ©2
am(r,i)
CollanCr "= Call g a0 3151000
b G il ad A
am(l,i)
Cl”A,MCz _—> CQ\\M\(G’W(Z’@'))
(@) ()
CollamCi " — 02\\M\(a,ma\)(r,i))A
at , at ’ a; Vv oy Vv oy
. at : a.
CillaarCa = Ol aneCs CillanCs 0
B Gl ol Gt ae A P7:01ﬂ01 C, 2l acA
CillanCs = C1l|aneCh Cill anCs = Ch\7A
CQHA,MC1 a—z> Cé\\MA
O T C/ O T\/ Cl
P ! T) . Py : ! —T) 1
C1||A,MC2 — C{HA,MCz CIHA,MC2 B 02\\MA
CsllaarCr — CylanCh CollanCr — Co\\m A
2l ! at
Reso:B\\lAT)C: esy : C_>+C/ ag¢ A
B\A — C C\mA N C"\{a,- A
a; (V) (V)
Ressy : ? —>\/)C/ ag A Ress : & T(—\/)) ¢’
aﬁ(\a)(l,i) ’ o C\\MA — Cl\\MA
A C\an(e 3@)

Table 7.2: Transition Rules for—9_, (2)

134

CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

For simplicity, letp = (a — B,)*¢4 andy = (a — C,)*€4

R()i

R22

R4Z

R5I

RGI

R10 .

R11 .

Biolam e =0 . 0l agd

Blg] — C’ Clé, olar, C'@, ¢lia0)Ma

N ad A m= Ma(a)0,i) . o™ o
3

am / ’ V) v
O[¢> SO]MA L)/) C [¢a SO]MA\(a,m) C[¢7 QO]MA — C [¢7 SO]MA

at / b+ !
C —C a€cA B,— C,

+ ’ r A
Clo, ¢ty ~— C'[p, pla — Cl - Culli(an) (Mace)

c¢ aeA B, ('

O[¢7 QO]MA L) C/[¢7 QD[G - C(/z . C_;a]]MAoa

cLe aeA B, 2o oY

a

C[¢7 ¢]MA M CU[¢7 QO]MA

c"Yer aea G

T =
Clé, Plai, — Clb, pla — Co % (6, C) | (aiy Ma

—_—

W aed Gl = m= Mab)((a,i),))

C

C[¢7 SO]MA bi) C[(ba (,D[CL - Cﬁ;a + (7') O;)]]MA\(b,m)

c"YWeo aca Gl c

" Cl6, Pty — Clérola — Co = (4, Ol

—

a; = b
e aed G m= Ma®)((asi),))
br_n(\/) / = .
Clo, oI, — C'[o, ola — Co\ill(Mat(ai))\ ()

c"“ Yo aea G Yo
C[¢7 SO]MA M C/[QS? QO[CL - C_;CL\Z.]]MAT(G‘,Z')

Table 7.3: Transition Rules for—¢_, (3)

7.5. CONSISTENCY OF THE SEMANTICS FOR PAgg 135

execute an action, one has to check that it is really an active action, i.e. that the corresponding

action inC' is not disrupted. This is done ly %) C'. Please note thdt rather thanC’ is
used in the resulting expression, singehas to remain active. The rest is handled as expected.

Rule R,y and Ry, consider the case when the active process terminates. Similar as above it has
to be checked that the corresponding action is still active. Furthermore, the active process is
removed. As a result, some pointers correspondingito M 4, have to be decreased by one,
since their positions ip are changed. Only those pointers which are greaterihane to be
changed, since the other ones point to the correct position. This modificatiah, iis done

by M4 1 (a,i). The handling of the relative active numbers is as usual. Please not€’that
rather thanC' is used in the resulting process, since actiprfinishes when its active process
terminates.

The refinement procesS[¢, ¢]y, terminates if and only if a termination action that is not
refined is executed i6' (rule R, and R3) or if the refinement terminates and its corresponding
action inC'is a termination action (rul&g, R,o and Ry;).

Remark 7.19 To reduce the state space, i.e. the expressions which are derived from a process,
it is possible to modify the transition rules in such a way that every expression resQligitn
executes a termination action. This is reasonable, since every expressions that results from the
execution of a termination action is equivalent to the inactive process.

7.5 Consistency of the Operational and the 3Denotational Se-
mantics for PA..

In this section, we show that a transition system can be derived from a sebes such that the
denotational and the operational semantics yield bisimilar transition systems.

We define the remainder of a sebes similarly to Definition 5.9 and Definition 3.14.

Definition 7.20 (Remainder of a sebes) et € SEBES ande € init(€). Then the remain-
der& of £ is given by(E',~' ' ' T' I") where

E = {de€eE|-(~e)NIZ:Z - Ne¢ Z}

~' = ~NE X E)

= = {(ZNE,d) | e E'NZ - Ne¢ Z}

= = {(XNE)) | e EENX—ed Ned X}

T {{XnE’\XeT/\egéX} if =T(T')
{0} otherwise

U= 1 E

Lemma 7.21 Let€ € SEBES ande € init(£). Thenf € SEBES.

Proof: It is an immediate consequence of Remark 7.3 and Lemma 5.10, since the remainder
correspondence to the other remainder on all relevant components. O

The remainder is used to obtain an interleaving semanticSEBES:

136 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Definition 7.22 The transition relationr—C SEBES x Act x SEBES is defined by—=
{(&,7,&¢) | £ € SEBESAe € init(E)A(Y(T,e) = v =1l(e)y/)AN(=Y(T,e) = v =1(e))}.

The transition system derived from the denotational semantics is bisimilar to the operational
semantics that is restricted to pure action execution. Formally:

Theorem 7.23 (Consistency)Suppose(decl, B) € PA.. Then the two transition systems
(EXPL, Act U (Act x {\/}), —#aea, B) and (SEBES, Act U (Act x {\/}),—, [(decl, B)])

se?

are bisimilar,

at ar (v)
a Ny c o
where(C' h)/))decl O = C) decl decl C if a € Obs .
Cdecl C/ |f a=T

Before we verify Theorem 7.23, which is done in Subsection 7.8.1, we show the stronger
bisimilarity-result which says that the operational semantics is bisimilarlQ mbeled transi-

tion system derived from the denotational semantics. The transition systenSE®ES that

has labels fronL,. is defined as follows. We define tis&art-remaindemith respect to event

in order to describe the system that remains after the start of event

Definition 7.24 (Start-remainder of a sebes)Let€ € SEBES ande € init(€). Then define
5(@) by8<e> =£ [{6' ek | —|(e’ ~> e)}

For the L. labeled transition system derived frddflEBES, it is necessary to save the infor-
mation of the relative start of the events, i.e. we have to determine for each started bgent

many active events labeled with the same action sarted aftee. This is done by taking a
SEBES combined with the set of partial functions frdsto IN*. The partial functions are also

used to encode which actions are active, i.e. have already been started. Moreover, we restrict
this set further to guarantee that:

¢ only a finite number of events may be active,

e every started event can not be start-based in conflict with another event, i.e. each start-
based choice is triggered and

e each started event has a unique relative active number, i.e. fgrathere exists at most
one event labeled witha that has exactly, active events labeled withthat started after
c.

This is formalized by defining

SEBES = {(§, M) € SEBES x (i = INT) | dom(M) € Py, (initops(E)) A
~ N(U x dom(M)) = D AVa € Obs : M | init,(€)) is injective},
whereinit4(€) = {e € init(€) | I(e) € A} andinit, (&) is a short hand foinit (4 (€).

Furthermore, we need the following function to define the labeled transition system from
SEBES. Function_s_moves the relative active number of active actions by one. This function

7.6. EQUIVALENCE 137

is needed when a new event starts. FuncIioris used to reduce the relative active number of
the affected active actions by one if an event finishes.

S U—-~NY)xPU)— (U—N") with
. _f M(e)+1 ifecE
(MOE)(e) = { M(e) otherwise

Sl (U = INT) x (PU) x NT) — (U — INF) with

e _f M(e)—-1 ifec EAM(e) >
(MI(E, 7))(e) = { M(e) otherwise !

Now we are ready to present tig. labeled transition system fro8EEBES.

Definition 7.25 SupposeZ = (£, M) € SEBES,, then defineZ,.(, which is an element of
SEBES ., by

(€, M | Eg,)) if e € init, (&)
&ro(= (Eey (M T (initye) (£), M(e))) T Eg,,) if e € initops(£) A e € dom(M)
(g<e>, ({(6, 1)} U (./\/l < initl(e)(é'))) f Eg<e>) if e € initObs(f,’) Ne ¢ dOHI(M)

The transition relation—°C SEBES \, x L, x SEBES ,, is defined by
(&, M) <5¢ (&, M) if and only if

T if e € init, (E) A Y (T,e)
TV if e € init(E) A Y(T, e)
(& M) = (E, M)ye(Ny = I(e)" if e € initops(E) A e ¢ dom(M)

1(€) () if e € initops(€) A e € dom(M) A =T (T e) .
l(€) eV if e € initops(€) A e € dom(M) AT(T, e)

We have that the operational semantics is bisimilar todhdabeled transition system derived
from the denotational semantics.

Theorem 7.26 Suppose(decl, B) PAs. Then(SEBES,, L, —° ([(decl, B)], 1)) is
bisimilar to (EXP2, Lee, —5a B)-

se’

Proof: The proof is given in Subsection 7.8.1. O

7.6 Equivalence

We introduce an equivalence relation where differences between the start and the ending of
an event is made. Furthermore, the ending of an event has to be related uniquely to its start.
Therefore, we call this equivalence ST-equivalence (compare with Subsection 4.2.1). In its
definition, we make use of thé,. labeled transition systems defined in Section 7.4 and in
Section 7.5.

138 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Definition 7.27 (decl, B) and (decl’, B') of PA,. are ST-bisimilar(or ST-equivalen}, denoted
(decl, B) ~gr (decl’, B'), if (EXPL, Lo, —5ea, B) @and (EXPQ, Lo, —¢_ /. B') are bisim-
ilar (Definition 2.5).

Two sebeg and &’ are ST-bisimilar, denotedS ~gr &', if (SEBES y(, L, —¢, (€, 1)) and
(SEBES\, L., —¢, (&', L)) are bisimilar.

From Theorem 7.26 we obtain the correspondence of the ST-equivaleneaég amdSEBES,
i.e. for all (decl, B), (decl', B’) € PAs we have(decl, B) ~gr (decl’, B') if and only if
[{decl, B)] ~sr [(decl’, B')].

As in the standard event structures settings, ST-equivalence is the coarsest congruence for our
refinement operator with respect to bisimulation equivalence.

Theorem 7.28 ST-equivalence is a congruence for the refinement operadpi‘, i.e. £ ~gr
E'"NVa € A:0(a) ~sr 0'(a) implies thatRef’ (€,0) ~sr Ref*{(E',6"). Moreover, it is also
a congruence for the operators, +, @, 7, || and \\ 4, which are defined in Definition 7.11.

Proof: The proof is given in Subsection 7.8.2. ad

Theorem 7.29 ST-equivalence is the coarsest congruencelgi* with respect to bisimula-
tion equivalence, i.e. WA, 0 : Ref’;(E,0) ~y, Ref(E',0) thenE ~gr E'.

Proof: The proof is given in Subsection 7.8.2. O

Remark 7.30 All transition rules for —¢_, are in panthformat [171]. The transition rules
are also complete [9], since no negative literates are used. Hence, ST-equivalence is a congru-
ence for all expression constructionsR¥,. [9].

This fact does not immediately follow from Theorem 7.28, since processes can contain recur-
sion.

7.7 Axiomatization

In this section, we present an axiom system for ST-equivalence with resg&ttdNVe follow

the idea of [44], where some modifications are made, since the declaration technique is used.
Further modifications are necessary, since termination is determined by the final executed action
and since the internal actionis not split into its start and end. We also use a different definition

of the refinement operator taken from [98].

Following the approach mentioned, we extend the syntax by further expressions, for example by
the left merge|(~) and the synchronization merge ¢perators [8, 25]. We also add expressions
considering the start and ending of actions. The equality”qQf processes can be concluded
from the equality of the newly introduced processes, since they are a conservative extension [9]
of PA...

7.7. AXIOMATIZATION 139

The process algebra expressi@&2 are defined by the following BNF-grammar.
H = 0lalb5H|bV |b, |b;v;H|7;H|H+H|H+H|H+ H |
Héy H | Hoy H|HH | H(a— H)" (@ — H) Yy, |
Hl(a — H)***, (a — H)**, (a — H)*"]3, H |
HlamH | Hl[y j H | HlanH | H\MA | 2
H = H | H-H

wherez € Var, a € Act, b € Obs, A C Obs, A € Psi,(A), M : Obs — {I,7} and

My : Obs — ((A x IN*) U {0,b}). As in Section 7.4, we consider functign — H)*<4

to be function(a — (H Ue))** wherea maps to: if and only ifa ¢ A. A process with respect

to EXP2* is a pair(decl, H) consisting of a declaratiodecl : Var — EXP2A* and an expression

H € EXPLx. Let PAZX denote the set of all processes. We sometimes call an expression
H € EXP2* also a process ifecl is clear from the context.

The intuitive meaning of the new expressions are as folldwsH is the process that evolves
into H by starting @-action. Procesk, terminates the activieaction that started before the last
q — 1 activeb-actions.b, /; H is similar tob,, except that also the whole process is terminated,
i.e. it executes, \/ and evolves int® (and not intoH).

The end-start{) and the end choiceX) together with the parallel operator are extended with
left merge ones{~, ©},, [I4,,)- In these operators the left process has to execute the next
action. A synchronization merge operator for the parallel operator is also introducgl (
Here, the next action that is executed has to be obtained from communication.

ProcessH,[(a — H,)** (a — H!)*4, (a — ﬁa)“eg]]@AHQ has the same behavior as

Hy[(a — H)*A (o — H,)*4]y, except thatH, and (e — H!)*€4 are replaced byH,
(respectively by(a — H,)*<") in the evolved process. That meais, and(a — H')** are

used to determine the next actions afdand (e« — H,)*<“ are used to determine the future
behavior of the process. Please note tHatis only used for the future behavior H, does

not execute the action. This new refinement expression is introduced for the axiom system,
since we have to expand the refinement to determine the next action of the refinement (expand
Ulpla — T + R], ¢|m, to Ulpla — T, ¢|m, + Ulpla — R],¢|m,). Butif we use this ex-
pansion, we forget the original refinement function, which is essential for the future behavior,
for example ifU is equal toa; a. Therefore, the original refinement function is kept in the ex-
pression and only the copy of this function may expand further. Similar arguments hafd,for
since we have to check, whether an action is still active, which destroys the original process.

The operational semantics—+{-*) for PAZ* is given as follows. The transition rules for the
operators that exist iEXP,. are the old ones presented in Table 7.1, Table 7.2 and Table 7.3.
The transition rules for the newly introduced operators are given in Table 7.4 and Table 7.5.

We give some comments on the transition rules. One may expect that the processes in rule
Acg and Ac; should evolve intdd. This is not reasonable, since the execution of a termination
action has to lead to an inactive process. This is also respected in the @xiems, \/; 7" and

T = 74/; T from Table 7.6, where the processes evolve for all these cases. The other rules

are just as expected.

ST-equivalence is adapted RA2* in the straightforward way, i.€decl, H) and(decl’, H') are
ST-bisimilar(or ST-equivalent denoteddecl, H) ~gr (decl’, H'), if (EXPA*, Lo, —7., H)

se

140

CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Hi|amHs R H|| a0 Hy

Acy : Acs Acg: ——————————
+. by v/
b H H b b;v/;H =0
AC7 . —T\/
T, H — 0
at
Ch%h : Hl —+> H]{ Ch%h Hl —> H, ’y ¢ Obslx {"‘}
H\+ H, %> HI4+H, Hy4~ Hy = H|
at
ChLe . H1 — H{
IR o
Hy ®,; Hy — H| ®jq .m0 Ho
a; V) 1 V) 1
Chie Hh — onfe: — 2
— “ma,n ! H1 Dy, H2 H’\\MQ)
H, @, Hy Hl\\M\(a,ﬁ(a\)(l,i))@ M 1
at
PL . H1 — Hl a ¢ A
1 .
Hi |3 Ho s H} ot Ho
PL. Hl - Hi a¢A
2 .
M(a)(l) /
Hi|[4 0 H2 H ||AM\(aM(a)(lz))H2
H "N H A
P3L : 1 ad
_ ﬁ(?)(l)
llaacts =" H2\\ap o s1@yean
H - H o 2w
Pk L= P L
HillgarHy — HillamHo Hylly pHy —— Hy\\57A
H at ! at ! a; v/ / a; \/
Pls 1—>H1 H2—>H2 CLEA PS H1—>H H2 H2 CLEA
: 2
Hi|anHy — HillamHy HilawHs "0
ps. Hi "o H Hy "o H, acA ps H | H2—>H ac A
3 .

Hy|apHo Hé\\M
5 \ar A

Hy|a v Hy 2

Table 7.4: Transition Rules for—3., (1)

7.7. AXIOMATIZATION

/
Ry

For simplicity, let¢/ = (a — H,)*¢* andy = (a — H,)*4

HYS H ad A

R :

at
D[¢7 Qb,, SO]JTJAH - Hl[¢7 90] [@,0]-M 4

Y ¢A m—m(Oi)
Dlg, Cb,v‘P]jT/[A [¢7]MA\am)
H ﬂ? H

D6, ¢, ol H " H'6, o),

a"' / b+ /
H—H ac€A H,— H,

_ bt 7
D[(b’ ¢/7 SO]MAH - Hl[¢7 gp[a - H(/z ' Ha]][b,(a,l)}-(MAOa)

HH acA H -~ H

Do, ¢ ¢ly, H —— H'[p. pla — H, - Hillrsoa

Ry -

ro.
R,

'HLH/ a€c A Hgi)HC/L H/a1(\/)HI/
' - (V)
D[¢7 qb,vSO]MAH - HH[¢? QD]MA
HGM)H’ ae A Hli] 2 H
D[6, ¢/ ¢l3, H -~ Do, pla — Ha £ (i, H) |
a;(\/) / 7ol b]'_ !/ = 3 . .
H *—= H' a€A H,i| — H, m=Mub)((a,i),j)
_ b = .
Do, ¢', ¢l H = D[, pla — Hy + (4, Hy)||a4\b.m)
a; V) 17 Soa T /
H-— H a€A H,Ji| — H,

D6, ¢/, ¢lar, H == D¢, pla — Ho £ (i, H,)] |

H"Y y 4ea H[]%/H’ m = Mu(b)((a,4), 5)
_ b =\ .
Dl &', ¢lar, H "% H'lg, ola — H\illatasiynomm)
HY W aca Hli] 2w,
W) =\
D[, ¢, ¢ly, H — H'[¢, pla — H\il|m4i(ai)

Table 7.5: Transition Rules for—3_, (2)

141

142 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

and (EXPLY, L., —7..» H') are bisimilar. Furthermore, ST-equivalence remains a congru-
ence folPA%X, since the transition rules are in panth format and complete (compare with Remark

7.30).

As in [44], we restrict our axioms for recursiongequential guardeg@rocesses. The definition

of sequential guarded has to be adjusted to process algebras that are based on the declaration
technique. This adjustment is done with respect to a subdéirpgince we restrict our axioms

to those processes that use only a finite number of variables. For example, we do not allow
processes likédecl, z1) wheredecl(x;) = x;1;. This restriction is done, since we are only
interested in derivation rules with a finite number of pre-conditions.

Definition 7.31 A declarationdecl : Var — EXPA is sequentially guardedith respect td/ €
P(Var)if Vo € V: 3In, € N u, - IN — Act, fp - IN — V decl(z) = 3777 u(5); f2(5)-

SeqG denotes the set of all declarations that are sequentially guarded by Bgme. SeqG =
{(decl, V') | decl is sequentially guarded with respectitg .

We introduce the following axiom systems f@h2*. This is done by presenting axioms (Table
7.6 and Table 7.7) to conclude equality with respect to the same declaration. Additionally, we
present a derivation rule that relates processes with possibly different declarations.

Definition 7.32 Letdecl : Var — EXP2< and letH, H' € EXP2*. Then we writé-q. H = H’
if H = H' can be derived from the axioms presented in Table 7.6 and Table 7.7.

Furthermore, the equality deduction BA2* is given by the following rule

(dect, {10, 20}) € SeqG Vi < 1t Hy = dect () {(Hy/,p=00)
= (decl, Hy) = (decl’, zq)

(7.1)

where H{(H,/x;)?<1%+"}} denotes the simultaneous replacement (substitution) of every oc-
currence ofr; by H; in expressior.

7.7.1 Soundness

In this subsection, we show that the deductive system presented is sound with respect to ST-
equivalence. First, we consider the soundness,Qf:

Lemma 7.33 If b4 H = H' then(decl, H) and (decl, H') are ST-equivalent.

Proof: It can be straightforwardly checked that all axioms are sound. The rest follows from the
fact that ST-equivalence is a congruence. O

Now we are ready to verify the soundness of our equality deduction:

Theorem 7.34 (Soundness)f + (decl, H) = (decl’, H') then (decl, H) and (decl’, H') are
ST-equivalent.

Proof: The proof is given in Subsection 7.8.3. O

7.7. AXIOMATIZATION 143

Leta € A, b€ Obs,c € Obs\A, R,T,U € EXP2 andq, k € IN with ¢ # k

b="bt;b" b- =by b, =b,\/;T T=1;T

T+U=U+T (T+U)+R=T+ (U +R) T+T=T T+0=T

TtU=(T+U)+U (TH+U+ R=(T Jf R)+ (Ut R)
05T~ U=b"(T1U) (b (V)T U =0,(V):T
(r(W)iD)t U=7(/1T 0+ T=0

TouyU=ToyU)+Ue;T (IT'+U)ey, R=Te, R)+ (U®y,R)
(05 T) 0y R=05(TOpyn B) (7(v);T) @y B = 7(v/); (T\\n0)
(by (V1 T) @3 R=b (VM i) 0O B =0

(T+U);R=(T;R)+ (U;R) 0;R=0
05T R=0(T5R) (b7 R=0b(TiR) (b1 R=b:R
(T R=7(TiR) (r/iT):;R=T7:R

TlanmU = (T30 U) + Ul 5T) + (T]aaaU)

(T+U)aml = Tlapl) + UlauB) (5 DIanl =" (TlaenuR)
(Cq_; T)H;&,MR = CJT?(?)(Z,q) (T HA M\ (e, M(e)(1, q))R) (75 T)HZLMR =7;(T||auR)
(g ViDlam = ¢, N eimgaand) TV Dlaa R =73 (R\\374)
(@D xR =0 (ag(V)iDlaslt=0 O[;,R=0

TlamR = Rl 7T (T +U)|amR = (T|amR) + (Ul anR)

iT)!AMR—O (g (V) D)amB =0 (7(/);T)anR2 =0

(c

(@5 D)am(a™s R) = a5 (TlauR) (a™5T)|am(ag (v); R) =0

(aq; 1)l am(ay (V); R)=0 (ag Vi T)|am(ar v/ R) =0

(ag; T)|anm(ag; B) = ag; (T i) (ag; T)am(ag V5 R) = ag; (T\\mA)
(ag v T)lam(a WR):%‘\/;O Olanit =0

(T + UD\ard = (T\\arA) + (U 4)

(T WA = ¢ (M egard) (@5 T)\wA=0

G (VETNarA = e (V5 (M imagyd) (@ (VT NarAd =0
(PR TINrA = 75 (Pard) ONard = 0

x = decl(z)

Table 7.6: Axioms for the Non-Refinement Operators

144 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Letd = (2 — G.)* 4, o= (2 — G.)* 4, a € A, c € Obs\A, R, T,U € EXPA
andqg,k € IN

U[¢, QD]MA = U[¢a ¢7 @]]TJAU

Ulg, ¢, ¢l (T + R) = Ulo, ¢/, o]y, T + Ulo, &', 0]y, B
Ulg,¢'la — T+ R], ¢y, V = Uld, ¢'la = T], ¢y, V + Ulg, ¢'la — R,]y, V

ﬁﬁSS

T TEE TETEY T W

i) C+ [¢7][C,O]-MA .
) = (\/)/@ Olra\(am) T m = Ma(c)(0,q)
Ol) =0 if Ma(c)(0,q) is undefined

¢l (T(V); R) = 7(V/); B9, ¢lay

Plam,\C

S

@l (¢55 R) =
el eg (V) R

Phi (g (V)i B

Pl

[@l (a5 R) =075 R[g, pla — T - p(a)]]p,a,1))-(Maoca)
la — b;(\/%T] SD]MA(CL+ R)=0
'la — 711, ¢y (@+ R) =T7; R[$, pla — T - p(a)]]msca
[Pl (@™ (R+V)) =
Ulo, ¢/[@ — 7V T], ¢l (@5 R) + Ulg, ¢'la — 7/ T], ¢y, (a5 V)
s @'la — 7T, 0l (OL+ (a7 (V); R)) = 7(\/); Rl9, ¢lm,
@'la — 75T, 0l ((%R)) 0 ify ¢ {ar,a7v}

ssSS

S3S

a3

@
spla — p(a) £ (g, T+R)H YA
pla — ¢(a ;

)i(

Ulo, ¢,
Ulp, ¢, pla — p(a
Ulp, ¢, vla — ¢(a) + (q,b%;T)]5, (a
b Ulg, pla — w(a) £ (¢, T)]
Ulg, ¢, pla — 90() (g, b3)]l (
Ulo, pla — ¢(a) £ (¢,T)]
¢, b T, (ag (
q,b;w D)llar,

ma\om) 1Fm = Ma(b)((a,q), k)
=0 if Ma(b)((a,q), k) is undefined

)

taa\m) I 1= Ma(b)((a,q), b)
;R) =0 if Ma(b)((a,q), k) is undefined
R) = 7:Ulo,ola — p(a) £ (4.7,

(¢,
7(\/); Rl¢, ¢la — ‘P(a)\Q]]MAT (a,q)

Table 7.7: Axioms for the Refinement Operators

7.7. AXIOMATIZATION 145

7.7.2 Completeness

We will show that our axioms are complete with respect to guarded processes that are finite
state. Before we present the definition of guarded and finite state, we restrict the processes to
those that use only a finite number of variables.

Definition 7.35 A process(decl, H) € PA%* is specified by € P(Var) if |V| < |IN| and
every variable occurrence i/ is an element of/ and every variable occurrence itecl(x)

is an element oV for anyz € V. VarSp denotes the set of all processes that are specified by
someV/, i.e.VarSp = {({decl, H), V) | (decl, H) is specified by }.

A process is guarded if every variabz}ejsed by the process is behind an actienr(,/; H) or

behind a started actio T, b, b, +/; H) in the scope oflecl(z). Itis not sufficient that: is

behind a starting actiorbt), smce otherwise it would be possible for infinitely many actions

to start without any of them finishing. For exampl@ecl, x) with decl(z) = b*;z starts
infinitely manyb-actions. The possibility to start infinitely many actions without finishing one

is problematic for our verifications. We define guardedness only for processes that use only
finitely many variables, i.e. processes that argarbp.

Definition 7.36 (Guarded) DefineG C VarSp x P(Var) by

G(((decl, H),V),V) if H€{0,a,b7,b,,b;v/;H,7/; H'}
G(((decl, H),V),V) & G(({decl, H'),V),V) if H € {b*; H', H'; H", H'\)s A}
G(((decl, H),V),V) < G(({decl, Hy),V),V) A G(({decl, H),V),V)
if H € {H, + Hy, Hi+H,, Hi+~ Hy, H, ®y Hy, Hy ®7; Ho,
Hil|anHa, Hil| g p Hoy Hylar Ha b
G(((decl, H[(a — Ha)*, (¢ — Ha)**1,), V), V) &
G(((decl, H), V), V)A i
Va € A: G(((decl, H,), V), V)A
Va € A:Vi <|H,|: G(({decl, H,[i]),V),V)
G(({decl, H[(a — Ha)*4, (a — H,)*A, (a — H,)*4]y, H'), V), V) &
G(((decl, H),V), V) AG(({decl, H'), V), V)A
Va € A: (G(((decl, Ha), V), V) A G(((decl, H,
) Va € A:Vi<|H,|: (((declHH) V),V)
G(((decl,z),V),V) < G(((decl,decl(z)),V), VU{z}) Az ¢V

V) V)N

A process(decl, H) € EXP%* is guardedf there isV € Py;,(Var) such that((decl, H),V) €
VarSp and for allz € V' : G(({decl, z), V), ().

The set of all guarded processes is denote@A$}'.

The guarded predicat€) can be applied directly to the expression of a guarded process, as it
is illustrated by the following lemma.

Lemma 7.37 Suppos€decl, H) € EXP.L* is guardecthen there isV € Py;,(Var) such that
((decl, H), V) € VarSp andG(({(decl, H), V),).

146 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Proof: By definition, there exist¥” € Py;,,(Var) such that(decl, H), V') € VarSp and for all
x €V :G(((decl,z),V),0). The rest can be easily checked by structural inductioion O

Guardedness is preserved by the transition rules, i{geifl, H) € PAS" and H L,zded H'
then(decl, H') € PAS". This just results from the fact that no new variables can be uséd by
and guardedness only dependsienl.

Finite state processes are introduced as follows:

Definition 7.38 An element oPA%x is finite stateif its corresponding transition system has a
finite set of states.

We have the following completeness result:

Theorem 7.39 (Completenesspupposeédecl, H), (decl’, H') € PAS" are finite state and ST-
equivalent. Thehr (decl, H) = (decl’, H').

Proof: The proof is given in Subsection 7.8.4. O

7.8 Proofs

7.8.1 Proof of the Consistency Results

The proof of Theorem 7.26 is analogous to the proof of Theorem 3.25, i.e. we introduce
an event based transition relation. Then we show that this transition system is bisimilar to
(EXPL, L, —5.1, B) and that it is in addition bisimilar t6SEBES, L., —*¢, [(decl, B)]).

And so Theorem 7.26 follows by the transitivity of bisimilarity. Finally, we conclude Theorem
7.23 from Theorem 7.26.

Event Based Transition System forEXP...

The process algebra expressitErXcPSe' are defined by the following BNF-grammar.

G u= B|b |GIB|Go®u G| G B|CllanG | G\wA |
G[(a’ - B)QEA7 (CL - C_j)QEA]MA | I_G-Iq
G = ¢|G-G

whereB € EXPg, b € Obs, A C Obs, M : Obs — {l,r}*, M4 : Obs — ((Ax IN)U{0})* and
q € {1,2,1,r}. The event based transition rules-/, ., with respect talecl : Var — EXP, are
presented in Table 7.8, Table 7.9 and Table 7.10.

7.8. PROOFS 147

Ac,: @ E Obs Ac - — Ady =
a = b= 0 0
Chil : Bl ;Y_>G€l Ch}IL/: BQ %GIZ
By + By [Gh 11 D1t Bz [l
By + By <*%> (G2
at
Chgl . D1 e—)Gll Chgl . Dl ;/_>G/1 8 ¢ Obs x {+}
: — : gl
D+t By v Gyt Ba Dit By ey [Gila
at
Che' - B &, By eL’G/ Che - G 6—>G/1
0 - 2l / 1= a®
B1 &P Bg —G G1 Dy GQ(WGll @[flv”'M G2
at
Ga @ Gr ey G O G
QM ’
Chy : it
G1®m Ga M((a*% [G 11 \\M\ a,M(a lz))q)
G2 @y Gy M(w;e;; (Gll—‘Q\\M\(a,ma\)(r,i))@
Chf - & @)Ga

G, @y Go (:%) (G711 \\ a0
Go Oy Gy (:%) (G 12\\370

Dy =G} ae{r}U(Obsx {+})U (Obs x IN)
' Di; By e G Bo

o . D1 %G aye ({7} x {y} U (Obs x N x {y/})
2 Dy; By ey [Bals

, decl(z) =G

Recd :
r G

N{:GL}G/ iel{l .2} NJ - G—>G// N - G%G/,
[Gi e [G1; (Gl &[G (G, w7 [G']r

Table 7.8: Event Based Transition Rules with respectte. . (1)

148

CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE
at
o Bi||a1 By =G Pl G, =G ag¢gA
: 2l / ’ at
Bi||aBy =—G Gi|amGe @ G| A -G
at
Golla,mGr o Gall Ao, MG
Py G =G agA
M@
G1||A,MG2 Afe,*)l 1||A,M\(a,ﬁ(a\)(z,i))G2
a/(T)(m‘)
G2HA,MG1 A{W} 2‘|A7M\(a,ﬁ(a\)(r,i)) ,
P G 4G agA
M@ (&)
GlHA,MGz]\{e *)l [Gﬂ \\M\(aMa)(l Z))A
(a (1,%)
GQHA,MGl M(* e) (Gﬂ \\M\ a,M()(m))A
P Gy T’G/ Gy G/ acA p - Gl °1 G/ G2 °2 G/ acA
5°
G1HAMG2<PWG/HA G G1||A,MG2<e@0
P6/ G]_ Fl G G2 €2 G/ a E A Pé G]_ el G/ G2 6‘2 G, a 6 A
G llant Gty G | ane Gl Gl 4Gzt [G) \ A
Gz”A,MGl(e%> (G5 T\ A
P G, G, P o a
G1llamG2 @ G| amGe Gi1llamGa @ [Gal \\77A
GallamGr g G| am Gl GallamGr e [G2]\ A
Res, : B\ 4 g—)q, es| - —G ;G/ ag A
B\A —— G G\\m A —>G/\\[al mA
a; (V) T(\/
Res), : g 5—(:/?, ag A Rest, : G G/
‘M@ Y . G\\arA 2 G\ A
G\ A e G \\M\(a,M(a)(l,i))A

Table 7.9: Event Based Transition Rules with respectte., (2)

7.8. PROOFS 149

For simplicity, letp = (a — B,)*¢4 andy = (a — G,)4

g Bl (a—e) Y, =G L G4E agA
o Bl¢] == - ot o
¢ G[9, olas @ G'[D, 0lja01- 014
a CL;(_\/)) G, A]\7\ . 7.(\/ ,
R, : c _§é m = My(a)(0,1) R, - G G
G[o,), ¥ a G,] Ma\(a;m) G, Plar, G s G/[¢, ©lmy
at / b
R - G e—>G ac A B e Ga
4 .

+ !
Glo, olu, e G, ola — GGallib(a)-(Maca)

G*“>G acA B, =G
G[¢7 SD]MA (5’; G’ [¢7 [a - GaGa]]MAoa

. GG acA A Lo @ Mg
'
Glé, Plar, @5 G [, 0l
o ¢ Ma aea G o
>

.
Glo, Pluy e Glb, pla — Ga = (i, G)b ain) M

R GG acA Gfil -G, m= D ((e.i).)
.

Glo, el &2 Glo, ela — G £ (1, G)llarom)
. GG aca G 76,
.-

G, olar, @ Gl pla — G % (3, G2,y

o G acA Gl hE m= ML) (a.i).)
10 - m(\/ ! Y
Glo, o, B8 &6, pla — G\ at @i
o GG aed Gl -,
11 -

Glo, ¢lar, 22 G0, ola — Go\illaratan

Table 7.10: Event Based Transition Rules with respectte’,; (3)

150 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

First Bisimulation Result.

An expressiorG of EXPSP_' and an expressiofi of EXP2 are related i results inC' through
the removal of all _| expressions. This is formalized by the following function, where we also
count the[_] symbols inG.

Definition 7.40 = : IN x EXPQ — P(EXP2') is defined as follows, whetg = {1,2,1,7}.

(0,C) ={C}

(n+1,B)={]G 1]zeQ/\GE =(n,B)}

(n+1,b7) = {(G] \ZEQ/\GE =(n,b7)}

(n+1,C+B) ={[G]; |z€Q/\G€ E(n,C+B)}U{G[>B|GeZn+1,0C)}

(n+1,C’1@MCz)—{(—I ’ZGQ/\GEE(TL,Cl@MCQ)}U
{GIEBMGQEImeIN m<n+1/\G1€H(m Cl)AGQGF‘(n'f’]._m,CQ)}

(n+1,0;B)={[Gl; |ie QAG € E(n,C; B)} U{G; B | G € E(n +1,C)}

(n+1,C1||amC2) ={[G1: lieQAGeE =E(n, C]|amC2)} U

{GillamG2 [Im e N:m <n+1AGL € E(m,C1) NGz € E(n+1—m, ()}

m+1,C\\mA) ={[Gi |i€c QNG € Z(n,C\\i/A)} U
{G\\]V[A’GEE(TL‘FLC)}_» ~

E(n+1,Clla — Ba)*<, (a — Ca)**ar,) = {Glla — Ba)*?, (a = Ga)* <] |
EImE]N()aeAE]N m+zaeAM€]Nm =n+1ANGe€ZE(m,C)A
gGa[j] (m] CL[5]) V (G.lj] is undefinedn C, [j] is undefined) } U

{[G1:1i€ QNG € E(n,Clla— B)**, (a — Cu)**"|a,)}

(11 11 [11 11 [1l

(11 [11

(1]

The well-definedness & is easily seen.

Lemma 7.41 Let B € EXP, then(EXP2, L.., —>ded, B) and (EXPQ', L., — ,, B) are

se’ se

Y
bisimilar, whereG —" 4o G' < Je € U : G 4o G-

Proof: DefineR = {(C,G) € EXP2 x EXPY' | 3n : G € Z(n,C)}. In order to verify thatk
is a bisimulation, we show

,
(C —°C'ANGeEn,C))=3e,G',m:G =G NG € Z(m,C") (7.2)

The proof of (7.2) works by induction on the depth of inferencé?ofl>c C'" combined with
the value ofn. Then, (7.2) can be easily checked with the following procedure:

e applying ruleN; whenevelC' = [C’}q. In these casesis reduced by one and e c’
keeps unaffected. Therefore, the result follows by induction.

¢ applying the correspondent rules@f e C" whenevelC is different to[(j}q. In these
cases the depth of inference is reduced argkts not increased. Therefore the result
follows by induction.

7.8. PROOFS 151

Another fact is
-
(G ='G'ANG €Z(n,C)=>3C",m:C —C'"NG €ZE(m,C") (7.3)

This equation can be seen by induction on the depth of inferenGe-6f>'G’.
Now we are ready to verify th& is a bisimulation:

e ltisclearthat B, B) € R.

e SupposeCy,Gy) € R andC, ey Thene, Goym - Gy 2=Ga A Gy € Z(m, Cy)
v
by (7.2). Thusz; —" G5 and(Cs, G3) € R, as required.

.,
e SupposéCy,Gy) € R andG, —" G,. ThenG, ~—'G, for somee. Hence 3C5, m
Oy —5¢ Cy A Gy € S(m, Cy) by (7.3). 0

Second Bisimulation Result.

First, we show that the denotation of a variable is the same as the denotation of its corresponding
expression.

Lemma 7.42 Letdecl : Var — EXP, andx € Var. Then[(decl, z)] = [(decl, decl(x))].

Proof: Similar to the proof of Lemma 3.37. O

We extend the denotational semanticEXP2’. We define an event based refinement operator,
which refines events rather than actions.

Definition 7.43 Define Ref*’ : SEBES x ({ — SEBES) — SEBES by Ref* (£, 9) =
(E,~>, =, =, T,1) where

E = {(e,e)|ec ENl(e) e ANéE By} U

{(ee)EExE|l()¢A}
~ = {((e;€),(¢,€)) [e~ e V(e =€ Nlle) € ANE~ry €)}
- {(Z())]EIZ Z-eN3f:Z —-PU):
(ve'e Z:(I(e') ¢ AN f(e') ={e'}) v ((Q)GA/\e # e N f(e) € Tyer)V
((’)EA/\e —6/\E|X€T19(s Z - f() ZUX/\Z>19(6/)é))/\
Z={(¢,¢)eE|edecZne e f(e)}}
== {({e} x X', (e,€)) [l(e) € AN X" 1y €} U
{(X,(e,é)) | (l(e) e A=é ciit(d(e)) NIX : X —eATf: Z —PU):
(ve': (U(e') ¢ AN fe) ={e'}) V(I(e') € AN f(€) € Tyen))A
i X={(,&)eFE|eeXnéef)}}
T = {X|E|X€T/\E|f X —=PU): (Ve :(l(eN) ¢ AN f(e)={})V

(()GAAf(NeTy)) AN X ={(¢.&)eL|eeXneefe)}}

{ ifi(e) ¢ A
\(&) ifl(e) € A

152 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

For the operators oEXPSe’ we need the following function, which adapts functidt when
the events are renamed.

DefineV : (Y — IN) x {1,2,1,7} — (U — IN) by
M) ifge{l,2} Ne=(x;,€)
(M q)()N{M(e’) ifg=I1ANe=(x¢)
M) fg=rne=(e,*)

The operators oEXPSe' are given as follows:

Definition 7.44 (Operators onEXP2") Let A C Obs, M : Obs — {l,7}*, M, : Obs —
(AxIN)u{0})* andq € {1,2,1,r} Furthermore, suppos& = (£, M) and&; = (&;, M;).
Then define

{ : SEBES,(x SEBES — SEBES, with & 1& = (§4&, U(M,, 1))

S - SEBES x SEBES y — SEBES y With &&, &> = (&,8E | E', M)
whereE’ = {(x,¢) | e € dom(M,) = M(ll())(l, M1(e)) is definedU
{(%2,€) | e € dom(My) = M@))(r Mo (e)) is defined.
mmM%qg{MEQ@@WM@)ﬁdZQL@
M(lx(e))(r,Ma(e)) if e = (%2,€)

[l4.0 - SEBES v x SEBES — SEBES with

&1l am&s = (E1]|a& [E', M)

where” = {(e,+) | i(e) ¢ AN (e € dom(My) = M(L(€))(1, My(e)) is defined}U
{(*2,€) | la(e) ¢ AN (e € dom(My) = M(l g(e))(r M (e)) is defined}u
{(6176’2) | li(e1) = (ea) A Mi(er) = Ma(e2)}.

. ((), Mi(e)) ife" = (e *)
andM'(¢') = ¢ M(ly(e))(r, Ms(e)) if &' = (x,¢)
M (61) if e = (61, 62) AN l1<61) = l(ez) VAN Ml(el) ~ MQ(GQ)

A : SEBES y — SEBES u with & \\,, A = —(EVATE, M | E
whereE’ = {e E/E\|e € dom(M) = M((e))(l, M(e)) is defined
and M'(e) ~ M(1(e))(1, M(e))

}?&ifM : SEBES x (A — SEBES) x (A — SEBES,) — SEBES,
with Ref ;1 (&.,0,0) = (Ref**(£,9) | E', M)

{ (()) if i(e) € AN e ¢ dom(M)
whered(e) = L(B(1(e)[M(e)]) ifl(e) € Ane e dom(M)

(0,0,0,0,{0},0) otherwise
andE' = {(e,e) | [((e € dom(M) = Mj(?))(M(e)) is defined}U
{(e;e) | ((¢ € dom(M) = (3E”, M" - 6I(e))[M(e)] = (€”, M)A
(¢ € dom(M") = Ma(l"(&))((I(e), M(e)), M"(é)) is defined))}.

e) ¢t AN
e) e AN

7.8. PROOFS 153

(())(0, M(e)) ife' = (e,e) Nlfe) ¢ A
and M'(¢') ~ ¢ ML (1"(@))((I(e), M(e)), M" (&) if ¢ = (e,&) Al(e) € AN
0(l(e))[M(e)] = (£", M)

Shift, : SEBES v — SEBES », with Shift, (&) = (Shift (£), (M, q))
These operators are used to define the following denotational semanﬂEOSFT@'r.

Definition 7.45 (Denotational semantics oEXP2")
Define[]’ : (Var — EXP,.) x EXPS’" — SEBES,, as follows

decl, B]' = ([(decl, B)], L) [decl,b"]" = ([{decl, b)],{(e,1)})

decl, Gl*ingﬂl =

decl, G1 Dy GQ]]/ =

decl, Gl”A,MG2]], =

[decl, G1]'+[(decl, By)]

[decl, G1]' @[decl, Go]’

[decl, G1]'|| a.ar[decl, Go]’

decl, G\ A" = [decl, G]' \\,,A4

decl, G[(a — B,)*4, (a — éa)afA] = RefAM ([decl, G]', 6. 6)
wheref(a) :Mqlgcl, B,)] andf(a)[i] ~ [decl, G[i]]’

[decl, [G,]" = Shift,([decl, G]')

[
|
[decl, G; B]" = [decl, G]"7 [(decl, B)]
[
[
[

It is easy to check thdt]’ is well defined.

The following lemma states how the remainder (respectively the start-remainder) of a sebes is
determined with respect to the different operators of Definition 7.11. Furthermore, the termina-
tion predicate is reduced to the termination predicate of the components of the operator.

Lemma 7.46 Suppos€, £, E € SEBES andd : i/ — SEBES. Then

(E1FE) (e = Shifty(E)
(E1t&) iy = Shift,(Eie)
(51@952)[(*1,,6)} ~ Shifti(gi[e})

(E175E2) (k1,00
(&1l a&2)((er,)]

(E1ll a&2) (x,e2)]

12

{

Shift,(E,) if e € init(£,) A Y(T}, e)
R otherwise

gl[el]/H\AgQ |f _\T(Tl, 61) A ll (61) ¢ A
ShthT(£2> \\A if e1 € 1n1t(51) N T(Tl, 61) A ll (61) @é A

& ‘AEQ[EQ]/\ if =Y (T3, e2) Ala(es) ¢ A

Shlftl(gl) \\A if €y € 11’1113(52) N T(TQ, 62) A l2(€2> ¢ A
Eenllaoey X1 e0) A=Y (Th,e2)
(gl/H\AgZ)[(el,eg)} ~ S/hl\ftr<52[62})/\\\z4 If €1 € 1H1t<51) A T(Tl, 61) A\ —|T<T2, 62)

1 51[51} \\A |f €9 & 1n1t(52) A T(TQ, 62) A\ _|T(T1, 61)

)
,@, @},@) |f T(Tl,el)/\T(TQ,GQ)

154

(E\A)
Ref*((€,9) (e
Shift;(E) (.0

(E) (e
Shift;(€) (e

Shift

r

andR_efsAe(S[e], 19[6 — E’D

Furthermore

(E1FE2) (31.0))

(E11E) (xire))

(51@52)<(*i,e)>
(E175E2)((x1.0))

(E1ll4&2) (1 ,e2))

(ENA)

Ref 7 (€,0) ey

12

12

12

12

12

12

12

CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

whenever, (e;) = l(ey) € A

{ Eg\A ifi(e) ¢ A

undefined otherwise
Ref* (€ 9) iflle)d ANe=2¢é
Ref (5[5]7 [6 - 79() e]D if l(e) €AN T(Tﬂ(e)v é)
Ref (€ Ve — D))} iT1(e) € AN~T(Ty).0)

ywuag
Shzf (&)
Shzftl(é’)

whenever € {1,2}

Ref* (€, V) holds for anye’ € SEBES.

Shift,(E:(e))
EvgtEs ifi =1
Shift,y(Exey) ifi =2
{ Evg®E ifi=1
E10Ey =2
Eiey 5 &
51931)|A|A52 if li(e1) & ANey =%
E1lla&ses) if ly(es) ¢ ANey =%
(Eigenlla&aeny) [£ ifli(er) = la(e2) € AN E" = {(€],€5) |
() #er Ney#ex)V (e, eh) = (er,e2)}

Eo WA ifl(e) ¢ A
undefined otherwise
Refse(g<e>,)

Ref* (Eey, Ve — I(e))])

{
{

iflle) ¢ ANe=¢
ifl(e) € A

Shzft (E)(xie)y = Shzfti(5<e>) whenevei € {1,2}

Shift,(E) ey =~ Shift,(E)

Shifty(E) ey == Shift(Ee))

Moreover,
T(Te z¢,0 (ki) = T(The)
T(Ty 1¢, (kire)) < T(Tie)
T(Tpge, (0:0)) & T(Te)
Y(Te gy (kise)) < Y(Th,e) Ni=
T(TglAlAgza (e1,€2)) < (Y(Ti,e1) ANY(To,e2) ANly(er) = la(ez) € A)
T(Tyqp0) & (Y(Te)Alle) & A)

7.8. PROOFS 155

. Y(T,e) iflle) ¢ ANe=2¢
T(Trersp ey, (e:€)) & { T(T,e) AT (Tyey &) ifl(e) € A
T(T%) (}i,€)) < T(T',e) whenever € {1,2}
T(Tgm e (%)) & T(Te)
T(Tgz e (0)) & T(Te)
Proof: Straightforward. O

Now we are ready to show how the remainder SIEBES ,, defined in Definition 7.25 is
determined with respect to the different operators of Definition 7.44.

Lemma7.47 Let A C Obs, M : Obs — {l,r}*, M4 : Obs — ((A x IN) U {0})* and
q € {1,2,1,r}. Furthermore, suppos€ = (£, M) and&; = (£;, M;). Then

~ EnetEs if i =1 Ae¢ dom(M;)Al(e) € Obs
(51{52%(*“3)(~ Shiftl((‘fDEO ifi=1A (6 € dom(/\/l) V l(e))

Shifty (€2, L)ye() i i =2

LetéZc = (égléMégg) Y (x,€)(then

(&1ye (@ (00 M2 ifi=1Ali(e) € Obs A e ¢ dom(M,)
E1DBia(e)] M &) ifi =2Aly(e) € ObsAe ¢ dom(2)
N R \\M\(ll = 1A ly(e) € Obs Am = ML(e)) (1, M (c)
T Shzft2($2>e<) \\M\(IQ(e)’m)Q) ifi =2Als(e) € Obs Am = M((€))(r, Ma(e))
Shzft (&nye) 0 ifi=1A1l(e) =
| Shifty(Esye) \\i¥ if i =2 A ly(e) =

Shifty((E2, L)) if (e € dom(My) V e € init,(€))) A T(Tt,)
&ye & otherwise

(F17E)) 00 _{

Let&, = (&1]|a,m&2)) (e o) then

(Enelllanenn if 1,(¢) € Obs\A A e ¢ dom(M;)
e € dom(My)
éEpg "AM$2 |f ll(e) :T/\—\T(Tl,e)
Shlft ($2> \\M\(l (l1(e))(l,M1(e)))A |f e c initObs\A(&) A T(Tl, 6) VAN
N e € dom(M,)
L ShZﬁT(EgQ) \\MA if e € lnltf(gl) A T(Tl, 6)

whenevere; = e A ey = %

156

(&1 4,12 ()1 1 E2ye

& ‘|A,M\az(e),M@F»(an<e>>>$2>e<

$1||A M$2

Shift, (&) \\M\(lz M) (rMa(e) D
[Shift (&) \\,, A
whenevere; = xAey = ¢
&y L) (HA & Yea(if M(e1) ~ Ma(es
&, ~ % (&) \arAd if Ma(en)
Shiﬁl($1>el<) \\MA if ./\/ll(el) =M (62

(@,@,@,@, {@},@) |f T(T1,61) /\T

wheneverl;(e;) = lx(ez) € A (please note that 1, (e;)

g>e</\l[l(e),l}-MA
$>6<3M\<Z<e>,m(?>><w<e»>

&ye(\ A

(‘(E/\V\MAN(= A

—

Let&, = Jf%\éj/pf,MA ((‘.‘E, 0, 9)>(eyé)< then

RefA [1(e),0]- MA<$.0, 5) .
Ref 3 ata\ e 0500 0.1 (Erets 0,9)
RefA MA< (,0,0)

wheneverl(e) ¢ A

——se

CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

if I5(e) € Obs\A A e ¢ dom(My)
if ly(e) € Obs\A A =Y (T, e) A
e € dom(My)
if lo(e) =7 A=Y (T e)
if e € initops\a(E2) A Y (T3, e) A
e € dom(My)
if e € init, (&) A Y (T, €)

T(Tl, 61) A _|T(T2, 62)

) A=
= MQ(@Q) A T(Tl, 61) A\ _‘T(TQ, 62)
JAT

(T, e2) A =Y (T, e1)

= My(ez) = e; € dom(M,))

ifl(e) € ANe ¢ dom(M)
ifl(e) ¢ ANe € dom(M)
if I(e) =

if /() € Obs A é =e e ¢ dom(M)
ifl(e) € ObsAé=e
iflle)=T7Né=ce

Ref a 1,000, @001 (not(e)) (et 0, 011 (€) — B(1(e))yeq - B(1(e))])

&E‘T ~ ——se Py
}i@[ééMAol(e) ($>e(’ 9;

Ref g ar, (&yeper, 0, 0)

wheneveri(e) € AA e ¢ dom(M)

[1(e) — O(Ue))ye - 6U(e)))

if le(l(e)) € Obs
if l@(l(e)) =TA _‘T(TG(l(e))v é)
if loaey) = 7 AT (Tou(ey) €)

7.8. PROOFS 157

(Ref o) aoana (€0, 011(e) — 81(e)) £ (M(e), BU(e)))])
if b 6 Obs A é ¢ dom(ms(6(I(e))

RefA Ma\(b, VA (5) (1(e), M(e)).M (

)
(e) = B(i(e)) £ (M(e), 8(I(e))ye)])
) fue)me) €) N € € dom(M)

RfffA (Mat(U(e),M(e))\(b,Ma (D))((Ue ,M(e)),M/(é))))<$>€<7 0,0[l(e) — §(l<€))\M(€)]>
ifbe Obs/\M’—m((l

Ref, (At M) (Eels 0l1(e) — 6(1(e)\M(e)])
L T A (T . €

wheneverl(e) € AN lguey(€) = b A e € dom(M)

%i(‘f))(me)(= ‘%i($>6<) whenever € {1,2}
Shz'ftT(éE)>(*7e)(~ ShiftT($>e<)
Shift,(&)y (e = Shift)(&ye()

Proof: Can be straightforwardly checked by using Lemma 7.46. O
The following lemma states that every transition-ef’ is matched by—=-.

Lemma 7.48 Supposes € EXP2" anddecl : Var — EXP,.. Then for allG’ € EXP2' and
v € L We have

G gea G = ([(decl, Q)] e [(decl, G)]' A [(decl, G')]" = [(decl, G)]3,,)

Proof: It follows by induction on the depth of inferences@f -—4.. G', where Lemma 7.46
and Lemma 7.47 are used. Furthermore, in the cas&ofilso Lemma 7.42 is applied. O

Every started action can be immediately finisheeHn/,,

Lemma 7.49 Supposér, G’ € EXP2’

se !

decl : Var — EXP,., a € Obs ande € . Then

+
G e O = 3G (G B GV G T G7)

Proof: It follows straightforwardly by induction on the depths of inferenceﬁofa%z{ed G’
and is hence omitted. ad

The following lemma states that every transition<ef is matched by—'.

Lemma 7.50 Supposes € EXPY', decl : Var — EXPg, (£, M) = [(decl,G)]' and e €

se !

init(£). Then there exists” € EXP2" and~y € L. such that
{1(e) ey L€y} if U(e) € Obs Ae € dom(M)
G e G Ny € {l(e)*} if {(e) € Obs A e ¢ dom(M) .
{r,7v} if I(e) =

158 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Proof: First we show for anylecl : Var — EXPs.:

Vn € IN: VB € EXPs. : VE : (€ = [B]7n (1) Ae € nit(€)) = 3G", 7y :

(B e G A(Ue) =7 =7 € {r.my/D) Al(e) €Obs = 7 =U(e)r) Y

This is done by induction on combined with the structure aB where the lexicographical
order is used. We only present cae= z in detail: e € init([z] (1)) implies thatn > 0.
Therefore[z] 7 (1) = Fiea(L)(x) = [decl(x)] #n-1(1)- The rest follows by induction, since

n is reduced. In the case of the refinement operator, Lemma 7.49 is applied. Thus (7.4) is
established.

An immediate consequence of (7.4) is

VB € EXPg : VE : (€ = [(decl, B)] A e € init(£)) = 3G, v :

(B =iea G'A(l(e) =7 =y e {r,7/}) Al(e) € Obs = v =1(e)1)) (7:5)

The main statement follows now by structural induction(grwhere (7.5) is used. In the case
of the refinement operator, Lemma 7.49 is applied. O

Now we are ready to obtain the second bisimulation result, which establishes Theorem 7.26.

Lemma 7.51 Let (decl, B) € PA.., then the transition systefEXP2’, L., —". . B) is
bisimilar to (SEBES v, L., —°¢, [(decl, B)]'), where —" is defined as in Lemma 7.41.

Proof: DefineR = {(G, [(decl, 3)]') | G € EXP2'}. Then(B, [(decl, B)]') € R by defini-
tion.

Suppose€r; € EXPSe' andG, —7>” G,. ThenG, -—'G, for somee. Hence, by Lemma 7.48
we get[(decl, G1)]’ e [(decl, G2)]’, as required.

Supposés; € EXP2" and[(decl, Gy)]/ e &,. Thenthere ig € init([(decl, G;)]') such that
&, = [(decl, G1)]., and[(decl, G1)]’ e [(decl, G1)]i.,. From Lemma 7.50 we get the ex-

istence of3, € EXP2" and+’ such thais, Z—/>’G2. Moreover,[(decl, G1)[j,, = [(decl, G2)]'
and~y = ' by Lemma 7.48, which concludes the proof. O

Final conclusions.

The only proof left is that of Theorem 7.23. Before we do this, we introduce the following
lemma, which shows a correspondence betweeand —°.

Lemma 7.52 For all a € Act, & € SEBES and (&, M3) € SEBES , we have

o+ e () |
(My=LAE) &) & (&1, L) ;:/; —¢ (&, My) ifaec Obs

(&1, L) =€ (&, Ms) ifa=r71

7.8. PROOFS 159

Proof: It can be easily checked, sin€g,) = &- 0

Now we are ready to verify Theorem 7.23.

Proof of Theorem 7.23: From Lemma 7.41, Lemma 7.51 and from the transitivity of bisimilar-
ity it follows that (EXP2, Le., —S..1; B) and(SEBES v, L., —¢, [(decl, B)]') are bisimilar
(Theorem 7.26). LeR be such a corresponding bisimulation.

DefineR by R = {(C, &) € EXP2 x SEBES | (C, (€, 1)) € R}. Then(B, [(decl, B)]) € R

by definition.

Suppose(Cy, &) € R and (4) C5. We assume that € Obs (the case whema = 7

at a7 (V)
follows analogously). By definitio?; —¢—¢ C,. Then there ig&;, M,) such that

at af(\/) ~ a ~
(E1, 1) 0 08 (&, My) A (Co, (E,My)) € R. Thus,& Y & A (o, (6, 1) € R

by Lemma 7.52.
SupposeC, &) € R and&, a<(—\>/) &>. We assume that € Obs (the case when = 7 follows

at a; (V)

analogously). From Lemma 7.52 we obtain thét, 1) —¢ e (&, L). Then there i’
at a7 (V) 5 " o
such thaCy, —° —° Cy A (Cy, (&, L)) € R. Hence) C, by definition. ad

7.8.2 Proof of the Congruence Results

Proof of Theorem 7.28: Let R be a bisimulation such th&t€, 1), (£, 1)) € R and letR,
be bisimulations such th&tf(a), L), (¢'(a), L)) € R,.. Then define

—

Ries ={ (Befyrs,(£,0.0), Ref s 0, (&£,0,0)] (&, &) €RA
Va € A:Vie N : (A(a)[i] is defineds §(a)[i] is defined A
(6(a)[i] is defined= (A(a)[i], 0 (a)[i]) € Ra)}

It is clear that(Ref*{ (£,6), L) = E\c?iiMA((S, 1),0, 1), and therefore we obtain the fact that
((Ref5(E,6), L), (Ref5(E,6), 1)) € Ries as required.

The verification thatzelg., is a bisimulation is a straightforward consequence of Lemma 7.46
and Lemma 7.47 and is omitted here.

The proof of the other operators is straightforward. O
Proof of Theorem 7.29: The idea of this proof is the same as in Lemma 6.11:

Define A C Act to be the set of all action-names occurring€iror in &', i.e. A = {l(e)|e €
E}u{l'(e)|e € E'}. Letpu : {1,2} x A x N — Act\ A be an injective function. Such a
function exists. We define for all € A a sebe<,, which corresponds to the process algebra
term X = u(1,a,0); u(2,a,0) ® X[f] wheref (u(i,a,n)) = u(i,a,n + 1) 2,

2Here we use a relabeling operator as defined in Section 5.2. An isomorphic event structure can also be derived
by the refinement operator.

160 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

In the following definition, sequence$x; x;e are considered to be right bracketed and therefore
elements ot/.

Eo =({*xyx1x0|neNAie{l2}}
0,
{({*5 *x1 x10 | n € N\{j}} U {*% *1 *Z»o},*é *x1 x;®) | j € NN € {1,2}},
{({xh %1 x10}, %5 % *p@) | n € IN},
{{*721 *1 k2@ | n e]:N}},
{(xg *1 %0, pu(i,a,m)) [n € N A7 € {1,2}})

Defined’ : A — SEBES by #'(a) = &,. Furthermore, definé(»" by
Em) = ({xg w1 %0}, 0, {({#5 %1 *a0}, x5 x1 %20)}, 0, {{x5 *1 x20}}, { (65 x1 %20, (2, a,1))})

Let R, be a strong bisimulation such th@kef* (£, 0"), Ref*s (E',0")) € Ry. Without loss of
generality, R, contains only elements which can be derived fr&ay s (£, 0'), Ref5 (£, ¢').
Furthermore, let : &/ — IN be an isomorphism. We define the relatiBg; by

Rer=1{ (E, M), (E,M)|39,9 :3f : dom(M) — dom(M’) :
fisa Iabeling pregerving i§omorphisms

(Ve € dom(M) : M(e) = M'(f(e))) A

o & if e ¢ dom(M)
Ve e E:Y(e) = He) Y 4
e e (e) EWUe)n(f) if e € dom(M)
- Exo if ¢/ ¢ dom(M)
/ I .9l (S ge)
Ve' e B () = { EWERE) if ¢ € dom(M') :

(R_GJCSAG(571§)?R_6]Cf:(gla él)) € Ry }
Obviously,((£, L), (£, 1)) € Rsr-

The verification thakel . is a bisimulation is straightforward, where Lemma 7.46 and Lemma
7.47 are used. O

7.8.3 Proof of Theorem 7.34

It is only necessary to check the correctness of (7.1): From Lemma 7.33 we get that the transi-
tion systems obtained frorfalecl, H;) and (decl, decl(z;){(H,/z;)’€{%"}}) are bisimilar for

any: < n. Therefore, lef?; be corresponding bisimulations. Without loss of generality, let ev-
ery R, be reflexive. In the following, we writeH, H') € R; instead of (decl, H), (decl, H')) €

R;. Define

R = {({decl, H), (decl',) | g <nAJi, f: IN—{1,..,n}: (H,Hy) € Rgayo---0 Ry}

Now we show thatR is a bisimulation. Therefore, lé{decl, H), (decl’, z,)) € R such that
(H,H,;) € R"whereR' = Ry o---0 Ry;. Then

(H,decl'(x,){(H,/x;)’$*") € R' o R,, (7.6)
since(H,, decl (z,){(H;/z;)€0~"1) € R,.

7.8. PROOFS 161

T, =y [’ Then there isn < n such thatil’ = z,, since(decl’, {zg, ..., z,}) € SeqG.
. vy
Thusdecl’ (z,){(H;/x;) 0"} —%4.q H,. SinceR’ o R, is a bisimulation, we obtain

from (7.6) the existence off such thatH —7>Zded H and(H,H,,) € R o R,. Thus
((decl, H), (decl’, H")) € R.

v ~ ~
H —%4.a H: SinceR' o R, is a bisimulation we obtain from (7.6) the existence/Bfsuch

thatdecl (2,){(H; /2;)7€0~} 24 H' and (H, ') € R o Ry ThUSZ, — ey
rmANH'" = H,, forsomem < n, sincedecl’ is sequential guarded with respec{t®, ..., z,, }.
Hence,((decl, H), (decl’, x,,)) € R.

Furthermore((decl, Hy), (decl’, 7)) € R follows from the reflexivity ofR,, which establish
Theorem 7.34.

7.8.4 Proof of Theorem 7.39

The verification of the completeness is similar to [44], which uses the technique from [137, 139].
The verification of our completeness result differs a little bit from [44], since we do not split
the internal action, and termination is determined by the final action. More precisely, the above

conditions lead to rule®s and R;, where we have a transitior®(1 () C") in which the

left process () is no subterm of the original procesS|[(, »]i,). Consequently, structural
induction can not be used to verify completeness.

For this reason, we introduce a weight functionRAE", which is used for induction. Weight
function A counts an upper bound of the possible numbers of actions that can start when no
action finishes. This is done respectively for every action to guarantee the well-definedness of
the weight function for the refinement operatorsalso counts the numbers of the reachable
variables (\(U)). FunctionA¢ counts the reachable variables together with the upper bound of
the possible number of actions that can start when no action ends; issthe sum oven.

Definition 7.53 DefineA : PAS" — ((Obs U {U}) —/™ IN) as follows, where we do not
mentiondecl explicitly

A(H)(c) =0 ifHG{O,T,b*,b;,bq*\/;H’,T\/;H’}
1 ife=b

0 otherwise

1+ A(H)(c) ifec=b

AOTHDC) = AN () otherwise
AMHY) = AH)(e) if He{H:H" H\ A}
A(H)(C) = A(Hl)(C) +A(H1)(C) if H € {Hl +H2,H1“:H27H1“:_H2,

Hy @y Hoy Hy @y Hy,y Hy|| 4 Ho,
Hy [y p Hoy Hilan Ha }

162 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

A(H[(a — Ho)*, (@ — Ha)"ary))(€) =

AH)() + (L aea MH)(@) - AH) () + Ve i Yicyr, MLl ()
A(H[(a — Ho)**, (a — H)* A, (a — Ho)"Mar, H'))(¢) =
ACH)(c) + (e AH)(a) - A(Ho)(c) + A(H')(a) - A(H,)(¢))+

A(H')(c)+24EaeA 2):1<|Ha A(H,li])(c)
1+ A(decl(x))(c) ifc=0
A)(e) = { Adecl(z))(c) otherwise

Furthermore, definé“ : PAZ' — IN by A“(H) = 3= opeisy A) (0).
Lemma 7.54 FunctionA is well defined and consequently functithis also well defined.

Proof: We show that

V((decl, H),V) € VarSp : G(({decl, H),V),V) = A(H) is well defined
This is done by induction ofi’\ V| combined with the structure df where the lexicographic
order is used.
The rest is an immediate consequence of Lemma 7.37. O
The nice property that the start of an action reduces the weight holds:

at

Lemma 7.55 Supposédecl, H) € PAS, a € Obsand H —*4.q H'. Then

A(H)(a) > A(H')(a) A Ve € (Obs U{B}) : A(H)(c) > A(H')(c)

and consequently“(H) > A°(H’).

at
Proof: This can be verified by induction on the depth of inferencé/of—* H'. O
Guardedness implies finitely branching:

Lemma 7.56 Supposédecl, H) € PAS" then H is finitely branching with respect te—=.

Proof: It follows by induction onA¢(H) combined with the structure df where the lexico-
graphic order is used. In the case of rulesand R, we make use of Lemma 7.55. O

It can be derived from our axioms that a process is equivalent to the choice of its branches. This
is illustrated by the following lemma, Whe@j ~; H' is really an expression, i.e. it

has a finite choice, by Lemma 7.56.

—*gecl H'

Lemma 7.57 Supposédecl, H) € PASY, then

se !

l_decl H = Z s H'.

5
H —)ZdeclH/

7.8. PROOFS 163

Proof: It follows by induction onA¢(H) combined with the structure df where the lexico-
graphic order is used. In the case of the refinement operator, we make use of Lemmar7.55.

As a consequence of the previous lemma, we can derive from our axioms that every guarded
and finite state process is equivalent to a sequentially guarded process.

Corollary 7.58 Suppos€decl, H) € PAS is finite state, then there iglecl’, {xy, ..., 2, }) €
SeqG such that- (decl, Hy) = (decl’, x).

Proof: There is only a finite number of different expressions reachable f{doy the transition
rules, sinceldecl, H) is finite state. Lef Hy, ..., H,} be the set of expressions reachable from
H with Hy = H.

. !/ J—
Definedecl (xz) - ZHi deeclHj

ing by Lemma 7.56. It is easily seen thdtcl’, {zy, ..., x,}) € SeqG. Furthermorel-g.q H; =
decl'(z;){(H,/z;)?€{%"}} by Lemma 7.57. Thus (decl, Hy) = (decl’,) follows by rule
(7.1). O

Our derivation system derives that two processes are equivalent whenever they are sequentially
guarded and ST-equivalent.

7v; x;, which is well defined sincélecl, H) is finitely branch-

Lemma 7.59 Supposéedecl, {yo, ..., Ym}), (decl’, {xq, ..., x,}) € SeqG such that(decl, y,) is
ST-equivalent tddecl’, zy). Then there igdecl”, V,) € SeqG such that|V,| < |IN| and
(decl, yo) = (decl”, 2g0) andt (decl’, xg) = (decl”, z9) for somezyy € V..

Proof: Let R C {yo, ..., ym} X {z0, ..., z,} be a bisimulation such tha&t,, z,) € R. Define
Vo=Az; |t <nAj<mA(x;,z;) € R}. Let

decl”(z;;) = Z V5 2kl
Ui —% dect Uk zj deecv z, (yr,21)ER
Then(decl”, V,) € SeqG. Furthermorel-q. v;i = decl”(z;;){(decl(yg)/zp;)*EL0-mhlel0nty

for anyz;; € V., sinceR is a bisimulation. Thus (decl, yo) = (decl”, zo0) by rule (7.1). With
symmetrical arguments we obtain(decl’, zy) = (decl”, 2. 0

Now, we are ready to show the completeness result for guarded and finite state processes.

Proof of Theorem 7.39: It is an immediate consequence of Corollary 7.58, Lemma 7.59 and
Theorem 7.34. O

164 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Chapter 8

Conclusion

In this thesis, we motivated the approach that considers a choice operator as end-based triggered,
in particular in the context of action refinement. We established the end-based choice operator

by investigating a process algebra, which contains an end-based choice and an action refine-
ment operator, and by developing a denotational, an operational and an axiomatical semantics
for this process algebra. We showed that these semantics are consistent. More precisely, the
operational and the denotational semantics are bisimilar, and the axiomatical semantics is sound
and complete (for guarded and finite state processes) with respect to the bisimulation equiva-

lence obtained from the operational (denotational) semantics.

We had to investigate a new technique (approximation closedness) to restrict event structures
that are based on the bundle technique in order to obtain a complete partial order. Furthermore,
we used a new technique to show the bisimilarity between the operational and the denotational
semantics. This new technique can handle unguarded recursion.

We also investigated new equivalences in the extended bundle event structures setting. These
new equivalences are congruences for the action refinement operator that considers the con-
flict relation in extended bundle event structures to be end-based triggered. The valid relations
between the trace equivalence, the bisimulation equivalence and these new equivalences are
summarized in Figure 8.1 (if two equivalences are connected via a line, then the lower one
identifies more elements than the upper one).

We pointed out that extended bundle event structures are not appropriate to model the end-based
view, since the intuitive congruence equivalences fail to be the coarsest for the end-based action

~UI

~FUI

7N\

~ICT ~b

N\

Figure 8.1: Relations Between the Equivalences

165

166 CHAPTER 8. CONCLUSION

extended bundle

— T ETBES/

bundle dual —— ETPES

\ flow stable/

Figure 8.2: Hierarchy of Event Structures

prime

refinement operator with respect to trace (respectively bisimulation) equivalence. Therefore,
we investigated new event structures, namely extended termination bundle and extended ter-
mination precursor event structures, which have more general disabling relations. These event
structures were examined in the context of a process algebra that contains a disrupt operator.
The expressive power with respect to the set of event traces, describable by the classes of event
structures, was examined. The hierarchy of this expressive power is depicted in Figure 8.2,
where prime event structures can describe less set of event traces than the other event struc-
tures. The ICT-equivalence is the coarsest equivalence with respect to trace equivalence, and
the FUI-equivalence is the coarsest equivalence with respect to bisimulation equivalence for the
end-based action refinement operator in the extended termination event structures setting.

We introduced a choice operator where one side triggers the choice by ending actions and the
other side triggers the choice by starting actions. Furthermore, we argued that it is useful to
have this kind of choice as well as a start-based and an end-based choice in a single setting.

In the context of a process algebra with a start-based choice, we investigated a new technique of
defining an operational semantics. This technique can handle action refinement and disruption
in a reasonable way. Moreover, it is not necessary to introduce new syntactic terms in order to

give the operational semantics.

Bibliography

[1] Samson Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editéasndbook of Logic
in Computer Scienge&olume 2. Oxford University Press, 1992.

[2] Samson Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editdasidbook of Logic
in Computer Sciencerolume 4. Oxford University Press, 1995.

[3] Samson Abramsky and Achim Jung. Domain theory. In Samson Abramsky, Dov M. Gab-
bay, and T. S. E. Maibaum, editotdandbook of Logic in Computer Sciene®lume 3,
pages 1-168. Clarendon Press, 1994.

[4] L. Aceto and M. Hennessy. Termination, deadlock, and divergelmenal of the ACM
39:147-187, 1992.

[5] L. Aceto and M. Hennessy. Towards action-refinement in process algébfasnation
and Computation103:204—-269, 1993.

[6] L. Aceto and M. Hennessy. Adding action refinement to a finite process algetiog.
mation and Computatiqri15:179-247, 1994.

[7] Luca Aceto.Action refinement in process algebra@ambridge University Press, 1992.

[8] Luca Aceto. On “Axiomatising Finite Concurrent ProcesseSTAM Journal on Com-
puting, 23:852-863, 1994.

[9] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics. In
Bergstra et al. [27], pages 197-292.

[10] Luca Aceto and David Murphy. Timing and causality in process algeketa Informat-
ica, 33:317-350, 1996.

[11] Marco Ajmone Marsan, Andrea Bianco, Luigi Ciminiera, Riccardo Sisto, and Adriano
Valenzano. A LOTOS extension for the performance analysis of distributed systems.
IEEE/ACM Transactions on Networking:151-165, 1994.

[12] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of generalized
stochastic petri nets for the performance evaluation of multiprocessor sys#@id.
Transactions on Computer Syster2®93-122, 1984.

[13] Egidio Astesiano and Gianna Reggio. Formalism and method. In M. Bidoit and
M. Dauchet, editorsTAPSOFT '97: Theory and Practice of Software Developmentt
ume 1214 oLNCS pages 93-114. Springer-Verlag, 1997.

167

168 BIBLIOGRAPHY

[14] J. C. M. Baeten and J. A. Bergstra. Mode transfer in process algebra. Report CSR 00-01,
Vakgroep Informatica, Technische Universiteit Eindhoven, 2000.

[15] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining equations for an
interrupt mechanism in process algeldfandamenta Informatica®:127-168, 1986.

[16] J. C. M. Baeten and J. W. Klop, editor€ONCUR '9Q volume 458 olLNCS Springer-
Verlag, 1990.

[17] J. C. M. Baeten and C. A. Middelburg. Process algebra with timing: Real time and
discrete time. In Bergstra et al. [27], pages 627—-684.

[18] J. C. M. Baeten and C. Verhoef. Concrete process algebra. In Abramsky et al. [2], pages
149-268.

[19] Christel Baier and Mila Majster-Cederbaum. How to interpret and establish consistency
results for semantics of concurrent programming languagesdamenta Informaticae
29:225-256, 1997.

[20] Christel Baier and Mila E. Majster-Cederbaum. The connection between an event struc-
ture semantics and an operational semantics for TC&Ra Informatica 31:81-104,
1994,

[21] Christel Baier and Mila E. Majster-Cederbaum. Denotational semantics in the cpo and
metric approachTheoretical Computer Scienck35:171-220, 1994.

[22] H. P. Barendregt. Lambda calculi with types. In Abramsky et al. [1], pages 117-309.

[23] Marek A. Bednarczyk. Hereditary history preserving bisimulation or what is the power
of the future perfect in program logics. Technical report, Institute of Computer Science,
Polish Academy of Science, 1991.

[24] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, L. Petrucci, Ch. Schnoebelen, and
P. McKenzie.System and Software VerificatioBpringer, 2001.

[25] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communicktior:.
mation and Contrqgl60:109-137, 1984.

[26] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Scienc&7:77-121, 1985.

[27] J. A. Bergstra, A. Ponse, and S. A. Smolka, editoandbook of Process Algehra
North-Holland, 2001.

[28] Jan A. Bergstra, Wan Fokkink, and Alban Ponse. Process algebra with recursive opera-
tions. In Bergstra et al. [27], pages 333—-389.

[29] Marco Bernardo and Roberto Gorrieri. A tutorial on EMPA: A theory of concurrent
processes with nondeterminism, priorities, probabilities and tirheoretical Computer
Science202:1-54, 1998.

[30] E. Best, editorCONCUR '93 volume 715 oLNCS Springer-Verlag, 1993.

BIBLIOGRAPHY 169

[31] Eike Best, Raymond Devillers, and Javier Esparza. General refinement and recursion
operators for the perti box calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors,
STACS 93volume 665 oLNCS pages 130-140. Springer-Verlag, 1993.

[32] Tommaso Bolognesi and Ed Brinksma. Introduction to the 1ISO specification language
LOTOS. Computer Networks and ISDN Systefd.25-59, 1987.

[33] G. Boudol and I. Castellani. On the semantics of concurrency: Partial orders and transi-
tion systems. In H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, editbA2 SOFT '87
(Volume 1) volume 249 olLNCS pages 123-137. Springer-Verlag, 1987.

[34] Geérard Boudol. Atomic actionsBulletin of the European Association for Theoretical
Computer Scien¢&8:136-144, 1989.

[35] Gérard Boudol. Flow event structures and flow nets. In |. Guessarian, &tmiantics of
Systems of Concurrent Processeslume 469 ofLNCS pages 62-95. Springer-Verlag,
1990.

[36] Gérard Boudol and llaria Castellani. Permutation of transitions: an event structure se-
mantics for CCS and SCCS. In de Bakker et al. [66], pages 411-427.

[37] Geérard Boudol and llaria Castellani. Flow models of distributed computations: event
structures and nets. Report 1482, INRIA, 1991.

[38] Gérard Boudol and llaria Castellani. Flow models of distributed computations: Three
equivalent semantics for CC#formation and Computatiqril4:247-314, 1994.

[39] Howard Bowman and John Derrick. Extending LOTOS with time: A true concurrency
perspective. In M. Bertran and T. Rus, editdmrgnsformation - Based Reactive Systems
Developmentvolume 1231 oL NCS pages 383-399. Springer-Verlag, 1997.

[40] Howard Bowman and Joost-Pieter Katoen. A true concurrency semantics for ET-LOTOS.
In Applications of Concurrency to System Desigages 228-239. IEEE Computer So-
ciety Press, 1998.

[41] W. Brauer, W. Reisig, and G. Rozenberg, editétstri Nets: Applications and Relation-
ship to Other Models of Concurrency, Advances in Petri Nets 1986, Rarbllime 255
of LNCS Springer-Verlag, 1987.

[42] Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour and equivalence
preserving refinements of Petri nets. In G. Rozenberg, editbrances in Petri Nets
volume 483 ofLNCS pages 1-46. Springer-Verlag, 1991.

[43] Mario Bravettiand Marco Bernardo. Compositional asymmetric cooperations for process
algebras with probabilities, priorities, and time. In Flavio Corradini and Paola Inverardi,
editors,MTCS 2000 volume 39 ofElectronic Notes in Theoretical Computer Science
Elsevier Science Publishers, 2000.

[44] Mario Bravetti and Robert Gorrieri. Deciding and axiomatizing weak ST bisimulation
for a process algebra with recursion and action refinenf&@TCL: ACM Transactions
on Computational Logic3, 2002.

170 BIBLIOGRAPHY

[45] Ed Brinksma, Joost-Peter Katoen, Rom Langerak, and Diego Latella. A stochastic
causality-based process algebfae Computer JournaB8(7):552-565, 1995.

[46] Ed Brinksma, Joost-Peter Katoen, Rom Langerak, and Diego Latella. Partial order
models for quantitative extensions of LOTOSomputer Networks and ISDN Systems
30:925-950, 1998.

[47] S.D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processesJournal of the ACM31(3):560-599, 1984.

[48] Manfred Broy and Ernst-&liger Olderog. Trace-oriented models of concurrency. In
Bergstra et al. [27], pages 101-196.

[49] Nadia Busi, Rob van Glabbeek, and Roberto Gorrieri. Axiomatising ST bisimulation
equivalence. In E.-R. Olderog, editd?yoceedings IFIP Working Conference on Pro-
gramming Concepts, Methods and Cal¢cpkges 169—-188. Elsevier Science, 1994.

[50] Juanito Camilleri and Glynn Winskel. CCS with priority choidaeformation and Com-
putation 116:26-37, 1995.

[51] Edmund M. Clarke, Jeanette M. Wing, et al. Formal methods: State of the art and future
directions.ACM Computing Survey28:626—643, 1996.

[52] Edmund M., Jr. Clarke, Orna Grumberg, and Doron A. Pelkiddel Checking MIT
Press, 1999.

[53] Rance Cleaveland, Geraldittgen, and V. Natarajan. A process algebra with distributed
priorities. Theoretical Computer SciencE9d5:227-258, 1998.

[54] Rance Cleaveland, Geraldittgen, and V. Natarajan. Priority in process algebra. In
Bergstra et al. [27], pages 711-765.

[55] Rance Cleaveland, Scott A. Smolka, et al. Strategic directions in concurrency research.
ACM Computing Survey28:607—-625, 1996.

[56] W. R. Cleaveland, editoiCONCUR '92 volume 630 olLNCS Springer-Verlag, 1992.

[57] Flavio Corradini. Absolute versus relative time in process algebhamrmation and
Computation156:122-172, 2000.

[58] Flavio Corradini, Rocco De Nicola, and Anna Labella. Graded modalities and resource
bisimulation. In C. Pandu Rangan, V. Raman, and R. Ramanujam, edi®fr3,CS’99
volume 1738 oLLNCS pages 381-393. Springer-Verlag, 1999.

[59] Flavio Corradini, Rocco De Nicola, and Anna Labella. Models of nhondeterministic reg-
ular expressionslournal of Computer and System Scien&&s412-449, 1999.

[60] Ingo Czaja, Rob van Glabbeek, and Ursula Goltz. Interleaving semantics and action
refinement with atomic choice. In G. Rozenberg, edialyances in Petri Netsyolume
609 of LNCS pages 89-107. Springer-Verlag, 1992.

BIBLIOGRAPHY 171

[61] Ph. Darondeau and P. Degano. Causal trees. In G. Ausiello, M. Dezani-Ciancaglini, and
S. Ronchi Della Roccha, editorautomata, Languages and Programmjinglume 372
of LNCS pages 234-248. Springer-Verlag, 1989.

[62] Philippe Darondeau and Pierpaolo Degano. About semantic action refinefuemta-
menta Informaticagl4:221-234, 1991.

[63] Philippe Darondeau and Pierpaolo Degano. Refinement of actions in event structures and
causal treesTheoretical Computer Scienckl8:21-48, 1993.

[64] J. W. de Bakker and E. P. de Vink. Bisimulation semantics for concurrency with atomicity
and action refinementundamenta Informatica@0:3-34, 1994.

[65] J. W. de Bakker and J. I. Zucker. Processes and the denotational semantics of concur-
rency. Information and Contrql54:70-120, 1982.

[66] J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editdreear Time, Branching
Time and Partial Order in Logics and Models for Concurrengglume 354 ofLNCS
Springer-Verlag, 1989.

[67] P. Degano, R. De Nicola, and U. Montanari. Observational equivalences for concurrency
models. In M. Wirsing, editorFormal Description of Programming Concepts — IlI,
Proceedings of tha!" IFIP WG 2.2 working conferenc&bberup 1986, pages 105-129.
North-Holland, 1987.

[68] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. On the consistency of “truly
concurrent” operational and denotational semantics (extended abstraetpceedings
of the 3rd Annual IEEE Symposium on Logic in Computer Scigrages 133-141. IEEE
Computer Society Press, 1988.

[69] Pierpaolo Degano and Roberto Gorrieri. Atomic refinement in process description lan-
guages. In Tarlecki [168], pages 121-130.

[70] Pierpaolo Degano and Roberto Gorrieri. A causal operational semantics of action refine-
ment. Information and Computatiqri22:97-119, 1995.

[71] John Derrick, Eerke Boiten, Jim Woodcock, and Joakim von Wright, edifRES-INE
2002 volume 70 ofElectronic Notes in Theoretical Computer Scien€ksevier Science
Publishers, 2002.

[72] Raymond Devillers. Maximality preserving bisimulatidrheoretical Computer Science
102:165-183, 1992.

[73] B. Diertens. New features in PSF | — interrupts, disrupts, and priorities. Report P9417,
Programming Research Group - University of Amsterdam, 1994.

[74] J. Dugundji.Topology Allyn and Bacon, Boston, Mass., 1966.

[75] A. Engels and Th. Cobben. Interrupt and disrupt in MSC: Possibilities and problems. In
Y. Lahav, A. Wolisz, J. Fischer, and E. Holz, editdPspceedings fo the 1st Workshop of
the SDL Forum Society on SDL and MSt@mber 104 in Informatikberichte. Humboldt-
Universitt zu Berlin, 1998.

172 BIBLIOGRAPHY

[76] Harald Fecher. Denotational semantics of untyped object-based programming languages.
Master’s thesis, Technische Unive&iDarmstadt, 1999.

[77] Harald Fecher. A real-time process algebra with open intervals and maximal progress.
Nordic Journal of Computing3:346—-365, 2001.

[78] Harald Fecher and Mila Majster-Cederbaum. Taking decisions late: End-based choice
combined with action refinement. In Derrick et al. [71].

[79] Harald Fecher, Mila Majster-Cederbaum, and Jinzhao Wu. Action refinement for proba-
bilistic processes with true concurrency models. In H. Hermanns and R. Segala, editors,
PAPM-PROBMIV 2002. Performance Modeling and Verificatiaume 2399 ot NCS
pages 77-94. Springer-Verlag, 2001.

[80] Harald Fecher, Mila Majster-Cederbaum, and Jinzhao Wu. Bundle event structures: A
revised cpo approactnformation Processing Letter83:7—12, 2002.

[81] Harald Fecher, Mila Majster-Cederbaum, and Jinzhao Wu. Refinement of actions in a
real-time process algebra with a true concurrency model. In Derrick et al. [71].

[82] Miguel Felder, Angelo Gargantini, and Angelo Morzenti. A theory of implementation
and refinement in timed Petri nefBheoretical Computer Scienc202:127-161, 1998.

[83] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, etMathe-
matical Aspects of Computer Scieneelume 19 ofProceedings of Symposia in Applied
Mathematicspages 19-32. American Mathematical Society, 1967.

[84] Wan Fokkink.Introduction to Process Algebré&pringer-Verlag, 2000.

[85] R. J. van Glabbeek. The refinement theorem for ST-bisimulation semantics. In M. Broy
and C.B. Jones, editors, Proceedings IFIP TC2 Working Conferené&ragmamming
Concepts and MethodSea of Gallilee, Israel, April 1990, pages 27-52. North Holland,
1990.

[86] R. J. van Glabbeek. The linear time—branching time spectrum I. the semantics of con-
crete, sequential processes. In Bergstra et al. [27], pages 3—-99.

[87] R. J. van Glabbeek and G. D. Plotkin. Configuration structurefrdceedings of the
10th Annual IEEE Symposium on Logic in Computer Sciepages 199-209. IEEE
Computer Society Press, 1995.

[88] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, generative and
stratified models of probabilistic processdsformation and Computatiqrii21:59-80,
1995.

[89] Rob van Glabbeek. The linear time—branching time spectrum II: The semantics of se-
guential systems with silent moves (extended abstract). In Best [30], pages 66—81.

[90] Rob van Glabbeek and Ursula Goltz. Refinement of actions in causality based models.
In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, ediBtepwise Refinement
of Distributed Systems. Models, Formalisms, Correctnesisime 430 ofLNCS pages
267-300. Springer-Verlag, 1990.

BIBLIOGRAPHY 173

[91] Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for
concurrent system#cta Informatica 37:229-327, 2001.

[92] Rob van Glabbeek and Frits Vaandrager. Petri net models for algebraic theories of con-
currency. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, edR&RLE, Parallel
Architectures and Languages Europe (Volumeudlume 259 olLNCS pages 224-242.
Springer-Verlag, 1987.

[93] Ursula Goltz, Roberto Gorrieri, and Arend Rensink. Comparing syntactic and semantic
action refinementinformation and Computatiqri25:118-143, 1996.

[94] Roberto Gorrieri. A hierarchy of system descriptions via atomic linear refinerkent.
damenta Informaticael6:289—336, 1992.

[95] Roberto Gorrieri and Cosimo Laneve. The limit of splisimulations for CCS agents.
In Tarlecki [168], pages 170-180.

[96] Roberto Gorrieri and Cosimo Laneve. Split and ST bisimulation semaiiicgmation
and Computation118:272-288, 1995.

[97] Roberto Gorrieri, Sergio Marchetti, and Ugo Montanari?C&ES: Atomic actions for
CCS. Theoretical Computer Sciencg2:203-223, 1990.

[98] Roberto Gorrieri and Arend Rensink. Action refinement. In Bergstra et al. [27], pages
1047-1147.

[99] Roberto Gorrieri, Marco Roccetti, and Enrico Stancampiano. A theory of processes with
durational actionsTheoretical Computer Sciencg40:73—-94, 1995.

[100] Michael R. Hansen and Chaochen Zhou. Duration calculus: Logical foundafiamsal
Aspects of Computin@:283 — 330, 1997.

[101] Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, Myla Archer, and Ramesh Bharad-
waj. Using abstraction and model checking to detect safety violations in requirements
specificationslEEE Transactions on Software Engineerj2g(11):927-948, 1998.

[102] Matthew Hennessy. Concurrent testing of processésta Informatica 32:509-543,
1995.

[103] Matthew Hennessy and Tim Regan. A process algebra for timed systafosmation
and Computation117:221-239, 1995.

[104] Holger Hermanns and Michael Rettelbach. Syntax, semantics, equivalences, and ax-
ioms for MTIPP. In U. Herzog and M. Rettelbach, editdPspceedings of the 2nd Int.
Workshop on Process Algebra and Performance Modelling (PAPMIBHA4.

[105] C. A. R. Hoare. An axiomatic basis of computer programmi@gmmunications of the
ACM, 12:576-580, 1969.

[106] C. A. R. Hoare. Communicating sequential processeemmunications of the ACM
21(8):666-677, 1978.

174 BIBLIOGRAPHY

[107] C. A. R. Hoare. A model for communicating sequential processes. In R. M. McKeag
and A. M. Macnaghten, editor®n the Construction of Program€ambridge University
Press, 1980.

[108] C. A. R. Hoare Communications Sequential Procesdagernational Series in Computer
Science. Prentice Hall, 1985.

[109] C. A. R. Hoare. Theories of programming: Top-down and bottom-up and meeting in the
middle. In J.M. Wing, J. Woodcock, and J. Davies, editéig)'99 — Formal Methods
(Volume 1) volume 1708 oL.NCS pages 1-27. Springer-Verlag, 1999.

[110] John E. Hopcroft and Jeffrey D. Ulimamntroduction to Automata Theory, Languages,
and ComputationAddison-Wesley, 1979.

[111] Michaela Huhn. Action refinement and property inheritance in systems of sequential
agents. In U. Montanari and V. Sassone, edit@ONCUR '96: Concurrency Theory
volume 1119 oLNCS pages 639-654. Springer-Verlag, 1996.

[112] Pankaj Jalote and Robert H. Campbell. Atomic actions in concurrent syster®so-In
ceedings of the 5th International Conference on Distributed Computing Sygiages
184-191, Denver, Colorado, May 1985. IEEE Computer Society.

[113] Wil Janssen, Mannes Poel, and Job Zwiers. Action systems and action refinement in
the development of parallel systems. In J. C. M. Baeten and J. F. Groote, eGifixs,
CUR '9], volume 527 oLLNCS pages 298-316. Springer-Verlag, 1991.

[114] Lalita Jategaonkar and Albert Meyer. Testing equivalence for Petri nets with action re-
finement. In Cleaveland [56], pages 17-31.

[115] Bengt Jonsson, Wang Yi, and Kim G. Larsen. Probabilistic extensions pf process alge-
bras. In Bergstra et al. [27], pages 685—710.

[116] Joost-Pieter KatoenQuantitative and Qualitative Extension of Event Structur@gD
thesis, Enschede: Centre for Telematics and Information Technology, P.O. Box 217 -
7500 AE Enschede - The Netherlands, 1996.

[117] Joost-Pieter Katoen, Christel Baier, and Diego Latella. Metric semantics for true concur-
rent real time.Theoretical Computer Scienc254:501-541, 2001.

[118] Joost-Pieter Katoen, Ed Brinksma, Diego Latella, and Rom Langerak. Stochastic simu-
lation of event structures. In Ribaudo [160], pages 21-49.

[119] Joost-Pieter Katoen, Rom Langerak, and Diego Latella. Modelling systems by proba-
bilistic process algebra: an event structures approach. In R. L. Tenney et al., editors,
Formal Description Techniques, Mdages 253—-268. Elsevier, 1994,

[120] Joost-Pieter Katoen, Rom Langerak, Diego Latella, and Ed Brinksma. On specifying
real-time systems in a causality-based setting. In B. Jonsson and J. Parrow, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systemmkime 1135 ofLNCS
pages 385—-404. Springer-Verlag, 1996.

BIBLIOGRAPHY 175

[121] Robert M. Keller. Formal verification of parallel progran@mmunications of the ACM
19:371-384, 1976.

[122] Maciej Koutny and Eike Best. Operational and denotational semantics for the box alge-
bra. Theoretical Computer Scienc211:1-83, 1999.

[123] Dexter Kozen. Results on the propositional mu -calculiseoretical Computer Science
27:333-354, 1983.

[124] Leslie Lamport. The temporal logic of action®dCM Transactions on Programming
Languages and Systend$:872—-923, 1994.

[125] Rom LangerakTransformations and Semantics for LOTG8D thesis, Department of
Computer Science, University of Twente, 1992.

[126] Rom Langerak. Bundle event structures: A non-interleaving semantics for LOTOS. In
M. Diaz and R. Groz, editorg;ormal Description Techniques, Yages 331-346. Else-
vier, 1993.

[127] Rom Langerak, Ed Brinksma, and Joost-Pieter Katoen. Causal ambiguity and partial
orders in event structures. In A. Mazurkiewicz and J. Winkowski, edi@@\NCUR '97:
Concurrency Theorywolume 1243 o NCS pages 317-331. Springer-Verlag, 1997.

[128] Luc Léonard and Guy Leduc. An introduction to ET-LOTOS for the description of time-
sensitive system£omputer Networks and ISDN Syste2271-292, 1997.

[129] Gavin Lowe. Probabilistic and prioritized models of timed CSBReoretical Computer
Science138:315-352, 1995.

[130] M. Majster-Cederbaum, F. Salger, and M. Sorea. A priori verification of reactive sys-
tems. In Tommaso Bolognesi and Diego Latella, editBosmal Methods for Distributed
System Development (Proc. FORTE/PSTV 2008)es 35-50. Kluwer Academic Pub-
lishers, 2000.

[131] Mila Majster-Cederbaum and Markus Roggenbach. Transition systems from event struc-
tures revisitedInformation Processing Letter§7:119-124, 1998.

[132] Mila Majster-Cederbaum and Frank Salger. Correctness by construction: Towards ver-
ification in hierarchical system development. In K. Havelund, J. Penix, and W. Visser,
editors,SPIN Model Checking and Software Verificatienlume 1885 oLLNCS pages
163-180. Springer-Verlag, 2000.

[133] Mila Majster-Cederbaum and Jinzhao Wu. Action refinement for true concurrent real-
time. InProc. 7th IEEE int. Conf. on Engineering of Complex Computer Sysieages
58-68. IEEE Computer Sciety Press, 2001.

[134] Mila Majster-Cederbaum, Naijun Zhan, and Harald Fecher. Action refinement from a
logical point of view. In L. Zuck, P. Attie, A. Cortesi, and S. Mukhopadhyay, editors,
VMCAI 2003 volume 2575 oL NCS pages 253-267. Springer-Verlag, 2003.

176 BIBLIOGRAPHY

[135] F. Erich Marschner. Practical challenges for industrial formal verification tools. In
O. Grumberg, editorComputer Aided Verificatignvolume 1254 ofLNCS pages 1-2.
Springer-Verlag, 1997.

[136] Robin Milner. Calculi for synchrony and asynchronyheoretical Computer Science
25:267-310, 1983.

[137] Robin Milner. A complete inference system for a class of regular behaviotgnal of
Computer and System Scienc28:439-466, 1984.

[138] Robin Milner. Communication and Concurrencinternational Series in Computer Sci-
ence. Prentice Hall, 1989.

[139] Robin Milner. A complete axiomatisation for observational congruence of finite-state
behaviors.Information and Computatiqr81:227—-247, 1989.

[140] Ugo Montanari and Marco Pistore. Minimal transition systems for history-preserving
bisimulation. In R. Reischuk and M. Morvan, edito8,ACS 9,/volume 1200 oL NCS
pages 413-425. Springer-Verlag, 1997.

[141] David Murphy. Time and duration in noninterleaving concurrerfeyndamenta Infor-
maticag 19:403-416, 1993.

[142] Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process al-
gebras. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors,
Real-Time: Theory in Practicarolume 600 ofLNCS pages 526-548. Springer-Verlag,
1992.

[143] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, ATP: Theory and
application.Information and Computatiqril14:131-178, 1994.

[144] Mogens Nielsen, Uffe Engberg, and Kim S. Larsen. Fully abstract models for a process
language with refinement. In de Bakker et al. [66], pages 523-548.

[145] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures and
domains, part ITheoretical Computer SciencE3:85-108, 1981.

[146] E.-R. Olderog, editor.Programming Concepts, Methods and Calculi, Proceedings of
the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming Concepts,
Methods and Calculi (PROCOMET '94)olume A-56 ofiFIP Transactions1994.

[147] C.-H. L. Ong. Correspondence between operational and denotational semantics: the full
abstraction problem for PCF. In Abramsky et al. [2], pages 269-356.

[148] Doron A. Peled Software Reliability MethodsSpringer, 2001.

[149] G. D. Plotkin. LCF considered as a programming languad@eoretical Computer
Scienceb5:223-255, 1977.

[150] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark, 1981.

BIBLIOGRAPHY 177

[151] A. Pnueli. System specification and refinement in temporal logic. In R. Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer Scieoicene
652 of LNCS pages 1-38. Springer-Verlag, 1992.

[152] Lucia Pomello. Some Equivalence Notions for Concurrent Systems. An Overview. In
G. Rozenberg, editoAdvances in Petri Nets 198%lume 222 o£ NCS pages 381-400.
Springer-Verlag, 1986.

[153] Vaughan Pratt. Modeling concurrency with partial ordénsernational Journal of Par-
allel Programming 15:33-71, 1986.

[154] M. O. Rabin and D. Scott. Finite automata and their decision problé&hg.Journal of
Research and DevelopmeBt114-125, 19509.

[155] W. Reisig. Petri Nets: An Introduction EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

[156] Arend Rensink. Methodological aspects of action refinement. In Olderog [146], pages
227-246.

[157] Arend Rensink. An event-based SOS for a language with refinemer8tructures in
Concurrency TheoryWorkshops in Computing, pages 294-309, 1995.

[158] Arend Rensink and Roberto Gorrieri. Vertical implementatiofiormation and Compu-
tation, 170:95-133, 2001.

[159] Arend Rensink and Heike Wehrheim. Process algebra with action dependeActeas.
Informatica 38:155-234, 2001.

[160] M. Ribaudo, editor.Proceedings of the Fourth Process Algebra and Performance Mod-
elling Workshop (PAPM’96)1996.

[161] John Rushby. Formal methods and their role in the certification of critical systems.
Technical Report SRI-CSL-95-1, Computer Science Laboratory, SRI International, 1995.
Also available as NASA Contractor Report 4673, August 1995, and to be issued as part
of the FAA Digital Systems Validation Handbo¢ke guide for aircraft certification).

[162] Frank Salger.Verification in the Hierarchical Development of Reactive SysteRttD
thesis, Universéat Mannheim, 2001.

[163] D. Sangiorgi and R. de Simone, editotSONCUR ’'98: Concurrency Thearyolume
1466 ofLNCS Springer-Verlag, 1998.

[164] Steve SchneideConcurrent and Real-time Systems: The CSP Approdsley, 2000.

[165] Karen Seidel. Probabilistic communicating processBseoretical Computer Science
152:219-249, 1995.

[166] Susan Stepney, David Cooper, and Jim Woodcock. More powerful data refinement in Z:
pushing the state of the art in industrial refinement. In J.P. Bowen, A. Fett, and M.G.
Hinchey, editorsZUM’98: The Z Formal Specification Notatipmolume 1493 oL NCS
pages 284—-307. Springer-Verlag, 1998.

178 BIBLIOGRAPHY

[167] Colin Stirling. Modal and temporal logics. In Abramsky et al. [1], pages 477-563.

[168] A. Tarlecki, editor. Mathematical Foundations of Computer Scieneelume 520 of
LNCS Springer-Verlag, 1991.

[169] Wolfgang Thomas. Logic for computer science: The engineering challenge. In R. Wil-
helm, editorInformatics. 10 Years Back. 10 Years Aheaalume 2000 o NCS pages
257-267. Springer-Verlag, 2001.

[170] Simone Veglioni and Rocco De Nicola. Possible worlds for process algebras. In San-
giorgi and de Simone [163], pages 179-193.

[171] C. Verhoef. A congruence theorem for structured operational semantics with predicates
and negative premises. In B. Jonsson and J. Parrow, edfoNCUR '94: Concurrency
Theory volume 836 0lLNCS pages 433-448. Springer-Verlag, 1994.

[172] Walter Vogler. Failures semantics based on interval semiwords is a congruence for re-
finement.Distributed Computing4:139-162, 1991.

[173] Walter Vogler. Bisimulation and action refinemenheoretical Computer Science
114:173-200, 1993.

[174] Walter Vogler. Timed testing of concurrent systemisiformation and Computatign
121:149-171, 1995.

[175] Y. Wang. Real-time behaviour of asynchronous agents. In Baeten and Klop [16], pages
502-520.

[176] Heike Wehrheim. Parametric action refinement. In Olderog [146], pages 247—-266.
[177] Glynn Winskel. Event structures. In Brauer et al. [41], pages 325-392.

[178] Glynn Winskel. An introduction to event structures. In de Bakker et al. [66], pages
364-397.

[179] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Abramsky et al. [2],
pages 1-148.

[180] Niklaus Wirth. Program development by stepwise refinemé&@ammunications of the
ACM, 14:221-227, 1971.

Index

Symbols
[, 39,93, 127
-, 142
~, 21, 60, 111
~e, 67
~pur, 65,113
~rcr, 63,111
~sr, 138
~, 21, 60, 111
~u1, 64
—, 18
—, 19
—, 19
—fin 19
~ 20
<, 33, 90, 124
d, 96
0, 30, 81, 122, 139
1,30
. 30
+, 30, 81, 122, 139
4,122,129, 139
+-,139
®, 122, 129, 139
&, 139
., 30, 81, 122, 129, 139
[> 30, 81
14, 30, 81, 122, 129, 139
4, 139
|4, 139
\4, 30
\\4, 81, 122, 129, 139
7,37

, 37,90, 125

4,37, 91, 126

179

\A4, 38
\4, 91, 126
* 17

e, 43
—, 131
—%,42
—t 82
%139
—», 136

<, 36, 88, 136
—°, 137

ACP, 11
Act, 80
.Act\/, 30
Act”, 81
action, 10
atomic, 10
instantaneous, 10
internal, 10, 30
observable, 10, 30, 44
set of, 30, 80
termination, 30, 81
action refinement, 12, 29-30
atomic, 29
non-atomic, 29
syntactical, 14
vertical, 30
a-equivalence, 43
approximation
closed, 23
finite, monotone, 23
automaton
finite, 9
axioms, 142

bijective, 19
bisimilar, 21
FUI, 65, 113

180
ST, 138, 139
strong, 60, 111
ul, 64

bisimulation, 21
finite unique initial seebisimulation, FUI
FUI, 65, 112
ul, 64
unique initial,seebisimulation, Ul
bundle stability constraint, 32, 85, 93

cardinality, 17
causal ambiguity, 32
causal trees, 11
CBES, 35
cbessseeevent structures, closed bundle
CCs, 11
chain, 22
choice
end-based, 57, 109, 121
end-start, 121
start-based, 121
coarsestseecongruence, coarsest
completeness, 146
configurations, 83
congruence, 20
coarsest, 20, 67, 112, 114, 138
FUI, 66, 113
ICT, 64, 112
ST, 138
Ul, 65
consistency, 15, 43, 93, 136
continuous, 22
componentwise, 23
on events, 48
countable, 17
cpo,seepartial order, complete
CSPk, 11

decl, 30, 81, 122, 139
declarationseedecl

design errors, 9

dom, 19

domain, 19

dual language approach, 9
dynamic names, 127

£,32,34, 86, 123

INDEX

&, 137
£, 94
EBES, 32
ebesseeevent structures, extended bundle
environment, 10
equivalence, 60—61
bisimulation,seebisimilar
FUI, seebisimilar, FUI
history preserving, 61
ICT, 63,111
initial corresponding traceseeequiva-
lence, ICT
pomset, 61
resource bisimulation, 61
ST, 61, 138, 139
step, 61
trace, 21, 60, 111
Ul, seebisimilar, Ul
ETBES, 86
eTbesseeevent structures, extended termi-
nation bundle
ETPES, 94
eTpesseeevent structures, extended termi-
nation precursor
event, 18
initial, 35, 87, 95, 123
set of, 32, 85, 123
termination, 35, 87, 123
trace, 89
initial, 63
set of, 89, 97
universe of, 18
event structures, 11
bundle, 31, 89
closed bundle, 34, 83
dual, 33, 83, 89
extended bundle, 32, 89
extended termination bundle, 86
extended termination precursor, 94
flow, 83, 89
prime, 83, 89
restriction of, 33, 90, 124
stable, 83, 89
start-end, 123
time bundle, 57
exit, 35

INDEX

EXP.., 122
EXPAX, 139

EXPs, 30
EXPg, 81

F, 97

Faeels 127

Faear 39, 93

Fg, 97

Fr, 80

fa-approach, 79, 80

finite state, 146

finitely determined, 94

formal methods, 9

function, 18-19
action-labeling, 32, 85, 123
inverse, 19
labeling preserving, 63
partial,seepartial function
relabeling, 80

g, 145
guarded, 145
sequentially, 142

Id, 18

init, 35, 62, 87, 123, 136
init, 95

injective, 19
interleaving, 10

L, 41
L, 130
Lab, 91
label, 20
A°, 162
least
element, 22
fixpoint, 23
upper bound, 22
literals
negative, 138
logic, 9
LOTOS, 11

metric space, 22
model checking, 9, 12
monotonic, 20

INT, 17
natural numbers
positive, 17

0*, 43

Obs, 30

Obs,, 44

Obsp, 44

w-chain,seechain

w-continuousseecontinuous

order,seepartial order
componentwise, 23
pointwise, 23

P, 17
Pcounh 17
Prins 17
PAs, 122
PAZx, 139

se !

PASY, 145

PA,., 30

PA4, 81

panth, 138

partial function, 19
bijective, 19
domain, 19
injective, 19
inverse, 19
surjective, 19

partial order

complete, 22, 35, 90, 97, 124

181

w-complete seepartial order, complete

performance analysis, 11
petri net, 11
pointers, 127
pomsets, 11
preserved
relation, 20, 61
process, 30
action prefix, 31
choice, 31, 81
end-based, 122
end-start, 122
start-based, 121
disrupt, 31, 81
hiding, 31
inactive, 31, 81

182

parallel, 31, 81
refinement, 31, 122
relabeling, 81
restriction, 81
sequential, 31, 81
specified by, 145
terminate, 31
variable, 30, 81
process algebra, 9, 11
priority, 12
probability, 12
stochastic, 12
time, 12
projection, 19

race policy, 13
reactive system, 10
concurrent, 10
Ref<, 59
Ref’,, 69
Ref<l, 109
Ref!, 115
Ref?,, 38
Ref*, 126
relation
bundle, 32
causality, 85, 123
conflict, 85
asymmetric, 33
precursor, 94
start, 123
symmetric, 32
identity, 18, 34
transition,seetransition, relation
witness, 86
end, 123
relative active number, 128
remainder, 36, 88, 95, 135

SEBES, 123
SEBES ,,, 136
sebesseeevent structures, start-end
semantics
axiomatic, 11
denotational, 11, 40, 93, 127
operational, 11, 42, 81, 130
SeqG, 142

INDEX

soundness, 142
specification, 9
descriptive/property-based, 9
imperative/operational-based, 9
stack technique, 127
state, 20
initial, 20
state explosion problem, 12
static names, 127
string, 17
empty, 17
substitution, 142
syntactic, 30
surjective, 19
system design
hierarchical, 12
top down, 29

T, 21

T, 63,111

7, 30,seeaction, internal

TBES, 85

Thes,seeevent structures, termination bun-

dle

TCSP, 11

termination
action,seeaction, termination
event,seeevent, termination
predicate, 87, 95, 123
set, 85, 123

Tr¢, 89

trace, 21
initial event, 111
semantics, 10

transition
relation, 20, 36, 88, 137
rules, 11, 41, 81, 131, 139

complete, 138

system, 9-1120

true concurrency, 11

TS, 20

U, 18

upper closed, 94
T, 87,123

T, 95

Var, 30

INDEX 183

variable assignment, 38, 93, 127
VarSp, 145
verification, 9

X, 24
Z,14

184 INDEX

Zusammenfassung

Der Auswahloperator ist ein wichtiges Element in der Beschreibung von aktionsbasierten, reak-
tiven Systemen. Wenn man den Ansatz der Atoraaion Aktion aufgibt, zum Beispiel durch
Aktionsverfeinerung, muss man festlegen, wann die Auswahl getroffen wird. In der Regel wird
die Auswahl beim Starten von Aktionen getroffen.

Diese Doktorarbeit beséftigte sich mit dem alternativen Ansatz, der darin besteht, dass die
Auswahl beim Beenden von Aktionen getroffen wird (end-basierte Auswabhl). Ich habe diesen
Ansatz motiviert, insbesondere im Kontext des hierarchischen Entwurfs von Systemen (rea-
lisiert durch Aktionsverfeinerung). Das Ziel dieser Arbeit war eine Prozess-Algebra zu ent-
wickeln, die einen end-basierten Auswahloperator und einen Aktionsverfeinerungsoperator be-
sitzt. Vor allem sollten konsistente Semantiken (denotationale, operationale und axiomatische)
fur diese Prozess-Algebra angegeben werden. Weiterhin sollte der Unterschied zwischen dem
end-basierten und dem start-basierten Auswahloperator herausgearbeitet werden, insbesondere
beziglich derAquivalenzbegriffe.

Beim Definieren einer denotationalen Semantik hatte man seither das Problem, dass die Ereig-
nisstrukturen (englevent structures welche auf der Bundle-Technik basieren, ketpes mit
derublichen Ordnung liefern. Deshalb wurde eine Technik zur Definition von Eiaskingen

dieser Ereignisstrukturen entwickelt, so dass diese Eias&hngercpa mit deriiblichen Ord-

nung liefern. Weiterhin wurde auch eine neue Technik vorgestellt, um operational Semantiken,
die den denotationalen Semantiken entsprecherPifozess-Algebren mit einem Aktionsver-
feinerungsoperator zu entwickeln. Mit dieser Technik ist es nidhigndie Prozess-Algebren

um weitere Ausdicke zu erweitern, um die operationale Semantik zu definieren.

Ein neuer Aktionsverfeinerungsoperator wurde auf detended bundle event structurs-
finiert. Dieser Operator betrachtet die Konflikt-Relation detended bundle event structures
als end-basiert. Neu&quivalenzen wurden eingéffirt, da keine der Standaffuivalenzen
von diesem Operator erhalten bleiben. Es wurde aufgezeigt, dasstdieded bundle event
structureskein passendes Modeliif diese Art von Aktionsverfeinerungsoperator ist, da die in-
tuitiven Kongruenaquivalenzen nicht die kleinsten liggtich der Bisimulations- und der Trace-
Aquivalenz sind.

Aus diesem Grund wurden zwei neue Klassen von Ereignisstrukturen émgein diesen
Strukturen Bnnen Mengen vorventsandereeventsdeaktivieren. Es wurde gezeigt, dass
diese Klassen von Ereignisstrukturaquivalente Angtze liefern. Eine dieser Ereignisstruk-
turen wurde als denotationale Semantik einer Prozess-Algebra, die einen Abbruchsoperator
aber keinen Aktionsverfeinerungsoperator besitzt, benutzt. In dieser Prozess-Algebra findet
Termination durch die zuletzt ausgéfte Aktion und nicht durch ein zatszliches Termi-
nationsevent statt. Weiterhin wurde gezeigt, dass auf dieser Ereignisstruktur die intuitiven

185

186 ZUSAMMENFASSUNG

Kongruenzquivalenzenifr den Aktionsverfeinerungsoperator, der die Konfliktrelation als end-
basiert betrachtet, tatshlich die kleinsten Kongruenzen liigich der Bisimulations- und der
TraceAquivalenz liefern.

Schliel3lich habe ich aufgezeigt, dass es sinnvoll ist, einen start-basierten Auswahloperator
zu haben, wann immer man einen end-basierten Auswahloperator und einen Parallelopera-
tor mit Aktionssynchronisierung hat. Zazlich wurde auch ein Auswahloperator motiviert

und betrachtet, bei dem sich eine Seite end-basiert und die andere Seite start-basgikit verh
Eine Prozess-Algebra mit diesen drei verschieden Auswahloperatoren und einem Aktionsver-
feinerungsoperator wurde eingéft. Es wurden konsistente denotationale, operationale und
axiomatische Semantiken angegeben. Genauer gesagt sind die denotationale und die opera-
tionale Semantik bisimulatioaguivalent und die axiomatische Semantik ist korrekt und voll-
standig be#glich der von der operationalen Semantik erhaltenen Bisimulafopsvalenz.

Fur die denotationale Semantik wurde eine Ereignisstruktur mit zwei Relatiémdfohflikte
betrachtet: einelir den start-basierten Konflikt die andei® tlen end-basierten Konflikt.

Danksagungen

Vor allem nibchte ich Frau Prof. Dr. Mila Majster-Cederbauim fhre Betreuung danken. Sie
lieR mir den mtigen Freiraum, stand allzeitif meine Fragen bereit und half mir beim For-
mulieren mathematischer Texte in englischer Sprache. twdhite mich auch herzlich bei Herrn
Prof. Dr. Franz Stetter, meinem Zweitkorrektor, bedanken. Mein Dank gilt au3erdem meinen
Kollegen, unter anderem Dr. Jinzhao Wirgen Jaap, Dr. Naijun Zhan, Dr. Sven Helmer und
insbesondere meinem Zimmerkollegen Dr. Frank Salger. Bedankehtenich mich auch bei
Frau Jackowskiir ihre hilfreiche Untersttzung bei den anfallenden Formaten. Zuletzt
mochte ich meiner Frau Annette danken, ohne die ich das alles nicht gesétitft h

