
Action Refinement in End-Based Choice Settings

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universiẗat Mannheim

vorgelegt von
Diplom-Mathematiker Harald Fecher

aus Offenbach

Mannheim, 2003

Dekan: Professor Dr. Herbert Popp, Universität Mannheim
Referent: Professor Dr. Mila Majster-Cederbaum, Universität Mannheim
Korreferent: Professor Dr. Franz Stetter, Universität Mannheim

Tag der m̈undlichen Pr̈ufung: 7. Juli 2003

Contents

List of Figures 5

List of Tables 7

1 Introduction 9

1.1 Reactive Systems for Concurrency .10

1.2 Hierarchical System Design .12

1.3 End-Based and Start-Based View of the Choice Operator13

1.4 Contributions of this Thesis .14

1.5 Outline of this Thesis .15

2 Preliminaries 17

2.1 Notations .17

2.1.1 Set .17

2.1.2 Relation and Function .18

2.2 Transition System .20

2.3 Complete Partial Orders .22

2.4 Approximation Closedness .23

2.4.1 Proofs .25

3 Standard Action Refinement 29

3.1 Different Approaches .29

3.2 Syntax .30

3.3 Denotational True Concurrency Semantics forPAsr 31

3.3.1 Bundle Event Structures .31

3.3.2 Closed Bundle Event Structures (CBES) 34

3.3.3 Operators onCBES . 36

3.3.4 Denotational Meaning forPAsr . 38

1

2 CONTENTS

3.4 Operational Semantics forPAsr . 40

3.4.1 Modified Operational Semantics .44

3.5 Discussion .45

3.6 Proofs .46

3.6.1 Proof of Theorem 3.10 .46

3.6.2 Proof of Proposition 3.18 .47

3.6.3 Proof of Theorem 3.25 .48

4 Modeling the End-Based View inCBES 57

4.1 An End-Based Refinement Operator onCBES 57

4.2 Equivalences .60

4.2.1 Standard Equivalence Notions .60

4.2.2 ICT-Equivalence onCBES . 62

4.2.3 UI-Bisimilarity onCBES . 64

4.2.4 FUI-Bisimilarity onCBES . 65

4.2.5 Comparison of Equivalences .66

4.2.6 Coarsest Congruence .67

4.3 Discussion .68

4.4 Proofs .69

4.4.1 Proof of the Congruence Results .69

4.4.2 Proof of Proposition 4.20 .75

4.4.3 Proof of Proposition 4.22 .77

5 Terminating by Action Execution 79

5.1 Motivation .79

5.2 Syntax .80

5.3 Operational Semantics forPAst . 81

5.4 Denotational Semantics forPAst . 83

5.4.1 Termination Bundle Event Structure (TBES) 84

5.4.2 Extended Termination Bundle Event Structure (ETBES) 85

5.4.3 Operators onETBES . 90

5.4.4 Denotational Meaning forPAst . 93

5.4.5 Extended Termination Precursor Event Structures (ETPES) 94

5.4.6 Correspondence betweenETBES andETPES. 97

5.5 Discussion .98

5.6 Proofs .98

CONTENTS 3

5.6.1 Proof of Theorem 5.28. .98

5.6.2 Proof of Theorem 5.36. .103

5.6.3 Proof of Proposition 5.39. .104

5.6.4 Proof of Theorem 5.40. .106

6 End-Based View inETBES 109

6.1 An End-Based Refinement Operator onETBES 109

6.2 Equivalences forETBES .110

6.2.1 ICT-Equivalence onETBES .111

6.2.2 FUI-Equivalence onETBES .112

6.2.3 Comparison of Equivalences .114

6.3 Discussion .114

6.4 Proofs .115

6.4.1 Proof of Lemma 6.2 .115

6.4.2 Proofs of the Coarsest Congruence Results115

7 Start-Based together with End-Based Choice 121

7.1 Motivation .121

7.2 Syntax .122

7.3 Denotational Semantics forPAse .122

7.3.1 Start-End Bundle Event Structures (SEBES) 122

7.3.2 Operators onSEBES .125

7.3.3 Denotational Meaning forPAse .127

7.4 Operational Semantics forPAse .127

7.5 Consistency of the Semantics forPAse .135

7.6 Equivalence .137

7.7 Axiomatization .138

7.7.1 Soundness .142

7.7.2 Completeness .145

7.8 Proofs .146

7.8.1 Proof of the Consistency Results .146

7.8.2 Proof of the Congruence Results .159

7.8.3 Proof of Theorem 7.34 .160

7.8.4 Proof of Theorem 7.39 .161

8 Conclusion 165

4 CONTENTS

Bibliography 167

Index 179

Zusammenfassung 185

List of Figures

1.1 Nuclear Power Plant Example .11

2.1 A Transition System Example .21

2.2 Trace-Equivalent but not Bisimilar Transition Systems22

3.1 A Bundle Event Structure .32

3.2 An Extended Bundle Event Structure .33

3.3 Transition System Derived fromCBES . 36

3.4 Illustration of theRef s Operator .38

3.5 Examples of the Denotational Semantics ofEXPsr 39

3.6 Example of a Process Derivation with respect to−→s
decl 43

4.1 Start-Based versus End-Based Refinement .58

4.2 End-Based Refinement inCBES (1) . 60

4.3 Trace Equivalent but not Bisimilar cbes .61

4.4 End-Based Refinement inCBES (2) . 62

4.5 Some Closed Bundle Event Structures .62

4.6 Non ICT-Equivalent cbes .63

4.7 ICT-Equivalent cbes .63

4.8 ICT-Equivalent and UI-Equivalent cbes .65

4.9 FUI-Equivalence Differs from UI-Equivalence66

4.10 Relations Between the Equivalences .67

4.11 Counterexample of Coarsest Congruence .68

5.1 Some Extended Termination Bundle Event Structures87

5.2 Transition System Derived fromETBES . 89

5.3 Some Extended Termination Precursor Event Structures95

5.4 Transition System Derived fromETPES . 96

5

6 LIST OF FIGURES

6.1 End-Based Refinement inETBES .111

6.2 Non ICT-Equivalent eTbes .112

6.3 ICT-Equivalent eTbes .112

6.4 FUI-Equivalent eTbes (1) .113

6.5 FUI-Equivalent eTbes (2) .113

6.6 Relations Between the Equivalences .114

7.1 Some Start-End Bundle Event Structures .124

7.2 Illustration of the Stack Technique .128

8.1 Relations Between the Equivalences .165

8.2 Hierarchy of Event Structures .166

List of Tables

3.1 Transition Rules for−→s
decl . 42

3.2 Modified Transition Rules for−→s
decl . 45

3.3 Event-Based Transition Rules with respect to−→s
decl 50

5.1 Transition Rules for−→t
decl . 82

5.2 Event Based Transition Rules with respect to−→t
decl 100

7.1 Transition Rules for−→c
decl (1) .132

7.2 Transition Rules for−→c
decl (2) .133

7.3 Transition Rules for−→c
decl (3) .134

7.4 Transition Rules for−→z
decl (1) .140

7.5 Transition Rules for−→z
decl (2) .141

7.6 Axioms for the Non-Refinement Operators .143

7.7 Axioms for the Refinement Operators .144

7.8 Event Based Transition Rules with respect to−→c
decl (1) 147

7.9 Event Based Transition Rules with respect to−→c
decl (2) 148

7.10 Event Based Transition Rules with respect to−→c
decl (3) 149

7

8 LIST OF TABLES

Chapter 1

Introduction

Formal methods in computer science, like methods for specification and verification1, have
become more and more important [51, 55], as the complexity of programs and processes that
have to be controlled by machines has enormously increased over the years. No system designer
can consider the totality of a program/process of a system in detail. Therefore, communication
between different people about programs/processes has to take place. This communication
usually subject to misunderstandings. Hence, it is important to possess formalisms that allow
to talk more precisely about programs/processes, for example about the properties they should
satisfy. Such languages are called specification formalisms. They allow to describe processes
or properties of programs. Examples of specification languages are

• descriptive/property-basedformalisms. Typical examples are logical frameworks, e.g.
[100, 123, 124, 167]. They have the advantage of being intuitive, concise and abstract,
i.e. they only consider the relevant details.

• imperative/operational-basedformalisms. Examples are transition systems [121, 179],
process algebras [18, 27, 84, 108, 138] or finite automata [110, 154]. They have the
advantage of being close to actual implementations. Especially process algebras can be
considered as action-based programming languages. Consequently, design descriptions
are less likely to omit required attributes of the intended design, as it is possible in the
property-based approaches to specification.

For safety critical tasks, for example air traffic control or the supervision of nuclear power
plants, it is essential to guarantee the correctness of the involved program, i.e. verification (e.g.
[83, 105]) becomes necessary. Furthermore, it is important to eliminate system design errors
as early as possible, since they produce huge costs [161]. Such an error reduction can be
achieved by verification based on thedual language approach(see for example [101, 151]),
i.e. by using different description languages (a property- together with an operational-based
one) in the system design phase and verifying their consistency, e.g. by usingmodel checking
[24, 52].

1Verification means the correctness of a program relative to the considered mathematical model. It can never
guarantee the correctness of a program running on a concrete computer, as this also depends on further circum-
stances.

9

10 CHAPTER 1. INTRODUCTION

For concurrent processes, i.e. systems where each process may proceed more or less inde-
pendently, it is important to use formal methods, since their interaction is not easily handled,
especially when communication or synchronization takes place. The formal methods that are
important for this thesis are discussed in Section 1.1 and in Section 1.2. Section 1.1 introduces
the kind of systems that are considered, namely reactive true concurrent systems. Section 1.2
motivates the necessity of hierarchical system design in specification formalism. The new for-
malism on which the thesis is based is illustrated in Section 1.3. The contribution of the thesis
is given in Section 1.4, and the outline of the thesis is given in Section 1.5.

1.1 Reactive Systems for Concurrency

Reactive systems are systems whose behavior depends on the environment, which means that
the environment is able to influence the future behavior of such a system. In other words, the
environment interacts with the system. Consider for example a computer system that controls
a nuclear power plant. It runs continuously until the environment demands a shut down, for
example by human demand or because the temperature of the reactor reaches a critical state.

Reactive systems are usually modeled by means of actions in order to describe the different
activities of the system and of the environment, i.e. the system communicates with the en-
vironment via actions. Actions are usually considered to be atomic [34, 112] (they have no
intermediate states) and instantaneous, i.e. durationless. Consequently, they can only be ob-
served at a specific point in time. Furthermore, actions are divided into observable actions and
internal actions. The execution of observable actions depends on the environment, whereas the
environment has no influence on the execution of internal actions.

In the above nuclear power plant example the actions may be:a1=̂ ‘the reactor runs for another
minute’, a2=̂ ‘a human being demands the shut down of the reactor’,a3=̂ ‘the temperature of
the reactor has reached a critical state’ anda4=̂ ‘the reactor is shutting down’. The reactive
system can be described by the causal dependencies of these actions. This is done for example
by:

• describing all possible (finite) execution sequences of the system. This description is
called thetrace semanticsof a system, e.g. [48, 107].

• describing the actions each state allows (those which may be executed at a state) together
with the information to which state the execution of the actions will lead. Typical models
arelabeled transition systems, which are introduced in Section 2.2. The labeled transition
system obtained from the above nuclear power plant example is depicted in Figure 1.1.

In this thesis, we will consider concurrent reactive systems. This means that actions may be
executed in parallel. Different models of concurrency are for example presented in [179]. These
models can be divided into two different approaches:

- Interleaving: Here the parallelism between actions means that the execution of these
actions can happen in any order. This is useful, if e.g. a sequential program has to be
specified where the programmer is allowed to have a much greater degree of flexibility
in order to carry out the implementation. So the programmer may decide the order of the
execution of the actions. Transition systems are typical interleaving models.

1.1. REACTIVE SYSTEMS FOR CONCURRENCY 11

h h h-

� �
@@R ��

a1

j
a2

*
a3

-a4

Figure 1.1: Nuclear Power Plant Example

- True concurrency: Here, actions may be executed simultaneously. This is necessary,
e.g. if physical processes, where actions may happen simultaneously, have to be spec-
ified. When an implementation is realized on a system with more than one processor,
true concurrency within the model is essential for specification. Typical models for true
concurrent computations are for examplepetri nets[155], event structures[177], pomsets
[153] andcausal trees[61].

Process algebras are typically used as specification languages for concurrent reactive systems.
The best known process algebras are

• theCalculus of Communicating Systems(CCS) [138],

• theCommunicating Sequential Processes(CSP) [106, 108],

• theTheory of Communicating Sequential Processes(TCSP) [47],

• theAlgebra of Communicating Processes(ACP) [25, 26] and

• theLanguage of Temporal Ordering Specification(LOTOS) [32].

It is necessary to give meanings, i.e. semantics, to languages. In general, three different kinds
of semantics are used:

Operational semantics: It expresses the meaning of terms by execution steps, for example the
observable behavior of a machine when it runs the program. The operational semantics of
process algebras is typically given by transition rules in the style of Plotkin [9, 150], which
yield transition systems.

Denotational semantics: Process expressions are interpreted in a mathematical model where
the meaning of an expression is defined in terms of the meanings of its components, i.e. it
is derived compositionally. Denotational true concurrency semantics of process algebras are
given, for example in terms of event structures [36, 125, 145, 178].

Axiomatic semantics: Here, properties of process terms can be derived. This is typically done
by axiom systems. In particular, axiomatic semantics are used for verification.

Standard process algebras can only describe the functional behavior of a system, i.e. the order
of the execution of the actions. This is only suitable for a limited number of applications, since
applications might be influenced by time and probability aspects. The examination of these
further aspects is usually called performance analysis. For the purpose of performance analysis,
process algebras are extended by

12 CHAPTER 1. INTRODUCTION

• time: Here, time may pass between actions. Some approaches allow actions with a fixed
duration [10, 57, 99], i.e. actions are not necessarily instantaneous. There are discrete
time versions [17, 103, 143] and dense time versions [17, 77, 128, 164, 175]. Classifi-
cation properties of timed process algebras are given in [142].

• priority: Formalisms are added to the basic process algebras such that some executions of
actions have priority over others, as for examples in [50, 53, 129]. Such approaches can
be classified by static versus dynamic priorities and by global pre-emption versus local
pre-emption [54].

• probability: Here, a probabilistic choice operator is used to model probabilistic behavior.
This choice operator contains numbers, which determines the probability that the first
(respectively the second) process is chosen. Examples are [88, 115, 129, 165].

• stochastic: The actions are considered to have a duration and this duration may vary. The
duration of an action is given by a distribution. Examples of stochastic process algebras
can be found in [11, 45, 104].

• combinations: For example in [29, 43], the above features are modeled in single process
algebras.

1.2 Hierarchical System Design

Whether a system satisfies a formula is automatically decidable by means of model checking
techniques if the underlying transition model has a finite number of states. Nevertheless, most
systems have too many sates, hence model checking techniques cannot be used directly (the
calculation takes too much time). This problem is usually called thestate explosion problem
[24, 52, 148].

Hierarchical system design [109] , a design that is developed on different levels of abstraction,
can be used in order to handle the state space explosion problem. For example, a developer
divides the intended design (usually complex) into various ‘sub-designs’. He will develop the
sub-designs by enriching them step by step with details, i.e. changing the level of abstraction.
If the properties are preserved in some sense for every step between the levels of abstraction, it
may be sufficient to verify the most abstract level, which has in general less states, to show the
property of the concrete level. Design formalisms have to support hierarchical system design
styles, as argued in [13, 55, 135, 169].

In reactive system models, hierarchical system design is usually done by action refinement
operators2 [7, 91, 98]. Intuitively, action refinement means the refinement of actions (a, b, ...),
in a processP by more complex processes (Pa, Pb, ...). In other words, the occurrence of action
a in the behavior ofP is replaced by the behavior ofPa. How action refinement can be exploited
for verification can be seen e.g. in [82, 111, 130, 132, 134, 162].

2In some approaches action refinement is not considered to be a usual operator as in [158], where it is considered
to be an implementation relation.

1.3. END-BASED AND START-BASED VIEW OF THE CHOICE OPERATOR 13

1.3 End-Based and Start-Based View of the Choice Operator

In models of concurrent systems, actions are usually considered to be instantaneous, i.e. du-
rationless, as mentioned before. However, if real time aspects of systems have to be modeled
and/or action refinement operators are employed, we have to take into account that actions con-
sume time3.

A standard operator for modeling reactive systems is the choice between two processes (P1 +
P2), i.e. if P1 executes the next action,P2 is disabled and vice versa. If durational actions are
considered, it is not clear when an action has to be considered to be executed. In particular, it
is not clear at which point in time an action triggers a choice – at the beginning, at the end or
anywhere in the middle of its duration?

The consequence of this decision is illustrated by the following example. Consider a process
that consists of a choice between actionsa andb. The duration ofa is 3 and the duration ofb
is 1. In addition, actiona may start at time 0 and actionb may start at time 1. If the choice is
triggered at the beginning, thena triggers the choice beforeb starts. On the other hand, if the
choice is triggered by the end of an action, the choice is triggered byb, i.e.a does not finish.

In the standard approach, a choice is triggered by the start of an involved event (action) [10, 99,
133, 141, 174]. But it is reasonable to consider approaches where choices are determined by
the ending of actions:

• In stochastic approaches, it is common to consider arace policyapproach [12, 29, 104],
i.e. the fastest action triggers the choice. Consequently, a choice has to be triggered at
the end of the action’s duration, since it is usually not known a priori which action is the
fastest.

• The end-based point of view is of interest for hierarchical system development, where
complex activities are specified by single actions in the first system design steps. This is
illustrated by the following example.

Example 1.1 Consider the example of a plane that runs into problems and has to land
as fast as possible. Two airports (in the same city) come into consideration for the emer-
gency landing. The pilot sends an SOS-signal to both airports. Both airports start their
preparations for the emergency landing. The pilot will choose the airport that is the first
to respond to be ready. On an abstract level the pilot can be modeled by

Pab = send; ((ok1; L1) + (ok2; L2))

wheresend denotes the sending of the SOS-Signal,oki is the response of the i-th airport
Ai (that runs in parallel toPab synchronizing overoki), andLi denotes the landing on
the i-th airport. Furthermore,; denotes the sequential composition of two processes. The
choice inPab is either triggered byok1 or byok2, as usual.

In practice, the airports will send more detailed information, e.g. that the maneuvering
area is free, fire service is ready, and so on. In other words, actionsok1 andok2 are time-
consuming. Then the choice inPab has to be considered as end-based, since the choice
should be made when the first airport has completed its preparations.

3Action refinement operators can, for example, split an action into a start- and an end-action, hence the action’s
duration can be modeled in some sense.

14 CHAPTER 1. INTRODUCTION

This is easily understood when we consider the next system design phase, where theoki

actions are specified in more detail, i.e. they are refined by a processMi. The choice
of the pilot is triggered when eitherM1 or M2 terminates and not when the first action
is executed byM1 or M2. In particular, the actions ofM2 that are executed before the
termination ofM1 remain visible, i.e. they are not made undone after the termination of
M1, and vice versa. This makes clear that the end-based choice can be viewed as some
kind of parallelism, whereM1 andM2 run in parallel until one of them terminates.

The possibility of late decisions is also motivated and examined in Z [166].

1.4 Contributions of this Thesis

The goal of this thesis is to make a first step to establish the end-based choice operator in
reactive true concurrent systems. More precisely, we want to establish an end-based choice
operator in untimed reactive systems that contain action refinement operators. This is done by
investigating a process algebra that contains these operators and by giving a semantic foundation
(operational, denotational, axiomatic) to this process algebra. Furthermore, the consequences
of considering an end-based rather than a start-based choice are examined, in particular with
respect to equivalence notions.

The contributions of this thesis are explained in more detail in the following. We have to give
operational semantics to a process algebra that contains end-based choice and action refinement
operators. This leads to some problems which we first consider in the start-based setting: Action
refinement operators in event structures where the choice is considered as start-based are well
established. A corresponding definition for the operational semantics of process algebras is
not obvious when non-atomic action refinement is considered. The typical approach to the
substitution of the refining process (either statically or dynamically) [5, 144], sometimes called
syntactical action refinement, does not always correspond to the refinement of event structures
[93]. In this thesis, a new possibility to define an operational semantics for action refinement
that corresponds to the denotational semantics is given in a start-based choice setting. Here, it
is not necessary to introduce new syntactic terms in order to give the operational semantics.

Furthermore, by considering the end-based view in bundle event structures, we have recognized
that bundle event structures [125, 126] fail to be a complete partial order4. Therefore, we present
a new technique in order to define complete partial orders for event structures that are based on
the bundle technique. This is necessary in this thesis, since we use event structures that are
based on the bundle technique as denotational semantics for our end-based process algebra.
These new techniques will be applied first in the start-based setting.

The first step to the end-based approach is the definition of an action refinement operator on
(extended) bundle event structures where the conflict relation is considered as end-based. Fur-
thermore, new equivalences are defined in order to obtain equivalences that are congruences for
the end-based action refinement operator, since the standard equivalences are no congruences
for this operator. The new equivalences fail to be the coarsest with respect to trace and bisim-
ulation equivalence. This results from the fact that processes terminate by the execution of a
special termination action and not by the execution of the ‘final’ executed action.

4The theory of complete partial orders allows to define denotations of recursive processes.

1.5. OUTLINE OF THIS THESIS 15

Before we continue to present a process algebra with an end-based choice operator, we take
a closer look at the termination philosophy that a process should terminate by the execution
of its ‘final’ action and not (as usual) by an additional termination action. We will argue that
this termination philosophy is especially of interest if process algebras with a disrupt operator
(as it is implicitly the case for process algebras that contain action refinement and end-based
choice operators) are considered. Therefore, two new kinds of event structures, which allow
more general disabling, are given to obtain denotational semantics of process algebras that
contain disruption and model termination by the execution of the ‘final’ action. One event
structure models the ‘non-disabling’ of events rather than the disabling of events. This is done
by making use of a witness relation. The other event structure is a generalization of Winskel’s
event structures. We show that there is consistency [19, 68] between the operational and the
denotational semantics of a process algebra which contains disruption and which is based on
the new termination philosophy. The expressive power of our new kind of event structure is
also examined: We verify that these structures have the same expressive power and they are
more expressive than the standard event structures with respect to event traces. Furthermore,
we adapt the equivalences that are defined in the context of the end-based view to this new type
of event structures. We show that one of the adapted equivalences is the coarsest congruence for
the end-based refinement operator with respect to trace (respectively bisimulation) equivalence.

We argue that it is useful to have also a start-based choice operator whenever an end-based
choice operator is considered, since an end-based choice can model a kind of start-based choice
in the case of synchronized parallel execution. Therefore, we will finally consider a process
algebra that includes a start-based and an end-based choice together with an action refinement
operator. A class of event structures with two relations for disabling is introduced in order to
give a denotational semantics. An operational semantics, which is consistent with the deno-
tational semantics, is given. We define the coarsest congruence with respect to bisimulation
equivalence and we present an axiom system for this equivalence. Moreover, we show that the
axiom system is sound and complete for guarded and finite state processes.

Parts of this thesis are published in [78, 80].

1.5 Outline of this Thesis

Chapter 2 contains some preliminaries: First the notions used in this thesis are introduced.
Then transition systems and parts of the partial orders theory are presented. The final section
of Chapter 2 contains the results of the new approximation closedness property, which is later
used in order to define classes of event structures that yield complete partial orders.

In Chapter 3, the standard action refinement operator, i.e. the one that is based on the start-based
choice, is presented and examined. That chapter includes the new operational semantics and the
modification of bundle event structures that yield a complete partial order.

The action refinement operator that considers an end-based choice is given in Chapter 4. It
is defined on the modified extended bundle event structures mentioned before. Congruences
for this refinement operator will be introduced. We show that none of the new equivalences is
the coarsest one with respect to trace/bisimulation equivalence. It is also argued that extended
bundle event structures are not appropriate to model the end-based view. In addition, some
standard equivalences are summarized in this chapter.

16 CHAPTER 1. INTRODUCTION

In Chapter 5, we investigate a process algebra that includes a disrupt operator. Here, termination
is determined by the execution of the ‘final’ action. In this chapter, the classes of event struc-
tures that allow more general disabling are introduced and their expressive power are examined.
Chapter 5 also contains a denotational semantics in the class of event structures based on the
witness approach. A consistency result between the operational and the denotational semantics
is shown.

The end-based view, introduced in Chapter 4, is adapted in Chapter 6 to one of the classes of
event structures presented in Chapter 5. Here, the adapted equivalences of Chapter 4 are the
coarsest congruences with respect to trace (respectively bisimulation) equivalence. We also
argue that some kinds of start-based choices can be modeled with an end-based choice operator
together with a parallel operator where some actions have to be synchronized.

A process algebra that contains a start-based and an end-based choice operator at the same
time is introduced in Chapter 7. A denotational semantics of this process algebra, which also
contains a refinement operator, is presented there. Moreover, a consistent operational semantics
is given. Chapter 7 also contains the definition and the axiom system of the coarsest congruence
with respect to bisimulation equivalence.

Finally, a conclusion is given in Chapter 8.

Chapter 2

Preliminaries

2.1 Notations

In this section, we present some basic notations that are used in this thesis. Subsection 2.1.1
considers notions related to sets, whereas Subsection 2.1.2 considers notions related to relations
and functions. In this section,M , M1, M2 andM3 denote arbitrary sets.

2.1.1 Set

• IN+ denotes thepositive natural numbers, i.e. IN without0.

• M1\M2 = {m ∈ M1 | m /∈ M2}

• |M | denotes thecardinalityof setM .

• M is countableif |M | ≤ |IN|.

• P(M) = {A | A ⊆ M}

• Pfin(M) = {A ⊆ M | |A| < |IN|}

• Pcount(M) = {A ⊆ M | |A| ≤ |IN|}

• Mn = M × · · · ×M︸ ︷︷ ︸
n−times

= {(m1, · · · , mn) | mi ∈ M} wheren ∈ IN+.

• M? denotes theset of all strings– including theempty stringε – over setM . Here, a
string of M is a finite sequence of elements ofM . We sometimes write stringsm1...mn

wheremi = m for all i asmn.

Furthermore, ifm ∈ M , σ ∈ M? with σ = m1 · · ·mn andi ∈ IN with i ≤ n then

– thei-th element ofσ is denoted byσ[i].

– m · σ = mm1 · · ·mn

17

18 CHAPTER 2. PRELIMINARIES

– σ\i denotes the deletion of thei-th element ofσ, i.e.
σ\i = m1 · · ·mi−1mi+1 · · ·mn.

– σ ± (i, m) denotes the replacement of thei-th element ofσ by m, i.e.
σ ± (i, m) = m1 · · ·mi−1mmi+1 · · ·mn.

– the length ofσ is denoted by|σ|, i.e. |σ| = n.

The following definition introduces a universe ofevents. Events are used in the following to
denote different occurrences of actions. We need this universe in order to guarantee that event
structures, which are defined in the following chapters, are sets rather than classes. This enables
us to apply the theory of complete partial orders, which is presented in Section 2.3, directly.

Definition 2.1 (Universe of Events)Let•, ?1, ?2 and? be arbitrary, but fixed, pairwise differ-
ent symbols. Then theuniverse of events, denotedU , is an arbitrary, but fixed, countable set
such that• ∈ U , ? /∈ U and∀e, e′ ∈ U : (e, e′), (?1, e), (?2, e), (?, e), (e, ?) ∈ U1.

We uses1...sn• wheresi ∈ U ∪ {?1, ?2, ?} as an abbreviation for(s1, (s2, ...(sn, •)...)).

2.1.2 Relation and Function

• For any binary relation\ ⊆ M1 ×M2 we write

– m1\m2 if and only if (m1, m2) ∈ \ and

– \m2 for the set{m ∈ M1 | m\m2}.

• IdM ⊆ M ×M denotes theidentity relation, i.e. IdM = {(m, m) | m ∈ M}. The index
M is omitted if it is clear from the context.

• If \1 ⊆ M1 × M2 and\2 ⊆ M2 × M3 are two binary relations, then\1 ◦ \2 denotes the
binary relation given by{(m1, m3) ∈ M1 ×M3 | ∃m2 ∈ M2 : m1\1m2 ∧m2\2m3}

• 〈M,v〉 denotes the setM ordered by the partial orderv.

• M1 → M2 (or MM1
2) denotes the set of all functions fromM1 to M2. We denote thatf

is a function fromM1 to M2 by f : M1 → M2. The function fromM1 to M2 that maps
every element ofM1 to m ∈ M2 is denoted byconsM1→M2

m , where indexM1 → M2 is
omitted if it is clear from the context. Furthermore, iff : M1 → M2 andf ′′ : M2 → M3

then

– f ′′ ◦ f is the function fromM1 to M3 given by(f ′′ ◦ f)(m) = f ′′(f(m)).

– f(M), whereM ⊆ M1, denotes theimage ofM underf , i.e. f(M) = {f(m) |
m ∈ M}.

– f � M whereM ⊆ M1 is the function fromM to M2 with (f � M)(m) = f(m)
for anym ∈ M .

1It is clear that such anU exists.

2.1. NOTATIONS 19

– f [m1 → m2] wherem1 ∈ M1, m2 ∈ M2 is the function fromM1 to M2 with

(f [m1 → m2])(m) =

{
f(m) if m 6= m1

m2 otherwise
.

– if f is bijective, thenf−1 denotes theinverse functionof f , i.e. f−1 : M2 → M1

with f−1(m2) = m1 ⇔ f(m1) = m2.

• M1 ⇀ M2 denotes the set of allpartial functionsfrom M1 to M2. We denote thatf is
a partial function fromM1 to M2 by f : M1 ⇀ M2. The partial function fromM1 to
M2 that is everywhere undefined is denoted by⊥M1⇀M2. The partial function fromM1 to
M2 that maps every element fromM1 to m ∈ M2 is denoted byconsM1⇀M2

m . The index
M1 ⇀ M2 is omitted in both cases if it is clear from the context.

Furthermore, iff, f ′ : M1 ⇀ M2, f ′′ : M2 ⇀ M3 andf ′′′ : M3 ⇀ M2 then

– thedomainof f , denoted bydom(f), is the set{m ∈ M1 | f(m) is defined}.
– We definef ∪ f ′ by consideringf andf ′ as relations.

– f ′′ ◦ f is the partial function fromM1 to M3 given by(f ′′ ◦ f)(m) = f ′′(f(m)) if
m ∈ dom(f) ∧ f(m) ∈ dom(f ′′) and undefined otherwise.

– f(M), whereM ⊆ M1, denotes theimage ofM underf , i.e. f(M) = {f(m) |
m ∈ M}.

– We writef(m1) ' f ′′′(m3) to denote thatf(m1) is defined⇔ f ′′′(m3) is defined∧
f(m1) is defined⇒ f(m1) = f ′′′(m3).
f ' f ′ holds if and only if∀m1 ∈ M1 : f(m1) ' f ′(m1).

– f � M whereM ⊆ M1 is the partial function fromM1 to M2 with (f � M)(m) '
f(m) wheneverm ∈ M and undefined otherwise.

– f [m1 → m2] wherem1 ∈ M1, m2 ∈ M2 is the partial function fromM1 to M2 with

(f [m1 → m2])(m) '
{

f(m) if m 6= m1

m2 otherwise
.

– f is injective (surjective, bijective) from M ′
1 ⊆ M1 to M ′

2 ⊆ M2 if and only if
dom(f) = M ′

1, f(M ′
1) ⊆ M ′

2 and f � M ′
1 is an injective function fromM ′

1 to
M ′

2 (respectively surjective, bijective). We callf injectiveif f is injective between
dom(f) andM2.

– if f is bijective, thenf−1 denotes theinverse partial function off , i.e.f−1 : M2 ⇀
M1 with f−1(m2) ' m1 ⇐⇒ f(m1) ' m2.

• M →fin IN denotes the set of all functions fromM to the natural numbers that differs
only finitely often from0, i.e.M →fin IN = {f : M → IN | |{m ∈ M | f(m) 6= 0}| <
∞}.

• M1 ⇁ M2 denotes the set of all functions fromM1 to the set of all strings overM2 that
differs only finitely often from the empty string, i.e.M1 ⇁ M2 = {f : M1 → M?

2 |
|{m ∈ M1 | f(m) 6= ε}| < ∞}.
The function that maps every element ofM1 to the empty string ofM?

2 is denoted by
⊥M1⇁M2 . The indexM1 ⇁ M2 is omitted if it is clear from the context.

• πi denotes theprojectionto thei-th component of a Cartesian product

20 CHAPTER 2. PRELIMINARIES

• ∼= is used to denote isomorphism of structures, i.e. a structure preserving bijective func-
tion.

• A binary relation\ ⊆ M × M is preserved byan operatorF : M → M if and only if
m1\m2 ⇒ F (m1)\F (m2). Furthermore,\ is preserved byan operatorFn : Mn → M if
and only ifFn(m1, ...,mn)\Fn(m′

1, ...,m
′
n) whenevermi\m

′
i for i = 1, .., n. F is called

monotonicfor the special case when\ is a partial order.

Definition 2.2 Let≡⊆ M × M and letF be a set of operators where for everyf ∈ F there
existsi ∈ IN such thatf : M i → M . Then

• ≡ is acongruencefor F if and only if≡ is an equivalence relation and≡ is preserved by
all operators ofF

• ≡c⊆ M ×M is thecoarsest congruencefor F with respect to≡ if and only if

– ≡c⊆≡

– ≡c is a congruence forF

– whenever≡′⊆ M ×M is a congruence forF such that≡′⊆≡ then≡′⊆≡c

2.2 Transition System

Labeled transition systems, originally introduced by [121] under the name ‘named transition
systems’, represent a model to describe the behavioral character of a process. This is done by
abstracting complex activities into a single action. The duration of actions is often neglected,
i.e. the actions are considered to be instantaneous, in order to obtain a simpler, time independent
model. Transition systems are used to describe to which state the execution of an action may
lead.

Definition 2.3 (Transition System) A (labeled) transition systemis a quadruple(S, L,−→, s̄)
with

• S, a non-empty set ofstates

• L, a set oflabels

• −→⊆ S × L× S, a transition relation

• s̄ ∈ S, theinitial state.

We will writep
γ−→ q rather than(p, γ, q) ∈−→. The class of all transition systems is denoted

byTS.

2.2. TRANSITION SYSTEM 21

f
f

f

f

f
?�

�
@ @R

� �

a1

-
a 2

-

a
3

-a4

-a4

Figure 2.1: A Transition System Example

The intuitive meaning ofp
γ−→ q is that the execution ofγ in statep may lead to stateq. It is

not necessarily uniquely determined to which state the execution ofγ in statep leads, since it
is possible thatp

γ−→ q′ is another transition of the transition system. Examples of transition
systems are shown in Figure 1.1 and in Figure 2.1, where the initial state is marked by an arrow
without a source.

Transition systems, as well as other models, are often considered as too concrete descriptions.
Therefore, equivalences are defined on transition systems in order to identify those which we
consider to display the same behavior in some sense.

Two basic equivalences have been defined for transition systems:trace equivalence[108],
which considers the possible sequences of observable behavior, andbisimulation equivalence
[136], which also takes the branching structure into account.

Definition 2.4 (Trace Equivalence)The set oftracesof a transition system(S, L,−→, s̄) is
defined by

T (S, L,−→, s̄) = {(γi)i<n | n ∈ IN ∧ ∃s0, · · · , sn ∈ S ∧ s0 = s̄ ∧ ∀i < n : si
γi−→ si+1}.

We sometimes writeT (s̄) if S, L,−→ are clear from the context.

Two transition systems(S, L,−→, s̄) and (S ′, L,−→′, s̄′) over the same set of labelsL are
trace equivalent, which is denoted by(S, L,−→, s̄) ∼t (S ′, L,−→′, s̄′) or s̄ ∼t s̄′ for short, if
T (s̄) = T (s̄′).

Definition 2.5 (Bisimilarity) Two transition systems(S, L,−→, s̄) and (S ′, L,−→′, s̄′) over
the same set of labels arebisimilar (or bisimulation equivalent), denoted by(S, L,−→, s̄) ∼b

(S ′, L,−→′, s̄′) or s̄ ∼b s̄′ for short, if there is abisimulation, i.e. a relationR ⊆ S × S ′ such
that (s̄, s̄′) ∈ R and for each(s1, s

′
1) ∈ R we have:

• if s1
γ−→ s2, then there iss′2 such that(s2, s

′
2) ∈ R ands′1

γ−→
′
s′2

• if s′1
γ−→

′
s′2, then there iss2 such that(s2, s

′
2) ∈ R ands1

γ−→ s2.

Remark 2.6 Bisimilar transition systems are also trace equivalent.

22 CHAPTER 2. PRELIMINARIES

f
f

f

f

f
?

-
a 1

-

a
1

-a2

-a3

f f
f

f
? -a1

-
a 2

-

a
3

Figure 2.2: Trace-Equivalent but not Bisimilar Transition Systems

The transition systems from Figure 1.1 and Figure 2.1 are bisimilar and therefore also trace
equivalent. The transition systems presented in Figure 2.2 are trace equivalent but not bisimilar.

Various other equivalences have been defined for transition systems. An overview over equiva-
lences that lie between trace and bisimulation equivalences with respect to their discriminating
power is given in [86, 170]

2.3 Complete Partial Orders

To obtain denotational semantics for systems that include recursion, it is usually necessary to
employ model with fixpoint theory.Complete metric spaceswith contractingfunctions, e.g.
[74], denote a class where fixpoints always exist. They are used for example in [21, 65, 117] to
define a denotational semantics of recursive systems. Another class where fixpoints always exist
is given by the(ω-)complete partial orders(cpo) withcontinuousfunctions. An overview of this
theory is given in [3]. Complete partial orders are used for example in [4, 21, 76, 147, 149, 178]
to obtain a denotational semantics of recursive systems. The definition and the results that are
used in the following chapters are summarized in this section. For further details consult [3].
Here, the general cpo theory is restricted to theω-cpo theory, because the latter is sufficient for
our purpose.

Definition 2.7 (ω-complete partial order) A setD with the partial orderv is a (pointed)ω-
complete partial order(cpo) if

• D has aleast element(⊥) with respect tov, i.e.∀d ∈ D : ⊥ v d

• for everyω-chain (di)i∈IN, i.e. ∀j ∈ IN : dj v dj+1, there exists aleast upper bound
(
⊔

i∈IN di) in D, i.e.

– ∀j ∈ IN : dj v
⊔

i∈IN di

– ∀d ∈ D : (∀j ∈ IN : dj v d) ⇒
⊔

i∈IN di v d

Definition 2.8 (ω-continuous functions) A functionf between cpoD and cpoE, i.e.f : D →
E, is ω-continuous(or continuousfor short) if it preserves the least upper bounds ofω-chains,
i.e. for all ω-chains(di)i∈IN of D we havef(

⊔
i∈IN di) =

⊔
i∈IN f(di).

2.4. APPROXIMATION CLOSEDNESS 23

In particular, every continuous function is monotonic.

Theorem 2.9 LetM be a set and let〈D,vD〉 and〈E,vE〉 be cpos. Then

• the function spaceM → D with thepointwise order, i.e.g v g′ ⇔ ∀m ∈ M : g(m) vD

g′(m), is a cpo. Moreover,
⊔

i∈IN gi = g, whereg(m) =
⊔

i∈IN gi(m).

• and the Cartesian productD × E with thecomponentwise order, i.e. (d, e) v (d′, e′) ⇔
(d vD d′ ∧ e vE e′), is a cpo. Moreover,

⊔
i∈IN(di, ei) = (

⊔
i∈IN di,

⊔
i∈IN ei).

Lemma 2.10 LetD, D′, E be cpos andf : (D ×D′) → E. Thenf is continuous if and only if
it is componentwise continuous, i.e. for all d′ ∈ D′ : f

(1)
d′ : D → E, wheref

(1)
d′ (d) = f(d, d′),

is continuous and for alld ∈ D : f
(2)
d : D′ → E, similarly defined, is continuous.

Theorem 2.11 LetD be a cpo and letf : D → D be a continuous function, thenf has aleast
fixpoint fix(f), which is given by

⊔
i∈IN f i(⊥).

2.4 Approximation Closedness

In this section, we define when a setM ⊆ P(E) is approximation closed. These sets are used
to guarantee that anω-chain ofevent structuresintroduced in later chapters will have a least
upper bound.

Definition 2.12 LetE be a countable set. Afinite, monotone approximationof E is a sequence
(Ei)i∈IN such that

⋃
i∈IN Ei = E ∧ ∀k : Ek ⊆ Ek+1 ∧ |Ek| < ∞.

It is obvious that every countable set has a finite, monotone approximation.

Definition 2.13 Let E be a countable set andM ⊆ P(E). We say thatM is approximation
closed with respect toE if

• X ∈ M whenever
X ⊆ E and there is a finite, monotone approximation(Ei)i∈IN of E such that∀k ∈ IN :
∃Xk ∈ M : Xk ∩ Ek = X ∩ Ek.

Example 2.14 If E is finite, then everyM ⊆ P(E) is approximation closed with respect toE.
Another example isP(IN), which is approximation closed with respect toIN.

On the other hand,Pfin(IN) is not approximation closed with respect toIN, since∀n ∈ IN :
{m ∈ IN | m ≤ n} ∈ Pfin(IN) but IN /∈ Pfin(IN). AlsoP(IN)\{∅} is not approximation closed
with respect toIN.

Proposition 2.15 SupposeM1, M2 are approximation closed with respect toE. ThenM1∩M2

andM1 ∪M2 are approximation closed with respect toE.

24 CHAPTER 2. PRELIMINARIES

Proof: The proof is given in Subsection 2.4.1. ut
For the following proofs, it is necessary to have further set constructions that yield approxi-
mation closed sets. In order to verify the approximation closedness, we construct a setX out
of a sequence(Xn)n∈IN of sets (whereXn ∈ M). We show that this constructedX is in M
wheneverM is approximation closed. The construction ofX is generalized in the sense that
X is constructed out of two given sequences. This generalization is needed in some of the
approximation closedness proofs.

Definition 2.16 Let Ej be a set andκj : IN → Ej such thatκj is bijective forj = 1, 2.
Furthermore, let~X(j) = (X

(j)
n)n∈IN be a sequence of elements ofP(Ej) for j = 1, 2.

DefineX (~X(1), κ1, ~X(2), κ2) = (
⋃

k∈IN A
(1)
k ,
⋃

k∈IN A
(2)
k) whereA

(j)
n ⊆ Ej and N

(j)
n ⊆ IN is

given byA(1)
0 = A

(2)
0 = ∅, N

(0)
0 = N

(1)
0 = N

(2)
0 = IN and forj = 1, 2

N
(0)
n+1 = N

(2)
n

N
(j)
n+1 =

{
{q ∈ N

(j−1)
n+1 | κj(n) ∈ X

(j)
q } if κj(n) ∈

⋂
k

⋃
i≥k,i∈N

(j−1)
n+1

X
(j)
i

{q ∈ N
(j−1)
n+1 | κj(n) /∈ X

(j)
q } otherwise

A
(j)
n+1 =

{
A

(j)
n ∪ {κj(n)} if κj(n) ∈

⋂
k

⋃
i≥k,i∈N

(j−1)
n+1

X
(j)
i

A
(j)
n otherwise

Note that|N (j)
n | is always infinite, sinceκj(n) ∈

⋂
k

⋃
i≥k,i∈N

(j−1)
n+1

X
(j)
i holds exactly when

κj(n) ∈ X
(j)
i for infinitely manyi ∈ N

(j−1)
n+1 .

Proposition 2.17 SupposeMj is approximation closed with respect toEj, ~X(j) = (X
(j)
n)n∈IN

is a sequence of elements ofMj andκj : IN → E is a bijective function forj = 1, 2. Then
πj(X (~X(1), κ1, ~X(2), κ2)) ∈ Mj for j = 1, 2.

Proof: The proof is given in Subsection 2.4.1. ut
As a consequence of Proposition 2.17 we obtain the following corollaries. Their proofs are
given in Subsection 2.4.1.

Corollary 2.18 SupposeM is approximation closed with respect toE andE ′ ⊆ E. Then

{X ∩ E ′ | X ∈ M}

is approximation closed with respect toE ′.

Corollary 2.19 SupposeM1, M2 are approximation closed with respect toE. Then

{X1 ∪X2 | X1 ∈ M1 ∧X2 ∈ M2}

is approximation closed with respect toE.

2.4. APPROXIMATION CLOSEDNESS 25

Corollary 2.20 SupposeMi is approximation closed with respect toEi for i = 1, 2. Then

{{(e1, e2) ∈ E1 × E2 | e1 ∈ X1 ∧ e2 ∈ X2} | X1 ∈ M1 ∧X2 ∈ M2},
{{(e1, e2) ∈ E1 × E2 | ei ∈ Xi} | i ∈ {1, 2} ∧Xi ∈ Mi} and
{{(e1, e2) ∈ E1 × E2 | e1 ∈ X1 ∨ e2 ∈ X2} | X1 ∈ M1 ∧X2 ∈ M2}

are approximation closed with respect toE1 × E2.

Corollary 2.21 SupposeM is approximation closed with respect toE and for alle ∈ E let Ee

be a set andMe be a collection of subsets such thatMe is approximation closed with respect to
Ee. Then

{{(e, ê) | e ∈ X ∧ ê ∈ Xe} | X ∈ M ∧ ∀e ∈ E : Xe ∈ Me}

is approximation closed with respect to{(e, ê) | e ∈ E ∧ ê ∈ Ee}.

2.4.1 Proofs

Proof of Proposition 2.15:

M1 ∩M2: SupposeX ⊆ E and(En)n∈IN be a finite monotone approximation ofE such that
∀n ∈ IN : ∃Xn : Xn ∈ M1 ∧ Xn ∈ M2 ∧ X ∩ En = Xn ∩ En. By the approximation
closedness ofMi we obtain thatX ∈ Mi, which completes this case.

M1 ∪M2: SupposeX ⊆ E and(En)n∈IN is a finite monotone approximation ofE such that
∀n ∈ IN : ∃Xn : (Xn ∈ M1∨Xn ∈ M2)∧X∩En = Xn∩En. LetNi = {n ∈ IN | Xn ∈ Mi}.
ThenN1 or N2 has to be infinite. Without loss of generality, letN1 be infinite (the other case
follows analogously). Then(En)n∈N1 is a finite monotone approximation ofE such that
∀n ∈ N1 : Xn ∈ M1 ∧X ∩En = Xn ∩En. ThusX ∈ M1 by the approximation closedness
of M1. ut

Proof of Proposition 2.17: Let A(j)
n andN

(j)
n be defined as in Definition 2.16.

DefineE
(j)
n = A

(j)
n ∪

[(⋃
r≤n{κj(r)}

)
\
(⋃

i≥n,i∈N
(j−1)
n+1

X
(j)
i

)]
. ThenE

(j)
n ⊆ E

(j)
n+1 and

∀n : κj(n) ∈
⋃
p

E(j)
p (2.1)

which is verified as follows. Supposeκj(n) ∈
⋂

k

⋃
i≥k,i∈N

(j−1)
n+1

X
(j)
i , thenκj(n) ∈ A

(j)
n+1.

Hence,κj(n) ∈
⋃

p E
(j)
p . Now supposeκj(n) /∈

⋂
k

⋃
i≥k,i∈N

(j−1)
n+1

X
(j)
i . Then there is ak such

thatκj(n) /∈
⋃

i≥k,i∈N
(j−1)
n+1

X
(j)
i . Definem = max{k, n}. We getκj(n) /∈

⋃
i≥m,i∈N

(j−1)
m+1

X
(j)
i

sinceN
(j−1)
m+1 ⊆ N

(j−1)
n+1 . Hence,κj(n) ∈ E

(j)
m which establishes (2.1).

∀n ∈ IN : ∀q ∈ N
(j−1)
n+1 : A(j)

n ⊆ X(j)
q (2.2)

This can be proven by induction, where the claim is easily seen to hold in the base case. Now
supposeq ∈ N

(j−1)
n+2 thenq ∈ N

(j−1)
n+1 and so by inductionA(j)

n ⊆ X
(j)
q . If A

(j)
n+1 = A

(j)
n , the

26 CHAPTER 2. PRELIMINARIES

claim follows. Therefore, supposeA(j)
n+1 = A

(j)
n ∪{κj(n)}. Thenκj(n) ∈

⋂
k

⋃
i≥k,i∈N

(j−1)
n+1

X
(j)
i .

FromN
(j−1)
n+2 ⊆ N

(j)
n+1 and the definition ofN (j)

n+1 we getκj(n) ∈ X
(j)
q , which verifies (2.2).

Now we show
⋃

p A
(j)
p ∈ M :

E
(j)
n ∩

⋃
p A

(j)
p =

(
A

(j)
n ∩

⋃
p A

(j)
p

)
∪
([(⋃

r≤n{κj(r)}
)
\
(⋃

i≥n,i∈N
(j−1)
n+1

X
(j)
i

)]
∩
⋃

p A
(j)
p

)
=

A
(j)
n ∪

(
A

(j)
n+1\

(⋃
i≥n,i∈N

(j−1)
n+1

X
(j)
i

))
by definition. Furthermore,

⋂
k

⋃
i≥k,i∈N

(j−1)
n+1

X
(j)
i ⊆⋃

i≥n,i∈N
(j−1)
n+1

X
(j)
i , which yieldsA(j)

n+1 ⊆
⋃

i≥n,i∈N
(j−1)
n+1

X
(j)
i with (2.2) and the fact that|N (j−1)

n+1 |

is infinite. Hence,E(j)
n ∩

⋃
p A

(j)
p = A

(j)
n . On the other hand, letq ∈ N

(j−1)
n+1 with q ≥ n. Such aq

exists, since|N (j−1)
n+1 | is infinite. Then by (2.2) and from the fact thatX

(j)
q ⊆

⋃
i≥n,i∈N

(j−1)
n+1

X
(j)
i

we haveX(j)
q ∩ E

(j)
n =

(
X

(j)
q ∩ A

(j)
n

)
∪
(
X

(j)
q ∩

[(⋃
r≤n{κj(r)}

)
\
(⋃

i≥n,i∈N
(j−1)
n+1

X
(j)
i

)])
=

A
(j)
n . Hence,X(j)

q ∩ E
(j)
n = E

(j)
n ∩

⋃
p A

(j)
p . Therefore, by the approximation closedness ofM

we get
⋃

p A
(j)
p ∈ M , since(E

(j)
n)n∈IN is a finite, monotone approximation ofE, which follows

from (2.1). ut

Proof of Corollary 2.18: DefineM ′ = {X ∩ E ′ | X ∈ M}. SupposeX ′ ⊆ E ′ and(E ′
n)n∈IN

is a finite, monotone approximation ofE ′ such that∀n : ∃X ′
n ∈ M ′ : X ′

n ∩ E ′
n = X ′ ∩ E ′

n.
By the definition ofM ′, for all n ∈ IN there existsXn ∈ M such thatXn ∩ E ′

n = X ′ ∩ E ′
n.

If E is finite, the proof is trivial. Therefore, letκ : IN → E be bijective. Then by Proposition
2.17 we haveπ1(X (~X, κ, ~X, κ)) ∈ M , where ~X = (Xn)n∈IN. Let A(1)

n andN
(1)
n be defined as

in Definition 2.16.
It remains to prove thatE ′ ∩ π1(X (~X, κ, ~X, κ)) = X ′ by which thenX ′ ∈ M ′.

⊆: Supposee ∈ E ′ ∩
⋃

p A
(1)
p . Then there existsg ∈ IN such thatκ(g) = e. Moreover,

there existsn such thatκ(g) ∈ E ′
n, sinceκ(g) ∈ E ′. Fromκ(g) ∈

⋃
p A

(1)
p we getκ(g) ∈⋂

k

⋃
i≥k,i∈N

(0)
g+1

Xi, which is a subset of
⋃

i≥n,i∈N
(0)
g+1

Xi. Then there is ani ∈ IN such that

i ≥ n andκ(g) ∈ Xi. Thusκ(g) ∈ Xi ∩ E ′
n

(i≥n)
= Xi ∩ E ′

i ∩ E ′
n = X ′ ∩ E ′

i ∩ E ′
n. Hence,

κ(g) ∈ X ′.

⊇: Supposee ∈ X ′. Then there isg ∈ IN such thatκ(g) = e. Moreover, there is ann
such thatκ(g) ∈ E ′

n, sinceX ′ ⊆ E ′. Then for all i ≥ n we haveκ(g) ∈ X ′ ∩ E ′
n =

X ′ ∩ E ′
i ∩ E ′

n = Xi ∩ E ′
i ∩ E ′

n. Thus∀k : κ(g) ∈
⋃

i≥k,i∈N
(0)
g+1

Xi, since|N (0)
g+1| is infinite.

Hence,κ(g) ∈
⋂

k

⋃
i≥k,i∈N

(0)
g+1

Xi. And so by definitionκ(g) ∈ A
(1)
g+1 ⊆

⋃
p A

(1)
p . ut

Proof of Corollary 2.19: SupposeX ⊆ E and(En)n∈IN is a finite monotone approximation
of E such that∀n ∈ IN : ∃X(i)

n ∈ Mi : X ∩ En = (X
(1)
n ∪X

(2)
n) ∩ En.

If E is finite, the proof is trivial. Therefore, letκ : IN → E be bijective. Then by Proposition
2.17 we haveπj(X (~X(1), κ, ~X(2), κ)) ∈ Mj, where ~X(i) = (X

(i)
n)n∈IN. Let A

(i)
n andN

(i)
n be

2.4. APPROXIMATION CLOSEDNESS 27

defined as in Definition 2.16. It remains to prove that⋃
j∈{1,2}

πj(X (~X(1), κ, ~X(2), κ) = X.

⊆: Supposee ∈ (
⋃

p A
(1)
p) ∪ (

⋃
p A

(2)
p). Thene ∈

⋃
p A

(j)
p for somej ∈ {1, 2}. Let g ∈ IN

such thatκ(g) = e and letn ∈ IN such thatκ(g) ∈ En. From κ(g) ∈
⋃

p A
(j)
p we get

κ(g) ∈
⋂

k

⋃
q≥k,q∈N

(j−1)
g+1

X
(j)
q , which is a subset of

⋃
q≥n,q∈N

(j−1)
g+1

X
(j)
q . Then there exists

q ∈ IN such thatq ≥ n andκ(g) ∈ X
(j)
q . Thusκ(g) ∈ (X

(1)
q ∪ X

(1)
q) ∩ En

(q≥n)
= (X

(1)
q ∪

X
(1)
q) ∩ Eq ∩ En = X ∩ Eq ∩ En. Hence,e = κ(g) ∈ X.

⊇: Supposee ∈ X. Let g ∈ IN such thatκ(g) = e and letn ∈ IN such thatκ(g) ∈ En. Then
for all q ≥ n we haveκ(g) ∈ X ∩ En = X ∩ Eq ∩ En = (X

(1)
q ∪X

(2)
q) ∩ Eq ∩ En. Hence,

∀i ∈ N
(1)
n+1 : i ≥ n ⇒ κ(g) ∈ X

(1)
i ∪X

(2)
i .

Supposeκ(g) ∈ X
(2)
i for infinitely many i ∈ N

(1)
g+1. Then∀k : κ(g) ∈

⋃
i≥k,i∈N

(1)
g+1

X
(2)
i ,

henceκ(g) ∈
⋃

p A
(2)
p .

Now supposeκ(g) ∈ X
(2)
i for finitely manyi ∈ N

(1)
g+1. Thenκ(g) ∈ X

(1)
i for infinitely many

i ∈ N
(1)
g+1. Then∀k : κ(g) ∈

⋃
i≥k,i∈N

(0)
g+1

X
(1)
i , sinceN

(1)
g+1 ⊆ N

(0)
g+1. Henceκ(g) ∈

⋃
p A

(1)
p .
ut

Proof of Corollary 2.20: Consider the first set: SupposeX ⊆ E1×E2 and(Ẽn)n∈IN is a finite
monotone approximation ofE1 × E2 such that∀n ∈ IN : ∃X(1)

n ∈ M1, X
(2)
n ∈ M2 : X ∩ Ẽn =

{(e1, e2) ∈ Ẽn | e1 ∈ X
(1)
n ∧ e2 ∈ X

(2)
n }. If Ej is finite, the proof is much simpler. Therefore,

let κj : IN → Ej be bijective. Then by Proposition 2.17 we haveπj(X (~X1, , κ1, ~X2, κ2)) ∈ Mj,
where ~Xj = (X

(j)
n)n∈IN. Let A(i)

n andN
(i)
n be defined as in Definition 2.16. It remains to prove

that
X = {(e1, e2) | e1 ∈ π1(X (~X1, , κ1, ~X2, κ2)) ∧ e2 ∈ π2(X (~X1, , κ1, ~X2, κ2))

⊆: Suppose(κ1(g1), κ2(g2)) ∈ X. Let n ∈ IN such that(κ1(g1), κ2(g2)) ∈ Ẽn. Then for
all q ≥ n we have(κ1(g1), κ2(g2)) ∈ X ∩ Ẽn = X ∩ Ẽq ∩ Ẽn = {(e1, e2) ∈ Ẽq |
e1 ∈ X

(1)
q ∧ e2 ∈ X

(2)
q } ∩ Ẽn. Hence,∀i ∈ N

(j−1)
gj+1 : i ≥ n ⇒ κj(gj) ∈ X

(j)
i . Then

∀k : κj(gj) ∈
⋃

i≥k,i∈N
(j−1)
gj+1

X
(j)
i , henceκj(gj) ∈

⋃
p A

(j)
p .

⊇: Supposeκ1(g1) ∈
⋃

p A
(1)
p andκ2(g2) ∈

⋃
p A

(2)
p . Thusκj(gj) ∈ A

(j)
gj+1. From (2.2) we

have
∀n ∈ IN : ∀q ∈ N

(j−1)
gj+2 : κj(gj) ∈ X(j)

q . (2.3)

Let n ∈ IN such that(κ1(g1), κ2(g2)) ∈ Ẽn. Then by (2.3) there isqj ≥ n with qj ∈ N
(j−1)
gj+2

andκj(gj) ∈ X
(j)
qj . Defineq to beq1 if g1 > g2 and otherwise to beq2. Then

κ1(g1) ∈ X(1)
q ∧ κ2(g2) ∈ X(2)

q (2.4)

28 CHAPTER 2. PRELIMINARIES

which can be seen as follows. Ifg1 > g2 thenN
(1)
g2+2 ⊆ N

(0)
g1+2 and if g1 ≤ g2 thenN

(0)
g1+2 ⊆

N
(1)
g2+2. Hence, (2.4) is an immediate consequence of (2.3).

Therefore, we have(κ1(g1), κ2(g2)) ∈ {(e1, e2) | e1 ∈ X
(1)
q ∧ e2 ∈ X

(2)
q } ∩ Ẽn

(q≥n)
=

{(e1, e2) ∈ Ẽq | e1 ∈ X
(1)
q ∧ e2 ∈ X

(2)
q } ∩ Ẽn = X ∩ Ẽn.

For the proof of the approximation closedness of the second and the third set of Corollary 2.20
we defineM ′

i = {{(e1, e2) ∈ E1 × E2 | ei ∈ Xi} | Xi ∈ Mi}. Then from the approximation
closedness of the first set of Corollary 2.20 and from the fact that the set{Ei} is approximation
closed with respect toEi we obtain thatM ′

i is approximation closed with respect toE1 ×
E2. Then the approximation closedness of the second set follows from Proposition 2.15, since
{{(e1, e2) ∈ E1 × E2 | ei ∈ Xi} | i ∈ {1, 2} ∧ Xi ∈ Mi} = M ′

1 ∪ M ′
2. Furthermore,

the approximation closedness of the third set follows from Corollary 2.19, since{{(e1, e2) ∈
E1 ×E2 | e1 ∈ X1 ∨ e2 ∈ X2} | X1 ∈ M1 ∧X2 ∈ M2} = {X ′

1 ∪X ′
2 | X ′

1 ∈ M ′
1 ∧X ′

2 ∈ M ′
2}.
ut

Proof of Corollary 2.21: Let Ẽ = {(e, ê) | e ∈ E ∧ ê ∈ Ee} and defineπe(X̃) = {ê | (e, ê) ∈
X̃} for e ∈ E andX̃ ⊆ Ẽ. SupposeX ⊆ Ẽ and(Ẽn)n∈IN be a finite monotone approximation
of Ẽ such that∀n ∈ IN : ∃Xn ∈ M, X

(e)
n ∈ Me : X ∩ Ẽn = {(e, ê) ∈ Ẽn | e ∈ Xn∧ ê ∈ X

(e)
n }.

Without loss of generality, letE be infinite, since otherwise the proof is much simpler. There-
fore, let κ : IN → E. Then by Proposition 2.17 we haveπ1(X (~X, κ, ~X, κ)) ∈ M , where
~X = (Xn)n∈IN. Let N (i)

n be defined as in Definition 2.16. First we prove

X = {(e, ê) ∈ Ẽ | e ∈ π1(X (~X, κ, ~X, κ)) ∧ ê ∈ πe(X)} (2.5)

From ê′ ∈ πe′(X) we obtain(e′, ê′) ∈ X, which establishes⊇ of (2.5). Now suppose(e′, ê′) ∈
X. Let q ∈ IN such thate′ = κ(q) and letn ∈ IN such that(e′, ê′) ∈ Ẽn. Then for alli ≥ n

we have(κ(q), ê′) ∈ X ∩ Ẽn = X ∩ Ẽi ∩ Ẽn = {(e, ê) ∈ Ẽi | e ∈ Xi ∧ ê ∈ X
(e)
i } ∩ Ẽn.

Hence,∀k : κ(q) ∈
⋃

i≥k,i∈N
(0)
q+1

Xi. Thusκ(q) ∈
⋂

k

⋃
i≥k,i∈N

(0)
q+1

Xi. And so by definition

κ(q) ∈ π1(X (~X, κ, ~X, κ)), which establishes (2.5).

It remains to prove that

e′ ∈ π1(X (~X, κ, ~X, κ)) ⇒ πe′(X) ∈ Me′ (2.6)

We haveπe′(X) ∩ πe′(Ẽn) = πe′(X ∩ Ẽn) = πe′({(e, ê) ∈ Ẽn | e ∈ Xn ∧ ê ∈ X
(e)
n }) =

X
(e′)
n ∩ πe′(Ẽn) whenevere′ ∈ Xn. From e′ ∈ π1(X (~X, κ, ~X, κ)) we obtain thate′ ∈ Xn

for infinitely manyn. And so (2.6) follows from the approximation closedness property, since
(πe′(Ẽn))n∈N , whereN = {n ∈ IN | e′ ∈ Xn}, is a finite monotone approximation ofEe′. ut

Chapter 3

Standard Action Refinement

In this chapter, we first sketch the different action refinement approaches in scientific literature.
Then we illustrate the common approach on a concrete setting, i.e. we give a denotational and
operational semantics to a process algebra that contains an action refinement operator. Before
we present the action refinement operator on extended bundle event structures [125] (used as
the denotational model), we will show that the event structures based on the bundle technique
fail to yield a complete partial order (with the standard ordering). Therefore, we introduce
a new subclass of extended bundle event structures that yields a complete partial order with
respect to the standard ordering. This subclass is defined by using the approximation closedness
techniques introduced in Section 2.4.

Furthermore, a new technique is used in this section to define an operational semantics that
corresponds to the denotational semantics. This technique has the advantage of handling the
disrupt expression in a feasible way and of avoiding any further syntactical expression.

3.1 Different Approaches

As mentioned in the introduction, in software design it is useful to have atop down system
design[180], i.e. to change the level of abstraction until the implementation is obtained from the
specification. Expressing simple actions by more concrete processes, calledaction refinement,
reflects this methodology in the context of process algebraic settings.

Different approaches for action refinement can be distinguished:

• atomic action refinement[34, 64, 69, 94, 97], where the processP to which the action
is refined has to be considered atomic, i.e. there are no observable states in between
the execution steps ofP (all-or-nothing). Motivations for this approach are given in
[34, 69, 98].

• non-atomic action refinement[6, 31, 49, 60, 70, 90, 111, 114, 122, 144, 157, 173], where,
as opposed to the above approach, the process to which the action is refined may interleave
with the original system (or with other refinements).
This approach is on the whole more popular than the atomic approach. For example, if
two actionsa, b are completely independent, it seems unreasonable to impose a restriction
stating thatb stays idle while the refinement ofa is executed.

29

30 CHAPTER 3. STANDARD ACTION REFINEMENT

• relaxed forms[113, 159, 176]. Here, the causal ordering after the refinement of actions
is relaxed if the involved actions are considered to be independent. For example, suppose
actionb has to be preceded by actiona anda is refined by the sequential composition
of actionsa1 anda2. Thena1 may interleave with actionb if a1 andb are defined to be
independent.

• vertical action refinement[94, 156, 158]. Here, refinement is regarded to be an imple-
mentation relation instead of being an operator, as it is done in the above cases.

For a more detailed overview over the different methods of action refinement consult [91, 98].

In this thesis, we consider non-atomic action refinement. The theory of action refinement is
well established for denotational, true concurrency semantics of process algebras, i.e. refine-
ment operators are employed inevent structures, petri netsand in other models of concurrency
[42, 62, 63, 72, 82, 91, 172]. When presenting an operational semantics of process algebras
with a refinement operator in terms of transition systems, the action refinement operator is of-
ten handled on the process term level bysyntactic substitution[5, 6, 144]. In general, this type
of operational semantics is incompatible with the standard denotational semantics [93]. Ap-
proaches to obtain operational semantics that correspond to the denotational ones are given in
[70, 98, 157].

The common non-atomic action refinement approach is illustrated in the rest of this chapter.
It also contains a new technique to define an operational semantics that is consistent with the
denotational semantics.

3.2 Syntax

We choose a process algebra that is close tobasic LOTOS[32] except that the symbols are rather
taken from [117] and that the process algebra contains an expression for action refinement.

Let
√

andτ be two different elements, which indicate theterminationand theinternal action.
Furthermore, letObs be a set such that

√
, τ /∈ Obs and|Obs| > |IN|. We callObs the set of

observable actions. Theset of all actionsAct√ is defined byAct√ = {
√

, τ} ∪Obs. Assume a
fixed countable set ofprocess variablesVar which is disjoint fromAct√.

The process algebra expressionsEXPsr (s , start-based,r , refinement) are defined by the
following BNF-grammar.

B ::= 0 | 1 | a.B | τ.B | B + B | B; B | B [>B | B‖AB | B[(a → B)a∈A] | B\A | x

wherex ∈ Var, a ∈ Obs andA ⊆ Obs with |A| ≤ |IN|1. A process with respect toEXPsr is a
pair 〈decl, B〉 consisting of adeclarationdecl : Var → EXPsr and an expressionB ∈ EXPsr.
Let PAsr denote the set of all processes with respect toEXPsr.

An expressionB ∈ EXPsr is also called a process ifdecl is clear from the context. We some-
times omit1 in an expression, i.e. we writea instead ofa.1.

1The action relabeling operator [138] can be modeled by the action refinement operator in our process algebra,
since|A| may be infinite.

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PASR 31

The intuitive meanings of the expressions are as follows.0 is the inactive process, i.e. it can not
execute any action.1 is the process that can terminate immediately. The action prefix process
a.B (τ.B) is the process that executesa (respectivelyτ) and revolves to processB. Process
B1 + B2 is a choice between the behaviors described byB1 andB2. The choice is determined
by the first action that is executed.B1; B2 is the sequential composition, i.e.B1 proceeds until
it terminates, after whichB2 takes over.B1 [>B2 is the disruption ofB1 by B2, i.e. any action
from B2 may disableB1 as long asB1 has not terminated. On the other hand, the termina-
tion of B1 disablesB2. B1‖AB2 describes the parallel composition ofB1 andB2 where both
processes have to synchronize on actions ofA and on

√
(i.e. the parallel composition termi-

nates if and only if both sides terminate). The intuitive meaning of the refinement expression
B[(a → Ba)

a∈A] is that it behaves like processB except that every execution of actiona in A
is substituted by the behavior ofBa. The hiding processB\A behaves likeB except that all
actions ofA are renamed withτ . The behavior ofx is given by the declaration.

3.3 Denotational True Concurrency Semantics forPAsr

Event structures are typically used as denotational true concurrency models for process algebras.
(Extended) bundle event structures are investigated in [126, 125] as a denotational model for
LOTOS, on which our process algebra is based. Unfortunately, the set of all (extended) bundle
event structures does not yield anω-complete partial order (cpo) with the standard order. We
remedy this problem by defining a subclass of the class of extended bundle event structures that
yields a cpo.

This section is organized as follows: Subsection 3.3.1 contains the definition of (extended)
bundle event structures. We show that they do not yield a cpo with the standard order. The subset
that yields a cpo is introduced in Subsection 3.3.2. The operators on these event structures are
defined in Subsection 3.3.3. These operators are used in Subsection 3.3.4 in order to present the
denotational meaning of a process.

3.3.1 Bundle Event Structures

(Extended) bundle event structures are introduced in [125, 126]. Later on, they are extended
to timed versions [39, 40, 120], to stochastic versions [45, 118] and to a probabilistic version
[119]. See also [46].

Definition 3.1 (Bundle Event Structure) A bundle event structure, besfor short, (E,], 7→, l)
is an element ofP(U)× P(U × U)× P(P(U)× U)× (U ⇀ Act√) such that

•] ⊆ (E × E) and] is irreflexive and symmetric

• 7→⊆ P(E)× E

• dom(l) = E

• ∀X ⊆ E, e ∈ E : X 7→ e ⇒ (∀e′, e′′ ∈ X : e′ 6= e′′ ⇒ e′]e′′)

32 CHAPTER 3. STANDARD ACTION REFINEMENT

db
d
a

da
dc

d
τ

dτ

-

-

-
-

dd d√- -

Figure 3.1: A Bundle Event Structure

E is called the set of events,] the (irreflexive)symmetric conflict relation, 7→ thebundle relation
andl theaction-labeling functionof the bes(E,], 7→, l). X is called a bundle ofe if and only if
X 7→ e.

The intuitive meaning ofX 7→ e is that beforee is enabled, an event ofX has to be executed.
e′]e means that the execution ofe disablese′ forever, and vice versa. The action that may be
observed when an event is executed is given by the action-labeling function. The last constraint
in the definition of bundle event structures is calledbundle stability constraint. It guarantees
the absence ofcausal ambiguity, i.e. exactly one event of a bundle ofe is executed beforee is
enabled, and so no confusion which event causese arises. Bundle event structures and flow nets
[35, 38] have exactly the same expressiveness [37].

Bundle event structures can be used as a semantic model for expressions ofEXPsr that do not
contain disrupt operators. For example, in [125] the expression

(
(a + b.0)‖{a}(a.c + a)

)
; d is

modeled by the bes depicted in Figure 3.1. There, events are illustrated by circles labeled with
their corresponding action names; dashed lines indicate conflicts between events and for each
bundleX 7→ e we draw one arrow from all events inX to e.

A bundle event structures has a symmetric conflict relation. Therefore, it is not clear how dis-
ruption, for examplea.b [> c, can be modeled as a bes, since disruption is not a symmetrical
property. Therefore, [125] introduces extended bundle event structures, where the conflict rela-
tion does not need to be symmetric.

Definition 3.2 (Extended Bundle Event Structure) Anextended bundle event structure, ebes
for short,E = (E, ;, 7→, l) is an element ofP(U)×P(U ×U)×P(P(U)×U)× (U ⇀ Act√)
such that

• ;⊆ (E × E) and; is irreflexive

• 7→⊆ P(E)× E

• dom(l) = E

• ∀X ⊆ E, e ∈ E : X 7→ e ⇒ (∀e′, e′′ ∈ X : e′ 6= e′′ ⇒ e′ ; e′′)

LetEBES denote the set of all extended bundle event structures.

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PASR 33

da

d
c

db

�� d
τ

dτ

-

- -

dd d√- -

Figure 3.2: An Extended Bundle Event Structure

; is called the (irreflexive)asymmetric conflict relation. Hereafter, we considerE to be(E, ;
, 7→, l), Ei to be(Ei, ;i, 7→i, li) and in generalE to be(EE , ;E , 7→E , lE).

The intuitive meaning ofe′ ; e is that the execution ofe disablese′ forever, but not vice versa.
Furthermore, an event can not be in conflict with itself, which is expressed by the irreflexivity
of ;. In [125] the expression((a.b) [>c) ; d is modeled by the ebes shown in Figure 3.2. There
the conflicts are depicted as dashed arrows or depicted as dashed lines if they are symmetrical.

Remark 3.3 The bundle stability constraint of extended bundles event structures are dropped
to obtain more general class of event structures. The event structures obtained are calleddual
event structures[116]. They allow causal ambiguity, which is examined in [127].

The standard order for (extended) bundle event structures is introduced as follows.

Definition 3.4 (Restriction of a ebes)SupposeE is an extended bundle event structure and
E ′ ⊆ E. Then therestriction ofE to E ′, denoted byE � E ′, is (E ′, ; ∩(E ′ × E ′), 7→′, l � E ′)
where7→′= {(X ∩ E ′, e) | e ∈ E ′ ∧X 7→ e}.

Remark 3.5 A restriction of a restricted ebes is equal to the restriction of that ebes, i.e. if
E = (E, ;, 7→, l) is an ebes andE1 ⊆ E2 ⊆ E, then(E � E2) � E1 = E � E1.

Definition 3.6 (Order on EBES) Let Ei ∈ EBES. ThenE1 � E2 if and only ifE1 ⊆ E2 and
E1 = E2 � E1

Remark 3.7 Two different ebes which are comparable with respect to� must have different
sets of events, i.e.E1 � E2 ∧ E2 ⊆ E1 impliesE1 = E2.

Langerak [125] constructs the following minimal upper bound of anω-chain.

Definition 3.8 Let (Ei)i∈IN, whereEi = (Ei, ;i, 7→i, li), be anω-chain with respect to�. Then
define

⊔
i Ei to be the ebes(

⋃
i Ei,

⋃
i ;i, 7→,

⋃
i li) where 7→= {(X, e) | ∀k : e ∈ Ek ⇒

(X ∩ Ek) 7→k e}.

34 CHAPTER 3. STANDARD ACTION REFINEMENT

Non-Completeness of〈EBES, �〉.

〈EBES, �〉 does not yield a cpo, as there areω-chains with more than one minimal upper
bound. This situation can arise, for example, if(X ∩ Ek)k∈IN is strictly increasing and each
(X ∩ Ek, e) is a bundle ofEi wheneveri ≥ k. We illustrate this by an example, where we
considerIN to be a subset ofU by identifying?n• with n ∈ IN.

Let Ên be the ebes where the set of events consists of the elements ofMn = {1, ..., n} and an
additional elemente. Furthermore, the bundles ofe are all subsets ofMn. Formally,

Ên = (Mn ∪ {e}, Mn ×Mn\Id, {(X, e) | X ∈ P(Mn)}, consa)

for n ∈ IN, whereId denotes theidentity relation.

It is obvious that(Ên)n∈IN is a chain in〈EBES, �〉, hence
⊔

n Ên is a minimal upper bound of
(Ên)n∈IN with respect to�. From Definition 3.8 we get⊔

n

Ên = (IN ∪ {e}, IN× IN \ Id, {(X, e) | X ∈ P(IN)}, consa).

In words, any subset of the natural numbers combined withe is a bundle in
⊔

n Ên. If we restrict
the bundles to the finite subsets of the natural numbers, i.e.

Êfin = (IN ∪ {e}, IN× IN \ Id, {(X, e) | X ∈ Pfin(IN)}, consa),

we also get a minimal upper bound of(Ên)n∈IN with respect to�. Furthermore,̂Efin and
⊔

n Ên

are incomparable with respect to� by Remark 3.7. Hence, theω-chain(Ên)n∈IN does not have
a least upper bound and therefore〈EBES, �〉 fails to be a cpo.

The above counterexample is also a counterexample for the non-completeness of the class of
bundle event structures under the given partial order, since every event structure in the example
is a bundle event structure.

3.3.2 Closed Bundle Event Structures (CBES)

We want to restrict the ebes we have just considered in such a way that only one of the minimal
upper bounds from the counterexample of Subsection 3.3.1 is allowed. Therefore, we only take
those ebes into account which are closed under some special kind of finite approximation and
thus rule outÊfin. We define this closedness property by using the results ofapproximation
closednessintroduced in Section 2.4.

Definition 3.9 (Closed Bundle Event Structure)A closed bundle event structure(cbes) E =
(E, ;, 7→, l) is an element ofP(U)× P(U × U)× P(P(U)× U)× (U ⇀ Act√) such that

• ;⊆ (E × E) and∀e ∈ E : ¬(e ; e)

• 7→⊆ P(E)× E

• dom(l) = E

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PASR 35

• ∀X ⊆ E, e ∈ E : X 7→ e ⇒ (∀e′, e′′ ∈ X : e′ 6= e′′ ⇒ e′ ; e′′)

• ∀e ∈ E : 7→ e is approximation closed with respect toE

LetCBES denote the set of all closed bundle event structures.

Since every cbes is also an ebes (only a further constraint is added), we haveCBES ⊂ EBES.
Furthermore, every ebes that has a finite set of events satisfies the closedness condition, and
therefore is an element ofCBES. Hence, the ebes shown in Figure 3.2 is also a cbes. Further-
more,

⊔
n Ên from the counterexample of Subsection 3.3.1 is a cbes, whereasÊfin is not, which

follows from Example 2.14.

Theorem 3.10 (Complete Partial Order) The ordered set〈CBES, �〉 is anω-complete par-
tial order, where

⊔
n En from Definition 3.8 is the least upper bound.

Proof: The proof is given in Subsection 3.6.1. ut

Remark 3.11 The set of bundle event structures can be restricted in the same way asEBES
to obtain a cpo.

Remark 3.12 There is another possibility of defining an order onEBES that yields a complete
partial order: An ebes is smaller than another one if it has less events but more bundles ({(X ∩
E1, e) | X 7→2 e ∧ e ∈ E1} ⊆7→1), i.e. events in the greater ebes can be enabled earlier as in
the smaller one. There, the ebes do not have to satisfy the approximation closedness constraints
to yield a complete partial order, i.e.EBES with this order yields a cpo. But not all standard
operators (compare Subsection 3.3.3) are continuous with respect to this order.

Transition system from a cbes.

Here, we describe how to obtain a transition system from a cbes, which is later used to establish
a consistency result for the denotational and the operational semantics. First, we specify the
initial events, i.e. those events which do not have a causal constraint, then we specify the events
that correspond to termination.

Definition 3.13 The set ofinitial eventsof cbesE is defined by

init(E) = {e ∈ E | ¬(∃X : X 7→ e)}.

The set ofsuccessful termination eventsof cbesE is defined by

exit(E) = {e ∈ E | l(e) =
√
}.

In order to obtain a transition system from a cbes, theremainder[20, 126, 131] of a cbes
with respect to an initial event is defined. The remainder denotes the event structure after the
execution of this initial event. Remainders are used to obtain a transition relation forCBES.

36 CHAPTER 3. STANDARD ACTION REFINEMENT

daPPPPPPPPPqdb d√�

d
a

d
c

- �
���

��*

Q
Q

Q
Q

QQ

�
��

-

(a + b.0)‖{a}(a‖∅a.c)

d√
∅ d

c
- �

���
��*

∅ d
c

-

∅PPPPPPPPPq d√
d
c
�

���
��*

∅PPPPPPPPPq d√

-
a

-b

-

a

-c

Figure 3.3: Transition System Derived fromCBES

Definition 3.14 (Remainder of a cbes)Let E ∈ CBES ande ∈ init(E). Then theremainder
E[e] is given by(E ′, ;′, 7→′, l′) where

E ′ = {e′ ∈ E | e′ 6= e ∧ ¬(e′ ; e)}
;′ = ; ∩(E ′ × E ′)
7→′ = {(X ∩ E ′, e′) | e′ ∈ E ′ ∧X 7→ e′ ∧ e /∈ X}

l′ = l � E ′

Lemma 3.15 LetE ∈ CBES ande ∈ init(E). ThenE[e] ∈ CBES.

Proof: Define Ẽ = (E, ;, {(X, ẽ) ∈7→| e /∈ X}, l). We will show thatẼ ∈ CBES. Let
X ⊆ E and(En)n∈IN be a finite, monotone approximation ofE such that∀n : ∃Xn : Xn ˜7→ẽ ∧
X ∩ En = Xn ∩ En. Then there ism ∈ IN such thate ∈ Em. Thus,e /∈ X. Furthermore, we
haveX 7→ ẽ by the approximation closedness condition ofE . Hence,X ˜7→ẽ.
It is easy to check thatE[e] = Ẽ � EE[e]

. And so the result follows by Lemma 3.27. ut

Definition 3.16 The transition relation↪→⊆ CBES × Act√ × CBES is defined by↪→=
{(E , l(e), E[e]) | E ∈ CBES ∧ e ∈ init(E)}.

An example of a transition system obtained from↪→ is given in Figure 3.3.

3.3.3 Operators onCBES

Here, we present the operators onCBES that are later used to define the denotational seman-
tics. They are taken from [125] except for some slight modifications. For example, we model
the disjoint union directly and we introduce more conflicts. This is done in order to obtain

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PASR 37

a closer connection between the operational and the denotational semantics. The refinement
operator, which does not appear in [125], is an adapted version of [79, 133].

Definition 3.17 (Operators onE) LetA ⊆ Obs. Then define

.̂ : (Obs ∪ {τ})×CBES → CBES with a .̂ E = ({•} ∪ ({?1} × E), ;̃, ˜7→, l̃) where

;̃ = {((?1, e), (?1, e
′)) | (e, e′) ∈;}

˜7→ = {({?1} ×X, (?1, e)) | (X, e) ∈7→} ∪ {{(•}, (?1, e)) | e ∈ init(E)}

l̃(ẽ) =

{
l(e) if ẽ = (?1, e)
a if ẽ = •

+̂ : CBES×CBES → CBES with E1+̂E2 = (Ẽ, ;̃, ˜7→, l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
;̃ = {((?i, ei), (?j, ej)) | i 6= j ∧ ej ∈ init(Ej)} ∪ {((?i, e), (?i, e

′)) | e ;i e′}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
l̃((?i, e)) = li(e)

;̂ : CBES×CBES → CBES with E1 ;̂ E2 = (Ẽ, ;̃, ˜7→, l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
;̃ = {((?i, e), (?i, e

′)) | e ;i e′ ∨ (i = 1 ∧ e 6= e′ ∧ e′ ∈ exit(E1))}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e} ∪

{({?1} × exit(E1), (?2, e)) | e ∈ init(E2)}

l̃((?i, e)) =


l1(e) if i = 1 ∧ e /∈ exit(E1)
τ if i = 1 ∧ e ∈ exit(E1)
l2(e) if i = 2

[̂> : CBES×CBES → CBES with E1 [̂>E2 = (Ẽ, ;̃, ˜7→, l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
;̃ = {((?i, e), (?i, e

′)) | e ;i e′} ∪ ({?1} × E1))× ({?2} × init(E2)) ∪
({?2} × E2))× ({?1} × exit(E1))

˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
l̃((?i, e)) = li(e)

‖̂A : CBES×CBES → CBES with E1‖̂AE2 = (Ẽ, ;̃, ˜7→, l̃) where

Ẽ = (Ef
1 × {?}) ∪ ({?} × Ef

2) ∪ Es

Ef
i = {e ∈ Ei | li(e) /∈ A ∪ {

√
}}

Es = {(e1, e2) ∈ E1 × E2 | l1(e1) = l2(e2) ∈ A ∪ {
√
}}

;̃ = {((e1, e2), (e
′
1, e

′
2)) | e1 ;1 e′1 ∨ e2 ;2 e′2 ∨

(e1 = e′1 6= ? ∧ e2 6= e′2) ∨ (e2 = e′2 6= ? ∧ e1 6= e′1)

˜7→ = {({(e′1, e′2) ∈ Ẽ | e′i ∈ Xi}, (e1, e2)) | Xi 7→i ei}

l̃((e1, e2)) =

{
l1(e1) if e2 = ?
l2(e2) otherwise

38 CHAPTER 3. STANDARD ACTION REFINEMENT

E+ dada

E12da1

da2

d√

-
-

Ref s
{a}(E+, (a → E12))da1

da2

dτ

da1

da2

dτ

-
-

-
-

dashed arrows fromai-nodes toτ -nodes are omitted

Figure 3.4: Illustration of theRef s Operator

Ref s
A : CBES× (A → CBES) → CBES with Ref s

A(E , θ) = (Ẽ, ;̃, ˜7→, l̃) where

Ẽ = {(e, ê) | e ∈ E ∧ l(e) ∈ A ∧ ê ∈ Eθ(l(e))} ∪
{(e, e) ∈ E × E | l(e) /∈ A}

;̃ = {((e1, ê1), (e2, ê2)) | e1 ; e2 ∨ (e1 = e2 ∧ l(e1) ∈ A ∧ ê1 6= ê2 ∧
(ê1 ;θ(l(e1)) ê2 ∨ ê2 ∈ exit(θ(l(e1)))))}

˜7→ = {({e} ×X ′, (e, ê)) | l(e) ∈ A ∧X ′ 7→θ(l(e)) ê} ∪
{(X̃, (e, ê)) | ∃X : X 7→ e ∧ (l(e) ∈ A ⇒ ê ∈ init(θ(l(e))))∧
X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ (l(e′) ∈ A ⇒ ê′ ∈ exit(θ(l(e′))))}}

l̃((e, ê)) =


l(e) if l(e) /∈ A
lθ(l(e))(ê) if l(e) ∈ A ∧ lθ(l(e))(ê) 6=

√

τ if l(e) ∈ A ∧ lθ(l(e))(ê) =
√

\̂A : CBES → CBES with E\̂A = (E, ;, 7→, l̃) where

l̃(e) =

{
l(e) if l(e) /∈ A
τ if l(e) ∈ A

A small example that illustrates how the refinement operatorRef s behaves is given in Figure
3.4. There,(a → E12) denotes the function from{a} to CBES that mapsa to E12.

Proposition 3.18 All operators of Definition 3.17 are well defined, i.e. they really yield ele-
ments ofCBES. Moreover all operators from Definition 3.17 are continuous with respect to
�.

Proof: The proof is given in Subsection 3.6.2. ut

3.3.4 Denotational Meaning forPAsr

First, we define the denotational semantics of expressions (EXPsr) with respect to variable as-
signments, i.e. functions fromVar to CBES. Then variable assignments are derived from
declarations, which are used to define the denotational semantics of processes (PAsr).

3.3. DENOTATIONAL TRUE CONCURRENCY SEMANTICS FOR PASR 39

daPPPPPPPPPqdb d√�

d
a

d
c

- ���
���*

Q
Q

Q
Q

QQ

�
��

-

(a + b.0)‖{a}(a‖∅a.c)

da

d
c

db

�� d√

d√

-

- -

(a.b) [>c

Figure 3.5: Examples of the Denotational Semantics ofEXPsr

Definition 3.19 Let [[]] : EXPsr × (Var → CBES) → CBES be defined as follows (where
ρ : Var → CBES)

[[0]]ρ = (∅, ∅, ∅, ∅) [[1]]ρ = ({•}, ∅, ∅, {(•,
√

)})
[[a.B]]ρ = a .̂ [[B]]ρ [[τ.B]]ρ = τ .̂ [[B]]ρ
[[B1 + B2]]ρ = [[B1]]ρ+̂[[B2]]ρ [[B1; B2]]ρ = [[B1]]ρ ;̂ [[B2]]ρ

[[B1 [>B2]]ρ = [[B1]]ρ [̂>[[B2]]ρ [[B1‖AB2]]ρ = [[B1]]ρ‖̂A[[B2]]ρ
[[B[(a → Ba)

a∈A]]]ρ = Ref s
A([[B]]ρ, (a → [[Ba]]ρ)

a∈A)

[[B\A]]ρ = [[B]]ρ\̂A [[x]]ρ = ρ(x)

Examples of how[[]] behaves are given in Figure 3.5.

To apply the cpo theory we need the following lemma.

Lemma 3.20 [[B]] is continuous for everyB ∈ EXPsr.

Proof: By structural induction. We only present the caseB1 + B2.

[[B1 + B2]]⊔i ρi
= +̂([[B1]]⊔i ρi

, [[B2]]⊔i ρi
)

by induction
= +̂(

⊔
i

[[B1]]ρi
,
⊔
i

[[B2]]ρi
)

Theorem 2.9
= +̂(

⊔
i

([[B1]]ρi
, [[B2]]ρi

))

Prop. 3.18
=

⊔
i

+̂([[B1]]ρi
, [[B2]]ρi

)

=
⊔
i

[[B1 + B2]]ρi

The other cases follow analogously. ut
Now we are ready to give the meaning of a declaration.

Supposedecl : Var → EXPsr. Then defineFdecl : (Var → CBES) → (Var → CBES) with
Fdecl(ρ)(x) = [[decl(x)]]ρ. From Lemma 3.20 it follows thatFdecl is continuous. Therefore, from
Theorem 2.11 we get{[]} : (Var → EXPsr) → (Var → CBES) with {[decl]} = fix(Fdecl) =⊔

nFn
decl(⊥) is well defined.

We define the denotation of a process as follows.

40 CHAPTER 3. STANDARD ACTION REFINEMENT

Definition 3.21 (Denotational Semantics)

Define[[]] : PAsr → CBES by [[〈decl, B〉]] = [[B]]{[decl]}.

3.4 Operational Semantics forPAsr

Operational semantics that coincide with the denotational semantics have been given for process
algebras with action refinement in [70, 98, 157]. Operational semantics for the ST-approache2,
which can be straightforwardly adjusted to operational semantics for action refinement, have
been examined in [44, 49, 98, 102]. The papers based on the ST-approach do not explicitly ex-
amine consistency between denotational and operational semantics. The underlying languages
used in the cited papers do not contain disruption. Moreover, most of the operational semantics
defined in these papers are inappropriate for languages that contain disruption like our language
does. This is argued as follows.

In [44, 49, 70], a refinement expressionB[a → Q] is modeled by invokingQ in parallel with
the remaining process whenevera is activated inB. This leads to problems if a disrupt operator
is involved. For example, actiona can be disrupted during its execution. But in the above
approachQ is executed, even thougha is disrupted.

On the other hand, in [98, 157] the execution of an action is only allowed if all active actions
are still executable afterwards. This is not a reasonable approach if a language with a disrupt
operator is considered, since this operator can remove active actions in a reasonable way.

The operational semantics mentioned above have to extend the syntax of the underlying lan-
guages in order to define the operational semantics for refinement: Further syntactical operators
have to be added to the languages in [44, 49, 70]. And [98, 157] extends the syntactical expres-
sions by moving to an event-based language, which leads to a very discriminating theory.

We will present a new approach to an operational semantics that corresponds to the denotational
semantics. This approach can handle the disrupt operator and, moreover, no extension of the
syntactical expressions is necessary.

The operational semantics is defined by using transition rules that simulate the execution of a
refined action within the refinement construction. For example, the process(a.B)[a → a1.a2]
evolves into(a.B)[a → a2] by executinga1 provideda does not occur inB. If a occurs in
B as ina.a and if we proceed in the same way, we lose the information to which term the
as occurring inB have to be refined, i.e.(a.a)[a → a1.a2] must not evolve to(a.a)[a → a2]
by executinga1. To circumvent this problem, we rename the executed actiona by a fresh
action namea′ and extend the refinement by an additional refinement, i.e.(a.a)[a → a1.a2]
evolves into(a′.a)[(a → a1.a2), (a

′ → a2)] by executinga1, wherea′ 6= a. This is still not
sufficient, since we have to trigger the choice when an action is renamed in the choice operator,
i.e. (b + (a.B))[a → a1.a2] evolves into(a′.B)[(a → a1.a2), (a

′ → a2)] by executinga1.
Otherwise,(b + (a.B))[a → a1.a2] would be able to executeb aftera1. This is counterintuitive,
and therefore the choice has to be triggered. We model the renaming of the action by extending
the transition relation using additional transition labels. The choices are also triggered by those
additional transition labels.

2In the ST-approach, the execution of an action is split into the two different events of the start and the ending
(termination) of an action, where the ending is uniquely related to its start.

3.4. OPERATIONAL SEMANTICS FOR PASR 41

Before we introduce the transition rules forEXPsr, we have to determine all actions which occur
in a given expression. We need this in order to determine a fresh action name for the renaming
of an action. Furthermore, we need|Obs| > |IN| to guarantee the existence of a fresh action
name.

Definition 3.22 The functionL̃ : EXPsr → Pcount(Obs) is defined as follows.

L̃(0) = L̃(1) = L̃(x) = ∅ L̃(a.B) = {a} ∪ L̃(B)

L̃(τ.B) = L̃(B) L̃(B1‖AB2) = L̃(B1) ∪ L̃(B2) ∪ A

L̃(B1 + B2) = L̃(B1; B2) = L̃(B1 [>B2) = L̃(B1) ∪ L̃(B2)

L̃(B\A) = L̃(B) ∪ A L̃(B[(a → Ba)
a∈A]) = L̃(B) ∪ A ∪

⋃
a∈A L̃(Ba)

Then, defineL : PAsr → Pcount(Obs) byL(〈decl, B〉) = L̃(B) ∪
⋃

x∈Var L̃(decl(x)).

The setA has to be added in the cases of the parallel operator and the hiding operator, since
otherwise confusion may arise. For example, if actiona is renamedb in a‖{b}1, we obtain a
change in the behavior, since the process is deadlocked after the renaming.

The transition rules of−→s
decl⊆ EXPsr× (Act√∪ (Obs×Obs))×EXPsr are presented in Table

3.1, whereγ is an element ofAct√ ∪ (Obs × Obs). We write −→s if decl is clear from the

context. Here
(a,b)−→ means that one executable actiona is renamedb and that all choices which

would be triggered by the execution of thisa are taken.
(a,b)−→ can be interpreted that actiona has

been started and that this actiona will finish by executing actionb.

In rule A2, actiona is relabeled byb. RuleC makes no difference between labels fromAct√

and(Obs× Obs). Hence, in both cases the choice is triggered.

The disrupt operator[>also disrupts the process if an(a, b) transition takes place, since in this
chapter the start of an action triggers the disruption.

The parallel operator works asynchronously exactly for those actions which are not inA∪{
√
}.

For synchronization purposes,(a, b) is regarded to be inA if and only if a ∈ A. The rule for
synchronization is divided intoP2 andP3, since in the case where(a, b) is executed, we have to
take care that further derivations will synchronize onb.

RuleRef1 considers the case when an action is executed which is not refined. In this case, only
the term which is refined is modified. RuleRef2 considers the case when an actionâ which
is refined by a non-terminating process is executed. Hereâ is renamed with a fresh action
name, which is ensured byb /∈ A ∪ L(〈decl, B〉). Such ab always exists, since|Obs| > |IN|.
Furthermore, we keep all present refinements and add a new refinement for the executed action
â, which is now labeled withb. The case when the refined process terminates is considered in
rule Ref3. In this case,̂a terminates. Therefore, it has to be removed, which is done by taking
the transition labeled witĥa. The refinement remains unaffected.

The remaining rules are the standard ones [32].

RulesP1, P3, Ref1, Res1 sometimes derive processes with undesired behavior by executing

(a, b). For example,a ‖{b}1
(a,b)−→ b‖{b}1, which deadlocks. The undesired behavior can only

appear if actionb occurs in the considered process. Such undesired behavior does not cause any
problems, since we are only interested in transitions labeled with elements ofAct√. The only
situation where we need(a, b) transitions is in ruleRef2, but there we take care thatb is fresh.

42 CHAPTER 3. STANDARD ACTION REFINEMENT

T :
1

√
−→ 0

A1 :
a.B

a−→ B
A2 :

a, b ∈ Obs

a.B
(a,b)−→ b.B

C : B1
γ−→ B′

B1 + B2
γ−→ B′

B2 + B1
γ−→ B′

S1 :
B1

γ−→ B′
1 γ 6=

√

B1; B2
γ−→ B′

1; B2

S2 :
B1

√
−→ B′

1

B1; B2
τ−→ B2

I1 :
B1

γ−→ B′
1 γ 6=

√

B1 [>B2
γ−→ B′

1 [>B2

I2 :
B1

√
−→ B′

1

B1 [>B2

√
−→ B′

1

I3 :
B2

γ−→ B′
2

B1 [>B2
γ−→ B′

2

P1 :
B1

γ−→ B′
1 γ /∈ {

√
} ∪ A ∪ (A× Obs)

B1‖AB2
γ−→ B′

1‖AB2

B2‖AB1
γ−→ B2‖AB′

1

P2 :
B1

γ−→ B′
1 B2

γ−→ B′
2 γ ∈ {

√
} ∪ A

B1‖AB2
γ−→ B′

1‖AB′
2

P3 :
B1

(a,b)−→ B′
1 B2

(a,b)−→ B′
2 a ∈ A

B1‖AB2
(a,b)−→ B′

1‖A∪{b}B
′
2

Ref1 :
B

γ−→ B′ γ /∈ A ∪ (A× Obs)

B[(a → Ba)
a∈A]

γ−→ B′[(a → Ba)
a∈A]

Ref2 :
B

(â,b)−→ B′ â ∈ A b /∈ A ∪ L(〈decl, B〉) Bâ
γ−→ B′′ γ 6=

√

B[(a → Ba)
a∈A]

γ−→ B′[(a → Ba)
a∈A, (b → B′′)]

Ref3 : B
â−→ B′ â ∈ A Bâ

√
−→ B′′

B[(a → Ba)
a∈A]

τ−→ B′[(a → Ba)
a∈A]

Res1 :
B

γ−→ B′ γ /∈ A ∪ (A× Obs)

B\A γ−→ B′\A
Res2 : B

a−→ B′ a ∈ A
B\A τ−→ B′\A

Rec :
decl(x)

γ−→ B′

x
γ−→ B′

Table 3.1: Transition Rules for−→s
decl

Example 3.23 We illustrate the transition rules by presenting a derivation path of the process(
a‖{a}(a + b.0)

)
[a → c][c → d] in Figure 3.6. In the first step, actiona is renamedc. This

seems to be strange, sincec will be refined tod. But it does not cause a problem, because the
operational semantics refinesc to c′ before it gets under the influence of[c → d]. The choice is
triggered by the renaming transition as it is illustrated by the first derivation step.

3.4. OPERATIONAL SEMANTICS FOR PASR 43

(
a‖{a}(a + b.0)

)
[a → c][c → d]yd(

c‖{a,c}c
)
[a → c, c → c′][c → d, c′ → 1]yτ(

c′′‖{a,c,c′′}c
′′) [a → c, c → c′, c′′ → 1][c → d, c′ → 1]yτ(

1‖{a,c,c′′}1
)
[a → c, c → c′, c′′ → 1][c → d, c′ → 1]y√(

0‖{a,c,c′′}0
)
[a → c, c → c′, c′′ → 1][c → d, c′ → 1]

Figure 3.6: Example of a Process Derivation with respect to−→s
decl

Definition 3.24 (Operational Semantics)The operational semanticsOs : PAsr → TS is
given byOs(〈decl, B〉) = (EXPsr,Act√, −→Os , B) where−→Os=−→s

decl ∩(EXPsr×Act√×
EXPsr).

We still have to argue that the presented operational semantics is reasonable. The fact that the
transitions labeled with elements ofObs× Obs always generate an infinite transition system is
problematic. More precisely, if processB can executea ∈ Obs then it can execute(a, b) for ev-
ery b ∈ Obs, which yields a transition system with uncountably infinite branches. Moreover, it

is also possible to derive undesirable infinite derivations, for examplea1.1
(a1,a2)−→ · · · (ai,ai+1)−→ · · ·.

Nevertheless, this does not cause any problem since only the transitions labeled with elements
of Act√ are used to define the operational semantics (Definition 3.24).

But we still have an infinitely branching transition system by ruleRef2, for examplea[a →
a1.a2]

a1−→ b[a → a1.a2, b → a2] for all b ∈ Obs\{a}. This is also no problem, since all the
expressions areα-equivalent[22], i.e. they can be translated into each other by action renaming
of the bound actions. In other words, in ruleRef2, it is not important whichb /∈ A∪L(〈decl, B〉)
is chosen, since all choices yieldα-equivalent expressions.

It is also possible to apply techniques, similar to [44], in order to obtain unique action renam-
ing, which makesα-conversion obsolete. This technique is used in Chapter 7 to obtain an
operational semantics (Section 7.4).

Our operational semantics is a meaningful semantics with respect to the denotational seman-
tics, since the transition system derived from the denotational semantics is bisimilar to the
operational semantics.

Theorem 3.25 (Consistency)Let 〈decl, B〉 ∈ PAsr. Then the transition systemsOs(〈decl, B〉)
and(CBES,Act√, ↪→, [[〈decl, B〉]]) are bisimilar.

Proof: The proof is given in Subsection 3.6.3. ut

44 CHAPTER 3. STANDARD ACTION REFINEMENT

3.4.1 Modified Operational Semantics

The operational semantics we have just presented yields unnecessarily long terms, since we
have to copy each refinement, even though it is used only once. Consider, for example, the
process(a.B′)[a → a1.a2. · · · an.1]. Then we have(a.B′)[a → a1.a2. · · · an.1]

a1−→ · · · ai−→
(a(i).B′)[(a → a1.a2. · · · an.1), (a(1) → a2. · · · an.1), · · · , (a(i) → ai+1. · · · an.1)] for i ≤ n and
suitable actionsa(j). Here, the refinement ofa(j) → aj+1. · · · an.1 is an unnecessary information
for all j < i, sincea(j) does not occur in(a(i).B′).

Our operational semantics does not only yield unnecessary long terms, it also yields infinite
transition systems in cases where finite ones would be sufficient. For example, letdecl(X) =

a.X, thenX[a → b]
(

b−→ τ−→
)i

X[a → b, a(1) → 1, · · · a(i) → 1]. Therefore, we get an infinite

transition system. But it is sufficient thatX[a → b] evolves toX[a → b] by executing(bτ)i,
sinceX[a → b] contains all necessary information.

To circumvent the unnecessary copy of the refinement, we divideObs into two parts. One part
(Obsa) is used for active actions, i.e. actions which have been renamed. The other part (ObsP)
is used for actions in the original expression, i.e. in the expression on which the transition
rules were applied. We then know that an executable action ofObsa only appears ‘once’ in the

process. More precisely, supposeB only contains actions ofObsP andB
γ1−→ · · · γi−→ B′ (b,c)−→

B′′, whereb ∈ Obsa andc /∈ L(〈decl, B′〉). ThenB′[b → B̃] ∼ B′′[c → B̃]. This gives us the
advantage of keeping actions ofObsa unrenamed.

Furthermore, when an action ofObsa finishes, we remove it from those positions in the expres-
sions in which they were inserted by ruleP3 andRef2. Therefore we obtain the advantage of
generating more finite state transition systems. This can also be achieved when noα-conversion
is considered, for example by choosing always the ‘smallest’ action ofObsa that does not occur
for action renaming.

The ideas mentioned above are formalized as follows. LetObsP , Obsa ⊆ Obs with |ObsP | =
|Obsa| = |IN| andObsP ∩ Obsa = ∅. Then the modified transition rules are those of Table 3.1
whereA2, P2, Ref2 andRef3 are replaced by the transition rules presented in Table 3.2.

In rule Am
2 , it is now only possible to start (renaming) actions ofObsP , since actions ofObsa

are considered to be active, and therefore they can not be started again. Furthermore, the action
a in ruleAm

2 can only be replaced by an action ofObsa, sincea becomes active.

RuleP2 is modified by removing actionγ from the synchronization set if it is an active action.
This is possible, sinceγ terminates in this rule, and therefore it does not appear inB′

1‖A′B′
2

when it is fromObsa.

The ruleRef2 is split into two rules. RuleRefm
2.1 considers the case when an action ofObsP is

refined. In this case the rule stays the same. And ruleRefm
2.2 considers the case when an active

action is refined. Here we do not rename the action nor do we change the expression which gets
refined at all, i.e. we do not changeB. We only check that̂a is an initial action, which is done

by B
â−→ B′. This is necessary for the soundness, since we have a disrupt operator, and so not

every started action which has not terminated has to be active. The change in the refinement in
ruleRefm

2.2 is directly done at̂a, i.e. â is refined byB′′.

In rule Refm
3 we remove, similar to rulePm

2 , actionγ from the expression if it is an active
action.

3.5. DISCUSSION 45

Am
2 : a ∈ ObsP b ∈ Obsa

a.B
(a,b)−→ b.B

Pm
2 :

B1
γ−→ B′

1 B2
γ−→ B′

2 γ ∈ {
√
} ∪ A A′ = A\({γ} ∩ Obsa)

B1‖AB2
γ−→ B′

1‖A′B′
2

Refm
2.1 :

B
(â,b)−→ B′ â ∈ A ∩ ObsP b /∈ A ∪ L(〈decl, B〉) Bâ

γ−→ B′′ γ 6=
√

B[(a → Ba)
a∈A]

γ−→ B′[(a → Ba)
a∈A, (b → B′′)]

Refm
2.2 :

B
â−→ B′ â ∈ A ∩ Obsa Bâ

γ−→ B′′ γ 6=
√

B[(a → Ba)
a∈A]

γ−→ B[(a → Ba)
a∈A\{â}, (â → B′′)]

Refm
3 :

B
â−→ B′ â ∈ A Bâ

√
−→ B′′ A′ = A\({â} ∩ Obsa)

B[(a → Ba)
a∈A]

τ−→ B′[(a → Ba)
a∈A′

]

Table 3.2: Modified Transition Rules for−→s
decl

The modified transition rules and the original transition rules yield bisimilar transitions systems:

Theorem 3.26 Suppose〈decl, B〉 ∈ PAsr andL(〈decl, B〉) ⊆ ObsP .
ThenOs

m(〈decl, B〉) and(CBES,Act√, ↪→, [[〈decl, B〉]]) are bisimilar, whereOs
m is derived as

Os except that the modified transition rules are used.

Proof: Similar to the proof of Theorem 3.25. ut

3.5 Discussion

In this chapter, we have reproduced the standard action refinement approach (the choice is con-
sidered to be start-based) in order to give an introduction to the subject of action refinement.
We had to define a subclass of (extended) bundle event structures, called closed bundle event
structures, to yield a reasonable complete partial order on these kinds of event structures. Fur-
thermore, we have presented a new technique to define an operational semantics on process
algebras containing action refinement operators such that the operational and the denotational
semantics are consistent. With this technique it is not necessary to extend the syntactical ex-
pressions of the process algebra in order to define the operational semantics.

In the following chapter, we take a first look on the end-based view. More precisely, we define an
action refinement operator on closed bundle event structures that considers the conflict relation
to be end-based triggered. We show that the start-based and the end-based views lead to different
theories, for example the standard equivalences are not preserved by the end-based refinement
operator. Therefore, we introduce new equivalences that are congruences for the end-based

46 CHAPTER 3. STANDARD ACTION REFINEMENT

refinement operator. Finally, we argue that closed bundle event structures are not appropriate to
be used for the end-based view.

3.6 Proofs

3.6.1 Proof of Theorem 3.10

First we show thatCBES is closed under restriction.

Lemma 3.27 LetE ∈ CBES andE ′ ⊆ E. ThenE � E ′ ∈ CBES.

Proof: Is an immediate consequence of Corollary 2.18. ut

The following lemma is later used to verify the uniqueness of the minimal upper bounds in
CBES.

Lemma 3.28 Two cbes are equal if and only if they coincide on every finite restriction, i.e.
∀E , E ′ ∈ CBES : (E = E ′ ∧ ∀Ẽ ∈ Pfin(E) : E � Ẽ = E ′ � Ẽ) ⇔ E = E ′.

Proof: It is easy to check that the conflict relations and the action-labeling functions coincide.
Let (En)n∈IN be a finite, monotone approximation ofE. SupposeX 7→ e (the other inclusion
follows by symmetrical arguments). Thene ∈ En ⇒ (X ∩En 7→E�En e). From the assumption
we get7→E�En=7→E ′�En. Hence,X 7→′ e by the approximation closedness condition ofE ′. ut

Proof of Theorem 3.10: We have to verify the following facts (whereE =
⊔

n En):

Reflexivity: Obvious.

Transitivity: Follows from Remark 3.5.

Antisymmetry: This is an immediate consequence of Remark 3.7.

Least element:It is easily seen that(∅, ∅, ∅, ∅) is a least element.

E is a cbes:The only non-trivial fact is the approximation closedness condition.

Supposee ∈ E, X ⊆ E and (E ′
k)k∈IN is a finite, monotone approximation ofE where

X ∩ E ′
k ∈ {X ′ ∩ E ′

k | X ′ 7→ e} holds.

From the definition of
⊔

n En we get that for allk there is aXk ⊆
⋃

n∈IN En such that
Xk∩E ′

k = X∩E ′
k and∀n : e ∈ En ⇒ (Xk∩En) 7→n e. Now supposee ∈ En, then we have

(Xk∩En∩E ′
k) 7→En�(En∩E′

k) e whenevere ∈ E ′
k. Furthermore,Xk∩En∩E ′

k = X∩En∩E ′
k.

Therefore,X ∩ En 7→n e, sinceEn ∈ CBES and (En ∩ E ′
k)k∈IN is a finite, monotone

approximation ofEn. And so by definitionX 7→ e.

3.6. PROOFS 47

E is an upper bound:Trivial, except for the bundle relation.

SupposeX 7→ e ande ∈ Ek. Then(X ∩ Ek) 7→k e by definition of
⊔

n En.

SupposeXk 7→k e. Let Φ : IN → P(E) such thatΦ(n) = Xk ∩ En if n ≤ k and if n > k
thenΦ(n) ∈ {X ′ | X ′ 7→n e ∧ X ′ ∩ En−1 = Φ(n − 1)}. The existence of such a kind
of function follows from the axiom of choice, sinceEn−1 � En implies that the above set is
nonempty.

Furthermore, we show by induction thatEn ∩ Φ(i) = Φ(n) wheneveri ≥ n. If i = n, then
the statement follows, sinceΦ(j) ⊆ Ej. Supposei > n thenEn∩Φ(i) = En∩Ei−1∩Φ(i) =
En ∩ Φ(i− 1) and the rest follows by induction.

Therefore,En ∩
⋃

i Φ(i) = Φ(n), since(Φ(i))i∈IN is monotone. And from the definition of
Φ we haveΦ(n) 7→n e whenevere ∈ En. Hence,

⋃
i Φ(i) 7→ e andEk ∩

⋃
i Φ(i) = Xk.

E is the least upper bound:Suppose∀n : En � E ′. ThenE ⊆ E ′. Hence,E ′ � E ∈ CBES by
Lemma 3.27.

SupposeẼ ∈ Pfin(E). Then there is ann such thatẼ ⊆ En. Therefore,(E ′ � E) � Ẽ =
E ′ � Ẽ = (E ′ � En) � Ẽ = En � Ẽ = (E � En) � Ẽ = E � Ẽ. Hence,E ′ � E = E by Lemma
3.28, i.e.E � E ′. ut

3.6.2 Proof of Proposition 3.18

First, we show the well definedness and then the continuity.

Lemma 3.29 All operators of Definition 3.17 are well defined, i.e. they really yield elements of
CBES.

Proof: We only present the cases of the parallel and the refinement operator. The well-
definedness of the other operators can be easily checked.

E1‖̂AE2: Let (ẽ1, ẽ2) ∈ EE1‖̂AE2
DefineMi = {X | X 7→i ẽi}. ThenMi is approximation

closed with respect toEi ∪ {?}. Thus by Corollary 2.20M ′ = {{(e1, e2) ∈ (E1 ∪ {?}) ×
(E2 ∪ {?}) | ei ∈ Xi} | i ∈ {1, 2} ∧ Xi ∈ Mi} is approximation closed with respect to
(E1 ∪ {?}) × (E2 ∪ {?}). And so the approximation closedness of7→E1‖̂AE2

follows from
Corollary 2.18, since{X | X 7→E1‖̂AE2

(ẽ1, ẽ2)} = {X ′ ∩ EE1‖̂AE2
| X ′ ∈ M ′}.

Ref s
A(E , θ): Let (e′, ê′) ∈ ERef s

A(E,θ). DefineM = {X | X 7→ e′} and

M1 =

{
{{e′} × X̂ | X̂ 7→θ(l(e′)) ê′} if l(e′) ∈ A
∅ otherwise

.

ThenM1 is approximation closed with respect toERef s
A(E,θ). Furthermore, let

Ee =

{
Eθ(l(e)) if l(e) ∈ A
{e} otherwise

andMe =

{
{exit(θ(l(e)))} if l(e) ∈ A
{{e}} otherwise

.

Obviously,Me is approximation closed with respect toEe.

From Corollary 2.21 we obtain that

M2 =

{
∅ if l(e′) ∈ A ∧ ê′ /∈ init(θ(l(e′)))
{{(e, ê) | e ∈ X ∧ ê ∈ Xe} | X ∈ M ∧Xe ∈ Me} otherwise

is approximation closed with respect toERef s
A(E,θ). And so the approximation closedness of

7→Ref s
A(E,θ) follows from Proposition 2.15, since{X ′ | X ′ 7→Ref s

A(E,θ) (e′, ê′)} = M1 ∪M2.

48 CHAPTER 3. STANDARD ACTION REFINEMENT

The other conditions are easy to check. ut
To simplify the verification of the continuity, we use Winskel’scontinuity on events[178].

Definition 3.30 Let D be a cpo. An operatorF : D → CBES is continuous on eventsif and
only if F is monotonic and for everyω-chain(di)i∈IN in D we haveEF (

⊔
i di) ⊆ E⊔

i F (di).

Lemma 3.31 Let D be a cpo and letF : D → CBES. ThenF is continuous if and only ifF
is continuous on events.

Proof: Letv be the partial order ofD. Continuity on events is obviously implied by continuity.
Now let (di)i∈IN be anω-chain inD. Then

∀i : di v
⊔
i

di
F is monotonic⇒ ∀i : F (di) � F (

⊔
i

di)

⇒
⊔
i

F (di) � F (
⊔
i

di)

F continuous on events⇒
⊔
i

F (di) � F (
⊔
i

di) ∧ EF (
⊔

i di) ⊆ E⊔
i F (di)

Remark 3.7⇒
⊔
i

F (di) = F (
⊔
i

di),

which completes the proof. ut

Lemma 3.32 All operators from Definition 3.17 are continuous with respect to�.

Proof: It is straightforward to check that every operator from Definition 3.17 considered com-
ponentwise is continuous on events. Hence, the statement follows by Lemma 3.31 and Lemma
2.10. ut

3.6.3 Proof of Theorem 3.25

We introduce an event-based transition relation. Then we show that its corresponding transition
system is bisimilar toOs(〈decl, B〉) and that it is bisimilar to(CBES,Act√, ↪→, [[〈decl, B〉]]).
And so Theorem 3.25 follows by the transitivity of bisimilarity [138, page 90]. The event-based
transition relation is particularly introduced to handle unguarded recursion.

Event-Based Transition Systems.

We want to define event-based transition rules such that the corresponding action occurrence
is denoted by the event which corresponds to this action occurrence in the denotational seman-
tics. Therefore, the information of the original positions (events) has to be kept in the derived
expressions. This is done by defining the expression setEXPe

sr, which contains exactly those
elements generated by

C ::= B | C; B | C [>B | C‖AC | C[(a → C)a∈A] | C\A | dCei

3.6. PROOFS 49

wherea ∈ Obs, B ∈ EXPsr, i ∈ {1, 2} andA ⊆ Obs with |A| ≤ |IN|. The symbols in the
definition ofEXPe

sr, e.g. [>, are overloaded, since they are also used in the definition ofEXPsr.
Hence, the unique derivation of an expression ofEXPe

sr is contradicted. Nevertheless, it does not
harm our theory (both have the same transition rule) and therefore, we use the same symbols,
especially in order to reduce the numbers of the transition rules.

We do not need to extend the declaration, i.e. we definePAe
sr = (Var → EXPsr)× EXPe

sr.

The functionL is adapted toL′ : PAe
sr → Pcount(Obs) as follows.

L′(〈decl, B〉) = L(〈decl, B〉)
L′(〈decl, C; B〉) = L′(〈decl, C [>B〉) = L′(〈decl, C〉) ∪ L′(〈decl, B〉)
L′(〈decl, C1‖AC2〉) = L′(〈decl, C1〉) ∪ L′(〈decl, C2〉) ∪ A
L′(〈decl, C[(a → Ca)

a∈A]〉) = L′(〈decl, C〉) ∪ A ∪
⋃

a∈A L′(〈decl, Ca〉)
L′(〈decl, C\A〉) = L′(〈decl, C〉) ∪ A
L′(〈decl, dCei〉) = L′(〈decl, C〉)

The event transition rules−→′
decl⊆ EXPe

sr × ((Act√ ∪Obs×Obs)×U)× EXPe
sr are presented

in Table 3.3. The elements ofU in the transitions labels encode the position of the execution
such that they correspond exactly to the events labeled by the denotational semantics. The
original event positions are kept by using thed ei expressions. Another possibility to encode
this information is presented in [38].

The First Bisimilarity Result.

We define a relation betweenEXPe
sr andEXPsr which yields a bisimulation. An expression

C of EXPe
sr and an expressionB of EXPsr are related ifC results inB by removing alld e

expressions. This is formalized by the following function, where we also count thed e symbols
in C.

Definition 3.33 Ξ : IN× EXPsr → P(EXPe
sr) is defined as follows

Ξ(0, B) = {B}
Ξ(n + 1, B) = {dC̃ei | i ∈ {1, 2} ∧ C̃ ∈ Ξ(n, B)}

if B ∈ {0,1, a.B1, τ.B1, B1 + B2, x}
Ξ(n + 1, B1; B2) = {dC̃ei | i ∈ {1, 2} ∧ C̃ ∈ Ξ(n,B1; B2)} ∪
{C1; B2 | C1 ∈ Ξ(n + 1, B1)}

Ξ(n + 1, B1 [>B2) = {dC̃ei | i ∈ {1, 2} ∧ C̃ ∈ Ξ(n,B1 [>B2)} ∪
{C1 [>B2 | C1 ∈ Ξ(n + 1, B1)}

Ξ(n + 1, B1‖AB2) = {dC̃ei | i ∈ {1, 2} ∧ C̃ ∈ Ξ(n, B1‖AB2)} ∪
{C1‖AC2 | ∃m ∈ IN : m ≤ n + 1 ∧ C1 ∈ Ξ(m, B1) ∧ C2 ∈ Ξ(n + 1−m, B2)}

Ξ(n + 1, B[(a → Ba)
a∈A]) = {dC̃ei | i ∈ {1, 2} ∧ C̃ ∈ Ξ(n, B[(a → Ba)

a∈A])} ∪
{C[(a → Ca)

a∈A] | ∃m ∈ IN, (ma)a∈A ∈ INA : m +
∑

a∈A ma = n + 1 ∧
Ca ∈ Ξ(ma, Ba) ∧ C ∈ Ξ(m, B)}

Ξ(n + 1, B\A) = {dC̃ei | i ∈ {1, 2} ∧ C̃ ∈ Ξ(n,B\A)}∪
{C\A | C ∈ Ξ(n + 1, B)}

50 CHAPTER 3. STANDARD ACTION REFINEMENT

T ′ :
1

√
−→• 0

A′
1 :

a.B
a−→• dBe1

A′
2 :

a, b ∈ Obs

a.B
(a,b)−→• b.B

C ′ : B1
γ−→e C

B1 + B2
γ−→(?1,e) dCe1

B2 + B1
γ−→(?2,e) dCe2

S ′
1 :

C
γ−→e C ′ γ 6=

√

C; B
γ−→(?1,e) C ′; B

S ′
2 : C

√
−→e C ′

C; B
τ−→(?1,e) dBe2

I ′1 :
C

γ−→e C ′ γ 6=
√

C [>B
γ−→(?1,e) C ′ [>B

I ′2 : C
√
−→e C ′

C [>B
√
−→(?1,e) dC ′e1

I ′3 : B
γ−→e B′

C [>B
γ−→(?2,e) dB′e2

P ′
1 :

C1
γ−→e C ′

1 γ /∈ {
√
} ∪ A ∪ A× Obs

C1‖AC2
γ−→(e,?) C ′

1‖AC2

C2‖AC1
γ−→(?,e) C2‖AC ′

1

P ′
2 :

C1
γ−→e C ′

1 C2
γ−→

e′ C ′
2 γ ∈ {

√
} ∪ A

C1‖AC2
γ−→

(e,e′) C ′
1‖AC ′

2

P ′
3 :

C1
(a,b)−→e C ′

1 C2
(a,b)−→
e′ C ′

2 a ∈ A

C1‖AC2
(a,b)−→
(e,e′) C ′

1‖A∪{b}C
′
2

Ref ′1 :
C

γ−→e C ′ γ /∈ A ∪ A× Obs

C[(a → Ca)
a∈A]

γ−→(e,e) C ′[(a → Ca)
a∈A]

Ref ′2 :
C

(â,b)−→e C ′ â ∈ A b /∈ A ∪ L′(〈decl, C〉) Câ
γ−→ê C ′′ γ 6=

√

C[(a → Ca)
a∈A]

γ−→(e,ê) C ′[(a → Ca)
a∈A, (b → C ′′)]

Ref ′3 : C
â−→e C ′ â ∈ A Câ

√
−→ê C ′′

C[(a → Ca)
a∈A]

τ−→(e,ê) C ′[(a → Ca)
a∈A]

Res′1 :
C

γ−→e C ′ γ /∈ A ∪ A× Obs

C\A γ−→e C ′\A
Res′2 : C

a−→e C ′ a ∈ A
C\A τ−→e C ′\A

Rec′ :
decl(x)

γ−→e C

x
γ−→e C

N ′ : C
γ−→e C ′

dCei
γ−→(?i,e) dC ′ei

Table 3.3: Event-Based Transition Rules with respect to−→s
decl

The well-definedness ofΞ is easily seen. Furthermore,Ξ has no effect on the action names
occurred in the processes, i.e.

Lemma 3.34 C ∈ Ξ(n, B) ⇒ L(〈decl, B〉) = L′(〈decl, C〉)

Proof: By structural induction onB combined withn. ut

3.6. PROOFS 51

Lemma 3.35 Let B ∈ EXPsr thenOs(〈decl, B〉) is bisimilar to (EXPe
sr,Act√, −→′

Os , B)

whereC
α

−→′
Os C ′ ⇔ ∃e ∈ U : C

α−→e
′
decl C ′.

Proof: DefineR = {(B, C) ∈ EXPsr × EXPe
sr | ∃n : C ∈ Ξ(n, B)}. In order to verify thatR

is a bisimulation, we show

(B
γ

−→s B′ ∧ C ∈ Ξ(n,B)) ⇒ ∃e, C ′, m : C
γ−→e

′
C ′ ∧ C ′ ∈ Ξ(m,B′) (3.1)

The proof of (3.1) works by induction on the depth of inference ofB
α−→ B′, combined with

the value ofn. Then (3.1) can be easily checked with the following procedure:

• applying ruleN wheneverC = dC̃ei. In these casesn is reduced by one andB
α

−→s B′

is unaffected. Therefore the hypothesis concludes the result.

• applying the correspondent rules ofB
α

−→s B′ wheneverC is different fromdC̃ei. In
these cases the depth of inference is reduced andn gets not increased. Therefore the
hypothesis concludes the result. In the case of ruleRef2, we also use Lemma 3.34 for the
conclusion.

Another fact is

(C
γ−→e

′
C ′ ∧ C ∈ Ξ(n,B)) ⇒ ∃B′, m : B

γ

−→s B′ ∧ C ′ ∈ Ξ(m,B′) (3.2)

This equation can be seen by induction on the depth of inference ofC
γ−→e

′
C ′. In the case of

ruleRef ′2, we also use Lemma 3.34.
Now we are ready to verify thatR is a bisimulation:

• It is clear that(B, B) ∈ R.

• Suppose(B1, C1) ∈ R andB1
α−→Os B2. ThenB1

α

−→s
decl B2 by definition. Hence,

∃e, C2, m : C1
α−→e

′
C2∧C2 ∈ Ξ(m, B2) by (3.1). ThusC1

α

−→′
Os C2 and(B2, C2) ∈ R,

as required.

• Suppose(B1, C1) ∈ R andC1

α

−→′
Os C2. ThenC1

α−→e
′
C2 for somee. Hence,∃B2, m :

B1

α

−→s
decl B2 ∧ C2 ∈ Ξ(m, B2) by (3.2). ThusB1

α−→Os B2 and(B2, C2) ∈ R, as
required. ut

Remark 3.36 The transition systems mentioned in Lemma 3.35 are not isomorphic. Consider,
for example,decl with decl(x) = a; x. Then the expressionx yields a finite transition system
with respect toOs, whereas an infinite one is derived with respect to−→′

Os .

52 CHAPTER 3. STANDARD ACTION REFINEMENT

The Second Bisimilarity Result.

First, we show that the denotation of a variable is the same as the denotation of its corresponding
expression.

Lemma 3.37 Letdecl : Var → EXPsr andx ∈ Var. Then[[〈decl, x〉]] = [[〈decl, decl(x)〉]].

Proof: We have[[〈decl, x〉]] = [[x]]{[decl]} = {[decl]}(x) = fix(Fdecl)(x) = Fdecl({[decl]})(x) =
[[decl(x)]]{[decl]} = [[〈decl, decl(x)〉]]. ut
We extend the denotational semantics toPAe

sr.

Definition 3.38 (Denotational semantics ofPAe
sr)

Ŝhift i : CBES → CBES with Ŝhift i(E) = ({?i} × E, ;̃, ˜7→, l̃) where

;̃ = {((?i, e), (?i, e
′)) | (e, e′) ∈;}

˜7→ = {({?i} ×X, (?i, e)) | (X, e) ∈7→}
l̃(?i, e) = l(e)

Furthermore, define[[]]′ : PAe
sr → CBES by

[[〈decl, B〉]]′ = [[〈decl, B〉]]
[[〈decl, C; B〉]]′ = [[〈decl, C〉]]′ ;̂ [[〈decl, B〉]]′

[[〈decl, C [>B〉]]′ = [[〈decl, C〉]]′ [̂>[[〈decl, B〉]]′

[[〈decl, C1‖AC2〉]]′ = [[〈decl, C1〉]]′‖̂A[[〈decl, C2〉]]′
[[〈decl, C[(a → Ca)

a∈A]〉]]′ = Ref s
A([[〈decl, C〉]]′, (a → [[〈decl, Ca〉]]′)a∈A)

[[〈decl, C\A〉]]′ = [[〈decl, C2〉]]′\̂A
[[〈decl, dCei〉]]′ = Ŝhift i([[〈decl, C〉]]′)

It is clear that[[]]′ is well defined.

Lemma 3.39 Suppose〈decl, C〉 ∈ PAe
sr, b ∈ Obs and b /∈ L′(〈decl, C〉). Then for alle ∈

E[[〈decl,C〉]]′ we havel[[〈decl,C〉]]′(e) 6= b.

Proof: First we show for anydecl : Var → EXPsr that for alln ∈ IN andB ∈ EXPsr we have

b /∈ L(〈decl, B〉) ⇒ ∀e ∈ π1([[B]]Fn
decl(⊥)) : b 6= π4([[B]]Fn

decl(⊥))(e) (3.3)

This can be easily checked by induction onn combined with the structure ofB where the
lexicographic order is used.

The main statement follows by structural induction onC. We only present the caseC = B ∈
EXPsr. By Lemma 3.20 we get that[[〈decl, B〉]] =

⊔
n[[B]]Fn

decl(⊥). Then there ism such that
e ∈ π1([[B]]Fm

decl(⊥)). And so the result follows by (3.3). ut
We introduce the following definition in order to obtain an adequate transition relation inCBES
which is labeled with elements ofObs× Obs.

3.6. PROOFS 53

Definition 3.40 LetE ∈ CBES, b ∈ Obs ande ∈ init(E) such thatl(e) ∈ Obs. ThenE[e/b] of
E is given by(E ′, ;′, 7→′, l′) where

E ′ = {e′ ∈ E | ¬(e′ ; e)}
;′ = ; ∩(E ′ × E ′)
7→′ = {(X ∩ E ′, e′) | e′ ∈ E ′ ∧X 7→ e′}

l′(e′) =

{
b if e′ = e
l(e′) otherwise

Lemma 3.41 Let E ∈ CBES, b ∈ Obs ande ∈ init(E) such thatl(e) ∈ Obs. ThenE[e/b] ∈
CBES.

Proof: DefineẼ = (E, ;, 7→, l̃) with l̃(e) = b and∀e′ ∈ E\{e} : l̃(e′) = l(e′). It is obvious
that Ẽ ∈ CBES. Furthermore,E[e/b] = Ẽ � π1(E[e/b]). And so the result follows by Lemma
3.27. ut

Lemma 3.42 SupposeE , E1, E2, Ea ∈ CBES. Then

(a .̂ E)[•] = Ŝhift1(E)

(E1+̂E2)[(?i,e)] ' Ŝhift i(Ei[e])

(E1 ;̂ E2)[(?1,e)] '
{

Ŝhift2(E2) if l1(e) =
√
∧ e ∈ init(E1)

E1[e] ;̂ E2 otherwise

(E1 [̂>E2)[(?i,e)] '


Ŝhift1(E1[e]) if l1(e) =

√
∧ i = 1

E1[e] [̂>E2 if l1(e) 6=
√
∧ i = 1

Ŝhift2(E2[e]) if i = 2

(E1‖̂AE2)[(e1,e2)] '


E1[e1]‖̂AE2 if e2 = ? ∧ l1(e1) /∈ A ∪ {

√
}

E1‖̂AE2[e2] if e1 = ? ∧ l2(e2) /∈ A ∪ {
√
}

E1[e1]‖̂AE2[e2] if l1(e1) = l2(e2) ∈ A ∪ {
√
}

Ref s
A(E , θ)[(e,ê)] '


Ref s

A(E[e], θ) if (lθ(l(e))(ê) =
√
∧ ê ∈ init(θ(l(e)))) ∨

(l(e) /∈ A ∧ e = ê)
Ref s

A∪{b}(E[e/b], θ ∪ {(b, θ(l(e))[ê]))} if lθ(l(e))(ê) 6=
√

wheneverb /∈ A ∧ ∀ẽ ∈ E : l(ẽ) 6= b

(E\̂A)[e] ' E[e]\̂A

Ŝhift i(E)[(?i,e)] ' Ŝhift i(E[e])

Proof: Straightforward. ut

Lemma 3.43 SupposeE , E1, E2, Ea ∈ CBES andb ∈ Obs. Then

(a .̂ E)[•/b] = b .̂ E if a ∈ Obs

(E1+̂E2)[(?i,e)/b] ' Ŝhift i(Ei[e/b])

(E1 ;̂ E2)[(?1,e)/b] ' E1[e/b] ;̂ E2

54 CHAPTER 3. STANDARD ACTION REFINEMENT

(E1 [̂>E2)[(?i,e)/b] '

{
E1[e/b] [̂>E2 if i = 1

Ŝhift2(E2[e/b]) if i = 2

(E1‖̂AE2)[(e1,e2)/b] '


E1[e1/b]‖̂AE2 if e2 = ? ∧ l1(e1) /∈ A ∪ {

√
}

E1‖̂AE2[e2/b] if e1 = ? ∧ l2(e2) /∈ A ∪ {
√
}

E1[e1/b]‖̂A∪{b}E2[e2/b] if l1(e1) = l2(e2) ∈ A ∪ {
√
}

whenb /∈ A ∧ ∀i ∈ {1, 2} : ∀e ∈ Ei : li(e) 6= b

Ref s
A(E , θ)[(e,ê)/b] '

{
Ref s

A(E[e/b], θ) if l(e) /∈ A ∧ e = ê
Ref s

A∪{b′}(E[e/b′], θ ∪ {(b′, θ(l(e))[ê/b])}) if l(e) ∈ A

wheneverb′ /∈ A ∧ ∀ẽ ∈ E : l(ẽ) 6= b′

(E\̂A)[e/b] ' E[e/b]\̂A whenb /∈ A ∧ l(e) /∈ A

Ŝhift i(E)[(?i,e)/b] ' Ŝhift i(E[e/b])

Proof: Straightforward. ut

Lemma 3.44 Suppose〈decl, C〉 ∈ PAe
sr andC

γ−→e
′
C ′. Then

(γ = (a, b) ∧ b /∈ L′(〈decl, C〉)) ⇒ e ∈ init(E) ∧ l(e) = a ∧ E ′ = E[e/b]

γ ∈ Act√ ⇒ e ∈ init(E) ∧ l(e) = γ ∧ E ′ = E[e]

with E = [[〈decl, C〉]]′ andE ′ = [[〈decl, C ′〉]]′.

Proof: We use induction on the depth of inference ofC
γ−→e

′
C ′. Then the equation can be

verified by case analysis on the derivation rules, where Lemma 3.42 and Lemma 3.43 are used.
In the cases ofP ′

3, Ref ′2 andRes′1, we also use Lemma 3.39. And in the case ofRec′, we make
use of Lemma 3.37. ut

Lemma 3.45 Let 〈decl, C〉 ∈ PAe
sr, e ∈ init([[〈decl, C〉]]′) andα = l[[〈decl,C〉]]′(e). Then

∃C ′ ∈ EXPe
sr : C

α−→e
′
C ′ ∧ (α ∈ Obs ⇒ ∀b ∈ Obs : ∃C ′′ ∈ EXPe

sr : C
(α,b)−→e

′
C ′′)

Proof: First we show for anydecl : Var → EXPsr:

∀n ∈ IN : ∀B ∈ EXPsr : e ∈ init([[B]]Fn
decl(⊥)) ∧ α = π4([[B]]Fn

decl(⊥))(e)

⇒ ∃C ′ ∈ EXPe
sr : B

α−→e
′
C ′ ∧ (α ∈ Obs ⇒ ∀b ∈ Obs : ∃C ′′ ∈ EXPe

sr : B
(α,b)−→e

′
C ′′)

(3.4)

This is done by induction onn combined with the structure ofB, where the lexicographic order
is used. Furthermore, a case analysis on the structure ofB is made. Here, we only present the
caseB = x: e ∈ init([[x]]′′Fn

decl(⊥)) implies thatn > 0. Therefore,[[x]]Fn
decl(⊥) = Fn

decl(⊥)(x) =

[[decl(x)]]Fn−1
decl (⊥). The rest follows by induction, sincen is reduced. Thus (3.4) is established.

The main statement follows now by structural induction onC. We only present the caseC =
B ∈ EXPsr. By Lemma 3.20 we get that[[〈decl, B〉]] =

⊔
n[[B]]Fn

decl(⊥). Then it is easily seen
that there is anm such thate ∈ init([[B]]Fm

decl(⊥)) andα = π4([[B]]Fm
decl(⊥)). And so the result

follows by (3.4). ut

3.6. PROOFS 55

Lemma 3.46 Let 〈decl, C〉 ∈ PAe
sr, then the transition systems(EXPe

sr,Act√,
α

−→′
Os , C) and

(CBES,Act√, ↪→, [[〈decl, C〉]]′) are bisimilar, where−→′
Os is defined as in Lemma 3.35.

Proof: DefineR = {(C ′, [[〈decl, C ′〉]]′) | C ′ ∈ EXPe
sr}. Then(C, [[〈decl, C〉]]′) ∈ R by defini-

tion.

SupposeC1 ∈ EXPe
sr andC1

α

−→′
Os C2. ThenC1

α−→e
′
C2 for somee. Hence, by Lemma 3.44

[[〈decl, C1〉]]′
α
↪→ [[〈decl, C2〉]]′, as required.

SupposeC1 ∈ EXPe
sr and [[〈decl, C1〉]]′

α
↪→ E2. Then there ise ∈ init([[〈decl, C1〉]]′) such that

E2 = [[〈decl, C1〉]]′[e] andα = π4([[〈decl, C1〉]]′)(e). From Lemma 3.45 we get the existence of

C2 ∈ EXPe
sr such thatC1

α−→e
′
C2. Moreover,[[〈decl, C1〉]]′[e] = [[〈decl, C2〉]]′ by Lemma 3.44,

which concludes the proof. ut

56 CHAPTER 3. STANDARD ACTION REFINEMENT

Chapter 4

Modeling the End-Based View inCBES

A choice in concurrent systems is usually taken by the start of actions. In this chapter, we pro-
pose the alternative view that a choice is determined by the ending of actions, called end-based
view, as this alternative has relevant applications and interesting implications, as illustrated in
Section 1.3.

Another advantage of the end-based approach is that it can simplify the action refinement ap-
proach for timed systems. More precisely, an action refinement operator for timed bundle event
structures [116, 120] is presented in [81, 133]. The authors extend eachQ in a refinement
P [a → Q] by an additional internal event, which corresponds to the start ofQ. This is neces-
sary in order to guarantee the start-based choice, i.e. to guarantee that the choice is triggered at
the start ofQ (at the time when actiona starts to be executed inP). In other words, the choice
is not triggered whenQ executes its first action, which may be executed after a time period has
passed. This approach is reasonable if generative systems1, rather than reactive systems, are
considered. The problem is that an undesired internal choice may be introduced by action re-
finement in reactive systems, for example refininga to a′ andb to b′ in a+ b yieldsτ.a′ + τ.b′ in
[81, 133]. We have the opinion that the introduction of additional internal events can be avoided
in an end-based choice setting.

The different points of view (start-based vs end-based) lead to different refinement operators
on CBES. We introduce a refinement operator on closed bundle event structures for the end-
based view. Furthermore, we show that the standard equivalences are not preserved by this
refinement operator. Therefore, we introduce and study new equivalences that are preserved by
our refinement operator.

4.1 An End-Based Refinement Operator onCBES

The decision at which time a choice is triggered does not influence the theory of most untimed
semantic models. This situation changes when models that contain an action refinement op-
erator are considered. Action refinement can, for example, split an action into a start- and an

1Generative systems are systems that are considered independently of the environment, i.e. the behavior is
generated. Consequently, the branching structure is considered with respect to the abstractions of the internal
actions.

57

58 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Ea+b cbca

E12ca1

ca2

c√

-
-

Ref s
{a}(Ea+b, (a → E12))

cb

ca1

ca2

cτ

-
-

start-based

Ref e
{a}(Ea+b, (a → E12))

cb

ca1

ca2

cτ ��

-
-

end-based

Figure 4.1: Start-Based versus End-Based Refinement

end-action. More precisely, if actiona is refined toa1 followed bya2, i.e.a2 executes aftera1,
in a process consisting of a choice between actionsa andb, then the execution sequencea1, b is
allowed in an end-based setting, which is not the case in a start-based setting. This example is
illustrated in Figure 4.1, where we depict extended (or closed) bundle event structures (see Sub-
section 3.3.1 and Subsection 3.3.2) after the refinement in the start-based and in the end-based
approaches. It can be seen in this figure thata1 is in conflict withb in the start-based approach,
whereas it is possible thata1 precedesb in the end-based approach (a non-symmetric relation is
used, depicted by dashed arrows). Thus the sequencea1, b is only a trace of the event structure
corresponding to the end-based view.

In the standard approach to action refinement, a choice is triggered by the start of actions, for
example in [6, 63, 91, 98, 133, 172]. Here, we develop an action refinement operator for an
untimed event structure with respect to the end-based point of view. Two constraints have to
be imposed on the event structure in order to give a reasonable definition of such a refinement
operator.

1. Each event in an event structure represents a unique occurrence of an action. This is
necessary, since otherwise the occurrence of an action could be started more than once.
In prime event structures[145] such a unique representation can not be guaranteed, as
pointed out, for example, in [91, Section 2.3].

2. An event structure must allow to model disruption, since a disrupt operation can result
from the end-based refinement operator, which will be discussed in more detail later
in this section. This is for example not the case forprime event structures, flow event
structures[36, 38] andstable event structures[178].

Therefore, we choose to define the end-based refinement operator onclosed bundle event struc-
tures(CBES), which are introduced in Subsection 3.3.2.

4.1. AN END-BASED REFINEMENT OPERATOR ON CBES 59

The definition of the end-based refinement operator differs from the classical definition (Def-
inition 3.17) with respect to the conflict relation: Only the termination events of the refining
processes are used in our approach to define the conflict relation whereas every event (or every
initial event) is used in the standard approach. More precisely, in the classical definition we
have: If e is in conflict with e′ ande (e′ respectively) is refined toEe (Ee′ respectively), then
every (initial) event ofEe is placed in conflict with every (initial) event ofEe′ and vice versa.
In our definition, we place every event ofEe in conflict with the termination events ofEe′, i.e.
they may only be executed if they are executed before every termination event ofEe′. And, of
course, we put every event ofEe′ in conflict with the termination events ofEe. By this approach,
we guarantee that a choice is triggered by the ending of actions, i.e. by a termination event of
the refining process. Formally:

Let τ , Obs,Act√ andVar be defined as in Section 3.2.

Definition 4.1 (Refinement Operator) LetA ⊆ Obs. Then define
Ref e

A : CBES× (A → CBES) → CBES byRef e
A(E , θ) = (Ẽ, ;̃, ˜7→, l̃) where

Ẽ = {(e, ê) | e ∈ E ∧ l(e) ∈ A ∧ ê ∈ Eθ(l(e))} ∪
{(e, e) ∈ E × E | l(e) /∈ A}

;̃ = {((e1, ê1), (e2, ê2)) | (e1 ; e2 ∧ (l(e2) ∈ A ⇒ ê2 ∈ exit(θ(l(e2))))) ∨
(e1 = e2 ∧ l(e1) ∈ A ∧ ê1 6= ê2 ∧ (ê1 ;θ(l(e1)) ê2 ∨ ê2 ∈ exit(θ(l(e1)))))}

˜7→ = {({e} ×X ′, (e, ê)) | l(e) ∈ A ∧X ′ 7→θ(l(e)) ê} ∪
{(X̃, (e, ê)) | ∃X : X 7→ e ∧ (l(e) ∈ A ⇒ ê ∈ init(θ(l(e))))∧
X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ (l(e′) ∈ A ⇒ ê′ ∈ exit(θ(l(e′))))}}

l̃((e, ê)) =


l(e) if l(e) /∈ A
lθ(l(e))(ê) if l(e) ∈ A ∧ lθ(l(e))(ê) 6=

√

τ if l(e) ∈ A ∧ lθ(l(e))(ê) =
√

Lemma 4.2 The refinement operatorRef e is well defined, i.e. it yields elements ofCBES.

Proof: The approximation closedness ofRef e
A(E , θ) follows from the approximation closed-

ness ofRef s
A(E , θ) (Lemma 3.18), since they do not differ in their bundle relations. The other

conditions are easy to check. ut

Example 4.3 Figure 4.2 illustrates how the refinement operator (Ref e) behaves. For a better
understanding, we augment the examples by process term descriptions of the systems (see Sec-
tion 3.2). Furthermore,(a → E12) denotes the function from{a} to CBES that mapsa to E12.
The effect of the classical (start-based) action refinement operator on this example is depicted
in Figure 3.4.

Figure 4.2 illustrates that the events labeled bya1 are not in conflict with each other inE+
ref .

Only the events that correspond to the termination ofE12 (they are labeled byτ in E+
ref) disable

the other actions. In other words, both actionsa in E+
ref may start and execute their actions

independently until one of them terminates.

Remark 4.4 Our refinement operator allows the modeling of a disrupt mechanism as it is used,
for example, in LOTOS [32] and in Chapter 3: Suppose the process described byE2 can disrupt

60 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

E+ dada

a.0 + a.0

E12da1

da2

d√

-
-

a1.a2

E+
ref = Ref e

{a}(E+, (a → E12))da1

da2

dτ

da1

da2

dτ ����

-
-

-
-

Figure 4.2: End-Based Refinement inCBES (1)

the process described byE1, i.e. E1 [̂>E2 where [̂> is introduced in Definition 3.17. Then let
E1+̂Ea be the process that is obtained by taking a choice betweenE1 and the event structure
Ea from Figure 4.4 where labela does not appear inE1. Then the event structuresE1 [̂>E2 and
Ref e

{a}(E1 + Ea, (a → E2)) posses the same behavior.

4.2 Equivalences

First, we give a short overview of some standard equivalence notions and argue that they are
not reasonable for an end-based action refinement operator, since they are not preserved by
the end-based refinement operator. Then we introduce new equivalences that are preserved
by the end-based refinement operator. These equivalences are examined with respect to their
discriminating power. Finally, the issue concerning the coarsest equivalence with respect to
trace (respectively bisimulation) equivalence is discussed.

4.2.1 Standard Equivalence Notions

Traceandstrong bisimulation equivalencesfor CBES are defined as follows.

Definition 4.5 (Trace Equivalence)TwoE , E ′ ∈ CBES are trace equivalent, denoted byE ∼t

E ′, if and only if the transition systems(CBES,Act√, ↪→, E) and (CBES,Act√, ↪→, E ′)
(where↪→ is defined in Definition 3.16) are trace equivalent (Definition 2.4).

Definition 4.6 (Strong Bisimulation Equivalence) Two E , E ′ ∈ CBES are strong bisimilar
(or strong bisimulation equivalent), denoted byE ∼b E ′, if and only if the transition systems
(CBES,Act√, ↪→, E) and(CBES,Act√, ↪→, E ′) are bisimilar (Definition 2.5).

The cbes obtained from(a + b.0)‖{a}(a‖∅a.c), depicted in Figure 3.5 (and in Figure 3.3), and
the cbes obtained fromb.0 + a.c.0 and fromb.0 + a.c.0 + a.0, depicted in Figure 4.3 are all
trace equivalent, whereas only the first and the third one are strong bisimilar.

Further equivalences that are based on interleaving [86, 89, 170] can be defined in a straightfor-
ward manner for cbes if one uses their corresponding transition system.

4.2. EQUIVALENCES 61

db
da dc-

�

b.0 + a.c.0

db
da dc-

d
a
�

�

b.0 + a.c.0 + a.0

Figure 4.3: Trace Equivalent but not Bisimilar cbes

ST semantics, originally defined in [92], turns out to be the coarsest congruence for action
refinement in the start-based setting [6, 85, 96, 173]. In the ST-approach, actions are not con-
sidered to be atomic, as in standard interleaving semantics. Instead, the execution of an action
is split into the two distinguished events of the start and the ending (termination) of an action,
where the ending is uniquely related to its start.

Further true concurrency equivalences are:

Step equivalence:Here, a finite multiset of actions, i.e. a finite set of events, may be executed
at once, as opposed to the interleaving approach, where only single actions may be executed
at once. In [152] trace and bisimulation versions of this equivalence have been proposed.

Pomset equivalence:Here a finite partially ordered set of events, more precisely a pomset
[153], may be executed. Pomsets are equivalence classes with respect to the action label-
ing and the order. The order of a pomset corresponds to the causality order of the events. In
[33] trace and bisimulation versions of this equivalence have been proposed.

History preserving equivalence:Here, the causal order in which events have been executed is
additionally taken into account. There are different versions depending on to what degree
the past information is taken into account. There existsweak, normalandhereditary history
preserving bisimulations[23, 67, 91].

[91] examines which equivalence notions are preserved by a start-based action refinement oper-
ator in a configuration structure setting. There it is shown that pomset trace equivalence, history
preserving bisimulation and hereditary history preserving bisimulation are preserved by a start-
based action refinement operator. As mentioned before, the ST-equivalence is also preserved by
a start-based action refinement. All other equivalences of this subsection are not preserved by a
start-based action refinement.

The action refinement operator in an end-based setting is not compatible with the equivalence
notions mentioned. This can be seen as follows: In the case of the end-based refinement operator
(Ref e) any equivalence that implies trace equivalence (Definition 4.5) and that identifiesa and
a + a (like all the equivalences mentioned do) is not preserved. This is the case, because
Ea

ref from Figure 4.4 andE+
ref from Figure 4.2 are not trace equivalent. Resource bisimulation

[58, 59], which is defined on transition systems, is the only equivalence known to us that does
not identifya + a anda.

In the following subsections, we present new equivalences which are indeed congruences for
our refinement operator. For simplicity, we introduce the following definition, which determines

62 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Eada

a.0

E12da1

da2

d√

-
-

a1.a2

Ea
ref = Ref e

{a}(Ea, (a → E12))da1

da2

dτ

-
-

Figure 4.4: End-Based Refinement inCBES (2)

Eb+db
-- dada

b.(a.0 + a.0)

Ebadb
da-

b.a.0

Ea|b dbda

a.0‖b.0

E int da
db

db

da

��

--

a.b.0 + b.a.0

Figure 4.5: Some Closed Bundle Event Structures

the initial events of an event structure with respect to their labels.

Definition 4.7 DefineinitA(E) = {e ∈ init(E) | l(e) ∈ A}, whereA ⊆ Act√. Furthermore,
we writeinita(E) as a short hand forinit{a}(E).

4.2.2 ICT-Equivalence onCBES

The first considered equivalence notion is derived from trace equivalence. An equivalence no-
tion which is a congruence for the end-based refinement operator has to distinguish betweenE+

from Figure 4.2 andEa from Figure 4.4. One way to achieve this is to guarantee that the number
of the initial events which are labeled by the same action have to be equal, i.e.E andE ′ can only
be equivalent if|inita(E)| = |inita(E)| for all a ∈ Obs. Moreover, we also have to guarantee a
relationship between the numbers of the initial events with the same label of the corresponding
remainders of the event structures. For example, considerEb+ andEba from Figure 4.5. Then
(b, a1, a1) ∈ T (Ref e

{a}(Eb+, (a → E12))) but (b, a1, a1) /∈ T (Ref e
{a}(Eba, (a → E12))), where

T (E) are the traces (Definition 2.4) of the derived transition system ofE (compare with Defini-
tion 4.5). Hence,Ref e

{a}(Eb+, (a → E12)) andRef e
{a}(Eba, (a → E12)) are not trace equivalent.

Further difficulties become evident by a closer look atEa|b andE int from Figure 4.5:Ea|b and
E int satisfy our above criterion, but(a1, b, a1) ∈ T (Ref e

{a}(E int, (a → E12))) and(a1, b, a1) /∈
T (Ref e

{a}(Ea|b, (a → E12))), i.e. our tentative relation is not a congruence for the refinement.

Therefore, we introduce theinitial event tracesof a cbes. They consist of an event execution
sequence and of a subset of the initial events for every execution step. Two cbes,E1 andE2,

4.2. EQUIVALENCES 63

Ew1 da
db

da
db

da

- -

Ew2 da
db

da
db

da

- -
Figure 4.6: Non ICT-Equivalent cbes

Eb1 da
db

da �

-

a.0 + a.b.0

Eb2 da
db

da

db

��

--

a.b.0 + a.b.0

Figure 4.7: ICT-Equivalent cbes

are considered to be equivalent if every initial event trace ofE1 can be mapped by an injective
function f to an initial event trace ofE2 and vice versa. Furthermore, this function has to be
labeling preserving, i.e.∀e1 ∈ E1 : l1(e1) = l2(f(e1)). The equivalence is precisely given by
the following definition, whereE[e] is defined in Definition 3.14.

Definition 4.8 (ICT-equivalence) Let E ∈ CBES. Then theinitial event tracesof E are de-
fined byT ic(E) = {(ei, γi)i≤n | n ∈ IN∧∃E0, · · · , En+1 : E0 = E ∧ ∀i ≤ n : Ei[ei] = Ei+1 ∧ γi ∈
Pfin(initObs(Ei))}.
Two cbes,E and E ′, are initial corresponding trace equivalent(ICT-equivalent), denoted by
E ∼ICT E ′, if

• for every(ei, γi)i≤n ∈ T ic(E) there exists an injective, labeling-preserving functionf :
(
⋃

i≤n(γi ∪ {ei})) → E ′ such that(f(ei), f(γi))i≤n ∈ T ic(E ′) and

• for every(e′i, γ
′
i)i≤n ∈ T ic(E ′) there exists an injective, labeling-preserving functionf ′ :

(
⋃

i≤n(γ′i ∪ {e′i})) → E such that(f ′(e′i), f
′(γ′i))i≤n ∈ T ic(E)

Eb+ andEba, and alsoEa|b andE int from Figure 4.5 are not ICT-equivalent. In addition, the
event structures from Figure 4.6 are not ICT-equivalent either. This holds, since inEw1 it is
possible that both events labeled byb become enabled, which is not the case forEw2. Examples
of ICT-equivalent event structures are given in Figure 4.7 and in Figure 4.8.

Proposition 4.9 Two ICT-equivalent cbes are also trace equivalent, i.e.∼ICT⊂∼t.

Proof: It follows from the fact that every trace is also an initial trace, where the second compo-
nent is always empty. ut

64 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Theorem 4.10 ICT-equivalence is a congruence for the refinement operatorRef e, i.e.E ∼ICT

E ′ ∧ ∀a ∈ A : θ(a) ∼ICT θ′(a) implies thatRef e
A(E , θ) ∼ICT Ref e

A(E ′, θ′). Moreover, it is also

a congruence for the operatorŝ. , +̂, ;̂ , [̂>, ‖̂A and \̂A, which are defined in Definition 3.17.

Proof: The proof is given in Subsection 4.4.1. ut
We are also interested in a congruence which implies strong bisimilarity (Definition 4.6). ICT-
equivalence does not yield such an equivalence.

Lemma 4.11 Strong bisimilarity does not follow from ICT-equivalence.

Proof: The cbesEb1 andEb2 from Figure 4.7 are not bisimilar but ICT-equivalent. ut

4.2.3 UI-Bisimilarity on CBES

An equivalence that is derived from bisimulation equivalence and that is a congruence for the
end-based refinement operator has to relate the initial events, as it is done by ICT-equivalence.
Therefore, we extend the definition of a bisimulation relation by a third component which de-
notes a bijection between the initial events.

Definition 4.12 (UI-Bisimulation) A unique initial bisimulation(UI-bisimulation)R is a sub-
set ofCBES×CBES× (U ⇀ U) such that whenever(E1, E2, f) ∈ R, then

• dom(f) = initObs(E1),

• f is a labeling-preserving bijection betweeninitObs(E1) and initObs(E2),

• e1 ∈ init(E1) implies that there ise2 and f ′ such thatl1(e1) = l2(e2) and f ∪ f ′ is an
injective function and(E1[e1], E2[e2], f

′) ∈ R andl1(e1) ∈ Obs ⇒ e2 = f(e1)

• e2 ∈ init(E2) implies that there ise1 and f ′ such thatl1(e1) = l2(e2) and f ∪ f ′ is an
injective function and(E1[e1], E2[e2], f

′) ∈ R andl2(e2) ∈ Obs ⇒ e2 = f(e1)

We say thatE1, E2 are UI-bisimilar (or UI-equivalent), denoted byE1 ∼UI E2, if and only if
there is a UI-bisimulationR and anf : U ⇀ U such that(E1, E2, f) ∈ R.

The event structures from Figure 4.7 are not UI-equivalent, whereas the event structures from
Figure 4.8 are UI-equivalent.

The condition in Definition 4.12 thatf ∪f ′ has to be a function ensures that the identification of
the initial events ofE1 is preserved after the execution, i.e.f � (initObs(E1) ∩ initObs(E1[e1])) =
f ′ � (initObs(E1) ∩ initObs(E1[e1])). The condition thatf ∪ f ′ is aninjectivefunction guarantees
that an initial evente′1 of E1 is kept after the execution if and only iff(e′1) is kept after the corre-
sponding execution, i.e.e′1 ∈ initObs(E1)∩initObs(E1[e1]) ⇔ f(e′1) ∈ initObs(E2)∩initObs(E2[e2]).
This means that the identification of the initial events ofE2 is also preserved after the execution,
i.e.f−1 � (initObs(E2) ∩ initObs(E2[e2])) = f ′−1 � (initObs(E2) ∩ initObs(E2[e2])).

4.2. EQUIVALENCES 65

Ecs dcda

d b

@
@

@

�
�

�

?

Esc dc
db

da

db

��

--

a.b.0 + c.b.0

Figure 4.8: ICT-Equivalent and UI-Equivalent cbes

Proposition 4.13 Two UI-equivalent cbes are also strong bisimilar, i.e.∼UI⊂∼b.

Proof: It follows from the fact that every UI-bisimulation restricted to its first and second
component is a bisimulation. ut

Theorem 4.14 UI-equivalence is a congruence for the refinement operatorRef e, i.e. E ∼UI

E ′ ∧ ∀a ∈ A : θ(a) ∼UI θ′(a) implies thatRef e
A(E , θ) ∼UI Ref e

A(E ′, θ′). Moreover, it is also a

congruence for the operatorŝ. , +̂, ;̂ , [̂>, ‖̂A and \̂A, which are defined in Definition 3.17.

Proof: The proof is given in Subsection 4.4.1. ut

4.2.4 FUI-Bisimilarity on CBES

UI-equivalence has to preserve the correspondence of all initial events. This condition is not
necessary in order to obtain a congruence that is contained in strong bisimilarity2. It is sufficient
to guarantee that the correspondence of any finite subset of the initial events is preserved. This
is formalized by the following definition.

Definition 4.15 (FUI-Bisimulation) A finite unique initial bisimulation(FUI-bisimulation)R
is a subset ofCBES×CBES× (U ⇀ U) such that whenever(E1, E2, f) ∈ R, then

• dom(f) = initObs(E1)

• f is a labeling-preserving bijection betweeninitObs(E1) and initObs(E2)

• e1 ∈ init(E1) ∧ I ∈ Pfin(initObs(E1)) implies that there existse2 and f ′ such that
l1(e1) = l2(e2) and (E1[e1], E2[e2], f

′) ∈ R and l1(e1) ∈ Obs ⇒ e2 = f(e1) and
f � (I ∩ initObs(E1[e1])) = f ′ � I andf−1 � (f(I) ∩ initObs(E2[e2])) = f ′−1 � f(I)

• e2 ∈ init(E2)∧I ∈ Pfin(initObs(E2)) implies that there existse2 andf ′ such thatl1(e1) =
l2(e2) and (E1[e1], E2[e2], f

′) ∈ R and l2(e2) ∈ Obs ⇒ e2 = f(e1) and f � (f−1(I) ∩
initObs(E1[e1])) = f ′ � f−1(I) andf−1 � (I ∩ initObs(E2[e2])) = f ′−1 � I

We say thatE1, E2 areFUI-bisimilar (or FUI-equivalent), denoted byE1 ∼FUI E2, if and only if
there is a FUI-bisimulationR and anf : U ⇀ U such that(E1, E2, f) ∈ R.

2Nevertheless, UI-equivalence is of interest if infinite events can be executed at a single execution step.

66 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

da da da da · · · infinitely

E inf
1

〈(x 7→ (a.0)‖∅x), x〉

da

da

da da da · · · infinitely

-

E inf
2

〈(x 7→ (a.0)‖∅x), (a.a.0)‖∅x〉

Figure 4.9: FUI-Equivalence Differs from UI-Equivalence

Remark 4.16 Obviously, any cbes with a finite set of events is UI-equivalent if and only if it
is FUI-equivalent. Furthermore, UI-equivalence differs from FUI-equivalence, since the event
structures from Figure 4.9 are FUI-equivalent but not UI-equivalent.

Proposition 4.17 Two FUI-equivalent cbes are also strong bisimilar, i.e.∼FUI⊂∼b.

Proof: It follows from the fact that every FUI-bisimulation restricted to its first and second
component is a bisimulation. ut

Theorem 4.18 FUI-equivalence is a congruence for the refinement operatorRef e, i.e.E ∼FUI

E ′ ∧∀a ∈ A : θ(a) ∼FUI θ′(a) implies thatRef e
A(E , θ) ∼FUI Ref e

A(E ′, θ′). Moreover, it is also

a congruence for the operatorŝ. , +̂, ;̂ , [̂>, ‖̂A and \̂A, which are defined in Definition 3.17.

Proof: The proof is given in Subsection 4.4.1. ut

Remark 4.19 In Theorem 4.10, Theorem 4.14 and Theorem 4.18 the general parallel operator
is allowed, i.e. no restriction on the synchronization set is made. But this operator has to be
handled carefully, since it is not clear if it matches the intuitive meaning for an end-based
setting: It is reasonable that the parallel operator introduces some start-based choices. For
example, we expect that the expression(a + a)‖{a}a.0 can only start onea-action whereas its
corresponding event structure, which is isomorphic toE+ depicted in Figure 4.2, can start two
a-actions.

This problem can be solved by the requirement demanding that actions which can be potentially
refined must not appear in the synchronization set. A solution where no restriction on the
synchronization set is necessary is obtained if one considers start-based together with end-
based disabling in a single setting, which is done in Chapter 7.

4.2.5 Comparison of Equivalences

First, the connection between ICT-equivalence, UI-equivalence and FUI-equivalence is pre-
sented.

4.2. EQUIVALENCES 67

∼UI

∼FUI

∼ICT ∼b

∼t

@
@

�
�

@
@

�
�

Figure 4.10: Relations Between the Equivalences

Proposition 4.20 If two cbes are UI-equivalent, then they are also FUI-equivalent and if two
cbes are FUI-equivalent, then they are also ICT-equivalent, i.e.

∼UI⊂∼FUI⊂∼ICT .

Proof: The proof is given in Subsection 4.4.2. ut

From Proposition 4.17 and Lemma 4.11, we obtain that the second inclusion in Proposition
4.20 is strict. The strictness of the first inclusion follows from Remark 4.16. From Lemma 4.11
and from the fact thata anda + a are bisimilar but not ICT-equivalent, we obtain that ICT-
equivalence is not comparable with strong bisimilarity. Furthermore, all equivalence notions
from Section 4.2.1 can not be contained in∼ICT . Consequently, they can not be contained in
∼UI or in∼FUI , since they identifya anda + a. All connection between the equivalences that
have been introduced is summarized in Figure 4.10: If two equivalences are connected via a
line, then the lower one identifies more elements than the upper one.

4.2.6 Coarsest Congruence

In this subsection, we define the coarsest congruence for the refinement operatorRef e with
respect to strong bisimilarity. It is different from FUI-equivalence, i.e. FUI-equivalence is not
the coarsest congruence with respect to strong bisimilarity. Furthermore, ICT-equivalence fails
to be the coarsest congruence with respect to trace equivalence.

Definition 4.21 Define∼c⊆ CBES × CBES by E1 ∼c E2 if and only if∀A ⊆ Obs : ∀θ :
A → CBES : Ref e

A(E1, θ) ∼b Ref e
A(E2, θ).

Proposition 4.22 The relation∼c is the coarsest congruence for the refinement operatorRef e

with respect to∼b.

Proof: The proof is given in Subsection 4.4.3. ut

Unfortunately, FUI-equivalence is a proper subset of∼c, i.e. FUI-equivalence is not the coarsest
congruence forRef e. This is illustrated by the following example.

68 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Ec1

da
-- dada

dτ
-- dada

dτ

-da

-da
Ec2

da

-da

-da

dτ
-- dada

dτ
-da

-da

Figure 4.11: Counterexample of Coarsest Congruence

Example 4.23 ConsiderEc1 andEc2 from Figure 4.11. They are not ICT-equivalent. Therefore,
they are not FUI-equivalent either, since after executing actiona, the number of the initial
actions does not coincide. ButEc1 ∼c Ec2, which can be seen as follows. Ifa is not refined,
then both cbes, which are bisimilar, keep unchanged under the refinement. Now suppose that
a is refined. Then we do not have a problem to find a corresponding bisimilar process for
every execution step as long as the refinement ofa does not terminate. When the refinement
terminates, the process executesτ . If ‘Ec1’ executes thisτ , then ‘Ec2’ can execute itsτ shown
on the left to yield a bisimilar cbes. If ‘Ec2’ executes thisτ , then ‘Ec1’ can execute itsτ shown
on the right to yield a bisimilar cbes.

In addition, ICT-equivalence is not the coarsest congruence forRef e with respect to∼t, since
∼c is a congruence forRef e and∼c⊆∼b⊆∼t but∼c 6⊆∼ICT by Example 4.23.

4.3 Discussion

The reason why∼ICT and∼FUI fail to be the coarsest congruences forRef e stems from the
fact thatRef e renames events labeled by

√
to τ . This renaming is necessary for the well-

definedness of this operator, since a definition that removes these events will not result in an
element ofCBES or will not respect the intuitive meaning.

Nevertheless, it seems reasonable to have a refinement operator without such a relabeling. This
corresponds to the philosophy that the ‘final’ executed action terminates the process [14, 28].
This kind of action refinement operator can only be defined in event structures where it is
possible that sets of events rather than single events can disable other events. Therefore, we first

4.4. PROOFS 69

establish such a kind of event structures in Chapter 5 before we examine process algebras with
an end-based choice operator. In Chapter 5, the new event structures are considered only in the
context of disruption. The action refinement operator with the end-based choice view is applied
on the new event structures in Chapter 6.

4.4 Proofs

4.4.1 Proof of the Congruence Results

We introduce an event-based refinement, which is used to verify Theorem 4.10. This refinement
differs fromRef e, because it assigns event structures to each event and not only to action names.

Definition 4.24 Ref e

A
: CBES× (U → CBES) → CBES with Ref e

A
(E , ϑ) = (Ẽ, ;̃, ˜7→, l̃)

where

Ẽ = {(e, ê) | e ∈ E ∧ l(e) ∈ A ∧ ê ∈ Eϑ(e)} ∪
{(e, e) ∈ E × E | l(e) /∈ A}

;̃ = {((e1, ê1), (e2, ê2)) | (e1 ; e2 ∧ (l(e2) ∈ A ⇒ ê2 ∈ exit(ϑ(e2)))) ∨
(e1 = e2 ∧ l(e1) ∈ A ∧ ê1 6= ê2 ∧ (ê1 ;ϑ(e1) ê2 ∨ ê2 ∈ exit(ϑ(e1))))}

˜7→ = {({e} ×X ′, (e, ê)) | l(e) ∈ A ∧X ′ 7→ϑ(e) ê} ∪
{(X̃, (e, ê)) | ∃X : X 7→ e ∧ (l(e) ∈ A ⇒ ê ∈ init(ϑ(e)))∧
X̃ = {(e, ê′) ∈ Ẽ | e ∈ X ∧ (l(e) ∈ A ⇒ ê′ ∈ exit(ϑ(e)))}}

l̃((e, ê)) =


l(e) if l(e) /∈ A
lϑ(e)(ê) if l(e) ∈ A ∧ lϑ(e)(ê) 6=

√

τ if l(e) ∈ A ∧ lϑ(e)(ê) =
√

The advantage ofRef e

A
is that event execution ofRef e

A
(E , ϑ) can be reduced to the event exe-

cution ofE andϑ, as it is shown in the following lemma.

Lemma 4.25 SupposeE ∈ CBES andϑ : U → CBES. Then

Ref e

A
(E , ϑ)[(e,ê)] '


Ref e

A
(E[e], ϑ) if l(e) /∈ A ∧ e = ê

Ref e

A
(E[e], ϑ[e → ϑ(e)[ê]]) if lϑ(e)(ê) =

√
∧ l(e) ∈ A

Ref e

A
(E , ϑ[e → ϑ(e)[ê]])} if lϑ(e)(ê) 6=

√
∧ l(e) ∈ A

Furthermore,Ref e

A
(E[e], ϑ[e → E ′]) ' Ref e

A
(E[e], ϑ) holds for anyE ′ ∈ CBES.

Proof: Straightforward. ut
In order to simplify the proof of Theorem 4.10 we introduce a variant of the initial corresponding
traces:

Definition 4.26 Let E , E ′ ∈ CBES. Then definẽT ic(E) = {((ei, γi)i≤n−1, γn) | n ∈ IN ∧
∃E0, · · · , En : E0 = E ∧ ∀i ≤ n − 1 : Ei[ei] = Ei+1 ∧ ∀j ≤ n : γj ∈ Pfin(initObs(Ej))}.
Furthermore, defineE ≈ICT E ′ if

70 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

• for every((ei, γi)i≤n−1, γn) ∈ T̃ ic(E) there is an injective, labeling-preserving function
f : (γn ∪

⋃
i≤n−1(γi ∪ {ei})) → E ′ such that((f(ei), f(γi))i≤n−1, f(γn)) ∈ T̃ ic(E ′)

• and symmetrically as in Definition 4.8.

Lemma 4.27 The initial corresponding trace equivalencecoincides with the equivalence de-
fined in Definition 4.26, i.e.∼ICT =≈ICT .

Proof: Suppose(ei, γi)i≤n ∈ T ic(E) andE ≈ICT E ′. Then((ei, γi)i≤n, ∅) ∈ T̃ ic(E), and so
there isf : (

⋃
i≤n(γi ∪ {ei})) → E ′ such that((f(ei), f(γi))i≤n, ∅) ∈ T̃ ic(E ′). This implies

(f(ei), f(γi))i≤n ∈ T ic(E ′), as required.

Now suppose((ei, γi)i≤n−1, γn) ∈ T̃ ic(E) and E ∼ICT E ′. We proceed by making a case
analysis:

γn = ∅: Similar to the above reasoning.

γn 6= ∅: Let en ∈ γn. Then(ei, γi)i≤n ∈ T ic(E) and so there is a functionf : (
⋃

i≤n(γi ∪
{ei})) → E ′ such that(f(ei), f(γi))i≤n ∈ T ic(E ′). This implies((f(ei), f(γi))i≤n−1, γn) ∈
T̃ ic(E ′) which completes the proof, since

⋃
i≤n(γi ∪ {ei}) = γn ∪

⋃
i≤n−1(γi ∪ {ei}). ut

Proof of Theorem 4.10: Here, we only present the proof for the refinement operatorRef e,
since the other cases are easier.

Let ϑ be a function such that∀e ∈ E : l(e) ∈ A ⇒ ϑ(e) = θ(l(e)), and letϑ′ be a function
such that∀e′ ∈ E ′ : l′(e′) ∈ A ⇒ ϑ′(e′) = θ′(l′(e′)). Obviously,Ref e

A
(E , ϑ) = Ref e

A(E , θ) and

Ref e

A
(E ′, ϑ′) = Ref e

A(E ′, θ′). For simplicity, we writeẼ for Ref e
A(E , θ) andẼ ′ for Ref e

A(E ′, θ′)
respectively.

Suppose((ei, êi), γ̃i)i≤n ∈ T ic(Ẽ). The case in which an element ofT ic(Ẽ ′) is taken follows
by symmetrical arguments. As an immediate consequence of Lemma 4.25 we know that there
existE0, ..., En+1 andϑ0, ..., ϑn+1 such that fori ≤ n we have

E0 = E ∧ ϑ0 = ϑ ∧ ei ∈ init(Ei) ∧ (li(ei) ∈ A ⇒ êi ∈ init(ϑi(ei))) ∧
(li(ei) /∈ A ⇒ (Ei[ei] = Ei+1 ∧ ϑi = ϑi+1)) ∧
((li(ei) ∈ A ∧ lϑi(ei)(êi) =

√
) ⇒ (Ei[ei] = Ei+1 ∧ ϑi[ei → ϑi(ei)[êi]] = ϑi+1)) ∧

((li(ei) ∈ A ∧ lϑi(ei)(êi) 6=
√

) ⇒ (Ei = Ei+1 ∧ ϑi[ei → ϑi(ei)[êi]] = ϑi+1)).

Define I = {i ∈ {0, · · · , n} | l(ei) /∈ A ∨ lϑi(ei)(êi) =
√
}. Assume{k0, ..., k|I|−1} = I

and ki < ki+1. Then we haveEk0 = E and Ekj [ekj
] = Ekj+1

. Furthermore, defineγkj
=(⋃min{kj ,n}

i>kj−1
(π1(γ̃i) ∪ {ei})

)
∩ initObs(Ekj

) for j ≤ |I| wherek−1 = −1 andk|I| = n + 1.

Hence,((eki
, γki

)j<|I|, γn+1) ∈ T̃ ic(E). From E ∼ICT E ′ and Lemma 4.27 we know that
there exists an injective, labeling preservingf : (γn+1 ∪

⋃
j<|I|(γkj

∪ {ekj
})) → E ′ such

that((f(eki
), f(γki

))j<|I|, f(γn+1)) ∈ T̃ ic(E ′).
Now defineIe = {j ∈ {0, · · · , n} | e = ej} for e ∈ E with l(e) ∈ A. Let {ke

0, ..., k
e
|Ie|−1} = Ie

with ke
i < ke

i+1. Defineγe
ke

j
=
⋃min{ke

j ,n}
i>ke

j−1
{ê | (e, ê) ∈ γ̃i ∧ lϑi(e)(ê) ∈ Obs} for j ≤ |Ie|, where

4.4. PROOFS 71

ke
−1 = −1 andke

|I| = n + 1. Furthermore, we haveϑke
0
(e) = θ(l(e)) andϑke

j
(e)[êke

j
] = ϑke

j+1
(e).

Hence,((êke
j
, γe

ke
j
)j<|Ie|, γ

e
n+1) ∈ T̃ ic(θ(l(e))). Fromθ(l(e)) ∼ICT θ′(l(e)) and Lemma 4.27 we

know that there exists an injective, labeling preservingf e : (γe
n+1 ∪

⋃
j<|Ie|(γ

e
kj
∪ {êke

j
})) →

Eθ′(l(e)) such that((f e(êke
j
), f e(γe

ke
j
))j<|Ie|, f

e(γe
n+1)) ∈ T̃ ic(θ′(l(e))).

Definef̃ : (
⋃

i≤n(γ̃i ∪ {(ei, êi)})) → Ẽ ′ as follows:

f̃(e, ê) =

{
(f(e), f(e)) if l(e) /∈ A
(f(e), f e(ê)) otherwise

.

Then it is easily seen that̃f is an injective and labeling-preserving function. Furthermore, define
E ′0 = E ′, ϑ′0 = ϑ′ and

E ′i+1 =

{
E ′i[f(ei)]

if l′(f(ei)) /∈ A ∨ lϑ′(f(ei))(f
ei(êi)) =

√

E ′i otherwise

ϑ′i+1 =

{
ϑ′i if l′(f(ei)) /∈ A
ϑ′i[f(ei) → ϑ′i(f(ei))[fei (êi)]] otherwise

.

E ′j and ϑ′j are well defined, because((f e(êke
j
), f e(γe

ke
j
))j<|Ie|, f

e(γe
n+1)) ∈ T̃ ic(θ′(l(e))) and

((f(eki
), f(γki

))j<|I|, f(γn+1)) ∈ T̃ ic(E ′). More precisely, for anyj and anye ∈ E with
l(e) ∈ A, we haveE ′kj+1

= E ′kj [f(ekj
)] andϑ′ke

j+1
(f(e)) = ϑ′ke

j
(f(e))[fe(êke

j
)].

Furthermore, definẽE ′i = Ref e
A(E ′i , θ′i) for i ≤ n+1. ThenẼ ′0 = Ẽ ′ andẼi+1 = Ẽ ′

i[f̃(ei,êi)]
, which

follows by Lemma 4.25.

Suppose(e, ê) ∈ γ̃i. Let m ∈ {0, ..., |I|} such thatkm−1 < i ≤ km. Hence,e ∈ γkm, which
impliesf(e) ∈ f(γkm) ⊆ init(E ′km

). And so from the definition ofE ′j we getf(e) ∈ init(E ′i),
sincekm−1 < i ≤ km. Furthermore, ifl(e) ∈ A, then takem̂ ≤ |Ie| such thatke

m̂−1 < i ≤ ke
m̂.

Hence,̂e ∈ γe
km̂

, which impliesf e(ê) ∈ f e(γe
km̂

) ⊆ init(ϑ′ke
m̂
(f(e))). And so from the definition

of ϑ′j we getf e(ê) ∈ init(ϑ′i(f(e))). Therefore,f̃(e, ê) ∈ init(Ẽ ′i).

Thus, we have shown(f̃(ei, êi), f̃(γ̃i))i≤n ∈ T ic(Ẽ ′), which completes this proof. ut

Proof of Theorem 4.14: We only present here the proof for the refinement operatorRef e,
since the other cases are easier.

LetR andRa be unique initial bisimulations such that(θ(a), θ′(a), ga) ∈ Ra and(E , E ′, g) ∈
R. Then define

RRef = { (Ref e

A
(Ẽ , ϑ̃),Ref e

A
(Ẽ ′, ϑ̃′), f̃) | ∃f : (Ẽ , Ẽ ′, f) ∈ R ∧

(∀ẽ ∈ Ẽ : (l̃(ẽ) ∈ A ∧ ẽ /∈ init(Ẽ)) ⇒ ϑ̃(ẽ) = θ(l̃(ẽ))) ∧
(∀ẽ′ ∈ Ẽ ′ : (l̃′(ẽ′) ∈ A ∧ ẽ′ /∈ init(Ẽ ′)) ⇒ ϑ̃′(ẽ′) = θ′(l̃′(ẽ′))) ∧
∀e ∈ Ẽ : ∃fe : (e ∈ initA(Ẽ) ⇒ (ϑ̃(e), ϑ̃′(f(e)), fe) ∈ Rl̃(e)) ∧

f̃(e, ê) '
{

(f(e), f(e)) if e ∈ init(Ẽ) ∧ l̃(e) ∈ Obs\A
(f(e), fe(ê)) if e ∈ initA(Ẽ) ∧ ê ∈ initObs(ϑ̃(e))

}

72 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Suppose(Ref e

A
(Ẽ , ϑ̃),Ref e

A
(Ẽ ′, ϑ̃′), f̃) ∈ RRef and letf ,fe be the corresponding functions.

Obviously,f̃ is always an isomorphism betweeninitObs(Ref e

A
(Ẽ , ϑ̃)) andinitObs(Ref e

A
(Ẽ ′, ϑ̃′))

in the above definition. Furthermore,f̃ is labeling-preserving.

In the following, we will show thatRRef is a UI-bisimulation. Therefore, suppose(e, ê) ∈
init(Ref e

A
(Ẽ , ϑ̃)). We proceed by making a case analysis.

l̃(e) /∈ A ∨ lϑ̃(e)(ê) =
√

: From Lemma 4.25 we getRef e

A
(Ẽ , ϑ̃)[(e,ê)] = Ref e

A
(Ẽ[e], ϑ̃). Since

(Ẽ , Ẽ ′, f) ∈ R, there isė andf ′ such that̃l(e) = l̃′(ė) and(Ẽ[e], Ẽ ′[ė], f ′) ∈ R and l(e) ∈
Obs ⇒ f(e) = ė andf ∪ f ′ is an injective function.

Let f ′e′ =

{
ga if l̃(e) = a ∧ e′ /∈ init(Ẽ)
fe′ otherwise

. Definef̃ ′ as follows

f̃ ′(e′, ê′) '
{

(f ′(e′), f ′(e′)) if e′ ∈ init(Ẽ[e]) ∧ l̃(e′) ∈ Obs\A
(f ′(e′), f ′e′(ê

′)) if e′ ∈ initA(Ẽ[e]) ∧ ê′ ∈ initObs(ϑ̃(e′))

Then f̃ ′ and f̃ coincide oninitObs(Ref e

A
(Ẽ , ϑ̃)) ∩ initObs(Ref e

A
(Ẽ , ϑ̃)[(e,ê)]), since we have

f � (initObs(E1) ∩ initObs(E1[e1])) = f ′ � (initObs(E1) ∩ initObs(E1[e1])). Thus,f̃ ′ ∪ f̃ is a
function. Suppose(f̃ ′ ∪ f̃)(e′, ê′) = (f̃ ′ ∪ f̃)(e′′, ê′′). Then(f ′ ∪ f)(e′) = (f ′ ∪ f)(e′′) and
thereforee′ = e′′. The equality of̂e′ andê′′ can now be easily derived from the injectivity of
f̃ ′ or of f̃ . Thus,f̃ ′ ∪ f̃ is an injective function.

Supposẽl(e′) ∈ A, thene′ /∈ init(Ẽ) ⇒ ϑ̃(e′) = θ(l̃(e′)). Additionally, we conclude from
e′ /∈ init(Ẽ) thatf ′(e′) /∈ init(Ẽ ′), sincef ∪ f ′ is injective. And so we gete′ /∈ init(Ẽ) ⇒
ϑ̃′(f ′(e′)) = θ′(l̃′(f ′(e′))). Thus,e′ ∈ init(Ẽ[e])∧ l̃(e′) ∈ A ⇒ (ϑ̃(e′), ϑ̃′(f ′(e′)), f ′e′) ∈ Rl̃(e).

Hence,(Ref e

A
(Ẽ[e], ϑ̃),Ref e

A
(Ẽ ′[ė], ϑ̃′), f̃ ′) ∈ RRef by definition.

Moreover,l̃(e) /∈ A implies l̃′(ė) /∈ A. From Lemma 4.25 we obtain thatRef e

A
(Ẽ ′[ė], ϑ̃′) =

Ref e

A
(Ẽ ′, ϑ̃′)[(ė,ė)]. Furthermore,lRef e

A
(Ẽ,ϑ̃)(e, ê) ∈ Obs ⇒ f̃(e, ê) = (f(e), f(e)) = (ė, ė).

Now consider the case wheñl(e) ∈ A ∧ lϑ̃(e)(ê) =
√
∧ ê ∈ init(ϑ̃(e)). Then we have

(ϑ̃(e), ϑ̃′(f(e)), fe) ∈ Rl̃(e). Hence, there exists̈e ∈ init(ϑ̃′(f(e))) such thatlϑ̃′(f(e))(ë) =
√

.

ThusRef e

A
(Ẽ ′[ė], ϑ̃′) = Ref e

A
(Ẽ ′[f(e)], ϑ̃

′[f(e) → ϑ̃′(f(e))[ë]) = Ref e

A
(Ẽ ′, ϑ̃′)[(f(e),ë)] by Lemma

4.25. This completes the case, sincelRef e
A

(Ẽ,ϑ̃)(e, ê) /∈ Obs.

l̃(e) ∈ A ∧ lϑ̃(e)(ê) 6=
√

: By Lemma 4.25 we getRef e

A
(Ẽ , ϑ̃)[(e,ê)] = Ref e

A
(Ẽ , ϑ̃[e → ϑ̃(e)[ê]]).

Furthermore,(ϑ̃(e), ϑ̃′(f(e)), fe) ∈ Rl̃(e). And so there is̈e and f ′e such thatlϑ̃(e)(ê) =

lϑ̃′(f(e))(ë) and(ϑ̃(e)[ê], ϑ̃
′(f(e))[ë], f

′
e) ∈ Rl̃(e) andlϑ̃(e)(ê) ∈ Obs ⇒ ë = f ′e(ê) andfe ∪ f ′e is

an injective function. Definẽf ′ by

f̃ ′(e′, ê′) '


(f(e′), f(e′)) if e′ ∈ initObs(Ẽ) ∧ l̃(e′) /∈ A

(f(e′), fe′(ê
′)) if e′ ∈ initA(Ẽ) ∧ ê′ ∈ initObs(ϑ̃(e′)) ∧ e′ 6= e

(f(e), f ′e(ê
′)) if ê′ ∈ initObs(ϑ̃(e)[ê]) ∧ e′ = e

Thenf̃ ′ andf̃ coincide oninitObs(Ref e

A
(Ẽ , ϑ̃)) ∩ initObs(Ref e

A
(Ẽ , ϑ̃)[(e,ê)]). Thus,f̃ ′ ∪ f̃ is

a function. Suppose(f̃ ′ ∪ f̃)(e′, ê′) = (f̃ ′ ∪ f̃)(e′′, ê′′). Thenf(e′) = f(e′′) by definition,

4.4. PROOFS 73

hencee′ = e′′. If l̃(e′) /∈ A, then ê′ = ê′′ immediately follows. Ifl̃(e′) ∈ A ∧ e′ 6= e,
then f̃(e′, ê′) = f̃ ′(e′, ê′), and soê′ = ê′′ follows by the injectivity of f̃ . Now suppose
l̃(e′) ∈ A ∧ e′ = e. Then(f ′e ∪ fe)(ê

′) = (f ′e ∪ fe)(ê
′′), hencêe′ = ê′′. Therefore,f̃ ′ ∪ f̃ is

an injective function.

Thus,(Ref e

A
(Ẽ , ϑ̃[e → ϑ̃(e)[ê]]),Ref e

A
(Ẽ ′, ϑ̃′[f(e) → ϑ̃(f(e))[ë]]), f̃

′) ∈ RRef by definition.

Moreover,̃l(e) ∈ A∧ lϑ̃(e)(ê) 6=
√
∧ ê ∈ init(ϑ̃(e)) implies that̃l′(f(e)) ∈ A∧ lϑ̃′(f(e))(ë) 6=√

. And so by Lemma 4.25 we haveRef e

A
(Ẽ ′, ϑ̃′[f(e) → ϑ̃(f(e))[ë]]) = Ref e

A
(Ẽ ′, ϑ̃′)[(f(e),ë)].

This completes the case, sincelRef e
A

(Ẽ,ϑ̃)(e, ê) ∈ Obs ⇒ f̃(e, ê) = (f(e), ë).

The last condition of the UI-bisimulation can be derived by symmetrical arguments. Thus, we
proved thatRRef is a unique initial bisimulation.

Obviously,Ref e

A
(E , ϑ) = Ref e

A(E , θ) whenever∀e ∈ E : l(e) ∈ A ⇒ ϑ(e) = θ(l(e)). Define

g̃(e′, ê′) '
{

(g(e′), g(e′)) if e′ ∈ initObs(E) ∧ l(e′) /∈ A
(g(e′), gl(e′)(ê

′)) if e′ ∈ init(E) ∧ l(e′) ∈ A ∧ ê′ ∈ initObs(θ(l(e
′)))

.

Then(Ref e
A(E , θ),Ref e

A(E ′, θ′), g̃) ∈ RRef , which completes this proof. ut

Proof of Theorem 4.18: We only present here the proof for the refinement operatorRef e, the
other cases are easier.

LetR andRa be unique initial bisimulations such that(θ(a), θ′(a), ga) ∈ Ra and(E , E ′, g) ∈
R. Then define

RRef = {(Ref e

A
(Ẽ , ϑ̃),Ref e

A
(Ẽ ′, ϑ̃′), f) | ∃f̃ : ∃Ĩ ∈ Pfin(initA(Ẽ)) : ∃F : U → (U ⇀ U) :

(Ẽ , Ẽ ′, f̃) ∈ R ∧
(∀ẽ ∈ Ẽ\Ĩ : (l̃(ẽ) ∈ A ⇒ ϑ̃(ẽ) = θ(l̃(ẽ)) ∧ (ẽ ∈ init(Ẽ) ⇒ F (ẽ) = gl̃(ẽ))) ∧
(∀ẽ′ ∈ Ẽ ′\f̃(Ĩ) : (l̃′(ẽ′) ∈ A ⇒ ϑ̃′(ẽ′) = θ′(l̃′(ẽ′))) ∧
(∀ẽ ∈ Ĩ : (ϑ̃(ẽ), ϑ̃′(f̃(ẽ)), F (ẽ)) ∈ Rl̃(ẽ)) ∧
(∀ẽ ∈ init(Ẽ) : (l̃(ẽ) /∈ A ⇒ F (ẽ) = consf̃(ẽ)) ∧

f(e, ê) '
{

(f̃(e), F (e)(ê)) if (e, ê) ∈ initObs(Ref e(Ẽ , ϑ̃)
undefined otherwise

}

First, we observe that for all(Ref e

A
(Ẽ , ϑ̃),Ref e

A
(Ẽ ′, ϑ̃′), f) ∈ RRef we have:f is always an

isomorphism betweeninitObs(Ref e

A
(Ẽ , ϑ̃)) andinitObs(Ref e

A
(Ẽ ′, ϑ̃′)), f is labeling-preserving

and
f−1(e′, ê′) = (f̃−1(e′), F (f̃−1(e′))−1(ê′)) (4.1)

wheref̃ , F are its corresponding functions. This holds, sincef(f̃−1(e′), F (f̃−1(e′))−1(ê′)) =
(e′, ê′).

Suppose(Ref e

A
(Ẽ , ϑ̃),Ref e

A
(Ẽ ′, ϑ̃′), f) ∈ RRef , let Ĩ be the corresponding set and letf̃ ,F be

the corresponding functions.

In the following, we will show thatRRef is a FUI-bisimulation. Therefore, suppose(e, ê) ∈
init(Ref e

A
(Ẽ , ϑ̃)) ∧ I ∈ Pfin(initObs(Ref e

A
(Ẽ , ϑ̃))). We proceed by making a case analysis.

74 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

l̃(e) /∈ A: Thenê = e and from Lemma 4.25 we getRef e

A
(Ẽ , ϑ̃)[(e,ê)] = Ref e

A
(Ẽ[e], ϑ̃).

Define Ĩ ′ = Ĩ ∪ π1(I). Since(Ẽ , Ẽ ′, f̃) ∈ R ∧ Ĩ ′ ∈ Pfin(initObs(Ẽ)), there ise′ and f̃ ′

such that̃l(e) = l̃′(e′) and (Ẽ[e], Ẽ ′[e′], f̃ ′) ∈ R and l̃(e) ∈ Obs ⇒ f̃(e) = e′ and f̃ �

(Ĩ ′ ∩ initObs(Ẽ[e])) = f̃ ′ � Ĩ ′ andf̃−1 � (f(Ĩ ′) ∩ initObs(Ẽ ′[e′])) = f̃ ′−1 � f(Ĩ ′).

We havẽl(e) /∈ A implies l̃′(e′) /∈ A. And so by Lemma 4.25 we obtainRef e

A
(Ẽ ′[e′], ϑ̃′) =

Ref e

A
(Ẽ ′, ϑ̃′)[(e′,e′)]. Furthermore, the labels of(e′, e′) and(e, e) coincide andlRef e

A
(Ẽ,ϑ̃)(e, e) ∈

Obs ⇒ f(e, e) = (f̃(e), f̃(e)) = (e′, e′).

Now we defineF ′ andf ′ by

F ′(e′′) =

{
consf̃ ′(ẽ) if l(e′′) /∈ A ∧ e′′ ∈ init(Ẽ)

F (e) otherwise
(4.2)

f ′(e′′, ê′′) =

{
(f̃ ′(e′′), F ′(e′′)(ê′′)) if (e′′, ê′′) ∈ initObs(Ref e(Ẽ[e], ϑ̃)
undefined otherwise

. (4.3)

Then(Ref e

A
(Ẽ[e], ϑ̃),Ref e

A
(Ẽ ′[e′], ϑ̃′), f ′) ∈ RRef whereĨ ′ ∩ initObs(Ẽ[e]) is its corresponding

set andf̃ ′,F ′ are its corresponding functions.

Furthermore, fromf̃ � (Ĩ ′ ∩ initObs(Ẽ[e])) = f̃ ′ � Ĩ ′ we obtain thatf ′ andf coincide on
I ∩ initObs(Ref e

A
(Ẽ , ϑ̃)[(e,ê)]).

Suppose(e′′′, ê′′′) ∈ initObs(Ref e

A
(Ẽ ′, ϑ̃′)[(e′,e′)])∩f(I). Then from (4.1) and from the fact that

f̃−1 � (f(Ĩ ′)∩ initObs(Ẽ ′[e′])) = f̃ ′−1 � f(Ĩ ′) we obtain the following equationf ′−1(e′′′, ê′′′) =

(f̃ ′−1(e′′′), F ′(f̃ ′−1(e′′′))−1(ê′′′)) = (f̃−1(e′′′), F (f̃−1(e′′′))−1(ê′′′)) = f−1(e′′′, ê′′′), which
completes this case.

l̃(e) ∈ A ∧ lϑ̃(e)(ê) =
√

: By Lemma 4.25Ref e

A
(Ẽ , ϑ̃)[(e,ê)] = Ref e

A
(Ẽ[e], ϑ̃[e → ϑ̃(e)[ê]]) =

Ref e

A
(Ẽ[e], ϑ̃).

Define Ĩ ′ = Ĩ ∪ π1(I). Since(Ẽ , Ẽ ′, f̃) ∈ R ∧ Ĩ ′ ∈ Pfin(initObs(Ẽ)), there ise′ and f̃ ′

such that̃l(e) = l̃′(e′) and (Ẽ[e], Ẽ ′[e′], f̃ ′) ∈ R and l̃(e) ∈ Obs ⇒ f̃(e) = e′ and f̃ �

(Ĩ ′ ∩ initObs(Ẽ[e])) = f̃ ′ � Ĩ ′ andf̃−1 � (f(Ĩ ′) ∩ initObs(Ẽ ′[e′])) = f̃ ′−1 � f(Ĩ ′).

Furthermore,(ϑ̃(e), ϑ̃′(e′), F (e)) ∈ Rl̃(e) andê ∈ init(ϑ̃(e)). Hence, there existŝe′ ∈ init(ϑ)
such thatlϑ̃(e)(ê) = lϑ̃′(e′)(ê

′) andlϑ̃(e)(ê) ∈ Obs ⇒ F (e)(ê) = ê′.

By Lemma 4.25 we getRef e

A
(Ẽ ′[e′], ϑ̃′[e′ → ϑ̃′(e′)[ê′]]) = Ref e

A
(Ẽ ′, ϑ̃′)[(e′,ê′)]. Furthermore,

the labels of(e′, ê′) and (e, ê) coincide andlRef e
A

(Ẽ,ϑ̃)(e, ê) ∈ Obs implies thatf(e, ê) =

(f̃(e), F (e)(ê)) = (e′, ê′).

Now defineF ′ andf ′ as in (4.2) and (4.3). Then(Ref e

A
(Ẽ , ϑ̃)[(e,ê)],Ref e

A
(Ẽ ′, ϑ̃′)[(e′,ê′)], f

′) =

(Ref e

A
(Ẽ[e], ϑ̃),Ref e

A
(Ẽ ′[e′], ϑ̃′), f ′) ∈ RRef whereĨ ′ ∩ initObs(Ẽ[e]) is its corresponding set

andf̃ ′,F ′ are its corresponding functions (please note thate /∈ EẼ[e]
).

Furthermore, fromf̃ � (Ĩ ′ ∩ initObs(Ẽ[e])) = f̃ ′ � Ĩ ′ we obtain thatf ′ andf coincide on
initObs(Ref e

A
(Ẽ , ϑ̃)[(e,ê)]) ∩ I.

4.4. PROOFS 75

Suppose(e′′′, ê′′′) ∈ initObs(Ref e

A
(Ẽ ′, ϑ̃′)[(e′,ê′)])∩f(I). Then from (4.1) and from the fact that

f̃−1 � (f(Ĩ ′)∩ initObs(Ẽ ′[e′])) = f̃ ′−1 � f(Ĩ ′) we obtain the following equationf ′−1(e′′′, ê′′′) =

(f̃ ′−1(e′′′), F ′(f̃ ′−1(e′′′))−1(e′′′)) = (f̃−1(e′′′), F (f̃−1(e′′′))−1(e′′′)) = f−1(e′′′, ê′′′), which
completes this case.

l̃(e) ∈ A ∧ lϑ̃(e)(ê) 6=
√

: By Lemma 4.25 we getRef e

A
(Ẽ , ϑ̃)[(e,ê)] = Ref e

A
(Ẽ , ϑ̃[e → ϑ̃(e)[ê]]).

DefineIe = {ê′′ | (e, ê′′) ∈ I}. SinceIe ∈ Pfin(initObs(ϑ̃(e))) and(ϑ̃(e), ϑ̃′(f(e)), F (e)) ∈
Rl̃(e) there existŝe′ ∈ init(ϑ̃′(f̃(e))) and f̂ such that(ϑ̃(e)[ê], ϑ̃

′(f̃(e))[ê′], f̂) ∈ Rl̃(e) and

lϑ̃(e)(ê) = lϑ̃′(f̃(e))(ê
′) andlϑ̃(e)(ê) ∈ Obs ⇒ F (e)(ê) = ê′ andF (e) � (Ie∩initObs(ϑ̃(e)[ê])) =

f̂ � Ie andF (e)−1 � (F (e)(Ie) ∩ initObs(ϑ̃
′(f̃(e))[ê′])) = f̂−1 � F (e)(Ie).

From Lemma 4.25 we obtainRef e

A
(Ẽ ′, ϑ̃′[f̃(e) → ϑ̃′(f̃(e))[ê′]]) = Ref e

A
(Ẽ ′, ϑ̃′)[(f̃(e),ê′)].

Furthermore, the labels of(f̃(e), ê′) and(e, ê) coincide andlRef e
A

(Ẽ,ϑ̃)(e, ê) ∈ Obs implies

f(e, ê) = (f̃(e), F (e)(ê)) = (f̃(e), ê′).

Now definef ′ by

f ′(e′′, ê′′) =


(f̃(e), f̂(ê′′)) if (e′′, ê′′) ∈ initObs(Ref e(Ẽ[e], ϑ̃) ∧ e′′ = e

(f̃(e′′), F (e′′)(ê′′)) if (e′′, ê′′) ∈ initObs(Ref e(Ẽ[e], ϑ̃) ∧ e′′ 6= e
undefined otherwise

.

Then(Ref e

A
(Ẽ , ϑ̃[e → ϑ̃(e)[ê]]), (Ref e

A
(Ẽ ′, ϑ̃′[f̃(e) → ϑ̃′(f̃(e))[ê′]]), f

′) ∈ RRef whereĨ ∪
{e} is its corresponding set and̃f ,F ′ = F [e → f̂] are its corresponding functions.

Furthermore, fromF (e) � (Ie ∩ initObs(ϑ̃(e)[ê])) = f̂ � Ie we obtain thatf ′ andf coincide
on initObs(Ref e

A
(Ẽ , ϑ̃)[(e,ê)]) ∩ I.

Suppose(e′′′, ê′′′) ∈ initObs(Ref e

A
(Ẽ ′, ϑ̃′)[(e′,ê′)]) ∩ f(I). Then from (4.1) and from the fact

thatF (e)−1 � (F (e)(Ie) ∩ initObs(ϑ̃
′(f̃(e))[ê′])) = f̂−1 � F (e)(Ie) we obtainf ′−1(e′′′, ê′′′) =

(f̃−1(e′′′), F ′(f̃−1(e′′′))−1(e′′′)) = (f̃−1(e′′′), F (f̃−1(e′′′))−1(e′′′)) = f−1(e′′′, ê′′′).

The last condition of the FUI-bisimulation can be derived by symmetrical arguments. Thus, we
have proved thatRRef is a FUI-bisimulation.

Obviously,Ref e

A
(E , ϑ) = Ref e

A(E , θ) whenever∀e ∈ E : l(e) ∈ A ⇒ ϑ(e) = θ(l(e)). Define

F (e) =


consg(e) if l(e) ∈ A ∧ e′′ ∈ init(Ẽ)

gl(e) if l(e) /∈ A ∧ e′′ ∈ init(Ẽ)
⊥ otherwise

and

f(e, ê) =

{
(g(e), F (e)(ê)) if (e, ê) ∈ initObs(Ref e(E , θ))
undefined otherwise

. Then it is easy to check that

(Ref e(E , θ),Ref e(E ′, θ′), f) ∈ RRef , where∅ is its corresponding set andg, F are its corre-
sponding functions. ut

4.4.2 Proof of Proposition 4.20

Before we present the proof of Proposition 4.20, we establish the following lemma.

76 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Lemma 4.28 For all E ′, E0, ..., En, e0, ..., en−1, f and for all I ∈ Pfin(U) and for all FUI-
bisimulationR such that∀i ≤ n − 1 : Ei+1 = Ei[ei] and (E0, E ′, f) ∈ R there is a function
g : (I ∩

⋃
i≤n initObs(Ei))∪

⋃
i≤n−1{ei}) → E ′ such thatg is injective, labeling-preserving and

∀i ≤ n : ∃gi : (Ei, E ′[g(e0)]···[g(ei−1)], gi) ∈ R ∧ g � (initObs(Ei) ∩ I) = gi � (initObs(Ei) ∩ I).

Proof: We use induction onn.

n = 0: The result follows immediately if we chooseg = f � I.

n + 1: Define Ĩ = (I ∩
⋃

i≤n initObs(Ei)) ∪
⋃

i≤n{ei}. Then by induction there exists̃g :

((Ĩ ∩
⋃

i≤n initObs(Ei))∪
⋃

i≤n−1{ei}) → E ′ such that̃g is injective, labeling-preserving and

∀i ≤ n : ∃gi : g̃ � (initObs(Ei) ∩ Ĩ) = gi � (initObs(Ei) ∩ Ĩ) ∧ (Ei, E ′i , gi) ∈ R, where
E ′i = E ′[g̃(e0)]···[g̃(ei−1)].

From (En, E ′n, gn) ∈ R and Ĩ ′ ∈ Pfin(initObs(En)), whereĨ ′ = Ĩ ∩ initObs(En), we ob-
tain the existence ofe′ and gn+1 such thatl0(en) = l′(e′) and (En+1, E ′n[e′], gn+1) ∈ R
and l0(en) ∈ Obs ⇒ e′ = gn(en) andgn � (Ĩ ′ ∩ initObs(En+1)) = gn+1 � Ĩ ′ andg−1

n �
(gn(Ĩ ′) ∩ initObs(E ′n+1)) = g−1

n+1 � gn(Ĩ ′). Define

g(e) '
{

g̃(e) if e ∈ Ĩ

gn+1(e) if e ∈ (I ∩ (initObs(En+1))\Ĩ
.

It is easily seen thatg is labeling-preserving and that it coincides withgi on initObs(Ei) ∩ I
for anyi ≤ n + 1.

The injectivity of g can be seen as follows: Suppose there aree and ẽ such thatg(e) =
g(ẽ) ∧ e 6= ẽ. This is only possible if̃e ∈ Ĩ ande ∈ (I ∩ (initObs(En+1))\Ĩ, since otherwise
a contradiction to the injectivity of̃g or gn+1 follows. Frome ∈ initObs(En+1) we obtain
e ∈ Obs, henceẽ ∈ Obs by the labeling preserving of̃g and gn+1. Furthermore, there
existsj ≤ n such that̃e ∈ init(Ej), thusg̃(ẽ) ∈ initObs(E ′j). Moreover,g̃(ẽ) = gn+1(e) ∈
initObs(E ′n+1). Hence,̃g(ẽ) ∈ initObs(E ′n) by the definition of the remainder. This implies that
ẽ ∈ initObs(En), hencẽg(ẽ) ∈ gn(Ĩ ′)∩initObs(E ′n+1). From the fact that̃g(ẽ) = gn(ẽ) and that
g−1

n andg−1
n+1 coincide ongn(Ĩ ′) ∩ initObs(E ′n+1) we obtaine = ẽ, which is a contradiction.

ut

Proof of Proposition 4.20: The inclusion∼UI⊂∼FUI is easily seen.

SupposeE ∼FUI E ′ and (ei, γi)i≤n ∈ T ic(E). DefineE0 = E andEi+1 = Ei[ei] for i ≤ n,
which is well defined since(ei, γi)i≤n ∈ T ic(E). And letR be a FUI-bisimulation such that
(E , E ′, f) ∈ R. Furthermore, defineI =

⋃
i≤n(γi ∪ {ei}). Then by Lemma 4.28 we obtain a

functiong : I → E ′ such thatg is injective, labeling-preserving and∀i ≤ n : ∃gi : (Ei, E ′i , gi) ∈
R ∧ g � (initObs(Ei) ∩ I) = gi � (initObs(Ei) ∩ I), whereE ′i = E ′[g(e0)]···[g(ei−1)].

From (Ei, E ′i , gi) ∈ R and fromγi ⊆ initObs(Ei) we obtain thatgi(γi) ⊆ initObs(E ′i). Hence,
(g(ei), g(γi))i≤n ∈ T ic(E ′), sinceg(γi) = gi(γi). ut

4.4. PROOFS 77

4.4.3 Proof of Proposition 4.22

We use the following lemmas:

Lemma 4.29 SupposeA ⊆ Obs andθ1, θ2 : A → CBES such that∀a ∈ A : θ1(a) ∼b θ2(a).
ThenRef e

A(E , θ1) ∼b Ref e
A(E , θ2) for anyE ∈ CBES.

Proof: First, we show

(∀e ∈ U : ϑ1(e) ∼b ϑ2(e)) ⇒ Ref e

A
(E , ϑ1) ∼b Ref e

A
(E , ϑ2) (4.4)

LetRe be a corresponding bisimulation forϑ1(e) ∼b ϑ2(e). Define

R = {(Ref e

A
(E ′, ϑ′1),Ref e

A
(E ′, ϑ′2) | E ′ ∈ CBES ∧ ∀e ∈ U : (ϑ′1(e), ϑ

′
2(e)) ∈ Re}

By using Lemma 4.25, it is easy to check thatR is a bisimulation, which establishes (4.4).

Moreover,ϑi can be easily derived fromθi such thatϑi satisfies the requirement of (4.4) and
thatRef e

A(E , θi) = Ref e

A
(E , ϑi). ut

Lemma 4.30 SupposeA, A′ ⊆ Obs, θ : A → CBES, θ′ : A′ → CBES andθ′′ : (A ∪ A′) →

CBES such thatθ′′(a) =

{
Ref e

A(θ(a), θ′) if a ∈ A
θ′(a) if a ∈ A′\A . ThenRef e

A′(Ref e
A(E , θ), θ′) is

isomorphic toRef e
A∪A′(E , θ′′) for anyE ∈ CBES.

Proof: The isomorphismκ : ERef e
A′ (Ref e

A(E,θ),θ′) → ERef e
A∪A′ (E,θ′′) is given by

κ(((e, ê), ê′)) =


(e, e) if l(e) /∈ A ∪ A′

(e, ê′) if l(e) ∈ A′\A
(e, (ê, ê)) if l(e) ∈ A ∧ ê /∈ A′

(e, (ê, ê′)) if l(e) ∈ A ∧ ê ∈ A′

.

The proof thatκ is an isomorphism is straightforward. ut

Proof of Proposition 4.22: We have∼c⊆∼b, sinceE is isomorphic toRef e
∅(E , θ). Therefore,

it is only left to prove that∼c is a congruence, since every congruence which is below∼b has
to satisfy the constraint of∼c.

SupposeE1 ∼c E2, A ⊆ Obs and∀a ∈ A : θ1(a) ∼c θ2(a). We have to verifyRef e
A(E1, θ1) ∼c

Ref e
A(E2, θ2). Therefore, letA′ ⊂ Obs andθ : A′ → CBES.

Defineθ′i(a) =

{
Ref e

A′(θi(a), θ) if a ∈ A
θ(a) if a ∈ A′\A for i ∈ {1, 2}. From∀a ∈ A : θ1(a) ∼c

θ2(a) we get
∀a ∈ A ∪ A′ : θ′1(a) ∼b θ′2(a). (4.5)

Therefore, we obtain thatRef e
A′(Ref e

A(E1, θ1), θ)
Lemma 4.30∼= Ref e

A∪A′(E1, θ
′
1)

(4.5) and Lemma 4.29∼b

Ref e
A∪A′(E1, θ

′
2)

E1∼cE2∼b Ref e
A∪A′(E2, θ

′
2)

Lemma 4.30∼= Ref e
A′(Ref e

A(E2, θ2), θ), as required ut

78 CHAPTER 4. MODELING THE END-BASED VIEW IN CBES

Chapter 5

Terminating by Action Execution

In this chapter, an alternative approach to process termination, where a process is considered
to terminate by executing its ‘final’ action [14, 28], is considered. This approach is calledfa-
approachin the following. In addition to the transition relation a predicate for termination with
respect to action names is used. This termination approach is also used in many event-based
models, like those mentioned in [91], where termination is indicated by maximal configurations
and not by termination events.

Two new kinds of event structures are introduced in order to give a true concurrency model
for process algebras based on the fa-philosophy. One type of event structure models the ‘non-
disabling’ of events instead of disabling by using a witness relation. The other type of event
structure models disabling by indicating sets of precursor events. We show that both types
of event structures have the same expressive power and are more expressive with respect to
event traces than the standard event structures. A consistency result of an operational and a
denotational semantics is shown.

5.1 Motivation

Disrupt mechanisms are important in order to model many realistic systems. Hence they have
found their way into various process algebras [14, 15, 73, 75]. The disrupt operator of LOTOS
[32], called disabling operator, is denoted byB1 [>B2. Here, any action executed byB2 disables
B1, and the termination ofB1 disablesB2 (see also Chapter 3). Disrupt mechanisms are e.g.
used to model timeouts, which represent an important concept for many applications.

In the definition of an operational semantics, the disrupt operator has to be described. Therefore
it is necessary to specify when a process terminates. This can be achieved in two ways:

• By providing an additional syntactical expression1 to indicate the process that may termi-
nate immediately. For the operational description, an additional action

√
, which indicates

termination, and a rule1
√
−→ . . . are used. This approach is taken in Chapter 3 and in

[47, 32]1, for example.

1These papers only differ with respect to the handling of sequential composition. For example, the sequential
operator removes action

√
in [47], whereas it is replaced with the internal action in LOTOS [32].

79

80 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Unfortunately, some interesting and important ways of using disrupt mechanisms are ex-
cluded by the approach described above, as it is argued by the following generic example.

Example 5.1 Consider a nuclear power plant. LetPsd be a process that controls the
shutdown of the reactor and letPnr be the process that describes the normal running
behavior of the reactor. In processPnr an action namedstop may be activated by the
environment. Ifstop is executed, the normal behaviorPnr is terminated andPnr may
only terminate in this way. Thestop-action indicates the controlled shutdown demand of
a worker and is in general not allowed at every execution step ofPnr, i.e. it can not be
modeled by disruption. Then, a simple specification of a nuclear power plant is given by

Pnr; Psd

where; denotes the sequential composition. A more realistic specification of a nuclear
power plant may invoke the shutdown processPsd for various other reason, e.g. if the
temperature reaches a critical point. In addition, the shutdown may be combined with
other activities, e.g. that of setting off an alarm.

Let us consider a nuclear power plant with the action namedstop and a shutdown which
is triggered by temperature and that also invokes an alarm. In any system run either
a normal termination ofPnr by stop or a disruption ofPnr by a critical temperature
message may happen, but it should be prevented that both occur. In particular, once
thestop-action has been taken, no alarm should be set off. Let actiont denote that the
temperature of the reactor reaches the critical point and let actiona denote that an alarm
is set off. The natural representation of the reactor control in LOTOS is given by

((Pnr [>t); Psd)‖{t}(t; a)

whereB1‖AB2 denotes the parallel execution ofB1 andB2 with synchronization on the
actions inA. However, according to the semantics of LOTOS,t can happen afterstop.
This originates in the fact that the

√
-action (and not thestop-action) terminatesPnr.

Hence, an alarm with expensive consequences may be unnecessarily set off.

• An alternative approach to the problem of dealing with termination is to specify that a
process terminates when it executes its ‘final’ action [14, 28]. For example, the process
a‖∅b terminates by executinga if b was executed before or it terminates by executingb
if a was executed before. This approach, which is calledfa-approachin the following,
leads to the expected behavior of the process considered in the above example. The fa-
approach is modeled by using a predicate for termination with respect to action names in
the transition system. There is no need to extend the syntactical expressions by further
expressions, like1, in order to handle termination.

5.2 Syntax

Let τ , Obs and Var be defined as in Section 3.2. The set of all actionsAct is defined by
Act = {τ} ∪ Obs. A relabeling functionf is a function fromAct toAct such thatf(τ) = τ .
We denote the set of all labeling functions byFL.

5.3. OPERATIONAL SEMANTICS FOR PAST 81

The process algebra expressionsEXPst (s , start-based,t , fa-termination) are defined by the
following BNF-grammar.

B ::= 0 | a | B + B | B; B | B [>B | B‖AB | B[f] | B\\A | x

wheref ∈ FL, x ∈ Var, a ∈ Act andA ⊆ Obs. A process with respect toEXPst is a pair
〈decl, B〉 consisting of a declarationdecl : Var → EXPst and an expressionB ∈ EXPst. Let
PAst denote the set of all processes. We sometimes call an expressionB ∈ EXPst also a process
if decl is clear from the context.

The expressions have the following intuitive meaning:a is the process that executesa and
terminates.B1 [> B2 is the disruption ofB1 by B2, i.e. any action fromB2 disablesB1 as
long asB1 has not terminated. On the other hand, the termination ofB1 disablesB2. B1‖AB2

describes the parallel execution ofB1 andB2, where both processes have to synchronize on
actions ofA. The process terminates ifB1 andB2 terminate in the case of synchronization or if
one terminates and the other one has already terminated. The relabeling processB[f] executes
actionf(a) if B executes actiona. The restriction processB\\A executes actiona if B executes
actiona, provideda is not contained inA. The behavior of the inactive process0, of the choice
operator+, of the sequential composition; and of variablex is described in Section 3.2.

Process algebras, like [32, 98] or the one used in Chapter 3, that are based on the synchronization
we have just presented and which contain an expression for a termination process (denoted by
1) can model a restriction operator in terms of the parallel operator (B‖A1). Since we do not
introduce an expression for a termination process, we include the restriction operator, as in
[25, 138]. As it turns out, the restriction operator plays also a crucial role for the operational
definition of the parallel operator in our setting.

5.3 Operational Semantics forPAst

As stated in the beginning of this chapter, we adopt the philosophy that the ‘final’ executed
action terminates the process. Therefore, we have to distinguish between ‘final’ actions and
‘non-final’ actions. In transition systems, the fa-philosophy is usually modeled by using a
predicate for every actiona to determine that the process can terminate by executinga [14, 28].
The non-terminating action execution is modeled by the usual transition relation. We take a
different approach using additional labels. More precisely, we allow transitions to be labeled
with elements ofActT = Act ∪ (Act × {

√
}), where label(a,

√
) indicates that the process

terminates by executing actiona, i.e.a is a ‘final’ action of that process. Actions ofAct×{
√
}

are calledtermination actions. Our approach leads to a decrease in the number of transition
rules and allows a simplification of the definition of bisimulation and of the related proofs. The
transition rules of−→t

decl⊆ EXPst × ActT × EXPst with respect todecl : Var → EXPst are
presented in Figure 5.1. We writea

√
instead of(a,

√
).

In the following, we explain the rules which deviate from the standard ones: Processa can
executea and terminates by executing this action. The process which results in a deadlock after
executinga can be modeled bya;0, for example. The transition rule for the choice operator is
the standard CCS-rule [138]. Please note that no distinction between actions and termination
actions is made. If the first process of the sequential composition terminates by executinga

82 CHAPTER 5. TERMINATING BY ACTION EXECUTION

In the following letγ be an element ofActT anda be an element ofAct

A1 :
a

a
√

−→ 0
C : B1

γ−→ B′

B1 + B2
γ−→ B′

B2 + B1
γ−→ B′

S1 :
B1

a−→ B′
1

B1; B2
a−→ B′

1; B2

S2 :
B1

a
√

−→ B′
1

B1; B2
a−→ B2

I1 :
B1

a−→ B′
1

B1 [>B2
a−→ B′

1 [>B2

I2 :
B1

a
√

−→ B′
1

B1 [>B2
a
√

−→ B′
1

I3 :
B2

γ−→ B′
2

B1 [>B2
γ−→ B′

2

P1 :
B1

a−→ B′
1 a /∈ A

B1‖AB2
a−→ B′

1‖AB2

B2‖AB1
a−→ B2‖AB′

1

P2 :
B1

a
√

−→ B′
1 a /∈ A

B1‖AB2
a−→ B2\\A

B2‖AB1
a−→ B2\\A

P3 :
B1

a−→ B′
1 B2

a−→ B′
2 a ∈ A

B1‖AB2
a−→ B′

1‖AB′
2

P4 :
B1

a
√

−→ B′
1 B2

a−→ B′
2 a ∈ A

B1‖AB2
a−→ B′

2\\A
B2‖AB1

a−→ B′
2\\A

P5 :
B1

a
√

−→ B′
1 B2

a
√

−→ B′
2 a ∈ A

B1‖AB2
a
√

−→ 0

Lab1 : B
a−→ B′

B[f]
f(a)−→ B′[f]

Lab2 : B
a
√

−→ B′

B[f]
f(a)

√
−→ B′[f]

Res1 : B
a−→ B′ a /∈ A

B\\A a−→ B′\\A
Res2 : B

a
√

−→ B′ a /∈ A

B\\A a
√

−→ B′\\A

Rec :
decl(x)

γ−→ B′

x
γ−→ B′

Table 5.1: Transition Rules for−→t
decl

(rule S2), thenB1; B2 executesa without termination. The rules for the disrupt operator are as
they were expected, in particular ifB1 terminates by executinga, so doesB1 [>B2.

In the case of the parallel operator, we have to distinguish whether or not the actions that are
executed by the subprocess are termination actions. The second rule states that if a subpro-
cess executes a non-synchronizing termination action, then this process has to be removed and

5.4. DENOTATIONAL SEMANTICS FOR PAST 83

all actions in the synchronization set have to be forbidden for the remaining process. If both
processes execute a termination action of the synchronization set, the resulting process is0,
since after the termination of both processes the parallel process has terminated, and no further
actions will be executed.

The rules for the relabeling operator and the restriction operator only depend on the action name
and preserve termination, as expected.

Remark 5.2 It is easily seen by induction on the depth of inference that after the execution of
a termination action no further actions may be executed, i.e.

∀B, B′, a : B
a
√

−→t
decl B′ ⇒ (∀γ, B′′ : ¬(B′

γ

−→t
decl B′′).

5.4 Denotational Semantics forPAst

A denotational semantics ofPAst that corresponds to the operational semantics can not be given
in the standard event structures. This is argued as follows.

Prime event structures[145],flow event structures[36] andstable event structures[178] require
a symmetric conflict relation which makes it hard to model disruption. In additionconfigura-
tions [87, 177] do not provide a smooth way to model disruption. Consider, for example, pro-
cessB̃, which consists of the disruption ofa; b by actionc (i.e. B̃ = (a; b) [>c). An intuitive
approach is to assume thatB̃ has three events denoted bya, b, c. The sets∅, {a}, {c}, {a, b}
can be considered to be configurations, but what about{a, c}? Assuming it is not a configura-
tion contradicts the existing execution

a−→ c−→. On the other hand, assuming that{a, c} is also
a configuration leads to the interpretation that the execution

c−→ a−→ is legal2, which contra-
dicts the branching structure of̃B, since after the disruption (byc) no further actions from the
left-hand process may be executed.

Closed bundle event structures(Subsection 3.3.2), which can be used to give a denotational
semantics to LOTOS, anddual event structures[116] (Remark 3.3) allow the modeling of dis-
ruption, since the symmetry condition for the conflict relation is dropped. If (and how) these
types of event structures could be used to define a denotational semantics that also incorporates
the fa-philosophy is highly questionable. Consider, for example, the process(a‖∅b) [>c: If we
put c in conflict with a, thenc can be disabled beforeb happens and by symmetry the same
argument holds forb. But c has to be in conflict with some action, since otherwisec would
remain enabled after the execution ofa andb.

Therefore, a conflict relation that is based on a binary relation on events is not appropriate to
model this kind of disrupt operator in the context of the fa-philosophy.

In this section, we present two new classes of event structures that are suitable to model the
fa-philosophy and study their properties. The first one, which is calledextended termination
bundle event structure, moves from a conflict approach to awitnessapproach by introducing a
relation (�) between sets of events and events, i.e.�⊆ P(E)×E. A witness condition (Z � e)
indicates that evente is not disabled in a system run if no event from the system run is contained

2by the common definition [177, 87]

84 CHAPTER 5. TERMINATING BY ACTION EXECUTION

in Z. In other words, a system run disables an evente if each witness-bundleZ of e (Z � e)
contains an element of the system run. As long as there is a witness conditionZ � e, whereZ
does not contain an element of the system run so far,e is not disabled.Z is considered to be a
witnessof this fact.

The extended termination bundle event structures follow the philosophy of bundle event struc-
tures [126] that each bundle either from causality or from the witness relation is interpreted
existentially, i.e. the execution of any event of a bundle is sufficient to fulfill the requirement
denoted by the bundle.

The other new class of event structures, which is calledextended termination precursor event
structure, follows the contrary approach that each bundle (calledprecursorin these event struc-
tures) is universally quantified, i.e. every event of a precursor-bundle has to be executed to fulfill
the requirement. More precisely, the conflict relation (�̂) is given as a relation between sets of
events and events, i.e.̂� ⊆ P(E) × E. An evente is disabled by a system run if and only if
there is a precursorZ of e (Z�̂e) such that all events ofZ are contained in the system run. The
causality relation of an extended termination precursor event structure is also defined with the
universal quantification philosophy, as in Winskel’s event structures [178].

The rest of this section is organized as follows: First we neglect disruption and only concentrate
on the fa-philosophy. Therefore, termination bundle event structures, which represent a gener-
alization of bundle event structures, are presented in Subsection 5.4.1. They allow the modeling
of the fa-philosophy. In Subsection 5.4.2 the class of extended termination bundle event struc-
tures, which can also handle disruption, is introduced. This Subsection contains the result that
this class of event structures is more expressive than the standard event structures with respect
to event traces. Operators on extended termination bundle event structures are defined in Sub-
section 5.4.3. These operators are used in Subsection 5.4.4 to define the denotational semantics
of PAst. There the consistency between the denotational semantics and the operational seman-
tics is also given. The class of extended termination precursor event structures is introduced in
Subsection 5.4.5. In Subsection 5.4.6, it is shown that the class of extended termination bundle
event structures and the class of extended termination precursor event structures have the same
expressive power with respect to event traces.

5.4.1 Termination Bundle Event Structure (TBES)

Bundle event structures (Definition 3.1) indicate the termination of a process by additional
events that are labeled with the termination symbol

√
. These events are maintained by sequen-

tial composition, where they are relabeled with the internal action. This is not appropriate for
models of process algebras that are based on the fa-philosophy, since contrary to the semantics
of LOTOS, no internal action is executed when the first process terminates in the sequential
composition.

Therefore, we do not allow events labeled with the termination symbol. Consequently, we have
to model termination in a different way. Our approach is to consider the termination event to be
fictitious, and therefore we collect the bundles of the termination event without pointing directly
to an event. This means that we add an additional component that consists of a collection of
bundles, i.e. consists of a collection of subsets of events, to bundle event structures.

5.4. DENOTATIONAL SEMANTICS FOR PAST 85

Definition 5.3 (Termination Bundle Event Structure) A termination bundle event structure,
Tbesfor short,(E,], 7→, T, l) is an element ofP(U)×P(U ×U)×P(P(U)×U)×P(P(U))×
(U ⇀ Act) such that

•] ⊆ E × E and] is irreflexive and symmetric

• 7→⊆ P(E)× E

• T ⊆ P(E) andT 6= ∅

• dom(l) = E

• ∀e ∈ E : 7→ e is approximation closed with respect toE

• T is approximation closed with respect toE

LetTBES denote the set of all termination bundle event structures.

We callE theset of events,] theconflict relation, 7→ thecausalityrelation,T the termination
setandl theaction-labelingfunction.

The intuitive meaning of a Tbes is the following: If two eventse, e′ are in conflict, i.e.e]e′,
then only one of them can appear in a system run. The meaning ofX 7→ e is that beforee
may be executed, an event ofX has to be executed. A system run of a Tbes is terminated if
all bundles in the termination set are satisfied, i.e. every element ofT contains an event of the
system run. The constraintT 6= ∅ on the termination set ensures that an Tbes is not able to
terminate immediately, i.e. it can only terminate by executing an action. However,T might
consist of the empty set only. The labeling function indicates which action is observable when
the event is executed. The two approximation closedness constraints are used to guarantee that
the standard order yields a complete partial order.

TBES can be used as a denotational semantics for the processes ofPAst that do not contain
disrupt expressions. The operators onTBES have to vary from those of the original bundle
event structure (Definition 3.17 or [125, 126]). This is necessary, since the original bundle event
structure (Definition 3.1) allows any number of events for termination, whereas our approach
has exactly one event (the fictive one) for termination. We do not present the operators for
TBES. They can be easily obtained by adapting the operators for extended termination bundle
event structures presented in Definition 5.20.

Remark 5.4 The original bundle event structures (Definition 3.1) contain an additional con-
dition, calledbundle stability constraint(compare with Remark 3.3). It can also be added to
the condition of a Tbes, since it is an invariant for all operators needed in the denotational
semantics. We omit this constraint, since it is not important for the theory presented here.

5.4.2 Extended Termination Bundle Event Structure (ETBES)

In extended termination bundle event structuresthe non-disabling of events rather than the
disabling is modeled, which is done by a relation between sets of events and events. The non-
disabling modeling follows the philosophy of bundle event structures, where each bundle (ob-
tained from causality) is existentially quantified, i.e. the execution of any event of a bundle is

86 CHAPTER 5. TERMINATING BY ACTION EXECUTION

sufficient to fulfill the requirement denoted by the bundle. In Section 5.4.5 we present a different
approach, where every bundle is universally quantified.

Definition 5.5 (Extended Termination Bundle Event Structure) An extended termination
bundle event structure, eTbesfor short,E = (E,�, 7→, T, l) is an element ofP(U)×P(P(U)×
U)× P(P(U)× U)× P(P(U))× (U ⇀ Act) such that

• �⊆ P(E)× E and∀e ∈ E : ∃Z : Z � e and∀(Z, e) ∈�: e ∈ Z

• 7→⊆ P(E)× E

• T ⊆ P(E) andT 6= ∅

• dom(l) = E

• ∀e ∈ E : � e is approximation closed with respect toE

• ∀e ∈ E : 7→ e is approximation closed with respect toE

• T is approximation closed with respect toE

LetETBES denote the set of all extended termination bundle event structures.

� is called thewitnessrelation. The attributeextendedin the name of the event structures
defined above is used to emphasize (as it is done for extended bundle event structures) that
these event structures can model disruption.

The intuitive meaning of a witness-bundleZ of e (Z � e) is that evente is not disabled in a
system run if no event from the system run is contained inZ. A system run disables an event
e if all witness-bundles ofe contain an element of the system run. The constraints imposed on
the witness relation are: Firstly, every evente must have a witness-bundle, since otherwisee
would never be enabled and hence, could be omitted. Secondly, every witness-bundle ofe has
to containe, since the execution of an event disables itself, i.e. every event can be executed only
once. Furthermore, the witness relation also has to satisfy approximation closedness constraints
to guarantee that the standard order yields a complete partial order.

Example 5.6 Some eTbes are shown in Figure 5.1. Here, the events are depicted as dots and
their corresponding action names appears close by the dots (we do not name the events explicitly
and we identify them with the action names if no confusion arises). The witness relation is
illustrated by wavy lines. More precisely, a witness-bundleZ � e is depicted by a wavy arrow
from the elements ofZ\{e} to e. In the special case whenZ consists only ofe, we use a wavy
arrow from the empty-set toe. Sometimes, the same wavy lines are used in different witness-
bundles, for example the witness-bundles inE6 are{a, b, c} � a, {a, b, c} � b and{a, b, c} � c.
The causality relation is depicted similarly to the witness relation, except that straight lines are
used instead of wavy lines. A termination setX is displayed by surrounding its events by a
closed line.

5.4. DENOTATIONAL SEMANTICS FOR PAST 87

da

db � ∅

� ∅

��
��
��
��

E1

a‖∅b da

db

dc

�

� � ∅

� ∅

�

∅
-
-��
��

E2

(a‖∅b); c da

db

dc
�

�

�

�

�
�

�
�

�
� �

�
E3

(a‖∅b) [>c

da

db

�

�

�

�

�

�
E4

a + b da

db

dc

�

�

�

∅
-@

@
@

�
�

�
��
��

E5

(a + b); c da

db

dc�

�

�

r
'

&

$

%
E6

(a + b) [>c

Figure 5.1: Some Extended Termination Bundle Event Structures

Hereafter, we considerE to be(E,�, 7→, T, l), Ei to be(Ei,�i, 7→i, Ti, li) and in generalE to be
(EE ,�E , 7→E , TE , lE). Furthermore,init(E) denotes the set of events which are ready to execute
andΥ(T, e) holds if and only ife is a termination eventwith respect toT , i.e.E terminates by
executinge. Formally:

Definition 5.7 LetE be an eTbes. The set ofinitial eventsof E is defined by

init(E) = {e ∈ E | ¬(∃X : X 7→ e)}.

Thetermination predicateΥ ⊆ P(P(U))× U is defined by

Υ(T, e) ⇐⇒ ∀X ∈ T : e ∈ X.

Remark 5.8 Please note, that the events of an eTbes are labeled with elements ofAct and not
of ActT , i.e. events must not be labeled, for example, bya

√
. This is necessary, since we do

not know a priori if an event is a termination event of a system run. SeeE1 in Figure 5.1, for
example.

Transition system from an eTbes.

Here, we describe how to obtain a transition system from an eTbes, which is later used to ana-
lyze the expressive power ofETBES and to establish a consistency result for the denotational
and the operational semantics. In order to obtain a transition system from an eTbes, we define
the remainder of an eTbes with respect to an initial event. The remainder with respect to event

88 CHAPTER 5. TERMINATING BY ACTION EXECUTION

e describes the system after the execution ofe. Therefore, we remove all events which are dis-
abled bye, i.e. we only keep those events that have a witness-bundle which does not contain
e. Please remember that an event has to be an element of all its witness-bundles. Hence, it
disables itself. Furthermore, all bundles (from causality, witness or termination) that contain
e are removed, since the execution ofe fulfills the requirements specified by those bundles,
i.e. the bundle contains an element of the system run. In the definition of the termination set,
we consider the case that an eTbes terminates by executinge separately in order to guarantee
that the remainder of an eTbes is an eTbes. This distinction is necessary, since otherwise the
termination set would become the empty set, which is not allowed for an eTbes.

Definition 5.9 (Remainder of an eTbes)LetE ∈ ETBES ande ∈ init(E). Then theremain-
derE[e] of E is given by(E ′,�′, 7→′, T ′, l′) where

E ′ = {e′ ∈ E | ∃Z : Z � e′ ∧ e /∈ Z}
�′ = {(Z ∩ E ′, e′) | e′ ∈ E ′ ∧ Z � e′ ∧ e /∈ Z}
7→′ = {(X ∩ E ′, e′) | e′ ∈ E ′ ∧X 7→ e′ ∧ e /∈ X}

T ′ =

{
{X ∩ E ′ | X ∈ T ∧ e /∈ X} if ¬Υ(T, e)
{∅} otherwise

l′ = l � E ′

It can be shown that the remainder of an eTbes is also an eTbes.

Lemma 5.10 LetE ∈ ETBES ande ∈ init(E). ThenE[e] ∈ ETBES.

Proof: The approximation closedness conditions are an immediate consequence of Corollary
2.18. The other conditions can be easily checked. ut

The remainders are used in the following definition to obtain an interleaving semantics for
ETBES.

Definition 5.11 The transition relation↪→⊆ ETBES×ActT × ETBES is defined by

↪→= {(E , γ, E[e]) | E ∈ ETBES ∧ e ∈ init(E) ∧ γ =

{
l(e)

√
if Υ(T, e)

l(e) if ¬Υ(T, e)
}.

The transition system obtained fromE3 of Figure 5.1 is presented in Figure 5.2.

Remark 5.12 According to the definition of the remainder, it is possible that further events
may be executed after the execution of a termination event. This effect also arose in the original
bundle event structures. It is possible to circumvent this effect by considering only those eTbes
where every event set that leads to termination also disables every event. Formally, eTbesE has
to satisfy (remember that� e = {Z | Z � e}):
∀e ∈ E : ∀E ′ ⊆ E : (∀X ∈ T : E ′ ∩X 6= ∅) ⇒ (∀Z ∈ � e : Z ∩ E ′ 6= ∅).

5.4. DENOTATIONAL SEMANTICS FOR PAST 89

da

db

dc
�

�

�

�

�
�

�
�

�
� �

�
E3

db dc� �

�
�

�
�

da dc� �

�
�

�
�

(∅, ∅, ∅, {∅}, ∅)-c
√�

���*a

HH
HHjb

H
HHHj
b
√H

HHH
HHHj

c
√

����*
a
√

���
����*

c
√

Figure 5.2: Transition System Derived fromETBES

Expressive Power.

The expressive power of event structures can be measured by comparing the set of event traces
described by them. Here, we present the definition of event traces with respect toETBES.
The event traces for the other event structures are similarly defined.

Definition 5.13 An event traceof E1 ∈ ETBES is a finite sequence of events (e1, ..., en) such
that there are eTbesE2, ..., En+1 with Ej[ej] = Ej+1 for all j ≤ n. Theset of all event tracesof
E1 is denoted byTre(E1).

A setM of finite sequences of events (set of event traces) is described byETBES if there exists
E ∈ ETBES such thatM = Tre(E).

For simplicity, we neglect the termination information when we compare the expressive power.
The termination information can be easily included by dividing the set of event traces into
terminated and non-terminated traces.

Example 5.14 The set of event traces ofE3 from Figure 5.1 is

Tre(E3) = {(a), (b), (c), (a, b), (b, a), (a, c), (b, c)}.

Theorem 5.15 Every set of event traces that is described by prime [145], flow [36], stable
[178], bundle, extended bundle or dual event structures [116] is also described by extended
termination bundle event structures, but not vice versa.

Proof: From [116] we know that every set of event traces described by a cited class of event
structures is also described by dual event structures. The inclusion of dual event structures
in extended termination bundle event structures is shown by mapping the dual event structure
(E, ;, 7→, l) to (E,�, 7→, {∅}, l) where�= {({e′ ∈ E | e ; e′} ∪ {e}, e) | e ∈ E}.
Furthermore, the causality relation has to be extended such that it is approximation closed with
respect toE. This extension does not change the set of event traces if the least extension is
used.

On the other hand, the set of event traces obtained fromE3 of Figure 5.1 can not be described
by a dual event structure. ut

90 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Complete Partial Order.

In order to give a semantics toPAst, we turnETBES into anω-complete partial order. First,
we present the definition and results concerning the restriction of an eTbes, which is used to
define an order onETBES.

Definition 5.16 (Restriction of an eTbes)SupposeE ∈ ETBES andE ′ ⊆ E. Then there-
striction ofE to E ′, denoted byE � E ′, is given by(E ′,�′, 7→′, T ′, l′) where

�′ = {(Z ∩ E ′, e′) | e′ ∈ E ′ ∧ Z � e′}
7→′ = {(X ∩ E ′, e′) | e′ ∈ E ′ ∧X 7→ e′}
T ′ = {X ∩ E ′ | X ∈ T}
l′ = l � E ′

Lemma 5.17 LetE ∈ ETBES andE ′ ⊆ E. ThenE � E ′ ∈ ETBES.

Proof: Is an immediate consequence of Corollary 2.18. ut

Definition 5.18 (Order onETBES) Let Ei ∈ ETBES. ThenE1 � E2 if E1 ⊆ E2 andE1 =
E2 � E1.

Theorem 5.19 The set of all eTbes ordered by� is an ω-complete partial order, where the
least upper bound of anω-chain(Ei)i∈IN is given by

⊔
i Ei = (

⋃
i Ei,�, 7→, T,

⋃
i li) with

� = {(Z, e) | ∀k : e ∈ Ek ⇒ (Z ∩ Ek) �k e}
7→ = {(X, e) | ∀k : e ∈ Ek ⇒ (X ∩ Ek) 7→k e}
T = {X | ∀k : X ∩ Ek ∈ Tk}

.

Proof: It works analogously to the proof of Theorem 3.10. ut

5.4.3 Operators onETBES

Here, we present the operators onETBES that are later used to define the denotational seman-
tics.

Definition 5.20 (Operators onETBES) LetA ⊆ Obs. Then define

+̂ : ETBES× ETBES → ETBES with E1+̂E2 = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
�̃ = {(({?i} × Z) ∪ ({?j} × init(Ej)), (?i, e)) | Z �i e ∧ i 6= j}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
T̃ = {({?1} ×X1) ∪ ({?2} ×X2) | X1 ∈ T1 ∧X2 ∈ T2}
l̃((?i, e)) = li(e)

5.4. DENOTATIONAL SEMANTICS FOR PAST 91

;̂ : ETBES× ETBES → ETBES with E1 ;̂ E2 = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
�̃ = {({?1} × (Z ∪X), (?1, e)) | Z �1 e ∧X ∈ T1} ∪

{({?2} × Z, (?2, e)) | Z �2 e}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e} ∪

{({?1} ×X1, (?2, e)) | e ∈ init(E2) ∧X1 ∈ T1}
T̃ = {{?2} ×X2 | X2 ∈ T2}
l̃((?i, e)) = li(e)

[̂> : ETBES× ETBES → ETBES with E1 [̂>E2 = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
�̃ = {(({?1} × Z) ∪ ({?2} × init(E2)), (?1, e)) | Z �1 e} ∪

{({?1} ×X)(∪({?2} × Z), (?2, e)) | X ∈ T1 ∧ Z �2 e}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
T̃ = {({?1} ×X1) ∪ ({?2} ×X2) | X1 ∈ T1 ∧X2 ∈ T2}
l̃((?i, e)) = li(e)

‖̂A : ETBES× ETBES → ETBES with E1‖̂AE2 = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = (Ef
1 × {?}) ∪ ({?} × Ef

2) ∪ Es

Ef
i = {e ∈ Ei | li(e) /∈ A}

Es = {(e1, e2) ∈ E1 × E2 | l1(e1) = l2(e2) ∈ A}
�̃ = {({(e′1, e′2) ∈ Ẽ | e′1 ∈ Z1 ∪X1}, (e1, ?)) | Z1 �1 e1 ∧X1 ∈ T1} ∪

{({(e′1, e′2) ∈ Ẽ | e′2 ∈ Z2 ∪X2}, (?, e2)) | Z2 �2 e2 ∧X2 ∈ T2} ∪
{({(e′1, e′2) | e′1 ∈ Z1 ∪X1 ∨ e′2 ∈ Z2 ∪X2}, (e1, e2)) |

(e1, e2) ∈ Es ∧ Z1 �1 e1 ∧X1 ∈ T1 ∧ Z2 �2 e2 ∧X2 ∈ T2}
˜7→ = {({(e′1, e′2) ∈ Ẽ | e′i ∈ Xi}, (e1, e2)) | Xi 7→i ei}
T̃ = {{(e1, e2) ∈ Ẽ | ei ∈ Xi} | Xi ∈ Ti}

l̃((e1, e2)) =

{
l1(e1) if e2 = ?
l2(e2) otherwise

L̂ab : (ETBES×FL) → ETBES with L̂ab(E , f) = (E,�, 7→, T, f ◦ l).

\̂\A : ETBES → ETBES with E \̂\A = E � {e ∈ E | l(e) /∈ A}.

We will give some comments on the definition of these operators: The definitions of the set
of events, the causality relation and the relabeling function are the standard ones [125], except
that the disjoint union is explicitly used (see Subsection 3.3.3). An event(?1, e) from E1+̂E2

has to be disabled if an event corresponding toE2 is executed, where the event ofE2 has to
be necessarily an initial event ofE2. Therefore, the witness-bundles of(?1, e) are obtained by
extending the original ones withinit(E2). And, of course, similarly defined for(?2, e) events.
The termination set ofE1+̂E2 is obtained by taking any combination of the elements of the two
termination sets. This is intuitive, since an event is a termination event ofE1+̂E2 if and only if
it is a termination event ofE1 or E2.

92 CHAPTER 5. TERMINATING BY ACTION EXECUTION

An event(?2, e) from E1 ;̂ E2 can not be disabled by events fromE1, and therefore we only take
the original witness-bundles. On the other hand, we additionally disable an event(?1, e) by the
termination ofE1. This is done in order to achieve consistence with the operational semantics.
E1 ;̂ E2 terminates if and only if a termination event fromE2 is executed. Hence, the termination
set ofE1 ;̂ E2 is defined as the termination set ofE2.

The witness-bundle relation ofE1 [̂>E2 is a combination of the ideas ofE1+̂E2 and ofE1 ;̂ E2,

since the(?1, e) events ofE1 [̂>E2 are disabled by any(?2, e)-event and a(?2, e)-event is disabled
by a termination event ofE1. Furthermore, the set of termination is similar toE1+̂E2.

An evente = (e1, e2) of E1‖̂AE2 is disabled ife1 or e2 is disabled or if another event where
one component is equal to a component ofe, like (e1, e

′
2), is executed. Furthermore,e is also

disabled if one side of the parallel operator terminates ande is a synchronization event, i.e.
e1, e2 6= ?. This is intuitive, since a process that terminates can not execute any further action.
Therefore, no synchronization can take place. The disabling mechanism described above is
obtained by taking any combination of the corresponding sets, as it can be seen in the definition.
The set of termination forE1‖̂AE2 is obtained by taking the union of the termination sets of its
components, where we have to guarantee that all corresponding synchronization events are
contained in this union.

The witness-bundles and the termination are unaffected by the labeling operator. The restriction
operator removes all forbidden events, i.e. those labeled with elements ofA. This is also done
in the witness-bundles and in the termination set.

Lemma 5.21 All operators of Definition 5.20 are well defined, i.e. they really yield elements of
ETBES.

Proof: The well-definedness of̂\\A follows from Lemma 5.17. The approximation closedness
conditions of the witness relation of the sequential operator are a consequence of Corollary
2.19. The other conditions are easily seen except for the approximation closedness conditions
of the parallel operator.

Therefore, let̃E = E1‖̂AE2.

�̃: Let (e′1, e
′
2) ∈ EE1‖̂AE2

. DefineMi =

{
{∅} if e′i = ?
{Zi ∪Xi | Zi �i e′i ∧Xi ∈ Ti} otherwise

.

ThenMi is approximation closed with respect toEi∪{?} by Corollary 2.19. From Corollary
2.20 we obtain thatM ′ = {{(e1, e2) ∈ (E1∪{?})× (E2∪{?}) | e1 ∈ X1∨e2 ∈ X2} | X1 ∈
M1 ∧X2 ∈ M2} is approximation closed with respect to(E1 ∪ {?}) × (E2 ∪ {?}). And so
the approximation closedness of�̃ follows from Corollary 2.18, since{X̃ | X̃�̃(e′1, e

′
2)} =

{X ′ ∩ Ẽ | X ′ ∈ M ′}.

˜7→: The proof is similar to the one of Lemma 3.18.

T̃ : Analogous to˜7→. ut

Lemma 5.22 All operators of Definition 5.20 are continuous with respect to�.

Proof: Analogous to the proof of Lemma 3.18. ut

5.4. DENOTATIONAL SEMANTICS FOR PAST 93

Remark 5.23 Thebundle stability constraint(see Remark 5.4) of an eTbesE can be formalized
by

∀X ∈ T ∪ π1(7→) : ∀e, e′ ∈ X : ∀Z : Z � e ⇒ e′ ∈ Z.

But contrary toTBES, this constraint is to restrictive, since it is not preserved by the dis-
rupt operator. This can be seen as follows. ConsiderE3 of Figure 5.1. ThenE3 does not
satisfy the bundle stability constraint, since{a, c} ∈ T3 but {b, c} � c. Furthermore,E3 =

E1 [̂>({•}, {({•}, •)}, ∅, {{•}}, {(•, c)}), where both components satisfy the bundle stability
constraint.

5.4.4 Denotational Meaning forPAst

First, we define the denotational semantics of expressions (EXPst) with respect to variable as-
signments, i.e. functions fromVar to ETBES. Then variable assignments are derived from
declarations, which are used to define the denotational semantics of processes (PAst).

Definition 5.24 Let [[]] : EXPst×(Var → ETBES) → ETBES be defined as follows (where
ρ : Var → ETBES)

[[0]]ρ = (∅, ∅, ∅, {∅}, ∅) [[a]]ρ = ({•}, {({•}, •)}, ∅, {{•}}, {(•, a)})
[[B1 + B2]]ρ = [[B1]]ρ+̂[[B2]]ρ [[B1; B2]]ρ = [[B1]]ρ ;̂ [[B2]]ρ

[[B1 [>B2]]ρ = [[B1]]ρ [̂>[[B2]]ρ [[B1‖AB2]]ρ = [[B1]]ρ‖̂A[[B2]]ρ

[[B[f]]]ρ = L̂ab([[B]]ρ, f) [[B\\A]]ρ = [[B]]ρ \̂\A
[[x]]ρ = ρ(x)

Remark 5.25 [[B]] is continuous with respect to� for everyB ∈ EXPst.

Assumedecl : Var → EXPst. Then defineFdecl : (Var → ETBES) → (Var → ETBES)
with Fdecl(ρ)(x) = [[decl(x)]]ρ. From Remark 5.25 it follows thatFdecl is continuous. Therefore,
from the complete partial order theory we get{[]} : (Var → EXPst) → (Var → ETBES) with
{[decl]} = fix(Fdecl) =

⊔
nFn

decl(⊥) is well defined.

Definition 5.26 (Denotational Semantics)

Define[[]] : PAst → ETBES by [[〈decl, B〉]] = [[B]]{[decl]}.

Example 5.27 The denotational semantics of some processes is illustrated in Figure 5.1.

The denotational semantics is consistent with the operational semantics, since the transition
system derived from the denotational semantics is bisimilar to the operational semantics.

Theorem 5.28 (Consistency)Suppose〈decl, B〉 ∈ PAst. Then(EXPst,ActT , −→t
decl, B) and

(ETBES,ActT , ↪→, [[〈decl, B〉]]) are bisimilar.

Proof: The proof is given in Subsection 5.6.1. ut

94 CHAPTER 5. TERMINATING BY ACTION EXECUTION

5.4.5 Extended Termination Precursor Event Structures (ETPES)

An evente of an eTbes is caused (or disabled) in a system run if the run contains an element of
everycausality (respectively witness) bundleX of e (bundle approach). Another contrary way
of modeling causality is Winkel’s quantification approach [178]: An evente is caused if there
existsa ‘causality set’X of e such that all elements ofX occur in the system run. Since this
approach is a popular one, we introduce in this section another class of event structures, which
again use a relation (̂�) between sets of events and events in order to model disabling. But
this time, the causality and the disabling relation are interpreted with Winskel’s quantification
approach. We show in Subsection 5.4.6 that these event structures and the extended termination
bundle event structures are equivalent.

Definition 5.29 M is finitely determinedwith respect toE if

• E is a countable set

• M is upper closedwith respect toE, i.e.∀X, X ′ : (X ⊆ X ′ ∧X ∈ M) ⇒ X ′ ∈ M

• ∀X ∈ M : ∃X ′ ∈ M : X ′ ⊆ X ∧ |X ′| < |IN|

Definition 5.30 (Extended Termination Precursor Event Structure) An extended termina-
tion precursor event structure, eTpesfor short,E| = (Ê, �̂, ˆ7→, T̂ , l̂) is an element ofP(U) ×
P(P(U)× U)× P(P(U)× U)× P(P(U))× (U ⇀ Act) such that

• �̂ ⊆ P(Ê)× Ê and∀e ∈ Ê : ¬(∅�̂e) and∀e ∈ Ê : {e}�̂e

• ˆ7→ ⊆ P(Ê)× Ê

• T̂ ⊆ P(Ê) and∅ /∈ T

• dom(l̂) = Ê

• ∀e ∈ Ê : �̂e is finitely determined with respect tôE

• ∀e ∈ Ê : ˆ7→e is finitely determined with respect tôE

• T̂ is finitely determined with respect tôE

LetETPES denote the set of all extended termination precursor event structures.

�̂ is called theprecursor conflictrelation. The other components are called the same as those
of the extended termination bundle event structures. The intuitive meaning of the precursor
conflict relation is that evente is disabled in a system run if there is a conflict precursorZ
of e (Z�̂e) such that the system run contains all elements ofZ. The intuitive meaning of the
causality relationˆ7→ and of the termination set̂T is similar to�̂. For example, a system run of
an eTpes is terminated if there is an elementX of T̂ , where every element ofX appears in the
system run.

The constraints imposed on the precursor conflict relation are: no event is immediately disabled
(¬(∅�̂e)), since otherwise the event can be omitted. Furthermore, the execution of an event

5.4. DENOTATIONAL SEMANTICS FOR PAST 95

da

db � ∅

� ∅
�

�

�

�
E| 1

a‖∅b da

db

dc
� ∅

� ∅

-@
@

@

�
�

�
��
��

E| 2

(a‖∅b); c da

db

dc
� ∅

� ∅

�

∅�

�

�r
�

�

�

�
��
��

E| 3

(a‖∅b) [>c

Figure 5.3: Some Extended Termination Precursor Event Structures

disables itself ({e}�̂e), i.e. every event can happen only once. The constraint∅ /∈ T̂ on the
termination set ensures that a precursor event structure may not terminate immediately, i.e. it
can only terminate by executing an action. The three finitely determined constraints are used to
guarantee that the order introduced later in this subsection yields a complete partial order.

Example 5.31 Some eTpes are shown in Figure 5.3. The five components are displayed simi-
larly to the components of an eTbes (see Example 5.6), i.e. the conflict relation is depicted as
wavy lines, the causality as straight lines. We depict a termination precursor by surrounding its
events by a closed line. Furthermore, we do not draw the conflict precursors of the form{e}�̂e
and we omit the upper sets, e.g. inE| 3 we do not draw the termination precursors{a, c}, {b, c}
and{a, b, c}, which can be derived from the termination precursor{c}.

Hereafter,E| is considered to be(Ê, �̂, ˆ7→, T̂ , l̂), E| i to be(Êi, �̂i, ˆ7→i, T̂i, l̂i) and in generalE| is
considered to be(ÊE| , �̂E| , ˆ7→E| , T̂E| , l̂E|).

Definition 5.32 LetE| be an eTpes. The set ofinitial eventsof E| is defined by

înit(E|) = {e ∈ Ê | ∅ ˆ7→e}.

Thetermination predicatêΥ ⊆ P(P(U))× U is defined by

Υ̂(T̂ , e) ⇐⇒ {e} ∈ T̂ .

In the following two subsections, we derive a transition system from an eTpes and provide a
complete partial order onETPES. These concepts will be used for the comparison ofETBES
andETPES.

Transition Systems from an eTpes.

The remainder of an eTpes is given as follows.

Definition 5.33 (Remainder of an eTpes)Let E| ∈ ETPES and e ∈ înit(E|). Then there-
mainderE|

[̂e]
of E| is given by(Ê ′, �̂′

, ˆ7→′, T̂ ′, l̂′) where

96 CHAPTER 5. TERMINATING BY ACTION EXECUTION

da

db

dc
� ∅

� ∅

�

∅�

�

�r
�

�

�

�
��
��

E| 3

db dc� ��

∅

�

∅

��
��

��
��

da dc� ��

∅

�

∅

��
��

��
��

(∅, ∅, ∅, ∅, ∅)-c
√�

���*a

HH
HHjb

H
HHHj
b
√H

HHH
HHHj

c
√

����*
a
√

���
����*

c
√

Figure 5.4: Transition System Derived fromETPES

Ê ′ = {e′ ∈ Ê | ¬({e}�̂e′)}
�̂′

= {(Z ′, e′) | e′ ∈ Ê ′ ∧ Z ′ ⊆ Ê ′ ∧ ∃Z : Z�̂e′ ∧ Z ′ = Z\{e}}
ˆ7→′ = {(X ′, e′) | e′ ∈ Ê ′ ∧X ′ ⊆ Ê ′ ∧ ∃X : X ˆ7→e′ ∧X ′ = X\{e}}

T̂ ′ =

{
{X ′ | X ′ ⊆ Ê ′ ∧ ∃X ∈ T̂ : X ′ = X\{e}} if ¬Υ̂(T̂ , e)
∅ otherwise

l̂′ = l̂ � Ê ′

All events which are disabled bye are removed. Please remember that{e}�̂e. Hence,e disables
itself. After the execution ofe, we keep exactly those precursors that are completely contained
in Ê ′∪{e}, since the other ones can not be contained in further system runs. In the definition of
the termination set, we consider the case when an eTpes terminates by executinge separately in
order to guarantee that the remainder of an eTpes is also an eTpes. This separation is necessary,
since otherwise the empty set would be contained in the termination set, which is not allowed
for an eTpes.

Lemma 5.34 LetE| ∈ ETPES ande ∈ înit(E|). ThenE|
[̂e]
∈ ETPES.

Proof: Straightforward. ut
Analogous to Definition 5.11, the remainder can be used to define an interleaving semantics
for ETPES, which is omitted here. The transition system obtained fromE| 3 of Figure 5.3 is
presented in Figure 5.4.

Complete Partial Order.

We define the following order onETPES.

Definition 5.35 LetE| i ∈ ETPES. ThenE| 1�̂E| 2 if

• Ê1 ⊆ Ê2

• �̂1 = {(X, e) ∈ �̂2 | X ⊆ Ê1 ∧ e ∈ Ê1}

• ˆ7→1 = {(Z, e) ∈ �̂2 | Z ⊆ Ê1 ∧ e ∈ Ê1}

5.4. DENOTATIONAL SEMANTICS FOR PAST 97

• T̂1 = {X ∈ T̂2 | X ⊆ Ê1}

• l̂1 = l̂2 � Ê1

Theorem 5.36 The set of all eTpes ordered bŷ� is an ω-complete partial order, where the
least upper bound of anω-chain(E| i)i∈IN is given by

⊔̂
iE| i = (

⋃
i Êi, �̂, ˆ7→, T̂ ,

⋃
i l̂i) with

�̂ = {(Z, e) ∈ P(
⋃

i Êi)× (
⋃

i Êi) | ∃j : (Z ∩ Êj)�̂je}
ˆ7→ = {(X, e) ∈ P(

⋃
i Êi)× (

⋃
i Êi) | ∃j : (X ∩ Êj) ˆ7→je}

T̂ = {X ∈ P(
⋃

i Êi) | ∃j : (X ∩ Êj) ∈ T̂j}
.

Proof: The proof is given in Subsection 5.6.2. ut

5.4.6 Correspondence betweenETBES and ETPES.

We show that there is a continuous function fromETBES ordered by� to ETPES ordered
by �̂ and vice versa. This result is used to show thatETBES andETPES have the same
expressive power with respect to event traces.

Definition 5.37 LetFE : P(P(E)) → P(P(E)) be defined by

FE(M) = {X̂ ∈ P(E) | ∀X ∈ M : X ∩ X̂ 6= ∅}.

DefineF : M̃ → M̃ , whereM̃ = {(E,�, 7→, T, l) | T ⊆ P(E) ∧ dom(l) = E∧ �, 7→⊆
P(E)× E}, by

F(E,�, 7→, T, l) = (E, {(Ẑ, e) | Ẑ ∈ FE(� e)}, {(X̂, e) | X̂ ∈ FE(7→ e)}, FE(T), l).

Example 5.38 The transformation ofE3 of Figure 5.1 isE| 3 of Figure 5.3, i.e.F(E3) = E| 3.
The transformation ofE| 3 yieldsE3 except that all upper sets are included in the conflict relation
(respectively in the causality relation and the termination set), for example{a, b, c} is contained
in the termination set.

Proposition 5.39 FunctionF � ETBES is a continuous function from(ETBES, �) into
(ETPES, �̂) and functionF � ETPES is a continuous function from(ETPES, �̂) into
(ETBES, �).

Proof: The proof is given in Subsection 5.6.3. ut

Theorem 5.40 Every set of event traces that is described byETBES is also described by
ETPES and vice versa. More precisely, for allE ∈ ETBES it holds thatE andF(E) describe
the same set of event traces, and for allE| ∈ ETPES it holds thatE| andF(E|) describe the
same set of event traces.

Proof: The proof is given in Subsection 5.6.4. ut

98 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Corollary 5.41 Every set of event traces that is described by prime, flow, stable, bundle, ex-
tended bundle or dual event structures is also described by extended termination precursor
event structures, but not vice versa.

Proof: Is an immediate consequence of Theorem 5.15 and Theorem 5.40. ut

Remark 5.42 Of course it is possible to useETPES instead ofETBES as a model of the
denotational semantics for our process algebra. The necessary operators can be defined explic-
itly, as it is done in Subsection 5.4.3 forETBES. Another possibility is to define the operators
on ETPES through the operators onETBES, i.e. define, for example, the parallel operator
‖̃A onETPES byE| ‖̃AE| ′ = F(F(E|)‖̂AF(E| ′)). These operators are continuous by Proposition
5.39 and Lemma 5.22. The denotational semantics that is obtained in this way is illustrated in
Figure 5.3.

5.5 Discussion

In this chapter, we have investigated new kinds of event structures in order to give denotational
semantics to process algebras that are based on the fa-philosophy and that contain disruption.
The motivation of such an approach results from the fact that it is more reasonable to have an
fa-philosophy in end-based settings, since otherwise the intuitive equivalences fail to be the
coarsest (Subsection 4.2.6). Note that it is possible to model disruption with action refinement
in end-based settings.

Sets of events may disable events in both event structures presented in this chapter. One of these
event structures is based on the bundle technique the other one is based on Winskel’s approach.
We have shown that these two event structures are equivalent approaches. Furthermore, we
have used one of them to give a denotational semantics to a process algebra that is based on
the fa-philosophy and that contains disruption. Moreover, we have shown that this denotational
semantics is consistent with the standard operational semantics.

In the following chapter, we define the action refinement operator onETBES with respect
to the end-based view. In addition, we adapt two of the newly introduced equivalences of
Chapter 4 toETBES and show that they yield the coarsest equivalences with respect to trace
(respectively bisimulation) equivalence for the end-based action refinement operator.

5.6 Proofs

5.6.1 Proof of Theorem 5.28.

The proof is analogous to the proof of Theorem 3.25, i.e. we introduce an event based transition
relation. Then we show that this transition system is bisimilar to(EXPst,ActT , −→t

decl, B)
and that it is, in addition, bisimilar to(ETBES,ActT , ↪→, [[〈decl, B〉]]). Hence, Theorem 5.28
follows by the transitivity of bisimilarity.

5.6. PROOFS 99

Event Based Transition System.

Let EXPe
st be the set that contains exactly those elements generated by

C ::= B | C; B | C [>B | C‖AC | C[f] | C\\A | dCei

whereB ∈ EXPst, f ∈ FL, i ∈ {1, 2, l, r} andA ⊆ Obs. We do not need to extend the
declaration, i.e. we definePAe

st = (Var → EXPst)× EXPe
st.

In Table 5.2, the event transition rules−→′
decl⊆ EXPe

st × (ActT × U)× EXPe
st are presented.

The First Bisimilarity Result.

An expressionC of EXPe
st and an expressionB of EXPst are related if we obtainB by removing

all d e expressions fromC. This is formalized by the following function, where we also count
thed e symbols inC.

Definition 5.43 Ξ : IN× EXPst → P(EXPe
st) is defined as follows, whereI = {1, 2, l, r}.

Ξ(0, B) = {B}
Ξ(n + 1, B) = {dC̃ei | i ∈ I ∧ C̃ ∈ Ξ(n,B)} if B ∈ {0, a, B1 + B2, x}
Ξ(n + 1, B1; B2) = {dC̃ei | i ∈ I ∧ C̃ ∈ Ξ(n, B1; B2)} ∪
{C1; B2 | C1 ∈ Ξ(n + 1, B1)}

Ξ(n + 1, B1 [>B2) = {dC̃ei | i ∈ I ∧ C̃ ∈ Ξ(n, B1 [>B2)} ∪
{C1 [>B2 | C1 ∈ Ξ(n + 1, B1)}

Ξ(n + 1, B1‖AB2) = {dC̃ei | i ∈ I ∧ C̃ ∈ Ξ(n, B1‖AB2)} ∪
{C1‖AC2 | ∃m ∈ IN : m ≤ n + 1 ∧ C1 ∈ Ξ(m, B1) ∧ C2 ∈ Ξ(n + 1−m, B2)}

Ξ(n + 1, B[f]) = {dC̃ei | i ∈ I ∧ C̃ ∈ Ξ(n, B[f])} ∪ {C[f] | C ∈ Ξ(n + 1, B)}
Ξ(n + 1, B\\A) = {dC̃ei | i ∈ I ∧ C̃ ∈ Ξ(n, B\\A)} ∪ {C\\A | C ∈ Ξ(n + 1, B)}

The well-definedness ofΞ is easily seen.

Lemma 5.44 Let B ∈ EXPst, then(EXPst,ActT , −→t
decl, B) and(EXPe

st,ActT ,−→′′, B) are

bisimilar, whereC
γ−→

′′
C ′ ⇔ ∃e ∈ U : C

γ−→′
e decl C ′.

Proof: DefineR = {(B, C) ∈ EXPst × EXPe
st | ∃n : C ∈ Ξ(n, B)}. In order to verify thatR

is a bisimulation, we show

(B
γ

−→t B′ ∧ C ∈ Ξ(n, B)) ⇒ ∃e, C ′, m : C
γ−→′
e decl C ′ ∧ C ′ ∈ Ξ(m, B′) (5.1)

The proof of (5.1) works by induction on the depth of inference ofB
γ

−→t B′ combined with
the value ofn. Then (5.1) can be easily checked through the following procedure:

• applying ruleN12 or Nrl wheneverC = dC̃ei. In these cases,n is reduced by one and

B
γ

−→t B′ remains unaffected. Therefore, the hypothesis yields the result.

100 CHAPTER 5. TERMINATING BY ACTION EXECUTION

In the following letγ be an element ofActT anda be an element ofAct

A1 :
a

a
√
−→• 0

C : B1
γ−→e C ′

B1 + B2
γ−→(?1,e) dC ′e1

B2 + B1
γ−→(?2,e) dC ′e2

S1 : C
a−→e C ′

C; B
a−→(?1,e) C ′; B

S2 : C
a
√
−→e C ′

C; B
a−→(?1,e) dBe2

I1 : C
a−→e C ′

C [>B
a−→(?1,e) C ′ [>B

I2 : C
a
√
−→e C ′

C [>B
a
√
−→(?1,e) dC ′e1

I3 : B
γ−→e C ′

C [>B
γ−→(?2,e) dC ′e2

P1 :
C1

a−→e C ′
1 a /∈ A

C1‖AC2
a−→(e,?) C ′

1‖AC2

C2‖AC1
a−→(?,e) C2‖AC ′

1

P2 :
C1

a
√
−→e C ′

1 a /∈ A

C1‖AC2
a−→(e,?) (dC2er)\\A

C2‖AC1
a−→(?,e) (dC2el)\\A

P3 :
C1

a−→e1 C ′
1 C2

a−→e2 C ′
2 a ∈ A

C1‖AC2
a−→(e1,e2) C ′

1‖AC ′
2

P4 :
C1

a
√
−→e1 C ′

1 C2
a−→e2 C ′

2 a ∈ A

C1‖AC2
a−→(e1,e2) (dC ′

2er)\\A
C2‖AC1

a−→(e1,e2) (dC ′
2el)\\A

P5 :
C1

a
√
−→e1 C ′

1 C2
a
√
−→e2 C ′

2 a ∈ A

C1‖AC2
a
√
−→(e1,e2) 0

Lab1 : C
a−→e C ′

C[f]
f(a)−→e C ′[f]

Lab2 : C
a
√
−→e C ′

C[f]
f(a)

√
−→e C ′[f]

Res1 : C
a−→e C ′ a /∈ A

C\\A a−→e C ′\\A
Res2 : C

a
√
−→e C ′ a /∈ A

C\\A a
√
−→e C ′\\A

Rec :
decl(x)

γ−→e C ′

x
γ−→e C ′ N12 : C

γ−→e C ′

dCei
γ−→(?i,e) dC ′ei

Nrl : C
γ−→e C ′

dCer
γ−→(?,e) dC ′er

dCel
γ−→(e,?) dC ′el

Table 5.2: Event Based Transition Rules with respect to−→t
decl

• applying the corresponding rules of
γ

−→t B′ wheneverC is different todC̃ei. In these
cases, the depth of inference is reduced andn gets not increased. Therefore, the hypoth-
esis yields the result.

5.6. PROOFS 101

Another fact is

(C
γ−→′
e decl C ′ ∧ C ∈ Ξ(n, B)) ⇒ ∃B′, m : B

γ

−→t B′ ∧ C ′ ∈ Ξ(m, B′) (5.2)

This equation can be proved by induction on the depth of inference ofC
γ−→′
e decl C ′.

Now we are ready to verify thatR is a bisimulation:

• It is clear that(B, B) ∈ R.

• Suppose(B1, C1) ∈ R andB1

γ

−→t B2. Then∃e, C2, m : C1
γ−→′
e decl C2 ∧ C2 ∈

Ξ(m,B2) by (5.1). ThusC1
γ−→

′′
C2 and(B2, C2) ∈ R, as required.

• Suppose(B1, C1) ∈ R and C1
γ−→

′′
C2. ThenC1

γ−→′
e decl C2 for somee. Hence,

∃B2, m : B1

γ

−→t B2 ∧ C2 ∈ Ξ(m, B2) by (5.2). ut

The Second Bisimilarity Result.

First, we show that the denotation of a variable is the same as the denotation of its corresponding
expression.

Lemma 5.45 Letdecl : Var → EXPst andx ∈ Var. Then[[〈decl, x〉]] = [[〈decl, decl(x)〉]].

Proof: Similar to the proof of Lemma 3.37. ut
We extend the denotational semantics toPAe

st.

Definition 5.46 (Denotational semantics ofPAe
st) Let i ∈ {1, 2} then

Ŝhift i : ETBES → ETBES with Ŝhift i(E) = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = {?i} × E
�̃ = {({?i} × Z, (?i, e)) | Z � e}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
T̃ = {{?i} ×X | X ∈ T}
l̃(?i, e) = l(e)

Ŝhiftr : ETBES → ETBES with Ŝhiftr(E) = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = {?} × E
�̃ = {({?} × Z, (?, e)) | Z � e}
˜7→ = {({?} ×X, (?, e)) | X 7→i e}
T̃ = {{?} ×X ∈ T}
l̃(?, e) = l(e)

Ŝhift l : ETBES → ETBES with Ŝhift l(E) = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = E × {?}
�̃ = {(Z × {?}, (e, ?)) | Z � e}
˜7→ = {(X × {?}, (e, ?)) | X 7→i e}
T̃ = {X × {?} | X ∈ T}
l̃(e, ?) = l(e)

102 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Furthermore, define[[]]′ : PAe
st → ETBES by

[[〈decl, B〉]]′ = [[〈decl, B〉]] [[〈decl, C; B〉]]′ = [[〈decl, C〉]]′ ;̂ [[〈decl, B〉]]′

[[〈decl, C [>B〉]]′ = [[〈decl, C〉]]′ [̂>[[〈decl, B〉]]′

[[〈decl, C1‖AC2〉]]′ = [[〈decl, C1〉]]′‖̂A[[〈decl, C2〉]]′

[[〈decl, C[f]〉]]′ = L̂ab([[〈decl, C〉]]′, f) [[〈decl, C\\A〉]]′ = [[〈decl, C2〉]]′ \̂\A
[[〈decl, dCei〉]]′ = Ŝhift i([[〈decl, C〉]]′)

It is easy to check that[[]]′ is well defined.

Lemma 5.47 SupposeE , E1, E2 ∈ ETBES. Then

(E1+̂E2)[(?i,e)] ' Ŝhift i(Ei[e])

(E1 ;̂ E2)[(?1,e)] '
{

Ŝhift2(E2) if e ∈ init(E1) ∧Υ(T1, e)
E1[e] ;̂ E2 otherwise

(E1 [̂>E2)[(?i,e)] '


Ŝhift2(E2[e]) if i = 2

Ŝhift1(E1[e]) if i = 1 ∧Υ(T1, e)

E1[e] [̂>E2 otherwise

(E1‖̂AE2)[(e1,?)] '

{
E1[e1]‖̂AE2 if ¬Υ(T1, e1) ∧ l1(e1) /∈ A

Ŝhiftr(E2) \̂\A if e1 ∈ init(E1) ∧Υ(T1, e1) ∧ l1(e1) /∈ A

(E1‖̂AE2)[(?,e2)] '

{
E1‖̂AE2[e2] if ¬Υ(T2, e2) ∧ l2(e2) /∈ A

Ŝhift l(E1) \̂\A if e2 ∈ init(E2) ∧Υ(T2, e2) ∧ l2(e2) /∈ A

(E1‖̂AE2)[(e1,e2)] '


E1[e1]‖̂AE2[e2] if ¬Υ(T1, e1) ∧ ¬Υ(T2, e2)

Ŝhiftr(E2[e2]) \̂\A if e1 ∈ init(E1) ∧Υ(T1, e1) ∧ ¬Υ(T2, e2)

Ŝhift l(E1[e1]) \̂\A if e2 ∈ init(E2) ∧Υ(T2, e2) ∧ ¬Υ(T1, e1)
(∅, ∅, ∅, {∅}, ∅) if Υ(T1, e1) ∧Υ(T2, e2)

wheneverl1(e1) = l2(e2) ∈ A

L̂ab(E , f)[e] ' L̂ab(E[e], f)

(E \̂\A)[e] '
{
E[e] \̂\A if l(e) /∈ A
undefined otherwise

Ŝhift i(E)[(?i,e)] ' Ŝhift i(E[e]) wheneveri ∈ {1, 2}

Ŝhiftr(E)[(?,e)] ' Ŝhiftr(E[e])

Ŝhift l(E)[(e,?)] ' Ŝhift l(E[e])

Proof: Straightforward. ut

Lemma 5.48 Suppose〈decl, C〉 ∈ PAe
st andC

γ−→′
e decl C ′. Then

e ∈ init(E) ∧ E ′ = E[e] ∧ (γ /∈ Act ⇔ Υ(T, e)) ∧ l(e) =

{
γ if γ ∈ Act
a if γ = a

√

with E = [[〈decl, C〉]]′ andE ′ = [[〈decl, C ′〉]]′.

5.6. PROOFS 103

Proof: We use induction on the depth of inference ofC
γ−→′
e decl C ′. Then the equation can be

verified by case analysis on the derivation rules, where Lemma 5.47 is used. In the case ofRec′

we make use of Lemma 5.45. ut

Lemma 5.49 Let 〈decl, C〉 ∈ PAe
st, E = [[〈decl, C〉]]′ ande ∈ init(E). Then

∃C ′ ∈ EXPe
st : C

γ−→′
e decl C ′ ∧ γ =

{
l(e) if ¬Υ(T, e)
l(e)

√
if Υ(T, e)

Proof: First we show for anydecl : Var → EXPst:

∀n ∈ IN : ∀B ∈ EXPst : e ∈ init([[B]]Fn
decl(⊥)) ⇒

(
∃C ′ ∈ EXPe

st : B
γ−→′
e C ′∧

γ =

{
π5([[B]]Fn

decl(⊥))(e) if ¬Υ(π4([[B]]Fn
decl(⊥)), e)

π5([[B]]Fn
decl(⊥))(e)

√
if Υ(π4([[B]]Fn

decl(⊥)), e)

) (5.3)

This is done by induction onn combined with the structure ofB where the lexicographical order
is used. Furthermore, a case analysis on the structure ofB is used. We only present here the
caseB = x: e ∈ init([[x]]Fn

decl(⊥)) implies thatn > 0. Therefore,[[x]]Fn
decl(⊥) = Fn

decl(⊥)(x) =
[[decl(x)]]Fn−1

decl (⊥). The rest follows by induction, sincen is reduced. Thus (5.3) is established.

The main statement follows now by structural induction onC. We only present the caseC =
B ∈ EXPst. By Remark 5.25 we get[[〈decl, B〉]] =

⊔
n[[B]]Fn

decl(⊥). Then it is easily seen that
there ism such thate ∈ init([[B]]Fm

decl(⊥)) andγ = π5([[B]]Fm
decl(⊥)). And so the result follows by

(5.3). ut

Lemma 5.50 Let 〈decl, C〉 ∈ PAe
st, then the transition systems(EXPe

st,ActT ,−→′′, C) and
(ETBES,ActT , ↪→, [[〈decl, C〉]]′) are bisimilar, where−→′′ is defined as in Lemma 5.44.

Proof: DefineR = {(C ′, [[〈decl, C ′〉]]′) | C ′ ∈ EXPe
st}. Then(C, [[〈decl, C〉]]′) ∈ R by defini-

tion.
SupposeC1 ∈ EXPe

st andC1
γ−→

′′
C2. ThenC1

γ−→′
e decl C2 for somee. Hence, by Lemma 5.48

we get[[〈decl, C1〉]]′
γ

↪→ [[〈decl, C2〉]]′, as required.

SupposeC1 ∈ EXPe
st and [[〈decl, C1〉]]′

γ
↪→ E2. Then there ise ∈ init([[〈decl, C1〉]]′) such that

E2 = [[〈decl, C1〉]]′[e] andγ =

{
l(e) if ¬Υ(T, e)
l(e)

√
if Υ(T, e)

. From Lemma 5.49 we get the existence

of C2 ∈ EXPe
st such thatC1

γ−→′
e decl C2. Moreover,[[〈decl, C1〉]]′[e] = [[〈decl, C2〉]]′ by Lemma

5.48, which concludes the proof. ut

5.6.2 Proof of Theorem 5.36.

It is easily seen that̂� is a partial order with(∅, ∅, ∅, ∅, ∅) as its least element. Furthermore,
⊔̂

iE| i
is an eTpes. In the following, we only considerT̂ . The caseŝ� and ˆ7→ follow analogously.

Upper bound:Obviously,T̂j ⊆ {X ∈ T̂ | X ⊆ Êj}.
Let X ⊆

⋃
i Êi such thatX ⊆ Êj and∃i : (X ∩ Êi) ∈ T̂i.

If i ≥ j thenE| j�̂E| i. ThusX ∩ Êi = X, henceX ∈ T̂i. Moreover,X ∈ T̂j, sinceE| j�̂E| i.
If i < j thenE| i�̂E| j. Thus(X ∩ Êi) ∈ T̂j. SinceT̂j is finitely determined, we getX =

(X ∩ Êj) ∈ T̂j.

104 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Least upper bound:Let E| ′ be an eTpes such thatE| i�̂E| ′ for all i ∈ IN. Then
⋃

i Êi ⊆ Ê ′.

Let X ∈ T̂ . Then∃j : (X ∩ Êj) ∈ T̂j. Hence,(X ∩ Êj) ∈ T̂ ′, sinceE| j�̂E| ′. ThusX ∈ T̂ ′,
sinceT̂ ′ is finitely determined.

Let X ∈ T̂ ′ such thatX ⊆
⋃

i Êi. SinceT̂ ′ is finitely determined, there isX ′ ∈ T̂ ′ such that
X ′ ⊆ X ∧ |X ′| < |IN|. Therefore, there existsj ∈ IN such thatX ′ ⊆ Êj. Hence,X ′ ∈ T̂j.
Then by definitionX ′ ∈ T̂ . ThusX ∈ T̂ , sinceT̂ is finitely determined.

Hence, Theorem 5.36 is established.

5.6.3 Proof of Proposition 5.39.

The following lemmas show that the constraints on eTbes are transformed into the constraints
on eTpes and vice versa.

Lemma 5.51 We have

(i) M 6= ∅ ⇐⇒ ∅ /∈ FE(M)

(ii) (∀X ∈ M : e ∈ X) ⇐⇒ {e} ∈ FE(M)

(iii) ∅ /∈ M̂ ⇐⇒ FE(M̂) 6= ∅

(iv) {e} ∈ M̂ ⇒ (∀X ∈ Fe(M̂) : e ∈ X)

(v) ({e} /∈ M̂ ∧ ∅ /∈ M̂) ⇒ (∃X ∈ Fe(M̂) : e /∈ X)

Proof: Straightforward. ut

Lemma 5.52 If M is approximation closed with respect toE thenFE(M) is finitely determined
with respect toE.

Proof: SupposeX̂ ∈ FE(M). From the definition ofFE it follows that all upper sets of̂X are
in FE(M). Now suppose|X̂| = |IN|. Let X̂ = {ei | i ∈ IN}. DefineX̂ ′ = {ei | ∃X ∈ M :
ei ∈ X ∧ ∀j < i : ej /∈ X}. ThenX̂ ′ ⊆ X̂ andX̂ ′ ∈ FE(M).

Assume|X̂ ′| = |IN|. Then for all ei ∈ X̂ ′ there existsXi ∈ M such thatei ∈ Xi and
{e1, ..., ei−1}∩Xi = ∅. Let Ẋ = X ((Xi)ei∈X̂′ , κ, (Xi)ei∈X̂′ , κ), whereκ : IN → E be bijective.
ThenẊ only contains elements that are contained infinitely often in(Xi)ei∈X̂′ by the definition
of X (Definition 2.16. Furthermore,̇X ∈ M by Proposition 2.17. Therefore,∀i : ei /∈ Ẋ, since
ei only appears finitely often in(Xi)ei∈X̂′. Hence,Ẋ ∩ X̂ = ∅, which contradictsX̂ ∈ FE(M).

Thus|X̂ ′| < |IN| as required. ut

Lemma 5.53 If M̂ is finitely determined with respect toE thenFE(M̂) is approximation closed
with respect toE.

5.6. PROOFS 105

Proof: SupposeX ⊆ E and(Ei)i∈IN is a finite, monotone approximation ofE such that

∀k ∈ IN : ∃Xk : Xk ∩ Ek = X ∩ Ek ∧ (∀X̂ ∈ M̂ : Xk ∩ X̂ 6= ∅). (5.4)

Let X̂ ∈ M̂ . Then there isX̂ ′ ∈ M̂ such thatX̂ ′ ⊆ X̂ ∧ |X̂ ′| < |IN|, sinceM̂ is finitely

determined. Thus, there isn ∈ IN such thatX̂ ′ ⊆ En. From (5.4) we obtain∅ 6= Xn∩X̂ ′
X̂′⊆En

⊆
Xn ∩ En ∩ X̂ ′ = X ∩ En ∩ X̂ ′ ⊆ X ∩ X̂ ′ ⊆ X ∩ X̂. Hence,∀X̂ ∈ M̂ : X ∩ X̂ 6= ∅, as
required. ut

Proof of Proposition 5.39: ThatF(ETBES) ⊆ ETPES andF(ETPES) ⊆ ETBES is
an immediate consequence of Lemma 5.51, Lemma 5.52 and Lemma 5.53.

It is left to show the continuity ofF � ETBES andF � ETPES, i.e.
⊔̂

iF(Ei) = F(
⊔

i Ei) for
everyω-chain(Ei)i∈IN with respect to� and

⊔
iF(E| i) = F(

⊔̂
iE| i) for everyω-chain(E| i)i∈IN

with respect to�̂. The coincidence of the sets of events and the labeling function is easily
seen. In the following, we only consider the termination set, since the conflict and the causality
relation follow analogously. We have

T⊔̂
iF(Ei)

= {X̂ | ∃j : ∀X ∈ Tj : X̂ ∩ Ej ∩X 6= ∅} (5.5)

TF(
⊔

i Ei) = {X̂ | ∀X ∈ P(
⋃
i

Ei) : (∀k : X ∩ Ek ∈ Tk) ⇒ X̂ ∩X 6= ∅} (5.6)

T⊔
i F(E| i) = {X | ∀k : ∀X̂ ∈ T̂k : X ∩ Êk ∩ X̂ 6= ∅} (5.7)

TF(
⊔̂

iE| i)
= {X | ∀X̂ ∈ P(

⋃
i

Êi) : (∃j : (X̂ ∩ Êj) ∈ T̂j) ⇒ X ∩ X̂ 6= ∅} (5.8)

T⊔̂
iF(Ei)

⊆ TF(
⊔

i Ei): SupposeX̂ ∈ T⊔̂
iF(Ei)

. Let X ∈ P(
⋃

i Ei) such that∀k : X ∩ Ek ∈ Tk.

ThenX̂ ∩X ⊇ X̂ ∩ Ej ∩ (Ej ∩X)
(5.5)

6= ∅.

T⊔̂
iF(Ei)

⊇ TF(
⊔

i Ei): SupposeX̂ ∈ TF(
⊔

i Ei). SinceF(
⊔

i Ei) is an eTpes, there iŝX ′ ∈
TF(

⊔
i Ei) such thatX̂ ′ ⊆ X̂ ∧ |X̂ ′| < |IN|. Hence, there isj such thatX̂ ′ ⊆ Ej.

Let X ∈ Tj, then by Theorem 5.19 there isX ′ ∈
⊔

i Ei (i.e. ∀k : X ′ ∩ Ek ∈ Tk) such that

X ′ ∩ Ej = X. ThusX̂ ∩ Ej ∩X ⊇ X̂ ′ ∩ Ej ∩X = X̂ ′ ∩ Ej ∩X ′ X̂′⊆Ej
= X̂ ′ ∩X ′

(5.6)

6= ∅.

T⊔
i F(E| i) ⊆ TF(

⊔̂
iE| i)

: SupposeX ∈ T⊔
i F(E| i). Let X̂ ∈ P(

⋃
i Êi) such that∃j : (X̂∩Êj) ∈ T̂j.

ThenX ∩ X̂ ⊇ X ∩ Êj ∩ (Êj ∩ X̂)
(5.7)

6= ∅.

T⊔
i F(E| i) ⊇ TF(

⊔̂
iE| i)

: SupposeX ∈ TF(
⊔̂

iE| i)
. Let X̂ ∈ T̂k, thenX̂ = X̂ ∩ Êk. Hence,X ∩

Êk ∩ X̂ = X ∩ X̂
(5.8)

6= ∅. ut

106 CHAPTER 5. TERMINATING BY ACTION EXECUTION

5.6.4 Proof of Theorem 5.40.

In order to prove thatETBES andETPES have the same expressive power with respect to
event traces, we define remainders with respect toP(P(E)), as follows.

Definition 5.54 SupposeE ′ ⊆ E. DefineRemE,E′ : P(P(E))× E → P(P(E ′)) by
RemE,E′(M, e) = {X ′ ⊆ E ′ | ∃X ∈ M : X ′ = X ∩ E ′ ∧ e /∈ X}
andR̂emE,E′ : P(P(E))× E → P(P(E ′)) by
R̂emE,E′(M̂, e) = {X̂ ′ ⊆ E ′ | ∃X̂ ∈ M̂ : X̂ ′ = X̂\{e}}.

The remainders defined above coincide with respect toFE:

Lemma 5.55 Supposee /∈ E ′ andE ′ ⊆ E. Then

(i) FE′(RemE,E′(M, e)) = R̂emE,E′(FE(M), e)

(ii) FE′(R̂emE,E′(M̂, e)) = RemE,E′(FE(M̂), e).

Proof:

(i): We haveX̂ ′ ∈ FE′(RemE,E′(M, e)) if and only if

X̂ ′ ⊆ E ′ ∧ ∀X ′ ∈ P(E ′) : (∃X ∈ M : X ′ = X ∩ E ′ ∧ e /∈ X) ⇒ X ′ ∩ X̂ ′ 6= ∅ (5.9)

andX̂ ′ ∈ R̂emE,E′(FE(M), e) if and only if

X̂ ′ ⊆ E ′ ∧ ∃X̂ ∈ P(E) : (∀X̃ ∈ M : X̃ ∩ X̂ 6= ∅) ∧ X̂ ′ = X̂\{e} (5.10)

⊆: SupposeX̂ ′ ∈ FE′(RemE,E′(M, e)). DefineX̂ = X̂ ′ ∪ {e}. Let X̃ ∈ M . If e ∈ X̃ then

X̃ ∩ X̂ 6= ∅. Therefore, supposee /∈ X̃. From (5.9) we get∅ 6= (X̃ ∩ E ′) ∩ X̂ ′ X̂′⊆E′
=

X̃ ∩ X̂ ′ e/∈X̃
= X̃ ∩ X̂, which establishes (5.10).

⊇: SupposeX̂ ′ ∈ R̂emE,E′(FE(M), e). Then by (5.10) there iŝX ∈ P(E) such that
∀X̃ ∈ M : X̃ ∩ X̂ 6= ∅ andX̂ ′ = X̂\{e}. Let X ′ ∈ P(E ′) such that∃X ∈ M : X ′ =

X∩E ′∧e /∈ X. Hence,X ′∩X̂ ′ = (X∩E ′)∩X̂ ′ X̂′⊆E′
= X∩X̂ ′ = X∩(X̂\{e}) e/∈X

= X∩X̂
which is non-empty by (5.10). Hence, (5.9) is concluded.

(ii): We haveX ′ ∈ FE′(R̂emE,E′(M̂, e)) if and only if

X ′ ⊆ E ′ ∧ ∀X̂ ′ ∈ P(E ′) : (∃X̂ ∈ M̂ : X̂ ′ = X̂\{e}) ⇒ X ′ ∩ X̂ ′ 6= ∅ (5.11)

andX ′ ∈ RemE,E′(FE(M̂), e) if and only if

X ′ ⊆ E ′ ∧ ∃X ∈ P(E) : (∀X̃ ∈ M̂ : X ∩ X̃ 6= ∅) ∧X ′ = X ∩ E ′ ∧ e /∈ X (5.12)

5.6. PROOFS 107

⊆: SupposeX ′ ∈ FE′(R̂emE,E′(M̂, e)) DefineX = X ′ ∪ (E\(E ′ ∪ {e})). ThenX ∩E ′ =

X ′ ande /∈ X, sinceX ′ ⊆ E ′ ande /∈ E ′. Let X̃ ∈ M̂ .

If X̃ ⊆ E ′ ∪ {e} thenX ′ ∩ (X̃\{e}) 6= ∅ by (5.11). Furthermore,X ∩ X̃ ⊇ X ′ ∩ X̃ =
X ′ ∩ (X̃\{e}), sinceX ′ ⊆ E ′ ande /∈ E ′.

If X̃ 6⊆ E ′∪{e} then there exists̃e ∈ X̃ such that̃e /∈ E ′∪{e}. Hencẽe ∈ X̃ ∩ (E\(E ′∪
{e})) ⊆ X̃ ∩X.

Thus (5.12) is established.

⊇: SupposeX ′ ∈ RemE,E′(FE(M̂), e). Then by (5.12) there isX ∈ P(E) such that
∀X̃ ∈ M̂ : X ∩ X̃ 6= ∅ andX ′ = X ∩ E ′ ande /∈ X.

Let X̂ ′ ∈ P(E ′) such that∃X̂ ∈ M̂ : X̂ ′ = X̂\{e}. ThenX ′ ∩ X̂ ′ = X ∩ E ′ ∩ X̂ ′ X̂′⊆E′
=

X ∩ X̂ ′ = X ∩ (X̂\{e}) e/∈X
= X ∩ X̂ which is non-empty, since∀X̃ ∈ M̂ : X ∩ X̃ 6= ∅.

Hence, (5.11) is concluded. ut
Before we continue, we give a modified version of the remainder onETBES. There we guar-
antee in the case of termination thatT is upper closed.

Definition 5.56 Let E ∈ ETBES ande ∈ init(E). ThenE′[e]′ is given by(E ′,�′, 7→′, T ′, l′),
whereE ′,�′, 7→′ andl′ are defined as in Definition 5.9 and

T ′ =

{
{X ∩ E ′ | X ∈ T ∧ e /∈ X} if ¬Υ(T, e)
P(E ′) otherwise

Lemma 5.57 LetE ∈ ETBES. Then the event traces obtained by Definition 5.9 and by Defi-
nition 5.56 are identical. Moreover the corresponding labels of the event executions coincide.

Proof: This follows from the fact thatT does not influence the event traces. It only determines
the fact when an event becomes a termination event. After termination no further termination
may happen by both remainders. This holds, since∅ is in the termination set. ut
The remainders onETBES andETPES coincide:

Proposition 5.58 LetE ∈ ETBES andE| ∈ ETPES. ThenF(E′[e]′) ' F(E)
[̂e]

andF(E|
[̂e]

) '
F(E|)′[e]′.

Proof: Let E ′ = E′[e]′ andE| ′ = E|
[̂e]

. Then it is easy to check that

�′ = {(Z ′, e′) | e′ ∈ E ′ ∧ Z ′ ∈ RemE,E′(� e′, e)}
7→′ = {(X ′, e′) | e′ ∈ E ′ ∧X ′ ∈ RemE,E′(7→ e′, e)}

T ′ =

{
RemE,E′(T, e) if ¬Υ(T, e)
P(E ′) otherwise

and
�̂′

= {(Z ′, e′) | e′ ∈ Ê ′ ∧ Z ′ ∈ R̂emÊ,Ê′(�̂e′, e)}
ˆ7→′ = {(X ′, e′) | e′ ∈ Ê ′ ∧X ′ ∈ R̂emÊ,Ê′(ˆ7→e′, e)}

T̂ ′ =

{
R̂emÊ,Ê′(T̂ , e) if ¬Υ̂(T̂ , e)

∅ otherwise

108 CHAPTER 5. TERMINATING BY ACTION EXECUTION

Furthermore,e ∈ init(E) ⇐⇒ ¬(∃X : X 7→ e)
Lem. 5.51⇐⇒ ∅ ˆ7→F(E)e ⇐⇒ e ∈ înit(F(E)) and

e ∈ înit(E|) ⇐⇒ ∅ ˆ7→e
Lem. 5.51⇐⇒ ¬(∃X : X 7→F(E|) e) ⇐⇒ e ∈ init(F(E|)). Hence,F(E ′) is

defined if and only ifF(E)
[̂e]

is defined, andF(E| ′) is defined if and only ifF(E|)′[e]′ is defined.

We havee′ ∈ ÊF(E ′) ⇐⇒ e′ ∈ E ′ ⇐⇒ (∃Z : Z � e′ ∧ e /∈ Z)
Lem. 5.51⇐⇒ ¬({e}�̂F(E)e

′) ⇐⇒
e′ ∈ ÊF(E)

[̂e]
ande′ ∈ EF(E| ′) ⇐⇒ e′ ∈ Ê ′ ⇐⇒ ¬({e}�̂e′)

Lem. 5.51⇐⇒ ∃Z : Z �F(E|) e′ ∧ e /∈
Z ⇐⇒ e′ ∈ EF(E|)′[e]′ .

The rest follows from Lemma 5.55 and the fact thatFE′(∅) = P(E ′) andFE′(P(E ′)) = ∅. ut
Theorem 5.40 is an immediate consequence of Lemma 5.57 and Proposition 5.58.

Chapter 6

End-Based View inETBES

As in Chapter 4, we consider the view that a choice is determined by the ending of actions
(end-based view), which is contrary to the usual approach, where the start of an action triggers
the choice. A motivation for an end-based approach is given in Section 1.3.

In this chapter, we apply the end-based approach toETBES and not toCBES, as it is done in
Chapter 4. More precisely, we define an end-based refinement operator onETBES such that
the refinement terminates by its ‘final’ executed event (action) and not with an additional event,
as it is done in Chapter 4. The end-based approach is adjusted toETBES, because the intuitive
equivalences (ICT- and FUI) fail to be the coarsest for the end-based refinement operator in the
CBES-setting (Subsection 4.2.6).

We adjust the definition of the ICT- and the FUI-equivalence (Section 4.2) to theETBES
setting. The UI-equivalence can also be adjusted to theETBES setting in a straightforward
way, which is omitted here. We show that the ICT- (and the FUI-) equivalence is indeed the
coarsest congruence for the end-based refinement operator with respect to trace (respectively
bisimulation) equivalence in theETBES setting. This circumstance underpins the fact that
extended termination bundle event structures represent a reasonable extension of the standard
event structures. Furthermore, we show that the hierarchy of the equivalences considered in the
ETBES setting is the same as in theCBES setting.

6.1 An End-Based Refinement Operator onETBES

The differences between refinement operators in start-based and in end-based settings is illus-
trated in Section 4.1. There, we also argue that an event structure suitable for an end-based
refinement operator has to allow the modeling of disruption. This is true for extended termi-
nation bundle event structures (eTbes), which are introduced in Subsection 5.4.2. Hence, they
represent a suitable model for introducing an end-based refinement operator. This operator is
given in the following definition.

Let τ , Obs andVar be defined as in Section 3.2 and letAct be defined as in Section 5.2.

Definition 6.1 Let A ⊆ Obs. Then defineRef eT
A : ETBES × (A → ETBES) → ETBES

byRef eT
A (E , θ) = (Ẽ, �̃, ˜7→, T̃ , l̃) where

109

110 CHAPTER 6. END-BASED VIEW IN ETBES

Ẽ = {(e, ê) | e ∈ E ∧ l(e) ∈ A ∧ ê ∈ Eθ(l(e))} ∪
{(e, e) ∈ E × E | l(e) /∈ A}

�̃ = {(Z̃, (e, ê)) | ∃Z : Z � e ∧ ∃f : Z → P(U) :
(∀e′ ∈ Z : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ e′ 6= e ∧ f(e′) ∈ Tθ(l(e′)))∨

(l(e′) ∈ A ∧ e′ = e ∧ ∃X̂ ∈ Tθ(l(e′)), Ẑ : f(e′) = Ẑ ∪ X̂ ∧ Ẑ �θ(l(e′)) ê))∧
Z̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ Z ∧ ê′ ∈ f(e′)}}

˜7→ = {({e} ×X ′, (e, ê)) | l(e) ∈ A ∧X ′ 7→θ(l(e)) ê} ∪
{(X̃, (e, ê)) | (l(e) ∈ A ⇒ ê ∈ init(θ(l(e)))) ∧ ∃X : X 7→ e ∧ ∃f : X → P(U) :
(∀e′ ∈ X : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ f(e′) ∈ Tθ(l(e′))))∧
X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

T̃ = {X̃ | ∃X ∈ T ∧ ∃f : X → P(U) : (∀e′ ∈ X : (l(e′) /∈ A ∧ f(e′) = {e′})∨
(l(e′) ∈ A ∧ f(e′) ∈ Tθ(l(e′)))) ∧ X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

l̃(e, ê) =

{
l(e) if l(e) /∈ A
lθ(l(e))(ê) if l(e) ∈ A

We give some comments on the definition. A witness-bundle derived from the witness-bundleZ
of e (i.e.Z � e) of event(e, ê) has to contain all events of a termination-bundle of the refinement
of an evente′ (different toe) that is inZ. This is done in order to guarantee that bundles derived
from Z can not be used as a witness ofe when e′ terminates. Ife′ is equal toe, then the
witness-bundles (instead of the termination bundles) of the refinement are considered. This
guarantees that the events of the refinement become disabled, as specified by the refinement. A
termination-bundle of the refinement ofe′ is used in the causality relation whenevere′ appears in
the causality bundleX of the unrefined event structures, since the refinement has to terminate
before the constraint specified byX is fulfilled. This is also the case in the definition of the
termination set.

Lemma 6.2 The refinement operatorRef eT is well defined, i.e. it really yields elements of
ETBES.

Proof: The proof is given in Subsection 6.4.1. ut
An example that illustrates how the refinement operatorRef eT behaves is given in Figure 6.1.
For a better understanding, we augment the examples by process term descriptions of the sys-
tems (see Section 5.2). Furthermore,(a → E12) denotes the function from{a} to ETBES
that mapsa to E12. Moreover, if an evente′ is a necessary causality ofe, i.e. e can only be
executed after the execution ofe′, we sometimes omite in the witness bundles ofe′, since it has
no consequence for the behavior. For example, inRef eT

{a}(E+a, (a → E12)) of Figure 6.1, the
witness bundles to events labeled witha1 have to contain both events labeled witha2.

As in Remark 4.4, the refinement operatorRef eT allows the modeling of the disrupt operator
[̂> of Definition 5.20, i.e.E1 [̂>E2 andRef e

{a}(E1 + [[a]], (a → E2)) have the same behavior if
labela does not appear inE1.

6.2 Equivalences forETBES

As in Section 4.2, we examine congruence equivalences forRef eT . We are particularly inter-
ested in the coarsest congruence with respect to trace / strong bisimulation equivalences, where

6.2. EQUIVALENCES FOR ETBES 111

E+a

dada ��

�
�

�
�

a + a

E12da1

da2

-

� ∅

� ∅��
��
a1; a2

Ref eT
{a}(E+a, (a → E12))da1

d
a2

da1

d
a2

--

��

�
�

�
�

��

Figure 6.1: End-Based Refinement inETBES

trace and strong bisimulation equivalences is obtained, as usual, from the derived transition
system introduced in Definition 5.11. Formally:

Definition 6.3 (Trace Equivalence)Two E , E ′ ∈ ETBES are trace equivalent, denoted by
E ∼t E ′, if and only if the transition systems(ETBES,Act, ↪→, E) and(ETBES,Act, ↪→, E ′),
where↪→ is defined in Definition 5.11, are trace equivalent (Definition 2.4).

Definition 6.4 (Strong Bisimulation Equivalence) TwoE , E ′ ∈ ETBES arestrong bisimilar
(or strong bisimulation equivalent), denoted byE ∼b E ′, if and only if the transition systems
(ETBES,Act, ↪→, E) and(ETBES,Act, ↪→, E ′) are bisimilar (Definition 2.5).

6.2.1 ICT-Equivalence onETBES

ICT-equivalence from Subsection 4.2.2 is adapted toETBES as follows.

Definition 6.5 (ICT-equivalence) Let E ∈ ETBES. Then theinitial event tracesof E are
defined byT ic(E) = {((ei, νi), γi)i≤n | n ∈ IN ∧ ∃E0, · · · , En+1 : E0 = E ∧ ∀i ≤ n : Ei[ei] =
Ei+1 ∧ (Υ(Ei, ei) ⇔ νi =

√
) ∧ γi ∈ Pfin(initObs(Ei))}.

TwoE , E ′ ∈ ETBES are initial corresponding trace equivalent(ICT-equivalent), denoted by
E ∼ICT E ′, if

• for every((ei, νi), γi)i≤n ∈ T ic(E) there is an injective, labeling preserving functionf :
(
⋃

i≤n(γi ∪ {ei})) → E ′ such that((f(ei), νi), f(γi))i≤n ∈ T ic(E ′) and

• for every((e′i, νi), γ
′
i)i≤n ∈ T ic(E ′) there is an injective, labeling preserving function

f ′ : (
⋃

i≤n(γ′i ∪ {e′i})) → E such that((f ′(e′i), νi), f
′(γ′i))i≤n ∈ T ic(E)

The eTbes from Figure 6.2 are not ICT equivalences, whereas the eTbes from Figure 6.3 are
ICT equivalent.

Proposition 6.6 Two ICT-equivalent eTbes are also trace equivalent, i.e.∼ICT⊂∼t.

Proof: It follows from the fact that every trace is also an initial trace, where the second compo-
nent is always empty. ut

112 CHAPTER 6. END-BASED VIEW IN ETBES

dadb ��

�
�

�
�

b + a

db
d

a

da

d
b

--

���
�

�
�� �

a; b + b; a

Figure 6.2: Non ICT-Equivalent eTbes

da
d

b

da

-

�
� �

�

��

�

a + b; a

da
d

b

da

d
b

--

���
�

�
�� �

a; b + a; b

Figure 6.3: ICT-Equivalent eTbes

Theorem 6.7 ICT-equivalence is a congruence for the refinement operatorRef eT , i.e.E ∼ICT

E ′ ∧ ∀a ∈ A : θ(a) ∼ICT θ′(a) implies thatRef eT
A (E , θ) ∼ICT Ref eT

A (E ′, θ′).

Proof: It works analogously to the proof of Theorem 4.10. ut
Contrary to theCBES setting, ICT-equivalence is the coarsest congruence forRef eT with
respect to trace equivalence.

Theorem 6.8 ICT-equivalence is the coarsest congruence forRef eT with respect to trace equiv-
alence. Moreover, if∀A, θ : Ref eT

A (E , θ) ∼t Ref eT
A (E ′, θ) thenE ∼ICT E ′.

Proof: The proof is given in Subsection 6.4.2. ut

6.2.2 FUI-Equivalence onETBES

FUI-equivalence from Subsection 4.2.4 is adapted toETBES as follows.

Definition 6.9 (FUI-Bisimulation) A finite unique initial bisimulation(FUI-bisimulation)R
is a subset ofETBES× ETBES× (U ⇀ U) such that whenever(E1, E2, f) ∈ R, then

• dom(f) = initObs(E1),

• f is a labeling preserving isomorphism betweeninitObs(E1) and initObs(E2)

• e1 ∈ init(E1)∧ I ∈ Pfin(initObs(E1)) implies that there existe2 andf ′ such thatl1(e1) =
l2(e2) andΥ(T1, e1) ⇔ Υ(T2, e2) andl1(e1) ∈ Obs ⇒ e2 = f(e1) and(E1[e1], E2[e2], f

′) ∈
R andf � (I ∩ initObs(E1[e1])) = f ′ � I andf−1 � (f(I) ∩ initObs(E2[e2])) = f ′−1 � f(I)

6.2. EQUIVALENCES FOR ETBES 113

da dc

d
b

@
@

@

�
�

�

?� ∅��
��

��

(a + c); b

dc
d

a

da

d
b

--

���
�

�
�� �

a; b + c; a

Figure 6.4: FUI-Equivalent eTbes (1)

da da da da · · · infinitely� ∅ � ∅ � ∅ � ∅��
��

��
��

��
��

��
��E inf

1 = [[〈(x 7→ a‖∅x), x〉]]

da

da

da da da

-

· · · infinitely

� ∅

� ∅ � ∅ � ∅ � ∅

��
��

��
��

��
��

��
��E inf

2 = [[〈(x 7→ a‖∅x), (a; a)‖∅x〉]]

Figure 6.5: FUI-Equivalent eTbes (2)

• e2 ∈ init(E2)∧ I ∈ Pfin(initObs(E2)) implies that there existe1 andf ′ such thatl1(e1) =
l2(e2) andΥ(T1, e1) ⇔ Υ(T2, e2) andl1(e1) ∈ Obs ⇒ e2 = f(e1) and(E1[e1], E2[e2], f

′) ∈
R andf � (I ∩ initObs(E1[e1])) = f ′ � I andf−1 � (f(I) ∩ initObs(E2[e2])) = f ′−1 � f(I)

We say thatE1, E2 areFUI-bisimilar (or FUI-equivalent), denoted byE1 ∼FUI E2, if and only if
there is a FUI-bisimulationR and anf : U ⇀ U such that(E1, E2, f) ∈ R.

The eTbes from Figure 6.3 are not FUI-equivalent, whereas the eTbes from Figure 6.4 are FUI-
equivalent. Moreover, the eTbes from Figure 6.5 are also FUI-equivalent.

FUI-equivalence yields a congruence.

Theorem 6.10 FUI-equivalence is a congruence forRef eT , i.e. E ∼FUI E ′ ∧ ∀a ∈ A :
θ(a) ∼FUI θ′(a) implies thatRef eT

A (E , θ) ∼FUI Ref eT
A (E ′, θ′).

Proof: It works analogously to the proof of Theorem 4.18.

Contrary to theCBES setting, FUI-equivalence is the coarsest congruence forRef eT with
respect to bisimulation equivalence.

114 CHAPTER 6. END-BASED VIEW IN ETBES

∼FUI

∼ICT ∼b

∼t

@
@

�
�

@
@

�
�

Figure 6.6: Relations Between the Equivalences

Theorem 6.11 FUI-equivalence is the coarsest congruence forRef eT with respect to bisimu-
lation equivalence. Moreover, if∀A, θ : Ref eT

A (E , θ) ∼b Ref eT
A (E ′, θ) thenE ∼FUI E ′.

Proof: The proof is given in Subsection 6.4.2. ut

6.2.3 Comparison of Equivalences

Theorem 6.12 All valid relations between the equivalences∼t,∼ICT ,∼b,∼FUI are presented
in Figure 6.6: If two equivalences are connected via a line, then the lower one identifies more
elements than the upper one.

Proof: ∼FUI⊆∼b⊆∼t and∼ICT⊆∼t is obvious.

SupposeE ∼FUI E ′, then by Theorem 6.10 we have∀A, θ : Ref eT
A (E , θ) ∼FUI Ref eT

A (E ′, θ).
Since∼FUI⊆∼b⊆∼t, we obtain∀A, θ : Ref eT

A (E , θ) ∼t Ref eT
A (E ′, θ). Thus by Theorem 6.8 it

follows thatE ∼ICT E ′.
The strictness of∼FUI⊂∼ICT follows from the event structure depicted in Figure 6.5. The
strictness of∼b⊂∼t is well known. And the other strictness follows from the fact that the event
structures corresponding toa anda + a are bisimilar but not ICT-equivalent. ut

6.3 Discussion

It is now straightforward to give a denotational semantics to process algebras that contain end-
based choice operators together with action refinement operators as long as no parallel operator
with action synchronization is contained in the process algebra.

For process algebras that also contain a parallel operator with action synchronization, it is rea-
sonable that some start-based choices are modeled. For example, we expect that the expression
(a + a)‖{a}a may only start onea-action, since the process on the right hand side can only start
onea-action. Hence, a start-based choice is modeled for the process on the left hand side. Such
a circumstance arises, for example, if the left hand side demands processor resources and the
right hand side specifies the administration of the processor resource, where only onea can be
executed.

Therefore, it is more reasonable to consider process algebras that contain both choice operators,
i.e. end-based and start-based choice operators. Such a process algebra is intensively examined
in the following chapter.

6.4. PROOFS 115

6.4 Proofs

6.4.1 Proof of Lemma 6.2

The constraints which are different to the approximation closedness are easy to check. Let

Ẽ = Ref eT
A (E , θ) andEe =

{
Eθ(l(e)) if l(e) ∈ A
{e} otherwise

.

�̃: Suppose(e′, ê′) ∈ Ẽ. DefineM = {Z | Z � e′}. Furthermore, let

Me =


{{e}} if l(e) /∈ A
Tθ(l(e)) if l(e) ∈ A ∧ e′ 6= e

{Ẑ ∪ X̂ | Ẑ �θ(l(e)) ê′ ∧ X̂ ∈ Tθ(l(e))} if l(e) ∈ A ∧ e′ = e

.

From Corollary 2.19 we obtain thatMe is approximation closed with respect toEe.

Furthermore,M̃ = {{(e, ê) | e ∈ X ∧ ê ∈ Xe} | X ∈ M ∧ Xe ∈ Me} is approximation
closed with respect tõE by Corollary 2.21. Hence,̃7→ is approximation closed with respect
to Ẽ, since{Z̃ | Z̃ ˜7→(e′, ê′)} = M̃ .

˜7→: Suppose(e′, ê′) ∈ Ẽ. DefineM = {Z | Z 7→ e′} and

M1 =

{
{{e′} × X̂ | X̂ 7→θ(l(e′)) ê′} if l(e′) ∈ A
∅ otherwise

.

ThenM1 is approximation closed with respect tõE. Furthermore, let

Me =

{
{{e}} if l(e) /∈ A
Tθ(l(e)) if l(e) ∈ A

.

Obviously,Me is approximation closed with respect toEe.

From Corollary 2.21 we obtain that

M2 =

{
∅ if l(e′) ∈ A ∧ ê′ /∈ init(θ(l(e′)))
{{(e, ê) | e ∈ X ∧ ê ∈ Xe} | X ∈ M ∧Xe ∈ Me} otherwise

is approximation closed with respect tõE. And so the approximation closedness of˜7→ fol-
lows from Proposition 2.15, since{X̃ | X̃ ˜7→(e′, ê′)} = M1 ∪M2.

T̃ : Let

Me =

{
{{e}} l(e) /∈ A
Tθ(l(e)) if l(e) ∈ A

.

Obviously,Me is approximation closed with respect toEe.

Furthermore,M̃ = {{(e, ê) | e ∈ X ∧ ê ∈ Xe} | X ∈ M ∧ Xe ∈ Me} is approximation
closed with respect tõE by Corollary 2.21. Hence,̃T is approximation closed with respect
to Ẽ, sinceT̃ = M̃ .

Thus Lemma 6.2 is established.

6.4.2 Proofs of the Coarsest Congruence Results

We introduce an event-based refinement. This refinement differs fromRef eT by assigning event
structures to each event and not only to action names.

Definition 6.13 Ref eT

A
: ETBES× (U → ETBES) → ETBES with

116 CHAPTER 6. END-BASED VIEW IN ETBES

Ref eT

A
(E , ϑ) = (Ẽ, �̃, ˜7→, T̃ , l̃) where

Ẽ = {(e, ê) | e ∈ E ∧ l(e) ∈ A ∧ ê ∈ Eϑ(e)} ∪
{(e, e) ∈ E × E | l(e) /∈ A}

�̃ = {(Z̃, (e, ê)) | ∃Z : Z � e ∧ ∃f : Z → P(U) :
(∀e′ ∈ Z : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ e′ 6= e ∧ f(e′) ∈ Tϑ(e′))∨

(l(e′) ∈ A ∧ e′ = e ∧ ∃X̂ ∈ Tϑ(e′), Ẑ : f(e′) = Ẑ ∪ X̂ ∧ Ẑ �ϑ(e′) ê))∧
Z̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ Z ∧ ê′ ∈ f(e′)}}

˜7→ = {({e} ×X ′, (e, ê)) | l(e) ∈ A ∧X ′ 7→ϑ(e) ê} ∪
{(X̃, (e, ê)) | (l(e) ∈ A ⇒ ê ∈ init(ϑ(e))) ∧ ∃X : X 7→ e ∧ ∃f : X → P(U) :
(∀e′ ∈ X : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ f(e′) ∈ Tϑ(e′)))∧
X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

T̃ = {X̃ | ∃X ∈ T ∧ ∃f : X → P(U) : (∀e′ ∈ X : (l(e′) /∈ A ∧ f(e′) = {e′})∨
(l(e′) ∈ A ∧ f(e′) ∈ Tϑ(e′))) ∧ X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

l̃(e, ê) =

{
l(e) if l(e) /∈ A
lϑ(e)(ê) if l(e) ∈ A

The advantage ofRef eT

A
is that the event execution ofRef eT

A
(E , ϑ) can be reduced to the event

execution ofE andϑ, as it is shown in the following lemma.

Lemma 6.14 SupposeE ∈ ETBES, ϑ : U → ETBES. Then

Ref eT

A
(E , ϑ)[(e,ê)] '


Ref eT

A
(E[e], ϑ) if l(e) /∈ A ∧ e = ê

Ref eT

A
(E[e], ϑ[e → ϑ(e)[ê]]) if l(e) ∈ A ∧Υ(Tϑ(e), ê)

Ref eT

A
(E , ϑ[e → ϑ(e)[ê]])} if l(e) ∈ A ∧ ¬Υ(Tϑ(e), ê)

.

Furthermore,Ref eT

A
(E[e], ϑ[e → E ′]) ' Ref eT

A
(E[e], ϑ) holds for anyE ′ ∈ ETBES.

Moreover,

Υ(TRef eT
A

(E,ϑ), (e, ê)) ⇔
{

Υ(T, e) if l(e) /∈ A ∧ e = ê
Υ(T, e) ∧Υ(Tϑ(e), ê) if l(e) ∈ A

Proof: Straightforward and left to the reader. ut

Proof of Theorem 6.8: Suppose((ei, νi), γi)i≤n ∈ T ic(E). We define a refinementθ′ which is
used to construct a corresponding trace.

Therefore, letκ : U → IN be an isomorphism. Furthermore, defineÊ =
⋃

i≤n(γi ∪ {ei}) and

Êa = {e ∈ Ê | l(e) = a}. Additionally, defineδ : E → IN by δ(e) = 1 + |{i | e ∈ γi}|.
Moreover, letA ⊂ Act be the set of all action-names occurring inE or in E ′, i.e.A = {l(e)|e ∈
E} ∪ {l′(e′)|e′ ∈ E ′}. And letµ : E × IN → Obs\A be an injective function. Such a function
exists.

Our idea ofθ′ is that we replace any evente of Ê by the sequential composition of actions
µ(e, 1), ..., µ(e, δ(e) + 1). Sinceθ′ only maps action-names instead of events, we take the sum

6.4. PROOFS 117

of all the corresponding events, i.e.θ′(a) = E ′a, where

E ′a = ({ ?
κ(e)
2 ?j

1• | e ∈ Êa ∧ 1 ≤ j ≤ δ(e)},
{({?k

2 ?1 • | k 6= κ(e)} ∪ {?κ(e)
2 ?j

1 •}, ?
κ(e)
2 ?j

1 •) | e ∈ Êa ∧ 1 ≤ j ≤ δ(e)},
{({?κ(e)

2 ?j
1 •}, ?

κ(e)
2 ?j+1

1 •) | e ∈ Êa ∧ 1 ≤ j < δ(e)},
{{?κ(e)

2 ?
δ(e)
1 • | e ∈ Êa}},

{(?κ(e)
2 ?j

1 •, µ(e, j)) | e ∈ Êa ∧ 1 ≤ j ≤ δ(e)}).

The sequences?k
2 ?j

1 • are considered to be right bracketed and therefore to be elements ofU .

Let m = n +
∑n

i=0 |γi| and defineI−1 = γ0 ands−1 = 0 and fori ∈ {0, ...,m− 1}

• If Ii−1 6= ∅, thensi = si−1, Ii = Ii−1\{e} andẽi = (e, ?
κ(e)
2 ?

|{j|j≤si−1∧e∈γj}|
1 •), wheree

is an element ofIi−1

• If Ii−1 = ∅, thensi = si−1 + 1, Ii = γsi
and

ẽi =

{
(esi−1

, esi−1
) if l(esi−1

) = τ

(esi−1
, ?

κ(esi−1)

2 ?
δ(esi−1)

1 •) otherwise

andẽm =

{
(en, en) if l(en) = τ

(en, ?
κ(en)
2 ?

δ(en)
1 •) otherwise

.

It is easily seen that{π1(ẽi) | i ∈ {0, ...,m}} = Ê. DefineẼ0 = Ref eT
A (E , θ′) andẼi+1 = Ẽi[ẽi]

for i ≤ m. TheẼi are well defined which, can be seen by induction, as follows. Obviously for
i = 0. Supposẽei = (e, ?

κ(e)
2 ?j

1•). By Lemma 6.14 we obtain that̃Ei = Ref eT

A
(E[e0]..[esi−1−1], ϑ

′
i),

whereϑ′i(e) = θ′(l(e))
[?

κ(e)
2 ?1

1•],...,[?
κ(e)
2 ?q

1•]
with q = |{j | e = π1(ẽj) ∧ l(e) 6= τ ∧ j < i}|. It

is easily seen that(e, ?κ(e)
2 ?1

1 •), ..., (e, ?
κ(e)
2 ?j−1

1 •) appears in the sequence beforeẽi. Thus
?

κ(e)
2 ?j

1 • ∈ init(ϑ′i(e)). Furthermore,esi−1
∈ init(E[e0]..[esi−1−1]), since((ej, νj), γj)j≤n ∈

T ic(E). Hence,̃ei ∈ Ẽi. Furthermore, by Lemma 6.14 we obtain

Υ(Ẽi, ẽi) ⇔ ∃j, ê : ẽi = (ej, ê) ∧ νj =
√
∧ (l(ej)) = τ ∨ ê = ?

κ(ej)
2 ?

δ(ej)
1 •). (6.1)

From the definition ofẼi it follows that (αi)(i≤m) ∈ T (Ref eT
A (E , θ′)), whereαi is defined by

αi =

{
lRef eT

A (E,θ′)(ẽi) if ¬Υ(Ẽi, ẽi)

lRef eT
A (E,θ′)(ẽi)

√
if Υ(Ẽi, ẽi)

. Therefore, we get(αi)(i≤m) ∈ T (Ref eT
A (E ′, θ′)),

sinceRef eT
A (E , θ′) ∼t Ref eT

A (E ′, θ′). Hence, there exists(ẽ′i)(i≤m) such thatẼ ′0 = Ref eT
A (E ′, θ′)

andẼ ′i+1 = Ẽ ′i[ẽ′i] are well defined andαi =

{
lRef eT

A (E ′,θ′)(ẽ
′
i) if ¬Υ(Ẽ ′i , ẽ′i)

lRef eT
A (E ′,θ′)(ẽ

′
i)
√

if Υ(Ẽ ′i , ẽ′i)
.

From the injectivity ofµ we get∀i ≤ m : π1(ẽi) 6= τ ⇒ π2(ẽi) = π2(ẽ
′
i). Definee′j = π1(ẽ

′
i)

wherei is chosen such that(ẽi = (ej, ?
κ(ej)
2 ?

δ(ej)
1 •)) ∨ (l(ej) = τ ∧ ẽi = (ej, ej)). Now, we

verify by induction that
Ẽ ′i = Ref eT

A
(E ′[e′0]..[e′si−1−1], ϑ

′′
i), (6.2)

whereϑ′′i (e
′) =

{
ϑ′i(π1(ẽj)) if (e′, ?

κ(e)
2 ?1

1 •) = ẽ′j
θ′(l′(e′)) otherwise

.

Obviously fori = 0. We proceed by making a case analysis:

118 CHAPTER 6. END-BASED VIEW IN ETBES

l(π1(ẽi)) = τ : By induction and Lemma 6.14 we getẽi+1 = Ref eT

A
(E ′[e′0]..[e′si−1−1][π1(ẽ′i)]

, ϑ′′i),

which is equal toRef eT

A
(E ′[e′0]..[e′si−1

], ϑ
′′
i+1).

ẽi = (ej, ?
κ(ej)
2 ?

δ(ej)
1 •): ThenΥ(ϑ′i, π2(ẽ

′
i)), sinceẽi andẽ′i have the same label andµ is injec-

tive. Thus by induction and Lemma 6.14 we get
Ẽ ′i+1 = Ref eT

A
(E ′[e′0]..[e′si−1−1][π1(ẽ′i)]

, ϑ′′i [π1(ẽ
′
i) → ϑ′′i (π1(ẽ

′
i))[π2(ẽ′i)]

]).

Furthermore, there isk < i such that̃e′k = (π1(ẽ
′
i), ?

κ(e)
2 ?1

1 •), since otherwisẽe′i /∈ init(Ẽ ′i).
From the injectivity ofµ we obtain thatπ1(ẽi) = π1(ẽk), sinceẽk andẽ′k have the same label.
Hence,Ẽ ′i+1 = Ref eT

A
(E ′[e′0]..[e′si−1], ϑ

′′
i+1), as required.

Otherwise:Then¬Υ(ϑ′i, π2(ẽ
′
i)). Thus by induction and Lemma 6.14 it follows thatẼ ′i+1 =

Ref eT

A
(E ′[e′0]..[e′si−1−1], ϑ

′′
i [π1(ẽ

′
i) → ϑ′′i (π1(ẽ

′
i))[π2(ẽ′i)]

]). Furthermore, there isk ≤ i such that

ẽ′k = (π1(ẽ
′
i), ?

κ(e)
2 ?1

1 •), since otherwisẽei /∈ init(Ẽ ′i). From the injectivity ofµ we obtain
thatπ1(ẽi) = π1(ẽk). Hence,Ẽ ′i+1 = Ref eT

A
(E ′[e′0]..[e′si−1], ϑ

′′
i+1), as required.

From (6.2) we obtain thatπ1(ẽi) = π1(ẽj) ⇔ π1(ẽ
′
i) = π1(ẽ

′
j). Hence, the functionf : Ê → E ′

with f(e) = π1(ẽ
′
i) whenevere = π1(ẽi) is well defined, labeling preserving and injective.

Additionally, (6.2) becomes̃E ′i = Ref eT

A
(E ′[f(e0)]..[f(esi−1−1)], ϑ

′′
i), whereϑ′′ is defined byϑ′′i (e

′) ={
ϑ′i(f

−1(e′)) if f−1(e′) is defined
θ′(l′(e′)) otherwise

. Furthermore, by Lemma 6.14 we get

Υ(E ′[f(e0)]..[f(esi−1−1)], f(esi−1
)) ⇔

∃j : π1(ẽj) = esi−1
∧Υ(Ẽ ′j, ẽ′j) ∧

(l(π1(ẽj)) = τ ∨ π2(ẽj) = ?
κ(esi−1)

2 ?
δ(esi−1)

1 •)
.

Therefore, by (6.1) we obtainΥ(E ′[f(e0)]..[f(esi−1−1)], f(esi−1
)) ⇔ νi =

√
. From this and (6.2) it

follows that((f(ei), νi), f(γi))i≤n ∈ T ic(E).

The other case can be shown by symmetrical arguments. ut

Proof of Theorem 6.11: We verify the stronger statement claiming that there is a refinement
functionθ′ such thatRef eT

A (E , θ′) ∼b Ref eT
A (E ′, θ′) impliesE ∼FUI E ′.

DefineA ⊆ Act to be the set of all action-names occurring inE or in E ′, i.e. A = {l(e)|e ∈
E} ∪ {l′(e′)|e′ ∈ E ′}. Let µ : {1, 2} × A × IN → Act\A be an injective function. Such a
function exists. We define for alla ∈ A an eTbesEa, which corresponds to the process algebra
termX = µ(1, a, 0); µ(2, a, 0) + X[f], wheref(µ(i, a, n)) = µ(i, a, n + 1). In the definition
the sequences?n

2 ?1 ?i• are considered to be right bracketed and therefore to be elements ofU .

Ea = ({ ?n
2 ?1 ?i • | n ∈ IN ∧ i ∈ {1, 2}},

{({?n
2 ?1 ?1• | n ∈ IN\{j}} ∪ {?j

2 ?1 ?i•}, ?j
2 ?1 ?i•) | j ∈ IN ∧ i ∈ {1, 2}},

{({?n
2 ?1 ?1•}, ?n

2 ?1 ?2•) | n ∈ IN},
{{?n

2 ?1 ?2• | n ∈ IN}},
{(?n

2 ?1 ?i•, µ(i, a, n)) | n ∈ IN ∧ i ∈ {1, 2}})

Defineθ′ : A → ETBES by θ′(a) = Ea. Furthermore, defineE (a,n) by

E (a,n) = ({?n
2 ?1 ?2•}, {({?n

2 ?1 ?2•}, ?n
2 ?1 ?2•)}, ∅, {{?n

2 ?1 ?2•}}, {(?n
2 ?1 ?2•, µ(2, a, n))}).

6.4. PROOFS 119

LetRb be a strong bisimulation such that(Ref eT
A (E , θ′),Ref eT

A (E ′, θ′)) ∈ Rb. Without loss of
generality,Rb contains only elements which can be derived fromRef eT

A (E , θ′),Ref eT
A (E ′, θ′).

Furthermore, letκ : U → IN be an isomorphism. We define the relationRef FUI by

RFUI = {(Ẽ , Ẽ ′, f̃) | f̃ : initObs(Ẽ) → initObs(Ẽ ′) is a labeling preserving isomorphism∧
Ref FUI = { ∀Ĩ ∈ Pfin(initObs(Ẽ)) : ∃J̃ ∈ Pfin(initObs(Ẽ)) : Ĩ ⊆ J̃ ∧ ∃ϑ̃, ϑ̃′ :

Ref FUI = {

(
∀e ∈ Ẽ : ϑ̃(e) =

{
El̃(e) if e ∈ Ẽ\J̃
E (l̃(e),κ(f̃(e))) if e ∈ J̃

)
∧

Ref FUI = {

(
∀e′ ∈ Ẽ ′ : ϑ̃′(e′) =

{
El̃′(e′) if e′ ∈ Ẽ ′\f̃(J̃)

E (l̃′(e′),κ(e′)) if e′ ∈ f̃(J̃)

)
∧

Ref FUI = { (Ref eT

A
(Ẽ , ϑ̃),Ref eT

A
(Ẽ ′, ϑ̃′)) ∈ Rb}

In the following we show thatRef FUI is a FUI-bisimulation. Therefore, suppose(Ẽ , Ẽ ′, f̃) ∈
Ref FUI .

Then f̃ is such a required isomorphism by definition. Now supposeẽ ∈ init(Ẽ) and Ĩ ∈
Pfin(initObs(Ẽ)). Then there is̃J such that̃I∪{ẽ} ⊆ J̃ , and(Ref eT

A
(Ẽ , ϑ̃),Ref eT

A
(Ẽ ′, ϑ̃′)) ∈ Rb,

whereϑ̃, ϑ̃′ are the corresponding functions. We proceed by making a case analysis:

l̃(e) ∈ Obs ∧ ¬Υ(Ẽ , ẽ): ThenRef eT

A
(Ẽ , ϑ̃)

µ(2,l̃(ẽ),κ(f̃(ẽ)))−→ Ref eT

A
(Ẽ[ẽ], ϑ̃) by Lemma 6.14, since

l̃(e) ∈ A. Furthermore, because of the fact thatRb is a strong bisimulation, there existse′

such that(Ref eT

A
(Ẽ[ẽ], ϑ̃),Ref eT

A
(Ẽ ′, ϑ̃′)[e′]) ∈ Rb and lRef eT

A
(Ẽ ′,ϑ̃′)(e

′) = µ(2, l̃(ẽ), κ(f̃(e))).

Thus, π1(e
′) = f(ẽ) and l̃′(π1(e

′)) = l̃(ẽ) by the injectivity of κ. Moreover, we have
Ref eT

A
(Ẽ ′, ϑ̃′)[e′] = Ref eT

A
(Ẽ ′[ẽ′], ϑ̃′), whereẽ′ = π1(e

′).

l̃(e) = τ ∧ ¬Υ(Ẽ , ẽ): ThenRef eT

A
(Ẽ , ϑ̃)

τ−→ Ref eT

A
(Ẽ[ẽ], ϑ̃) by Lemma 6.14. From the fact that

Rb is a strong bisimulation, there existse′ such that(Ref eT

A
(Ẽ[ẽ], ϑ̃),Ref eT

A
(Ẽ ′, ϑ̃′)[e′]) ∈ Rb

and lRef eT
A

(Ẽ ′,ϑ̃′)(e
′) = τ . Thus, l̃′(ẽ′) = τ andRef eT

A
(Ẽ ′, ϑ̃′)[e′] = Ref eT

A
(Ẽ ′[ẽ′], ϑ̃′), where

ẽ′ = π1(e
′).

The cases whenΥ(Ẽ , ẽ) holds are carried out analogously. Furthermore, we haveΥ(Ẽ , ẽ) ⇔
Υ(Ẽ ′, ẽ′) by Lemma 6.14.

So it remains to find a function̂f : initObs(Ẽ[ẽ]) = initObs(Ẽ ′[ẽ′]) that satisfies the necessary

constraints. Therefore, define functionŝfi and eTbesẼi, Ẽi with i ∈ IN as follows: f̂0 =
f̃ ∩ (J̃ ∩ initObs(Ẽ[ẽ])), Ẽ0 = Ref eT

A
(Ẽ[ẽ], ϑ̃) andẼ ′0 = Ref eT

A
(Ẽ ′[ẽ′], ϑ̃′).

for 2n + 1: If κ−1(n) /∈ initObs(Ẽ[ẽ]) or f̂2n(κ−1(n)) is defined, then̂f2n+1 = f̂2n, Ẽ2n+1 = Ẽ2n

andẼ ′2n+1 = Ẽ ′2n.

If κ−1(n) ∈ initObs(Ẽ[ẽ])∧ f̂2n(κ−1(n)) is undefined, then(κ−1(n), ?n
2 ?1 ?1•) ∈ initObs(Ẽ2n).

Hence, there is̃e′2n with the same label such that(Ẽ2n[ẽ2n], Ẽ ′2n[ẽ′2n]) ∈ Rb, where ẽ2n =

(κ−1(n), ?n
2 ?1 ?1•). Definef̂2n+1 = f̂2n ∪ {(κ−1(n), π1(ẽ

′
2n)}, Ẽ2n+1 = Ẽ2n[ẽ2n] andẼ ′2n+1 =

Ẽ ′2n[ẽ′2n].

for 2n + 2: If κ−1(n) /∈ initObs(Ẽ ′[ẽ′]) or f̂−1
2n (κ−1(n)) is defined, then̂f2n+1 = f̂2n, Ẽ2n+1 =

Ẽ2n andẼ ′2n+1 = Ẽ ′2n.

120 CHAPTER 6. END-BASED VIEW IN ETBES

If κ−1(n) ∈ initObs(Ẽ ′[ẽ′])∧f̂−1
2n (κ−1(n)) is undefined, then(κ−1(n), ?n

2 ?1?1•) ∈ initObs(Ẽ ′2n).

Hence, there is̃e2n with the same label such that(Ẽ2n[ẽ2n], Ẽ ′2n[ẽ′2n]) ∈ Rb, where ẽ′2n =

(κ−1(n), ?n
2 ?1 ?1•). Definef̂2n+1 = f̂2n∪{(π1(ẽ2n), κ−1(n))}, Ẽ2n+1 = Ẽ2n[ẽ2n] andẼ ′2n+1 =

Ẽ ′2n[ẽ′2n].

f̂ is defined byf̂ =
⋃

n∈IN f̂n.

f̂ is a partial function, sincêfi(κ
−1(n)) is defined implies that its correspondingEi does not

possess events labeled byµ(1, l̃(κ−1(n)), n). Hence, it is not defined twice. Moreover,̂f is
a labeling preserving isomorphism betweeninitObs(Ẽ[ẽ]) → initObs(Ẽ ′[ẽ′]), since every event of
both sides will be considered in the definition.

By definition, the restriction of̂f to J̃ ∩ initObs(Ẽ[ẽ]) is equal tof if it is restricted to this set.
This restriction constraint also holds forf̂−1, since otherwiseRef eT

A
(Ẽ[ẽ], ϑ̃) andRef eT

A
(Ẽ ′[ẽ′], ϑ̃′)

can not be bisimilar.

It remains to prove that(Ẽ[ẽ], Ẽ ′[ẽ′], f̂) ∈ RFUI . Therefore, let̂I ∈ Pfin(initObs(Ẽ[ẽ])). Define

m = max({2n + 1 ∈ IN | κ−1(n) ∈ Î}) andĴ = dom(f̂m). Furthermore,(Ẽm, Ẽ ′m) ∈ Rb and
Ẽm, Ẽ ′m satisfies the requirements. Hence,(Ẽ[ẽ], Ẽ ′[ẽ′], f̂) ∈ RFUI .

The third requirement of the FUI-bisimulation follows by symmetrical arguments. Thus we
have proved thatRef FUI is a FUI-bisimulation.

The construction of a functionf such that(E , E ′, f) ∈ Ref FUI is analogous to the construction
of f̂ . Hence,E ∼FUI E ′. ut

Chapter 7

Start-Based Choice together with
End-Based Choice

In this chapter, a process algebra that contains action refinement together with three choice
operators is introduced. Similar to Chapter 5, termination is determined by the ‘final’ executed
action.

In order to give a true concurrency denotational semantics, event structures with two different
conflict relations corresponding to the start-based and respectively to the end-based determina-
tion are introduced. An operational semantics, which corresponds to the denotational semantics,
is presented.

Furthermore, the coarsest congruence with respect to bisimilarity is given. An axiom system
that is sound and complete for finite state processes is investigated for this equivalence.

7.1 Motivation

Motivations of an end-based choice (⊕), i.e. a choice that is triggered when an action finishes,
have already been given in Section 1.3. It is reasonable that process algebras which contain
an end-based choice operator and a parallel operator with action synchronization lead to some
start-based choices, as it is discussed in Section 6.3.

A start-based choice (+), i.e. a choice that is triggered as soon as an action starts, is the usual
kind of choice in process algebras, e.g. as in [10, 99, 133, 141, 174]. An example of a start-
based choice is the following: a person standing in front of a fork has to decide immediately
which direction she should take, i.e. she does not follow both directions at the same time and
then make a decision depending on where she arrives.

Sometimes, it is also useful to have a choice (b−, called end-start choice) that is end-based and
start-based triggered. More precisely, it is a choice that is triggered when its right process starts
an action and it is triggered when its left process finishes an action. This is for example useful
to model some special kinds of disruption, described as follows. Consider the process that
executesa followed byb (a; b). This process should be allowed to be disrupted by the start of
actionc as long as actiona runs, i.e. after the ending ofa no disruption byc is allowed. This
disruption is modeled by(a; b) b−c.

121

122 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

The usefulness of these three kinds of choices is illustrated in the following example.

Example 7.1 Let us consider a nuclear power plant that consists of two reactors which can
burn uranium or plutonium fuel rods. When the power plant gets the instructions to produce
electricity, it warms up its two reactors and starts to burn either uranium or plutonium in the
reactor that warms up first. The process can be disrupted during the warm-up phase. The phase
during which the fuel rods are carried into the reactor is critical and may not be disrupted. This
process is specified as follows in a process algebra setting. The actions considered are:
wi , ‘warm up thei-th reactor’,
c , ‘cancel the warm-up phase’,
ui , ‘carry a uranium fuel rod to thei-th reactor’, and
pi , ‘carry a plutonium fuel rod to thei-th reactor’.
All actions are considered as abstractions of more concrete processes, i.e. they are refined by
more concrete processes in a next specification level. Furthermore,Ni denotes the specification
of the working behavior of reactori, which includes, for example, disruption possibilities. Then
the nuclear power plant is specified by the process algebra expression

P =
(
(w1; (u1 + p1); N1)⊕ (w2; (u2 + p2); N2)

)
b−c.

7.2 Syntax

Let τ , Obs andVar be defined as in Section 3.2 and letAct be defined as in Section 5.2.

The process algebra expressionsEXPse (s , start-based,e , end-based) are defined by the
following BNF-grammar.

B ::= 0 | a | B + B | B b−B | B ⊕B | B; B | B‖AB | B\\A | B[(a → B)a∈A] | x

wherex ∈ Var, a ∈ Act andA ⊆ Obs. A process with respect toEXPse is a pair〈decl, B〉
consisting of a declarationdecl : Var → EXPse and an expressionB ∈ EXPse. Let PAse denote
the set of all processes. We sometimes call an expressionB ∈ EXPse also a process ifdecl is
clear from the context.

The intuitive meaning of the end-based choice (⊕) and of the end-start choice (b−) is given
in Section 7.1. The intuitive meaning of the refinement expressionB[(a → Ba)

a∈A] is that
it behaves like processB except that every execution of actiona in A is substituted by the
behavior ofBa. The other operators are explained in Section 5.2.

7.3 Denotational Semantics forPAse

7.3.1 Start-End Bundle Event Structures (SEBES)

Event structures that are used as denotational models ofPAse have to handle a start-based and
an end-based choice. Therefore, we introduce two relations for conflicts, one for the start-based

7.3. DENOTATIONAL SEMANTICS FOR PASE 123

and another for the end-based conflict. We use the witness approach (Subsection 5.4.2) for the
end-based conflict, since we follow the fa-approach, i.e. termination is determined by the action
that is finally executed (see Chapter 5). The start-based conflict is modeled in the classical way,
i.e. by a binary relation between events. Therefore, thestart-end bundle event structuresare a
combination of closed bundle event structures (Definition 3.9) and extended termination bundle
event structures (Definition 5.5):

Definition 7.2 (Start-End Bundle Event Structure) A start-end bundle event structure, sebes
for short, E = (E, ;,�, 7→, T, l) is an element ofP(U) × P(U × U) × P(P(U) × U) ×
P(P(U)× U)× P(P(U))× (U ⇀ Act) such that

• ;⊆ E × E and∀e ∈ E : ¬(e ; e)

• �⊆ P(E)× E and∀e ∈ E : ∃Z : Z � e and∀(Z, e) ∈�: e ∈ Z

• 7→⊆ P(E)× E

• T ⊆ P(E) andT 6= ∅

• dom(l) = E

• ∀e ∈ E : � e is approximation closed with respect toE

• ∀e ∈ E : 7→ e is approximation closed with respect toE

• T is approximation closed with respect toE

LetSEBES denote the set of all start-end bundle event structures.

We call E the set of events,; the (irreflexive)(start) conflictrelation,� the (end) witness
relation,7→ thecausalityrelation,T thetermination setandl theaction-labelingfunction.

The intuitive meaning of the components of a sebes is given in Section 5.4 and in Section 3.3.

Remark 7.3 A tuple (E, ;,�, 7→, T, l) is a sebes if and only if(E,�, 7→, T, l) is an eTbes
(Definition 5.5) and;⊆ E × E and∀e ∈ E : ¬(e ; e).

Example 7.4 Some sebes are depicted in Figure 7.1. The different components of a sebes is
depicted as described in Example 5.6 and Subsection 3.3.1.

Hereafter, we considerE to be(E, ;,�, 7→, T, l), Ei to be(Ei, ;i,�i, 7→i, Ti, li) and in general
E to be (EE , ;E ,�E , 7→E , TE , lE). Furthermore,init(E) denotes the set of events which are
ready to be executed andΥ(T, e) holds if and only ife is a termination event with respect toT ,
i.e.E terminates by executinge. Formally:

Definition 7.5 LetE be a sebes. The set ofinitial eventsof E is defined by

init(E) = {e ∈ E | ¬(∃X : X 7→ e)}.

Thetermination predicateΥ ⊆ P(P(U))× U is defined by

Υ(T, e) ⇐⇒ ∀X ∈ T : e ∈ X.

124 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

db

da

d
a

dc�

�

�

� r
'

&

$

%

�

�

�

�
(a⊕ a)‖{a}((a + b)⊕ c)

dada ���

�
�

�
�

a b−a

da2da2

da1da1

�

�

�

�� �

��

�
�

�
�

(a b−a)[a → a1; a2]

Figure 7.1: Some Start-End Bundle Event Structures

Complete Partial Order

First, we present the definition and the properties of the restriction of a sebes, which are used to
define an order onSEBES.

Definition 7.6 (Restriction of a sebes)SupposeE ∈ SEBES andE ′ ⊆ E. Then therestric-
tion of E to E ′, denoted byE � E ′, is (E ′, ;′,�′, 7→′, T ′, l′) where

;′ = ; ∩(E ′ × E ′)
�′ = {(Z ∩ E ′, e′) | e′ ∈ E ′ ∧ Z � e′}
7→′ = {(X ∩ E ′, e′) | e′ ∈ E ′ ∧X 7→ e′}
T ′ = {X ∩ E ′ | X ∈ T}
l′ = l � E ′

Lemma 7.7 LetE ∈ SEBES andE ′ ⊆ E. ThenE � E ′ ∈ SEBES.

Proof: Is an immediate consequence of Corollary 2.18. ut

Definition 7.8 (Order on SEBES) Let Ei ∈ SEBES. ThenE1 � E2 if and only ifE1 ⊆ E2

andE1 = E2 � E1.

Remark 7.9 SupposeE1, E2 ∈ SEBES, thenE1 � E2 if and only if;1=;2 ∩(E1 × E1) and
(E1,�1, 7→1, T1, l1) is less than or equal to(E2,�2, 7→2, T2, l2) with respect to the order defined
in Definition 5.18.

Theorem 7.10 The set of all sebes ordered by� is anω-complete partial order, where the least
upper bound of anω-chain(Ei)i∈IN is

⊔
i Ei = (

⋃
i Ei,

⋃
i ;i,�, 7→, T,

⋃
i li) with

� = {(Z, e) | ∀k : e ∈ Ek ⇒ (Z ∩ Ek) �k e}
7→ = {(X, e) | ∀k : e ∈ Ek ⇒ (X ∩ Ek) 7→k e}
T = {X | ∀k : X ∩ Ek ∈ Tk}

Proof: Is an immediate consequence of Theorem 5.19, Remark 7.3 and Remark 7.9. ut

7.3. DENOTATIONAL SEMANTICS FOR PASE 125

7.3.2 Operators onSEBES

Here, we present the operators onSEBES that will be used later to define the denotational
semantics.

Definition 7.11 (Operators onSEBES) LetA ⊆ Obs. Then define

+̂ : SEBES× SEBES → SEBES with E1+̂E2 = (Ẽ, ;̃, �̃, ˜7→, T̃ , l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
;̃ = {((?i, ei), (?j, ej)) | i 6= j ∧ ei ∈ init(Ei)} ∪ {((?i, e), (?i, e

′)) | e ;i e′}
�̃ = {(({?i} × Z) ∪ ({?j} × init(Ej)), (?i, e)) | Z �i e ∧ i 6= j}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
T̃ = {({?1} ×X1) ∪ ({?2} ×X2) | X1 ∈ T1 ∧X2 ∈ T2}
l̃((?i, e)) = li(e)

b̂− : SEBES× SEBES → SEBES with E1 b̂−E2 = (Ẽ, ;̃, �̃, ˜7→, T̃ , l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
;̃ = {((?1, e1), (?2, e2)) | ei ∈ init(Ei)} ∪ {((?i, e), (?i, e

′)) | e ;i e′)}
�̃ = {(({?i} × Z) ∪ ({?j} × init(Ej)), (?i, e)) | Z �i e ∧ i 6= j}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
T̃ = {({?1} ×X1) ∪ ({?2} ×X2) | X1 ∈ T1 ∧X2 ∈ T2}
l̃((?i, e)) = li(e)

⊕̂ : SEBES× SEBES → SEBES with E1⊕̂E2 = (Ẽ, ;̃, �̃, ˜7→, T̃ , l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
;̃ = {((?i, e), (?i, e

′)) | e ;i e′)}
�̃ = {(({?i} × Z) ∪ ({?j} × init(Ej)), (?i, e)) | Z �i e ∧ i 6= j}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e}
T̃ = {({?1} ×X1) ∪ ({?2} ×X2) | X1 ∈ T1 ∧X2 ∈ T2}
l̃((?i, e)) = li(e)

;̂ : SEBES× SEBES → SEBES with E1 ;̂ E2 = (Ẽ, ;̃, �̃, ˜7→, T̃ , l̃) where

Ẽ = ({?1} × E1) ∪ ({?2} × E2)
;̃ = {((?i, e), (?i, e

′)) | e ;i e′}
�̃ = {({?1} × (Z ∪X), (?1, e)) | Z �1 e ∧X ∈ T1} ∪

{({?2} × Z, (?2, e)) | Z �2 e}
˜7→ = {({?i} ×X, (?i, e)) | X 7→i e} ∪

{({?1} ×X1, (?2, e)) | e ∈ init(E2) ∧X1 ∈ T1}
T̃ = {{?2} ×X2 | X2 ∈ T2}
l̃((?i, e)) = li(e)

126 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

‖̂A : SEBES× SEBES → SEBES with E1‖̂AE2 = (Ẽ, ;̃, �̃, ˜7→, T̃ , l̃) where

Ẽ = (Ef
1 × {?}) ∪ ({?} × Ef

2) ∪ Es

Ef
i = {e ∈ Ei | li(e) /∈ A}

Es = {(e1, e2) ∈ E1 × E2 | l1(e1) = l2(e2) ∈ A}
;̃ = {((e1, e2), (e

′
1, e

′
2)) | e1 ;1 e′1 ∨ e2 ;2 e′2 ∨

(e1 = e′1 6= ? ∧ e2 6= e′2) ∨ (e2 = e′2 6= ? ∧ e1 6= e′1)}
�̃ = {({(e′1, e′2) ∈ Ẽ | e′1 ∈ Z1 ∪X1}, (e1, ?)) | Z1 �1 e1 ∧X1 ∈ T1} ∪

{({(e′1, e′2) ∈ Ẽ | e′2 ∈ Z2 ∪X2}, (?, e2)) | Z2 �2 e2 ∧X2 ∈ T2} ∪
{({(e′1, e′2) | e′1 ∈ Z1 ∪X1 ∨ e′2 ∈ Z2 ∪X2}, (e1, e2)) |

(e1, e2) ∈ Es ∧ Z1 �1 e1 ∧X1 ∈ T1 ∧ Z2 �2 e2 ∧X2 ∈ T2}
˜7→ = {({(e′1, e′2) ∈ Ẽ | e′i ∈ Xi}, (e1, e2)) | Xi 7→i ei}
T̃ = {{(e1, e2) ∈ Ẽ | ei ∈ Xi} | Xi ∈ Ti}

l̃((e1, e2)) =

{
l1(e1) if e2 = ?
l2(e2) otherwise

\̂\A : SEBES → SEBES with E \̂\A = E � {e ∈ E | l(e) /∈ A}

Ref se
A : SEBES× (A → SEBES) → SEBES byRef eT

A (E , θ) = (Ẽ, ;̃, �̃, ˜7→, T̃ , l̃) where

Ẽ = {(e, ê) | e ∈ E ∧ l(e) ∈ A ∧ ê ∈ Eθ(l(e))} ∪
{(e, e) ∈ E × E | l(e) /∈ A}

;̃ = {((e, ê), (e′, ê′)) | e ; e′ ∨ (e = e′ ∧ l(e) ∈ A ∧ ê ;θ(l(e)) ê′)}
�̃ = {(Z̃, (e, ê)) | ∃Z : Z � e ∧ ∃f : Z → P(U) :

(∀e′ ∈ Z : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ e′ 6= e ∧ f(e′) ∈ Tθ(l(e′)))∨
(l(e′) ∈ A ∧ e′ = e ∧ ∃X̂ ∈ Tθ(l(e′)), Ẑ : f(e′) = Ẑ ∪ X̂ ∧ Ẑ �θ(l(e′)) ê))∧

Z̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ Z ∧ ê′ ∈ f(e′)}}
˜7→ = {({e} ×X ′, (e, ê)) | l(e) ∈ A ∧X ′ 7→θ(l(e)) ê} ∪

{(X̃, (e, ê)) | (l(e) ∈ A ⇒ ê ∈ init(θ(l(e)))) ∧ ∃X : X 7→ e ∧ ∃f : X → P(U) :
(∀e′ ∈ X : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ f(e′) ∈ Tθ(l(e′))))∧
X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

T̃ = {X̃ | ∃X ∈ T ∧ ∃f : X → P(U) : (∀e′ ∈ X : (l(e′) /∈ A ∧ f(e′) = {e′})∨
(l(e′) ∈ A ∧ f(e′) ∈ Tθ(l(e′)))) ∧ X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

l̃(e, ê) =

{
l(e) if l(e) /∈ A
lθ(l(e))(ê) if l(e) ∈ A

.

The definitions of these operators are similar to those presented in Subsection 5.4.3, Subsec-
tion 3.3.3 and Section 6.1. For comments on these operators, please consult the subsections
mentioned.

Lemma 7.12 All operators of Definition 7.11 are well defined, i.e. they really yield elements of
SEBES.

Proof: The conditions of the start conflict relation are easy to check. The rest is an immediate
consequence of Lemma 5.21, Lemma 6.2 and Remark 7.3 ut

Lemma 7.13 All operators of Definition 7.11 are continuous with respect to�.

Proof: Analogous to the proof of Lemma 3.18. ut

7.4. OPERATIONAL SEMANTICS FOR PASE 127

7.3.3 Denotational Meaning forPAse

As in Subsection 3.3.4, we define the denotational semantics of expressions (EXPse) relatively
to variable assignments, i.e. functions fromVar to SEBES. Variable assignments are derived
from declarations, which are used to define the denotational semantics of processes (PAse).

Definition 7.14 Let [[]] : EXPse× (Var → SEBES) → SEBES be defined as follows (where
ρ : Var → SEBES)

[[0]]ρ = (∅, ∅, ∅, ∅, {∅}, ∅) [[a]]ρ = ({•}, ∅, {({•}, •)}, ∅, {{•}}, {(•, a)})
[[B1 + B2]]ρ = [[B1]]ρ+̂[[B2]]ρ [[B1 b−B2]]ρ = [[B1]]ρ b̂−[[B2]]ρ
[[B1 ⊕B2]]ρ = [[B1]]ρ⊕̂[[B2]]ρ [[B1; B2]]ρ = [[B1]]ρ ;̂ [[B2]]ρ

[[B1‖AB2]]ρ = [[B1]]ρ‖̂A[[B2]]ρ [[B\\A]]ρ = [[B]]ρ \̂\A
[[B[(a → Ba)

a∈A]]]ρ = Ref eT
A ([[B]]ρ, (a → [[Ba]]ρ)

a∈A)
[[x]]ρ = ρ(x)

Remark 7.15 [[B]] is continuous for everyB ∈ EXPse. This follows analogously to Lemma
3.20, where Lemma 7.13 is used.

Assumedecl : Var → EXPse. Then defineFdecl : (Var → SEBES) → (Var → SEBES) with
Fdecl(ρ)(x) = [[decl(x)]]ρ. From Remark 7.15 it follows thatFdecl is continuous. Therefore, we
get{[]} : (Var → EXPse) → (Var → SEBES) with {[decl]} = fix(Fdecl) =

⊔
nFn

decl(⊥) is
well defined from the cpo theory (Section 2.3).

Definition 7.16 (Denotational Semantics)

Define[[]] : PAse → SEBES by [[〈decl, B〉]] = [[B]]{[decl]}.

Example 7.17 The denotational semantics of some processes is illustrated in Figure 7.1.

7.4 Operational Semantics forPAse

Similarly to the ST semantics, we distinguish between the start and the ending of actions and
relate the ending uniquely to the start of the corresponding action. There are different techniques
of encoding the history (executed events or started events) in operational semantics: viastatic
names[6, 44], via pointers[49, 61, 95, 96], viadynamic names[44, 140] and via thestack
technique[44]. We adapt the stack technique to our process algebra, since it has the following
advantages:

• it produces finite transition systems for a wide class of processes. Hence bisimulation
equivalence is decidable for this class of processes. Moreover, the transition system de-
rived from the stack technique needs less states than the transition system derived from
the other techniques.

128 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

a;0‖a;0

a−;0‖a;0 a;0‖a−;0

0‖a;0 a−;0‖a−;0 a−;0‖a−;0 a;0‖0

0‖a−;0 a−;0‖0

0‖0

���������������9

?

HHH
HHHHHj

HHH
HHH

HHj ?

PPPPPPPPPPPPq

@
@

@
@R

a+

a−1
a+

a+

a−2

a−1

a−1

XXXXXXXXXXXXXXXz

?

���
������

���
���

���?

������������)

�
�

�
�	

a+

a−1
a+

a+

a−2

a−1

a−1

Figure 7.2: Illustration of the Stack Technique

• it is compositional, i.e. the transition system of a process can be derived from the tran-
sition system of its components. This has the advantage of simplifying the derivation of
an axiomatization (see Section 7.7). More precisely, the standard axiom set developed by
Milner [138] can be extended in order to obtain an axiomatization.

• it yields an appropriate method to handle refinement operators, as it can be seen in [98].

The intuitive idea behind the stack techniques is the following: the start of an actiona ∈ Obs is
denoted in the transition system bya+; and the termination of an actiona ∈ Obs is denoted by
a−n , where the natural numbern indicates that exactlyn−1 manya-actions that are started after
the start of the correspondinga−n action are still active. In other words, if ana-action starts at
positionts

1 and finishes witha−n at positiontf , then the number of thea-actions that are started
after positionts and that are not finished before positiontf is exactlyn− 1. An illustration that
may help to understand this approach is given in Figure 7.2. The numbern is called therelative
active numberof the action corresponding toa−n . We do not split internal actions (τ), i.e. they
executeτ as usual. This is different to [44], where an internal action is split into two internal
actions.

In order to define transition rules, we have to encode the information stating when the active
actions were started in the expressions. For example, we have to know whether the lefta-action
started before the righta in a−;0‖a−;0 or not (compare with Figure 7.2). This can be encoded
by extending each operator that allows more than one process to be active by the information
indicating to which subcomponent (and also to which relative position of the subcomponents)

1In this context, positions are considered with respect to the execution order.

7.4. OPERATIONAL SEMANTICS FOR PASE 129

then-th activea-action corresponds. In other words, the operator has to be extended by a func-
tion from Obs × IN to the natural numbers combined with the possible subcomponents. For
example, the parallel operator has to be extended by a functionObs × IN → {l, r}, wherel
indicates the left process andr indicates the right process of the parallel operator. Such func-
tions have to be changed dynamically after every execution. In order to simplify the dynamical
changes, these functions are encoded by strings, i.e. by a function fromObs to the set of strings
over the possible subcomponents. For example, the parallel operator is extended by a function
M : Obs → {l, r}?. Thena−;0‖Ma−;0 whereM(a) = lr indicates that thea-action on the
right hand side has been started before thea-action on the left hand side.

The process algebra expressionsEXPO
se for the operational semantics are defined by the follow-

ing BNF-grammar.

C ::= B | b− | C b−B | C ⊕M C | C; B | C‖A,MC | C\\MA |
C[(a → B)a∈A, (a → ~C)a∈Ã]MA

~C ::= C | C · ~C

whereB ∈ EXPse, b ∈ Obs, A ⊆ Obs, Ã ∈ Pfin(A), M : Obs ⇁ {l, r} andMA : Obs ⇁

((A×IN+)∪{0, [}), where⇁ is defined in Subsection 2.1.2. We consider function(a → ~C)a∈Ã

to be the function(a → (~C∪ε))a∈A wherea maps onto the empty string (ε) if and only ifa /∈ Ã.
The symbols in the definition ofEXPO

se, e.g. b−, are overloaded, since they are also used in the
definition of EXPse. Hence, the unique derivation of an expression ofEXPO

se is contradicted.
Nevertheless, it does not harm our theory (both have the same transition rule) and therefore, we
use the same symbols, especially to reduce the number of transition rules.

The intuitive meaning that differs from those given in Section 7.2 is the following:b− indicates
that actionb is active, i.e. it has been started, but it has not been finished yet. It is able to execute
b−1 . The end-based choice operator is extended byM , since both components may contain active
actions. This is not the case for the end-start choice, where only the left hand side may be an
active process. The parallel operator is also extended byM . Actions of the synchronization set
are not relevant inM , since they have to be uniquely executed on both sides. The restriction
operatorC\\MA is also extended byM , since it is used in some cases to maintain theM
information of the parallel and the end-based choice expressions. The refinement operator
C[(a → Ba)

a∈A, (a → ~Ca)
a∈A]MA

contains additional strings of active processes (~Ca) for each
a ∈ A to encode the execution state of each active action inC. Furthermore, the refinement
operator has to be extended byMA to encode the corresponding position of the active actions,
where(a, i) refers to thei-th position in ~Ca, 0 refers toC and[is a default value used when
active actions are disrupted.

As mentioned in the beginning of this section, we have to adaptM andMA after every action
execution. Therefore, the following functions are defined, wherew · σ andσ\i are defined in
Subsection 2.1.1.

· : (Obs×W)× (Obs → W ?) → (Obs → W ?) with

([a, w] ·M)(b) =

{
w ·M(a) if a = b
M(b) otherwise

\ : (Obs → W ?)× (Obs× IN) → (Obs → W ?) with

(M\(a, i))(b) '
{

M(a)\i if a = b
M(b) otherwise

130 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Function · puts valuew in front of stringM(a) and is used when an action is started. Function
\ removes thei-th position in stringM(a) and is used when an action finishes.

In the case of the refinement operatorC[(a → Ba)
a∈A, (a → ~Ca)

a∈A]MA
, further functions are

needed. They are necessary, since the relative pointers have to be changed when the length
of ~Ca changes, which is the case as soon as an action ofA is started inC or a process in~Ca

terminates. These functions are given as follows, where thei-th element of a stringσ is denoted
by σ[i].

� : (Obs → ((A× IN+) ∪ {0, [}})?)× A → (Obs → ((A× IN+) ∪ {0, [})?) with

(MA � a)(b)[k] '
{

(a, i + 1) if MA(b)[k] = (a, i)
MA(b)[k] otherwise

† : (Obs → ((A× IN+) ∪ {0, [})?)× (A× IN+) → (Obs → ((A× IN) ∪ {0, [})?) with

(MA † (a, j))(b)[k] '


[if MA(b)[k] = (a, j)
(a, i− 1) if MA(b)[k] = (a, i) ∧ j < i
MA(b)[k] otherwise

Function � a is used to shift the relative pointers ofa by one when a process is added to~Ca.
Function †(a, j) is used when thej-th process of~Ca is removed. It reduces the relative pointers
to ~Ca by 1 if it is greater thanj.

It is also necessary to obtain the active number of an actiona from M when the active number
i of its subcomponentp is given. This is done by counting the elements that are in front of the
i-th occurrence ofp in M(a). Formally:

Supposeσ ∈ W ? then define

σ̂ : W × IN+ ⇀ IN+ with

σ̂(w, i) '
{

min{j | σ[j] = w} if i = 1
min{j | σ[j] = w ∧ j > σ̂(w, i− 1)} otherwise

We will also use the function that permutesr andl in M :

: (Obs → {l, r}?) → (Obs → {l, r}?) with

M(a)[i] =

{
l if M(a)[i] = r
r if M(a)[i] = l

Furthermore,~C is considered to be a string. Hence,~C[i] determines thei-th component if it
exists,~C\i removes thei-th component and~C ± (i, C) replaces thei-th component byC if it
exists.

The operational semantics for a process with respect toEXPse is given by a transition system
where the set of states consists of the elements ofEXPO

se, and the transition labels areLse =
{τ, (τ,

√
)} ∪ (Obs× ({+} ∪ IN ∪ (IN× {

√
}))).

Remark 7.18 In [44] the internal actionτ is split into its start and into its end. This is not
necessary, since the internal action can not be refined and therefore the observer can not detect
the start and the ending of this action.

7.4. OPERATIONAL SEMANTICS FOR PASE 131

The transition rules−→c
decl with respect todecl : Var → EXPse are presented in Table 7.1,

except for the transition rules of the parallel operator and those of the restriction operator, which
are presented in Table 7.2, and except for the transition rules of the refinement operator, which
are presented in Table 7.3. In these tables,γ denotes an element ofLse,⊥ denotes the function
that maps every action to the empty string andD is either an element ofEXPO

se or of EXPse.
Furthermore, we writea+ instead of(a, +), a−n instead of(a, n), a−n

√
instead of(a, n,

√
) and

τ
√

instead of(τ,
√

). To reduce the number of rules, we use the notation where
√

is in brackets.
It means that either all bracketed

√
s are considered as

√
or all bracketed

√
s are ignored. For

example, ruleChe
3 of Table 7.1 encodes the following two rules

C1
τ−→ C ′

1

C1 ⊕M C2
τ−→ C ′

1\\M∅
C2 ⊕M C1

τ−→ C ′
1\\M∅

C1
τ
√

−→ C ′
1

C1 ⊕M C2
τ
√

−→ C ′
1\\M∅

C2 ⊕M C1
τ
√

−→ C ′
1\\M∅

.

We give some comments on the transition rules: InAc1 an observable action starts by executing
a+ and results into the process that can finish thisa by executinga−1

√
, which is described in

Ac2. The internal action is handled in ruleAc3.

The transition rule for the start-based choice (Chs) is the standard one. Any action from the
right term triggers the end-start choice (Chh

1), whereas only the non-starting actions of the left
term trigger the end-start choice (Chh

2 , Chh
3).

StringM(a) of the end-based choice expression is extended whenever ana-action starts (Che
1).

The case when an action finishes is described inChe
2, where the corresponding relative active

number is calculated bŷM(a)(l, i). Furthermore, the relative active numbers have to be kept
after this execution, which triggers the choice. This is done by using the restriction operator,
where the information of the executed action is removed inM and no action is forbidden. In
the case where the right process triggers the choice,M has to be transposed, i.e.M is taken,
since the restriction operator considers the encoding by left to be active. The internal action is
handled in a similar way (Che

3). RuleChe
1 embedsEXPse expressions by adding the information

that no action is active.

The transition rules of the sequential operator (S1, S2) are the standard ones, i.e. the execution
is given to the second process if and only if the first one terminates. The rules of the parallel
operator have to changeM , as it is done in the end-based choice rules. Furthermore, if one side
terminates, it is removed (compare with the transition rules presented in Section 5.3). In this
case, the relative active numbers are kept as in the case of the end-based choice, except that the
actions of the synchronization set is forbidden. The restriction operator deals withM like the
end-based and the parallel operator.

RulesR1, R2 andR3 consider the cases when the execution of the action is independent of the
refinement. The case when an action that is not inA starts, is considered inR1. There,MA is
extended by the information that the started action results from the process that gets refined. In
R2 the ending of an action is considered, whereMA is modified in the usual way.

The case when an action that gets refined starts, is considered inR4, R5 andR6. RuleR6 con-
siders the special case when the refinement terminates because of the execution of the internal

action. In this case, alsoC has to finish the started action, which is described byC ′ a−1 (
√

)
−→ C ′′.

132 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Ac1 : a ∈ Obs

a
a+

−→ a−
Ac2 :

b−
b−1
√

−→ 0
Ac3 :

τ
τ
√

−→ 0

Chs :
B1

γ−→ C ′
1

B1 + B2
γ−→ C ′

1

B2 + B1
γ−→ C ′

1

Chh
1 :

B2
γ−→ C ′

2

D1 b−B2
γ−→ C ′

2

Chh
2 :

D1
a+

−→ C ′
1

D1 b−B2
a+

−→ C ′
1 b−B2

Chh
3 :

D1
γ−→ C ′

1 γ /∈ Obs× {+}
D1 b−B2

γ−→ C ′
1

Che
0 : B1 ⊕⊥ B2

γ−→ C ′

B1 ⊕B2
γ−→ C ′ Che

1 :
C1

a+

−→ C ′
1

C1 ⊕M C2
a+

−→ C ′
1 ⊕[a,l]·M C2

C2 ⊕M C1
a+

−→ C2 ⊕[a,r]·M C ′
1

Che
2 :

C1

a−i (
√

)
−→ C ′

1

C1 ⊕M C2

a−
M̂(a)(l,i)

(
√

)

−→ C ′
1\\M\(a,M̂(a)(l,i))

∅

C2 ⊕M C1

a−
M̂(a)(r,i)

(
√

)

−→ C ′
1\\M\(a,M̂(a)(r,i))

∅

Che
3 :

C1
τ(
√

)−→ C ′
1

C1 ⊕M C2
τ(
√

)−→ C ′
1\\M∅

C2 ⊕M C1
τ(
√

)−→ C ′
1\\M∅

S1 :
D1

α−→ C ′
1 α ∈ {τ} ∪ (Obs× {+}) ∪ (Obs× IN)

D1; B2
α−→ C ′

1; B2

S2 :
D1

α
√

−→ C ′
1 α

√
∈ ({τ} × {

√
}) ∪ (Obs× IN× {

√
})

D1; B2
α−→ B2

Rec :
decl(x)

γ−→ C ′

x
γ−→ C ′

Table 7.1: Transition Rules for−→c
decl (1)

Furthermore,ϕ does not change, since the started process is terminated. In the other cases (R4

andR5) the process that corresponds toa (Ba) is activated and therefore attached toϕ. Further-
more, the pointers corresponding toa have to be increased by one inMA, since their positions
in ϕ is changed by one. This is done byMA � a. Furthermore, we only consider here starting
actions and internal actions forBa, since an expression ofEXPse has no active actions. The case

when an observable action of the refinement is started (Ba
b+−→ C ′

a), is considered inR4. The
active function is adapted as usual.

RulesR7, R8 andR9 consider the case when the active refinement (ϕ) executes an action that is
different to a termination action, i.e. the process remains active. Before the active process may

7.4. OPERATIONAL SEMANTICS FOR PASE 133

P0 :
B1‖A,⊥B2

γ−→ C ′

B1‖AB2
γ−→ C ′ P1 :

C1
a+

−→ C ′
1 a /∈ A

C1‖A,MC2
a+

−→ C ′
1‖A,[a,l]·MC2

C2‖A,MC1
a+

−→ C2‖A,[a,r]·MC ′
1

P2 :
C1

a−i−→ C ′
1 a /∈ A

C1‖A,MC2

a−
M̂(a)(l,i)−→ C ′

1‖A,M\(a,M̂(a)(l,i))
C2

C2‖A,MC1

a−
M̂(a)(r,i)−→ C2‖A,M\(a,M̂(a)(r,i))

C ′
1

P3 :
C1

a−i
√

−→ C ′
1 a /∈ A

C1‖A,MC2

a−
M̂(a)(l,i)−→ C2\\M\(a,M̂(a)(l,i))

A

C2‖A,MC1

a−
M̂(a)(r,i)−→ C2\\M\(a,M̂(a)(r,i))

A

P4 :
C1

a+

−→ C ′
1 C2

a+

−→ C ′
2 a ∈ A

C1‖A,MC2
a+

−→ C ′
1‖A,MC ′

2

P5 :
C1

a−i
√

−→ C ′
1 C2

a−i
√

−→ C ′
2 a ∈ A

C1‖A,MC2

a−i
√

−→ 0

P6 :
C1

a−i−→ C ′
1 C2

a−i−→ C ′
2 a ∈ A

C1‖A,MC2

a−i−→ C ′
1‖A,MC ′

2

P7 :
C1

a−i
√

−→ C ′
1 C2

a−i−→ C ′
2 a ∈ A

C1‖A,MC2

a−i−→ C ′
2\\MA

C2‖A,MC1

a−i−→ C ′
2\\MA

P8 :
C1

τ−→ C ′
1

C1‖A,MC2
τ−→ C ′

1‖A,MC2

C2‖A,MC1
τ−→ C2‖A,MC ′

1

P9 :
C1

τ
√

−→ C ′
1

C1‖A,MC2
τ−→ C2\\MA

C2‖A,MC1
τ−→ C2\\MA

Res0 :
B\\⊥A

γ−→ C ′

B\\A γ−→ C ′ Res1 : C
a+

−→ C ′ a /∈ A

C\\MA
a+

−→ C ′\\[a,l]·MA

Res2 : C
a−i (

√
)

−→ C ′ a /∈ A

C\\MA
a−

M̂(a)(l,i)
(
√

)

−→ C ′\\
M\(a,M̂(a)(l,i))

A

Res3 : C
τ(
√

)−→ C ′

C\\MA
τ(
√

)−→ C ′\\MA

Table 7.2: Transition Rules for−→c
decl (2)

134 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

For simplicity, letφ = (a → Ba)
a∈A andϕ = (a → ~Ca)

a∈A

R0 :
B[φ, (a → ε)a∈A)]⊥

γ−→ C ′

B[φ]
γ−→ C ′ R1 : C

a+

−→ C ′ a /∈ A

C[φ, ϕ]MA

a+

−→ C ′[φ, ϕ][a,0]·MA

R2 :
C

a−i (
√

)
−→ C ′ a /∈ A m = M̂A(a)(0, i)

C[φ, ϕ]MA

a−m(
√

)−→ C ′[φ, ϕ]MA\(a,m)

R3 : C
τ(
√

)−→ C ′

C[φ, ϕ]MA

τ(
√

)−→ C ′[φ, ϕ]MA

R4 :
C

a+

−→ C ′ a ∈ A Ba
b+−→ C ′

a

C[φ, ϕ]MA

b+−→ C ′[φ, ϕ[a → C ′
a · ~Ca]][b,(a,1)]·(MA�a)

R5 :
C

a+

−→ C ′ a ∈ A Ba
τ−→ C ′

a

C[φ, ϕ]MA

τ−→ C ′[φ, ϕ[a → C ′
a · ~Ca]]MA�a

R6 :
C

a+

−→ C ′ a ∈ A Ba
τ
√

−→ C ′
a C ′ a−1 (

√
)

−→ C ′′

C[φ, ϕ]MA

τ(
√

)−→ C ′′[φ, ϕ]MA

R7 :
C

a−i (
√

)
−→ C ′ a ∈ A ~Ca[i]

b+−→ C ′
a

C[φ, ϕ]MA

b+−→ C[φ, ϕ[a → ~Ca ± (i, C ′
a)]][b,(a,i)]·MA

R8 :
C

a−i (
√

)
−→ C ′ a ∈ A ~Ca[i]

b−j−→ C ′
a m = M̂A(b)((a, i), j)

C[φ, ϕ]MA

b−m−→ C[φ, ϕ[a → ~Ca ± (i, C ′
a)]]MA\(b,m)

R9 :
C

a−i (
√

)
−→ C ′ a ∈ A ~Ca[i]

τ−→ C ′
a

C[φ, ϕ]MA

τ−→ C[φ, ϕ[a → ~Ca ± (i, C ′
a)]]MA

R10 :
C

a−i (
√

)
−→ C ′ a ∈ A ~Ca[i]

b−j
√

−→ C ′
a m = M̂A(b)((a, i), j)

C[φ, ϕ]MA

b−m(
√

)−→ C ′[φ, ϕ[a → ~Ca\i]](MA†(a,i))\(b,m)

R11 :
C

a−i (
√

)
−→ C ′ a ∈ A ~Ca[i]

τ
√

−→ C ′
a

C[φ, ϕ]MA

τ(
√

)−→ C ′[φ, ϕ[a → ~Ca\i]]MA†(a,i)

Table 7.3: Transition Rules for−→c
decl (3)

7.5. CONSISTENCY OF THE SEMANTICS FOR PASE 135

execute an action, one has to check that it is really an active action, i.e. that the corresponding

action inC is not disrupted. This is done byC
a−i (

√
)

−→ C ′. Please note thatC rather thanC ′ is
used in the resulting expression, sincea−i has to remain active. The rest is handled as expected.

RuleR10 andR11 consider the case when the active process terminates. Similar as above it has
to be checked that the corresponding action is still active. Furthermore, the active process is
removed. As a result, some pointers corresponding toa in MA have to be decreased by one,
since their positions inϕ are changed. Only those pointers which are greater thani have to be
changed, since the other ones point to the correct position. This modification inMA is done
by MA † (a, i). The handling of the relative active numbers is as usual. Please note thatC ′

rather thanC is used in the resulting process, since actiona−i finishes when its active process
terminates.

The refinement processC[φ, ϕ]MA
terminates if and only if a termination action that is not

refined is executed inC (rule R2 andR3) or if the refinement terminates and its corresponding
action inC is a termination action (ruleR6, R10 andR11).

Remark 7.19 To reduce the state space, i.e. the expressions which are derived from a process,
it is possible to modify the transition rules in such a way that every expression results in0 if it
executes a termination action. This is reasonable, since every expressions that results from the
execution of a termination action is equivalent to the inactive process.

7.5 Consistency of the Operational and the 3Denotational Se-
mantics for PAse

In this section, we show that a transition system can be derived from a sebes such that the
denotational and the operational semantics yield bisimilar transition systems.

We define the remainder of a sebes similarly to Definition 5.9 and Definition 3.14.

Definition 7.20 (Remainder of a sebes)Let E ∈ SEBES ande ∈ init(E). Then the remain-
derE[e] of E is given by(E ′, ;′,�′, 7→′, T ′, l′) where

E ′ = {e′ ∈ E | ¬(e′ ; e) ∧ ∃Z : Z � e′ ∧ e /∈ Z}
;′ = ; ∩(E ′ × E ′)
�′ = {(Z ∩ E ′, e′) | e′ ∈ E ′ ∧ Z � e′ ∧ e /∈ Z}
7→′ = {(X ∩ E ′, e′) | e′ ∈ E ′ ∧X 7→ e′ ∧ e /∈ X}

T ′ =

{
{X ∩ E ′ | X ∈ T ∧ e /∈ X} if ¬Υ(T, e)
{∅} otherwise

l′ = l � E ′

Lemma 7.21 LetE ∈ SEBES ande ∈ init(E). ThenE[e] ∈ SEBES.

Proof: It is an immediate consequence of Remark 7.3 and Lemma 5.10, since the remainder
correspondence to the other remainder on all relevant components. ut
The remainder is used to obtain an interleaving semantics forSEBES:

136 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Definition 7.22 The transition relation↪→⊆ SEBES × Act × SEBES is defined by↪→=
{(E , γ, E[e]) | E ∈ SEBES∧e ∈ init(E)∧ (Υ(T, e) ⇒ γ = l(e)

√
)∧ (¬Υ(T, e) ⇒ γ = l(e))}.

The transition system derived from the denotational semantics is bisimilar to the operational
semantics that is restricted to pure action execution. Formally:

Theorem 7.23 (Consistency)Suppose〈decl, B〉 ∈ PAse. Then the two transition systems
(EXPO

se,Act ∪ (Act × {
√
}),→→decl, B) and (SEBES,Act ∪ (Act × {

√
}), ↪→, [[〈decl, B〉]])

are bisimilar,

whereC
a(
√

)→→ decl C ′ ⇔

 C
a+

−→c
decl

a−1 (
√

)

−→c
decl C ′ if a ∈ Obs

C
τ(
√

)

−→c
decl C ′ if a = τ

.

Before we verify Theorem 7.23, which is done in Subsection 7.8.1, we show the stronger
bisimilarity-result which says that the operational semantics is bisimilar to aLse labeled transi-
tion system derived from the denotational semantics. The transition system fromSEBES that
has labels fromLse is defined as follows. We define thestart-remainderwith respect to evente
in order to describe the system that remains after the start of evente.

Definition 7.24 (Start-remainder of a sebes)Let E ∈ SEBES ande ∈ init(E). Then define
E〈e〉 byE〈e〉 = E � {e′ ∈ E | ¬(e′ ; e)}.

For theLse labeled transition system derived fromSEBES, it is necessary to save the infor-
mation of the relative start of the events, i.e. we have to determine for each started evente how
many active events labeled with the same action ase started aftere. This is done by taking a
SEBES combined with the set of partial functions fromU to IN+. The partial functions are also
used to encode which actions are active, i.e. have already been started. Moreover, we restrict
this set further to guarantee that:

• only a finite number of events may be active,

• every started event can not be start-based in conflict with another event, i.e. each start-
based choice is triggered and

• each started event has a unique relative active number, i.e. for alla, n there exists at most
one evente labeled witha that has exactlyn active events labeled witha that started after
e.

This is formalized by defining

SEBESM = {(E ,M) ∈ SEBES× (U ⇀ IN+) | dom(M) ∈ Pfin(initObs(E)) ∧
; ∩(U × dom(M)) = ∅ ∧ ∀a ∈ Obs : M � inita(E)) is injective},

whereinitA(E) = {e ∈ init(E) | l(e) ∈ A} andinita(E) is a short hand forinit{a}(E).

Furthermore, we need the following function to define theLse labeled transition system from
SEBES. Function �̂ moves the relative active number of active actions by one. This function

7.6. EQUIVALENCE 137

is needed when a new event starts. Function†̂ is used to reduce the relative active number of
the affected active actions by one if an event finishes.

�̂ : (U ⇀ IN+)× P(U) → (U ⇀ IN+) with

(M�̂E)(e) '
{
M(e) + 1 if e ∈ E
M(e) otherwise

†̂ : (U ⇀ IN+)× (P(U)× IN+) → (U ⇀ IN+) with

(M†̂(E, j))(e) '
{
M(e)− 1 if e ∈ E ∧M(e) > j
M(e) otherwise

Now we are ready to present theLse labeled transition system fromSEBES.

Definition 7.25 SupposeEE = (E ,M) ∈ SEBESM then defineEE〉e〈, which is an element of
SEBESM, by

EE〉e〈 '


(E[e],M � EE[e]

) if e ∈ initτ (E)

(E[e], (M† (initl(e)(E),M(e))) � EE[e]
) if e ∈ initObs(E) ∧ e ∈ dom(M)

(E〈e〉, ({(e, 1)} ∪ (M� initl(e)(E))) � EE〈e〉) if e ∈ initObs(E) ∧ e /∈ dom(M)

The transition relation↪→c⊆ SEBESM × Lse × SEBESM is defined by

(E ,M)
γ

↪→c (E ′,M′) if and only if

(E ′,M′) = (E ,M)〉e〈 ∧ γ =


τ if e ∈ initτ (E) ∧ ¬Υ(T, e)
τ
√

if e ∈ initτ (E) ∧Υ(T, e)
l(e)+ if e ∈ initObs(E) ∧ e /∈ dom(M)
l(e)−M(e) if e ∈ initObs(E) ∧ e ∈ dom(M) ∧ ¬Υ(T, e)

l(e)−M(e)

√
if e ∈ initObs(E) ∧ e ∈ dom(M) ∧Υ(T, e)

.

We have that the operational semantics is bisimilar to theLse labeled transition system derived
from the denotational semantics.

Theorem 7.26 Suppose〈decl, B〉 ∈ PAse. Then(SEBESM,Lse, ↪→c, ([[〈decl, B〉]],⊥)) is
bisimilar to (EXPO

se,Lse, −→c
decl, B).

Proof: The proof is given in Subsection 7.8.1. ut

7.6 Equivalence

We introduce an equivalence relation where differences between the start and the ending of
an event is made. Furthermore, the ending of an event has to be related uniquely to its start.
Therefore, we call this equivalence ST-equivalence (compare with Subsection 4.2.1). In its
definition, we make use of theLse labeled transition systems defined in Section 7.4 and in
Section 7.5.

138 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Definition 7.27 〈decl, B〉 and〈decl′, B′〉 of PAse are ST-bisimilar(or ST-equivalent), denoted
〈decl, B〉 ∼ST 〈decl′, B′〉, if (EXPO

se,Lse, −→c
decl, B) and(EXPO

se,Lse, −→c
decl′ , B

′) are bisim-
ilar (Definition 2.5).

Two sebesE andE ′ are ST-bisimilar, denotedE ∼ST E ′, if (SEBESM,Lse, ↪→c, (E ,⊥)) and
(SEBESM,Lse, ↪→c, (E ′,⊥)) are bisimilar.

From Theorem 7.26 we obtain the correspondence of the ST-equivalences onPAse andSEBES,
i.e. for all 〈decl, B〉, 〈decl′, B′〉 ∈ PAse we have〈decl, B〉 ∼ST 〈decl′, B′〉 if and only if
[[〈decl, B〉]] ∼ST [[〈decl′, B′〉]].
As in the standard event structures settings, ST-equivalence is the coarsest congruence for our
refinement operator with respect to bisimulation equivalence.

Theorem 7.28 ST-equivalence is a congruence for the refinement operatorRef se, i.e. E ∼ST

E ′ ∧ ∀a ∈ A : θ(a) ∼ST θ′(a) implies thatRef se
A (E , θ) ∼ST Ref se

A (E ′, θ′). Moreover, it is also

a congruence for the operatorŝ+, b̂−, ⊕̂, ;̂ , ‖̂A and \̂\A, which are defined in Definition 7.11.

Proof: The proof is given in Subsection 7.8.2. ut

Theorem 7.29 ST-equivalence is the coarsest congruence forRef se with respect to bisimula-
tion equivalence, i.e. if∀A, θ : Ref se

A (E , θ) ∼b Ref se
A (E ′, θ) thenE ∼ST E ′.

Proof: The proof is given in Subsection 7.8.2. ut

Remark 7.30 All transition rules for −→c
decl are in panth-format [171]. The transition rules

are also complete [9], since no negative literates are used. Hence, ST-equivalence is a congru-
ence for all expression constructions ofPAse [9].

This fact does not immediately follow from Theorem 7.28, since processes can contain recur-
sion.

7.7 Axiomatization

In this section, we present an axiom system for ST-equivalence with respect toPAse. We follow
the idea of [44], where some modifications are made, since the declaration technique is used.
Further modifications are necessary, since termination is determined by the final executed action
and since the internal actionτ is not split into its start and end. We also use a different definition
of the refinement operator taken from [98].

Following the approach mentioned, we extend the syntax by further expressions, for example by
the left merge (‖−) and the synchronization merge (|) operators [8, 25]. We also add expressions
considering the start and ending of actions. The equality ofPAse processes can be concluded
from the equality of the newly introduced processes, since they are a conservative extension [9]
of PAse.

7.7. AXIOMATIZATION 139

The process algebra expressionsEXPAx
se are defined by the following BNF-grammar.

H ::= 0 | a | b+; H | b− | b−q | b−q
√

; H | τ
√

; H | H + H | H b−H | H b−−H |

H ⊕M H | H ⊕−
M H | H; H | H[(a → H)a∈A, (a → ~H)a∈Ã]MA

|
H[(a → H)a∈A, (a → H)a∈A, (a → ~H)a∈Ã]−MA

H |
H‖A,MH | H‖−A,MH | H|A,MH | H\\MA | x

~H ::= H | H · ~H

wherex ∈ Var, a ∈ Act, b ∈ Obs, A ⊆ Obs, Ã ∈ Pfin(A), M : Obs ⇁ {l, r} and
MA : Obs ⇁ ((A × IN+) ∪ {0, [}). As in Section 7.4, we consider function(a → ~H)a∈Ã

to be function(a → (~H∪ε))a∈A wherea maps toε if and only if a /∈ Ã. A process with respect
to EXPAx

se is a pair〈decl, H〉 consisting of a declarationdecl : Var → EXPAx
se and an expression

H ∈ EXPAx
se . Let PAAx

se denote the set of all processes. We sometimes call an expression
H ∈ EXPAx

se also a process ifdecl is clear from the context.

The intuitive meaning of the new expressions are as follows:b+; H is the process that evolves
intoH by starting ab-action. Processb−q terminates the activeb-action that started before the last
q−1 activeb-actions.b−q

√
; H is similar tob−q , except that also the whole process is terminated,

i.e. it executesb−q
√

and evolves into0 (and not intoH).

The end-start (b−) and the end choice (⊕) together with the parallel operator are extended with
left merge ones (b−−, ⊕−

M , ‖−A,M). In these operators the left process has to execute the next
action. A synchronization merge operator for the parallel operator is also introduced (|A,M).
Here, the next action that is executed has to be obtained from communication.

ProcessH1[(a → Ha)
a∈A, (a → H ′

a)
a∈A, (a → ~Ha)

a∈Ã]−MA
H2 has the same behavior as

H2[(a → H ′
a)

a∈A, (a → ~Ha)
a∈Ã]MA

except thatH2 and (a → H ′
a)

a∈A are replaced byH1

(respectively by(a → Ha)
a∈A) in the evolved process. That means,H2 and(a → H ′

a)
a∈A are

used to determine the next actions andH1 and(a → Ha)
a∈A are used to determine the future

behavior of the process. Please note thatH1 is only used for the future behavior ifH2 does
not execute the action. This new refinement expression is introduced for the axiom system,
since we have to expand the refinement to determine the next action of the refinement (expand
U [φ[a → T + R], ϕ]MA

to U [φ[a → T], ϕ]MA
+ U [φ[a → R], ϕ]MA

). But if we use this ex-
pansion, we forget the original refinement function, which is essential for the future behavior,
for example ifU is equal toa; a. Therefore, the original refinement function is kept in the ex-
pression and only the copy of this function may expand further. Similar arguments hold forH1,
since we have to check, whether an action is still active, which destroys the original process.

The operational semantics (−→z) for PAAx
se is given as follows. The transition rules for the

operators that exist inEXPse are the old ones presented in Table 7.1, Table 7.2 and Table 7.3.
The transition rules for the newly introduced operators are given in Table 7.4 and Table 7.5.

We give some comments on the transition rules. One may expect that the processes in rule
Ac6 andAc7 should evolve intoH. This is not reasonable, since the execution of a termination
action has to lead to an inactive process. This is also respected in the axiomsb−q = b−q

√
; T and

τ = τ
√

; T from Table 7.6, where the processes evolve to0 for all these cases. The other rules
are just as expected.

ST-equivalence is adapted toPAAx
se in the straightforward way, i.e.〈decl, H〉 and〈decl′, H ′〉 are

ST-bisimilar(or ST-equivalent), denoted〈decl, H〉 ∼ST 〈decl′, H ′〉, if (EXPAx
se ,Lse, −→z

decl, H)

140 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Ac4 :
b+; H

b+−→ H
Ac5 :

b−q
b−q
√

−→ 0
Ac6 :

b−q
√

; H
b−q
√

−→ 0

Ac7 :
τ
√

; H
τ
√

−→ 0

ChLh
1 :

H1
a+

−→ H ′
1

H1 b−−H2
a+

−→ H ′
1 b−H2

ChLh
2 :

H1
γ−→ H ′

1 γ /∈ Obs× {+}
H1 b−−H2

γ−→ H ′
1

ChLe
1 :

H1
a+

−→ H ′
1

H1 ⊕−
M H2

a+

−→ H ′
1 ⊕[a,l]·M H2

ChLe
2 :

H1

a−i (
√

)
−→ H ′

1

H1 ⊕−
M H2

a−
M̂(a)(l,i)

(
√

)

−→ H ′
1\\M\(a,M̂(a)(l,i))

∅
ChLe

3 :
H1

τ(
√

)−→ H ′
1

H1 ⊕−
M H2

τ(
√

)−→ H ′
1\\M∅

PL
1 :

H1
a+

−→ H ′
1 a /∈ A

H1‖−A,MH2
a+

−→ H ′
1‖A,[a,l]·MH2

PL
2 :

H1

a−i−→ H ′
1 a /∈ A

H1‖−A,MH2

a−
M̂(a)(l,i)−→ H ′

1‖A,M\(a,M̂(a)(l,i))
H2

PL
3 :

H1

a−i
√

−→ H ′
1 a /∈ A

H1‖−A,MH2

a−
M̂(a)(l,i)−→ H2\\M\(a,M̂(a)(l,i))

A

PL
4 :

H1
τ−→ H ′

1

H1‖−A,MH2
τ−→ H ′

1‖A,MH2

PL
5 :

H1
τ
√

−→ H ′
1

H1‖−A,MH2
τ−→ H2\\MA

P S
1 :

H1
a+

−→ H ′
1 H2

a+

−→ H ′
2 a ∈ A

H1|A,MH2
a+

−→ H ′
1‖A,MH ′

2

P S
2 :

H1

a−i
√

−→ H ′
1 H2

a−i
√

−→ H ′
2 a ∈ A

H1|A,MH2

a−i
√

−→ 0

P S
3 :

H1

a−i−→ H ′
1 H2

a−i−→ H ′
2 a ∈ A

H1|A,MH2

a−i−→ H ′
1‖A,MH ′

2

P S
4 :

H1

a−i
√

−→ H ′
1 H2

a−i−→ H ′
2 a ∈ A

H1|A,MH2

a−i−→ H ′
2\\MA

H2|A,MH1

a−i−→ H ′
2\\MA

Table 7.4: Transition Rules for−→z
decl (1)

7.7. AXIOMATIZATION 141

For simplicity, letφ′ = (a → Ha)
a∈A andϕ = (a → ~Ha)

a∈A

R′
1 : H

a+

−→ H ′ a /∈ A

D[φ, φ′, ϕ]−MA
H

a+

−→ H ′[φ, ϕ][a,0]·MA

R′
2 :

H
a−i (

√
)

−→ H ′ a /∈ A m = M̂A(a)(0, i)

D[φ, φ′, ϕ]−MA
H

a−m(
√

)−→ H ′[φ, ϕ]MA\(a,m)

R′
3 : H

τ(
√

)−→ H ′

D[φ, φ′, ϕ]−MA
H

τ(
√

)−→ H ′[φ, ϕ]MA

R′
4 :

H
a+

−→ H ′ a ∈ A Ha
b+−→ H ′

a

D[φ, φ′, ϕ]−MA
H

b+−→ H ′[φ, ϕ[a → H ′
a · ~Ha]][b,(a,1)]·(MA�a)

R′
5 :

H
a+

−→ H ′ a ∈ A Ha
τ−→ H ′

a

D[φ, φ′, ϕ]−MA
H

τ−→ H ′[φ, ϕ[a → H ′
a · ~Ha]]MA�a

R′
6 :

H
a+

−→ H ′ a ∈ A Ha
τ
√

−→ H ′
a H ′ a−1 (

√
)

−→ H ′′

D[φ, φ′, ϕ]−MA
H

τ(
√

)−→ H ′′[φ, ϕ]MA

R′
7 :

H
a−i (

√
)

−→ H ′ a ∈ A ~Ha[i]
b+−→ H ′

a

D[φ, φ′, ϕ]−MA
H

b+−→ D[φ, ϕ[a → ~Ha ± (i, H ′
a)]][b,(a,i)]·MA

R′
8 :

H
a−i (

√
)

−→ H ′ a ∈ A ~Ha[i]
b−j−→ H ′

a m = M̂A(b)((a, i), j)

D[φ, φ′, ϕ]−MA
H

b−m−→ D[φ, ϕ[a → ~Ha ± (i, H ′
a)]]MA\(b,m)

R′
9 :

H
a−i (

√
)

−→ H ′ a ∈ A ~Ha[i]
τ−→ H ′

a

D[φ, φ′, ϕ]−MA
H

τ−→ D[φ, ϕ[a → ~Ha ± (i, H ′
a)]]MA

R′
10 :

H
a−i (

√
)

−→ H ′ a ∈ A ~Ha[i]
b−j
√

−→ H ′
a m = M̂A(b)((a, i), j)

D[φ, φ′, ϕ]−MA
H

b−m(
√

)−→ H ′[φ, ϕ[a → ~Ha\i]](MA†(a,i))\(b,m)

R′
11 :

H
a−i (

√
)

−→ H ′ a ∈ A ~Ha[i]
τ
√

−→ H ′
a

D[φ, φ′, ϕ]−MA
H

τ(
√

)−→ H ′[φ, ϕ[a → ~Ha\i]]MA†(a,i)

Table 7.5: Transition Rules for−→z
decl (2)

142 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

and(EXPAx
se ,Lse, −→z

decl′ , H
′) are bisimilar. Furthermore, ST-equivalence remains a congru-

ence forPAAx
se , since the transition rules are in panth format and complete (compare with Remark

7.30).

As in [44], we restrict our axioms for recursion tosequential guardedprocesses. The definition
of sequential guarded has to be adjusted to process algebras that are based on the declaration
technique. This adjustment is done with respect to a subset ofVar, since we restrict our axioms
to those processes that use only a finite number of variables. For example, we do not allow
processes like〈decl, x1〉 wheredecl(xi) = xi+1. This restriction is done, since we are only
interested in derivation rules with a finite number of pre-conditions.

Definition 7.31 A declarationdecl : Var → EXPAx
se is sequentially guardedwith respect toV ∈

P(Var) if ∀x ∈ V : ∃nx ∈ IN, ux : IN → Act, fx : IN → V : decl(x) =
∑nx

j=1 ux(j); fx(j).

SeqG denotes the set of all declarations that are sequentially guarded by someV , i.e.SeqG =
{(decl, V) | decl is sequentially guarded with respect toV }.

We introduce the following axiom systems forPAAx
se . This is done by presenting axioms (Table

7.6 and Table 7.7) to conclude equality with respect to the same declaration. Additionally, we
present a derivation rule that relates processes with possibly different declarations.

Definition 7.32 Letdecl : Var → EXPAx
se and letH, H ′ ∈ EXPAx

se . Then we writè decl H = H ′

if H = H ′ can be derived from the axioms presented in Table 7.6 and Table 7.7.

Furthermore, the equality deduction ofPAAx
se is given by the following rule

(decl′, {x0, ..., xn}) ∈ SeqG ∀i ≤ n : `decl Hi = decl′(xi){(Hj/xj)
j∈{0,..,n}}

` 〈decl, H0〉 = 〈decl′, x0〉
(7.1)

whereH{(Hj/xj)
j∈{0,..,n}} denotes the simultaneous replacement (substitution) of every oc-

currence ofxj byHj in expressionH.

7.7.1 Soundness

In this subsection, we show that the deductive system presented is sound with respect to ST-
equivalence. First, we consider the soundness of`decl:

Lemma 7.33 If `decl H = H ′ then〈decl, H〉 and〈decl, H ′〉 are ST-equivalent.

Proof: It can be straightforwardly checked that all axioms are sound. The rest follows from the
fact that ST-equivalence is a congruence. ut
Now we are ready to verify the soundness of our equality deduction:

Theorem 7.34 (Soundness)If ` 〈decl, H〉 = 〈decl′, H ′〉 then 〈decl, H〉 and 〈decl′, H ′〉 are
ST-equivalent.

Proof: The proof is given in Subsection 7.8.3. ut

7.7. AXIOMATIZATION 143

Let a ∈ A, b ∈ Obs, c ∈ Obs\A, R, T, U ∈ EXPAx
se andq, k ∈ IN with q 6= k

b = b+; b− b− = b−1 b−q = b−q
√

; T τ = τ
√

; T

T + U = U + T (T + U) + R = T + (U + R) T + T = T T + 0 = T

T b−U = (T b−−U) + U (T + U) b−−R = (T b−−R) + (U b−−R)
(b+; T) b−−U = b+; (T b−U) (b−q (

√
); T) b−−U = b−q (

√
); T

(τ(
√

); T) b−−U = τ(
√

); T 0 b−−T = 0

T ⊕M U = (T ⊕−
M U) + U ⊕−

M
T (T + U)⊕−

M R = (T ⊕−
M R) + (U ⊕−

M R)

(b+; T)⊕−
M R = b+; (T ⊕[b,l]·M R) (τ(

√
); T)⊕−

M R = τ(
√

); (T\\M∅)
(b−q (

√
); T)⊕−

M R = b−
M̂(b)(l,q)

(
√

); (T\\
M\(b,M̂(b)(l,q))

∅) 0⊕−
M R = 0

(T + U); R = (T ; R) + (U ; R) 0; R = 0
(b+; T); R = b+; (T ; R) (b−q ; T); R = b−q ; (T ; R) (b−q

√
; T); R = b−q ; R

(τ ; T); R = τ ; (T ; R) (τ
√

; T); R = τ ; R

T‖A,MU = (T‖−A,MU) + (U‖−
A,M

T) + (T |A,MU)

(T + U)‖−A,MR = (T‖−A,MR) + (U‖−A,MR) (c+; T)‖−A,MR = c+; (T‖A,[c,l]·MR)
(c−q ; T)‖−A,MR = c−

M̂(c)(l,q)
; (T‖

A,M\(c,M̂(c)(l,q))
R) (τ ; T)‖−A,MR = τ ; (T‖A,MR)

(c−q
√

; T)‖−A,MR = c−
M̂(c)(l,q)

; (R\\
M\(c,M̂(c)(l,q))

A) (τ
√

; T)‖−A,MR = τ ; (R\\MA)

(a+; T)‖−A,MR = 0 (a−q (
√

); T)‖−A,MR = 0 0‖−A,MR = 0
T |A,MR = R|A,MT (T + U)|A,MR = (T |A,MR) + (U |A,MR)
(c+; T)|A,MR = 0 (c−q (

√
); T)|A,MR = 0 (τ(

√
); T)|A,MR = 0

(a+; T)|A,M(a+; R) = a+; (T |A,MR) (a+; T)|A,M(a−q (
√

); R) = 0
(a−q ; T)|A,M(a−k (

√
); R) = 0 (a−q

√
; T)|A,M(a−k

√
; R) = 0

(a−q ; T)|A,M(a−q ; R) = a−q ; (T |A,MR) (a−q ; T)|A,M(a−q
√

; R) = a−q ; (T\\MA)
(a−q

√
; T)|A,M(a−q

√
; R) = a−q

√
;0 0|A,MR = 0

(T + U)\\MA = (T\\MA) + (U\\MA)
(c+; T)\\MA = c+; (T\\[c,l]·MA) (a+; T)\\MA = 0
(c−q (

√
); T)\\MA = c−

M̂(c)(l,q)
(
√

); (T\\
M\(c,M̂(c)(l,q))

A) (a−q (
√

); T)\\MA = 0

(τ(
√

); T)\\MA = τ(
√

); (T\\MA) 0\\MA = 0

x = decl(x)

Table 7.6: Axioms for the Non-Refinement Operators

144 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Let φ = (z → Gz)
z∈A, ϕ = (z → ~Gz)

z∈A, a ∈ A, c ∈ Obs\A, R, T, U ∈ EXPAx
se

andq, k ∈ IN

U [φ, ϕ]MA
= U [φ, φ, ϕ]−MA

U

U [φ, φ′, ϕ]−MA
(T + R) = U [φ, φ′, ϕ]−MA

T + U [φ, φ′, ϕ]−MA
R

U [φ, φ′[a → T + R], ϕ]−MA
V = U [φ, φ′[a → T], ϕ]−MA

V + U [φ, φ′[a → R], ϕ]−MA
V

U [φ, φ′, ϕ]−MA
(c+; R) = c+; R[φ, ϕ][c,0]·MA

U [φ, φ′, ϕ]−MA
(c−q (

√
); R) = c−m(

√
); R[φ, ϕ]MA\(a,m) if m = M̂A(c)(0, q)

U [φ, φ′, ϕ]−MA
(c−q (

√
); R) = 0 if M̂A(c)(0, q) is undefined

U [φ, φ′, ϕ]−MA
(τ(
√

); R) = τ(
√

); R[φ, ϕ]MA

U [φ, φ′[a → b+; T], ϕ]−MA
(a+; R) = b+; R[φ, ϕ[a → T · ϕ(a)]][b,(a,1)]·(MA�a)

U [φ, φ′[a → b−q (
√

); T], ϕ]−MA
(a+; R) = 0

U [φ, φ′[a → τ ; T], ϕ]−MA
(a+; R) = τ ; R[φ, ϕ[a → T · ϕ(a)]]MA�a

U [φ, φ′[a → τ
√

; T], ϕ]−MA
(a+; (R + V)) =

U [φ, φ′[a → τ
√

; T], ϕ]−MA
(a+; R) + U [φ, φ′[a → τ

√
; T], ϕ]−MA

(a+; V)
U [φ, φ′[a → τ

√
; T], ϕ]−MA

(a+; (a−1 (
√

); R)) = τ(
√

); R[φ, ϕ]MA

U [φ, φ′[a → τ
√

; T], ϕ]−MA
(a+; (γ; R)) = 0 if γ /∈ {a−1 , a−1

√
}

U [φ, φ′[a → 0], ϕ]−MA
(a+; R) = 0

U [φ, φ′, ϕ]−MA
(a−q (

√
); V) = 0 if |ϕ(a)| < q

U [φ, φ′, ϕ[a → ϕ(a)± (q, T + R)]]−MA
(a−q (

√
); V) =

U [φ, φ′, ϕ[a → ϕ(a)± (q, T)]]−MA
(a−q (

√
); V)+

U [φ, φ′, ϕ[a → ϕ(a)± (q, R)]]−MA
(a−q (

√
); V)

U [φ, φ′, ϕ[a → ϕ(a)± (q, b+; T)]]−MA
(a−q (

√
); R) =

b+; U [φ, ϕ[a → ϕ(a)± (q, T)]][b,(a,q)]·MA

U [φ, φ′, ϕ[a → ϕ(a)± (q, b−k ; T)]]−MA
(a−q (

√
); R) =

b−m; U [φ, ϕ[a → ϕ(a)± (q, T)]]MA\(b,m) if m = M̂A(b)((a, q), k)

U [φ, φ′, ϕ[a → ϕ(a)± (q, b−k ; T)]]−MA
(a−q (

√
); R) = 0 if M̂A(b)((a, q), k) is undefined

U [φ, φ′, ϕ[a → ϕ(a)± (q, b−k
√

; T)]]−MA
(a−q (

√
); R) =

b−m(
√

); R[φ, ϕ[a → ϕ(a)\q]](MA†(a,q))\(b,m) if m = M̂A(b)((a, q), k)

U [φ, φ′, ϕ[a → ϕ(a)± (q, b−k
√

; T)]]−MA
(a−q (

√
); R) = 0 if M̂A(b)((a, q), k) is undefined

U [φ, φ′, ϕ[a → ϕ(a)± (q, τ ; T)]]−MA
(a−q (

√
); R) = τ ; U [φ, ϕ[a → ϕ(a)± (q, T)]]MA

U [φ, φ′, ϕ[a → ϕ(a)± (q, τ
√

; T)]]−MA
(a−q (

√
); R) = τ(

√
); R[φ, ϕ[a → ϕ(a)\q]]MA†(a,q)

U [φ, φ′, ϕ[a → ϕ(a)± (q,0)]]−MA
(a−q (

√
); R) = 0

U [φ, φ′, ϕ]−MA
0 = 0

Table 7.7: Axioms for the Refinement Operators

7.7. AXIOMATIZATION 145

7.7.2 Completeness

We will show that our axioms are complete with respect to guarded processes that are finite
state. Before we present the definition of guarded and finite state, we restrict the processes to
those that use only a finite number of variables.

Definition 7.35 A process〈decl, H〉 ∈ PAAx
se is specified byV ∈ P(Var) if |V | < |IN| and

every variable occurrence inH is an element ofV and every variable occurrence indecl(x)
is an element ofV for anyx ∈ V . VarSp denotes the set of all processes that are specified by
someV , i.e.VarSp = {(〈decl, H〉, V) | 〈decl, H〉 is specified byV }.

A process is guarded if every variablex used by the process is behind an action (a, τ
√

; H) or
behind a started action (b−, b−q , b−q

√
; H) in the scope ofdecl(x). It is not sufficient thatx is

behind a starting action (b+), since otherwise it would be possible for infinitely many actions
to start without any of them finishing. For example,〈decl, x〉 with decl(x) = b+; x starts
infinitely manyb-actions. The possibility to start infinitely many actions without finishing one
is problematic for our verifications. We define guardedness only for processes that use only
finitely many variables, i.e. processes that are inVarSp.

Definition 7.36 (Guarded) DefineG ⊆ VarSp× P(Var) by

G((〈decl, H〉, V), Ṽ) if H ∈ {0, a, b−, b−q , b−q
√

; H ′, τ
√

; H ′}
G((〈decl, H〉, V), Ṽ) ⇔ G((〈decl, H ′〉, V), Ṽ) if H ∈ {b+; H ′, H ′; H ′′, H ′\\MA}
G((〈decl, H〉, V), Ṽ) ⇔ G((〈decl, H1〉, V), Ṽ) ∧ G((〈decl, H2〉, V), Ṽ)

if H ∈ {H1 + H2, H1 b−H2, H1 b−−H2, H1 ⊕M H2, H1 ⊕−
M H2,

H1‖A,MH2, H1‖−A,MH2, H1|A,MH2}
G((〈decl, H[(a → Ha)

a∈A, (a → ~Ha)
a∈Ã]MA

〉, V), Ṽ) ⇔
G((〈decl, H〉, V), Ṽ)∧
∀a ∈ A : G((〈decl, Ha〉, V), Ṽ)∧
∀a ∈ Ã : ∀i ≤ | ~Ha| : G((〈decl, ~Ha[i]〉, V), Ṽ)

G((〈decl, H[(a → Ha)
a∈A, (a → H ′

a)
a∈A, (a → ~Ha)

a∈Ã]−MA
H ′〉, V), Ṽ) ⇔

G((〈decl, H〉, V), Ṽ) ∧ G((〈decl, H ′〉, V), Ṽ)∧
∀a ∈ A : (G((〈decl, Ha〉, V), Ṽ) ∧ G((〈decl, H ′

a〉, V), Ṽ))∧
∀a ∈ Ã : ∀i ≤ | ~Ha| : G((〈decl, ~Ha[i]〉, V), Ṽ)

G((〈decl, x〉, V), Ṽ) ⇔ G((〈decl, decl(x)〉, V), Ṽ ∪ {x}) ∧ x /∈ Ṽ

A process〈decl, H〉 ∈ EXPAx
se is guardedif there isV ∈ Pfin(Var) such that(〈decl, H〉, V) ∈

VarSp and for allx ∈ V : G((〈decl, x〉, V), ∅).
The set of all guarded processes is denoted byPAGu

se .

The guarded predicate (G) can be applied directly to the expression of a guarded process, as it
is illustrated by the following lemma.

Lemma 7.37 Suppose〈decl, H〉 ∈ EXPAx
se is guardedthen there isV ∈ Pfin(Var) such that

(〈decl, H〉, V) ∈ VarSp andG((〈decl, H〉, V), ∅).

146 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Proof: By definition, there existsV ∈ Pfin(Var) such that(〈decl, H〉, V) ∈ VarSp and for all
x ∈ V : G((〈decl, x〉, V), ∅). The rest can be easily checked by structural induction onH. ut

Guardedness is preserved by the transition rules, i.e. if〈decl, H〉 ∈ PAGu
se andH

γ

−→z
decl H ′

then〈decl, H ′〉 ∈ PAGu
se . This just results from the fact that no new variables can be used byH ′

and guardedness only depends ondecl.

Finite state processes are introduced as follows:

Definition 7.38 An element ofPAAx
se is finite stateif its corresponding transition system has a

finite set of states.

We have the following completeness result:

Theorem 7.39 (Completeness)Suppose〈decl, H〉, 〈decl′, H ′〉 ∈ PAGu
se are finite state and ST-

equivalent. Theǹ 〈decl, H〉 = 〈decl′, H ′〉.

Proof: The proof is given in Subsection 7.8.4. ut

7.8 Proofs

7.8.1 Proof of the Consistency Results

The proof of Theorem 7.26 is analogous to the proof of Theorem 3.25, i.e. we introduce
an event based transition relation. Then we show that this transition system is bisimilar to
(EXPO

se,Lse, −→c
decl, B) and that it is in addition bisimilar to(SEBES,Lse, ↪→c, [[〈decl, B〉]]).

And so Theorem 7.26 follows by the transitivity of bisimilarity. Finally, we conclude Theorem
7.23 from Theorem 7.26.

Event Based Transition System forEXPse.

The process algebra expressionsEXPO
se
′
are defined by the following BNF-grammar.

G ::= B | b− | G b−B | G⊕M G | G; B | G‖A,MG | G\\MA |
G[(a → B)a∈A, (a → ~G)a∈A]MA

| dGeq
~G ::= ε | G · ~G

whereB ∈ EXPse, b ∈ Obs, A ⊆ Obs, M : Obs → {l, r}?, MA : Obs → ((A× IN)∪{0})? and
q ∈ {1, 2, l, r}. The event based transition rules−→′

decl with respect todecl : Var → EXPse are
presented in Table 7.8, Table 7.9 and Table 7.10.

7.8. PROOFS 147

Ac′1 : a ∈ Obs

a
a+−→• a−

Ac′2 :
b−

b−1
√

−→• 0
Ac′3 :

τ
τ
√
−→• 0

Chs′
1 :

B1
γ−→e G′

1

B1 + B2
γ−→(?1,e) dG′

1e1
B2 + B1

γ−→(?2,e) dG′
1e2

Chh′
1 :

B2
γ−→e G′

2

D1 b−B2
γ−→(?2,e) dG′

2e2

Chh′
2 :

D1
a+−→e G′

1

D1 b−B2
a+−→(?1,e) G′

1 b−B2

Chh′
3 :

D1
γ−→e G′

1 γ /∈ Obs× {+}
D1 b−B2

γ−→(?1,e) dG′
1e1

Che′
0 : B1 ⊕⊥ B2

γ−→e G′

B1 ⊕B2
γ−→e G′ Che′

1 :
G1

a+−→e G′
1

G1 ⊕M G2
a+−→(?1,e) G′

1 ⊕[a,l]·M G2

G2 ⊕M G1
a+−→(?2,e) G2 ⊕[a,r]·M G′

1

Che′
2 :

G1

a−i (
√

)−→e G′
1

G1 ⊕M G2

a−
M̂(a)(l,i)

(
√

)

−→(?1,e) dG′
1e1\\M\(a,M̂(a)(l,i))

∅

G2 ⊕M G1

a−
M̂(a)(r,i)

(
√

)

−→(?2,e) dG′
1e2\\M\(a,M̂(a)(r,i))

∅

Che′
3 :

G1
τ(
√

)−→e G′
1

G1 ⊕M G2
τ(
√

)−→(?1,e) dG′
1e1\\M∅

G2 ⊕M G1
τ(
√

)−→(?2,e) dG′
1e2\\M∅

S ′
1 :

D1
α−→e G′

1 α ∈ {τ} ∪ (Obs× {+}) ∪ (Obs× IN)

D1; B2
α−→(?1,e) G′

1; B2

S ′
2 :

D1
α
√
−→e G′

1 α
√
∈ ({τ} × {

√
}) ∪ (Obs× IN× {

√
})

D1; B2
α−→(?1,e) dB2e2

Rec′ :
decl(x)

γ−→e G′

x
γ−→e G′

N ′
1 :

G
γ−→e G′ i ∈ {1, 2}
dGei

γ−→(?i,e) dG′ei
N ′

2 : G
γ−→e G′

dGel
γ−→(e,?) dG′el

N ′
3 : G

γ−→e G′

dGer
γ−→(?,e) dG′er

Table 7.8: Event Based Transition Rules with respect to−→c
decl (1)

148 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

P ′
0 :

B1‖A,⊥B2
γ−→e G′

B1‖AB2
γ−→e G′ P ′

1 :
G1

a+−→e G′
1 a /∈ A

G1‖A,MG2
a+−→(e,?) G′

1‖A,[a,l]·MG2

G2‖A,MG1
a+−→(?,e) G2‖A,[a,r]·MG′

1

P ′
2 :

G1

a−i−→e G′
1 a /∈ A

G1‖A,MG2

a−
M̂(a)(l,i)−→(e,?) G′

1‖A,M\(a,M̂(a)(l,i))
G2

G2‖A,MG1

a−
M̂(a)(r,i)−→(?,e) G2‖A,M\(a,M̂(a)(r,i))

G′
1

P ′
3 :

G1

a−i
√

−→e G′
1 a /∈ A

G1‖A,MG2

a−
M̂(a)(l,i)−→(e,?) dG2er\\M\(a,M̂(a)(l,i))

A

G2‖A,MG1

a−
M̂(a)(r,i)−→(?,e) dG2el\\M\(a,M̂(a)(r,i))

A

P ′
4 :

G1
a+−→e1 G′

1 G2
a+−→e2 G′

2 a ∈ A

G1‖A,MG2
a+−→(e1,e2) G′

1‖A,MG′
2

P ′
5 :

G1

a−i
√

−→e1 G′
1 G2

a−i
√

−→e2 G′
2 a ∈ A

G1‖A,MG2

a−i
√

−→(e1,e2) 0

P ′
6 :

G1

a−i−→e1 G′
1 G2

a−i−→e2 G′
2 a ∈ A

G1‖A,MG2

a−i−→(e1,e2) G′
1‖A,MG′

2

P ′
7 :

G1

a−i
√

−→e1 G′
1 G2

a−i−→e2 G′
2 a ∈ A

G1‖A,MG2

a−i−→(e1,e2) dG′
2er\\MA

G2‖A,MG1

a−i−→(e2,e1) dG′
2el\\MA

P ′
8 :

G1
τ−→e G′

1

G1‖A,MG2
τ−→(e,?) G′

1‖A,MG2

G2‖A,MG1
τ−→(?,e) G2‖A,MG′

1

P ′
9 :

G1
τ
√
−→e G′

1

G1‖A,MG2
τ−→(e,?) dG2er\\MA

G2‖A,MG1
τ−→(?,e) dG2el\\MA

Res′0 :
B\\⊥A

γ−→e G′

B\\A γ−→e G′ Res′1 : G
a+−→e G′ a /∈ A

G\\MA
a+−→e G′\\[a,l]·MA

Res′2 : G
a−i (

√
)−→e G′ a /∈ A

G\\MA
a−

M̂(a)(l,i)
(
√

)

−→e G′\\
M\(a,M̂(a)(l,i))

A

Res′3 : G
τ(
√

)−→e G′

G\\MA
τ(
√

)−→e G′\\MA

Table 7.9: Event Based Transition Rules with respect to−→c
decl (2)

7.8. PROOFS 149

For simplicity, letφ = (a → Ba)
a∈A andϕ = (a → ~Ga)

a∈A

R′
0 :

B[φ, (a → ε)a∈A)]⊥
γ−→e G′

B[φ]
γ−→e G′ R′

1 : G
a+−→e G′ a /∈ A

G[φ, ϕ]MA

a+−→(e,e) G′[φ, ϕ][a,0]·MA

R′
2 :

G
a−i (

√
)−→e G′ a /∈ A m = M̂A(a)(0, i)

G[φ, ϕ]MA

a−m(
√

)−→(e,e) G′[φ, ϕ]MA\(a,m)

R′
3 : G

τ(
√

)−→e G′

G[φ, ϕ]MA

τ(
√

)−→(e,e) G′[φ, ϕ]MA

R′
4 :

G
a+−→e G′ a ∈ A Ba

b+−→ê G′
a

G[φ, ϕ]MA

b+−→(e,ê) G′[φ, ϕ[a → G′
a
~Ga]][b,(a,1)]·(MA�a)

R′
5 :

G
a+−→e G′ a ∈ A Ba

τ−→ê G′
a

G[φ, ϕ]MA

τ−→(e,ê) G′[φ, ϕ[a → G′
a
~Ga]]MA�a

R′
6 :

G
a+−→e G′ a ∈ A Ba

τ
√
−→ê G′

a G′ a−1 (
√

)−→e G′′

G[φ, ϕ]MA

τ(
√

)−→(e,ê) G′′[φ, ϕ]MA

R′
7 :

G
a−i (

√
)−→e G′ a ∈ A ~Ga[i]

b+−→ê G′
a

G[φ, ϕ]MA

b+−→(e,ê) G[φ, ϕ[a → ~Ga ± (i, G′
a)]][b,(a,i)]·MA

R′
8 :

G
a−i (

√
)−→e G′ a ∈ A ~Ga[i]

b−j−→ê G′
a m = M̂A(b)((a, i), j)

G[φ, ϕ]MA

b−m−→(e,ê) G[φ, ϕ[a → ~Ga ± (i, G′
a)]]MA\(b,m)

R′
9 :

G
a−i (

√
)−→e G′ a ∈ A ~Ga[i]

τ−→ê G′
a

G[φ, ϕ]MA

τ−→(e,ê) G[φ, ϕ[a → ~Ga ± (i, G′
a)]]MA

R′
10 :

G
a−i (

√
)−→e G′ a ∈ A ~Ga[i]

b−j
√

−→ê G′
a m = M̂A(b)((a, i), j)

G[φ, ϕ]MA

b−m(
√

)−→(e,ê) G′[φ, ϕ[a → ~Ga\i]](MA†(a,i))\(b,m)

R′
11 :

G
a−i (

√
)−→e G′ a ∈ A ~Ga[i]

τ
√
−→ê G′

a

G[φ, ϕ]MA

τ(
√

)−→(e,ê) G′[φ, ϕ[a → ~Ga\i]]MA†(a,i)

Table 7.10: Event Based Transition Rules with respect to−→c
decl (3)

150 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

First Bisimulation Result.

An expressionG of EXPO
se
′
and an expressionC of EXPO

se are related ifG results inC through
the removal of alld e expressions. This is formalized by the following function, where we also
count thed e symbols inG.

Definition 7.40 Ξ : IN× EXPO
se → P(EXPO

se
′
) is defined as follows, whereQ = {1, 2, l, r}.

Ξ(0, C) = {C}
Ξ(n + 1, B) = {dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n,B)}
Ξ(n + 1, b−) = {dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n, b−)}
Ξ(n + 1, C b−B) = {dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n,C b−B)} ∪ {G [>B | G ∈ Ξ(n + 1, C)}
Ξ(n + 1, C1 ⊕M C2) = {dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n,C1 ⊕M C2)} ∪
{G1 ⊕M G2 | ∃m ∈ IN : m ≤ n + 1 ∧G1 ∈ Ξ(m, C1) ∧G2 ∈ Ξ(n + 1−m, C2)}

Ξ(n + 1, C; B) = {dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n, C; B)} ∪ {G; B | G ∈ Ξ(n + 1, C)}
Ξ(n + 1, C1‖A,MC2) = {dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n, C1‖A,MC2)} ∪
{G1‖A,MG2 | ∃m ∈ IN : m ≤ n + 1 ∧G1 ∈ Ξ(m,C1) ∧G2 ∈ Ξ(n + 1−m,C2)}

Ξ(n + 1, C\\MA) = {dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n, C\\MA)} ∪
{G\\MA | G ∈ Ξ(n + 1, C)}

Ξ(n + 1, C[(a → Ba)
a∈A, (a → ~Ca)

a∈A]MA
) = {G[(a → Ba)

a∈A, (a → ~Ga)
a∈A] |

∃m ∈ IN, (mj
a)a∈A ∈ INA : m +

∑
a∈A∧j∈IN mj

a = n + 1 ∧G ∈ Ξ(m, C) ∧
(~Ga[j] ∈ Ξ(mj

a, ~Ca[j]) ∨ (~Ga[j] is undefined∧ ~Ca[j] is undefined))} ∪
{dG̃ei | i ∈ Q ∧ G̃ ∈ Ξ(n,C[(a → Ba)

a∈A, (a → ~Ca)
a∈A]MA

)}

The well-definedness ofΞ is easily seen.

Lemma 7.41 Let B ∈ EXPse then(EXPO
se,Lse, −→c

decl, B) and (EXPO
se
′
,Lse, −→′′

decl, B) are

bisimilar, whereG
γ

−→′′
decl G′ ⇔ ∃e ∈ U : G

γ−→′
e decl G′.

Proof: DefineR = {(C, G) ∈ EXPO
se × EXPO

se
′ | ∃n : G ∈ Ξ(n, C)}. In order to verify thatR

is a bisimulation, we show

(C
γ

−→c C ′ ∧G ∈ Ξ(n, C)) ⇒ ∃e,G′, m : G
γ−→′
e G′ ∧G′ ∈ Ξ(m,C ′) (7.2)

The proof of (7.2) works by induction on the depth of inference ofC
γ

−→c C ′ combined with
the value ofn. Then, (7.2) can be easily checked with the following procedure:

• applying ruleNj wheneverC = dC̃eq. In these casesn is reduced by one andC
γ

−→c C ′

keeps unaffected. Therefore, the result follows by induction.

• applying the correspondent rules ofC
γ

−→c C ′ wheneverC is different todC̃eq. In these
cases the depth of inference is reduced andn gets not increased. Therefore the result
follows by induction.

7.8. PROOFS 151

Another fact is

(G
γ−→′
e G′ ∧G ∈ Ξ(n,C)) ⇒ ∃C ′, m : C

γ

−→c C ′ ∧G′ ∈ Ξ(m, C ′) (7.3)

This equation can be seen by induction on the depth of inference ofG
γ−→′
e G′.

Now we are ready to verify thatR is a bisimulation:

• It is clear that(B, B) ∈ R.

• Suppose(C1, G1) ∈ R andC1

γ

−→c C2. Then∃e, G2, m : G1
γ−→′
e G2 ∧G2 ∈ Ξ(m, C2)

by (7.2). ThusG1

γ

−→′′ G2 and(C2, G2) ∈ R, as required.

• Suppose(C1, G1) ∈ R andG1

γ

−→′′ G2. ThenG1
γ−→′
e G2 for somee. Hence,∃C2, m :

C1

γ

−→c C2 ∧G2 ∈ Ξ(m, C2) by (7.3). ut

Second Bisimulation Result.

First, we show that the denotation of a variable is the same as the denotation of its corresponding
expression.

Lemma 7.42 Letdecl : Var → EXPse andx ∈ Var. Then[[〈decl, x〉]] = [[〈decl, decl(x)〉]].

Proof: Similar to the proof of Lemma 3.37. ut
We extend the denotational semantics toEXPO

se
′
. We define an event based refinement operator,

which refines events rather than actions.

Definition 7.43 DefineRef se

A
: SEBES × (U → SEBES) → SEBES by Ref se

A
(E , ϑ) =

(Ẽ, ;̃, �̃, ˜7→, T̃ , l̃) where

Ẽ = {(e, ê) | e ∈ E ∧ l(e) ∈ A ∧ ê ∈ Eϑ(e)} ∪
{(e, e) ∈ E × E | l(e) /∈ A}

;̃ = {((e, ê), (e′, ê′)) | e ; e′ ∨ (e′ = e′ ∧ l(e) ∈ A ∧ ê ;ϑ(e) ê′)}
�̃ = {(Z̃, (e, ê)) | ∃Z : Z � e ∧ ∃f : Z → P(U) :

(∀e′ ∈ Z : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ e′ 6= e ∧ f(e′) ∈ Tϑ(e′))∨
(l(e′) ∈ A ∧ e′ = e ∧ ∃X̂ ∈ Tϑ(e′), Ẑ : f(e′) = Ẑ ∪ X̂ ∧ Ẑ �ϑ(e′) ê))∧

Z̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ Z ∧ ê′ ∈ f(e′)}}
˜7→ = {({e} ×X ′, (e, ê)) | l(e) ∈ A ∧X ′ 7→ϑ(e) ê} ∪

{(X̃, (e, ê)) | (l(e) ∈ A ⇒ ê ∈ init(ϑ(e))) ∧ ∃X : X 7→ e ∧ ∃f : Z → P(U) :
(∀e′ : (l(e′) /∈ A ∧ f(e′) = {e′}) ∨ (l(e′) ∈ A ∧ f(e′) ∈ Tϑ(e′)))∧
X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

T̃ = {X̃ | ∃X ∈ T ∧ ∃f : X → P(U) : (∀e′ : (l(e′) /∈ A ∧ f(e′) = {e′})∨
(l(e′) ∈ A ∧ f(e′) ∈ Tϑ(e′))) ∧ X̃ = {(e′, ê′) ∈ Ẽ | e′ ∈ X ∧ ê′ ∈ f(e′)}}

l̃(e, ê) =

{
l(e) if l(e) /∈ A
lϑ(e)(ê) if l(e) ∈ A

.

152 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

For the operators onEXPO
se
′
we need the following function, which adapts functionM when

the events are renamed.

DefineΨ : (U ⇀ IN)× {1, 2, l, r} → (U ⇀ IN) by

Ψ(M, q)(e) '


M(e′) if q ∈ {1, 2} ∧ e = (?q, e

′)
M(e′) if q = l ∧ e = (?, e′)
M(e′) if q = r ∧ e = (e′, ?)

The operators onEXPO
se
′
are given as follows:

Definition 7.44 (Operators onEXPO
se
′) Let A ⊆ Obs, M : Obs → {l, r}?, MA : Obs →

((A× IN)∪ {0})? andq ∈ {1, 2, l, r} Furthermore, supposeEE = (E ,M) andEEj = (Ej,Mj).
Then define

b̃− : SEBESM × SEBES → SEBESM with EE1 b̃−E2 = (E1 b̂−E2, Ψ(M1, 1))

⊕̃M : SEBESM × SEBESM → SEBESM with EE1⊕̃MEE2 = (E1⊕̂E2 � E ′,M′)

whereE ′ = {(?1, e) | e ∈ dom(M1) ⇒ M̂(l1(e))(l,M1(e)) is defined}∪
{(?2, e) | e ∈ dom(M2) ⇒ M̂(l2(e))(r,M2(e)) is defined}.

andM′(e′) '

{
M̂(l1(e))(l,M1(e)) if e′ = (?1, e)

M̂(l2(e))(r,M2(e)) if e′ = (?2, e)

;̃ M : SEBESM × SEBES → SEBESM with EE1 ;̃ E2 = (E1 ;̂ E2, Ψ(M1, 1))

‖̃A,M : SEBESM × SEBESM → SEBESM with

EE1‖̃A,MEE2 = (E1‖̂AE2 � E ′,M′)

whereE ′ = {(e, ?) | l1(e) /∈ A ∧ (e ∈ dom(M1) ⇒ M̂(l1(e))(l,M1(e)) is defined)}∪
{(?2, e) | l2(e) /∈ A ∧ (e ∈ dom(M2) ⇒ M̂(l2(e))(r,M2(e)) is defined)}∪
{(e1, e2) | l1(e1) = l(e2) ∧M1(e1) 'M2(e2)}.

andM′(e′) '


M̂(l1(e))(l,M1(e)) if e′ = (e, ?)

M̂(l2(e))(r,M2(e)) if e′ = (?, e)
M1(e1) if e = (e1, e2) ∧ l1(e1) = l(e2) ∧M1(e1) 'M2(e2)

\̃\MA : SEBESM → SEBESM with EE \̃\MA = (E \̂\A � E ′,M′ � E ′)

whereE ′ = {e ∈ E | e ∈ dom(M) ⇒ M̂(l(e))(l,M(e)) is defined}
andM′(e) ' M̂(l(e))(l,M(e))

R̃ef
se

A,MA
: SEBESM × (A → SEBES)× (A → SEBES?

M) → SEBESM

with R̃ef
se

A,MA
(EE , θ, ~θ) = (Ref se(E , ϑ) � E ′,M′)

whereϑ(e) =


θ(l(e)) if l(e) ∈ A ∧ e /∈ dom(M)

π1(~θ(l(e))[M(e)]) if l(e) ∈ A ∧ e ∈ dom(M)
(∅, ∅, ∅, ∅, {∅}, ∅) otherwise

andE ′ = {(e, e) | l(e) /∈ A ∧ (e ∈ dom(M) ⇒ M̂A(l(e))(0,M(e)) is defined)}∪
{(e, ê) | l(e) ∈ A ∧ (e ∈ dom(M) ⇒ (∃E ′′,M′′ : ~θ(l(e))[M(e)] = (E ′′,M′′)∧

(ê ∈ dom(M′′) ⇒ ̂MA(l′′(ê))((l(e),M(e)),M′′(ê)) is defined)))}.

7.8. PROOFS 153

andM′(e′) '


M̂A(l(e))(0,M(e)) if e′ = (e, e) ∧ l(e) /∈ A

̂MA(l′′(ê))((l(e),M(e)),M′′(ê)) if e′ = (e, ê) ∧ l(e) ∈ A ∧
if ~θ(l(e))[M(e)] = (E ′′,M′′)

S̃hift q : SEBESM → SEBESM with S̃hift q(EE) = (Ŝhift q(E), Ψ(M, q))

These operators are used to define the following denotational semantics forEXPO
se
′
.

Definition 7.45 (Denotational semantics ofEXPO
se
′)

Define[[]]′ : (Var → EXPse)× EXPO
se
′ → SEBESM as follows

[[decl, B]]′ = ([[〈decl, B〉]],⊥) [[decl, b−]]′ = ([[〈decl, b〉]], {(•, 1)})
[[decl, G1 b−B2]]

′ = [[decl, G1]]
′ b̃−[[〈decl, B2〉]]

[[decl, G1 ⊕M G2]]
′ = [[decl, G1]]

′⊕̃M [[decl, G2]]
′

[[decl, G; B]]′ = [[decl, G]]′ ;̃ [[〈decl, B〉]]
[[decl, G1‖A,MG2]]

′ = [[decl, G1]]
′‖̃A,M [[decl, G2]]

′

[[decl, G\\MA]]′ = [[decl, G]]′ \̃\MA

[[decl, G[(a → Ba)
a∈A, (a → ~Ga)

a∈A]MA
]]′ = R̃ef

se

A,MA
([[decl, G]]′, θ, ~θ)

whereθ(a) = [[〈decl, Ba〉]] and~θ(a)[i] ' [[decl, ~Ga[i]]]
′

[[decl, dGeq]]′ = S̃hift q([[decl, G]]′)

It is easy to check that[[]]′ is well defined.

The following lemma states how the remainder (respectively the start-remainder) of a sebes is
determined with respect to the different operators of Definition 7.11. Furthermore, the termina-
tion predicate is reduced to the termination predicate of the components of the operator.

Lemma 7.46 SupposeE , E1, E2 ∈ SEBES andϑ : U → SEBES. Then

(E1+̂E2)[(?i,e)] ' Ŝhift i(Ei[e])

(E1 b̂−E2)[(?i,e)] ' Ŝhift i(Ei[e])

(E1⊕̂E2)[(?i,e)] ' Ŝhift i(Ei[e])

(E1 ;̂ E2)[(?1,e)] '
{

Ŝhift2(E2) if e ∈ init(E1) ∧Υ(T1, e)
E1[e] ;̂ E2 otherwise

(E1‖̂AE2)[(e1,?)] '

{
E1[e1]‖̂AE2 if ¬Υ(T1, e1) ∧ l1(e1) /∈ A

Ŝhiftr(E2) \̂\A if e1 ∈ init(E1) ∧Υ(T1, e1) ∧ l1(e1) /∈ A

(E1‖̂AE2)[(?,e2)] '

{
E1‖̂AE2[e2] if ¬Υ(T2, e2) ∧ l2(e2) /∈ A

Ŝhift l(E1) \̂\A if e2 ∈ init(E2) ∧Υ(T2, e2) ∧ l2(e2) /∈ A

(E1‖̂AE2)[(e1,e2)] '


E1[e1]‖̂AE2[e2] if ¬Υ(T1, e1) ∧ ¬Υ(T2, e2)

Ŝhiftr(E2[e2]) \̂\A if e1 ∈ init(E1) ∧Υ(T1, e1) ∧ ¬Υ(T2, e2)

Ŝhift l(E1[e1]) \̂\A if e2 ∈ init(E2) ∧Υ(T2, e2) ∧ ¬Υ(T1, e1)
(∅, ∅, ∅, ∅, {∅}, ∅) if Υ(T1, e1) ∧Υ(T2, e2)

154 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

wheneverl1(e1) = l2(e2) ∈ A

(E \̂\A)[e] '
{
E[e] \̂\A if l(e) /∈ A
undefined otherwise

Ref se

A
(E , ϑ)[(e,ê)] '


Ref se

A
(E[e], ϑ) if l(e) /∈ A ∧ e = ê

Ref se

A
(E[e], ϑ[e → ϑ(e)[ê]]) if l(e) ∈ A ∧Υ(Tϑ(e), ê)

Ref se

A
(E〈e〉, ϑ[e → ϑ(e)[ê]])} if l(e) ∈ A ∧ ¬Υ(Tϑ(e), ê)

Ŝhift i(E)[(?i,e)] ' Ŝhift i(E[e]) wheneveri ∈ {1, 2}

Ŝhiftr(E)[(?,e)] ' Ŝhiftr(E[e])

Ŝhift l(E)[(e,?)] ' Ŝhift l(E[e])

andRef se

A
(E[e], ϑ[e → E ′]) ' Ref se

A
(E[e], ϑ) holds for anyE ′ ∈ SEBES.

Furthermore

(E1+̂E2)〈(?i,e)〉 ' Ŝhift i(Ei〈e〉)

(E1 b̂−E2)〈(?i,e)〉 '

{
E1〈e〉 b̂−E2 if i = 1

Ŝhift2(E2〈e〉) if i = 2

(E1⊕̂E2)〈(?i,e)〉 '
{
E1〈e〉⊕̂E2 if i = 1
E1⊕̂E2〈e〉 if i = 2

(E1 ;̂ E2)〈(?1,e)〉 ' E1〈e〉 ;̂ E2

(E1‖̂AE2)〈(e1,e2)〉 '


E1〈e1〉‖̂AE2 if l1(e1) /∈ A ∧ e2 = ?

E1‖̂AE2〈e2〉 if l2(e2) /∈ A ∧ e1 = ?

(E1〈e1〉‖̂AE2〈e2〉) � E ′ if l1(e1) = l2(e2) ∈ A ∧ E ′ = {(e′1, e′2) |
(e′1 6= e1 ∧ e′2 6= e2) ∨ (e′1, e

′
2) = (e1, e2)}

(E \̂\A)〈e〉 '
{
E〈e〉 \̂\A if l(e) /∈ A
undefined otherwise

Ref se

A
(E , ϑ)〈(e,ê)〉 '

{
Ref se

A
(E〈e〉, ϑ) if l(e) /∈ A ∧ e = ê

Ref se

A
(E〈e〉, ϑ[e → ϑ(e)〈ê〉]) if l(e) ∈ A

Ŝhift i(E)〈(?i,e)〉 ' Ŝhift i(E〈e〉) wheneveri ∈ {1, 2}

Ŝhiftr(E)〈(?,e)〉 ' Ŝhiftr(E〈e〉)

Ŝhift l(E)〈(e,?)〉 ' Ŝhift l(E〈e〉)

Moreover,

Υ(TE1+̂E2
, (?i, e)) ⇔ Υ(Ti, e)

Υ(TE1 b̂−E2
, (?i, e)) ⇔ Υ(Ti, e)

Υ(TE1⊕̂E2
, (?i, e)) ⇔ Υ(Ti, e)

Υ(TE1 ;̂ E2 , (?i, e)) ⇔ Υ(T2, e) ∧ i = 2

Υ(TE1‖̂AE2
, (e1, e2)) ⇔ (Υ(T1, e1) ∧Υ(T2, e2) ∧ l1(e1) = l2(e2) ∈ A)

Υ(TE \̂\A, e) ⇔ (Υ(T, e) ∧ l(e) /∈ A)

7.8. PROOFS 155

Υ(TRef se
A

(E,ϑ), (e, ê)) ⇔
{

Υ(T, e) if l(e) /∈ A ∧ e = ê
Υ(T, e) ∧Υ(Tϑ(e), ê) if l(e) ∈ A

Υ(T
Ŝhifti(E)

, (?i, e)) ⇔ Υ(T, e) wheneveri ∈ {1, 2}
Υ(T

Ŝhift l(E)
, (e, ?)) ⇔ Υ(T, e)

Υ(T
Ŝhiftr(E)

, (?, e)) ⇔ Υ(T, e)

Proof: Straightforward. ut

Now we are ready to show how the remainder onSEBESM defined in Definition 7.25 is
determined with respect to the different operators of Definition 7.44.

Lemma 7.47 Let A ⊆ Obs, M : Obs → {l, r}?, MA : Obs → ((A × IN) ∪ {0})? and
q ∈ {1, 2, l, r}. Furthermore, supposeEE = (E ,M) andEEj = (Ej,Mj). Then

(EE1 b̃−E2)〉(?i,e)〈 '


EE1〉e〈 b̃−E2 if i = 1 ∧ e /∈ dom(M1) ∧ l(e) ∈ Obs

S̃hift1(EE1〉e〈) if i = 1 ∧ (e ∈ dom(M1) ∨ l(e) = τ)

S̃hift2((E2,⊥)〉e〈) if i = 2

LetEEc = (EE1⊕̃MEE2)〉(?i,e)〈 then

EEc '



EE1〉e〈⊕̃[l1(e),l]·MEE2 if i = 1 ∧ l1(e) ∈ Obs ∧ e /∈ dom(M1)
EE1⊕̃[l2(e),r]·MEE2〉e〈 if i = 2 ∧ l2(e) ∈ Obs ∧ e /∈ dom(M2)

S̃hift1(EE1〉e〈) \̃\M\(l1(e),m)∅ if i = 1 ∧ l1(e) ∈ Obs ∧m = M̂(l1(e))(l,M1(e))

S̃hift2(EE2〉e〈) \̃\M\(l2(e),m)∅ if i = 2 ∧ l2(e) ∈ Obs ∧m = M̂(l2(e))(r,M2(e))

S̃hift1(EE1〉e〈) \̃\M∅ if i = 1 ∧ l1(e) = τ

S̃hift2(EE2〉e〈) \̃\M∅ if i = 2 ∧ l2(e) = τ

(EE1 ;̃ E2)〉(?1,e)〈 '
{

S̃hift2((E2,⊥)) if (e ∈ dom(M1) ∨ e ∈ initτ (E1)) ∧Υ(T1, e)
EE1〉e〈 ;̂ E2 otherwise

LetEEp = (EE1‖̃A,MEE2)〉(e1,e2)〈 then

EEp '



EE1〉e〈‖̃A,[l1(e),l]·MEE2 if l1(e) ∈ Obs\A ∧ e /∈ dom(M1)

EE1〉e〈‖̃A,M\(l1(e),M̂(l1(e))(l,M1(e)))
EE2 if l1(e) ∈ Obs\A ∧ ¬Υ(T1, e) ∧

if e ∈ dom(M1)

EE1〉e〈‖̃A,MEE2 if l1(e) = τ ∧ ¬Υ(T1, e)

S̃hiftr(EE2) \̃\M\(l1(e),M̂(l1(e))(l,M1(e)))
A if e ∈ initObs\A(E1) ∧Υ(T1, e) ∧

if e ∈ dom(M1)

S̃hiftr(EE2) \̃\MA if e ∈ initτ (E1) ∧Υ(T1, e)

whenevere1 = e ∧ e2 = ?

156 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

EEp '



EE1‖̃A,[l2(e),r]·MEE2〉e〈 if l2(e) ∈ Obs\A ∧ e /∈ dom(M2)

EE1‖̃A,M\(l2(e),M̂(l2(e))(r,M2(e)))
EE2〉e〈 if l2(e) ∈ Obs\A ∧ ¬Υ(T2, e) ∧

if e ∈ dom(M2)

EE1‖̃A,MEE2〉e〈 if l2(e) = τ ∧ ¬Υ(T2, e)

S̃hift l(EE1) \̃\M\(l2(e),M̂(l2(e))(r,M2(e)))
A if e ∈ initObs\A(E2) ∧Υ(T2, e) ∧

if e ∈ dom(M2)

S̃hift l(EE1) \̃\MA if e ∈ initτ (E2) ∧Υ(T2, e)

whenevere1 = ? ∧ e2 = e

EEp '


EE1〉e1〈‖̃A,MEE2〉e2〈 if M1(e1) 'M2(e2) ∧ ¬Υ(T1, e1) ∧ ¬Υ(T2, e2)

S̃hiftr(EE2〉e2〈) \̃\MA if M1(e1) = M2(e2) ∧Υ(T1, e1) ∧ ¬Υ(T2, e2)

S̃hift l(EE1〉e1〈) \̃\MA if M1(e1) = M2(e2) ∧Υ(T2, e2) ∧ ¬Υ(T1, e1)
(∅, ∅, ∅, ∅, {∅}, ∅) if Υ(T1, e1) ∧Υ(T2, e2)

wheneverl1(e1) = l2(e2) ∈ A (please note thatM1(e1) = M2(e2) ⇒ ei ∈ dom(Mi))

(EE \̃\MA)〉e〈 '


EE〉e〈 \̂\[l(e),l]·MA if l(e) /∈ A ∧ e /∈ dom(M)

EE〉e〈 \̂\M\(l(e),M̂(l(e))(l,M(e)))
A if l(e) /∈ A ∧ e ∈ dom(M)

EE〉e〈 \̂\MA if l(e) = τ

LetEEr = R̃ef
se

A,MA
(EE , θ, ~θ)〉(e,ê)〈 then

EEr '


R̃ef

se

A,[l(e),0]·MA
(EE〉e〈, θ, ~θ) if l(e) ∈ Obs ∧ ê = e ∧ e /∈ dom(M)

R̃ef
se

A,MA\(l(e), ̂MA(l(e))(0,M(e)))(EE〉e〈, θ, ~θ) if l(e) ∈ Obs ∧ ê = e

R̃ef
se

A,MA
(EE〉e〈, θ, ~θ) if l(e) = τ ∧ ê = e

wheneverl(e) /∈ A

EEr '


R̃ef

se

A,[lθ(l(e))(ê),(l(e),1)]·(MA�l(e))(EE〉e〈, θ, ~θ[l(e) → θ(l(e))〉ê〈 · ~θ(l(e))])
if lθ(l(e)) ∈ Obs

R̃ef
se

A,MA�l(e)(EE〉e〈, θ, ~θ[l(e) → θ(l(e))〉ê〈 · ~θ(l(e))]) if lθ(l(e)) = τ ∧ ¬Υ(Tθ(l(e)), ê)

R̃ef
se

A,MA
(EE〉e〈〉e〈, θ, ~θ) if lθ(l(e)) = τ ∧Υ(Tθ(l(e)), ê)

wheneverl(e) ∈ A ∧ e /∈ dom(M)

7.8. PROOFS 157

EEr '



R̃ef
se

A,[b,(l(e),M(e))]·MA
(EE , θ, ~θ[l(e) → ~θ(l(e))± (M(e), ~θ(l(e))〉ê〈)])

if b ∈ Obs ∧ ê /∈ dom(π2(~θ(l(e))[M(e)]))

R̃ef
se

A,MA\(b,M̂A(b)((l(e),M(e)),M′(ê)))(EE , θ, ~θ[l(e) → ~θ(l(e))± (M(e), ~θ(l(e))〉ê〈)])

if b ∈ Obs ∧M′ = π2(~θ(l(e))[M(e)]) ∧ ¬Υ(T~θ(l(e))[M(e)], ê) ∧ ê ∈ dom(M′)

R̃ef
se

A,MA
(EE , θ, ~θ[l(e) → ~θ(l(e))± (M(e), ~θ(l(e))〉ê〈)])

if b = τ ∧ ¬Υ(T~θ(l(e))[M(e)], ê)

R̃ef
se

A,(MA†(l(e),M(e)))\(b,M̂A(b)((l(e),M(e)),M′(ê))))(EE〉e〈, θ, ~θ[l(e) → ~θ(l(e))\M(e)])

if b ∈ Obs ∧M′ = π2(~θ(l(e))[M(e)]) ∧Υ(T~θ(l(e))[M(e)], ê) ∧ ê ∈ dom(M′)

R̃ef
se

A,(MA†(l(e),M(e)))(EE〉e〈, θ, ~θ[l(e) → ~θ(l(e))\M(e)])

if b = τ ∧Υ(T~θ(l(e))[M(e)], ê)

wheneverl(e) ∈ A ∧ lθ(l(e))(ê) = b ∧ e ∈ dom(M)

S̃hift i(EE)〉(?i,e)〈 ' S̃hift i(EE〉e〈) wheneveri ∈ {1, 2}

S̃hiftr(EE)〉(?,e)〈 ' S̃hiftr(EE〉e〈)

S̃hift l(EE)〉(e,?)〈 ' S̃hift l(EE〉e〈)

Proof: Can be straightforwardly checked by using Lemma 7.46. ut
The following lemma states that every transition of−→′ is matched by↪→c.

Lemma 7.48 SupposeG ∈ EXPO
se
′
anddecl : Var → EXPse. Then for allG′ ∈ EXPO

se
′
and

γ ∈ Lse we have

G
γ−→′
e decl G′ ⇒ ([[(decl, G)]]′

γ

↪→c [[(decl, G′)]]′ ∧ [[(decl, G′)]]′ = [[(decl, G)]]′〉e〈)

Proof: It follows by induction on the depth of inferences ofG
γ−→′
e decl G′, where Lemma 7.46

and Lemma 7.47 are used. Furthermore, in the case ofRec also Lemma 7.42 is applied. ut
Every started action can be immediately finished in−→′

decl:

Lemma 7.49 SupposeG, G′ ∈ EXPO
se
′
, decl : Var → EXPse, a ∈ Obs ande ∈ U . Then

G
a+−→′
e decl G′ ⇒ ∃G′′ : (G′ a−1−→′

e decl G′′ ∨G′ a−1
√

−→′
e decl G′′)

Proof: It follows straightforwardly by induction on the depths of inferences ofG
a+−→′
e decl G′

and is hence omitted. ut
The following lemma states that every transition of↪→c is matched by−→′.

Lemma 7.50 SupposeG ∈ EXPO
se
′
, decl : Var → EXPse, (E ,M) = [[(decl, G)]]′ and e ∈

init(E). Then there existsG′ ∈ EXPO
se
′
andγ ∈ Lse such that

G
γ−→′
e decl G′ ∧ γ ∈


{l(e)−M(e), l(e)

−
M(e)

√
} if l(e) ∈ Obs ∧ e ∈ dom(M)

{l(e)+} if l(e) ∈ Obs ∧ e /∈ dom(M)
{τ, τ

√
} if l(e) = τ

.

158 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Proof: First we show for anydecl : Var → EXPse:

∀n ∈ IN : ∀B ∈ EXPse : ∀E : (E = [[B]]Fn
decl(⊥) ∧ e ∈ init(E)) ⇒ ∃G′, γ :

(B
γ−→′
e decl G′ ∧ (l(e) = τ ⇒ γ ∈ {τ, τ

√
}) ∧ (l(e) ∈ Obs ⇒ γ = l(e)+))

(7.4)

This is done by induction onn combined with the structure ofB where the lexicographical
order is used. We only present caseB = x in detail: e ∈ init([[x]]Fn

decl(⊥)) implies thatn > 0.
Therefore,[[x]]Fn

decl(⊥) = Fn
decl(⊥)(x) = [[decl(x)]]Fn−1

decl (⊥). The rest follows by induction, since
n is reduced. In the case of the refinement operator, Lemma 7.49 is applied. Thus (7.4) is
established.

An immediate consequence of (7.4) is

∀B ∈ EXPse : ∀E : (E = [[〈decl, B〉]] ∧ e ∈ init(E)) ⇒ ∃G′, γ :

(B
γ−→′
e decl G′ ∧ (l(e) = τ ⇒ γ ∈ {τ, τ

√
}) ∧ (l(e) ∈ Obs ⇒ γ = l(e)+))

(7.5)

The main statement follows now by structural induction onG, where (7.5) is used. In the case
of the refinement operator, Lemma 7.49 is applied. ut

Now we are ready to obtain the second bisimulation result, which establishes Theorem 7.26.

Lemma 7.51 Let 〈decl, B〉 ∈ PAse, then the transition system(EXPO
se
′
,Lse, −→′′

decl, B) is
bisimilar to (SEBESM,Lse, ↪→c, [[(decl, B)]]′), where−→′′ is defined as in Lemma 7.41.

Proof: DefineR = {(G, [[(decl, G)]]′) | G ∈ EXPO
se
′}. Then(B, [[(decl, B)]]′) ∈ R by defini-

tion.

SupposeG1 ∈ EXPO
se
′
andG1

γ

−→′′ G2. ThenG1
γ−→′
e G2 for somee. Hence, by Lemma 7.48

we get[[(decl, G1)]]
′

γ

↪→c [[(decl, G2)]]
′, as required.

SupposeG1 ∈ EXPO
se
′
and[[(decl, G1)]]

′
γ

↪→c EE2. Then there ise ∈ init([[(decl, G1)]]
′) such that

EE2 = [[(decl, G1)]]
′
〉e〈 and[[(decl, G1)]]

′
γ

↪→c [[(decl, G1)]]
′
〉e〈. From Lemma 7.50 we get the ex-

istence ofG2 ∈ EXPO
se
′
andγ′ such thatG1

γ′−→′
e G2. Moreover,[[(decl, G1)]]

′
〉e〈 = [[(decl, G2)]]

′

andγ = γ′ by Lemma 7.48, which concludes the proof. ut

Final conclusions.

The only proof left is that of Theorem 7.23. Before we do this, we introduce the following
lemma, which shows a correspondence between↪→ and ↪→c.

Lemma 7.52 For all a ∈ Act, E1 ∈ SEBES and(E2,M2) ∈ SEBESM we have

(M2 = ⊥ ∧ E1

a(
√

)
↪→ E2) ⇔

 (E1,⊥)
a+

↪→c
a−1 (

√
)

↪→c (E2,M2) if a ∈ Obs

(E1,⊥)
τ(
√

)

↪→c (E2,M2) if a = τ

7.8. PROOFS 159

Proof: It can be easily checked, sinceE〈e〉[e] = E[e]. ut

Now we are ready to verify Theorem 7.23.

Proof of Theorem 7.23: From Lemma 7.41, Lemma 7.51 and from the transitivity of bisimilar-
ity it follows that(EXPO

se,Lse, −→c
decl, B) and(SEBESM,Lse, ↪→c, [[(decl, B)]]′) are bisimilar

(Theorem 7.26). Let̃R be such a corresponding bisimulation.
DefineR byR = {(C, E) ∈ EXPO

se×SEBES | (C, (E ,⊥)) ∈ R̃}. Then(B, [[〈decl, B〉]]) ∈ R
by definition.

Suppose(C1, E1) ∈ R and C1
a(
√

)→→ C2. We assume thata ∈ Obs (the case whena = τ

follows analogously). By definitionC1

a+

−→c
a−1 (

√
)

−→c C2. Then there is(E2,M2) such that

(E1,⊥)
a+

↪→c
a−1 (

√
)

↪→c (E2,M2) ∧ (C2, (E2,M2)) ∈ R̃. Thus,E1

a(
√

)
↪→ E2 ∧ (C2, (E2,⊥)) ∈ R̃

by Lemma 7.52.

Suppose(C1, E1) ∈ R andE1

a(
√

)
↪→ E2. We assume thata ∈ Obs (the case whena = τ follows

analogously). From Lemma 7.52 we obtain that(E1,⊥)
a+

↪→c
a−1 (

√
)

↪→c (E2,⊥). Then there isC2

such thatC1

a+

−→c
a−1 (

√
)

−→c C2 ∧ (C2, (E2,⊥)) ∈ R̃. Hence,C1
a(
√

)→→ C2 by definition. ut

7.8.2 Proof of the Congruence Results

Proof of Theorem 7.28: LetR be a bisimulation such that((E ,⊥), (E ′,⊥)) ∈ R and letRa

be bisimulations such that((θ(a),⊥), (θ′(a),⊥)) ∈ Ra. Then define

RRef = { (R̃ef
se

A,MA
(EE , θ, ~θ), R̃ef

se

A,MA
(EE ′, θ, ~θ′)) | (EE , EE ′) ∈ R ∧

∀a ∈ A : ∀i ∈ IN+ : (~θ(a)[i] is defined⇔ ~θ′(a)[i] is defined) ∧
∀a ∈ A : ∀i ∈ IN+ : (~θ(a)[i] is defined⇒ (~θ(a)[i], ~θ′(a)[i]) ∈ Ra)}

It is clear that(Ref se
A (E , θ),⊥) = R̃ef

se

A,MA
((E ,⊥), θ,⊥), and therefore we obtain the fact that

((Ref se
A (E , θ),⊥), (Ref se

A (E , θ),⊥)) ∈ RRef as required.

The verification thatRelRef is a bisimulation is a straightforward consequence of Lemma 7.46
and Lemma 7.47 and is omitted here.

The proof of the other operators is straightforward. ut

Proof of Theorem 7.29: The idea of this proof is the same as in Lemma 6.11:

DefineA ⊆ Act to be the set of all action-names occurring inE or in E ′, i.e. A = {l(e)|e ∈
E} ∪ {l′(e′)|e′ ∈ E ′}. Let µ : {1, 2} × A × IN → Act\A be an injective function. Such a
function exists. We define for alla ∈ A a sebesEa, which corresponds to the process algebra
termX = µ(1, a, 0); µ(2, a, 0)⊕X[f] wheref(µ(i, a, n)) = µ(i, a, n + 1) 2.

2Here we use a relabeling operator as defined in Section 5.2. An isomorphic event structure can also be derived
by the refinement operator.

160 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

In the following definition, sequences?n
2 ?1?i• are considered to be right bracketed and therefore

elements ofU .

Ea = ({ ?n
2 ?1 ?i • | n ∈ IN ∧ i ∈ {1, 2}},

∅,
{({?n

2 ?1 ?1• | n ∈ IN\{j}} ∪ {?j
2 ?1 ?i•}, ?j

2 ?1 ?i•) | j ∈ IN ∧ i ∈ {1, 2}},
{({?n

2 ?1 ?1•}, ?n
2 ?1 ?2•) | n ∈ IN},

{{?n
2 ?1 ?2• | n ∈ IN}},

{(?n
2 ?1 ?i•, µ(i, a, n)) | n ∈ IN ∧ i ∈ {1, 2}})

Defineθ′ : A → SEBES by θ′(a) = Ea. Furthermore, defineE (a,n) by

E (a,n) = ({?n
2 ?1 ?2•}, ∅, {({?n

2 ?1 ?2•}, ?n
2 ?1 ?2•)}, ∅, {{?n

2 ?1 ?2•}}, {(?n
2 ?1 ?2•, µ(2, a, n))})

Let Rb be a strong bisimulation such that(Ref se
A (E , θ′),Ref se

A (E ′, θ′)) ∈ Rb. Without loss of
generality,Rb contains only elements which can be derived fromRef se

A (E , θ′),Ref se
A (E ′, θ′).

Furthermore, letκ : U → IN be an isomorphism. We define the relationRST by

RST = { ((Ẽ ,M̃), (Ẽ ′,M̃′) | ∃ϑ̃, ϑ̃′ : ∃f : dom(M̃) → dom(M̃′) :
f is a labeling preserving isomorphisms∧
(∀e ∈ dom(M̃) : M̃(e) = M̃′(f(e))) ∧(
∀e ∈ Ẽ : ϑ̃(e) =

{
El̃(e) if e /∈ dom(M̃)

E (l̃(e),κ(f(e))) if e ∈ dom(M̃)

)
∧(

∀e′ ∈ Ẽ ′ : ϑ̃′(e′) =

{
El̃′(e′) if e′ /∈ dom(M̃′)

E (l̃′(e′),κ(e′)) if e′ ∈ dom(M̃′)

)
∧

(Ref se

A
(Ẽ , ϑ̃),Ref se

A
(Ẽ ′, ϑ̃′)) ∈ Rb }

Obviously,((E ,⊥), (E ′,⊥)) ∈ RST .

The verification thatRelRef is a bisimulation is straightforward, where Lemma 7.46 and Lemma
7.47 are used. ut

7.8.3 Proof of Theorem 7.34

It is only necessary to check the correctness of (7.1): From Lemma 7.33 we get that the transi-
tion systems obtained from〈decl, Hi〉 and〈decl, decl′(xi){(Hj/xj)

j∈{0,..,n}}〉 are bisimilar for
anyi ≤ n. Therefore, letRi be corresponding bisimulations. Without loss of generality, let ev-
eryRi be reflexive. In the following, we write(H, H ′) ∈ Ri instead of(〈decl, H〉, 〈decl, H ′〉) ∈
Ri. Define

R = {(〈decl, H〉, 〈decl′, xq〉) | q ≤ n ∧ ∃i, f : IN → {1, ..., n} : (H, Hq) ∈ Rf(1) ◦ · · · ◦Rf(i)}

Now we show thatR is a bisimulation. Therefore, let(〈decl, H〉, 〈decl′, xq〉) ∈ R such that
(H, Hq) ∈ R′ whereR′ = Rf(1) ◦ · · · ◦Rf(i). Then

(H, decl′(xq){(Hj/xj)
j∈{0,..,n}}) ∈ R′ ◦Rq, (7.6)

since(Hq, decl′(xq){(Hj/xj)
j∈{0,..,n}}) ∈ Rq.

7.8. PROOFS 161

xq

γ

−→z
decl′ H̃ ′: Then there ism ≤ n such thatH̃ ′ = xm since(decl′, {x0, ..., xn}) ∈ SeqG.

Thusdecl′(xq){(Hj/xj)
j∈{0,..,n}}

γ

−→z
decl Hm. SinceR′ ◦ Rq is a bisimulation, we obtain

from (7.6) the existence of̃H such thatH
γ

−→z
decl H̃ and (H̃,Hm) ∈ R′ ◦ Rq. Thus

(〈decl, H̃〉, 〈decl′, H̃ ′〉) ∈ R.

H
γ

−→z
decl H̃: SinceR′ ◦ Rq is a bisimulation we obtain from (7.6) the existence ofH̃ ′ such

that decl′(xq){(Hj/xj)
j∈{0,..,n}}

γ

−→z
decl H̃ ′ and (H̃, H̃ ′) ∈ R′ ◦ Rq. Thusxq

γ

−→z
decl′

xm∧H̃ ′ = Hm for somem ≤ n, sincedecl′ is sequential guarded with respect to{x0, ..., xn}.
Hence,(〈decl, H̃〉, 〈decl′, xm〉) ∈ R.

Furthermore,(〈decl, H0〉, 〈decl′, x0〉) ∈ R follows from the reflexivity ofR0, which establish
Theorem 7.34.

7.8.4 Proof of Theorem 7.39

The verification of the completeness is similar to [44], which uses the technique from [137, 139].
The verification of our completeness result differs a little bit from [44], since we do not split
the internal action, and termination is determined by the final action. More precisely, the above

conditions lead to rulesR6 andR′
6, where we have a transition (C ′ a−1 (

√
)

−→ C ′′) in which the
left process (C ′) is no subterm of the original process (C[φ, ϕ]MA

). Consequently, structural
induction can not be used to verify completeness.

For this reason, we introduce a weight function onPAGu
se , which is used for induction. Weight

function Λ counts an upper bound of the possible numbers of actions that can start when no
action finishes. This is done respectively for every action to guarantee the well-definedness of
the weight function for the refinement operators.Λ also counts the numbers of the reachable
variables (Λ(f)). FunctionΛc counts the reachable variables together with the upper bound of
the possible number of actions that can start when no action ends, i.e.Λc is the sum overΛ.

Definition 7.53 DefineΛ : PAGu
se → ((Obs ∪ {f}) →fin IN) as follows, where we do not

mentiondecl explicitly

Λ(H)(c) = 0 if H ∈ {0, τ, b−, b−q , b−q
√

; H ′, τ
√

; H ′}

Λ(b)(c) =

{
1 if c = b
0 otherwise

Λ(b+; H ′)(c) =

{
1 + Λ(H ′)(c) if c = b
Λ(H ′)(c) otherwise

Λ(H)(c) = Λ(H ′)(c) if H ∈ {H ′; H ′′, H ′\\MA}
Λ(H)(c) = Λ(H1)(c) + Λ(H1)(c) if H ∈ {H1 + H2, H1 b−H2, H1 b−−H2,

H1 ⊕M H2, H1 ⊕−
M H2, H1‖A,MH2,

H1‖−A,MH2, H1|A,MH2}

162 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Λ(H[(a → Ha)
a∈A, (a → ~Ha)

a∈Ã]MA
〉)(c) =

Λ(H)(c) + (
∑

a∈A Λ(H)(a) · Λ(Ha)(c)) +
∑

a∈Ã

∑
i≤| ~Ha| Λ(~Ha[i])(c)

Λ(H[(a → Ha)
a∈A, (a → H ′

a)
a∈A, (a → ~Ha)

a∈Ã]MA
H ′〉)(c) =

Λ(H)(c) + (
∑

a∈A Λ(H)(a) · Λ(Ha)(c) + Λ(H ′)(a) · Λ(H ′
a)(c))+

Λ(H ′)(c) +
∑

a∈Ã

∑
i≤| ~Ha| Λ(~Ha[i])(c)

Λ(x)(c) =

{
1 + Λ(decl(x))(c) if c = f
Λ(decl(x))(c) otherwise

Furthermore, defineΛc : PAGu
se → IN byΛc(H) =

∑
c∈Obs∪{f} Λ(H)(c).

Lemma 7.54 FunctionΛ is well defined and consequently functionΛc is also well defined.

Proof: We show that

∀(〈decl, H〉, V) ∈ VarSp : G((〈decl, H〉, V), Ṽ) ⇒ Λ(H) is well defined.

This is done by induction on|V \Ṽ | combined with the structure ofH where the lexicographic
order is used.

The rest is an immediate consequence of Lemma 7.37. ut
The nice property that the start of an action reduces the weight holds:

Lemma 7.55 Suppose〈decl, H〉 ∈ PAGu
se , a ∈ Obs andH

a+

−→z
decl H ′. Then

Λ(H)(a) > Λ(H ′)(a) ∧ ∀c ∈ (Obs ∪ {f}) : Λ(H)(c) ≥ Λ(H ′)(c)

and consequentlyΛc(H) > Λc(H ′).

Proof: This can be verified by induction on the depth of inference ofH
a+

−→z H ′. ut
Guardedness implies finitely branching:

Lemma 7.56 Suppose〈decl, H〉 ∈ PAGu
se thenH is finitely branching with respect to−→z.

Proof: It follows by induction onΛc(H) combined with the structure ofH where the lexico-
graphic order is used. In the case of rulesR6 andR′

6, we make use of Lemma 7.55. ut
It can be derived from our axioms that a process is equivalent to the choice of its branches. This
is illustrated by the following lemma, where

∑
H

γ
−→z

declH′ γ; H ′ is really an expression, i.e. it

has a finite choice, by Lemma 7.56.

Lemma 7.57 Suppose〈decl, H〉 ∈ PAGu
se , then

`decl H =
∑

H
γ

−→z
declH′

γ; H ′.

7.8. PROOFS 163

Proof: It follows by induction onΛc(H) combined with the structure ofH where the lexico-
graphic order is used. In the case of the refinement operator, we make use of Lemma 7.55.ut
As a consequence of the previous lemma, we can derive from our axioms that every guarded
and finite state process is equivalent to a sequentially guarded process.

Corollary 7.58 Suppose〈decl, H〉 ∈ PAGu
se is finite state, then there is(decl′, {x0, ..., xn}) ∈

SeqG such that̀ 〈decl, H0〉 = 〈decl′, x0〉.

Proof: There is only a finite number of different expressions reachable fromH by the transition
rules, since〈decl, H〉 is finite state. Let{H0, ..., Hn} be the set of expressions reachable from
H with H0 = H.

Definedecl′(xi) =
∑

Hi

γ
−→z

declHj

γ; xj, which is well defined since〈decl, H〉 is finitely branch-

ing by Lemma 7.56. It is easily seen that(decl′, {x0, ..., xn}) ∈ SeqG. Furthermore,̀ decl Hi =
decl′(xi){(Hj/xj)

j∈{0,..,n}} by Lemma 7.57. Thus̀ 〈decl, H0〉 = 〈decl′, x0〉 follows by rule
(7.1). ut
Our derivation system derives that two processes are equivalent whenever they are sequentially
guarded and ST-equivalent.

Lemma 7.59 Suppose(decl, {y0, ..., ym}), (decl′, {x0, ..., xn}) ∈ SeqG such that〈decl, y0〉 is
ST-equivalent to〈decl′, x0〉. Then there is(decl′′, Vz) ∈ SeqG such that|Vz| < |IN| and `
〈decl, y0〉 = 〈decl′′, z00〉 and` 〈decl′, x0〉 = 〈decl′′, z00〉 for somez00 ∈ Vz.

Proof: Let R ⊆ {y0, ..., ym} × {x0, ..., xn} be a bisimulation such that(y0, x0) ∈ R. Define
Vz = {zij | i ≤ n ∧ j ≤ m ∧ (xi, xj) ∈ R}. Let

decl′′(zij) =
∑

yi

γ
−→z

decl yk, xj

γ
−→z

decl′ xl, (yk,xl)∈R

γ; zkl.

Then(decl′′, Vz) ∈ SeqG. Furthermore,̀ decl yi = decl′′(zij){(decl(yk)/zkl)
k∈{0,..,m},l∈{0,..,n}}

for anyzij ∈ Vz, sinceR is a bisimulation. Thus̀ 〈decl, y0〉 = 〈decl′′, z00〉 by rule (7.1). With
symmetrical arguments we obtaiǹ〈decl′, x0〉 = 〈decl′′, z00〉. ut
Now, we are ready to show the completeness result for guarded and finite state processes.

Proof of Theorem 7.39: It is an immediate consequence of Corollary 7.58, Lemma 7.59 and
Theorem 7.34. ut

164 CHAPTER 7. START-BASED TOGETHER WITH END-BASED CHOICE

Chapter 8

Conclusion

In this thesis, we motivated the approach that considers a choice operator as end-based triggered,
in particular in the context of action refinement. We established the end-based choice operator
by investigating a process algebra, which contains an end-based choice and an action refine-
ment operator, and by developing a denotational, an operational and an axiomatical semantics
for this process algebra. We showed that these semantics are consistent. More precisely, the
operational and the denotational semantics are bisimilar, and the axiomatical semantics is sound
and complete (for guarded and finite state processes) with respect to the bisimulation equiva-
lence obtained from the operational (denotational) semantics.

We had to investigate a new technique (approximation closedness) to restrict event structures
that are based on the bundle technique in order to obtain a complete partial order. Furthermore,
we used a new technique to show the bisimilarity between the operational and the denotational
semantics. This new technique can handle unguarded recursion.

We also investigated new equivalences in the extended bundle event structures setting. These
new equivalences are congruences for the action refinement operator that considers the con-
flict relation in extended bundle event structures to be end-based triggered. The valid relations
between the trace equivalence, the bisimulation equivalence and these new equivalences are
summarized in Figure 8.1 (if two equivalences are connected via a line, then the lower one
identifies more elements than the upper one).

We pointed out that extended bundle event structures are not appropriate to model the end-based
view, since the intuitive congruence equivalences fail to be the coarsest for the end-based action

∼UI

∼FUI

∼ICT ∼b

∼t

@
@

�
�

@
@

�
�

Figure 8.1: Relations Between the Equivalences

165

166 CHAPTER 8. CONCLUSION

prime bundle

extended bundle

flow stable

dual
ETBES/
ETPES

������

HHH
HH

PPPPPP

��
���

Figure 8.2: Hierarchy of Event Structures

refinement operator with respect to trace (respectively bisimulation) equivalence. Therefore,
we investigated new event structures, namely extended termination bundle and extended ter-
mination precursor event structures, which have more general disabling relations. These event
structures were examined in the context of a process algebra that contains a disrupt operator.
The expressive power with respect to the set of event traces, describable by the classes of event
structures, was examined. The hierarchy of this expressive power is depicted in Figure 8.2,
where prime event structures can describe less set of event traces than the other event struc-
tures. The ICT-equivalence is the coarsest equivalence with respect to trace equivalence, and
the FUI-equivalence is the coarsest equivalence with respect to bisimulation equivalence for the
end-based action refinement operator in the extended termination event structures setting.

We introduced a choice operator where one side triggers the choice by ending actions and the
other side triggers the choice by starting actions. Furthermore, we argued that it is useful to
have this kind of choice as well as a start-based and an end-based choice in a single setting.

In the context of a process algebra with a start-based choice, we investigated a new technique of
defining an operational semantics. This technique can handle action refinement and disruption
in a reasonable way. Moreover, it is not necessary to introduce new syntactic terms in order to
give the operational semantics.

Bibliography

[1] Samson Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editors.Handbook of Logic
in Computer Science, volume 2. Oxford University Press, 1992.

[2] Samson Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, editors.Handbook of Logic
in Computer Science, volume 4. Oxford University Press, 1995.

[3] Samson Abramsky and Achim Jung. Domain theory. In Samson Abramsky, Dov M. Gab-
bay, and T. S. E. Maibaum, editors,Handbook of Logic in Computer Science, volume 3,
pages 1–168. Clarendon Press, 1994.

[4] L. Aceto and M. Hennessy. Termination, deadlock, and divergence.Journal of the ACM,
39:147–187, 1992.

[5] L. Aceto and M. Hennessy. Towards action-refinement in process algebras.Information
and Computation, 103:204–269, 1993.

[6] L. Aceto and M. Hennessy. Adding action refinement to a finite process algebra.Infor-
mation and Computation, 115:179–247, 1994.

[7] Luca Aceto.Action refinement in process algebras. Cambridge University Press, 1992.

[8] Luca Aceto. On “Axiomatising Finite Concurrent Processes”.SIAM Journal on Com-
puting, 23:852–863, 1994.

[9] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics. In
Bergstra et al. [27], pages 197–292.

[10] Luca Aceto and David Murphy. Timing and causality in process algebra.Acta Informat-
ica, 33:317–350, 1996.

[11] Marco Ajmone Marsan, Andrea Bianco, Luigi Ciminiera, Riccardo Sisto, and Adriano
Valenzano. A LOTOS extension for the performance analysis of distributed systems.
IEEE/ACM Transactions on Networking, 2:151–165, 1994.

[12] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of generalized
stochastic petri nets for the performance evaluation of multiprocessor systems.ACM
Transactions on Computer Systems, 2:93–122, 1984.

[13] Egidio Astesiano and Gianna Reggio. Formalism and method. In M. Bidoit and
M. Dauchet, editors,TAPSOFT ’97: Theory and Practice of Software Development, vol-
ume 1214 ofLNCS, pages 93–114. Springer-Verlag, 1997.

167

168 BIBLIOGRAPHY

[14] J. C. M. Baeten and J. A. Bergstra. Mode transfer in process algebra. Report CSR 00-01,
Vakgroep Informatica, Technische Universiteit Eindhoven, 2000.

[15] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining equations for an
interrupt mechanism in process algebra.Fundamenta Informaticae, 9:127–168, 1986.

[16] J. C. M. Baeten and J. W. Klop, editors.CONCUR ’90, volume 458 ofLNCS. Springer-
Verlag, 1990.

[17] J. C. M. Baeten and C. A. Middelburg. Process algebra with timing: Real time and
discrete time. In Bergstra et al. [27], pages 627–684.

[18] J. C. M. Baeten and C. Verhoef. Concrete process algebra. In Abramsky et al. [2], pages
149–268.

[19] Christel Baier and Mila Majster-Cederbaum. How to interpret and establish consistency
results for semantics of concurrent programming languages.Fundamenta Informaticae,
29:225–256, 1997.

[20] Christel Baier and Mila E. Majster-Cederbaum. The connection between an event struc-
ture semantics and an operational semantics for TCSP.Acta Informatica, 31:81–104,
1994.

[21] Christel Baier and Mila E. Majster-Cederbaum. Denotational semantics in the cpo and
metric approach.Theoretical Computer Science, 135:171–220, 1994.

[22] H. P. Barendregt. Lambda calculi with types. In Abramsky et al. [1], pages 117–309.

[23] Marek A. Bednarczyk. Hereditary history preserving bisimulation or what is the power
of the future perfect in program logics. Technical report, Institute of Computer Science,
Polish Academy of Science, 1991.

[24] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, L. Petrucci, Ch. Schnoebelen, and
P. McKenzie.System and Software Verification. Springer, 2001.

[25] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.Infor-
mation and Control, 60:109–137, 1984.

[26] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37:77–121, 1985.

[27] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors.Handbook of Process Algebra.
North-Holland, 2001.

[28] Jan A. Bergstra, Wan Fokkink, and Alban Ponse. Process algebra with recursive opera-
tions. In Bergstra et al. [27], pages 333–389.

[29] Marco Bernardo and Roberto Gorrieri. A tutorial on EMPA: A theory of concurrent
processes with nondeterminism, priorities, probabilities and time.Theoretical Computer
Science, 202:1–54, 1998.

[30] E. Best, editor.CONCUR ’93, volume 715 ofLNCS. Springer-Verlag, 1993.

BIBLIOGRAPHY 169

[31] Eike Best, Raymond Devillers, and Javier Esparza. General refinement and recursion
operators for the perti box calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors,
STACS 93, volume 665 ofLNCS, pages 130–140. Springer-Verlag, 1993.

[32] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

[33] G. Boudol and I. Castellani. On the semantics of concurrency: Partial orders and transi-
tion systems. In H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, editors,TAPSOFT ’87
(Volume 1), volume 249 ofLNCS, pages 123–137. Springer-Verlag, 1987.

[34] Gérard Boudol. Atomic actions.Bulletin of the European Association for Theoretical
Computer Science, 38:136–144, 1989.

[35] Gérard Boudol. Flow event structures and flow nets. In I. Guessarian, editor,Semantics of
Systems of Concurrent Processes, volume 469 ofLNCS, pages 62–95. Springer-Verlag,
1990.

[36] Gérard Boudol and Ilaria Castellani. Permutation of transitions: an event structure se-
mantics for CCS and SCCS. In de Bakker et al. [66], pages 411–427.

[37] Gérard Boudol and Ilaria Castellani. Flow models of distributed computations: event
structures and nets. Report 1482, INRIA, 1991.

[38] Gérard Boudol and Ilaria Castellani. Flow models of distributed computations: Three
equivalent semantics for CCS.Information and Computation, 114:247–314, 1994.

[39] Howard Bowman and John Derrick. Extending LOTOS with time: A true concurrency
perspective. In M. Bertran and T. Rus, editors,Transformation - Based Reactive Systems
Development, volume 1231 ofLNCS, pages 383–399. Springer-Verlag, 1997.

[40] Howard Bowman and Joost-Pieter Katoen. A true concurrency semantics for ET-LOTOS.
In Applications of Concurrency to System Design, pages 228–239. IEEE Computer So-
ciety Press, 1998.

[41] W. Brauer, W. Reisig, and G. Rozenberg, editors.Petri Nets: Applications and Relation-
ship to Other Models of Concurrency, Advances in Petri Nets 1986, Part II, volume 255
of LNCS. Springer-Verlag, 1987.

[42] Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour and equivalence
preserving refinements of Petri nets. In G. Rozenberg, editor,Advances in Petri Nets,
volume 483 ofLNCS, pages 1–46. Springer-Verlag, 1991.

[43] Mario Bravetti and Marco Bernardo. Compositional asymmetric cooperations for process
algebras with probabilities, priorities, and time. In Flavio Corradini and Paola Inverardi,
editors,MTCS 2000, volume 39 ofElectronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 2000.

[44] Mario Bravetti and Robert Gorrieri. Deciding and axiomatizing weak ST bisimulation
for a process algebra with recursion and action refinement.ACMTCL: ACM Transactions
on Computational Logic, 3, 2002.

170 BIBLIOGRAPHY

[45] Ed Brinksma, Joost-Peter Katoen, Rom Langerak, and Diego Latella. A stochastic
causality-based process algebra.The Computer Journal, 38(7):552–565, 1995.

[46] Ed Brinksma, Joost-Peter Katoen, Rom Langerak, and Diego Latella. Partial order
models for quantitative extensions of LOTOS.Computer Networks and ISDN Systems,
30:925–950, 1998.

[47] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes.Journal of the ACM, 31(3):560–599, 1984.

[48] Manfred Broy and Ernst-R̈udiger Olderog. Trace-oriented models of concurrency. In
Bergstra et al. [27], pages 101–196.

[49] Nadia Busi, Rob van Glabbeek, and Roberto Gorrieri. Axiomatising ST bisimulation
equivalence. In E.-R. Olderog, editor,Proceedings IFIP Working Conference on Pro-
gramming Concepts, Methods and Calculi, pages 169–188. Elsevier Science, 1994.

[50] Juanito Camilleri and Glynn Winskel. CCS with priority choice.Information and Com-
putation, 116:26–37, 1995.

[51] Edmund M. Clarke, Jeanette M. Wing, et al. Formal methods: State of the art and future
directions.ACM Computing Surveys, 28:626–643, 1996.

[52] Edmund M., Jr. Clarke, Orna Grumberg, and Doron A. Peled.Model Checking. MIT
Press, 1999.

[53] Rance Cleaveland, Gerald Lüttgen, and V. Natarajan. A process algebra with distributed
priorities. Theoretical Computer Science, 195:227–258, 1998.

[54] Rance Cleaveland, Gerald Lüttgen, and V. Natarajan. Priority in process algebra. In
Bergstra et al. [27], pages 711–765.

[55] Rance Cleaveland, Scott A. Smolka, et al. Strategic directions in concurrency research.
ACM Computing Surveys, 28:607–625, 1996.

[56] W. R. Cleaveland, editor.CONCUR ’92, volume 630 ofLNCS. Springer-Verlag, 1992.

[57] Flavio Corradini. Absolute versus relative time in process algebras.Information and
Computation, 156:122–172, 2000.

[58] Flavio Corradini, Rocco De Nicola, and Anna Labella. Graded modalities and resource
bisimulation. In C. Pandu Rangan, V. Raman, and R. Ramanujam, editors,FSTTCS’99,
volume 1738 ofLNCS, pages 381–393. Springer-Verlag, 1999.

[59] Flavio Corradini, Rocco De Nicola, and Anna Labella. Models of nondeterministic reg-
ular expressions.Journal of Computer and System Sciences, 59:412–449, 1999.

[60] Ingo Czaja, Rob van Glabbeek, and Ursula Goltz. Interleaving semantics and action
refinement with atomic choice. In G. Rozenberg, editor,Advances in Petri Nets, volume
609 ofLNCS, pages 89–107. Springer-Verlag, 1992.

BIBLIOGRAPHY 171

[61] Ph. Darondeau and P. Degano. Causal trees. In G. Ausiello, M. Dezani-Ciancaglini, and
S. Ronchi Della Roccha, editors,Automata, Languages and Programming, volume 372
of LNCS, pages 234–248. Springer-Verlag, 1989.

[62] Philippe Darondeau and Pierpaolo Degano. About semantic action refinement.Funda-
menta Informaticae, 14:221–234, 1991.

[63] Philippe Darondeau and Pierpaolo Degano. Refinement of actions in event structures and
causal trees.Theoretical Computer Science, 118:21–48, 1993.

[64] J. W. de Bakker and E. P. de Vink. Bisimulation semantics for concurrency with atomicity
and action refinement.Fundamenta Informaticae, 20:3–34, 1994.

[65] J. W. de Bakker and J. I. Zucker. Processes and the denotational semantics of concur-
rency. Information and Control, 54:70–120, 1982.

[66] J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors.Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, volume 354 ofLNCS.
Springer-Verlag, 1989.

[67] P. Degano, R. De Nicola, and U. Montanari. Observational equivalences for concurrency
models. In M. Wirsing, editor,Formal Description of Programming Concepts – III,
Proceedings of the3th IFIP WG 2.2 working conference,Ebberup 1986, pages 105–129.
North-Holland, 1987.

[68] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. On the consistency of “truly
concurrent” operational and denotational semantics (extended abstract). InProceedings
of the 3rd Annual IEEE Symposium on Logic in Computer Science, pages 133–141. IEEE
Computer Society Press, 1988.

[69] Pierpaolo Degano and Roberto Gorrieri. Atomic refinement in process description lan-
guages. In Tarlecki [168], pages 121–130.

[70] Pierpaolo Degano and Roberto Gorrieri. A causal operational semantics of action refine-
ment. Information and Computation, 122:97–119, 1995.

[71] John Derrick, Eerke Boiten, Jim Woodcock, and Joakim von Wright, editors.REFINE
2002, volume 70 ofElectronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 2002.

[72] Raymond Devillers. Maximality preserving bisimulation.Theoretical Computer Science,
102:165–183, 1992.

[73] B. Diertens. New features in PSF I – interrupts, disrupts, and priorities. Report P9417,
Programming Research Group - University of Amsterdam, 1994.

[74] J. Dugundji.Topology. Allyn and Bacon, Boston, Mass., 1966.

[75] A. Engels and Th. Cobben. Interrupt and disrupt in MSC: Possibilities and problems. In
Y. Lahav, A. Wolisz, J. Fischer, and E. Holz, editors,Proceedings fo the 1st Workshop of
the SDL Forum Society on SDL and MSC, number 104 in Informatikberichte. Humboldt-
Universitt zu Berlin, 1998.

172 BIBLIOGRAPHY

[76] Harald Fecher. Denotational semantics of untyped object-based programming languages.
Master’s thesis, Technische Universität Darmstadt, 1999.

[77] Harald Fecher. A real-time process algebra with open intervals and maximal progress.
Nordic Journal of Computing, 8:346–365, 2001.

[78] Harald Fecher and Mila Majster-Cederbaum. Taking decisions late: End-based choice
combined with action refinement. In Derrick et al. [71].

[79] Harald Fecher, Mila Majster-Cederbaum, and Jinzhao Wu. Action refinement for proba-
bilistic processes with true concurrency models. In H. Hermanns and R. Segala, editors,
PAPM-PROBMIV 2002. Performance Modeling and Verification, volume 2399 ofLNCS,
pages 77–94. Springer-Verlag, 2001.

[80] Harald Fecher, Mila Majster-Cederbaum, and Jinzhao Wu. Bundle event structures: A
revised cpo approach.Information Processing Letters, 83:7–12, 2002.

[81] Harald Fecher, Mila Majster-Cederbaum, and Jinzhao Wu. Refinement of actions in a
real-time process algebra with a true concurrency model. In Derrick et al. [71].

[82] Miguel Felder, Angelo Gargantini, and Angelo Morzenti. A theory of implementation
and refinement in timed Petri nets.Theoretical Computer Science, 202:127–161, 1998.

[83] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,Mathe-
matical Aspects of Computer Science, volume 19 ofProceedings of Symposia in Applied
Mathematics, pages 19–32. American Mathematical Society, 1967.

[84] Wan Fokkink.Introduction to Process Algebra. Springer-Verlag, 2000.

[85] R. J. van Glabbeek. The refinement theorem for ST-bisimulation semantics. In M. Broy
and C.B. Jones, editors, Proceedings IFIP TC2 Working Conference onProgramming
Concepts and Methods,Sea of Gallilee, Israel, April 1990, pages 27–52. North Holland,
1990.

[86] R. J. van Glabbeek. The linear time–branching time spectrum I. the semantics of con-
crete, sequential processes. In Bergstra et al. [27], pages 3–99.

[87] R. J. van Glabbeek and G. D. Plotkin. Configuration structures. InProceedings of the
10th Annual IEEE Symposium on Logic in Computer Science, pages 199–209. IEEE
Computer Society Press, 1995.

[88] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, generative and
stratified models of probabilistic processes.Information and Computation, 121:59–80,
1995.

[89] Rob van Glabbeek. The linear time–branching time spectrum II: The semantics of se-
quential systems with silent moves (extended abstract). In Best [30], pages 66–81.

[90] Rob van Glabbeek and Ursula Goltz. Refinement of actions in causality based models.
In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,Stepwise Refinement
of Distributed Systems. Models, Formalisms, Correctness, volume 430 ofLNCS, pages
267–300. Springer-Verlag, 1990.

BIBLIOGRAPHY 173

[91] Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for
concurrent systems.Acta Informatica, 37:229–327, 2001.

[92] Rob van Glabbeek and Frits Vaandrager. Petri net models for algebraic theories of con-
currency. In J.W. de Bakker, A.J. Nijman, and P.C. Treleaven, editors,PARLE, Parallel
Architectures and Languages Europe (Volume II), volume 259 ofLNCS, pages 224–242.
Springer-Verlag, 1987.

[93] Ursula Goltz, Roberto Gorrieri, and Arend Rensink. Comparing syntactic and semantic
action refinement.Information and Computation, 125:118–143, 1996.

[94] Roberto Gorrieri. A hierarchy of system descriptions via atomic linear refinement.Fun-
damenta Informaticae, 16:289–336, 1992.

[95] Roberto Gorrieri and Cosimo Laneve. The limit of splitn-bisimulations for CCS agents.
In Tarlecki [168], pages 170–180.

[96] Roberto Gorrieri and Cosimo Laneve. Split and ST bisimulation semantics.Information
and Computation, 118:272–288, 1995.

[97] Roberto Gorrieri, Sergio Marchetti, and Ugo Montanari. A2CCS: Atomic actions for
CCS.Theoretical Computer Science, 72:203–223, 1990.

[98] Roberto Gorrieri and Arend Rensink. Action refinement. In Bergstra et al. [27], pages
1047–1147.

[99] Roberto Gorrieri, Marco Roccetti, and Enrico Stancampiano. A theory of processes with
durational actions.Theoretical Computer Science, 140:73–94, 1995.

[100] Michael R. Hansen and Chaochen Zhou. Duration calculus: Logical foundations.Formal
Aspects of Computing, 9:283 – 330, 1997.

[101] Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, Myla Archer, and Ramesh Bharad-
waj. Using abstraction and model checking to detect safety violations in requirements
specifications.IEEE Transactions on Software Engineering, 24(11):927–948, 1998.

[102] Matthew Hennessy. Concurrent testing of processes.Acta Informatica, 32:509–543,
1995.

[103] Matthew Hennessy and Tim Regan. A process algebra for timed systems.Information
and Computation, 117:221–239, 1995.

[104] Holger Hermanns and Michael Rettelbach. Syntax, semantics, equivalences, and ax-
ioms for MTIPP. In U. Herzog and M. Rettelbach, editors,Proceedings of the 2nd Int.
Workshop on Process Algebra and Performance Modelling (PAPM’94), 1994.

[105] C. A. R. Hoare. An axiomatic basis of computer programming.Communications of the
ACM, 12:576–580, 1969.

[106] C. A. R. Hoare. Communicating sequential processes.Communications of the ACM,
21(8):666–677, 1978.

174 BIBLIOGRAPHY

[107] C. A. R. Hoare. A model for communicating sequential processes. In R. M. McKeag
and A. M. Macnaghten, editors,On the Construction of Programs. Cambridge University
Press, 1980.

[108] C. A. R. Hoare.Communications Sequential Processes. International Series in Computer
Science. Prentice Hall, 1985.

[109] C. A. R. Hoare. Theories of programming: Top-down and bottom-up and meeting in the
middle. In J.M. Wing, J. Woodcock, and J. Davies, editors,FM’99 – Formal Methods
(Volume I), volume 1708 ofLNCS, pages 1–27. Springer-Verlag, 1999.

[110] John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[111] Michaela Huhn. Action refinement and property inheritance in systems of sequential
agents. In U. Montanari and V. Sassone, editors,CONCUR ’96: Concurrency Theory,
volume 1119 ofLNCS, pages 639–654. Springer-Verlag, 1996.

[112] Pankaj Jalote and Robert H. Campbell. Atomic actions in concurrent systems. InPro-
ceedings of the 5th International Conference on Distributed Computing Systems, pages
184–191, Denver, Colorado, May 1985. IEEE Computer Society.

[113] Wil Janssen, Mannes Poel, and Job Zwiers. Action systems and action refinement in
the development of parallel systems. In J. C. M. Baeten and J. F. Groote, editors,CON-
CUR ’91, volume 527 ofLNCS, pages 298–316. Springer-Verlag, 1991.

[114] Lalita Jategaonkar and Albert Meyer. Testing equivalence for Petri nets with action re-
finement. In Cleaveland [56], pages 17–31.

[115] Bengt Jonsson, Wang Yi, and Kim G. Larsen. Probabilistic extensions pf process alge-
bras. In Bergstra et al. [27], pages 685–710.

[116] Joost-Pieter Katoen.Quantitative and Qualitative Extension of Event Structures. PhD
thesis, Enschede: Centre for Telematics and Information Technology, P.O. Box 217 -
7500 AE Enschede - The Netherlands, 1996.

[117] Joost-Pieter Katoen, Christel Baier, and Diego Latella. Metric semantics for true concur-
rent real time.Theoretical Computer Science, 254:501–541, 2001.

[118] Joost-Pieter Katoen, Ed Brinksma, Diego Latella, and Rom Langerak. Stochastic simu-
lation of event structures. In Ribaudo [160], pages 21–49.

[119] Joost-Pieter Katoen, Rom Langerak, and Diego Latella. Modelling systems by proba-
bilistic process algebra: an event structures approach. In R. L. Tenney et al., editors,
Formal Description Techniques, VI, pages 253–268. Elsevier, 1994.

[120] Joost-Pieter Katoen, Rom Langerak, Diego Latella, and Ed Brinksma. On specifying
real-time systems in a causality-based setting. In B. Jonsson and J. Parrow, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume 1135 ofLNCS,
pages 385–404. Springer-Verlag, 1996.

BIBLIOGRAPHY 175

[121] Robert M. Keller. Formal verification of parallel programs.Communications of the ACM,
19:371–384, 1976.

[122] Maciej Koutny and Eike Best. Operational and denotational semantics for the box alge-
bra. Theoretical Computer Science, 211:1–83, 1999.

[123] Dexter Kozen. Results on the propositional mu -calculus.Theoretical Computer Science,
27:333–354, 1983.

[124] Leslie Lamport. The temporal logic of actions.ACM Transactions on Programming
Languages and Systems, 16:872–923, 1994.

[125] Rom Langerak.Transformations and Semantics for LOTOS. PhD thesis, Department of
Computer Science, University of Twente, 1992.

[126] Rom Langerak. Bundle event structures: A non-interleaving semantics for LOTOS. In
M. Diaz and R. Groz, editors,Formal Description Techniques, V, pages 331–346. Else-
vier, 1993.

[127] Rom Langerak, Ed Brinksma, and Joost-Pieter Katoen. Causal ambiguity and partial
orders in event structures. In A. Mazurkiewicz and J. Winkowski, editors,CONCUR ’97:
Concurrency Theory, volume 1243 ofLNCS, pages 317–331. Springer-Verlag, 1997.

[128] Luc Léonard and Guy Leduc. An introduction to ET-LOTOS for the description of time-
sensitive systems.Computer Networks and ISDN Systems, 29:271–292, 1997.

[129] Gavin Lowe. Probabilistic and prioritized models of timed CSP.Theoretical Computer
Science, 138:315–352, 1995.

[130] M. Majster-Cederbaum, F. Salger, and M. Sorea. A priori verification of reactive sys-
tems. In Tommaso Bolognesi and Diego Latella, editors,Formal Methods for Distributed
System Development (Proc. FORTE/PSTV 2000), pages 35–50. Kluwer Academic Pub-
lishers, 2000.

[131] Mila Majster-Cederbaum and Markus Roggenbach. Transition systems from event struc-
tures revisited.Information Processing Letters, 67:119–124, 1998.

[132] Mila Majster-Cederbaum and Frank Salger. Correctness by construction: Towards ver-
ification in hierarchical system development. In K. Havelund, J. Penix, and W. Visser,
editors,SPIN Model Checking and Software Verification, volume 1885 ofLNCS, pages
163–180. Springer-Verlag, 2000.

[133] Mila Majster-Cederbaum and Jinzhao Wu. Action refinement for true concurrent real-
time. InProc. 7th IEEE int. Conf. on Engineering of Complex Computer Systems, pages
58–68. IEEE Computer Sciety Press, 2001.

[134] Mila Majster-Cederbaum, Naijun Zhan, and Harald Fecher. Action refinement from a
logical point of view. In L. Zuck, P. Attie, A. Cortesi, and S. Mukhopadhyay, editors,
VMCAI 2003, volume 2575 ofLNCS, pages 253–267. Springer-Verlag, 2003.

176 BIBLIOGRAPHY

[135] F. Erich Marschner. Practical challenges for industrial formal verification tools. In
O. Grumberg, editor,Computer Aided Verification, volume 1254 ofLNCS, pages 1–2.
Springer-Verlag, 1997.

[136] Robin Milner. Calculi for synchrony and asynchrony.Theoretical Computer Science,
25:267–310, 1983.

[137] Robin Milner. A complete inference system for a class of regular behaviors.Journal of
Computer and System Sciences, 28:439–466, 1984.

[138] Robin Milner. Communication and Concurrency. International Series in Computer Sci-
ence. Prentice Hall, 1989.

[139] Robin Milner. A complete axiomatisation for observational congruence of finite-state
behaviors.Information and Computation, 81:227–247, 1989.

[140] Ugo Montanari and Marco Pistore. Minimal transition systems for history-preserving
bisimulation. In R. Reischuk and M. Morvan, editors,STACS 97, volume 1200 ofLNCS,
pages 413–425. Springer-Verlag, 1997.

[141] David Murphy. Time and duration in noninterleaving concurrency.Fundamenta Infor-
maticae, 19:403–416, 1993.

[142] Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process al-
gebras. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors,
Real-Time: Theory in Practice, volume 600 ofLNCS, pages 526–548. Springer-Verlag,
1992.

[143] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, ATP: Theory and
application.Information and Computation, 114:131–178, 1994.

[144] Mogens Nielsen, Uffe Engberg, and Kim S. Larsen. Fully abstract models for a process
language with refinement. In de Bakker et al. [66], pages 523–548.

[145] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures and
domains, part I.Theoretical Computer Science, 13:85–108, 1981.

[146] E.-R. Olderog, editor.Programming Concepts, Methods and Calculi, Proceedings of
the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming Concepts,
Methods and Calculi (PROCOMET ’94), volume A–56 ofIFIP Transactions, 1994.

[147] C.-H. L. Ong. Correspondence between operational and denotational semantics: the full
abstraction problem for PCF. In Abramsky et al. [2], pages 269–356.

[148] Doron A. Peled.Software Reliability Methods. Springer, 2001.

[149] G. D. Plotkin. LCF considered as a programming language.Theoretical Computer
Science, 5:223–255, 1977.

[150] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark, 1981.

BIBLIOGRAPHY 177

[151] A. Pnueli. System specification and refinement in temporal logic. In R. Shyamasundar,
editor,Foundations of Software Technology and Theoretical Computer Science, volume
652 ofLNCS, pages 1–38. Springer-Verlag, 1992.

[152] Lucia Pomello. Some Equivalence Notions for Concurrent Systems. An Overview. In
G. Rozenberg, editor,Advances in Petri Nets 1985, volume 222 ofLNCS, pages 381–400.
Springer-Verlag, 1986.

[153] Vaughan Pratt. Modeling concurrency with partial orders.International Journal of Par-
allel Programming, 15:33–71, 1986.

[154] M. O. Rabin and D. Scott. Finite automata and their decision problems.IBM Journal of
Research and Development, 3:114–125, 1959.

[155] W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1985.

[156] Arend Rensink. Methodological aspects of action refinement. In Olderog [146], pages
227–246.

[157] Arend Rensink. An event-based SOS for a language with refinement. InStructures in
Concurrency Theory, Workshops in Computing, pages 294–309, 1995.

[158] Arend Rensink and Roberto Gorrieri. Vertical implementation.Information and Compu-
tation, 170:95–133, 2001.

[159] Arend Rensink and Heike Wehrheim. Process algebra with action dependencies.Acta
Informatica, 38:155–234, 2001.

[160] M. Ribaudo, editor.Proceedings of the Fourth Process Algebra and Performance Mod-
elling Workshop (PAPM’96), 1996.

[161] John Rushby. Formal methods and their role in the certification of critical systems.
Technical Report SRI-CSL-95-1, Computer Science Laboratory, SRI International, 1995.
Also available as NASA Contractor Report 4673, August 1995, and to be issued as part
of theFAA Digital Systems Validation Handbook(the guide for aircraft certification).

[162] Frank Salger.Verification in the Hierarchical Development of Reactive Systems. PhD
thesis, Universiẗat Mannheim, 2001.

[163] D. Sangiorgi and R. de Simone, editors.CONCUR ’98: Concurrency Theory, volume
1466 ofLNCS. Springer-Verlag, 1998.

[164] Steve Schneider.Concurrent and Real-time Systems: The CSP Approach. Wiley, 2000.

[165] Karen Seidel. Probabilistic communicating processes.Theoretical Computer Science,
152:219–249, 1995.

[166] Susan Stepney, David Cooper, and Jim Woodcock. More powerful data refinement in Z:
pushing the state of the art in industrial refinement. In J.P. Bowen, A. Fett, and M.G.
Hinchey, editors,ZUM’98: The Z Formal Specification Notation, volume 1493 ofLNCS,
pages 284–307. Springer-Verlag, 1998.

178 BIBLIOGRAPHY

[167] Colin Stirling. Modal and temporal logics. In Abramsky et al. [1], pages 477–563.

[168] A. Tarlecki, editor. Mathematical Foundations of Computer Science, volume 520 of
LNCS. Springer-Verlag, 1991.

[169] Wolfgang Thomas. Logic for computer science: The engineering challenge. In R. Wil-
helm, editor,Informatics. 10 Years Back. 10 Years Ahead, volume 2000 ofLNCS, pages
257–267. Springer-Verlag, 2001.

[170] Simone Veglioni and Rocco De Nicola. Possible worlds for process algebras. In San-
giorgi and de Simone [163], pages 179–193.

[171] C. Verhoef. A congruence theorem for structured operational semantics with predicates
and negative premises. In B. Jonsson and J. Parrow, editors,CONCUR ’94: Concurrency
Theory, volume 836 ofLNCS, pages 433–448. Springer-Verlag, 1994.

[172] Walter Vogler. Failures semantics based on interval semiwords is a congruence for re-
finement.Distributed Computing, 4:139–162, 1991.

[173] Walter Vogler. Bisimulation and action refinement.Theoretical Computer Science,
114:173–200, 1993.

[174] Walter Vogler. Timed testing of concurrent systems.Information and Computation,
121:149–171, 1995.

[175] Y. Wang. Real-time behaviour of asynchronous agents. In Baeten and Klop [16], pages
502–520.

[176] Heike Wehrheim. Parametric action refinement. In Olderog [146], pages 247–266.

[177] Glynn Winskel. Event structures. In Brauer et al. [41], pages 325–392.

[178] Glynn Winskel. An introduction to event structures. In de Bakker et al. [66], pages
364–397.

[179] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Abramsky et al. [2],
pages 1–148.

[180] Niklaus Wirth. Program development by stepwise refinement.Communications of the
ACM, 14:221–227, 1971.

Index

Symbols,
[[]], 39, 93, 127
`, 142
∼b, 21, 60, 111
∼c, 67
∼FUI , 65, 113
∼ICT , 63, 111
∼ST , 138
∼t, 21, 60, 111
∼UI , 64
→, 18
⇀, 19
⇁, 19
→fin, 19
∼=, 20
�, 33, 90, 124
�̂, 96
0, 30, 81, 122, 139
1, 30
., 30
+, 30, 81, 122, 139
b−, 122, 129, 139
b−−, 139
⊕, 122, 129, 139
⊕−, 139
;, 30, 81, 122, 129, 139
[>, 30, 81
‖A, 30, 81, 122, 129, 139
‖−A, 139
|A, 139
\A, 30
\\A, 81, 122, 129, 139
.̂ , 37
+̂, 37, 90, 125
b̂−, 125
⊕̂, 125
;̂ , 37, 91, 125
[̂>, 37, 91
‖̂A, 37, 91, 126

\̂A, 38

\̂\A, 91, 126
?, 17
−→Os , 43
−→c, 131
−→s, 42
−→t, 82
−→z, 139
→→, 136
↪→, 36, 88, 136
↪→c, 137

ACP, 11
Act, 80
Act√, 30
ActT , 81
action, 10

atomic, 10
instantaneous, 10
internal, 10, 30
observable, 10, 30, 44
set of, 30, 80
termination, 30, 81

action refinement, 12, 29–30
atomic, 29
non-atomic, 29
syntactical, 14
vertical, 30

α-equivalence, 43
approximation

closed, 23
finite, monotone, 23

automaton
finite, 9

axioms, 142

bijective, 19
bisimilar, 21

FUI, 65, 113

179

180 INDEX

ST, 138, 139
strong, 60, 111
UI, 64

bisimulation, 21
finite unique initial,seebisimulation, FUI
FUI, 65, 112
UI, 64
unique initial,seebisimulation, UI

bundle stability constraint, 32, 85, 93

cardinality, 17
causal ambiguity, 32
causal trees, 11
CBES, 35
cbes,seeevent structures, closed bundle
CCS, 11
chain, 22
choice

end-based, 57, 109, 121
end-start, 121
start-based, 121

coarsest,seecongruence, coarsest
completeness, 146
configurations, 83
congruence, 20

coarsest, 20, 67, 112, 114, 138
FUI, 66, 113
ICT, 64, 112
ST, 138
UI, 65

consistency, 15, 43, 93, 136
continuous, 22

componentwise, 23
on events, 48

countable, 17
cpo,seepartial order, complete
CSP, 11

decl, 30, 81, 122, 139
declaration,seedecl
design errors, 9
dom, 19
domain, 19
dual language approach, 9
dynamic names, 127

E , 32, 34, 86, 123

EE , 137
E| , 94
EBES, 32
ebes,seeevent structures, extended bundle
environment, 10
equivalence, 60–61

bisimulation,seebisimilar
FUI, seebisimilar, FUI
history preserving, 61
ICT, 63, 111
initial corresponding trace,seeequiva-

lence, ICT
pomset, 61
resource bisimulation, 61
ST, 61, 138, 139
step, 61
trace, 21, 60, 111
UI, seebisimilar, UI

ETBES, 86
eTbes,seeevent structures, extended termi-

nation bundle
ETPES, 94
eTpes,seeevent structures, extended termi-

nation precursor
event, 18

initial, 35, 87, 95, 123
set of, 32, 85, 123
termination, 35, 87, 123
trace, 89

initial, 63
set of, 89, 97

universe of, 18
event structures, 11

bundle, 31, 89
closed bundle, 34, 83
dual, 33, 83, 89
extended bundle, 32, 89
extended termination bundle, 86
extended termination precursor, 94
flow, 83, 89
prime, 83, 89
restriction of, 33, 90, 124
stable, 83, 89
start-end, 123
time bundle, 57

exit, 35

INDEX 181

EXPse, 122
EXPAx

se , 139
EXPsr, 30
EXPst, 81

F , 97
Fdecl, 127
Fdecl, 39, 93
FE, 97
FL, 80
fa-approach, 79, 80
finite state, 146
finitely determined, 94
formal methods, 9
function, 18–19

action-labeling, 32, 85, 123
inverse, 19
labeling preserving, 63
partial,seepartial function
relabeling, 80

G, 145
guarded, 145

sequentially, 142

Id, 18
init, 35, 62, 87, 123, 136
înit, 95
injective, 19
interleaving, 10

L, 41
Lse, 130
L̂ab, 91
label, 20
Λc, 162
least

element, 22
fixpoint, 23
upper bound, 22

literals
negative, 138

logic, 9
LOTOS, 11

metric space, 22
model checking, 9, 12
monotonic, 20

IN+, 17
natural numbers

positive, 17

Os, 43
Obs, 30
Obsa, 44
ObsP , 44
ω-chain,seechain
ω-continuous,seecontinuous
order,seepartial order

componentwise, 23
pointwise, 23

P, 17
Pcount, 17
Pfin, 17
PAse, 122
PAAx

se , 139
PAGu

se , 145
PAsr, 30
PAst, 81
panth, 138
partial function, 19

bijective, 19
domain, 19
injective, 19
inverse, 19
surjective, 19

partial order
complete, 22, 35, 90, 97, 124
ω-complete,seepartial order, complete

performance analysis, 11
petri net, 11
pointers, 127
pomsets, 11
preserved

relation, 20, 61
process, 30

action prefix, 31
choice, 31, 81

end-based, 122
end-start, 122
start-based, 121

disrupt, 31, 81
hiding, 31
inactive, 31, 81

182 INDEX

parallel, 31, 81
refinement, 31, 122
relabeling, 81
restriction, 81
sequential, 31, 81
specified by, 145
terminate, 31
variable, 30, 81

process algebra, 9, 11
priority, 12
probability, 12
stochastic, 12
time, 12

projection, 19

race policy, 13
reactive system, 10

concurrent, 10
Ref e

A, 59
Ref e

A
, 69

Ref eT
A , 109

Ref eT

A
, 115

Ref s
A, 38

Ref se
A , 126

relation
bundle, 32
causality, 85, 123
conflict, 85

asymmetric, 33
precursor, 94
start, 123
symmetric, 32

identity, 18, 34
transition,seetransition, relation
witness, 86

end, 123
relative active number, 128
remainder, 36, 88, 95, 135

SEBES, 123
SEBESM, 136
sebes,seeevent structures, start-end
semantics

axiomatic, 11
denotational, 11, 40, 93, 127
operational, 11, 42, 81, 130

SeqG, 142

soundness, 142
specification, 9

descriptive/property-based, 9
imperative/operational-based, 9

stack technique, 127
state, 20

initial, 20
state explosion problem, 12
static names, 127
string, 17

empty, 17
substitution, 142

syntactic, 30
surjective, 19
system design

hierarchical, 12
top down, 29

T , 21
T ic, 63, 111
τ , 30,seeaction, internal
TBES, 85
Tbes,seeevent structures, termination bun-

dle
TCSP, 11
termination

action,seeaction, termination
event,seeevent, termination
predicate, 87, 95, 123
set, 85, 123

Tre, 89
trace, 21

initial event, 111
semantics, 10

transition
relation, 20, 36, 88, 137
rules, 11, 41, 81, 131, 139

complete, 138
system, 9–11,20

true concurrency, 11
TS, 20

U , 18
upper closed, 94
Υ, 87, 123
Υ̂, 95

Var, 30

INDEX 183

variable assignment, 38, 93, 127
VarSp, 145
verification, 9

X , 24

Z, 14

184 INDEX

Zusammenfassung

Der Auswahloperator ist ein wichtiges Element in der Beschreibung von aktionsbasierten, reak-
tiven Systemen. Wenn man den Ansatz der Atomarität von Aktion aufgibt, zum Beispiel durch
Aktionsverfeinerung, muss man festlegen, wann die Auswahl getroffen wird. In der Regel wird
die Auswahl beim Starten von Aktionen getroffen.

Diese Doktorarbeit beschäftigte sich mit dem alternativen Ansatz, der darin besteht, dass die
Auswahl beim Beenden von Aktionen getroffen wird (end-basierte Auswahl). Ich habe diesen
Ansatz motiviert, insbesondere im Kontext des hierarchischen Entwurfs von Systemen (rea-
lisiert durch Aktionsverfeinerung). Das Ziel dieser Arbeit war eine Prozess-Algebra zu ent-
wickeln, die einen end-basierten Auswahloperator und einen Aktionsverfeinerungsoperator be-
sitzt. Vor allem sollten konsistente Semantiken (denotationale, operationale und axiomatische)
für diese Prozess-Algebra angegeben werden. Weiterhin sollte der Unterschied zwischen dem
end-basierten und dem start-basierten Auswahloperator herausgearbeitet werden, insbesondere
bez̈uglich derÄquivalenzbegriffe.

Beim Definieren einer denotationalen Semantik hatte man seither das Problem, dass die Ereig-
nisstrukturen (engl:event structures), welche auf der Bundle-Technik basieren, keinecpos mit
derüblichen Ordnung liefern. Deshalb wurde eine Technik zur Definition von Einschränkungen
dieser Ereignisstrukturen entwickelt, so dass diese Einschränkungencpos mit derüblichen Ord-
nung liefern. Weiterhin wurde auch eine neue Technik vorgestellt, um operational Semantiken,
die den denotationalen Semantiken entsprechen, für Prozess-Algebren mit einem Aktionsver-
feinerungsoperator zu entwickeln. Mit dieser Technik ist es nicht nötig, die Prozess-Algebren
um weitere Ausdr̈ucke zu erweitern, um die operationale Semantik zu definieren.

Ein neuer Aktionsverfeinerungsoperator wurde auf denextended bundle event structuresde-
finiert. Dieser Operator betrachtet die Konflikt-Relation derextended bundle event structures
als end-basiert. NeuëAquivalenzen wurden eingeführt, da keine der Standard-Äquivalenzen
von diesem Operator erhalten bleiben. Es wurde aufgezeigt, dass dieextended bundle event
structureskein passendes Modell für diese Art von Aktionsverfeinerungsoperator ist, da die in-
tuitiven Kongruenz̈aquivalenzen nicht die kleinsten bezüglich der Bisimulations- und der Trace-
Äquivalenz sind.

Aus diesem Grund wurden zwei neue Klassen von Ereignisstrukturen eingeführt. In diesen
Strukturen k̈onnen Mengen voneventsandereeventsdeaktivieren. Es wurde gezeigt, dass
diese Klassen von Ereignisstrukturenäquivalente Ans̈atze liefern. Eine dieser Ereignisstruk-
turen wurde als denotationale Semantik einer Prozess-Algebra, die einen Abbruchsoperator
aber keinen Aktionsverfeinerungsoperator besitzt, benutzt. In dieser Prozess-Algebra findet
Termination durch die zuletzt ausgeführte Aktion und nicht durch ein zusätszliches Termi-
nationsevent statt. Weiterhin wurde gezeigt, dass auf dieser Ereignisstruktur die intuitiven

185

186 ZUSAMMENFASSUNG

Kongruenz̈aquivalenzen f̈ur den Aktionsverfeinerungsoperator, der die Konfliktrelation als end-
basiert betrachtet, tatsächlich die kleinsten Kongruenzen bezüglich der Bisimulations- und der
Trace-̈Aquivalenz liefern.

Schließlich habe ich aufgezeigt, dass es sinnvoll ist, einen start-basierten Auswahloperator
zu haben, wann immer man einen end-basierten Auswahloperator und einen Parallelopera-
tor mit Aktionssynchronisierung hat. Zusätzlich wurde auch ein Auswahloperator motiviert
und betrachtet, bei dem sich eine Seite end-basiert und die andere Seite start-basiert verhählt.
Eine Prozess-Algebra mit diesen drei verschieden Auswahloperatoren und einem Aktionsver-
feinerungsoperator wurde eingeführt. Es wurden konsistente denotationale, operationale und
axiomatische Semantiken angegeben. Genauer gesagt sind die denotationale und die opera-
tionale Semantik bisimulationsäquivalent und die axiomatische Semantik ist korrekt und voll-
sẗandig bez̈uglich der von der operationalen Semantik erhaltenen Bisimulations-Äquivalenz.
Für die denotationale Semantik wurde eine Ereignisstruktur mit zwei Relationen für Konflikte
betrachtet: eine für den start-basierten Konflikt die andere für den end-basierten Konflikt.

Danksagungen

Vor allem m̈ochte ich Frau Prof. Dr. Mila Majster-Cederbaum für Ihre Betreuung danken. Sie
ließ mir den n̈otigen Freiraum, stand allzeit für meine Fragen bereit und half mir beim For-
mulieren mathematischer Texte in englischer Sprache. Ich möchte mich auch herzlich bei Herrn
Prof. Dr. Franz Stetter, meinem Zweitkorrektor, bedanken. Mein Dank gilt außerdem meinen
Kollegen, unter anderem Dr. Jinzhao Wu, Jürgen Jaap, Dr. Naijun Zhan, Dr. Sven Helmer und
insbesondere meinem Zimmerkollegen Dr. Frank Salger. Bedanken möchte ich mich auch bei
Frau Jackowski f̈ur ihre hilfreiche Untersẗutzung bei den anfallenden Formalitäten. Zuletzt
möchte ich meiner Frau Annette danken, ohne die ich das alles nicht geschafft hätte.

