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Abstract

We believe that the emergence of congestion control mechanisms for relatively-smooth conges-

tion control for unicast and multicast traffic can play a key role in preventing the degradation of

end-to-end congestion control in the public Internet, by providing a viable alternative for multi-

media flows that would otherwise be tempted to avoid end-to-end congestion control altogether.

The design of good congestion control mechanisms is a hard problem, even more so for multicast

environments where scalability issues are much more of a concern than for unicast.

In this dissertation, equation-based congestion control is presented as an alternative form of con-

gestion control to the well-known TCP protocol. We focus on areas of equation-based congestion

control which were not yet well understood and for which no adequate solutions existed. Start-

ing from a unicast congestion control mechanism which in contrast to TCP provides smooth rate

changes, we extend equation-based congestion control in several ways. We investigate how it

can work together with applications which can only operate in a very limited region of avail-

able bandwidth and whose rate can thus not be adapted to the network conditions in the usual

way. Such a congestion control mechanism can also complement conventional equation-based

congestion control in regimes where available bandwidth is too low for further rate reduction.

When extending unicast congestion control to multicast, it is of paramount importance to en-

sure that changes in the network conditions anywhere in the multicast tree are reported back to

the sender as quickly as possible to allow the sender to adjust the rate accordingly. A scalable

feedback mechanism that allows timely congestion feedback in the face of potentially very large

receiver sets is one of the contributions of this dissertation. But also other components of a con-

gestion control protocol, such as the rate increase/decrease policy or the slow-start mechanism,

need to be adjusted to be able to use them in a multicast environment. Our resulting multicast

congestion control protocol was implemented in a simulation environment for extensive protocol

testing and turned into a library for the use in real-world applications. In addition, a simple video

transmission tool was built for test purposes that uses this congestion control library.
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Chapter 1

Introduction

In the Internet, data packets are sent from a source to the destination via intermediate routers. A

router stores a packet until it can be transferred to the next router along the path. This continues

in succession until a packet ultimately reaches its destination. When the demand for bandwidth

exceeds available network resources, network paths can get congested. If the short-term packet

arrival rate is higher than the maximum packet processing rate or the outgoing link bandwidth of a

router, packets are temporarily stored in a buffer. A router can sustain high packet arrival rates for

short periods of time, where the duration of the period depends on the buffer size. However, when

the buffer is full, the router has to discard packets. These packets already consumed resources

on the way to the router where they are dropped. A network should be designed in a way that

the network load is reduced when excessive packet drop rates occur to ensure that the network

operates in a regime of reasonable efficiency.

The end-to-end argument [SRC84] is one of the main design principles of the Internet. It states

that “functions placed at low levels of a system may be redundant or of little value when com-

pared with the cost of providing them at that low level”. In a networking context, this translates

to the requirement that as much functionality as possible should be implemented at the edges of

the network or in the end hosts rather than within the network. For this reason, congestion in

the Internet is resolved by simply discarding excessive packets at congested routers. This very

simple reaction to congestion is complemented by more sophisticated congestion control and

congestion avoidance mechanisms in the end hosts.

The dominant transport protocol in the Internet is the Transmission Control Protocol (TCP), con-

stituting 83% of all IP packets and carrying roughly 90% of the overall traffic volume [MC00].
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TCP is a reliable transport protocol that provides window-based congestion control as well as

flow control. The current stability of the Internet largely depends on this end-to-end congestion

control mechanism. The ‘sending rate’ of a TCP flow is controlled by a congestion window

which is reduced in size when the flow experiences packet drops. The congestion window limits

the number of packets inserted into the network in times of congestion. It is halved for every

window of data containing a packet drop, and increased by roughly one packet per window of

data otherwise. It can be shown that this Additive Increase Multiplicative Decrease (AIMD)

mechanism leads to stable network conditions [CJ89].

Some form of end-to-end congestion control of best-effort traffic is obviously required to avoid

the congestion collapse of the Internet [FF99]. While TCP congestion control is appropriate

for applications such as for example bulk data transfer, halving the sending rate in response

to a single congestion indication is unnecessarily severe for some applications. TCP’s abrupt

changes in the sending rate have been a key impediment to the deployment of TCP for emerging

applications such as streaming multimedia, as they noticeably reduce the user-perceived quality

[TZ99b]. A number of further issues arise when using TCP for these applications, such as TCP’s

reliability mechanism, but here we will focus on congestion control.

Equation-based congestion control was first proposed in [MF97]. In contrast to TCP’s addi-

tive increase and multiplicative decrease of the congestion window which indirectly controls the

sending rate, the rate of a flow is directly adapted to the current network conditions. This rate is

determined using a control equation that explicitly gives the maximum acceptable sending rate

as a function of the recent loss event rate and the round-trip time. Since equation-based con-

gestion control can provide smoother changes of the sending rate than the algorithm currently

implemented in TCP it seems to be a promising candidate for the aforementioned applications.

For traffic that competes with TCP, the appropriate control equation can be derived from a model

for the steady-state sending rate of TCP. As a consequence, over a timescale of many round-

trip times such equation-based congestion control should achieve roughly the same throughput

as TCP under the same network conditions. Any form of congestion control that is signifi-

cantly more aggressive is likely to harm TCP traffic when competing for resources on the same

bottleneck link and is therefore not recommendable for use in the Internet (without additional

protection of other traffic). A slightly more formal description of this requirement is given in the

definition of TCP-friendliness, discussed in a later section of this dissertation.
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TCP-Friendly Rate Control (TFRC) [FHPW00a] is an example of an equation-based unicast con-

gestion control mechanism intended for applications that require a smoother, more predictable

transmission rate than TCP can achieve. Basically TFRC works as follows:

� The receiver measures the packet loss rate and feeds this information back to the sender in

feedback packets which are sent at regular intervals.

� The sender uses timestamps contained in the packet headers to calculate the round-trip

time to the receiver.

� The sender uses the control equation to derive an acceptable transmission rate from the

measured loss rate and round-trip time.

� The sender’s transmission rate is then adjusted to match the calculated transmission rate.

The behavior of TFRC is determined to a large degree by the measurement mechanisms used

to estimate the loss rate and the round-trip time. A stable and yet fair TFRC sending rate can

only be achieved if the methods of measurement do not introduce unnecessary noise but react to

changes in the level of congestion sufficiently fast. Sender and receiver functionality do not have

to be split up exactly as described above. For example, it is also possible to have the receiver

apply the control equation and report the desired sending rate back to the sender.

1.1 Problem Statement

TFRC has emerged as an adequate unicast congestion control mechanism for applications such as

streaming media. Yet, there exist a variety of applications for which equation-based congestion

control in general is a suitable solution but TFRC cannot be used directly.

While for most applications reducing the sending rate is the appropriate response to network

congestion, there are cases where the data rate of an individual flow is determined almost exclu-

sively by the application and can only be adjusted to a small degree to the network conditions.

Data traffic of networked computer games or audio and video transmission that are already at the

lowest possible quality level are typical examples. For game traffic, a certain loss of available

bandwidth can be compensated for by techniques such as dead reckoning [DG99], but there is

generally a certain minimum bandwidth requirement beyond which applications become unus-

able. For this class of applications there are only two acceptable states: either a flow isonand the

sender transmits (at least) at the minimum data rate determined by the application or it isoff and

no data is transmitted at all. While some form of congestion control is necessary to ensure the
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safety of the network, it is not possible to achieve it by simply setting the application’s sending

rate to a TCP-friendly rate.

A different application area for which TFRC is not designed is multicast. IP multicast provides

data distribution for one-to-many and many-to-many communication. Hosts participating in a

so-called multicast session are organized in a tree topology. Data packets are duplicated at the

branching points of the tree (the multicast routers) so that only a single copy of the original

packet travels over each branch. Multicast greatly reduces the number of data packets compared

to sending a copy of the packet from the sender to each of the receivers via unicast.

Particularly the applications for which equation-based congestion control is a suitable rate con-

trol mechanism are often applications designed for one-to-many communication. Audio and

video conferencing and distributed computer games may involve hundreds or even thousands

of participants. With potentially very large multicast receiver sets, the efficient use of network

and end system resources is of paramount importance in the design of an end-to-end transport

protocol working on top of IP multicast.

A multicast congestion control mechanism must also take into account that due to potentially

very large receiver sets it may no longer be possible to request feedback from all the receivers

participating in a multicast session. While timely receiver feedback is an important factor for

the responsiveness of the mechanism to changes in the network conditions, too many feedback

messages in a short time interval can overwhelm the sender so that it is not capable of processing

all those messages. Thus, feedback control for multicast congestion control needs to address two

important issues:

� The mechanism must prevent a feedback implosion in case the multicast group is very

large and responses from all or most of the receivers would overwhelm the sender. It has

to guarantee that a sufficient number of feedback messages is suppressed.

� At the same time, the feedback mechanism must ensure that feedback from the “right”

receivers is not suppressed. Those receivers are the ones that should determine the sending

rate of the session and their feedback is crucial for the fairness of the congestion control

mechanism.

� Moreover, it is necessary to ensure than any additional delay imposed to avoid feedback

implosion does not adversely affect the fairness toward competing protocols.

There are strong reasons to design elements of a multicast congestion control mechanism to

be more conservative than their unicast counterparts. Since a multicast protocol can affect the
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network conditions on many links of the multicast tree, it can do much more harm than a unicast

protocol if not designed with great care. In particular, this applies to the feedback mechanism,

the increase/decrease policy, and slow-start (the rate increase algorithm used at the startup time

of a new session).

On the other hand, all the recipients of a multicast session benefit from the transmitted packets

whereas a unicast transmission is only targeted at a single receiver. One could argue that a

multicast session is of higher value than a unicast session and should therefore achieve a higher

sending rate. It is necessary to take these considerations into account when defining fairness and

TCP-friendliness in a multicast context.

1.2 Contributions

In this dissertation, equation-based congestion control is extended in several ways. We inves-

tigate how it can work together with applications whose sending rate cannot be adapted to the

network conditions in the usual way, how to extend unicast congestion control to multicast, and

how to ensure that multicast congestion control scales to large groups of receivers. The result-

ing multicast congestion control protocol is developed in a simulation environment for extensive

protocol testing. We further implement it as a library for the use in real-world applications and

present a simple video transmission tool based on this library that proves the applicability of our

algorithms in practice.

Probabilistic Congestion Control

With Probabilistic Congestion Control (PCC) we present a congestion control scheme for non-

adaptable flows. These types of flows carry data at a rate determined by the application. They

cannot be adapted to the level of congestion in the network in any way other than by suspending

the entire flow. Existing congestion control mechanisms that adjust the sending rate are thus not

viable for non-adaptable flows.

Instead of striving for TCP-friendliness for each single network flow, PCC works by suspending

individual flows in a way that the aggregation of all non-adaptable flows on a given link behaves

in a TCP-friendly manner. The decision about suspending a given flow is made by means of

random experiments. If a random experiment fails, the corresponding flow is suspended for
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a configurable amount of time until it may resume its transmission. This type of congestion

control can complement conventional congestion control in the regime where rate adaptation is

no longer possible.

Scalable Multicast Feedback Mechanisms

Equation-based congestion control, as a rate control component of a transport protocol, is very

amenable to an extension to multicast. To ensure that on no link of the multicast tree the sending

rate exceeds the TCP-friendly rate, the sender needs to continuously obtain feedback from the

receiver or receivers experiencing the worst network conditions. The main complexity of the

design of a multicast congestion control protocol lies in the feedback mechanism.

With receiver sets of perhaps several thousand receivers it is critical to ensure that the sender

gets timely feedback from the receivers without being overwhelmed by an excessive number of

feedback messages. To this end, a feedback suppression mechanisms is used. Generally, time

is divided into feedback rounds, and at the start of each feedback round, each receiver sets a

randomized timer. If the receiver hears feedback from another receiver that makes it unnecessary

for it to send its own feedback, it cancels its timer. Otherwise, a feedback message is sent when

the timer expires.

In this dissertation, we analyze three prototypical suppression algorithms, with particular focus

on the suppression characteristics in face of an inaccurate group size estimation. We further

improve upon the most promising of these algorithms, exponential feedback suppression, in case

feedback of some extreme value of the group is needed. We discuss two orthogonal methods to

improve the quality of the feedback (i.e., how close the best reported value is to the true optimal

value of the group). If no information is available about the distribution of values at the receivers,

a safe method to obtain better feedback is to modify the suppression mechanism to allow the

sending ofimportantfeedback messages even after the first feedback was given (i.e., feedback

messages cannot be suppressed by feedback reporting less optimal values). We specify exact

bounds for the expected increase in feedback messages for a given improvement in feedback

quality. If more information about the distribution of feedback values is available or certain

worst-case distributions are very unlikely, it is furthermore possible to bias the feedback timer.

The better the feedback value, the earlier the feedback is sent, thus suppressing later feedback

with less optimal values. The modified suppression mechanism and the feedback biasing can be

used in combination to further improve the feedback process.
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Multicast Congestion Control

Based on TFRC and the aforementioned feedback suppression mechanism, we design a TCP-

Friendly Multicast Congestion Control Protocol (TFMCC). TFMCC is an equation-based single-

rate multicast congestion control mechanism intended to scale to groups of several thousand

receivers. The challenges in the design of TFMCC lie in scalable round-trip time measurements,

appropriate feedback suppression, and in ensuring that feedback delays in the control loop do not

adversely affect fairness towards competing flows. The key component of end-to-end multicast

congestion control schemes is the feedback control mechanism which largely determines the

overall protocol behavior.

With a single-rate congestion control protocol that adapts to the slowest receiver, the sending rate

may be very low in a large group of heterogeneous receivers. In order to enable the application

to remove receivers that unduly impair protocol performance, it is necessary to provide the ap-

plication with information about the degree of heterogeneity of the group. This information is

(partially) available to the congestion control mechanism through the receiver feedback process

and can be made available to the application. With an approximate distribution of TCP-friendly

rates of the receivers, the application can then calculate the expected improvement in the sending

rate when certain receivers are removed from the group and take appropriate actions.

TFMCC is extensively evaluated through analysis and simulation. To further demonstrate that

TFMCC is a suitable congestion control mechanism for streaming media, it is implemented as a

library and integrated into a simple multicast video transmission tool for MPEG.

1.3 Structure of the Dissertation

After a brief introduction to TCP congestion control and TCP fairness in Chapter 2, we give

an overview of the TCP-friendly Rate Control protocol (TFRC) in Chapter 3. TFRC forms the

basis for the more advanced mechanisms proposed in this dissertation. In Chapter 4, we discuss

a probabilistic congestion control mechanism (PCC) for non-adaptable flows, which is not based

on rate adaptation of a single flow but on the control of traffic aggregates.

A short introduction to IP multicast as well as a definition of TCP-friendliness for multicast

transmission is given in Chapter 5. In Chapter 6 we analyze desirable characteristics of feedback

mechanisms for multicast congestion control in detail. We further investigate to what extent
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existing mechanisms are suitable for the task and propose a new feedback control scheme that

specifically allows to favor feedback from certain receivers, namely the ones that are important

for setting the sending rate.

In Chapter 7 we introduce the TCP-Friendly Multicast Congestion Control protocol (TFMCC),

an equation-based congestion control mechanism that extends the TFRC protocol from the uni-

cast to the multicast domain. We describe the protocol mechanism in detail and demonstrate the

behavior of the protocol by means of extensive simulations. Furthermore, we give an overview

of the TFMCC library that was developed in this context and present a video transmission tool

which is based on this library.

Finally, we conclude the dissertation with a summary and directions for future research in Chap-

ter 8.



Chapter 2

Congestion Control Fundamentals

TCP [Pos81, Ste94] is a connection-oriented unicast transport protocol, used to transport data

for most common Internet applications such as web browsers, e-mail programs, and FTP clients.

It is the most widely used transport protocol in the Internet. Alternative congestion control

mechanisms intended for use in the Internet have to work in an environment dominated by TCP

congestion control and should therefore be TCP-compatible. In this chapter, we give a brief

overview of the TCP protocol, discuss how TCP’s long-term throughput can be modeled, and

discuss forms of end-to-end congestion control different from TCP congestion control.

2.1 TCP Protocol Description

TCP is used to transport a stream of bytes from one end host to another. Since the underlying

routing protocol only provides the routing of data packets, the byte stream has to be divided into

segments and these segments are then sent in individual packets.

Before data is transmitted, TCP establishes a full-duplex connection between the communicating

end hosts. Segments are acknowledged by the TCP receiver to ensure end-to-end reliability.1 In

case packets are dropped by a network layer below TCP their loss is detected through the missing

acknowledgements, and they are retransmitted by the TCP sender. In addition to reliability, TCP

offers flow control as well as congestion control. Flow control allows a receiver to slow down

the sender to prevent it from sending segments faster than the receiver can process them, while

1In fact, TCP uses a sequence number in units of bytes and the receiver acknowledges the next byte to be
transmitted by the sender.
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congestion control protects the network from excessive network load. Flow control is done by

means of a sliding window mechanism, where the amount of data the sender is allowed to send

is limited by the flow control window. The window is maintained at the receiver and its size is

advertised in the acknowledgements. When segments are received from the sender, the size of

the available window is reduced, and as the receiving application reads data from TCP’s receive

buffer the window size increases again.

2.1.1 Self-clocking Characteristics of TCP

The temporal spacing of the data packets depends on the link capacity (i.e., the packet frequency

increases with the available bandwidth). In equilibrium, TCP only allows sending of a packet

when another packet is acknowledged. The ACKs from the receiver arrive at the TCP sender

at the same pace at which the data packets leave the sender. The algorithm is self-clocking and

provides a very elegant way to limit the number of outstanding packets in the network.

The time it takes a packet to travel from sender to receiver and the time it takes the ACK to travel

back to the sender is called the round-trip time (RTT). During this time the sender has to be able

to continually send data at the link speed (or the fair share of the bandwidth when competing

with other flows) to be able to fully utilize the available bandwidth.

2.1.2 TCP Congestion Control

In addition to the flow control window, TCP maintains a congestion window that further limits

the number of outstanding unacknowledged data packets in the network. The congestion window

size is decreased when congestion is detected and increased in the absence of congestion. The

TCP sender may only transmit the minimum of the flow control window and the congestion

window before it has to wait for new ACKs from the receiver. Both, the flow control window

and the congestion window are measured in bytes.

On start-up, TCP performs aslow-startto quickly reach a fair share of the available network

capacity without overwhelming the network with packets. Lets be the maximum segment size

of a TCP connection in bytes. During slow-start, each acknowledgement increases the size of

the congestion window bys and thus the size of the congestion window doubles every round-

trip time (exponential increase). Slow-start ends either after a certain window size threshold

(ssthresh) is reached or after the first packet loss occurs [Jac88].
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After the slow-start phase, TCP uses anadditive increase multiplicative decrease mechanism

(AIMD) to detect additional available bandwidth and to react to congestion, where congestion

is indicated by packet loss. Upon reception of an ACK the TCP sender increases the congestion

window sizecwnd by s2=cwnd [APS99], resulting in an increase of approximately one segment

per round-trip time. If a data packet is not acknowledged by the receiver within a time span of the

retransmission timeout value, the sender assumes severe congestion, the congestion window is

reduced to one segment, and the unacknowledged packet is retransmitted. TCP then reenters the

slow-start phase. The retransmission timeout value has a significant impact on TCP performance

and is therefore continuously adapted to variations in the TCP round-trip time.

In addition to timeouts, a second mechanism is used to detect packet loss. Upon packet arrival

the TCP receiver acknowledges the last segment that arrived in order. If intermediate segments

are lost, the segment before the lost segments will be acknowledged when new segments arrive at

the receiver. Therefore, packet loss and packet reordering result in duplicate acknowledgements.

Four acknowledgements for the same sequence number, called a triple duplicate ACK (TDACK),

are a strong indication that one or more segments were lost. As a consequence, the sender

reduces the congestion window to half of its previous size and starts retransmitting the segments

it assumes were lost. Figure 2.1 shows a typical example of the evolvement of TCP’s congestion

window over time.
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Figure 2.1: Evolvement of the TCP congestion window over time

Since the first TCP implementations, TCP has been improved in several ways. Today, different

versions of TCP are in use, the most common being TCP Reno and TCP Sack. An overview

of some of the different TCP flavors and their implications on protocol performance is given in

[FF96].
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2.2 Modeling TCP Throughput

The throughput of TCP depends mainly on the parameters round-trip timetRTT , retransmission

timeout valuetRTO, segment sizes, and packet loss ratep. Using these parameters, an estimate of

TCP’s throughput can be derived. A very basic model that gives an upper bound on TCP’s steady-

state throughputRTCP is given in [FF99]. Following the analysis in the appendix of the paper,

let us assume completely periodic packet loss with one drop per1=p packets and a congestion

window size ofW whenever a packet loss occurs. The loss causes a reduction of the window

size to1
2
W . No other losses occur for the next1=p packets, and during this time, the congestion

window size increases by one segment per RTT. After1
2
W RTTs, the congestion window reaches

its original sizeW again. The number of packets delivered in one increase-decrease cycle is at

least �
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Since there occurs exactly one loss per cycle, loss rate and window size are related as follows:

p � 8

3W 2
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The throughputRTCP can then be computed as the amount of data transmitted in a cycle over

the duration of the cycle.
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If an ACK is sent only for every other data packet, the common practice in current implementa-

tions, the throughput is only:

RTCP �
r

3

4

s

tRTT � pp (2.1)

This analysis is only valid as long as window size reductions are caused by TDACKs. When

a high packet drop rate causes frequent TCP timeouts, the model overestimates the rate a TCP

flow can achieve. Similar models for TCP throughput can be found for example in [OKM96,

MSMO97].

Equation (2.2), presented in [PFTK00], gives a more complex model of TCP throughput;b is the

number of packets acknowledged by each ACK, andWm is the maximum size of the conges-

tion window. Unlike the previous model, this complex model takes rate reductions due to TCP
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timeouts into account and models TCP more accurately in a network environment with high loss

rates.
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0
BB@Wm � s

tRTT
;

s

tRTT

q
2bp
3

+ tRTO min

�
1; 3
q

3bp
8

�
p(1 + 32p2)

1
CCA (2.2)

For most applications it suffices to settRTO to a multiple oftRTT and to ignore the impact ofb

andWm, resulting in the following approximation:

RTCP =
s

tRTT
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Figure 2.2 shows that the complex model (PFTK) and the simple model (SQRT) arrive at a

similar throughput estimate in terms of packets per RTT at low loss rates, while the throughput

of the complex model decreases faster at higher loss event rates. In a highly congested network

environment, nearly all of the TCP congestion window reductions are caused by timeouts. Thus,

the complex model is far more accurate under such conditions.
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Figure 2.2: Comparison of the SQRT model and the PFTK model

Among other assumptions, both models require that the round-trip time and the loss rate be

independent of the estimated rate (i.e., they do not take into account that a changing TCP rate

can affect the round-trip time and the loss rate). Nevertheless, as measurements and simulations

have shown, they do model TCP throughput surprisingly well even when these assumptions are

not or only partly met.
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2.3 TCP-Friendliness

In [FF99], non-TCP flows are defined as TCP-friendly when “their long-term throughput does

not exceed the throughput of a conformant TCP connection under the same conditions”. We

prefer to use a slightly more restrictive definition of the term TCP-friendliness. The definition

used throughout this dissertation focuses on the effect that a non-TCP flow has on competing

TCP flows rather than on the throughput of the non-TCP flow.

TCP-Friendliness for Unicast: A unicast flow is consideredTCP-friendly(orTCP-compatible)

when it does not reduce the long-term throughput of any co-existent TCP flow more than

another TCP flow on the same path would do under the same network conditions.

A flow that sends at a lower than the TCP-friendly rate (e.g., because of limited demand) would

still be characterized as TCP-compatible. However, if such a flow were considerably less aggres-

sive, it could encounter starvation when competing with TCP traffic in a FIFO queue.

Similar to unicast TCP-friendliness we define multicast TCP-friendliness by requiring unicast

TCP-friendliness on each path in the multicast distribution tree.

TCP-Friendliness for Multicast: A multicast flow is defined asTCP-friendlywhen for each

sender-receiver pair, the multicast flow does not reduce the long-term throughput of any

co-existent TCP flow more than another TCP flow on the same path would do under the

same network conditions.

There is an ongoing debate on the correct definition of the term TCP-friendliness for multicast.

An alternative to the definition given above is to allow multicast flows to use a greater amount of

bandwidth than unicast flows, since they serve multiple receivers. In [WS98], the termbounded

fairnessis introduced to define a situation where the following equation holds true:

a � rTCP � r � b � rTCP (2.4)

wherer is the rate of the multicast flow on the bottleneck link,rTCP is the rate a TCP flow would

have under the same conditions, anda as well asb are functions of the number of receivers of the

flow. For b = 1 the two definitions are equivalent. While the latter approach is perfectly valid,

here we will use the definition that is more rigid in the protection of competing TCP flows.
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2.4 Non-AIMD Congestion Control

The models for long-term TCP throughput presented in Section 2.2 can be used to design a rate-

based congestion control mechanism where the sending rate is adjusted to the TCP-friendly rate

predicted by the model. An equation-based congestion control mechanism does not modify the

sending rate in the same way as TCP’s AIMD congestion control does. In particular, such a

mechanism does not reduce its sending rate by half in response to a single congestion indication.

Given that the stability of the current Internet rests on AIMD congestion control, a proposal

for non-AIMD congestion control requires justification in terms of its suitability for the global

Internet.

As discussed in [FF99, FHPW00a], the principal threat to the stability of end-to-end congestion

control in the Internet comes not from flows using alternate forms of TCP-compatible congestion

control, but from flows that do not use any end-to-end congestion control at all. Furthermore, it

has been shown that preserving some form of “fairness” against competing TCP traffic does not

require a reaction as drastic as halving of the rate in response to a single congestion indication.

Ultimately, only large scale deployment in the Internet can show what impact non-TCP conges-

tion control mechanisms will have on the stability of the Internet, but the papers mentioned above

indicate that such forms of congestion control are indeed viable and TCP-compatible.

2.4.1 Design Space for Congestion Control Mechanisms

The following characteristics are desirable for an end-to-end congestion control protocol:

� Fairness: the protocol should compete fairly with other flows, in particular TCP flows.

� Stability: a sending rate that remains fairly stable even with an increased level of noise in

the network.

� Responsiveness: fast response to permanent changes in network conditions.

� Wide adaptive range: the ability to sustain performance over a wide range of network

conditions and cope with heterogeneity in the network.

� Performance: no performance penalty, resulting from low computational overhead and

little control traffic; no underutilization of resources caused by the congestion control

scheme.
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Not all of these characteristics can be achieved at the same time; for example a tradeoff exists

between the responsiveness and the stability of the protocol. When the sending rate is more

stable and less sensitive to noise, it will be less responsive to changes in the network conditions.

A similar tradeoff exists between a wide adaptive range and protocol responsiveness. On the

other hand, fairness and good performance should be consistently achieved by the protocol.

In the following we will briefly outline the possible design choices for congestion control mech-

anisms different from TCP. A more detailed classification of congestion control schemes can be

found in [WDM01].

Window-Based versus Rate-Based

One possible classification criterion for congestion control is whether the offered network load

is adapted based on a congestion window or on the transmission rate. Algorithms that belong to

the window-based category use a congestion window at the sender or at the receiver(s) to ensure

TCP-friendliness. The sender is allowed to transmit packets only when free slots in the window

are available. The size of the congestion window is increased in the absence of congestion

indications and decreased when congestion occurs.

Rate-based congestion control achieves TCP-friendliness by dynamically adapting the transmis-

sion rate according to some network feedback mechanism that indicates congestion. It can be

subdivided into simple AIMD schemes and model-based congestion control. Simple AIMD

schemes mimic the behavior of TCP congestion control. The resulting rate shows the typical

short term sawtooth-like behavior of TCP. Alternatives to the increase by one, decrease by half

policy of TCP have been proposed in [YL00, BB01]. There, this simple policy is extended to

more general increase/decrease policies, while preserving the TCP-friendliness of the mecha-

nism. Model-based congestion control uses a TCP model such as the ones presented earlier in

this chapter. By adapting the sending rate to the average long-term throughput of TCP, model-

based congestion control can produce much smoother rate changes. Such schemes do not mimic

TCP’s short-term sending rate but are still TCP-friendly over longer time scales. However, the

congestion control mechanism does not resemble TCP congestion control, and great attention

has to be paid to the rate adjustment mechanism to ensure fair competition with TCP or other

flows. A more detailed comparison of AIMD and equation-based congestion control is given in

[FHP00].
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End-to-End versus Router-Supported

End-to-end congestion control mechanisms are designed for networks that do not provide any

additional router mechanisms to support the protocols. The network only provides feedback as

to the level of congestion (e.g., by dropping or marking packets [RF99]) but the end-systems

are relied upon to take appropriate action. Consequently, end-to-end congestion control mecha-

nisms can be further separated into sender-based and receiver-based approaches. In sender-based

approaches the sender uses information about the network congestion and adjusts the rate or win-

dow size to achieve TCP-friendliness, while receivers only provide feedback. Receiver-driven

congestion control is usually used for multicast in combination with layered congestion control,

as described below. Here, the receivers decide whether to subscribe to or unsubscribe from layers

to increase or decrease the receive rate.

The design of congestion control protocols and particularly the fair sharing of resources can

be considerably facilitated by placing intelligence in the network (e.g., in routers or separate

agents). Congestion control schemes that rely on additional functionality in the network are

called router-supported. Particularly, multicast protocols can benefit from additional network

functionality such as feedback aggregation, hierarchical round-trip time measurements, manage-

ment of (sub-)groups of receivers, or modification of the routers’ queuing strategies.Generic

Router Assist (GRA)[CST00], for instance, is a recent initiative that proposes general mecha-

nisms located at routers to assist transport control protocols, which would greatly ease the design

and implementation of effective congestion control protocols. Furthermore, with router assis-

tance it is possible to enforce conformant behavior without having to rely on the cooperation of

the end-systems. While this is a promising approach (see for example [KHR02]), the Internet

currently lacks adequate congestion control enforcement and protocol support by the routers.

Since the router infrastructure in the Internet is slow to change, there is no alternative to end-to-

end congestion control for the time being.

Single-Rate versus Multi-Rate Congestion Control

In single-rate congestion control, the sender adjusts the sending rate, and the receiver or the re-

ceivers obtain the data at the same rate. In contrast, multi-rate congestion control allows different

receive rates for the participating receivers. Multi-rate congestion control is only defined in mul-

ticast environments. The data is distributed over multiple multicast session, and receivers join

the appropriate number of sessions with respect to their current network conditions. Whether to
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chose multi-rate or single-rate transport is a fundamental decision in the design of a multicast

congestion control mechanism. When the receiver set is very heterogeneous, a multi-rate ap-

proach is better able to cater to the different requirements of the receivers. At the same time it

is only applicable if the data to be transmitted can be divided into layers, adjusting the number

of layers does not allow an adaptation of the receive rate as fine-grained as single-rate conges-

tion control does (since a receiver is either subscribed to a layer or not), and it is usually much

more complex to build. A typical example is video multicast where each additional layer of data

improves the visual quality for the receiver (see for example [MJV96, Kuh01]). Single-rate con-

gestion control mechanisms can be used for a wide range of applications but it is necessary to

ensure that adjusting the sending rate to a single receiver does not excessively hurt performance

for the other receivers. The responsibility to remove receivers from a single-rate session clearly

lies with the application, but a congestion control protocol can help to improve the decision

process by providing information to the application.



Chapter 3

TCP-Friendly Rate Control

3.1 Introduction

For most unicast flows that want to transfer data reliably and as quickly as possible, the best

choice is simply to use TCP directly. In contrast, the TCP-friendly Rate Control protocol (TFRC)

[FHPW00a] is intended for applications that require a smoother, more predictable transmission

rate than TCP can achieve. The cost of this smoothness is a more moderate response to transient

changes in congestion. TFRC typically runs over UDP but the congestion control mechanism

would work for any connectionsless protocol.

TFRC is an equation-based unicast congestion control mechanism. The primary goal of equation-

based congestion control is not to aggressively find and use available bandwidth, but to maintain

a relatively steady sending rate while still being responsive to congestion. Thus, several of the

design principles of equation-based congestion control can be seen in contrast to the behavior of

TCP:

� Do not aggressively seek out available bandwidth. That is, increase the sending rate slowly

in response to a decrease in the loss event rate.

� Do not reduce the sending rate to half in response to a single loss event. However, do react

to congestion in a manner that ensures TCP-compatibility.

Additional design goals for equation-based congestion control for unicast traffic include:

� The receiver should report feedback to the sender at least once per round-trip time if it has

received any packets in that interval.
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� If the sender has not received feedback after several round-trip times, then the sender

should reduce its sending rate, and ultimately stop sending completely. This prevents

the sending of unnecessary packets in case of a severe network failure where (almost) all

packets are dropped.

3.2 Related Work

We first review related work from the literature. The unreliable unicast congestion control mech-

anisms closest to TCP maintain a congestion window which is used directly [JE96] or indirectly

[ROY00] to control the transmission of new packets. We believe that since [JE96] uses the

TCP mechanisms directly, the resulting behavior will be very similar to TCP congestion control

as described in the previous chapter. In the TEAR protocol (TCP Emulation at the Receivers)

from [ROY00], the receiver emulates the congestion window modifications of a TCP sender, but

then translates them from a window-based to a rate-based congestion control mechanism. The

receiver maintains an exponentially weighted moving average of the congestion window, and

divides this by the estimated round-trip time to obtain a TCP-friendly sending rate.

In [YL00], TCP’s increase by one, decrease by half behavior is extended to arbitrary increase

and decrease factors. The resulting protocol is called general AIMD (GAIMD). The authors

analyze the impact of these factors on the long-term sending rate of GAIMD and examine which

relationship between the factors results in TCP-friendliness. The so-called binomial congestion

control mechanisms proposed in [BB01] allow for even higher flexibility in the increase/decrease

policy. The congestion window is increased inversely proportional to a powerk of the current

window size (cwnd  cwnd + � cwnd�k) and decreased multiplicatively proportional to a

power l of the current window (cwnd  cwnd � � cwndl). Again, the authors show which

combinations of parameters result in TCP-friendliness and give an in-depth analysis of some

specific parameter combinations (e.g.,k = 0; l = 1 for TCP,k = 1
2
; l = 1

2
for SQRT where

increase and decrease are proportional to the square root of the current window, etc.).

A class of unicast congestion control mechanisms one step removed from those of TCP are those

that use additive increase, multiplicative decrease (AIMD) in some form, but do not apply AIMD

to a congestion window. The Rate Adaption Protocol (RAP) presented in [RHE99] is a simple

AIMD scheme for unicast flows. Each data packet is acknowledged by the receiver. The ACKs

are used to detect packet loss and infer the round-trip time. When the protocol experiences

congestion it halves the sending rate. In periods without congestion, the sending rate increases
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by one packet per round-trip time, thus mimicking the AIMD behavior of TCP. The decisions on

rate increase or decrease are made once per round-trip time. To provide additional fine-grained

delay-based congestion avoidance, the ratio of a short-term round-trip time average and a long-

term round-trip time average is used to modify the inter-packet gap between consecutive data

packets. These fine-grained rate adjustments result in a smoother sending rate. RAP achieves

rates similar to TCP in an environment where TCP experiences no or few timeouts since RAP’s

rate reductions resemble TCP’s reaction to triple duplicate ACKs. However, RAP does not take

timeouts into account and is therefore more aggressive when TCP’s throughput is dominated by

timeout events.

Unlike many other schemes, the Loss-Delay Based Adaption Algorithm LDA+ [SW00] does not

devise its own feedback mechanism to control the sending rate but relies solely on the feedback

messages provided by the Real Time Transport Control Protocol [SCFJ96]. While LDA+ is

essentially an AIMD congestion control scheme, it uses some interesting additional elements.

The increase and decrease factors for AIMD are dynamically adjusted to the network conditions.

An estimate of the bottleneck bandwidth is obtained using packet pairs.1 The amount of additive

increase is then determined as the minimum of three independent increase factors to ensure that

(1) flows with a low bandwidth can increase their rate faster than flows with a higher bandwidth,

(2) flows do not exceed the estimated bottleneck bandwidth, and (3) flows do not increase their

bandwidth faster than a TCP connection would do. If receivers report loss the sending rate is

decreased by multiplying by the factor(1 � pl), wherel is the loss rate. Additionally, the rate

is reduced at most to the rate given by the TCP model as described in Equation 2.2. Using the

maximum of the AIMD rate and the equation rate may result in a long-term average that exceeds

the average rate of the two separate schemes and can be more aggressive than TCP. only for

unicast used for

Equation-based congestion control is probably the class of TCP-compatible congestion control

mechanisms most removed from the AIMD mechanisms of TCP. In [TZ99a] the authors describe

a simple equation-based congestion control mechanism for unicast, unreliable video traffic. The

receiver measures the RTT and the loss rate over a fixed multiple of the RTT. The sender then

uses this information, along with the version of the TCP response function from [MF97], to

control the sending rate and the output rate of the associated MPEG encoder. The main focus

of [TZ99a] is not the congestion control mechanism itself, but the coupling between congestion

control and error-resilient scalable video compression.

1With packet pairs, the time interval between the receipt of two packets that were sent back-to-back is used as a
hint of the current maximum rate for a flow.
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The TCP-Friendly Rate Control Protocol (TFRCP) [PKT99] uses an equation-based congestion

control mechanism for unicast traffic where the receiver acknowledges each packet. At fixed time

intervals, the sender computes the loss rate observed during the previous interval and updates

the sending rate using the TCP response function described in [PFTK98]. Since the protocol

adjusts its send rate only at fixed time intervals, the transient response of the protocol is poor at

lower time scales. In addition, computing loss rates at fixed time intervals makes the protocol

vulnerable to changes in RTT and sending rate.

3.3 The TFRC Protocol

Applying the TCP response function (Equation (2.2)) as the control equation for congestion

control requires the following:

� The parameterstRTT andp have to be determined. The loss event ratep must be calculated

at the receiver, while the round-trip timetRTT could be measured at either the sender or

the receiver.

� The receiver sends either the parameterp (in the case of sender-based RTT measurements)

or the calculated value of the allowed sending rateRTCP (in the case of receiver-based

RTT measurements) back to the sender.

� The sender increases or decreases its transmission rate based onRTCP .

For unicast the functionality could be split in a number of ways. In our proposal, the receiver

only calculatesp and feeds it back to the sender.

3.3.1 Sender Functionality

In order to use the control equation, the sender determines the values for the round-trip timetRTT

and retransmit timeout valuetRTO.

The sender and receiver together use timestamps for measuring the round-trip time. Every time

the receiver sends feedback, it echoes the timestamp from the most recent data packet, along

with the time that passed since that packet was received. This way, the sender can measure the

round-trip time through the network. If the receiver does not send feedback immediately after
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the reception of a data packet, it has to adjust the echoed timestamp by the time interval that

passed between receiving the last data packet and sending the feedback message.

The sender smoothes the measured round-trip time using an exponentially weighted moving

average. This weight determines the responsiveness of the transmission rate to changes in round-

trip time.

The sender could derive the retransmit timeout valuetRTO using the usual TCP formula:

tRTO = tRTT + 4 �RTTvar

whereRTTvar is the RTT variance. However, in practicetRTO only critically affects the allowed

sending rate when the packet loss rate is very high. Different TCP implementations use dras-

tically different clock granularities to calculate retransmit timeout values, so it is not clear that

equation-based congestion control can accurately model atypical TCP implementation. Unlike

TCP, TFRC does not use this value to determine whether it is necessary to retransmit, and so

the consequences of inaccuracy are less serious. In practice the simple empirical heuristic of

tRTO = 4tRTT works reasonably well to provide fairness with TCP.

The sender obtains the value ofp in feedback messages from the receiver at least once per round-

trip time.

Every time a feedback message is received, the sender calculates a new value for the allowed

sending rateRTCP using the response function from Equation (2.2). If the actual sending rate

Rsend is less thanRTCP , the sender will increase its sending rate.

If Rsend is greater thanRTCP , the sender must decrease the sending rate. While several design

choices exist how to decrease the rate, the most simple form of directly settingRsend to RTCP

works well and is the behavior used in all the results presented in this chapter.

3.3.2 Receiver Functionality

The receiver provides feedback to allow the sender to measure the round-trip time (RTT). The

receiver also calculates the loss event ratep and feeds it back to the sender. The calculation of

the loss event rate is one of the most critical parts of TFRC. There is a clear trade-off between

measuring the loss event rate over a short period of time and being able to respond rapidly to
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changes in the available bandwidth, versus measuring over a longer period of time and getting a

signal that is less noisy.

The method of calculating the loss event rate has been the subject of much discussion and testing,

and over that process several guidelines have emerged:

� The estimated loss event rate should track the actual loss event rate relatively smoothly in

an environment with a stable steady-state loss event rate.

� The estimated loss rate should measure theloss event raterather than the packet loss rate,

where aloss eventcan consist of several packets lost within a round-trip time. This is

discussed in more detail in Section 3.3.4.

� The estimated loss event rate should respond strongly to loss events in several successive

round-trip times.

� The estimated loss event rate should increase only in response to a new loss event. (We

note that this property is not satisfied by some of the methods described below.)

� Let a loss intervalbe defined as the number of packets between loss events. The estimated

loss event rate should decrease only in response to a new loss interval that is longer than

the previously-calculated average, or a sufficiently-long interval since the last loss event.

Obvious methods we looked at include the Exponentially Weighted Moving Average (EWMA)

Loss Interval method, the Dynamic History Window method, and the Average Loss Interval

method which is the method we chose.

The EWMA Loss Interval method uses an exponentially weighted moving average of the num-

ber of packets between loss events. Whenever a loss event occurs, the average loss interval is

computed as

ŝ �ŝ+ (1� �)s

wheres is the number of packets received since the last loss event. As can be seen from Fig-

ure 3.1, depending on the weighting factor� the calculated loss event rate is either composed

mainly of the most recent loss interval or the weights drop of very gradually and old lossintervals

have an impact on the loss event rate for a long time. Both alternatives are undesirable for the

loss measurement process. The former is very susceptible to noise while the latter is slow to

react to changes in the network conditions.

The Dynamic History Window method uses a history window of packets whose length is de-

termined by the current transmission rate. This method suffers from the effect that even with a
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Figure 3.1: Weighting the loss intervals with an EWMA

perfectly periodic loss pattern, loss events entering and leaving the window cause changes to the

measured loss rate, and hence add unnecessary noise to the loss signal.

The Average Loss Interval method computes the average loss rate over the lastn loss intervals.

By itself, the naive Average Loss Interval method suffers from two problems: the interval since

the most recent loss is not necessarily a reflection of the underlying loss event rate, and there

can be sudden changes in the calculated rate due to unrepresentative loss intervals leaving then

intervals we are looking at. These concerns are addressed below.

The full Average Loss Interval method differs from the naive version in several ways. Again, let

si be the number of packets in thei-th most recent loss interval, and let the most recent interval

s0 be defined as the interval containing the packets that have arrivedsince the last loss. The first

difference addresses the most recent loss intervals0. When a loss occurs, the loss interval that

has beens0 now becomess1, all of the following loss intervals are correspondingly shifted down

one, and the new loss intervals0 is empty. Ass0 is not terminated by a loss, it is different from

the other loss intervals. It is important to ignores0 in calculating the average loss interval unless

s0 is large enough that including it would increase the average. This allows the calculated loss

interval to track smoothly in an environment with a stable loss event rate.

The second difference from the naive method reduces the sudden changes in the calculated loss

rate that could result from unrepresentative loss intervals leaving the set of loss intervals used

to calculate the loss rate. The full Average Loss Interval method uses an FIR (Finite Impulse
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Response) filter to compute the average loss interval. The average loss intervalŝ(1;n) is calculated

as a weighted average of the lastn intervals as follows:

ŝ(1;n) =

Pn
i=1wisiPn
i=1 wi

;

for weightswi:

wi =

8<
:1 for 1 � i � n=2;

1� i�n=2
n=2+1

for n=2 < i � n:
(3.1)

Forn = 8, this gives weights of 1, 1, 1, 1, 0.8, 0.6, 0.4, and 0.2 forw1 throughw8, respectively.

To determine whether to includes0, the interval since the most recent loss, the full Average Loss

Interval method also calculatesŝ(0;n�1):

ŝ(0;n�1) =

Pn�1
i=0 wi+1siPn

i=1wi

:

The final average loss intervalŝ ismax(ŝ(1;n); ŝ(0;n�1)); and the reported loss event rate is1=ŝ.

The sensitivity to noise of the calculated loss rate depends on the value ofn. Figure 3.3 shows

how well the current estimate calculated overn intervals matches the future loss event rate (as

measured in the Internet experiments described in a later section). The left graph shows the

average error and its standard deviation for equal weights (w1 = ::: = wn) while the right graph

is for decreasing weights as described above. A value ofn = 8, with the most recent four samples

equally weighted and decreasing weights for the older samples, appears to be a lower bound that
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still achieves a reasonable balance between resilience to noise and responding quickly to real

changes in network conditions.
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Because the Average Loss Interval method averages over a number of loss intervals, rather than

over a number of packet arrivals, the naive Average Loss Interval method responds reasonably

rapidly to a sudden increase in congestion, but is slow to respond to a sudden decrease in the

loss rate. For this reason we deploy history discounting as a component of the full Average Loss

Interval method, to allow a more timely response to a sustained decrease in congestion. History

discounting is used by the TFRC receiver after the identification of a particularly long interval

since the last dropped packet, to smoothly discount the weight given to older loss intervals.

The details of the discounting mechanism are as follows: Ifs0 > 2ŝ(i�1), then the most recent

loss intervals0 is considerably longer than the recent average, and the weights for the older loss

intervals are discounted correspondingly. The weights for the older loss intervals are discounted

by using the following discount factor:

di = max

�
0:5;

2ŝ(i�1)
s0

�
; for i > 0;

d0 = 1:

The lower bound of 0.5 on the discount factor ensures that past losses will never be completely

forgotten, regardless of the number of packet arrivals since the last loss.
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When history discounting is invoked, this gives the following estimated loss interval:

ŝ =

Pn�1
i=0 diwi+1siPn
i=1 di�1wi

:

When loss occurs and the old intervals0 is shifted tos1, then the discount factors are also shifted,

so that once an interval is discounted, it is never un-discounted, and its discount factor is never

increased. In normal operation, in the absence of history discounting,di = 1 for all values ofi.

History discounting (also called proportional deweighing) is described in more detail in [Wid00]

in Sections 3.7 and 4.8.1.
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Figure 3.4: Illustration of the Average Loss Interval method with idealized periodic loss

Figure 3.4 shows a simulation using the full Average Loss Interval method for calculating the

loss event rate at the receiver. The link loss rate is 1% before time 6, then 10% until time 9,

and finally 0.5% until the end of the run. This simulation is rather unrealistic because the loss is

periodic, but this illustrates the mechanism clearly.

In the top graph, the solid line shows the number of packets in the most recent loss interval, as

calculated by the receiver once per round-trip time before sending a status report. The smoother

dashed line shows the receiver’s estimate of the average loss interval. The middle graph shows

the receiver’s estimated loss event ratep, which is simply the inverse of the average loss interval,

along with
p
p. The bottom graph shows the sender’s transmission rate which is calculated from

p.
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Several things are noticeable from these graphs:

� Before t=6, the loss rate is constant, and the Average Loss Interval method gives a com-

pletely stable measure of the loss rate.

� When the loss rate increases the transmission rate is rapidly reduced.

� When the loss rate decreases the transmission rate increases in a smooth manner, with no

step increases even when older (10 packet) loss intervals are excluded from the history.

With naive loss interval averaging we would have seen undesirable step-increases in the

estimated loss interval, and hence in the transmission rate.

3.3.3 Slow-Start

The initial rate-based slow-start procedure should be similar to the window-based slow-start pro-

cedure followed by TCP where the sender roughly doubles its sending rate each round-trip time

(exponential increase). However, TCP’s ACK-clock mechanism provides a limit on the overshoot

during slow-start. No more that two outgoing packets can be generated for each acknowledged

data packet, so TCP cannot send at more than twice the bottleneck link bandwidth.

A rate-based protocol does not have this natural self-limiting property, and so a slow-start al-

gorithm that doubles its sending rate every measured RTT can overshoot the bottleneck link

bandwidth by significantly more than a factor of two. A simple mechanism to limit this over-

shoot is to have the receiver feed back the rate at which packets arrived at the receiver during the

last measured RTT. If loss occurs, slow-start is terminated, but if loss doesn’t occur the sender

sets its rate to:

Rsend;i+1 = min
�
2Rsend;i; 2Rrecv;i

�
This limits the slow-start overshoot to be no worse than that of TCP.

When the loss occurs that causes slow-start to terminate, there is no appropriate loss history from

which to calculate the loss fraction for subsequent RTTs. The interval until the first loss is not

very meaningful as the rate changes very rapidly during this time. The solution is to assume that

the appropriate initial data rate is half of the rate when the loss occurred; the factor of one-half

results from the delay inherent in the feedback loop. We then calculate the expected loss interval

that would be required to produce this data rate and use this synthetic loss interval to seed the

history mechanism. Real loss-interval data then replaces this synthetic value when it becomes

available.
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3.3.4 Discussion of Protocol Characteristics

Loss Fraction vs. Loss Event Fraction

The obvious way to measure a loss rate is as a loss fraction calculated by dividing the number of

packets that were lost by the number of packets transmitted. However this does not accurately

model the way TCP responds to loss. Different variants of TCP cope differently when multiple

packets are lost from a window; Tahoe, NewReno, and Sack TCP implementations generally

halve the congestion window once in response to several losses in a window, while Reno TCP

typically reduces the congestion window twice in response to multiple losses in a window of data

(i.e., the new rate will be1=4 of the old rate).

Because we are trying to emulate the best behavior of a conformant TCP implementation, we

measure loss as aloss event fraction. Thus we explicitly ignore additional losses within a round-

trip time that follow an initial loss, and model a transport protocol that reduces its window at most

once for congestion notifications in one window of data. This closely models the mechanism used

by most TCP variants.

The authors of [FHPW00b] explore the difference between the loss-event fraction and the regular

loss fraction in the presence of random packet loss. It is shown that for a stable steady-state

packet loss rate and a flow sending within a factor of two of the rate allowed by the TCP response

function, the difference between the loss-event fraction and the loss fraction is at most 10%.

When routers use Random Early Detection (RED) [FJ93] as queue management mechanism,

multiple packet drops in a window of data are less common, but with drop-tail queue management

it is common for several packets in the same round-trip-time to be lost when the queue overflows.

These multiple drops can result in multiple packets dropped from a window of data from a single

flow, resulting in a significant difference between the loss fraction and the loss event fraction

for that flow. A transient period of severe congestion can also result in multiple packets dropped

from a window of data for a number of round-trip times, again resulting in a significant difference

between the loss fraction and the loss event fraction during that transient period.

Increasing the Transmission Rate

One issue to resolve is how to increase the sending rate when the rate given by the control

equation is greater than the current sending rate. As the loss event rate is not independent of
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the transmission rate, to avoid oscillatory behavior it might be necessary to provide damping,

perhaps in the form of restricting the increase to be small relative to the sending rate during the

period that it takes for the effect of the change to show up in feedback that reaches the sender.

In practice, the calculation of the loss event rate by the average loss interval method above pro-

vides sufficient damping, and there is little need to explicitly bound the increase. As shown in

Appendix A.1 of [FHPW00a], given a fixed RTT and no history discounting, the increase in

transmission rate is limited to about 0.14 packets per RTT every RTT (using Equation (2.2)).

With history discounting, the TFRC mechanism increases its sending rate by at most 0.28 pack-

ets/RTT.

As changes in measured RTT are already damped using an EWMA, even with the maximum

history discounting (w = 1), this increase rate does not exceed one packet per RTT every RTT,

which is the rate of increase of a TCP flow in congestion avoidance mode.

Response to Persistent Congestion

Simulations in Appendix A.2 of [FHPW00a] show that, in contrast to TCP, TFRC requires from

three to eight round-trip times to reduce its sending rate in half in response to persistent con-

gestion. This slower response to congestion is coupled with a slower increase in the sending

rate than that of TCP. In contrast to TCP’s increase of the sending rate by one packet/RTT for

every round-trip time without congestion, TFRC generally does not increase its sending rate at

all until a longer-than-average period has passed without congestion. Thus the milder decrease

of TFRC in response to congestion is coupled with a considerably milder increase in the absence

of congestion.

3.4 Experimental Evaluation

To demonstrate that it is feasible to widely deploy TFRC we need to demonstrate that it co-exists

well when sharing congested bottlenecks with TCP traffic of different flavors. We also need

to demonstrate that it behaves well in isolation (i.e., with no parallel TCP flows), and that it

performs acceptably over a wide range of network conditions.

We have tested TFRC extensively across the public Internet and with thens-2 network simulator.

The results give us confidence that TFRC is remarkably fair when competing with TCP traffic,
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that situations where it performs very badly are rare, and that it behaves well across a very wide

range of network conditions. For the sake of brevity, we can only give a very brief overview of

some TFRC of the experiments and refer the interested reader to [FHPW00a, FHPW00b, Pad00,

Wid00] for more detailed results.

3.4.1 Simulation Results

Figure 3.5 illustrates the fairness of TFRC when competing with TCP traffic in both DropTail

and RED [FJ93] queues. In thesens-2 simulationsn TCP andn TFRC flows share a common

bottleneck; we vary the number of flows and the bottleneck bandwidth, and scale the queue size

with the bandwidth. The graph shows the mean TCP throughput over the last 60 seconds of

simulation, normalized so that a value of one would be a fair share of the link bandwidth. The

network utilization is always greater than 90% and often greater than 99%, so almost all of the

remaining bandwidth is used by the TFRC flows. These figures illustrate that TFRC and TCP

co-exist fairly across a wide range of network conditions, and that TCP throughput is similar to

what it would be if the competing traffic was TCP instead of TFRC.
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Figure 3.5: TCP sending rate while co-existing with TFRC

The graphs do show that there are some cases (typically where the mean TCP window is very

small) where TCP suffers. This appears to be because TCP is more bursty than TFRC. When we

modify TFRC to send two packets every two inter-packet intervals, TCP competes more fairly in

these cases. However this is not something we would recommend for normal operation.

Although the mean throughput of the two protocols is rather similar, the variance can be quite

high. This is illustrated in Figure 3.6 which shows the data points from Figure 3.5 for the simula-

tions with a 15 MBit/s bottleneck link. Each column represents the results of a single simulation,
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and each data point is the normalized mean throughput of a single flow. Typically, the TCP flows

have higher variance than the TFRC flows. In general, the variance between flows increases as

the bandwidth per flow decreases. This is to be expected as Equation 2.2 indicates that TCP (and

hence also TFRC) becomes more sensitive to loss as the loss rate increases, which it must do at

lower bandwidths.
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Figure 3.6: TCP competing with TRFC (15 MBit/s bottleneck with RED queue)

3.4.2 Implementation Results

We have implemented the TFRC algorithm and conducted many experiments to explore the

performance of TFRC in the Internet. TFRC was implemented in C under the FreeBSD operating

system (FreeBSD 3.3) and further tested under Solaris and Linux. Our tests include two different

transcontinental links, and sites connected by a microwave link, T1 link, OC3 link, cable modem,

and dial-up modem. In addition, conditions unavailable to us over the Internet were tested against

real TCP implementations in Dummynet [Riz98]. Again, we only present a very small selection

of simulation results and refer to the aforementioned literature for a detailed discussion of all the

experiments.

Figure 3.7 shows a typical experiment with three TCP flows and one TFRC flow running concur-

rently from London to Berkeley, with the bandwidth measured over one-second intervals. In this

case, the transmission rate of the TFRC flow is slightly lower, on average, than that of the TCP

flows. At the same time, the transmission rate of the TFRC flow is smooth, with a low variance;

in contrast, the bandwidth used by each TCP flow varies strongly even over relatively short time

periods.
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Figure 3.7: Three long-distance TCP flows and one TFRC flow over the Internet

The analysis of TFRC’s and TCP’s coefficient of variation (CoV)2 further indicates that TFRC

throughput is much more stable than TCP throughput under comparable network conditions.

Over a variety of timescales, TFRC’s CoV is consistently less than that of TCP on different

Internet paths as shown in Figure 3.8.
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Figure 3.8: CoV of TFRC (left) and TCP (right) over different Internet paths

To summarize the results, TFRC is generally fair to TCP traffic across the wide range of network

types and conditions we examined. The TFRC simulations and analysis contained in this chapter

and the other publications mentioned above lead us to conclude that TFRC is a suitable protocol

2The coefficient of variation is defined as the standard deviation over the mean. It is dimensionless and indepen-
dent of scale.
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for unicast congestion control for rate-adaptive applications. In the following chapters, we will

extend this basic approach to provide a higher degree of flexibility and to meet the requirements

of applications for which basic unicast congestion control is inappropriate.



36 Equation-Based Congestion Control for Unicast and Multicast Data Streams



Chapter 4

Probabilistic Congestion Control

4.1 Introduction

One prime aim of many congestion control schemes is to share the available bandwidth in a fair

manner with TCP-based applications, thus falling into the category of TCP-friendly congestion

control mechanisms. TCP, as well as existing TCP-friendly congestion control algorithms, re-

quire that the data rate of an individual flow can be adapted to network conditions. Using TCP,

it may take a variable amount of time to transmit a fixed amount of data, or with TCP-friendly

congestion control, the quality of an audio or video stream may be adapted to the available band-

width.

While this is not a problem for a large number of applications, there are cases where the data

rate of an individual flow is determined by the application and cannot be adjusted to the network

conditions. Live audio and video transmissions with a fixed minimum quality, below which

reception is useless, are a typical example. Rate adaptation is only possible up to this lower

limit. Networked computer games fall into the same category, considering the fact that players

are very reluctant to accept the delayed transmission of information about a remote player’s

actions. For this class of applications there are only two acceptable states: either a flow ison

and the sender transmits data the at rate determined by the application, or it isoff and no data is

transmitted at all. We call network flows produced by these applications non-adaptable flows.

In this chapter we describe a TCP-friendly end-to-end congestion control mechanism for non-

adaptable unicast flows called Probabilistic Congestion Control (PCC) [WMD02]. Unlike con-
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ventional congestion control mechanisms, it does not require an adaptation of the sending rate.

The main idea of PCC is

� to calculate a probability for the two possible states (on/off) so that the expected average

rate of the flow is TCP-friendly,

� to perform a corresponding random experiment to determine the new state of the non-

adaptable flow, and

� to repeat the previous steps continuously to account for changes in network conditions.

Through this mechanism it is ensured that the aggregate of multiple PCC flows behaves in a

TCP-friendly manner.

4.2 Related Work

A discussion of TCP-friendly congestion control mechanisms can be found for example in

[WDM01]. TCP, as well as all existing TCP-friendly congestion control schemes, require that

the bandwidth consumed by a flow be adapted to the level of congestion in the network. By

definition, non-adaptable flows cannot use these congestion control mechanisms.

It is conceivable to use reservation mechanisms such as Intserv/RSVP [BZB+97] or Diffserv

[BBC+98] for non-adaptable flows so as to prevent congestion altogether. However, these mech-

anisms require that the network supports the reservation of resources or provides different service

classes. This is currently not the case for the Internet.

Recently, there have been proposals for distributed admission control schemes [GK99, KKZ00,

Kel01]. Such schemes do not require extensive state in the network routers but the admission

control decisions are performed locally at the end hosts (end-to-end admission control). Still,

distributed admission control schemes either admit a flow for its whole duration or not at all.

Thus, their granularity is too coarse for quickly changing levels of congestion.

In contrast, PCC is an end-to-end mechanism that allows to “partly” admit a flow and to contin-

uously adjust the number of flows to network conditions. Flows that were not admitted at first

may later resume data transmission, and flows that were admitted may be suspended at a later

time, providing a more flexible congestion control framework for applications that can cope with

flows being temporarily suspended.
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4.3 Non-Adaptable Flows

A non-adaptable flow is defined as a data flow with a sending rate that is determined by the appli-

cation and which cannot be adjusted to the level of congestion in the network. It has exactly two

possible states: either it is in the stateon, carrying data at the rate determined by the application,

or it is off, meaning that no data is transmitted at all.

Examples of applications using non-adaptable flows are audio or video transmissions with a

fixed bit rate or a fixed quality.1 There are two main reasons why it may not be possible to scale

down a media flow: either the user does not accept a lower quality, or the quality is already at

the lowest possible level. The second reason indicates that a congestion control mechanism for

non-adaptable flows can complement congestion control schemes that adapt the rate of a flow to

current network conditions.

Other examples of applications with non-adaptable flows are commercial network games such as

Diablo II, Quake III, Ultima Online, and Everquest. These games typically employ a client-server

architecture. The data rate of the flows between client and server is determined by the fact that the

actions of the players must be transmitted instantaneously. Although the sending rate required

by such flows is typically low, thousands of users may participate in the same game, placing a

significant burden on the network. Similar restrictions hold for the flows between participants

of distributed virtual environments without a centralized server. If a congestion control scheme

delays the transmission of actions too long, the application quickly becomes unusable. This can

easily be experienced by experimenting with a state-of-the-art TCP-based networked computer

game during peak hours. For this reason, a number of applications resort to UDP and circumvent

congestion control.

A situation with either no congestion control at all or vastly reduced utility in the face of moderate

congestion is not desirable. A preferable approach is to turn the flows of some participants off

and to inform the applications accordingly. All other participants do not need to react to the

congestion. On average, all users should be able to participate in the session for a reasonable

amount of time between off-periods to ensure utility of the application. At the same time, off-

periods should be distributed fairly among all participants.

1While a fixed quality may result in a variable bit rate, this rate is still exclusively determined by the encoder and
reducing it to adapt to congestion would alter the quality.
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4.4 The PCC Protocol

The Probabilistic Congestion Control scheme (PCC) provides congestion control for non-adaptable

unicast flows by suspending flows at appropriate times. PCC is an end-to-end mechanism and

does not require the support of routers or other intermediate systems in the network.

4.4.1 PCC Requirements

The key aspect of PCC is that – as long as there is a sufficiently high level of statistical multiplex-

ing – it is not important that each single non-adaptable flow behave in a TCP-friendly manner at

any specific point of time. What is important is that the aggregation of all non-adaptable flows

on a given link behave as if the flows were TCP-friendly. Due to the law of large numbers this

can be achieved if each PCC flow has an expected average rate which is TCP-friendly and if each

link is traversed by a sufficiently large number of independent PCC flows.

At first glance, the latter requirement may be considered problematic because it is possible that

a link is traversed only by a small number of PCC flows. However, further reflection reveals

that in this case the PCC flows will only be significant in terms of network congestion if each

individual PCC flow occupies a high percentage of the link’s bandwidth. We therefore relax the

condition as follows: a single PCC flow is expected to have a rate that is only a small fraction of

the available bandwidth on any link that it crosses. Given the current development of available

bandwidth in computer networks, this is a condition that is likely to hold true.

Altogether, the following requirements have to be fulfilled for PCC to be applicable:

R1: Network conditions are relatively independent of the actions of a single PCC flow.The

network has a high level of statistical multiplexing, or single PCC flows occupy only a

small fraction of the available bandwidth.

R2: No synchronization of PCC flows at startup.PCC flows start up independent of each other.

R3: The average rate of a PCC flow can be predicted.In order for PCC to work, it must be

possible to predict the average rate of a PCC flow.2

2There are multiple ways in which this can be done, ranging from a constant bit-rate flow where this prediction
is trivial, to the usage of application level knowledge or prediction based on past samples of the data rate.
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R4: The average rate of a TCP flow under the same conditions can be estimated.We expect that

there is a reasonably accurate method to estimate the average bandwidth that a TCP flow

would have under the same network conditions.

4.4.2 Architecture

Figure 4.1 gives an overview of the PCC architecture. A PCC receiver monitors the network con-

ditions and estimates a TCP-friendly rate using a model of long-term TCP throughput. Whenever

a PCC receiver observes a degradation in network conditions, it conducts a random experiment

to determine whether or not the flow should be suspended. In case the experiment fails, a control

packet is sent to notify the sender that it is temporarily required to stop. After a certain off-period,

the sender may resume data transmission. For PCC, we chose to allocate as much functionality

as possible to the receiver in order to facilitate a future extension of PCC to multicast.

(data, reflected timestamp, sequence number)
data packets

receiver

sender

control packets
(flow state: on/off, timestamp)

− start / stop flow
− reflect timestamp

    on/off−probability calculation

− parameter measurements
− TCP−friendly rate and

− random experiment

Figure 4.1: PCC architecture

While a flow is in the on-state, control packets are sent by the receivers at certain time intervals.

They are needed to continuously measure the round-trip time required to determine the TCP-

friendly rate, and they serve as a backup mechanism in case of very heavy network congestion.

In the absence of these periodic control messages, the sender stops sending, thus safeguarding

against the loss of notifications to stop. As long as the flow is in the on-state, the data packets

are transmitted at the rate determined by the application. The sender includes in each data packet

the timestamp of the most recent control packet it received as well as the time interval between

receiving the control packet and sending the data packet. With this information the receiver is

able to determine the round-trip time. Data packets also contain a sequence number to allow the

receiver to detect packet losses.
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For PCC, we will use the simplified version of the TCP throughput formula given in Equa-

tion (2.3) to estimate a TCP-friendly rate. The loss event rate for the model is determined in

the same way as in the TFRC protocol (see Section 3.3.2). However, PCC is independent of the

specific mechanism used to estimate the throughput of a TCP flow for given network conditions,

as long as it determines a sufficiently accurate TCP-friendly rate. A possible alternative, for ex-

ample, would be to use the rate calculation mechanism of TCP Emulation At Receivers (TEAR)

[ROY00].

4.4.3 Basic PCC Mechanism

To determine the probability with which a PCC flow is allowed to send for a certain time interval

T , it is necessary to compare the average rateRNA of PCC to the TCP-friendly rateRTCP :

p � T �RNA = T �RTCP =) p =
RTCP

RNA

(4.1)

wherep denotes the ratio ofRNA to RTCP . When solving the equation, two outcomes are

possible:

� p � 1: The non-adaptable flow consumes less than or the same amount of bandwidth that

would be carried by TCP and should therefore stay on.

� 0 � p < 1: The non-adaptable flow consumes more bandwidth than a comparable TCP-

friendly flow. In this case,p is taken as a probability, and the non-adaptable flow should

be turned off with probability1� p.

For p 2 [0; 1], a uniformly distributed random numberx is drawn from the interval(0; 1]. If

x > p holds, the PCC flow is turned off for a time ofT . After that time interval the flow may be

turned on again. Ifx � p, the flow remains in the on-state. Since we require a sufficient level of

statistical multiplexing (R1) and because of the law of large numbers, the aggregation of all PCC

flows over a given link behaves in a TCP-friendly manner.

T is an application-specific parameter that is crucial for the utility of the protocol and thus for

the user acceptance of the congestion control mechanism. For example, if short news clips are

transmitted,T should be equal to the length of these clips. If a networked computer game is

played,T should be determined so that in “normal” congestion situations the player is able to

perform some meaningful tasks during the average time the flow stays on. If the network is

designed to carry the required traffic (i.e., congestion is low), then the average on-time will be
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a large multiple ofT . T should be adjusted by some random offset to prevent synchronization

of PCC flows in case several flows with the same value forT were forced to cease sending

simultaneously due to heavy congestion.

When settingT to very small values, PCC behaves more and more like a conventional rate-based

congestion control algorithm. In the extreme case, the application rate is the line speed of the

outgoing interface of the PCC sender, the on-time is the time required to send a single packet

and the off-time corresponds to the inter-packet interval, resulting in a protocol that behaves very

much like TFRC. At the other end of the spectrum, for very large values ofT , PCC behaves like

an admission control scheme based on snapshots of the current network conditions as determined

with Equation (2.3).

4.4.4 Continuous Evaluation

Under the assumption of a relatively constant level of congestion, the further behavior of PCC is

very simple. After a time ofT , a flow that is in the on-state will repeat the random experiment

using the sameRTCP . However, in a real network the level of congestion is not constant but

may change significantly within a time much shorter thanT . There are two cases to consider:

network conditions may improve (increasingRTCP ) or the congestion may get worse.

The first case is not problematic since it does not endanger the network itself. PCC flows may be

treated unfairly in that they are turned off with a higher probability than they should be. However,

after a time ofT the decision will be reevaluated with the correct probability, and PCC will adjust

to the new level of congestion.

The second case is much more dangerous to the network. In order to prevent unfair treatment

of competing adaptive flows or even a congestion collapse, it is very important that PCC flows

respond quickly to an increase in congestion. Therefore, duringT PCC periodically updates the

value forp and performs further random experiments if necessary.

Obviously, it is not acceptable to simply recalculatepwithout accounting for the fact that the flow

could have been turned off during one of the previous experiments. Without any adjustments,

PCC would continue to perform the same random experiment again and again and the probability

to survive those experiments would drop to 0. The general idea of how to avoid this drop-to-zero

behavior is to adjust the rate used in the equations to represent the current expected average data

rate of the flow.
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PCC modifies the valueRNA, taking into account the last random experiments that have been

performed for the flow. To this end, PCC maintains a setP of the probabilitiespi with which

the flow stayed on in the random experiments during the lastT seconds.3 The so-called effective

rateREFF is determined according to the following equation:

REFF =

(
RNA

Q
pi2P

pi for P 6= ;
RNA for P = ; (4.2)

For the continuous evaluation and the random experimentsREFF replacesRNA in Equation (4.1).

After a time span ofT , the correspondingpi is removed from the set. Thus, the overall probability

for a PCC flow to stay on for a given intervalT corresponds to the worst network conditions

PCC experienced during that interval. Continuous evaluation is further studied by means of an

example scenario in Section 4.5.

4.4.5 Initialization

At the initial startup and when a suspended flow restarts, a receiver does not have a valid esti-

mate of the current condition of the network and thus is not able to instantaneously compute a

meaningful TCP-friendly rate. To avoid unstable behavior, a flow will stay in the on-state for at

least a protected timeT 0, whereT 0 is the amount of time required to get the necessary number of

measurements to obtain a sufficiently accurate estimate of the network conditions.

After T 0, PCC determines whether it should cease to send or may continue. In order to take the

data transmitted during the protected time into account, the probability of turning the flow off

is increased during the first interval ofT so that the average amount of data transmitted during

T 0 + T is equal to that carried by a competing TCP flow. LetR0
NA denote the average rate of the

non-adaptive flow during the protected time andR0
TCP the average rate a TCP flow would have

achieved during the same time. For

T 0 �R0
NA + p0 � T �RNA = T 0 �R0

TCP + T �RTCP

3Note thatpi = 1 if the correspondingp � 1.
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the adjusted ratiop0 can be calculated as

=) p0 =
T �RTCP + T 0 � (R0

TCP � R0
NA)

T �RNA

= p� T 0(R0
NA � R0

TCP )

T �RNA
(4.3)

Again, for 0 � p0 � 1 we usep0 as the probability for the random experiment. If the flow

is turned off, the application may resume sending after it has been off for at leastT seconds,

starting again with the initialization step. If the flow is not turned off, then the flow will stay on

for at leastT more seconds, provided that the congestion situation of the network does not get

worse.

Note that it is now possible thatp0 � 0 if the non-adaptable flow transmits more data duringT 0

than a TCP flow would duringT 0 + T . Obviously, in this casep0 cannot be used as a probability

for the random experiment. Instead, it is necessary to turn the flow off and to increaseT , so that

p0 = 0.

Through the above mechanism the excess data transmitted during the protected timeT 0 is dis-

tributed over a time span ofT . At time T 0, R0
TCP = RTCP andR0

NA = RNA but in contrast to

R0
TCP andR0

NA, RTCP andRNA continue to be updated afterT 0.

When a random experiment has to be conducted, it is necessary to calculate not onlyp0 but also

the correspondingp. Each is included in their respective setP 0 andP . As long as PCC is in the

first T slot and the protected time has to be accounted for, the values inP 0 are used to calculate

the effective rate and thus the on-probability. Later on, the setP is used.

It may be considered problematic to let a flow send at its full rate forT 0 as this violates the idea

of exploring the available bandwidth as is done, e.g., by TCP slow-start. However, requirements

R1 (high level of statistical multiplexing) andR2 (no synchronization at startup) prevent this

from causing excessive congestion. In addition, the value ofT 0 will usually decrease the more

congested the network is since the measurement of the loss event rate makes up most of the

time intervalT 0. Loss events become more frequent as congestion increases, and therefore the

estimate of the network conditions converges faster to the real value. How PCC could gradually

probe for available bandwidthbeforethe flow is turned on is described in the next section.
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WhileRTCP is determined, the receiver also calculates the average rate of the non-adaptable flow

RNA.4 Summing up, three important values are determined during initialization:RTCP , RNA,

andT 0.

4.4.6 PCC Options

While the current version of PCC works as described above, there are a number of options and

possible improvements that we have investigated. In the following we outline possible modifica-

tions to PCC.

Loss Rate Monitoring

PCC flows do not take into account the impact of their own actions on the network conditions.

Assume that the random experiments of a number of PCC flows fail due to increased conges-

tion, but that the congestion was largely caused by these PCC flows. Then too many flows will

be suspended since it is impossible to include the expected improvement in the network condi-

tions in the calculation of the on-probability. Similarly, when the bandwidth consumed by PCC

flows during the protected time is a significant fraction of the bottleneck link bandwidth, severe

congestion may be inevitable. Even after the protected time, the changes in network conditions

caused by PCC flows that consume a large fraction of the bandwidth are undesirable. In any

case, a link in the inner network dominated by PCC flows should be rare since TCP flows make

up between 90% and 95% of today’s Internet traffic.

For these reasons it is vital that the condition of a sufficient level of statistical multiplexing holds

and that the PCC flows do not consume too large a fraction of the bandwidth of the bottleneck

link. By continuously monitoring the packet loss rate (e.g., through probe packets) and correlat-

ing it with the on- and off-times of a PCC flow, it is possible to estimate the impact of the flow

on the network conditions. If the PCC flow causes very large variations in the loss rate when it is

switched on or off, the flow should be suspended permanently. With this extension it is possible

to use PCC in environments where it is unclear whether the condition of a sufficient level of

statistical multiplexing is fulfilled.

4In our implementation, we use an exponentially weighted moving average of past PCC rates, but as noted in
requirementR3, other options are possible.
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Fixed On-Time

Through the continuous evaluation, a flow stays on for a variable amount of time (possibly for the

whole session if network conditions permit) before being suspended. Applications that require

a fixed on-time to transmit a certain amount of data but are flexible with regard to the time they

are turned off, may reverse this behavior. It is possible to modify PCC so that flows stay on for a

time ofT and during that time determine how long they have to be suspended in order to be TCP-

friendly. However, under such circumstances the value ofT should be within reasonable bounds

of the timescale over which changes in the network conditions occur. If network conditions

deteriorate significantly after a number of PCC flows are turned on, it is not acceptable for a

congestion control mechanism to not react at all for a timeT if T is much larger than the time

over which the change occurs. Furthermore, network conditions might already have improved

when the flows are finally suspended in which case suspending the flows would be futile.

Probe While Off

PCC flows may on average receive less bandwidth than competing TCP flows since a flow that

has been turned off may resume only after a time ofT , even if network conditions improve

earlier. This degrades PCC’s performance, particularly ifT is large. In order to improve average

PCC throughput, flows that are off could monitor network congestion by sending probe packets

at a very low rate from the sender to the receiver. The rateROFF produced by the probe packets

needs to be taken into account in Equations (4.1) and (4.3) by including an additional factor

(1� p) �ROFF � T .

If the loss rate and the round-trip time of the probe packets signal thatRTCP has improved, a flow

that has been turned off may be turned on again immediately, without waiting for the remainder

of T to pass, and without performing an initialization step. This may be done only if, under the

new network conditions, all experiments within the lastT interval would have been successful.

If the congestion situation worsens later on, it must be checked whether any of the experiments

during the lastT interval would have failed. If this is the case, the flow must be turned off again.

Only after the last entry in setP has timed out may the flow resume normal operation. ForProbe

While Offto work correctly, it is of major importance that estimating the network parameters is

independent of the packet rate at which the measurements are performed.
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Probe Before On

In PCC, a flow is turned on upon initialization. This has two drawbacks. First, it violates the idea

of exploring the available bandwidth as in TCP slow-start. Second, the flow may be turned off

immediately after the initialization is complete, so that the user perceives only a brief moment

where the application seems to work, before it is turned off. An alternative would be to send

probe packets at an increasing rate before deciding whether or not to turn on the flow. Only after

the parameters have been estimated and the random experiment has succeeded will real data for

the flow be transmitted.

The current version of PCC does not includeProbe Before Onor Probe While Off. The drawback

of Probe Before Onis that bandwidth is wasted by probe packets and that the initial startup of

a flow is delayed byT 0. Probe While Offimproves PCC performance under quickly changing

network conditions but leads to more frequent changes between the states “on” and “off”, which

is likely to be distracting to the user of the application. The mechanism can be improved by

including a threshold, so that the flow is turned on again only if the available bandwidth increases

significantly.

4.5 Example of PCC Operation

To provide a better understanding of the behavior of PCC, let us demonstrate how PCC operates

by means of an example. As depicted in Figure 4.2, the sender starts transmitting at the rate

determined by the application. AfterT 0 = 10 seconds the receiver arrives at an initial estimate

of RNA = 100 kBit/s andRTCP = 80 kBit/s. Furthermore, let us assume that the application

developer decided thatT = 50 seconds is a good value for the given application. Nowp can be

calculated as:

p =
80 kBit/s
100 kBit/s

= 0:8

The value ofp is included in the setP andp0 is calculated since we are in the firstT interval and

have to make up for the data transmitted during the protected time.

p0 = p� 10s � (100 kBit/s� 80 kBit/s)
50s � 100 kBit/s

= 0:8� 0:04 = 0:76
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Figure 4.2: Example of PCC operation

Now a random number is drawn from the interval(0; 1], deciding whether the flow will stay on

or be turned off. Given a high level of statistical multiplexing, this will result in roughly 1 out

of 4 PCC flows being turned off, with the aggregation of the remaining PCC flows using a fair,

TCP-friendly share of the bandwidth.

Let us assume that the random number drawn is smaller thanp0 and that the flow will stay in the

on-state. As depicted in Figure 4.2, at some later point in time, the bandwidth required by the

application increases toRNA = 200 kBit/s. A new value forp is then calculated as follows:

p =
80 kBit/s

200 kBit/s � 0:8 = 0:5

This value forp is saved to the setP for later use. The adjusted probabilityp0 has to be calculated

based on the past value ofp0.

p0 =
80 kBit/s

200 kBit/s � 0:76 �
10s � (100 kBit/s� 80 kBit/s)

50s � 200 kBit/s � 0:76
= 0:5

Let the random number drawn for this decision be below0:5 so that the flow remains on. A few

seconds after this decision the TCP-friendly rate drops toRTCP = 40 kBit/s. Consequently new
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values forp andp0 are calculated:

p =
40 kBit/s

200 kBit/s � 0:8 � 0:5 = 0:5

p0 =
40 kBit/s

200 kBit/s � 0:76 � 0:5 �
10s � (100 kBit/s� 80 kBit/s)
50s � 200 kBit/s � 0:76 � 0:5

= 0:47

The valuep is stored inP . Again, let the random number drawn be belowp0.

At T 0 + T = 60 seconds two things happen: first, the data transmitted during the protected

time need no longer be accounted for since PCC has made up for that during the pastT interval.

Thereforep0 is no longer calculated. Second, the first value withinP times out and is removed

from the set. If the network situation has not changed this will result in the following new value

for p:

p =
40 kBit/s

200 kBit/s � 0:5 � 0:5 = 0:8

This time let us assume that the random number is larger thanp. As a consequence the flow is

suspended for the nextT interval before it may start again with a protected time.

It should be noted that this example was designed to demonstrate how PCC works, and the

values used here may not be reasonable for real scenarios. Usually, the protected time is much

shorter than 10 seconds, random experiments will be more frequent as network conditions change

continuously, and an application rate of five times the TCP-friendly rate strongly indicates that

the network is simply not provisioned for the application.

4.6 Simulations

In this section, we use network simulation to analyze PCC’s behavior. Simulations are based

on the dumbbell topology (Figure 4.3) since it is sufficient to analyze PCC fairness, and the

results can be compared to those of other congestion control protocols evaluated with the same

topology. For the same reason, simulations are carried out with thens-2 network simulator

[BEF+00], commonly used to evaluate such protocols. For the routers, drop-tail queuing (with a

buffer size of 50 packets) is used as queuing strategy. We use the standardns implementation of

TCP SACK for the flows competing with PCC.
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Figure 4.3: Simulation topology

4.6.1 TCP-Friendliness

A typical example of PCC behavior is shown in Figure 4.4. For this simulation, 32 PCC flows and

32 TCP flows are run over the same bottleneck link with 32 MBit/s capacity. At an application

sending rate of 750 kBit/s, the PCC flows should ideally be in the on-state for two thirds of the

time. In this example,T is set to60 seconds, leading to an expected average on-time of120

seconds. The graph depicts the throughput of one sample TCP flow and one sample PCC flow, as

well as the average throughput of all 32 PCC flows. The starting time of the PCC flows is spread

out over the first50 seconds to avoid synchronization.
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Figure 4.4: PCC and TCP throughput

The TCP rate shows the usual oscillations around the fair rate of 500 kBit/s. PCC’s behavior is

nearly perfect, with an average rate that closely matches the fair rate and an on-off ratio of two

to one. Naturally, not all of the 32 PCC flows achieve exactly this ratio; some stay on for more,

some for less time.
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While 64 flows in total may not be considered a high level of statistical multiplexing, it suffices

to render the overall network conditions relatively independent of the behavior of a single flow.

Simulations with a higher number of flows resulted in very similar behavior.

4.6.2 Intra-Protocol Fairness

Usually, it is desirable to evenly distribute the necessary off-times over all PCC flows instead

of severely penalizing only a few. To examine PCC’s intra-protocol fairness, a simulation setup

similar to the previous one is used, yet the number of concurrent PCC and TCP flows varied

between 2 and 128. The probability density function of the throughput distribution from these

simulations is shown in Figure 4.5. As expected, the throughput range is larger for PCC. The

coefficient of variation (standard deviation over mean) for PCC throughput is 15% compared to

a TCP coefficient of variation of only about 3%, resulting from the timescale for changes in the

states of the PCC flows being60 seconds instead of a few RTTs for TCP flows.
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Figure 4.5: Distribution of flow throughput

There is a direct tradeoff between the parameterT and the intra-protocol fairness. Long on-times,

achieved by a largeT , are desirable for many applications but they are offset by a decrease in

intra-protocol fairness as other PCC flows may be suspended for a long period of time. Taken to

the extreme, for very largeT , flows may stay on for the whole duration of the session, or they

are not turned on at all, leading to a form of distributed admission control scheme.
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4.6.3 Responsiveness

In addition to inter- and intra-protocol fairness, sufficient responsiveness of a flow to changes

in the network conditions is important to ensure acceptable protocol behavior. TCP adapts al-

most immediately to an increase in congestion (manifest in the form of packet loss). Through

the continuous evaluation at timescales of less thanT , as described in Section 4.4.4, PCC can

react nearly as fast as TCP to increased congestion, however, it will react to improved network

conditions on a timescale ofT . Figure 4.6 depicts the average throughput of 32 PCC flows, again

with parameterT set to60 seconds, and 32 TCP flows. A rather dynamic network environment

is chosen where the loss rate increased abruptly from 2.5% to 5% from time200 seconds to300

seconds and from time400 seconds to420 seconds.
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Figure 4.6: Loss bursts

When the loss rate changes at time200 seconds, PCC does not adapt as fast as TCP but still

achieves an overall average rate that is quite close to the TCP rate after only a few seconds. 60

seconds later we can see a little spike in the average PCC rate, resulting from the PCC flows

that reenter the protected timeT 0 to probe for bandwidth once their off-time is over. With a

randomized offset as mentioned in Section 4.4.3, this spike can be avoided. Since the loss rate

is still high at that time, the average PCC rate once again settles at the appropriate TCP-friendly

rate shortly thereafter. As soon as the loss rate is reduced to its original value, the probability

that suspended flows reentering the protected time will immediately be suspended again (and

the probability that the random experiment of flows in the on-state will fail) decreases. Thus,

after time300 seconds, the random experiments of more and more flows succeed, until about

50 seconds later the TCP-friendly rate is reached again. Although PCC reacts more slowly than

TCP, the average throughput of TCP and PCC up to time350 seconds is very similar. In contrast

to long periods with a high loss rate, short loss spikes (or in general a very high variability in
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the network conditions) hurt PCC performance much more than TCP performance. When the

loss rate increases again at time400 seconds, suspended PCC flows will stay in the off-state

for at least60 seconds, while the actual congestion persists for only20 seconds. From the

time the congestion ends until the time the PCC flows are allowed to reenter the protected time,

TCP throughput is considerably higher than PCC throughput. However, we can also see from

the graph that during periods of congestion PCC throughput does not quite drop to the level of

TCP throughput but remains slightly higher. In Section 4.6.5 on PCC throughput for different

application sending rates we will analyze this effect in more detail.

4.6.4 Varying Off Times

As discussed in the protocol section, the parameterT plays a major role in terms of usability

of PCC and with respect to protocol fairness. To analyze the impact of the parameter, we set

up a simulation scenario with 32 PCC and TCP flows over a common bottleneck of 32 MBit/s

with a PCC application bit rate of 750 kBit/s. An additional 32 TCP flows are started every 200

seconds and stay on for 100 seconds for the whole duration of the experiment of 1000 seconds to

introduce changes in the network conditions and force PCC to adjust the number of PCC flows.

Figure 4.7 shows TCP and PCC throughput and throughput variance for differentT , averaged

over a number of experiments. WhenT is low, the frequent protected times of PCC hurt TCP

performance. The largerT gets, the less often PCC flows restart with a new protected time

and the more likely it is that PCC flows cannot immediately make use of improved network

conditions, since flows are suspended for longer periods of time. ForT � 160, the latter effect

outweighs the former, and PCC throughput drops below TCP throughput.5 Furthermore, large

values forT reduce PCC’s intra-protocol fairness (see Section 4.6.2).

4.6.5 Fairness at Different Application Sending Rates

Ideally, no PCC flows should be suspended as long as the PCC application sending rate is below

the TCP-friendly rate. For higher application sending rates the average PCC rate should remain

at exactly the fair rate through the use of the random experiments. In Figure 4.8 we notice that an

average PCC rate of exactly the fair rate is not reached when the application sending rate equals

5This value forT is not fixed for all network conditions but depends on the particular simulation setup (i.e.,
topology, number of flows, and buffer size at the bottleneck).
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Figure 4.7: PCC with different off times

the fair rate but for an application sending rate that is about 25% higher. The latter effect can be

explained by PCC’s susceptibility to dynamic network conditions. TCP’s typical sawtooth-like

sending rate results in variations in the network conditions which cause undue suspension of

PCC flows.

When we compare the average PCC throughput to TCP throughput for high PCC application

sending rates, we find that PCC throughput and thus PCC’s aggressiveness continues to increase

with the application sending rate once the fair rate has been reached. The effect of increased

aggressiveness at higher application sending rates can be attributed to the TCP model used by

PCC. As stated in [PFTK00], the TCP model is based on the so-called loss event rate. A loss

event occurs when one or more packets are lost within a round-trip time, and the loss event rate is

consequently defined as the ratio of loss events to the number of packets sent. The denominator

of the loss-event rate increases as more and more packets are sent during a round-trip time due
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Figure 4.8: Comparison with estimated TCP-friendly rate

to a higher application sending rate. At the same time, the number of loss events does not

increase to the same extent since more and more lost packets are aggregated to a single loss

event. An in-depth analysis of this effect can be found in [RR99]. When relating the estimated

TCP-friendly rate at different application sending rates to the average PCC rate achieved in these

simulations, it becomes obvious that PCC’s aggressiveness is not caused by PCC’s congestion

control mechanism but by the dependence of the TCP model on the measurement of the loss

event rate at sending rates close to the actual TCP rate. If the measurement is performed at a

sending rate that is much higher or lower than the rate of a TCP flow, the resulting loss event rate

is likely to be different from the one experienced by TCP.

4.6.6 Low Levels of Statistical Multiplexing

As stated in Section 4.4.1, PCC is suitable for environments where the number of PCC flows

is sufficiently high or PCC throughput represents only a small fraction of overall throughput

on the bottleneck link. By continuously monitoring the loss rate, a PCC flow should be able

to tell whether switching it on significantly changed the network conditions and thus the above

requirements are not met. To analyze PCC behavior in such an environment, we chose the

following simulation setup. Four PCC flows and four TCP flows compete for the same bottleneck

link with a capacity of 2 MBit/s. The application rate is set to 500 kBit/s, so that the PCC flows

alone are able to completely fill the link and a fair resource distribution is reached for two PCC

flows in the on state.
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Figure 4.9: Throughput and loss rate

Figure 4.9 depicts cumulative PCC and TCP throughput as well as the overall loss rate at the

bottleneck. Averaged over the simulation time, PCC and TCP achieve about the same throughput.

About half the time, a fair bandwidth distribution is achieved. For most of the other half of the

time, either one or three PCC flows are on. Only for a very short period of time does PCC

occupy the link completely before backing off a few seconds later. Whenever a new PCC flow

is switched on, we can observe a distinct increase in the loss rate at the bottleneck. Thus, loss

monitoring would help to detect that traffic conditions are determined to a large degree by the

PCC flows.

When running the same experiments with a higher number of TCP flows, the PCC flows only

have a marginal effect on the network conditions and do not harm the TCP flows even if more

than the ideal number of PCC flows are on at some point in time. If the number of PCC flows

increases, the probability that far too many flows are on at a certain point in time is very small.

Even more so, if many PCC flows compete with few TCP flows, the large variations in throughput

caused by TCP’s AIMD congestion control cause more than the fair number of PCC flows to be

suspended, as discussed in Section 4.6.3.

4.6.7 Fairness for Different Combinations of Flows

Figure 4.10 shows the average throughput achieved by PCC for different combinations of PCC

and TCP flows when the fair rate is 500 kBit/s and the application sending rate is 750 kBit/s.
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Generally, PCC throughput increases with the number of TCP flows since the higher the level

of statistical multiplexing, the lower the variations in the network conditions that degrade PCC

performance. This effect is the more pronounced, the lower the number of PCC flows is. For a

more detailed analysis of PCC and further network simulations we refer the reader to [Dam01].
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Figure 4.10: Average PCC throughput for different numbers of flows

PCC, together with the previously discussed TFRC protocol, can provide suitable congestion

control for a wide variety of unicast applications. In particular, TFRC and PCC can be combined

in a way that an application uses TFRC as long as the TCP-friendly rate is within the adaptive

range of the application, and the application switches to PCC as soon as the TCP-friendly rate

falls below the lower bound of the adaptive range. Whereas unicast is sufficient for many applica-

tions, some applications, in particular those streaming media to a number of participants, benefit

significantly from the use of multicast routing instead of unicasting. In the remainder of this dis-

sertation, we will identify requirements for and important components of multicast congestion

control and present a comprehensive multicast congestion control framework that complements

the unicast protocols presented thus far.



Chapter 5

A Short Introduction to Multicast

For unicasting, packets are routed through the network from a source to a single destination.

Particularly in the area of group communication, a number of applications exist where multiple

receivers form a group that has to be supplied with the same data. If the number of receivers

is small compared to the number of nodes in the network, it is possible to unicast the data to

each of the receivers. If most or all of the nodes of the network are receivers, broadcast is a

useful paradigm. Multicast covers the middleground between those two extremes, where a group

is composed of a substantial number of receivers but is still small compared to the size of the

network. Sending a message to a group of receivers is called multicasting, and the corresponding

algorithm to distribute the packets is called multicast routing. To this end, a multicast tree is con-

structed between the sender(s), and the receivers and data packets are duplicated and forwarded

along multiple outgoing interfaces of a router, where the multicast tree splits. With multicast, a

given packet is sent only once over each link of the multicast tree (Figure 5.1).

Deering and Cheriton proposed a receiver-based version of IP multicast in [DC90]. IP multi-

cast follows the concepts of IP-style semantics (packets can be multicast at any time without

connection setup), open groups (sources do not keep track of group membership, and any re-

ceiver is allowed to join), and dynamic groups (receivers can join and leave at any time during

the multicast session). Multicast routing was first tested on a larger scale for the transmission

of an IETF meeting in 1992. As of yet, widespread multicast deployment is complicated by the

fact that it “requires a non-trivial amount of state and complexity in both core and edge routers”

[Alm00] which contradicts the paradigm that complexity should be pushed towards the edges

of the network. Also, error localization, network management, and accounting are difficult, and

therefore ISP’s hesitate to deploy it. Nevertheless, recent efforts show an increased interest in the
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Figure 5.1: Unicast vs multicast data distribution

deployment of multicast IP [DLL+00]. The potential savings in bandwidth and the possibility

to offer additional services to users may offset the additional management overhead incurred by

multicast.

5.1 Multicast Routing

A multicast session is identified by the multicast group address. In IPv4, the address range from

224.0.0.0 to 239.255.255.255 is reserved for multicast. Receivers may join and leave a session

at will and are included in and excluded from the multicast distribution tree accordingly. Various

different multicast routing protocols can be used to construct such a distribution tree.

Multicast routing protocols can be divided into intra-domain protocols, to be run within an ad-

ministrative domain (AD), and inter-domain protocols to be run between ADs. The first multicast

routing protocol, used during the early stages of multicast deployment in the Internet, is DVMRP

[WPD88]. DVMRP creates a reverse-shortest-path-tree and multicast packets are sent along the

edges of the tree. If packets arrive at leaf routers that have subscribers for the multicast group,
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the packet is forwarded to the local area network, otherwise, a so-called prune message is gen-

erated and sent toward to the next router on the path towards the sender. Intermediate routers

that have received prune messages on all their downstream interfaces generate a prune message

themselves. Gradually, the multicast tree is pruned such that only routers on the paths to those

receivers interested in the session continue to receive packets for the group. Periodically, prune

state in the routers is discarded, and the whole network is flooded with data until pruning sets in

again. DVMRP works well in dense networks where most of the receivers are part of the mul-

ticast group but the periodic flooding produces excessive overhead when the number of routers

increases and only a small fraction of receivers is part of the group. More advanced dense mode

routing protocols are MOSPF [Moy94], a multicast variant of the Open Shortest Path First rout-

ing algorithm for unicast, and Protocol Independent Multicast Dense Mode (PIM-DM) [ANS02].

For intra-domain routing in arbitrary (preferably sparsely populated) networks, a sparse mode

version of PIM called PIM-SM [FHHK02, DEF+96] is a promising solution. Receivers subscribe

to a central rendezvous point (RP), and the subscription messages create forwarding state in the

routers on the paths towards the RP. The multicast sender establishes a unicast tunnel with the

RP, and from there, data packets sent to the group are only forwarded along network paths to

actual receivers. Through the explicit join messages a flooding of the network is unnecessary.

However, the RP is a single point of failure and a hot spot for traffic. The algorithm can be

ameliorated by a bootstrap mechanism that selects alternative RPs in case one RP fails and by

switching from a multicast tree rooted at the RP to a multicast tree rooted at the sender. Both

options are supported in PIM-SM, as described in [FHHK02].

In addition to a multicast routing algorithm, IP multicast requires a group management protocol

which enables receivers to join and leave groups. In IP networks, group management is provided

by the Internet Group Management Protocol (IGMP) [Fen97], which is run between the receivers

and the last-hop router. With IGMP packet forwarding by the last-hop router into his LAN is

turned on and off.

5.2 Multicast Transport Protocols

Multicast IP only provides routing functionality in the way plain IP does for unicast. In addition,

multicast transmission requires a transport protocol which in the simplest case is UDP. No mul-

ticast variant of TCP exists, but a number of enhanced transport services have been implemented

on top of multicast UDP in case multicast applications need a more sophisticated transport layer.
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The Real-Time Transport Protocol (RTP) [SCFJ96] is currently the most widely used multicast

transport protocol in the Internet. It is designed to carry media flows such as video and audio

streams. To be able to support a wide variety of different media types, RTP can be tailored to the

specific needs of a medium using profiles and payload type definitions. It is complemented by

the RTP Control Protocol (RTCP), which provides meta-information such as reception quality

feedback, participant identification, etc. to all session participants. RTP is typically integrated

into the application itself. It follows the concept of application level framing (ALF) [CT90]

which preserves application data units as the pipelining units (i.e., data packets). Recent RTP

drafts [SCFJ01, SC01] mandate the use of an appropriate congestion control mechanism, how-

ever no specific congestion control mechanism is specified since application requirements will

vary depending on the type of media to be transported.

RTP is well suited to transport various types of non-interactive media streams, but more complex

mechanisms are necessary for distributed interactive media, media that involve communication

over a computer network as well as user interactions with the medium itself. RTP/I [MHKE01] is

derived from RTP and reuses many of its components while it is adapted to meet the demands of

distributed interactive media. By identifying and supporting the common aspects of distributed

interactive media RTP/I allows the reuse of key functionality in form of generic services.

The Scalable Reliable Multicast (SRM) protocol described in [FJL+97] provides a simple relia-

bility mechanism for multicast transmission. The data as well as repair requests and responses

are multicast to the receivers. Repair request and responses can be TTL limited or limited to a

so-called local recovery group to reduce the burden on receivers not involved in the repair pro-

cess. To prevent a missing packet from causing a flood of repair request (or a flood of subsequent

responses), requests and responses are delayed by a random amount of time. If the another re-

quest is seen during that time, the timeout period is increased exponentially. A repair request

is only sent if the missing packet is not repaired before the timer expires. Like RTP, SRM uses

application-level framing for the packetization of the data.

The Pragmatic General Multicast (PGM) framework [SCG+01] provides reliable, duplicate-free,

ordered or unordered multicast transmission. PGM makes use of network elements (e.g., located

at routers within the network) to provide aggregation of negative acknowledgements from the

receivers, constrained forwarding of repair information, and similar tasks in a scalable fashion.

Likewise, Generic Router Assist (GRA) [CST00], proposes generic mechanisms to be imple-

mented at routers to assist transport protocols with the above tasks. Further protocols exist to

describe, announce, and initiate multicast sessions [Han98, HJ98, HSSR99] which are beyond
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the scope of this dissertation. Instead, we will concentrate on components for multicast transport

that will help such protocols to scale to very large receiver sets.

Many of the aforementioned protocols rely on feedback from the receivers and use some form of

feedback suppression like SRM. If no network elements as in the PGM or GRA framework exist,

the design of scalable multicast feedback mechanism that cater to the specific requirements of an

application is not easy. In the next chapter we will discuss existing feedback control mechanisms

and examine how they can be modified to meet specific application requirements.

These feedback control schemes also form the most important component of multicast conges-

tion control. The lack of multicast congestion control has been identified as one of the factors

inhibiting widespread deployment of multicast. Citing from [MRBP98], “in today’s Internet, re-

liable multicast protocols could do great damage through causing congestion disasters if they are

widely used and do not provide adequate congestion control”. We will base the multicast con-

gestion control mechanism that is developed in this dissertation on the aforementioned feedback

suppression mechanisms.
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Chapter 6

Multicast Feedback Control

6.1 Introduction

Many multicast protocols require receiver feedback. For example, feedback can be used for neg-

ative acknowledgements in reliable multicast [FJL+97], for control and identification functional-

ity for multicast transport protocols [SCFJ96], for status reporting from receivers for congestion

control [Riz00], and for the reporting of allocation clashes in multicast address allocation mech-

anisms [Han98]. In such scenarios, the size of the receiver set is potentially very large. Sessions

with thousands or even millions of participants may be common in the future, and without an

appropriate feedback control mechanism severe feedback implosion is possible, overloading the

sender and the network links.

Some multicast protocols arrange receivers in a tree hierarchy. This hierarchy can be used to

aggregate receiver feedback at the inner nodes of the tree to effectively solve the feedback im-

plosion problem. However, in many cases such a tree will not be available (e.g., for satellite links)

or cannot be used for feedback aggregation (e.g., in networks without router support). For this

reason, we will focus on feedback control using timer-based feedback suppression throughout

the remainder of the chapter.

Pure end-to-end feedback suppression mechanisms do not need any additional support except

from the end-systems themselves and can thus be used for arbitrary topologies. The basic mech-

anism of feedback suppression is to use random feedback timers at the receivers. Feedback is

sent when the timer expires unless it is suppressed by a notification that another receiver (with a

smaller timeout value for its feedback timer) already sent feedback.
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The principal purpose of feedback suppression mechanisms is to prevent a feedback implosion

in case feedback from a potentially very large group of responders is required. Usually, these

mechanisms assume that it is not necessary to discriminate between feedback from different

receivers. However, for many applications this is not the case; feedback from receivers with cer-

tain response values is preferred (e.g., highest loss or largest delay). We present modifications to

timer-based feedback suppression mechanisms that introduce such a preference scheme to dif-

ferentiate between receivers. The modifications preserve the desirable characteristic of reliably

preventing a feedback implosion. Depending on the amount of knowledge about the distribution

of the values to be reported we distinguish extremum detection and feedback bias. With the for-

mer we just detect extreme values without forcing early responses from receivers with extreme

values. With the latter we exploit knowledge about the value distribution by biasing the timers

of responders.

6.2 Related work

The necessity to employ scalable feedback algorithms in order to avoid feedback implosion has

been recognized for a long time. Besides hierarchical [Gro97, Hof96, PSLB97] and token-based

[CM83, CM84, WMK94] approaches several random distributions have been studied: Floyd et

al. [FJL+97, SEFJ97] use equally distributed timers for their SRM (Scalable Reliable Multicast)

protocol. The duration of the response interval is adjusted according to the individual network

latencies and the number of responses received. The latter method is inspired by various medium

access protocols. Bolot, Turletti, and Wakeman [BTW94] use an exponentially growing sub-

space of randomly assigned keys for their IVS video-conferencing system.

The recent advancements in the deployment of multicast in the Internet have further stimulated

the interest in large multicast groups. Nonnenmacher and Biersack [NB99] study the statistical

properties of three different timer distributions. Based on analytical and simulation results they

derive optimized parameters for the algorithms and recommend exponential feedback suppres-

sion as the one most suited for large groups. Lately some research has also been concerned

with group size estimation based on feedback messages. Liu and Nonnenmacher [LN00] use the

Poisson approximation for a maximum likelihood estimation of the group size. Friedman and

Towsley [FT99] base their study on the binomial distribution.

The schemes discussed so far do not discriminate between different feedback values. Feedback

from each receiver is equally important. A feedback scheme with a different focus, namely



6.2 Related work 67

to gradually improve the values reported by the receivers, is presented in [BG99]. Receivers

continuously give feedback to control the sending rate of a multicast transmission. Since the

lowest rate of the previous round is known, feedback can be limited to receivers reporting this

rate or a lower rate. It is necessary to further adjust the rate limit by the largest possible increase

during one round to be able to react to improved network conditions. After several rounds, the

sending rate will reflect the smallest feedback value of the receiver set. While not specifically

addressed in the paper, this scheme could be used in combination with exponential feedback

timers for suppression within the feedback rounds to reliably prevent a feedback implosion.

However, with this scheme it may still take a number of rounds to obtain the optimum feedback

value.

Other algorithms not directly concerned with feedback suppression but with the detection of ex-

tremal values have been studied in the context of medium access control and resource scheduling

[WJ85, JW89]. The station allowed to use a shared resource is the one with the smallest con-

tention parameter of all stations. A simple mechanism to determine this station is to use a window

covering a subset of the possible contention parameters. Only stations with contention parame-

ters within this window are allowed to respond and thus to compete for the resource. Depending

on whether zero, one, or several stations respond, the window boundaries are adjusted until the

window only contains the minimum contention parameter. In the above papers, strategies how

to optimally adjust the window with respect to available knowledge about the distribution of the

contention parameters are discussed.

To our knowledge, the only earlier work that is directly concerned with altering a non-topology

based feedback suppression mechanism to solicit responses from receivers with specific metric

values is presented in [DA01]. The authors discuss two different mechanisms, Targeted Slotting

and Damping (TSD) and Targeted Iterative Probabilistic Polling (TIPP). For TSD, response val-

ues are divided into classes, and the feedback mechanism is adjusted such that response times

for the classes do not overlap. Responders within a better class always get to respond earlier than

lower-class responders. Thus, the delay before feedback is received increases linearly with the

number of empty high classes. Furthermore, it is not possible to obtain real values as feedback

without the assignment of classes. To prevent implosion when many receivers fall into the same

class, the response interval of a single class is divided into subintervals and the receivers are ran-

domly spread over these intervals. It was shown in [NB99, FW01] that a uniform distribution of

response times scales very poorly to large receiver sets. TIPP provides better scalability by using

a polling mechanism based on the scheme presented in [BTW94], thus having more favorable

characteristics than uniform feedback timers. However, separate feedback rounds are still used
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for each possible feedback class. This results in very long feedback delays when the number

of receivers is overestimated and the number of feedback classes is large. Underestimation will

lead to feedback implosion. As a solution, the authors propose estimating the size of the receiver

set before starting the actual feedback mechanism. Determining the size of the receiver set re-

quires one or more feedback rounds. In contrast, the mechanisms discussed in this chapter only

require a very rough upper bound on the number of receivers and will result in (close to) optimal

feedback values within a single round. A further assumption for TSD and TIPP is that the distri-

bution of the response values is known by the receivers. In most real scenarios this distribution is

at best partially known or even completely unknown. If the distribution were known, a feedback

mechanism could be built that would guarantee optimum response values and at the same time

prevent feedback implosion. Such a mechanism is presented in section 6.8.3.

6.3 Analysis of Three Basic Feedback Algorithms

In this section, we examine three feedback algorithms that are prototypical for algorithms cur-

rently being deployed or recently proposed. They all address theat-least-onescenario in which a

single response to a request suffices but multiple identical responses from different group mem-

bers will do no harm except for the superfluous network load. An example is reliable multicast

where a single feedback message suffices to trigger retransmission by the sender. We assume

that the original message is multicast to the whole group, whereas the corresponding responses

are unicast to the sender. In order to allow for the suppression of further responses, the sender

confirms the reception by multicasting a confirmation back to the group.

Compared to the case where the responses themselves are multicast, this scenario causes less

traffic but increases the network-latency.1 Furthermore, it can also be applied in single-source

multicast networks where only the sender but not the receivers can multicast packets. Mul-

ticasting or unicasting feedback does not affect the general suppression characteristics of the

investigated feedback mechanisms. For the mathematical analysis we additionally assume the

latency to be constant for all group members. The question of packet-loss and heterogeneous

network latencies will be dealt with in the following sections. It will be shown that in the latter

case the feedback latency is further reduced.

1Note that for e.g. unidirectional satellite links [DDI+99, Fuh00] the network latency isnot increased since all
traffic is passed through a central network node.
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6.3.1 Equally Distributed Feedback

The classical algorithm for feedback suppression with random timers uses equally distributed

response probabilities. A typical implementation of this algorithm is SRM [FJL+97]. The algo-

rithm2 can be described as follows:

Algorithm 1 (Equally Distributed Feedback):

Let T be a constant upper time limit. Upon reception of a feedback request, samplex 2 [0; 1)

from a uniform distribution and start a timert. If a feedback response is confirmed beforet � xT

holds, the clock is stopped and no feedback response is sent. Otherwise, a response is sent as

soon as the condition is satisfied.

Let n be the number of potential responders. We begin our analysis by noting that(1 � x)n is

the probability that allxi with i = 1 : : : n are larger thanx. Hence the probability thatxmin =

minfx1; : : : ; xng 2 [x; x + dx] is n(1� x)n�1dx. The time corresponding to that choice ofx is

t = xT . Hence we obtain as expected value of the feedback latencyL

E[D] = T

Z 1

0

n(1� x)n�1x dx =
T

n+ 1
(6.1)

Since the feedback responses are distributed equally over the intervalT the expected value for

the numberR of responses is given by

E[M ] = n
�

T
(6.2)

where� is the network latency.

6.3.2 Independent Feedback Intervals

Let us now study an algorithm that makes use of of the concept of feedback intervals [Vog99]. It

can be phrased as follows:

Algorithm 2 (Independent Feedback Intervals):

Let � be the network latency andp 2 (0; 1] a constant. Upon reception of a feedback request

samplex 2 [0; 1) from a uniform distribution, start a timert, and immediately send a response

2We do not consider the adaptation of the answer interval to the group size and network-latency here. This topic
will be discussed in the following sections.
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if and only ifx < p. If after the timet = � no response has been confirmed start a new interval

(i.e., act as if another feedback request was received).

Again, letn be the number of hosts that can send a response. The number of feedback intervals

can easily be calculated as1 + (1 � p)n + (1 � p)2n + � � � = 1
1�(1�p)n

. Hence the number of

additional intervals after the first interval is 1
1�(1�p)n

� 1 = (1�p)n

1�(1�p)n
. From this we immediately

obtain the expected value for the feedback latency:

E[D] = �
(1� p)n

1� (1� p)n
(6.3)

The algorithm does not guarantee the reception of a feedback message within a certain time limit

T .

The expected value for the number of feedback responses is given by the product of the number

of intervals and the expected value for each interval. The latter is given bynp. Hence we obtain:

E[M ] =
np

1� (1� p)n
(6.4)

This seems surprising since one might have expectednp as result arguing that only the last

interval contributes to the number of responses and thus the number of intervals must not be

taken into account. Following this approach, one would however have to use the expected value

of responses under the condition that at least one response is sent. Both approaches arrive at the

same result.

A contour plot of the two expected values is shown in Figure 6.1. In order to simplify the

comparison with other feedback algorithms the response probabilityp has been expressed as

p = 1=N which is a reasonable value.

6.3.3 Exponential Feedback Suppression

A third alternative originally proposed by Bolot, Turletti, and Wakeman [BTW94] and in an

improved version extensively studied by Nonnenmacher and Biersack [NB99] is the exponential

adaptation of the feedback probability (or the selection of the timer value from an exponential

distribution). For feedback suppression with exponentially distributed timers, each receiver gives

feedback according to the following mechanism:
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Figure 6.1: Feedback latency (left) and feedback responses (right) for independent feedback
intervals (double-logarithmical plot). Contour lineslogarithmically indicate values from10�1�
to 104� and surplus responses from102 to 10�5.

Algorithm 3 (Exponential Feedback Suppression):

Let N be an estimated upper bound on the number of potential responders3 and T an upper

bound on the time by which the sending of the feedback can be delayed in order to avoid feedback

implosion.

Upon receipt of a feedback request each receiver draws a random variablex uniformly dis-

tributed in(0; 1] and sets its feedback timer to

t = T max(0; 1 + logN x) (6.5)

When a receiver notices that another receiver already gave feedback, it cancels its timer. If

the feedback timer expires without the receiver having received such a notification, the receiver

sends the feedback message.

Extending the suggestions in [NB99], this algorithms sets the parameter of the exponential dis-

tribution to its optimal value� = lnN and additionally introduces an offset ofN�1 at t = 0 into

the distribution that further improves the feedback latency.

3The set of potential responders is formed by the participants that simultaneously want to give feedback. If no
direct estimate is possible,N can be set to an upper bound on the size of the entire receiver set.
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The expected delay until the first feedback is sent is

E[D] =
T

lnN

Z 1

1=N

(1� x)n

x
dx

� T (1� logN n) (6.6)

and the expected number of feedback messages sent is

E[M ] = N �=T

�
n

N
+

�
1� 1

N

�n
�
�
1� 1

N �=T

�n�
(6.7)

wheren is the actual number of receivers. A derivation of Equations (6.6) and (6.7) can be found

in Appendix A. From Equation (6.7) we learn thatE[M ] remains fairly constant over a large

range ofn (as long asn . N ).

A plot of these two expected values is shown in Figure 6.2. In addition, Figure 6.3 shows a

three-dimensional plot ofE[M ] for different values ofT andn, with N = 10; 000.

Figure 6.2: Feedback latency (left) and feedback responses (right) for Exponential Feedback
Suppression (double-logarithmic plot). Contour lineslinearly indicate values from0:1T to 0:9T
andlogarithmicallyindicate surplus responses from102 to 10�9.

6.4 Behavior of the Algorithms for Very Large Groups

Based on the results derived above we can now compare the suitability of these three feedback

algorithms in the context of very large networks. Concrete values for givenn andN up to106 can
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Figure 6.3: Expected number of feedback messages (withN = 10; 000)

be read off from Figures 6.1 and 6.2. For a more thorough judgment of the algorithms’ behavior

in the limit of very large groups we will further analyze the formulae derived above.

As one might expect, we need some estimation of the group sizeN in order to optimize the

algorithms’ parameters. However, good group size estimations cannot always be found. Con-

sider for example a reliable multicast transmission. Depending on where the packet loss occurs

the number of hosts that need to send a negative acknowledgement (NACK) can vary greatly

from packet to packet. If the loss occurs near the multicast sender almost all receivers might be

potential NACK-senders. Otherwise, only a few hosts need to send a NACK.

Owing to this fact it is important to design a feedback algorithm that is insensitive to large

variations of the group size. However, concerning gross underestimation of the group size a

fixed limit can be given that no algorithm studied here (i.e., an algorithm based on independent

identical hosts in a network with non-vanishing latency) can overcome:

Lemma Underestimation of the group size results in an asymptotically linear increase of the

number of feedback responses.

Proof: LetP (t) be the probability of answering before timet. Without loss of generality we can

assume thatP (t) > 0 for t > 0. ThenP (�) > 0 is the finite probability for a host to answer

before the suppression mechanism can be effective. HenceE[M ] � nP (�). On the other hand

8� > 0 : limn!1 nP (�) > 1. Thus forn!1 suppression immediately sets in att = � , and we

haveE[M ] = nP (�).
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In order to avoid this linear behavior it is desirable to operate the system such that our estimation

is an upper limit for the group size. Unlike the actual group size such a limit can usually be

estimated rather easily (e.g., one can assume that the total number of installed hosts is known to

the network provider). Due to this characteristic it is hence crucial for the feedback algorithms

to be insensitive to overestimations of the group size.

6.4.1 Equally Distributed Feedback

The equally distributed feedback algorithm shows a rather simple behavior in the limit for large

groups. Sincelimn!1E[M ] = 1 for fixedT we have to adaptT to the group size. Generally,

by eliminatingT we find a trade-off between feedback-latencyE[D] and response duplicates

E[M ]:

lim
n!1

E[D]E[M ] = � (6.8)

Although we expect a feedback latency on the order of the network latency and a number of

response duplicates of order one, the accuracy of our estimationN of the group size is cru-

cial. Overestimation or underestimation ofN linearly affects bothE[D] andE[M ]. Thus this

algorithm is not well suited for very large networks.

6.4.2 Independent Feedback Intervals

As mentioned above, collecting responses for immediate sending at the beginning of each interval

can reduce the feedback latency by up to� while it ideally preserves the number of responses.

However, rather than using this simple method we investigate a slightly different algorithm that

usesindependentintervals.

Let us now analyze this algorithm in the limit of large groups: Settingp = 1
N

andn = �N we

have in the limitN !1

E[D1] = �
e��

1� e��
=

�

e� � 1
(6.9)

E[M1] =
�

1� e��
(6.10)

As expected we see that if we underestimate the size of the group (� � 1) the number of feed-

back responses grows asymptotically linearly while the feedback latency vanishes. However, if
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we overestimate the size of the group (�� 1) we see that the feedback latency grows according

toE[D] ' �
�+���

while the number of feedback responsesE[M ]! 1.

As with the equally distributed feedback no choice of parameters can guarantee a controllable

behavior for all� 2 [0; 1]. Even worse, due to the independence of the feedback intervals we

haveE[D]E[M ] ' �
�

for � � 1. Thus, this algorithm is as unrecommendable as the previous

one for the situation under investigation.

6.4.3 Exponential Feedback Suppression

As above we setn = �N for our analysis of theN !1 limit. Additionally, we chooseT such

thatN �=T = e� = const, i.e., we set

� =
�

T
lnN (6.11)

With this adaption we now have

E[M1] = (� + e��)e� (6.12)

From the construction of the algorithm we know thatT is an upper limit for the feedback latency.

With Equation (6.6) we find accordingly

E[D1] � T (1� logN (�N)) = T logN
1

�
(6.13)

Hence, unlike in the two previous algorithms both expected values remain rather insensitive to

variations of�. In the limit�! 1=N and�! 1 both expressions remain finite. This is a strong

indication that this mechanism is well suited for very large networks. According to (6.12) the

number of duplicates changes only by a factor of 1.3679 between the two extreme casesn = 1

andn = N . Additionally, even in the worst case scenario the feedback latency remains below

the threshold ofT . From (6.11) we read that the choice of this threshold also determines the

number of expected feedback duplicates.

6.5 Unifying the Feedback Algorithms

Based on the insights gained so far we will now discuss a generalized feedback algorithm that

unifies the properties of the three algorithms.
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6.5.1 Discrete Feedback Intervals Versus Continuous Feedback Suppres-

sion

Comparing the algorithms previously studied we see that sending a response at timet with 0 <

t < � is suboptimal since no suppression can take place beforet = � but the latency is increased

compared to an immediate response att = 0. The second algorithm respects this fact by sending

feedback in intervals. It sends a certain number of responses only at the beginning of a feedback

interval of length� . No further responses are sent before the beginning of the next interval.

With the help of this insight both of the other algorithms can be improved as well. A straight-

forward general implementation of this mechanism can be phrased as follows:

Algorithm for feedback intervals Divide the interval[0; T ] into sub-intervals[k�; (k + 1)� ]

wherek 2 f0; : : : ; bT
�
cg. Send all responses that would be sent in a sub-interval at the

beginning of that sub-interval.

As we will see, this general mechanism reduces the feedback latency while it ideally preserves

the number of response duplicates. A detailed analysis of a specific version of exponential feed-

back suppression with intervals can be found in Bolot et al. [BTW94]. Here, we will therefore

focus on more principal aspects.

As depicted in Figure 6.4, the general mechanism for the introduction of feedback intervals raises

the response probability for each host att = k� toP (t+ �). That means that the hosts’ response

probability is given by a step-functionPs(t) that lies between the original functionP0(t) and

P1(t) = P0(t + �).

Since generally

E[D] =

Z T

0

t � n(1� P (t))n�1P 0(t) dt (6.14)

=

Z T

0

(1� P (t))n dt (6.15)

the feedback latency is given by the area above the functionP̂ (t) whereP̂ (t) = 1� (1�P (t))n.

Noting thatP1 results in a feedback latency that is reduced by� as compared toP0 the feedback

latency is generally reduced by�L with 0 < �L < � . ForT � � the area between the functions

P̂0 andP̂s approximates the area between the functionsP̂1 andP̂s, and we have�L ' �
2
.
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Figure 6.4: Exponential feedback with and without intervals.

However, if we slightly underestimate the network latency� the hosts will perform an additional

superfluous feedback interval. This will result in an increase of feedback responses by a factor

of N �=T . In networks with heterogeneous latencies we must hence either choose� to be the

maximal latency, or a sub-group of hosts will perform an additional superfluous feedback inter-

val. Since on the other hand overestimation of the network latency leads to a linearly increased

feedback latency,� should not be chosen too generously. Resolving this trade-off thus requires a

rather good knowledge of the network latencies which is not necessary in the case of continuous

feedback.

6.5.2 A Generalized Feedback Algorithm

Having formulated a general mechanism to transform a continuous feedback algorithm into an

interval-based feedback algorithm, we can now more deeply analyze the relationship between

the algorithms studied above. In order to do so, we transform all three algorithms into the same

representation. The specific form of the algorithm is given by a distribution functionf(t) which

determines the feedback behavior.

General feedback algorithm Upon reception of a feedback request, samplex 2 [0; 1) from a

uniform distribution. Send a feedback response as soon asx � f(t) wheret denotes the

time after the reception of the request. If however another group member’s response has

been confirmed before that time no response should be sent.
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As stated above, the distribution functionf is decisive for the feedback behavior. For the first

algorithm given in Section 6.3 we read offf(t) = t=T and similarlyf(t) = N t=T�1 for the third.

For the second algorithmf is determined by the probability for a group member to respond

before or in thekth interval. In the first interval the probability to respond isp. Hencef(t) = p

for 0 < t < � . In order to calculatef for the further intervals we note that(1 � p)k+1 is the

probability that no response is sent before intervalk + 1. Hence the probability that the first

response is sent before or in thekth interval is1 � (1 � p)k+1, i.e.,f(t) = 1 � (1 � p)k+1 for

k� < t < (k + 1)� .

In order to simplify the analysis we will now drop the notion of intervals and consider the con-

tinuous distribution functionf(t) = 1� (1� p)t=�+1. As already stated, the error that is hereby

introduced slightly increases the number of response duplicates while reducing feedback latency.

An interval-based algorithm can always be recovered by application of the mechanism described

above.

Letp(t)dt be the probability for a host to respond in the time interval[t; t+dt] under the condition

that no response was confirmed beforet (i.e., no message indicating a response was heard before

t). Then the probabilityf(t) that a response is confirmed byt is determined by the following

differential equation:

f 0(t+ �) = p(t)(1� f(t)) (6.16)

An overview of the three algorithms is given in Figure 6.5.

Assuming that we know the actual size of the group we can always choosep(0) such that with any

desired probability at least one response is sent immediately after the request was received. By

this, the feedback latency is minimized. Only in the unlikely case that no response is sent att = 0

the feedback process continues. If we are sure about the group size and no overall time limit is

given, there is no reason to modify the response probability over time. Hencep(t) = const, i.e.,

the second algorithm is optimal.

If a time limit T is given, we have to choose the response probability such thatlimt!T p(t)!1.

This is guaranteed by the first and the third algorithm. The latter furthermore takes into account,

that not receiving response confirmations can also be caused by an overestimation of the group

size and accordingly adjustsp.
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only been chosen to better visualize independent feedback intervals.)

6.6 General Considerations

6.6.1 Unicast vs. Multicast Feedback Channels

When receivers are able to multicast packets to all other receivers, feedback cancellation is im-

mediate in that the feedback that ends the feedback round is received by other receivers at roughly

the same time as by the sender.

However, the mechanism described in the previous section also works in environments where

only the sender has multicast capabilities, such as in many satellite networks or networks where

source-specific multicast [FHHK00] is deployed. In such environments, feedback is first unicast

back to the sender which then multicasts a feedback cancellation message to all receivers. This

incurs an additional delay, thus roughly doubling the feedback latency of the system (in the case

of symmetric transmission delays between the sender and the receivers and among the receivers

themselves.)
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6.6.2 Removing Latency Bias

Plain exponential feedback favors low-latency receivers since they get the feedback request ear-

lier and are thus more likely to suppress other feedback. In case the receivers know their own

latency� as well as an upper bound on the latency for all receivers�max, it is possible to remove

this bias. Receivers simply schedule the sending of the feedback message for timet+(�max� �)
instead oft.

In fact, this unbiasing itself introduces a slight biasagainstlow-latency receivers in case unicast

feedback channels are used. While the first feedback message is unaffected, subsequent dupli-

cates are more likely to come from high-latency receivers, since they will receive the feedback

suppression notification from the sender later in time.

If it is not necessary to remove the latency bias, the additional receiver heterogeneity generally

improves the suppression characteristics of the feedback mechanism, as demonstrated in [NB99].

6.6.3 Impact of Packet Loss

Since all algorithms discussed here are based on independently acting hosts, a lost response

packet does not harm the principal effectiveness of the feedback mechanism. If the response is

lost before it is confirmed by the sender, a loss rate ofp merely reduces the effective group size

from n to (1 � p)n. If on the other hand a fractionq of the group receives the feedback, the

effective group size is further reduced to(1� p)(1� q)n. Due to the algorithms’ insensitivity to

gross variations in the group size, packet loss only marginally affects the results given above.

In order to safeguard against loss of feedback cancellation messages with unicast feedback chan-

nels, we note that it may be necessary to let the sender send multiple cancellation messages in

case multiple responses arrive at the sender and/or to repeat the previous cancellation message

after a certain time interval. Loss of cancellation messages in unicast feedback is critical since a

delayed feedback cancellation is very likely to provoke a feedback implosion.

6.6.4 Message Piggybacking

The feedback requests and the cancellation messages from the sender can both be piggybacked

on data packets to minimize network overhead. In case a unicast feedback channel is used, the
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piggybacking of cancellation messages has to be done with great care. The delay introduced

by piggybacking at low sending rates may again provoke a feedback implosion. This undesired

behavior is likely to occur when the inter-packet spacing between data packets gets close to the

maximum feedback delay.

The problem can be prevented by introducing an upper bound on the amount of time by which a

cancellation message can be delayed and sending a separate cancellation message when neces-

sary. If separate cancellation messages are undesirable, the maximum feedback delayT has to

be increased in proportion to the time interval between successive data packets.

6.7 Simulation Results

To investigate the applicability of the different feedback mechanisms discussed in Section 6.3,

a simulation model of the algorithms with unicast feedback channels was studied. For an upper

limit of N = 106 hosts and a maximum feedback delay ofT = 10� we examined groups

with n = 1 to n = 106 actual hosts. To be able to abstract from a specific network topology

and independent receiver-to-receiver delays, we considered the case of unicast feedback to the

sender as discussed in Section 6.3. Note that this increases the feedback delay and the number of

responses and thus represents an upper bound for the general scenario. All results were averaged

over 2000 simulation runs to minimize the impact of statistical errors.

The feedback mechanism with independent feedback intervals and constant feedback probability

has optimal characteristics when the number of participants is known (i.e.,p = 1=n). As shown

in Figure 6.6, the average number of feedback responses is lower than that of all other mecha-

nisms without impairing the feedback latency. However, in most cases the group size is unknown

to the sender (or the feedback mechanism itself is used to estimate the group size [LN00]), and

an estimatedN has to be used. As discussed in Section 6.3.2, the feedback latency increases

proportionally to the ratio ofN to n which makes the mechanism unsuitable for such scenarios.

Equally distributed feedback does not take the group size into account and is thus not affected

by inaccurate group size estimations. While it provides the lowest feedback latency, it cannot

prevent a feedback implosion at the sender.

For exponentially distributed feedback, the number of feedback responses only varies within

the limit of the statistical errors over several orders of magnitude. For groups with more than

0:2 � 106 hosts, the values rise slightly above the large plateau of the average fifteen response
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Figure 6.6: Number of responses and feedback latency for the different feedback mechanisms

messages. This increase perfectly complies with the theoretical prediction. Below about 20-30

hosts, the large-group limit no longer applies and the observed number of responses drops below

the theoretical value. The observed feedback latency drops exponentially with the number of

group members. This behavior was also expected from our mathematical analysis.

These advantageous properties hence recommend the exponential algorithm especially for sce-

narios with largely varying group sizes.

6.7.1 Heterogeneous Network Latencies

Simulation results to assess the impact of heterogeneous network delays are depicted in Fig-

ure 6.7. We assume a uniform distribution of the delays with variations ranging from�0% to

�90% of the average delay from the sender to the receivers. The higher the variation in the net-

work delays the lower the number of feedback messages, since more feedback can be suppressed

by receivers with a low delay.

Heterogeneous network delays also significantly reduce the amount of feedback with the equally

distributed feedback mechanism. However, heterogeneity has little impact when independent

feedback intervals are used since the number of feedback messages is already very small.

For all mechanisms, the average feedback delay is slightly reduced by the delay variations. In

our simulations, the feedback mechanisms thus profited from network heterogeneity.
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Figure 6.7: Exponential feedback with heterogeneous network delay

6.7.2 Discrete Feedback Intervals

If feedback is sent in intervals at discrete feedback times, the properties of the different mecha-

nisms can be improved for environments with homogeneous network delays.

However, delay heterogeneity adversely affects the feedback properties. Comparing feedback

responses of interval-based and continuous feedback mechanisms for increasing delay variations

reveals the deficiencies of interval-based feedback. Figure 6.8 depicts the ratio of the number of

responses with continuous exponential feedback to the number of responses with interval-based

feedback. For a constant network delay, the number of feedback messages can be reduced by

up to a factor of 6 when using feedback intervals. Network delay variations of more than�90%

reduce this ratio to 0.7, indicating that discrete feedback intervals result in an increase of the

number of responses at the sender. Generally, interval-based feedback can be used to reduce

the number of responses when the network latency is known and varies by less than an order of

magnitude.

6.7.3 Impact of Clock Granularity

The granularity of the clock used for the feedback timer at the receivers influences the expected

number of responses in the same way as the delay introduced by piggybacking. If all the receivers

respond later in time due to coarse clock granularities, the length of the time interval over which

responses are spread out for the feedback suppression decreases. Similarly, if in the case of

unicast feedback channels the sender does not immediately react to receiver feedback but polls

the network interface at certain time intervals, the duration of these time intervals has an impact
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Figure 6.8: Ratio of the number of responses with/without feedback intervals

on the number of responses. Note that if feedback from the receivers is multicast, the sender

does not play a role in the feedback suppression process and consequently the sender’s clock

granularity can be neglected.

Figure 6.9 shows the dependence of the average number of responses on the clock granularity

of the sender and the receivers. Curves are plotted for a feedback delay ofT = 4� and clock

granularities of0:0� (i.e., accurate clocks),0:1� , 0:4� , 0:8� , 1:6� , and3:2� . If receiver clocks

have a coarse granularity but are not synchronized, feedback may be delayed but there is no

implosion of feedback messages (Figure 6.9a). Otherwise, the average number of feedback

messages increases with a coarser clock granularity but only for a clock granularities close to

the feedback delayT can we see a substantial increase in the number of responses. While all

curves a fairly alike for fine-grained clocks with only a moderate increase in responses, there are

striking differences in the runs of the curves for the very large clock granularity values of1:6�

and3:2� . For coarse (synchronized) receiver clocks, a clock granularity of1:6� even reduces the

number of responses for some receiver set sizes, and only for3:2� there is a significant increase

in the number of responses (Figure 6.9b). The increase in the number of responses when the

sender does not send suppression messages immediately but only at certain time intervals with a

duration close to the feedback delay, the increase in the number of responses is more pronounced

(Figure 6.9c). As is to be expected, the number of feedback messages is even higher than in the

previous two cases when sender as well as receivers may delay messages because of coarse clock
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granularities (Figure 6.9d). Here, for a clock granularity of3:2� there is virtually no suppression

possible and all receivers of the group respond to feedback requests.

These differences in the number of responses for large clock granularity values do not stem

from an insufficient number of simulations (the results were averaged over 1000 runs each) but

are a consequence of the distribution of response times. The probability mass functions of the

response times for the experiments with a clock granularity of1:6� and for receiver set sizes

between 1000 and 100,000 are depicted in Figure 6.10. When the sender has this coarse clock

granularity, suppression is first possible after1:6� +0:5� (to account for the one-way delay from

the receivers to the sender). All receivers within this interval cannot be suppressed, but if one or

more receivers fall into this interval they will suppress feedback in later intervals (Figure 6.10a).

As a consequence, there is a large drop in the probability mass function after2:1� . If no feedback

was given within the first interval, no suppression is possible for the second interval, and we

can again see the build-up in feedback responses towards3:2� + 0:5� due to the exponential

distribution of feedback timers. Later receivers will almost always be suppressed unless the

number of receivers is very small, and for that reason no receivers have timer values within the

first two intervals. The higher the number of receivers, the more likely it is that some of them

have timers within the early intervals. This explains the drop in the number of responses around

20,000 receivers in Figure 6.9c.

For coarse receiver clocks, we can see distinct spikes in the distribution instead of a smooth mass

function as receivers can only respond at certain times (Figure 6.10b, bottom). The higher the

number of receivers, the more pronounced is the first spike. Forn � 46415, there is always a

timer that falls into the first interval, and receivers in later intervals are always suppressed. With

this fact we can explain why the number of feedback messagesdecreasesfor receiver set sizes

of 10,000 and above. It becomes more and more likely that (a few) receivers fall into the first

interval, suppressing the large bulk of receivers in later intervals. If no timers fall into the first

interval, the number of receivers with timers in the second interval will be much larger, and fewer

receivers will be suppressed.

The results for the simulations where sender and receivers have coarse clock granularities can be

explained simply by combining the above distributions. Receivers will respond only at certain

points in time, and the additional delay at the sender causes the distribution of response times to

be shifted compared to the distribution discussed in the previous paragraph, resulting in much

fewer responses being suppressed.
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Figure 6.9: Double logarithmical plot of the impact of receiver and sender clock granularity on
the number of responses (accurate clocks have a granularity of 0.0)
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We conclude that as long as receiver clocks are desynchronized or clock granularities are a suf-

ficiently small fraction of the feedback delay, a coarse clock granularity does not endanger feed-

back suppression. Only with clock granularities close to the feedback delay can we observe a

significant increase in the number of feedback messages.

6.8 Value-Based Feedback

The mechanisms presented so far assume that there is no preference as to which receivers send

feedback. All feedback messages are the same. As we will see, for many applications this is not

sufficient. Those applications require the feedback to reflect an extreme value for some parameter

within the group [WF01]. Multicast congestion control, for example, needs to get feedback from

the receiver(s) experiencing the worst network conditions. Other examples are the polling of a

large number of sensors for extreme values, online auctions where one is interested in the highest

bids, and the detection of resource availability in very large distributed systems.

In the remainder of this chapter, we propose several algorithms that favor feedback from receivers

with certain characteristics while preserving the feedback implosion avoidance of the original

feedback mechanism. Our algorithms can therefore be used to report extrema from very large

multicast groups.

6.8.1 Extremum Detection

Let us now consider the case where not only an arbitrary response from the group is required but

an extremum value for some parameter from within the group. Depending on the purpose the

required extremum can be either a maximum or a minimum. Without loss of generality we will

formulate all algorithms as maximum detection algorithms.

An obvious approach to introduce a feedback preference scheme is to extend the normal expo-

nential feedback mechanism with the following algorithm:

Algorithm 4 (Basic Extremum Detection):

Let v1 > v2 > � � � > vk > 0 be the set of response values of the receivers.

Upon receipt of a feedback request each receiver sets a feedback timer according to Algorithm 3.

When a receiver with valuev is notified that another receiver already gave feedback withv0 � v,
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it cancels its timer. Otherwise, when the feedback timer expires (i.e., for all previous notifications

v0 < v or no notifications were received at all), the receiver sends a feedback message with value

v.

With this mechanism the sender will always obtain feedback from the receiver with the largest

response value within one feedback round.

Let us now analyze the algorithm in detail: Following Equation (6.7) we usen for the actual

number of potential responders and denote the expected number of feedback messages in Algo-

rithm 3 withR(n) := E[M ]. Let pi be the fraction of responders with valuevi. Fork = 1 the

problem reduces to Algorithm 3 and we expectR(n) feedback messages. Fork = 2 we can

reduce the problem to the previous case by assuming that everyv1 responder responds with both

a v1 and av2 message. Hereby, we can treat both groups independently from each other while

preserving the fact thatv1 responders also stop further (unnecessary) responses fromv2 respon-

ders. Summing up both expected values we haveR(p1n) + R(n) messages. However,p1 of the

v2 messages were sent byv1 responders and are thus duplicates. Subtracting these duplicates we

obtainR(p1n) + p2R(n) for the expected number of responses.

This argument can be extended to the general case

E[M ] = R(p1n) +
p2

p1 + p2
R(p1n + p2n)

+
p3

p1 + p2 + p3
R(p1n+ p2n+ p3n)

+ � � �+ pkR(n)

=
kX
i=1

pi
Pi

R(Pin) (6.17)

wherePi := p1 + p2 + ::: + pi and thusPk = 1. According to Section 6.3.3,R(n) remains

approximately constant over wide ranges ofn. AssumingR(n) ' R, pi ' 1
k
, andk � 1 we

have

E[M ] '
�
1 +

1

2
+

1

3
+ � � �+ 1

k

�
R

' (lnk + C)R (6.18)

whereC = 0:577: : : denotes the Euler constant.
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From this analysis we see that the number of possible feedback values has an impact on the ex-

pected number of feedback messages. For a responder set with a real-valued feedback parameter,

we can expectn different feedback values and thereforeE[M ] ' ln(n)R.

6.8.2 Class-Based Extremum Feedback

Although this logarithmic increase is well acceptable for a number of applications, the algo-

rithm’s properties can be further improved by the introduction of feedback classes. Within those

classes no differentiation is made between different feedback values. It is not necessary to choose

a fixed size for all classes. The class size can be adapted to the required granularity for certain

value ranges. In case a fixed number of classes is used, the expected number of feedback mes-

sages increases only by a constant factor over normal exponential feedback. As expected, this

increase is also observed in the simulation results shown in Figure 6.11. As the number of classes

approaches the number of receivers, the increase in feedback messages follows more and more

the logarithmic increase for real-valued feedback as stated in Equation 6.18. For all simulations

in this section we use the parametersN = 100; 000 andT = 4� and average the results over 200

simulation runs, unless stated otherwise.
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Figure 6.11: Uniformly sized classes

By adjusting the classes’ positions depending on the actual value distribution, the number of

classes required to cover the range of possible feedback values can be reduced without increasing

the intervals’ actual size. Thereby, the granularity of the feedback suppression (i.e., to what

extent less optimal values can suppress better values) remains unchanged while the number of

feedback messages is reduced.
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Figure 6.12 gives a schematic overview of this mechanism. The first diagram shows the classless

version of the feedback algorithm. Here, each time a feedback messagevi is sent, the range of

suppressed value increases to[0; vi]. A total of four feedback messages is sent in this example.

The second diagram shows the same distribution of feedback for the case of static classes. We

assume equally sized classes of sizeÆ andv1 2 [0; Æ] for this example. After receipt of the

first feedback messagev1, the entire range[0; Æ] of the lowest feedback class is suppressed.

Only when a value outside this class is to be reported another message is sent, resulting in three

feedback messages in total. The third diagram shows the case of dynamically adjusted classes.

Upon receipt of the first feedback messagev1 the suppression limit is immediately raised tov1+Æ

and thus the value range[0; v1 + Æ] is now being suppressed. Through this mechanism feedback

is reduced to only two messages.

Time Time Time

Value Value Value

Sent Feedback Suppressed Feedback Suppressed Values

No Classes Static Classes Adjusted Classes

Æ

Æ

Figure 6.12: Class-based suppression with variable class position

With the above considerations, an elegant way to introduce feedback classes is the modification

of Algorithm 4 to suppress feedback not only upon receipt of values strictly larger than the own

valuev but also upon receiving valuesv0 � (1 � q)v. This results in an adaptive feedback

granularity dependent on the absolute value of the optimum.

Algorithm 5 (Adaptive Class-Based Extremum Detection):

Let q be a tolerance factor withq 2 [0; 1]. Modify Algorithm 4 such that a responder with value

v cancels its timer if another responder has already sent feedback for valuev0 with v0 � (1�q)v.

Forq = 0 the algorithm is equivalent to Algorithm 4 where only feedback messages with smaller

value are suppressed, and forq = 1 we obtain Algorithm 3 where all feedback after the first

response is suppressed.
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Assuming the valuesvi to be evenly distributed betweenrvmax andvmax (0 < r < 1) we have

approximatelyk feedback classes4, wherek < ln r
ln 1�q

. For a value range0 < vi < 1 we can

assumek < � lnn
ln 1�q

, settingr inversely proportional to the number of receivers since the receiver

set is too small to cover the whole range of possible values.

Approximating further with

pi =
(1� q)i�1 � (1� q)i

1� r
= q

(1� q)i�1

1� r

and

Pi =
1� (1� q)i

1� r

we have

Emax[M ] < qR
kX
i=1

(1� q)i�1

1� (1� q)i
(6.19)

The mechanism strongly benefits from the feedback classes being wider near the maximum and

so holding more values than the classes near the minimum. As a consequence, the expected

number of feedback messages is much lower compared to that of the previous algorithm. Note

that for smallr, the number of members withv < (1 � q)�1r can be very small. Eventually,

these feedback classes will contain only a single member, and we therefore loose the desired

suppression effect that leads to a sub-logarithmic increase of feedback messages. In maximum

search this effect cannot be observed since already a single response in the larger feedback classes

near the maximum will suppress all feedback from the potentially large number of small classes.

In fact, this characteristic is not specific to maximum and minimum search but rather depends on

the classes being large or small near the optimum.

To demonstrate the effect we will calculate the expected number of feedback messages for a

minimum search scenario: The feedback valuesvi are again evenly distributed betweenrvmax

andvmax, but in contrast to Algorithm 5 a responder cancels its timer if a response withv0 �
(1 � q)v is received. The algorithm produces the minimal value of the group within a factor of

q.5

4We assume the parameter range(r; 1) to be fully covered by the feedback classes which is not strictly the case
for this algorithm. This approximation thus overestimates the expected number of feedback messages.

5As far as the expected number of feedback messages is concerned, this mechanism is equivalent to a maximum
search with small class sizes for classes close to the optimum.
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The feedback classes are in the opposite order as compared to our previous calculation.

pi =
(1� q)k�i � (1� q)k�i+1

1� r
= q

(1� q)k�i

1� r

and

Pi =
(1� q)k�i � (1� q)k

1� r

Thus

Emin[M ] < qR
kX
i=1

1

1� (1� q)i
(6.20)

� (1� q)Emax[M ] + kqR

Hence, for smallr (largek) the sum is significantly larger than in the previous case.

Both scenarios have been simulated with various values forq. The sub-logarithmic increase of

feedback messages can be seen in the plots shown in Figure 6.13. But only with maximum search

where the feedback classes near the search goal are wider, the strong class-induced suppression

dominates theln(n) scale-effect.
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Figure 6.13: Number of feedback messages for maximum search (left) and minimum search
(right) with adaptive class sizes

Numeric values for the upper limits on the expected number of feedback messages in both sce-

narios can be obtained from Equations (6.19) and (6.20). Some example values are shown in

Table 6.1. These limits match well with the results of our simulations.

As mentioned before, Algorithm 5 guarantees a maximum deviation from the true optimum of

a factor ofq. It is worthwhile to note that this factor really is an upper bound on the deviation.
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Table 6.1: Upper limits for the expected number of feedback messages6

q 0.05 0.10 0.25 0.50 1.00

Maximum search 3.64 3.00 2.19 1.59 1.00
Minimum search 7.91 7.00 5.64 3.80 1.00

Almost always the reported values will be much closer to optimal since the sender can choose the

best one of all the responses given. The deviation of the best reported value from the optimum

for different tolerance factorsq is depicted in Figure 6.14. On average, with normal exponential

suppression (i.e.,q = 100%) the best reported value lies within 10% of the optimum, forq = 50%

the deviation drops to less than 0.15%, forq = 10% we obtain less than 0.02% deviation, etc.

Thus, even for relatively highq with consequently only a moderate increase in the number of

feedback messages, the best feedback values have only a marginal deviation from the optimum.
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Figure 6.14: Feedback quality with different tolerance values

6.8.3 Biased Feedback

The previously described algorithms yield good results for various cases of extremum detection.

However, they will not affect the expected value of the first feedback message but only improve

the expected values of subsequent messages. In certain cases, the algorithms can be further

improved by biasing the feedback timers. Increasing the probability thatt1 < t2 if v1 > v2

results in better feedback behavior7 but we must carefully avoid a feedback implosion for cases

6The numbers shown are factors ofR and calculated withr = 10�2
7Note that we are now back to maximum detection.
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where many large values are present in the responder group. Without loss of generality we

assumev 2 [0; 1] for the remainder of this section.

If the probability distribution of the valuesv is known, the number of responses can be minimized

using the following algorithm:

Algorithm 6 (Deterministic Feedback Suppression):

LetP (v) = P (v0 < v) be the probability distribution function of the valuesv within the group of

responders. We follow Algorithm 3, but instead of drawing a random number we set the feedback

time directly to

t = T max(0; 1 + logN(1� P (v)))

Clearly, duplicate feedback responses are now only due to network latency effects since the

responder with the maximum feedback value is guaranteed to have the earliest response time.

However, the feedback latency is strongly coupled to the actual set of feedback values. Moreover,

if the probability distribution of this specific set does not match the distribution used in the

algorithm’s calculation, feedback implosion is inevitable. For this reason, Algorithm 6 should

only be used if the distribution of feedback values is well known for each individual set of values.

The latter condition is crucial. In general, it does not hold for values from causally connected

responders. Consider for example the loss rate for multicast receivers: If congestion occurs near

the sending site, all receivers will experience a high packet loss rate simultaneously. Since the

time-average distribution does not show this coherence effect the algorithm presented above will

produce feedback implosion if used to solicit responses from high-loss receivers. Due to this

effect, the application of this simple mechanism is quite limited. It can be used, for example,

with application level values where no coherence is generated within the network. An online

auction could be an example.

A simple way to adopt the key idea of value-based feedback bias is to mix value-based response

times with a random component. This mechanism can be applied in various cases where coher-

ence effects prohibit the application of Algorithm 6. Let us study an example:

Algorithm 7 (Feedback with Combined Bias):

Apply Algorithm 3 but modify the feedback time to

t = T max(0; (1� v) + v(1 + logN x))

= T max(0; (1 + logN xv)) (6.21)



6.8 Value-Based Feedback 95

Here, the feedback time consists of a component linearly dependent on the feedback value and

a component for the exponential feedback suppression. The feedback timet is increased in

proportion to decreasing feedback valuesv, and a smaller fraction ofT is used for the actual

suppression. As long as at least one responder has a sufficiently early feedback time to suppress

the majority of other feedback this distribution of timer values greatly decreases the number of

duplicate responses while at the same time increasing the quality of the feedback (i.e., the best

reported value with respect to the actual optimum value of the receiver set). Furthermore, in

contrast to pure extremum detection algorithms, this mechanism improves the expected value of

the value reported in the first response as well as subsequent responses.

However, the feedback suppression characteristics of the above mechanism still depend at least

to some extent on the value distribution at the receivers. Some extreme cases such asv = 0 for

all receivers will always result in a feedback implosion. A more conservative approach is to not

combine bias and suppression but use a purely additive bias.

Algorithm 8 (Feedback with Additive Bias):

Apply Algorithm 3 but modify the feedback time to

t = T max (0; 
(1� v) + (1� 
)(1 + logN x)) (6.22)

with 
 2 [0; 1].

To retain the same upper bound on the maximum feedback delay, it is necessary to split upT and

use a fraction ofT to spread out the feedback with respect to the response values and the other

fraction for the exponential timer component. As long as(1�
)T is sufficiently large compared

to the network latency� , an implosion as in the above example is no longer possible.

6.8.4 Feedback Bias with Different Distributions of Response Values

To better demonstrate the characteristics of these modifications, Figures 6.15 to 6.17 show how

the feedback time changes with respect to response values compared to normal unbiased feed-

back according to Algorithm 3. A single set of random variables was used for all the simulations

to allow a direct comparison of the results. For the simulations, the parametersN andn were

set to10; 000 and2; 000 respectively.8 In these simulations we donotconsider maximum search

8Note that usingn = N = 10; 000 instead ofn = 2; 000 would reducethe probability of an implosion since the
probability that one early responder suppresses all others increases.



96 Equation-Based Congestion Control for Unicast and Multicast Data Streams

but only how feedback biasing affects the distribution of feedback timers. Thus, to isolate the

effect of feedback biasing, only a single feedback class was used such that the first cancellation

notification suppressesall subsequent feedback. All simulations were carried out withT = 4�

(right-hand graphs) as well asT = 8� (left-hand graphs) to demonstrate the impact of the feed-

back delay on the number of feedback responses. Each graph shows the feedback times in� of

the receiver set along thex-axis and the corresponding response values on they-axis for each

of the three feedback mechanismsno bias(Algorithm 3), combined bias(Algorithm 7), and

additive bias(Algorithm 8) with 
 = 1=4. Suppressed feedback messages are marked with a

dot, feedback that is sent is marked with a cross, and the black square indicates which of these

feedback messages had a value closest to the actual optimum of the receiver set.

In the graphs in Figure 6.15, the response values of the receivers are uniformly distributed. When

no feedback bias is used, the first response that suppresses the other responses is random in value.

In contrast, both feedback biasing methods result in the best reported feedback value being very

close to the actual optimum. The number of sent feedback messages is higher with the two

biasing methods since a smaller fraction ofT is used for feedback suppression. Naturally, the

number of feedback messages also increases whenT is smaller, as depicted in the right graph.

In Figure 6.16, the same simulations were carried out for an exponential distribution of response

values with a high probability of being close to the optimum. (When a reversed exponential

distribution with most values far from the optimum is used, the few good values suppress all

other feedback, and again a feedback implosion is always prevented.) As can be seen from the

graph, feedback suppression works well even when the actual distribution of response values is

no longer uniform. For a uniform as well as an exponential distribution of response values, the

combined biassuppression method results in fewer feedback messages while maintaining the

same feedback quality.

However, as mentioned before, combining bias and suppression permits a feedback implosion

when the range of feedback values is smaller than anticipated. In this case, the bias results in an

unnecessary delaying of feedback messages, thus reducing the time that can be used for feedback

suppression. In Figure 6.17, the response values are distributed uniformly in[0; 0:25] instead of

[0; 1]. ForT = 4� , the time left for feedback suppression is� , resulting in a scenario where no

suppression is possible and each receiver will send feedback. Even whenT = 8� and thus a time

of 2� can be used for the feedback suppression, the number of feedback messages is considerably

larger than in simulations with an additive bias. The exact numbers for the feedback responses

of the three methods are given in Table 6.2.
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Figure 6.15: Feedback time and value (uniform distribution of values)
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Figure 6.16: Feedback time and value (exponential distribution of values)
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Figure 6.17: Feedback time and value (truncated uniform distribution of values)
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Table 6.2: Number of responses with the different biasing methods

Feedback Time No Bias Additive Combined

T=4, Uniform 5 19 15
T=4, Exponential 5 14 12
T=4, Truncated 5 14 2000

T=8, Uniform 2 6 4
T=8, Exponential 2 2 2
T=8, Truncated 2 2 334

For suppression to be effective, the amount of time reserved for the exponential distribution of the

feedback timers should not be smaller than2� . Thus, the feedback implosion with Algorithm 7

can be prevented by boundingv such thatvT > 2� (i.e., usingv0 = max(v; 2�=T ) instead ofv

in Equation 6.21). In the worst case, the distribution of the feedback timers is then similar to an

unbiased exponential distribution withT = 2� . A higher upper bound can be used to reduce the

expected number of feedback messages in the worst case. The same considerations hold for the

choice of the value of
 for the additive feedback bias.

The outcome of a single experiment is not very representative since the number of feedback

messages is extremely dependent on the feedback values of the early responders. As for the

previously discussed feedback mechanisms, we depict the number of feedback messages for

combined and additive bias withT = 4� , averaged over 200 simulations, in Figure 6.18.

Combined bias works well for a uniform or an exponential distribution of feedback values, and

the number of responses is much closer to that of plain exponential feedback suppression without

bias than with an additive bias. Nevertheless, we clearly see that it fails to prevent a feedback

implosion in case of a truncated uniform distribution, while additive bias is only a small constant

factor worse than feedback suppression without any bias.

The main advantage of the feedback bias is that the expected response value for early responses

is improved. This not only reduces the time until close-to-optimal feedback is received (with

unbiased feedback and class-based suppression, close to optimal feedback is likely to arrive at

the end of a feedback round) but also reduces the number of responses with less optimal feedback.

Figure 6.19a shows how the feedback quality improves compared to normal exponential feedback

suppression when biasing the feedback timer. Between 100 and 10000 receivers, the deviation

of the best response from the optimum is reduced from about 14% to 6% for additive bias and to

less than 2% for combined bias.
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Figure 6.18: Number of responses with feedback biasing (uniform, exponential, and truncated
uniform distribution of feedback values)

While a similar increase in feedback quality can be achieved by using feedback classes (at the

expense of an increased number of feedback messages), only with a feedback bias is it possible

to improve the quality of thefirst feedback message. In case a close to optimal value is needed

very quickly, using either Algorithm 7 or Algorithm 8 can be beneficial. Figure 6.19b depicts

the average deviation of the value of the first feedback message from the optimum. Here, the

increase in quality is much more obvious than in the previous case. With all unbiased feedback

mechanisms, the first reported value is random, and thus the average deviation is 50% (for large

enoughn) whereas the combined and the additive biased feedback mechanisms achieve average

deviation values around 10% and 30% respectively.

Lastly, the expected delay until the first feedback message is received is of concern. While all

mechanisms adhere to the upper bound ofT , feedback can be expected earlier in most cases.

In Figure 6.20 we show the average feedback delay for biased and unbiased feedback mecha-

nisms. For all algorithms the feedback delay decreases logarithmically for an increasing number

of receivers. The exact run of the feedback curve depends on the amount of time used for sup-

pression. For this reason, unbiased feedback delay drops faster than biased feedback, since a bias

can only delay feedback messages compared to unbias feedback. In case the number of receivers
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Figure 6.19: Feedback quality (deviation from optimum)
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Figure 6.20: Average feedback delay

is estimated correctly (i.e.,n = N ), the feedback delay for unbiased feedback drops to� , the

minimum delay possible for such a feedback system. Biased feedback delay is slightly higher

with approximately1:5� .

6.8.5 Combining Feedback Bias and Class-Based Suppression

When feedback bias and class-based suppression are combined, we obtain the same bound on the

deviation of the best response from the real optimum value as with class-based suppression and

the same improvement for the expected value of the first response as with the feedback biasing

methods.
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Figure 6.21: Feedback biasing and class-based extremum detection withq = 0:0 (uniform,
exponential, and truncated uniform distribution of feedback values)
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Figure 6.22: Feedback biasing and class-based extremum detection withq = 0:1 (uniform,
exponential, and truncated uniform distribution of feedback values)
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To see which impact this combined mechanism has on the number of responses, we show sim-

ulation results of the mechanism forq = 0:0 andq = 0:1 in Figures 6.21 and 6.22 respectively.

For the class-based suppression, we choose minimum search with small class sizes close the the

optimal value, as this scenario is much more challenging than maximum search. We use the same

distributions (uniform, exponential, and truncated uniform) as in the previous simulations. From

the graphs we can see that the difference in the number of responses between combined bias and

no bias is small (except for the truncated uniform distribution, where the combined bias allows a

feedback implosion).

In contrast, the smaller time interval allocated for suppression with the additive bias results in a

higher number of feedback messages. Generally, with additive bias the response times will vary

less than without bias, which results in a higher number of feedback timers being within the short

time interval after the first response, where no suppression is possible. On average, the response

that would be the first one if no bias were used will be delayed a bit, and its timeout value will

be closer to the large bulk of later responses. Therefore, additive bias does improve the expected

feedback value of the first response, but this improvement will not reduce the total number of

responses seen in combination with class-based suppression.

In this chapter, we have analyzed several feedback algorithms and have identified exponential

feedback suppression as being the most suitable algorithm for our purpose. Together with the

modifications to allow the detection of extremal values within the group of responders, we can

now use these mechanisms for scalable, value-based receiver feedback upon which the conges-

tion control mechanism presented in the next chapter will be based.



Chapter 7

TCP-Friendly Multicast Congestion

Control

7.1 Introduction

It is widely accepted that one of several factors inhibiting the usage of IP multicast is the lack of

good, deployable, well-tested multicast congestion control mechanisms. To quote [MRBP98]:

The success of the Internet relies on the fact that best-effort traffic responds to congestion on

a link by reducing the load presented to the network. Congestion collapse in today’s Internet

is prevented only by the congestion control mechanisms in TCP.

We believe that for multicast to be successful, it is crucial that multicast congestion control

mechanisms be deployed that can co-exist with TCP in the FIFO queues of the current Internet.

However, the design of good multicast congestion control protocols is by far more difficult than

the design of unicast protocols. Multicast congestion control schemes ideally should scale to

large receiver sets and be able to cope with heterogeneous network conditions at the receivers.

This chapter describes TCP-Friendly Multicast Congestion Control (TFMCC), which belongs to

the class of single-rate congestion control schemes. Such schemes inevitably do not scale as well

as layered schemes. However, they are much simpler, match the requirements of some applica-

tions well, and we will demonstrate that they can scale to applications with many thousands of

receivers. These schemes also suffer from degradation in the face of highly congested links to

a few receivers – how to deal with such situations is a policy decision, but we expect that most
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applications using a single-rate scheme will have application-specific thresholds below which a

receiver is compelled to leave the multicast group.

TFMCC [WH01a, WH01b] extends the basic mechanisms of TFRC described in Chapter 3 into

the multicast domain. The primary differences in the design of TFRC and TFMCC are that in the

multicast case the receivers measure their RTT to the sender and perform the calculation of the

acceptable rate. This rate is then fed back to the sender, the challenge being to do this in a manner

which ensures that feedback from the receiver with the lowest calculated rate reaches the sender

whilst avoiding feedback implosions. Moreover, we need to make sure than any additional delay

imposed to avoid feedback implosion does not adversely affect the fairness towards competing

protocols.

7.2 Related Work

In this section we will briefly discuss earlier work on multicast congestion control protocols. For

a more detailed overview and a protocol evaluation we refer the interested reader to [WDM01].

is a hybrid protocol that combines aspects of window-based and rate-based congestion control.

TEAR receivers calculate a fair receive rate which is sent back to the sender, who then adjusts the

sending rate. To this end, the receivers maintain a congestion window that is modified similarly

to TCP’s congestion window. Since TCP’s congestion window is located at the sender, a TEAR

receiver has to try to determine from the arriving packets when TCP would increase or decrease

the congestion window size. Additive increase and window reductions caused by triple duplicate

ACKs are easy to emulate. However, due to the lack of acknowledgements, timeout events that

would lead to a new slow-start in TCP can be estimated only roughly.

In contrast to TCP, the TEAR protocol does not directly use the congestion window to determine

the amount of data to send but calculates the corresponding TCP sending rate. This rate is

roughly a congestion window worth of data per round trip time. To avoid TCP’s sawtooth-

like rate shape, TEAR averages the rate over anepoch, which is defined as the time between

consecutive rate reduction events. To prevent further unnecessary rate changes caused by noise

in the loss patterns, a smooth rate is determined by using a weighted average over a certain

number of epochs for the final rate. This value is then reported to the sender, which adjusts the

sending rate accordingly. Since the rate is determined at the receivers and TEAR refrains from

acknowledging packets, it can be used for multicast as well as for unicast communication. So
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far, only a unicast version of TEAR exists, but the mechanism can be made multicast-capable by

implementing an appropriate feedback suppression scheme to communicate the calculated rate to

the sender as well as scalable RTT measurements. Due to the close modeling of TCP’s short-term

behavior, TEAR shows TCP-friendly behavior while avoiding TCP’s frequent rate changes.

There are two main problems that have to be solved in order to use window-based congestion

control for multicast. First, care has to be taken as to how the sending rate is decreased in case

of network congestion. In large multicast sessions receivers may experience uncorrelated loss,

and it is therefore likely that most of the transmitted packets are lost on the path to at least one

receiver. If the sender responded to each of these losses by decreasing the congestion window,

the transmission would likely stall after some time. This problem is known as theloss path

multiplicity problem[BTK99]. Whenever rate adjustment decisions are based not on congestion

information from a specific receiver but on the overall congestion information present in the

whole distribution tree, protocol performance can suffer considerably if the protocol has not

been designed correctly. The second problem is how to free slots in the congestion window.

Clearly it is not possible for the sender to receive acknowledgments for each packet from each

receiver, as this would cause an acknowledgment implosion.

The Random Listening Algorithm (RLA) proposed by Wang and Schwartz [WS98] extends TCP

SACK by introducing some enhancements for multicast. For each receiver, the multicast sender

stores the smoothed round-trip time and the measured congestion probability. A loss is detected

by the sender via identification of discontinuous acknowledgements or via timeout. Based on

these loss indications, the number of receiversn with a high congestion probability is tracked.

If congestion is detected, the window is halved in the following two cases: (1) if the previous

window cut was made too long ago (the authors propose an interval of twice the moving average

of the window size times the smoothed round-trip time of the corresponding receiver) or (2) if

a generated uniform random number� is less than or equal to1=n. When a packet has been

acknowledged by all receivers, the congestion windowcwnd is incremented by1=cwnd, identi-

cal to TCP. A TCP-like retransmission scheme with fast-recovery is also included in RLA. With

the above mechanisms, RLA avoids the loss path multiplicity problem, while achieving statisti-

cal long-term fairness. In [WS98] it is demonstrated that RLA is fair to TCP according to the

definition of bounded fairness (see Section 2.3).

Multicast TCP (MTCP) [RBR99] is a reliable multicast protocol that uses window-based con-

gestion control to achieve TCP-friendliness. MTCP groups the session participants into a logical

tree structure where the root of the tree is the sender of the data. A parent in the logical tree struc-
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ture stores a received packet until receipt is acknowledged by all of its children. Upon receiving a

packet, a child (which may be a parent for other participants) transmits an acknowledgment to its

parent using unicast. To control congestion, MTCP requires that each parent maintain two val-

ues: a congestion window and a transit window. The size of the congestion window is managed

similarly to that of TCP, including slow-start and congestion avoidance. The main differences

to TCP are (1) that the congestion window is only incremented when ACKs from all children

have been received and (2) that a packet is immediately (re)transmitted to a child if it indicates

via a NACK that it has not yet received the packet. The size of the congestion window is halved

when any child reports three consecutive NACKs, or set to one when a timeout occurs because a

child has not acknowledged a packet at all. The transit window keeps track of the amount of data

that the children of a parent node have not yet acknowledged. In MTCP, the loss path multiplic-

ity problem is avoided by means of aggregation at the intermediate nodes. Each node forwards

the information about the bottleneck link of its children to its parent. Therefore the sender will

receive information about the overall bottleneck link rather than about uncorrelated packet loss.

The main drawback of MTCP is its complexity and the required setup of a tree structure where

each node has to perform package storage, repair, and congestion monitoring functionality.

In pragmatic general multicast congestion control (pgmcc) [Riz00] the bottleneck receiver with

the worst network connection is selected as a group representative. Once such a receiver, called

theacker, is selected, a TCP-style window-based congestion control algorithm is run between the

sender and the acker. Minor modifications compared to TCP concern the separation of congestion

control and reliability to be able to use PGMCC for reliable as well as unreliable data transport

and the handling of out of order packets and RTT changes when a different receiver is selected

as the acker.

The most challenging aspect of pgmcc is how to select the group representative, since the se-

lection process for the acker mainly determines the fairness of the protocol. It is based on the

simple version of the TCP throughput model in Equation (2.1). Each receiver tracks the RTT

and the smoothed loss rate and feeds these values into the model. The results are communicated

to the sender using randomized feedback timers to avoid an implosion. If available, PGMCC

also makes use of network elements to aggregate feedback. As evidenced by the simulations in

[Riz00], PGMCC competes fairly with TCP for many different network conditions. The basic

congestion control mechanism is simple, and its dynamics are well understood from the analy-

sis of TCP congestion control. This close mimicking of TCP’s window behavior produces rate

variations that resemble TCP’s sawtooth-like rate.
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As discussed in the introduction, it is also possible to design multi-rate congestion control mech-

anisms where the receivers individually adapt the receive rate according to the congestion on

their path to the sender. The data is distributed over multiple multicast session, and receivers join

the appropriate number of sessions to adjust their overall receive rate with respect to the current

network conditions.

One of the first working examples of layered multicast transmission in the Internet was Receiver-

driven Layered Multicast (RLM) for the transmission of video, developed by McCanne, Jacobson

and Vetterli [MJV96]. Their work did not focus on TCP-friendliness but on how to provide each

receiver with the best possible video quality with respect to the bandwidth available on the path

between the sender and that receiver. In RLM, the sender splits the video into several layers. A

receiver starts receiving by subscribing to the first layer. When the receiver does not experience

congestion in the form of packet loss for a certain period of time, it subscribes to the next layer.

This is called a join experiment. When a receiver experiences packet loss, it unsubscribes from

the highest layer it is currently receiving.

The use of RLM to control congestion is problematic since RLM’s mechanism of adding or

dropping a single layer based on the detection of packet loss is not TCP-friendly and can also

result in a very unfair distribution of bandwidth among concurrent RLM sessions. Furthermore,

leaving a multicast group may take a significant amount of time, usually on the order of several

seconds. Failed join experiments (i.e., a receiver who has just joined a layer immediately having

to leave it again because the necessary bandwidth is not available) are therefore very costly in

terms of the additional congestion they may cause. For layered schemes to be efficient, it is

imperative that receivers behind the same bottleneck synchronize their join and leave decisions.

Several protocols have been developed that improve the original concept of RLM.

Vicisano, Crowcroft and Rizzo address most of these problems in their work on Receiver-driven

Layered Congestion Control (RLC) [VCR98]. They propose to dimension the layers so that the

bandwidth consumed by each new layer increases exponentially. If layern carries data at the rate

Ln, then layern + 1 has a rate ofLn+1 =
Pn

i=0 Li. The time that a receiver has to wait before

being allowed to join a new layer also increases exponentially with each additional layer. On the

other hand, a layer is dropped immediately when congestion becomes apparent in form of packet

loss. This emulates the behavior of TCP since the increase in bandwidth is proportional to the

amount of time required to pass without packet loss before being allowed to join the layer. At

the same time the reaction to congestion is a multiplicative decrease, since dropping one layer

results in halving the overall receive rate.
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To improve synchronization between receivers, they may join a layer only at so-called synchro-

nization points (SP). SPs in higher layers are exponentially less frequent than in lower layers.

Thus, a receiver that is only subscribed to a small number of layers is likely to catch up with

receivers with a higher subscription level. After some time, receivers that share the same bottle-

neck should be joining and leaving layers synchronously. In order to decrease the likelihood that

a join experiment will fail, the RLC sender creates a short burst period before an SP. During this

burst period the data rate is doubled in each layer. Only if a receiver does not experience any

signs of congestion during the burst it is allowed to join the next higher layer.

Despite the improvements in the congestion control mechanism over RLM, RLC still has some

drawbacks. The granularity at which the rate can be adapted to the network conditions is very

coarse and may cause unfair behavior; the exponential distribution of the layers only allows to

double or halve the receive rate. The second problem is that the transmitted data must support

layering. While this is true for video and bulk-data transmission, streams that are more interactive

like those produced by shared whiteboards, cannot easily be separated into multiple layers. RLC

does not take the round-trip time into account when determining the sending rate. This can

lead to unfairness towards TCP since TCP is biased against connections with a high round-trip

time. Furthermore, it is not guaranteed that the artificial bursts of packets introduced by RLC be

acceptable for a broad range of applications that support layered transmission. A general point

of controversy that applies to all layered congestion control schemes is whether it is acceptable

to “abuse” network mechanisms like multicast session setup and teardown to achieve transport

layer functionality like congestion control.

Byers et. al. propose Fair Layered Increase/Decrease with Dynamic Layering (FLID-DL)

[BFH+00]. The protocol uses a Digital Fountain [BLMR98] at the source. With Digital Fountain

encoding, the sender encodes the original data and redundancy information such that receivers

can decode the original data once they have received a fixed number of arbitrary but distinct

packets. Since it is not necessary to ensure delivery of specific packets, the layering scheme is

much more flexible than previous proposals.

FLID-DL introduces the concept of Dynamic Layering to reduce the join and leave latencies

associated with adding or dropping a layer. With Dynamic Layering, the bandwidth consumed by

a layer decreases over time. Thus, a receiver has to periodically join additional layers tomaintain

its receive rate. The receive rate is reduced simply by not joining additional layers, whereas rate

increase requires joining multiple layers. To reduce the total number of layers required by the

mechanism, layers are reused after a quiet period during which no data is transmitted over the
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layers for a certain amount of time. This scheme provides an elegant solution to the potentially

long leave latencies, provided that the quiet period is sufficient for normal leave operations to

take effect. Dynamic Layering is complemented by a Fair Layered Increase/Decrease scheme

that results in a receive rate that is fair to a TCP flow with a fixed round-trip time experiencing

the same loss rate. FLID retains RLC’s concepts of sender-initiated synchronization points to

coordinate receivers but refrains from packet bursts to probe for available bandwidth. Increase

signals are distributed over time such that the long-term response to packet loss is the same as the

one given in Equation (2.3). The authors discuss a deterministic approach with increase signals

at fixed points of time as well as a probabilistic approach, where increase signals for the different

layers are given with certain probabilities.

The FLID-DL protocol is a considerable improvement over RLC. It does not suffer from long

leave latencies and is more flexible with regard to the bandwidth distribution on the layers. How-

ever, like RLC, FLID-DL does not take into account the round-trip time and thus exhibits unfair

behavior towards TCP under certain network conditions. Its use results in major overhead for

the underlying multicast routing protocol as join and leave decisions may occur much more fre-

quently than with other protocols. Furthermore, it requires the use of significantly more multicast

groups than conventional layered multicast schemes.

7.3 The TFMCC Protocol

Building an equation-based multicast congestion control mechanism requires that the following

problems be solved:

� Each receiver must measure the loss event rate. Thus a filter for the packet loss history

needs to be chosen that is a good stable measure of the current network conditions, but is

sufficiently responsive when conditions change.

� Each receiver must measure or estimate the RTT to the sender. Devising a way to do this

without causing excessive network traffic is a key challenge.

� Each receiver uses the model for long-term TCP throughput given in Equation (2.3) to

calculate an acceptable sending rate from the sender to itself. This rate needs to be re-

ported back to the sender. A feedback scheme must be devised so that feedback from the

receiver calculating the slowest transmission rate always reaches the sender, but feedback

implosions do not occur when network conditions change.
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� A filtering algorithm needs to be devised for the sender to determine which feedback it

should take into account to adjust the transmission rate.

Clearly, all these parts are closely coupled. For example, altering the feedback suppression

mechanisms will impact how the sender deals with this feedback. Many of our design choices

are heavily influenced by TFRC, as these mechanisms are fairly well understood and tested. In

this chapter we will expend most of our efforts focusing on those parts of TFMCC that differ

from TFRC.

In the following sections we will elaborate on how the necessary parameters for the control

equation are computed and how to deal with potentially large receiver sets. We do not go into

the details of the measurement mechanism for the loss event rate since it is the same as in TFRC

presented in Section 3.3.2.

7.3.1 Adjusting the Sending Rate

The sender will continuously receive feedback from the receivers. If a receiver sends feedback

that indicates a rate that is lower than the sender’s current rate, the sender will immediately

reduce its rate to that given in the feedback message. However, this leaves us with a problem

– how do we increase the transmission rate? We cannot afford to increase the transmission rate

in the absence of feedback, as the feedback path from the slowest receiver may be congested

or lossy. As a solution we introduce the concept of thecurrent limiting receiver(CLR). The

CLR is the receiver that the sender believes to currently have the lowest expected throughput

of the group. In this respect, the CLR is comparable to therepresentative(or “acker”) used in

congestion control schemes such as PGMCC. The CLR is permitted to send immediate feedback

without any form of suppression, so that the sender can use the CLR’s feedback to increase the

transmission rate.

The CLR will change if another receiver sends feedback indicating that a lower transmission rate

is required. It will also change if the CLR leaves the multicast group – this is normally signaled

by the CLR, but an additional timeout mechanism serves as a backup in case the CLR crashes or

becomes unreachable.

The way loss measurement is performed limits the possible rate increase to roughly 0.3 packets

per RTT, as discussed in Section 3.3.4. However, if the CLR leaves the group, the new CLR may

have a significantly higher calculated rate. We cannot afford to increase directly to this rate, as
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the loss rate currently measured may not be a predictor of the loss rate at the new transmission

rate. Instead we then impose a rate increase limit of one packet per RTT, which is the same as

TCP’s additive increase constant, so that the rate gradually increases to the new CLR’s rate. In

contrast, as mentioned above, a decrease of the sending rate is always done immediately to the

rate indicated by the CLR.

In the absence of any feedback from any of the receivers it is also necessary to reduce the sending

rate since the probable cause of missing feedback is congestion. For every 10 consecutive RTTs

without feedback, the sending rate is cut in half. The rate is at most reduced to one packet

every 64 seconds. Note that when receivers stop receiving data packets, they will stop sending

feedback. This eventually causes the sending rate to be reduced in the case of network failure. If

the network subsequently recovers, a linear increase to the calculated rate of the CLR will occur

at one packet/RTT per RTT.

How the TFMCC sender schedules the sending of packets, given that the clock of an operating

system only has a limited granularity, is described in Appendix B.1.

7.3.2 Round-trip Time Measurements

A key challenge of TFMCC is for each receiver to be able to measure its RTT to the sender

without causing excessive traffic at the sender. In practice the problem is primarily one of getting

an initial RTT measurement as, with the use of timestamps in the data packets, a receiver can see

changes in the delay on the forward path simply from the packet’s arrival time.

RTT Estimate at Initialization Time

Ideally we would like a receiver to be able to initialize its RTT measurement without having to

exchange any feedback packets with the sender. This is possible if the sender and the receivers

have synchronized clocks, which might be achieved using GPS receivers. Less accurately, it can

also be done using clocks synchronized with NTP [MTH97].

In either case, the data packets are timestamped by the sender, and the receiver can then compute

the one-way delay. The RTT is estimated to be twice the one-way delaydS!R. In the case of

NTP, the errors that accumulate between the stratum-1 server and the local host must be taken

into account. An NTP server knows the RTT and dispersion to the stratum-1 server to which
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it is synchronized. The sum of these gives the worst-case error� in synchronization. To be

conservative:

tRTT = 2(dS!R + �sender + �receiver)

In practice NTP provides an average timer accuracy of 20-30 ms [MTH97], and in most cases

this gives us an estimate of RTT that is accurate at least to the nearest 100 ms. Although not

perfect, this is still useful as a first estimate.

In many cases though, no reliable form of clock synchronization is available. Each receiver must

then initialize its RTT estimate to a value that should be larger than the highest RTT of any of

the receivers. We assume that for most networks a value of 500 ms is appropriate [All00]. This

initial value is used until a real measurement is completed.

RTT Measurement

A receiver gets to measure the instantaneous RTTtinstRTT by sending timestamped feedback to the

sender, which then echoes the timestamp and receiver ID in the header of a data packet.1 If more

feedback messages arrive than data packets are sent, we prioritize the sender’s report echoes in

the following order:

1. a receiver whose report causes it to be selected as the new CLR

2. receivers that have not yet measured their RTT

3. non-CLR receivers with previous RTT measurements

4. the existing CLR.

Ties are broken in favor of the receiver with the lowest reported rate. Normally the number of

data packets is larger than the number of feedback packets, so the CLR’s last report is echoed in

any remaining data packets.

To prevent a single spurious RTT value from having an excessive effect on the sending rate we

smooth the values using an exponentially weighted moving average (EWMA)

tRTT = � � tinstRTT + (1� �) � tRTT
1To be able to infer an accurate RTT from the timestamps it is necessary to also take into account the offset

between receipt of a timestamp and echoing it back.
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For the CLR we set�CLR = 0:05. Given that other receivers will not get very frequent RTT

measurements and thus old measurements are likely to be outdated, a higher value of�non�CLR =

0:5 is used for them.

One-way Delay RTT Adjustments

Due to the infrequent RTT measurements, it would also be possible for large increases in RTT

to go unnoticed if the receiver is not the CLR. To avoid this we adjust the RTT estimate between

actual measurements. Since data packets carry a send timestamptdata, a receiver that gets an RTT

measurement at timetnow can also compute the one-way delay from sender to receiver (including

clock skew) as

dS!R = tnow � tdata

and the one-way from receiver to sender as

dR!S = tinstRTT � dS!R

Due to clock skew, these values are not directly meaningful, butdR!S can be used to modify

the RTT estimate between real RTT measurements. When in a later data packet the one-way

delay from sender to receiver is determined asd 0S!R, it is possible to compute an up-to-date RTT

estimate

tinstRTT
0 = dR!S + d 0S!R

The updated RTT estimate takes into account any delay changes on the path from sender to

receiver but ignores delay changes on the return path. Clock skew between sender and receiver

cancels out, provided that clock drift between real RTT measurements is negligible. The modified

RTT estimates are smoothed with an EWMA just like normal RTT measurements, albeit with a

smaller decay factor for the EWMA since the one-way delay adjustments are possible with each

new data packet. One-way delay adjustments are used as an indicator that the RTT may have

changed significantly and thus a real RTT measurement is necessary. If the receiver is then

selected as the CLR, it measures its RTT with the next packet, and all interim one-way delay

adjustments are discarded. For this reason it proved to be unnecessary to filter out flawed one-

way delay estimates.
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Sender-side RTT Measurements

While a preconfigured initial RTT value can be used at the receiver for loss aggregation and

rate computation in case a real measurement is not yet available, it should not be used to set the

sending rate. Using a high initial RTT would result in a very low sending rate, followed by a

high sending rate when the CLR gets the first RTT measurement, then a CLR change to a receiver

with no previous RTT measurement, and so on. Such rate oscillations should be avoided. On the

other hand, if the sender only accepted a receiver with a valid RTT as CLR, receivers with a very

high loss rate might never receive their feedback echo, and so never become CLR.

For these reasons, TFMCC supports additional sender-based RTT measurements.2 A receiver

report also echoes the timestamp of the last data packet, and so the sender and receivers are both

able to measure the RTT. The sender only uses the RTT when it has to react to a receiver report

without a valid RTT to be able to adjust the calculated rate in the receiver report. Since the initial

RTT value is known to the sender, it can simply multiply the reported rate with the ratio of initial

RTT to instantaneous RTT.

Determining the Maximum RTT

The sender-side RTT measurements are also used to compute the maximum RTTtmax
RTT to all

receivers. If the instantaneous RTT measured at the sender is larger than the current maximum

RTT, the maximum RTT is increased to this value. Otherwise, if no feedback indicating a higher

instantaneous RTT than the maximum RTT is received during a feedback round, the maximum

RTT is reduced exponentially to

tmax
RTT = 0:9 � tmax

RTT

which results in a slow decrease over a number of feedback rounds. The maximum RTT is

mainly used for feedback suppression among receivers with heterogeneous RTTs, as explained

in the following section.

2A sender-side RTT measurement is only performed when the sender receives a receiver report. Through the use
of feedback suppression, only a very small fraction of receivers will send reports each feedback round, preferentially
receivers with a low calculated rate.
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7.3.3 Receiver Feedback

As TFMCC is designed to be used with receiver sets of several thousand receivers, it is critical to

ensure that the sender gets feedback from the receivers experiencing the worst network conditions

without being overwhelmed by feedback from all the other receivers. Congestion may occur at

any point in the distribution tree, from the sender’s access link through to a single receiver’s tail

circuit. Thus any mechanism must be able to cope when conditions change from a single receiver

being lightly congested to all the receivers being equally heavily congested, and other similarly

pathological cases. At the same time we would like the feedback delay to be relatively small

in the steady state. The latter can be achieved through the concept of a CLR which can send

feedback immediately.

However, a CLR is of no help during a change in network conditions that affect receivers other

than the CLR. Thus, we will ignore the influence of the CLR on the feedback process in this

section, but we note that the CLR generates relatively little feedback traffic and strictly improves

the protocol’s responsiveness to congestion while having no impact on the feedback sent by other

receivers. The CLR gives feedback independently of all the other receivers, and only non-CLR

receivers participate in the feedback suppression process.

For TFMCC, we use a feedback control mechanism based on exponentially weighted random

timers, as presented in Section 6.3.3. The receivers set a timer and only send feedback when the

timer expires. The dynamics of such a mechanism depend on the way the timers are initialized,

and on how one receiver’s feedback suppresses another’s. Each time the sender receives a feed-

back message, it updates a so-calledsuppression rateand the maximum RTT in the TFMCC data

packet header. This way, the remaining receivers are notified that from now on only feedback

reporting an even lower rate than the current suppression rate or with a higher RTT than the

current maximum RTT may be sent. Other feedback will be canceled.

The basic exponentially weighted random timer mechanism initializes a feedback timer to expire

aftert seconds, with

t = T max (1 + logN x; 0) (7.1)

T is set to a multiple of the maximum RTT of the receivers;T = b tmax
RTT . The choice ofb

determines the expected number of feedback packets per round as well as the feedback delay.

From the feedback analysis in Section 6.3.3, we know that useful values forb lie between 3

and 6.3 Feedback is given in rounds, where the beginning and end of a feedback round are

3For the simulations we use a default value of 4.
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indicated by the sender. After a time span ofT , the feedback round ends if non-CLR feedback

was received during that time. Otherwise, the feedback round ends as soon as the first non-CLR

feedback message arrives at the sender but at most after2T . The feedback round counter is

incremented by one, and the suppression rate is reset to the highest representable value. When a

new round begins, receivers cancel outstanding feedback for the old round.

The feedback mechanism is relatively insensitive to overestimation of the receiver set sizeN ,

but underestimation may result in a feedback implosion. In our simulations we useN = 10; 000

which seems reasonable given our scaling goals.

Canceling Feedback

When a receiver sees echoed feedback from another receiver, it must decide whether or not to

cancel its feedback timer. For this purpose, we use adaptive class-based extremum detection (i.e.,

Algorithm 5 described in Section 6.8.1). At the beginning of a feedback round, the suppression

rate is set to infinity, and all receivers are eligible to give feedback. Each time the sender receives

a feedback message indicating a rate lower than the current suppression rate, the suppression

rate is reduced to the lower value. If the receiver’s calculated rate isRTCP and the suppression

rate from previous feedback isRsupp, the timer is canceled ifRsupp � RTCP < q Rsupp (i.e.,

RTCP > (1� q) Rsupp). As shown in Section 6.8.1, the expected number of feedback messages

increases logarithmically withn for q = 0. For values of0 < q � 1, this number becomes

approximately constant in the limit for largen. For TFMCC, we useq = 0:1.

As the round progresses, more and more high-rate receivers are suppressed until in the end only

the receiver with the lowest rate may give feedback. The same applies for receivers with a higher

RTT than the current maximum RTT reported by the sender. Such receivers are eligible to give

feedback even if their calculated rate is higher than the suppression rate, to notify the sender of

an increased maximum RTT.

The feedback suppression process is complicated by the fact that the calculated rates of the re-

ceivers will change during a feedback round. If the calculated rates decrease rapidly for all

receivers, feedback suppression can no longer prevent a feedback implosion since earlier feed-

back will always report a higher rate than current feedback. To make the feedback suppression

mechanism robust in the face of changing rates, it is necessary to introduceR0
supp, the calculated

rate of a receiver at the beginning of a feedback round. A receiver needs to suppress its feedback
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not only when the suppression rate is less than the receiver’s current calculated rate but also in

the case that the suppression rate falls belowR0
supp.

Biasing Feedback

Optionally, it is possible to bias the receivers’ feedback timers in favor of receivers with lower

rates to ensure that receivers with low expected rates are more likely to respond than receivers

with high rates even at the beginning of a round. Since a receiver knows the sending rate but not

the calculated rates of other receivers, a good estimate of the importance of its feedback is the

ratior of its calculated rateRTCP to the current sending rateRsend. TFMCC can make use of an

additive bias (see Section 6.8.3) as follows:

t0 = 
rT + (1� 
)T � (1 + logN x) (7.2)

where
 determines the fraction ofT that should be used to spread out the feedback responses

with respect to the reported rate.

While biasing may improve the quality of the feedback received, unbiased feedback results in

the sender having a better notion of the distribution of calculated rates at receivers other than the

worst. Furthermore, unbiased feedback results in a lower number of expected feedback messages

as discussed in Section 6.8.5. In most cases, the above feedback cancellation method together

with unbiased feedback timers will suffice.

Unfavorable Feedback Conditions

At very low sending rates and high loss rates (which usually go together), it is still possible to

get a feedback implosion. The feedback echo from the sender that suppresses other feedback is

sent with the next data packet. Thus, when the delay before the next data packet is sent is close

to the feedback delay, it will arrive too late for suppression to work.

This problem can be prevented by increasing the feedback delayT in proportion to the time

interval between data packets when the sending rateRsend is low:

T = bmax

�
tmax
RTT ; (c+ 1)

s

Rsend

�
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c being the number of consecutive data packets that can be lost without running the risk of im-

plosion, ands the packet size. We recommend using values ofc between 2 and 4. Alternatively,

it is possible to send a separate feedback cancellation message (without payload) to ensure that

feedback is canceled on time.

As discussed in Section 6.6.3, loss of feedback messages does not have an impact on the sup-

pression characteristics of the feedback mechanism.

When the maximum RTT changes significantly during one feedback round, it is necessary to

reschedule the feedback timer in proportion to the change:

t = t � tmax
RTT=t

max
RTT

0

wheretmax
RTT is the new maximum RTT andtmax

RTT
0 is the previous maximum RTT.4 The same

considerations hold in the situation when the last data packets were received more than a time

interval oftmax
RTT ago. In this case, it is necessary to add the difference of the inter-packet gap and

the maximum RTT to the feedback time to prevent a feedback implosion (e.g., when the sender

crashed).

t = t +max(tnow � tri � tmax
RTT ; 0)

wheretri is the time when the last data packet arrived at the receiver.

7.3.4 Storing the Previous CLR

As an option, the sender can keep information about the previous CLR after switching to a new

CLR. In case the switch-over is only temporary, it is possible to immediately switch back to the

old CLR without the need of further feedback. Possible causes for transient switching of the

CLR include short-term congestion or inaccurate one-way delay RTT adjustments. Here, the

new expected rate may quickly increases above the expected rate of the previous CLR.

Storing this additional information will always result in more conservative TFMCC behavior. In

particular, when network conditions for the new CLR as well as the old CLR improve simulta-

neously, TFMCC will switch back to the old CLR before increasing the sending rate. Since this

results in a delayed reaction to improved network conditions, the information about the old CLR

should be timed out after a short amount of time (on the order of a few RTTs).

4Normally, only some receivers obtain new RTT measurements over the course of a feedback round and these
measurements are smoothed, such that abrupt changes in the measured RTT are rare.
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7.3.5 TFMCC Startup

At initialization of the sender, the maximum RTT is set to a value that should be larger than the

highest RTT to any of the receivers. It should not be smaller than 500 milliseconds for operation

in the public Internet. The sending rate is initialized to 1 packet per maximum RTT.

The receiver is initialized when it receives the first data packet. The RTT is set to the maximum

RTT value contained in the data packet, unless the receiver has other means to initialize the

maximum RTT (e.g., using NTP as discussed before). This initial value is used as the receiver’s

RTT until the first real RTT measurement is made. The loss event rate is initialized to 0.

Slow-Start

TFMCC uses a slow-start mechanism to more quickly approach its fair bandwidth share at the

start of a session. During slow-start, the sending rate increases exponentially, whereas normal

congestion control allows only a linear increase. An exponential increase can easily lead to heavy

congestion, so great care has to be taken to design a safe increase mechanism. A simple measure

to this end is to limit the increase to a multipled of the minimum rateRmin
recv received by any

of the receivers. Since a receiver can never receive at a rate higher than its link bandwidth, this

effectively limits the overshoot tod times that bandwidth. The target sending rate is calculated

as

Rtarget
send = dRmin

recv

and the current sending rate is gradually adjusted to the target rate over the course of an RTT. In

our implementation we use a value ofd = 2. Slow-start is terminated as soon as any one of the

receivers experiences its first packet loss.

Feedback biasing should not be used during slow-start as most of the receivers will experience

the same receive rate, and thus biasing will have an adverse effect on the feedback process.

A report from a receiver that experiences the first loss event can only be suppressed by other

reports also indicating packet loss, but not by reports from receivers that did not yet experience

loss. Therefore, slow-start will be terminated no later than one feedback delay after the loss was

detected.

In practice, TFMCC will seldom reach the theoretical maximum of a doubling of the sending

rate per RTT for two reasons:
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� The target sending rate is increased only when feedback from a new feedback round is

received. Thus, doubling is not possible every RTT but every feedback round.

� Measuring the receive rate over several RTTs and gradually increasingRsend to Rtarget
send

gives a minimum receive rate at the end of a feedback interval that is lower than the sending

rate during that interval. Thus, settingRtarget
send to twice the minimum receive rate does not

double the current sending rate.

As is desirable for a multicast protocol, TFMCC slow-start behaves more conservatively than

comparable unicast slow-start mechanisms.

Initializing the Loss History

When a receiver registers its first loss event, the number of packets received thus far usually does

not reflect the current loss rate. For example, when the sending rate is constrained by a lower-rate

CLR, a receiver may not experience packet loss for a long period of time. Instead of the number

of packets received before the first loss event, the sending rate at which the first packet loss is

experienced can be used as an indicator of the bottleneck bandwidth. Slow-start results in an

overshoot to a maximum of at most twice the bottleneck bandwidth. Thus, a more meaningful

initial loss intervall0 can be obtained by using the inverse of Equation (2.3) with half the sending

rate when the first loss event occurred.

The mechanism can be facilitated by using the inverse of a simplified TCP Equation (2.1), which

is easier to compute than the inverse of Equation (2.3) and results in a slightly more conservative

estimate:

RTCP =
cs

tRTT
p
p

p =

�
cs

RTCP � tRTT

�2

;with l0 = 1=p

wherec is a constant usually set to
p

3=2.

If a receiver is still using the initial RTT when the first loss event occurs, it will underestimate the

loss event rate, and the initial loss interval will be too large. When the correct RTT is determined

later, the receiver will consequently overestimate the fair rate. The initial loss interval must be

adjusted if it is still in the loss history when the first RTT measurement is obtained. The adjusted
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first loss intervall00 can be calculated as

l00 = l0 �
�
tRTT
tinitialRTT

�2

using the simplified TCP equation.

Using the Initial RTT for the Aggregation of Loss Events

Using the initial RTT for the rate computation before a valid RTT measurement is obtained is

safe since a higher RTT leads to a lower calculated rate. In contrast, using the initial RTT for the

aggregation of lost packets to loss events may result in a more aggressive protocol behavior. The

larger the RTT, the more lost packets may be aggregated to a single loss event which reduces the

loss event rate and in turn results in a higher sending rate.

Nevertheless, it is still possible to use the initial RTT for both purposes since the former effect

outweighs the latter. The size of the loss intervals can only increase in proportion to the ratio

of the initial RTT to the true RTT. Using Equation (7.3), an initial RTT that is too high by

a factor ofc will allow for a loss rate that is too low by a factor ofc2 resulting in the same

throughput. The rate calculated at the receiver will therefore still be conservative. Numerical

analysis indicates that this also holds for the complex TCP model (2.3) when loss event rates are

less than approximately 10%.

If there are many receivers with a high loss rate, throughput will be very low (see Section 7.5).

If there are few such receivers, these receivers can measure their RTT soon after startup. For

these reasons, it is safe to use a high initial RTT to aggregate losses to loss events as well as to

compute the rate.

7.4 Providing Congestion Information to the Application

As a single-rate congestion control scheme, TFMCC adapts the sending rate to the receiver ex-

periencing the worst network conditions (also referred to as the “crying baby” syndrome). For

heterogeneous receiver sets, this may result in a sending rate well below the average acceptable

rate of the group. Depending on the application, it may be desirable to exclude some receivers

with network conditions significantly worse than those of the other receivers from the group.
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Only the application itself can decide when it is appropriate to exclude receivers and which

receivers to exclude, but the congestion control mechanism can improve the decision making

process by providing information about the distribution of acceptable rates among the receivers.

In its simplest form the protocol can provide the second lowest calculated rate to the application.

This way, the application knows what rate increase to expect when removing the CLR from the

session. The basic mechanism can be extended to a list ofn worst receivers to allow the ap-

plication to remove several receivers at once. Furthermore, an estimate of the total number of

receivers may be of use to the application (e.g., removing 5 out of 6 receivers to improve the

rate for the remaining receiver is usually not desirable). In [FT99, LN00], methods are presented

to estimate the size of the receiver set from the time interval until the first feedback message is

received. While these mechanism were designed for basic exponentially distributed feedback,

they can readily be used for TFMCC with the previously described feedback cancellation mech-

anism and unbiased feedback timers. Here, the expected value of the feedback time of the first

responder remains unchanged. If biased feedback timers are used, a more complex estimation

process is necessary. When the number of receivers is known to the application, it can trade off

the loss of utility caused by the removal of certain receivers against the potential performance

improvement for the remaining receivers.

7.5 Protocol Behavior with Very Large Receiver Sets

The loss path multiplicity problem is a well-known characteristic of multicast congestion control

mechanisms that react to single loss indications from receivers on different network paths. It

prevents the scaling of those mechanisms to large receiver sets. In [BTK99], the authors propose

as a possible solution to track the most congested path and to take only loss indications from that

path into account. Since the reports of a TFMCC receiver contain the expected rate based on the

loss event rate and RTT on the single path from the sender to that receiver, the protocol implicitly

avoids the loss path multiplicity problem. Yet TFMCC (and all other single-rate congestion

control schemes) may be confined to a rate below the fair rate if, rather than there being a single

most congested path, there is a path that changes over time. The faster a multicast congestion

control protocol responds to transient congestion, the more pronounced is the effect of tracking

the minimum of stochastic variations in the calculated rate at the different receivers. For example,

if loss to several receivers independently varies fairly quickly between 0% and 10% with the
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average being 5%, a congestion control protocol may always track the worst receiver, giving a

loss estimate that is twice what it should be.

A worst-case scenario in this respect is a high number of receivers with independent loss and

a calculated rate in the range of the lowest-rate receiver. Ifn receivers experience independent

packet loss with the same loss probability, the loss intervals will have an exponential distribution.

The expected value of the minimum ofn exponentially distributed random variables is propor-

tional to1=n. Thus, if TFMCC based its rate calculations on a single loss interval, the average

sending rate would scale proportionally to1=
p
n (in the case of moderate loss rates, otherwise

even worse). The rate calculation in TFMCC is based on a weighted average ofm loss inter-

vals. Since the average of exponentially distributed random variables is gamma distributed, the

expected loss rate in TFMCC is inversely proportional to the expected value for the minimum of

n gamma distributed random variables.5
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Figure 7.1: Scaling

This effect is shown in Figure 7.1 for different numbers of receiversn with a constant loss

probability. For uncorrelated loss at a rate of 10% and a RTT of 50 ms, the fair rate for the

TFMCC transmission is around 300 kBit/s. This sending rate is reached when the receiver set

consists of only a single receiver but it quickly drops to a value of only a fraction of the fair rate

for largern. For example, for 10,000 receivers, only 1/6 of the fair rate is achieved.

Fortunately, such a loss distribution is extremely unlikely in real networks. Multicast data is

transmitted along the paths of the distribution tree of the underlying multicast routing protocol. A

lossy link high up in the tree may affect a large number of receivers, but the losses are correlated

5For first order statistics of the gamma distribution, no simple closed form expressions exists. Details about the
distribution of the minimum of gamma distributed random variables can be found in [Gup60].
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and so the above effect does not occur. When some of those receivers have additional lossy links,

the loss rates are no longer correlated, rather the values are spread out over a larger interval, thus

decreasing the number of receivers with similar loss rates. To demonstrate this effect, we choose

a distribution of loss rates that is closer to actual loss distributions in multicast trees in that

there are only a limited number of high loss receivers while the majority of receivers will have

moderate loss rates.6 Here, a small number of receivers (proportional toa log(n), wherea is a

constant) is in the high-loss range of 5-10%, some more are in the range of 2%-5%, and the vast

majority have loss rates between 0.5% and 2%. Under such network conditions the throughput

degradation with 10,000 receivers is merely 30%. Thus, the throughput degradation plays a

significant role only when the vast majority of packet loss occurs on the last hop to the receivers

and those losses amount to the same loss rates.

It is impossible to distinguish between a “stochastic” decrease in the sending rate and a “real”

decrease caused by an increased congestion level (otherwise it would be possible to estimate

the effect and adjust the sending rate accordingly). The degradation effect can be alleviated by

increasing the number of loss intervals used for the loss history, albeit at the expense of reduced

responsiveness.

7.6 Protocol Simulations

We implemented TFMCC in thens-2 network simulator [BBE+99] to investigate its behavior

under controlled conditions. In this chapter, we can only report a fraction of the simulations

that were carried out. In all simulations below, drop-tail queues were used at the routers to

ensure acceptable behavior in the current Internet. Generally, both fairness towards TCP and

intra-protocol fairness improve when active queuing (as for example RED) is used instead.

7.6.1 Fairness

Fairness towards competing TCP flows was analyzed using the common single-bottleneck topol-

ogy shown in Figure 7.2, where a number of sending nodes are connected to the same number of

receiving nodes through a common bottleneck (indicated by a thick line).

6By no means do we claim that the chosen distribution exactly reflects network conditions in multicast distribu-
tion trees.
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The right graph of Figure 7.2 shows the throughput of a TFMCC flow and two sample TCP flows

(out of 15) from a typical example of such simulations. The average throughput of TFMCC

closely matches the average TCP throughput but TFMCC achieves a smoother rate. Similar

results can be obtained for many other combinations of flows. In general, the higher the level

of statistical multiplexing, the better the fairness among competing flows. Only in scenarios

where the number of TFMCC flows greatly exceeds the number of TCP flows is TFMCC more

aggressive than TCP. The reason for this lies in the spacing of the data packets and buffer re-

quirements: TFMCC spaces out data packets, while TCP sends them back-to-back if it can send

multiple packets, making TCP more sensitive to nearly-full queues typical of drop-tail queue

management.
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Figure 7.2: One TFMCC flow and 15 TCP flows over a single 8 MBit/s bottleneck

If instead of one bottleneck the topology has separate bottlenecks on the last hops to the receivers,

then we observe the throughput degradation predicted in Section 7.5. When the scenario above

is modified such that TFMCC competes with single TCP flows on sixteen identical 1 MBit/s tail

circuits, then TFMCC achieves only 70% of TCP’s throughput (see Figure 7.3).
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7.6.2 Responsiveness to Changes in the Loss Rate

An important concern in the design of congestion control protocols is their responsiveness to

changes in network conditions. Furthermore, when receivers join and leave the session it is im-

portant that TFMCC react sufficiently fast should a change of CLR be required. This behavior is

investigated using a star topology with four links having an RTT of 60 ms and loss rates of 0.1%,

0.5%, 2.5%, and 12.5% respectively. At the beginning of the simulation the receiver set consists

only of the receiver with the lowest loss rate. Other receivers join the session after 100 seconds

at 50 second intervals in the order of their loss rates (lower-loss-rate receivers join first). After

250 seconds, receivers leave the transmission in reverse order, again with 50 second intervals in

between. To verify that TFMCC throughput is similar to TCP throughput, an additional TCP

connection to each receiver is set up for the duration of the whole experiment.
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Figure 7.4: Responsiveness to changes in the loss rate

As show in Figure 7.4, TFMCC matches closely the TCP throughput at all four loss levels.

Adaption of the sending rate when a new higher-loss receiver joins is fast. The receiver needs

500-1000 ms after the join to get enough packets to compute a meaningful loss rate. The major

part of the delay is caused by the exponential timer for the feedback suppression, which increases

the overall delay before a new CLR is chosen to roughly one to three seconds.7 The experiment

demonstrates TFMCC’s very good reactivity to changes in the congestion level.

The delay before TFMCC assumes that a rate-limiting receiver left the group and the sending

rate can be increased is configurable. Currently, an absence of feedback from the CLR for 10

7Note that this high delay is caused by the use of the initial RTT in the feedback suppression mechanism. Once
all receivers have a valid RTT estimate, the delay caused by feedback suppression is much shorter.
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Figure 7.6: Rate of initial RTT measurements

times the feedback delay is used as an indication that this receiver left the group. In case explicit

leave messages are used with the TFMCC protocol the delay can be reduced to one RTT.

The same simulation setting can be used to investigate responsiveness to changes in the RTT.

The results (not shown here) are similar to those above, since all four receivers have measured

their RTT by the time the RTT changes, and the one-way RTT adjustments immediately indicate

this change. With larger receiver sets, the amount of time that expires until a high RTT receiver

is found may be greater. This effect is investigated in the next section.

7.6.3 Responsiveness to Changes in the RTT and Rate of Initial RTT Mea-

surements

In scenarios with 40, 200 and 1000 receivers respectively, we investigate how long it takes until

a high RTT receiver is found among receivers with a low RTT when all receiver experience

independent loss with the same loss probability. The x-axis of the graph in Figure 7.5 denotes

the point of time when the RTT is increased during the experiment, and the y-axis shows the

amount of time after which this change in RTT is reacted upon by choosing the correct CLR.

The later the increase in RTT, the greater the number of receivers already having valid RTT

estimates, and the expected time until the high-RTT receiver is selected as CLR decreases.

The time interval until the correct CLR is selected may seem large but we have chosen a rela-

tively artificial scenario with independent identical loss rates for all receivers. Before the first

RTT measurement, the receiver with a high RTT is indistinguishable from the other receivers.

Therefore, this time interval exclusively depends on the rate of RTT measurements.
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The number of receivers that measure their RTT in each feedback round depends on the number

of feedback messages and thus on the parameters used for feedback suppression. Figure 7.6

shows how the number of receivers with a valid RTT estimate evolves over time for a large

receiver set and a high initial RTT value. The link RTTs for the 1000 receivers vary between

60 ms and 140 ms, and the initial RTT value is set to 500 ms. A single bottleneck is used to

produce highly correlated loss for all receivers. This is the worst case scenario, as with varying

loss estimates at the receivers it is unnecessary to measure the RTT to the low-loss receivers.

Since the calculated rate of the receivers still using the initial RTT is below the current sending

rate, at least one receiver will get its first RTT measurement per feedback round until all receivers

have measured their RTTs.

At the beginning of the simulation, the number of receivers obtaining initial RTT measurements

is close to the expected number of feedback messages per feedback round. Over time, as more

and more receivers have a valid RTT, the number of receivers that want to give feedback de-

creases, and the rate of initial RTT measurements gradually drops to one new measurement per

feedback round. Again, a delay of 200 seconds until 700 of the 1000 receivers have measured

their RTTs seems rather large but one should keep in mind that this results from having the same

congestion level for all receivers. If some receivers experience higher loss rates, those receivers

will measure their RTTs first, and TFMCC can adapt to their calculated rate. Under more realis-

tic network conditions RTT and loss rate are likely to be positively correlated and it will not be

necessary to measure the RTT to all receivers.

7.6.4 Slow-Start

The highest sending rate achieved during slow-start is largely determined by the level of statis-

tical multiplexing. To demonstrate this effect, we run TFMCC simulations without competing

traffic, with one competing TCP flow, and with 16 competing TCP flows. The fair rate for

TFMCC in all three simulations is 1 MBit/s. On an otherwise empty link, TFMCC will reach

roughly twice the bottleneck bandwidth before leaving slow-start, as depicted in Figure 7.7.

When TFMCC competes with a single TCP flow, slow-start is terminated at a rate below the

fair rate of the TFMCC flow, and this rate is relatively independent of the number of TFMCC

receivers. Already in the case of two competing TCP flows, and even more so when the level

of statistical multiplexing is higher, the slow-start rate decreases considerably when the number

of receivers increases. Most of the increase to the fair rate takes place after slow-start in normal

congestion control mode. Since TCP slow-start is more aggressive than TFMCC slow-start, the
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TCP flows are already using the full capacity of the link when TFMCC starts to increase the rate,

and it will likely experience a packet drop before slow-start is able to reach the fair share of the

bandwidth.
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Figure 7.7: Maximum slow-start rate

We do not include an extra graph of the exact increase behavior of TFMCC compared to TCP,

since this can be seen, for example, in Figures 7.8 and 7.9. TFMCC and TCP are started at

the same time. TCP’s increase to the fair rate is very rapid, while it takes TFMCC roughly 20

seconds to reach that level of bandwidth.

7.6.5 Late-join of a Low-rate Receiver

In the previous experiments we investigated congestion control with moderate loss rates, ex-

pected to be prevalent in the application domains for which TFMCC is well suited. Under some

circumstances, the loss rate at a receiver can initially be much higher. Consider an example

where TFMCC operates at a fair rate of several MBit/s and a receiver with a very low-bandwidth

connection joins. Immediately after joining, this receiver may experience loss rates close to

100%. While such conditions are difficult to avoid, TFMCC should ensure that they exist only

for a limited amount of time and quickly choose the new receiver as CLR.

The initial setup for this simulation is an eight-member TFMCC session competing with seven

TCP connections on an 8 MBit/s link, giving a fair rate of 1 MBit/s. During the simulation, a

new receiver joins the session behind a separate 200 kBit/s bottleneck from the sender from time

50 to 100 seconds.
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Figure 7.8: Late-join of a low-rate receiver
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Figure 7.9: Additional TCP flow on the slow
link

TFMCC does not have any problems coping with this scenario, choosing the joining receiver as

CLR within a very few seconds. Although the loss rate for the joining receiver is initially very

high, the TFMCC rate does not drop to zero. As soon as the buffer of the 200 kBit/s connection is

full, the receiver experiences the first loss event, and the loss history is initialized as specified in

Section 7.3.5. When the first loss occurs, the receiver gets data at a rate of exactly the bottleneck

bandwidth. Thus, the loss rate will be initialized to a value below the 80% value and from there

adapt to the appropriate loss event rate such that the available bandwidth of 200 kBit/s is used.

When an additional TCP flow is set up using the 200 kBit/s link for the duration of the ex-

periment, this flow inevitably experiences a timeout when the new receiver joins the multicast

group and the link is flooded with packets, as shown in Figure 7.9. However, shortly afterwards,

TFMCC adapts to the available capacity, and TCP recovers with bandwidth shared fairly between

TFMCC and TCP.

We conclude that TFMCC shows good performance and fairness, even under unfavorable net-

work conditions.

7.7 libtfmcc: an Implementation of the TFMCC Protocol

The TFMCC protocol has been implemented as a library in accordance with the specifications

of the corresponding Internet draft [WH01c]. The librarylibtfmccprovides TFMCC sender and

receiver functionality together with an interface to the application for passing data packets to
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and from the library and setting TFMCC-specific parameters. The source code for the TFMCC

library is publicly available.8

The main components of the library are as follows:

� Tfmcc_Sender is an implementation of the sender side of the TFMCC protocol.

� Tfmcc_Sink is the corresponding implementation of TFMCC receiver functionality.

� Tfmcc_Application_Sender provides an interface for applications using the TFMCC

protocol for the transmission of data.

� Tfmcc_Application_Sink is the corresponding interface for data reception.

In addition to the aforementioned classes, the library uses the classUdp as a simple interface

to UDP sockets andData as a helper class representing data packets. A more detailed descrip-

tion of the architecture of the TFMCC library can be found in Appendix B.2 and in [H¨ot02].

The header formats for data packets and control packets used by the library are described in

Appendix B.4 and B.3.

7.7.1 Network Experiments with the TFMCC Library

Similar to the experiments with thens-2 implementation of the TFMCC protocol, we performed

a number of tests with the implementation of the TFMCC library. In the Internet, it is very

difficult to study protocol behavior under well-defined conditions. As for the TFRC experiments

reported in Section 3.4.2, we therefore useDummynet[Riz98] to simulate arbitrary network

conditions. Dummynet is implemented as a filter in the protocol stack of the operating system.

Packets that are handed from one network layer to another can be intercepted and passed through

pipes, which allow to add bandwidth limitations, delay, and packet drops.

For the first simulation we use one TFMCC sender and one TFMCC receiver, connected via a

FreeBSD router with Dummynet enabled. The throughput is limited to 1 MBit/s, and an addi-

tional link delay of 80 ms is added to the buffer delay. Throughput is measured at the receiver

usingtcpdump[MJ93] (i.e., after the bottleneck).

As in thens-2 simulations, TFMCC shows high inter- and intra-protocol fairness. When TFMCC

competes with a TCP connection, both settle at the fair rate of half the available capacity after

8libtfmccwas developed under the RedHat Linux 7.1 operating system and was further tested under FreeBSD
4.4.
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Figure 7.10: TFMCC throughput over time

TFMCC slow-start terminates. Similar behavior can be experienced when running multiple con-

current TFMCC connections. In the second experiment, TFMCC connections are started one

after the other with an interval of 10 seconds in between. Again, the TFMCC flows share the

bandwidth fairly, once slow-start is over. Also, the performance during slow-start itself is ac-

ceptable, causing no excessive packet drop rates or shutting out other flows.

7.7.2 MPEG Streaming Using the TFMCC Library

To gain a first insight into the suitability of TFMCC for media streaming, we combined the

TFMCC library with an existing video codec. We used a very simple rate adaptation policy,

where the encoding rate was set directly to TFMCC rate. The video data was packetized and

written into the TFMCC payload without additional information. For an interoperable video

tool, packetization in accordance with the corresponding RTP MPEG1/MPEG2 payload format

[HFGC98] would be the correct choice.

As such, the resulting tool suffices for a first evaluation but obviously, significant improvements

are possible with a more sophisticated rate adaptation mechanism, an optimized buffering strat-

egy at the sender, look-ahead prediction of the encoding rate given the current quantization pa-

rameters, and RTP conformance. Yet, it can be seen as a first step towards a TFMCC-based video

streaming solution.

The implementation of the MPEG-1 streaming system consists of a sender and a receiver part:
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Figure 7.13: TFMCC throughput over time

� The sendermpegtfmccsenderobtains a video stream from aVideo4Linuxdevice, which

provides a general API for Linux to access video hardware. The video stream is then en-

coded as an MPEG-1 stream, packetized, and sent to the multicast group (see Figure 7.11).

For the encoding, the open source C librarylibFAME9 was used. It allows the encoding of

MPEG-1 video streams in real-time. The TFMCC sender continuously gives feedback to

the encoder to ensure that the current encoding rate conforms to the TCP-friendly rate.

� The receiverpipetfmccsinkforwards the video stream to an external MPEG-1 decoder

using a unix pipe (see Figure 7.12).

For congestion control, sender and receiver make use of the aforementioned TFMCC library.

7.7.3 MPEG Test Results

Obviously, the minimum bit rate thatlibFAME can produce depends on the chosen resolution

and frame rate of the video. With a resolution of 352x288 pixels and a frame rate of 25 frames

per second, the minimum bit rate is approximately 500 kBit/s. At lower bit rates, the perceived

video quality decreases rapidly. Again, a real video transmission tool would have to implement

spatial and temporal scaling to cover a wider range of possible bit rates.

Figure 7.13 shows how the bit rate available for video streaming changes when a competing TCP

flow is started after 60 seconds. While a fair distribution of bandwidth is achieved after a few

seconds, naturally the video quality decreases. At timet = 30s, the video stream can make use

of the full capacity of 1 MBit/s. Figure 7.14a shows a video frame coded at that point of time

9http://fame.sourceforge.net
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a) Video quality at 1 MBit/s b) Video quality at 0.5 MBit/s

Figure 7.14: Variable bit rate video coding

with the given TCP-friendly rate. Att = 90s, after the TFMCC sender has adjusted the sending

rate, encoding the video with 500 kBit/s corresponds to the video quality shown in Figure 7.14b.

In particular, the sudden change in quality at timet = 60s decreases the perceived video quality

significantly. Such abrupt changes can be avoided to some degree by a more sophisticated buffer

strategy at sender and receiver, but optimizing video transmission over IP networks is out of the

scope of this dissertation. Interested readers are referred to [Kuh01] instead.
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Chapter 8

Conclusions

We believe that the emergence of congestion control mechanisms for relatively smooth conges-

tion control for unicast and multicast traffic can play a key role in preventing the degradation

of traffic flows in the public Internet, by providing a viable alternative for multimedia flows

that would otherwise be tempted to avoid congestion control altogether [FF99]. The design of

good congestion control mechanisms is a hard problem, even more so for multicast environments

where scalability issues are much more of a concern than for unicast.

8.1 Contributions

Equation-based congestion control provides a very good platform for the development of control

mechanisms that cater to applications for which TCP or other forms of AIMD mechanisms are

not well suited. An important example are applications running over UDP. In this dissertation,

we have studied a number of different applications and analyzed how equation-based congestion

control can be adapted to meet their requirements.

Starting out from unicast equation-based congestion control we investigated, how such a mech-

anism can be used in the context of non-adaptable flows. This type of flow carries data at a rate

determined by the application. It cannot be adapted to the level of congestion in the network in

any way other than by suspending the entire flow. Existing congestion control mechanisms that

adjust the sending rate are thus not viable for non-adaptable flows.
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Instead of striving for TCP-friendliness for each single network flow, outprobabilistic congestion

control schemesuspends individual flows in a way that the aggregation of all non-adaptable flows

on a given link behaves in a TCP-friendly manner. The decision about suspending a given flow

is made by means of random experiments. This type of congestion control can complement

conventional congestion control in the regime where rate adaption is not possible.

In a series of simulations we have shown that PCC displays a TCP-friendly behavior under a wide

range of network conditions. We have further identified conditions under which PCC throughput

does not correspond to the TCP-friendly rate, but either undershoots or overshoots this rate. To

some extent, these effects on the average PCC sending rate cancel each other out but nevertheless,

they may degrade PCC performance.

The second large application area for which equation based congestion control is well suited is

multicast congestion control. Before going into the details of protocol design, we investigated a

very important component of all multicast protocols that rely on feedback from receivers, namely

feedback suppression. The main complexity in the design of a multicast congestion control

protocol lies in such a feedback mechanism. With receiver sets of several thousand receivers,

it is critical to ensure that the sender gets timely feedback from the receivers experiencing the

worst network conditions without being overwhelmed by feedback from all the other receivers.

We analyzed three feedback algorithms with respect to their suppression characteristics in the

face of an inaccurate estimation of the actual group size. Only one of these algorithms, feedback

suppression with exponentially distributed timers, is able to provide sufficiently stable expected

values across a large range of group sizes.

We further improved upon the concept of exponential feedback suppression in casefeedback of

an extremum valueof the group is needed. We discussed two orthogonal methods to improve the

quality of the feedback given. If no information is available about the distribution of the values at

the receivers, a safe method to obtain better feedback is to modify the suppression mechanism to

allow the sending of high valued feedback even after the first feedback was given. We specified

exact bounds for the expected increase in feedback messages for a given improvement in feed-

back quality. If more information about the distribution of feedback values is available or certain

worst-case distributions are very unlikely, it is furthermore possible to bias the feedback timer.

The better the feedback value, the earlier the feedback is sent, thus suppressing later feedback

with less optimal values. The modified suppression mechanism and the feedback biasing can be

used in combination to further improve the feedback process. The feedback mechanisms were



8.1 Contributions 139

developed with multicast congestion control in mind but can also be used for a number of other

applications where feedback from a large multicast group is required.

The main contribution of this dissertation is theTCP-Friendly Multicast Congestion Control pro-

tocol (TFMCC), an equation-based single-rate congestion control mechanism intended to scale

to groups of several thousand receivers. In general, TFMCC has a low variation of throughput,

which makes it suitable for applications such as streaming media where a relatively smooth send-

ing rate is of importance. The penalty of having smooth throughput while competing fairly for

bandwidth is a reduced responsiveness to changes in available bandwidth. Thus TFMCC should

be used when the application has a requirement for smooth throughput, in particular, avoiding

halving of the sending rate in response to a single packet drop.

The challenges in the design of TFMCC lie in scalable round-trip time measurements, appro-

priate feedback suppression, and in ensuring that feedback delays in the control loop do not

adversely affect fairness towards competing flows. The key component of end-to-end multi-

cast congestion control schemes is the feedback control mechanism which largely determines

the overall protocol behavior. For this task, TFMCC makes use of the previously discussed ex-

tremum feedback mechanism. To further reduce the delay in the congestion control loop, we

have introduced the concept of thecurrent limiting receiver(CLR). The CLR is the receiver that

the sender believes currently has the lowest expected throughput of the group. The CLR is per-

mitted to send immediate feedback without any form of suppression once per round-trip time,

hence reducing the delay before TFMCC reacts to changes in the network conditions on the path

to the CLR to a single round-trip time. The CLR will change if another receiver sends feedback

indicating that a lower than the current transmission rate is required.

With a single-rate congestion control protocol that adapts to the slowest receiver, the sending rate

may be very low in a large group of heterogeneous receivers. In order to enable the application

to remove receivers that unduly impair protocol performance, it is necessary to provide the ap-

plication with information about the heterogeneity of the group. This information is (partially)

available to the congestion control mechanism through the receiver feedback process and can be

made available to the application. With an approximate distribution of TCP-friendly rates of the

receivers, the application can then calculate the expected improvement in the sending rate when

removing certain receivers from the group and take appropriate action.

An important part of any research is to identify the limitations of a new design. TFMCC’s main

weakness is in the startup phase – it can take a long time for sufficiently many receivers to

measure their RTT (assuming we cannot use NTP to provide approximate default values). In
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addition, with large receiver sets, TCP-style slow-start is not really an appropriate mechanism,

and a linear increase can take some time to reach the correct operating point. However, these

limitations are not specific to TFMCC but hold for single-rate multicast congestion control in

general if the mechanisms are designed to be TCP-compatible. The implication is therefore that

single-rate multicast congestion control mechanisms like TFMCC are only really well-suited

to relatively long-lived data streams. Fortunately it also appears that most current multicast

applications such as stock-price tickers or video streaming involve just such long-lived data-

streams.

We have extensivelyevaluated TFMCC through analysis and simulation, and believe we have

a good understanding of its behavior in a wide range of network conditions. Under the sort of

conditions TFMCC is likely to experience in the real-world it will behave well. However we

have also examined certain pathological cases; in these cases the failure mode is for TFMCC

to achieve a lower than desired transmission rate. Given that all protocols have bounds to their

good behavior, this is the failure mode we would desire, as it ensures the safety of the Internet.

To demonstrate that TFMCC is a suitable congestion control mechanism for streaming media, it

was implemented as a library and integrated into a multicast video transmission tool for MPEG.

Summing up, we conclude that performing multicast congestion control while remaining TCP-

friendly is difficult, in particular because TCP’s transmission rate depends on the RTT, and mea-

suring RTT in a scalable manner is a hard problem. Given the limitations of end-to-end protocols,

we believe that TFMCC represents a significant improvement over previous work in this area.

8.2 Areas of Future Research

As is always the case with an evolving research area, several unresolved issues remain. One

particular problem is the lack of standard methods to compare congestion control protocols.

Thus, an evaluation is often based on hints given in the corresponding papers and quite a bit of

guesswork. A test environment (thens-2 network simulator comes to mind) with a standardized

suite of test scenarios that investigate different important aspects such as fairness and scalability,

combined with measures to directly compare the protocol performance, would be very handy.

While such a testbed is not sufficient to explore all details of a specific protocol, it would provide

a reasonable basis for more objective protocol comparisons.



8.2 Areas of Future Research 141

While TCP-friendliness is a useful fairness criterion in today’s Internet, it is well possible that

future network architectures (in which TCP may no longer be the predominant transport protocol)

will allow or require different definitions of fairness. Also, fairness definitions for multicast

are still subject to research. We presented one possible definition and also briefly addressed a

different form where multicast flows are allowed to consume a higher percentage of bandwidth

than are unicast flows, but these are by no means the only possible fairness definitions. For a

detailed discussion of fairness issues the reader is referred to [Den03].

Many current congestion control protocols are still in the development phase, and little attention

is paid to the fact that not all receivers share the same goal as the sender. It has been shown

that conformant TCP senders can easily be tricked into sending at a higher rate by modifying

the TCP receiver [SCWA99]. Only single-rate multicast protocols with large receiver sets are

usually immune since a single receiver that claims to be able to receive at a higher rate than it

actually is will simply not contribute to the congestion control process. Before the large-scale

deployment of new protocols it is necessary to also investigate the aspect of malicious receivers.

Some reliable multicast protocols build an application-level tree for acknowledgment aggrega-

tion. We have devised a hybrid rate-/window-based variant of TFMCC that uses implicit RTT

measurement combined with suppression within the aggregation nodes. This variant does not

need to perform explicit RTT measurements or end-to-end feedback suppression. Whilst at first

glance this would seem to be a big improvement over the variant in Chapter 7, in truth it moves

the complex initialization problem from RTT measurement to scalable tree construction, which

shares many of the problems posed by RTT measurement. Still, this seems to be a promising

additional line of research.

Also, further improvements to the feedback mechanisms used with TFMCC are possible. An

important step will be the combination of knowledge about the value distribution within the

responder group with implosion avoidance features. Several mechanisms to estimate the size of

the receiver set from the feedback time and the number of feedback messages with exponential

feedback timers have been proposed [LN00, FT99]. By combining such estimation methods

with extremum feedback, it should be possible to estimate the distribution of response values at

the receivers in case this distribution is not known. For continuous feedback, this knowledge can

then be used to generate feedback mechanisms based on Algorithm 6, where instead of drawing a

random number the response values themselves are used to compute a timeout value. In scenarios

where the distribution of response values is not uniform, we expect that such an approach will
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outperform the biasing mechanisms presented in section 6.8.3, which do not take the distribution

into account.

Taking these considerations one step further, in some cases the maximum change of the relevant

state during one feedback round is bounded. For example, in the case of TFMCC, the measure-

ments to determine round-trip time and loss event rate are subject to smoothing, thus limiting

the maximum rate increase and decrease per round-trip time. In case some information about the

previous distribution of feedback values is available (e.g., from the previous feedback round),

it is possible to infer the worst case distribution of the current feedback round. This allows to

further improve the feedback algorithm by tailoring it to the specific distribution.

To fully understand the dynamics of a combination of TFRC and PCC congestion control, such

a hybrid protocol has to be implemented and analyzed in a simulation and real-world environ-

ment, as has been done with the separate protocols. While in theory PCC can also be used to

complement TFMCC when the sending rate falls below the lowest value that is still useful for

the application, we have not yet extended PCC to multicast. Nevertheless, with the experience

gained from extending TFRC to TFMCC, such an extension should be relatively straightforward.

A further area of research is the improvement of the models for TCP traffic that are used for some

of the rate-based congestion control mechanisms. Current TCP formulae are based on several

assumptions that are often not met in real-world environments, although it has to be noted that the

current formulae usually give fairly accurate TCP rate predictions even when these assumptions

do not hold. We are currently investigating a method to perform a more accurate estimate of the

fair TCP rate if the loss event rate is measured at a sending rate that differs from the TCP-friendly

rate (which is usually the case with PCC).

A similar effect of inaccurate loss rate measurements can be observed when varying the packet

size of a congestion controlled flow. TFRC’s and TFMCC’s loss measurement mechanisms as-

sume that the size of the data packets is either constant or varies to some degree around a mean

value but is independent of the sending rate. Applications for which these assumptions are valid

vary the sending rate by adjusting the number of packets sent per time interval. For some appli-

cations however, these assumptions do not hold. When packets have to be sent at specific points

in time or with a fixed packet frequency (which is the case for example for streaming audio) and

the sending rate is modified by adjusting the packet size, modifications to the congestion control

mechanism are necessary.
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When packets are sent that are smaller than the MTU, throughput degrades linearly with the

packet size. This is the correct behavior in an environment where the packet rate is the limited

resource. In an environment where the bottleneck is bandwidth-limited and flows may use pack-

ets of different sizes, resources will not be shared fairly among flows but the share of resources

will depend on the respective packet size.

In particular, it is necessary to determine:

� a rate that is fair to competing flows with different packet sizes with respect to the limited

resource, and

� how to calculate this rate, given that a different number of packets per time interval over

which the loss event rate is measured will introduce a bias in the measured loss event rate.

A less than linear degradation in throughput is only justifiable when the packet size has an impact

on the load of the network (i.e., a smaller packet is less costly to send than a large one). The

relative cost of smaller sized packets will usually lie somewhere between equal costs for all

packets and a linear relation between cost and packet size. Modifications to the loss event rate

measurement mechanism must ensure that a flow sending small packets does not achieve a higher

throughput than a flow sending larger packets. At the same time, a flow sending small packets

should not achieve a much smaller throughput than what is justified given the actual resource

used by that flow (in terms of bandwidthandper packet overhead).

Finally, the basic equation-based rate controller in TFMCC would also appear to be suitable for

use in receiver-driven layered multicast, especially if combined with dynamic layering [BFH+00]

to eliminate problems with unpredictable multicast leave latency. We believe that TFMCC’s rate

control mechanism can be integrated in such a framework in a relatively straightforward manner.
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Appendix A

Analysis of Exponential Feedback

Suppression

A.1 Proof of Equation (6.6)

To derive the expected values for the earliest response, we use the probability distribution for the

least value ofx chosen by the group of potential responders. As derived above the probability

thatxmin = minfx1; : : : ; xng 2 [x; x+ dx] is n(1� x)n�1dx.

The resulting value for the expected feedback latency is:

E[D] = T

Z 1

N�1
n(1� x)n�1(1 + logN x)dx

=
T

lnN

Z 1

1=N

(1� x)n

x
dx

We will show that Z 1

1=N

(1� x)n

x
dx < lnN � lnn� C +

n

N

and therefore

E[D] ' T (1� logN n)
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This result is approximated from below bylnn+ C whereC = 0:577 : : : is the Euler constant.

Thus, we have
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A.2 Proof of Equation (6.7)

Assume thatx is the smallest value chosen in the group. Ifx � N�1 a response will be immedi-

ately sent. However, due to the network’s latency� duplicate responses will be received from all

members that chose their valuexi in the interval[x;N �=T�1).

If x > N�1 the earliest response will be sent at a timet > 0. Duplicate responses will then

be received from all members that chose their valuexi in the interval[N t=T�1; N
t+�
T
�1). Using

x = N t=T�1 this interval can be written as[x; xN �=T ).

Under the condition that all responses after the first response are distributed equally in the interval

[x; 1) we find the following expected values for duplicate responses in these two cases

(n� 1)
N �=T�1 � x

1� x

and

(n� 1)
xN �=T � x

1� x

If the earliest response is sent aftert = T � � no suppression can take place any more. Clearly,

the probability for this case is(1�N��=T )n. Altogether we find

E[M ] =

Z 1=N

0

(n� 1)
N �=T�1 � x

1� x
� n(1� x)n�1 dx (A.2)
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Appendix B

TFMCC

B.1 Scheduling of Packet Transmissions

As TFMCC is rate-based, and as operating systems typically cannot schedule events precisely,

it is necessary to be opportunistic about sending data packets so that the correct average rate

is maintained despite the coarse-grain or irregular scheduling of the operating system. Thus a

typical sending loop will calculate the correct inter- packet interval,tipi, as follows:

tipi = s=Rsend

When a sender first starts sending at timet0, it calculatestipi, and calculates a nominal send

time t1 = t0 + tipi for packet 1. When the application becomes idle, it checks the current time,

tnow, and then requests re-scheduling after(tipi � (tnow � t0)) seconds. When the application is

re-scheduled, it checks the current time,tnow, again. If(tnow > t1� Æ) then packet 1 is sent (see

below forÆ).

Now a newtipi may be calculated, and used to calculate a nominal send timet2 for packet 2:

t2 = t1+ tipi. The process then repeats, with each successive packet’s send time being calculated

from the nominal send time of the previous packet.

In some cases, when the nominal send time,ti, of the next packet is calculated, it may already

be the case thattnow > ti � Æ. In such a case the packet should be sent immediately. Thus if the

operating system has coarse timer granularity and the transmit rate is high, then TFMCC may

send short bursts of several packets separated by intervals of the OS timer granularity.
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The parameterÆ is to allow a degree of flexibility in the send time of a packet. If the operating

system has a scheduling timer granularity oftgran seconds, then delta would typically be set to:

Æ = min(tipi=2; tgran=2)

tgran is 10 milliseconds on many Unix systems. Iftgran is not known, a value of 10 milliseconds

can be safely assumed.

B.2 Architecture of libtfmcc

Here, we will give an overview of the class structure of the TFMCC library. Further details can

be found in [Höt02].

B.2.1 UDP Sockets

The sender as well as the receivers have to create an instance of theUdp class in order to transmit

TFMCC packets.

class Udp {

public:

Udp(string bind_addr = "0.0.0.0",

string to_addr = "0.0.0.0", int port = 12345);

bool set_ttl(int ttl);

bool addmembership(string group);

bool dropmembership(string group);

...

};

The constructorUdp creates a UDP socket and the parameterbind_addr specifies which

network interface is to be used for the transmission of datagrams.1 For the TFMCC sender,

to_addr specifies the multicast group to which to send the data packets whereas for the TFMCC

receiver it specifies the address to send the receiver reports to (i.e., the IP address of the sender).

The methodsaddmembership anddropmembership are used by the receiver to join and

1The IP address 0.0.0.0 is not assigned to a network interface but can be used to receive data packets via all
network interfaces.
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leave the multicast group. The methodset_ttl can be used to set the TTL scope of the UDP

datagrams.

B.2.2 Datagrams

libtfmccuses the helper classData for the internal management of data packets:

class Data {

public:

Data(char* source, size_t size);

˜Data();

unsigned char* data;

size_t size;

...

};

The constructorData allocatessize bytes of memory and the arraysource is copied to the

newly allocated memory. This copy can now be accessed viadata . The memory is deallocated

by the constructor̃Data .

B.2.3 Sender Functionality

TFMCC sender functionality is provided by the classTfmcc_Sender :

class Tfmcc_Sender {

public:

Tfmcc_Sender(Udp& udp, int p_size);

void one_loop(Tfmcc_Application_Sender* tas);

void main_loop(Tfmcc_Application_Sender* tas);

...

};

The constructorTfmcc_Sender requires a UDP socketUdp for the transmission of data pack-

ets. Furthermore, the packet sizep_size needs to be specified by the application.2 Single data

2Path-MTU discovery, a mechanism to automatically determine the maximum transmission unit of an Internet
path, is not available for multicast transport.
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packets can be sent via the methodone_loop . The methodmain_loop hands the program

control over to the classTfmcc_Sender which continuously callsone_loop to transmit a

stream of datagrams.main_loop does not terminate even when the last receiver quits the

multicast session as new receivers may join the multicast session any time.

Application Interface

An application that wants to send data via the TFMCC protocol needs to implement the abstract

classTfmcc_Application_Sender :

class Tfmcc_Application_Sender {

Tfmcc_Application_Sender();

virtual void set_rate(int rate) = 0;

virtual Data read() = 0;

...

};

A Tfmcc_Sender instance calls the methodread in regular intervals. An application has

to implement this method to provide data packets of the typeData . Whenever the sending

rate changes, an object of the classTfmcc_Sender calls theset_rate method. A TFMCC

application implementing this method should limit its sending rate torate bytes/s, otherwise

data packets have to be discarded.

B.2.4 Receiver Functionality

The Tfmcc_Sink class implements the receivers side of the TFMCC protocol and has to be

instantiated by an application that wants to receive data via TFMCC:

class Tfmcc_Sink {

public:

Tfmcc_Sink(Udp& udp);

void one_loop(Tfmcc_Application_Sink& application);

void main_loop(Tfmcc_Application_Sink& application);

bool receiver_leave;

...

}



B.3 Structure of the TFMCC Data Packet Header 163

The constructorTfmcc_Sink requires the parameterUdp, the UDP socket over which to re-

ceive the datagrams. Similar to the sender side, single data packets can be received with the

methodone_loop and main_loop hands over control to the classTfmcc_Sink which

in turn callsone_loop whenever new packets arrive. Even when no more packets are re-

ceivedTfmcc_Sink::main_loop does not terminate since a new sender could start sending

on this multicast address any time. If a receiver decides to leave the multicast session, it sets

receiver_leave to true and callsone_loop once more. This allows the sender to im-

mediately switch to a new CLR in case the receiver was the CLR.

Application Interface

The abstract classTfmcc_Application_Sink needs to be implemented by an application

that wants to receive data via the TFMCC protocol.

class Tfmcc_Application_Sink {

public:

Tfmcc_Application_Sink();

virtual void write(Data data) = 0;

...

};

An object of the classTfmcc_Sink regularly calls the methodwrite . This method hands data

packets over to the application (without buffering). If necessary, buffering has to be implemented

by the application.

B.3 Structure of the TFMCC Data Packet Header

A TFMCC data packet header (see Figure B.1) contains the following fields:

sequencenumber (32 bit integer): This number is incremented by one for each data packet

transmitted. The field must be sufficiently large that it does not wrap causing two different

packets with the same sequence number to be in the receiver’s recent packet history at the

same time.
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Figure B.1: Structure of the TFMCC data packet header

suppressionrate (32 bit integer): Only receivers with a calculated rate lower than the suppres-

sion rate (measured in bytes/s) are eligible to give feedback, unless their RTT is higher than

the maximum RTT described below in which case they are also eligible to give feedback.

timestamp (16 bit integer): A timestamp (in milliseconds) indicating when the packet is sent.

The timestamp is used by the receiver for the one-way delay adjustments and is also echoed

in the receiver’s feedback packets for the sender-based calculation of the maximum RTT.

timestamp echo (16 bit integer): The sender copies the timestamp of the last report from re-

ceiver with IDreceiver_id into timestamp_echo . The timestamp echo is used for

the receiver’s RTT calculation.

receiver id (32 bit integer): The field stores ID of the receiver whose timestamp is included in

the timestamp echo field.

IC (1 bit): TheIC flag is set in case the receiver with IDreceiver_id is the CLR.

feedback counter (15 bit integer): The number of the current feedback round is transmitted to

indicate the beginning of a new round to the receivers. At the beginning of a new round

receiver reports for older rounds are discarded.
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maximum RTT (16 bit integer): The field contains the largest RTT (in milliseconds) known to

the sender. A receiver uses this value for the RTT in case it has not yet measured its own

RTT.

B.4 Structure of the TFMCC Control Packet Header

A TFMCC control packet header (see Figure B.2) contains the following fields:
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Figure B.2: Structure of the TFMCC control packet header

receiver id (32 bit integer): The field contains the ID of the receiver sending the control packet.

Generation of unique receiver IDs is beyond the scope of the library. However, for most

purposes a combination of IP address and port will suffice.

desired rate (32 bit integer): The desired rate (in bytes/s) specifies the TCP-friendly rate cal-

culated by the receiver.

timestamp (16 bit integer): A timestamp (in milliseconds) indicating when the control packet

is sent. It may be echoed by the sender to allow the receiver to measure its current RTT.

timestamp echo (16 bit integer): The field contains a copy of the timestamp of the last data

packet from the sender.

HR: (1 bit): Receivers without any previous RTT measurements have to set theHRflag. The

sender preferentially echoes timestamps of control packets with this flag set to allow all

receivers to measure their RTT at least once.
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feedback counter (15 bit integer): The feedback counter indicates the feedback round valid

when the control packet is sent.

HL (1 bit): A receiver sets theHL flag after the first packet loss. As soon as the sender receives

the first control packet with this flag set, slow-start is terminated.

RL (1 bit): If a receiver wishes to leave the multicast session, it can set theRL flag to prevent it

from being selected as CLR. If the receiver is the CLR, it should send at least one control

packet with theRL flag set before leaving the group to allow the sender to select a new

CLR.


