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Chapter 1

Introduction

”n Spieler spielen ein gegebenes Gesellschaftsspiel. Wie muß einer dieser
Spieler spielen, um dabei ein möglichst günstiges Resultat zu erzielen?

Die Fragestellung ist allgemein bekannt, und es gibt wohl kaum eine Frage des
täglichen Lebens, in die dieses Problem nicht hineinspielte; trotzdem ist der Sinn
dieser Frage kein eindeutig klarer. Denn sobald n > 1 ist (d.h. ein eigentliches
Spiel vorliegt), hängt das Schicksal eines Spielers außer von seinen eigenen Hand-
lungen auch noch von denen seiner Mitspieler ab; und deren Benehmen ist von
genau denselben egoistischen Motiven beherrscht, die wir beim ersten Spieler
bestimmen möchten. Man fühlt, daß ein gewisser Zirkel im Wesen der Sache
liegt.”

John von Neumann (1928)

In his essay ”Zur Theorie der Gesellschaftspiele” John von Neumann has char-

acterized the central problem of game theory as follows: How does an individual decide

if the evaluation of his decision depends on the decisions made by other individuals, for

whom the evaluation of their decision depends in turn on their opponents’ decisions? In

the terminology of game theory such a situation of strategic interdependency is a ’game’

and the individuals are ’players’ who have to choose between di¤erent ’strategies’ and who

evaluate the ’outcome’ resulting from all players’ strategy choices. In order to answer the
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question ’Which strategies will be chosen in a game?’ game theory has developed solution

concepts for games that can be roughly divided in two di¤erent approaches: the equilibrium

approach and the rationalizability approach.

The equilibrium approach presumes that the players’ strategy choices are an equi-

librium point in the sense of Nash (1950b), i.e., each player’s strategy is a best response

against the strategies of his opponents. Suppose each player would form expectations about

the play of his opponents and he would choose his optimal strategy given these expecta-

tions. We can then interpret a Nash equilibrium as a strategy pro…le such that each player’s

expectation is con…rmed by the actual strategy choices of his opponents. Because no player

has to revise his expectations concerning his opponents’ strategy choices in an equilibrium

it appears as plausible that players end up in equilibrium when a game is repeated over and

over. Thus, as a justi…cation for equilibrium play we can imagine some ’learning’ mecha-

nism, running in the background, which leads to a stable coordination of strategy choices

satisfying the de…nition of an equilibrium point. However, for games that are just ’one-shot’

strategic situations or that are not often repeated this ’coordination via learning’-argument

in favor of equilibrium points is not available. For these games the question of how players

shall arrive at correct expectations about opponents’ strategy choices may be di¢cult to

answer.

The rationalizability approach tries to solve a game by eliminating ’unreasonable’

strategies. The starting point of the rationalizability approach is the assumption that a

player will not choose strategies which are not best responses against any strategy pro…le of

his opponents. If this assumption results in an elimination of strategies the complexity of the
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problem is reduced. In a next step the rationalizability approach assumes that a player will

not choose strategies which are not best responses against any remaining strategy pro…les

of his opponents in the reduced problem; and so on... Thus, by iteration we may arrive at

some set of ’rationalizable’ strategies that can not be further reduced.

Rationalizability presumes now that players engage in this process of reasoning

such that only rationalizable strategies will be chosen in the course of a game. Unlike the

equilibrium approach the rationalizability approach does not require players to have correct

expectations about opponents’ strategy choices, and it claims only that a player expects

his opponents to play some rationalizable strategy. Moreover, the process of reasoning, as

assumed by the rationalizability approach, does not presuppose any learning from previous

play such that we can expect players to choose rationalizable strategies even in ’one-shot’

strategic situations; at least when the players are indeed strategically sophisticated enough

to go through the necessary iterations.

Let me explain both approaches by a simple example. The following payo¤-matrix

depicts each player’s evaluation of the possible strategy-pro…les of a game (in normal form)

I would like to call ”Education” game

go on stop

encourage 2,2 0,0
ignore 1,1 1,0
discourage 0,0 0,1

The equilibrium approach predicts for the Education game that player A ’encour-

ages’ and that player B ’goes on’: If player A expects player B to ’go on’ he chooses to

’encourage’ because this strategy gives him with 2 the highest payo¤ among his possible
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strategy choices. Accordingly, player B would ’go on’ if he expects player A to ’encourage’

such that the strategy pro…le ’encourage, go on’ is an equilibrium point. Moreover, by

inspecting the remaining …ve strategy-pro…les of this game we see that there does not exist

any other equilibrium point.

The rationalizability approach also predicts that player A will ’encourage’ and

player B will ’go on’. However, the rationalizability approach applies a quiet di¤erent

reasoning for arriving at this unique ’rationalizable’ solution of the game. If we look at A’s

strategy choices we can conclude that he will never ’discourage’ because whatever B is doing

’discourage’ is not a best response. Let A also realize this, and let him furthermore assume

that B realizes this too, i.e., B knows that A will not ’discourage’. Having eliminated

’discourage’ as a strategy that will not be chosen by A, and that will not be regarded by B

as a possible choice of A, we are left with a strategic situation given by

go on stop
encourage 2,2 0,0
ignore 1,1 1,0

Rationalizability claims that A should be aware of the fact that B will not choose

’stop’ because it is not a best response for B in this new strategic situation. As a consequence

A considers only the reduced strategic situation

go on
encourage 2,2
ignore 1,1

Here the strategic situation boils down to a simple decision-problem for A. He will
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choose ’encourage’ as his unique best response, and we have arrived at a unique rational-

izable strategy-choice for A. If B follows such a reasoning as well he will choose ’go on’,

and we obtain as unique rationalizable strategy pro…le of the Education game ’encourage,

go on’.

*

In the Education game the equilibrium approach and the rationalizability ap-

proach arrive at the same unique solution, but in general rationalizability concepts are by

construction weaker solution concepts than equilibrium concepts. Even if there is a unique

equilibrium point we may encounter many rationalizable strategies. The following payo¤

matrix of a game, called ”Adventure World”, depicts such a situation where every individ-

ual strategy is rationalizable whereas ’‡oat, …ght’ is the unique equilibrium point (in pure

strategies).

run fight hide

rise 0,1 0,0 1,0
float 0,0 1,1 0,0
sink 1,0 0,0 0,1

When we consider games for which the assumption of correct expectations is hardly

justi…ed the weakness of the rationalizability approach can bear interpretational advantages

over the equilibrium approach: the equilibrium approach may rule out too many ’reasonable’

strategies that might actually be chosen by the players. However, this conceptual weakness

can become a problem for the usefulness of the rationalizability approach as a positive

theory: If only a few strategies are excluded as ’unreasonable’ the rationalizability approach
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has not much predictive power.

From the point-of-view of predictive power rationalizability should ideally identify

a unique rationalizable strategy pro…le, as in the Education game. Moreover, for games with

a unique rationalizable solution (and only for these games) the rationalizability approach

gains the status of a normative theory that can recommend to all players the ’right’ strategy

choice: If we advised each player to go through all the stages of reasoning such that each

player arrives at a unique strategy the resulting play will be a Nash equilibrium, i.e., no

player has an incentive to deviate from his rationalizable strategy given the other players

stick to their rationalizable strategies as well. Thus, for games with a unique rationalizable

strategy pro…le we can o¤er a good answer to the equilibrium approach’s problem of how

players could arrive in ’one-shot’ games at correct expectations about opponents’ strategy

choices: The players have just to engage in the internal process of reasoning, as presumed

by the rationalizability approach, and they will end up with correct expectations about

their opponents’ strategy choices.

In chapter 2 of this thesis I am going to characterize classes of games with a

unique rationalizable solution. As the central mathematical condition of my uniqueness

results I introduce the concept of T-contractivity. Contractivity, (or 1-contractivity in my

terminology), of the best-response function states that for arbitrary strategy pro…les the

’distance’ between the best-response strategy pro…les against these strategy pro…les has to

be smaller than the distance between these strategy pro…les. T-contractivity postulates the

same property for a T-fold application of the best response function. Existing uniqueness

results in the literature refer to 1-contractivity (Moulin 1984) or even stronger contraction-
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properties (Bernheim 1984) of the best response function. Moreover, these existing results

are restricted to very speci…c strategy sets (closed intervals of the real line).

One main result in chapter 2 shows that T-contractivity (respectively the stronger

condition of T-contraction) in any mathematical distance is a su¢cient condition for a

unique solution in arbitrary compact (respectively complete and bounded) sets of strategy

pro…les. For games with …nite strategy sets T-contractivity is even a necessary uniqueness

condition. Furthermore, a slightly weaker condition than T-contractivity turns out to be

a su¢cient and necessary for a unique rationalizable solutions in games with monotonic

best response functions (including so-called ’supermodular games’, see Topkis 1979; Vives

1990; Milgrom and Roberts 1990). Finally, because a unique rationalizable solution must

be a unique equilibrium point, the uniqueness results of chapter 2 are also relevant to

the equilibrium approach: Games with unique Nash equilibria can be identi…ed; technics

become available for the computation of these equilibrium points.

For real-valued strategy sets and di¤erentiable best-response functions su¢cient

conditions for T-contractivity can be stated in terms of the …rst order derivatives of the

best-response functions. In chapter 3 of this thesis I apply these uniqueness conditions for

di¤erentiable best response functions to a problem originally proposed by Bernheim (1984)

and extended by Basu (1992): In standard Cournot-Oligopolies with su¢ciently many …rms

every output-decision between zero and the monopoly-output becomes rationalizable even

if there is a unique Nash equilibrium! I show that for any given number of …rms suit-

able assumptions concerning the market-impact of …rms and their cost functions imply a

unique rationalizable output-decision for each …rm. For instance, we can always guarantee
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unique rationalizable strategies in Cournot-Oligopolies in case the products of the …rms are

su¢ciently heterogenous. Because real-life …rms rarely compete on markets of perfectly ho-

mogenous goods the uniqueness results of chapter 2 would endow us with good predictions

about market-outcomes whenever Cournot Competition appears as the relevant model. This

predictive power holds even for ’one-shot’ strategic situations of Cournot Competition for

which the equilibrium approach has less appeal than the rationalizability approach.

*

Even more important than uniqueness is the question of existence for a solution

concept. If there does not exist an equilibrium-point, or if there does not exist a rationaliz-

able strategy pro…le, then neither a prediction about nor a recommendation for a player’s

strategy choice is possible. Due to Nash’s (1950a; 1950b) existence result we take the exis-

tence of equilibrium points (in mixed strategies) as granted for games with …nite strategy

sets. Moreover, because every equilibrium is rationalizable the existence of rationalizable

strategies is implied by Nash’s proof as well. But Nash had derived his existence result un-

der the speci…c assumption of Expected Utility maximizing players; an assumption which

attracted recently strong criticism due to its lack of realistic appeal.

Von Neumann and Morgenstern (1947) had introduced the idea that the strategy

choice of a player can be described as a choice between ’lotteries’ (=probability distributions

with …nite support). A best response of a player, given his expectations about his opponents’

strategy choices, is then a preference-maximizing choice among some set of lotteries. Von

Neumann and Morgenstern presumed that a player’s preferences over lotteries satisfy some
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axioms such that these preferences become representable by an Expected Utility functional:

a player’s evaluation of a lottery is computed as a sum of utility-numbers, assigned to

deterministic outcomes, which are weighted with the probabilities of the outcomes.

To assume Expected Utility maximizing players is technically very convenient,

however, real individuals systematically violate EU-maximizing behavior (see, e.g., Allais

1953; Kahneman and Tversky 1979). Even for idealized ’rational’ individuals it is not

necessarily obvious why they should stick to the Expected Utility axioms. As a reaction to

this criticism of EU-theory several decision-theoretic models have been developed with the

aim to avoid the ‡aws of the Expected Utility assumptions (for an overview see, e.g., Karni

and Schmeidler 1991; Schmidt 1998; Starmer 2000).

For these alternative (Non-Expected Utility) models of decision-making the exis-

tence of equilibrium-points may break down. Nevertheless, even if Nash equilibria do not

exist, there exist so-called ’equilibria in beliefs’ (Crawford 1990) as long as the players’

preferences are representable by continuous utility functions. Equilibria in beliefs are a re-

interpretation of Nash equilibria in terms of correctly held beliefs instead of actually chosen

strategies. In particular, for a game with n players an equilibrium in beliefs is de…ned as a

n-tupel of beliefs such that i.) each player expects with positive chance only strategies that

are best responses of his opponents against their beliefs, and ii.) any two players share the

same belief concerning the strategy-choice of any third player. Thus, for Non-EU models

with continuously representable preferences we obtain existence of equilibrium-points that

are re-de…ned as equilibria in beliefs.

The assumption of a continuous utility representation is crucial for this existence
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result, however, there are psychologically motivated decision-theoretic models, so-called

’security- and potential level preferences’ (Gilboa 1988; Ja¤ray 1988; Cohen 1992; Essid

1997) which violate this assumption. In chapter 4 of this thesis I investigate the existence

of strategic solutions for players with security- and potential level preferences. The results

of chapter 4 establish that existence of equilibria in beliefs may fail whereas existence of

rationalizable strategies is guaranteed. The fact that it can be impossible for two preference-

maximizing players to have mutually correct expectations concerning their strategy choices

casts in my opinion a severe doubt on the claim that solutions of strategic situations must

be equilibrium points.

The relevance of the existence vs. non-existence results of chapter 4 depends

on the relevance of the security and potential level preference models; especially, on their

assumption on the occurrence of discontinuous preferences. Consider a ”Pre-emptive Strike”

game where player A can either wag a ’war’ or keep ’peace’ while a player B will ’destroy’

or ’distribute’ weapons of mass destruction. Let player A have the following payo¤-matrix

destroy distribute

peace 2 0
war 1 1

Suppose now that A ’does not take any chances’: If A was sure that B ’destroys’

his WMD he chooses ’peace’; in contrast, A chooses ’war’ whenever he believes that B will

’distribute’ WMD with positive chance.

Such choice behavior of A is in my opinion perfectly reasonable as well as relevant,
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however, the according preferences are not continuously representable: if the probability of

B ’distributing’ WMD drops to zero there would be a discontinuous upward-jump in A’s

welfare by keeping ’peace’. Due to this discontinuity the existence result for equilibria in

beliefs (Crawford 1990) does not apply here anylonger. SL,PL-preferences can take account

of this upward-jump, and by the notion of a ’security level e¤ect’ they o¤er even a convincing

psychological explanation for this discontinuity in A’s evaluation of lotteries (compare Lopes

1987).

Besides the possibility of ’upward jumps’ SL,PL-preferences have other advantages

which add to their realistic appeal. They allow, for example, also for ’downward jumps’

in the evaluation of lotteries in case risky choices lose any chance on good outcomes. But

most importantly SL,PL-preferences can explain (via these discontinuities) so-called Allais

paradoxa (Allais 1953) which are the most prominent violations of EU-theory. The motiva-

tion for SL,PL-preferences, in particular their approach to Allais paradoxa, will be further

discussed in chapter 4 of this thesis.

*

There exist di¤erent rationalizability concepts in the literaturewhich refer basically

to the same process of internal reasoning that a player presumably uses when he wants to

determine a ’reasonable’ strategy choice for himself:

1. ”All players choose only a best response for some belief.”

2. ”My opponents know stage 1.”

...
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i. ”All players will only choose a best response for some belief that is consistent

with the knowledge at stage i-1.”

i+1. ”My opponents know i.”

and so forth...

Furthermore, all rationalizability concepts formalize a player’s beliefs as probability-

distributions over his opponents’ strategy-choices such that a ’belief is consistent with the

knowledge at all stages’ if and only if opponents’ strategies, excluded at some stage, do not

appear in the support of the belief. However, these concepts di¤er by their assumptions

which probability-distributions shall be regarded as admissible beliefs at the starting point

of the reasoning process.

The concept of ’point-rationalizability’ considers only degenerated probability-one

distributions (’point beliefs’). ’Independent rationalizability’, usually just called ’rational-

izability’, restricts possible beliefs to probability distributions that assume independently

chosen strategies of the opponents. Finally, the concept of ’correlated rationalizability’ al-

lows for arbitrary probability-distributions such that a player may believe his opponents

can correlate their strategy choices in any possible way. Correlated rationalizability is

in general weaker than independent rationalizability which is in turn weaker than point-

rationalizability, i.e., each point-rationalizable strategy is also a rationalizable strategy

whereas the converse is not necessarily true.

In chapter 5 of this thesis I investigate conditions for which these di¤erent ratio-

nalizability concepts determine the same set of rationalizable strategies. Such equivalence
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conditions are of interest because they characterize games for which the interpretational

advantages of independent rationalizability and of correlated rationalizability are combined

with the technical simplicity of point-rationalizability. Moreover, for games satisfying these

equivalence conditions, the question becomes irrelevant whether the assumption of arbitrary

beliefs or of beliefs restricted to independent strategy choices is more appropriate for a given

situation.

To see the interpretational shortcomings of point-rationalizability consider the

following payo¤s of a player A in the ”Circus Dompteur” game

beat bite

allow 2 -1Mill
assist 1 1
avoid -1Mill 2

To ’assist’ is not a best choice against any point-belief of A: if A believes that B

’beats’ then A would ’allow’, and if A believes that B ’bites’ then A would ’avoid’. However,

suppose A conceives ’beat’ and ’bite’ as equally likely. Then it may be reasonable for A to

’assist’ because he could avoid by this choice the 0:5 chance of losing 1Mill.

The reason for working with point-rationalizability at all, and not with other ratio-

nalizability concepts instead, is its technical convenience: It is much easier to determine the

best responses against pure strategies (point-beliefs) than to determine the best responses

against all probability mixtures over these pure strategies. For example, the uniqueness

conditions of chapter 2 are at …rst derived for point-rationalizable strategies because I can

apply mathematical tools to point-rationalizability that are not at hand for the other ra-

tionalizability concepts (contraction properties of the best response function against pure
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strategies). Only in a second step these uniqueness results are extended to correlated ra-

tionalizability by an application of equivalence results obtained in chapter 5. As another

consequence point-rationalizability is the most prominent rationalizability concept applied

in economical models. But this often leaves the question open whether we could have ob-

tained the same solution of the model for more convincing rationalizability concepts, or

not.

The equivalence conditions of chapter 5 characterize now games for which the

technical convenience of point-rationalizability goes along with the conceptual advantage of

the other rationalizability concepts. Central conditions for the equivalence of all rationaliz-

ability concepts refer to properties of the utility functions (quasiconcave utility functions;

supermodular utility functions with monotonic di¤erences) and they refer to properties of

the strategy sets (compact intervals of the real line; complete lattices).

The …ndings of chapter 5 will restate and extend existing equivalence results (e.g.,

Milgrom and Roberts 1990 for supermodular games with a unique point-rationalizable strat-

egy). For example, the equivalence results of chapter 5 apply also to models of Cournot-

Oligopolies which are not supermodular in the sense of Milgrom and Roberts.

Chapter 5 investigates also equivalence conditions for rationalizability concepts

and for the closely related solution concepts of so-called ’iterated elimination of dominated

strategies’. There exist famous results in the literature that relate both families of solution

concepts (Pearce 1984; Moulin 1984; Milgrom and Roberts 1990) and I will provide restate-

ments as well as extensions of these results. Interestingly, all the equivalence of chapter

5 do not require the standard assumption of Expected Utility maximizing players: sim-
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ple stochastic dominance conditions, implied by monotonicity with respect to …rst order

stochastic dominance, are already su¢cient.

* * *
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Chapter 2

Uniqueness Of Rationalizable

Solutions

2.1 Introduction

This chapter explores su¢cient and necessary conditions for the uniqueness of

rationalizable strategies with the aim to characterize classes of normal form games with a

unique rationalizable solution. Rationalizability concepts (Bernheim 1984; Pearce 1984) try

to solve a game by the elimination of ’unreasonable’ strategies. In a …rst step it is assumed

that every player of a game chooses only a best response against some belief about his

opponents’ strategy choices. In a second step all players shall be aware of this situation

such that every player chooses only best responses against some belief about his opponents’

remaining strategy choices. By iteration of this argument we may …nally arrive at a set of

’rationalizable’ strategies which can not be further reduced.
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Another approach to solving games is the equilibrium approach. Equilibrium con-

cepts presume that the solution of a game is a Nash equilibrium (Nash 1950b), i.e., a strategy

pro…le such that the strategy of each player is a best response against the strategies of his

opponents. If players choose a best response against some belief a Nash equilibrium requires

the players to have correct beliefs about their opponents’ strategy choices. In contrast when

a player chooses a rationalizable strategy as a best response against some belief this belief

is not necessarily correct. As a consequence rationalizability concepts are weaker solution

concepts for normal form games than equilibrium concepts: every Nash equilibrium is a

rationalizable strategy pro…le whereas the converse is not necessarily true.

To explain why players should have correct beliefs may be quite di¢cult for equi-

librium concepts; especially for ’one-shot’ strategic situations. Rationalizability concepts

do not have this problem, however, they face other di¢culties. First, a justi…cation of ra-

tionalizable strategies as solutions requires a degree of ’strategic sophistication’ on behalf of

all players which is often unrealistic. Second, the conceptual weakness of rationalizability

concepts can become a problem for the usefulness of these solution concepts: if there are

too many rationalizable strategies there is not much predictive power.

This …rst di¢culty is not avoided for games with a unique rationalizable solution.

However, under the assumption of strategically sophisticated players the rationalizability

approach gains for these games maximal predictive power. Moreover, games with a unique

rationalizable solution are also of interest for the equilibrium approach because rational-

izability o¤ers then a good explanation why players may arrive at correct beliefs even in

’one-shot’ games. Finally, for games with a unique rationalizable solution rationalizability
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can gain the status of a normative theory: Suppose we recommend all players to go through

the strategic reasoning of the rationalizability approach. If we can convince each player

that his opponents will do the same no player will deviate from this recommendation.

In Moulin (1984) and in Bernheim (1984) su¢cient conditions for a unique ratio-

nalizable strategy are presented that are based on contraction properties of the best response

function. Moulin shows that contraction of the best response function, i.e., the distance be-

tween any two best-responses against strategy pro…les is smaller than the distance between

these strategy pro…les, is a su¢cient condition for uniqueness. This su¢cient condition

for uniqueness is more general than Bernheim’s condition who requires a su¢ciently fast

contraction such that the speed of the contraction has to increase in the number of players.

Both, Moulin and Bernheim, apply very speci…c de…nitions of the ’mathematical distance’

and they restrict their results to games with individual strategy sets that are subsets of the

real numbers (respectively of Rn).

Milgrom and Roberts (1990) show that the rationalizable solution of a so-called

’supermodular’ game (compare also Topkis 1979; Vives 1990) is unique if and only if the

Nash equilibrium of this game is unique. In contrast to the results of Bernheim and of

Moulin, Milgrom and Roberts’ uniqueness result is applicable to games with quite general

strategy sets (as long as these strategy sets are ’complete lattices’). On the other hand the

assumption of ’supermodular’ games is rather restrictive; for example, all individual best

response functions must be increasing. Moreover, the problem of a su¢cient and necessary

condition for a unique rationalizable strategy in supermodular games is merely translated
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into the problem of a su¢cient and necessary condition for a unique Nash equilibrium

whereby Milgrom and Roberts do not provide such a uniqueness condition.

This chapter relaxes Bernheim’s and Moulin’s uniqueness conditions with respect

to contraction properties of the best response function as well as with respect to possible

strategy sets. As central mathematical condition I introduce the concept of T-contractivity,

i.e., the distance between strategy pro…les that result from a T-fold application of the

best response function to starting-point strategies is smaller than the distance between

these starting-point strategies. One main result of this chapter shows that T-contractivity,

de…ned in an arbitrary distance, is a su¢cient condition for uniqueness. This result is valid

for arbitrary strategy sets that are compact subsets of some metric space. (For strategy sets

that are only complete and bounded subsets of a metric space the slightly stronger condition

of T-contraction is needed to guarantee uniqueness.) For games with …nite strategy sets

T-contractivity turns is also a necessary uniqueness condition.

A slightly weaker condition than T-contractivity turns out to be a su¢cient and

necessary uniqueness condition for all games with monotonic best response functions. This

includes the class of supermodular games but it applies also to games with decreasing best

response functions. As a consequence Milgrom and Roberts’ uniqueness result for super-

modular games can be described as a special case of the contraction approach. Moreover, as

a side result, we can characterize now supermodular games with a unique Nash equilibrium

by this su¢cient and necessary condition for a unique rationalizable solution.

The uniqueness results of this chapter will be at …rst derived for the so-called

concept of point-rationalizability. Compared to independent, or to correlated, rational-
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izability, the concept of point-rationalizability has severe interpretational ‡aws because

only best responses against probability-one beliefs are considered. In general a unique

point-rationalizable strategy is not necessarily the unique correlated rationalizable strategy.

However, in chapter 5 of this thesis several conditions are identi…ed which guarantee that a

unique point-rationalizable strategy is also the unique correlated rationalizable strategy of

a game. Whenever possible these conditions are applied in this chapter.

The remainder of this chapter is organized as follows. Section 2 introduces basic

de…nitions. In section 3 the main uniqueness results for metrizable strategy sets are pre-

sented. In section 4 even stronger results are obtained under the additional assumptions of

monotonic best response functions and of strategy sets that are complete lattices. Section

5 presents derived results for di¤erentiable best response functions and individual strategy

sets that are subsets of the reals. Section 6 provides a brief outlook on possible economical

applications. All proofs are relegated to the appendix.

2.2 De…nitions

For a given set of players I let G = (Si; fi)i2I denote a game in normal form with

Si as individual strategy set of player i. By fi : 4 (S¡i) ! 2Si I denote the individual best

response correspondence such that fi maximizes player i’s preference ordering over the set

Si£4(S¡i) with 4(S¡i) as set of probability distributions over S¡i = £j 6=iSj . An element

¾¡i 2 4(S¡i) will be called a ’belief ’ of player i about the strategy choices of his opponents.

In case ¾¡i is a ’point-belief’, i.e., assigns probability one to some strategy pro…le s¡i, I
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simply write fi (s¡i) instead of fi (¾¡i). For single-valued fi (¾¡i) I write si = fi (¾¡i)

instead of si 2 fi (¾¡i). If all individual best response correspondences against point-beliefs

are single-valued I call f : S ! S, with f (s) = £Ii=1fi (s¡i), a ’best response I-function’.

De…nition. (Bernheim 1984; Pearce 1984)

The set of point-rationalizable strategies of a game G is given by

P (G) =

1\

k=0

¸k (S)

,such that ¸k (S) = £Ii=1¸ki (S) with

¸ki (S) =
[

s¡i2¸k¡1¡i (S)

fi (s¡i)

and ¸0¡i (S) = S¡i.

The set of correlated rationalizable strategies of a game G is given by

RC (G) =
1\

k=0

¹k (S)

,such that ¹k (S) = £Ii=1¹ki (S) with

¹ki (S) =
[

¾¡i24(¹k¡1¡i (S))

fi (¾¡i)

and ¹0¡i (S) = S¡i.

Notice, that for games with a best-response I-function the set of point-rationalizable

strategies is equivalently given by P (G) =
T1
k=0¸

k (S) with ¸k (S) =
S
s2 ķ¡1(S) f (s) and

¸0 (S) = S. For some number T 2 N let the function fT : S ! S be inductively de…ned by

fT (s) = f
¡
fT¡1 (s)

¢
with f0 (s) = s.
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De…nition. Given some T 2 N.

The best response I-function f is said to be T-contractive if fT is contractive, i.e.,

d
¡
fT (s) ; fT (t)

¢
< d (s; t) for all s; t 2 S with s 6= t.

The best response I-function f is said to be a T-contraction if fT is a contraction,

i.e., there exists some c 2 (0; 1) such that d
¡
fT (s) ; fT (t)

¢ · c ¤ d (s; t) for all s; t 2 S .

2.3 Uniqueness Results For Metric Spaces

2.3.1 Results

In this section strategy sets are considered that can be described as subsets of

some arbitrary metric space. The results of proposition 1 and of proposition 2 are valid for

an arbitrary distance function d.

Proposition 1. Given a game G such that

(A1) The best response I-function f exists and is continuous.

(A2) S is a compact, non-empty subset of some metric space (X; d).

Then there exists a unique point-rationalizable strategy of G if the best response

I-function f is T-contractive.

A point-rationalizable strategy of G is unique only if there is some c 2 (0;1) such

that there exists for all s; t 2 S some T 2 N, dependent on s; t, with d
¡
fT (s) ; fT (t)

¢ ·

c ¤ d (s; t).
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Given the assumptions (A1) and (A2) of proposition 1 T-contractivity in some

distance for some T ¸ 1 is a su¢cient condition for a unique point-rationalizable strategy.

In contrast, the necessary condition of proposition 1 does not require the same number T

such that d
¡
fT (s) ; fT (t)

¢ · c ¤ d (s; t) for all s; t 2 S. The following example shows that

T-contractivity is not a necessary condition for uniqueness:

Example. I = 2, Si = [0;1], and f1 (s2) = (0:5)s2 and f2 (s1) = 1¡s1. This game

satis…es the assumptions of proposition 1 and it can be shown that there exists a unique

point-rationalizable strategy given by s¤ = (1; 0), (f is non-increasing and we can apply

condition i.) of proposition 3 since limk!1
°°fk (s) ¡ fk (t)

°°
1

= 0 for s = (0;0) and t = (1;1)

). On the other hand T-contractivity in k¢k1 is violated: Suppose s (M) = (s1 = 1; s2 = 0)

and t(M) =
¡
t1 = 1 ¡ 1

M ; t2 = 0
¢

and observe that for any …xed T the number M can be

chosen su¢ciently large to obtain
°°fT (s (M)) ¡ fT (t (M))

°°
1

¸ ks (M) ¡ t (M)k1.

It remains an open question whether the necessary condition of proposition 1 is

also a su¢cient condition for uniqueness under the assumptions (A1) and (A2). However,

we can apply proposition 1 to derive a su¢cient + necessary condition for …nite games.

Consider the case of a game G with …nite strategy set S such that #S = m > 0.

Let us endow S with the discrete topology induced by the discrete metric d, such that

d (s; t) = 1 if s 6= t, and d (s; t) = 0 if s = t. Observe that the assumptions (A1), (A2) of

proposition 1 are satis…ed in case fi (s¡i) is single-valued for all s¡i 2 S¡i and all i. Hence,

there exists a unique point-rationalizable solution of G if f is a T-contraction for some

…nite T . Furthermore, in the appendix it is shown that there must exist some T not greater

than m if there exists any T at all such that d
¡
fT (s) ; fT (t)

¢
< d (s; t) for any s; t 2 S.
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As a simple consequence we obtain the following corollary which implies that uniqueness

of a point-rationalizable strategy for a game G with …nite strategy set S, with #S = m,

and single-valued best response correspondences f can be determined by a …nite number of

computations, (with m ¤ m as upper bound).

Corollary 1. Given a …nite game G with #S = m and with best-response I-

function. There exists a unique point-rationalizable strategy of G if and only if fm (s) =

fm (t) for all s; t 2 S.

The next proposition provides a su¢cient condition under a relaxation of the

compactness-assumption in proposition 1.

Proposition 2. Given a game G such that

(A1) The best response I-function f exists and is continuous.

(A2) S is a nonempty, bounded and complete subset of a metric space (X; d).

Then there exists a unique point-rationalizable strategy of G if the best response

I-function f is a T-contraction.

Non-emptiness of P (G) in proposition 2 is guaranteed by a …xed-point theorem

(basically an extension of the famous Banach …xed-point theorem from 1-contractions to

T-contractions). This was not necessary for proposition 1. Instead, the proof of proposi-

tion 1 establishes as a side-result the existence of a unique …xed-point for a T-contractive
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continuous single-valued mapping from a compact set into itself, (compactness is necessary

if T-contractivity is assumed instead of T-contraction, compare the …xed-point theorem for

1-contractivity in Bonsall 1962).

If Si is a subset of Rn proposition 2 obtains as a special case of proposition 1

because completeness and boundedness of Si imply then compactness of Si. However,

proposition 2 is useful for more general strategy-spaces for which compactness might fail

(or is not easily assured) whereas completeness and boundedness are satis…ed. Consider the

example of a symmetric two-player game G with Si as the set of functions bi : [0;1] ! [0; 1]

, and with individual best response function fi (bj) = 0:9 ¤ bj . Take the metric space

(Si; d) with d as the ”uniform metric” (induced by the supremums-norm), and notice that

S is a nonempty, bounded, and complete subset of the product space (S1; d) £ (S2; d) with

d (s; t) = maxfd (s1; t1) ; d (s2; t2)g, (compare Theorem 3 p.92 in Berge 1997). It is easy to

see that the best response I-function f (b) = (fi (bj) ; fj (bi)) is a 1-contraction since

d
¡
f

¡
b1

¢
; f

¡
b2

¢¢ · 0:9 ¤ d
¡
b1; b2

¢

for all b1; b2 2 S. This proves the existence of a unique point-rationalizable strategy of G

by proposition 2, whereas proposition 1 was not applicable because S is not compact.

2.3.2 Relation to the Uniqueness Results of Bernheim and of Moulin

In Bernheim (1984) and in Moulin (1984) appear already two su¢ciency conditions

for unique point-rationalizable strategies that refer to contraction-mapping properties of the

best response I-function.

Bernheim (1984) o¤ers by proposition 5.5 a su¢ciency condition for uniqueness of
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point-rationalizable strategies in terms of the best response I-function which states basically:

A point-rationalizable strategy is unique if the best response I-function is a contraction

mapping in the Euclidean metric with a su¢ciently fast contraction whereas the speed of

the contraction has to increase in the numbers of players in a game. In particular, the

contraction speed is characterized by the following formula with d (s; t) = ks ¡ tk2, s; t 2 S,

and S as compact subset of Rn

d (f (s) ; f (t)) <
d (s; t)p
(I ¡ 1)

A look into Moulin’s (1984) proof of Theorem 4 reveals that Moulin had been well

aware that contraction of the best-response I-function in the supremums-norm implies a

unique point-rationalizable strategy if the Si are compact subsets of R. Moulin uses this

uniqueness condition for point-rationalizable strategies to derive a uniqueness condition

for weak dominance solution against pure strategies in so-called ’nice’ games, (compare

the remarks in section 5 of this chapter). Notice that point-rationalizable and correlated

rationalizable strategies coincide for a class of games which implies Moulin’s nice’ games,

(for details see chapter 5 of this thesis). Thus, applied to this class of games proposition 1

states a su¢cient and a necessary condition for the uniqueness of a correlated rationalizable

strategy.

Obviously, the results of this section are more general than the results of Bernheim

and of Moulin: they are applicable to strategy sets that are subsets of an arbitrary metric

space, and they consider T-contractivity, resp. T-contraction, for T ¸ 1. But even under

the restrictions that T = 1 and that the strategy spaces are compact subsets of Rn the

su¢ciency condition of proposition 1 o¤ers useful extensions to the su¢ciency conditions in
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Bernheim (1984) and Moulin (1984): Proposition 1 relaxes 1-contraction (or ”su¢ciently

fast” contraction as in Bernheim) to 1-contractivity. Furthermore, proposition 1 shows that

1-contraction under any metric is a su¢cient condition for uniqueness, (note: 1-contraction

in a speci…c norm does not necessarily imply 1-contraction in another norm).

2.4 Lattice-Structures And Monotonic Best Response Func-

tions

2.4.1 Results

In this section strategy sets are considered that can be simultaneously described

as a subset of a metric space (X; d) and as a lattice (S; ·L). Useful uniqueness results

obtain then for monotonic best response I-functions.

Recall at …rst some notions of lattice theory (compare Topkis 1979; Vives 1990;

Milgrom and Roberts 1990; Fudenberg and Tirole 1996). Given a re‡exive, transitive,

and antisymmetric binary relation ·L on a set Si let (Si; ·L) denote a lattice, i.e., for all

elements si; ti 2 Si there exist a supremum si_ti and an in…mum si^ ti in Si. Furthermore,

(S;·L) denotes then a lattice given by the product-order, i.e., s ·L t i¤ si ·L ti for

all i. A lattice (S;·L) is complete if inf T 2 S and supT 2 S for every non-empty subset

T ½ S. In particular, completeness of (S;·L) implies the existence of exactly one ”smallest”

element s 2 S such that s ·L s0 for all s0 2 S, and of exactly one ”largest” element t 2 S

such that s0 ·L t for all s0 2 S. Order-continuity of f on a complete lattice (S; ·L)

implies for every chain C (=totally ordered subset of S) lims2C;s#infC f (s) = f (inf C) and

lims2C;s"supC f (s) = f (sup C).
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Proposition 3. Given a game G such that

(A1) S is a bounded subset of some metric space (X;d) and a complete lattice

(S;·L) such that d (s0; t0) · d (s; t) whenever s ·L s0; t0 and s0; t0 ·L t.

(A2) The best response I-function exists and is order-continuous.

Furthermore, either one of the following two conditions is satis…ed:

(A3a) The best response I-function is non-decreasing: if s ·L t then f (s) ·L f (t),

or

(A3b) The best response I-function is non-increasing: if s ·L t then f (t) ·L f (s)

.

Then there exists a unique point-rationalizable strategy of G if and only if

one of the following conditions is satis…ed

i.) limk!1d
¡
fk (s) ; fk (t)

¢
= 0 with s as the smallest and with t as the largest

element in S, or

ii.) There exists for all s; t 2 S, with s 6= t, some T 2 N, dependent on s; t, such

that d
¡
fT (s) ; fT (t)

¢
< d (s; t).

Under the assumptions of proposition 3 the necessary condition of proposition

1 becomes a necessary and a su¢cient condition for unique point-rationalizable strategy.

Assumption (A1) claims a particular relationship for the partial order ·L and the distance

d: the distance between the ”smallest” and the ”largest” element of some lattice should

not be smaller than the distance between an arbitrary pair of elements in this lattice.
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Recall that a normed Riesz space is an ordered vector space which is a lattice as well

as a metric space with norm-induced metric, (compare the chapters 6-7 in Aliprantis and

Border 1994). Consequently, whenever all Si are normed Riesz spaces the strategy set

S can be characterized as a lattice and as a subset of a metric space under the max-

norm ksk = maxi2I ksik. Typical individual strategy sets of economic interest should be

describable as normed Riesz spaces such that assumption (A1) of proposition 3 is satis…ed

for S. To see this consider the following three examples.

Example. Let Si be a subset of the Riesz space B (X) of all bounded real func-

tions on X under the supremums-norm ksik1 = supfjsi (x)j j x 2 Xg. Let us impose the

following lattice structure on Si: si ·L ti if and only if si (x) · ti (x) for all x 2 X . Suppose

now that si ·L s0i; t
0
i and s0i; t

0
i ·L ti, and without restricting generality assume further that

kt0i¡ s0ik1 = sup ft0i (x) ¡ s0i (x) j x 2 Xg. Since ti (x) ¸ t0i (x) and s0i (x) ¸ si (x) for all

x 2 X we have kti¡ sik1 ¸ kt0i ¡ s0ik1.

Example. Let Si be a subset of the Riesz space l1 of all continuous real functions

on N with compact support, i.e.,

l1 =
©
si 2 RN j ksik1 < 1ª

This example is obviously a special case of the …rst example under the assumption X = N.

Since l1 is nothing else than the space of sequences with bounded entries we can conclude

that for typical settings of dynamic games with in…nite time-horizon the individual strategy

sets Si can be described as a lattice and as a subset of a metric space such that assumption

(A1) of proposition 3 is satis…ed, (compare the ”Arms race”-example of a supermodular

game in Milgrom and Roberts 1990).
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Example. Let Si be a subset of the Riesz space B ([0;1]) of all bounded real

functions on [0; 1] under the L1-norm, i.e. ksik =
R 1
0 jsi (x)j dx, such that si and ti are

considered as identical i¤
R 1
0 jsi (x) ¡ ti (x)j dx = 0. Let us impose the following lattice

structure on Si: si ·L ti if and only if the set fx j si (x) > ti (x)g is of measure zero,

(compare Theorem 3 in Milgrom and Roberts, 1990). Suppose now si ·L s0i; t
0
i and s0i; t

0
i ·L

ti. Notice that

Z 1

0
ti (x) ¡ s0i (x)dx+

Z 1

0
ti (x) ¡ t0i (x)dx = d

¡
s0i; ti

¢
+d

¡
ti; t

0
i

¢ ¸ d
¡
s0i; t

0
i

¢

Z 1

0
t0i (x)¡ si (x)dx +

Z 1

0
s0i (x) ¡ si (x)dx = d

¡
t0i; si

¢
+d

¡
si; s

0
i

¢ ¸ d
¡
t0i; s

0
i

¢

Summing up the l.h.s and the r.h.s of the above inequalities gives the desired result

2

Z 1

0
ti (x) ¡ si (x)dx ¸ d

¡
s0i; t

0
i

¢
+ d

¡
t0i; s

0
i

¢

d (si; ti) ¸ d
¡
s0i; t

0
i

¢

Two distinct notions of ’completeness’ are applied in this chapter: the uniqueness

condition of proposition 2 assumes a complete subset S of a metric space in the sense that

every Cauchy-sequence in S converges, whereas the uniqueness results of this section assume

that S is a (order-) complete lattice. Norm complete Riesz spaces are called Banach lattices

but the reader should be aware that such norm-complete Riesz-spaces are not necessarily

(order-) complete lattices.

For example, it is well-known that the set of continuous real functions on the

unit-interval C [0;1] is not a complete lattice, (compare Aliprantis and Border 1994). Fur-

thermore, if C [0; 1] is equipped with the L1-norm it is not a Banach-lattice either while it
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is a normed Riesz-space, (compare Vassiliev 2001). However, C [0;1] is a complete metric

space, i.e., a Banach lattice, if it is equipped with the supremums-norm. As a consequence,

it is not possible to establish uniqueness of point-rationalizable solutions by an application

of the results derived in this section to games with individual strategy sets given by C [0; 1].

Furthermore, we can not obtain uniqueness-results by proposition 2 for such games if C [0; 1]

is equipped with the L1-norm. Nevertheless, proposition 2 is immediately applicable if we

choose instead the supremums-norm.

Thus, despite the usefulness of the lattice-approach, there might exist relevant

cases for which uniqueness-results can not be established via the properties of the lattice-

structure of S but via the properties of S as a subset of an appropriate metric space.

2.4.2 Relation to the Uniqueness Result of Milgrom and Roberts

Milgrom and Roberts (1990) show that the correlated rationalizable strategy of a

supermodular game G is unique if and only if the Nash equilibrium of G is unique. Recall

that the best response I-function of a supermodular game is non-decreasing, and observe

that the arguments in the proof of proposition 3 are immediately applicable in order to

obtain the following relations of Nash equilibria and of point-rationalizable solutions in

games with monotonic best response I-functions.

Corollary 2: Suppose a game G satis…es the assumptions (A1) and (A2) of propo-

sition 3.

If the best response I-function is non-decreasing, i.e., (A3a), then there exists a

”smallest” element s 2 P (G) and a ”largest” element t 2 P (G) such that f (s) = s and
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f (t) = t, i.e., s and t are Nash equilibria. Consequently, there exists a unique point-

rationalizable strategy of G if and only if the Nash equilibrium of G is unique.

If the best response I-function is non-increasing, i.e., (A3b), then there exists

a ”smallest” element s 2 P (G) and a ”largest” element t 2 P (G) such that f (s) = t,

f2 (s) = s and f (t) = s, f2 (t) = t, i.e., s and t are Nash equilibria if and only if P (G) is

single-valued.

Under the additional assumptions of supermodular utility-functions and of mono-

tonic utility di¤erences the uniqueness result of proposition 3 can be extended from point-

rationalizable to correlated rationalizable strategies. Suppose that player i’s preference

ordering over the set Si£4 (S¡i) satis…es monotonicity with respect to …rst order stochas-

tic dominance and that it is represented by some utility function Ui : Si £ 4(S¡i) ! R

such that fi (¾¡i) = arg maxsi2Si Ui (si;¾¡i). The utility function Ui is supermodular on Si

if for all si; ti 2 Si

Ui (si; s¡i) +Ui (ti; s¡i) · Ui (si ^ ti; s¡i) + Ui (si _ ti; s¡i)

for all s¡i 2 S¡i. Furthermore, Ui has ”increasing di¤erences” if Ui (si; s¡i) ¡ Ui (ti; s¡i)

is non-decreasing in s¡i for ti ·L si, and it has ”decreasing di¤erences” if Ui (si; s¡i) ¡

Ui (ti; s¡i) is non-increasing in s¡i for ti ·L si.

Theorem (chapter 5 of this thesis): Given a game G that satis…es the assumptions

(A1) and (A2) of proposition 3 as well as the following assumptions

(A3) Each Ui is supermodular on Si.
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(A4) Each Ui has either increasing or decreasing utility di¤erences.

Then the unique point-rationalizable strategy of G is also the unique correlated

rationalizable strategy of G.

For a supermodular game i.) each Ui is supermodular on Si and has increas-

ing di¤erences, and ii.) S is a complete lattice. Furthermore, each Ui satis…es order-

uppersemicontinuity in si and order-continuity in s¡i; an assumption that is actually en-

compassed in proposition 3 by the claim for order-continuity of f whenever a best response

I-function exists. Since increasing utility di¤erences imply a non-decreasing best response I-

function the corollary, together with the theorem, restates Milgrom and Roberts’ uniqueness

result for supermodular games with a best response I-function.

By proposition 3 we can conclude that a correlated rationalizable strategy of games

with monotonic best response I-functions, satisfying the assumptions of the theorem, is

unique if and only if there exists for all s; t 2 S with s 6= t some T 2 N, dependent on

s; t, such that d
¡
fT (s) ; fT (t)

¢
< d (s; t). Thus, in addition to Milgrom and Roberts’ result

we have obtained a su¢cient and necessary condition for unique correlated rationalizable

strategies even if the best response I-function is non-increasing.

In the case of non-decreasing best response I-functions this condition is also neces-

sary and su¢cient for a unique Nash equilibrium. This is not anylonger true for games with

non-increasing best response I-functions: T-contractivity is then not a necessary condition

for a unique Nash equilibrium. For example, Bernheim (1984) and Basu (1990) observe

for a standard model of Cournot oligopoly that every individual output between zero and
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the monopoly-output becomes point-rationalizable for games with more than two …rms.

Such a Cournot oligopoly has a unique Nash equilibrium and it satis…es the assumptions of

proposition 3 whereas the response I-function is decreasing.

The following example shows that monotonic best response functions establish

only uniqueness of the point-rationalizable strategies whereas the stronger condition of

monotonic utility di¤erences are needed to guarantee a unique correlated rationalizable

strategy. Suppose the utility numbers of EU-maximizers are given by

b1 b2

a1 2; 0 2; 3

a2 0; 2 3; 0
a3 3; 3 0; 2

Let a1 ·L a2 ·L a3 and observe that f is non-increasing if b1 ·L b2, (respectively

non-decreasing if b2 ·L b1). There exists a unique point-rationalizable strategy by (a3; b1),

i.e., there exists some …nite T such that fT is contraction with d as the discrete metric.

However, there exist many correlated rationalizable strategies since a1 is a best response

against the belief that b1 and b2 are equally likely, and so forth. Supermodularity of each

Ui in Si is trivially satis…ed but UA does not have decreasing (respectively increasing)

di¤erences.

2.5 Di¤erentiable Best Response Functions

For real valued and continuously di¤erentiable individual best response functions

T-contraction of f is guaranteed if the partial derivatives satisfy speci…c conditions. Recall
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the de…nition of the function fT and notice that a partial derivative evaluated at s, @f
T
i

@sj
(s),

is computed via successive applications of the chain-rule:

@f1i
@sj

(s) =
@fi
@sj

(s)

@fTi
@sj

(s) =
X

k 6=i

@fi
@sk

@fT¡1k

@sj
(s)

Proposition 4: Given a game G such that

(A1) Each Si is a non-empty, compact, and convex subset of R.

(A2) Each individual best response function fi is continuously di¤erentiable.

Then there exists a unique point-rationalizable strategy of G

i.) if for each player i

X

j2I

¯̄
¯̄@fTi
@sj

(s)

¯̄
¯̄ < 1 (2.1)

for all s 2 S, for some T ¸ 1, or

ii.) if for each player j

X

i2I

¯̄
¯̄@fTi
@sj

(s)

¯̄
¯̄ < 1 (2.2)

for all s 2 S, for some T ¸ 1.

The results of proposition 4 can be considered as special cases of the Mean-Value

Inequality for functions Rn ! Rn (compare Heuser 1998), i.e.,

°°fT (s) ¡ fT (t)
°° ·

¯̄
DfT (r)

¯̄
M ¤ ks ¡ tk



36

such that DfT (r) =
³
@fTi
@sj

(r)
´
i=1;:::;I;j=1;:::I

denotes the matrix of …rst-order partial deriva-

tives and r 2 S maximizes some matrix-norm j¢jM over the elements in

f¸s + (1 ¡¸) t j ¸ 2 [0;1]g

which is compatible with the norm k¢k. For example, condition (2.1) implies T-contraction

of f in the supremums-norm k¢k1 because the ”absolute row-sum”-norm of a matrix is com-

patible with the supremums-norm k¢k1 (see Heuser1998, p57f.). Analogously, the condition

(2.2) can be derived because the ”absolute column-sum”-norm of a matrix is compatible with

the ”absolute value”-norm k¢k1. Consequently, whenever there is for some norm k¢k, with

S ½ (X; d) and d (s; t) = ks ¡ tk, a compatible matrix-norm j¢jM such that
¯̄
DfT (r)

¯̄
M

< 1

for some T ¸ 1, then the existence of a unique point-rationalizable solution is proved.

As a further example of ”compatible matrix-norms” notice that the ”spectrum”-norm of a

matrix, given by

¯̄
DfT (r)

¯̄
M = maxEigenvalue

³
DfT (r) ¤ ¡

DfT (r)
¢trans´

is compatible with the Euclidean norm k¢k2 . Hence, whenever the maximal singular value

of DfT (r) is strictly smaller than 1 for all r 2 S the point-rationalizable solution must be

unique.

The conditions of proposition 4 are most easily checked for 1-contraction. For

T = 1 condition (2.1) turns then into

X

j 6=i

¯̄
¯̄@fi
@sj

(s)

¯̄
¯̄ < 1

for all i and all s 2 S, and condition (2.2) becomes

X

i 6=j

¯̄
¯̄@fi
@sj

(s)

¯̄
¯̄ < 1
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for all j and all s 2 S. The …rst of these two contraction-conditions is already implied by

theorem 4 in Moulin (1984): in the proof of theorem 4 Moulin shows that an equivalent

formulation of this contraction-condition, (in terms of second-order partial derivatives of

the utility-functions), implies a unique point-rationalizable strategy.

Proposition 5: Given a game G such that

(A1) Each Si is a non-empty, compact, and convex subset of R.

(A2) Each individual best response function fi is continuously di¤erentiable.

Then there does not exist a unique point-rationalizable strategy of G

i.) if there exist for each T ¸ 1 two strategy-pro…les s; t 2 S, with s 6= t, such that

for all j 2 I

X

i2I

¯̄
¯̄@fTi
@sj

(r)

¯̄
¯̄ ¸ 1

for r 2 f¸s + (1 ¡ ¸) t j ¸ 2 [0; 1]g, or

ii.) if there exist for each T ¸ 1 two strategy-pro…les s; t 2 S, with s 6= t and

sk = sl, tk = tl , for all k; l 2 I, such that for all i 2 I

X

j2I

¯̄
¯̄@fTi
@sj

(r)

¯̄
¯̄ ¸ 1

for r 2 f¸s + (1 ¡ ¸) t j ¸ 2 [0; 1]g.

To see how the conditions of proposition 4 and 5 work in practice consider the

following example that can be derived from a particular model of Cournot competition

between three …rms. Let Si = [0; 1] for i 2 f1; 2;3g and suppose the individual best
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response functions are given by

f1 (s¡1) = ¡0:5s2¡ 0:5s3

f2 (s¡2) = ¡0:5s1¡ 0:5s3

f3 (s¡3) = ¡0:5s1¡ (0:5 ¡ ") s2

for some " 2 [0;0:5]. Consider the case " = 0. It can be shown by induction that for all

T ¸ 1

X

j2I

¯̄
¯̄@fTi
@sj

(s)

¯̄
¯̄ = 1

for all i 2 I and all s 2 S. Hence, by proposition 5 there does not exist a unique point-

rationalizable strategy if " = 0.

Consider now the case " > 0. Obviously, f is not a 1-contraction by the conditions

(2.1) or (2.2) of proposition 4. However, it is a 2-contraction in the supremums-norm as well

as in the absolute value-norm, e.g., condition (2.1) is satis…ed because
P
j2I

¯̄
¯ @f2i@sj

(s)
¯̄
¯ · 1¡ "

2

for all i and all s 2 S:

f21 (s) = 0:5s1 +
³
0:25 ¡ "

2

´
s2 +0:25s3

f22 (s) = 0:25s1+
³
0:5 ¡ "

2

´
s2 +0:25s3

f23 (s) =
³
0:25 ¡ "

2

´
s1+ 0:25s2+

³
0:5 ¡ "

2

´
s3

Consequently, there exists a unique point-rationalizable strategy whenever " > 0.

2.6 An Outlook On Possible Applications

For a typical model of a sealed-bid auction Battigalli and Siniscalchi (2000) show

that every non-zero bid below the equilibrium is rationalizable. Dekel and Wolinsky (2001)
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can obtain a unique rationalizable solution for sealed-bid auctions with very speci…c model-

parameters (e.g., many players, …nite action sets). The uniqueness results of this chapter

are applicable to games with rather general strategy sets such as Bayesian games with

continuous type space that are typically used for a formalization of sealed-bid auctions.

Thus, by the results of this chapter we can try to identify, or to design, models of auctions

with a unique rationalizable solution.

For example, in reality we encounter sealed-bid auctions for which the winner is

not exclusively determined by the highest bid but additionally by side-considerations of the

auctioneer which leave leeway for speculations by the bidders, e.g., credibility of bidders

(Kirch-Media and Erste Fußball Bundesliga), or the overall-business concept (Camelot vs.

The People’s Lottery). If behavioral assumptions like ’optimistic’ or ’pessimistic’ bidders

(with respect to the auctioneer’s side-considerations) are formalized as properties of the

best response functions I would expect that we can establish T-contraction and therefore

unique solutions.

For a standard model of Cournot oligopoly Bernheim (1984) and Basu (1990) ob-

serve that every output between zero and the monopoly output becomes rationalizable if

there are su¢ciently many …rms in the oligopoly. This result is a severe blow to the attrac-

tiveness of rationalizability as a solution concept; especially, because the Nash equilibrium

is typically unique for these models.

By an application of the uniqueness conditions for di¤erentiable best response

functions conditions for any number of …rms are derived in chapter 3 of this thesis which
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imply unique rationalizable output decisions in a Cournot oligopoly. One key assumption

refers to ’not-perfectly homogenous goods’: if …rms compete with eachother on su¢ciently

separated product-markets the rationalizable solution will be unique. Because this assump-

tion has some realistic appeal rationalizability may o¤er good predictions for models of

Cournot oligopolies with strategically sophisticated players.

2.7 Appendix: Proofs

Proof of proposition 1:

The ”if”-part. Observe at …rst that each set ¸k (S), k ¸ 0, is compact and

non-empty because continuity of f (s) inherits compactness and non-emptiness. Since

¸k (S) ½ ¸k¡1 (S), for k ¸ 1, P (G) =
T1
k=0 ¸k (S) is compact and non-empty as an in-

…nite intersection of compact and non-empty nested sets, (compare the proof of proposition

3.1 in Bernheim 1984). In order to prove single-valuedness of P (G) it is su¢cient to show

that limk!1 diam
¡
¸k (S)

¢
= 0, with

diam
³
¸k (S)

´
= sup

n
d (s; t) : s; t 2 ¸k (S)

o

By compactness of ¸k (S) and continuity of d : X £X ! R+ there must exist sk; tk 2 ¸k (S)

such that diam
¡
¸k (S)

¢
= d

¡
sk; tk

¢
. Observe that d

¡
sk; tk

¢
k¸1 is a monotonically decreas-

ing numerical sequence, bounded from below, that converges to it’s lower bound. Since

S £ S is compact there exists a converging subsequence limk0!1
³
sk

0
; tk

0
´

= (s; t) such

that limk!1diam
¡
¸k (S)

¢
= d (s; t). Because fM (s) is continuous for any M ¸ 1 there

exist for every set ¸k+M (S), with …xed M ¸ 1, some elements fM
¡
sk (M)

¢
; fM

¡
tk (M)

¢ 2

¸k+M (S) such that diam
¡
¸k+M (S)

¢
= d

¡
fM

¡
sk (M)

¢
; fM

¡
tk (M)

¢¢
and sk (M) ; tk (M) 2
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¸k (S). Since by assumption d
¡
sk (M) ; tk (M)

¢ · d
¡
sk; tk

¢
for k ¸ 1 there is some sub-

subsequence with limk00!1
³
sk

00
; tk

00
´

= (s; t) such that limk00!1
³
sk

00
(M) ; tk

00
(M)

´
=

(s (M) ; t(M)) and d (s (M) ; t (M)) · d (s; t). Furthermore, by continuity of fM

lim
k00!1

³
fM

³
sk

00
(M)

´
; fM

³
tk
00
(M)

´´
=

¡
fM (s (M)) ; fM (t (M))

¢

with limk!1diam
¡
¸k (S)

¢
= d

¡
fM (s (M)) ; fM (t (M))

¢
for M ¸ 1. Suppose now that

there exists for all pairs s (M) 6= t (M), M ¸ 1, the same T 2 N such that

d
¡
fT (s (M)) ; fT (t(M))

¢
< d (s (M) ; t(M))

Choosing M = T gives

d
¡
fM (s (M)) ; fM (t (M))

¢
< d (s (M) ; t(M))

whenever s (M) 6= t (M). Since d
¡
fM (s (M)) ; fM (t(M))

¢
< d (s; t) we obtain the contra-

diction limk!1diam
¡
¸k (S)

¢ 6= limk!1diam
¡
¸k (S)

¢
whenever limk!1diam

¡
¸k (S)

¢ 6=

0.

The ”only if”-part. Given some s; t by compactness and non-emptiness of S £S

there exists some converging subsequence such that limT 0!1
³
fT

0
(s) ; fT

0
(t)

´
= (s¤; t¤).

By continuity of d we obtain limT 0!1 d
³
fT

0
(s) ; fT

0
(t)

´
= d (s¤; t¤). Due to s¤; t¤ 2 P (G)

a unique point-rationalizable solution requires d (s¤; t¤) = c(s; t) ¤ d (s; t) with c(s; t) = 0 if

s 6= t, or with some arbitrary number c(s; t) if s = t. Take some ", with 0 < " < 1, and

observe that by continuity of d and of fT
0
there must exist for all (s; t) 2 S £S some …nite

T , dependent on (s; t), such that d
¡
fT (s) ; fT (t)

¢ · " ¤ d (s; t). ¤
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Proof of corollary 1: If fm (s) = fm (t) for all s; t 2 S then d (fm (s) ; fm (t)) <

d (s; t) for all s 6= t since d (fm (s) ; fm (t)) = 0. Hence, f is m-contractive and there

exists a unique point-rationalizable solution by proposition 1. It remains to show that

m-contractivity is also necessary. Consider the …nite sequence s; f (s) ; f2 (s) ; :::; fm (s) of

m + 1 elements and observe that there must occur some fk (s) and fh (s), with k < h,

such that fk (s) = fh (s). If fm¡1 (s) 6= fm (s) then there can not exist a unique point-

rationalizable solution since fk (s) ; fk+1 (s) ; :::; fh¡1 (s) ; fh (s) 2 P (G). Consequently, a

unique point-rationalizable solution requires fm¡1 (s) = fm (s) and fm¡1 (t) = fm (t) for

any s; t 2 S. Suppose now there exists a unique point-rationalizable solution and assume

fm (s) 6= fm (t) for some s; t 2 S. By fm¡1 (s) = fm (s) and fm¡1 (t) = fm (t) there does

not exist any …nite T such that d
¡
fT (fm (s)) ; fT (fm (t))

¢
< d (fm (s) ; fm (t)), violating

the necessary condition of proposition 1.¤

Proof of proposition 2: IfS is complete then continuity and T-contraction of the

best response I-function imply the existence of a (unique) …xed-point (compare Theorem 1.3

in Bonsall 1962). This guarantees P (G) 6= ;. Furthermore, since S is bounded, and ¸k (S) ½

¸k¡1 (S), there exists for each set ¸k (S) a …nite diameter diam
¡
¸k (S)

¢
which converges to

its lower bound. Since P (G) is non-empty P (G) is single-valued if limk!1diam
¡
¸k (S)

¢
=

0, (compare the proof of Theorem 3.10 b in Rubin 1976). Due to diam
¡
¸k (S)

¢ ¸ d
¡
sk; tk

¢

for all sk; tk 2 ¸k (S) T-contraction implies d
¡
sk+T ; tk+T

¢ · c ¤ diam
¡
¸k (S)

¢
for all

sk+T ; tk+T 2 ¸k+T (S). Observe that this implies in turn diam
¡
¸k+T (S)

¢ · c¤diam
¡
¸k (S)

¢

for k ¸ 0: if there is some sk+T ; tk+T 2 ¸k+T (S) with d
¡
sk+T ; tk+T

¢
= c ¤ diam

¡
¸k (S)

¢
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then diam
¡
¸k+T (S)

¢
= c ¤ diam

¡
¸k (S)

¢
, and if d

¡
sk+T ; tk+T

¢
< c ¤ diam

¡
¸k (S)

¢
for all

sk+T ; tk+T 2 ¸k+T (S) then diam
¡
¸k+T (S)

¢ · c ¤ diam
¡
¸k (S)

¢
. Consequently

lim
m!1diam

¡
¸m¤T (S)

¢ · lim
m!1cm ¤ diam (S) = 0

for c < 1 .¤

Proof of proposition 3: Condition i.) will become obvious by the proof of

condition ii.) where it is shown that limk!1d
¡
fk (s) ; fk (t)

¢
= diam (P (G)) with s as

smallest and t as largest element in S.

Ad condition ii.) The ”if”-part. By lattice-completeness of S and monotonicity

of f there exist for all k ¸ 1 strategies sk; tk 2 ¸k (S) such that sk ·L s0 and s0 ·L tk for

all s0 2 ¸k (S). Hence, by assumption (A1) diam
¡
¸k (S)

¢
= d

¡
sk; tk

¢
. Suppose condition

(A3a) is satis…ed. By assumption (A3a) f
¡
sk

¢ ·L f (s0) ; f (t0) and f (s0) ; f (t0) ·L f
¡
tk

¢

for all s0; t0 2 ¸k (S), and by (A1) we obtain diam
¡
¸k+1 (S)

¢
= d

¡
f

¡
sk

¢
; f

¡
tk

¢¢
. A re-

peated application of this argument gives diam
¡
¸k+T (S)

¢
= d

¡
fT

¡
sk

¢
; fT

¡
tk

¢¢
for any

T ¸ 1. Observe that
¡
tk

¢
k¸1 is a monotonically decreasing sequence, bounded from be-

low, and
¡
sk

¢
k 1̧

is a monotonically increasing sequence, bounded from above. Because S

is complete the order-limits t¤ = inf tk and s¤ = sup sk exist such that diam (P (G)) =

d (s¤; t¤). Analogously, by order-continuity of fT it is also true that diam (P (G)) =

d
¡
fT (s¤) ; fT (t¤)

¢
for any T ¸ 1. Consequently, P (G) must be unique if there exists

for any pair s 6= t a …nite T such that d
¡
fT (s) ; fT (t)

¢
< d (s; t).

Suppose now that condition (A3b) is satis…ed. We obtain for sk ·L s0; t0 and

s0; t0 ·L tk that f
¡
tk

¢ ·L f (s0) ; f (t0) and f (s0) ; f (t0) ·L fk (s). Hence, by assumption
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(A1) d (f (s0) ; f (t0)) · d
¡
f

¡
tk

¢
; f

¡
sk

¢¢
, for all s0; t0 2 ¸k (S). By de…nition d

¡
f

¡
tk

¢
; f

¡
sk

¢¢
=

d
¡
f

¡
sk

¢
; f

¡
tk

¢¢
which implies again d

¡
f

¡
sk

¢
; f

¡
tk

¢¢
= diam

¡
¸k+1 (S)

¢
. Analogously, we

obtain diam
¡
¸k+T (S)

¢
= d

¡
fT

¡
sk

¢
; fT

¡
tk

¢¢
for any T ¸ 1. Observe now that the se-

quence f
¡
rk

¢
k¸0 with rk = tk, for k = 0;2;4; ::: , and rk = sk, for k = 1; 3;5; ::: , is

monotonically increasing, and bounded from above, whereas the sequence f
¡
qk

¢
k¸0 with

qk = tk, for k = 1;3;5; ::: , and qk = sk, for k = 0;2;4; ::: , is monotonically decreas-

ing, and bounded from below. By completeness of S and order-continuity of fT it follows

diam (P (G)) = d (f (r) ; f (q)) as well as diam (P (G)) = d
¡
fT (f (r)) ; fT (f (q))

¢
for any

T ¸ 1 and we obtain the desired result.

The ”only if”-part. Suppose condition (A3a) is satis…ed. Since diam (P (G)) =

d (s¤; t¤) we have diam (P (G)) = 0 only if limk!1 d
¡
sk; tk

¢
= 0. But if there exist some

s0; t0 2 S with s0 6= t0 and d
¡
fT (s0) ; fT (t0)

¢ ¸ d (s0; t0) for all T then limk!1d
¡
sk; tk

¢ ¸

d (s0; t0) > 0 since d
¡
sk; tk

¢ ¸ d
¡
fk (s0) ; fk (t0)

¢
for all k. Analogously for (A3b).¤

Proof of proposition 4:

Part i.). Let gi (¸) = fTi (¸ (s ¡ t) + t), and observe that gi (¸) is continuously

di¤erentiable on [0; 1]. The Mean-Value Inequality for real-valued functions with a real-

valued domain implies then

jgi (1) ¡ gi (0)j ·
¯̄
¯̄@gi
@¸

(¸¤)
¯̄
¯̄ ¤ j1 ¡ 0j (2.3)

for some ¸¤ = arg max[0;1]

¯̄
¯@gi@¸ (¸)

¯̄
¯, which must exist. By an application of the chain-rule:

@gi
@¸

(¸¤) =
X

j2I

@fTi
@sj

(¸¤ (sj ¡ tj) + tj) ¤ (sj ¡ tj)
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¯̄
¯̄@gi
@¸

(¸¤)
¯̄
¯̄ ·

¯̄
¯̄
¯̄
X

j2I

@fTi
@sj

(¸¤ (sj ¡ tj) + tj)

¯̄
¯̄
¯̄ ¤ ks ¡ tk1

According substitution for the terms in the inequality (2.3) gives

¯̄
fTi (s) ¡ fTi (t)

¯̄ ·
¯̄
¯̄
¯̄
X

j2I

@fTi
@sj

(r)

¯̄
¯̄
¯̄ ¤ ks ¡ tk1

with r = ¸¤ (s ¡ t) + t. Since this is true by assumption for all i 2 I we obtain for the

supremums-norm

°°fT (s) ¡ fT (t)
°°
1 ·

¯̄
¯̄
¯̄
X

j2I

@fTi
@sj

(r)

¯̄
¯̄
¯̄ ¤ ks ¡ tk1

Consequently, the assumption
P
j2I

¯̄
¯@f

T
i

@sj
(s)

¯̄
¯ < 1 for all i and all s 2 S guarantees

T-contraction of f in the supremums-norm. (Notice: T-contraction, and not only T-

contractivity, derives from the fact that
P
j2I

¯̄
¯ @fTi@sj (s)

¯̄
¯ is a continuous function that obtains

a maximum on the compact set S. Consequently, if
P
j2I

¯̄
¯ @fTi@sj (s)

¯̄
¯ < 1 for all i and all s 2 S

then there must exist some c < 1 such that
P
j2I

¯̄
¯ @fTi@sj (s)

¯̄
¯ · c for all i.)

Part ii.) is accordingly proved by showing that
P
i2I

¯̄
¯ @fTi@sj (s)

¯̄
¯ < 1 for all j and

all s 2 S implies T-contraction of f in the ”absolute value”-norm, (compare the proof of

part i.) of proposition 5 below).¤

Proof of proposition 5:

Part i.) Let again gi (¸) = fTi (¸ (s ¡ t) + t), and observe that the Mean-Value

Inequality implies

jgi (1) ¡ gi (0)j ¸
¯̄
¯̄@gi
@¸

¡
¸i

¢¯̄¯̄ ¤ j1 ¡ 0j

for some ¸i = argmin[0;1]

¯̄
¯@gi@¸ (¸)

¯̄
¯. By an according application of the chain-rule and
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substitution

¯̄
fTi (s) ¡ fTi (t)

¯̄ ¸
¯̄
¯̄
¯̄
X

j2I

@fTi
@sj

¡
ri

¢ ¤ (sj ¡ tj)

¯̄
¯̄
¯̄ (2.4)

with ri = ¸is +
¡
1 ¡¸i

¢
t. Summing up over all i and rearranging

X

i2I

¯̄
fTi (s) ¡ fTi (t)

¯̄ ¸
X

i2I

¯̄
¯̄
¯̄
X

j2I

µ
@fTi
@sj

¡
ri

¢¶ ¤ (sj ¡ tj)

¯̄
¯̄
¯̄

X

i2I

¯̄
fTi (s) ¡ fTi (t)

¯̄
¸ min

j2I

(¯̄
¯̄
¯
X

i2I

µ
@fTi
@sj

¡
ri

¢¶
¯̄
¯̄
¯

)
¤

X

j2I
jsj ¡ tjj

°°fT (s) ¡ fT (t)
°°
1

¸ ks ¡ tk1

Where the last step follows from the assumption
P
i2I

³
@fTi
@sj

¡
ri

¢´ ¸ 1 for all j and all

ri 2 f¸s + (1 ¡ ¸) t j ¸ 2 [0; 1]g. Consequently, d
¡
fT (s) ; fT (t)

¢ ¸ d (s; t) with d induced

by the ”absolute value”-norm. By the necessary condition of proposition 1 there does not

exist a unique point-rationalizable solution if this is true for all T ¸ 1.

Part ii.) Proceeding as in part i.) we obtain inequality (2.4). By assumption

(sj ¡ tj) = (sk ¡ tk) for all j; k 2 I such that ks ¡ tk1 = jsj ¡ tj j for j 2 I implies

¯̄
fTi (s) ¡ fTi (t)

¯̄ ¸
¯̄
¯̄
¯̄
X

j2I

@fTi
@sj

¡
ri

¢
¯̄
¯̄
¯̄ ¤ ks ¡ tk1

And because
¯̄
¯Pj2I

@fTi
@sj

¡
ri

¢¯̄¯ ¸ 1 is true for all i we obtain d
¡
fT (s) ; fT (t)

¢ ¸ d (s; t) with

d induced by the supremums-norm.¤
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Chapter 3

Cournot Oligopolies With Unique

Rationalizable Solutions

3.1 Introduction

Rationalizability concepts (Bernheim 1984; Pearce 1984) try to solve a game by

the exclusion of ’unreasonable’ strategies. Consider a player who goes through the following

internal monologue:

1. ”Every player will only choose some best response.”

2. ”My opponents know this.”

...

i. ”Every player will only choose a best response given the knowledge at stage

i-1.”

i+1. ”My opponents know i.”
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and so forth...

At each stage of this reasoning-process the player may identify ’unreasonable’

strategies that are not best responses given the considerations he has made so far. When

the player arrives at some stage such that no further strategies are excluded he is left with

his ’rationalizable’ strategies. Rationalizability concepts presume now that the players will

only choose some rationalizable strategy in the course of a game.

A di¤erent approach to the solution of a game are equilibrium concepts. Equilib-

rium concepts presume that players will play a Nash equilibrium, i.e., each player chooses

a best response against the strategies which are chosen by his opponents. If we consider

players who form expectations about their opponents’ strategy choices a Nash equilibrium

implies that all players have had correct expectations. It can be di¢cult for equilibrium

concepts to explain how players are able to make these correct anticipations; especially,

for strategic situations that do not occur frequently with the same participants. For such

strategic situations, e.g., ’one-shot’ games, rationalizability looks then like the more ap-

propriate solution concept. (At least when we can presume players who are ’strategically

sophisticated’ enough for involving in the internal monologue...)

Rationalizability concepts can encounter the problem that there are too many

rationalizable strategies such that rationalizability becomes useless as a solution concept

because it has no predictive power at all. In contrast, equilibrium concepts are stronger

than rationalizability concepts such that there are games which possess many rationalizable

solutions whereas they have a unique Nash equilibrium.

For example, Bernheim (1984) shows for a standard model of Cournot oligopoly
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with a unique Nash equilibrium that any output between zero and the Monopoly-output

is rationalizable if there are more than two …rms in the oligopoly. Basu (1992) obtains

the same multitude of rationalizable strategies for a general class of Cournot oligopolies if

the number of …rms is su¢ciently high. Cournot oligopolies are the standard models in

industrial organization theory for output competition among …rms. It is therefore quite

disappointing that rationalizability concepts, with their interpretational advantages, do

rather badly as solution concepts for these important games.

This chapter explores conditions for which Cournot oligopolies have a unique corre-

lated rationalizable strategy such that the rationalizability approach has ultimate predictive

power for Cournot oligopolies satisfying these conditions. The …ndings of this chapter sug-

gest that the situation is not as bad as it appears by the results of Bernheim and Basu:

Uniqueness can already be obtained under small parameter changes in Bernheim’s original

model of Cournot oligopoly.

In particular, I investigate the impact of two di¤erent model-speci…cations. First,

I relax Bernheim’s assumption that the products of all …rms are perfect substitutes, i.e.,

homogenous goods. Instead I introduce the notion of a ’negative externality’ Cournot

oligopoly where …rms have basically their own product-markets but may face di¤erent de-

grees of competition from the output decisions of other …rms. Secondly, I deviate from the

assumption of linear cost-functions. Small changes in the ’homogenous good’ assumption

as well as in the cost-function parameters can be su¢cient for uniqueness. Moreover, for

any number of …rms uniqueness can be obtained if the impact of the other …rms output on
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a …rm’s own market is su¢ciently small.

The above reasoning process is typically the weakest assumption we impose in

models of ’strategically rational’ players (compare Guesnerie 2002). The existence of a

unique rationalizable strategy looks then as a very ’robust’ solution whenever the …rms

of the oligopoly can be considered as ’strategically rational’ or ’strategically sophisticated’

players. Moreover, for Cournot oligopolies with a unique rationalizable strategy the equi-

librium approach can o¤er a good explanation for the question how …rms arrive at correct

expectations about their competitors: each …rms goes simply through the process of reason-

ing as stated above. As a consequence the equilibrium solution of these Cournot oligopolies

is a convincing solution even if we consider Cournot competition restricted to one-shot

strategic situations.

3.2 Uniqueness Conditions

A game G = (Si;Ui)i2I in normal form will be called a Cournot oligopoly if

Si = [0;1] and Ui (s) = Pi (s) si ¡ Ci (si), with Pi : S ! R+ and Ci : Si ! R+. The

function Pi is interpreted as the inverse demand function, i.e., for a given market output it

determines the price pro unit output …rm i can take for its product. Ci denotes the cost

function, and Si is the set of possible output-decisions of …rm i.

Let fi : 4(S¡i) ! 2Si denote best response correspondence of …rm i which maxi-

mizes i’s preference ordering over the set Si £4(S¡i). The set 4 (S¡i) denotes all proba-

bility distributions over S¡i = £j 6=iSj , and I will interpret an element of 4 (S¡i) as …rm i’s
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’belief’ over the output decisions of its competitors. For the results of this chapter the …rms

are not required to be Expected Utility maximizers. However, it will be assumed that …rm

i’s preferences over Si £4 (S¡i) satisfy monotonicity with respect to …rst order stochastic

dominance.

The set of correlated rationalizable strategies (Bernheim 1984; Pearce 1984) of G

is de…ned as RC (G) =
T1
k=0 ¹k (S) such that ¹k (S) = £I

i=1¹
k
i (S) with

¹ki (S) =
[

¾¡i24(¹k¡1¡i (S))

fi (¾¡i)

and ¹0¡i (S) = S¡i.

Proposition: Suppose all Ui are strictly quasiconcave in Si or have decreasing

utility di¤erences in S¡i. Furthermore, assume that the functions @Ui=@si exist, with con-

tinuous partial derivatives on S, such that

@Ui=@si (fi (t¡i) ; t¡i) = 0 and @2Ui= (@si)
2 (fi (t¡i) ; t¡i) 6= 0

for all t¡i 2 S¡i. Then there exists a unique correlated rationalizable strategy for a Cournot

oligopoly if one of the following conditions is satis…ed

1. For all i and t¡i 2 S¡i

X

j 6=i

¯̄
¯̄
¯̄

¡
³
@2Pi
@si@sj

(fi (t¡i) ; t¡i) ¤ fi (t¡i) + @Pi
@sj

(fi (t¡i) ; t¡i)
´

@2Pi
(@si)

2 (fi (t¡i) ; t¡i) ¤ fi (t¡i) +2 ¤ @Pi
@si

(fi (t¡i) ; t¡i) ¡ @2Ci
(@si)

2 (fi (t¡i))

¯̄
¯̄
¯̄ < 1 (3.1)

2. For all j and t¡i 2 S¡i

X

i 6=j

¯̄
¯̄
¯̄

¡
³
@2Pi
@si@sj

(fi (t¡i) ; t¡i) ¤ fi (t¡i) + @Pi
@sj

(fi (t¡i) ; t¡i)
´

@2Pi
(@si)

2 (fi (t¡i) ; t¡i) ¤ fi (t¡i) +2 ¤ @Pi
@si

(fi (t¡i) ; t¡i) ¡ @2Ci
(@si)

2 (fi (t¡i))

¯̄
¯̄
¯̄ < 1 (3.2)
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Proof: Proposition 4 in chapter 2 of this thesis implies uniqueness of the point-

rationalizable solution if
P
j2I

¯̄
¯ @fi@sj

(t)
¯̄
¯ < 1 for all t 2 S and i 2 I , or if

P
i2I

¯̄
¯ @fi@sj

(t)
¯̄
¯ < 1

for all t 2 S and j 2 I. Let F (t) = @Ui
@si

(t), and by application of the Implicit Function

Theorem
¯̄
¯ @fi@sj

(t¡i)
¯̄
¯ =

¯̄
¯¡@F=@sj

@F=@si
(fi (t¡i) ; t¡i)

¯̄
¯. Carrying out the di¤erentiations and setting

X

j2I

¯̄
¯̄@fi
@sj

(t)

¯̄
¯̄ =

X

j 6=i

¯̄
¯̄¡@F=@sj

@F=@si
(fi (t¡i) ; t¡i)

¯̄
¯̄

gives condition (3.1). Analogously for condition (3.2). Quasiconcavity, respectively de-

creasing utility di¤erences, guarantee that a unique point-rationalizable strategy must be

the unique correlated rationalizable strategy if all Ui satisfy monotonicity with respect to

FOSD, (see proposition 1 and proposition 4 in chapter 5 of this thesis)¤

3.3 Model-Speci…cations

The conditions (3.1) and (3.2) are easily checked for linear inverse demand-functions,

i.e., @2Pi
@si@sj

(t) = 0 for all t 2 S. I will speak of a ’negative externality’ (NE) Cournot oligopoly

if

Pi (s) = max

8
<
:0;

0
@1 ¡

X

j 6=i
eijsj ¡ si

1
A

9
=
;

with eij ¸ 0, for all i 6= j. If eij = 1, for all i 6= j, the standard Cournot oligopoly

with linear demand function and constant marginal cost obtains as a special case of the

NE-Cournot oligopoly. But whenever eij 6= 1 the product of the …rm j is not anylonger a

perfect substitute for the product of …rm i, i.e., the goods are not perfectly homogenous;

the markets are di¤erent.

Such an economy can be interpreted as competition on I di¤erent product-markets

such that each …rm i makes pro…ts on its own product market while it may su¤er from a
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negative externality by the output of a …rm j. The externality of …rm j’s output decision

on the pro…t of …rm i is then measured by the ’externality-weight’ eij .

If eij = 0, for all j 6= i, the product-market of …rm i is not in‡uenced by the

output-decisions of the other …rms at all, i.e., the …rm i has a perfect monopoly for it’s

own product. Because real-life …rms compete rarely on markets of completely homogeneous

goods I would expect that the introduction of externality-weights may add a lot of realistic

appeal to models of Cournot competition.

Corollary 1: Suppose Ci (si) = cisi with ci > 0. Then there exists a unique

correlated rationalizable solution of a NE-Cournot oligopoly if
P
j 6=i eij < 2 for all i 2 I ,

or
P
i2I eij < 2 for all j 6= i.

Proof: The individual best response function fi for this NE-Cournot oligopoly is

given by

max

½
0;

1 ¡P
j 6=i eijsj ¡ ci

2

¾

Observe at …rst that the proposition’s assumption of a di¤erentiable best response function

is typically not satis…ed because there are ’kinks’ in fi at points t¡i for which

1 ¡ P
j 6=i eijtj ¡ ci

2
= 0

However, since the l.h. and the r.h. derivatives exist at these kinks, being either
P
j 6=i eij=2

or zero, the contraction-argument behind the proposition (compare proposition 4 in chapter

2 of this thesis) can be extended without problems to these best response functions. Finally,

observe that Ui is strictly concave in Si and therefore strictly quasiconcave. ¤
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By corollary 1 there exist externality weights greater zero for any number of …rms

such that the correlated rationalizable strategy of a NE-Cournot oligopoly is unique. Con-

sequently, Bernheim’s ’pessimistic observation’ depends strongly on his assumption eij = 1

for all eij . A simple su¢ciency condition for uniqueness would be eij < 2= (I ¡ 1) for all

eij. Hence, for Bernheim’s example with three …rms we obtain already uniqueness if the as-

sumption of homogenous goods is just slightly relaxed: if the externality weights are smaller

than one there exists a unique rationalizable solution for this NE-Cournot oligopoly with

three …rms.

Corollary 1 shows also that a larger number of …rms requires weaker negative

externalities if the rationalizable solution shall be unique. Heuristically we can say: themore

competition, either from the number of competitors or from the impact of the competitors’

products on a …rm’s ’home market’, the more unpredictable is the market outcome by the

rationalizability approach.

Corollary 2. Suppose Ci (si) = cis
°
i with ° > 1 and ci > 0. For arbitrary

externality weights and for any number of …rms there exists some number c such that the

correlated rationalizable strategy of the NE-Cournot oligopoly is unique if ci ¸ c for all i.

Proof: If @fi
@sj

(t¡i) 6= 0, (respectively l.h. or r.h. derivatives), condition (3.1)

becomes

X

j 6=i

¯̄
¯̄ ¡eij

2 +° (° ¡ 1) ci ¤ (fi (t¡i))
°¡2

¯̄
¯̄ < 1 (3.3)
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Even without solving for a particular individual best response function fi we know that

0 · fi (t¡i) · 1 for all t¡i 2 S¡i, and the inequality (3.3) holds for a su¢ciently great ci.

Moreover, Ui is strictly quasiconcave in Si.¤

Corollary 2 shows that Bernheim’s ’pessimistic observation’ depends not only on

the homogenous-good assumption, eij = 1, but also on the assumed cost-functions. As an

example consider a Cournot oligopoly with eij = 1 for all i 6= j and identical quadratic

cost-functions Ci (si) = c ¤ s2i for all i. Substituting in inequality (3.3) we obtain a unique

correlated rationalizable strategy if c > (I ¡ 3)=2.

3.4 Concluding Remarks

Model-speci…cations of Cournot oligopolies are identi…ed that imply a unique ra-

tionalizable solution. An application of the …ndings of this chapter to negative externality

Cournot oligopoly shows that Bernheim’s pessimistic observation, concerning the multitude

of correlated rationalizable strategies, depends strongly on the assumed model-parameters.

Two interesting results are obtained. First, for any number of …rms the rationaliz-

able solution of a NE-Cournot oligopoly is unique if the negative externality e¤ects between

the products of di¤erent …rms are su¢ciently small. Secondly, for any number of …rms

and for arbitrary externality e¤ects the rationalizable solution of a NE-Cournot oligopoly

is unique for appropriate cost-functions.

Börgers and Janssen (1995) investigate Cournot oligopolies for which an increase

in the number of …rms is appropriately matched by an expansion of the market demand.
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Börgers and Janssen show then that the rationalizable solution of su¢ciently ’large’ Cournot

Oligopolies is unique if the according cobweb-process satis…es a particular (rather abstract)

stability condition. The speci…c uniqueness conditions of this chapter can now be applied

to determine in turn the stability of the cobweb-process in the ’large’ Cournot oligopolies

of Börgers and Janssen.
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Chapter 4

On The Existence Of Strategic

Solutions For Security- And

Potential Level Preferences

4.1 Introduction

This chapter investigates the existence of equilibria and of rationalizable strategies

in …nite games when players have so-called security and potential level preferences over

lotteries. Equilibrium concepts, on the one hand, and rationalizability concepts, on the

other hand, stand for two di¤erent approaches to solve a game, i.e., of predicting how

individuals will decide in a situation of strategic interdependency.

The equilibrium approach claims that any solution has to be a Nash equilibrium

such that each player of the game chooses a strategy that is a best response against the
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strategies chosen by his opponents.

The rationalizability approach starts out with the assumption that a player will

only choose strategies which are best responses against some strategy choice of his oppo-

nents. This assumption may e¤ectively eliminate some strategies as ’unreasonable’ and in

a next step Rationalizability assumes that a player will only choose best responses against

the remaining strategy choices of his opponents. Iteration of this argument gives us …-

nally the set of ’rationalizable’ strategies which may be chosen by a player according to the

rationalizability approach.

An important question for equilibrium- and for rationalizability concepts concerns

the existence of solutions: if there is no Nash equilibrium, respectively no rationalizable

strategy, no predictions about players’ strategy choices can be made. Moreover, the non-

existence of a solution according to a solution concept for a speci…c game raises the question

whether this solution concept is appropriate for solving games in general.

Rationalizability concepts are weaker than equilibrium concepts such that the

existence of a Nash equilibrium implies the existence of rationalizable strategies. On the

other hand, due to this weakness, rationalizable strategies may exist even if the existence of

Nash equilibria fails. For example, in the following version of the ’Matching-Pennies’ game,

where player A may choose between ’up’ and ’down’ and player B between ’left’ and ’right’,

every strategy is rationalizable but there does not exist a Nash equilibrium

left right
up 1,0 0,1
down 0,1 1,0
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One way to re-establish here the existence of equilibria is the extension of the

strategy sets by ’mixed’ strategies: additional to his two ’pure’ strategies each player can

now also choose among arbitrary randomizations between pure strategies. Another way is

the re-interpretation of Nash equilibria as equilibria in beliefs: an equilibrium point is not

anylonger de…ned as mutual best response strategies but as mutual correct beliefs about

best response strategies. For the existence of equilibria in beliefs it is not necessary that

the players actually randomize between strategies; in the Matching Pennies game we have

already an equilibrium in beliefs if both players believe that their opponent chooses one

of his pure strategies with equal chance. When we introduce mixed strategies, or when

we de…ne equilibria as equilibria in beliefs, we know from Nash (1950a; 1950b) that an

equilibrium exists in any game with …nite pure strategy sets.

Thus, by Nash’s result, existence of equilibria, and therefore existence of rational-

izable strategies, appears to be no problem for …nite games. However, to work with mixed

strategies, or to work with equilibria in beliefs, makes it necessary to work with preferences

of players over all probability distributions on the outcomes in a game. Nash’s existence

proof makes now a very speci…c assumption about these preferences over probability distri-

butions: all players are assumed to be ’Expected Utility maximizers’. For Expected Utility

maximizing players preferences over probability distributions are representable as sums over

utility numbers, assigned to the outcomes, and weighed with the probability by which the

outcome realizes. This simple mathematical representation of preferences is technically very

convenient, and for a long time game-theoretic models have only considered players that

are EU-maximizers. But real individuals systematically violate EU-maximizing behavior
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(Allais 1953), and several models of preferences over probability distributions have been

developed in decision theory with the aim to avoid the descriptive ‡aws of EU theory (for

an overview see, e.g., Starmer 2000; Karni and Schmeidler 1991).

Recently, Crawford (1990) has investigated the existence of equilibria in …nite

games for players who are not necessarily EU-maximizers. He shows that there may not

exist Nash equilibria in mixed strategies but that there exist always equilibria in beliefs as

long as the players’ preferences are representable by continuous utility functions.

However, some Non-EU models, like the models for ’security and potential level

preferences’ (Gilboa 1988; Ja¤ray 1988; Cohen1992; Essid 1997; Schmidt and Zimper 2003),

require discontinuous utility representations such that Crawford’s existence results for equi-

libria do not apply to players with SL,PL-preferences. The results of this chapter will show

that the existence of equilibria, even de…ned as equilibria in beliefs, may fail for players

with SL,PL-preferences whereas rationalizable strategies always exist. Thus, with SL,PL-

preferences it can be impossible that all players choose a best response and have also correct

anticipations about their opponents’ strategy choices.

This situation is similar to the problem of a non-existing equilibrium in the ’Match-

ing Pennies’ game if we restrict ourselves to pure strategies and if we de…ne an equilibrium

in actively chosen strategies and not in beliefs. But in contrast to ’Matching Pennies’ there

is now no way to re-establish existence of equilibria by the introduction of mixed strategies

or/and by a re-de…nition as equilibria in beliefs.

On the other hand, there is no problem with the existence of rationalizable strate-
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gies, neither in the original ’Matching Pennies’ game nor in any …nite game of players with

SL,PL-preferences. Claiming that the solution of a game must be an equilibrium may make

sense for many good reasons in many games. However, when we claim that the equilibrium

approach is the only appropriate way of solving a game we can in general not solve games

for players with SL,PL-preferences.

The relevance of this chapter’s existence, respectively non-existence, results de-

pends on the relevance of the security and potential level preference models; especially,

on their assumption on the occurrence of discontinuities in the preferences. Consider a

’Pre-emptive Strike’ game where player A can either wag a ’war’ or keep ’peace’ while a

player B may ’destroy’ or ’distribute’ weapons of mass destruction. Assume the following

payo¤-matrix for player A

destroy distribute
peace 2 0
war 1 1

If A expected B to ’destroy’ WMD he would choose ’peace’, whereas he would

choose ’war’ if he expected B to ’distribute’ WMD. If A is an individual ’who does not

take any chances’, he would go to ’war’ whenever he believes that B ’distributes’ WMD

with some positive chance. But then A’s preferences are not anylonger continuously repre-

sentable: if the probability of ’distributing’ drops to zero there would be an upward-jump

in A’s evaluation of keeping ’peace’. Security and potential level preference models can

take account of such an upward-jump, (in the terminology of the model: a ’security level
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e¤ect’), and a judgement on the relevance of these models would be (also) a judgement on

the relevance of players ’who do not take chances’.

The remainder of this chapter is organized as follows: In section 2 I discuss further

the motivation for SL,PL-preferences; especially their aim to provide a good explanation for

Allais paradoxa. Furthermore, the discontinuous utility-representation of SL,PL-preferences

with threshold values is introduced and it is shown that there do not necessarily exist

preference-maximizing lotteries. In section 3 existence of rationalizable strategies for SL,PL-

preferences is proved. Section 4 explores in some detail the existence of equilibria for

continuously representable preferences. Section 5 demonstrates then the non-existence of

equilibria in beliefs for SL,PL-preferences. Section 6 is dedicated to a (at a …rst glance)

curious side result: despite possible non-existence of Nash equilibria there exist always

trembling-hand (Selten 1975) and proper equilibria (Myerson 1978) for a particular class

(zero-threshold values) of SL,PL-preferences; an interpretation for this existence result is

o¤ered. Section 5 concludes. All formal proofs are relegated to the appendix.

4.2 Security- And Potential Level Preferences

4.2.1 SL,PL-Preferences and Allais Paradoxa

Ja¤ray (1988) presented an axiom system and a representation theorem for pref-

erences over lotteries with the aim to explain Allais paradoxa (see Allais 1953) by the

assumption that humans evaluate strongly ’security’ (’safety’) when confronted with risky

decisions; (for a psychological discussion about the relevance of ’security’ and ’potential’
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factors in risky decisions see Lopes 1987). Consider a ’Pre-emptive Strike II’ game which

extends the above game by the possibility that B has already distributed WMD

destroy distribute already distributed
peace 2 0 0
war 1 1 0

Suppose player A in the Pre-emptive Strike II game does not take any chances such

that he chooses ’war’ when he believes B did not yet ’distribute’ but might do it with 0.1

chance in the future. How would player A decide when he learnt somehow that player B has

’already distributed’ WMD with a high chance, say 0.9? If A’s preferences satisfy the so-

called independence axiom, valid for Expected Utility theory and for Lexicogra…c Expected

Utility theory (Hausner 1954), he must still prefer ’war’ over ’peace’. In contrast, if A goes

now for ’peace’, and not for ’war’, he violates the independence axiom by committing a

so-called Allais paradox.

The model of Ja¤ray allows for this Allais paradox; as does a similar model,

independently developed, by Gilboa (1988). Even more importantly, the models of Ja¤ray

and of Gilboa o¤er a good explanation why A might prefer ’peace’ after learning his new

information: Because A can not secure himself anylonger from the worst-case scenario

’distribution of WMD’ he might as well change his perspective on the problem such that

the negative aspects of wagging a ’war’ become now more relevant.

Formally, to each lottery a ’security level’ is associated (e.g., the worst outcome in

the support of a lottery). Then it is assumed that a ’secure’ lottery may dominate all ’inse-

cure’ lotteries located nearby (in the sense of some mathematically de…ned neighborhood).
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This last property implies ’upward-jumps’ in the preferences while passing from insecure to

secure lotteries such that utility-representations of SL,PL-models have to be discontinuous.

Cohen (1992) has extended the ’security level’ models of Ja¤ray and Gilboa by

’potential levels’. Now a lottery has, in addition to a security level, some potential level

(e.g., the best outcome in the support of the lottery) such that a ’high potential’ lottery

may dominate all ’low potential’ lotteries around. Besides security considerations a deci-

sionmaker may now especially favor the opportunity for excellent outcomes when confronted

with risky decisions.

Subsequently, these models have been further extended. Essid (1997) restates

Cohen’s model for general probability spaces while allowing for in…nite outcome-sets. In

Schmidt and Zimper (2003) the possibility of positive threshold-probabilities for security-

and potential levels is added to Cohen’s model to the e¤ect that a small likelihood of a bad

or of a good outcome does not necessarily in‡uence the security, respectively potential, level

of a lottery.

4.2.2 Utility Representation of SL,PL-Preferences

Throughout this chapter I consider utility representations for a particular class of

SL,PL-preferences with positive thresholds discussed in Schmidt and Zimper (2003). Let

X = fx1; :::; xng denote a …nite set of totally ordered deterministic outcomes, and let 4(X)

denote the set of probability distributions (=lotteries) over X. A lottery ¾ 2 4(X) assigns

the probability ¾k to an outcome xk, and ±x stands for a degenerated lottery that assigns

probability one to outcome x. Let F [¾] (xj) denote the cumulative distribution function of

lottery ¾ evaluated at outcome xj .
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For so-called ’threshold-values’ ²; ´ 2 [0;1), with ² + ´ < 1, denote by ¦ (²; ´) a

collection of sets

¦(²;´) = f4 (j; k)gj=1;:::;n;k¸j

such that

¾ 2 4(j;k) i¤ F [¾] (xj¡1) · ², F [¾] (xj) > ² AND 1 ¡F [¾] (xk) · ´, 1 ¡F [¾] (xk¡1) > ´

It can be easily shown (Schmidt and Zimper 2003) that ¦(²;´) is a partition of 4(X)

with non-empty cells 4(j;k). The threshold-value ² implies that worse outcomes than xj

can realize for a lottery of security level j at most with probability ². Accordingly, better

outcomes than xk can realize for a lottery of potential level k at most with probability ´.

For ²; ´ = 0 the partition ¦ (²; ´) reduces to the original SL,PL-partition of Cohen (1992),

i.e., ¾ 2 4(j; k) i¤ xj = min Support (¾) and xk = maxSupport (¾).

On an axiomatic level SL,PL-models assume basically that the EU-axioms remain

valid within identical security -and potential levels subsets whereas a violation of the inde-

pendence axiom or of the continuity assumption may occur between di¤erent subsets; (for

detailed axiomatic foundations of SL,PL-models the reader is referred to the literature).

De…ne ¹Ui : 4(X) £¦ (²; ´) ! R+ by

¹Ui (¾; 4(j;k)) = m (4(j;k)) + c(4(j;k))
nX

k=1

¾ (xk)u (xk)

with m : ¦(²;´) ! R+, c : ¦ (²; ´) ! R+, and u : X ! R+.

De…nition: Suppose an individual i has preferences over 4(X) that are repre-

sentable by some utility function Ui : 4(X) ! R+ such that Ui (¾) = ¹Ui (¾;4 (j; k)) for
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¾ 2 4(j;k). Moreover, if

m (4 (j; k)) + c (4 (j; k)) ¸ m
¡4 ¡

j0; k0
¢¢

+ c
¡4¡

j0; k0
¢¢

for j ¸ j0 and k ¸ k0, and if u(xm+1) > u (xm) for m = 1; :::; n ¡ 1, then individual i has

SL,PL-preferences over 4 (X).

A so-called ’security level e¤ect’ occurs if and only if there are 4 (j0; k) ;4(j; k) 2

¦(²;´), with j > j0, such that m (4(j; k)) + c (4(j;k)) > m (4 (j0; k)) + c (4(j0; k)).

Suppose every open neighborhood around a secure lottery ¾ 2 4(j;k) contains insecure

lotteries ¾0 2 4(j0; k). If there is a SL-e¤ect then there must exist some neighborhood such

that ¾ is strictly preferred over all insecure lotteries in this neighborhood. Accordingly,

a ’potential level e¤ect’ occurs if there are 4(j;k0) ; 4(j;k) 2 ¦ (²; ´), with k0 > k, such

that m (4(j;k0)) + c (4 (j; k)) > m (4 (j; k)) + c (4 (j0; k)). Here, a low potential lottery

¾ 2 4 (j; k) would be dominated by all high potential lotteries ¾0 2 4 (j; k0) that are

su¢ciently close.

4.2.3 Non-Existence of Preference-Maximizing Lotteries

SL-e¤ects and PL-e¤ects give rise to the discontinuities in the utility representation

such that SL,PL-preferences would coincide with EU-preferences without any SL- and PL-

e¤ects , i.e.,

m (4 (j; k)) + c (4 (j; k)) = m
¡4 ¡

j0; k0
¢¢

+ c
¡4¡

j0; k0
¢¢

for all 4 (j; k) ; 4(j0; k0) 2 ¦(²;´). Because SL-e¤ects imply ’upper-semicontinuous’ utility

functions, whereas PL-e¤ects imply ’lower-semicontinuous’ utility functions, both kinds of
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discontinuities have a di¤erent impact on the existence of preference-maximizing lotteries

on compact subsets of 4.

Proposition 1. If there does not occur any potential level e¤ect then there exist

preference-maximizing lotteries on each compact subset of 4. But if there occurs a potential

level e¤ect and if there exist a high potential lottery ¾0 2 4(j;k0) and a low potential lottery

¾ 2 4(j;k) such that the low potential lottery is preferred over the high potential lottery

then no preference maximizing lottery exists for some compact subsets of 4.

The existence of some high potential lottery that is dominated by some low poten-

tial lottery allows for the construction of a sequence of high potential lotteries that converges

to a low potential lottery such that each lottery in this sequence is strictly preferred over all

preceding lotteries in the sequence. Because the PL-e¤ect implies a lower-semicontinuous

utility function the utility drops at the limit point of the sequence and there does not exist

a preference maximizing lottery.

The non-existence of preference-maximizing lotteries due to PL-e¤ects can imply

the non-existence of best-responses against some belief if a player can arbitrarily randomize

between pure strategies. We could therefore expect some impact of proposition 1 on the

existence of equilibria as well as on the existence of rationalizable strategies, however, the

next section shows that proposition 1 causes no problem for the existence of rationalizable

strategies.
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4.3 Existence Of Rationalizable Strategies

For a …nite set of players I, let Si denote the …nite individual strategy set of player

i 2 I . Let 4I (S¡i) = £j 6=i 4 (Sj) denote the set of probability distributions over S with

independently distributed Si. An element ¯i 2 4I (S¡i) will be called a ’belief ’ of player

i about the strategy choices of his opponents. An element ¾i 2 4(Si) denotes a mixed-

strategy of player i. Suppose that there exists for each player a preference ordering over the

set 4(Si)£4I (S¡i) that can be represented bya utility function Vi : 4 (Si)£4I (S¡i) ! R,

(if (¾i;¯i) assigns probability one to some pure strategy-pro…le s I simply write Vi (s) instead

of Vi (¾i;¯i) ).

Let G = (4(Si) ; Vi)i2I denote a …nite game in normal form, and recall the def-

inition of an individual best response correspondence in mixed strategies as a mapping

fi : 4I (S¡i) ! 24(Si) such that

fi (¯i) =

½
¾0i j ¾0i 2 arg max

¾i24(Si)
Vi (¾i;¯i)

¾

De…nition (Bernheim 1984; Pearce 1984): The set of rationalizable mixed-strategies

of a game G is given by R (G) =
T1
k=0 ºk (S) , such that ºk (S) = £Ii=1ºki (S) with

ºki (S) =
[

¯i24I(ºk¡1¡i (S))

fi (¯i)

and º0¡i (S) = S¡i.

Suppose there exists for all players i of a game G some utility representation

Ui of preferences over 4 (X) such that there is an outcome mapping o : S ! X with
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Vi (s) = Ui (±x) for o(s) = x. Then G is a game with ’deterministic pure strategy-pro…les’.

If a game has deterministic strategy pro…les we obtain for a player with SL,PL-preferences

on 4(X), who has belief ¯i, the following utility representation for his mixed strategy

choices ¾i 2 4(Si)

Vi (¾i;¯i) = m (4(j;k)) + c (4(j;k))
nX

k=1

¾ (xk)u (xk)

with Vi (¾) = Ui (¾) such that ¾ = (¾i;¯i) 2 4 (j; k) and ¾ (xk) =
P
f(si;s¡i )jo(si;s¡i)=xkg ¾i (si)¤

¯i (s¡i).

Proposition 2. Given a …nite normal form game G with deterministic pure

strategy-pro…les. There exist always rationalizable mixed-strategies for a player with SL,PL-

preferences, i.e., R(G) 6= ;.

The result of proposition 2 is not trivial because by proposition 1 there may not

exist best responses in mixed strategies against all possible beliefs for SL,PL-preferences.

The existence of rationalizable strategies is due to the fact that SL,PL-preferences do not

violate monotonicity with respect to …rst order stochastic dominance. As a consequence the

proof of proposition 2 can simply proceed by showing that there are always pure strategies

among the best responses against point-(=probability one) beliefs. (The ’gambling e¤ect’

model of Diecidue et al. (2001) is similar to SL,PL-models because it requires a discon-

tinuous utility representation. But because it violates monotonicity with respect to FOSD

existence of rationalizable strategies may fail for players with ’gambling e¤ect’ preferences.)

The following example shows that a violation of the ’deterministic pure strategy-
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pro…les’-assumption may cause non-existence of rationalizable mixed-strategy pro…les.

Example 1: Suppose X = f0;1; 2g and let ¾ 2 4(X) denote a lottery with

¾ (0) = ¾ (2) = 0:5. Consider a game G with two players, A and B, with the following

outcome-matrix of player A

b

a1 ¾
a2 1

The game G does not satisfy the assumption of ’deterministic pure strategy-

pro…les’ because the pure strategy-pro…le (a1; b) gives the lottery ¾ as outcome. Assume

now SL,PL-preferences of player A, with ²; ´ = 0, such that u (0) = 0, u (1) = 1:5, u (2) = 2,

m (4(j;k)) = 0 for all 4(j;k), and

c (4 (2; 2)) = c (4(1; 2)) = c(4(0; 2)) = 1:5

c (4 (0; 0)) = c (4(0; 1)) = c(4(1; 1)) = 1

Observe that UA (¾) = UA (±1) and UA ((1 ¡ ¸) ¾ +¸±1) < UA ((1 ¡ ¹)¾ +¹±1) for ¸ <

¹ < 1. With VA ((1 ¡ ¸)a1 +¸a2;¯A) = UA ((1 ¡¸)¾ +¸±1), for ¯A (b) = 1, we obtain

VA (a2; ¯A) < VA ((1 ¡¸)a1 +¸a2;¯A) < VA ((1 ¡ ¹)a1 + ¹a2; ¯A)

for 0 < ¸ < ¹ < 1, i.e., there does not exist a preference maximizing strategy on 4 (SA).

Consequently, there exist no rationalizable mixed strategies.
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4.4 Existence Of Equilibria For Continuous Preferences

For continuously representable preferences over lotteries Crawford (1992) states

two results. First, if the players are randomization prone, i.e., players have quasiconcave

preferences, there exist always Nash equilibria in mixed strategies. Second, if players are

not randomization-prone then Nash equilibria in mixed strategies do not necessarily exist

whereas equilibria in beliefs always exist. Let me explain in some detail these existence

results for continuously representable preferences.

Let ¾ 2 4I (S) denote a mixed strategy-pro…le and recall that a Nash equilibrium

in mixed strategies ¾0 of G is de…ned as a …xed-point of the best-response correspondence

f : 4I (S) ! 24
I(S), i.e., ¾0 2 f (¾0). For players with preferences on 4I (S) that are quasi-

concave and continuously representable the existence of Nash equilibria in mixed strategies

is implied for …nite normal form games by Kakutani’s …xed-point theorem:

Kakutani’s Fixed Point Theorem: Let Y be a compact and convex subset of

Rn. If h : Y ! 2Y is an upper-hemicontinuous correspondence, and if the set h (y) is

nonempty and convex for each y 2 Y then there exists a …xed point y¤ 2 h (y¤).

The set of independent probability distributions over S, i.e., £j2I 4 (Sj), is a

compact and convex subset of Rn (in particular it is a simplex of dimension n = #X ¡ 1).

By Berge’s Maximum Theorem (Berge 1997) the best response correspondence f is upper-

hemicontinuous with non-empty values for continuous utility representations Ui : 4I (S) !
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R , i 2 I. For quasiconcave preferences of a player i we have

Vi (¾i; ¾¡i) = Vi (¿ i; ¾¡i)

) Vi (a¾i + (1 ¡a) ¿ i;¾¡i) ¸ Vi (¿ i;¾¡i)

for all ¾i; ¿ i 2 4(Si), ¾¡i 2 £j 6=i 4 (Sj) and a 2 (0; 1). Quasiconcave preferences imply

convex values of fi (¾¡i): if ¾i; ¿ i 2 4(Si) are best responses then all convex-combinations

a¾i+ (1 ¡ a) ¿ i, a 2 (0;1), have to be best responses as well. Expected Utility preferences

are quasiconvex because the Independence-axiom of EU-theory claims that

Vi (¾i;¾¡i) = Vi (¿ i;¾¡i)

) Vi (a¾i+ (1 ¡ a)½i; ¾¡i) = Vi (a¿ i +(1 ¡ a) ½i;¾¡i)

for arbitrary ½i 2 4 (Si). Thus, Nash’s existence result for equilibrium points in mixed

strategies for EU-preferences (Nash 1950a) is implied by the existence result for quasiconcave

preferences that are continuously representable.

For a game with I players an equilibrium in beliefs is de…ned as an I-tupel of beliefs

such that i.) for each player only best responses of his opponents against their beliefs are

in the support of his belief, and ii.) any two players share the same belief concerning the

strategy-choice of some third player, (see also Crawford 1990 who de…nes an equilibrium in

beliefs only for two players). Formally, de…ne a ’beliefs over best-responses’ correspondence

g : 4I (S) ! 24
I (S) by g (¯) = £i2Igi (¯i) with

gi (¯i) = 4
½

¾0i j ¾0i 2 arg max
¾i24(Si)

Vi (¾i; ¯i)

¾
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De…nition: An equilibrium in beliefs ¯0 of a …nite normal form game G is a

…xed-point of the ’beliefs over best-responses’ correspondence, i.e., ¯0 2 g
¡
¯0

¢
.

In contrast to fi (¾¡i), which collects mixed-strategies that are best-responses of

player i against the mixed strategy pro…le ¾¡i, an element of gi (¯i), the ’beliefs over best-

responses’ correspondence, should be interpreted as the identical belief of all players j 6= i

about player i’s best-response choice given his belief ¯i. Hence, an equilibrium in beliefs

does not refer to mutually satis…ed mixed-strategy choices, as the Nash equilibrium, but to

mutually satis…ed beliefs about mixed-strategy choices.

Mathematically, the value of the individual ’beliefs over best-responses’ gi (¯i) is

nothing else than the convexi…cation of the value of the individual best-response correspon-

dence fi (¾¡i) with ¾¡i = ¯i. As one consequence we obtain immediately the equivalence

of both equilibrium de…nitions, i.e., fi (¾¡i) = gi (¯i) for ¾¡i = ¯i, for players with quasi-

concave preferences: the values of the best response correspondence are already convex.

As another consequence equilibria in beliefs exist by Kakutani’s …xed-point theo-

rem as long as the players preferences are continuously representable: Because the ’beliefs-

over-best-responses’-correspondence assumes already convex values by de…nition we can

drop the assumption of quasiconcave preferences while applying nevertheless Kakutani’s

…xed-point theorem.
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4.5 Non-Existence Of Equilibria For SL,PL-Preferences

The discussion in section 4 shows that for continuous utility representations the

question of existence of equilibria is basically a question of convex-valued correspondences.

This is not anylonger true for the discontinuous utility representations required by SL,PL-

preferences.

Proposition 3. For SL,PL-preferences the existence of an equilibrium in beliefs,

and therefore of a Nash equilibrium in mixed strategies, may fail in …nite normal form games

with deterministic pure strategy-pro…les.

Example 2: Non-existence due to PL-e¤ect with positive threshold-

value ´ > 0. Consider a game with two players, A and B, and the following outcome-matrix

(not utility-matrix!) for pure strategy pro…les:

b1 b2

a1 0; 3 2; 0

a2 1; 0 0; 1

Assume that the preferences of player A are representable by a SL,PL-model such

that u(0) = 0, u (1) = 1, u (2) = 2, and c (4(j;k)) = 1 for all 4(j;k), and

m (4(2;2)) = m (4(1;2)) = m (4 (0;2)) = 1

m (4(0;0)) = m (4(0;1)) = m (4 (1;1)) = 0

Thus, there occur PL-e¤ects but no SL-e¤ects. Moreover, assume a threshold-

value ´ = 0:1 for the PL-e¤ect. The values of the best response correspondence of player
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A, i.e., the values of fA (¸b1 + (1 ¡ ¸) b2), are then given as

fa1g 0 · ¸ < 2
3

f¹a1 + (1 ¡ ¹)a2 j 0:3 < ¹ · 1g ¸ = 2
3

; 2
3 < ¸ < 1 ¡ ´

fa2g 1 ¡ ´ · ¸ · 1

To see why there do not exist best responses in mixed strategies against beliefs

with 2
3 < ¸ < 1 ¡ ´ assume, for example, that ¸ = 0:7. The utility

VA (¹a1 + (1 ¡ ¹) a2;¸b1 + (1 ¡¸) b2)

is then strictly increasing in (1 ¡¹) as long as ¹ > 1
3: if ¹ ¤ (1 ¡ ¸) > ´ the mixed strategy

pro…les are all evaluated at the same potential level. However, for ¹ = 1
3 the probability

of the high outcome x = 2 reaches the threshold-value ´ = 0:1 such that the utility of the

strategies with ¹ · 1
3 drops sharply due to the decrease in the potential level, (and it does

not ’recover’ at ¹ = 0.)

Let player B be an EU-maximizer with u(x) = x, and observe that there does not

exist an equilibrium in pure strategies: In order to become indi¤erent between his strategy

choices B has to believe that A chooses a1 with 0:25 and a2 with 0:75 probability, i.e.,

¯B (a1) = ¹ = 0:25. But as just seen such a belief of player B is not consistent with any

best-responses of player A. Consequently, there does not exist an equilibrium in beliefs.

Example 3: Non-existence due to SL-e¤ect with ² = 0. Consider the

following outcome-matrix
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b1 b2

a1 1; 1 2; 0

a2 2; 0 0; 1

Assume that the preferences of player A are representable by a SL,PL-model with

²;´ = 0 such that u (x) = x, x 2 f0;1; 2g, m (4(j; k)) = 0 for all 4(j;k), and

c (4(1; 1)) = c (4 (1;2)) = c (4(2;2)) = 2

c (4(0; 0)) = c (4 (0;1)) = c (4(0;2)) = 1

Now there occur only SL-e¤ects and the values of fA (¸b1 + (1 ¡ ¸) b2) are given as

fa1g 0 · ¸ < 1
fa2g ¸ = 1

Let player B be an EU-maximizer, and observe that there does not exist an equi-

librium in beliefs.

Example 4: Non-existence due to SL-e¤ect with ² = 0:1. Consider the

following outcome-matrix

b1 b2
a1 0; 1 1;0

a2 10;0 0;1

Assume that the preferences of player A are representable by a SL,PL-model with

² = 0:1 such that u (x) = x, m (4(j;k)) = 0 for all 4(j;k), and

c(4(1; 1)) = c (4(1;10)) = c(4(10; 10)) = 2
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c(4(0; 0)) = c (4(0;1)) = c (4(0;10)) = 1

The values of the best response correspondence fA (¸b1 + (1 ¡¸) b2) are given as

fa1g 0 · ¸ · 0:1
fa2g 0:1 < ¸ · 1

As in example 3 there does not exist an equilibrium in beliefs if player B is an

EU-maximizer.

Proposition 3 shows that the convex values of the ’beliefs overbest-responses’ corre-

spondence can not assure the existence of an equilibrium in beliefs for SL,PL-preferences: In

the examples 2-4 the values of the best-response correspondences have been already convex.

In example 2 non-existence of best responses and in example 3 and 4 non-upperhemicontinuity

of the best-response correspondence imply the non-existence of equilibrium in beliefs.

4.6 Existence Of Trembling Hand Equilibria For Zero-Thresholds

By proposition 3 there may not exist equilibria in beliefs, or equilibria in mixed

strategies, for players with SL,PL-preferences. The examples show that this non-existence

result holds regardless whether the thresholds are positive or zero. However, for SL,PL-

preferences with zero thresholds, i.e., ²;´ = 0, the existence of trembling-hand equilibria

(Selten 1975) and of proper equilibria (Myerson 1978) can be shown.

De…ne by 4" (Si) ½ 4(Si) a set of mixed strategies such that each si 2 Si appears

in the support of ¾i 2 4" (Si) with probability ¾i (si) ¸ " (si) > 0, and let us call G (") =
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(4" (Si) ; Vi)i2I a perturbed game of G. Moreover, for a given game G = (4(Si) ; Vi)i2I

de…ne the game Gmix =
¡4(Si) ; Vmixi

¢
i2I by letting V mix

i (¾) = ¹Ui (¾;4 (1; n)) for all

¾ 2 4I (S).

De…nition (Selten 1975; theorem 2.2.5 in van Damme 1991): The mixed-strategy

pro…le ¾0 = £i2I¾0i is called a trembling-hand equilibrium of G if and only if there is a

sequence f"mgm2N, with limm!1 "m (si) = 0 for all si 2 Si and all i 2 I , such that

¾0 = limm!1 ¾0 ("m) with ¾0 ("m) being a Nash equilibrium of the perturbed game G ("m).

Proposition 4. A trembling-hand equilibrium ¾0 exists for every …nite normal

form game G with deterministic pure strategy-pro…les if the players have SL,PL-model pref-

erences with ²;´ = 0. Moreover, ¾0 is a trembling-hand equilibrium of G if and only if ¾0is

a trembling-hand equilibrium of Gmix.

Proposition 4 is easily derived: For every perturbed game G (") players with SL,PL-

preferences and zero-thresholds behave like EU-maximizers: because every outcome realizes

with positive probability all relevant mixed-strategy pro…les are evaluated within the same

subset 4(1; n). As a consequence there exists a Nash equilibrium for every perturbed game

G ("m), and the limit point of the Nash equilibria for some sequence of perturbed games is

exactly a trembling-hand equilibrium of Gmix.

Obviously, the same argumentation goes through for the proper equilibrium of

Myerson (1978) who imposes particular restrictions on the probability weights " (si) by
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which pure strategies si may be played in a so-called "-proper equilibrium ¾0 (") of G. In

particular, it is required for an "-proper equilibrium ¾0 (") of G that 0 < " (ti) = ¾0i (ti) ·

" (si) ¤ " (si) if Vi
¡
ti; ¾0¡i (")

¢
< Vi

¡
si; ¾0¡i (")

¢
. A proper equilibrium of G is then de…ned

as a limit point ¾0 = limm!1¾0 ("m) with each ¾0 ("m) being an "-proper equilibrium of G

and limm!1 "m (si) = 0 for all si 2 Si and all i 2 I. Analogously, a proper equilibrium

of G is given by a proper equilibrium of Gmix; which exists actually (Myerson 1978; van

Damme 1991).

The concepts of trembling-hand equilibria or of proper equilibria do not work here

anylonger as a selection (’perfectness’) criterion for Nash equilibria in …nite normal form

games. For example, the unique trembling-hand equilibrium ¾0 in the game of example

3 is given by ¾0A (a1) = 1
2 and ¾0B (b1) = 2

3. But this mixed-strategy pro…le is not a

Nash equilibrium. Therefore a trembling-hand equilibrium can only be interpreted as an

’approximation’-result: We have to assume that the players are actually playing a slightly

perturbed game such that a trembling-hand equilibrium approximates for an observer the

Nash equilibrium played in the perturbed game which is not exactly known by this observer.

The assumption of a slightly perturbed game which is known to the players but not to the

modeler may have some appeal in particular situations but it is also questionable as a

general doctrine.
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4.7 Concluding Remarks

A Nash equilibrium in mixed strategies exists in …nite normal form games for play-

ers who are randomization-prone and whose preferences are continuously representable. For

players who are not randomization-prone, i.e., who have not quasiconcave preferences, the

existence of a Nash equilibrium in mixed strategies may fail due to non-convex values of the

best-response correspondence. However, if the preferences of these players are continuously

representable then there exists an equilibrium in beliefs for each …nite normal norm game.

For the discontinuous utility representations of SL,PL-preferences we obtain for

…nite normal form games that there does not necessarily exist a best response in mixed

strategies against each belief, and that the best-response correspondence is not necessarily

upper-hemicontinuous. As a consequence it is not di¢cult to …nd examples of …nite normal

form games with SL,PL-preferences such that there does not exist an equilibrium in beliefs.

Somewhat surprisingly existence of trembling-hand equilibria (Selten 1975) and

of proper equilibria (Myerson 1978) can be established for the particular class of SL,PL-

preferences with zero-thresholds. Because trembling-hand, or proper, equilibria are not

necessarily Nash equilibria for these games the value of this existence result is in my opinion

limited. If we assume that the players are playing indeed some perturbed game, while we are

only aware of the unperturbed version, we can take the trembling-hand equilibrium as an

approximation for the Nash equilibrium in the perturbed game. Besides this approximation

of Nash equilibria in perturbed games I do not see any other meaningful interpretation of

trembling-hand, or proper, equilibria that are not Nash equilibria.

In contrast to equilibrium concepts rationalizability does rather well as solution
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concept: There exists always rationalizable mixed strategies in …nite normal form games

for players with SL,PL-preferences. (Though there may not exist best-responses in mixed

strategies against all possible beliefs.) From an applicational point of view the rational-

izability approach is often considered as a less attractive than the equilibrium approach

because it is a weaker solution concept. However, the …ndings of this chapter cast some

doubt on the usefulness of the equilibrium approach if we consider players with SL,PL-

preferences: While there exist always rationalizable strategies it may be impossible that all

players choose best responses and have also correct anticipations about their opponents’

strategy choices.

4.8 Appendix: Proofs

Proof of proposition 1: There exist preference-maximizing lotteries for each

compact subset of 4 if Ui is upper-semicontinuous on 4, i.e., for any converging sequence

with limn!1 ¾n = ¾

lim supUi (¾n) · Ui (¾) (4.1)

Observe that there exist only sequences f¾ngn2N that converge to some lottery ¾ with

the same, or with a higher, security level than the members of the sequence ¾n with n ¸

M for some …nite M. Consequently, if there does not occur a PL-e¤ect then condition

(4.1) must be satis…ed; (if ¾ has a higher security level than ¾n with n ¸ M then (4.1)

holds with strict inequality, and with equality else). Consider now a PL-e¤ect such that

Ui (¾0) < ¹Ui (¾0; 4(j;k0)) for some ¾0 2 4(j;k) with k0 > k, and assume there exist lotteries

¾ 2 4(j;k) and ¿ 2 4 (j; k0) with Ui (¿) · Ui (¾). Observe that there exists for each ¦ (²; ´)
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a unique ¸¤ 2 (0; 1] such that (1 ¡¸¤) ¿ + ¸¤¾ 2 4(j;k) and (1 ¡ ¸) ¿ +¸¾ 2 4(j;k0) for

0 · ¸ < ¸¤, (e.g., if ´ = 0 then ¸¤ = 1). By de…nition of a PL-e¤ect we have

¹Ui
¡
(1 ¡ ¸¤) ¿ +¸¤¾;4 ¡

j; k0
¢¢

> Ui ((1 ¡ ¸¤) ¿ +¸¤¾)

Since Ui (¾) < ¹Ui (¾;4 (j; k0)) the relation Ui (¿) · Ui (¾) implies

¹Ui
¡
¿;4 ¡

j; k0
¢¢

< ¹Ui
¡
¾;4¡

j; k0
¢¢

and we obtain

Ui ((1 ¡ ¸) ¿ +¸¾) < Ui ((1 ¡ ¹) ¿ +¹¾)

for 0 · ¸ < ¹ < ¸¤. As a consequence there does not exist any preference-maximizing

lottery on the compact subset

f(1 ¡ ¸) ¿ +¸¾ j ¸ 2 [0; ¸¤]g ½ 4

¤

Proof of proposition 2: Take some point-belief ¯i (s¡i) = 1 and pick a pure

strategy s0i that is preference-maximizing over Si, i.e., s0i 2 arg maxsi2Si Vi (si; ¯i), (since Si

is …nite the existence of s0i is guaranteed). Suppose now there exists some mixed strategy

¾0i 2 4(Si) such that Vi (¾
0
i; ¯i) > Vi (si; ¯i). But this is impossible: Since xk, given by

o(s0i; s¡i) = xk, is the maximal element in the support of any lottery (¾i; ¯i) we have

(¾i;¯i) 2 4(j0; k0) with j0 · k and k0 · k for all ¾i 2 4(Si), which implies for SL,PL-

preferences

Vi
¡
s0i;¯i

¢
= Ui (±k) = ¹Ui (±k; 4(k;k))

¸ ¹Ui (¾i; ¯i; 4(k;k)) ¸ Ui
¡
¾i;¯i;4

¡
j0; k0

¢¢
= Vi (¾i; ¯i)
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Hence, s0i must be a best response against the point-belief ¯i on 4(Si). As a consequence

the set of point-rationalizable solutions in mixed-strategies (compare Bernheim 1984) is

non-empty; which implies non-emptiness of R(G).¤
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Chapter 5

Equivalence Conditions For

Rationalizability Concepts

5.1 Introduction

Rationalizability, point-rationalizability, and correlated rationalizability (Bern-

heim 1984; Pearce 1984) can be interpreted as solution concepts for normal form games

that combine the standard approach of decision theory with a particular epistemic assump-

tion (Tan and Werlang 1988). First, it is assumed that each player resolves his uncertainty

about his opponents’ strategy choices by a unique ’belief ’, i.e., a probability distribution

over the opponents’ strategy choices. Secondly, the class of possible beliefs is restricted by

the epistemic assumption that it is ”common knowledge among the players that only best

responses against some belief are chosen”.

While they share the same epistemic assumption these three rationalizability con-
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cepts di¤er in their restrictions on the initial class of admissible beliefs by which a player

may resolve his uncertainty: point-rationalizability considers only ”probability one” beliefs

(=point-beliefs), correlated rationalizability allows for arbitrary beliefs, and the standard

de…nition of rationalizability assumes beliefs over independent strategy choices. The restric-

tion to degenerated probability distributions by point-rationalizability is not very convincing

and it may imply unreasonable results. Consider, for example, the following matrix of utility

numbers for EU-maximizing players A and B

b1 b2

a1 1 , 0 -100 , 0
a2 0.99 , 0 0.99 , 0
a3 -100 , 0 1 , 0

The strategy a2 is not point-rationalizable because it is not a best response of A

against any pure strategy of B. Nevertheless, a2 appears as a reasonable choice of A given

that B is indi¤erent between his strategy choices.

The big advantage of point-rationalizability is its technical convenience: point-

rationalizability considers only best responses against pure strategies whereas the other

rationalizability concepts must consider best responses against (non-degenerated) proba-

bility distributions over these pure strategies. Thus, whenever the set of strategies di¤ers

from the set of probability distributions over strategies it is much easier to work with point-

rationalizability than with other rationalizability concepts.

To see the di¤erence between rationalizability and correlated rationalizability con-

sider the following utility-matrix of an EU-maximizing player A.
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(b1; c1) (b1; c2) (b2; c1) (b2; c2)

a1 1 1 1 0
a2 0.5 -100 -100 0.5
a3 0 1 1 1

The strategy a2 is a best response only when player A believes that player B

and player C choose with 0:5 chance either (b1; c1) or (b2; c2). This belief does not assume

independently chosen strategies and the strategy a2 is therefore not rationalizable. However,

it may be correlated-rationalizable.

Whether the standard de…nition of rationalizability is more appropriate than cor-

related rationalizability depends from case to case: for some strategic situations the restric-

tion to beliefs over independent strategy choices is a natural assumption, for other strategic

situations it is not (compare also Brandenburger and Dekel 1987; Epstein 1997).

This chapter explores conditions for which all three rationalizability concepts are

equivalent, i.e., for which the sets of rationalizable, of correlated rationalizable, and of

point-rationalizable strategies coincide. If a game satis…es these conditions the technical

convenience of point-rationalizability would go along with the interpretational advantage

of the other rationalizability concepts. Moreover, for games satisfying these equivalence

conditions, the question becomes irrelevant whether the assumption of arbitrary beliefs or

of beliefs restricted to independent strategy choices is more appropriate for a given situation.

For instance, in chapter 2 of this thesis I characterize games with a unique point-

rationalizable solution by mathematical conditions that are not at hand for the other ratio-

nalizability concepts (contraction-properties of a best-response function against pure strate-

gies). In a second step I apply then the equivalence results of this chapter in order to gener-
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alize the uniqueness results from point-rationalizability to rationalizability and to correlated

rationalizability.

The main …ndings of this chapter are most useful for two classes of games: i.) the

individual strategy sets are compact intervals of the real line, ii.) the individual strategy

sets are complete lattices and there exists a unique point-rationalizable strategy.

Ad i.) Quasiconcave utility functions or utility functions with monotonic di¤er-

ences imply equivalence of all three rationalizability concepts.

Ad ii.) If the utility functions are monotonic and ’supermodular’ (Topkis 1979;

Vives 1990; Milgrom and Roberts 1990) then a unique point-rationalizable strategy is also

the unique rationalizable and the unique correlated rationalizable strategy.

On the one hand the second result restates a …nding of Milgrom and Roberts

(1990) for supermodular games (=increasing utility di¤erences for all players). On the

other hand it provides an extension to games for which a player has either decreasing or

increasing utility di¤erences. For example, the equivalence results of this chapter apply now

also to models of Cournot oligopolies that are not supermodular in the sense of Milgrom

and Roberts.

This chapter investigates also equivalence conditions for rationalizability concepts

and for di¤erent concepts of iterated elimination of dominated strategies. Useful uniqueness

results for rationalizable strategies have been indirectly derived via the iterated elimination

of dominated strategies (Milgrom and Roberts 1990; Moulin 1984). This is not surprising

because these solution concepts o¤er the same technical advantage as point-rationalizability:
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instead of probability distributions over opponents’ strategy choices only pure strategies

have to be considered. There exist famous results in the literature that relate both families

of solution concepts (Pearce 1984; Moulin 1984; Milgrom and Roberts 1990) and I will

provide restatements as well as some extensions of these results.

Interestingly, all equivalence results (except the observation in section 3) in this

chapter do not require EU-maximizing players: simple stochastic dominance conditions,

implied by monotonicity with respect to …rst order stochastic dominance, are su¢cient.

The remainder of this chapter proceeds as follows. In section 2 the notation is

introduced and formal de…nitions of rationalizability concepts and of concepts of iterated

elimination of dominated strategies are provided. Section 3 reviews existing equivalence

results. Section 4 presents equivalence results for quasiconcave utility functions. In section 5

equivalence results for utility functions with increasing or decreasing di¤erences are derived.

In section 6 problems for further generalizations of the obtained equivalence conditions are

discussed. Section 7 concludes. All proofs are relegated to the appendix.

5.2 Preliminaries: Notation, De…nitions

For a given set of players I , Si denotes the individual strategy set of player i 2 I .

Let 4(S¡i) denote the set of probability distributions over S¡i = £j 6=iSj . An element

¾¡i 2 4(S¡i) will be called a ’belief ’ of player i about the strategy choices of his opponents.

4I (S¡i), with 4I (S¡i) = £j 6=i 4 (Sj), denotes the set of player i’s beliefs restricted to

independent strategy choices of his opponents. The preferences of a player i over the set
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Si £4 (S¡i) shall be representable by some utility function Ui : Si £4 (S¡i) ! R.

Let G = (Si;Ui)i2I denote a game in normal form. An individual best response

correspondence is a mapping fi : 4 (S¡i) ! 2Si such that fi (¾¡i) = arg maxsi2Si Ui (si;¾¡i).

In case ¾¡i is a ’point-belief ’, i.e., ¾¡i assigns probability one to some strategy pro…le s¡i,

I simply write fi (s¡i) instead of fi (¾¡i). For single-valued fi (¾¡i) I write si = fi (¾¡i)

instead of si 2 fi (¾¡i).

If Ui (si; s¡i) > U (ti; s¡i) for all s¡i 2 S¡i implies Ui (si;¾¡i) > U (ti; ¾¡i) for all

¾¡i 2 4(S¡i) player i’s preference-ordering satis…es ’monotonicity with respect to strong

stochastic dominance’ (SSD). When we consider players who may randomize between pure

strategies, i.e., an element ¾i 2 4 (Si) is then a mixed strategy of player i, we need a

preference-ordering de…ned over the set 4 (Si) £ 4(S¡i) ½ 4 (S). Suppose Ui (si; s¡i) ¸

U (ti; s¡i) for all ti in the support of ¾i and Ui (si; s¡i) > U (ti; s¡i) for some ti in the support

of ¾i. Then player i is ’weakly gambling averse’ if his preferences satisfy Ui (si; s¡i) >

U (¾i; s¡i).

Obviously, monotonicity with respect to SSD and weak gambling aversion are im-

plied by monotonicity with respect to …rst order stochastic dominance whenever the strate-

gies in S result in deterministic outcomes. As a consequence all monotonicity conditions of

this chapter should be satis…ed for ’reasonable’ players.

De…nition (Bernheim 1984; Pearce 1984): The set of rationalizable strategies for

a game G is given by R (G) =
T1
k=0 ºk (S) , such that ºk (S) = £Ii=1ºki (S) with

ºki (S) =
[

¾¡i24I(ºk¡1¡i (S))

fi (¾¡i)



90

and º0¡i (S) = S¡i.

De…nition (Pearce 1984): The set of correlated rationalizable strategies for a

game G is given by RC (G) =
T1
k=0¹

k (S), such that ¹k (S) = £Ii=1¹ki (S) with

¹ki (S) =
[

¾¡i24(¹k¡1¡i (S))

fi (¾¡i)

and ¹0¡i (S) = S¡i.

De…nition (Bernheim 1984; Pearce 1984): The set of point-rationalizable strate-

gies for a game G is given by P (G) =
T1
k=0 ¸k (S), such that ¸k (S) = £Ii=1¸ki (S) with

¸ki (S) =
[

s¡i2¸k¡1¡i (S)

fi (s¡i)

and ¸0¡i (S) = S¡i.

The following inclusions are immediately implied by the above de…nitions: P (G) ½

R (G) ½ RC (G). Moreover, notice that 4I (S¡i) = 4(S¡i) for I · 2 such that rationaliz-

ability and correlated rationalizability can only di¤er for games with more than two players.

Let us nowturn to di¤erent concepts of iterated elimination of dominated strategies

which make di¤erent assumptions with respect to the de…nition of a ’dominated’ strategy.

De…nition:The weak dominance solution of a game G against pure strategies

(Moulin 1984) is given by DWP (G) =
T1
k=0 ±k (S) , such that ±k (S) = £Ii=1±ki whereas

si 2 ±ki if and only if si 2 ±k¡1i , and there does not exist a ti 2 ±k¡1i such that U (ti; s¡i) ¸
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U (si; s¡i) for all s¡i 2 ±k¡1¡i , and U (ti; s¡i) > U (si; s¡i) for some s¡i 2 ±k¡1¡i . Further-

more, ±0¡i (S) = S¡i.

De…nition:The strong dominance solution of a game G against pure strategies is

given by DSP (G) =
T1
k=0 µk (S) , such that µk (S) = £I

i=1µ
k
i whereas si 2 µki if and only

if si 2 µk¡1i , and there does not exist a ti 2 µk¡1i such that U (ti; s¡i) > U (si; s¡i) for all

s¡i 2 µk¡1¡i . Furthermore, µ0¡i (S) = S¡i.

De…nition:The weak dominance solution of a game G against mixed strategies is

given by DWM (G) =
T1
k=0 Ãk (S) , such that Ãk (S) = £Ii=1Ãki whereas si 2 Ãki if and only

if si 2 Ãk¡1i , and there does not exist a ¾i 2 4
³
Ãk¡1i

´
such that U (¾i; s¡i) ¸ U (si; s¡i)

for all s¡i 2 Ãk¡1¡i , and U (¾i; s¡i) > U (si; s¡i) for some s¡i 2 Ãk¡1¡i . Furthermore,

Ã0¡i (S) = S¡i.

De…nition:The strong dominance solution of a game G against mixed strategies is

given by DSM (G) =
T1
k=0'

k (S) , such that 'k (S) = £Ii=1'ki whereas si 2 'ki if and only

if si 2 'k¡1i , and there does not exist a ¾i 2 4
³
'k¡1i

´
such that U (¾i; s¡i) > U (si; s¡i)

for all s¡i 2 'k¡1¡i . Furthermore, '0¡i (S) = S¡i.

5.3 Existing Equivalence Results

In the literature the notion of a ’dominance solution’ refers usually to the ’strong

dominance solution against mixed strategies’, (see Fudenberg and Tirole 1996; Milgrom
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and Roberts 1990). The above de…nitions imply DWM (G) ½ DSM (G) ½ DSP (G) and

DWM (G) ½ DWP (G) ½ DSP (G). For the relation of rationalizability- and of dominance

solution concepts we obtain immediately P (G) ½ DSP (G), and in case monotonicity with

respect to SSD is satis…ed: RC (G) ½ DSP (G).

Besides these obvious relations there exist, to my knowledge, three important re-

sults that provide conditions under which particular rationalizability concepts are equivalent

with particular dominance solution concepts. Another equivalence result concerns speci…c

dominance- and rationality concepts proposed by Börgers (1993) which will not play a

further role for the results of this chapter. Let me review these existing equivalence results.

By a corollary in Milgrom and Roberts (1990) the unique Nash equilibrium of a

supermodular game is also the unique strategy pro…le in the strong dominance solution

against pure strategies. Thus, if monotonicity with respect to SSD is satis…ed we have for

a supermodular game

P (G) = R (G) = RC (G) = DSP (G) = DWP (G)

whenever the Nash equilibrium of G is unique. If weak gambling aversion is also satis…ed we

have moreover P (G) = DWM (G) = DSM (G). This …nding will be restated and extended

by corollary 1 of this chapter.

The Lemma 2 in Moulin (1984) identi…es conditions for a game G such that

the ’weak dominance solution against pure strategies’ coincides with the set of point-

rationalizable strategy pro…les, i.e., DWP (G) = P (G). Moulin’s result will be restated
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and extended by proposition 2 of this chapter.

It is well known (at least for …nite strategy sets) that the strong dominance solution

against mixed strategies is equivalent with the set of correlated rationalizable strategies for

Expected Utility maximizers, i.e., the preferences over 4 (S) are representable by a utility

function Ui : 4(S) ! R such that Ui (¾) =
R
S

Ui (s)d¾ (s).

The relation RC (G) ½ DSM (G) is rather obvious and it can be established under

weaker assumptions than EU-maximizing players. Consider an extension of monotonic-

ity with respect to SSD to mixed strategies such that Ui (¾i;¾¡i) > U (ti;¾¡i) whenever

Ui (¾i; s¡i) > U (ti; s¡i) for all s¡i 2 S¡i. If there exist a ¾i 2 4(Si) and a si 2 Si such that

U (¾i; s¡i) > Ui (si; s¡i) for all s¡i 2 S¡i then monotonicity with respect to SSD extended

to mixed strategies implies U (¾i;¾¡i) > Ui (si;¾¡i) for all ¾¡i 2 4 (S¡i). For a weakly

gambling averse player there exists for every ¾¡i 2 4 (S¡i) some strategy ti 2 Si such that

U (ti; ¾¡i) > Ui (si;¾¡i), i.e., si can not be a best response against any belief ¾¡i.

The converse relation DSM (G) ½ RC (G) is not so obvious. Pearce (1984) had

proved DSM (G) ½ RC (G) (Lemma 3) for …nite two player-games via the existence of a

saddlepoint in zero-sum games with mixed-strategy spaces (with the extension to any …nite

number of players easily at hand; compare also Lemma 3.2.1. and 3.2.2. for bimatrix games

in van Damme 1991). Fudenberg and Tirole (1996) suggest that a direct application of the

Separating Hyperplane Theorem for …nite vector-spaces may o¤er a shortcut of Pearce’s

proof, and such a shortcut is indeed provided by the ’First fundamental theorem’ in Berge

(1997). The following observation restates the well-known equivalence result DSM (G) =
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RC (G) for strategy sets that are compact subsets of Rn.

Observation: Given a game G such that

(A1) Each player is an EU-maximizer.

(A2) S is a compact subset of Rn.

(A3) Each Ui (s) is continuous with respect to s.

Then the strong dominance solution of G against mixed strategies coincides with

the set of correlated rationalizable strategies of G, i.e., DSM (G) = RC (G).

Besides the four di¤erent de…nitions of dominance criteria, mentioned above, Börg-

ers (1993) proposes another dominance criterion for games with …nite strategy sets. A strat-

egy si 2 Si is dominated in Börgers’ sense if and only if there exists for every nonempty

subset T¡i ½ S¡i some strategy ti such that U (ti; s¡i) ¸ U (si; s¡i) for all s¡i 2 T¡i and

U (ti; s¡i) > U (si; s¡i) for some s¡i 2 T¡i. Let DB (G) denote the set of pure strategies

that survive iterated elimination according to Börgers’ dominance criterion, then it can

be shown that DWP (G) ½ DB (G) ½ DSP (G) with strict inclusions for some games, i.e.,

Börgers dominance solution concept is something intermediate between the weak and the

strong dominance solution against pure strategies.

Similarly to the de…nition of monotonicity with respect to SSD let us say that

i’s preferences satisfy monotonicity with respect to weak stochastic dominance (WSD) if

Ui (si; s¡i) ¸ U (ti; s¡i) for all s¡i 2 S¡i and Ui (si; s¡i) > U (ti; s¡i) for all s¡i 2 T¡i

implies Ui (si; ¾¡i) > U (ti; ¾¡i) for all ¾¡i with support on a …nite set T¡i ½ S¡i . If a
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player’s preferences satisfy monotonicity with respect to WSD any strategy that is domi-

nated in Börgers’ sense can not be a best response against some belief: if a belief on S¡i has

support on T¡i a weakly dominating strategy ti must be a strictly better response against

this belief than si. Consequently, RC (G) ½ DB (G).

In addition to his dominance criterion Börgers introduces an alternative de…nition

of a ’rational’ player. This de…nition di¤ers from the preference–maximization assumption

used in the rationalizability de…nitions of Bernheim and Pearce because it implies very

strong restrictions on admissible (Expected Utility) preferences over Si £ 4(S¡i). In par-

ticular, Börgers de…nes a strategy si as rational for player i if and only if there exists some

belief ¾¡i and some utility-number function ui : X ! R satisfying ui (x) ¸ ui (y) , x ºi y,

such that

X

s¡i2S¡i
ui (o (si; s¡i)) ¤ ¾¡i (s¡i) ¸

X

s¡i2S¡i
ui (o (ti; s¡i)) ¤ ¾¡i (s¡i)

for all ti 2 Si, with outcome-function o : S ! X. Consider the following payo¤-(not utility!)

matrix of player A

b1 b2

a1 100 0
a2 " "

a3 0 100

The strategy a2 is ’rational for player A’ in Börgers sense for " > 0, because u (")

can be chosen arbitrarily large as long as the original ranking of deterministic outcomes is

not violated, i.e., u (") < u(100). Börgers shows then for EU-maximizers that a strategy is

dominated in his sense if and only if it is not rational according to his de…nition.

Based on Börgers’ rationality de…nition we could de…ne a set of rationalizable
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strategies in Börgers’ sense, RB (G), and obtain RB (G) = DB (G) for games with …nite

strategy sets and EU-maximizers. This equivalence result should not be mixed up with the

seemingly similar result of Pearce DSM (G) = RC (G), stated in the above observation, or

with the equivalence results that will be derived in the remainder of this chapter. In the

rationalizability de…nitions of Bernheim (1984) and Pearce (1984) it is assumed that each

player’s preferences over Si £4(S¡i) are common knowledge, whereas it does not actually

matter whether the players are EU-maximizers, or not.

In contrast, Börger’s concept of rationalizability seems to be appropriate for strate-

gic situations for which only the ranking of deterministic outcomes, plus the fact that all

players are EU-maximizers, is common knowledge. Besides the uncertainty about the oppo-

nents’ strategy choices which is also resolved by probabilistic beliefs there exists uncertainty

about the players preferences over Si£ 4(S¡i), except for the subset Si £S¡i. Let us de-

note by EUi the set of all EU-preference representations Ui : Si £4 (S¡i) ! R+ of player

i such that the utility numbers satisfy ui (x) ¸ ui (y) , x ºi y. If this uncertainty about

particular EU-preferences is resolved via point-beliefs we obtain Börger’s rationalizability

de…nition.

5.4 Results: Quasiconcave Utility

The results of this section are restricted to individual strategy sets that are com-

pact intervals of the real line. Quasiconcavity of a player’s utility function with respect to

his own strategies guarantees basically the equivalence of point-rationalizable and of corre-

lated rationalizable strategies (proposition 1). A strengthening of quasiconcavity to strict
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quasiconcavity implies the equivalence of the weak and of the strong dominance solution

against pure strategies. Under the additional assumption of weakly gambling averse players

a combination of this …nding with proposition 1 and with Moulin’s Lemma 2 establishes

general equivalence of dominance- and rationalizability concepts (proposition 2).

Proposition 1: Given a game G such that

(A1) Each Ui satis…es monotonicity with respect to SSD.

(A2) The strategy sets Si are convex and compact subsets of R .

(A3) Each Ui is continuous with respect to s.

(A4) Each Ui is quasiconcave with respect to si, i.e., for all s¡i 2 S¡i

Ui (si; s¡i) > Ui (ti; s¡i) ) Ui (asi+ (1 ¡ a) ti; s¡i) > Ui (ti; s¡i)

Ui (si; s¡i) = Ui (ti; s¡i) ) Ui (asi+ (1 ¡ a) ti; s¡i) ¸ Ui (ti; s¡i)

for a 2 (0; 1).

Then ¸k (S) = ºk (S) = ¹k (S) for k ¸ 0. In particular P (G) = R (G) = RC (G).

Proposition 2: Given a game G such that the assumptions (A1)-(A3) of propo-

sition 1 are satis…ed. If each player is weakly gambling averse and if each Ui is strictly

quasiconcave with respect to si, i.e., for all s¡i 2 S¡i

Ui (si; s¡i) > Ui (ti; s¡i) ) Ui (asi+ (1 ¡ a) ti; s¡i) > Ui (ti; s¡i)

Ui (si; s¡i) = Ui (ti; s¡i) ) Ui (asi+ (1 ¡ a) ti; s¡i) > Ui (ti; s¡i)
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for a 2 (0; 1) and si 6= ti, then

¸k (S) = ºk (S) = ¹k (S) = ±k (S) = µk (S) = 'k (S) = Ãk (S)

for k ¸ 0. In particular

P (G) = R (G) = RC (G) = DWP (G) = DSP (G) = DSM (G) = DWM (G)

Observe that the equivalence of DSM (G) and RC (G) in proposition 2 is not

implied by the above observation (i.e., the equivalence result of Pearce 1984) because

proposition 2 does not require EU-maximizers. Mainly because weak gambling aversion

implies P (G) ½ DSM (G) the assumptions of proposition 2 are strong enough to derive

DSM (G) = RC (G) without any reference to a separation theorem as in the proof of the

observation.

Strict quasiconcavity was not necessary for obtaining P (G) = R (G) = RC (G)

in proposition 1, whereas strict quasiconcavity is crucial for DWP (G) = P (G) in Moulin’s

Lemma 2 as well as for DWP (G) = DSP (G) in proposition 2 of this chapter. This assump-

tion of strict-quasiconcavity is rather restrictive, because, in contrast to quasiconcavity, it

implies single-valued best-response correspondences.

5.5 Results: Monotonic Utility Di¤erences

This section introduces increasing and decreasing di¤erences of the utility functions

Ui in s¡i as equivalence conditions. Because the results of this section refer to concepts

of lattice theory and of supermodular functions recall at …rst the following de…nitions (for
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more comprehensive de…nitions see Topkis 1979; Vives 1990; Milgrom and Roberts 1990;

Fudenberg and Tirole 1996):

1. Given a re‡exive, transitive, and antisymmetric binary relation ·L on a set Si

let (Si; ·L) denote a lattice, i.e., for all elements si; ti 2 Si there exist a supremum si _ ti

and an in…mum si ^ ti in Si.

2. (Si;·L) is a complete lattice if inf T 2 Si and sup T 2 Si for every non-empty

subset T ½ Si. Note: completeness of Si implies the existence of exactly one ”smallest”

element si 2 Si such that si ·L s0i for all s0i 2 Si, and of exactly one ”largest” element

ti 2 Si such that s0i ·L ti for all s0i 2 Si.

3. If (Si;·L) is a lattice for every i 2 I then (S; ·L) denotes a lattice such that

s ·L t i¤ si ·L ti for all i.

4. Following Milgrom and Roberts Ui is said to be order-continuous on a complete

lattice T ½ S if for any chain C (=totally ordered subset of T ) lims2C;s#infC Ui (s) =

Ui (inf C) and lims2C;s"supC Ui (s) = Ui (supC). Order upper semicontinuity is accordingly

de…ned as lim sups2C;s#infC Ui (s) · Ui (inf C) and limsups2C;s"supC Ui (s) · Ui (sup C),

(where limsups2C;s"supC Ui (s) stands for ^s2C;s"sup _t2C;s·Lt Ui (t) ).

5. Ui (s) is supermodular on Si if for all si; ti 2 Si

Ui (si; s¡i) +Ui (ti; s¡i) · Ui (si ^ ti; s¡i) + Ui (si _ ti; s¡i)

for all s¡i 2 S¡i.

6. Ui (s) has ”increasing di¤erences” if Ui (si; s¡i) ¡ Ui (ti; s¡i) is non-decreasing

in s¡i for ti ·L si, and it has ”decreasing di¤erences” if Ui (si; s¡i) ¡ Ui (ti; s¡i) is non-

increasing in s¡i for ti ·L si.
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Lemma: Given a game G such that

(A1) Each Ui satis…es monotonicity with respect to SSD.

(A2) Each Si is a complete lattice (Si; ·L).

(A3) Each Ui is order upper semi-continuous with respect to si for …xed s¡i, and

bounded from above.

(A4) Each Ui is supermodular on Si.

(A5) Each Ui has either increasing or decreasing utility di¤erences.

Then the sets ¸k (S), ºk (S), ¹k (S), and µk (S) are complete lattices with

sup¸k (S) = supºk (S) = sup¹k (S) = supµk (S)

inf ¸k (S) = inf ºk (S) = inf ¹k (S) = inf µk (S)

for k ¸ 0. Moreover, suppose

(A6) Each Ui is order-continuous with respect to s¡i.

Then P (G), R (G), RC (G), and DSP (G) are complete lattices with

sup P (G) = supR (G) = supRC (G) = sup DSP (G)

inf P (G) = inf R (G) = inf RC (G) = inf DSP (G)

The proof of the lemma is very similar to the proofs of lemma 1 and of theorem 5

in Milgrom and Roberts (1990). The main di¤erence results from the fact that the Lemma

allows also for decreasing utility di¤erences whereas Milgrom and Roberts’ de…nition of a

supermodular game requires increasing utility di¤erences for every player. As a consequence
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of this generalization the strategies supDSP (G) and inf DSP (G) are not necessarily Nash

equilibria, (as they are for a supermodular game), whenever P (G) is not single-valued

(compare theorem 5 in Milgrom and Roberts 1992).

Notice that supP (G) = supDSP (G) and inf P (G) = inf DSP (G) does not imply

P (G) = DSP (G) under the assumptions of the Lemma. Consider the following example of

a symmetric two player game with the payo¤-matrix of player A given as

b1 b2 b3

a1 1 1 1
a2 0.7 0.7 0.7
a3 0 1 1

Let a1 ·L a2 ·L a3 and b1 ·L b2 ·L b3, and observe that the assumptions (A1)-

(A5) of the Lemma are satis…ed. The individual strategy a2 is not a best response against

any point belief but a2 is not strongly dominated by any pure strategy either. It remains to

identify additional conditions that assure P (G) = DSP (G). Since any point-rationalizable

strategy must belong to DSP (G) we obtain immediately the following corollary:

Corollary: If a game G satis…es the assumptions (A1)-(A6) of the Lemma then

P (G) = R (G) = RC (G) = DSP (G) whenever s 2 P (G) for all s 2 S with inf P (G) ·L

s ·L P (G).

By the corollary DSP (G) and P (G) trivially coincide for single-valued P (G).

Furthermore, the assumption ofweak gambling aversion implies non-emptiness ofDWM (G),

and the inclusions DWM (G) ½ DSM (G) ½ DSP (G) give the following result.
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Proposition 3: If a game G satis…es the assumptions (A1)-(A6) of the Lemma

then

P (G) = R (G) = RC (G) = DSP (G) = DWP (G)

whenever P (G) is single-valued. Moreover, if weak gambling aversion is satis…ed then

P (G) = DWM (G) = DSM (G) for single-valued P (G).

Proposition 4: Given a game G such that

(A1) Each Ui satis…es monotonicity with respect to SSD.

(A2) The strategy sets Si are convex and compact subsets of R.

(A3) The individual best response correspondences are upper-hemicontinuous and

the fi (s¡i) are convex for all s¡i 2 S¡i.

(A4) Each Ui has either increasing or decreasing di¤erences.

Then ¸k (S) = ºk (S) = ¹k (S) = µk (S) for k ¸ 0. In particular P (G) = R (G) =

RC (G) = DSP (G).

Observe that the results of proposition 1 and of proposition 4 are independent of

eachother. The assumptions (A1)-(A3) of proposition 4 are also satis…ed for proposition

1 but quasiconcavity and monotone utility di¤erences are clearly independent conditions,

e.g., for twice continuously utility functions monotone utility di¤erences conditions are

characterized via properties of the second-order cross-derivatives whereas quasiconcavity

can be guaranteed via properties of the …rst-order partial derivatives. However, observe
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that the assumption of quasiconcavity is a su¢cient though not a necessary condition for a

convex-valued best response correspondence as required in proposition 4.

5.6 Discussion

Proposition 3 provides an equivalence result for games with a wide range of strategy

sets, however, the claim for a unique point-rationalizable strategy is rather strong, (for an

overview of uniqueness results for point-rationalizability see chapter 2 of this thesis). In

contrast, the results of proposition 1 and of proposition 4 are restricted to individual strategy

sets that are compact intervals of the real line whereas the assumptions of quasiconcavity,

respectively of monotone utility di¤erences, are less restrictive than the claim for uniqueness.

We have already seen that proposition 3 can not be weakened to non-unique point-

rationalizable strategies. Moreover, it is easy to …nd examples of …nite games for which

the sets of point-rationalizable and of correlated rationalizable strategies di¤er due to non-

convexity of the strategy sets, even if the other assumptions of proposition 1 or of proposition

4 are satis…ed.

In this section I sketch the technical argumentation behind the results of proposi-

tion 1 and proposition 4 in order to show another limitation for a possible generalization of

this chapter’s equivalence results: proposition 1 and proposition 4 can not be extended to

more general strategy sets, e.g., compact intervals of Rn with n ¸ 2.

The proofs of proposition 1 and of proposition 4 show that each best response

against some non-degenerated belief is also a best response against some point-belief over the



104

same support, i.e., ¸k (S) = ¹k (S) for all k. Quasiconcavity, respectively monotone utility

di¤erences, guarantee then sup¸k (S) = sup ¹k (S) and inf ¸k (S) = inf ¹k (S). Under the

assumption of quasiconcavity (proposition 1) this result is restricted to real-valued, convex

individual strategy sets. Under the assumption of monotone utility di¤erences it is satis…ed

for much more general strategy sets.

In order to obtain ¸k (S) = ¹k (S) the following condition is obviously su¢cient:

if inf ¸k (S) ·L s ·L sup¸k (S), for some s 2 S, then s 2 ¸k (S). For real-valued individual

strategy sets this condition is trivially satis…ed for convex sets ¸ki (S). In the proofs of propo-

sition 1 and of proposition 4 convexity of ¸ki (S) is established via upper-hemicontinuity of

the best response correspondence fi plus convexity of fi (s¡i) for all s¡i 2 S¡i. Particularly

simple would be a proof for single-valued upper-hemicontinuous best response correspon-

dences: convexity of ¸ki (S) is immediately implied by the Intermediate Value Theorem,

i.e., the continuous function fi assumes every value between sup ¸ki (S) and inf ¸ki (S) since

¸k¡1¡i (S) is a connected set.

Unfortunately, this argumentation is not at hand for individual strategy sets that

are not intervals of the real line: as a generalization of the Intermediate Value Theorem the

set ¸ki (S) must be connected if ¸k¡1¡i (S) is connected. However, connectedness of ¸ki (S) is

not su¢cient to guarantee si 2 ¸ki (S) for all si 2 Si, with inf ¸ki (S) ·L si ·L sup¸ki (S),

whenever Si is not anylonger an interval of the real line. To see the problem consider the

following example:

Let I = fA; Bg, SA = [0; 1] £ [0;1], SB = [0;1], UA (sA; sB) = ¡ (sB ¡ sA;1)
2 ¡

¡
s2B ¡ sA;2

¢2
, and let the players be EU-maximizers. Notice, if we choose UB properly,
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(e.g., UB (sA; sB) = 0), we obtain a game that is supermodular in the sense of Milgrom and

Roberts (compare Theorem 4 in Milgrom and Roberts 1990), and which satis…es therefore

all the assumptions of the lemma. In particular, sup¸1A (S) = sup¹1A (S) = (1; 1) and

inf ¸1A (S) = inf ¹1A (S) = (0;0) and we have for all sA 2 SA that inf ¸kA (S) ·L sA ·L

sup¸kA (S). The best response function of playerA against point-beliefs is given by fA (sB) =

¡
sB; s2B

¢
, i.e., ¸1A (S) =

S
sB2[0;1]

©¡
sB; s2B

¢ª
. However, the best response against a belief

¾B, with ¾B (0) = ¾B (1) = 0:5, is given for an EU-maximizer by fA (¾B) = (0:5; 0:5).

Consequently, fA (¾B) =2 ¸1A (S) and therefore ¸1A (S) 6= ¹1A (S).

This game has comparably nice properties: it is supermodular (with increas-

ing utility di¤erences), the utility functions are quasiconcave with respect to individual

strategies, the individual strategy sets are compact and convex subsets of Rn, I even as-

sume EU-maximizers - nevertheless, we do neither obtain ¸k (S) = ¹k (S) for k ¸ 1, nor

P (G) = RC (G).

5.7 Concluding Remarks

In this chapter I have derived conditions which guarantee equivalence of point-

rationalizability, rationalizability, and correlated rationalizability. Additionally, equivalence

conditions for rationalizability concepts and for concepts of iterated elimination of domi-

nated strategies have been obtained. The equivalence conditions of this chapter are closely

related to similar conditions in Moulin (1984) and in Milgrom and Roberts (1990).

While the propositions of this chapter o¤er extensions and generalizations of the

existing results they depend still on rather strong assumptions. The propositions 1,2, and
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4 assume individual strategy sets that are compact intervals of the real line, and it is

shown that neither the assumption of convexity nor the assumption of real-valued individual

strategy sets can be relaxed for these propositions. Proposition 3 allows for more general

strategy sets but it requires a unique point-rationalizable strategy; an assumption that can

not be relaxed either. The …ndings of this chapter suggest that any further equivalence

results have to make even stronger assumptions, most likely restricting the relevance of

such results to very speci…c games.

5.8 Appendix: Proofs

Proof of the Observation: The relation RC (G) ½ DSM (G) is already proved.

By proving DSM (G) ½ RC (G) I proceed along the lines of Berge’s (1997) proof of the ’First

Fundamental Theorem’ (p. 200). Note at …rst: a strategy si is not strongly dominated by

some mixed strategy ¾i if and only if the system of inequalities Ui (¾i; s¡i) > Ui (si; s¡i),

with s¡i 2 S¡i, has no solution ¾i 2 4 (Si). De…ne now the set

V (¾i) =
n

(x (s¡i))s¡i2S¡i 2 C [S¡i] j x (s¡i) 2 R; x (s¡i) < Ui (¾i; s¡i)
o

which collects continuous real functions (x(s¡i))s¡i2S¡i on S¡i (=elements of C [S¡i]),

and observe that by construction the function (Ui (si; s¡i))s¡i2S¡i is not an element of

V =
S
¾i24(Si)V (¾i) if si is not strongly dominated by some mixed strategy ¾i. Because

the utility function is bounded the set V is some non-empty open set in the topology on

C [S¡i] generated by the supremums-norm, and it contains therefore by lemma 4.43 in

Aliprantis and Border (1994) some ’internal point’ as a prerequisite for the application of

the Basic Separating Hyperplane Theorem (Theorem 4.42 in Aliprantis and Border 1994).
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Furthermore, since V is clearly convex for EU-maximizers there exists by the Basic Separat-

ing Hyperplane Theorem (i.e., Hahn- Banach Theorem p. 157 in Berge 1997) a probability

measure ¾¡i such that

Z

S¡i
x (s¡i)d¾¡i (s¡i) ·

Z

S¡i
Ui (si; s¡i)d¾¡i (s¡i)

for all (x (s¡i))s¡i2S¡i 2 V , (the direction of the inequality results from the fact that the

x (s¡i) can be chosen arbitrarily small). Let x (s¡i) = Ui (¾i; s¡i)¡" (s¡i) and observe that

Z

S¡i
Ui (¾i; s¡i) ¡ " (s¡i)d¾¡i (s¡i) ·

Z

S¡i
Ui (si; s¡i)d¾¡i (s¡i)

holds for all " (s¡i) > 0 which gives

Z

S¡i
Ui (¾i; s¡i)d¾¡i (s¡i) ·

Z

S¡i
Ui (si; s¡i)d¾¡i (s¡i)

for all ¾i 2 4 (Si). But for an EU-maximizer this last inequality is equivalent to Ui (¾i;¾¡i) ·

Ui (si;¾¡i), for all ¾i 2 4 (Si). Consequently, if si is not strongly dominated by some

mixed strategy ¾i 2 4 (Si) then si must be a best response against the belief ¾¡i. Finally,

observe that ¾¡i is an element of 4(S¡i) but not necessarily of 4I (S¡i). This proves

DSM (G) = RC (G).¤

Proof of proposition 1: The proof proceeds in two steps.

step 1.) I show that under the assumptions (A2) and (A4a) of proposition 1 the

sets ¸ki (S) are compact and convex subsets of R for all k ¸ 0 and all i. Observe at …rst

that fi is upper-hemicontinuous by Berge’s Maximum Theorem. Since S is compact and fi

is upper-hemicontinuous the set ¸1i (S) is compact and because this is true for all i the sets
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¸ki (S) are compact for all k ¸ 1. It remains to show convexity of

¸ki (S) =
[

s¡i2¸k¡1¡i (S)

fi (s¡i)

Suppose on the contrary that ¸ki (S) is not convex, then there must exist some si; ti 2 ¸ki (S)

such that for some a 2 (0;1) we have asi + (1 ¡ a) ti =2 ¸ki (S). Since fi (s¡i) is convex

by quasiconcavity of Ui (s) it follows si 2 fi (s¡i) and ti 2 fi (t¡i) with s¡i 6= t¡i. By

compactness of fi (r¡i) for all r¡i 2 S¡i there must exist some b 2 (0;1) such that either

min fi (bs¡i + (1 ¡ b) t¡i) > asi +(1 ¡a) ti and

max fi ((b + ") s¡i + (1 ¡ (b + ")) t¡i) < asi +(1 ¡a) ti

for " 2 (0; "0) with "0 > 0, or

maxfi (bs¡i +(1 ¡ b) t¡i) < asi +(1 ¡ a) ti

minfi ((b + ") s¡i +(1 ¡ (b + ")) t¡i) > asi +(1 ¡ a) ti

In either case upper-hemicontinuity is violated because there exists an open set V such that

fi (bs¡i+ (1 ¡ b) t¡i) ½ V and asi +(1 ¡ a) ti 2 V but not

fi ((b + ") s¡i+ (1 ¡ (b + ")) t¡i) ½ V

for " 2 (0; "0). Hence, for no open neighborhood O around bs¡i + (1 ¡ b) t¡i do we have

fi (r¡i) ½ V for all r¡i 2 O as claimed by upper-hemicontinuity.

step 2.) Since every set ¸ki (S) is a compact subset of R it contains a unique

maximum, max¸ki (S), and a unique minimum, min¸ki (S). Furthermore, by convexity of

¸ki (S) ½ R we have si 2 ¸ki (S) for all si with min ¸ki (S) · si · max¸ki (S). Hence,
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¸k (S) = ¹k (S) i¤ there does not exist some si 2 ¹ki (S) such that si < min ¸ki (S) or

max¸ki (S) < si. The max-case: Suppose there exists for some i a mixed belief ¾¡i, with

¾¡i 2 4
³
¹k¡1¡i (S)

´
, and a strategy si such that si 2 fi (¾¡i) and si > max¸ki (S). Since

max¸ki (S) = asi + (1 ¡a)fi (s¡i) for some a 2 [0; 1), and Ui (fi (s¡i) ; s¡i) > Ui (si; s¡i)

for all s¡i, (by assumption si is not a best response against any pure strategy pro…le s¡i),

it follows from quasiconcavity (A3) that Ui
¡
max¸ki (S) ; s¡i

¢
> Ui (si; s¡i) for all s¡i. By

monotonicity with respect to SSD si =2 fi (¾¡i). For the min-case: Ui
¡
min¸ki (S) ; s¡i

¢
>

Ui (si; s¡i) for all s¡i in case si < min¸ki (S).¤

Proof of proposition 2: Suppose the assumptions of proposition 2 are satis…ed.

step 1.) P (G) = R (G) = RC (G) by proposition 1.

step 2.) DWP (G) = P (G) by Moulin’s Lemma 2.

step 3.) DWP (G) = DSP (G). Obviously, DWP (G) ½ DSP (G). I prove now

±k (S) = µk (S), for k ¸ 0. Note ±0 (S) = µ0 (S), and as induction assumption suppose

±k¡1 (S) = µk¡1 (S). It is true that ±k (S) 6= µk (S) if and only if there exist some si; ti 2

±k¡1i (S) such that U (ti; s¡i) ¸ U (si; s¡i) for all s¡i 2 ±k¡1¡i (S), and U (ti; s¡i) > U (si; s¡i)

for some s¡i 2 ±k¡1¡i (S), but there does not exist a ri 2 ±k¡1i (S) such that U (ri; s¡i) >

U (si; s¡i) for all s¡i 2 ±k¡1¡i (S). By strict-quasiconcavity it follows for an arbitrary a 2 (0;1)

that Ui (ati +(1 ¡ a) si; s¡i) > Ui (si; s¡i) for all s¡i 2 ±k¡1¡i (S). Since ±k¡1i (S) = ¸k¡1i (S)

for all k ¸ 1, ±k¡1i (S) is convex for all k ¸ 1 by the proof of proposition 1. Consequently,

there exists some ri 2 ±k¡1i (S), with ri = ati + (1 ¡ a) si for some a 2 (0;1), such that

U (ri; s¡i) > U (si; s¡i) for all s¡i 2 ±k¡1¡i (S).
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step 4.) DSP (G) = DWM (G). Obviously, DWM (G) ½ DSP (G). Furthermore,

notice that P (G) ½ DWM (G): by strict quasiconcavity each si 2 ¸ki (S) is a unique best

response against some s¡i 2 ¸k¡1¡i (S), and by weak randomization aversion there can not

exist some mixed strategy ¾i, with ¾i 6= si, such that U (¾i; s¡i) ¸ Ui (si; s¡i) for all

s¡i 2 ¸k¡1¡i (S). Consequently, DSP (G) ½ DWM (G) by step 1.) - step 3.).¤

Proof of the Lemma: I prove sup¸k (S) = sup µk (S) and inf ¸k (S) = inf µk (S)

for k ¸ 0, which implies sup ¸k (S) = sup¹k (S) and inf ¸k (S) = inf ¹k (S) under (A1).

(Note: the existence of supµk (S) and inf µk (S) is guaranteed by Theorem 1 and Theorem

2 in Milgrom and Roberts, 1990). Consider a player i with decreasing utility di¤erences.

Given an interval [s¡i; t¡i] with s¡i ·L t¡i let µi [s¡i; t¡i] denote the set of undominated

strategies and let i̧ [s¡i; t¡i] denote the set of best responses against point-beliefs over

[s¡i; t¡i]. Let ŝi = supfi (s¡i), ·si = inf fi (t¡i) where ŝi 2 fi (s¡i) , ·si 2 fi (t¡i) exist by

(A2), (A3), and (A4). Observe that any ri with ri £L ŝi is strongly dominated by the

strategy ŝi ^ ri: for all x¡i 2 [s¡i; t¡i]

Ui (ri;x¡i) ¡Ui (ŝi ^ ri; x¡i) · Ui (ri; s¡i) ¡Ui (ŝi ^ri; s¡i) by (A5)

· Ui (ŝi _ ri; s¡i) ¡ Ui (ŝi; s¡i) by (A4)

< 0

where the last inequality follows from ŝi 2 fi (s¡i) and ŝi <L ŝi _ ri , i.e., ŝi _ ri =2 fi (s¡i).

This proves ri ·L ŝi for any ri 2 µi [s¡i; t¡i]. Accordingly, it can be shown that any

strategy ri with ·si £L ri is dominated by a strategy ·si _ ri. Consequently, ·si ·L ri for any

ri 2 µi [s¡i; t¡i]. Since i̧ [s¡i; t¡i] ½ µi [s¡i; t¡i] it follows sup¸i [s¡i; t¡i] = sup µi [s¡i; t¡i]
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and inf i̧ [s¡i; t¡i] = inf µi [s¡i; t¡i] for any interval [s¡i; t¡i] with s¡i ·L t¡i. Nearly the

same argument had been applied in the proof of lemma 1 in Milgrom and Roberts for

deriving inf ¸i [s¡i; t¡i] = inf µi [s¡i; t¡i] for a player with increasing utility di¤erences. By

assumption S¡i is a complete lattice and if we let [s¡i; t¡i] = S¡i for all i then sup¸1 (S) =

supµ1 (S) and inf ¸1 (S) = inf µ1 (S) if each player has either decreasing or increasing utility

di¤erences. Furthermore, observe that ¸1 (S) is a complete lattice itself and by induction

the same argument yields sup¸k (S) = sup µk (S) and inf ¸k (S) = inf µk (S) for k ¸ 0. This

proves the …rst part of the Lemma.

Let us now turn to the additional assumption (A6) of order-continuity. Since the

sequences
©
inf ¸k (S)

ª
k¸0,

©
sup ¸k (S)

ª
k¸0 are monotonically non-decreasing, respectively

non-increasing, lattice-completeness ofS implies the existence of order-limits limk!1 inf ¸k (S) =

limk!1 inf µk (S) = ·s and limk!1 sup¸k (S) = limk!1 sup µk (S) = ŝ, such that P (G) ; DSP (G) ½

[·s; ŝ]. Consider a player i with decreasing utility di¤erences, i.e., sup ¸ki (S) 2 fi

³
inf ¸k¡1¡i (S)

´

for all k. Observe that ·si must be a best response against ŝ¡i: if it was not then Ui (si; ŝ¡i)¡

Ui (ŝi; ŝ¡i) < 0 for some si 6= ŝi, which implies by order-continuity the existence of some

number k such that

Ui

³
si; inf ¸k¡1¡i (S)

´
¡Ui

³
sup¸ki (S) ; inf ¸k¡1¡i (S)

´
< 0

,a contradiction. Analogously, ŝi must be a best response against ·s¡i. For a player with

increasing utility di¤erences we have accordingly ŝi 2 fi (ŝ¡i) and ·si 2 fi (·s¡i). Conse-

quently, ·s and ŝ are themselves best-responses, as well as undominated, and we obtain

inf P (G) = inf DSP (G) = ·s and supP (G) = sup DSP (G) = ŝ.¤
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Proof of proposition 3: As shown in the proof of proposition 1 the assumptions

(A2) and (A3) assure that the ¸k (S) are non-empty and convex sets for all k ¸ 0. Further-

more, the ¸k (S) are complete lattices for all k ¸ 0 under the natural ordering: s ·L t i¤

si · ti for all i. Consequently, in view of the Lemma we obtain sup ¸k (S) = supµk (S) and

inf ¸k (S) = inf µk (S) for k ¸ 0. Furthermore, convexity of ¸k (S) implies ¸k (S) = µk (S)

for k ¸ 1. ¤
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