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Abstract

This paper investigates GA approaches for solving the reliable communi-
cation network design problem. For solving this problem a graph with
minimum cost must be found that satisfies a given network reliability
constraint. To consider the additional reliability constraint different ap-
proaches are possible. We show that existing approaches using penalty
functions can result in invalid solutions and are therefore not appropriate
for solving this problem. To overcome these problems we present a repair
heuristic, which is based on the number of spanning trees in a graph. This
heuristic always generates a valid solution, which when compared to a
greedy cheapest repair heuristic shows that the new approach finds better
solutions with less computational effort.

1 Introduction

The optimal design of reliable communication and transportation networks is
important in many application fields such as gas pipelines, communication net-
works, and electricity distribution. When designing reliable communication
networks there is a trade-off between the necessary investments in the network
and the quality of service provided to the network users. An important service
measurement is the all-terminal reliability of the network which is defined as
the probability that the network is still connected even if some nodes or links
fail [1]. In the reliable communication network problem [2] communication links
must be chosen such that the network costs are minimized given a network reli-
ability constraint. Both the network design problem and the calculation of the
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network reliability, have been proven to be NP-hard [3, 4]. Genetic Algorithms
(GA) have shown promising results when applied to this problem [5, 6, 7].

In this paper we investigate existing GA approaches for the design of reliable
communication networks and propose a heuristic that repairs each candidate
solution with respect to the number of spanning trees in the graph. In contrast
to other approaches, which only indirectly measure reliability, the number of
spanning trees in a graph is a more accurate measurement for the all-terminal
reliability of a network [8]. We present empirical results that show that the
proposed heuristic outperforms a standard greedy repair heuristic by finding
better solutions and using a lower computational effort.

In the following section we give a short problem description. Section 3
investigates different approaches to consider reliability constraints in GA design.
In section 4 we discuss the deficites of existing approaches and propose an
approach based on the number of spanning trees. Experimental results and a
comparison to a simple greedy heuristic are presented in section 5.2. The paper
ends with concluding remarks.

2 Problem Definition

For the reliable communication network design problem (RCND) [2], a net-
work topology with minimal cost must be found that satisfies a given reliability
constraint. This problem has been proven as NP-hard [3], and several GA-
approaches have been proposed for this problem. [9] introduced a branch and
bound algorithm minimizing network costs under a reliability constraint. Later,
Dengiz et al. proposed a GA [5] using a penalty function to incorporate the
reliability constraint directly into the fitness function, as well as a simulated
annealing approach [10]. [11] extended this work and developed a parallel GA
for larger problem instances. [12] presented a GA with multiple reliability con-
straints. [6] did not incorporate the reliablity contraint into the fitness function
but used a problem specific representation and adapted GA operators.

The RCND problem can be defined as follows: an undirected graph is de-
noted as G = (V,E), n = |V | denotes the number of nodes, and m = |E|
denotes the number of edges of G. It is assumed that the location of each node
is given a priori. The degree d(i) of a node i is the number of edges that are
connected to node i. For each possible edge eij ∈ E the corresponding costs
cij and reliability rij are known. The probability 1 − rij that the edge eij fails
is statistically independent. A graph G is n-connected if there are at least n
disjoint paths between all pairs of nodes i and j . The objective function of the
problem is:

C(G) =

n
∑

i=1

n−1
∑

j=i+1

cijxij → min

subject to: R(G) ≥ R0,

(1)

where C(G) is the total cost of the network G and cij is the costs for an
edge connecting node i and j. The variable xij ∈ (0, 1) indicates whether
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edge eij ∈ E. R(G) is the all-terminal reliability that is the probability that
the graph G is still connected (even if some of the edges eij ∈ E fail). The
calculation of the all-terminal reliability has been proven as NP-hard [4]. Exact
algorithms for calculating the all-terminal realiability for networks with a low
number of nodes have been proposed by [1, 13]. For larger networks, monte
carlo-based estimations of the all-terminal reliability [14] are more appropriate.
It was shown in [8] that the number of spanning trees in G is an appropriate
measurement for the all-terminal reliability (a graph G is still connected (and
reliable) as long as there is at least one spanning tree in G).

3 Considering Reliability Constraints in Genetic Al-

gorithms

Standard GAs are not able to handle additional problem constraints. Therefore,
much research has been focused on how to consider constraints in GA design.
It can be distinguished between two different approaches on how to deal with
constraints [15, 16]. Firstly, indirect constraint handling techniques consider
constraints by modifications of the fitness functions. Violations of constraints
lead to a lower fitness value (penalty) of the candidate solution. Secondly, direct
constraint handling techniques modify the structure of the GA. In principle,
there are four different approaches:

• Leave invalid solutions in the population.

• Eliminate infeasible solutions from the population.

• Prevent infeasible solutions by problem-specific representations and oper-
ators.

• Repair infeasible candidate solutions.

There are some approaches that have no explicite mechanisms to consider ad-
ditional constraints but to some extent accept invalid solutions [17]. They hope
that the best solution at the end of the run is valid. However, such approaches
can only be used if the number of invalid solutions is low.

Other GA approaches eliminate invalid solutions that are generated during
a GA run. This approach is only possible if the number of invalid solutions is
low. Furthermore, there is the problem that the removal of infeasible candidates
solutions may take valuable genetic material from the population that might
produce high-quality offspring after recombination and mutation [16, 18].

After discussing in general the first two simple direct constraint handling
techniques, we focus in the next subsection on the remaining direct, as well as
indirect, approaches in the context of the RCND problem.

3.1 Penalty Functions

The indirect constraint handling by penalties as suggested in [19] incorporates
a constraint into the fitness function. This transforms a constraint optimiza-
tion problem to an unconstrained problem by adding penalties for constraint
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Table 1: Results of GAs using the penalty approach from equation 2

test instance rij R0 C(Gopt) C ′(G′

opt) R(G′

opt)

8 nodes - network 1
0.9 0.90 208 194.222 0.899198
0.9 0.95 247 223.073 0.949009

8 nodes - network 3
0.9 0.9 211 211 0.902212
0.9 0.95 245 233.067 0.949948

violations to the fitness value of a solution. When using penalties, infeasible so-
lutions remain in the population and their genetic material can be used. Using
penalties requires a well-designed penalty function that does not generate new
local optima, or let global optima become suboptimal [20].

In the context of the RCND problem, [5] proposed a fitness function with a
quadratic penalty term. The objective function from equation 1 becomes:

C ′(G) =

n
∑

i=1

n−1
∑

j=i+1

cijxij + δ ∗ (cmax(R(G) − R0))
2

δ =

{

0, if R(G) ≥ R0

1, if R(G) < R0

cmax = max
eij∈E

(cij)

(2)

This problem formulation uses a quadratic penalty term. Additionally, [5] used
a repair heuristic which ensures that the degree of all nodes is larger than one
(d(i) ≥ 2,∀i ∈ V ).
To check if this penalty approach results in correct solutions, we implemented
a GA with the fitness function from equation 2. For the experiments we used
a steady state GA with a binary representation, uniform crossover without
mutation, and an exact reliability evaluation based on [8]. Further details on
the calculation of the all terminal reliability can be found in section 4.2.

Table 1 shows the results of our experiments using the proposed penalty
function for selected 8 nodes test problems using rij = 0.9 and R0 = 0.9 resp.
R0 = 0.95. The two test instances (network 1 and network 3) are taken from
[5]. We show the total cost of the correct optimal solution C(Gopt), where
R(Gopt) ≥ R0, the lowest found cost C ′(G′

opt) of the network G′

opt according
to equation 2, and the corresponding all-terminal realiability R(G′

opt). It can
be seen that using equation 2 can result in solutions G′

opt that have lower cost
C ′(G′

opt) < C ′(Gopt), but violate the reliability constraint (R(G′

opt) < R0).
Only for one instance (network 3, rij = 0.9, and R0 = 0.9), could a valid
solution be found. For the other problems the penalty from equation 2 is too
low to ensure a valid solution. As a result the total fitness for an infeasible
network G′

opt can be smaller than the fitness for the cheapest feasible network
Gopt. These examples show that an unfavorable design of penalty functions
may cause the solutions with lowest fitness to be infeasible. Summarizing the
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results, the proposed penalty function from [5] does not work in an effective
way and can result in invalid solutions.

3.2 Problem-Specific Representations and Operators

Most standard GAs use binary representations and standard operators like n-
point or uniform crossover. When applying such standard operators to valid
solutions encoded with a standard representation, the resulting offspring can
be invalid. This situation can be avoided by using either problem-specific rep-
resentations, or operators that consider the constraint at hand.

We want to give two examples for network problems where the optimal so-
lution should be a tree. Trees are a special variant of fully connected graphs
G where |E| = |V | − 1. The use of the problem-specific Prüfer number rep-
resentation [21] allows us to consider the constraint that valid solutions are a
tree. Another possibility to consider this constraint is using direct representa-
tions and problem-specific operators (e.g. [22]). The problem-specific operators
ensure that only valid solutions (trees) can be created.

[6] presented problem-specific crossover and mutation operators for the
RCND problem. The crossover operator randomly exchanges one link between
two parents. If the offspring does not satisfy the reliability constraint, an addi-
tional heuristic is applied such that the order of each node is greater than one
(d(i) ≥ 2,∀i ∈ V ). The mutation operator searches for two rings in the graph
that share only one common node. To reduce the cost C(G) of the graph,
it merges the two rings to one single ring. If the parent is a graph, where
d(i) ≥ 2 ∀i ∈ V , the offspring is also a graph with d(i) ≥ 2.

4 Repair Heuristics

Here we will have a brief look at some deficits of exisiting repair heuristics for
the RCND problem, and propose a new heuristic based on counting spanning
trees.

4.1 Deficits of Existing Approaches

When using standard GA operators, problem-specific heuristics can be used
to repair invalid solutions violating constraints. A repair heuristic changes
candidate solutions such that they become feasible [16]. Two different repair
strategies can be distinguished: The Lamarkian approach replaces the parental
individual by the offspring. The Baldwinian approach leaves the individual
untouched but only its fitness is replaced by the fitness of the repaired solution.

[6] and [5] introduced greedy repair heuristics for the RCND problem. An
individual is repaired such that all nodes have at least the degree two (d(i) ≥
2,∀i ∈ V ). The repair strategies used the degree of the nodes as a measure-
ment of the all-terminal reliability of the network. However, a graph with
d(i) ≥ 2,∀i ∈ V , is not 2-connected as can be seen for example in Figure 1.
If the edge e3,4 fails, the graph is separated into two unconnected subgraphs.
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Figure 1: Example tree with d(i) ≥ 2, ∀i ∈ V

Although all nodes in the original graph have degree larger than one, it is al-
ready disconnected if only one link fails. This example illustrates that the repair
procedures proposed in [5, 6] only use a weak reliability measure. To design
networks based on the all-terminal reliability, more accurate measurements of
reliability are necessary.

4.2 Spanning tree counting repair heuristic

In the previous paragraphs we have discussed the deficits of existing approaches
solving the RCND problem. Therefore, inspired by the reliability improvement
procedure proposed by [8], we introduce a GA using a spanning tree counting
(STC) repair heuristic. As the exact calculation of the all-terminal reliability
causes high computation effort, [8] use the number of spanning trees in the graph
G as a measurement of all-terminal reliability. It was shown that the number
of spanning trees in the graph is a good approximation for the all-terminal
reliability.

The basic idea of the STC repair heuristic is to add these edges to the graph
that maximize the reliability (number of spanning trees in the graph) with
minimal additional costs. Consequently, the STC repair heuristic calculates for
the cheapest edges that are not in the graph G, the possible increase of spanning
trees if these edges are added:

1. Sort all links eij /∈ E according to the corresponding edge costs cij. i = 0.

2. Insert the i-cheapest edge eij temporarily into G and calculate the ratio
sij = cij/increase in number of spanning trees in G. i = i + 1.

3. If i < t continue with step 2.

4. Add edge eij /∈ E with highest corresponding sij to G.

5. calculate R(G).

6. If R(G) < R0, then continue with step 4.

In step two and three the heuristic calculates for the cheapest edges, the ratio
between the cost of the edge, and the increase in the number of spanning trees.
The increase in the number of spanning trees can be calculated with low com-
putational effort by a simple update procedure. The number of edges that are
investigated is limited by t, where t < n(n−1)/2−|E|. In step four to six edges
with highest improve ratio sij are iteratively added to G until the reliability
constraint is fullfilled.
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5 Experiments

In this section we investigate the performance of the STC heuristic and compare
it with a simple greedy heuristic for the RCND problem.

5.1 Experimental Design

For our experiments we use a steady state GA with a binary representation of
length l = n(n−1)/2. The existence of an edge in G is encoded by 1, its absence
by 0. The GA uses one-point crossover and bit-flipping mutation. The initial
population consists of randomly created 2-connected graphs. The initialization
routine firstly creates a random spanning tree and then randomly adds links
until the graph is 2-connected.

As the effort for calculating network reliability is high, we used several
techniques to speed up reliability evaluation. As a first step in calculating the
all-terminal reliability of a network we determined an upper bound Rup(G) for
the reliability of a graph G using a method proposed by [23]. If Rup(G) < R0

the network can not fullfill the reliability constraint and it is not necessary
to calculate the reliability exactly. Only if Rup(G) ≥ R0, we calculate R(G)
exactly using a method proposed by [1]. When using this method, we already
get a measurement of the all-terminal realiability during the run. We stop the
exact calculation as soon as the reliability constraint R0 is satisfied. Finally, to
avoid calculating the reliability of graphs G that have been evaluated previously,
we store the reliability of all graphs using a hash table. For all new individuals
the hash is searched if the network reliability has already been calculated.

If the network reliability of a graph is too low (R(G) < R0) the STC heuris-
tic repairs the graph and adjusts the chromosome according to the new graph.
For comparison we have implemented an additional greedy cheapest repair pro-
cedure. This heuristic adds the cheapest edge to the graph until the graph
satisfies the constraint. Unlike the STC heuristic, it does not consider relia-
bility (increase in number of spanning trees) when choosing edges. After con-
structing a valid solution by a repair heuristic the fitness of the individual is
calculated according to equation (1). This approach ensures that we have only
valid solutions.

In our experiments we use a steady state GA with 50% replacement, a
crossover probability pcross = 0.9, a mutation probability pmut = 0.01, a pop-
ulation size of 100, an edge reliability rij = 0.9,∀eij ∈ E, and a reliability
constraint R0 = 0.9. The GA stops after 250 generations or convergence. For
each test instance we performed ten independent runs.

5.2 Results

Both heuristics have been tested with two network problems (8 and 10 nodes)
taken from [5], and a new test problem for the 15 largest German cities. We
compare the quality of the solutions and the number of repair operations that
are necessary for finding high quality solutions. As after each repair operation
a reliability check has to be performed, and the reliability checks are computa-
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Table 2: Comparison of STC and greedy cheapest repair heuristic

test problem method optimum best found repairs tconv

8 nodes - STC
208

208 158 4 sec

network 1 greedy 208 300 4 sec

10 nodes - STC
131

134 428 28 sec

network 1 greedy 140.5 1884 29 sec

15 nodes
STC

1006.9
1086.6 44025 9120 sec

greedy 1217.24 68358 44230 sec

tionally demanding, the number of repair operations impacts the running time
of the GA. Unfortunately it is not possible to compare our approach directly to
the results from [5], because they penalize invalid solutions using the objective
function from equation 2, and repair invalid solutions with regard to the degree
of the nodes (d(i) ≥ 2,∀i ∈ N). The penalty approach can not be used for a
comparison as it can result in invalid solutions (compare section 3.1).

Figure 2 compares the results for the STC heuristic and the greedy cheapest
repair heuristic. The plots show the fitness of the best solution and the number
of repair operations over the number of generations for the 8 nodes (Figure
2(a)), 10 nodes (Figure 2(b)), and the new 15 nodes (Figure 2(c)) problem.
All values are averaged over ten runs. The plots show that the STC heuristic
converges more slowly towards high-quality solutions, but always finds better
solutions at the end of the run. The plots for the number of repairs show that
the STC repair heuristic needs significantly less repairs. Therefore, the STC
heuristic is for the 15 nodes problem much faster in comparison to the greedy
cheapest repair heuristic (compare also Table 2). This advantage in running
time can not be observed for the 8 nodes and 10 nodes problem. The used all-
terminal reliability calculation needs for both test problem a low computational
effort, therefore the additional repairs have only little impact on the GA running
time.

Table 2 summarizes the results for the two heuristics and shows the optimal
solution, the average best solution found at the end of a GA run, the average
number of repair operations that are necessary to find the best solution, and
the average running time tconv. The optimal solutions for the 8 and 10 nodes
problem have been published in [5]. The optimal solution for the 15 nodes test
problem is the best ever found solution from a GA using the STC heuristic.

As we have already seen a GA using the STC heuristic finds better solutions
with lower computational effort. The additional effort of the STC heuristic for
calculating the potential increase in the number of spanning trees in G (compare
section 4.2) is low, as it can be computed as the determinant of the node degree
matrix [24].
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(c) 15 nodes

Figure 2: Fitness of the best solution (left) and number of repair operations
(right) over the number of generations. The plots show that the STC heuristic
finds better solutions and needs less repair operations
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6 Conclusions

This paper investigates existing GA approaches for the reliable communication
network design (RCND) problem and proposes a heuristic repair approach based
on the number of spanning trees in a graph. The analysis of existing approaches
for solving the RCND problem reveals some deficits. The penalty approach from
[5] can result in invalid solutions and the greedy repair heuristics introduced by
[6] and [5] repair invalid solutions according to the degree of the nodes and do
not consider the all-terminal reliability of the graph.

Therefore, we present a spanning tree counting (STC) repair heuristic that
can be combined with standard GAs. This heuristic considers the number
of spanning trees in a graph as a more meaningful reliability measure when
repairing invalid solutions. The empirical results show that the STC heuristic
outperforms a greedy cheapest repair heuristic that considers only the cost of
links. The STC heuristic allows only valid solutions and finds in comparison
to the greedy cheapest repair heuristic better solution using less computational
effort.
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