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Abstract

To investigate the effect of time horizon on investment behavior, this paper

reports the results of an experiment in which business graduate students provided

certainty equivalents and judged various dimensions of the outcome distribution

of simple gambles that were played either once or repeatedly for 5 or 50 times.

Systematic mistakes in the ex-ante estimations of the distributions of outcomes

after (independent) repeated plays were observed. Despite correctly realizing that

outcome standard deviation increases with the number of plays, respondents showed

evidence of Samuelson’s (1963) fallacy of large numbers. Perceived risk judgments

showed only low correlations with standard deviation estimates, but were instead

related to the anticipated probability of a loss (which was overestimated), mean

excess loss, and the coefficient of variation. Implications for future research and

practical implications for financial advisors are discussed.
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1 Introduction

The role of investment horizon in asset allocation decisions has been widely discussed in

finance and remains a controversial topic. Many proponents of the idea of time diver-

sification, especially professional financial advisors, urge younger people to invest more

heavily in stocks for long-term investment goals such as saving towards their pension.

Kritzman (1994) for example argues that the probability of a loss declines with the in-

vestment horizon. Consider an investment option that offers equal chances to win $200

or to lose $100. The probability of losing money after 10 independent trials is 0.18, but

goes down to 0.0077 for 50 independent trials. If risk is operationalized as the probability

of a loss, this risky investment is less risky after more independent trials or, within the

context of investment decisions, with a longer investment time horizon.

The time diversification debate evolves around the question of how “risk” ought to be

defined. The fact that “risk has no universal definition; rather, like beauty, it is in the eye

of the beholder” (Kritzman 1994, p. 67)1, poses a fundamental problem. While everyone

agrees that risk reduction is a desirable goal, not all definitions of risk are consistent with

the observation that risk is reduced by repeated plays. Equating risk with the probability

of a loss is only one possibility. Most people would agree that the magnitude of potential

losses needs to be considered as well, as for example in a measure called mean excess loss,

which is defined as the expected value of the loss, given that a loss has occurred. For

our example investment option, mean excess loss increases from $216 for 10 independent

trials to $407 for 50 independent trials. Investors who take mean excess loss as their

index of investment risk thus should be less risk tolerant at longer investment horizons

(Albrecht et al. 2001).

A third risk measure is the standard deviation of outcomes, probably the most com-

mon risk measure in finance since the work of Markowitz (1952). Clearly, if standard

deviation is used as an index of risk, the risk of repeated gambles increases by a factor

of
√

N , with N denoting the numbers of repeated plays.

A fourth measure of risk recently examined by E. U. Weber et al. (2004) is the

coefficient of variation (CV). The CV, which is defined as the standard deviation of a

lottery divided by its expected value and thus provides a standardized measure of risk

per unit of return, was shown to predict risky choices in repeated decisions far better

1See also Brachinger and M. Weber (1997) and E. U. Weber (2001a).

1



than the standard deviation. Since the standard deviation increases only by a factor of
√

N and the expected value increase by the factor N for N repeated plays, using the CV

as an index of risk implies that the risk of a gamble decreases by a factor
√

N as N, the

number of plays, increases.

The fifth and final line of argument found in the debate about the effect of repeated

plays on risk makes fallacious use of the law of large numbers. Samuelson (1963) reports a

lunch-time conservation with a colleague who was not willing to play our example lottery

once, but would have taken on 100 independent plays. The intuition behind the law of

large numbers is that below-average and above-average realizations of a random variable

(i.e., the return of a stock market investment) tend to cancel each other out, the more so

with larger numbers of realizations (e.g., repeated plays), making it more certain that the

expected return will be realized in the long run. Expressed mathematically (Samuelson

1989, page 292),

if each play of gamble brings positive expected return, E{Xj} = µ > 0, then

Prob{|(X1 + ... + XN)−N · µ| < ε} → 1, (1)

for 0 < ε ¿ 1, as N →∞.

As Samuelson (1963) points out, this reasoning is based on a misinterpretation of the

law of large numbers. The law of large numbers states that 1/N ·∑N
i=1 Xi tends to µ as

N →∞ and not that
∑N

i=1 Xi tends to N ·µ as N →∞. A reduction in risk can only be

achieved if a given risk is subdivided into many smaller independent risks and not simply

by adding more independent risks. It follows that the probability to end up in a given

small interval around the long-run expected value declines with the number of repeated

plays and converges to zero instead of one as N goes to infinity.

This paper does not address the prescriptive issue of which measure of risk decision

makers should be using when comparing the risks and returns of risky options that involve

single or multiple independent realizations (but see Kritzman and Rich (2002)). Instead,

our study offers insight into descriptive issues raised by the time horizon debate. In

particular, we examine decision makers’ ex-ante predictions for the different summary

statistics of the outcome distribution of lotteries after single and repeated plays that

have been suggested to serve as proxies for risk and thus as affecting choice, namely

the probability of loss, the mean excess loss, the standard deviation of outcomes, the
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coefficient of variation, or the probability that the realized return of the lottery falls into

a small interval around the long-run expected value. We do so by asking decision makers

to estimate these statistics for different numbers of repeated plays of a set of lotteries.

This allows us to assess whether people correctly anticipate how these statistics change

as the number of repeated plays increase. We then examine how people’s estimates of

these five measures are related to (a) their judgments of the riskiness of these lotteries,

where risk is left intentionally undefined, and (b) their preference for these lotteries as

inferred from certainty equivalents.2

Studies of repeated gambles have much practical relevance.3 Many decisions are made

between risky options that have multiple, repeated realizations, including decisions re-

garding retirement savings. Many health and safety decisions also have this characteristic,

e.g., the decision to (not) use condoms or seatbelts. While there is some question about

the degree to which insights gained from studying repeated lotteries can be generalized

to other domains, including investment decisions4, an investigation like the one reported

here provides a baseline to which more content-laden applications can be compared.

There is reason to believe that possible misperceptions of the statistics of multiple-play

outcome distributions and their relationship to perceived risk and choice are (at least)

similar for multiple-play gambling decisions and long-term asset allocation decisions. An

understanding of how people perceive the risk of repeated gambles is therefore the basis

for an understanding of more complex retirement saving decisions and repeated-exposure

health and safety decisions.

Our study was partly inspired by Benartzi and Thaler (1999), who elicited the prob-

ability of loss for several repeated gambles in an experimental study and found that

undergraduate economics students overestimate the probability of a loss by a wide mar-

gin. Our study examines whether people misestimate this as well as other statistics

widely used as proxies for risk. Benartzi and Thaler (1999) also examine the fallacy

2Throughout the paper, the term “risk behavior” includes both choices and preferences inferred from
certainty equivalents.

3Note that there are two different types of repeated gamble situations: In Type 1 situations, peo-
ple make one decision that will hold for multiple plays, which is made before experiencing any of the
realizations and their outcomes. This situation is considered in this study. Decisions of Type 2 are
made sequentially and people can switch their preferences across repetitions. Those situations have been
studied more widely before, especially for animals (E. U. Weber et al. 2004), but more recently also for
humans (Hertwig et al. 2004; see Klos 2004 for some evidence in an asset allocation experiment). There
is only little work on Situation 1. A recent contribution is Langer and M. Weber (2005).

4Goldstein and E. U. Weber (1995) and E. U. Weber et al. (2002), for example, find differences in
risk attitude between investment and gambling decisions.
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of large numbers, according to which respondents should underestimate the standard

deviation of multiple-play gambles. Instead, their subjects overestimate the standard

deviation of multiple-play gambles, a result more in line with a fallacy of small numbers,

and putting into question Samuelson’s (1963) interpretation that a misinterpretation of

the law of large numbers underlied his colleague’s willingness to play the offered lottery

100 times. Our study will allow us to examine which of the explanations offered above

influence both risk judgments and preference for multiple-play lotteries. We will directly

test whether people’s estimates of the riskiness of repeatedly played lotteries follows a

misinterpretation of the law of large numbers, by asking respondents for their estimates

of the probability to end up in a given small interval around the long-run expected value.

Recent research has examined perceptions of risk as a psychological construct that

mediates risky choice (see E. U. Weber 2001a,b and M. Weber 2001c for reviews). These

studies show that perceived risk, i.e., the subjective feeling of riskiness associated with

a specific action or choice alternative, often deviates strongly from conventional risk

indices, such as the probability of a loss or the standard deviation of possible outcomes

(E. U. Weber et al. 2004, Loewenstein et al. 2001). In one study where people assess

both the standard deviation of possible outcomes and the perceived riskiness of possible

risky investment alternatives, it is the latter and not the former measure that predicts

choice (E. U. Weber et al. 2005). Our study allows us to examine how closely people’s

subjective perceptions of the risk of repeated gambles are related to the risk measures

described above.

In sum, we address three research questions: (1) Are people able to correctly assess

statistics of outcome distributions commonly suggested as indices of risk for repeated-play

lotteries? (2) What constitutes perceived risk in repeated gambles? (3) Does perceived

risk predict preference?

The remainder of the paper is structured as follows. Section 2 describes the details

of our experimental design. The risk behavior of our subjects is the topic of Section

3. In Section 4, we analyze respondents’ estimates of the risk measures described above.

Section 5 examines the determinants of respondents’ judgments of perceived risk. Section

6 discusses the relationship between risk behavior and the various risk measures. Section

7 concludes with a discussion of the implication of our results.
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2 Experimental Design and Hypotheses

Our experiment used discrete two-outcome lotteries that all had an expected value (EV) of

e 50 for a single play, in addition to Samuelson’s (1963) classic lottery (200,0.5;-100,0.5).

This lottery and the other three lotteries employed are shown in Figure 1 in the decision

tree format in which they were shown to subjects. Keeping the EV (and thus presumably

perceived return) constant within each level of repeated plays allowed for a simple test of

the relationship between perceived risk and preference. The primary motivation for the

use of the four lottery profiles was to ensure the robustness of the results with respect

to the exact lottery profile. We chose therefore a positively and a negatively skewed

distribution as well as a lottery without any losses in addition to Samuelson’s famous

bet.5 Each lottery was presented as either a single-play option or as an option that would

be played 5 or 50 times, respectively, resulting in 12 different stimuli.

���������

� 	 �����

1/ 2

1/ 2

Lottery 1

��
������

� 	 �����

1/ 4

3/ 4

Lottery 2

���������

� � �����

3/ 4

1/ 4

Lottery 3

� 	 �����

�
�

1/ 2

1/ 2

Lottery 4

Figure 1: Lotteries. The four lotteries used in our experimental study. Note that all have the
same expected values of e 50.

2.1 Decision Tasks

Participants engaged in two PC-guided tasks in individual sessions in a research lab,

conducted in the order described below. Task order was not randomized because of

logical constraints. However, the order of the different stimuli within each task was

randomized for each task and each respondent.

5See Lopes and Oden (1999) on the question how people respond to alternative distributions of
complex gambles and Keller et al. (1986) and Shafir et al. (2003) on differences in risk perception with
respect to skewness.
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Task A: Certainty Equivalents for Repeated Gambles. Respondents saw each

of the 12 lottery stimuli (4 lotteries shown as in Figure 1, with a number [1, 5, or 50]

displayed in red letters next to it that indicated the number of independent times that

the lottery would be played) and provided their certainty equivalents (CE) for each one as

follows. They first indicated whether they were willing to play the specified lottery for the

indicated number of repeated plays. For respondents who were so willing, the computer

screen then displayed six different sure amounts in ascending order. Respondents were

asked whether they preferred playing the indicated single or multiple-play lottery to

each of the six stated sure payments. For decision makers who were not willingness to

play the lottery, we applied the same procedure, except for using negative sure amounts.

Instructions spelled out that negative numbers should be interpreted as the amount of

money they were willing to pay in order not to have to play the displayed lottery for the

indicated number of plays.6

Violations of monotonicity were not allowed, i.e., the program forced the decision

maker to reassess her six preference statements via a message window. Based on stated

preferences, the program inferred a lower and upper bound for the subject’s CE. Subjects

were then asked to state the exact amount that would make them indifferent between

the lottery and the CE, within the range they specified before. The arithmetic mean of

upper and lower bounds was displayed as a starting value and could be modified by using

increment and decrement buttons or the number keys to type in a different amount.

Note, that subjects were first confronted with a choice situation (whether they were

willing to take the gamble), then with a series of choices (between the sure amounts and

the lottery), and finally had to state an exact certainty equivalent for the gamble.7

Task B: Assessment of Summary Statistics of Anticipated Lottery Outcome

Distribution. Just as for Task A, respondents saw the graphical representation of one

6The six different sure amounts ranged from 0 to 10000 in steps of 2000 for 50 repeated plays, 0 to
1000 in steps of 200 for 5 repeated plays, and 0 to 200 in steps of 40 for the one-shot-gamble. If the
subject declined the gamble in her initial choice, the sure amounts ranged from 0 to -5000 in steps of
-1000 for 50 repeated plays, 0 to -500 in steps of -100 for 5 repeated plays, and 0 to -100 in steps of -20
for the one-shot-gamble.

7To our knowledge, the described elicitation method for certainty equivalents was first used by Kilka
and M. Weber (2001). However, a common practice in decision analysis is to continue choices like the one
described here until a “choice” certainty equivalent is elicited (see for example Tversky and Kahneman
1992 or Gonzales and Wu 1999, among others). We deviated from this common practice for the following
reason. Given the high expected values, especially for 50 repeated plays, many choices would be needed
to elicit one single certainty equivalent. Since we elicited many certainty equivalents, this procedure
would have resulted in an unacceptable large series of questions, resulting in fatigue and boredom on
part of the respondents, which introduce their own set of errors and biases.
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of the four lottery, with the numbers of repeated plays to which they were committed

indicated by a red numeral next to the lottery. They were asked for their assessment of

each of the following statistics. For all but the final judgment (perceived risk), we did

not ask respondents to provide estimates for single plays, of the shown lottery, under the

assumption that everyone would correctly read the answer off the lottery display.

Probability of a loss. Following Benartzi and Thaler (1999), we asked for the proba-

bility of a loss in two ways, that is, either directly for their estimate of the probability of

losing money, or for the positive complement, namely their estimate of the probability of

coming out ahead (i.e., not losing any money) after playing the lottery for the indicated

number of trials (5 or 50). The estimated probability of a loss was assumed to be one

minus the estimate of coming out ahead. We randomly selected one of the two possible

question frames for every subject. Subjects could enter their estimate into a text field

via the keyboard or they could modify the starting value of zero8 by using increments

and decrement buttons.

Mean excess loss. For each multiple-play lottery, respondents answered the question:

“What do you think the average loss would be, given that a loss has occurred, after

playing the shown lottery for the indicated number of times?”. Subjects could again

enter their answer into a text field or could modify the starting value of zero by using

increments and decrement buttons (±1000,±100,±50,±10,±1).

Probability that the outcome of the lottery falls into a small interval around the long-

run expected value. Subjects indicated their estimate of the probability that the outcome

of the shown multiple-play lottery would fall in a e 100-interval around the long-run

expected value. Thus the question for lotteries with five repeated plays was “What do

you think is the probability that the final total outcome will lie between 150 and 350

(expected value: 250) after all 5 repeated plays?” and for lotteries with 50 repeated

plays: “What do you think is the probability that the final total outcome will lie between

2400 and 2600 (expected value: 2500) after all 50 repeated plays?”. We used the same

input mechanism via the keyboard or using increment and decrement buttons for this

8Alternative starting values, for example 50% or a random number between 0 and 1, were possible.
If we chose such a starting value, this may have resulted in an upward biased estimate. However, our
ex-ante hypotheses were an overestimation of the elicited risk measures. We acknowledge the possibility
that the starting value of zero could bias the estimated probability to the lower end, but the vast majority
of the elicited risk measures are overestimated (see Section 4) and therefore this possibility does rather
strengthen our results.
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question as for the probability of a loss (including the starting value of zero). Figure 2,

showing the aggregated outcome distribution of Lottery 1 for up to five trials, illustrates

that the probability that the outcome of the lottery falls into a small interval around the

long-run expected value declines with the number of repeated plays, i.e., from 1/2 for two

repeated plays to 3/8 for four repeated plays. The core of the fallacy of large numbers is

the erroneous belief that this probability increases.

Figure 2 also illustrates a problem arising from the fact that we used discrete distribu-

tions. The probability of the final outcomes falling into the interval of plus or minus e 100

around the mean is zero for some numbers of repeated plays, i.e. for 5 repeated plays.

However, we do not think that this was a serious problem since respondents probably

had a continuous distribution of outcomes in mind and answered based on this approx-

imation to our questions. Some subjects quoted such a heuristic explicitly in a short

questionnaire administered after the experiment or in private conversations with the ex-

perimenter. Furthermore, if subjects recognized the problem, they should have answered

0 to one or more of the eight interval probability estimation questions. Almost 89% of

all subjects answered with a strictly positive value to all eight questions and the results

reported below remain qualitatively the same if we exclude the remaining 11%.

Standard Deviation. Subjects were asked for their estimates of the median and the

10th and 90th percentile of the aggregated distribution.9 Given these three values, it is

possible to approximate the estimated standard deviation. For the median, respondents

were asked to state the amount of money for which they thought it equally likely that the

final overall outcome would exceed it or remain under it. For the 10th (90th) percentile,

they were asked to state the amount of money that they thought would be exceeded

(remain under) by the final overall lottery outcome in only 10% of all cases. Responses

were only accepted by the program if the answers satisfied the relationship 10th percentile

< median < 90th percentile. This relationship was also mentioned in the instructions.

These questions also suffer from the shortcoming due to the discrete distributions.

As illustrated by Figure 2, with the percentages in the framed boxes denoting the prob-

ability of a specific outcome, an unambiguous 10th percentile of this distribution does

not exist. However, subjects probably had a continuous approximation to the questioned

9E. U. Weber et al. (2005) also elicit these quantiles in an experimental study using continuous distri-
butions. Benartzi and Thaler (2002) use the same quantiles to communicate an approximate distribution
of final wealth for an investment alternative in an asset allocation experiment.
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Figure 2: Outcome Distribution of Lottery 1. The graph shows the aggregated outcome
distribution of Lottery 1 for up to five plays. The fractions in the framed boxes give the
probability that the outcome of the repeated gamble will fall in a ±100-interval around the
expected value. Also shown is the long-run EV for all possible numbers of repeated plays. The
numbers in the fine dashed framed boxes denote the probability of every possible outcome after
five independent repeated plays.
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distribution in mind. Furthermore, we are mainly interested in the qualitative changes

in their estimates from 5 to 50 repeated plays.

Perceived Risk. For all 12 lottery stimuli, respondents answered the questions: “How

do you assess the risk of this lottery played the indicated number of times on a scale from

0 (‘not at all risky’) to 100 (‘extremely risky’)?” Subjects indicated their answer using a

slider on a graphic response scale. The slider started out at the middle of the scale, i.e.

at 50.

Correct Answers to the Estimations Elicited Under Task B. Table 2 in Section

4 shows the correct answers to the estimation questions. The “correct” value shown for

the probability that the overall outcome lies in ±e 100 interval around the long-run

expected value is based on a normal approximation of the binomial distribution.

2.2 Hypotheses

Task A: Certainty Equivalents for Repeated Gambles. Generalizing from the

behavior of Samuelson’s colleague, we predicted that willingness-to-play for our positive

EV lotteries would increase with the number of repeated plays (Hypothesis A1: p(play)1 <

p(play)5 < p(play)50).
10 The data to test this hypothesis comes from subjects initial

choice whether they were willing to play the specified lottery for the indicated number

of repeated plays. Assuming a monotonic relationship between willingness-to-play and

willingness-to-pay (i.e. certainty equivalents), we also predicted that certainty equivalents

would increase with numbers of play (Hypothesis A2: ce1 < ce5 < ce50).

Task B: Assessment of Different Summary Statistics of Anticipated Lottery

Outcome Distribution. Probability of a loss. Following Benartzi and Thaler (1999),

we expected that subjects would overestimate the probability of a loss (Hypothesis B1).

In addition, we hypothesized (based on introspection) that the decline in the probability

of a loss in moving from 5 to 50 repeated plays would be correctly recognized (Hypothesis

B2: EstProb(Loss)(5trials) > EstProb(Loss)(50trials)).

Mean excess loss. We are not aware of previous experimental results for this estima-

tion task. However, if subjects overestimate the probability of a loss, one would expect

that they also overestimate the mean excess loss, i.e. that they believe the aggregated dis-

10We will also use the term acceptance rate, defined as the percentage of subjects who accept the
gamble, synonymously to p(play) later in the paper.
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tribution to have fatter tails than it really has (Hypothesis B3). Furthermore, we expected

that the increase in the mean excess loss as a result of the increase in repeated plays would

be recognized by our subjects (Hypothesis B4 : EstMEL(5trials) < EstMEL(50trials)).

Probability that the outcome of the lottery falls into a small interval around the long-

run expected value. The fallacy of large numbers refers to the fact that people may

believe that it is almost certain to receive the long-run expected value of an independently

repeated gamble if the number of repetitions is high enough. If Samuelson’s speculation

about the reason for his colleague’s inconsistent preferences is correct, we will predict

that subjects state a higher probability of an outcome near the expected value for more

iterations (Hypothesis B5 : F1 := Prob{|(X1+...+X5)−5·µ| < 100} < F2 := Prob{|(X1+

... + X50)− 50 · µ| < 100}).
Standard Deviation. Given the results of Benartzi and Thaler (1999), we predicted

that subjects would correctly realize that the standard deviation of lotteries increases with

the number of repeated plays (Hypothesis B6). Note that Hypothesis B6 is normatively

inconsistent with Hypothesis B5, though it is certainly possible that both an increase in

standard deviation and the fallacy of large numbers could be simultaneously observed in

the within-subject context of our experiment.

Perceived Risk. Although Samuelson’s colleague makes no direct reference to how he

perceives the risk of the repeated gamble compared to the risk of the single play, his

behavior suggests that he perceives the risk of the lottery to decrease with the number

of repeated plays, i.e., Hypothesis B7 : PR(1 trial)>PR(5 trials)>PR(50 trials). The

simultaneous elicitation of judgments of perceived risk and of different summary statistics

suggested to reflect risk gives us the opportunity to analyze the sources of the subjective

perception of riskiness, especially in the context of repeated gambles, which has not been

done before. Relating the responses in Task A to risk perception allows us to analyze

the relationship between perceived risk and the elicited certainty equivalents. Based on

the experimental work cited in the introduction, we expected that perceived risk predicts

preference (i.e., CEs) better than outcome standard deviation (Hypothesis B8).

2.3 Incentives and Procedure

We paid subjects according to Becker, DeGroot, and Marschak’s (BDM) (1963) incentive-

compatible procedure for eliciting certainty equivalents. After the experiment we ran-
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domly selected one of the lottery stimuli. For the selected lottery with its specified number

of repeated plays, we randomly selected a bid that came from a uniform distribution that

ranged from the minimal to the maximal value which could be realized in the selected

repeated gamble. If this bid was higher than the CE the subject had provided for this

lottery, then the subject received the amount of the randomly selected computer bid. If

the bid was lower than the subject’s CE, then we played out the lottery for the specified

number of repetitions and the subject received the obtained payoff. The BDM mecha-

nism was explained to subjects on-screen before the start of the experiment. We also

presented an intuition why stating the true certainty equivalent is a dominant strategy.

Respondents received detailed instructions before every decision task and could also call

up instructions for each task and a description of the incentive scheme at any point of

the experiment.

2.4 Respondents

The experiment was conducted at the University of Mannheim in June of 2002. The

volunteer participants were 44 advanced business students, who took between 40 and 110

minutes to complete all tasks. Payments ranged from e 9 to e 14 with an average payment

about e 11. The median age was 25, and 7 subjects were female. Participants were asked

how clear they found the instructions after the experiment, on a scale from 1 (completely

unclear) to 9 (completely clear). The median response was 7. Given the complexity of

the tasks, a rating of this magnitude suggests quite strongly that respondents thought

they understood the decision tasks.11

3 Results: Risk Behavior

Table 1 shows the arithmetic means and medians of the certainty equivalents provided

by our respondents for the lottery stimuli in Task A. Testing hypothesis A1 (that p(play)

11Note that we used a within subject design. One question is what we would have gotten in a between
subject design. We assessed the possibility of different results in a between subject design on the basis
of Table 1 (see section 4). We compared the data of only the first judgment of each of the four lotteries
made by each subject: for approximately 1/2 of them, this first judgment will be for a repeated play
of 5, and for approximately 1/2 it is for a repeated play of 50. (Clearly, this is not a “clean” between
subject design, but in our view it is a sufficient approximation to what we might have gotten.) Although
some p-values increases (especially due to the lack of a sufficient number of subjects), the results of this
analysis suggest that a between-subject design would not have changed the qualitative results.
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increases with the number of trials) suffers from a ceiling effect as all acceptance rates

are near 100%. However, in most cases acceptance rates differ in the predicted direction,

but only 2 out the 12 pairwise comparisons were statistically significant, after correcting

for multiple comparisons. We do not reported the details of this analysis due to space

limitations.

We performed a nonparametric test for ordered hypothesis introduced by Page (1963)

to address hypothesis A2. This statistical method tests the null hypothesis of no difference

in certainty equivalents (H0 : CE1trial = CE5trials = CE50trials) against the ordered

alternative H1 : CE1trial > CE5trials > CE50trials.
12

A Page test strongly supports hypothesis A2 (p<0.0000*** for all four lottery pro-

files) that CEs increase with the number of repeated plays.13 This should come as no

surprise, since the expected value of the lotteries increases substantially with the number

of repeated plays.

Certainty Equivalents

Lottery 1 Lottery 2
Repeated Plays 1 5 50 1 5 50
Mean 55.09 274.05 2500.75 46.86 173.34 2058.18
Median 50 250 2500 40 207.5 2500
Acceptance Rates 88.6% 100% 97.7% 70.5% 79.5% 86.4%

-5.721 -5.254 -4.203 -4.623
within Wilcoxon z (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***
p-value -5.330 -4.838

(0.0000)*** (0.0000)***

Lottery 3 Lottery 4
Repeated Plays 1 5 50 1 5 50
Mean 32.7 178.36 2259.32 49.84 237.59 2633.43
Median 60 51.5 2350 50 249.5 2500
Acceptance Rates 70.5% 79.5% 93.2% 100% 100% 100%

-4.174 -5.406 -5.731 -5.695
within Wilcoxon z (0.0000)*** (0.0000)*** (0.0000)*** (0.000)***
p-value -5.195 -5.695

(0.0000)*** (0.0000)***

Table 1: Mean and Median Certainty Equivalents. Also shown are the z-value of a within
Wilcoxon test for differences in the median and the corresponding p-values in parentheses. A positive
z-value indicates that estimates are higher for 5 than for 50 trials. A negative z-value indicates the
opposite. The upper left number belongs to a test between 1 and 5 plays and the upper right number
to a test between 5 and 50 plays. The number in the middle gives the test statistic for a test between 1
and 50 plays.

12We report the value of the test statistic L and compute corresponding approximate p-values based
on the χ2

L-statistic given in Page (1963). Page (1963) also shows that this approximation works very
well, especially in cases like ours with 44 subjects and 3 tasks. See Wellek (1989) for computing exact
p-values.

13A repeated measures GLM analysis also indicated a highly significant effect for number of repeated
plays: F(2.41) = 18.94, p<0.0001. There was no interaction between the effect of number of repeated
plays and the lottery profile: F(6.37) = 1.24, p = 0.31.
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4 Results: Estimation of Summary Statistics

The results shown in Table 2 provide strong support for hypotheses B1 and B2. Subjects

correctly realized that the probability of a loss decreases as the number of repeated plays

increased. Subjects also strongly overestimated the probability of loss, a result that is

in line with Benartzi and Thaler (1999). This is highly significant for all lotteries using

a binomial test. The only exception is Lottery 3 with 5 repeated plays where subjects’

estimates of the probability of loss in the aggregate were relatively accurate.14

Table 2 shows the mean and median answers that respondents gave to the question of

the lotteries’ mean excess loss (MEL). Those responses showed a high standard deviation

and a strong skew to the right. This suggests that MEL is a measure of risk that is

difficult to evaluate. The skewed distribution of responses suggests that a minority of

subjects had problems to understand the conditional nature of this risk measure. Some

subjects gave absurdly high estimates, e.g., estimating an MEL of 12,000 for Lottery 3

with 50 repeated plays. As a result, mean and median MELs differ widely. Because

medians are more resistant to outliers, we used the median responses in our statistical

analyses.

We found no support for hypothesis B3, that is, MEL was underestimated instead of

overestimated. Using a binomial test, median estimated values of MEL were significantly

smaller than correct values for all lotteries and both sets of repeated plays, except for

Lottery 3 at 5 repeated plays.

Table 2 shows support for hypothesis B4. Estimated median MELs are significantly

higher for 50 than for 5 trials utilizing a Wilcoxon test, except for Lottery 3. The

statistical insignificance in latter case comes from relatively high estimates for 5 iterations.

Subjects might have anchored on the (high) value of the mean excess loss for the one-shot

case (400) and may have adjusted only insufficiently for repeated plays.

From people’s estimates of the median and 10th and 90th percentiles of the outcome

distributions, we inferred their estimates of the outcome standard deviation using the

following formula called the extended Swanson-Megill approximation (Keefer and Bodily

1983).

EstimatedV olatility =
√

(0.3 ·Q2
0.1 + 0.4 ·Q2

0.5 + 0.3 ·Q2
0.9)−mean2

14It should be noted, that the means and the medians of the probability of loss are always smaller for
the direct question frame compared to the condition where it was inferred from the assessed probability
of coming out ahead.
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Probability of a loss

Lottery 1 Lottery 2 Lottery 3
Repeated Plays 5 50 5 50 5 50
Mean 26.11% 21.86% 41.39% 27.45% 47.9% 29.79% no losses
Median 25% 11% 37.5% 20% 40% 20% for
Actual Value 18.75% 0.77% 23.75% 9.16% 36.72% 9.83% Lottery 4
within Wilcoxon z 1.667 2.862 3.914
p-value (0.0955) (0.0042)** (0.0001)***
Binomial
p-value

0.0096** 0.0000*** 0.0013** 0.0001*** 0.6516 0.0000***

Repeated Measures GLM Analysis F(1.42) = 4.09, p < 0.05
No interaction between the effect of No. of Rep. Plays and Lottery F(2.41) = 0.08, p = 0.91

Mean excess loss

Lottery 1 Lottery 2 Lottery 3
Repeated Plays 5 50 5 50 5 50
Mean 148.75 786.7 211.89 910.05 524.61 1631.71 no losses
Median 110 100 100 250 300 275 for
Actual Value 250 406.54 500 687.33 396.28 860 Lottery 4
within Wilcoxon z -2.105 -2.981 -0.718
p-value (0.0353)* (0.0029)** (0.4725)
Binomial
p-value

0.0001*** 0.0488* 0.0000*** 0.0488* 0.4514 0.0226*

Repeated Measures GLM Analysis F(1.42) = 4.18, p < 0.05
No interaction between the effect of No. of Rep. Plays and Lottery F(2.41) = 0.94, p = 0.39

Standard deviation

Lottery 1 Lottery 2 Lottery 3 Lottery 4
Repeated Plays 5 50 5 50 5 50 5 50
Mean 264 1996 399 2672 406 2833 112 993
Median 310 1559 241 1629 347 1859 116 1084
Actual Value 335 1061 581 1837 581 1837 112 354
within Wilcoxon z -5.473 -5.368 -5.153 -5.456
p-value (0.0000)*** (0.0000)*** (0.0000)*** (0.0000)***
Binomial
p-value

0.2912 0.2912 0.0096** 0.8804 0.0226* 1.0000 0.0488* 0.0013**

Repeated Measures GLM Analysis F(1.42) = 17.64, p < 0.0001
No interaction between the effect of No. of Rep. Plays and Lottery F(3.40) = 1.44, p = 0.24

Probability that the outcome of the lottery falls into a ±e 100 interval

Lottery 1 Lottery 2 Lottery 3 Lottery 4
Repeated Plays 5 50 5 50 5 50 5 50
Mean 47% 58% 45% 53% 46% 55% 56% 56%
Median 50% 60% 50% 60% 43% 60% 60% 60%
Approx. Value 21.27% 7.44% 11.98% 4.28% 11.98% 4.28% 58.28% 22.05%
within Wilcoxon z -2.563 -2.461 -2.125 -0.358
p-value (0.0104)* (0.0139)* (0.0336)* (0.7201)
Binomial
p-value

0.0001*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.6516 0.0000***

Repeated Measures GLM Analysis F(1.42) = 1.79, p = 0.13
Marginal interaction effect (with Lottery 4 showing no effect) F(3.40) = 1.979, p = 0.13

Perceived risk

Lottery 1 Lottery 2
Repeated Plays 1 5 50 1 5 50
Mean 49.27 38.43 30.16 65.20 48.69 41.57
Median 47.5 40 30 69 53 40

2.873 2.721 4.192 2.950
within Wilcoxon z (0.0041)** (0.0065)** (0.0000)*** (0.0032)**
p-value 4.4378 5.153

(0.0000)*** (0.0000)***
Lottery 3 Lottery 4

Repeated Plays 1 5 50 1 5 50
Mean 57.66 50.88 40.57 11.80 8.82 8.52
Median 60 51.5 40 0 0 0

2.610 3.190 1.740 0.539
within Wilcoxon z (0.0091)** (0.0014)** (0.0819) (0.5901)
p-value 3.969 1.822

(0.0001)*** (0.0684)
Repeated Measures GLM Analysis F(2.41) = 2.53, p < 0.05
Marginal interaction effect (with Lottery 4 showing no effect) F(6.37) = 1.69, p = 0.14

Table 2: Mean and Median Responses to All Elicited Possible Indices of Risk in Repeated
Gambles. The correct value of each statistic is also shown. Also shown are the z-value of a within Wilcoxon test for
differences in the median and the corresponding p-values in parentheses. A positive z-value indicates that estimates are
higher for 5 than for 50 trials. A negative z-value indicates the opposite. Also reported are the p-values of a two-sided
binomial test of the hypothesis that the estimated risk measure was different from its actual value. For perceived risk, the
upper left number belongs to a test between 1 and 5 plays and the upper right number to a test between 5 and 50 plays.
The number in the middle gives the test statistic for a test between 1 and 50 plays. Also shown are the results of a repeated
measure GLM analysis. 15



with

mean = 0.3 ·Q0.1 + 0.4 ·Q0.5 + 0.3 ·Q0.9

Table 2 shows that subjects realized correctly that outcome standard deviation in-

creases with the number of repeated plays, strongly supporting hypothesis B6. The

p-value of a Wilcoxon test was p<0.0000*** for all four lottery profiles. Furthermore, we

find no systematic overestimation of the standard deviation of the aggregated distribu-

tions. Subjects significantly underestimated this risk measure for lottery 2 and 3 with 5

iterations, and significantly overestimated the standard deviation for lottery 4 with both

repeated plays. Beside this, no further comparison is significant. Note, that there is a

large literature on overconfidence, which results in people reporting too narrow intervals

on average (Lichtenstein et al. (1982), Griffin and Brenner (2004)). This general tendency

may be at work here and it is possible that it cancelled out any systematic overestimation

of outcome variability.

The next risk measure to be considered is people’s estimate of the probability that the

lottery outcome would fall into an interval of ±e 100 around the EV. As hypothesized by

Samuelson (1963), subjects showed indeed evidence for the fallacy of large numbers, i.e.,

the estimated probability increased with the number of repeated plays. The result was

significant for the first three lottery profiles and confirms hypothesis B5. Note that the

overall effect of the repeated measure GLM analysis was only marginally significant, a

result which was due to no effect for lottery 4. It should also be noted that people vastly

overestimated the elicited probability and that the median estimates were remarkable

stable across all four lottery profiles (i.e., 50% for 5 iterations and 60% for 50 iterations).

As discussed above, respondents’ answers to the standard deviation and to the interval

probability estimation question are inconsistent from a statistical perspective. That is,

a correctly perceived increase in outcome standard deviation with a larger number of

repeated plays should lead to lower estimates of the interval probability for more repeated

plays. Our results show, however, that it is indeed possible that subjects overestimate

the probability of a loss and believe in increases in outcome standard deviation, but

nevertheless fallaciously believe in the law of large numbers. Given that respondents’

estimates for these two possible indices of the risk of repeated-play lotteries point in

different directions (i.e., one suggesting that the risk increases, the other that the risk

decreases), it is interesting to examine what the self-reported perceived risk judgments of
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our respondents tell us about the direction of perceived risk: Do subjects think that the

risk increases with the number of trials because the standard deviation increases? Or do

they believe that the risk decreases, possibly due to a fallacious application of the law of

large numbers or because of the correct assessment that the probability of loss falls?

As shown in Table 2, repeated lotteries were perceived as less risky as the number of

repeated plays increased.15 The result is in line with hypothesis B7 and highly significant

for the first three lottery profiles using a Page test (p<0.0000***), as is every pairwise

comparison between perceived risk for the same lottery and different number of repeated

plays. The insignificance of the result for lottery profile 4 (L=539; p=0.1205) comes

mainly from the fact that some subjects perceive a lottery without losses as not risky at

all (a result also observed for a subset of respondents by E. U. Weber et al. 1992), i.e. 24

out of 44 subjects assigned a value of 0 to the risk of Lottery 4 regardless of the number

of repeated plays.

5 Results: Determinants of Risk Perception

As perceived risk is a psychological variable that might differ between individuals, the

following analyses were performed at the individual subject level. Table 3 provides means

and medians of Spearman and Pearson correlation coefficients between subjective judg-

ments of perceived risk and each of six possible indices of risk. We consider two versions

of the coefficient of variation. First, we define the CV as true standard deviation divided

by the expected value. The second version is defined as the estimated standard deviation,

i.e. the approximation of the standard deviation based on the elicited quantiles, divided

by the expected value and is labelled “Estimated CV” in Table 3. For the probability

of loss and the mean excess loss, we assumed that subjects correctly assessed the value

from our graphical two-state distribution for single plays, i.e., that they inferred that the

probability of loss was 0.5 and the mean excess loss e 100 for a single play of Lottery 1.

We also use correct values for the standard deviation and the fallacy questions for single

15Joag et al. (1990) report similar results. However, they used specifically constructed bets with
the same expected values for single and multiple plays. This modification resulted in a much higher
standard deviation in the single play condition because it makes it necessary to have a high loss with a
non-negligible probability in the one-shot gamble. The results are therefore not directly comparable to
our study.
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plays, i.e., the probability that the outcome of an one-shot gamble of Lottery 3 lies in an

±e 100-interval around the expected value is 0.

Table 3 shows that the probability of a loss, mean excess loss, and both versions of the

coefficient of variation are positively correlated with judgments of perceived risk. That

is, the greater the probability of loss, the greater the mean excess loss, and the greater

the coefficient of variantion, the greater are peoples judgments of perceived risk. The

estimates of the probability that the overall outcome lies in a small interval around the

long-run expected value are negatively correlated with judgments of perceived risk, i.e.,

the more people believe that the overall outcome lies in an ±e 100-interval around the

long-run expected value, the less risky they consider the gamble to be. The coefficient

of variation based on the true standard deviation and the probability of a loss showed

the highest correlations with judgments of perceived risk. The only index of risk that

does not show a significant correlation with judgments of perceived risk is the perceived

standard deviation of outcomes.16 This is disconcerting in light of the wide use of the

standard deviation as a measure of risk in finance, but not at all surprising in light of

previous behavioral evidence (Keller et al. 1986, E. U. Weber et al. 2004).17

Spearman correlation (perceived risk; risk measure) computed for every subject
Probability of

Loss
Mean Excess

Loss
Interval standard

deviation
CV Estimated

CV

Mean 0.64 0.55 -0.54 0.09 0.65 0.48

Median 0.67 0.63 -0.61 0.16 0.71 0.46

Pearson correlation (perceived risk; risk measure) computed for every subject
Probability of

Loss
Mean Excess

Loss
Interval standard

deviation
CV Estimated

CV

Mean 0.62 0.33 -0.52 -0.06 0.63 0.56

Median 0.68 0.37 -0.57 -0.08 0.64 0.57

Table 3: Mean and Median of Spearman and Pearson Correlation Coefficients for the
Correlation Between Perceived Risk and the Discussed Risk Measures, Computed Sep-
arately for Every Subject. The analyses are based on 12 data points per subject and risk
measure. Individual-subject correlations were significant at the (one-tailed) .05 level when the
absolute value of the correlation exceeded 0.49. “Interval” refers to the probability that the
overall outcome falls into a ±e 100-interval around the long-run expected value, “CV” stands
for the coefficient of variation based on the true standard deviation and “Estimated CV” stands
for the coefficient of variation based on the estimated standard deviation.

16Note that the true standard deviation is also only weakly correlated with perceived risk (Spearman:
mean 0.16 and median 0.2; Pearson: mean 0.10 and median 0.16).

17There were sizeable individual differences in the ability of our risk indices to predict perceptions of
risk, a fact that emphasizes the subjective nature of the concept of perceived risk. For example, for
some subjects none of our risk measures correlated with the risk judgments; for several other subjects
probability-of-a-loss and mean-excess-loss predict perceived risk nearly perfectly.
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We also regressed perceived risk on all risk measures in a multiple regression at the

aggregate level, i.e. across all subjects18 and all lottery profiles. We used two regres-

sion equations, one for each definition of the coefficient of variation, i.e. “CV” and

“Estimated CV”, and investigated the incremental contribution of the predictor vari-

ables in explaining variability in perceived risk, given that all other variables are in

the regression equation. Quadratic and interaction terms are also included. To be

more precise, let Xi be one specific risk measure. We estimated the regressions (1)

PerceivedRisk = α +
∑5

i=1 βi · Xi +
∑5

i=1 γi · X2
i +

∑5
i=1

∑5
j=i+1 δij · Xi · Xj and (2)

PerceivedRisk = α +
∑4

i=1 βi ·Xi +
∑4

i=1 γi ·X2
i +

∑4
i=1

∑4
j=i+1 δij ·Xi ·Xj, and tested

then if the addition of risk measure X5 in regression equation (1) explained significant

more variation in the dependent variable than the regression equation (2).19 This type

of analysis does not allow us to conclude that one risk measure is more important as

another. It simply states which risk measure is “unique” in the sense that this measure

adds significantly to the explanation of variation in risk perception over and above the

variables already in the regression equation. Note, that as we analyze the ability of the

model to predict variation as a whole, and not coefficient estimation, multicollinearity is

not an issue here. Table 4 reports on the results.20 The results highlight the role of the

probability of loss as a unique risk measure. Nevertheless, it also shows that every risk

measure adds something and this further emphasizes the complexity of perceived risk.

6 Results: Does Perceived Risk Predict Preference?

Consistent with other recent perceived-risk and return analyses of risk behavior (e.g., E.

U. Weber and Milliman (1997) and E. U. Weber and Hsee (1998)), the most important

predictor of CEs in our study was the expected value of lotteries. We were interested

in the additional ability of different measures of perceived risk to predict variability

in CEs in a risk-return regression equation. To answer this question, we pooled the

18This was done because we did not have a sufficient number of data points for individual subject
regressions. Problems with an aggregate analysis include the possibility of specification bias, i. e. the list
of predictor variables may be too long or too short. In addition, we assume implicitly that all subjects
are homogenous.

19See Gujarati (1995) or Chatterjee and Price (1991) for an intuitive description.
20We also did a regression analysis that included a dummy variable for every subject to account for

the repeated measure design. This formulation of the regression model does not change the results
qualitatively.
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Regression A
F-value p-value

Coefficient of variation (true standard deviation) 12.74 0.0000***
Probability of a loss 8.16 0.0000***
Prob. to end up in a interval around the long run expected value 3.58 0.0017**
Mean excess loss 2.60 0.0174*
Standard deviation 2.15 0.0466*

Regression B
F-value p-value

Probability of a loss 24.42 0.0000***
Coefficient of variation (estimated standard deviation) 7.04 0.0000***
Mean excess loss 1.84 0.0899
Prob. to end up in a interval around the long run expected value 1.70 0.1187
Standard deviation 0.84 0.5371

Table 4: Regression Analysis. The table shows F- and p-value of a test that assessed the
marginal contribution of every predictor variable to regression equation (1): PerceivedRisk =
α+

∑5
i=1 βi ·Xi +

∑5
i=1 γi ·X2

i +
∑5

i=1

∑5
j=i+1 δij ·Xi ·Xj with the risk measures probability of

a loss, mean excess loss, probability that the overall outcome falls into a small interval around
the expected value, standard deviation, and cv. Regression B does exactly the same with the
only difference that cv is substituted by the estimated CV.

data across subjects because of the lack of a sufficient number of observations on the

individual level and estimated the linear regressions CE = α+β1 ·EV +β2 ·RiskMeasure

for every risk measure in the spirit of a simple risk-value model (Sarin and M. Weber

1993). Table 5 gives F- and p-values for a test of the marginal contribution of every risk

measure, analogous to the regression analysis in Section 5. We used this simple form of

the regression model without interaction terms and an appropriate transformation of the

predictor variables with respect to the simply linear form of risk-value models proposed

in the literature.

F-value p-value
Perceived risk 8.05 0.0047**
Mean excess loss 6.81 0.0093**
Prob. to end up in a interval around the long run expected value 0.64 0.4239
Standard deviation 0.55 0.4579
Coefficient of variation (true standard deviation) 0.14 0.7061
Probability of a loss 0.12 0.7258
Coefficient of variation (estimated standard deviation) 0.04 0.8390

Table 5: Regression Analysis. The table shows F- and p-value of a test that assessed the
marginal contribution of every risk measure to the regression equation CE = α + β1 ·EV + β2 ·
RiskMeasure.
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As shown in Table 5, explicit judgments of perceived risk and mean excess loss are

the only two measures of risk which significantly predict CE above and beyond the lot-

teries’ expected value. Consistent with previous research (e.g., E. U. Weber et al. 2005),

judgments of perceived risk (which are a complex amalgam of different aspects of risk,

as shown in the previous section) are a better predictor of certainty equivalents than any

single conventional index of riskiness.

7 Summary and Discussion

Our results have implications both for future research on risk taking and its determinants

and for the practice of financial advisors. We summarize those lessons and implications

by revisiting the research questions that we stated in the introduction.

(1) Are people able to correctly assess statistics of outcome distributions commonly

used as indices of risk for repeated-play lotteries? We replicated the well-known fact that

people overestimate the probability of a loss in repeated gambles. We also found that

mean excess loss is underestimated, probably as the result of anchoring on the single-play

loss and insufficient adjustment, and that this risk measure is difficult to evaluate. Our

results thus confirm and add urgency to the recommendation by Benartzi and Thaler

(2002) that investors ought to be presented with aggregated distributions that reflect the

range of possible outcomes of their investment decisions, since they seem to lack the ability

to infer many characteristics of final outcome distributions correctly. People who make

decisions about their retirement savings may be simply not aware of the consequences

their actions might have.

Aggregated distributions should help decision makers to assess the nature of risk and

return of their decision alternatives and should help them to make “better” decisions.

Computing, showing, and discussing aggregated distributions may have the potential to

avoid utility losses in asset allocation decisions or other decisions involving repeated gam-

bles. Further research needs to be done on how such computations may help, especially

in financial decision making (see i. e. Klos and Weber 2005).

Furthermore, our data shows that people in fact fall prey to Samuelson’s fallacy, while

realizing correctly, and at the same time, that outcome standard deviation increases with

the number of repeated plays. This paradoxical combination of beliefs is consistent with

21



a representation of multiple-play lottery outcome distribution that has fatter tails and

more probability mass near the long-run expected value than it really has. Our results

nevertheless show that the faulty application of the law of large numbers is a psychological

reality and may well be responsible for people’s greater willingness to choose between

lotteries on the basis of expected value maximization, when the selected gamble could be

played repeatedly, as in a study by Montgomery and Adelbratt (1982, p. 53).

Finally, our study is the first in the context of repeated gambles elicit more than a

single risk measures and allows therefore a more complete picture of estimation errors

utilizing a within subject design. Our results suggest that subjects show a general lack of

coherence in judgments about probability distributions. Future research may profitably

explore the degree of the lack of coherence by conducting an experiment where several

clear-cut restrictions on the possible answers of the subjects are imposed.

(2) What constitutes perceived risk in repeated gambles? “Risk” rightfully is a core

concept in financial decision making. Since the work of Markowitz (1952), risk has often

been operationalized as standard deviation. Work by Keller et al. (1986), E. U. Weber

(1997), E. U. Weber and Hsee (1988), and E. U. Weber and Milliman (1997) has ques-

tioned this operationalization from a descriptive perspective, showing that judgments of

perceived risk that predict behavior do not coincide with standard deviation or standard

deviation estimates. A natural follow-up that has already been discussed in different

contexts by E. U. Weber (1988), Holtgrave and E. U. Weber (1993) and E. U. Weber et

al. (2003, 2004) among others, is the question of what constitutes perceived risk. Our

study provides an answer to this question in the context of repeated lotteries and thus,

by extension, investment decisions with a longer time horizon. Interestingly and consis-

tent with results in the above mentioned studies of single-play decisions, judgments of

the perceived riskiness of repeated-play lotteries are largely unrelated to the estimated

outcome standard deviation of these lotteries. Instead, our results are consistent with

the Conjoint Expected Risk model by Luce and E. U. Weber (1986), which contains the

probability of a loss and the mean excess loss as key ingredients in the mathematical

specification of perceived risk and allows for differential weight to downside and upside

variability. Furthermore, our data show that Weber et al’s (2004) results that the CV

(risk/standard deviation per unit of return/EV) better reflects people’s intuitions about

financial risk than the unstandardized standard deviation or variance also hold for the
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domain of repeated gambles. Finally, our results show that perceived probability of end-

ing up in a small interval around the long-run expected value also predicts perceived risk

and that the fallacious application of the law of large numbers therefore is of relevance

for how risky people think repeated gambles are.

The results in section 6 indicate that the effect of all indices of risk except for mean

excess loss on preference or CEs is mediated by people’s judgments of perceived risk.

I.e., both probability of a loss and the CV strongly affect judgments of perceived risk (as

described in section 5), but do not have any additional effect on CEs above and beyond

their effect on perceived risk.

(3) Does perceived risk predict preference? Consistent with previous research in the

context of single-play lotteries (e.g., E. U. Weber and Milliman 1997, E. U. Weber and

Hsee 1998), respondents in our study provide lower certainty equivalents for gambles

that they perceive to be riskier, validating the predictive power and practical relevance

of perceptions of risk.21 Further research needs to be done on risk-value models if risk is

operationalized as perceived risk (E. U. Weber et al. 2005).
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