
PolyEDA: Combining Estimation of Distribution
Algorithms and Linear Inequality Constraints

Jörn Grahl and Franz Rothlauf

Working Paper 2/2004
January 2004

Working Papers in Information Systems

University of Mannheim
Department of Information Systems 1

D-68131 Mannheim/Germany
Phone +49 621 1811691, Fax +49 621 1811692

E-Mail: wifo1@uni-mannheim.de
Internet: http://www.bwl.uni-mannheim.de/wifo1

PolyEDA: Combining Estimation of Distribution

Algorithms and Linear Inequality Constraints

Jörn Grahl
Dept. of Information Systems 1

University of Mannheim

D-68131 Mannheim/Germany

jgrahl@rumms.uni-mannheim.de

Franz Rothlauf
Dept. of Information Systems 1

University of Mannheim

D-68131 Mannheim/Germany

rothlauf@uni-mannheim.de

January 26, 2004

Abstract

Estimation of distribution algorithms (EDAs) are population-based
heuristic search methods that use probabilistic models and which have
been successfully applied to continuous optimization problems. When ap-
plied to constrained optimization problems, most EDAs (as well as genetic
algorithms) handle constraints by penalizing invalid solutions. This paper
presents PolyEDA, a new EDA approach that is able to directly consider
linear inequality constraints by using Gibbs sampling. Gibbs sampling
allows us to sample new individuals inside the boundaries of the polyhe-
dral search space described using a set of linear inequality constraints by
iteratively constructing a density approximation that lies entirely inside
the polyhedron. Due to its ability to consider linear inequality constraints,
PolyEDA can be used for highly constrained optimization problems, where
even the generation of valid solutions is a non-trivial task. Results for
different variants of a constrained Rosenbrock problem show a higher per-
formance of PolyEDA in comparison to a standard EDA using rejection
sampling.

1 Introduction

Estimation of distribution algorithms (EDA) are population-based optimization
methods that use probabilistic models to guide their search [1]. In contrast
to genetic algorithms (GA), EDAs do not use classical search operators, but
crossover and mutation are replaced by the following two steps:

1. A probabilistic model is built of selected solutions.

2. New random solutions are sampled from the probabilistic model.

EDAs have shown promising results [2, 3] when used for combinatorial, dis-
crete, and continuous problems. When using EDAs for continuous real-world
planning and optimization problems, there are often a number of additional

1

problem-specific constraints which significantly affect the performance of opti-
mization algorithms [4]. For example, many variables in real-world problems
have lower and upper bounds and the feasible regions of the search space are
constrained using linear inequality constraints [5]. Linear inequality constraints
are a powerful approach for describing problem-specific knowledge, are common
and well understood in the field of mathematical programming, and form the
basis of many traditional optimization techniques. During the last few years
many methods have been proposed for handling constraints when using GAs or
EDAs. The most common are: (1) methods that repair invalid solutions, (2)
methods that use penalties, (3) methods which distinguish between feasible and
infeasible solutions, and (4) methods that are based on decoders (compare [6]).
The general idea when dealing with constraints is to penalize invalid solutions.

The purpose of this paper is to develop a new EDA approach, PolyEDA,
that is able to consider linear inequality constraints without penalizing infeasi-
ble solutions. PolyEDA is designed in such a way that no infeasible solutions
are created during the optimization process. Therefore, the different parts of
an EDA like the construction of a probabilistic model, or the sampling of new
solutions, must be modified such that the inequality constraints are satisfied.
Consequently, PolyEDA uses factorizations of truncated multi-normal distribu-
tions that consider the inequality constraints for the building of probabilistic
models. Furthermore, the sampling of new solutions according to the given
constraints is done using Gibbs sampling [7, 8]. Gibbs sampling allows us to
sample inside the boundaries of the polyhedral search space described using
a set of linear inequality constraints by iteratively constructing a density ap-
proximation which lies entirely inside the polyhedron. Therefore, the Gibbs
sampler uses well known univariate conditional distributions instead of calcu-
lating the highly complicated multivariate constrained densities directly. In
contrast to standard EDAs, PolyEDA is able to optimize highly constrained
optimization problems, and example results on constrained Rosenbrock prob-
lems show a higher performance of PolyEDA in comparison to a standard EDA
using rejection sampling.

The paper is structured as follows. The following section introduces some
basic results from polyhedral theory that are relevant for linear inequality con-
straints. Section 2.2 outlines the Gibbs sampling approach for multivariate
random number generation considering linear constraints. In section 3, the
functionality of PolyEDA is outlined by discussing all of its elements, namely
techniques for sampling the first generation (Sect. 3.2), the principles of model-
selection (Sect. 3.3), the estimation of parameters (Sect. 3.4), and the gener-
ation of new solutions (Sect. 3.5). In section 4, PolyEDA is applied to the
constrained Rosenbrock problem and its performance is compared to a stan-
dard EDA. The paper ends with some concluding remarks and a short outlook
into future work.

The notation and symbols we use throughout this paper are based on the
notation used in the IDEA-Framework (see [9]).

2

2 Polyhedrons and Gibbs Sampling

2.1 Polyhedral Theory

In most linear programming approaches, the feasible search space is described
by using a set of linear inequality constraints. Using certain assumptions, the
set of points in the search space that is feasible under a finite set of inequalities is
a polyhedron. Many classical optimization methods like the simplex algorithm
[10], cutting planes, or branch and cut techniques [11], are based on such a
polyhedral description of the search space. The mathematical grounding of
these approaches is the polyhedral theory. We introduce some basic definitions
[11] from polyhedral theory that are relevant for PolyEDA and which are used
in the later sections.

Definition 1 A polyhedron P ⊆ Rn is a set of points that satisfy a finite
number of linear inequalities. The linear inequalities are described using P =
{y ∈ Rn : Ax 6 c}, where (A, c) is an m× (n+ 1) matrix.

A polyhedron is a convex set. Thus, the set of points that are feasible under
a set of linear inequalities is a convex polyhedron. In the following we want to
use linear inequalities with the structure

a 6Dy 6 b, (1)

where the (n × n) matrix D has rank n. The vectors a and b are (n × 1)
each. Equation 1 allows the formulation of maximal n linearly independent
inequalities. Because each system of linear inequalities can be transformed into
a system with the structure Ax 6 c the set of points that are feasible under (1)
is a convex polyhedron.

2.2 Gibbs Sampling

Gibbs sampling is a statistical method that allows us to generate random vari-
ables from highly complicated distributions without calculating their density
functions. Complex calculations like the recurrent evaluation of normal inte-
grals can be replaced by a series of computational easier calculations. Gibbs
sampling was introduced by [7]. Later, the approach was modified and im-
proved by [12]. A good introduction into Gibbs sampling can be found in [13].
One of the first applications of Gibbs sampling is shown in [8], where it is used
for the digital restoration of images. In this paper, the Gibbs sampler is used
to generate random variables from multivariate normal distributions that are
subject to linear constraints [14].

2.2.1 The Gibbs Algorithm.

The following paragraphs describe how Gibbs sampling can be used for creating
multivariate random numbers.

We assume that we want to draw an n−dimensional random vector x =
(x1, x2, . . . , xn)′ from a multivariate density f(x). In addition, we assume (e.g.

3

due to the complexity of the density function) that there is no method available
for performing this task directly. Gibbs sampling can be used if all of the
following conditional distributions are known:

xi| {x1, . . . , xi−1, xi+1, . . . , xn} ∼ Pi(x1, . . . , xi−1, xi+1, . . . , xn), (2)

where i = 1 . . . n and Pi denotes the conditional distribution of xi given all
other variables xj (j 6= i). A second condition for using Gibbs sampling is that
a method is available that allows the efficient generation of random numbers
from the conditional distributions Pi.

Based on these assumptions we can describe the functionality of Gibbs sam-
pling: Let x0′ be a n−dimensional (starting) point in the multivariate distribu-
tion f(x). Then, Gibbs sampling iteratively creates the random variables:

x1
i |
{
x1

1, . . . , x
1
i−1, x

0
i+1, . . . , x

0
n

}
∼ Pi(x1

1, . . . , x
1
i−1, x

0
i+1, . . . , x

0
n) ∀(i = 1 . . . n)

(3)
Having done this for the first time, exactly n random numbers have been gener-
ated. The creation of these n random number is the first iteration of the Gibbs
sampling algorithm. The following iterations are carried out exactly the same.
Therefore, after generating the i’th random number of the j’th iteration, we
have:

xji |
{
xj1, . . . , x

j
i−1, x

j−1
i+1 , . . . , x

j−1
n

}
∼ Pi(xji , . . . , x

j−1
i−1 , x

j−1
i+1 . . . , x

j−1
n) (4)

After completing the jth iteration, the random vector has the following struc-
ture:

xj
′

= (xj1, . . . , x
j
n)′ (5)

The central element of Gibbs sampling is that with growing j the distribution
of xj

′
converges against the correct multivariate distribution of x [15].

It should be noted, that it is not necessary to calculate this multivariate
density directly. Instead, random numbers are drawn from conditional distri-
butions. As this is often less complex, Gibbs sampling has become a popular
method in many areas of statistics. The second aspect is that this vector does
not constitute a complete sample, but merely an n−dimensional point of the
multivariate density f(x). In order to generate a sample of size k, the above
steps can be repeated k times. Alternative methods for generating samples of
a specific size can be found in [13].

2.2.2 Sampling from Truncated Multinormal Distributions.

The method outlined in the previous paragraphs can be used to generate ran-
dom vectors according to complex multivariate distributions. In the following
paragraphs, we explain a Gibbs sampler for generating i.i.d. (identically, inde-
pendently distributed) random vectors from multivariate normal distributions
that are subject to linear constraints. The algorithm has been developed by [14].
For technical and mathematical details on truncated multinormal distributions
compare [16, p. 204].

4

Supposing we want to generate n−dimensional random vectors x that fol-
low a multivariate normal distribution, but at the same time consider linear
inequality constraints:

x ∼ N (µ,Σ), s.t. a 6Dx 6 b, (6)

where x = (x0, x1, . . . , xn−1) and N (µ,Σ) is the n−variate multinormal distri-
bution with mean vector µ and covariance matrix Σ. Furthermore, −∞ and
+∞ may be elements of a and b and the matrix D is (n × n) and of rank
n. This allows the formulation of maximal n linearly independent inequality
relationships. Generating random numbers from (6) is equal to the generation
of random numbers from

z ∼ N (0,T), α 6 z 6 β (7)

with
T = DΣD′, α = a−Dµ, and β = b−Dµ. (8)

The vector x can be calculated from z as

x = µ+D−1z

Many different methods have been developed for the sampling of random values
from the distribution described by 7. An overview of such methods can be found
in [17]. A problem all methods have to solve is that, in general, iterated cal-
culations of the normal integral are necessary when sampling random numbers
according to equation 7. Also, these methods are most often incapable of gen-
erating i.i.d. samples. By using a Gibbs sampler, i.i.d. samples from 7 can be
generated without performing iterated calculations of the normal integral [14].
A necessary condition for using a Gibbs-sampler is previous knowledge regard-
ing the conditional distribution of one random variable xi on all other random
variables xj, (i 6= j). These conditional distributions are truncated univariate
normal. As a result, when using a Gibbs sampler the recurrent evaluation of
normal integrals can be replaced by repeated sampling from a truncated uni-
variate normal distribution. This is a less complex problem, and highly efficient
techniques for this purpose exist [14].

3 PolyEDA: Combining EDAs with Linear Constraints

This section describes PolyEDA, an EDA that is able to consider a set of lin-
ear inequality constraints during optimization. It uses a continuous problem
representation and a solution is represented by the vector y = (y1, y2, . . . , yn)′.
PolyEDA is the result of combining EDA with a system of linear inequalities
of the type

a 6Dy 6 b. (9)

The set of n−dimensional points that satisfy (9) is a polyhedron (compare
section 2.1). PolyEDA is able to sample new solutions according to the bound-
aries of this search space and to consider problem-specific knowledge. Modeling

5

problem-specific knowledge as a set of linear inequality constraints is a common
technique in evolutionary computation [6] and mathematical programming [18].

To consider linear constraints in PolyEDA, the elements of the EDA (model
selection, parameter estimation, and sampling) must be modified. The following
sections outline the necessary adaptations.

3.1 Probabilistic Model

In PolyEDA we use a probabilistic model that consists of factorizations of trun-
cated multinormal distributions. This probabilistic model is based on multivari-
ate normal factorizations as used in the IDEA-Framework [9] and additionally
incorporates a set of linear inequality constraints. The truncated distributions
reflect the constrained nature of the search space. All n−dimensional points
that are feasible under the linear inequality constraints have positive, non-
negative probabilities. All infeasible points have a probability of 0. Then, the
model can be formulated as

P(v,θ)(Y)(y) =

|v|−1∏

i=0

PN(µvi ,Σvi)
(Yvi)(y)

s.t. a ≤Dy ≤ b,
(10)

where a solution is represented by a vector y = (y0, y1, . . . , y(n−1))
′ of random

variables. y can be separated into subsets of random variables and all subsets
follow multivariate truncated normal distributions. Random variables of differ-
ent subsets are independent of each other; random variables in the same subset
depend on each other. For indicating the different subsets we use node vectors
vi. The entries of each node vector are the indices of the variables of one sub-
set (all variables that depend on each other) and vi ∧ vj = () for all i 6= j.
This means, that each random variable occurs only in one node vector. The
partition vector v consists of all vi and describes the structure of the whole
factorization. The set of parameters θ consists of the mean vectors µvi and
covariance matrices Σvi of each node vector.

The matrix D is (n × n) and of rank n. Individual elements of a and b
must be real values, using ±∞ is not allowed. This allows the formulation of n
inequality constraints.

3.2 Sampling the Initial Population

In EDA, the first population is sampled uniformly over all possible solutions.
Therefore, when using the model from equation 10, we have to uniformly sample
i.i.d. solutions inside the polyhedron, which is described by the inequality
constraints a ≤ Dy ≤ b. To the best of our knowledge, currently no efficient
method is available for doing this. Thus, for sampling the initial population,
we use rejection sampling, which means that we sample uniformly inside a cube
that entirely covers the polyhedron. We calculate lower and upper bounds for
each of the yi and all randomly sampled solutions that lie outside the polyhedron

6

are rejected and sampled again; all solutions that lie inside the polyhedron are
accepted and make up the initial population.

As the performance of rejection-sampling depends mainly on its acceptance
rate, we seek to maximize the number of accepted solutions by choosing close
bounds for the yi. The smallest rectangular region that entirely covers the
polyhedral search space can by calculated by the Fourier-Motzkin-elimination
(see [19]). This technique eliminates variables from the inequality system a ≤
Dy ≤ b. In order to generate the lower and upper bounds ai and bi for the
random variable yi, all variables yj, j 6= i are eliminated from the system, leaving
a single inequality ai 6 yi 6 bi. Doing this n times we get n inequalities which
are used as lower and upper bounds for the sampling of the initial population.

3.3 Model Selection

In the model selection step, the structure v of the factorization that fits best
to the current population is searched. If linear inequalities are considered, the
factorization is subdivided into a variable part and a fixed part. The variable
part depends on statistical properties of a population and describes the inter-
actions between the variables due to the fitness function. The fixed part of the
factorization depends on the linear inequalities and describes the interactions
between different elements of v.

To generate the variable part of the factorization, we use the greedy fac-
torization selection method outlined in [9]. This heuristic method uses local
search steps, beginning with a univariate factorization. The decision between
two candidate factorizations is based on a negative log-likelihood metric that
penalizes complexity of the factorization. The variable part of the factorization
has to be generated in every iteration of the EDA. It reflects the dependencies
between the random variables in the current area of the search space.

The fixed part of the factorization can be generated from the inequality
system a ≤Dy ≤ b. To do this, the lines of the matrix D have to be examined.
Let the sets Sj (j = 1 . . . n) denote the positions in which the matrix D has
entries 6= 0 in the jth line. Then, all variables y(Sj) depend on each other
following a truncated multivariate distribution.

The first n node vectors are determined by the n sets of variables y(Sj).
Then, it is checked whether the same random variables occur in more than one
node vector vi. If this is the case, these vectors are merged and duplicate entries
are deleted. This step is repeated, until every random variable appears in only
one node vector. It should be noted, that the fixed part of the factorization
needs only to be generated once. Since the matrix D does not change during
the optimization, the fixed part can be generated before the optimization and
the fixed factorization remains unchanged in later generations. It reflects the
dependencies that are necessary in order to consider the linear constraints.

After generating the variable and the fixed part of the factorization, these
two parts are combined to create the complete factorization. All dependencies
between the variables that are a result of the fixed parts of the factorization
are considered first. Then, the interactions that come from the variable part
are considered by checking whether they do not already occur in the fixed part.

7

Finally, it is examined whether some random variables occur in more than one
node vector. If this is the case, these vectors are merged and duplicated entries
are deleted. This step is repeated until every random variable appears in only
one node vector.

3.4 Estimation of Parameters

The set of parameters that has to be estimated consists of the mean vector µ
and the covariance matrix Σ. Well-known maximum likelihood estimators exist
for the estimation of µ and Σ from a sample S = (S0,S1, . . . ,S|S|−1) [16].

µ̂vi =
1

|S|
|S|−1∑

j=0

(Sj)vi , (11)

Σ̂vi =
1

|Sj |
|S|−1∑

j=0

((Sj)vi − µ̂vi)((Sj)vi − µ̂vi)′ (12)

Unfortunately, these estimators are designed for estimation from (multi)normal
samples and do not consider truncated normal samples. Nonetheless, we use
these estimators in PolyEDA being fully aware of the fact that modified estima-
tors need to be developed that consider the truncation of the distributions. We
believe that developing estimators that consider truncated distributions would
result in a significant enhancement of PolyEDA.

3.5 Sampling New Solutions

The sampling of new solutions according to equation 10 is not trivial as i.i.d.
random vectors must be generated from multinormal distributions that consider
the linear inequality constraints a ≤ Dy ≤ b. Therefore, PolyEDA uses the
Gibbs sampling algorithm outlined in section 2.2.2 for sampling new solutions.
This ensures that only feasible solutions are sampled and new populations lie
entirely inside the given boundaries of the search space. As a result, PolyEDA
does not need to use penalties to consider linear inequality constraints.

4 Experiments

In the following paragraphs PolyEDA is exemplarily applied to some versions of
the Rosenbrock problem. We want to illustrate how PolyEDA considers linear
inequality constraints during optimization in the probabilistic model and we
show that the direct sampling of feasible solutions results in higher performance
in comparison to standard EDAs using rejection sampling. We are aware of the
fact that to fully evaluate the performance of PolyEDA more exhaustive tests on
a large number of different test problems are necessary. However, as the purpose
of this paper is on introducing and explaining the functionality of PolyEDA we
postpone exhaustive tests until future publications.

8

4.1 Problem Definition

The Rosenbrock’s function is a highly non-linear function that is commonly
used for the test of numerical optimization methods. Rosenbrock’s function is
defined as

minimize: f(y) =

l−2∑

i=0

[
100

(
yi+1 − y2

i

)2
+ (yi − 1)2

]
, (13)

where l is the dimensionality of the problem. The optimal solution y? has
fitness f(y?) = 0 and is located at y?i = 0 (i = 1 . . . l). In our test problem
Rosenbrock’s function is defined for yi ∈ [−5.12; 5.12]. We used three test
problems of dimension ten, 20, and 40. In each of these test problems, l linear
inequalities of the following type have to be considered:

1.0 6 yi 6 2.0 ∀i = 1 . . . l (14)

These inequalities make up a rectangular feasible region. The optimal solution
of Rosenbrock’s function is at the edge of the search space.

4.2 Experimental Results

In our experiments, we compared a standard EDA to PolyEDA outlined in
section 4.1. For both EDAs we used a population size of N = 300 of which
the 100 best solutions are selected. A statistical model (compare section 3.1)
is build from these 100 best solutions and in the next generation 300 offspring
are generated according to this model using a sampling algorithm. In PolyEDA
we used Gibbs sampling as described in section 2.2.2 for the creation of new
solutions. The number of iterations j that has been used by the Gibbs sampler
to approximate the truncated distributions has been set to j = 100.

Both, the standard EDA and PolyEDA use factorizations of multivariate
normal distributions as outlined in [9]. The only difference lies in considering
the linear inequalities. PolyEDA considers the linear inequality constraints
when sampling new solutions by using Gibbs-sampling. In the standard EDA
new solutions are sampled using the unconstrained multi-normal distributions
and neglecting the linear constraints. To consider the additional constraints
newly generated solutions that are infeasible are rejected and not considered
for the creation of the statistical model (rejection-sampling). This means, that
invalid solutions (solutions that were infeasible under the linear inequalities
outlined in section 4.1), were rejected and sampled again (until the population
is filled).

PolyEDA and the standard EDA with rejection-sampling have been com-
pared on all three instances of the constrained Rosenbrock function. We per-
formed 15 runs for every problem instance. Fig. 1 shows the mean of the
average fitness of the best solution in a population (left) and the average fitness
of the population (right) over the number of generations for different sizes of
the Rosenbrock function.

The plots show that PolyEDA outperforms a standard EDA using rejection
sampling for the constraint Rosenbrock problem. Although both approaches

9

-350

-300

-250

-200

-150

-100

-50

 0

 0 2 4 6 8 10 12

fit
ne

ss

generations

PolyEDA
EDA with rejection sampling

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0 2 4 6 8 10 12

fit
ne

ss
generations

PolyEDA
EDA with rejection sampling

(a) l = 10

-1400

-1200

-1000

-800

-600

-400

-200

 0

 0 2 4 6 8 10 12

fit
ne

ss

generations

PolyEDA
EDA with rejection sampling

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 2 4 6 8 10 12

fit
ne

ss

generations

PolyEDA
EDA with rejection sampling

(b) l = 20

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 2 4 6 8 10 12

fit
ne

ss

generations

PolyEDA
EDA with rejection sampling

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0

 0 2 4 6 8 10 12

fit
ne

ss

generations

PolyEDA
EDA with rejection sampling

(c) l = 40

Figure 1: The plots show the mean of the average fitness of the best solution
(left) and the average fitness of a population (right) over the number of gen-
erations. Results are presented for the constraint Rosenbrock function of size
l = 10 (Fig. 1(a)), l = 20 (Fig. 1(b)), and l = 40 (Fig. 1(c)). The constraints
are chosen such that the optimal solution is at the edge of the feasible solution
space. The results show that PolyEDA outperforms a standard EDA using
rejection sampling independently of the size of the problem.

10

Table 1: Average percentage of infeasible solutions
dimension l 10 20 40

rejection sampling 8.58 % 23.1 % 60.8 %

PolyEDA 0 %

use the same population size (N = 300), PolyEDA results in better results in
terms of average population fitness as well as average best fitness. Obviously,
using a probabilistic model and a sampling technique that considers the given
linear constraints is advantageous and lead to more efficient EDAs.

Standard EDAs using rejection sampling have the problem that many of the
sampled individuals are infeasible. Table 1 shows the average ratio of infeasible
solutions to all generated solutions. The results are averaged over all fifteen runs
and all generations. When applying standard EDA with rejection sampling to
the 40-dimensional constraint Rosenbrock function, more than 60 percent of
all generated solutions are infeasible which results in a great overhead. This
situation can become even worse for highly constraint optimization problems.
This problem of standard EDAs illustrates the advantage of PolyEDA which
did not generate a single infeasible solution.

5 Conclusions and Further Work

This work presented the functionality of PolyEDA, an EDA that is able to con-
sider linear inequality constraints during the optimization without penalizing
infeasible solutions. In section 2.1 the paper reviewed some foundations of poly-
hedral theory and Gibbs sampling which are necessary for PolyEDA. Section 3
explained in detail PolyEDA and focused on the different aspects like sampling
of the first generation, model selection, the estimation of parameters, and the
generation of new solutions from the probabilistic model. Finally, section 4
compared exemplarily the performance of PolyEDA to a standard EDA using
rejection sampling for some variants of the constrained Rosenbrock function.

PolyEDA is a new type of EDA that allows us to directly consider linear
inequality constraints. It was designed in such a way that it avoids the creation
of infeasible solutions. The used probabilistic model is based on factorizations
of multivariate truncated normal distributions. In this model, all solutions that
are feasible under the linear inequality constraints have positive probabilities,
solutions that are infeasible have a probability of zero. For the sampling of fea-
sible solutions from this model, a Gibbs sampler is used. Gibbs sampling allows
the generation of random values from the multivariate truncated distribution
without calculating their density. By using a Gibbs sampler, the complex calcu-
lation of the density can be avoided and replaced by the generation of random
values from univariate truncated normal distributions.

This paper illustrated exemplarily the performance of PolyEDA for some
small examples of the constraint Rosenbrock problem. In further work, PolyEDA
should be applied to a larger variety of linearly constraint optimization problems
and also compared to different other techniques that can be used for solving con-

11

strained optimization problems. Furthermore, PolyEDA should be continuously
improved. The work presented here focused on the sampling of solutions from
multivariate truncated distributions by using Gibbs sampling and neglected a
proper estimation of truncated distributions. This aspect should be addressed
in future work.

References

[1] Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation
of distributions I. Binary parameters. In: Lecture Notes in Computer
Science 1411: Parallel Problem Solving from Nature - PPSN IV. (1996)
178–187

[2] Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization in
continuous domains by learning and simulation of Gaussian networks. In
Wu, A.S., ed.: Proceedings of the 2000 Genetic and Evolutionary Compu-
tation Conference Workshop Program. (2000) 201–204

[3] Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by
building and using probabilistic models. Technical Report IlliGAL Report
99018, University of Illinois at Urbana-Champaign (1999)

[4] Michalewicz, Z.: Heuristic methods for evolutionary computation tech-
niques. Journal of Heuristics 1 (1995) 177–206

[5] Michalewicz, Z., Deb, K., Schmidt, M., Stidsen, T.J.: Towards understand-
ing constraint-handling methods in evolutionary algorithms. In Angeline,
P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A., eds.: Proceed-
ings of the Congress on Evolutionary Computation. Volume 1., Mayflower
Hotel, Washington D.C., USA, IEEE Press (1999) 581–588

[6] Michalewicz, Z., Schoenauer, M.: Evolutionary computation for con-
strained parameter optimization problems. Evolutionary Computation 4
(1996) 1–32

[7] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller,
E.: Equation of state calculations by fast computing machines. Journal of
Chemical Physics 21 (1953) 1087–1091

[8] Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the
bayesian restauration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence 6 (1984) 721–741

[9] Bosman, P.A.N.: Design an Application of Iterated Density-Estimation
Evolutionary Algorithms. PhD thesis, University of Utrecht, Institute of
Information and Computer Science (2003)

[10] Vanderbei, R.J.: Linear Programming, Foundations and Extensions. Vol-
ume 2 of International Series In Operations Research And Management
Science. Kluwer Academic Publishers, Boston (2001)

12

[11] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics and Optimization
(1999)

[12] Hastings, W.K.: Monte carlo sampling methods using markov chains and
their applications. Biometrika 57 (1970) 97–109

[13] Casella, G., George, E.I.: Explaining the gibbs sampler. The American
Statistician 46 (1992) 167–174

[14] Geweke, J.: Efficient simulation from the multivariate normal and student-
t distributions subject to linear constraints and the evaluation of constraint
probabilities. Technical report, University of Minnesote, Dept. of Eco-
nomics (1991)

[15] Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association 87
(1990) 398–409

[16] Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Dis-
tributions. Volume 2 of Wiley Series in Probability and Statistics. John
Wiley and Sons (2000)

[17] Hajivassiliou, V.A., McFadden, D. L.and Ruud, P.A.: Simulation of mul-
tivariate normal orthan probabilities: Methods and programs. Technical
report, M.I.T. (1990)

[18] Williams, H.: Model Building in Mathematical Programming. Volume 4.
Auflage. Wiley (1999)

[19] Duffin, R.: On fourier’s analysis of linear inequality systems. Mathematical
Programming Study 1 (1974) 71–95

13

