
Developing Efficient Metaheuristics for Communication

Network Problems by using Problem-specific Knowledge

Franz Rothlauf and Armin Heinzl

Working Paper 9/2004
August 2004

Working Papers in Information Systems

University of Mannheim

Department of Business Administration and Information Systems
D-68131 Mannheim/Germany

Phone +49 621 1811691, Fax +49 621 1811692
E-Mail: wifo1@uni-mannheim.de

Internet: http://www.bwl.uni-mannheim.de/wifo1

Developing Efficient Metaheuristics for

Communication Network Problems by using

Problem-specific Knowledge

Franz Rothlauf

Dept. of Business Administration and Information Systems

University of Mannheim

D-68131 Mannheim/Germany

rothlauf@uni-mannheim.de

Armin Heinzl

Dept. of Business Administration and Information Systems

University of Mannheim

D-68131 Mannheim/Germany

heinzl@uni-mannheim.de

August 24, 2004

Abstract

Metaheuristics, such as evolutionary algorithms or simulated annealing,
are widely applicable heuristic optimization strategies that have shown
encouraging results for a large number of difficult optimization problems.
To show high performance, metaheuristics need to be adapted to the
properties of the problem at hand. This paper illustrates how efficient
metaheuristics can be developed for communication network problems by
utilizing problem-specific knowledge for the design of a high-quality prob-
lem representation. The minimum communication spanning tree (MCST)
problem finds a communication spanning tree that connects all nodes and
satisfies their communication requirements for a minimum total cost. An
investigation into the properties of the problem reveals that optimum so-
lutions are similar to the minimum spanning tree (MST). Consequently,
a problem-specific representation, the link biased (LB) encoding, is devel-
oped, which represents trees as a list of floats. The LB encoding makes
use of the knowledge that optimum solutions are similar to the MST,
and encodes trees that are similar to the MST with a higher probability.
Experimental results for different types of metaheuristics show that meta-
heuristics using the LB-encoding efficiently solve existing MCST problem
instances from the literature, as well as randomly generated MCST prob-
lems of different sizes and types.

1 Introduction

The problem of designing a communication network for a given set of require-
ments is relevant for communication providers, as well as for companies and

1

institutions who want to build up their own communication infrastructure by
renting, or buying, communication capacities from communication providers.
The problem considered in this paper involves selecting a spanning tree for the
network on which all communication will be performed. Tree structures are
especially important for the design of smaller networks like corporate networks,
access networks, or local area networks. The problem of building up cost-
minimal communication spanning trees was formalized by the minimum com-
munication spanning tree (MCST) problem. The MCST problem (Hu, 1974)
finds a spanning tree that connects all given nodes and satisfies their commu-
nication requirements for a minimum total cost. The number and positions of
the network nodes are given a priori and the cost of the network is determined
by the cost of the links. Like other constrained spanning tree problems, the
OCST problem is NP-hard (Garey & Johnson, 1979).

The purpose of this paper is to demonstrate how the MCST problem can
efficiently be solved by using metaheuristics when problem-specific knowledge
is considered for the design of an appropriate tree representation. Previous
work (Rothlauf et al., 2003) has shown that optimal solutions for MCST prob-
lems are on average similar to the minimum spanning tree (MST) defined on
the distance weights of the links. This problem-specific knowledge about the
MCST problem can be utilized by combining metaheuristics like evolutionary
algorithms (EA), or simulated annealing, with the link-biased (LB) encoding,
which is a representation for trees. The LB encoding does not represent all
possible trees with the same probability, but randomly chosen LB-encoded so-
lutions encode trees that are similar to the MST with higher probability than
randomly chosen trees. Performance evaluations are presented for a collection
of existing problem instances from the literature as well as randomly generated
MCST problem instances. The experimental results show that due to the over-
representation of MST-like trees, metaheuristics using the link-biased encoding
show higher performance than metaheuristics that use representations which
encode all possible trees uniformly. The presented work is an example on how
the efficiency of metaheuristics can be increased in a systematic way by mak-
ing use of additional problem-specific knowledge regarding the problem to be
solved.

The paper is structured as follows: The following section gives a short de-
scription of the MCST problem, reviews existing approximation algorithms,
and gives an overview of earlier work which demonstrates that optimal solu-
tions for MCST problems are similar to the MST. Section 3 demonstrates how
metaheuristics and especially EAs can be adopted for solving the MCST prob-
lem. It describes the functionality and relevant design parameters of EAs and
introduces the LB-encoding, which allows to represent trees similar to the MST
with a higher probability. Section 4 presents experimental results for exist-
ing problem instances from the literature as well as for randomly created test
problems. The paper ends with concluding remarks.

2

2 The Minimum Communication Spanning Tree Prob-

lem

The design of optimal communication networks that satisfy a given set of re-
quirements has been studied extensively in the literature. Many different vari-
ants, with or without additional constraints, have been examined, and either ex-
act optimization approaches or heuristics have been developed (for an overview
compare Kershenbaum (1993), Cahn (1998), or Chang and Gavish (1993)). This
section introduces the minimum communication spanning tree (MCST) prob-
lem, reviews existing methods for solving this problem, and discusses relevant
properties of optimal solutions.

2.1 Problem Description

The minimum communication spanning tree problem (also known as optimal
communication spanning tree problem or simple network design problem (John-
son, Lenstra, & Kan, 1978)) was introduced in Hu (1974). The problem is listed
as [ND7] in Garey and Johnson (1979) and Crescenzi and Kann (2003). For the
MCST problem, the number and positions of network nodes are given a priori
and the cost of the network is determined by the cost of the links. A link’s flow
is the sum of the communication demands between all pairs of nodes communi-
cating either directly, or indirectly, over the link. The goal is to find a tree that
connects all given nodes and satisfies their communication requirements for a
minimum total cost. The cost for each link is not fixed a priori but depends
on its length and its capacity. A link’s capacity must satisfy the flow over this
link, which depends on the entire tree structure.

The MCST problem can formally be defined as follows. An undirected
graph is denoted as G = (V,E). n = |V | denotes the number of nodes and
m = |E| denotes the number of edges of the graph. There are communication
or transportation demands between the n different nodes. The demands are
specified by an n × n demand matrix R = (rij), where rij is the amount of
traffic required between location vi and vj. An n × n distance matrix W =
wij determines the distance weights associated with each pair of sites. A tree
T = (V, F) where F ⊆ E and |F | = |V | − 1 is called a spanning tree of G if it
connects all the nodes. The weight w(T) of the spanning tree is the weighted
sum over all pairs of vertices of the cost of the path between all pairs in T . In
general,

w(T) =
∑

i,j∈F

f (wij, bij) ,

where the n×n matrix B = bij denotes the traffic flowing directly and indirectly
between the nodes i and j. It is calculated according to the demand matrix
R and the structure of T . T is the minimum communication spanning tree if
w(T) ≤ w(T ′) for all other spanning trees T ′.

For the MCST problem as proposed by Hu (1974) the cost of a link is
calculated as the product of the distance weight wij times the overall traffic bij

running over the link. Therefore, f = wijbij . The MCST problem becomes the
minimum spanning tree (MST) problem if f = wij . Then, T is the minimum

3

spanning tree if w(T) ≤ w(T ′) for all other spanning trees T ′, where w(T) =∑
i,j∈F wij.

Cayley’s formula identified the number of spanning trees on n nodes as nn−2

(Cayley, 1889). Furthermore, there are n different stars on a graph of n nodes.
The similarity between two spanning trees Ti and Tj can be measured using the
distance dij ∈ {0, 1, . . . , n − 2} which is defined as

dij =
1

2

∑

u,v∈V

|liuv − ljuv|· (1)

liuv is 1 if a link from u to v exists in Ti and 0 if it does not exist in Ti. The
number of links that two trees Ti and Tj have in common can be calculated as
n − 1 − dij .

2.2 Solving the Minimum Communication Spanning Tree Prob-

lem

Like other constrained spanning tree problems, the MCST problem is NP-
hard (Garey & Johnson, 1979, p. 207). Further more, it was shown in Reshef
(1999) that the problem is MAX SNP-hard (Papadimitriou & Yannakakis,
1991) which means it cannot be solved using a polynomial-time approximation
scheme, unless P = NP . Therefore, the MCST problem belongs to the class of
optimization problems that behave like MAX-3SAT (Garey & Johnson, 1979).

Only for a few easy and restricted problem instances, algorithms have been
developed that return optimal solutions. Hu (1974), who introduced the MCST
problem, gave exact algorithms for two specific versions of the MCST problem.
He showed that for the complete unweighted graph version, where wij = 1 for
every i and j, the problem can be solved in polynomial time using the Gomory-
Hu spanning tree algorithm (Gomory & Hu, 1961; Hu, 1974). Hu called this
the optimum requirement spanning tree problem. In addition, he showed for
the uniform demand version of the MCST where the communication demands
rij between any two sites are equal that the optimal solution is a star if the
distance weights wij satisfy a stronger version of the triangle inequality: for
every 1 ≤ i, j, k ≤ n such that wij ≤ wik ≤ wjk, we have (wjk − wij)/wik ≤
(n − 2)/(2n − 2). If both the communication demands rij and the distances
weights wij between any two sites are equal, then the optimal solution is also
a star. Later Johnson et al. (1978) showed that only the uniform demand
version, where the wij satisfy this stronger version of the triangle equation, can
be solved in polynomial time and that all other uniform demand versions of the
MCST problem, where wij ∈ {1,∞} are NP-hard. Wu et al. (1998) extended
this work and showed that the uniform demand version where the weights wij

satisfy the triangle inequality, is NP-hard. For the uniform demand version,
Wong (1980) presented a heuristic that finds a tree T which has a maximum
cost of twice that of the optimal solution, w(T) ≤ 2w(Topt).

The development of exact optimization methods for the general, non-uniform
demand version of the MCST problem showed less success. Some early work
(Dionne & Florian, 1979; Lin, 1982; Gavish, 1983; Gavish & Altinkemer, 1990)

4

addressed the general network design problem and developed heuristics for find-
ing optimal graphs G (not trees T) for given distance weights wij and demands
rij . However, as the assumptions that are made for solving the general network
design problem are incompatible with solving the MCST problem (compare
Palmer (1994, p. 10ff)), these heuristics can not be applied to the MCST prob-
lem. Later, Peleg (1997) showed that the MCST problem is reducible to a prob-
lem called minimum average stretch spanning tree (MAST) problem. Therefore,
both problems are equivalent to each other and approximation algorithms for
the MAST problem can also be used for the MCST problem. In the MAST
problem, which was introduced in Alon et al. (1995), a graph G and a distance
matrix W is given and a spanning tree T has to be found that minimizes the
average stretch of the edges (e.g. minimize 1

n−1

∑
i,j∈E tTij/wij , where tTij is the

sum of all the weights along the path between i and j in the spanning tree
T). Alon et al. presented a randomized algorithm for the MAST problem that
constructs a spanning tree such that the average cost of the tree is less than,
or equal to, exp(O(

√
log n log log n)).

Other approximation algorithms for the MCST problem are based on the
volume of communication w(G) =

∑
i,j∈E rijt

G
ij in the complete graph G, where

tGij is the sum of all the weights along the shortest path between i and j in G.
w(G) represents a trivial lower bound for w(T) because it considers the full
original graph G and not only the links used for the tree T . Bartal (1996) and
Wu et al. (1998) presented a randomized algorithm that constructs a span-
ning tree T with expected communication cost w(T) = O(log2 n)w(G). This
result has been improved by Bartal (1998) to an O(log n log log n) approxima-
tion. Around the same time, non-randomized, deterministic algorithms were
developed that find a spanning tree with cost w(T) = O(log2 n)w(G) (Peleg
& Reshef, 1998; Reshef, 1999). Charikar et al. (1998) improved these re-
sults and presented a deterministic approximation algorithm that results in
w(T) = O(log n log log n)w(G). When using Euclidean distances for the dis-
tance weights wij , Charikar et al. (1998) and Reshef (1999) presented de-
terministic approximation algorithms that output a spanning tree with cost
w(T) = O(log n)w(G). Despite the progress in developing approximation al-
gorithms for the MCST problem that are based on the volume of communi-
cation w(G), Alon et al. (1995) showed that such approximation techniques
cannot approximate the original MCST problem better than Ω(log n). They
demonstrated that there are graphs (and in particular the two-dimensional
MCST problem) where the gap between w(T) and w(G) cannot be lower than
w(T) = Ω(log n)w(G). For more detailed information about approximation
algorithms for the MCST problem, we refer to Reshef (1999).

When summarizing the development of optimization algorithms for the
MCST problem, we conclude that no efficient algorithmic methods for solv-
ing the MCST problem are available. Some algorithms exist for simplified
versions of the MCST problems (complete unweighted graph problem and uni-
form demand problems), but there are no efficient methods for standard MCST
problems. Similarly, deterministic and randomized approximation algorithms
for the MCST problem are available which are based on the volume of commu-

5

nication w(G), but none of them is able to solve realistic MCST problems, or
output optimal or near-optimal solutions (w(T) ≥ Ω(log n)w(G)).

To overcome the problems with classical optimization approaches, and to
develop more efficient optimization methods for the MCST problem, researchers
have used metaheuristics like evolutionary algorithms, simulated annealing,
tabu search, and other approaches. Such methods do not construct a tree
according to an algorithmic method, but search through the search space con-
sisting of all possible trees. It was recognized early on that the proper choice
of a representation is crucial for the performance of metaheuristics. A rep-
resentation determines how trees are encoded such that search operators can
be applied. Commonly, trees are encoded as vectors or lists of strings where
different strings encode different trees.

One of the first metaheuristic approaches for the MCST problem was pre-
sented by Palmer (1994). When applying evolutionary algorithms (EA) to the
MCST problem, he recognized that the design of a proper tree representation is
crucial for the performance of metaheuristics. Palmer compared different types
of problem representations for trees and developed a new representation, the
link and node biased (LNB) encoding. EAs using the LNB encoding showed
good results in comparison to a greedy star search heuristic (Palmer, 1994,
chapter 5).

The characteristic vector (CV) encoding is a common approach for encoding
graphs (Davis et al., 1993; Tang et al., 1997; Sinclair, 1995; Berry et al., 1997;
Berry et al., 1999) and trees (Berry, Murtagh, & Sugden, 1994; Berry, Murtagh,
& McMahon, 1995). It represents a tree resp. graph as a list of n(n−1)/2 binary
values (compare section 3.4). The CV encoding shows good performance when
used for encoding trees with a low number of nodes. However, with increasing
problem size the performance of the CV encoding decreases and metaheuristics
using this encoding show low performance (compare Rothlauf (2002, 6.4)).

Recently, several EAs using direct representations for trees have been pre-
sented, a direct representation for trees (Li, 2001), the edge-set encoding (Raidl
& Julstrom, 2003), and the NetDir encoding (Rothlauf, 2002). When using
direct representations for tree problems, there is no additional mapping from
the original search space (consisting of trees) to a different search space, where
the search operators are applied to, but problem-specific search operators are
applied directly to trees. Therefore, metaheuristics search through the search
space by directly modifying the structure of a tree. The performance results
presented for direct representations are similar to weighted encodings, however
it is difficult to design the search operators in such a way that the search space
consisting of all possible trees is searched uniformly (Tzschoppe et al., 2004).

Weighted encodings, like the LNB encoding (Palmer, 1994), the weighted
encoding (Raidl & Julstrom, 2000), the NetKey encoding (Rothlauf, Goldberg,
& Heinzl, 2002), or variants of the LNB-encoding (Krishnamoorthy & Ernst,
2001) represent a tree using a list of continuous numbers (weights). The weights
define an order of the edges of the corresponding tree and the represented tree
is constructed from an ordered list of edges. Weighted encodings showed good
performance when used for tree optimization problems. For more information
about weighted encodings, we refer to section 3.3 and 3.4. Furthermore, Abuali

6

et al. (1995) introduced the determinant factorization. This representation is
based on the in-degree matrix of the original graph and each factor represents
a spanning tree if the determinant corresponding to that factor is equal to one.
The results showed that this encoding shows similar performance to the LNB
encoding.

Prüfer numbers have been introduced by (Prüfer, 1918) as a constructive
proof of Cayleys theorem (Cayley, 1889) and have been subsequently used for
different spanning tree problems like the MCST problem (Palmer, 1994; Palmer
& Kershenbaum, 1994; Kim & Gen, 1999; Rothlauf, 2002), or the degree con-
straint spanning tree problem (Zhou & Gen, 1997; Krishnamoorthy et al., 1999).
Prüfer numbers describe a one-to-one mapping between spanning trees on n
nodes and strings of n − 2 node labels. Prüfer numbers, like other one-to-one
mappings between spanning trees and strings, lead to a low performance of
metaheuristics (Rothlauf & Goldberg, 1999; Gottlieb et al., 2001; Julstrom,
2001) as small changes in the string, which encodes a tree, result on average in
large changes in the encoded tree. Picciotto (1999) presented other one-to-one
mappings between strings of length n − 2 and trees like the Blob Code, the
Happy Code and the Dandelian Code which have similar properties to Prüfer
numbers.

Furthermore, Rothlauf et al. investigated how different tree representations
influence the performance of EAs for the MCST problem (Rothlauf & Goldberg,
2000; Rothlauf, Goldberg, & Heinzl, 2002). A summary of this work, which also
includes determinants for high-quality representations, can be found in Rothlauf
(2002). Other work applying EAs to MCST and related problems (e.g. degree
constraint MST problems) have been presented by Premkumar, Chu, and Chou
(compare Premkumar et al. (2001) or Chu et al. (2000)).

In summary, due to the lack of efficient algorithmic methods, a large amount
of work has applied metaheuristics like EAs to MCST problems. When using
metaheuristics for tree problems, the choice of a proper tree representation is
an important factors for success. Promising representations are either weighted
representations or direct representations which both show good results. Other
encodings like Prüfer numbers or the CV encoding result in problems for meta-
heuristics and are not well suited for solving the MCST problem (Palmer, 1994;
Rothlauf, 2002).

2.3 Properties of the Minimum Communication Spanning Tree

Problem

To develop efficient and problem-specific optimization methods for the MCST
problem, it is necessary to examine the properties of the problem and to identify
important and general properties. This subsection summarizes relevant prop-
erties of the MCST problem that can be used for the development of problem-
specific metaheuristics.

A great benefit of metaheuristics, like EAs or local search approaches, is
that the underlying search concepts are simple and general, and that they can
be applied with little effort to a wide range of different problems. Many re-
searchers believe that the main reason for the widespread use of metaheuristics

7

is that they can easily be adapted to new or modified problems. The basic
principles are easy to understand, and practitioners without a profound scien-
tific background are also able to apply metaheuristics to real-world problems.
However, users often neglect that there is a trade-off between the number of
problems that can be addressed by a specific optimization method and the so-
lution quality that can be achieved for these problems (Goldberg, 1989, p.6).
In general, the efficiency of a specific optimization method decreases with the
number of problems that should be solved. At the extreme, if an optimization
method is designed to solve all possible optimization problems that can be de-
fined on a specific search space, this method does not perform on average better
than random search (Wolpert & Macready, 1995). However, there is hope as
optimization methods can perform better than random search if they focus only
on a subset of all possible optimization problems. Therefore, efficient methods
can be constructed by focusing only on a few specific problem types that should
be solved. In order, to develop such efficient and problem-specific optimization
methods, insights into specific properties of the problem must be available and
utilized. The following paragraphs describe properties of the MCST problem
that can subsequently be used for the design of problem-adapted metaheuristics.

When designing communication networks, the costs of a network strongly
depend on the distance weights wij of the links used in the graph. Network
structures that prefer links with low distance weights tend to have on average
lower overall costs. When focusing on 2-dimensional grids (resulting in Eu-
clidean distance weights wij), the weights of links near the gravity center of a
graph are lower than the weights of links that are far away from the gravity
center. Therefore, it is useful to run more traffic over the nodes near the gravity
center of a tree than over nodes at the edge of this tree (Kershenbaum, 1993).
Consequently, it is desirable to be able to characterize nodes as either interior
(some traffic only transits) or leaf nodes (all traffic terminates). The more im-
portant a link is and the more transit traffic that crosses one of the two nodes,
the higher is on average the degree of the nodes. Nodes near the gravity center
tend to have higher degrees than nodes at the edge of the network. This ob-
servation was used by Palmer (1994) for the design of the LNB encoding. This
tree encoding considers the relative importance of nodes in a tree and the more
important a node is, the more traffic transits over it (Palmer & Kershenbaum,
1994). The LNB encoding is an illustrative example of how properties of good
solutions for the MCST problem (more traffic is run over nodes near the gravity
center of a tree) can been used for the design of a high-quality representation
(LNB-encoding).

Another property of the MCST problem was observed by Rothlauf et al.
(2003). This work performed a statistical analysis on the properties of optimal
solutions Topt for randomly generated MCST problems using both Euclidean (on
a two-dimensional grid), and random distance weights wij . They compared the
average distances µ(dmst,rand) of randomly created trees towards the MST to
the average distances µ(dmst,opt) of the optimal solutions towards the MST. The
MST, as well as the distances, are calculated as described in section 2.1. The
results showed that the average distance between the optimal solution Topt and
the MST is significantly smaller than the average distance between a randomly

8

0

5

10

15

20

25

8 10 12 14 16 18 20 22 24 26
di

st
an

ce
 d

problem size n

µ(dmst,rand)
µ(dmst,opt) (random)

µ(dmst,opt) (Euclidean)

Figure 1: The plots show how µ(dmst,rand) and µ(dmst,opt) using random dis-
tances and Euclidean distances depend on the problem size n for randomly
created MCST problems. As µ(dmst,opt) < µ(dmst,rand), optimal solutions are
biased towards the MST.

created tree and the MST. Therefore, optimal solutions for the MCST problem
are biased towards the MST.

Figure 1 summarizes the results of this work and plots µ(dmst,rand) and
µ(dmst,opt) for Euclidean and random distance weights over the problem size
(number of nodes) n. The error bars indicate the standard deviations for 100
randomly chosen problem instances of each size n. It can be seen that optimal
solutions for MCST problems are strongly biased towards the MST. This means,
the probability that trees similar to the MST are the optimal solution of an
MCST problem is higher than the probability that randomly chosen trees are
the optimal solution. Consequently, this property of the MCST problem should
be used subsequently for the development of a problem-specific metaheuristic
for the MCST problem (compare section 3.3).

3 Evolutionary Algorithms for the Minimum Com-

munication Spanning Tree Problem

The following sections describe how EAs can be used for solving the MCST
problem. Section 3.1 describes the basic principles of EAs and section 3.2
reviews important design parameters of EAs. As the proper choice of a repre-
sentation is important for EA design, section 3.3 presents the LB encoding for
trees. This representation allows EAs to consider that high-quality solutions of
the MCST problem are similar to the MST. Finally, section 3.4 reviews some
representations for trees which should serve as a benchmark for the LB encoding
in section 4.

3.1 Evolutionary Algorithms

Evolutionary Algorithms (Rechenberg, 1973; Holland, 1975; Schwefel, 1975;
Goldberg, 1989; Reeves, 1997) are nature-inspired, metaheuristic optimization

9

methods that imitate basic principles of natural evolution and genetics and
apply genetic search operators like recombination, mutation, and selection to a
sequence of alleles. The sequence of alleles is the equivalent of a chromosome
in nature. A representation determines in which way possible solutions of the
optimization problem are encoded as a sequence of alleles.

The application of EAs pose no significant prior restrictions on the optimiza-
tion problem. To apply EAs, it is necessary to represent the problem solutions
such that genetic operators can be applied, and to define a performance mea-
surement that allows us to compare the quality of different candidate solutions.
In EA terminology, the candidate solutions are named phenotypes, the individ-
uals where the genetic operators are applied to are genotypes, and the mapping
that assigns the phenotypes to the genotypes is denoted a representation or
genotype-phenotype mapping. Genotypes can vary from binary strings to vec-
tors of real numbers, to permutations, to prosecution rules, to schedules, up to
program codes. When applying EAs, often different kinds of genotypes can be
used to represent the same optimization problem. For example, when encoding
trees (phenotypes), different genotypes like integer strings (Prüfer numbers),
or vectors of real numbers (weighted encodings), can be used. Performance
measurements for EAs can be based on a computer procedure, a simulation, an
interaction with a human, or any combination of them. The purpose of the per-
formance measurements is to distinguish between low-quality and high-quality
solutions. In EA terminology, the performance resp. quality of a solution is
named fitness.

In contrast to local search approaches like simulated annealing or tabu
search, EAs maintain a population of solutions. A population consists of a
number of individuals, and each individual represents one solution of the opti-
mization problem. The initial population of candidate solutions (individuals)
is usually generated randomly. Selection and variation operators are applied
iteratively to a population. Selection operators compare the fitness of individ-
uals in a population and remove – either deterministically or stochastically –
low quality solutions. In parallel, additional copies of individuals with higher
fitness are inserted. The heuristic search through the search space is performed
by variation operators like crossover and mutation. In analogy to nature, re-
combination operators construct new solutions that are similar to the original
solutions (parents) by randomly exchanging alleles between different individu-
als in a population. The application of mutation results in new solutions with
similar properties.

Researchers have proposed many different variants of EAs in the literature.
For illustrating the basic functionality of EAs we use the standard simple ge-
netic algorithm (GA) used by Goldberg (1989). Simple GAs use recombination
as the main search operator and mutation serves only as background noise.
GAs are widely used and well understood (Goldberg, 2002). GAs use a con-
stant population of size N , the genotypes consist of strings with fixed length l,
and recombination operators are directly applied to the genotypes. The basic
functionality of a simple GA is illustrated in table 1. After randomly creating
and evaluating an initial population, the algorithm continuously creates new
generations. New generations are created by recombining the selected highly

10

fit individuals and applying mutation to the offspring.
EAs have been applied• initialize population

create initial population
evaluate individuals in initial population

• create new populations iteratively
select fit individuals for reproduction
generate offspring with recombination operator
mutate offspring
evaluate offspring

Table 1: Basic functionality of an EA

to a large number of
different optimization
problems in many dif-
ferent application fields.
To give a full survey
over all EA applica-
tions is not possible
due to the large amount
of work that has been
done in this field. For

selected applications the reader is referred to Bäck, Fogel, and Michalewicz
(1997). More examples for EA applications can be found in the literature or
the main EA conferences.

3.2 Design Parameters of Evolutionary Algorithms

EAs can be classified according to the character of the main search operator
used. It can be distinguished between approaches that use either recombi-
nation or mutation as the main search operator. A common representative
of recombination-based EAs is the simple GA, which was already described
in the previous paragraphs. A prominent example for mutation-based EA
approaches are evolution strategies (ES) (Rechenberg, 1973; Schwefel, 1975;
Schwefel, 1995). GAs and ES follow different optimization paradigms and make
different assumptions about the character of the optimization problem they are
applied to. Therefore, they are suited for different types of problems.

Mutation-based EA approaches like ES mainly rely on mutation and are
common for continuous genotypes and parameter optimization problems. Al-
though ES show the same basic functionality as GAs (compare table 1), re-
combination is seen only as a form of statistical error correction for wrong
mutation steps (Beyer, 1995). Because ES use mutation (local search) as the
main search operator, they perform well if the structure of the search space
allows the population to move towards the high-quality solutions using iterated
mutation steps. Therefore, the use of ES is only promising if similar solutions
have similar properties and quality. Otherwise, if the fitnesses of similar geno-
types are uncorrelated, no systematic local search is possible and ES perform
like random search (Jones & Forrest, 1995). As ES have problems to overcome
local optima in the search space, they use a population of individuals, which
guarantees diversity, and they vary mutation step size to escape from local
optima. As mutation is the main search operator, the most relevant design pa-
rameters are the length and the direction of the mutation step, the properties
of the initial population, and the search strategy which determines how already
found solutions influence the next search steps.

In recombination-based EA approaches (Holland, 1975; Goldberg, 1989) like
the simple GA, recombination is the main search operator. Mutation is seen
as background noise and results in minor modifications of the genotypes. GAs

11

mainly use binary strings as genotypes and recombination operators should
create offspring that are similar to their parents by transferring meaningful
sub-structures (building blocks) from the parents to the offspring (Goldberg,
1989). Common recombination operators are uniform and n-point crossover.
When using uniform crossover, it is decided independently for every single al-
lele of the offspring from which parent it inherits the value of the allele. For
n-point crossover, n crossover points are randomly chosen in the string and two
offspring are created from two parents by swapping the substrings. Because
recombination-based EAs rely on the transfer of meaningful sub-structures from
parent to offspring, problems that can be solved by such EAs must be quasi-
decomposable that means it must be possible to create good solutions by com-
bining good sub-structures (Goldberg, 1989). Otherwise, if a problem can not
be decomposed, GAs show low performance (Goldberg, 2002).

The most relevant design parameters for GAs are the choice of the recombi-
nation operator and the used population size N . Recombination operators must
ensure that meaningful sub-structures are not destroyed when creating the off-
spring from the parent (Thierens, 1995). Harik et al. (1999) presented a model
that describes how the success probability Pn of GAs depends on the charac-
teristics of the optimization problem and on the population size N . For GAs
using binary strings and a proper crossover operator, Pn goes with O(1− e−N).
Therefore, with increasing population size the solution quality increases.

Other design criteria for EAs – GAs as well as ES – are the termination
criteria, the selection operator, and the problem representation used. The ter-
mination criteria determines when the search should be stopped. For GAs
using only crossover and no mutation, the run can be stopped after the popu-
lation is fully converged (all individuals represent the same solution). Common
selection operators are rank-based selection and fitness-proportional selection
(compare Bäck et al. (1997, section C2)). The choice of the genotypes and the
corresponding representation has a strong impact on EA performance (Liepins
& Vose, 1990; Rothlauf, 2002). Users have to choose what kind of genotype
they want to use for encoding the problem. Often there are different choices
like binary strings, integers, or more complex genotypic structures. Further-
more, a representation must be defined that determines which phenotypes are
represented by which genotypes.

3.3 A Proper Representation for the MCST Problem: The

Link-biased Encoding

The link-biased (LB) encoding (Palmer, 1994; Rothlauf & Goldberg, 2003) is
a weighted representation that encodes trees using real-valued alleles. When
using this representation in combination with metaheuristics, problem-specific
properties of the MCST problem (compare section 2.3) can be incorporated by
adjusting the representation parameters properly.

12

61

2

3

4

5

B

D

C

A

Figure 2: An example tree. The numbers indicate the number of a link.

3.3.1 Functionality

The general idea of the LB encoding is to represent a tree using a bias for every
edge of the graph and to modify the distance weights wij of the underlying
optimization problem according to these biases. A tree is constructed from the
modified distance weights w′

ij by calculating the MST. Therefore, when using
the LB encoding, a genotypic chromosome b holds biases for the links, and has
length n(n − 1)/2 for an n node network. When constructing the phenotype
(the tree) from the genotype (the bias vector b containing the n(n−1)/2 biases),
the genotypic biases are temporally added to the original distance weights wij .
To get the represented tree, Prim’s algorithm (Prim, 1957) is used to find the
MST using the modified distance weights w′

ij. By running Prim’s algorithm,
links with low w′

ij will be used with high probability, whereas edges with high
w′

ij will not exist in the tree. To finally get the tree’s fitness, the encoded tree is
evaluated by using the original distance weight matrix W and demand matrix
R.

The weights bk are floating values between zero and one. The original dis-
tance weights wij are modified by the elements of the bias vector bk as

w′

ij = wij + P1bkwmax (2)

where w′

ij are the modified distance weights, wmax is the largest distance weight
of a link (wmax = max(wij)), P1 is the link-specific bias, and k ∈ {1, 2, . . . , n(n−
1)/2} indicates the number of a link. The parameter P1 controls the influence
of the biases bk and has a large impact on the structure of the tree. For P1 = 0
the biases have no influence and only the MST calculated based on wij can
be represented. The construction of the phenotype can be implemented with
a Fibonacci heap and goes with O(n2). The structure of the represented tree
depends not only on the bias values bk, but also on the given distance weights
wij . Therefore, the same link-biased individual can represent different trees if
different distance weight matrices W are used.

We illustrate the construction of a tree from a bias vector bk for a small
example. For representing a tree with n = 4 nodes the genotype has length
l = n(n − 1)/2 = 6. For the example we want to use the link-biased individual
b = {0.1, 0.6, 0.2, 0.1, 0.9, 0.3}. With P1 = 1 and using the distance weights w =
{10, 30, 20, 40, 10, 20} we can calculate the modified cost according to equation
2 as w′ = {14, 54, 28, 44, 46, 32}. Notice that wmax = 40. The represented
tree that is calculated as the MST using the modified link costs w ′ is shown in
figure 2. The six possible edges are labeled from 1 to 6 and the tree consists
of the edges between A and B (link 1 with w′

AB = 14), A and D (link 3 with

13

w′

AD = 28), and C and D (link 6 with w′

CD = 32).
The LB encoding is a specialized version of the more general link-and-node-

biased (LNB) encoding, which was originally proposed by Palmer (1994). In
contrast to the LB encoding, the LNB encoding uses additional biases for each
node. Therefore, the length of an LNB-encoded individual is n(n − 1)/2 + n.
Abuali, Wainwright, and Schoenefeld (1995) compared the LNB encoding to
some other representations for the probabilistic MST problem and in some cases
found the best solutions by using the LNB encoding. Later, Raidl and Julstrom
(2000) proposed a variant of this encoding and observed solutions superior to
those of several other representations for the degree-constrained MST problem.
For the same type of problem, Krishnamoorthy and Ernst (2001) proposed
another version of the LNB encoding. Gaube and Rothlauf (2001) investigated
the properties of the LNB encoding and showed that due to the additional
node biases not all possible trees can be encoded, and trees that are similar to
a star are encoded with higher probability. Therefore, the LNB encoding with
additional node-biases is only useful if the optimal solutions are similar to stars.

3.3.2 Properties of the LB encoding

A representation is denoted to be redundant if the number of possible geno-
types exceeds the number of different phenotypes. The LB encoding describes
how a finite number of different trees (nn−2) can be represented by genotypes
consisting of n(n − 1)/2 real values. Therefore, the LB representation is a
redundant representation as each tree (phenotype) can be represented by an
infinite number of different genotypes. It was shown in Rothlauf and Goldberg
(2003) that for large values of the link-specific bias (P1 → ∞), the LB encoding
becomes uniformly redundant. This means, every possible tree is represented
by the same number of different genotypes. With decreasing P1, the LB en-
coding becomes non-uniformly redundant and solutions similar to the MST are
over-represented. Then, a randomly chosen LB-encoded individual represents
trees that are similarly to the MST with higher probability. At the extreme, if
P1 = 0, only one tree – the MST regarding the distance weights wij – can be
represented as the link biases bk have no impact on w′

ij.
Figure 3 summarizes the results from Rothlauf and Goldberg (2003) and

illustrates how the LB encoding over-represents trees that are similar to the
MST. The plots show the probability Pr that a link of a randomly generated
LB-encoded tree is part of the MST over the link-specific bias P1. Results are
presented for different tree sizes n (16 and 28 nodes) and for different values
of P1. The plots show the mean and the standard deviation of Pr for the LB
encoding as well as for a non-redundant representation (for example Prüfer
numbers) that represents all possible trees with the same probability. It can
be seen that for large values of P1 (P1 > 100), all nn−2 possible trees are
represented uniformly that means no particular links are over-represented by
the LB encoding. With decreasing P1, randomly created LB-encoded trees
contain links that are also used in the MST with higher probability. For small
values of P1, all edges of a randomly created individual are with high probability
Pr also part of the MST. For P1 → 0, only the MST can be encoded.

14

This means that if P1 is too small, not all possible trees can be represented.
Therefore, it has to be examined how large P1 must be chosen to allow the
LB encoding to represent all possible trees. Prim’s algorithm, which is used to
create the tree from the w′

ij, uses a sorted list of edges (which is sorted according
to w′

ij) and inserts iteratively edges with lowest w′

ij into the tree. Because the
LB encoding modifies the original distance weights wij (equation 2), it also
modifies this ordered list of edges and thus allows the encoding of trees that are
different from the MST. If P1 ≥ 1 (and bk = 1), P1bk max(wij) can be equal or
greater than the highest original distance weight max(wij). Then, the encoding
can completely change the ordered list of edges as for an edge from node l to m
the original wlm = min(wij) can be changed to w′

lm = min(wij)+P1 max(wij) >
max(wij) if P1 > 1. As a result, it is possible to encode all nn−2 different trees
using the LB encoding if the link-specific bias is set to P1 ≥ 1.

Based on this observation we are in

0.1

0.2

0.5

1

0.01 0.1 1 10 100 1000

P
r

link-specific bias P1

n=16, LB encoding
n=16, non-redundant

n=28, LB encoding
n=28, non-redundant

Figure 3: Probability that a link of a
randomly generated LB-encoded tree
is part of the MST over the link-
specific bias P1.

the position to offer a recommendation
for choosing P1. With lower P1 the LB
encoding over-represents trees that are
similar to the MST. As we have seen
in section 2.3, where high-quality solu-
tions of the MCST problem are simi-
lar to the MST, we expect higher per-
formance when using the LB encoding
with low values of P1. However, if P1 <
1, there is the possibility that some trees
can not be represented. Therefore, it
can be recommended to set P1 ≈ 1.
This ensures that all possible solutions
can be encoded while still over-repre-
senting solutions similar to the MST.

3.4 Other Representations for Trees

The following paragraphs shortly describe some representations that should
serve as a benchmark for the LB encoding in section 4.

Prüfer numbers are a one-to-one mapping between trees and a string of
length n − 2 over an alphabet of n symbols. Therefore, it is possible to derive
a unique tree with n nodes from the Prüfer number of length n − 2 and vice
versa (Even, 1973, pp. 104-106). The construction and deconstruction process
from the Prüfer number to the encoded tree and vice versa is lengthy and can
be found in detail in the literature (e.g. Rothlauf (2002)). Although, Prüfer
numbers do not allow efficient heuristic optimization (compare section 2.2),
they have been commonly used in the literature and should therefore be used
as a worst-case scenario.

The characteristics vector (CV) encoding uses a binary vector of length
n(n − 1)/2 that indicates whether a possible link is used in the graph. All
possible links are numbered, and each link must be assigned to a position in
the vector. When using CV for the encoding of trees, every CV must have

15

exactly n − 1 ones, the represented graph must be connected, and there are
no cycles allowed. This makes the construction of trees from randomly chosen
CV demanding as most of the randomly generated CV are infeasible, and do
not encode trees. Therefore, to ensure that a CV encoded solution always
represents a valid tree, repair mechanisms are necessary. The most common
approach (compare e.g. Berry et al. (1994)) is to remove in a first step the links
(set the allele in the corresponding CV to 0) that cause cycles in the represented
graph, and in a second step to add links to connect disconnected subtrees until
the represented tree is fully connected.

The CV encoding does not allow to store information about the importance
of different links. Therefore, weighted encodings have been introduced that use
continuous, instead of binary values, for the encoding of a tree. The weights
are used by construction algorithms that create a tree from a vector of weights.
Besides the LB and LNB encoding (compare section 3.3), common weighted
encodings are the NetKey encoding (Rothlauf et al., 2002), or the weighted en-
coding from Raidl and Julstrom (Raidl & Julstrom, 2000). NetKeys are based
on the random key encoding (Bean, 1992; Bean, 1994), which can be used for
the encoding of permutations. The NetKey encoding is similar to the LB en-
coding and represents a tree as a continuous vector of length n(n − 1)/2. The
represented tree is constructed from the list of weights by Kruskal’s algorithm
avoiding links that result in a cycle. NetKeys show similar performance as
the LB encoding using a large link-specific bias (P1 → ∞) (Rothlauf & Gold-
berg, 2003). NetKeys are uniformly redundant, this means the performance of
metaheuristics is independent of the structure of the optimal solution.

4 Performance Evaluation

The following section demonstrates how the MCST problem can be efficiently
solved by using metaheuristics and how the performance of metaheuristics can
be increased by the use of the LB encoding with a proper choice of P1. Section
4.1 compares the performance of different metaheuristics for existing problem
instances from literature and section 4.2 examines the performance of EAs and
simulated annealing for randomly created MCST problem instances of different
type and size.

4.1 Existing Problem Instances

Test instances for the MCST problem have been proposed by Palmer (1994),
Berry et al. (1995), and Raidl (2001). Palmer (1994) described MCST prob-
lems with six (palm6), twelve (palm12), and 24 (palm24) nodes. The nodes
correspond to cities in the United States and the distances between the nodes
are obtained from a tariff database. The inter-node traffic demands are in-
versely proportional to the distances between the nodes. Berry, Murtagh, and
McMahon (1995) presented three instances, one with six nodes (berry6) and
two with 35 nodes (berry35 and berry35u). For berry35u the distance weights
wij = 1. Raidl (2001) proposed several test instances ranging from 10 to 100

16

nodes. The distances and the traffic demands were generated randomly and are
uniformly distributed in the interval [0, 100].

Psuc

problem LB
instance n w(Topt) µ(dmst,rand) dmst,opt N CV Prüfer NetKeys P1 = 0.05 P1 = 0.5 P1 = 1 P1 = 2 P1 = 100

palmer6 6 693 180 3.36 1 16 0.42 0.07 0.365 0.275 0.88 0.66 0.495 0.325
palmer12 12 3428509 9.17 5 300 0.645 0.21 0.4 0 0.945 0.83 0.67 0.395
palmer24 24 1086656 21.05 12 800 0 0 0.71 0 0.08 0.50 0.67 0.75
raidl10 10 53674 7.20 3 70 0.785 0.09 0.81 0 1 1 1 0.77
raidl20 20 157570 17.07 4 450 0 0 0.435 0 0.975 0.955 0.88 0.455
berry6 6 534 3.51 0 16 0.71 0.185 0.475 1 1 0.98 0.88 0.505
berry35u 35 16273 - - 2000 0 0 0.04 0.08 0.42 0.32 0.25 0.05
berry35 35 16915 32.05 0 300 0 0 0.025 1 1 1 0.985 0.02

Table 2: Properties of test problems from the literature and success probabilities
Psuc of a GA using different types of representations. The results indicate high
and robust GA performance when using the LB encoding with P1 ≈ 1.

Table 2 lists the properties of the test instances. It shows for the different
test problems the number n of nodes, the cost w(Topt) of the optimum solution
Topt, the mean distance µ(dmst,rand) between the MST and a randomly created
tree, and the distance dmst,opt between the MST and the optimum solution.
The distances are measured according to equation 1 and the optimum solutions
are the best ever found (or best proven) solutions from the literature. As
wij = 1 for the berry35u problem, all solutions are MSTs and dmst,rand and
dmst,opt are not meaningful. For the calculation of µ(dmst,rand), 10 000 random
trees have been generated for every problem and their average distance towards
the MST have been calculated. The results reveal that the distances dmst,opt

between the optimum solution and the MST are significantly lower than the
average distances µ(dmst,rand) between randomly created trees and the MST
and therefore the optimum solutions are biased towards the MST.

Furthermore, Table 2 compares the performance of a standard GA using the
CV encoding, Prüfer numbers, NetKeys, and the LB encoding with different
link-specific bias P1 for the different test problems. As the optimum solutions
are biased towards the MST, it is expected that representations like the LB
encoding that can encode solutions similar to the MST with a higher probability
result in higher performance in comparison to unbiased representations. To
compare the performance of the different representations, a standard GA with
only crossover and no mutation (Pcross = 1 and Pmut = 0), standard tournament
selection without replacement (tournament size of two), and uniform crossover
was used. The GA is run 200 times for each of the test instances with population
size N , and Psuc denotes the percentage of these 200 runs where the optimal
solution was found. As discussed in section 3.2, GA performance increases with
greater N . Therefore, N is chosen such that max(Psuc) ≈ 0.8 . . . 1.

The results in table 2 indicate that GA performance is about maximum when
using the LB encoding with a small link-specific bias P1 ≈ 1. For some problem
instances, a higher (palmer24) or lower (palmer6 and palmer12) value of P1

can slightly increase GA performance, but choosing P1 ≈ 1 results on average
in a good and robust GA performance. As expected, GA performance is very

17

low for small values of P1 as only the MST can be encoded (except for berry6
where the optimal solution is the MST). For high values of P1 (P1 = 100), all
possible trees are represented with the same probability, and GAs using the LB
encoding show similar performance as for NetKeys. GAs using Prüfer numbers
and CV encoding perform as expected. The CV encoding shows only good
results for small problem instances (n < 10), and Prüfer numbers fail for all
different problems.

4.2 Random Problem Instances

In the previous section, it was shown that GAs using the LB encoding allow
efficient problem solving for the existing test instances from literature. In this
section, the performance of metaheuristics (GA and simulated annealing) using
the LB encoding is examined for randomly created MCST problem instances.
Section 2.3 has demonstrated that the optimum solutions for randomly created
MCST problems are biased towards the MST. Using the LB encoding with
proper link-specific bias P1 allows us to exploit this property of MCST problems
and to create metaheuristics that solve the MCST problem fast and reliable.

For the experiments, we created 100 random problem instances for differ-
ent problem sizes (8 ≤ n ≤ 22). The real-valued demands rij are generated
randomly and are uniformly distributed in the interval [0, 100]. The distance
weights wij are generated either randomly in the interval [0, 100] (random wij),
or calculated as the Euclidean distances between the nodes placed randomly
on a two-dimensional grid of size 1000x1000 (Euclidean wij). The performance
of a metaheuristic is measured again using the success probability Psuc which
describes the percentage of runs that find the optimum solution. As there
are no exact optimization algorithms available that can solve even small in-
stances of the MCST problem in a reasonable time, an iterated GA using the
NetKey encoding is used for finding the optimum (or at least near-optimal) so-
lution. NetKeys ensure good GA performance and represent all possible trees
uniformly.

The GA used for finding the optimal solutions uses uniform crossover and
tournament selection without replacement (tournament size two). The crossover
probability is set to pcross = 0.7 and the mutation probability (assigning a ran-
dom value [0, 1] to one allele) is set to pmut = 1/l, where l is the string length.
The GA is stopped after 200 generations are exceeded. To find the optimum
solution for an MCST problem, this GA is applied niter times using a popula-
tion size of N0. T best

0 denotes the best solution that is found during the niter

runs. In a next round, we double the population size and again apply a GA
niter times with a population size of N1 = 2N0. T best

1 denotes the best solution
that can be found in the second round. We continue this iteration and double
the population size Ni = 2Ni−1 until T best

i = T best
i−1 and n(T best

i)/niter > 0.5,
this means T best

i is found in more than 50% of the runs in round i. n(T best
i)

denotes the number of runs that find the best solution T best
i in round i. The

optimum solutions for the 100 randomly generated problem instances of each
size n are determined by an iterated GA with N0 = 200 and niter = 10. The
computational effort of finding the optimum solutions for all 100 problem in-

18

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100

P
su

c

P1

LB
NetKey

(a) GA, 16 nodes, random wij

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100

P
su

c

P1

LB
NetKey

(b) SA, 16 nodes, random wij

Figure 4: Success probability Psuc of a GA (left) and a SA (right) for 100
randomly created 16 node MCST problems over the link-specific bias P1. The
plots show that the performance of both metaheuristics becomes maximum if
the LB encoding with P1 ≈ 1 is used.

stances is high (e.g. some 100 hours of computing time for 100 problems of size
n = 22).

To be able to make more general statements about the performance of meta-
heuristics using the LB encoding, we use a simple GA as well as a simulated
annealing (SA) approach. The simple GA using only crossover and no muta-
tion (Pcross = 1 and Pmut = 0) is a representative example for crossover-based
search, whereas the SA is a representative for mutation-based search. In the
SA a new solution is iteratively created by applying one mutation step to the
current solution. In our experiments, a mutation means randomly exchanging
the position of two values in the encoded solution. If the new solution has
higher fitness it replaces the original solution. If it has lower fitness it replaces

the original solution with probability P (T) = exp(
w(Tnew)−w(Toriginal)

T
). P (t)

depends on the temperature T which is reduced during the run according to a
cooling schedule. With lowering T , the probability of accepting worse solutions
decreases. Because SA uses only mutations, and solves in contrast to, for ex-
ample a (1+1) evolution strategy, multi-modal problems more easily, it is used
as a representative example of mutation-based EAs. For further information
about SA, the reader is referred to van Laarhoven and Aarts (1988) or Davis
(1987).

Figure 4 shows the success probability Psuc (number of runs that find the
optimum solution) of a GA resp. SA over the link-specific bias P1 for 100 ran-
domly created MCST problem instances with problem size n = 16 and ran-
domly chosen distance weights wij . For each problem instance, 50 runs were
performed and Psuc was averaged over all 100 problem instances. In figure
4(a), we used a standard GA with population size N = 200 using uniform
crossover (Pcross = 1), no mutation (Pmut = 0), and tournament selection with-
out replacement (tournament size two). Each GA run was stopped either after
all individuals in the population represented the same tree, or the number of
generations exceeded 200. In figure 4(b) we used a SA strategy with starting
temperature T0 = 5000. In each iteration the temperature T was reduced by

19

0
0.5

1
1.5

2
2.5

3
3.5

0.001 0.01 0.1 1 10 100

µ(
d b

es
tf,

op
t)

P1

LB
NetKey

(a) GA, 16 nodes, random wij

0
0.5

1
1.5

2
2.5

3
3.5

0.001 0.01 0.1 1 10 100

µ(
d b

es
tf,

op
t)

P1

LB
NetKey

(b) SA, 16 nodes, random wij

Figure 5: Average distance µ(dbestf,opt) between the best solution that has been
found by a GA (left) and a SA (right) and the optimum solution over the link-
specific bias P1 for 100 randomly created MCST problems. dbestf,opt is minimum
for P1 ≈ 1.

0.999 (Ti = 0.999 ∗ Ti−1) and the SA was stopped after 5000 iterations.
The results show that GA resp. SA performance becomes maximum when

using the LB encoding with P1 ≈ 1. A pairwise t-test is performed on the
success probabilities Psuc of GA, resp. SA and for 0.1 ≤ P1 ≤ 10 the LB
encoding outperforms the NetKey encoding with high significance (p < 0.001)
supporting the hypothesis “GA resp. SA shows higher performance using the LB
encoding with 0.1 ≤ P1 ≤ 10 than using NetKeys”. Furthermore, as expected,
both metaheuristics show similar performance for the LB encoding with a large
P1 and NetKeys. For large values of P1 the LB encoding becomes uniformly
redundant and all possible solutions are represented with the same probability.
For low values of P1, Psuc becomes small as only MCST problems can be solved,
where the optimum solution is the MST.

To better understand why the LB encoding shows maximum performance
for P1 ≈ 1, figure 5 shows the average distance µ(dbestf,opt) between the best
solution Tbestf that has been found by either the GA or the SA and the optimal
solution Topt for all 100 randomly generated 16 node MCST problems. The
results confirm the findings described in section 2.3 and 3.3.2. Because opti-
mum solutions are similar to the MST, and because the LB encoding encodes
solutions similar to the MST with higher probability, dbestf,opt decreases with
lower P1. However, if P1 is too small (P1 < 1), not all possible solutions can
be represented and dbestf,opt increases again. For P1 → 0 only the MST can
be encoded and dbestf,opt becomes the average distance µ(dmst,opt) between the
MST and the optimum solution (compare figure 1).

The remaining paragraphs draw a more comprehensive picture of the per-
formance of GA and SA for MCST problems with different types of distance
weights wij and problem sizes n. Figure 6 summarizes the results and com-
pares the performance of a GA and SA using different representations (NetKeys,
Prüfer numbers, CV encoding, and the LB encoding with different P1 (P1 = 0.5,
P1 = 1, P1 = 2, and P1 = 100)). Each plot shows the probability Psuc of finding

20

0

0.2

0.4

0.6

0.8

1

8 10 12 14 16 18 20 22

P
su

c

problem size n

LB (P1=1)
LB (P1=0.5)

LB (P1=2)
LB (P1=10)

NetKeys
Prüfer

CV

(a) GA, random wij

0

0.2

0.4

0.6

0.8

1

8 10 12 14 16 18 20 22

P
su

c

problem size n

LB (P1=1)
LB (P1=0.5)

LB (P1=2)
LB (P1=10)

NetKeys
Prüfer

CV

(b) GA, Euclidean wij

0

0.2

0.4

0.6

0.8

1

8 10 12 14 16 18 20 22

P
su

c

problem size n

LB (P1=1)
LB (P1=0.5)

LB (P1=2)
LB (P1=10)

NetKeys
Prüfer

CV

(c) SA, random wij

0

0.2

0.4

0.6

0.8

1

8 10 12 14 16 18 20 22

P
su

c

problem size n

LB (P1=1)
LB (P1=0.5)

LB (P1=2)
LB (P1=10)

NetKeys
Prüfer

CV

(d) SA, Euclidean wij

Figure 6: Success probability Psuc of GA (top), resp. SA (bottom) over the
problem size n for randomly generated MCST problems. The distance weights
wij are chosen either randomly (left), or according to the Euclidean distances
(right) between the nodes that are placed randomly on a two-dimensional grid.
The plots show that GA, resp. SA show maximum performance when using the
LB encoding with P1 ≈ 1.

the optimum solution over the problem size n. As before, we randomly gener-
ated 100 problem instances for each problem size n and performed 50 runs for
each representation. In figure 6(a) (random wij) and 6(b) (Euclidean wij), a
GA using the same parameters as described in the previous paragraphs (com-
pare figure 4(a)) is used. In figure 6(c) (random wij) resp. 6(d) (Euclidean wij),
results for an SA using the parameters from above (compare figure 4(b)) are
presented. For Prüfer numbers, a SA search step results in a random change
of one of the n − 2 alleles, and for the CV encoding a search step results in
randomly changing one edge (compare section 3.4).

The plots show similar results for GA and SA as well as for MCST prob-
lems with random and Euclidean distance weights. First of all, it can be seen
that GA resp. SA performance decreases with increasing problem size n as the
parameters of the metaheuristics are fixed and the larger problem instances are
more difficult to solve. To get better results, either larger population sizes N
(GA), or a different cooling schedule combined with a higher number of search
steps (SA) would be necessary. Secondly and more importantly, the results

21

from the previous paragraphs can be confirmed as GA, resp. SA using the LB
encoding with P1 ≈ 1 outperform other representations like the NetKey encod-
ing, the CV encoding, or the Prüfer number encoding. The plots show that
Prüfer numbers fail independently of the used search heuristic, and both GA
as well as SA using them show low performance. GA using the CV encoding
perform well if the problem instances are small (n < 10) but fail when applied
to larger problem instances. The situation is different for the mutation-based
SA approach as no repair mechanisms for invalid solutions are necessary (com-
pare section 3.4). Each search step (changing one edge) results in a new and
feasible solution, and SA using the CV encoding shows similar performance as
NetKeys.

As the performance of Prüfer numbers (always) and CV encoding (for
crossover-based search) is low, we focus on the comparison between NetKeys
and the LB encoding. The plots in figure 6 indicate that the LB encoding with
P1 ≈ 1 outperforms the other encodings. Consequently, we test the hypothesis
H0 that the performance of the LB encoding with P1 = 1 does not outper-
form the NetKey encoding. Table 2 shows the result of a pairwise t-test. The
numbers show that for smaller problem instances n < 12 there is no significant
difference between NetKeys and the LB encoding. However, for larger problem
instances, the differences are significant (p-value < 0.0001), thereby rejecting
the null hypothesis H0 and supporting the alternative hypothesis that the LB
encoding with P1 = 1 outperforms the NetKey encoding.

problem size n

wij 8 10 12 14 16 18 20 22

GA

random
test statistic t 1.44 2.73 4.48 6.00 13.80 13.36 20.74 24.25

p-value 0.15 0.007 10−5 10−8 10−15 10−14 10−17 10−32

Euclidean
test statistic t 1.10 1.73 5.18 8.06 9.42 8.67 7.04 4.60

p-value 0.27 0.08 10−7 10−13 10−14 10−12 10−9 10−5

SA

random
test statistic t 1.09 2.73 7.71 23.57 33.26 33.04 20.99 20.41

p-value 0.27 0.007 10−13 10−34 10−55 10−35 10−24 10−23

Euclidean
test statistic t 0.20 2.41 4.51 9.91 13.61 10.49 7.82 7.01

p-value 0.84 0.016 10−5 10−14 10−17 10−13 10−9 10−6

Table 3: Results of a pairwise t-test on the null hypothesis that using
the LB encoding with P1 = 1 does not outperform the NetKey encoding
(Psuc(LB with P1 = 1) ≤ Psuc(NetKey)). The results show that for larger
problem instances (n > 10) there is evidence to reject the null hypothesis in
favor of the alternative hypothesis that the LB encoding outperforms NetKeys.

5 Conclusions

This paper demonstrated how efficient metaheuristics can be developed by con-
sidering properties of the optimization problem for the design of problem repre-
sentations. Metaheuristics like evolutionary algorithms or simulated annealing

22

only describe a general optimization principle, and to successfully apply such
techniques to complex optimization problems, problem-specific adaptations are
necessary. The design of efficient metaheuristics by using problem-specific rep-
resentations is shown for the minimum communication spanning tree (MCST)
problem, which finds a spanning tree that connects all nodes and satisfies their
communication requirements for a minimum total cost. A representation (the
LB encoding) is developed such that trees that are similar to the MST are en-
coded with a higher probability than random trees. The LB encoding makes
use of the problem-specific property of the MCST problem that optimal solu-
tions are similar to the MST. The LB encoding can be used for different types
of metaheuristics and allows different types of metaheuristics to benefit from
existing knowledge about the MCST problem.

Because the LB encoding considers knowledge about optimum solutions for
the MCST problem, and encodes solutions similar to the MST with higher
probability, its use can significantly increase the performance of metaheuristics
for the MCST problem. Benchmarking results show that local search methods
(simulated annealing) as well as recombination-based metaheuristics (genetic
algorithms) using the LB encoding significantly outperform other representa-
tions for existing problem instances from the literature as well as for randomly
created MCST problem instances of different type and size. A proper setting
of the representation-specific parameter P1 ≈ 1 is important as this parame-
ter controls the over-representation of MST-like solutions. If P1 is too high
(P1 � 1) all possible trees are encoded with the same probability; if P1 is too
low (P1 → 0) the MST alone can be encoded and heuristic search is no longer
possible.

This work demonstrated how efficient metaheuristics can be developed for a
problem where no efficient algorithmic or approximation algorithms are avail-
able. The results of this work should encourage researchers to investigate
whether other types of tree problems have similar properties like the MCST
problem. The authors also believe that optimum solutions for other constraint
tree problems are also similar to the MST. Therefore, using the LB encoding
for solving such problems is a promising direction of future research and ap-
plication. Furthermore, the design approach for metaheuristics illustrated in
this paper should be applied to other optimization problems. It was demon-
strated that using problem-specific knowledge for the design of metaheuristics is
possible and results in high-quality optimization methods. Applying these de-
sign principles to other problems would allow us to create metaheuristic-based
optimization methods that are able to solve difficult problems fast and reliably.

References

Abuali, F. N., Wainwright, R. L., & Schoenefeld, D. A. (1995). Determinant
factorization: A new encoding scheme for spanning trees applied to the
probabilistic minimum spanning tree problem. See Eschelman (1995), pp.
470–477.

Alon, N., Karp, R. M., Peleg, D., & West, D. (1995). A graph theoretic game

23

and its application to the k-server problem. SIAM Journal on Computing ,
78–100.

Bäck, T., Fogel, D. B., & Michalewicz, Z. (Eds.) (1997). Handbook of Evo-

lutionary Computation. Bristol and New York: Institute of Physics Pub-
lishing and Oxford University Press.

Bartal, Y. (1996). Probabilistic approximation of metric spaces and its algo-
rithmic applications. In Proc. 37th IEEE Symp. on Foundations of Com-

puter Science (pp. 184–193).

Bartal, Y. (1998). On approximating arbitrary metrics by tree metrics. In
Proc. 30th Anual ACM Symp. on Theory of Computer Science (pp. 161–
168).

Bean, J. C. (1992, June). Genetics and random keys for sequencing and op-

timization (Technical Report 92-43). Ann Arbor, MI: Department of In-
dustrial and Operations Engineering, University of Michigan.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and
optimization. ORSA Journal on Computing , 6 (2), 154–160.

Berry, L. T. M., Murtagh, B. A., & McMahon, G. (1995). Applications of
a genetic-based algorithm for optimal design of tree-structured commu-
nication networks. In Proceedings of the Regional Teletraffic Engineering

Conference of the International Teletraffic Congress (pp. 361–370). Pre-
toria, South Africa.

Berry, L. T. M., Murtagh, B. A., McMahon, G., & Sugden, S. (1997). Op-
timization models for communication network design. In Proceedings of

the Fourth International Meeting Decision Sciences Institute (pp. 67–70).
Sydney, Australia.

Berry, L. T. M., Murtagh, B. A., McMahon, G., Sugden, S., & Welling,
L. (1999). An integrated GA–LP approach to communication network
design. Telecommunication Systems, 12 (2), 265–280.

Berry, L. T. M., Murtagh, B. A., & Sugden, S. J. (1994). A genetic-based
approach to tree network synthesis with cost constraints. In Zimmermann,
H. J. (Ed.), Second European Congress on Intelligent Techniques and Soft

Computing - EUFIT’94, Volume 2 (pp. 626–629). Promenade 9, D-52076
Aachen: Verlag der Augustinus Buchhandlung.

Beyer, H.-G. (1995). Toward a theory of evolution strategies: On the benefits
of sex - the (µ/µ,λ) theory. Evolutionary Computation, 3 (1), 81–111.

Cahn, R. S. (1998). Wide area network design, concepts and tools for opti-

mization. San Francisco: Morgan Kaufmann Publishers.

Cayley, A. (1889). A theorem on trees. Quarterly Journal of Mathematics, 23 ,
376–378.

Chang, S.-G., & Gavish, B. (1993). Telecommunications network topological
design and capacity expansion: formulations and algorithms. Telecom-

mun. Syst., 1 , 99–131.

24

Charikar, M., Chekuri, C., Goel, A., Guha, S., & Plotkin, S. (1998, Novem-
ber). Approximating a finite metric by a small number of tree metrics. In
Proc. 39th IEEE Symp. on Foundations of Computer Science (pp. 111–
125).

Chu, C.-H., Chou, C., & Premkumar, G. (2000). Digital data networks
design using genetic algorithms. European Journal of Operational Re-

search, 127 (1), 140–158.

Crescenzi, P., & Kann, V. (2003, Aug.). A compendium of NP optimization
problems. http://www.nada.kth.se/theory/compendium.

Davis, L. (1987). Genetic algorithms and simulated annealing. San Mateo,
CA: Morgan Kaufmann.

Davis, L., Orvosh, D., Cox, A., & Qiu, Y. (1993). A genetic algorithm for
survivable network design. In Forrest, S. (Ed.), Proceedings of the Fifth

International Conference on Genetic Algorithms (pp. 408–415). San Ma-
teo, CA: Morgan Kaufmann.

Dionne, R., & Florian, M. (1979). Exact and approximate algorithms for
optimal network design. Networks, 9 , 39–59.

Eschelman, L. (Ed.) (1995). Proceedings of the Sixth International Conference

on Genetic Algorithms. San Francisco, CA: Morgan Kaufmann.

Even, S. (1973). Algorithmic combinatorics. New York: The Macmillan Com-
pany.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A

guide to the theory of NP-completeness. New York: W. H. Freeman.

Gaube, T., & Rothlauf, F. (2001). The link and node biased encoding revis-
ited: Bias and adjustment of parameters. In Boers, E. J. W., Cagnoni, S.,
Gottlieb, J., Hart, E., Lanzi, P. L., Raidl, G. R., Smith, R. E., & Tijink,
H. (Eds.), Applications of Eolutionary Computing: Proc. EvoWorkshops

2001 (pp. 1–10). Berlin: Springer.

Gavish, B. (1983). Formulations and algorithms for the capacitated minimal
directed tree problem. Journal of the ACM , 30 (1), 118–132.

Gavish, B., & Altinkemer, K. (1990, Summer). Backbone network design
tools with economic tradeoffs. ORSA Journal on Computing , 2 (3), 58–
76.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and ma-

chine learning. Reading, MA: Addison-Wesley.

Goldberg, D. E. (2002). The design of innovation. Series on Genetic Al-
gorithms and Evolutionary Computation. Dordrecht, The Netherlands:
Kluwer.

Gomory, R. E., & Hu, T. C. (1961). Multi-terminal network flows. In SIAM

Journal on Applied Math, Volume 9 (pp. 551–570).

Gottlieb, J., Julstrom, B. A., Raidl, G. R., & Rothlauf, F. (2001). Prüfer
numbers: A poor representation of spanning trees for evolutionary search.

25

In Spector, L., Goodman, E., Wu, A., Langdon, W. B., Voigt, H.-M., Gen,
M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., & Burke, E. (Eds.), Pro-

ceedings of the Genetic and Evolutionary Computation Conference 2001

(pp. 343–350). San Francisco, CA: Morgan Kaufmann Publishers.

Harik, G., Cantú-Paz, E., Goldberg, D. E., & Miller, B. L. (1999). The
gambler’s ruin problem, genetic algorithms, and the sizing of populations.
Evolutionary Computation, 7 (3), 231–253.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Ar-
bor, MI: University of Michigan Press.

Hu, T. C. (1974, September). Optimum communication spanning trees. SIAM

Journal on Computing , 3 (3), 188–195.

Johnson, D. S., Lenstra, J. K., & Kan, A. H. G. R. (1978). The complexity
of the network design problem. Networks, 8 , 279–285.

Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure
of problem difficulty for genetic algorithms. See Eschelman (1995), pp.
184–192.

Julstrom, B. A. (2001, 7 July). The blob code: A better string coding of
spanning trees for evolutionary search. In Wu, A. S. (Ed.), Proceedings

of the 2001 Genetic and Evolutionary Computaton Conference Workshop

Program (pp. 256–261). San Francisco, California, USA.

Kershenbaum, A. (1993). Telecommunications network design algorithms.
New York: McGraw Hill.

Kim, J. R., & Gen, M. (1999). Genetic algorithm for solving bicriteria net-
work topology design problem. In Angeline, P. J., Michalewicz, Z., Schoe-
nauer, M., Yao, X., Zalzala, A., & Porto, W. (Eds.), Proceedings of

the 1999 IEEE Congress on Evolutionary Computation (pp. 2272–2279).
IEEE Press.

Krishnamoorthy, M., & Ernst, A. T. (2001). Comparison of algorithms for
the degree constrained minimum spanning tree. Journal of Heuristics, 7 ,
587–611.

Krishnamoorthy, M., Ernst, A. T., & Sharaiha, Y. M. (1999). Comparison

of algorithms for the degree constrained minimum spanning tree (Tech.
Rep.). Clayton, Australia: CSIRO Mathematical and Information Sci-
ences.

Li, Y. (2001). An effective implementation of a direct spanning tree repre-
sentation in GAs. In Boers, E. J. W., Cagnoni, S., Gottlieb, J., Hart, E.,
Lanzi, P. L., Raidl, G. R., Smith, R. E., & Tijink, H. (Eds.), Applica-

tions of evolutionary Computing: Proc. EvoWorkshops 2001 (pp. 11–19).
Berlin: Springer.

Liepins, G. E., & Vose, M. D. (1990). Representational issues in genetic
optimization. Journal of Experimental and Theoretical Artificial Intelli-

gence, 2 , 101–115.

26

Lin, S. (1982). Effective use of heuristic algorithms in network design. In
Proceedings of Symposia in Applied Mathematics, Volume 26 (pp. 63–84).

Palmer, C. C. (1994). An approach to a problem in network design using

genetic algorithms. unpublished PhD thesis, Polytechnic University, Troy,
NY.

Palmer, C. C., & Kershenbaum, A. (1994). Representing trees in genetic
algorithms. In Proceedings of the First IEEE Conference on Evolutionary

Computation, Volume 1 (pp. 379–384). Piscataway, NJ: IEEE Service
Center.

Papadimitriou, C. H., & Yannakakis, M. (1991). Optimization, approxima-
tion, and complexity classes. J. Comput. System Sci., 43 , 425–440.

Peleg, D. (1997). Approximating minimum communication spanning trees.
Proc. 4th Colloq. on Structural Information and Communication Com-
plexity, Ascona, Switzerland.

Peleg, D., & Reshef, E. (1998). Deterministic polylog approximation for min-
imum communication spanning trees. Lecture Notes in Computer Sci-

ence, 1443 , 670–682.

Picciotto, S. (1999). How to encode a tree. Doctoral dissertation, University
of California, San Diego, USA.

Premkumar, G., Chu, C., & Chou, H. (2001). Telecommunications network
design decision - a genetic algorithm approach. Decision Sciences, 31 (2),
483–506.

Prim, R. (1957). Shortest connection networks and some generalizations. Bell

System Technical Journal , 36 , 1389–1401.

Prüfer, H. (1918). Neuer Beweis eines Satzes über Permutationen. Archiv für

Mathematik und Physik , 27 , 742–744.

Raidl, G. R. (2001, February). Various instances of optimal communication
spanning tree problems. personal communciation.

Raidl, G. R., & Julstrom, B. A. (2000). A weighted coding in a genetic al-
gorithm for the degree-constrained minimum spanning tree problem. In
Carroll, J., Damiani, E., Haddad, H., & Oppenheim, D. (Eds.), Proceed-

ings of the 2000 ACM Symposium on Applied Computing (pp. 440–445).
ACM Press.

Raidl, G. R., & Julstrom, B. A. (2003). Edge-sets: An effective evolutionary
coding of spanning trees. IEEE Transactions on Evolutionary Computa-

tion, 7 (3), 225–239.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme

nach Prinzipien der biologischen Evolution. Stuttgart-Bad Cannstatt:
Friedrich Frommann Verlag.

Reeves, C. (1997). Genetic algorithms for the operations researcher. IN-

FORMS Journal on Computing , 9 , 231–250.

27

Reshef, E. (1999, April). Approximating minimum communication cost span-

ning trees and related problems. Master’s thesis, Feinberg Graduate School
of the Weizmann Institute of Science, Rehovot 76100, Israel.

Rothlauf, F. (2002). Representations for genetic and evolutionary algo-

rithms. Number 104 in Studies on Fuzziness and Soft Computing. Berlin:
Springer.

Rothlauf, F., Gerstacker, J., & Heinzl, A. (2003). On the optimal communi-

cation spanning tree problem (Technical Report 15/2003). University of
Mannheim.

Rothlauf, F., & Goldberg, D. E. (1999). Tree network design with genetic
algorithms - an investigation in the locality of the prüfernumber encoding.
In Brave, S., & Wu, A. S. (Eds.), Late Breaking Papers at the Genetic

and Evolutionary Computation Conference 1999 (pp. 238–244). Orlando,
Florida, USA: Omni Press.

Rothlauf, F., & Goldberg, D. E. (2000). Prüfernumbers and genetic algo-
rithms: A lesson on how the low locality of an encoding can harm the
performance of GAs. In Schoenauer, M., Deb, K., Rudolph, G., Yao,
X., Lutton, E., Merelo, J. J., & Schwefel, H.-P. (Eds.), Parallel Problem

Solving from Nature, PPSN VI (pp. 395–404). Berlin: Springer-Verlag.

Rothlauf, F., & Goldberg, D. E. (2003). Redundant representations in evo-
lutionary computation. Evolutionary Computation, 11 (4), 381–415.

Rothlauf, F., Goldberg, D. E., & Heinzl, A. (2002). Network random keys –
A tree network representation scheme for genetic and evolutionary algo-
rithms. Evolutionary Computation, 10 (1), 75–97.

Schwefel, H.-P. (1975). Evolutionsstrategie und numerische Optimierung.
Doctoral dissertation, Technical University of Berlin.

Schwefel, H.-P. (1995). Evolution and optimum seeking. New York: Wiley &
Sons.

Sinclair, M. C. (1995). Minimum cost topology optimisation of the COST
239 European optical network. In Pearson, D. W., Steele, N. C., & Al-
brecht, R. F. (Eds.), Proceedings of the 1995 International Conference

on Artificial Neural Nets and Genetic Algorithms (pp. 26–29). New York:
Springer-Verlag.

Tang, K. S., Man, K. F., & Ko, K. T. (1997). Wireless LAN desing using
hierarchical genetic algorithm. In Bäck, T. (Ed.), Proceedings of the Sev-

enth International Conference on Genetic Algorithms (pp. 629–635). San
Francisco: Morgan Kaufmann.

Thierens, D. (1995). Analysis and design of genetic algorithms. Leuven, Bel-
gium: Katholieke Universiteit Leuven.

Tzschoppe, C., Rothlauf, F., & Pesch, H.-J. (2004). The edge-set encoding
revisited: On the bias of a direct representation for trees. In Deb, Kalyan-
moy et al. (Ed.), Proceedings of the Genetic and Evolutionary Computa-

tion Conference 2004 (pp. unknown). Heidelberg: Springer.

28

van Laarhoven, P. J. M., & Aarts, E. H. L. (1988). Simulated Annealing:

Theory and Applications. Dordrecht, The Netherlands: Kluwer.

Wolpert, D. H., & Macready, W. G. (1995). No free lunch theorems for search

(Tech. Rep. No. SFI-TR-95-02-010). Santa Fe, NM: Santa Fe Institute.

Wong, R. (1980). Worst case analysis of network design problem heuristics.
SIAM J. Algebraic Discr. Meth., 1 , 51–63.

Wu, B. Y., Lancia, G., Bafna, Y., Chao, K. M., Ravi, R., & Tang, C. Y.
(1998, January). A polynomial time approximation schem for minimum
routing cost spanning trees. In Proc. 9th ACM-SIAM Symp. on Discrete

Algorithms (pp. 21–32).

Zhou, G., & Gen, M. (1997). Approach to degree-constrained minimum span-
ning tree problem using genetic algorithm. Engineering Design & Automa-

tion, 3 (2), 157–165.

29

