
On the Bias and Performance of the Edge-Set Encoding

Franz Rothlauf and Carsten Tzschoppe

Working Paper 11/2004
October 2004

Working Papers in Information Systems

University of Mannheim

Department of Business Administration and Information Systems
D-68131 Mannheim/Germany

Phone +49 621 1811691, Fax +49 621 1811692
E-Mail: wifo1@uni-mannheim.de

Internet: http://www.bwl.uni-mannheim.de/wifo1

On the Bias and Performance of the Edge-Set

Encoding

Franz Rothlauf

Dept. of Business Administration and Information Systems

University of Mannheim

D-68131 Mannheim/Germany

rothlauf@uni-mannheim.de

Carsten Tzschoppe

Dept. of Business Administration and Information Systems

University of Mannheim

D-68131 Mannheim/Germany

carsten.tzschoppe@gmx.de

October 8, 2004

Abstract

The edge-set encoding is a direct encoding for trees which directly repre-
sents trees as sets of edges. In contrast to indirect representations, where
usually standard operators are applied to a list of strings and the re-
sulting phenotype is constructed by an appropriate genotype-phenotype
mapping, encoding-specific initialization, crossover, and mutation oper-
ators have been developed for the edge-set encoding, which are directly
applied to trees. There are two different variants of operators: heuristic
versions that consider the weights of the edges and non-heuristic versions.
An investigation into the bias of the different variants of the operators
shows that the heuristic variants are biased towards the minimum span-
ning tree (MST), that means solutions similar to the MST are favored. In
contrast, non-heuristic versions are unbiased. The performance of edge-
sets is investigated for the optimal communication spanning tree (OCST)
problem. Results are presented for randomly created problems as well
as for test instances from the literature. Although optimal solutions for
the OCST problem are similar to the MST, evolutionary algorithms using
the heuristic crossover operator fail if the optimal solution is only slightly
different from the MST. The non-heuristic version shows similar perfor-
mance as the network random key encoding, which is an unbiased indirect
encoding and is used as a benchmark. With proper parameter setting
the heuristic version of the mutation operator shows good results for the
OCST problem as it can make use of the fact that optimal solutions of
the OCST problem are similar to the MST. The results suggest that the
heuristic crossover operator of the edge-set encoding should not be used
for tree problems as its bias towards the MST is too strong.

1

1 Introduction

A spanning tree T (V,E) is a connected graph with n = |V | vertices and
|E| = n− 1 edges. T contains no cycles. Evolutionary algorithms (EAs) have
successfully been applied to a large variety of tree problems like the degree-
constrained minimum spanning tree (MST) problem [4, 12, 18], or the optimal
communication spanning tree (OCST) problem [2, 8, 13].

When using EAs for tree problems it is necessary to encode a solution (tree)
such that evolutionary search operators like crossover or mutation can be ap-
plied. There are two different possibilities for doing this: indirect representa-
tions usually encode a tree (phenotype) as a list of strings (genotypes) and ap-
ply standard search operators to the genotypes. The phenotype is constructed
by an appropriate genotype-phenotype mapping (representation). There are
many indirect mappings for trees like NetKeys [23], the link-and-node-biased
encoding [14], determinant factorization [1], or Prüfer numbers [6, 17]. In con-
trast, direct representations encode a tree as a set of edges and apply search
operators directly to the set of edges. Therefore, no representation is neces-
sary. Instead, tree-specific search operators must be developed, as standard
search operators can no longer be used. Examples for direct encodings are the
edge-set encoding [18] or the NetDir encoding [20, sec. 7.2]. [18] proposed dif-
ferent variants of the edge-set encoding: heuristic variants where the encoding-
specific search operators consider the weights of the edges and non-heuristic
versions. Results from applying the edge-set encoding to two sets of degree-
constrained MST problem instances indicated the superiority of edge-sets, par-
ticularly when the operators implement edge-cost-based heuristics, to several
other codings of spanning trees – the Blob Code, network random keys, and
strings of weights [18, p. 238].

The purpose of this paper is to thoroughly investigate the bias of the edge-
set encoding and to examine if the heuristic variants are superior when used
for the OCST problem. A bias of a direct encoding means that the encoding-
specific initialization, crossover, and mutation operators prefer a specific type
of solution and push a population in this direction. As the heuristic variants
of the edge-set encoding prefer edges with low cost, these variants are expected
to show a bias towards the MST. In a second step, the performance of edge-
sets is investigated for random instances of the OCST problem as well as test
problems from the literature. In contrast to the degree-constraint MST used
in [18], there are no additional constraints regarding the structure of solutions
and all possible trees are feasible. As optimal solutions of the OCST problem
are biased towards the MST [21], heuristic versions of the edge-set encoding are
expected to show good performance.

The following section summarizes the functionality of the edge-set encoding
with and without heuristics. Section 3 investigates the bias of the encoding and
section 4 examines its influence on the performance of evolutionary search for
the OCST problem. The paper ends with concluding remarks.

2 The Edge-Set Encoding

The edge-set encoding directly represents trees as sets of edges. Therefore,
encoding-specific initialization, crossover, and mutation operators are necessary.
The following sections summarize the functionality of the different variants with
and without heuristics [18].

2.1 The Edge-Set Encoding without Heuristics

2.1.1 Initialization

The purpose of the initialization algorithms is to create an unbiased initial so-
lution. [18] proposed and investigated three different initialization strategies:
PrimRST, RandWalkRST, and KruskalRST. PrimRST overrepresents star-like
trees and underrepresents trees similar to lists. RandWalkRST has an average
running time of O(n log n), however, the worst-case running time is unbounded.
Therefore, [18] recommended the use of the KruskalRST which is based on
the algorithm from Kruskal. In contrast to Kruskals’ algorithm, KruskalRST
chooses edges (i, j) not according to their corresponding weights wij but ran-
domly. KruskalRST has a small bias towards star-like trees (which is lower
than the bias of PrimRST).

procedure KruskalRST(V,E):
T ← ∅, A← E; //E is the set of available edges
while |T | < |V | − 1 do

choose an edge {(u, v)} ∈ A at random;
A← A− {(u, v)};
if u and v are not yet connected in T then

T ← T ∪ {(u, v)};
return T .

2.1.2 Recombination

To obtain an offspring Toff from two parental trees T1 and T2 with the edge sets
E1 and E2, KruskalRST is applied to the graph Gcr = (V,E1 ∪E2). Instead of
KruskalRST, in principle PrimRST and RandWalkRST can be also used. The
crossover operator has high heritability as in the absence of constraints, only
parental edges are used to create the offspring. Crossover becomes more com-
plicated for constraint MST problems as it is possible that the RST algorithm
can create no feasible tree from Gcr = (V,E1 ∪ E2). Then, additional edges
have to be chosen randomly to complete an offspring.

[18] distinguished two different recombination operators: the variant pre-
viously described is denoted KruskalRST crossover. The second variant is de-
noted KruskalRST* crossover. When using this variant, in a first step all edges
(E1 ∩E2) are included in the offspring Toff . Then Toff is completed by apply-
ing KruskalRST to the remaining edges (E1 ∪E2)\(E1 ∩E2). Results from [18]
indicate a better performance of KruskalRST* for the degree-constraint MST
problem.

2.1.3 Mutation

The mutation operator randomly replaces one edge in the spanning tree. This
replacement can be realized in two different ways. The first variant of the
mutation operator randomly chooses one edge that is not present in T and
includes it in T . Then, one edge from the cycle is randomly chosen and removed
(”insertion before deletion”). The second variant first randomly deletes one
edge from T and then connects the two disjoint connected components using a
random edge not present in T (”deletion before insertion”). The running time
is O(n) if there are no additional constraints.

2.2 The Edge-Set Encoding with Heuristics

The following paragraphs describe how heuristics that rely on the weights wij

can be included in the edge-set encoding. [18] introduced these variants of the
edge-set encoding due to the assumption that in weighted tree optimization
problems optimal solutions often prefer edges with low weights wij .

2.2.1 Heuristic Initialization

To favor low-weighted edges when generating the initial population, the algo-
rithm KruskalRST starts by sorting all edges in the underlying graph according
to their weights wij in ascending order. The first spanning tree is created by
choosing the first edges in the ordered list. As these are the edges with lowest
weights, the first generated spanning tree is a MST. Then, the k edges with
lowest weights are permuted randomly and another spanning tree is created
using the first edges in the list. The heuristic initialization results in a strong
bias towards the MST. With increasing k, the bias of randomly created trees to-
wards the MST is reduced. The number of edges, which are permuted increases
according to

k = α(i− 1)n/N,

where N denotes the population size, i is the number of the tree that is actually
generated (i = 1, . . . , N) and α, with 0 ≤ α ≤ (n − 1)/2, is a parameter that
controls the strength of the heuristic bias.

2.2.2 Heuristic Recombination

The heuristic recombination operator is a modified version of KruskalRST*
crossover. Firstly, the operator transfers all edges E1 ∩ E2 that exist in both
parents T1 and T2 to the offspring. Then, the remaining edges are chosen
randomly from E ′ = (E1∪E2)\(E1∩E2) using a tournament with replacement
of size two. This means, the weights wij of two randomly chosen edges are
compared and the edge with the lower weight is inserted into the offspring (if
no cycle is created). If the underlying optimization problem is constrained, it
is possible that the offspring has to be completed using edges not in E ′.

2.2.3 Heuristic Mutation

The heuristic mutation operator is based on mutation by ”insertion before dele-
tion”. In a pre-processing step, all edges in the underlying graph are sorted
according to their weights in ascending order. Doing this, a rank is assigned to
every edge. The rank one is assigned to the edge with the lowest weight. To
favor low-weighted edges, the edge that is inserted by the heuristic mutation
operator is not chosen randomly but according to its rank

R = b|N (0, βn)|cmod m + 1,

where N (0, βn) is the normal distribution with mean 0 and standard deviation
βn and m = n(n− 1)/2. β is a parameter that controls the bias towards low-
weighted edges. If a chosen edge already exists in T , the edge is discarded and
the selection is repeated.

3 Investigating the Bias of the Edge-Set Encoding

A representation is unbiased if all possible phenotypes are encoded uniformly
[20]. Consequently, a search operator is unbiased if it does not overrepresent
specific solutions, and the application of the search operator alone does not
modify the statistical properties of a population. An unbiased search operator
allows a uniform, non-directed search through the search space. A biased rep-
resentation resp. operator should only be used if it is known a priori that the
optimal solution of the underlying optimization problem is similar to the over-
represented solutions [22]. In contrast, unbiased representations resp. operators
should be used if no a priori problem-specific knowledge is available. Then, the
probability of finding the optimal solution is independent of the structure of
the optimal solution.

The following paragraphs investigate the bias of the edge-set encoding for
randomly created trees with n = 10 and n = 16 nodes. To every edge (i, j) a
non-negative weight wij is associated. Two possibilities for choosing the weights
wij are considered:

• Random weights: The real-valued weights wij are generated randomly
and are uniformly distributed in]0, 100].

• Euclidean weights: The nodes are randomly placed on a 1000x1000
grid. The weight wij between node i and j is the Euclidean distance
between the two nodes.

As the weights wij are randomly created and wij 6= wkl, ∀i 6= l, j 6= l, we can
assume that there is an unique MST for every problem instance. T is the MST
if c(T) ≤ c(T ′) for all other spanning trees T ′, where c(T) =

∑
(i,j)∈T wij. The

similarity between two spanning trees Ti and Tj can be measured using the

distance dij ∈ {0, 1, . . . , n− 1} as dij = 1
2

∑
u,v∈V, u<v |l

i
uv − ljuv|, where liuv is 1

if an edge from u to v exists in Ti and 0 if it does not exist in Ti.

3.1 Initialization

[18] examined the bias of different initialization methods and found
KruskalRST to be slightly biased towards stars. As the bias is sufficiently
small and due to its lower running time it is preferred in comparison to Rand-
WalkRST and PrimRST, which shows a stronger bias towards stars.

Table 1 shows the average distances drand,MST between the MST and ran-
domly generated trees (the standard deviations are shown in brackets). For each
problem instance (1000 of each type) we generated 10,000 random solutions us-
ing either an unbiased encoding (Prüfer numbers), KruskalRST (section 2.1.1),
or the heuristic initialization (section 2.2.1). For the heuristic initialization α
was set either to α = 1.5 as recommended in [18] or to the maximum value
α = (n − 1)/2, which results in the lowest bias. The results confirm that
KruskalRST is not biased towards the MST. Furthermore, the heuristic ver-
sions show a strong bias towards the MST even when using a large value of
α.

Table 1: Distances drand,MST between random trees and MST

tree size n = 10 n = 16

weights Euclidean random Euclidean random

unbiased 7.20 (1.1) 13.12 (1.2)

KruskalRST 7.20 (1.1) 7.20 (1.1) 13.13 (1.2) 13.13 (1.2)

heuristic (α = 1.5) 1.06 (1.2) 0.84 (1.1) 1.87 (1.8) 1.39 (1.7)

heuristic (α = (n −

1)/2)
3.92 (2.7) 3.85 (2.7) 8.82 (4.4) 8.87 (4.6)

3.2 Recombination

To investigate whether the crossover operator of the edge-set encoding leads to
an overrepresentation of MST-like individuals, we randomly generate an initial
population of 500 individuals and apply only the crossover operator iteratively.
As no selection operator is used, no selection pressure pushes the population
to high-quality solutions. The crossover operator is unbiased if the statistical
properties of the population do not change by applying crossover alone. In our
experiments we measure in each generation the average distance dmst−pop =

1/N
∑N

i=1 di,MST of the individuals Ti in the population towards the MST.
If dmst−pop decreases, the crossover operator is biased towards the MST. If
dmst−pop remains constant, the crossover operator is unbiased regarding the
MST.

As before, we perform this experiment on 1000 randomly generated 10 and
16 node tree instances with random, resp. Euclidean weights wij . For every
tree instance we performed 50 runs with different, randomly chosen initial pop-
ulations (KruskalRST) and 60 generations.

Figure 1 shows the mean and the standard deviation of dmst−pop over the
number of generations. The plots compare the non-heuristic KruskalRST*

0
1
2
3
4
5
6
7
8
9

0 20 40 60

d m
st

−p
op

generations

KruskalRST*
heur. KruskalRST*

(a) 10 node / random weights

0
1
2
3
4
5
6
7
8
9

0 20 40 60

d m
st

−p
op

generations

KruskalRST*
heur.KruskalRST*

(b) 10 node / Euclidean weights

0
2
4
6
8

10
12
14

0 20 40 60

d m
st

−p
op

generations

KruskalRST*
heur. KruskalRST*

(c) 16 node / random weights

0
2
4
6
8

10
12
14

0 20 40 60

d m
st

−p
op

generations

KruskalRST*
heur. KruskalRST*

(d) 16 node / Euclidean weights

Figure 1: The plots show the mean and the standard deviation of the distance
dmst−pop between a population of 500 randomly generated individuals towards
the MST over the number of generations. Only crossover and no selection
is used. The results show that the non-heuristic KruskalRST* crossover is
unbiased as the distance between the population and the MST remains constant.
In contrast, the heuristic crossover operator is strongly biased towards the MST.

crossover (section 2.1.2) with the heuristic KruskalRST* crossover (sec-
tion 2.2.2). Only crossover and no selection is used. The results confirm the
findings from [24] and reveal that the crossover operator without heuristics
is unbiased and does not modify the statistical properties of the population
(dmst−pop remains constant over the number of generations). In contrast, the
crossover operator with heuristics shows a strong bias towards the MST and
the population quickly converges to the MST.

3.3 Mutation

Finally, we investigate the bias of the mutation operator for 1000 random net-
work instances of each type. As for the crossover operator we create a ran-
dom population of 500 individuals using KruskalRST. Then, in every gener-
ation each individual is mutated exactly once using either the non-heuristic
“insertion-before-deletion” mutation from section 2.1.3 or the heuristic version
from section 2.2.3. Only mutation and no selection is used. For the heuristic
mutation operator the parameter β is set to 1, 2, or 5. With lower β, edges
with lower weights are preferred.

Figure 2 shows the mean and the standard deviation of dmst−pop over the
number of generations. The results show that the non-heuristic mutation op-
erator is unbiased, whereas the heuristic mutation is biased towards the MST.
The bias increases with lower β. In contrast to the heuristic crossover operator,
the population does not always converge completely towards the MST but the
average distance of the population towards the MST remains stable after a few
generations.

4 The Performance of the Edge-Set Encoding for the

OCST problem

4.1 The OCST Problem

The OCST problem (also known as minimum communication spanning tree
problem or simple network design problem) was first introduced in [8]. The
problem seeks a spanning tree that connects all given nodes and satisfies their
communication requirements for a minimum total cost. The problem can be
defined as follows: Let G = (V,E) be a complete undirected graph with n =
|V | nodes and m = |E| edges. To every pair of nodes (i, j) a non-negative
weight wij and a non-negative communication requirement rij is associated.
The communication cost c(T) of a spanning tree T is defined as

c(T) =
∑

i,j∈V, i<j

rij · w(pT
i,j),

where w(pT
i,j) denotes the weight of the unique path from node i to node j in

the spanning tree T . The OCST problem seeks the spanning tree with minimal
costs among all other spanning trees. The OCST problem becomes the MST
problem if there are no communication requirements rij and c(T) =

∑
(i,j)∈E wij

(compare section 3).

4

5

6

7

0 50 100 150 200 250 300

d m
st

−p
op

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(a) 10 node / random weights

4

5

6

7

0 50 100 150 200 250 300

d m
st

−p
op

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(b) 10 node / Euclidean weights

6

7

8

9

10

11

12

13

0 50 100 150 200 250 300

d m
st

−p
op

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(c) 16 node / random weights

7

8

9

10

11

12

13

0 50 100 150 200 250 300

d m
st

−p
op

generations

non−heuristic mutation
heur. mutation (β=5)
heur. mutation (β=2)
heur. mutation (β=1)

(d) 16 node / Euclidean weights

Figure 2: The plots show the mean and the standard deviation of the distance
dmst−pop between a population of 500 individuals towards the MST over the
number of generations. Only mutation (“insertion before deletion”) and no
selection is used. The results show that the non-heuristic mutation operator
is unbiased. The heuristic mutation operator is biased and the bias increases
with lower β.

Like many other spanning tree problems, the OCST problem isNP-hard [5].
Further more, it was shown in [15] that the OCST problem isMAX NP-hard,
that means it cannot be solved using a polynomial-time approximation-scheme,
unless P = NP. The OCST problem has been studied extensively in the lit-
erature and many researchers have tried to develop efficient optimization algo-
rithms. The current best approximation algorithm for the OCST problem with
Euclidean weights approximates the optimal solution with c(T) = O(log n)·c(G)
[16], where c(G) is the cost of the network when using the complete graph G.
c(G) is a lower bound for c(T) as the weight of the unique path between node
i and j in a spanning tree T is greater or equal in comparison to the weight
of the path with minimal weight connecting the nodes i and j in G. As there
are no exact optimization methods available and the approximation algorithms
only generate low-quality solutions, many researchers used EAs for solving the
OCST problem [2, 3, 9, 10, 13, 20].

It was shown in [21] that on average optimal solutions for OCST problems
are similar to the MST. That means the average distance dopt,MST between the
optimal solution and the MST is significantly lower than the average distance
drand,MST between a randomly created tree and the MST. Therefore, as the op-
timal solution of an OCST problem is biased towards the MST, representations
as well as operators that favor or overrepresent trees, which are similar to the
MST are expected to solve the OCST problem more efficiently.

4.2 Finding Optimal Solutions for OCST Problems

To investigate how the performance of the edge-set encoding depends on the
structure of the optimal solution, an optimal or near-optimal solution must
be determined. Due to the NP-hardness of the OCST problem, optimal so-
lutions can be determined only for small problem instances with reasonable
computational effort. Therefore, we limit our investigations to 10 and 16 node
problem instances. The following experiments, which should identify optimal
or near-optimal solutions for OCST problems, are similar to the ones described
in [21].

[7] showed that the probability α that an EA fails to find an optimal
solution is O(exp(−N)), where N is the EA’s population size. Therefore, EA
performance increases with N . Consequently, we apply an EA niter times to an
OCST problem using a population size of N0. T best

0 denotes the best solution
of cost c(T best

0) that is found during the niter runs. In a next round we double
the population size and again apply an EA niter times with a population size of
N1 = 2N0. T best

1 denotes the best solution with cost c(T best
1) that can be found

in the second round. We continue this iteration and double the population size
Ni = 2Ni−1 until T best

i = T best
i−1 and n(T best

i)/niter > 0.5, this means T best
i is

found in more than 50% of the runs in round i. n(T best
i) denotes the number

of runs that find the best solution T best
i in round i.

For finding the optimal solutions we use a standard genetic algorithm (sGA)
with traditional parameter settings. The problem was encoded using the un-
biased network random key representation [23]. This representation has high
locality and represents all possible trees uniformly. The sGA uses uniform

0

100

200

300

400

500

0 2 4 6 8

nu
m

be
r o

f p
ro

bl
em

 in
st

an
ce

s

dopt,MST

Euclidean weights
random weights

(a) 10 node

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

nu
m

be
r o

f p
ro

bl
em

 in
st

an
ce

s

dopt,MST

Euclidean weights
random weights

(b) 16 nodes

Figure 3: We randomly generated 1000 OCST problems and show the distrib-
ution of the problem instances over the distance dopt,MST between the optimal
solution and the MST. Results are presented for 10 and 16 node problems using
either random or Euclidean weights. The plots show that the optimal solutions
for OCST problems are biased towards the MST.

crossover and tournament selection without replacement. The size of the tour-
nament is three. The crossover probability is set to pcross = 0.8 and the
mutation probability (assigning a random value [0, 1] to one allele) is set to
pmut = 0.02. For the sGA we started with N0 = 100 and set niter = 20. Each
sGA run is stopped after a maximum of 200 generations. The computational
effort for the experiments is high.

Figure 3 presents the results of our experiments. We show the number of
problem instances over the distance dopt,MST between the optimal solution and
the MST for 1000 randomly created OCST problems with 10 (Fig. 3(a)) and
16 (Fig. 3(b)) nodes. The OCST problems are created randomly using either
random weights in]0,100] or placing the nodes randomly on a 1000x1000 two-
dimensional grid and calculating the weights as the Euclidean distances between
the nodes (details are described in section 3). The demands rij between the
nodes are random and uniformly distributed in]0,100].

Comparing the results to drand,MST (unbiased representation in Table 1)
reveals that the optimal solutions for OCST problems are strongly biased to-
wards the MST. Furthermore, OCST problems with random weights show a
stronger bias than OCST problems with Euclidean weights. Due to the bias of
the optimal solutions towards the MST, the problem should be easy to solve
for EAs using the edge-set encoding.

4.3 The Performance of the Edge-Set Encoding for Randomly

Generated OCST Problems

After determining optimal solutions as described in the previous paragraphs we
examine the performance of EAs using the edge-set encoding. We use the same
randomly generated problem instances as in section 4.2 and investigate how
the EA performance depends on the distance dopt,MST between the optimal
solution and the MST. We use a generational EA with tournament selection
without replacement of size two and no mutation. Each run is stopped after
the population is fully converged or the number of generations exceeds 200. We
perform 50 EA runs for each of the 1000 problem instances. In our experiments
we compare the performance of EAs using

• non-heuristic KruskalRST crossover from section 2.1.2 with non-
heuristic KruskalRST initialization from section 2.1.1 (indicated as
“KruskalRST”),

• non-heuristic KruskalRST* crossover from section 2.1.2 combined with
non-heuristic KruskalRST initialization (indicated as “KruskalRST*”),

• non-heuristic KruskalRST* crossover combined with heuristic initializa-
tion from section 2.2.1 with α = 1.5 (indicated as “heur ini”),

• heuristic crossover from section 2.2.2 combined with non-heuristic
KruskalRST initialization (indicated as “heur xover”),

• heuristic crossover combined with heuristic initialization with α = 1.5
(indicated as “heur ini & xover”), and

• as benchmark the unbiased network random key encoding with uniform
crossover (indicated as “NetKey”).

The population size N , which is constant in all experiments, is chosen with
respect to the performance of the non-heuristic KruskalRST* crossover oper-
ator. The aim is to find the optimal solution with a probability of about 50
%. Therefore, we choose for the 10 node problems a population size of N = 60
(random weights) resp. N = 100 (Euclidean weights) and for the 16 node prob-
lems a population size of N = 200 (random weights) resp. N = 450 (Euclidean
weights).

The results of the experiments are presented in Fig. 4 and Fig. 5. Fig. 4
shows the percentage of EA runs that find the correct optimal solutions over

dopt,MST . Fig. 5 shows the gap,
c(Tfound)−c(Topt)

c(Topt)
(in percent), between the cost

of the best found solution and the cost of the optimal solution over dopt,MST .
We show results for 1000 randomly generated problem instances. Results are
plotted only for these dopt,MST , where there are more than 10 problem instances.
For example, we show results for 10 node problems with Euclidean weights
only for dopt,MST ∈ {0, . . . , 6} as there are only 8 (out of 1000) instances with
dopt,MST = 7 (compare Fig. 3(b)).

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(a) 10 node / random weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(b) 10 node / Euclidean weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(c) 16 node / random weights

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(d) 16 node / Euclidean weights

Figure 4: The figures compare the performance of an EA using different com-
binations of crossover and initialization operators for randomly generated 10
(top) and 16 (bottom) node OCST problems. The plots show the average per-
centage of optimal solutions that can be found over dopt,MST . The heuristic
crossover operator outperforms the non-heuristic version only if the optimal so-
lution is very similar to the MST (dopt,MST ≈ 0). If dopt,MST > 1 the heuristic
crossover results in low EA performance. In contrast, when using the non-
heuristic KruskalRST* crossover, EA performance remains about constant.

0

2

4

6

8

10

12

14

0 1 2 3 4

ga
p

(in
 %

)

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(a) 10 node / random weights

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6

ga
p

(in
 %

)
dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(b) 10 node / Euclidean weights

0

5

10

15

20

0 1 2 3 4 5 6

ga
p

(in
 %

)

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(c) 16 node / random weights

0

5

10

15

20

25

3 4 5 6 7 8 9 10

ga
p

(in
 %

)

dopt,MST

NetKey
KruskalRST

KruskalRST*
heur ini

heur xover
heur ini& xover

(d) 16 node / Euclidean weights

Figure 5: We show the mean of the gap between the cost of the best found
solution and the cost of the optimal solution over dopt,MST . The results confirm
that the heuristic crossover operator outperforms the non-heuristic variants only
if the optimal solutions are very similar to the MST (dopt,MST ≈ 0).

The results reveal that the heuristic crossover versions of the edge-set en-
coding (heur xover and heur ini & crossover) always find the optimal solution
if the optimal solution is the MST. However for dopt,MST 6= 0, the performance
of EAs using the heuristic version drops sharply and the optimal solution can
not be found if dopt,MST > 2. In contrast, the performance of the non-heuristic
KruskalRST* operator decreases only slightly with larger dopt,MST and allows
the EA to correctly identify the optimal solution even for larger dopt,MST . The
performance of the non-heuristic crossover combined with an heuristic initial-
ization (“heur ini”) is similar to the heuristic crossover operator. It always
finds the optimal solution if it is the MST, however with increasing dopt,MST

the decrease of performance is slightly less than for the heuristic crossover.
In summary, the heuristic crossover operator performs well only for prob-

lems where the optimal solution is slightly different from the MST. Otherwise,
EAs using the edge-set encoding with heuristic crossover fail. The performance
of EAs using the non-heuristic variant is similar to the performance of the
NetKey encoding with uniform crossover. These results are confirmed when

examining the gap
c(Tfound)−c(Topt)

c(Topt)
(Fig. 5). Heuristic variants of the encod-

ing show high performance if the optimal solution is the MST. However, with
increasing dopt,MST the quality of the solutions strongly decreases and the non-
heuristic variants outperform the heuristic variant.

In the remainder of the section the performance of the edge-set-specific
mutation operator is examined. As before 1000 random problems of different
types are generated and the optimal solutions are calculated as described in
section 4.2. For comparing the performance of different variants of the mu-
tation operator, a simple simulated annealing (SA) strategy [25] is used as a
representative example of mutation-based search. SA can be modeled as an EA
with population size one and Boltzmann selection [11]. In each generation a
new solution Toff is created by applying exactly one mutation to the parent
solution Tpar. If c(Toff) < c(Tpar), Toff replaces Tpar. If c(Toff) > c(Tpar),
Tpar is replaced with probability P (T) = exp (−(c(Toff)− c(Tpar))/T). With
lower T , the probability of accepting worse solutions decreases.

In our experiments the start temperature Tstart = 50 is reduced in every
step by the factor 0.99. Therefore, Tt+1 = 0.99∗Tt . The number of search steps
is set to tmax = 300 for 10 node and tmax = 1000 for 16 node problems. We
performed 50 independent runs for each problem instance and investigated the
performance of an SA using

• non-heuristic mutation from section 2.1.3 and non-heuristic initialization
from section 2.1.1 (denoted as “no heur mut&ini”),

• non-heuristic mutation and heuristic initialization from section 2.2.1 with
α = 1.5 (denoted as “no heur mut, α = 1.5”),

• heuristic mutation from section 2.2.3 with β = 5 and non-heuristic ini-
tialization (denoted as “β = 5, no heur ini”),

• heuristic mutation with β = 5 and heuristic initialization with α = 1.5
(denoted as “β = 5, α = 1.5”),

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
 β=0.5,α=1.5

(a) 10 node / random weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
 β=0.5,α=1.5

(b) 10 node / Euclidean weights

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
 β=0.5,α=1.5

(c) 16 node / random weights

0

0.2

0.4

0.6

0.8

1

3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 o

f o
pt

im
al

 s
ol

ut
io

ns
 fo

un
d

dopt,MST

no heur mut&ini
no heur mut, α=1.5

β=5,no heur ini
β=5,α=1.5

β=0.5,no heur ini
 β=0.5,α=1.5

(d) 16 node / Euclidean weights

Figure 6: The figures show the performance of an SA using different variants of
initialization and mutation operators of the edge-set encoding. The plots show
the average percentage of optimal solutions that can be found over dopt,MST for
1000 randomly created OCST problems. The results show that the heuristic
variants of the mutation operator outperform the non-heuristic variants for the
OCST problem if β is set properly.

• heuristic mutation with β = 0.5 and non-heuristic initialization (denoted
as “β = 0.5, no heur ini”), and

• heuristic mutation with β = 0.5 and heuristic initialization with α = 1.5
(denoted as “β = 0.5, α = 1.5”).

We performed no experiments for NetKeys as the corresponding mutation oper-
ator can not be directly compared. The mutation operator for NetKeys, which
changes one allele of the genotype, often does not change the corresponding phe-
notype, whereas the mutation operator of the edge-set encoding always changes
one edge.

The results of the experiments are presented in Fig. 6. It shows the percent-
age of SA runs that find the correct optimal solutions over dopt,MST . It can be
seen that an SA using heuristic initialization always finds the optimal solution
if dopt,MST = 0. When using heuristic mutation with a low bias (β = 5), SA
performance is always higher than when using non-heuristic mutation (for all
considered dopt,MST). A small bias of the mutation operator does not push the
population towards the MST but allows a diversed population and efficient SA
search for solutions somehow similar to the MST. However, when increasing
the bias of the heuristic mutation to β = 0.5, SA performance becomes lower
than for the non-heuristic even for small dopt,MST (especially for the Euclidean
problem instances). Then, the heuristic bias of the mutation operator is too
strong and pushes the population too strongly towards the MST. The results
reveal that by increasing the bias of the mutation operator (lowering β) prob-
lems where the optimal solutions are similar to the MST can be solved more
efficiently; however, problems where the optimal solutions are different from
the MST can be solved less efficiently.

To summarize our findings, the heuristic crossover operator of the edge-set
encoding does not allow efficient search due to its strong bias towards the MST.
Only problems where the optimal solutions are slightly different from the MST
can be solved. The heuristic mutation operator results in good performance if
β is large as the resulting low bias of the mutation operator prefers solutions
similar to the MST and does not push a population too strongly towards the
MST. However, if the bias towards the MST induced by β becomes stronger
only optimal solutions similar to the MST can be found and mutation-based
search fails. The results for the heuristic mutation operator show that the
proper adjustment of β is important and crucial for the success of local search.

4.4 The Performance of the Edge-Set Encoding for OCST Test

Problems from the Literature

Test instances for the OCST problem have been proposed by [2, 13, 19]. An
analysis of the test instances was performed in [21]. The following paragraphs
examine the performance of EA and SA using edge-sets for these test instances.

[13] described OCST problems with six (palmer6), twelve (palmer12), 24
(palmer24), 47, and 98 nodes. The nodes correspond to cities in the United
States and the weights (distances between the nodes) are obtained from a tariff
database. The inter-node traffic demands are inversely proportional to the

weights. [2] presented three instances of the OCST problem, one with six nodes
(berry6) and two with 35 nodes (berry35 and berry35u). For berry35u the
weights wij = 1. [19] proposed several test instances ranging from 10 to 100
nodes. The weights wij and the demands rij were generated randomly and
are uniformly distributed in the interval [0, 100]. We present experiments for
the 10 and 20 node test instances as the optimal solutions can be found with
reasonable effort.

Table 2 lists the properties of the optimal solutions for the test instances.
It shows the number of nodes n, the distance dopt,MST , and the cost c(Topt)
of the optimal solution. In the instance berry35u, all distances are uniform
(wij = 1), so all spanning trees are minimal. For all test instances, dopt,MST is
smaller than the average distance of a randomly created solution towards the
MST (compare also [21]). Therefore, all test problems are biased towards the
MSTs.

For investigating the performance of EAs using different variants of the
edge-set encoding we use the same parameter setting as described in the pre-
vious section. The population size N was set to N = 80 for the the small
problem instances (palmer6, palmer12, berry6) and to N = 1000 for the more
complicated problems (raidl20, berry35u, berry35). As before, an EA runs a
maximum of 200 generations or until the population is converged. Table 2 lists
the mean µ and the standard deviation σ of the cost of the best solution found
at the end the EA run averaged over 50 independent runs. The results reveal
that for berry6 and berry35, where the optimal solution is the MST, EAs using
the heuristic crossover always find the optimal solution. However, with increas-
ing dopt,MST , EAs using the heuristic crossover find worse solutions than using
the non-heuristic crossover or the NetKey encoding.

Similarly, table 3 presents the mean µ and standard deviation σ of the cost of
the best found solution when using SA with different mutation and initialization
operators. We use the same parameter setting as in the previous section (T0 =
50 and Tt = Tt−1 ∗ 0.99) and only change the number of search steps tmax

for the different problem instances. The results show that heuristic mutation
mostly outperforms non-heuristic mutation if dopt,MST < 5. For larger dopt,MST

(palmer12 and palmer24) the performance of heuristic mutation decreases with
lower β (compare especially palmer24) as the bias of the mutation operator
towards the MST becomes stronger. If β is set properly, heuristic mutation
outperforms the non-heuristic version especially if dopt,MST is low.

The results confirm the findings from the previous section. The non-
heuristic KruskalRST* crossover shows similar performance to NetKeys and
the performance is about independent of dopt,MST . The heuristic crossover op-
erator fails and only finds optimal solutions if they are the MST. The heuristic
mutation operator results in good SA performance if β is properly set and if the
optimal solutions are similar to the MST. Consequently, as most OCST prob-
lems have optimal solutions similar to the MST, local search using the mutation
operator outperforms the non-heuristic variants.

Table 2: Performance of EA using different variants of the crossover operator for OCST test problems from the literature
problem optimal solutions

N
NetKeys KruskalRST KruskalRST* heur. ini heur. xover heur. ini & xover

instance nodes dopt,MST c(Topt) µ σ µ σ µ σ µ σ µ σ µ σ

palmer6 6 1 693,180 80 695,103 5,002 697,197 7,320 694,113 3,291 709,770 0 705,457 7351 709,770 0
palmer12 12 7 3,428,509 80 3,500,159 55,248 3,521,759 64,144 3,542,906 70,441 3,738,047 15,615 3,734,503 57,469 3,876,488 0
palmer24 24 12 1,086,656 500 1,086,780 290 1,558,453 69,883 1,087,772 631 1,884,444 0 1,879,996 15,395 1,959,790 0
raidl10 10 3 53,674 80 54,400 1,776 54,251 1,264 54,985 3106 55,868 0 57,625 589 58,352 0
raidl20 20 4 157,570 1,000 159,447 3,025 205,675 12,138 157,570 0 169,746 4,204 165,788 0 169,086 4,123
berry6 6 0 534 80 534 0 534 0 534 0 534 0 534 0 534 0
berry35u 35 - 16,273 1,000 17,067 334 27,210 1,290 16,459 120 41,021 4,217 16,478 119 43,589 5,306
berry35 35 0 16,915 1,000 16,919 21 36,985 2,189 17,102 306 16,915 0 16,915 0 16,915 0

Table 3: Performance of SA using different variants of the mutation operator for OCST test problems from the literature
no heur. mut, heur. mut (β = 0.5) heur. mut (β = 1) heur. mut (β = 5)

problem no heur. ini (α = 1.5) no heur. ini (α = 1.5) no heur. ini (α = 1.5) no heur. ini (α = 1.5)
instance tmax µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

palmer6 300 700,337 7,525 699,144 7,379 707,039 16,599 693,478 2,109 700,337 7,525 698,249 7,135 698,548 7,229 699,442 7,434
palmer12 300 3,527,997 79,570 3,483,322 40,332 4,042,556 371,097 3,610,149 46,581 3,477,738 46,109 3,493,127 39,767 3,500,706 56,927 3,481,875 41,608
palmer24 1,000 1,161,370 70,209 1,137,968 42,835 1,932,729 269,545 1,830,098 22,734 1,438,231 164,891 1,525,089 100,232 1,097,958 19,578 1,100,706 25,670
raidl10 300 55,988 4,384 53,853 517 53,867 448 53,762 303 53,674 0 53,674 0 54,282 1,674 53,762 303
raidl20 1,000 182,168 15,793 159,660 3,140 161,791 14,596 157,570 0 159,270 3057 157,570 0 164,944 6,561 157,849 803
berry6 300 538 11 536 7 534 0 534 0 534 0 535 4 536 7 535 7
berry35 5000 17,142 423 16,915 0 16,915 0 16,915 0 16,915 0 16,915 0 16,915 0 16,915 0

5 Summary and Conclusions

This work investigates the bias of the edge-set encoding, which was proposed
by [18], and examines its performance for the optimal communication spanning
tree (OCST) problem. The edge-set encoding belongs to the class of direct
representations for trees. Instead of defining an additional genotype-phenotype
mapping encoding-specific initialization, crossover and mutation operators are
applied directly to the trees.

The investigation into the bias of the edge-set encoding reveals that the
heuristic versions of the initialization, crossover, and mutation operators, are
biased towards the MST defined on the weights. The bias is especially strong for
the heuristic crossover operator, which results in a quick convergence of a popu-
lation of trees towards the MST. In contrast, the non-heuristic search operators
of the edge-sets are unbiased and their application results in an undirected and
uniform search through the search space.

Due to the strong bias of the heuristic search operators towards the MST,
tree optimization problems can easily be solved if optimal solutions are the
MST. However, if optimal solutions are only slightly different from the MST,
the heuristic crossover operator fails due to its strong bias towards the MST.
Therefore, the heuristic crossover operator is not appropriate for solving tree
optimization problems. In contrast, the non-heuristic crossover operator of the
edge-sets results in good performance for OCST problems even if the optimal
solutions are quite different from the MST. Its performance is similar to the un-
biased, indirect NetKey encoding [23]. For the mutation operator the strength
of the bias towards the MST can be controlled by an encoding-specific parame-
ter β. With high β the bias towards the MST is low, with low β it is strong.
Therefore with low β, tree problems can be solved more efficiently if the op-
timal solutions are similar to the MST but otherwise less efficiently. If β is
set appropriately, the heuristic mutation operator is a good choice for OCST
problems as optimal solutions of this problem are similar to the MST.

The problems of the heuristic variants of the edge-set encoding emphasize
the difficulty of a proper design of representations and operators. Especially the
design of direct representations is difficult as in contrast to indirect representa-
tions, the behavior of new, problem-specific search operators is often unknown.
The analysis of the edge-set encoding has shown that although optimal solutions
for the OCST problems are biased towards the MST [21], direct representations
like the heuristic edge-set encoding that use this problem-specific knowledge and
are biased towards the MST, can fail if the bias is too strong. Therefore, the
authors recommend the use of unbiased representations if no problem-specific
knowledge is known a priori. Proper representations for tree problems are for
example non-heuristic versions of the edge-set encoding or NetKeys. In the case
that biased representations resp. operators like the heuristic mutation operator
of the edge-set encoding are used, it must be confirmed that the bias of the
search matches the properties of the optimal solutions. Otherwise failure is
unavoidable.

References

[1] F. N. Abuali, R. L. Wainwright, and D. A. Schoenefeld, “Determinant
factorization: A new encoding scheme for spanning trees applied to the
probabilistic minimum spanning tree problem,” in Proceedings of the Sixth

International Conference on Genetic Algorithms, L. Eschelman, Ed. San
Francisco, CA: Morgan Kaufmann, 1995, pp. 470–477.

[2] L. T. M. Berry, B. A. Murtagh, and G. McMahon, “Applications of a
genetic-based algorithm for optimal design of tree-structured communica-
tion networks,” in Proceedings of the Regional Teletraffic Engineering Con-

ference of the International Teletraffic Congress, Pretoria, South Africa,
1995, pp. 361–370.

[3] H. Chou, G. Premkumar, and C.-H. Chu, “Genetic algorithms for commu-
nications network design - an empirical study of the factors that influence
performance,” IEEE Transactions on Evolutionary Computation, vol. 5,
no. 3, pp. 236–249, June 2001.

[4] S. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, and N. Young, “A
network-flow technique for finding low-weight bounded-degree spanning
trees,” Journal of Algorithms, vol. 24, pp. 310–324, 1997.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[6] J. Gottlieb, B. A. Julstrom, G. R. Raidl, and F. Rothlauf, “Prüfer num-
bers: A poor representation of spanning trees for evolutionary search,”
in Proceedings of the Genetic and Evolutionary Computation Conference

2001, L. Spector, E. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke, Eds.
San Francisco, CA: Morgan Kaufmann Publishers, 2001, pp. 343–350.

[7] G. R. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller, “The gam-
bler’s ruin problem, genetic algorithms, and the sizing of populations,” in
Proceedings of the Forth International Conference on Evolutionary Com-

putation, T. Bäck, Ed. New York: IEEE Press, 1997, pp. 7–12.

[8] T. C. Hu, “Optimum communication spanning trees,” SIAM Journal on

Computing, vol. 3, no. 3, pp. 188–195, Sept. 1974.

[9] J. R. Kim and M. Gen, “Genetic algorithm for solving bicriteria network
topology design problem,” in Proceedings of the 1999 IEEE Congress on

Evolutionary Computation, P. J. Angeline, Z. Michalewicz, M. Schoenauer,
X. Yao, A. Zalzala, and W. Porto, Eds. IEEE Press, 1999, pp. 2272–2279.

[10] Y. Li and Y. Bouchebaba, “A new genetic algorithm for the optimal com-
munication spanning tree problem,” in Proceedings of Artificial Evolution:

Fifth European Conference, C. Fonlupt, J.-K. Hao, E. Lutton, E. Ronald,
and M. Schoenauer, Eds. Berlin: Springer, 1999, pp. 162–173.

[11] S. W. Mahfoud and D. E. Goldberg, “Parallel recombinative simulated
annealing: A genetic algorithm,” in Parallel Computing. Amsterdam,
The Netherlands: Elsevier Science, 1995, vol. 21, pp. 1–28.

[12] S. C. Narula and C. A. Ho, “Degree-constrained minimum spanning trees,”
Computers and Operations Research, vol. 7, pp. 239–249, 1980.

[13] C. C. Palmer, “An approach to a problem in network design using genetic
algorithms,” unpublished PhD thesis, Polytechnic University, Troy, NY,
1994.

[14] C. C. Palmer and A. Kershenbaum, “Representing trees in genetic algo-
rithms,” in Proceedings of the First IEEE Conference on Evolutionary

Computation, vol. 1. Piscataway, NJ: IEEE Service Center, 1994, pp.
379–384.

[15] C. H. Papadimitriou and M. Yannakakis, “Optimization, approximation,
and complexity classes,” J. Comput. System Sci., vol. 43, pp. 425–440,
1991.

[16] D. Peleg and E. Reshef, “Deterministic polylog approximation for mini-
mum communication spanning trees,” Lecture Notes in Computer Science,
vol. 1443, pp. 670–682, 1998.

[17] H. Prüfer, “Neuer Beweis eines Satzes über Permutationen,” Archiv für

Mathematik und Physik, vol. 27, pp. 742–744, 1918.

[18] G. R. Raidl and B. A. Julstrom, “Edge-sets: An effective evolutionary cod-
ing of spanning trees,” IEEE Transactions on Evolutionary Computation,
vol. 7, no. 3, pp. 225–239, 2003.

[19] G. R. Raidl, “Various instances of optimal communication spanning tree
problems,” personal communciation, February 2001.

[20] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms,
1st ed., ser. Studies on Fuzziness and Soft Computing. Heidelberg:
Springer, 2002, no. 104.

[21] F. Rothlauf, J. Gerstacker, and A. Heinzl, “On the optimal communication
spanning tree problem,” Department of Information Systems, University
of Mannheim, Tech. Rep. 15/2003, 2003.

[22] F. Rothlauf and D. E. Goldberg, “Redundant representations in evolution-
ary computation,” Evolutionary Computation, vol. 11, no. 4, pp. 381–415,
2003.

[23] F. Rothlauf, D. E. Goldberg, and A. Heinzl, “Network random keys – A tree
network representation scheme for genetic and evolutionary algorithms,”
Evolutionary Computation, vol. 10, no. 1, pp. 75–97, 2002.

[24] C. Tzschoppe, F. Rothlauf, and H.-J. Pesch, “The edge-set encoding revis-
ited: On the bias of a direct representation for trees,” in Proceedings of the

Genetic and Evolutionary Computation Conference 2004, Deb, Kalyanmoy
et al., Ed. Heidelberg: Springer, 2004, pp. 1174–1185.

[25] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory

and Applications. Dordrecht, The Netherlands: Kluwer, 1988.

