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1. INTRODUCTION

The focus of this survey chapter is on the importance of general equilibrium interactions in

assessing efficiency costs of environmental policies. Those interactions are relevant to the

impacts of a wide range of government policies to control air pollution, deforestation or water

quality. These policies raise the costs of output and the distortions in factor markets from pre-

existing market imperfections and imply higher social costs than would be indicated by partial

equilibrium models. Although computable general equilibrium models (CGE models) cannot

be used to forecast business cycles, they can indicate likely magnitudes of policy-induced

changes from future baselines, and they are indispensable for ranking alternative policy

measures. Since these numerical models are based on assumptions concerning the economic

development (elasticities of substitution, technical change, or the magnitude of exogenous

variables) it would be misleading to base policy decisions on a specific numerical result.

Rather, CGE models should be used to understand the reasons for particular results, to better

frame the policy decisions, and to support the appropriate policy judgements. Using general

equilibrium theory, economists can very often get a good idea of the welfare effect and of the

qualitative results from a change in a given policy instrument. However, using theory alone, it is

very often not possible to determine the signs of the net effects in general equilibrium

interactions, to evaluate alternative environmental policy approaches with respect to their

different impacts on the economy, and then to rank them according to their welfare effects.

Theoretical models can account for general equilibrium issues but to be analytically tractable,

simplicity is required whereas the numerically solved CGE models allow for greater complexity.

This chapter provides an overview of the use of CGE models in environmental

economics. This overview is not meant to be exhaustive; rather we hope to illustrate the types of

approaches we know of to give an impression of the scope of applying CGE models. We begin

                                                                
1 I wish to thank Henk Folmer, Larry Goulder, Tom Tietenberg and an anonymous referee for their many
suggestions on an earlier version of this paper.
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in Section 2 by emphasizing the importance of general versus partial equilibrium models and the

advantage of CGE models compared to other macroeconomic models. The extension of a

standard input-output model with fixed input-output coefficients to a CGE model with price-

dependent coefficients is discussed in Section 3. In Section 4 we describe the development of

investment decisions in the model of producer behavior, starting from recursive accumulation of

capital under static expectation to the new generation of dynamic models where the manager of a

firm accumulates capital over time in order to maximize the value of the firm. A similar

approach can be chosen for a consumer who accumulates investment in consumer durables over

time. This aspect is part of an intertemporal model of consumer behavior with several stages of

budget allocation which we present in Section 5. Since environmental regulation may affect the

international competitiveness, we show in Section 6 how in CGE models the trade pattern allows

to adjust to environmental policy measures. Given the variety of modeling the labor market, we

say only some words on this topic in Section 7. Another complex but very important topic is the

modeling of technical change. Especially the long-term outcome from an environmental policy

measure is very sensitive with respect to the assumption on the efficiency improvement in energy

use, pollution abatement or waste disposal. Thus, we examine in Section 8 some approaches to

incorporate technical change in CGE models. Also abatement technologies are an important

aspect in environmentally orientated CGE models and we present some approaches to take into

account this aspect in Section 9. Data required for doing CGE modeling are mentioned in

Section 10. In section 11 we present several simulation studies in environmental economics

based on the use of CGE models. First, we take the double dividend debate as an example for a

CGE analysis. We present results from a CO2 reduction policy for twelve EU member countries

whose CGE models are linked by foreign trade (Section 11.1). In Sections 11.2-11.9 we review

environmentally related CGE analyses on topics such as global warming, the costs of

environmental regulation under different instruments, or joint implementation. Finally, we

describe some models which look at a two-way link between the environment and economic

performance (Section 12). In those models economic variables generate environmental

externalities, but the latter ones also affect the quality of the former ones. Concluding remarks

are made in the final section.

2. Partial Equilibrium Models, CGE Models and Macroeconomic Models

Policies aimed at significantly reducing environmental problems such as global warming, acid

rain, deforestation, waste disposal or any other degradation of the quality of air, water, soil or
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land imply costs in terms of lower growth of GDP, a reduction in international

competitiveness or in employment. The implied change in relative prices will induce general

equilibrium effects throughout the whole economy. For this reason it is often useful to

evaluate the effects of environmental policy measures within the framework of a computable

general equilibrium (CGE) model. Although partial equilibrium models make it possible to

estimate the costs of environmental policy measures, taking substitution processes in

production and consumption as well as market clearing conditions into account, CGE models

additionally allow for adjustments in all sectors, enable to consider the interactions between

the intermediate input market and markets for other commodities or intermediate inputs, and

complete the link between factor incomes and consumer expenditures. The link between

environmental policy and the economy can rely on partial equilibrium models if feedback

effects are not important or if a certain impact is to be demonstrated. However, one has to

keep in mind that CGE analysis can yield very different results from what one would obtain

from partial equilibrium. Policies that appear to improve efficiency in a partial equilibrium

analysis emerge as reducing efficiency when model builders account for general equilibrium

effects.2 Researchers sometimes expect the net effect of the multitude of interdependencies

and interactions within the economy to be zero when using a partial equilibrium model.

However, if environmental policies raise the costs of output and thereby reduce real factor

returns, they enforce the distortions in factor markets from pre-existing taxes and imply

higher social costs than would be indicated by partial equilibrium analyses. A good example

for illustrating the importance of general versus partial equilibrium models is the highly

debated double dividend issue when a revenue-neutral carbon or energy tax is introduced. The

open question is whether the positive substitution effect towards labor input will be

outweighed by the negative output effect and by the adverse impact from new distortions on

the factor market. Another example is to measure the effect of an emission tax on the

performance of the economy. This policy raises marginal cost of production due to abatement

expenditure and tax payments. Hence the firm will reduce its output under the present price

level. If all firms in that industry react in the same way, the market supply function will shift

to the left and the market price will rise. Now the firms will revise their output decisions. The

higher domestic price will attract imports and will lower exports. The higher price in the

environment-intensive industry will induce spillovers to other markets and industries which

produce substitutes or complements. On the input side our firm will substitute labor, material

                                                                
2 See Krutilla (1999) on the usefulness of partial equilibrium models in the context of trade and the environment
and Bovenberg and Goulder (2000) for a survey of the implications of general equilibrium interactions for
environmental tax and regulatory policies.
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and capital for the taxed energy input for keeping costs low. This affects the factor markets

and factor prices. This line of reasoning shows the substantial difference between a partial

equilibrium analysis and a CGE analysis.

The impact of an environmental policy could also be analyzed with macroeconomic

models based on Keynesian theory, on monetaristic approaches, on supply side models, on

models with an optimization framework (optimal control, non-linear dynamic optimization)

or on dynamic input-output models.3 These models focus on the impact of environmental

policy on unemployment, on inflation, on disequilibrium in some markets, on cyclical

developments, on convergence and stability, on long-run growth, and on forecasting. A

disadvantage of macroeconomic models is their heterogeneous theoretical underpinning.

Since in recent years macroeconomic models tend to incorporate microeconomic elements,

the difference between CGE models and macroeconomic models became less clear. In

principle, a CGE model is a member of the class of macroeconomic models which has as its

theoretical underpinning the application of an Arrow-Debreu general equilibrium framework.

The commonly made assumption of an underlying optimizing behavior of all agents explains

why microeconomic theory and general equilibrium theory have strongly increased their

relevance for policy analysis. The outcome of a policy simulation is not generated from a

black box but can be traced back to rational behavior. CGE models can provide answers on

economic effects of changes in tax rates or of the introduction of new taxes or subsidies in a

coherent and consistent way. They are superior to traditional macroeconomic models when

the source and the effects of market inefficiencies are to be investigated or when excess

burdens caused by price distorting measures are to be demonstrated. They are the appropriate

tool to answer important policy questions such as structural adjustments, tax reforms or trade

liberalization. CGE models are therefore primarily focused on long-run impacts whereas

macroeconomic models are more appropriate to shed light on the transition from the old

equilibrium to the new one.

3. From Input Output Models to CGE Models                   

Leontief’s input output analysis is based on an input output table and on inter-industry input

output production relations to model the exchange of commodities by agents. A static input

                                                                
3 See Ierland (1999) for a survey on macroeconomic modeling and the environment, and Duchin and Stenge
(1999) for a survey on input-output analysis of the environment.
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output model describes the relationship between supply Xi of an industry i and intermediate

demands of all industries j (j = 1, ..., n) for goods from industry i, Xij, and final demand FDi:

(1)
1

, 1,...,
n

i ij i
j

X X FD i n
=

= + =∑ .

For primary factors labor L and capital K, supply ( )L K  should be equal to the sum of the

demand ( )j jL K  by all industries:

(2)
1 1

n n

j j
j j

L L K K
= =

= =∑ ∑ .

Under the assumption of fixed Walras-Leontief input coefficients,

(3) , , 1,...,ij ij jX X i j nα= ⋅ =

(4) , , 1,...,j Lj j j Kj jL X K X j nα α= ⋅ = ⋅ =

(1) and (2) can be written as

(5)
1

n

i ij j i
j

X X FDα
=

= ⋅ +∑

(6) ,Lj j Kj j
j j

L X K Xα α= ⋅ = ⋅∑ ∑ .

Given final demand, (5) can be solved for the output levels Xi and (6) then gives the demand

for the primary inputs. Prices PXi can be determined by using the identity

1

n

j j i ij j j
i

PX X PX X PL L PK K
=

⋅ = ⋅ + ⋅ + ⋅∑

and then (3) and (4):
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(7)
1

n

j i ij Lj Kj
i

PX PX PL PKα α α
=

= ⋅ + ⋅ + ⋅∑

where prices for labor and capital are exogenous. The critical features of this model are that

input coefficients do not depend on prices and that prices, calculated as an arithmetic mean

with input coefficients as weights, have no impact on the economy.

The idea to derive price dependent input coefficients as factor demand functions of the

neoclassical production theory goes back to Samuelson’s (1951) “non-substitution theorem”.

In a path-breaking paper Samuelson (1953) studies the causal relationship between prices and

quantities and proves the duality of cost and production functions. The dual characterization

of a technology, also shown by Shephard (1953), permits as Shephard’s lemma to derive cost-

minimizing input coefficients as partial derivative of a unit cost function of the output of an

industry. First order conditions of producer behavior had not to be solved explicitly for the

quantities as function of prices (if this was possible at all) and, in addition, those unit cost

functions as a dual characterization of the technology proved to be useful to determine prices.

Unlike inter-industry input-output models and other earlier economy-wide planning models,

household factor income and expenditures are linked in a theoretically appropriate manner. As

will be seen next, the input-output technology is typically embedded in CGE models to

characterize inter-industry transfers.

In a dual CGE approach the technology of a cost minimizing industry is characterized

by a cost function C,

(8) ( , , , ) 1,...,j j jC C X w PL PK j n= =

where w is the price vector of intermediate inputs. The observed costs are

1

n

j i ij j j
i

C w X PL L PK K
=

= ⋅ + ⋅ + ⋅∑ .

Under the assumption of constant returns to scale, (1, , , )j jc C w PL PK=  is the unit cost

function and ( , , )j j jC X c w PL PK= ⋅ .

From Shephard’s lemma we derive demand functions as input coefficients:
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(9)
( )

, 1,..., , ,ij j j j j j

j i j j

X c L c K c
i n

X w X PL X PK
∂ ⋅ ∂ ∂

= = = =
∂ ∂ ∂

.

Assuming profit maximization under perfect competition ( )PX MC= :

(10) ( , , )j jPX c w PL PK= .

This price equal average cost condition can be employed to determine the system of n output

prices. Since the price vector w of intermediate inputs is exactly the price vector

1( ,..., )nPX PX  of output prices, equation (10) for industry j is:

(11) 1( ,..., , , ) , 1,...,j j nPX c PX PX PL PK j n= = .

This system of n prices can be solved, given the prices of labor and capital. In order to

determine the output levels Xj which are influence by the price system, we substitute

( )j
ij j

i

c
X X

PX
∂ ⋅

=
∂

 from (9) for Xij in (1) and obtain

(12)
( )

, 1,...,j
i j i

j i

c
X X FD i n

PX
∂ ⋅

= + =
∂∑ .

This system of n equations in the n unknown X’s can be solved, given final demand. A CGE

model is therefore a system of linear and nonlinear equations that is solved to simulate market

equilibrium. It includes equations describing consumers’ and producers’ supply and demand

behavior that are derived explicitly from conditions for profit or utility maximization (see

section 4), and market clearing conditions in product and input markets (see section 6). In this

dual or cost-driven form, pioneered by Johansen and Jorgenson, 4 Leontief’s input output

model is a special case if consumer behavior and factor market are ignored. If the unit cost

function in (11) is an arithmetic mean of input prices, as given in (7), then (12) is identical

with (5), the basic Leontief model.

                                                                
4 For a survey on the development of CGE modeling see Shoven and Whalley (1984), Robinson (1989),
Bergman (1990a) or Conrad (1999).
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CGE models based on the primal approach to production have been used by Shoven

and Whalley (1973,1984). In the primal problem formulation, the agent determines supply

quantities as a function of the market prices of commodities, while in the dual problem the

supplier is setting the market price of the commodity, he is supplying by using the inverse

supply function, i.e. price equal to marginal cost. In the primal problem form, demand as well

as supply depend explicitly on prices which are determined by equating demand and supply.

In the dual problem form, the supplier receives the market price of the commodity from

average cost pricing. Demand depends explicitly on prices and determines the quantity to be

supplied. Supply enters marginal cost which influence the price. In principle, however, it

doesn’t matter which approach is used if the equilibrium is unique and the forms of the cost

and production functions used are self-dual (Cobb-Douglas or CES specifications).5 The

Shoven-Whalley type of models have their roots in applied welfare economics while the

Johansen-Jorgenson type of models originate from input-output analysis (see Johansen

(1979); Hudson and Jorgenson (1974)).

The choice of specifying functional forms for production or cost functions depends on

adopting the econometric approach or the calibration approach to CGE modeling. The

econometric approach requires time series or cross-sectional data for estimating the unknown

parameters statistically. Calibration may make use of a mix of econometric results and other data

taken from the literature. When choosing the econometric approach, flexible functional forms

like the translog specification (Jorgenson and Wilcoxen, 1990a, b; Hazilla and Kopp, 1990) or

the Generalized Leontief specification of cost functions (Glomsrod et al., 1992) can be used. The

estimation procedure of the unknown parameters is based on a multi-level nest of input

compositions. At the "top" level, there are two inputs, for instance energy and non-energy, or

four inputs, say labor, capital, material and energy. Depending on the focus of the study, land

instead of energy can be included in this nesting, or commodities from agriculture or forestry,

respectively. At the "bottom" level, demand for aggregated energy, material or for transportation

is further divided into its components using nested flexible sub-functions. Agriculture, e.g., can

be decomposed into program crops, livestock and dairy, and all other agricultural production if

                                                                
5 I will also not discuss theoretical issues like uniqueness of a general equilibrium or externalities as a source of
nonconvexity. Under concavity - convexity assumptions Pareto optimality in a basic general equilibrium model with
externalities exists and is unique (see Baumol and Oates, 1988, Ch. 4). The existence of a competitive solution that is
consistent with any particular Pareto optimum has been explored in an extensive literature. The question is, however,
whether in GE models calibrated on real world data, nonexistence is a serious problem. A proof of existence of, and
computational procedure for finding, a general equilibrium with taxes were derived by Shoven and Whalley (1973).
A more serious problem is that any detrimental externalities can produce non-convexity. This breakdown in the
concavity-convexity conditions may result in several local optima so that prices may give the wrong signals -
directing the economy away from the social optimum.   
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the user of a CGE model wishes to illustrate some of the difficulties of coordinating agricultural

and environmental policies (Hrubovcak et al., 1990). The common approach to CGE modeling is

to calibrate the parameters of the model so that one year observations are sufficient. The prefered

specification is a series of nested CES functions but with fixed input coefficients for some input

components (e.g. Bergman, 1990b, Capros et al. (1996) or the GREEN-model). In the CES

approach, the elasticity of substitution will be guessed, and the distribution parameters depend on

the particular year chosen for calibration. The elasticities of price-induced substitution are key

parameters and will affect the economic costs and environmental benefits from stricter policies

towards sustainable development. In general, input categories and nests in a nested production

structure should be selected according to the focus of the model. Those nests one would use for

an energy oriented model may not be the same as for a trade and environmental analysis in a

developing country that depends on agriculture, fishery and forestry.

To demonstrate the production/cost nesting, let us assume that the first m prices in (11)

are prices of fossil fuels (gas, oil, coal). Then the unit cost function PEj of industry j for fossil

energy is { }( )1,..., :j m∈

(13) ( )
1

1 1
1,...,j j m i iPE CES PX PX d PXσ σ σ− − = = ⋅ ∑

where σ  is the elasticity of substitution and the di’s are distributional weights which indicate

the relative significance of the inputs (we omit an index j on di and σ  for simplifying the

notation). This cost function is dual to a CES sub-production function

( )
1

j i ijE d X ρ ρ
−−= ∑

where ρ  is the substitution parameter 
1

1
σ

ρ
 

= + 
. Using Shephard’s lemma, input

coefficients for fossil fuels are

(14)
( )ij j j

i
j i i

X CES PE
d

E PX PX

σ

σ∂ ⋅  
= =  ∂  

, i=1,...,m.

From (9) we get, using Shephard’s lemma with respect to the price PE
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(15) 1( , ,...)j j m

j

E c PE PX
X PE

+∂
=

∂
.

If we multiply (14) by (15), we obtain price dependent energy input coefficients as a subset of

the coefficients derived in (9).

4. Producer Behavior

Given the basic neoclassical approach to model producer behavior in an inter-industry

framework, CGE models differ from one another in dealing with the following issues:

expectations and planning horizon, the optimal choice of investment with or without

adjustment costs, the treatment of technical change, and the incorporation of abatement

activities. In this section we deal with producer behavior with respect to investment decision

and in separate sections with respect to technical change and abatement technologies.

In the first generation of CGE models producers were regarded as having static

expectations and the dynamics are modeled as a recursive accumulative procedure. The

capital stock is fixed in the short run and variable in the long run. Investment is neither

determined by savings behavior of private households nor is it determined by the behavior of

a manager who maximizes the value of the firm (the Tobin (1969) q-theory of investment).

Especially in large-scale CGE  models investment of the firm is determined by optimal capital

costs in the long run, expectations about future growth of demand for a firm’s product and

static expectation about its future prices. An adjustment factor determines the percentage a

firm wishes to invest in order to narrow the gap between the size of its “desired” capital stock

and its current level. If, however, agents have myopic expectations, they expect future prices

to be the same as current ones. Decisions in each period of the transition phase to a new long-

run equilibrium will then deviate from optimal decisions if a policy change has affected

prices. In such models the requirements for actions in a future period (e.g. global warming)

will not alter the nature of environmental decisions before the requirements come into effect.

In the new generation of fully dynamic CGE models investment decisions are based on

forward looking expectations (rational or perfect foresight) and on intertemporal optimization

behavior. In addition, adjustment cost functions express the notion that installing new capital

necessitates a loss of current output. The coordination of intertemporal savings behavior and

investment decisions occurs on perfect capital markets. In models with perfect foresight, the
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cost estimates of an environmental policy can be lower than for the same model with no

foresight because there will be no early, and hence costly, retirement of the capital stock.

An important advantage of an explicit intertemporal optimization framework is that

the necessary ex-post equality between investment and savings can be warranted, which is not

the case in a backward looking capital accumulation approach (see Dewatripont and Michel

(1987)). Therefore, no closure rule has to be chosen, that is, none of the constraints of the

model must be relaxed to find a solution when all markets are in equilibrium. In most static

CGE models the identity of private gross domestic production from the flow of cost approach

with the flow of product approach has been used to choose a residual variable for closing the

model. Such a variable could be investment, the public budget or the balance of trade.6 The

ex-post identity of gross investment to net savings (household savings, government budget

deficit and current account balance) serves as a closure rule e.g. in Hudson and Jorgenson

(1974), GREEN or in some versions of GEM-E3.

In the new generation of dynamic models the focus is on how a manager should

accumulate capital over time in order to maximize the value of the firm.7 Let π  be the firm’s

profit (or a restricted profit function), then the following cash-flow identity links the firm’s

sources (left hand side) and uses of revenues (right hand side)

BN VN DIV PI Iπ + + = + ⋅

where BN is new dept issue, VN new share issue, PI I⋅  are investment expenditure and DIV

are dividend payments. New share issues are residual because dividend payments are assumed

to be a constant fraction, a, of profit net of economic depreciation, and new debt issue to be a

constant fraction, b, of the value of net investment:

1

1 1

( ( ))

( )

DIV a PI PI K PI K

BN b PI K PI K

π δ−

+ −

= ⋅ + − ⋅ − ⋅ ⋅

= ⋅ ⋅ − ⋅

where δ  is the rate of economic depreciation. 8 Arbitrage possibilities compel the firm to offer

                                                                
6 For alternative closure rules see Dewatripont and Michel (1987).
7 See Bovenberg and Goulder (1991) on introducing intertemporal features in CGE models. For CGE models
where investment decisions are based on maximizing the value of the firm see Goulder (1995), Goulder and
Summers (1989), Keuschnigg and Kohler (1994) or Vennemo (1997).
8 Several assumptions are possible about the dividend and financing policy of a firm which we will not discuss
here.
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its stockholders a rate of return comparable to the interest rate i on alternative assets:9

(16) 1( )DIV V V VN i V++ − − = ⋅ .

The return before tax to stockholders consists of the current dividend plus capital gain on the

equity value (V) of the firm net of the value of new share issues. This return must be

comparable to the return from an investment of the same value at the market rate of interest, i.

Forward substitution of the basic arbitrage condition yields the following expression for the

firm’s equity value as the discounted value of dividends less share issues:

[ ] 1

1
(1 )

s

t s s uu ts t

V DIV VN i
∞

−

= +=

= − ⋅ Π +∑

The manager maximizes V subject to the capital accumulation condition by choosing

optimally in each period the levels of labor, intermediate inputs and of investment.

There are theoretical difficulties in extending CGE models but the effort seems to be

worthwhile to end up with useful policy models. However, it is important to proceed with

caution, adding at each step only as much complication as is needed, and retaining a clear

view of the causal mechanisms at work.10

5. Consumer Behavior

In most CGE models the focus of the analysis is on efficiency issues, and all consumers are

then aggregated into a single representative consumer. This infinitely lived consumer with

perfect foresight maximizes in year t the discounted sum of intra-period utility from “full

consumption” FC consisting of consumption goods and leisure:11

1

(1 )
1

t
t s

t

U s FC
σ

στ

τ

σ
σ

−
∞

−

=

= +
−∑

                                                                
9 We assumed that all tax rates on capital income are of equal size.
10 An example in this context is the issue whether capital is assumed to be perfectly mobile across sectors (as in
Jorgenson and Wilcoxen (1990b)), or imperfectly mobile (because of adjustment costs (as in Bovenberg and
Goulder (1991)). This can be very important to how the economy responds to a policy shock, and to the welfare
impacts.
11 This is only one (frequently used) way to model intertemporal consumer behavior.
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The parameter σ  is the intertemporal elasticity of substitution in full consumption and s is

the rate of time preference. Full consumption is a quantity index in the form of an intraperiod

aggregate of consumption of goods ( )tC  and leisure ( )tLJ :

( , )t t tFC FC C LJ=

The maximization of the weak separable intertemporal utility function is subject to a budget

constraint that restricts the present value of expenditures not to exceed the present value of

lifetime wealth endowment. This endowment consists of the present value of wages, the

imputed value of leisure time, of net transfer, and of the value of current non-human wealth.

The determination of full consumption can be seen as the first stage in the allocation

procedure of a consumer. At the second stage the consumer maximizes an intra-period utility

function given the full income the consumer has decided to spend in each period. The

allocation is usually based on a within period expenditure function with full consumption as

an indicator of within period utility. At this stage the consumer decides how to allocate full

consumption between consumption of goods tC  and of leisure time. The difference between

the quantity of leisure consumed and the household’s total time endowment determines the

quantity of labor supplied. Saving is also determined at this stage and is the difference

between current income from the supply of capital and labor services and personal

consumption expenditures. At the final stage of the budgeting process, consumption is

allocated into several consumption categories. The allocation is normally between a

composite of non-energy goods and a composite of energy goods. Then different non-energy

goods have to be chosen as well as different energy goods. The several consumption

categories are then being transferred into consumption by product according to the industry

classification used.

Since environmental regulation affects the use and purchase of consumer durables such

as cars, electric appliances, and heating, a model of consumer behavior should integrate demand

for durables and for non-durables. Demand for non-durables and for services from durables has

to be reconciled with investment demand for durables to modify the stock of durables towards

their optimal levels. Such an approach permits to model the impact of an energy or gasoline tax

on growth and on the age of the stock of durables.12 Since non-durable goods like gasoline or

electricity are linked to durable goods such as cars or electric appliances, prices of durables are

                                                                
12 Conrad and Schröder (1991b) developed an integrated framework of consumer demand for 20 non-durable
goods like food and services, and for three durable goods: cars, heating and electric appliances.
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stated in terms of user costs which include all costs of using durables.13 The approach is based on

the notion of a variable expenditure function e(u, p, z) which gives minimal expenditure for non-

durable goods given the utility level u, the price vector p of the non-durable goods and the vector

z of the quasi-fixed stock of durables.

The optimal stock of the durables can be derived from an intertemporal minimization of

expenditures. These expenditures consist of expenditures for non-durables, of purchases of new

durables as net investment, of purchases for replacement, and of taxes on durables like a motor

vehicle tax. If we include the aspect of adjustment costs, the long-run problem facing the

consumer is to minimize the present value of the expected sum of variable expenditures, the

purchase costs of quasi-fixed assets, and adjustment costs. The analytical solution is similar to

the firm’s decision on investment facing a variable cost function with quasi-fixed capital.

If consumer behavior is based on a representative consumer then one of the

restrictions of such an approach is that preferences are identical for all consumers. However,

expenditure patterns differ with demographic characteristics of individual consumers and

therefore environmental policies have different impacts on different households, depending on

the size of their stock of consumer durables. In assessing the distributional impacts of policies

to restrict air pollution, a disaggregation into several types of households is potentially useful.

To capture differences among social groups of households, Jorgenson and Wilcoxen (1993)

have subdivided the household sector into demographic groups that differ by characteristics

such as family size, age of head, region of residence and urban versus rural location.

Especially in large-scale models consumers have myopic expectations and no perfect

foresight. They expect future prices to be the same as current ones. However, as a policy

change will induce prices to change, the consumer makes a mistake in each period in the

transition phase to a new long-run equilibrium. While with rational expectations, consumers

readily adjust their behavior to the announced policy change, consumers with myopic

expectations do not adjust their behavior only until the policy is enacted. In modeling perfect

foresight there are three options which can be considered. Besides the Ramsey type model,

which assumes an infinitely living representative consumer, there is the Blanchard type

approach where different generations are alive each period. Each generation has the same

constant death probability independent on age. The third type is a model of the Auerbach and

Kotlikoff (1987) type where different generations are alive in each period and the individuals

face different death probabilities dependent on their age. To my knowledge no CGE model

                                                                
13 The same concept is used in the GEM-E3 model.
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exists with an Auerbach/Kotlikoff type of modeling the household sector whereas a Blanchard

type model has been used (e.g. Keuschnigg and Kohler (1994)).

Common specifications for the intra-temporal allocation of consumption into

categories are the linear expenditure system, nested CES or translog demand functions. A

linear expenditure system based on a restricted expenditure function with consumers durables

as quasi-fixed stocks can be found in Conrad and Schröder (1991b). Calibration of a linear

expenditure system requires information on all income elasticities to calculate the parameters

of the budget shares as well as information on all own-price elasticities to calculate the

minimum required quantity of the good.

6. Foreign Trade, Domestic Supply and Demand

If all countries implement a more stringent environmental policy, the impact on their GDPs

and relative prices of goods will be different in each country. As a result trade patterns and

domestic production will change. These effects will be more significant if a unilateral action

is taken by one of the countries, which adversely affects the international competitiveness.

Since the costs of environmental policies will decline as the number of countries

implementing them increases, it is important to model the impact on international

competitiveness by endogenizing foreign trade. Most CGE models allow the trade pattern to

adjust to environmental policy measures. Since perfect specialization is rarely observed in

reality and since two-way trade prevails, the Armington (1969) assumption is widely adopted

to model intra-industry trade. Under this assumption, domestically produced goods and

imported goods are not perfect substitutes. We next describe a CGE approach to model trade,

domestic supply and total demand by adopting the small open economy framework, i.e. the

domestic economy is considered as sufficiently small. This assumption implies that the

domestic economy does not affect international prices.14

Firms substitute between domestic, X, and foreign goods, IM, to minimize the cost of

obtaining a given Armington composite good, Y. The dual approach is based on a unit cost

function

(17) ( , )PY CES PX PIM=

                                                                
14 The GEM-E3 model is not based on that assumption (see Capros et al. (1996) and Conrad and Schmidt
(1998)).
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where PY is the price of the aggregate composite, and PX(PIM) is the price of obtaining the

domestic (foreign) good. From this cost function the share for the domestic good in the

composite good is derived by Shephard’s lemma:

(18)
X PY

cx
Y PX

σ
 = ⋅ 
 

as well as the aggregate import in the composite good15

(18) ( )1
IM PY

cx
Y PIM

σ
 = −  
 

Y is determined from the input output part of the CGE model, i.e. from

(20) j
i ij j i ij j i

j

X
Y a X FD a Y FD

Y

 
= + = ⋅ +  

 
∑ ∑

with the price dependent share j jX Y  from (18). Equations (18) and (19) therefore allocate Y

to X and IM, and (17) determines PY. If CGE models are linked by trade flow matrices, then

PIM has to be specified as a unit cost function in import prices (equal to export prices) of the

trading partners as done in the GEM-E3 project. Here16, rowPIM PEX ex=  where PEX is

the export price of the rest of the world (row) (exogenous) and the exchange rate ex is in $ per

Euro (exogenous). This assumption implies that the foreign import supply function is

horizontal at PEXrow.

For determining domestic export supply, firms maximize revenue

PX X PEX EX⋅ + ⋅  from domestic, X, and foreign supply EX subject to a constant return to

scale CET (constant elasticity of transformation) function for the composite good Y

(determined by (20)) as a function of X and EX. Using again the dual approach of a CET unit

revenue function

(21) ( , )PY CET PX PEX=

                                                                
15 To simplify the notation we omit an index j for the industry.
16 In our presentation we omit taxes and customs duties.
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we obtain supply functions using Hotelling’s lemma, i.e. differentiating (21) with respect to

the product prices:

(22)
T

X
PY

X Y
PX

σ

γ  = ⋅ ⋅ 
 

(23)
T

EX
PY

EX Y
PEX

σ

γ  = ⋅ ⋅ 
 

where 0Tσ <  is the elasticity of transformation and the γ ’s indicate the significance of the

outputs. Equating the export equation (23) with import demand of the ROW (see IMrow in (24)

below) gives the price PEX. Since PY has been determined by (17), (21) can be solved for PX.

Then X in (22) can be calculated. In order to model import demand by the ROW, we proceed

as in (17)-(19) by adding an index row to all variables. Dividing the symmetric equation of

(19) by (18) yields import demand of the row

(24) row
row row row

row

PYIM Y
PIM

σ

γ
 

= ⋅  
 

where rowPIM PEX ex=  and PEX determined as mentioned above. World market prices

PYrow and sectoral output levels Yrow of the ROW are exogenous. One of these prices serves as

numeraire. Note that the foreign export demand function is not horizontal but is declining in

PEX.

We finally can calculate the trade surplus/deficit TS by commodity

(25) TS PEX EX PIM IM= ⋅ − ⋅ .

By summing up over all commodities, the total trade surplus/deficit can be calculated. If the

exchange rate is assumed to be exogenous (as in GEM-M3), the current account is not

balanced and will change with the policy simulation. Instead of a residual as a world closure,

an alternative is to fix TS and make the exchange rate endogenous. The models are closed by

budget constraints, market clearing conditions and macroeconomic balances based on the

Social Accounting Matrix. These equations include all kinds of taxes, subsidies and transfer
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payments. They summarize incomes and expenditures of private households, of the

government and of the rest of the world. For the government the deficit/surplus could be held

fixed and one of the taxes is allowed to adjust, or it could be determined endogenously as a

residual. Finally, some variables have to be set at an exogenous level because we do not know

how the world oil market functions (price of crude oil is exogenous) or because the impact of

technical change is uncertain.

7. Labor Markets

The specification of the labor market could be crucial to the discussion on the effect of

environmental policy on employment. A labor market policy of recycling tax revenues from

an environmental tax to lower employers’ non-wage labor cost depends on how the labor

market is modeled. Non-competitive labor markets could provide another potential channel

for the so called “double dividend” (see section 11.1).  In most CGE models the labor market

is perfectly competitive and the wage rate adjusts so that supply equals demand. Proost and

Regemorter (1995) consider several income groups and different regimes for the labor market

to test the double dividend hypotheses empirically including equity aspects. Labor supply is

fixed and they consider a case with flexible wages and one with fixed real wages. The

efficiency gain that can be made by using the tax revenue from an environmental tax to

reduce existing distortions from high taxes on labor depends crucially on how flexible labor

supply is. In most static models a simple labor supply curve for a skill category is

implemented where labor supply is a function of the real wage rate:

S PL
L L

PY

η
 = ⋅  
 

.

If the supply elasticity η  is zero, labor supply is fixed ( )L  and if it is infinite, the real wage

rate is fixed. In this case, the labor supply equation is dropped from the system and the labor

market equilibrium equation states that labor demand is always met by supply. Suppliers will

freely supply all labor demanded at the fixed wage and a labor supply function can be used as

a side equation to compute involuntary unemployment. If the labor supply curve is not flat,

the condition ,
d s
j l l

j

L L=∑  determines the equilibrium wage rate for a skill category l.
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In intertemporal models the representative agent allocates full consumption between

goods and leisure, determining personal consumption expenditure, labor supply, and savings.

The price of labor is determined (e.g. in McKibbin and Wilcosen (1992)) by assuming that it

adjusts according to an overlapping contracts model where nominal wages are set based on

current and expected inflation and on labor demand relative to labor supply. In the long run

labor supply is given by the exogenous rate of population growth, but in the short run the

hours worked can fluctuate depending on the demand for labor. Then for a given nominal

wage, the demand for labor will determine short-run unemployment.

Some model builders do sensitivity analyses to test whether the computed results

depend on the labor market specification. Boehringer et al. (2000) incorporate some features

of wage bargaining in the presence of initial unemployment in order to represent labor market

imperfections. A Phillips curve concept is used to model the empirical evidence that high

unemployment rates weaken the level of bargaining power by unions, which in turn implies

lower real wages (see also GEM-E3 or Carraro and Galeotti (1994)).

8. Technical Change

It is well-known that the outcome from an environmental policy measure in response to

mitigate global climate change is very sensitive to the assumption made on the rate of energy

efficiency improvement. However, technical progress is in general considered to be a non-

economic, exogenous variable in economic policy models. This is not very satisfactory

because the neglect of induced technological progress may lead to an overestimation of the

costs of greenhouse gas reduction or of the contribution of traffic to air pollution. An

inadequate representation of policy driven technical change in the models will also result in

an understatement of the advantages of market-based instruments. In the field of industrial

organization  partial models have been developed to endogenize the process from R&D

expenditure to invention and innovation, and then to diffusion of a new process or product.

These models seem, however, not appropriate for implementation and calibration.

The technological change process is usually initiated by public or private R&D and

diffuses by “learning by using”, “learning by doing” and by networking. These processes are

not easy to capture in a neoclassical framework because they have evolutionary elements. In

most models technological parameters, representing e.g. efficiency or emission reduction

potentials, are treated as inputs and not as results of the technological change process. The

impact of technological change on processes, products and on emissions can not be modeled
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with only a few equations. Emission reduction of air pollutants can be achieved by fuel

substitution (non-energy for energy or within energy inputs), by efficiency improvement in

power generation, and by the energy user. The potential for emission reduction can focus on

energy use per unit of production or on emissions per kWh. Stages of the techno-economic

development have to model incentives and costs of R&D, implementation costs (information

and operating costs), commercialization, wide-scale diffusion, appropriability, barriers to

market penetration, the technological infrastructure and the scope for future efficiency

improvement of established versus novel products. For reducing greenhouse gas emissions,

e.g., there are many technologies or means which could be introduced in a model: fuel

substitution to less carbon-intensive fuels, renewable energy, advanced power generation

cycles, transmission improvements, end user efficiency improvement or carbon sequestration

(e.g. by biomass greening). It is obvious that it is not possible to model all those measures

within a CGE framework. Bottom-up firm specific models (e.g. the EU models MURE,

MARKAL, EFOM) try to capture technological change by linking detailed technically

oriented submodels to economic models in order to endogenize technical change. However, in

recent years there have been significant new developments in CGE modeling of endogenous

technological change. Until recently, the following four main approaches were used to

incorporate technical progress in CGE models:

• a partially endogenous treatment of technical progress initiated by Jorgenson and

Wilcoxen

• autonomous energy efficiency improvement (input saving technical change)

• the vintage composition of the capital stock

• the transition to backstop technologies

In Jorgenson and Wilcoxen (1990), and later in the G-Cubed model of Wilcoxen and McKibbin

(1992), technological development is partly endogenized by the specification of productivity

growth as a function of the prices of all inputs of an industry. In this approach, substitution away

from polluting inputs can affect the rate of productivity growth. A decrease in an industry’s

productivity level will raise the price of its output relative to its input prices, i.e. the industry will

become less competitive. If the bias of technical change is input of type i using and the price of

such a pollution intensive input increases (e.g. by a tax), then cost reduction due to productivity

growth will be reduced.

The translog unit cost or price function of the prices of all the inputs of an industry j is
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where t is time and an index of technology. Input-coefficients derived by Shephard’s lemma are:

( ln )ij jj j j
i ik k iT

kj i
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p t

x p
α β γ= + + ⋅∑

where giT  indicates the bias of technical change. The rate of cost reduction due to productivity

growth is

ln
lnj j j j

T iT i TTi

c
p t

t
∂

α γ γ
∂

= + + ⋅∑

and is expected to be negative. If the bias of technical change is input i using, i.e. giT >0, and the

price of this pollution intensive input increases ( 0)ip >V , then cost reduction due to

productivity growth 
ln jc

t
∂ 

 ∂ 
 in industry j will become smaller, because lniT ipγ ⋅ V  is added

to the negative cost reduction parameter j
Tα  (in the base year: all 1, 0ip t= = ). Technological

development is treated only partially in this model because an autonomous trend is included

which interacts with the prices of intermediate inputs. There is price induced productivity growth

in the model which affects input shares. But technological change is not endogenized in terms of

reversing a bias, leading to new vintages of durable goods, to new products or to different

qualities or major breakthroughs. The models by Glomsrod et.al. (1992) or by Hazilla and Kopp

(1990) endogenize fuel specific technical change in a similar way, i.e. as an incentive for

substitution only.

Autonomous energy efficiency improvements (AEEI) are more difficult to estimate than

those that are induced by price increases. AEEI decouples resource demand and economic

output, and so yields resource-saving technical change. In the dual cost function approach some

input prices are multiplied by a function representing price diminishing technical change, i.e.

( ) ( 1) exp( ), 0i i i iP t P t tγ γ= − ⋅ − ⋅ > . Non-price induced efficiency improvements may be

induced by changes in public policy like a mandatory doubling of average fuel efficiency of

automobiles during the course of ten years. Manne and Richels (1990) introduce those
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exogenous efficiency improvements, for example. They also include explicit carbon removal

technologies if carbon tax rates are large. Their production function also allows for the

possibility of "autonomous (costless) energy efficiency improvements" which reduce the share of

energy in GNP over time. A factor for autonomous energy efficiency improvement integrates all

non-price induced changes in energy intensity and therefore represents the efficiency effect of

technological, structural and political objectives (e.g. voluntary agreements). This approach

emphasizes to show the effect of technical change but can not model aspects like innovation,

adaptation or diffusion. If an environmental policy induces technical change, e.g. triggers

emission or resource saving technical change, it would reduce the cost of achieving a given

abatement or resource conservation target. Most CGE models, however, assume no difference in

the pattern of technical change between the base case and the policy case. This probably leads to

an upward bias in the cost estimate of that policy.

An alternative approach to incorporate technical change is the use of capital vintages

involving different technologies. The differentiation of technologies can have effects on the form

of the production function, on the input structure, or on flexibility (different elasticities of

substitution for the vintages). With new vintages substitution possibilities among production

factors are higher than with old vintages. In Bergman (1990) the "old" production units in steel

or pulp and paper industries are assumed to have zero elasticities of substitution, whereas the

elasticity of substitution of "new" production units in these industries is positive. In GREEN's

dynamic structure, two kinds of capital goods coexit in each period, "old" capital installed in

previous periods, and "new" capital resulting from current-period investment. This putty/semi-

putty technology also implies different substitution possibilities by age of capital.

A more formal presentation of the aspect that the latest vintage, added to the aggregate

capital stock, embodies innovation and technical improvement can be found in Conrad and

Henseler-Unger (1986). The methodological approach is an integration of price-dependent

input coefficients with input coefficients of the latest vintage, both derived from cost

functions. The elasticity of substitution is the same for old and new vintages but the

distribution parameters in the CES functions , that is the relative significance of the inputs,

differ.

The integration of the „jelly“ capital concept with disembodied technical progress, used

in the neoclassical approach to input-output analysis, with the vintage concept follows from

adjusting, for example, an energy coefficient based on the new relative prices in t + 1 by the

decay of old plants (δ  is the rate of decay) and by adding the input coefficient of the new plant

or vintage:
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where ( )E Ed θ  is the distribution parameter of the old (new) production process, and g is the

growth rate of output.

The characteristic feature of this approach is that on the one side an input structure reacts

to changes in relative prices by substitution on the basis of the jelly capital stock. On the other

side, the input structure changes due to new energy-efficient plants (2. term  in (26)) for the

retired worn-out energy-intensive installations.17 A similar approach of a vintage re-calibration

has been used in the OECD model (Beghin et al. (1995)). At the beginning of each new period,

the parameters of the production structure are modified to reflect the changing composition of

capital.

A further methodological approach to take into account the vintage concept is to replace

capital K in a restricted cost or profit function by Solow's (1959) expression for an effective

capital stock. In his article, Solow criticized the disembodied nature of technical change in

aggregate production functions. He emphasized the fact that most improvements in technology

need to be embodied in net capital formation, or in the replacement of old-fashioned equipment,

before they can be made effective. Solow proposed to distinguish capital equipment of different

vintages and formulated a Cobb-Douglas function for output produced with capital of a given

vintage. Technical change is represented by a rate of embodied technical change as well as of

disembodied technical change. His measure of effective capital incorporates the assumption that

all technical progress is embodied in the improving quality of successive vintages of capital

investment.18 If technical progress is unembodied in capital plant and equipment, then its effects

do not depend in any way on the rate of investment in capital plant and equipment. An

alternative notion is that technical progress is entirely embodied in the design and operating

characteristics of new capital plant and equipment. According to this view, the energy saving

effects of embodied technical progress depend critically on the rate at which new investment

goods diffuse into the economy, i.e. on the vintage composition of the capital stock. For policy

measures the nature of technical progress matters. If technical progress is embodied, tax credits

for investments in new energy-efficient equipment provide an incentive to realize its effects more

                                                                
17 The adjustment of the distribution parameter dE for energy in the CES cost function after the decay of retired

vintages and the inclusion of new vintages is then d
g

d gE t E t E t, , ,( ) ( )+ = +
- + +1

1
1

1s s sd dq .
18 For a CGE application see Conrad and Ehrlich (1993).
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quickly than if technical change were unembodied. However, under embodied technical change

energy savings can be realized only by changing the energy using characteristics of the long-

lived capital stock, whereas under unembodied technical change the effectiveness of the entire

capital stock is augmented regardless of its vintage composition. One example of unembodied

technical change is “learning by doing” in which workers learn how to produce more efficiently.

However, if technical progress were embodied, it augments only the most recent vintage of

investment, and not any of the earlier vintages of surviving capital. 19 Berndt et.al. (1993) have

estimated the rates of embodied and disembodied technical change using a translog specification

of a restricted cost function and data from the manufacturing sectors in the United States, Canada

and France from 1970-1987. They found that embodiment played at best a modest role. From the

total cumulative effects of technical progress, embodied technical progress was responsible for

0.5% in the U.S., 3.6% in Canada, and 10.7% in France. They conclude that technical progress

embodied in new equipment is responsible for only a surprisingly small proportion of

productivity growth.

Energy oriented CGE models introduce exogenously provided new technologies which

are known but not yet implemented. These backstop technologies are already known today, but

are options commercially of interest in the future. The introduction of these technologies depends

on maturation (exogenous penetration time) as well as on the cost of production relative to

competitive technologies. Backstop inputs are modeled to be available at an unlimited quantity

for an exogenously given price. A precise knowledge of the technology in question is not

necessary. For the design of carbon reduction policies Rutherford (1999) assumes that there

exists a carbon backstop technology which can produce carbon-free energy at constant marginal

cost. In simulations of carbon abatement policies costs of the carbon backstop are set equal to a

future value per ton of carbon and then application of a carbon limit causes a gradual

introduction of the backstop activity. The introduction of new alternative sources of fossil fuels

depend on the exogenously given cost of the backstop.

The new generation of CGE models employ a more sophisticated treatment of

endogenous technical progress by modeling explicitly the connection between R&D expenditure

and knowledge growth. The models of Nordhaus (1999) and of Goulder and Schneider (1999)

connect the rate of invention with resources spent on R&D. The Nordhaus-model of induced

innovation describes the impact of changes in prices or regulation on the innovations in different

sectors. At a given time, there is an existing stock of general and sector-specific basic knowledge

and engineering knowledge. Resources (research as an input) can be applied to improve the state

                                                                
19 For the definition of the capital stock in efficiency units see Solow (1959) and Berndt et al. (1993).
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of knowledge (called “innovation”) in order to raise the productivity of resources. The

conclusion of the study based on the DICE model (Nordhaus (1992, 1994)) was that induced

innovation seems to be a less powerful factor in implementing climate-change policies than

substitution. The reductions in CO2 concentrations and in global mean temperature due to

induced innovation turned out to be approximately one-half of those due to substitution. Goulder

and Schneider (1999) model induced technical change in greenhouse gas abatement by making

R&D for lower-carbon technologies responsive to the economic incentives created by

greenhouse gas policies. Firms employ labor, capital and two types of energy and materials to

produce output. By distinguishing conventional (carbon-based) energy from alternative forms of

energy, they can consider how a tax on carbon influences incentives to R&D in alternative fuels

industries. And by distinguishing carbon-intensive materials from other materials, they can

observe how the performance of other industries might depend on the extent to which carbon

fuels are a significant input into production. In addition, they distinguish physical capital and

knowledge capital. The former is expanded by investment in new physical capital, the latter by

expenditure on R&D activities. Enlarging either capital stock raises the productivity of energy

and non-energy inputs.20 They apply the model to the US economy but concede that it is (not

yet) possible to obtain precise data on the technology for producing R&D services or to identify

precisely the relationship between R&D services and knowledge capital. These new models are

inspired by the industrial organization literature or by macro models of induced technological

change (Romer (1990)). A CGE application of these approaches needs calibration of parameters

which express the strength of substitution possibilities between knowledge capital and ordinary

inputs or the spillover knowledge enjoyed by all industries. More econometric studies need to be

carried out in order to provide an empirical background for the calibration of R&D related

parameters.

9. Abatement Technologies

If emission data are directly associated with the volume of output, that is abatement activities

are not endogenously modeled, then the only way to reduce emissions is by reducing output.

This is a rather unpleasant conclusion for countries troubled with unemployment as well as

                                                                
20 For an extension of this model with two channels for knowledge accumulation (R&D and learning by doing)
see Goulder and Mathai (2000). In this model a social planner chooses optimal paths of carbon abatement and
carbon taxes taking into account the impact of taxes on technological progress and future abatement costs. The
stock of technological knowledge enters the production function and, at the same time, affects the emission
output ratio.
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for developing countries. However, for an analysis of the impact of environmental regulation

on international competitiveness and on growth, the inclusion of the operating costs of pollution

control is of importance. Polluting firms can react to standards and/or emission taxes either by

factor substitution or by abatement activities or by both. They have abatement cost functions and

determine the level of the abatement activity by equating marginal cost of abatement to the

uniform tax rate on emissions. Abatement activities also imply demand for intermediate goods,

for capital and for labor. Depending on the objective of the study, several approaches to impose

pollution control regulations on the technology can be found in the literature. The easiest way to

deal with the problem of how to model abatement technologies, is to study the economic impact

of reducing carbon dioxide emissions. Since there are no carbon abatement technologies

available at reasonable economic costs, this explains the popularity of modeling CO2 reduction

policies. Substitution and output effects are the only measures to reduce CO2 emissions.

In determining the impact of environmental restrictions on economic growth, Jorgenson

and Wilcoxen (1990) simulated U.S. economic growth with and without pollution control in

effect. For eliminating the operating cost of pollution control for constructing their base case,

they estimated the share of pollution abatement in total costs of each industry to compute the

share λi of costs, pollution abatement excluded, in total costs. To simulate the effect of

eliminating the operating costs associated with pollution controls for all industries, they insert the

cost shares λi into the unit cost functions for these industries, i.e.

ln ln ln ( , )p c w ti i i= +l .

To simulate the impact of eliminating controls on motor vehicle emissions they reduced the price

of motor vehicles in proportion to the cost of pollution control devices. Finally mandated

investment in pollution control equipment has been implemented as an increase in the price of

investment goods.

Hazilla and Kopp (1990) impose pollution control regulations also directly on the

technologies. They model their impact through modification of the derived input demand

equations in each sector. The input structure of each industry is modified to account for increased

input usage required by regulation. In Bergman (1990) total emissions of air pollutants (SO2,

NOx, CO2) can be reduced by means of separate cleaning activities that are available to all

sectors. Technically the reduction of emissions is modeled as a central abatement unit, selling

services to the different sectors. The price of these abatement services is equal to marginal cost
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of abatement This price then will be determined on the market for emission permits implying

that marginal cost of abatement will be equal across sources of emissions.

In Conrad and Schröder (1991a, 1993) and in the GEM-E3 model (Capros et al. 1996)

abatement activities are modeled such as to increase the user cost of the polluting inputs in terms

of additional operating costs. Let d be a degree of abatement which is defined as the ratio of

abated emission over potential emissions ( )0 1£ £d  and c(d) are the cost of abatement measures

per unit of emission or waste, measured in base year prices. They depend on the degree of

abatement with ¢ >c d( ) 0  and ¢¢ >c d( ) 0. Then the user cost of fossil fuel, for instance, is
~ ( )w w w c d d eF F M= + × × × where wF is the fuel price, wM is the price of material or abatement

technology and e is an emission or waste coefficient in terms of tons of an air pollutant per unit

of energy input. User costs therefore consist of the fuel price wF and of the additional costs due to

environmental regulation when using one unit of the fuel input. This user cost of energy

increases over-proportionally with an enforcement in environmental regulation. 21 On the

production side this implies an increasing share of complementary material inputs. The

change of the user cost of energy will also cause the firm to alter its input choices. A stricter

environmental policy will have a substitution effect which will result in a reduced demand for

energy and its price complements and in an increased use of its substitutes. This integration of

abatement costs in a user cost concept can be used to model the impact of regulation on

household and firm behavior; for the latter each sector should be treated separately.

The user cost approach can be extended to the case of several pollutants, either air

pollutants, water pollutants, or land pollutants. Furthermore, if there is a tax on a pollutant,

then there is also a cost component for the emissions released, i.e.

~w w  +  w   c (d)  d  e +  t (1 -  d)  eF F M= × × × × .

Finally, if there is an energy tax and / or an emission tax on carbon dioxide, tCO, where no

convenient end-of-pipe measures exist, then d is equal to zero in this user cost of fuel.

This approach permits to model the effect of alternative environmental policies. If

there is a regulated degree of abatement, then users of furnaces have to adhere to

governmentally enforced limits of emissions which can be interpreted as a minimum degree

of abatement d . Then the degree of abatement is given and abatement costs increase the price

of energy. If a tax on emission is introduced, the degree d is a decision variable of the firm.

                                                                
21 With ( ) ( )C d c d d= ⋅ , then ( ) 2 ( ) 0C c d d c d′′ ′′ ′= + > .
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Cost minimization with respect to the degree of abatement d yields the optimal degree.

Furthermore, future environmental regulations can be accounted for by modifying the

emission coefficients for appropriate sectors. For instance, as new cars are equipped with

catalytic converters, the emission of NOX for a given amount of gasoline will fall gradually

(see Glomsrod et al., 1992; Conrad and Schröder, 1991a).

In the user cost approach environmental regulation will have an impact on the

composition of the energy aggregate, it will increase the price of the product produced with

fuel, and it will reduce the demand for energy.

10. Data Requirements

The source of data for the multi-sectoral CGE models are the national accounts and input-

output tables which can be comfortably combined in the framework of the Social Accounting

Matrix (SAM). If yearly input output tables are available, then the parameters of the unit cost

functions and of the factor demand functions can be estimated econometrically (e.g. Hudson

and Jorgenson (1974) and Jorgenson and Wilcoxen (1990a, b). The econometric approach is

very demanding in terms of data requirements but makes it possible to incorporate behavioral

responses to changes in relative prices based on the behavior in the past. However, given the

often poor data situation (the latest input-output table is often 5 years old), and the high

degree of aggregation, the knowledge of an estimated elasticity of substitution between

energy and capital or energy and material in the investment goods industry might not be

worth the enormous effort required to explore the production structure from a set of yearly

input output tables. The common approach in CGE modeling is therefore to choose nested

CES functional specifications which account for different degrees of substitutability between

input factors on different nesting levels. The distribution parameters which indicate the

relative significance of the inputs are calibrated (calculated) from benchmark data, but the

substitution elasticities have to be taken from other sources. A typical source are substitution

elasticities presented in the econometric literature or own “best-guess” estimates. Since sign

and magnitude of those estimated elasticities differ, some model builders assume capital and

energy to be complements and labor and energy to be weak substitutes. Those CGE modelers,

who assume energy and capital to be substitutes rather than complements face the problem

that the adjustment to new relative prices will be complete and immediate. As the demand for

energy reflects to a significant degree the properties of the existing stock of capital, this is
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hardly a satisfactory assumption. A reasonable alternative to the question about the true

elasticity of substitution is to carry out different simulation studies. What we know is that a

high degree of substitution among inputs implies that the cost of environmental regulation is

low, while a low degree of substitutability implies higher costs of environmental regulation.

The higher the substitution elasticity between labor and energy, the higher the chance that an

ecological tax reform, which taxes energy and reduces non-wage labor cost, will raise

employment. If we simulate the nature of substitutability among inputs by assuming a CES

specification both with a low elasticity of substitution, and then with a higher one, we get an

interval for the range of economic effects from an environmental policy. This is maybe more

informative than getting a point-forecast under the econometric approach.

The response of an economy to changes in environmental regulation depends also

crucially on assumptions made with respect to which variables are exogenous and what is

their magnitude then. A standard assumption is exogenous technical change or population

growth. In most models the price of crude oil is exogenous as is the foreign exchange rate. It

is not always desirable to endogenise each economic variable (e.g. the exchange rate),

because this makes it harder to understand the outcome of a policy simulation due to the huge

number of potential channels.

11. Environmentally Related Simulation Analyses Using CGE Models

11.1 The Double Dividend Policy

CGE analyses have played a key role in the evaluation of green tax reforms, the reorienting of

the tax system to concentrate taxes more on “bads” like pollution and less on “goods” like

labor input or capital formation. Before turning to an example of a double dividend analysis22,

it is useful to comment on how the incidence of a tax reform should be measured. It can be

assessed by looking at the equivalent variation (EV) associated with the tax change for each

participant in the economy. The EV provides a dollar measure of the impact of a given tax

change on individual economic welfare. The EV gives the change in expenditure at base

prices P0 that would be equivalent to the policy implied change in utility. The EV may be

computed as follows:

                                                                
22 For a state-of-the art review on the double dividend issue see Goulder (1997) and Bovenberg and Goulder
(2001).
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(27) 0 1 0 0( , ) ( , )EV e P U e P U= −

where ( )e ⋅  is the expenditure function which depends on the consumer price vector P0, and

initial utility U0 or post tax utility U1. If 0EV < , welfare after the policy measure is lower

than in the base case. The consumer is willing to pay the maximum amount EV at the fixed

budget level 0 0 0( , )e e P U=  to avoid the decline of utility from U0 to U1. Similarly, if

0EV > , the consumer would be willing to pay the maximum amount EV to see the change in

environmental policy implemented. Alternatively, similar measures such as the compensating

variation (CV) that replaces P0 in (27) with the tax reform price vector given the initial utility

level U0, may be used in assessing tax reforms.

The question in the double dividend debate is whether the internalization of

environmental externalities can be beneficial for other policy areas as well since the revenues

from pollution taxes could be used to cut other distortionary taxes. The non-environmental

dividend can be defined in various ways. Given the important unemployment problem in the

EU, priority has been given to the analysis of distortions in the labor market that might

explain persisting unemployment.23 The revenue from the pollution taxes are recycled to cut

labor taxes. On the one side, the narrow base of an energy tax constitutes an inherent

efficiency handicap. On the other side, the impact of the tax reform on pre-existing

inefficiencies in taxing labor could offset this handicap and a double dividend arises.

Therefore, in principle a double dividend can arise only if (i) the pre-existing tax system is

significantly inefficient on non-environmental grounds and (ii) the revenue-neutral reform

significantly reduces this prior inefficiency. The double dividend actually arises only if the

second condition operates with sufficient force. However, it could also arise if the burden of

the environmental tax falls mainly on the undertaxed factor (e.g. immobile capital) and

relieves the burden of the overtaxed factor labor.24

As an example of such a policy analysis we present results from the GEM-E3 project

(Capros et al. (1996) or Conrad and Schmidt (1998)). In that model CO2 emissions have been

reduced by 10 percent in each country in the base year (the non-coordinated policy approach).

For that purpose a CO2 tax with a rate just high enough to achieve the 10 percent reduction in

each country has been introduced. The revenue from this tax was used to reduce the

contribution to social security by the employers. The carbon tax should affect the substitution

                                                                
23 For theoretical papers on the double dividend issue see Bovenberg and Goulder (1996); Goulder (1995). For
empirical papers see Jorgenson and Wilcoxen (1992), Proost and van Regemorter (1995) and Welsch (1996).
24 See Bovenberg and Goulder (2001) on this point.
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of other inputs for energy and contributes therefore to reducing global warming (first

dividend).25 This substitution effect could have a positive impact on the demand for labor if

output would remain on the pre-reform level. However, the recycling of the tax money to

social insurance as a partial compensation for employers’ contribution could definitely

increase the demand for labor (second dividend). The hope by the advocates of the double

dividend is that the substitution effect of labor for energy outweighs the negative output effect

resulting from lower growth when the tax is imposed.

The model considers full competitive equilibrium in all markets, including the labor

market. We have included leisure of only employed persons in our welfare measure EV. If a

policy simulation results in more leisure, this is interpreted to be equivalent to an increase in

the number of employed persons. We will use the double dividend terminology for policies

resulting in less CO2 emissions and in more employment irrespective of whether consumption

has declined due to lower real wages. In principle, there could be a third dividend, because EV

> 0 can imply more leisure (of newly employed persons) as well as more consumption in

addition to a better environment. It can also imply less consumption dominated by more

leisure, or less leisure dominated by more consumption. The first column of Table 1 shows

the equivalent variations in ECU per capita. Since all signs are positive and the burden on the

environment is reduced by 10%, there is a double dividend effect for all countries. A German,

e.g., is willing to pay at most 62 ECU to see such a policy to be implemented. The EV per

capita is the highest for Denmark and The Netherlands and the lowest for Greece.26

The figures in column 2 show negative growth rates for gross domestic production.

Since employment, in turn, increases (see column 4), labor productivity declines. If in

addition to employment (that is leisure) consumption increases, EV will be positive in any

case according to the formula for EV. Italy and Greece with the lowest increase in real wages

show a negative change in consumption. In these two countries the reduced purchasing power

from higher energy prices can not be compensated by the increase in real wages. As leisure of

employed persons enters our utility function, the growth in employment explains their

positive EV. As investment declines (not shown in the table) for all countries but Belgium,

the double dividend policy is not a strategy for more growth in capital formation. Also not

shown in the table are the negative changes in exports and imports.

                                                                
25 This dividend can not be quantified by our model because our utility function underlying the EV (see section
5) does not include the amenities from the environment.
26 Favorable recycling results are also obtained by Jorgenson and Wilcoxen (1992). Recycling fails in Bovenberg
and Goulder (1997), Goulder (1995) and in Proost and van Regemorter (1995).
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The growth in employment differs by country due to different CO2 tax revenues.

Countries with a high CO2 tax rate have also high growth rates in employment (e.g., Denmark

and the UK), because a higher tax revenue can be used to reduce the cost of labor.

Substitution of labor for energy, given the price of labor and the higher price of energy,

induces more employment. But especially the lower cost of labor from the relief in non-wage

labor cost enhances the substitution of labor for other inputs. Due to changes in relative output

prices, output of industries where energy is a minor input will increase and output of energy

intensive industries will decline. This leads to an intersectoral mobility of labor from

industries hit by CO2 tax to industries which benefit from relative output change and

reduction in non-wage labor cost. The negative output effect from lower production cannot

offset the positive effects from substitution. This kind of argument explains why Italy with the

second highest CO2 tax (33.75) has only moderate growth in employment (0.34%); its

production declines by more (-0.43%) than the average rate in the EU (-0.36%). However, as

we model a flexible wage rate, higher demand for labor will, in turn, increase the wage rate. A

higher real wage rate will then partly offset the double dividend policy of reducing the cost of

labor. The positive growth effect of a higher real wage rate on private consumption may,

however, offset partly  the labor cost effect. Column 6 finally shows an average tax rate of

23.51 per ton of CO2 and a group of countries with a lower rate (e.g., Belgium or Greece) and

a group with a higher rate (e.g., Denmark or Italy). The tax rate depends on country-specific

emission coefficients, on the energy intensity, on the energy mix, and on the cost of avoiding

CO2, i.e., the elasticities of substitution.

As for a global pollutant marginal damage is about the same for each country, for

efficiency reasons the tax rate should be the same. We therefore have lowered overall CO2

emissions of all EU member states by 10 percent, irrespective of the source of CO2 (the

coordinated policy approach). In order to achieve this bubble concept, we have calculated a

EU-wide CO2 tax rate such that its level will guarantee the reduction of total EU-CO2

emissions by 10 percent. Again each country will collect the tax revenues from its domestic

firms and will use the money to lower employers’ contribution to the social security

insurance. We expect that the CO2 tax rate under the bubble concept will be somewhat lower

than the average of the rates under an uncoordinated, country by country CO2 policy. Because

of the cost-effectiveness of a coordinated policy we also expect that the tax revenue from the

CO2 tax under the coordinated policy will be lower than the sum of the revenues collected

under the single country policy. The reasons for the national differences in the impacts of a

CO2 policy are the different structure of the economies in terms of different weights of the
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energy intensive industries, of the service sector, of the composition of exports and imports or

the difference in equipment with consumer durables. All these factors imply a different slope

of the marginal cost curve of avoiding CO2.

We next turn to the results obtained under the coordinated carbon reduction policy. In

this case there is a uniform tax rate whereby  the countries’ contributions to the CO2 reduction

target of ten percent for the EU can differ. Efficiency of this policy shows up in the lower

overall tax rate of 21.8 ECU/ton CO2 compared to 23.5 ECU/ton CO2 as the average rate

under the coordinated policy. As production declines somewhat less (-0.35) than under the

non-coordinated policy (-0.36), a lower level of production can not be an explanation for the

lower tax rate. The labor market dividend is somewhat reduced under a coordinated policy

because tax revenues are lower. Less leisure and somewhat less consumption explain why the

EV for the EU is lower under a coordinated policy. Although the overall performance for the

EU does not change very much, for some countries a coordinated CO2 policy matters. The

labor force in countries with a low CO2 tax under the non-coordinated policy like Belgium

and Greece is pleased to have a higher uniform CO2 tax. The additional revenue of this tax

supports the labor market dividend. The labor force in countries with a high CO2 tax under the

non-coordinated policy are in turn not so fond of the coordinated policy. For Italy, e.g.,

employment now increases by only 0.23% compared to 0.34 under the non-coordinated

policy.

Another measure of efficiency is labor productivity. The change in output minus the

change in labor input is –0.75 under the coordinated policy and –0.80 under the non-

coordinated policy; i.e. labor productivity declines more under the non-coordinated policy.

However, all those efficiency arguments are buried by the welfare effect of more employment

and a higher real wage rate, and hence of more leisure from persons now being employed, and

of more consumption.

Our numerical results indicate that the beneficial efficiency impact from the reduction

of pre-existing inefficiencies in taxing labor in the EU seems to be large enough to overcome

the efficiency handicap of the narrow tax base of the CO2 tax. However, our findings can also

be linked to the factor mobility assumption made in the GEM-E3 model. The putty-clay

approach used in this recursively dynamic model is based on the assumption that sectoral

capital stocks are fixed within a single period. In such a situation the burden of the

environmental tax falls partly on capital as stocks can adjust only gradually over time by

depreciation and gross investment. Another explanation for the double dividend outcome can
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be the foreign trade specification and its parameterization (elasticities of substitution in the

Armington function).27

11.2 Global warming and the cost of greenhouse gas emissions control

Most efforts to study energy-economy-environment interactions using (multi-regional) CGE

models address the problem of global warming. Examples in this field are the Nordhaus-models

DICE (Nordhaus, 1992), the Global 2100 model of Manne and Richels (1990, 1992), the

MERGE model of Manne et al. (1995), the OECD model GREEN of Burniaux et al. (1992), the

model G-CUBED of McKibbin and Wilcoxen (1992 ), the LEAN model by Welsch and Hoster

(1995), and the EU-model GEM-E3 (Capros et al., 1996).28 Since space does not permit to

describe all the features of these models, we will make only some short comments. The GEM-E3

model (Capros et al., 1996; Conrad and Schmidt 1998a, b) is based on a disaggregated

representation (11 industries) of 14 EU member state economies linked by trade flow matrices

for each of the eleven goods considered. The model addresses to problems of global warming

and of acidification. Emissions of pollutants CO2, SO2 and NOX are differentiated by country,

sector of origin, type of fuel, and by goods (producers and consumers durable goods, and non-

durable goods). A variety of policy instruments are used to affect transboundary air pollution,

deposition, additive (end-of-pipe) and integrated (substitution) abatement.

Recent CGE models address the importance of international trade and financial flows in

evaluating greenhouse gas (GHG) control costs. The topic is crucial to understand GHG control

costs not just because international trade and financial linkages are important, but also because

the 1997 Kyoto Protocol would require different proportionate emission control efforts by the

industrialized countries and no controls at all by developing countries. McKibbin et al. (1999)

use an econometrically estimated multi-region, multi-sector CGE model of the world economy

to examine the effects of using a system of internationally tradable emissions permits to control

CO2 emissions. Their results show that international trade and capital flows significantly alter

projections of the domestic effects of emissions mitigation policy, compared with analyses that

ignore international capital flows. Since the US has relatively low GHG abatement costs within

the OECD, it could be even a net supplier of permits. Bernstein et al. (1999) also find significant

                                                                
27 A detailed discussion on why GEM-E3 produces a double dividend is given in Conrad and Schmidt (1999).
28 For a more detailed summary of models for studying environmental policy effects see Jorgenson and Wilcoxen
(1993).
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aggregate gains from international emission trading, with winners and losers depending on the

nature of the trading regime (i.e., only industrialized countries vs. a global system involving

China and India as well). Their CGE world model focus on the international trade aspects of

climate change policy which include the distribution of impacts on economic welfare,

international trade and investment across regions, the spillover effects of carbon emission limits

and the effect of international emission trading.

In principle, CGE models could also be used to study optimal GHG policies under the

possibility of an irreversible global catastrophe. As temperature increases up to a threshold value,

marginal damage increases sharply. The type of models which analyses possible catastrophic

outcomes arising from global warming are small theoretical or numerical models where a

catastrophic event is assumed to reduce the utility of consumption (or production).29 Since

precise knowledge and empirical evidence on catastrophic occurrences are lacking, there is no

need to employ a full-scale CGE model.

11.3 Environmental regulation and economic growth

Environmental regulation affects the supply side (marginal costs) and the demand side

(abatement expenditure). In assessing the impact of environmental regulations on growth;

Jorgenson and Wilcoxen (1990a) modify their basic model which implicitly includes

environmental regulation in the 1970’s and early 1980’s, because it is based on historical data.

Thus, to determine the effect of regulation on the performance of the US economy, they

conduct counterfactual simulations in which regulation is removed. They found that the long-

run cost of regulation is a reduction of 2.6 percent in the level of the U.S. gross national

product during the period 1973-1985. Over this period the annual growth rate of the U.S.

economy has been reduced by 0.19 percent. Since the stringency of pollution control differs

substantially among industries, their model also assesses the impact of environmental

regulation on individual industries. For example, they find that the long-run output of the

automobile industry has been reduced by fifteen percent, mainly as a consequence of motor

vehicle emissions controls.

                                                                
29 See Gjerde, Grepperud and Kverndokk (1999) for such a model.
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11.4 Tradable permits for CO2

When permits for air pollutants are introduced, then the supply of permits is exogenous and

the endogenous permit price equilibrates demand and the fixed supply. Whereas for taxes the

recycling of revenues is an important issue, for permits it is not because the initial endowment

is based on the grandfathering principle and not on auctioning the permits. For reasons of

cost-effectiveness, a permit system for the European Union should be introduced and not

separate non-coordinated, country-specific systems in order to curb global CO2 emissions.

Such a topic was pursued in Conrad and Schmidt (1998a, b, c). Major interest of the analysis

was laid on the national and EU-wide economic impacts of such a policy. In the non-coordinated

case each country reduces ten percent of its base line CO2 emissions: the permits are traded

between sectors and households within the country. In the coordinated policy, the permits are

traded between all European sectors and households to realize a ten percent reduction of the

EU’s total CO2 emissions. Curbing SO2 emissions by introducing coordinated or non-

coordinated pollution permit systems is also of interest. An EU-wide permit system for the

electricity sector that is operational and in line with the requirements of the Oslo Protocol

(convention of Transboundary Air Pollution) was introduced and national and EU-wide

economic impacts were studied.

11.5 The costs of environmental standards

Although most countries use technical standards to curb air pollutants, modeling the effect of

market-based instruments is very popular among CGE model builders because they favor

allocation through relative prices. The command-and-control approach can be based on technical

restrictions, on concentration of an emission or on the use of an  input. They affect the

technology and hence the cost of production. A different CGE application is to measure the

inefficiency of the present regulation by air quality standards by introducing taxes which warrant

the same air quality (Conrad and Schröder, 1993). For measuring the cost effectiveness of such a

change in environmental policy, first a base run is produced based on present emission standards,

given by the air quality acts. These emission standards can be converted into permitted emissions

per unit of input. Emissions considered are SO2, NOX and particulates. Simulations then show

the economic impact of an efficient environmental policy in which all industries are confronted

with uniform emission tax rates which have been computed such as to guarantee exactly the air

quality under the base run with standards. This minimizes abatement costs given the quality of

the air from the base run. The result was that real GNP in 1996 would have been higher by 0.6
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percent and unemployment lower by 14 percent if emission taxes instead of standards had been

introduced in 1988. In Goulder et al. (1999) a simple CGE model is used to compare the costs of

command-and-control and incentive-based environmental policy instruments in the presence and

absence of distortionary taxes.

11.6 Forestation and deforestation

As the forest is a carbon sink if it absorbs more carbon than it releases through felling and natural

decay, implementing the forests as carbon sinks in a CGE model is another topic. Persson and

Munasinghe (1995) simulate the effect of government policies on Costa Rican forests to reduce

deforestation. The allocation of property rights to forests results in a dramatic decrease in

deforestation and an increase in the net import of logs. Activity in the forest sector increases

significantly because of the increase in imports of logs. Forests are multiple – use assets because

if forest is used as a carbon sink, it cannot be used as a raw material in the pulp and paper

industry. CGE models can evaluate the efficient use of forests as an intertemporal allocation

problem (Pohjola (1996)).

11.7 Environmental policies for developing countries

CGE models for developing economies can be used to analyze the links between growth and

environment and between trade policies and the environment. Of special interest are efficient

economic policies which can readily be implemented in the context of a developing country. At

the OECD Development Centre CGE models for three Latin America economies (Chile, Costa

Rica, Mexico), and three Asia Pacific economies (China, Indonesia, Viet Nam) have been

developed to shed light on the importance of these links, or on the main mechanisms through

which changes in trade regimes have impact on the environment (Dessus, Roland-Holst and van

der Mensbrugge (1996)). In international trade, for example, countries with less stringent

environmental regulations may have comparative advantage in dirty industries. This leads to the

export of  “pollution services” embodied in goods made with technologies that do not meet the

environmental standards of the importing countries. Using a CGE model for Indonesia, Lee and

Roland – Holst (1997) show that a combination of trade liberalization and a cost-effective tax

policy would not only raise the country’s welfare, but it can also improve the environmental

quality. Their results indicate that unilateral trade liberalization by Indonesia would increase the

ratio of emission levels to real output for almost all major pollution categories. When tariff



38

removal is combined with a cost-effective tax policy, then however the twin objectives of

welfare enhancement and environmental quality improvement appear to be feasible. CGE

models have also been used to project the effects of trade liberalization on the economy and the

environment concentrating especially on the issues of fertilizers and transportation or on tropical

deforestation. Beghin et al. (1995) combine environmental and trade policies for Mexico and

show how they interact.30 Contrary to the common fear, economic integration of Mexico in the

regional economy will not exacerbate environmental degradation. The pollution elasticity with

respect to growth is very stable in Mexico (near unity) and trade orientation does not have much

impact on the elasticity.

Interaction between environmental policies and trade policies is of interest not only for

developing countries but also for Eastern European countries which are going to join the

European Union. For these countries environmental regulations equivalent to those already

introduced in the EU may affect their competitiveness and patterns of trade. The approach to

measure these effects could follow Ho and Jorgenson (1998), who examined the impact of

environmental regulations enacted in the 1960s and 1970s by projecting the evolution of the U.S.

economy with and without these regulations. Their approach consists of first running a base-case

simulation designed to mimic the actual evolution of the U.S. economy. The base case

simulation is a regime with pollution controls mandated by the environmental laws in place. To

assess the impact of the controls, they perform counterfactual simulations where they are

removed. That is, they calculate the path of the economy, including how the sectors evolve and

how the trade pattern change, had there been no environmental regulation in the U.S. before

1980. For the Eastern European countries the base case simulation could be a regime with lax

pollution controls.

11.8 Joint implementation

International treaties  on climate protection allow, in addition to domestic actions, for the

supplementary use of flexible instruments in order to exploit cheaper emission reduction

possibilities elsewhere. One concrete option for industrialized countries would be to enter

joint implementation with developing countries such as India or China where the

industrialized country pays emission reduction abroad rather than meeting ist reduction target

solely by domestic action. Joint implementation allows for the reduction of domestic emission

                                                                
30 See Steininger (1999) for a survey on general models to analyze international trade aspects under
environmental regulation.
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taxes without adverse effects on the environmental dividend. In addition, joint

implementation is typically based on technology transfer where the host demands investment

goods by the donor triggering direct positive employment effects for the latter. Based on CGE

models for Germany and India, Boehringer et al. (2000) compare employment and welfare

effects under a revenue-neutral environmental tax reform versus a tax reform cum joint

implementation. The open question was whether an environmental tax reform in Germany

combined with joint implementation in the Indian electricity sector could improve the

prospect for a double dividend: Not only that joint implementation would lower the level of

emission taxes in Germany and thus reduces adverse effects on labor demand; but also

investment demand for energy efficient power plants produced in Germany would trigger

positive employment effects in the German manufacturing industries. From the Indian

perspective, joint implementation would equip its electricity industry with additional capital

goods leading to a more efficient power production with lower electricity prices for the

economy. In their model analysis, revenue neutral carbon taxes have a negative impact on

employment in Germany, however joint implementation can help to diminish this effect

through the associated cost savings and additional investment demand from joint

implementation with host countries.

11.9 Environmental policy in agriculture

Issues like agricultural chemicals, food safety and water quality have brought agriculture and

nonpoint source pollution to the forefront of environmental attention. Significant crop yield

increases over the last several decades have been associated with the adoption of pesticides and

fertilizers. At the same time, agriculture chemicals may impose economic costs on the

environment and human health. Using a CGE model of the US economy, Hrubovcak et al.

(1990) weigh such tradeoffs for assessing the benefits and costs from integrating agricultural,

environmental, and food safety policies. They found that public policies designed to

simultaneously satisfy farm income and environmental objectives face some serious challenges.

Efforts to achieve a reduction in agricultural chemical use through taxes should impact chemical

use and reduce environmental residuals. But output price and production uncertainties, coupled

with uncertainties about the elasticities of substitution between key inputs, generate significant

uncertainties on the beneficial environmental impacts.
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12. CGE models with a two-way link between the environment and the economy

Many environmentally related CGE models take into account that emissions and the

accumulation of pollutants negatively affect the quality of the environment. In those models

there is a one-way link between the development of economic variables and their generation

of environmental externalities (Glomsrod et al. (1992), Ballard and Medema (1993), Boyd et

al. (1995) or Brendemoen and Vennemo (1996)). However, the quality of the environment has

also an impact on the performance of economic variables. Models with a two-way link

include in their simulation studies environmental feedbacks on labor productivity, capital

depreciation and on the welfare of the consumer. Noise, traffic accidents and reduced air

quality affect the welfare of the consumer as well as his labor productivity. Capital

depreciation is negatively affected by the increase in corrosion caused by sulfur emissions or

infrastructure capital by heavy traffic. Acidification of forests leads to decreased growth in

forests and reduced recreational value. The objective of these studies is to develop a measure

of green net national product and to show that growth in GDP or consumption is not

equivalent to growth in welfare because of the effect of deterioration of the environment on

welfare. CGE models which include the two-way link have been developed by Nordhaus

(1994), Vennemo (1997), or Bergman and Hill (2000). In Nordhaus, the accumulation of CO2

emissions increases the temperature of the earth which harms production. In Vennemo’s

DREAM model external effects of economic activity are evaluated in terms of their costs on

the economy. Damage estimates have been produced for acidification of lakes and of forests,

for health and annoyance from emissions of NOx, SO2, CO and particulates, for corrosion,

noise, traffic accidents, congestion and road depreciation. In his simulation experiment he

finds that the feedback on environmental quality is much more significant for consumer

welfare than the feedback in the form of increased depreciation and a decline in productivity.

Bergman and Hill model productivity effects of environmental stock and flow pollution by

including damage effects from pollution accumulation on production. To model the feedback

effects, the resource endowments are included in the model and the externality is linked to

these endowments. The model assesses the effects that the inclusion of feedback mechanisms

and the use of defensive expenditure might have on GDP and on consumption. It turns out

that the positive productivity effects of proposed emission reductions are smaller than the

costs of attaining these emission reductions. The feedback of traffic and congestion on

economic variables is another externality related aspect which has been modeled by Conrad

and Heng (2000) using a CGE model for Germany. In a baseline scenario it is shown how
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congestion and its costs will develop over time given the present bottlenecks in road

infrastructure. The present stock of trucks and private cars deviates from the capacity related

stocks which results in a congestion index. This index affects the efficiency of firm-owned

trucks and of trucks owned by the transportation industry. The reduced efficiency raises the

cost of transportation in the economy due to costs of the substitutes for truck transportation

and labor cost paid during congestions. Congestion, due to the unsufficient provision of

infrastructure, and the negative externality effect from the growth in truck transportation

raises the prices in the economy and generates a non-optimal allocation of resources. Given

the necessity to act the fuel tax is raised in the model to partly finance infrastructure

investment. The cost of the addition in infrastructure are then compared with the savings in

congestion costs in order to see whether such a policy measure is self-financing. It turned out

that the savings in congestion costs exceeds by 50 percent the costs of the addition in

infrastructure investment.

The specifications chosen by the authors are very pragmatic and some features are

given next.

Nordhaus:

Environmental feedback on output X with D as the loss in output is

2
1

( )
( )

( )
D t

T t
X t

θθ= ⋅

where T is temperature change and 1 2,θ θ  are parameters. Abatement costs TC are:

2
1

( )
( )

( )
bTC t

b t
X t

µ=

where µ  is the degree of abatement and b1, b2 are parameters. Combining the loss in output

and cost relationships, a feedback relationship Ω  of global warming on productivity can be

derived:

( )2
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It comprises damage and cost effects in one term and enters a production function

1( ) ( ) ( ) ( ) ( )X t t A t K t L tγ γ−= Ω ⋅ ⋅ ⋅

Vennemo:

There is a health induced productivity index h:

( ) , 0h h F h′= <

where F is fuel oil consumption.

A capital depreciation rate σ also depends on fuel consumption:

( ) , ( ) 0F Fσ σ σ ′= > .

An index of intertemporal utility U captures the two-way link:

( )0
1 0

P
U W D D

P −= − +

where 0( )P P  is an intertemporal price index of wealth (baseline scenario), W-1 is household

wealth and 0( )D D  is value of negative externalities (baseline scenario).

Bergman and Hill:

A link between the accumulated sulfur and nitrogen stock, S, and the forest endowment is

expressed as:

0,( )t t t tNR f S NR= ⋅

where ft is a linear function of the stocks and NRt is the actual annual harvest from the forest

resource at time t (NR0,t is the path from the baseline scenario).

Feedback on labor productivity is modeled as:
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( ) 0,
x x xNO NO NOTot Tot

t t tL L F F Lγ= − ⋅ − ⋅

where Tot
tL  is aggregate efficient labor endowment at time t and 0,

Tot
tL  is the baseline scenario

path. xNO
tF  is the pollution flow level of the pollutant below which there is no negative

impact on aggregate labor productivity, and xNO
tF  the simulated pollution flow level (L  is

unadjusted labor endowment and XNOγ  is a positive parameter chosen in the calibration

process).

Conrad and Heng

The stock of transportation equipment by n firms and private households ( 1)n +  affects an

index Z of congestion:

01

* 0
1

exp , 0
kn

k

k k

KTZ
KI KT

β
α α

+

=

  = >  
   

Π .

KI* is an optimal provision of infrastructure which minimizes transportation costs in the

economy subject to a financial constraint. The exponential term measure the shortage in

infrastructure capacity and converges to one from above if 0. kKI KT→ ∞  is the stock of

transportation capital in industry k and 0
kKT  is the lower stock related to the present quality

and quantity of the infrastructure network. The parameter kβ  measure the contribution of

trucks in industry k to the congestion externality which affects the cost of production of each

industry. Each industry has transportation costs CT  in its nested input structure which are

expressed as a short-run, variable sub-cost function

1 2 3( , , , , )eCT CT T PT PT PT KT=

where PTi are the prices of the substitutes for transport services from firm-owned trucks (i =

1: road transportation, i = 2: water ways, i = 3: railways). T is the transport volume and KTe is

the quasi-fixed transportation capital input in terms of firm-owned trucks defined as

0( , )eKT KT KT KI Z ε= ⋅
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where 0ε <  is the elasticity of effective transportation capital with respect to the index of

congestion, Z. Infrastructure KI affects the utilization of the stock 0KT  and reduces

congestion. Partial derivative of the cost function with respect to 0KT  measures as an ex-post

or shadow price of capital the benefit of having one more unit of the stock 0KT . It expresses

the savings in the variable cost of transportation by having one additional truck given the

transportation volume T. Using this price, congestion costs caused by each industry can be

calculated which then could be reduced by investing in infrastructure.

13. Limitations of CGE Models and Outlook of Future Research

Given the challenge to more restrictive environmental regulation in the near future, it is

becoming more and more important to quantify the costs of such a policy. CGE models are

becoming a widely used tool for quantifying the costs and benefits of environmental policies.

CGE models are not intended to forecast the values of economic variables, but rather to

provide useful insights that may help policymakers to undertake more informed policy

actions. Since they cannot be used for forecasts, CGE modelers are not compelled to compare

their results with outcomes of policy changes in the world. They use the current theory and

produce results from changes in the structure of the economy or of a policy experiment which

can not be falsified. This problem results also from the fact that not many CGE models have a

very solid empirical basis. Since CGE experiments analyze the results of actual reforms rather

than hypothetical ones, it is important to improve the empirical assessment of these models.

Since most CGE models are calibrated and not econometrically estimated, simulation

experiments are required to check the robustness of the results given the limited quality of the

deterministic calibration. Since CGE models are based on assumptions concerning the

economic development (elasticities of substitution and transformation, technical change,

exogenous variables), it would be misleading to base policy decisions on a specific numerical

result. Stochastic simulation studies can be thought of as a statistical form of sensitivity

analysis which can generate a distribution of possible outcomes through “Monte Carlo”

methods.

An extension often mentioned in survey articles is research on specifying alternative

market structures in CGE models. With a few exceptions (Harris (1984)), most models

assume that all markets are competitive. However, there is not one but many models on

imperfect competition and after all it becomes less obvious what has driven the model and its
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results. The same argument holds for modeling disequilibria in some markets of the economy.

We know that disequilibria exist in the labor market and in the market for physical capital,

and that changes in unemployment or in the utilization of capacities are often the short-run

consequences of sudden changes in the magnitude of an environmental policy instrument. In

such cases some model builders modify their approaches by allowing explicitly for partial

disequilibria in the labor and capital markets by adopting theories on under- or overutilization

of the primary factors of production. In principle, economic theory offers a variety of

possibilities for future research: imperfect competition, endogenous technical change,

adjustment costs in the labor market and in capacity formation, the role of infrastructure,

uncertainty in supply of non-renewable resources, etc. However, the more complicated the

model, the more it becomes a black box. Since no  model can completely represent reality, a

choice has to be made about what key features are to be included in any modeling approach.
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