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Survey sampling: a linear game

HORST STENGER, SIEGFRIED GABLER, JOCHEN SCHMIDT

Summary: A linear game consists of two subsets of a vector space with
a scalar product. The idea is that players 1 and 2 select, independently,
elements of the first and second set, respectively. Then, player 2 has to pay
to player 1 the value of the scalar product of the selected elements.

We will discuss survey sampling within the framework of linear games
with the statistician in the role of player 2. The vector space to be considered
is the set of all symmetric matrices of order N x N with a scalar product
identical with the usual mean squared error. The subset from which the
statistician’s selection is to be made is neither convex nor compact. Standard
results of the theory of linear games have to be modified appropriately.

The existence of minimax strategies will be established. At the same time
we hope to improve our understanding of random selection and of the duality
between the fixed population approach and model based approaches to the
theory of survey sampling.



1 Estimating vectors, designs and strategies

Let
Y1, Y2, - - Yn eR

be unknown values of a characteristic of interest for units 1,2, ... N. Sup-
pose a size n sample

s = {ir iz, ... in} C {1,2, ... N}

is selected and a linear function
E Qg; Y
1€ES

of the observed values y;,i € s is used to estimate the total y = > y;.
Define
as; =0 for i¢s

and consider the estimating vector a, = (as,as2, ... asy)’. With y =

(y1,Y2, . -- yn)" we have =
> asyi=aly

€S

and, y given, the loss resulting from using a, is

Note that

y
(a,—1)(a, 1)

are elements of the vector space of all symmetric N x N-matrices and by the
trace operator tr a scalar product is defined in this space.



A design p is a probability distribution on the set of all size n samples.
An estimator a associates an estimating vector a, with each size n sample
s. The performance of the strategy (p,a),p a design and ¢ an estimator, is
characterized be the mean squared error (MSE)

MSE(y;p,a) = Y s (Z @i Yi — y>2
= tr {gg’Zps(gs —1)(a, - l)l}
which is the scalar product of yy' and the risk generating matriz
> ps(a,—1)(a,— 1)

introduced by CHENG and L1(1983).

Define
@Oz{gg’:gERN}

and let Ay be the set of all risk generating matrices. Subsequently, the linear
game

(80, Ao)

(with scalar product as pay-off) will be modified in a way to describe reali-
stically the statistician’s decision problem.

2 Superpopulation models

The selection of a strategy will be based on prior information. Suppose there
is some evidence of a linear model M (£2) behind the vector y,i.e. y may be
interpreted as a realization of a vector Y of random variables Y1, Y, ... Yy
satisfying
Y=Xf+e
with a N x K matrix X of full rank and a random vector € = (1,65 ... en)’
with
Ee=0, vare = .



On the base of a size n sample s a linear predictor of ) Y; may be written

as
!
a, Y

where a, is an estimating vector. Unbiasedness of this predictor is equivalent

to
E(a,Y -1Y)=0

i.e.

X'(a,—1) =0.

Under this condition

—_

'Y) = (e, ~1)Qa, ~ 1)
= tr(Q(a, — 1)(g, - 1)')

var (QS, Y —

is minimized by best linear unbiased (BLU) regression predictors. However,
usually the model M (Q), called superpopulation model, is not reliable in a
strict sense and, therefore, the use of standard regression predictors is not
justified.

The strategy (p,a) to be used should perform well in ,,small neighbour-
hoods“of

L={Xp:pBeR"}.

Let e, in addition to the earlier assumptions, be normally distributed with

Q regular. Then, the logarithm of the density function of Y is a linear
function of

(y-Xp)o'y—Xxp)

and a natural distance between y and L is defined by

min (y—XB)ol(y—X8)=y[Q - Q' X(XQ X)X Q ']y

=y' Uy, say,

with U non-negative definite and of rank N — K satisfying U X = 0. Hence,
a strategy (p,a) with risk generating matrix

W =Y pa,~1)(a, 1)

will be excluded from consideration unless

tryy W
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is bounded on the parameter set

@1:{gg’ Yy Uy < 1}
which is the case if and only if p, > 0 implies
X'(a,—1)=0

i.e. (p,a) is representative in the sense of HAJEK (1959). Note that the

representativity of (p, a) is equivalent with unbiasedness of ¢} in the model

3 Minimax strategies

Let A, be the set of all risk generating matrices of representative strategies.
Then, the games B
(@17 AI) ) (@17 AI)

are of interest, where @1 is the convex hull of ©;.
Theorem: For the linear game (él,Am) a value v and matrices ‘;E (:31,
we A, exist with . )
r ViWsv <ir VW
for all V € ©1,W € A,.

The proof of this theorem is given in the appendix.
Here, we consider a consequence. Obviously, a representative strategy

(P, @) exists with

w=>"p, (d, ~1)(d, ~1)"

0= {g:gg' € @1}: {Q:Q’Ugg 1}.

Then, for y € © and (p, a) representative

Define

MSE(Q;5,§>S v < SupMSE<g;p,Q>

yeO



ie. (p,&) is minimax on © in the usual sense of survey sampling. If a

statistician applies (2*9,&) his risk MSE(y; ;7, é) is a function of y € © and v
is an upper bound; in addition, v is the lowest upper bound he can achieve
by any strategy.

Further, for all s € S with LES> 0 and a, representative

*

tr vV (a, — D, —1) > tr VIV
> tr vV (a, —1)(d, —1).

Hence, for all s with 1*78> 0

!
a, Y
%

is a BLU predictor of ) Y; in the model M (V)

Y=Xf+e

*
with Ee =0, vare =V. So, a statistician starting with a superpopulation

model M (), not strictly reliable, has strong motivation to base his decision
*

on a model M (V) derived from M (2) in the way outlined above.

4 Related work

Minimax strategies have been derived for the parameter set

o — {ge RY : Y (ni—7)’ < 1}

e.g. by BICKEL and LEHMANN (1981), GABLER (1990). STENGER and
GABLER (1996) discuss, more generally,

R — {QGRN $ 22 Ay = 7) (= 7) < 1}

with (d;;) a positive definite N x N matrix which must be close to the
identity matrix I.

2
®) = RV ) <1
o {ge Z(y I%) <
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is an example of a parameter set depending on a vector z = (x1, 2, ... zy)'
with x; > 0; ¢ = 1,2, ... N. For this set it is shown by STENGER (1990)
that the ratio strategy is minimax in an asymptotic sense. Minimax strate-
gies in the strict sense (of the present paper) are derived by GABLER and
STENGER (2000) for the set

o {r BT 1) - 12) 5

under the assumption

z close to 1,

(d;j) close to the identity matrix I.

Note that © may be written as

{g:_'Uggl}

with Uz = 0. In the present paper © is supposed to satisfy
UX=0

fora N x K matrix X of full rank K > 1, and no further assumptions are
needed.

5 Appendix: Proof of the Theorem
Consider the orthogonal projector along X:
I - X(X'X)'X' = P, say.

Obviously, P’ = P and
PWP=W

for all W € ©,. Hence,



and
0, = {gg'e@l - X! :Q}

is a complete subset of ©;. Let B
O,

be the convex hull of ©,. To prove the Theorem of section 3 we will show
that an equilibrium point (V, W) exists for the game (ém, Am).

Let Q be the set of all N x N-matrices () which are symmetric and
satisfy the condition

X'Q=0.
Q is a vector space with the scalar product (V, W) = tr VI¥V. With
Qp = {Q € Q : () non-negative deﬁnite}
we have, obviously, L
@szz C QO C Q

and

ém: {QE Qo : <U7Q> < 1}7

where .Z;C is the convex hull of A,.

Note that the set A, is introduced for technical reasons, while the set A,
which is not convex is of primary interest.

By Qo an order relation is defined on Q: For

A,Be Q with A— B e Qy
we write
A B.

This order relation differs from the relation usually considered in statistical
decision theory which is defined by the cone of all vectors (matrices, in our
case) with non-negative components.

Lemma 1: Choose Q) € Qy with U = Q). Then
NU,U) 2 (Q,Q) > 0.

Proof: Let Ay > --- > Ay and py > --- > uy be the eigenvalues of ) and U,
respectively. Then

N N
(Q.Q) =) _MN<NMSNE<NY p?=N{UU). o



Lemma 2: Let (W*) be a sequence in A, with imW* = W. Then, there
exists I/ffe A, with

*

W=Ww.
Proof: We have

Wk = pri(@fi —1)(a* -1y VkeN.

seS

Obviously, there exists a subsequence of (p¥) such that
ok
= > =
Ds klzlerlg’ps > 0 and Zps 1
where N is a subset of N. We define
Sy:={seS:p;>0}

and .
Wh= 37 pHaf 1)@ — 1) VEeN.

seESy

Then .
WF—Wwre @, VkeN.
Again, we choose a subset N” C N’ for which

— Ii k
ag = k:lérl\rl}’gs VSES-F

exists. Then

and, by the closedness of Qy,

W— W= lim (W5 W*) € Q,. o
keN

Lemma 3: Let W € A,. Then, there exists W € A, with

W = W.



Proof: We have 3
W= A phah —1)(a — 1)
k s

with Ay >0, Y, Ay = 1. Define

Ds = Z /\kpl;
k

and i
A
a, = E 2kPs a”.
T~ Ps

Then
W= Zps(gs - l)(@s - l)l € Am

S

Since the mapping
y—yy VyeR"

is convex with respect to >,
W =W
Note that, for V € Qq, the mapping

Qr— (V@) VQe

is increasing with respect to =. As a consequence of Lemma 3, only the
elements of A, are of interest, because every W € A, is dominated (in the

sense of the game) by a risk generating matrix W € A,.
With
Ua::{Q:anQ}

for a € R, the set B
{a UL NAL # @}

is non-empty. As a consequence of Uy N ./Zm =

o ::inf{a : Z/{aﬂjﬁ%@}
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is non-negative. There exists a hyperplane, defined by @ € Q\{0} and
k € R, separating the interior of U,, (relative to Q) and A, , i.e.

(Q,R) <k forall R €Uy,
(Q, W> >k forall WeA,
k = sup <Q,R>.

REUa,

Suppose Q ¢ Qp. Then z € RN exists with X'z =0 and 2’Q2 <0, i.e.

(@z2) <0.
Now, for all 7 > 0,
T22 € Q
and therefore
—72Z €U,

However,
<Q7 _T§§I> - _T<Q7§§I>

goes to oo for 7 — oo because of <Q, gg’> < 0. This is in contradiction to
the separating property of the hyperplane considered. Hence,

Q € Qo \{0}.

U is an element of the interior of Qg (relative to Q) and

(Q,U) > 0.
Dividing
k= sup (@, R) = ap(Q,U)
REUa,
by (Q,U) we obtain
o= —F — up (@, R)
<Q7 U> ReUan, Q7 >

11



Obviously,
Vi=

and i
<V, W> > for WeA,.

So, V is a maxmin strategy and «q is the value of the game. Consider a
decreasing sequence («y) with

lim ar = Q)
k—o0

and choose W e Uy, N .Zx By Lemma 3 there exists W* € A, with
Wk - Wk,
By Lemma 1 (W*) is bounded and so there exists a subsequence with
W = ]116%1], Wk,

Since Qy is closed

agU — W = llie%ll(akU — Wk e 9

ie.

W € Uy,.
Now by Lemma 2 there exists e A, with

wW=w
and therefore i
We Uy, NA,.

By definition of U,,

aoU=W

and it follows i} )
(V,W)<a, VYV eEO,

and especially
<V7 W> = Q.

* ok

Then, (V, W) is an equilibrium point of the linear game (ém, Ap).
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