Institut für
Volkswirtschaftslehre und Statistik

No．572－99

Minimax strategies in survey sampling

Horst Stenger und Siegfried Gabler

Beiträge zur angewandten Wirtschaftsforschung

Universität Mannheim
A5， 6
D－68131 Mannheim

Minimax strategies in survey sampling

Siegfried Gabler and Horst Stenger, Mannheim

Abstract

The risk of a sampling strategy is a function on the parameter space, which is the set of all vectors composed of possible values of the variable of interest. It seems natural to ask for a minimax strategy, minimizing the maximal risk.

So far answers have been provided for completely symmetric parameter spaces. Results available for more general spaces refer to sample size 1 or to large sample sizes allowing for asymptotic approximation.

In the present paper we consider arbitrary sample sizes, derive a lower bound for the maximal risk under very weak conditions and obtain minimax strategies for a large class of parameter spaces. Our results do not apply to parameter spaces with strong deviations from symmetry. For such spaces a minimax strategy will prescribe to consider only a small number of samples and takes a non-random and purposive character.

AMS classification: primary 62D05, secondary 90D45

Keywords: Survey sampling; Maximal risk; Minimax strategies; Linear regression models

1. Introduction

Consider a population of units $1,2, \mathrm{KN}$ and associated values $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{~K} \mathrm{y}_{\mathrm{N}}$ of a characteristic of interest. The parameter (vector) $\underline{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{~K} \mathrm{y}_{\mathrm{N}}\right)^{\prime}$, and especially the parameter sum $y=y_{1}+y_{2}+K+y_{N}$ are unknown to us. So we select a sample s of size n, i.e. an element of

$$
\mathrm{S}=\{\mathrm{s}: \mathrm{s} \subset\{1,2, \mathrm{~K} \mathrm{~N}\},|\mathrm{s}|=\mathrm{n}\}
$$

choose weights $\mathrm{a}_{\text {si }}, \mathrm{i} \in \mathrm{s}$, ascertain the values $\mathrm{y}_{\mathrm{i}}, \mathrm{i} \in \mathrm{s}$, and estimate y by

$$
\sum_{i \in s} a_{\text {si }} y_{i} .
$$

A sample may be selected randomly. Let p_{s} be the probability of selecting $s \in S$; then $p: s \rightarrow p_{s}$ is called sampling design. An estimator is a function t assigning a real value

$$
\mathrm{t}(\mathrm{~s}, \underline{\mathrm{y}})=\sum_{\mathrm{i} \in \mathrm{~s}} \mathrm{a}_{\mathrm{si}} \mathrm{y}_{\mathrm{i}}
$$

to each pair of a sample $s \in S$ and a parameter \underline{y}.

$$
\mathrm{R}(\underline{\mathrm{y}} ; \mathrm{p}, \mathrm{t})=\sum_{\mathrm{s}} \mathrm{p}_{\mathrm{s}}[\mathrm{t}(\mathrm{~s}, \underline{\mathrm{y}})-\mathrm{y}]^{2}
$$

is the risk of the strategy $(\mathrm{p}, \mathrm{t}), \mathrm{p}$ a design and t an estimator.

The strategy we use should reflect our prior knowledge. The set of a-priori possible parameters is called parameter space Θ. Several authors have considered the space

$$
\mathrm{T}^{(1)}=\left\{\underline{y} \in \mathfrak{R}^{\mathrm{N}}: \sum\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2} \leq \mathrm{c}^{2}\right\}
$$

with $\bar{y}=y / N$ and $c \neq 0$; see Bickel and Lehmann (1981), Gabler (1990). Stenger and Gabler (1996) discuss, more generally,

$$
\Theta^{(2)}=\left\{\underline{y} \in \mathfrak{R}^{\mathrm{N}}: \sum \sum \mathrm{d}_{\mathrm{ij}}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)\left(\mathrm{y}_{\mathrm{j}}-\overline{\mathrm{y}}\right) \leq \mathrm{c}^{2}\right\}
$$

with (d_{ij}) a positive definite $\mathrm{N} \times \mathrm{N}$ matrix. Usually, values $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~K}_{\mathrm{N}}>0$ of an auxiliary variable related to the variable of interest are available and, especially, Θ may depend on $\underline{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~K} \mathrm{x}_{\mathrm{N}}\right)^{\prime}$. An example is

$$
\Theta^{(3)}=\left\{\underline{y} \in \mathfrak{R}^{N}: \Sigma\left(\frac{\bar{x}}{x_{i}}\right)\left(y_{i}-\frac{y}{x} x_{i}\right)^{2} \leq c^{2}\right\}
$$

with $x=x_{1}+x_{2}+K+x_{N}$ and $\bar{x}=x / N$. See Stenger (1989) and Gabler (1990). We refer to Cheng and $\mathrm{Li}(1983,1987)$ for further examples.

In the present paper we consider

$$
\begin{equation*}
\Theta=\left\{\underline{y} \in \mathbb{R}^{N}: \underline{y}^{\prime} \mathrm{U} \underline{y} \leq c^{2}\right\} \tag{1}
\end{equation*}
$$

where U is non-negative definite of rank $\mathrm{N}-1$ with

$$
\mathrm{U} \underline{\mathrm{x}}=\underline{0},
$$

$\underline{0}=(0,0, \mathrm{~K} 0)^{\prime} \in \mathfrak{R}^{\mathrm{N}}$. In a subsequent paper we will give a detailed justification of this approach. Presently we confine ourselves to note that the spaces $\Theta^{(1)}, \Theta^{(2)}$ and $\Theta^{(3)}$, discussed in the literature, are special cases of Θ. Additional comments are given in section 7 .

The condition

$$
x=1
$$

is not restrictive and will be assumed throughout the paper. Obviously,

$$
\begin{aligned}
& \sum\left(y_{i}-\bar{y}\right)^{2}=\underline{y}^{\prime} U^{(1)} \underline{y} \\
& \sum \sum d_{i j}\left(y_{i}-\bar{y}\right)\left(y_{j}-\bar{y}\right)=\underline{y}^{\prime} U^{(2)} \underline{y} \\
& \frac{1}{N} \sum \frac{1}{x_{i}}\left(y_{i}-\mathrm{yx}_{i}\right)^{2}=\underline{y}^{\prime} U^{(3)} \underline{y}
\end{aligned}
$$

with

$$
\begin{aligned}
\mathrm{U}^{(1)} & =\mathrm{I}-\frac{1}{\mathrm{~N}} \underline{1}^{\prime} \\
\mathrm{U}^{(2)} & =\left(\mathrm{I}-\frac{1}{\mathrm{~N}} \underline{1}^{\prime}\right)\left(\mathrm{d}_{\mathrm{ij}}\right)\left(\mathrm{I}-\frac{1}{\mathrm{~N}} \underline{1} \underline{1}^{\prime}\right) \\
\mathrm{U}^{(3)} & =\left(\mathrm{I}-\underline{1} \underline{\mathrm{x}}^{\prime}\right) \cdot \frac{1}{\mathrm{~N}} \operatorname{diag}^{-1}(\underline{\mathrm{x}}) \cdot\left(\mathrm{I}-\underline{\mathrm{x}} \underline{1}^{\prime}\right) \\
& =\frac{1}{\mathrm{~N}} \operatorname{diag}^{-1}(\underline{\mathrm{x}})-\frac{1}{\mathrm{~N}} \underline{1}^{\prime}
\end{aligned}
$$

and

$$
\mathrm{U}^{(\mathrm{i})} \underline{\mathrm{x}}=\underline{0}
$$

in all cases, with $\underline{x}=\underline{1} / \mathrm{N}$ for $\mathrm{i}=1,2$. Here and subsequently, $\underline{1}$ is the N -vector with all components equal to 1 ; I is the $\mathrm{N} \times \mathrm{N}$ identity matrix and $\operatorname{diag}(\underline{x})$ the diagonal matrix D with $d_{i i}=x_{i}$ for $i=1,2, K \mathrm{~K}$.

2. Main results

Define

$$
r(p, t)=\sup _{\underline{y} \in T} R(\underline{y} ; p, t)
$$

A strategy $\binom{*, *}{\mathrm{p}, \mathrm{t}}$ is minimax if

$$
\mathrm{r}\binom{* * *}{\mathrm{p}, \mathrm{t}}=\min _{(\mathrm{p}, \mathrm{t})} \mathrm{r}(\mathrm{p}, \mathrm{t})<\infty
$$

For $\Theta=\Theta^{(1)}$ we have

$$
\begin{aligned}
\min _{(\mathrm{p}, \mathrm{t})} \mathrm{r}(\mathrm{p}, \mathrm{t}) & =\frac{\mathrm{N}}{\mathrm{n}} \frac{\mathrm{~N}-\mathrm{n}}{\mathrm{~N}-1} \mathrm{c}^{2} \\
& =\mathrm{r}(\stackrel{*}{\mathrm{p}, \mathrm{t}})
\end{aligned}
$$

where $\stackrel{*}{\mathrm{p}}$ denotes simple random sampling without replacement, i.e. $\quad \stackrel{*}{p}_{s}=1 /\binom{N}{n}$ for all $\mathrm{s} \in \mathrm{S}$, and

$$
{ }^{*}(\mathrm{~s}, \underline{\mathrm{y}})=\frac{\mathrm{N}}{\mathrm{n}} \sum_{\mathrm{i} \in \mathrm{~s}} \mathrm{y}_{\mathrm{i}}
$$

is the expansion estimator. See e.g. Stenger (1979), Bickel and Lehmann (1981), Gabler (1990). Hence, a minimax strategy is available in case

$$
\begin{aligned}
& \mathrm{U}=\mathrm{U}^{(1)} \\
& \underline{\mathrm{x}}=\underline{1} / \mathrm{N} .
\end{aligned}
$$

Stenger and Gabler (1996) derive a minimax strategy for

$$
\begin{aligned}
& \mathrm{U} \text { close to } \mathrm{U}^{(1)} \\
& \underline{x}=\underline{1} / \mathrm{N} .
\end{aligned}
$$

In the present paper we assume

$$
\begin{aligned}
& \mathrm{U} \text { close to } U^{(1)} \\
& \underline{x} \text { close to } \underline{1 / N}
\end{aligned}
$$

and show the following:

Let z_{0} be the unique solution of

$$
|\mathrm{N}-2 \mathrm{n}| \mathrm{z}=\sum_{1}^{\mathrm{N}} \sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}}
$$

and define $\kappa=\operatorname{sgn}(\mathrm{N}-2 \mathrm{n})$ and for $\mathrm{i}=1,2, \mathrm{~K} \mathrm{~N}$

$$
d_{i}=\frac{z_{o}+\kappa \sqrt{z_{o}^{2}-x_{i}}}{x_{i}} .
$$

Then, an estimator $\stackrel{*}{\mathrm{t}}$ and a design ${ }^{*}$ exists such that $\binom{* *}{\mathrm{p}, \mathrm{t}}$ is minimax where t^{*} is defined by

$$
\mathrm{t}(\mathrm{~s}, \underline{\mathrm{y}})=\sum_{\mathrm{i} \in \mathrm{~s}} \mathrm{a}_{\mathrm{si}}^{*} \mathrm{y}_{\mathrm{i}}=\frac{\sum_{\mathrm{i} \in \mathrm{~s}} \mathrm{~d}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum_{\mathrm{i} \in \mathrm{~s}} \mathrm{~d}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}} .
$$

An explicit formula for the design p will be given in Theorem 3 .

Defining $\alpha_{i}=d_{i} x_{i}, i=1, \ldots N, \stackrel{*}{t}(\mathrm{~s}, \underline{\mathrm{y}})$ can be written as a Hansen Hurwitz type estimator

$$
t(s, \underline{y})=\frac{\sum_{i \in s} \alpha_{i} \frac{y_{i}}{x_{i}}}{\sum_{i \in s} \alpha_{i}}
$$

Note that the $\alpha_{\mathrm{i}}{ }^{\prime}$ s do not depend on U , while the design $\stackrel{*}{\mathrm{p}}$ does. The $\alpha_{\mathrm{i}}^{\prime} \mathrm{s}$ and $\stackrel{*}{\mathrm{p}}$ are free of c .

We give an example. Let $\mathrm{N}=3, \mathrm{n}=2$ and $2 \mathrm{x}_{\mathrm{i}}<1$ for $\mathrm{i}=1,2,3$. Define

$$
\alpha_{\mathrm{i}}=\frac{1}{\left(1-2 \mathrm{x}_{\mathrm{i}}\right)} \sqrt{0.5 \cdot \prod\left(1-2 \mathrm{x}_{\mathrm{k}}\right)} \text { for } \mathrm{i}=1,2,3
$$

and for $s=\{i, j\}, i \neq j$

$$
*(s, \underline{y})=\frac{\frac{1}{\left(1-2 x_{i}\right)}}{\frac{1}{\left(1-2 x_{i}\right)}+\frac{1}{\left(1-2 x_{j}\right)}} \frac{y_{i}}{x_{i}}+\frac{\frac{1}{\left(1-2 x_{j}\right)}}{\frac{1}{\left(1-2 x_{i}\right)}+\frac{1}{\left(1-2 x_{j}\right)}} \frac{y_{j}}{x_{j}}
$$

$$
\stackrel{p}{\mathrm{~s}}=\left(1-\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)\left(\frac{2 \mathrm{x}_{\mathrm{i}}}{1-2 \mathrm{x}_{\mathrm{i}}}+\frac{2 \mathrm{x}_{\mathrm{j}}}{1-2 \mathrm{x}_{\mathrm{j}}}-\sum \frac{\mathrm{x}_{\mathrm{k}}}{1-2 \mathrm{x}_{\mathrm{k}}}\right) .
$$

If $\mathrm{U}=\Theta^{(3)}$ and $\stackrel{*}{\mathrm{p}}_{\mathrm{s}}$ is nonnegative for all samples $\mathrm{s},\binom{*}{\mathrm{p}, \mathrm{t}}$ is the minimax strategy. The risk of $\binom{* *}{\mathrm{p}, \mathrm{t}}$ at y is

$$
\mathrm{R}(\underline{\mathrm{y}} ; \mathrm{p}, \mathrm{t})=\frac{1}{\frac{1}{3} \Sigma\left(\frac{\mathrm{x}_{\mathrm{i}}\left(1-2 \mathrm{x}_{\mathrm{i}}\right)^{2}}{\prod\left(1-2 \mathrm{x}_{\mathrm{k}}\right)}+\mathrm{x}_{\mathrm{i}}\right)} \underline{y}^{\prime} \mathrm{U}^{(3)} \underline{\mathrm{y}}
$$

3. Interpretation of the main results: game and regression theory

Consider the following 2-person 0 -sum game:
Player I, called Nature, selects $\underline{y} \in \Theta, \Theta$ defined by (1). Independently, Player II, called Statistician, selects $\mathrm{s} \in \mathrm{S}$ and $\mathrm{a}_{\mathrm{si}}, \mathrm{i} \in \mathrm{s}$ and has to pay

$$
\left(\sum \mathrm{a}_{\mathrm{si}} \mathrm{y}_{\mathrm{i}}-\mathrm{y}\right)^{2}
$$

Let $\underline{\mathrm{a}}_{\mathrm{s}}^{0}$ be the N -vector with

$$
\mathrm{i}-\text { th component }= \begin{cases}\mathrm{a}_{\text {si }} & \text { if } \mathrm{i} \in \mathrm{~s} \\ 0 & \text { otherwise }\end{cases}
$$

Then, the pay-off

$$
\left[\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)^{\prime} \underline{\mathrm{y}}\right]^{2}=\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)^{\prime} \underline{\mathrm{y}} \underline{\mathrm{y}}^{\prime}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)
$$

is bounded for $\underline{y} \in \Theta$ if and only if

$$
\begin{equation*}
\sum_{\mathrm{i} \in \mathrm{~s}} \mathrm{a}_{\mathrm{si}} \mathrm{x}_{\mathrm{i}}=1 \tag{2}
\end{equation*}
$$

The Statistician interested in a minimax strategy will only consider $\mathrm{a}_{\mathrm{si}}, \mathrm{i} \in \mathrm{s}$ with (2). Therefore, the subset

$$
\mathrm{T}_{0}=\left\{\underline{y} \in \mathrm{~T}: \sum \mathrm{y}_{\mathrm{i}}=0\right\}
$$

of Nature's pure strategies is of primary importance.

Let $\mathrm{s} \in \mathrm{S}$ be fixed and consider a mixed strategy π of Nature which is a discrete probability on Θ_{0} giving rise to the pay-off

$$
\sum \pi(\underline{\mathrm{y}})\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)^{\prime} \underline{\mathrm{y}}_{\underline{\mathrm{y}}} \underline{y}^{\prime}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)^{\prime}=\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)^{\prime} \mathrm{V}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)
$$

where

$$
\mathrm{V}=\sum \pi(\underline{\mathrm{y}}) \underline{\mathrm{y}} \underline{\mathrm{y}}^{\prime}
$$

satisfies $\mathrm{V} \underline{1}=\underline{0}$.

Subsequently, vectors and matrices are partitioned in accordance with common use. For a $\mathrm{N} \times \mathrm{N}$ matrix C , a N -vector \underline{z} and $\mathrm{s} \in \mathrm{S}$ we write C_{ss} for the $\mathrm{n} \times \mathrm{n}$ submatrix composed of all c_{ij} with $\mathrm{i}, \mathrm{j} \in \mathrm{s}$ and $\underline{z}_{\mathrm{s}}$ for the n -vector consisting of $\mathrm{z}_{\mathrm{i}}, \mathrm{i} \in \mathrm{s}$.

Defining

$$
\underline{\mathrm{a}}_{\mathrm{s}}(\mathrm{~V})=\frac{\mathrm{V}_{\mathrm{ss}}^{-1} \underline{\mathrm{x}}_{\mathrm{s}}}{\underline{\underline{\mathrm{x}}}_{\mathrm{s}}^{\prime} \mathrm{V}_{\mathrm{ss}}^{-1} \underline{\mathrm{x}}_{\mathrm{s}}}
$$

we have

$$
\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)^{\prime} \mathrm{V}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right) \geq\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{~V})-\underline{1}\right)^{\prime} \mathrm{V}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{~V})-\underline{1}\right)
$$

for all $\underline{\mathrm{a}}_{s}$ with (2), i.e. $\underline{\mathrm{a}}_{s}(\mathrm{~V})$ is a best reply of the Statistician to V , as long as he is restricted to s (and (2)). This is an easy consequence from regression analysis. (See remark 1.)

Theorem 1 in combination with Lemma 5 show that a mixed strategy ${ }_{\pi}^{*}$ of Nature exists such that

$$
\mathrm{Q}=\sum \dot{\pi}(\underline{\mathrm{y}}) \underline{\mathrm{y}} \underline{\mathrm{y}} \underline{\mathrm{y}}^{\prime}
$$

has the following property:

$$
\rho=\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}\left({ }_{\mathrm{Q}}^{\mathrm{Q}}\right)-\underline{1}\right)^{\prime} \stackrel{*}{\mathrm{Q}}^{\mathrm{Q}}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\stackrel{*}{\mathrm{Q}})-\underline{1}\right)
$$

does not depend on $s \in S$. Hence, all

$$
\left(\mathrm{s}, \underline{\mathrm{a}}_{\mathrm{s}}^{0}\left({ }^{*}\right)\right), \mathrm{s} \in \mathrm{~S}
$$

are best replies of the Statistician to Nature's mixed strategy $\stackrel{*}{\pi}$, defining $\stackrel{*}{\mathrm{Q}}$.

A sampling strategy (p, t) is a mixed strategy of the Statistician, with pay-off $R(\underline{y} ; p, t), \underline{y}$ a pure strategy of Nature. In Theorem 2 we prove

$$
\sup _{\underline{y} \in \Theta} R(\underline{y} ; p, t) \geq \rho
$$

for all strategies (p, t), i.e ρ is a lower bound for the maximal risk of sampling strategies.

Finally, we show in Theorem 3 that the equation

$$
\mathrm{U}=\frac{\mathrm{c}^{2}}{\rho} \sum_{\mathrm{s} \in \mathrm{~S}} \mathrm{p}_{\mathrm{s}}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}\left({ }^{*}\right)-\underline{1}\right)^{\prime} \mathrm{Q}^{*}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}\left({ }^{*}\right)-\underline{1}\right)
$$

admits a solution $\stackrel{*}{p}_{s}, \mathrm{~s} \in \mathrm{~S}$ with $\sum \stackrel{*}{p}_{\mathrm{s}}=1$. For $\underline{\mathrm{x}}$ and U close to $1 / \mathrm{N}$ and $\mathrm{I}-\underline{11} \underline{1}^{\prime} / \mathrm{N}$, respectively, we have $\stackrel{*}{p}_{s} \geq 0$ for all $\mathrm{s} \in \mathrm{S}$, i.e. $\stackrel{*}{\mathrm{p}}: \mathrm{s} \rightarrow \stackrel{*}{p}_{\mathrm{s}}$ is a design and, with

$$
\mathfrak{t}(\mathrm{s}, \underline{\mathrm{y}})=\sum \mathrm{a}_{\mathrm{si}}(\stackrel{*}{\mathrm{Q}}) \mathrm{y}_{\mathrm{i}}
$$

it follows

$$
\mathrm{R}(\underline{\mathrm{y}} ; \underline{*}, \mathrm{p}, \mathrm{t})=\frac{\rho}{\mathrm{c}^{2}} \underline{\mathrm{y}} \underline{y}^{\prime} \mathrm{U} \underline{\mathrm{y}}
$$

and for all mixed strategies π of Nature and all mixed strategies (p, t) of the Statistician

$$
\begin{aligned}
\sum \pi(\underline{y}) \mathrm{R}(\underline{\mathrm{y}} ; \ddot{\mathrm{p}, \mathrm{t})} \mathrm{\leq} & \leq \stackrel{*}{\pi}(\underline{\mathrm{y}}) \mathrm{R}(\underline{\mathrm{y}} ; \underline{\mathrm{p}}, \mathrm{t})=\rho \\
& \leq \sum \stackrel{*}{\pi}(\underline{\mathrm{y}}) \mathrm{R}(\underline{\mathrm{y}} ; \mathrm{p}, \mathrm{t})
\end{aligned}
$$

i.e. $\stackrel{*}{\pi}$ and $\stackrel{*}{(\mathrm{p}, \mathrm{t})}$ form an equilibrium point of the game considered and ρ is the value of this game. As an immediate consequence,

$$
\sup _{\underline{y} \in \Theta} R(\underline{y} ; \stackrel{*}{p}, \underline{t})=\rho \leq \sup _{\underline{y} \in \Theta} R(\underline{y} ; p, t)
$$

for all (p, t). Hence, (p, t) is minimax.

Remark 1. Consider the linear regression model

$$
\underline{Y}=\underline{x} \beta+\underline{\varepsilon}
$$

for $\underline{Y}=\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{~K} \mathrm{Y}_{\mathrm{N}}\right)^{\prime}$ where $\underline{\varepsilon}$ is a N -dimensional random vector with

$$
\begin{aligned}
& \mathrm{E} \underline{\varepsilon}=\underline{0} \\
& \operatorname{var} \underline{\varepsilon}=\sigma^{2} \mathrm{~V}
\end{aligned}
$$

Here, β and $\quad \sigma>0$ are (unknown) parameters. V $\underline{1}=\underline{0}$ implies

$$
\sum_{1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}=\beta
$$

with probability 1 ; therefore, predicting $\sum_{1}^{N} Y_{i}$ coincides with estimating β. A linear predictor

$$
\sum_{\mathrm{i} \in \mathrm{~s}} \mathrm{a}_{\mathrm{si}} \mathrm{Y}_{\mathrm{i}}
$$

is unbiased for $\sum_{1}^{N} Y_{i}$ if

$$
E\left(\sum a_{s i} Y_{i}-\sum_{1}^{N} Y_{i}\right)=0
$$

i.e. (2). Of all linear and unbiased predictors

$$
\underline{Y}_{s}^{\prime} \underline{\mathrm{a}}_{\mathrm{s}}(\mathrm{~V})=\underline{\mathrm{Y}}^{\prime} \underline{a}_{\mathrm{s}}^{0}(\mathrm{~V})
$$

has minimal variance:

$$
\begin{aligned}
\mathrm{E}\left[\underline{\mathrm{Y}}^{\prime}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)\right]^{2} & =\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right)^{\prime} \mathrm{V}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right) \sigma^{2} \\
& \geq\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{~V})-\underline{1}\right)^{\prime} \mathrm{V}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{~V})-\underline{1}\right) \sigma^{2} \\
& =\frac{\sigma^{2}}{\underline{\mathrm{x}}_{\mathrm{s}}^{\prime} \mathrm{V}_{\mathrm{ss}}^{-1} \underline{\mathrm{x}}_{\mathrm{s}}}
\end{aligned}
$$

for all $\underline{\mathrm{a}}_{\mathrm{s}} \in \mathrm{A}_{\mathrm{s}}$,

$$
A_{s}=\left\{\underline{a} \in \mathfrak{R}^{N}: a_{i}=0 \text { for } \mathrm{i} \notin \mathrm{~s} ; \underline{\mathrm{a}}^{\prime} \underline{\mathrm{x}}=1\right\} .
$$

Hence, $\underline{\mathrm{Y}}^{\prime} \underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{~V})$ is best linear unbiased (BLU) as an estimator of β and a predictor of $\sum \mathrm{Y}_{\mathrm{i}}$.

4. Preliminaries

In this section we derive results on eigen-vectors and -values of non-negative definite $\mathrm{N} \times \mathrm{N}$ matrices of the type

$$
\mathrm{C}+\underline{u}_{\underline{v}} \underline{\mathrm{l}}^{\prime} .
$$

With a few exceptions we will have $\underline{\mathbf{u}}=\underline{\mathrm{v}}$ in which case we use the notation

$$
C+? \underline{11} \underline{1}^{\prime} ?
$$

with a diagonal matrix ? . Of special importance are matrices

$$
\mathrm{C}=\mathrm{D}\left(\mathrm{I}-\alpha \underline{1} \underline{1}^{\prime}\right) \mathrm{D}
$$

D always diagonal and often equal to I.

The vector \underline{x} which is an eigen-vector of the matrix U defining the parameter space Θ will be essential in this section while other properties of U play no role.

We will have occasion to apply the following two lemmas.

Lemma 1: Assume C regular and $1+v^{\prime} \mathrm{C}^{-1} \mathrm{u} \neq 0$. Then

$$
\begin{equation*}
\left(\mathrm{C}+\underline{\mathrm{u}} \underline{\mathrm{v}}^{\prime}\right)^{-1}=\mathrm{C}^{-1}-\frac{\mathrm{C}^{-1} \underline{\mathrm{u}} \underline{\mathrm{v}}^{\prime} \mathrm{C}^{-1}}{1+\underline{\mathrm{v}}^{\prime} \mathrm{C}^{-1} \underline{\mathrm{u}}} \tag{3}
\end{equation*}
$$

and with $\underline{\mathrm{v}}=\underline{\mathrm{u}}$

$$
\begin{equation*}
\left(\mathrm{C}+\underline{\mathrm{u}} \underline{\mathrm{u}}^{\prime}\right)^{-1} \underline{\mathrm{u}}=\frac{\mathrm{C}^{-1} \underline{\mathrm{u}}}{1+\underline{\mathrm{u}}^{\prime} \mathrm{C}^{-1} \underline{\mathrm{u}}} \tag{4}
\end{equation*}
$$

Lemma 2: For $\alpha>0$ and a diagonal $N \times N$ matrix Δ with $\underline{1}$ ' $\underline{\underline{1}} \neq 0$, consider

$$
\mathrm{M}=\mathrm{I}-\alpha \underline{1}^{\prime} \underline{'}^{\prime}+? \underline{1} \underline{1}^{\prime} ?
$$

with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \mathrm{K} \geq \lambda_{\mathrm{N}}
$$

Then

$$
\lambda_{2}=\lambda_{3}=\Lambda=\lambda_{\mathrm{N}-1}=1
$$

Proof: For $\underline{\underline{u}} \in \mathfrak{R}^{\mathrm{N}}$

$$
M \underline{u}=\lambda \underline{u}
$$

is equivalent to

$$
\begin{equation*}
(1-\lambda) \underline{\mathrm{u}}-\alpha \underline{1}\left(\underline{1}^{\prime} \underline{\mathrm{u}}\right)+? \underline{1}\left(\underline{1}^{\prime} ? \underline{\mathrm{u}}\right)=\underline{0} \tag{5}
\end{equation*}
$$

Without restricting generality we assume linear independence of $\Delta \underline{1}$ and $\underline{1}$. Then, the equations $\underline{1}^{\prime} \underline{u}=0, \underline{1} ? \underline{\mathbf{u}}=0$ define a (N-2)-dimensional subspace with N-2 eigenvalues, all equal to 1 .

Define $\mu=1-\lambda$ and multiply (5) from the left by $\underline{1}^{\prime}$ and $\underline{1}^{\prime} ?$, respectively, to obtain

$$
\begin{aligned}
& \mu\left(\underline{1}^{\prime} \underline{\mathbf{u}}\right)-\alpha\left(\underline{1}^{\prime} \underline{1}\right)\left(\underline{1^{\prime}} \underline{\mathbf{u}}\right)+\left(\underline{1}^{\prime} ? \underline{1}\right)\left(\underline{1^{\prime}} ? \underline{\mathbf{u}}\right)=0 \\
& \alpha\left(\underline{1}^{\prime} ? \underline{\mathbf{u}}\right)-\alpha\left(\underline{1}^{\prime} ? \underline{1}\right)\left(\underline{1}^{\prime} \underline{\mathbf{u}}\right)+\left(\underline{1}^{\prime} ?^{2} \underline{\underline{1}}\right)\left(\underline{\prime}^{\prime} ? \underline{\mathbf{u}}\right)=0
\end{aligned}
$$

or equivalently

$$
\left(\begin{array}{cc}
\mu-\mathrm{N} \alpha & \underline{1}^{\prime} ? \underline{1} \\
-\alpha \underline{1} ? \underline{1} & \mu+\underline{1}^{\prime} ?^{2} \underline{1}
\end{array}\right)\binom{\underline{1}^{\prime} \mathrm{u}}{\underline{1}^{\prime} ? \underline{\mathrm{u}}}=\binom{0}{0}
$$

Assuming $\underline{1} \underline{\mathbf{u}} \neq 0$ or $\underline{1} \underline{1} ? \underline{\mathrm{u}} \neq 0$ we derive

$$
(\mu-\mathrm{N} \alpha)\left(\mu+\underline{1}^{\prime} ?{ }^{2} \underline{1}\right)+\alpha\left(\underline{1} \underline{1}^{\prime} \underline{1}\right)^{2}=0
$$

with solutions

$$
\mu_{1}, \mu_{2}=\frac{\alpha \mathrm{N}-\underline{1}^{\prime} ?^{2} \underline{1} \pm \sqrt{\left(\alpha \mathrm{N}-\underline{1}^{\prime} ?^{2} \underline{1}\right)^{2}+4 \alpha\left[\mathrm{~N} \underline{1}^{\prime} ?{ }^{2} \underline{1}-\left(\underline{1}^{\prime} ? \underline{1}\right)^{2}\right]}}{2}
$$

satisfying

$$
\mu_{1} \mu_{2}=-\alpha\left[N \underline{1}^{\prime} ?^{2} \underline{\underline{1}}-\left(\underline{1}^{\prime} ? \underline{\underline{1}}\right)^{2}\right] \leq 0
$$

because of the Cauchy-Schwarz inequality

$$
\left(\underline{1}^{\prime} ? \underline{1}\right)^{2} \leq \mathrm{N} \underline{1}^{\prime} ?{ }^{2} \underline{1}
$$

Hence we cannot have $\mu_{1}>0$ and $\mu_{2}>0$ at the same time; therefore

$$
\lambda_{1} \geq 1 \geq \lambda_{\mathrm{N}} .
$$

Next we want to determine a diagonal matrix D such that

$$
\mathrm{Q}=\mathrm{D}^{-1}\left(\mathrm{I}-\frac{1 \underline{1}^{\prime}}{\mathrm{n}}\right) \mathrm{D}^{-1}+\underline{\mathrm{x}}^{\prime}
$$

is non-negative definite with rank $\mathrm{N}-1$ and $\mathrm{Q} 1=\underline{0}$. As shown in Lemma 4 this is possible for $\underline{\mathrm{x}}$ satisfying the weak condition (7) given in Lemma 3. In Theorem 1 we will prove a fundamental property of Q .

Lemma 3: Consider $\underline{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~K} \mathrm{x}_{\mathrm{N}}\right)^{\prime}$ with $\mathrm{x}=1$ and

$$
\mathrm{x}_{\mathrm{i}}>0 \text { for } \mathrm{i}=1,2, \mathrm{~K} \mathrm{~N} .
$$

A solution z_{0} of

$$
\begin{equation*}
|N-2 n| z=\sum_{i=1}^{N} \sqrt{z^{2}-x_{i}} \tag{7}
\end{equation*}
$$

exists if and only if

$$
\begin{equation*}
|\mathrm{N}-2 \mathrm{n}| \geq \sum \sqrt{1-\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{o}}} \tag{8}
\end{equation*}
$$

where

$$
\mathrm{x}_{0}=\max \left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~K} \mathrm{x}_{\mathrm{N}}\right\}
$$

The solution z_{0} is unique.

Proof: Define

$$
\begin{aligned}
& \mathrm{f}(\mathrm{z})=|\mathrm{N}-2 \mathrm{n}| \mathrm{z} \\
& \mathrm{~g}(\mathrm{z})=\sum_{1}^{N} \sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}}
\end{aligned}
$$

For $\mathrm{z} \geq \sqrt{\mathrm{x}_{\mathrm{o}}}$

$$
\begin{aligned}
\mathrm{g}^{\prime}(\mathrm{z}) & =\mathrm{z} \sum_{1}^{\mathrm{N}} \frac{1}{\sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}}}>\mathrm{N}>\mathrm{f}^{\prime}(\mathrm{z})=|\mathrm{N}-2 \mathrm{n}| \\
\mathrm{g}^{\prime \prime}(\mathrm{z}) & =\sum \frac{1}{\sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}}}-\mathrm{z}^{2} \sum \frac{1}{\left(\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}\right)^{3 / 2}} \\
& =\sum\left(\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}\right)^{-3 / 2}\left(\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}-\mathrm{z}^{2}\right) \\
& =-\sum \mathrm{x}_{\mathrm{i}}\left(\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}\right)^{-3 / 2}<0
\end{aligned}
$$

Therefore,

$$
\mathrm{f}(\mathrm{z})=\mathrm{g}(\mathrm{z})
$$

admits at most one solution. A solution exists if and only if

$$
\mathrm{f}\left(\sqrt{\mathrm{x}_{\mathrm{o}}}\right) \geq \mathrm{g}\left(\sqrt{\mathrm{x}_{\mathrm{o}}}\right)
$$

which is equivalent to

$$
|\mathrm{N}-2 \mathrm{n}| \sqrt{\mathrm{x}_{\mathrm{o}}} \geq \sum \sqrt{\mathrm{x}_{\mathrm{o}}-\mathrm{x}_{\mathrm{i}}}
$$

i.e.

$$
|\mathrm{N}-2 \mathrm{n}| \geq \sum \sqrt{1-\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{o}}}
$$

Lemma 4: Define $\kappa=\operatorname{sgn}(N-2 n)$ and

$$
\begin{aligned}
& d_{i}=\frac{z_{o}+\kappa \sqrt{z_{o}^{2}-x_{i}}}{x_{i}} \text { for } i=1,2, K N \\
& D=\operatorname{diag}\left(d_{1}, d_{2}, \mathrm{~K} \mathrm{~d}_{N}\right)
\end{aligned}
$$

Then

$$
\mathrm{Q}=\mathrm{D}^{-1}\left(\mathrm{I}-{\underline{\underline{1}} \underline{1}^{\prime}}_{\mathrm{n}}\right) \mathrm{D}^{-1}+\underline{x}^{\mathrm{x}} \underline{ }^{\prime}
$$

is of rank $\mathrm{N}-1$ and non-negative definite with

$$
\begin{equation*}
\mathrm{Q} \underline{1}=\underline{0} . \tag{9}
\end{equation*}
$$

Proof: (9) is equivalent to

$$
\begin{equation*}
\frac{1}{\mathrm{~d}_{\mathrm{i}}^{2}}-\frac{1}{\mathrm{n}} \frac{1}{\mathrm{~d}_{\mathrm{i}}} \sum \frac{1}{\mathrm{~d}_{\mathrm{j}}}+\mathrm{x}_{\mathrm{i}}=0 \quad ; \mathrm{i}=1,2, \mathrm{~K} \mathrm{~N} . \tag{10}
\end{equation*}
$$

With

$$
\begin{equation*}
\mathrm{z}=\frac{1}{2 \mathrm{n}} \sum \frac{1}{\mathrm{~d}_{\mathrm{j}}} \tag{11}
\end{equation*}
$$

(10) may be written

$$
\begin{equation*}
\left(\frac{1}{d_{i}}-z\right)^{2}=z^{2}-x_{i} ; i=1,2, K N \tag{12}
\end{equation*}
$$

Now, $z, d_{1}, \ldots d_{N}$ solve (11), (12) if and only if for some $\varepsilon_{1}, \ldots \varepsilon_{N}=1,-1$

$$
\frac{1}{d_{i}}=\mathrm{z}+\varepsilon_{\mathrm{i}} \sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}} ; i=1,2, \mathrm{~K} \mathrm{~N}
$$

and

$$
\mathrm{z}=\frac{1}{2 \mathrm{n}}\left(\mathrm{Nz}+\sum \varepsilon_{\mathrm{i}} \sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}}\right)
$$

i.e.

$$
(\mathrm{N}-2 \mathrm{n}) \mathrm{z}=-\sum \varepsilon_{\mathrm{i}} \sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}}
$$

Define $\varepsilon_{i}=-\kappa$ for $\mathrm{i}=1, \ldots \mathrm{~N}$. Then, the equations to solve are

$$
\begin{aligned}
& \frac{1}{d_{i}}=\mathrm{z}-\kappa \sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}} ; i=1, \ldots \mathrm{~N} \\
& |\mathrm{~N}-2 \mathrm{n}| \mathrm{z}=\sum \sqrt{\mathrm{z}^{2}-\mathrm{x}_{\mathrm{i}}} .
\end{aligned}
$$

Hence, a special solution is $\mathrm{z}_{\mathrm{o}}, \mathrm{d}_{1}, \mathrm{~K}_{\mathrm{N}}, \mathrm{z}_{\mathrm{o}}$ with

$$
|\mathrm{N}-2 \mathrm{n}| \mathrm{z}_{\mathrm{o}}=-\sum \sqrt{\mathrm{z}_{\mathrm{o}}^{2}-\mathrm{x}_{\mathrm{i}}}
$$

and , for $\mathrm{i}=1,2, \ldots \mathrm{~N}, \mathrm{~d}_{\mathrm{i}}$ with

$$
\frac{1}{\mathrm{~d}_{\mathrm{i}}}=\mathrm{z}_{\mathrm{o}}-\kappa \sqrt{\mathrm{z}_{\mathrm{o}}^{2}-\mathrm{x}_{\mathrm{i}}}
$$

which is equivalent to

$$
d_{i}=\frac{z_{o}+\kappa \sqrt{z_{o}^{2}-x_{i}}}{x_{i}} .
$$

Further

$$
\mathrm{Q}=\mathrm{D}^{-1}\left(\mathrm{I}-\frac{\underline{1}^{\prime} \underline{1}}{\mathrm{n}}+\mathrm{D} \underline{x} \underline{x}^{\prime} \mathrm{D}\right) \mathrm{D}^{-1}=\mathrm{D}^{-1} \mathrm{MD}^{-1} \text {, say. }
$$

Since the assumptions of Lemma 2 are satisfied for M and 0 is an eigenvalue of M , all other eigenvalues must be positive (in fact ≥ 1) and the rank and definiteness statements follow.

Theorem 1: For all $s \in S$,

$$
\begin{align*}
& \underline{\mathrm{a}}_{s}(\mathrm{Q})=\frac{\mathrm{D}_{s} 1_{s}}{\underline{\mathrm{x}}_{s}^{\prime} \mathrm{D}_{s} \underline{s}_{s}} \tag{13}\\
& \left(\underline{\mathrm{a}}_{s}^{0}(\mathrm{Q})-\underline{1}\right)^{\prime} \mathrm{Q}\left(\underline{\underline{a}}_{s}^{0}(\mathrm{Q})-\underline{1}\right)=1 \tag{14}
\end{align*}
$$

Proof: Obviously

$$
\begin{aligned}
Q_{s s} & =D_{s}^{-1}\left(I_{s}-\frac{1_{s} \underline{s}_{s}^{\prime}}{n}\right) D_{s}^{-1}+\underline{x}_{s} \underline{x}_{s}^{\prime} \\
& =\left(D_{s}^{-2}+\underline{x}_{s} \underline{x}_{s}^{\prime}\right)-\frac{D_{s}^{-1} \underline{1}_{s} 1_{s}^{\prime} D_{s}^{-1}}{n}
\end{aligned}
$$

Hence, by (3)

$$
\begin{aligned}
& Q_{s s}^{-1}=\left(D_{s}^{-2}+\underline{x}_{s} \underline{x}_{s}^{\prime}\right)^{-1} \\
& +\frac{\left(D_{s}^{-2}+\underline{x}_{s} \underline{x}_{s}^{\prime}\right)^{-1} \frac{D_{s}^{-1} \underline{s}_{s} 1_{s}^{\prime} D_{s}^{-1}}{n}\left(D_{s}^{-2}+\underline{x}_{s} \underline{x}_{s}^{\prime}\right)^{-1}}{1-\frac{1}{n} \underline{1}_{s}^{\prime} D_{s}^{-1}\left(D_{s}^{-2}+\underline{x}_{s} \underline{x}_{s}^{\prime}\right)^{-1} D_{s}^{-1} 1_{s}}
\end{aligned}
$$

Again by (3)

$$
\left(D_{s}^{-2}+\underline{x}_{s} \underline{x}_{s}^{\prime}\right)^{-1}=D_{s}^{2}-\frac{D_{s}^{2} \underline{x}_{s} \underline{x}_{s}^{\prime} D_{s}^{2}}{1+\underline{x}_{s}^{\prime} D_{s}^{2} \underline{x}_{s}}
$$

and by (4)

$$
\left(D_{\mathrm{s}}^{-2}+\underline{x}_{s} \underline{x}_{\mathrm{s}}^{\prime}\right)^{-1} \underline{x}_{\mathrm{s}}=\frac{D_{\mathrm{s}}^{2} \underline{x}_{s}}{1+\underline{x}_{s}^{\prime} \mathrm{D}_{\mathrm{s}}^{2} \underline{\underline{x}}_{s}} .
$$

Therefore

$$
\begin{aligned}
& Q_{s s}^{-1} \underline{X}_{s}=\frac{D_{s}^{2} \underline{X}_{s}}{1+\underline{x}_{s}^{\prime} D_{s}^{2} \underline{x}_{s}}+\frac{\left(D_{s} \underline{1}_{s}-\frac{D_{s}^{2} \underline{X}_{s} \underline{x}_{s}^{\prime} D_{s} \underline{1}_{s}}{1+\underline{x}_{s}^{\prime} D_{s}^{2} \underline{X}_{s}}\right) \frac{\underline{1}_{s}^{\prime} D_{s} \underline{X}_{s}}{1+\underline{x}_{s}^{\prime} \underline{D}_{s}^{2} \underline{x}_{s}} \frac{1}{n}}{1-\frac{1}{n}\left(n-\frac{1_{s}^{\prime} D_{s} \underline{x}_{s} \underline{x}_{s}^{\prime} D_{s} \underline{1}}{1+\underline{x}_{s}^{\prime} D_{s}^{2} \underline{x}_{s}}\right)} \\
& =\frac{D_{s}^{2} \underline{x}_{s}}{1+\underline{x}_{s}^{\prime} D_{s}^{2} \underline{x}_{s}}+\left(D_{s} \underline{1}_{s}-D_{s}^{2} \underline{x}_{s} \frac{\underline{x}_{s}^{\prime} D_{s} \underline{1}_{s}}{1+\underline{x}_{s}^{\prime} D_{s}^{2} \underline{x}_{s}}\right) \frac{1}{\underline{1}_{s}^{\prime} D_{s} \underline{x}_{s}} \\
& =\frac{D_{s} \underline{1}_{s}}{\underline{X}_{s}^{\prime} D_{s} 1_{s}}
\end{aligned}
$$

Consequently,

$$
\underline{\mathrm{x}}_{\mathrm{s}}^{\prime} \mathrm{Q}_{\mathrm{ss}}^{-1} \underline{\mathrm{x}}_{\mathrm{s}}=1
$$

and

$$
\underline{\mathrm{a}}_{\mathrm{s}}(\mathrm{Q})=\frac{\mathrm{Q}_{\mathrm{ss}}^{-1} \underline{\mathrm{x}}_{\mathrm{s}}}{\underline{\mathrm{x}}_{\mathrm{s}}^{\prime} \mathrm{Q}_{\mathrm{ss}}^{-1} \underline{\mathrm{x}}_{\mathrm{s}}}=\frac{\mathrm{D}_{\mathrm{s}} \underline{1}_{\mathrm{s}}}{\underline{\mathrm{x}}_{\mathrm{s}}^{\prime} \mathrm{D}_{\mathrm{s}} \underline{1}_{\mathrm{s}}}
$$

which is (13) . (14) follows from (10) and

$$
\begin{aligned}
{\left.\left[\underline{a}_{\mathrm{s}}^{0}(\mathrm{Q})-\underline{1}\right]\right]^{\prime} \mathrm{Q}\left[\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{Q})-\underline{1}\right] } & =\left[\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{Q})\right]^{\prime} \mathrm{Q} \underline{\mathrm{a}}_{\mathrm{s}}^{0}(\mathrm{Q}) \\
& =\underline{\mathrm{a}}_{\mathrm{s}}^{\prime}(\mathrm{Q}) \mathrm{Q}_{\mathrm{ss}} \underline{\mathrm{a}}_{\mathrm{s}}(\mathrm{Q}) \\
& =\underline{\mathrm{x}}_{\mathrm{s}}^{\prime} \mathrm{Q}_{\mathrm{ss}}^{-1} \mathrm{Q}_{\mathrm{ss}} \mathrm{Q}_{\mathrm{ss}}^{-1} \underline{\mathrm{x}}_{\mathrm{s}} \\
& =1 .
\end{aligned}
$$

Remark 2. Let $\sigma^{2} \mathrm{Q}$ be the variance matrix of the residuals in a linear regression model. Then, the variance of the BLU-predictor for $\sum \mathrm{Y}_{\mathrm{i}}$, based on a sample s , is

$$
\frac{\sigma^{2}}{\underline{x}_{s}^{\prime} Q_{s s}^{-1} \underline{\mathrm{x}}_{\mathrm{s}}}=\sigma^{2}
$$

and does not depend on s.

5. A lower bound for the maximal risk

Now, we are prepared to derive a lower bound of the maximal risk with respect to
Θ. Note that here only weak assumptions concerning \underline{x} are needed and that the matrix U defining the parameter space Θ has to satisfy $\operatorname{U\underline {x}}=\underline{0}$, but otherwise is arbitrary. First we show in Lemma 5 that $\frac{\mathrm{c}^{2}}{\operatorname{tr}(\mathrm{QU})} \mathrm{Q}$ can be expressed as a mixed strategy of Nature.

Lemma 5: Let U be non-negative definite of rank $\mathrm{N}-1$ with (see (1))

$$
\mathrm{U} \underline{\mathrm{x}}=\underline{0}
$$

(see (1)). Then, a $\mathrm{N} \times(\mathrm{N}-1)$ matrix Z and positive probabilities

$$
\pi_{1}, \pi_{2}, \mathrm{~K} \pi_{\mathrm{N}-1}
$$

exist with

$$
\begin{align*}
& \underline{1}^{\prime} \mathrm{Z}=\underline{0} \tag{15}\\
& \mathrm{Z}^{\prime} \mathrm{U} \mathrm{Z}=\mathrm{I}_{\mathrm{N}-1} \tag{16}\\
& \mathrm{Q}=\operatorname{tr}(\mathrm{QU}) \cdot \mathrm{Z} \operatorname{diag}\left(\pi_{1}, \mathrm{~K} \pi_{\mathrm{N}-1}\right) \mathrm{Z}^{\prime} \tag{17}
\end{align*}
$$

where Q is defined by (9) in Lemma 4.

Proof: Define

$$
\mathrm{A}=\left(\mathrm{I}-\frac{1}{\mathrm{~N}^{1}} 1 \underline{1}^{\prime}\right) \mathrm{U}\left(\mathrm{I}-\frac{1}{\mathrm{~N}^{1}} \underline{1}^{\prime}\right)
$$

with eigenvalue decomposition

$$
\mathrm{A}=\mathrm{T} ? \mathrm{~T}^{\prime}
$$

where

$$
\begin{aligned}
& \mathrm{T}^{\prime} \mathrm{T}=\mathrm{I}_{\mathrm{N}-1} \\
& \mathrm{~T}^{\prime} \underline{1}=\underline{0} \\
& \Delta=\operatorname{diag}\left(\delta_{1}, \mathrm{~K} \delta_{\mathrm{N}-1}\right)
\end{aligned}
$$

with $\delta_{1}, \mathrm{~K} \delta_{\mathrm{N}-1}>0$. Define further

$$
\begin{aligned}
& \mathrm{B}=\mathrm{T} ?^{\frac{1}{2}} \mathrm{~T}^{\prime} \\
& \mathrm{B}^{+}=\mathrm{T} ?^{-\frac{1}{2}} \mathrm{~T}^{\prime}
\end{aligned}
$$

and consider the eigenvalue decomposition

$$
\mathrm{BQB}=\mathrm{C} ? \mathrm{C}^{\prime}
$$

where

$$
\begin{aligned}
& \mathrm{C}^{\prime} \mathrm{C}=\mathrm{I}_{\mathrm{N}-1} \\
& \mathrm{C}^{\prime} \underline{1}=\underline{0} \\
& ?=\operatorname{diag}\left(\lambda_{1}, \mathrm{~K} \lambda_{\mathrm{N}-1}\right)
\end{aligned}
$$

with $\quad \lambda_{1}, \mathrm{~K} \quad \lambda_{\mathrm{N}-1}>0$.

Defining $Z=B^{+} C$ equation (15) is obvious. Further, by $T T^{\prime}=I-\frac{1}{N} \underline{1}^{\prime}$,

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{B}^{+} \mathrm{C} ? \mathrm{C}^{\prime} \mathrm{B}^{+} \\
& =\mathrm{Z} ? \mathrm{Z}^{\prime} .
\end{aligned}
$$

According to (15) we have

$$
\begin{aligned}
Z^{\prime} \cup Z & =Z^{\prime} A Z \\
& =C^{\prime} T ?^{-\frac{1}{2}} T^{\prime} T ? T^{\prime} T ?^{-\frac{1}{2}} \mathrm{~T}^{\prime} \mathrm{C}
\end{aligned}
$$

giving (16). In addition

$$
\begin{aligned}
\operatorname{tr}(\mathrm{QU}) & =\operatorname{tr}\left(\mathrm{Z} ? \mathrm{Z}^{\prime} \mathrm{U}\right)=\operatorname{tr}\left(? \mathrm{Z}^{\prime} \mathrm{UZ}\right) \\
& =\operatorname{tr}(?)=\Sigma \lambda_{\mathrm{j}}
\end{aligned}
$$

and with

$$
\pi_{\mathrm{i}}=\frac{\lambda_{\mathrm{i}}}{\sum \lambda_{\mathrm{j}}} ; \mathrm{i}=1,2, \mathrm{~K} \mathrm{~N}-1
$$

we derive

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{Z} ? \mathrm{Z}^{\prime}=\left(\sum \lambda_{\mathrm{j}}\right) \mathrm{Z} \operatorname{diag}\left(\pi_{1}, \mathrm{~K} \pi_{\mathrm{N}-1}\right) \mathrm{Z}^{\prime} \\
& =\operatorname{tr}(\mathrm{QU}) \mathrm{Z} \operatorname{diag}\left(\pi_{1}, \mathrm{~K} \pi_{\mathrm{N}-1}\right) \mathrm{Z}^{\prime}
\end{aligned}
$$

i.e. (17).

Theorem 2: Consider $\underline{x}=\left(x_{1}, x_{2}, K x_{N}\right)^{\prime}$ with $x_{i}>0$ for $i=1,2, K N, \sum x_{i}=1$ and (see Lemma 3)

$$
|\mathrm{N}-2 \mathrm{n}| \geq \sum \sqrt{1-\mathrm{x}_{\mathrm{i}} / \mathrm{x}_{\mathrm{o}}}
$$

where

$$
\mathrm{x}_{\mathrm{o}}=\max \left\{\mathrm{x}_{1}, \mathrm{~K} \mathrm{x}_{\mathrm{N}}\right\}
$$

Let U be a $\mathrm{N} \times \mathrm{N}$ matrix of rank $\mathrm{N}-1$ with

$$
\mathrm{U} \underline{x}=\underline{0}
$$

and define (see sections 1 and 3)

$$
\begin{aligned}
& T=\left\{\underline{y} \in \Re^{N}: \underline{y}^{\prime} U \underline{y} \leq c^{2}\right\} . \\
& \rho=\frac{c^{2}}{\operatorname{tr}(Q U)} .
\end{aligned}
$$

Then for all strategies (p, t)

$$
\sup _{y \in T} R(\underline{y} ; p, t) \geq \rho .
$$

Proof: Define

$$
\begin{equation*}
\stackrel{*}{\mathrm{Q}}=\rho \mathrm{Q} . \tag{18}
\end{equation*}
$$

Then

$$
\underline{\mathrm{a}}_{\mathrm{s}}(* *)=\underline{\mathrm{a}}_{\mathrm{s}}(\mathrm{Q})
$$

and by (14)

$$
\begin{equation*}
\left[\underline{\mathrm{a}}_{s}^{0}(\stackrel{*}{\mathrm{Q}})-\underline{1}\right]^{\prime} \stackrel{*}{\mathrm{Q}}\left[\underline{\mathrm{a}}_{s}^{0}\left(\stackrel{*}{\mathrm{Q}}^{*}\right)-\underline{1}\right]=\rho \tag{19}
\end{equation*}
$$

for all $\mathrm{s} \in \mathrm{S}$. Now, consider a design p and an estimator t defined by $\underline{\mathrm{a}}_{\mathrm{s}}^{0} \in \mathrm{~A}_{\mathrm{s}}$. Obviously,

$$
\sum \mathrm{p}_{\mathrm{s}}\left[\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right]^{\prime} \stackrel{*}{\mathrm{Q}}\left[\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right] \geq \sum \mathrm{p}_{\mathrm{s}}\left[\underline{\underline{a}}_{s}^{0}(\stackrel{*}{\mathrm{Q}})-\underline{1}\right]^{\prime} \stackrel{*}{\mathrm{Q}}\left[\underline{\mathrm{a}}_{s}^{0}(\stackrel{*}{\mathrm{Q}})-\underline{1}\right]=\rho
$$

For $\underset{\sim}{\boldsymbol{\pi}}=\left(\pi_{1}, \mathrm{~K} \pi_{\mathrm{N}-1}\right)^{\prime}$ and $\mathrm{Z}=\left(\mathrm{Z}_{1}, \mathrm{~K} \mathrm{Z}_{\mathrm{N}-1}\right)$ defined in Lemma 5 we have

$$
\begin{aligned}
\stackrel{*}{Z}_{i} & =c Z_{i} \in T \\
\stackrel{*}{\mathrm{Q}} & =\rho \mathrm{Q}=\stackrel{*}{\mathrm{Z}}^{\operatorname{diag}(\pi)}{ }^{*}{ }^{\prime} \\
& =\sum \pi_{\mathrm{i}} \stackrel{*}{Z}_{i} \stackrel{*}{\mathrm{Z}}_{\mathrm{i}}^{\prime}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \rho=\sum \operatorname{p}_{\mathrm{s}} \sum \pi_{\mathrm{i}}\left\{{\underset{Z}{\mathrm{Z}}}^{\mathrm{Z}_{\mathrm{i}}}\left[\underline{\mathrm{a}}_{\mathrm{s}}^{0}(\stackrel{*}{\mathrm{Q}})-\underline{1}\right]\right\}^{2} \\
& \leq \sum \mathrm{p}_{\mathrm{s}} \sum \pi_{\mathrm{i}}\left\{{\underset{\mathrm{Z}}{\mathrm{i}}}_{\prime}\left[\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right]\right\}^{2} \\
& \leq \max _{\mathrm{i}} \sum \operatorname{p}_{\mathrm{s}}\left\{\dot{\mathrm{Z}}_{\mathrm{i}}^{\prime}\left[\underline{\mathrm{a}}_{\mathrm{s}}^{0}-\underline{1}\right]\right\}^{2} \\
& =\max _{\mathrm{i}} \mathrm{R}\left(\stackrel{*}{Z}_{\mathrm{Z}}^{\mathrm{i}} ; \mathrm{p}, \mathrm{t}\right) \\
& \leq \max _{y \in T} R(\underline{y} ; p, t) \\
& \underline{y} \in T
\end{aligned}
$$

6. Minimax strategies

We will show that a minimax strategy is obtained if the estimator ${ }^{*}$ introduced in section 5 is combined with an appropriate design $\stackrel{*}{\mathrm{p}}$.

Lemma 6. Consider $b_{i j} ; i, j=1,2, \ldots N$ with

$$
\sum_{\mathrm{j}} \mathrm{~b}_{\mathrm{ij}}=\mathrm{n} \mathrm{~b}_{\mathrm{ii}} \text { for } \mathrm{i}=1,2, \mathrm{~K} \mathrm{~N}
$$

and define for $s \in S$

$$
\begin{equation*}
b_{s}=\frac{1}{\binom{N-4}{n-2}} \sum_{\substack{i, j \in s \\ i<j}} b_{i j}-\frac{n-2}{\binom{N-2}{n-1}} \sum_{i \in s} b_{i i}+\frac{\binom{n-1}{2}}{\binom{N-2}{n}} \frac{\sum_{i=1}^{N} b_{i i}}{n} \tag{20}
\end{equation*}
$$

Then, for $\mathrm{i}, \mathrm{j}=1,2, \ldots \mathrm{~N}$

$$
\mathrm{b}_{\mathrm{ij}}=\sum_{\mathrm{s}: \mathrm{i}, \mathrm{j} \in \mathrm{~s}} \mathrm{~b}_{\mathrm{s}}
$$

For the proof of Lemma 6 we refer to Chaudhuri (1971) and Gabler and Schweigkoffer (1990).
Theorem 3. Let \underline{x} and U satisfy the conditions of Theorem 2. Define $D=\operatorname{diag}\left(d_{1}, K d_{N}\right)$ and Q according to section 3 and t according to section 5 . Define further

$$
\begin{align*}
& m_{i}=\sum_{j} \frac{2 u_{i j}-u_{i i}-u_{i j}}{d_{j}} \text { for } i=1,2, \ldots N \tag{21}\\
& k=\frac{\sum_{i} \frac{m_{i}}{2 n-d_{i} \sum_{j} \frac{1}{d_{j}}}}{1-\sum_{i} \frac{1}{2 n-d_{i} \sum_{j} \frac{1}{d_{j}}}} \tag{22}\\
& b_{i i}=\frac{k+m_{i}}{d_{i}\left(2 n-d_{i} \sum \frac{1}{d_{j}}\right)} \text { for all } i=1,2, \ldots N \tag{23}\\
& b_{i j}=\frac{d_{i}^{2} b_{i i}+d_{j}^{2} b_{i j}+2 u_{i j}-u_{i i}-u_{i j}}{2 d_{i j} d_{j}} \text { for } 1 \leq i<j \leq N \tag{24}
\end{align*}
$$

and b_{s} by (20). Then, the function $\stackrel{*}{\mathrm{p}}: \mathrm{s} \rightarrow{ }_{\mathrm{p}}^{\mathrm{p}}$ on S , defined by

$$
\stackrel{*}{p}_{\mathrm{s}}=\left(\sum_{\mathrm{j} \in \mathrm{~s}} \mathrm{~d}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}\right)^{2} \mathrm{~b}_{\mathrm{s}} / \operatorname{tr}(\mathrm{QU})
$$

satisfies

$$
\begin{equation*}
\sum_{\mathrm{s}} \stackrel{*}{\mathrm{p}}_{\mathrm{s}}=1 \tag{25}
\end{equation*}
$$

$\stackrel{*}{\mathrm{p}}$ is a design and $(\stackrel{*}{\mathrm{p}, \mathrm{t})}$ is minimax with

$$
\sup _{\underline{y} \in \Theta} R(\underline{y} ; \underset{\sim}{*}, \stackrel{*}{t})=\rho
$$

provided \underline{x} and U are close to $\underline{1} / \mathrm{N}$ and $\mathrm{I}-\frac{1}{\mathrm{~N}} 1 \underline{1}^{\prime}$, respectively.

Proof: From (22) and (23) we derive

$$
\sum \mathrm{d}_{\mathrm{i}} \mathrm{~b}_{\mathrm{ii}}=\sum_{\mathrm{i}} \frac{\mathrm{k}+\mathrm{m}_{\mathrm{i}}}{2 \mathrm{n}-\mathrm{d}_{\mathrm{i}} \sum \frac{1}{\mathrm{~d}_{\mathrm{j}}}}=\mathrm{k}
$$

Hence, for $\mathrm{i}=1,2, \ldots \mathrm{~N}$ and the fact that (24) remains true for $\mathrm{i}=\mathrm{j}$

$$
\begin{aligned}
\sum_{\mathrm{j}} \mathrm{~b}_{\mathrm{ij}} & =\sum_{\mathrm{j}} \frac{\mathrm{~d}_{\mathrm{i}}^{2} \mathrm{~b}_{\mathrm{ii}}+\mathrm{d}_{\mathrm{j}}^{2} \mathrm{~b}_{\mathrm{jj}}+2 \mathrm{u}_{\mathrm{ij}}-\mathrm{u}_{\mathrm{ii}}-\mathrm{u}_{\mathrm{ij}}}{2 \mathrm{~d}_{\mathrm{i}} \mathrm{~d}_{\mathrm{j}}} \\
& =\frac{1}{2}\left[\mathrm{~d}_{\mathrm{i}} \mathrm{~b}_{\mathrm{ij}} \sum_{\mathrm{j}} \frac{1}{\mathrm{~d}_{\mathrm{j}}}+\frac{1}{\mathrm{~d}_{\mathrm{i}}} \sum_{\mathrm{j}} \mathrm{~d}_{\mathrm{j}} \mathrm{~b}_{\mathrm{ij}}+\frac{1}{\mathrm{~d}_{\mathrm{i}}} \sum_{\mathrm{j}} \frac{2 \mathrm{u}_{\mathrm{ij}}-\mathrm{u}_{\mathrm{ii}}-\mathrm{u}_{\mathrm{ij}}}{\mathrm{~d}_{\mathrm{j}}}\right] \\
& =\frac{1}{2}\left[\mathrm{~d}_{\mathrm{i}} \mathrm{~b}_{\mathrm{ii}} \sum_{\mathrm{j}} \frac{1}{\mathrm{~d}_{\mathrm{j}}}+\frac{\mathrm{k}+\mathrm{m}_{\mathrm{i}}}{\mathrm{~d}_{\mathrm{i}}}\right] .
\end{aligned}
$$

From (23) we obtain, therefore,

$$
\begin{align*}
\sum_{\mathrm{j}} \mathrm{~b}_{\mathrm{ij}} & =\frac{1}{2}\left[\mathrm{~d}_{\mathrm{i}} \mathrm{~b}_{\mathrm{ii}} \sum_{\mathrm{j}} \frac{1}{\mathrm{~d}_{\mathrm{j}}}+\mathrm{b}_{\mathrm{ii}}\left(2 \mathrm{n}-\mathrm{d}_{\mathrm{i}} \sum_{\mathrm{j}} \frac{1}{\mathrm{~d}_{\mathrm{j}}}\right)\right] \tag{26}\\
& =\mathrm{n} \mathrm{~b}_{\mathrm{ii}}
\end{align*}
$$

Now

$$
\begin{align*}
& \mathrm{R}\left(\underline{\mathrm{y}} ;{ }^{*}, \mathrm{t}, \mathrm{t}\right)=\sum_{\mathrm{s}}^{*}{\underset{\mathrm{p}}{\mathrm{~s}}}^{*}[\mathrm{t}(\mathrm{~s}, \underline{y})-\mathrm{y}]^{2} \\
& =\sum_{s}\left(\sum_{j \in s} d_{j} x_{j}\right)^{2} b_{s}\left[\sum_{i \in s} \frac{d_{i}}{\sum_{j \in S} d_{j} x_{j}} \cdot y_{i}-y\right]^{2} / \operatorname{tr}(Q U) \\
& =\sum_{s} b_{s}\left[\sum_{i \in s} d_{i}\left(y_{i}-x_{i} y\right)\right]^{2} / \operatorname{tr}(Q U) \\
& =\sum_{\mathrm{i}, \mathrm{j}} \mathrm{~b}_{\mathrm{ij}} \mathrm{~d}_{\mathrm{i}} \mathrm{~d}_{\mathrm{j}}\left(\mathrm{y}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}} \mathrm{y}\right)\left(\mathrm{y}_{\mathrm{j}}-\mathrm{x}_{\mathrm{j}} \mathrm{y}\right) / \operatorname{tr}(\mathrm{QU}) \quad \text { by (26) and Lemma } 6 \\
& =\sum_{\mathrm{i}, \mathrm{j}} \mathrm{u}_{\mathrm{ij}} \mathrm{y}_{\mathrm{i}} \mathrm{y}_{\mathrm{j}} / \operatorname{tr}(\mathrm{QU}) \quad \text { by (23) and (24) } \\
& =\underline{y}^{\prime} \mathrm{U} \underline{y} / \operatorname{tr}(\mathrm{QU}) \tag{27}
\end{align*}
$$

With π defined in Lemma 5 and $\stackrel{*}{Q}$ defined by (18) we derive from (27)

$$
\begin{aligned}
& \sum \pi(\underline{y}) R(\underline{y} ; \stackrel{*}{p}, \stackrel{*}{\mathrm{t}})=\sum \pi(\underline{\mathrm{y}}) \underline{y^{\prime}}{ }^{\mathrm{U}} \underline{y} / \operatorname{tr}(\mathrm{QU}) \\
& =\operatorname{tr}\left(\sum \pi(\underline{y}) \underline{y} \underline{y}^{\prime} \cdot \mathrm{U}\right) / \operatorname{tr}(\mathrm{QU}) \\
& =\operatorname{tr}\left({ }^{*} \mathrm{Q} \mathrm{U}\right) / \operatorname{tr}(\mathrm{Q} \mathrm{U})
\end{aligned}
$$

On the other hand

$$
\sum \pi(\underline{\mathrm{y}}) \mathrm{R}\left(\underline{\mathrm{y}} ; \stackrel{*}{\mathrm{p}} ; \mathrm{t}_{\mathrm{t}}\right)=\sum \stackrel{*}{\mathrm{p}}_{\mathrm{s}}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{\mathrm{o}}(\stackrel{*}{\mathrm{Q}})-1\right)^{\prime} \stackrel{*}{\mathrm{Q}}\left(\underline{\mathrm{a}}_{\mathrm{s}}^{\mathrm{o}}(\stackrel{*}{\mathrm{Q}})-1\right)=\rho \sum \stackrel{*}{\mathrm{p}}_{\mathrm{s}}
$$

by (19), and (25) is proved.
Obviously, for $s \in S, \stackrel{*}{p}_{s}$ is a continuous function of U and \underline{x} with limit $1 /\binom{N}{n}$ for $\underline{x} \rightarrow \underline{1} / \mathrm{N}$ and $\mathrm{U} \rightarrow \mathrm{I}-\underline{1} \underline{1}^{\prime} / \mathrm{N}$. Hence, if \underline{x} and U are close to $\underline{1} / \mathrm{N}$ and $\mathrm{I}-\underline{1} \underline{1}^{\prime} / \mathrm{N}$, respectively, we have

$$
\stackrel{*}{p}_{s} \geq 0 \text { for all } s \in S
$$

and $\stackrel{*}{\mathrm{p}}$ is a design.
Then, by (27)

$$
\sup _{\underline{y} \in \Theta} R\left(\underline{y} ; p,{ }^{*}, t\right)=\rho
$$

and the minimaxity of $(\stackrel{*}{\mathrm{p}, \mathrm{t}})$ is a consequence of Theorem 2.

7. Concluding Remarks

The minimax strategy $(\stackrel{*}{\mathrm{p}}, \mathrm{t})$ derived in section 6 is independent of c . Subsequently, we consider two consequences of this independence.

It is common practice to characterize the performance of a strategy (p,t) by the mean squared error $R(\underline{y} ; p, t)$ defined in section 1 . However, there may be reasons to believe that \underline{y} is close to

$$
\mathrm{L}=\{\lambda \underline{\mathrm{x}}: \lambda \in \Re\}
$$

where x_{i} is the size, measured appropriately, of unit i and $\underline{x}=\left(x_{1}, x_{2}, \ldots x_{N}\right)^{\prime}$. Then, we will look for a strategy giving rise to a mean square error which is small for \underline{y} close to L and 0 if $\underline{y} \in L$. This objective in mind we should base the selection of a strategy (p, t) on the risk function

$$
\tilde{\mathrm{R}}=\frac{\mathrm{R}(\underline{\mathrm{y}} ; \mathrm{p}, \mathrm{t})}{\underline{\mathrm{y}}^{\prime} \mathrm{U} \underline{\mathrm{y}}}
$$

where U with $U \underline{x}=\underline{0}$ is non-negative definite and $\underline{y} \mathbf{U} \underline{y}$ is interpreted as squared distance of \underline{y} from L. Now, \tilde{R} is bounded on $\mathfrak{R}^{\mathrm{N}}$ if and only if R is bounded on

$$
\tilde{\Theta}=\left\{\underline{y} \in \mathfrak{R}^{\mathrm{N}}: \underline{y}^{\prime} \mathrm{U} \underline{y} \leq 1\right\}
$$

and

$$
\sup _{\underline{y} \in भ^{N}} \tilde{R}(\underline{y} ; p, t)=\sup _{\underline{y} \underline{e} \tilde{\Theta}} R(\underline{y} ; p, t)
$$

Hence, the strategy $(\stackrel{*}{\mathrm{p}, \mathrm{t}})$ is also minimax for $\tilde{\mathrm{R}}$ and the parameter space $\mathfrak{R}^{\mathrm{N}}$.

To derive the second consequence consider the following modification of the game described in section 3:

Nature selects $c>0$ and subsequently $\underline{y} \in \Theta=\left\{\underline{\mathrm{y}}: \underline{\mathrm{y}} \mathbf{U} \underline{\mathrm{y}} \leq \mathrm{c}^{2}\right\}$. The Statistician, without knowledge of c and $\underline{\mathrm{y}}$, selects $s \in S$ and $\underline{\mathrm{a}} \in \mathrm{A}_{\mathrm{s}}$. Then, he has to pay $\left[\underline{y}^{\prime}(\underline{a}-\underline{1})\right]^{2}$.

Then,

$$
\begin{aligned}
\sum \pi(\underline{y}) \mathrm{R}(\underline{\mathrm{y}} ; \stackrel{*}{\mathrm{p}}, \mathrm{t}) \leq \sum^{*} \dot{\pi}(\underline{y}) \mathrm{R}(\underline{\mathrm{y}} ; \stackrel{*}{\mathrm{p}}, \mathrm{t}) & \leq \rho \\
& \leq \sum^{*} \underset{\pi}{\pi}(\underline{y}) \mathrm{R}(\underline{\mathrm{y}} ; \mathrm{p}, \mathrm{t})
\end{aligned}
$$

for all discrete probabilities π on Θ and all strategies (p, t) , as earlier.

Note, however, that now ρ depends on Nature's strategy and is unbounded such that $(\stackrel{*}{\mathrm{p}}, \mathrm{t})$ is no longer minimax in the sense defined. Under the present conditions the statistician may be interested in estimating c^{2}, a problem which should not be easy to solve within the general setting of this paper.

Finally, we mention that the results presented may also be of interest for regression theory. A statistician adopting the strategy $(\stackrel{*}{\mathrm{p}}, \mathrm{t})$ behaves as if he was analysing a linear regression model with variance of residuals in some neighbourhood of $\sigma^{2} \stackrel{*}{\mathrm{Q}}$. He applies a mixture of best replies to $\sigma^{2} \stackrel{*}{\mathrm{Q}}$ with weights protecting against certain deviations from $\sigma^{2} \stackrel{*}{\mathrm{Q}}$, i.e. he behaves optimally with respect to $\sigma^{2} \stackrel{*}{\mathrm{Q}}$ and, at the same time, takes a lower risk for models in the neighbourhood. See Stenger(1998) for details.

References

Bickel, P. J. and E. L. Lehmann (1981), A minimax property of the sample mean in finite populations. Annals of Statistics 9, 1119-1122.

Chaudhuri, A. (1971). Some sampling schemes to use Horvitz-Thompson estimator in esti-mating a finite population total. Calcutta Statistical Association Bulletin 20, 37-66.

Cheng, C. S. and K. C. Li (1983). A minimax approach to sample surveys. Annals of Statistics 11, 552-563.

Cheng, C. S. and K. C. Li (1987). Optimality criteria in survey sampling. Biometrika 74, 337 345.

Gabler, S. (1990). Minimax Solutions in Sampling from Finite Populations. Lecture Notes in Statistics 64, Springer: New York.

Gabler, S. and R. Schweigkoffer (1990). The existence of sampling designs with preassigned inclusion probabilities. Metrika 37, 87-96.

Stenger, H. (1979). A minimax approach to randomization and estimation in survey sampling. Annals of Statistics 7, 395-399.

Stenger, H. (1989). Asymptotic analysis of minimax strategies in survey sampling. Annals of Statistics 17, 1301-1314.

Stenger,H. (1998). Regression analysis and random sampling. To appear in Journal of Statistical Planning and Inference.

Stenger, H. and S. Gabler (1996). A minimax property of Lahiri-Midzuno-Sen's sampling scheme. Metrika 43, 213-220.

