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Social Interactions -
Is There Really an Identification Problem?1

by Ulf v. Kalckreuth, Deutsche Bundesbank

1. Introduction

Social interactions between individuals are central to modern economic theory as represented
by works such as Durlauf (1996), Bénabou (1996a, 1996b) or Borjas (1992, 1995), that ex-
plain growth and income distribution jointly. This essay examines the radical position of
Charles F. Manski concerning "endogenous social effects", as published in Manski (1993a),
Manski (1993b) and Manski (1995). Endogenous social effects are given when

the propensity of an individual to behave in some way varies with the prevalence of that behavior in
some reference group containing the individual.2

It is an everyday experience that the behavior of individuals belonging to the same social
group tends to be correlated. In his seminal work, Manski differentiates two basic types of
feedback between group and individual and he maintains that it is not possible to discriminate
between the two by mere observation. What is more: Only under very favorable conditions
can social effects be distinguished from other reasons for correlations within social groups,
such as selectivity.

Manski's forceful critique challenges not only the numerous empirical efforts to understand
the nature of social interactions. In the light of his arguments many theoretical disputes in the
social sciences suddenly appear to be rather futile. Thus, a further analysis of his position
seems well justified.

The result is quite encouraging. Manski himself renders the solution to his identification
problem impossible by imposing a very special assumption. In his econometric model, social
effects do not flow from the outcomes realized within the group, but from their respective
conditional mathematical expectations. By substituting this critical assumption by a more
realistic formulation, a fully identified model is obtained. For this modified model, FIML es-
timators of all parameters are explicitly derived. The new estimator allows to differentiate
clearly between endogenous social effects, exogenous social effects and correlated effects.

2. Endogenous, Exogenous and Correlated Effects

                                                
1 This paper is based on Chap. 4 of v. Kalckreuth (1999), the author's dissertation, and it does not necessarily

represent the view of the Deutsche Bundesbank. I owe a great debt to my advisors Jürgen Schröder and
Martin Hellwig at the Economics Department of the University of Mannheim, Germany, for encouragement
and many comments, and even more so to Klaus Winckler, who taught me most of what I needed to write this
paper and who guided this part of my research work very closely.

2 Manski (1993b), p. 531.
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In order to discuss the inferential problems posed by social effects, Manski constructs a
metamodel that embraces many phenomena as special cases. Let every individual in a popu-
lation be characterized by a vector of jointly distributed variables y vx z� �. The scalar y
is a variable that may be partly dependent on social effects, such as school records of a pupil
or his occupational aspirations. The J -dimensional vector x  contains all the relevant exoge-
nous characteristics of an individual's reference group. This is the group within which a mu-
tual influence seems possible, such as the pupil's class or his or her neighborhood. A reference
group can also be characterized by general attributes such as ethnicity or sex.3 A K -dimen-
sional vector z  stands for individual qualities with relevance for the dependent variable, such
as socioeconomic background or health. Vectors y x z� � can be observed. The random vari-
able v  is not observable. Manski offers three general hypotheses that might explain why the
behavior of individuals belonging to the same group often shows a high degree of correlation.

To begin with, the variable y  might be directly influenced by the mean of that same variable
within a reference group. With pupils, this would be a case of peer effects.4 In Manski's theo-
retic exposition, the endogenous social effect does not stem from the outcome of other indi-
viduals in the same group. Instead, the conditional expectation E y x�� of the variable is

deemed relevant, given the general characteristics x  of the reference group. The analytical
consequences of this unfamiliar assumption will be analyzed in the next sections.

Closely related are the possible effects of the exogenous characteristics of the actors in the so-
cial context. In the above example, an exogenous social effect is present if not the academic
performance of the classmates, but their socioeconomic status or national composition act
upon the achievements of a pupil. As before, Manski assumes that exogenous effects operate
via a conditional expectation, in this case E z x��. The distinction between endogenous and

exogenous effects is of great practical importance with respect to the effect of discretionary
interventions. Tutoring weaker pupils, for example, will have a beneficial effect on their
classmates only in case of endogenous social effects.

Completely different conclusions are reached assuming that the variable y  might directly de-
pend on the characteristics x  of the reference group, whether a social interaction takes place
or not. On average, children of foreign parents in Germany show – depending upon the coun-
try of origin – a much weaker performance at school than ethnically German children.5 It is
well conceivable that this is the result of endogenous or exogenous social effects. The socio-
economic status of many foreign families in Germany is relatively low. If their status affects
the performance of their children, and if these children's reference group comprises mainly

                                                
3 The concept goes back to Herbert Hyman (1942), see also Hyman (1968). In the original formulation, the

term is not limited to groups that contain the individual. For Manski's problem, group membership is consti-
tutive.

4 For an example see the empirical study by Case and Katz (1991)
5 Alba, Handl and Müller (1994).
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classmates of their own nationality, then even the performance of foreign children with aver-
age exogenous characteristics will be substandard.6

Alternatively, this empirical regularity can be explained by invoking the language problems
and cultural interferences associated with the group characteristic "foreign pupil of nationality
x" without social effects playing a role whatsoever. Correlated effects can also be a conse-
quence of institutional influences, if foreign pupils of certain nationalities are systematically
discriminated against in German schools, or if the pupils of a given school are all exposed to
the same bad teachers.7 A further important source of correlated effects is self-selection. This
phenomenon is of special importance in the study of social effects within neighborhoods. Per-
sons with unfavorable but unobserved characteristics might concentrate in low-cost neighbor-
hoods, which causes a spurious correlation of income and other variables.8

3. The Reflection Problem

Manski characterizes the inductive task posed by endogenous social effects as
...the problem that arises when a researcher observing the distribution of behavior in a population tries to
infer whether the average behavior in some group influences the behavior of the individuals that com-
prise the group.9

He introduces the term "reflection problem". The problem is
similar to that of interpreting the almost simultaneous movements of a person and his reflection in a
mirror. Does the mirror image cause the person's movement or reflect them? An observer who does not
understand something of optics and human behavior would not be able to tell.

The basic idea shall be developed using a simplified model. Let the outcome y  of a person be
determined solely by correlated effects, endogenous social effects, and a disturbance term.
The structural equation is:

y y v= + + +α βE x x'��δδδδ (1)

x  is a vector of K  characteristics of the person's reference group. The conditional expectation
E v x�� is zero. Manski assumes that E y x�� can be estimated consistently and he treats the
regressor as known. If β ≠ 0, the linear regression expresses an endogenous social effect. The
term x'δδδδ  allows for correlated effects. As an example we can take the correlation between
performance at school and ethnicity of pupils in Germany. Here the outcome x  of the refer-
ence group characteristic has a double function. In addition to its direct influence on y  – the
consequences of the inability to speak German properly and discrimination – it conditions the
expectation E y x�� that plays the role of another regressor variable. It is impossible to distin-

                                                
6 This thesis is maintained by Borjas in his studies on "ethnic capital" with regard to the relative economic

performance of immigrants in the USA. See Borjas (1992) and Borjas (1995).
7 Jencks and Mayer (1990), p. 115.
8 The correlation in the behavior of adolescents mentioned above can by explained in this manner, as well as

the influence of the social composition of the neighborhood on the academic performance of pupils. The
problem is analyzed in Rauch (1993) and Corcoran et al. (1992).

9 Manski (1993b), p. 532.



4

guish between these two aspects of belonging to a certain social group. Solving for the con-
ditional expectation, one obtains:

E y x x'�� � �= − +1
1 β α δδδδ

There is perfect collinearity between the regressor variables E y x�� and x  in (1). Elimination

of the mathematical expectation from (1) leads to the reduced form

y c v= + +0 x'c1 with c0
1

1
1

1= − = −β α βc1 δδδδ

Under appropriate circumstances, this equation may be consistently estimated. Yet, such an
estimate does not contribute to the question whether or not there are endogenous social effects
in the system. For any hypothetical β* ≠ 1 we can state a vector α* *δδδδ� � such that

1
1

1
10− = −β α β* * * * 1c δδδδ =

==

===== c

A linear space of bogus parameters α β* * *δδδδ� � leads to the same reduced form as the true
parameters α β δδδδ� �, they are observational equivalent. Any desired size of the data set will
not be sufficient to decide whether the data were generated by a system with parameters
α β δδδδ� � or by any of the systems with parameters α β* * *δδδδ� �.

4. The Complete Linear Model

Besides endogenous and correlated effects, Manski features exogenous social effects as well
as the action of individual characteristics. The complete specification is:

y y v= + + +α βE E ' 'x z x x' z����γγγγ ++++ δδδδ ++++ ηηηη (2)

The K -dimensional vector ηηηη represents the effect of individual characteristics z . Exogenous
social effects are present if the K -dimensional vector γγγγ  is not zero: y  then varies with the
mathematical expectation of the exogenous variable z  in the reference group.

It is assumed that E ,v x z��= 0. Calculating the mathematical expectation E y x�� by integrat-

ing (2) with respect to z  and v , one obtains:

E Ey x z x ' x'�� ��� �= − + +1
1 β α γγγγ ++++ ηηηη δδδδ

For a given x , the conditional expectation E y x�� is a constant. It is a linear function of the
regressors 1 E z x x��� �. The reduced form is calculated in the already familiar way:

y c v= + + + +0 1 2 3E 'z x c x'c z'c�� (3)

with c0 1 2 3
1

1
1

1
1

1= − = − = − =β α β β βc c cγγγγ ++++ ηηηη δδδδ ηηηη� � (4)

The parameters of the reduced form do not allow to deduce the structural parameters α β, , γγγγ ,
and δδδδ . Still, estimating this equation does yield information on the structural parameters. The
effect ηηηη of the individual characteristics can be inferred. Moreover, it is possible to decide
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whether there are any social effects at all. If c 01 ≠ , then γγγγ ≠ ∨ ≠0 0β . If the outcome of y
happens to depend on the expected outcome E z x��, the presence of endogenous and/or ex-

ogenous social effects can be concluded. This is by no means unimportant, as in scientific
practice it proves to be quite difficult to establish social effects of any kind.10

As a necessary precondition, E z x�� must supply independent information. If E z x�� can be
written as a linear combination of the other regressors 1 z x� �, even this limited identifi-
cation is lost. This situation is given, if, for example,

(a) z  is a (mathematical) function of x . For any x , we have E z x z x����= ;

(b) E z x�� does not vary with x . E z x�� is a constant then and collinear with 1;

(c) E z x�� is a linear function of x .

All in all, Manski concludes, making statements on the presence of social effects is possible
only if the variables x  defining reference groups and the exogenous variables z  are related in
the population by a moderately strong, but nonlinear statistical dependence. The distinction
between endogenous and exogenous effects, important as it may be with regard to the results
of discretionary changes, is empirically not feasible, nor is the distinction between en-
dogenous and correlated effects. This general identification problem may be "solved" by dis-
criminating in advance in favor of one of the competing hypotheses. If only exogenous social
effects and correlated effects are permitted, then β = 0 by definition and the model is fully
identified. Limiting the analysis to endogenous social effects, such that γγγγ δδδδ= = 0 , yields the
same beneficial results. Neither Manski nor the author knows of any empirical work that
permits both types of social effects.

5. Is There Really an Identification Problem?

Manski uses the mathematical expectations E y x�� and E z x�� as regressor variables in order

to model social effects. These magnitudes are mathematical functions of the characteristics x .
This technique highlights the problem of differentiating between social effects and other
consequences of pertaining to a certain social group.

Yet considering social interactions in real life, Manski's procedure seems slightly artificial. In
a social group of finite magnitude (a family, a class of pupils, a block of houses), the group
mean is as stochastic as the individual outcomes and it is difficult to find a substantive in-
terpretation why, for example, the mathematical expectation of the class mates' performance,
but not their actual performance should act as an externality on an individual pupil. In general,
a social effect operating via a mathematical expectation can result if the agents hold rational
expectations in the sense of Muth, or in strategic situations of a game-theoretic nature. Yet in
these two cases, there is no identification problem of the kind described above, because the
conditioning variables for the relevant mathematical expectations would also include the in-
dividual characteristics of the group members. Alternatively, the structural equation (2) might
                                                
10 As an example see the survey of Jencks and Mayer (1990).
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deal with the limiting case of a social group with infinite size. From the empirical literature on
social interactions, the author is not aware of any such formulation. Typically, the social
environment is supposed to act on the individual via the arithmetic mean or another linear
function of values realized by the group members, as it is clearly shown by Manski's own
characterization of the inferential problem cited above.11

As Manski's formal description of social interactions is idiosyncratic, it is worthwhile to ex-
amine the significance of this idiosyncrasy for the identification problem he describes. His
model will be modified by simply assuming that the source of the social effects is the average
outcome within the group. This eliminates the multicollinearity problem, as the group average
varies and is no linear function of the other exogenous variables. Instead, a new, but
"classical" identification problem arises: The endogenous variables are determined by a sys-
tem of interdependent linear equations.12

6. Social Effects as Group Interactions

The model is modified and specified by the following assumptions:

A1) Endogenous or exogenous social effects derive from group averages;

A2) The groups are of finite size;

A3) The error terms in the equations for the individuals are i.i.d. with variance σ2 0> ;

A4) β  is less than 1 in absolute value.

Assumptions A1 and A2 remove the multicollinearity, A3 is a restriction concerning the co-
variance matrix of the error term, and A4 is a stability condition. When a specific estimation
procedure is specified, some additional assumptions concerning the distribution of the error
term will prove convenient. Now the modified model is analyzed in some detail.

6.1 The Modified Model and Its Identification

An individual I ji  belongs to the group G I ,I ,..., Ij j1 j2 jM j
=� � of size M j . The data set includes

N  complete groups, i.e. M M
N

j
j

=
=1

 individuals. Group G j is described by a J ×1-dimen-

sional vector x j  of characteristics. This vector is a distinctive feature of every member of the
group. As several groups may be distinguished by the same vector x j , it can be interpreted as a
"type". Furthermore, the individual I ji  is described by a K ×1-vector z ji  of exogenous
characteristics and the outcome yji  of a scalar endogenous variable.

Within the group, endogenous, exogenous, and correlated effects are permitted. Thus, both the

arithmetic mean of the exogenous variable, z zj
j

ji
i 1

j

=
=

1
M

M

, and the arithmetic mean of the en-

                                                
11 This also holds for the paper by Alessie and Kapteyn (1991) on demand interdependencies cited by Manski.
12 Theil (1971), pp. 447-8, illuminates the close affinity between these two types of identification problems.
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dogenous variable, y M y
M

j
j

ji
i

j

=
=

1
1

 may have a systematic influence. The structural equation for

individual I ji  reads:

y y vji j j j ji ji' '= + + +β z x ' zγγγγ δδδδ ++++ ηηηη  (5)

where the v ji  are i.i.d. with zero expectation and variance σ2 . A constant is contained in the
vector x j . Manski's model is the borderline case of (5) for M j →∞ .

The OLS estimator of this equation is biased and inconsistent, as the v ji  and the yji  are corre-
lated. The reason is that the dependent variable yji  enters on the right-hand side of the equa-
tions for all the remaining group members. The group G j must be described as a system of in-
terdependent regression equations.13 Let y j j1 jM j

'= y y�� � be the M j ×1-vector of en-

dogenous variables and Z z zj j1 jMj
'= �� � the M Kj × -matrix of exogenous variables. Let fur-

ther be 1
( j)M

 a M j ×1 vector with elements all identically equal to 1. Then

D 1 1j
j j( j) ( j )

j j

'= =
�

�
�
�

�

�
�
�

×

1 1
1 1

1 1
M MM M

M M

�

� � �

� � �

is a matrix that, if postmultiplicated by y j , generates a vector with elements identically equal
to yj . An analogous result holds for postmultiplication by Z j. Let finally be v j  a M j ×1 ran-
dom vector with covariance matrix σ2I M j��. With this notation, the system of equations for
group G j can be succinctly stated as

y D y D Z 1x ' Z vj j j j j j j j= + + + +β γγγγ δδδδ ηηηη (6)

By rearranging,

I D y D Z 1x ' Z v− = + + +β j j j j j j j� � γγγγ δδδδ ηηηη

and premultiplying by the inverse

I D I D− = + −
−

β β
βj j� �1

1

one obtains as a reduced form the vector equation

y D Z c 1x 'c Z c wj j j j j 3 j= + + +1 2 (7)

with c c c1 2 3= − = − =γγγγ ++++ ηηηη δδδδ ηηηηβ β β� �1
1

1
1 w I D vj j j= + −

�
�

�
�

β
β1 . (8)

                                                
13 The simultaneity established by social effects and the resulting identification problem were first addressed by

Duncan, Haller, and Portes (1968) and Duncan (1970). The interdependence is not always treated properly.
Investigating the determinants of educational expectations and occupational aspiration of high school so-
phomores, Alexander, Eckland and Griffin (1975) use the best friend's college plans and the proportion of
peers planning to attend college as regular exogenous variables. They happen to observe a high correlation
between the social background of a pupil and the college plans of his best friend, but explain this correlation
by invoking "status homophily". Sewell and Hauser (1972, 1975) use a similar procedure in their work on the
ambitious "Wisconsin model of status attainment". Bank et alt (1990) circumvent the problem by using as
exogenous variables the behavior of close friends in the past.
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These equations correspond to the reduced form of Manski's model. The coefficients c c1 2, ,
and c3  are equal to their counterparts in (3) and (4). Again, only ηηηη is identified by the coeffi-
cients, but not β, γγγγ , or δδδδ . A closer consideration shows that the reduced form derived here
contains more information. The structure of the error term w j  is determined in a characteristic
way by β . The covariance matrix of w j  is defined by the M Mj j×� �-matrix ΩΩΩΩj:

ΩΩΩΩj j j j jE= = + −
�
��

�
��= +

−
−

�
�	



��

�
�
��

�
�
��w w ' I D I Dσ β

β σ
β

2

2

2
21

1
1

1� , (9)

As can easily be verified, it follows

var cov ,
cov , var cov ,

ji ji jk

j ji jk ji ji jk

w w w
M w w w w w

−
+ −

= −
� �

� � � ���1 2β

an equation by which β  is determined uniquely because of A4. The remaining parameters of
the structural form can be recuperated from the equations in (8). A consistent estimation of the
reduced form thus allows to infer all the parameters of the structural form.

Proposition 1: Taking into account the error term, all the parameters of the modified model
are exactly identified.

In other words: Manski's assumption concerning the working of social effects is absolutely
critical for his key result.

6.2 The Statistical Fingerprint of Social Effects

Identification succeeds with the help of restrictions concerning the covariance matrix of the
error terms in the structural equations.14 These restrictions permit to trace the key parameter
β  back from the errors in the reduced form. The seminal works of Goldberger (1972), Grili-
ches (1974), and Chamberlain and Griliches (1975) have explored the special significance of
the covariance matrix for the identification of structural models in the social sciences.

Identification of the present model rests on a fundamental property of social effects: For given
values of the exogenous variables they lead to covariances in the outcomes of group members
that are non-existent with regard to individuals in other groups. These positive or negative
covariances serve to amplify or dampen random differences between groups of otherwise
identical external attributes. The ratio between the dispersion within a group and the disper-
sion between groups is biased in a characteristic way. This will now be made precise.

                                                
14 In many econometric textbooks, the identification problem is reduced to the question whether the structural

equations are identified by the coefficients of the reduced form. This question is then answered by the rank
and order conditions. Yet the classic treatment of Fisher (1966) already dedicates a whole chapter to the role
of the covariance matrix.
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The reduced form (7) and the structure of its error term (9) bear great resemblance to the stan-
dard random coefficient model for the econometric analysis of panel data.15 The reduced form
disturbance

w v vji ji j= + −
β
β1

is composed additively of an individual error term v ji  and an error term β
β1− vj  specific for

group G j. The variance of this second error term clearly depends on the intensity of the social
interaction. Looking on the average outcome in group G j,

y wj j 1 3 j 2 j'= + + +z c c x 'c� � with w vj j= −
1

1 β (10)

we see that because of

var j
j

w M= −
�
�

�
�

1 1
1

2

2

β σ

the variance of the error term increases with the strength β  of the interdependence between
group members. A positive β < 1 acts as an amplifier of random disturbances. A high out-
come of v j  is translated into a still higher wj  in absolute terms. Looking at the deviations of
the individual from the average of its reference group,

y y w wji j ji j 3 ji j− = − + −z z c� � (11)

the variance of the residual does not depend on β , as by definition

w w v vji j ji j− = −

Actually we have

var ji j
j

w w M− = −���
�
��� �σ2 1 1

This is the statistical "fingerprint" of endogenous social effects within groups of finite size:
Relative to the variability within groups, the differences between groups are conspicuously
large or small. This central feature is suppressed by Manski's quasi-deterministic modeling
technique.

As an illustration, the graph below depicts the residuals of four reference groups, for the case
of strong and of weak positive social feedbacks. The ratio between the dispersion of the group
means on the one hand and of the dispersion around the group means on the other hand indi-
cates the social effect:

1
1 1 2

M
w w

wj

ji j

j

var
var−

−
= −

� ���β (12)

                                                
15 See Hsiao (1986), Chap. 2 and 3. In the case at hand, the disturbances related to group and individual are

correlated, as distinguished from the formulation in the standard model.
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This equation readily aggregates the information on β  contained in ΩΩΩΩj  A consistent estimate
for the numerator and the denominator is obtained from the squared residuals of the OLS
estimates of the average equation (10) and of the deviation equation (11). Beyond the inferen-
tial problem, the graph makes clear that endogenous social effects can be very important for
the analysis of economic inequality. Differences in the starting positions of social groups like
families or cliques, e.g. with regard to human capital, are reinforced if social interactions
make for a positive feedback between the outcome of group members.16

An endogenous social effect with 0 1< <β  in (7) is akin to an income multiplier in a simple
Keynesian macromodel. This concerns not only the average v j  of the residuals, but also the net
effect of the vectors x j  and zj. Corresponding to this formal similarity there is an analogy in
the underlying logical structure.

6.3 Network Analysis

Simultaneous systems of social interactions of the type depicted in (5) were introduced by
Erbring and Young (1978).17 Their approach is labeled network analysis or model of spatial
correlation. With respect to the modeling of social interaction, this approach is more general

                                                
16 For a fascinating recent example in the same vein see Griliches' (1996) analysis of the "F-connection".
17 In geographic and biological applications similar systems were explored even before, see for example Ord

(1975) and Cliff and Ord (1981), Chap. 9 and the literature cited there. Burt (1980), Friedkin (1990), Friedkin
and Johnson (1990), and Friedkin and Cook (1990), further explore this model and concentrate on substantive
aspects.

Dispersion of the reduced form residuals for endogenous effects of varying strength
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than the structure explored here, but the literature does not explicitly consider either exoge-
nous effects or correlated effects. The structural equation of Erbring and Young reads:18

y Wy Z v= + +β η (13)

Here, as above, y  is a vector of observations of an endogenous variable, Z  is a matrix of ex-
ogenous variables and v  is a random vector. W  is a matrix that describes the structure of the
social interactions between the individuals. W  defines an autoregressive relationship between
the endogenous variables. Erbring and Young do not assume a number of separate groups, but
in principle each individual may interact with each other. They interpret their structural equa-
tion as a dynamic equilibrium of an iterative social process:

y Wy Z vt 1 t+ = + +�� ��β ηηηη with y 00��= (14)

The parameter β  is dubbed feedback rate. The magnitudes v  and Zηηηη  are regarded as being
given for the whole "duration" of the process. In the first stage they directly determine y 1��.

According to W , the vector of state variables is then transmitted to the interaction partners.
The result, y 2��, serves as starting point for the third iterate, and so on. Dynamic equilibrium is

given for
y y yt 1 t+ = =�� ��

i.e., if (13) holds. Again the analogy to the dynamical interpretation of the Keynesian expendi-
ture multiplier is very close. The social "multiplier process" cannot do without restrictions on
the parameters. By direct substitution follows

y I W W W Z vt 1+ = + + + + +�� �� ��� �� �β β β2
�

t ηηηη

The series in brackets must converge if dynamic equilibrium is to be reached for given v  and
Zηηηη , i.e., if the difference equation (14) is stable. In this case we have

I W W I W+ + + = − −β β β�� � �2 1
�

and the system converges to y I W Z v= − +−β� �� �1 ηηηη .

Thus, the reduced form describes the stationary state of a dynamical system. The model can
usefully be employed for quite diverse purposes. Doreian (1981) uses it to analyze spatial in-
terdependences: in the military activities of a rebel formation (the Huk insurgency), for ex-
ample or in voting decisions in Louisiana. Burt and Doreian (1982) investigate interdepend-
ences in the evaluation of leading scientific journals by the scientific community. Burt (1987)
undertakes a network-theoretic analysis of the diffusion of a novel antibiotic among physi-
cians in the American Midwest and Case (1991) explores spatial interdependences in the de-
mand of consumer goods.

The network model (13) can be estimated by a maximum likelihood routine. The technique
proposed by Erbring and Young (1978) and Doreian (1981) actually goes back to Ord

                                                
18 This notation deviates from Erbring and Young (1978) and is adapted to the equation (5).
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(1975).19 The procedure described in these publications has one serious drawback: in general
the likelihood equations cannot be solved explicitly and the likelihood function must be maxi-
mized numerically. Fortunately, for the case studied here we can give an exact solution. This
not only greatly facilitates the interpretation of the resulting estimators, it even enables us to
make detailed statements about their finite sample properties.

                                                
19 See also Doreian (1981), Cliff and Ord (1981), Chaps. 6, and 9 and Anselin (1988), Chaps. 6 and 12.
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7. FIML-Estimation of the System

7.1 The Structural Equations

Collecting data, the structural equations of the modified model can be written as

y Dy DZ X Z v= + + + +β γγγγ δδδδ ηηηη  (15)

where y

y

y

y

D

D 0 0

0 D 0

0 0 D

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�
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�

�

	
	
	
	
	




�

�
�
�
�
�

× ×

1

2

1

1

2

�

�

�

� � � �

�N ) NM M M� � � �

Z

Z

Z

Z

X

1 x

1 x

1 x

v

v

v

v

'

'

'

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

=

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

× × ×

1

2

1

2

1

2

1

1

2

� � �

N

( )

( )

( ) N NNM K

M

M

M M J M� � � � � �

A further simplification lies in the notation

I D y Q v− = +β� � φφφφ with Q DZ X Z=  and φφφφ γγγγ δδδδ ηηηη' ' ' '= (16)

Note that y  is formed from the vectors y j  of group G j; the random vector v  and the matrices
Z  and X  are constructed in an analogous way. The matrix D is block-diagonal, with sub-

matrices D 1 1j
j ( j) ( j)

'= 1
M M M

. It is idempotent and postmultiplication by y  generates a vector that

gives for every individual the arithmetic average of his or her group. Postmultiplying by Z
yields an analogous result. The block-diagonal matrix D plays the role of W  in the network
model of Erbring and Young. The series

I D D D I D+ + + = + + +β β β β β β���� � �2 3 2 3
� ...

converges for β < 1. This is presupposed by A4. Furthermore it shall now be specified:

A5) X  and Z  – and thus Q  – are fixed real matrices and Q'Q is of full rank;

A6) The elements of v  are jointly normal with expectation zero and covariance σ2I.

7.2 The Likelihood Function

Point of departure is the structural equation for the simultaneous system (16). The random
vector v  is normal, with density

f
M

v v v'v��� �= −���
���

−2 1
2

2 2
2πσ σexp

The observed variable y  is generated by the linear transformation (16) from the non-observed
random variable v . Thus, y  is also normal, with density20

f
M

y y I D y Q ' I D y Q I D��� � � � � �= − − − − −���
��� −−2 1

2
2 2

2πσ σ β β βexp absφφφφ φφφφ

                                                
20 I D−β  is the Jacobian for the transformation y I D Q v= − +−β� �� �1 φφφφ , see, e.g., Fisz (1963), p. 56.
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As the matrix I D− β j  possesses M j −1� � times the eigenvalue 1 plus the simple eigenvalue
1− β , it follows that abs I D− = −β β1��N . Hence the log-likelihood function is

l , , ln ln lnφφφφ σ β π σ σ β2 2
22 2 2

1
2 1y� � ��= − − − + −M M A N

with A = − − − −I D y Q ' I D y Qβ β� � � �φφφφ φφφφ

   = − + − − +y' I D D y y' I D Q 'Q'Q2 22β β β� � � �φφφφ φφφφ φφφφ

7.3 The Likelihood Equations and Their Solutions

We need the combination φφφφ , ,σ β2  that maximizes the likelihood function for given y  and Q .
As necessary conditions for an interior solution, the following likelihood equations must hold:

∂
∂ σ βl !

φφφφ φφφφ= − − =1
2 Q' I D y Q'Q 0� � (17)

∂
∂σ σ σ

l !

2 2 42 2 0= − + =M A (18)

∂
∂β σ β β

l !

= − − − − =1 1
1 02 y'D I D y Q� � φφφφ N (19)

The first two equations yield

φφφφML = −−Q'Q Q' I D y1� �� �βML (20)

σ2
ML = − − − −1

M Q' I D y Q Q' I D y Qβ βML ML ML ML'� � � �φφφφ φφφφ

= − −1
M y' I D B I D yβ βML ML� �� � (21)

with B I Q Q'Q Q'1= − −� � (22)

B  is a symmetric and idempotent M M× -matrix. From the third likelihood equation, after
substitution of

I D y Q− − =βML ML� � φφφφ B I D y− βML� �
and σ β βML ML ML

2 1 1 1= − + − − + −M y' I D D B I D D y� �� � � �� �
we obtain:

1 1 2− − + − − − −β βML ML� � � �� � � �� �y'DB I D y y'DBDy y' I D B I D yN
M

− − − − − =2 1 1 02N
M

N
Mβ βML ML� � � � � �y'DB I D y y'DBDy (23)

In order to proceed, it is necessary to show the identity DB I D y 0− =� � . Because the estima-
tor φφφφML in (20) has, for given βML, the form of an OLS estimator, the equality

I D y Q v− = +βML ML �� � φφφφ  holds, with (24)

� MLv B I D y= − β� � and Q' v 0� = (25)

It immediately follows that
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I D y I D Q I D v− = − + −� �� � � �φφφφML �

Because BQ 0=  and BDQ B DZ X DZ 0= =� �, it is also B I D Q 0− =� � . Furthermore,
with Q' v 0� =  we also have Q'Dv 0� = . This yields

DB I D y DB I D Q I D v DB I D v D I D v 0− = − + − = − = − =� � � � � �� � � � � �φφφφML � � �

Thus the equation (23) simplifies to

1 2− = −
− −

βML� � � �� �N
M N

y' I D B I D y
y'DBDy

Because of β < 1, the estimator βML is uniquely determined. The other estimators are obtained
by substituting in equations (20) to (22). In the appendix it is shown that the second order
conditions for a local maximum hold. The results are summarized as follows:

Proposition 2: The maximum likelihood estimators β σML ML ML ML, , ,2 γγγγ δδδδ  and ηηηηML  for system (15)
are given by

βML = −1 e with e N
M N= −

− −y' I D B I D y
y'D B Dy

� �� �
(26)

σ2 1
ML = − − −M N y' I D B I D y� �� � (27)

φφφφ γγγγ δδδδ ηηηηML ML ML ML ML' ' ' '= = −−� �� �� �Q'Q Q' I D y1 β (28)

7.4 Calculating the Estimators

It is readily seen that e can be interpreted as the ratio of two sums of squared residuals from
OLS estimates. The ML estimation of the key parameter β  can be carried out in three steps:

a) First an OLS estimate is run with Q  as regressor and the deviations I D y−� � from the
group average as regressand. The sum of squared residuals for this auxiliary regression,

� �1 1v ' v y' I D B I D y���� � �� �= − −

yields the ML-estimator for the variance σ2 , after correcting with 1 M N−� �. It can be
shown that the regression on the M K× -matrix I D Z−� � yields the same residuals.

b) A second auxiliary regression uses Dy, the group averages of the endogenous variables, as
regressand vector and again Q  as regressor matrix. It is possible to generate the resulting
sum of squared residuals

� �2 2v ' v y'DBDy����=

by an OLS estimation using the K J M+ ×� � -matrix DZ X .

c) The ratio of the SSR in a) and b) is calculated and multiplied by N M N−� �:

e N
M N= −

� �

� �

1 1

2 2

v ' v
v ' v
����

����

The square root of this expression is equal to 1− βML .
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In order to calculate φφφφML ML= −−Q'Q Q' I D y1� �� �β , it is necessary to generate I D y− βML� �
first. This is done by subtracting from each observation yji  the amount βML jy . Then a regres-
sion of this transformed variable on the exogenous variables in Q  is run.

7.5 Characterizing the Estimators

Now the finite sample distributions of βML and σML
2  will be discussed. Consider first the SSR

� �1 1v 'v����. It is I D y I D Q v− = − +� �� �� �φφφφ , and as B I D Q 0− =� � , this leads to

� �1 1 1v ' v v'B v���� ��= , with  B I D B I D1��� �� �= − −

The matrix B 1�� is symmetric and idempotent. Its rank is equal to its trace

Rank tr

tr tr tr
1B I D I D Q Q'Q Q' I D

I D Q'Q Q'Q Q'Q Q'DQ

1

1 1

�� � �� �� �� �� �
� �� � � �

= − − − −

= − − +

−

− −

Now tr tr '
j 1 j

j
j j

I D I 1 1− = −�
��

�
��=

� � �� ����

N

M M MM
1 = −M N  and tr Q'Q Q'Q1� �−  = +2 K J . Further-

more, DX X≡  and DQ DZ X DZ=  lead to:

Q'Q Q'DQ1� �− =
�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

−Z'DZ Z' X Z'DZ
X'Z X'X X'Z

Z'DZ Z' X Z'Z

Z'DZ Z' X Z'DZ
X'Z X' X X'Z

Z'DZ Z' X Z'DZ

1

=
�

�
�
�

�

�
�
�

I 0 I
0 I 0
0 0 0

K K

J

�� ��

�� (29)

so that tr Q'Q Q'DQ1� �− = +K J . Therefore one obtains

tr 1B��= − −M N K

For the distribution of the sum of squared residuals, it follows:

Proposition 3: The expression
1

2σ
� �1 1v ' v���� (30)

is distributed χ2  with M N K− −  degrees of freedom. The statistic

s M N K
M N

M N K
2 21= − − = −

− −v 'v1 1 ML���� σ

is an unbiased estimator for σ2  with variance 2 4σ
M N K− − . The estimator σML

2  is consistent

for N N
M→ ∞ →, ρ and 1

N Q'Q C→  and Rank C = +2 K J .

Proof: The elements of v  are stochastically independent and distributed N ,0 2σ��. As matrix

B 1�� is idempotent with rank M N K− − , the expression 1
2σ v'B v1�� is distributed χ2  with the

same number of degrees of freedom. The second part of the proposition follows from taking
into account the expectation and variance associated with the χ2-distribution. �

With regard to βML, the distribution of the SSR � �2 2v ' v���� must be determined in an analogous

fashion. By definition it is
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Dy DQ Dv= − +1
1 β φφφφ� � (31)

and because of BDQ 0=  we obtain

� �2 2 2v ' v v'B v���� ����=
−
1

1 2β
, with  B DBD2��=

B 2��, too, is symmetric and idempotent. Its rank can be calculated as

Rank tr tr2B D Q'Q Q'DQ1
�� � �= − = − −− N K J

Consequently the expression

1 1
2

2 2

−
=

β
σ σ

��
���� ��� �2 2 2v ' v v'B v (32)

follows a χ2-distribution with N K J− −  degrees of freedom. Finally we have

B B I D B I D DBD 0
0

1 2�� ��� �� �⋅ = − − ⋅ =
� �� ��

The quadratic forms v'B v1�� and v'B v2�� thus are stochastically independent and the ratio of

the two expressions (30) and (31), corrected by their respective degrees of freedom, follows
an F-distribution:

1 2− − −
− −β�� ����

����

M N K
N K J N -K- J ,M - N -K

� �

� �

2 2

1 1

v ' v
v ' v ~ F

For N → ∞  and N
M → ρ, this expression converges stochastically to unity. Therefore setting

q N K J
M N K

N K J N
M N K M N e= − −

− − ⋅ =
− −

− − −
⋅

� �

� �

1 1

2 2

v ' v
v ' v
����

����

� �
� �� �

implies immediately

plim plim
N N
N
M

N
M

q e
→∞
→

→∞
→

= = −
ρ ρ

β1 2��

Let F , ,n m α be the value that with probability α  is surpassed by a random variable following an
F-distribution with n and m degrees of freedom. Then we can state

Proposition 4: For N N
M→ ∞ →, ρ and 1

N Q'Q C→ , with Rank C = +2 K J , the estimator

βML is consistent. The equation 

W F F
, , , ,

1 1 1
2 2

− ⋅ ≤ ≤ −���
���= −

− − − − − − − −
q q

N K J M N K M N K N K Jα αβ α

defines a confidence interval for β .

Proof: The second part of the proposition follows from

W F F
, , , ,N K J M N K N K J M N Kq− − − − − − − − −

≤
−

≤
�����

�����
= −

1
2

2

2

1
1α α

β
α

�	
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taking into account the identity F F, ,
, ,

N K J M N K
M N K N K J

− − − − −
− − − −

=
1

2
2

1
α

α
�

Ultimately, for the ML estimator φφφφ γγγγ δδδδ ηηηηML ML ML ML' ' ' '=� � the following holds:

Proposition 5: For N N
M→ ∞ →, ρ and 1

N Q'Q C→ , with Rank C = +2 K J , the estimator

φφφφ 'ML is consistent for φφφφ γγγγ δδδδ ηηηη' ' ' '= .

Proof: Under the present conditions, the OLS estimator Q'Q Q' I D y1� �� �− − β  is consistent
for φφφφ  in equation (16). The parameter β  is not known, but βML is available. The difference
vector

φφφφML ML− − = −− −Q'Q Q' I D y Q'Q Q'Dy1 1� �� �� �� �β β β

is the product of the estimation error β β− ML and an OLS estimator for equation (31), with Q
as design matrix. Because of DQ DZ X DZ= , the magnitude Q'Q Q'Dy1� �−  converges

in probability to the fixed vector 1
1− +β γγγγ ηηηη δδδδ 0000' ' ' ' ' . Finally, β β− ML is stochastically con-

vergent to zero and the proposition follows. �

7.6 Asymptotic Distribution of the Estimators

It is well known that under weak conditions, ML estimators are asymptotically normal with
the information matrix as covariance matrix, if the observations are independent and identi-
cally distributed.21 A similar convergence result can also be derived in the present case. It is
appropriate to refine the notation and slightly strengthen the assumptions concerning the
parameter space:

A7) Let θθθθ φφφφ' '= σ β2� �. The true parameters θθθθ φφφφ0 0 0
2

0' '= σ β� � are in the interior of the 

parameter space Θ . The latter is a closed and convex interval of the R2 2K J+ + , with 
σ2 0>  and β < 1 for all θθθθ ∈Θ .

This notation explicitly differentiates between permitted parameters, θθθθ ∈Θ , and the true pa-
rameters, θθθθ0. For a formal statement on the asymptotic distribution of the ML-estimators we
need the following lemma:

Lemma 1: Let the elements q M K Jtk , t , , ; k , ,= = +1 1 2� �  of matrix Q  satisfy

q qtk < < ∞ , and lim
M
N
M

N→∞
→

=
ρ

1 Q'Q C, with   rank C = +2K J

Then for N N
M→ ∞ →, ρ, the following holds:

1

0

0N
d∂

∂
l N ,θθθθ θθθθ

θθθθ

→ 0 R��� �

                                                
21 See Cramér (1946). For explanations and proofs, see, e.g., Theil (1971).
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where R Rθθθθ θθθθ�� ��=
→∞
→

lim
N
N
M

NN
ρ

1   and R N θθθθ
θθθθ

�� ��
= −

⋅
E

l
'0

2∂
∂θ∂θ  . One obtains

R

Q'Q 0 Q'DQ

0'

'Q'DQ Q'DQ

N
M N

N N

θθθθ

φφφφ

φφφφ φφφφ φφφφ

0
0
2

0
0

0
2

0

0
0 0

2 0 0 0
2

1

1
1

2 1
1

1 1
1

1
2

��

� �� �
=

−

−

− − −
+

�

�

������

�

�

������
σ

β

σ β

β β β
σ'

Proof: By substitution one obtains from (17) to (19)

∂
∂

∂ ∂

∂ ∂σ

∂ ∂β

σ

σ σ

β σ
σ

l
l

l

l '
θθθθ

φφφφ

φφφφ
θθθθ

θθθθ

0

0

2

0
2

0
4 0

2

0 0
2 0 0

2

1

1
2

1
1

=

�

�

���

�

�

���
= −

−
+ −

�

�

�����

�

�

�����

Q' v

v'v

Q'Dv v'Dv

M

N

� �

� �� �
(33)

Here, ∂ ∂l φφφφ  is a 2 K J+� �-vector; ∂ ∂σl 2  and ∂ ∂βl  are scalars. The mathematical expecta-
tion of (33) is equal to the zero vector and it is easily shown that

cov l E l l
'θθθθ

θθθθ
θθθθ

θθθθ θθθθθθθθ θθθθ θθθθ θθθθ
0

0
0

0 0

0
∂
∂

∂
∂

∂
∂

�
��

�
��= ⋅

�
��

�
��= R N��

as stated above. The negative of the expected Hesse matrix, −E
l

'θθθθ

θθθθ
θθθθ θθθθ0

2∂
∂ ∂

y��
, is a function R N θθθθ��

of θθθθ . Evaluating it at θθθθ0 yields the information matrix for the parameter vector θθθθ0. The com-
putation also shows that it is equal to R N θθθθ0��, the covariance matrix.

A random vector is asymptotically normal if the distribution of any nontrivial linear combina-
tion of its elements converges to the univariate normal.22 Consider the components of (34).

Every element of the subvector ∂ ∂l φφφφ
θθθθ 0

 is normal. In ∂ ∂σl 2

0θθθθ
, the magnitude 1

0
2σ v' v  follows

a χ2  distribution with M  degrees of freedom. Finally, in ∂ ∂σl 2

0θθθθ
 the expression φφφφ0 'Q'Dv  is

normal and 1
0
2σ v'Dv  is distributed χ2  with N  degrees of freedom, because D is idempotent

with rank N . Every linear combination of the elements of vector 1

0
N

∂
∂

l
θθθθ

θθθθ

 is a linear combi-

nation of normal or asymptotically normal random variables. Thus this vector is asymptoti-
cally normal with the parameters stated above. �

After this preliminary work, the asymptotic distribution of the maximum likelihood estimators
can be characterized as follows:

                                                
22 See Dhrymes (1970), p. 108, theorem 5, together with p. 19, proposition 1.
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Proposition 6: The conditions of lemma 1 hold. Let θθθθML ML ML ML' '= φ σ β2� �. Then for

N N
M→ ∞ →, ρ the vector N θθθθ θθθθML 0−� � is asymptotically normal with expectation zero

and covariance matrix R Rθθθθ θθθθ0
1

0
1�� ��−

→∞
→

−= lim
N
N
M

NN
ρ

, where

R

Q'Q 1

N

N N
M

M N N N
M

M N M N M N

N N
M

M N N N
M

θθθθ

ξξξξ ξξξξ ξξξξ ξξξξ

ξξξξ

ξξξξ

0
1

0
2

0
2

0 0 0
0

0
2

0

0
0
2

0

0

0
2

0
0 0

2

0
2

1

2 1

1 1

2 1

1 2 1

1

2 1

1 1

2 1

��

� �

� �

−

−

=

−��
�
�

�

�

				




�

����
− − −

−��
�
�

− − − −
−

− −

−��
�
�

− −
−

−

−��
�
�

�

�



�

�

�����������

σ

σ

β

σ

σ β

β

σ

β β

σ

'

and ξξξξ ==== γγγγ ++++ηηηη δδδδ 0000' ' ' ' '� �� �2K J+

Proof:23 The gradient of the log likelihood in θθθθML  can be written as a Taylor series:

∂
∂

∂
∂

∂
∂ ∂

l l l
'

ML 0

ML 0θθθθ θθθθ θθθθ θθθθ θθθθ θθθθθθθθ θθθθ θθθθ∗∗∗∗

= + −� �2

with θθθθ*  between θθθθ0000  and θθθθML . As a necessary condition for an interior solution, θθθθML  satisfies
the likelihood equations. Therefore, the left-hand side is equal to the zero vector:

1 1 2

N N N ML
∂
∂

∂
∂ ∂

l l
' *θθθθ θθθθ θθθθ θθθθ θθθθ

θθθθ θθθθ
0000

0000

= − −� � (34)

Now let l j jθθθθ y�� be the log likelihood as it is computed from the marginal density for the vec-
tor of endogenous variables in group G j. Because the y j  are independent, it is

l l j j
j 1

θθθθ θθθθy y�� ��=
=

N

 and therefore:

− = −
=

1 12 2

N N
N∂

∂ ∂
∂
∂ ∂

l ,
'

l ,
'

j

j 1

y yθθθθ
θθθθ θθθθ

θθθθ
θθθθ θθθθ

�� ��

The elements of the matrix on the left are arithmetic means of N  independent variables with
bounded variance. The strong law of large numbers makes them converge to their mathemati-

cal expectation. The matrix −
⋅
=E

l
'θθθθ

θθθθ
0

2∂
∂θ∂θ
�� ��R N , on the other hand, converges uniformly to the

                                                
23 The proof follows Amemiya (1985), pp. 111-3 and pp. 121-3.
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continuous function R θθθθ��, as 1
N Q'Q converges to a fixed matrix C.24 Under these condi-

tions it is sufficient25 for

plim l
'N

N
M

N→∞
→

− =
ρ

∂
∂ ∂

1 2

θθθθ θθθθ θθθθ
θθθθ

0000
∗∗∗∗

R��

that θθθθ*  converges in probability towards θθθθ0000 . As θθθθML  is consistent for θθθθ0000 , this is indeed the
case. In the appendix it is shown that R θθθθ0000�� is positive definite. The determinant of a matrix
is a continuous function of the elements, so R θθθθ�� is nonsingular in the neighborhood of θθθθ0.
Now consider the left-hand side of (34). Lemma 1 states that the distribution of this expres-
sion converges to N ,0 R θθθθ0��� �. This closes the proof. The appendix shows how to calculate

the asymptotic covariance matrix as stated in the proposition. �

8. Summary and Evaluation

Interactions in social groups can be the reason why the outcome of a variable at the individual
level is strongly influenced by the average outcome of the same variable in the environment.
This average, conversely, is determined by the same exogenous characteristics as the individ-
ual realizations. Social effects can therefore act as an amplifier for systematic differences be-
tween persons. The average realizations of groups with different exogenous characteristics do
not tell which part of the observed differences can be attributed to social effects. Manski
works out this problem in nuce. Actually, it is striking how social scientists routinely make an
a priori decision in favor of one of the competing hypothesis.

Yet Manski's exposition obstructs the view on possible solutions to this problems. It is shown
that not only systematic differences between individuals are magnified, but also random dif-
ferences in the mean realization of the endogenous variable. The social effects gives rise to a
group identity: The outcome of groups with identical characteristics deviate in a statistically
conspicuous way. This allows identification even under very unfavorable circumstances. It
was demonstrated that the estimation procedure is relatively simple.

The modification of Manski's metamodel can be regarded as a variant of the network model
discussed in subsection 6.3, with a special matrix W  and extended to include exogenous so-
cial effects and correlated effects. Manski briefly mentions this class of models. His criticism
is this: The network model is capable of capturing social interactions in smaller groups of
friends, colleagues or members of the same household. For big social groups like neighbor-
hoods, researchers usually have to use random samples. A literal interpretation of the network
analytic approach would then amount to assuming that the members of the random sample
know each other and choose their outcome only after they have been selected into the sample.

                                                
24 This is explicitly shown in v. Kalckreuth (1999)
25 For the proof see Amemiya (1985), p. 113.
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This argument is partly incomplete, partly misleading. On the one hand, random samples can
well be used, if the structure of the interaction matrix is appropriate. Case (1991) investigates
interregional interdependences in consumer demand and for each region uses a random sam-
ple, see also the estimation procedures in Doreian (1981). The variant of Manski's model
elaborated here is not affected either – the procedure outlined in section 6 will provide a con-
sistent estimator even when there is only a random sample from each group. Furthermore,
with this criticism Manski tacitly confines his statements to very big social groups. Even then,
his objections do not constitute an identification problem, but only the ubiquitous difficulties
in finding adequate data.26

Manski replaces stochastic interactions between individuals by a mechanistic functional rela-
tionship. With his impressive and elegant idealization, he abstracts from precisely those fea-
tures of socials interactions which may solve the identification problem he considers.

Appendix: Second Order Conditions and Asymptotic Covariance Matrix

The likelihood equations have a unique solution. To make sure that this solution characterizes
a local maximum, the Hesse matrix evaluated at the solution θθθθ φφφφ' 'ML ML ML ML= σ β2� � is tested
for sign definiteness:

∂
∂ ∂ σ

2

2
1l

' ML MLθθθθ θθθθ = − H *, with H*

Q'Q 0 Q'DQ

0'

Q'DQ Q'DQ

=

−

−

− −
+

−

�

�

�������

�

�

�������

φφφφ

φφφφ φφφφ φφφφ

ML

ML

ML ML

ML

ML ML

ML ML ML

ML

' '

1

2 1

1 1
2

1

2

2

2

β

σ β

β β
σ

β

M N

N N
� �

(35)

Let p p' ' R= ∈ + +
1 2 3

2 2p p K J� � . p1 '  is a 2 K J+� �-vector and p2  and p3 are scalars. Consider
the quadratic form
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This sum of squares is positive, whenever p  is not the zero vector, so H * is positive definite.

Then ∂
∂ ∂

2 l
' MLθθθθ θθθθ  is negative definite, and θθθθML  specifies a unique local maximizer.

                                                
26 See Marsden (1990) for the collection of data for network models.
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For the determination of the asymptotic covariance matrix of θθθθML  it is necessary to examine

the expectation of the Hesse matrix, the matrix E
l

'θθθθ

θθθθ
θθθθ θθθθ0

2∂
∂ ∂

y��
. The likelihood is evaluated at

θθθθ ∈Θ , with the expectation being based on the distribution of y  according to the true parame-
ters:
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Direct calculation shows that all elements of E
l

'θθθθ

θθθθ
θθθθ θθθθ0
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y��
 are continuous functions of φ σ, 2  and

β  in the whole parameter space.27 If for N → ∞  and N
M → ρ, the matrix 1
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to a fixed matrix C, then 1
N Q'DQ  also converges, and all the components of
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are continuous functions of φ σ, 2  and β  in the whole parameter space. Evaluation of the ex-

pected negative Hesse matrix, −E
l ,

'θθθθ

θθθθ
θθθθ θθθθ0

2∂
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y��
, in θθθθ0 yields the information matrix as it was de-

fined in lemma 1. The estimator θθθθML  is consistent for θθθθ0. Thus it is no surprise, that the matrix

R N θθθθ0�� can be formally derived from − ∂
∂ ∂

2 l
' MLθθθθ θθθθ  by simply replacing the magnitudes φφφφML ML, σ2

and βML in (35) by the corresponding true parameters. As − ∂
∂ ∂

2 l
' MLθθθθ θθθθ  is positive definite, it is

obvious that the same applies for R N θθθθ0��, as well as for the asymptotic matrix R θθθθ0��.
The asymptotic covariance matrix of the ML estimator is given by the inverse of the informa-
tion matrix R N θθθθ0��. With the help of the Gauss algorithm one obtains
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Consideration of identity (29) furthermore leads to

                                                
27 v. Kalckreuth (1999), Chap. 4, Appendix A gives the elements of this matrix.
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which yields R N θθθθ��−1 as stated in proposition 6.
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