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Abstract

This paper investigates how the use of the trivial voting (TV) mapping influences the perfor-
mance of genetic algorithms (GAs). The TV mapping is a redundant representation for binary
phenotypes. A population sizing model is presented that quantitatively predicts the influence of
the TV mapping and variants of this encoding on the performance of GAs. The results indicate
that when using this encoding GA performance depends on the influence of the representation
on the initial supply of building blocks. Therefore, GA performance remains unchanged if the
TV mapping is uniformly redundant that means on average a phenotype is represented by the
same number of genotypes. If the optimal solution is overrepresented, GA performance in-
creases, whereas it decreases if the optimal solution is underrepresented. The results show that
redundant representations like the TV mapping do not increase GA performance in general, but
higher performance can only be achieved if there is specific knowledge about the structure of
the optimal solution which can beneficially be used by the redundant representation.

1 Introduction

Over the last few years there has been an increased interest in using redundant representations
for evolutionary algorithms (EAs) (Banzhaf, 1994; Dasgupta, 1995; Barnett, 1997; Shipman, 1999;
Shackleton et al., 2000; Yu & Miller, 2001; Toussaint & Igel, 2002). It was recognized that redundant
representations increase the evolvability of EAs (Shackleton et al., 2000; Ebner et al., 2001; Smith
et al., 2001; Yu & Miller, 2001) and there is hope that such representations can increase the
performance of evolutionary search. However, recent work (Knowles & Watson, 2002) indicated
that redundant representations do not increase EA performance. More so, in most of the problems
investigated (NK-landscapes, H-IFF, and MAX-SAT) redundant representations appeared to reduce
EA performance.

The goal of this paper is to investigate how the redundancy of the trivial voting (TV) mapping,
which is a redundant representation for binary phenotypes, influences the performance of genetic
algorithms (GA). The developed population sizing model for the TV mapping is based on previous
work (Rothlauf, 2002, section 3.1) that shows that the population size N that is necessary to find
the optimal solution goes with O(2kr/r), where kr is the order of redundancy and r is the number
of genotypic building blocks (BBs) that represent the optimal phenotypic BB. The results show
that uniformly redundant representations do not result in a better performance of GAs. Only if the
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good solutions are overrepresented by the TV mapping does GA performance increase. In contrast,
if the good solutions are underrepresented GA performance decreases. Therefore, the redundant
TV mapping can only be used beneficially for GA search if knowledge about the structure of the
optimal solution exists.

The paper is structured as follows. In the following section we review some results of previous
work (Rothlauf, 2002) which presented a model on how redundant representations influence GA
performance. Section 3 describes the TV mapping. We discuss the properties of the representation
and formulate a population sizing model. In section 4 the paper presents experimental results for
one-max and deceptive trap problems. The paper ends with concluding remarks.

2 Redundant Representations

The following section reviews the population sizing model presented in Rothlauf (2002, section 3.1).
In particular, subsection 2.1 reviews characteristics of redundant representations and subsection 2.2
presents the population sizing model for redundant representations.

2.1 Characteristics of Redundant Representations

In this subsection we introduce some characteristics of redundant representations based on Rothlauf
(2002, section 3.1).

In general, a representation fg assigns genotypes xg ∈ Φg to phenotypes xp ∈ Φp. Φg, respec-
tively Φp are the genotypic and phenotypic search spaces. A representation is redundant if the
number of genotypes |Φg| exceeds the number of phenotypes |Φp|. The order of redundancy kr is
defined as log(|Φg|)/ log(|Φp|) and measures the amount of redundant information in the encoding.
When using binary genotypes and binary phenotypes, the order of redundancy can be calculated
as

kr =
log(2lg )
log(2lp)

, (1)

where lg is the length of the binary genotype and lp is the length of the binary phenotype. When
using a non-redundant representation, the number of genotypes equals the number of phenotypes
and kr = 1.

Furthermore, we have to describe how a representation over- or underrepresents specific phe-
notypes. Therefore, we introduce r as the number of genotypes that represent the one phenotype
that has the highest fitness (we assume that there is only one global optimal solution). When using
non-redundant representations, every phenotype is assigned to exactly one genotype and r = 1.
However, in general, 1 ≤ r ≤ |Φg| − |Φp| + 1.

The population sizing model presented in Rothlauf (2002) is valid for selectorecombinative GAs.
Selectorecombinative GAs use crossover as the main search operator and mutation only serves as a
background operator. When using selectorecombinative GAs we implicitly assume that there are
building blocks (BBs) and that the GA process schemata. Consequently, we must define how kr

and r depend on the properties of the BBs.
In general, when looking at BBs of size k there are 2k different phenotypic BBs which are

represented by 2kkr different genotypic BBs. Therefore,

kr =
kg

kp
, (2)

where kg denotes the genotypic size of a BB and kp the size of the corresponding phenotypic BB.
As before, a representation is redundant if kr > 1. The size of the genotypic BBs is kr times larger
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than the size of the phenotypic BB. Furthermore, r is defined as the number of genotypic BBs of
length kkr that represent the best phenotypic BB of size k. Therefore, in general,

r ∈ {1, 2, . . . , 2kkr − 2k + 1}.
In contrast to kr which is determined by the representation used, r depends not only on the used
representation, but also on the specific problem that should be solved. Different instances of a
problem result in different values of r. If we assume that kr is an integer (each phenotypic allele
is represented by kr genotypic alleles) the possible values of the number of genotypic BBs that
represent the optimal phenotypic BB can be calculated as

r = ik, with i ∈ [1, 2, . . . , 2kr − 1]. (3)

A representation is uniformly redundant if all phenotypes are represented by the same number of
different genotypes. Therefore, when using an uniformly redundant representation every phenotypic
BB of size k = kp is represented by

r = 2k(kr−1) (4)

different genotypic BBs.

2.2 Influence of Redundant Representations on GA Performance

This subsection reviews the population sizing model presented in Rothlauf (2002). This population
sizing model assumes that the redundancy of a representation influences the initial supply of BBs.

Earlier work (Harik, Cantú-Paz, Goldberg, & Miller, 1997) has presented a population sizing
model for selectorecombinative GAs. The probability of failure α of a GA can be calculated as

α = 1 − 1 − (q/p)x0

1 − (q/p)N
· (5)

where x0 is the expected number of copies of the best BB in the randomly initialized population,
q = 1 − p, and p is the probability of making the right choice between a single sample of each BB

p = N

(
d√

2m′σBB

)
· (6)

d is the signal difference between the best BB and its strongest competitor, m′ = m − 1 with m is
the number of BBs in the problem, σ2

BB is the variance of a BB, and q = 1− p is the probability of
making the wrong decision between two competing BBs. Therefore, we get for the population size
that is necessary to solve a problem with probability 1 − α:

N =
log

(
1 −

(
1−(q/p)x0

1−α

))
log(q/p)

·

Rothlauf (2002) extended the work presented in Harik, Cantú-Paz, Goldberg, and Miller (1997)
and assumed that redundant representations change the initial supply of BBs:

x0 = N
r

2kkr
· (7)

After some approximations (compare Rothlauf (2002, section 3.1)) we get for the population size
N :

N ≈ −2krk−1

r
ln(α)

σBB

√
πm′

d
· (8)
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The population size N goes with O
(

2kr

r

)
. With increasing r the number of individuals that are

necessary to solve a problem decreases. Using a uniformly redundant representation, where r =
2k(kr−1), does not change the population size N in comparison to non-redundant representations.

3 The Trivial Voting Mapping

In the following subsection we give a short introduction into the trivial voting (TV) mapping.
When using the TV mapping, a set of mostly consecutive, genotypic alleles is relevant for the

value of one allele in the phenotype. Each allele in the genotype can only influence the value of one
allele in the phenotype. The value of the phenotypic allele is determined by the majority of the
values in the genotypic alleles. In general, the different sets of alleles in the genotype defining one
phenotypic allele have the same size. Furthermore, all genotypes that represent the same phenotype
are very similar to one another. A mutation in a genotype results either in the same corresponding
phenotype, or in one of its neighbors. This is an important aspect of the TV mapping as the
population sizing model presented in Rothlauf (2002) is only valid for such representations.

The TV mapping can easily be characterized using the rep-genotype:

phenotype:

Figure 1: The trivial voting map-
ping

resentation parameters defined in subsection 2.1. The order of
redundancy kr is simply the number of genotypic alleles that
determine the value of one phenotypic allele. As the represen-
tation is uniformly redundant, r = 2k(kr−1) (equation 4). Figure
1 gives an example for the TV mapping.

Shackleton, Shipman, and Ebner (2000) applied the TV
mapping to binary strings illustrating the the use of redundant representations increases the evolv-
ability of EAs. When used for binary strings, binary genotypes xg ∈ B

lg are assigned to binary
phenotypes xp ∈ B

lp . The length of a genotype is larger than the length of a phenotype, lg > lp.
The value of one phenotypic bit is determined by the majority of the values in the corresponding
genotypic bits (majority vote). However, if kr is even then the number of ones could equal the num-
ber of zeros. Therefore, half the cases that result in a tie should encode a one in the corresponding
phenotypic allele, and half the cases should represent a zero. For example, for kr = 4 the genotypic
BBs 1100, 1010, and 1001 represent a 1 and the phenotypic BBs 0011, 0101, 0110 represent a zero.

Because the majority of the votes determines the values of the corresponding phenotypic allele,
the TV mapping is a uniformly redundant representation. Each phenotypic BB is represented by
the same number of genotypic BBs which is 2k(kr−1), where k is the size of the phenotypic BB.

As we are not only interested in uniformly redundant representations, but also want to know how
non-uniformly redundant representations influence GA performance, we extend the TV mapping
to allow the encoding to overrepresent some individuals. Therefore, we want to assume that if the
number of ones in the kr genotypic alleles xg

kri+j, where j ∈ {0, . . . , kr − 1}, is larger or equal than
a constant u then the value of the phenotypic allele xp

i is set to one (i ∈ {0, . . . , lp−1}). Vice versa,
the phenotypic allele xp

i is set to zero if less than u of the corresponding genotypic alleles are set to
one. xg

i respectively xp
i denotes the ith allele of the genotype respectively phenotype. Therefore,

xp
i =

{
0 if

∑kr−1
j=0 xg

kri+j < u

1 if
∑kr−1

j=0 xg
kri+j ≥ u,

where u ∈ {1, . . . , kr}. u can be interpreted as the number of genotypic alleles that must be set
to one to encode a one in the corresponding phenotypic allele. We denote this representation the
extended trivial voting (eTV) mapping. For u = (kr +1)/2 (kr must be odd) we get the original TV
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mapping. Extending the TV mapping in the proposed way allows us to investigate how non-uniform
redundancy influences the performance of GAs.

When using the eTV mapping, the number r of genotypic BBs that can represent the optimal
phenotypic BB depends on the number of ones in the genotypic alleles that determine the value of
the corresponding phenotypic allele. Considering equation 3 we get

r =


 kr∑

j=u

(
kr

j

)


k

, (9)

where u ∈ {1, . . . , kr}. k denotes the size of the phenotypic BB. We want to give a short illustration.
We use a redundant representation with kr = 3, k = 1, and the optimal BB is xp

i = 1 (compare
Figure 1). Because u ∈ {1, . . . , kr} there are three different values possible for r. For u = 1 the
phenotypic allele xp

i is set to one if at least one of the three corresponding genotypic alleles xg
ikr

,
xg

ikr+1, or xg
ikr+2 is set to one. Therefore, a one in the phenotype is represented by r =

∑3
j=1

(
kr

j

)
= 7

different genotypic BBs (111, 110, 101, 011, 100, 010, and 001). For u = 2, the optimal phenotypic
BB xp

i = 1 is represented by r =
∑3

j=2

(
kr

j

)
= 4 different genotypic BBs (111, 110, 101, and 011)

and the representation is uniformly redundant. For u = 2 we get the original TV mapping. For
u = 3, the optimal phenotypic BB is represented only by one genotypic BB (111).

Finally, we can formulate the population sizing model for the eTV mapping combining equation
5, 7, and 9. The probability of failure can be calculated as

α = 1 − 1 − (q/p)

(
N

2kkr

(∑kr
j=u (kr

j )
)k

)

1 − (q/p)N
, (10)

where kr is the number of genotypic bit that represent one phenotypic bit, k is the size of the
phenotypic BBs, q = 1 − p, and p is the probability of making the right choice between a single
sample of each BB (equation 6).

4 Experiments and Empirical Results

We present empirical results when using the TV and eTV mapping for the one-max problem and
the concatenated deceptive trap problem.

4.1 One-Max Problem

The first test example for our empirical investigation is the one-max problem. This problem is very
easy to solve for GEAs as the fitness of an individual is simply the number of ones in the binary
phenotype. To ensure that recombination results in a proper mixing of the BBs, we use uniform
crossover for all experiments with the one-max problem. As we focus on selectorecombinative GAs
we use no mutation. Furthermore, in all runs we use tournament selection without replacement
and a tournament size of 2. For the one-max function the signal difference d equals 1, the size k of
the building blocks is 1, and the variance of a building block σ2

BB = 0.25.
When using the binary TV mapping for the one-max problem each bit of a phenotype xp is

represented by kr bits of the genotype xg. The string length of a genotype xg is lg = kr ∗ lp
and the size of the genotypic search space is |Φg| = 2krlp . Table 1 illustrates for kr = 3 the
three possibilities of assigning genotypic BBs {000, 001, 010, 100, 110, 101, 011, 111} to one of the
phenotypic BBs {0, 1} when using the extended TV mapping described in the previous paragraphs.
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xp
i

xg
3ix

g
3i+1x

g
3i+2 (with kr = 3)

extended TV original TV
u = 1 u = 2 u = 3 u = 2
r = 7 r = 4 r = 1 r = 4

0 000 001, 010, 100, 000
111, 110, 101,
011, 001, 010,
100

001, 010, 100, 000

1
111, 110, 101,
011, 001, 010,
100

111, 110, 101, 011 000 111, 110, 101, 011

Table 1: The trivial voting mapping for kr = 3

With denoting xp
i the value of the ith bit in the phenotype, the 3ith, (3i + 1)th, and (3i + 2)th bit

of a genotype determine xp
i . Because the size of the BBs k = 1, the number of genotypic BBs that

represent the optimal phenotypic BB is either r = 1, r = 4, or r = 7 (compare equation 9).
In Figure 2(a) (kr = 2), 2(b) (kr = 3), and 2(c) (kr = 4) the proportion of correct BBs at the

end of a run for a 150 bit one-max problem using the TV and eTV mapping is shown. For this
problem 2150 different phenotypes are represented by either 2300 (kr = 2), 2450 (kr = 3), or 2600

(kr = 4) different genotypes. If we use the eTV mapping (indicated in the plots as eTVM) we
can set u either to 1 or 2 (kr = 2) or to 1, 2, or 3 (kr = 3), or to 1, 2, 3, or 4 (kr = 4). The
corresponding values for r which can be calculated according to equation 9 as well as x0/N are
shown in Table 2. x0 is the expected number of copies of the best BB in the initial population
and N is the population size. Furthermore, the figures show the results when using the original,
uniformly redundant TV mapping, and when using the non-redundant representation with kr = 1.

The lines without line points show the theoretical predictions from equation 10, and the lines
with line points show the empirical results which are averaged over 250 runs. The error bars indicate
the standard deviation.

The results show that for the uniformly redundant TV mapping, r = 2 (kr = 2), r = 4 (kr = 3),
or r = 8 (kr = 4) we get the same performance as for using the non-redundant representation
(kr = 1). As in the original model proposed by Harik, Cantú-Paz, Goldberg, and Miller (1997) the
theoretical model slightly underestimates GA performance. As predicted by the model described in
subsection 2.2, GA performance does not change when using a uniformly redundant representation.
Furthermore, we can see that if the optimal BB is underrepresented GA performance decreases.
Equation 10 gives us a good prediction for the expected solution quality if we consider that the
non-uniform redundancy of the representation changes the initial BB supply according to equation
7. If the optimal solution is overrepresented GA performance increases. Again the theoretical
models give a good prediction for the expected proportion of correct BBs.

Summarizing the results, we can see that using the uniformly redundant TV mapping does not
change GA performance in comparison to using the non-redundant representation. Only if we over-
represent the optimal phenotypic BB, does GA performance increase; likewise, if we underrepresent
the optimal BB, GA performance drops. The derived model is able to make accurate predictions
for the expected solution quality.

4.2 Concatenated Deceptive Trap Problem

Our second test example uses deceptive trap functions.
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Figure 2: Experimental and theoretical results of the proportion of correct BBs on a 150-bit one-
max problem using the trivial voting mapping for kr = 2 (a), kr = 3 (b), and kr = 4 (c). The
lines without line points show the theoretical predictions. When using non-uniformly redundant
representations, GA performance is changed with respect to the overrepresentation or underrepre-
sentation of the high-quality BBs.
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extended TV mapping
original TV mapping

u = 1 u = 2 u = 3 u = 4

kr = 2
r 3 1 - - 2

x0/N 3/4 1/4 - - 2/4 = 1/2

kr = 3
r 7 4 1 - 4

x0/N 7/8 4/8 = 1/2 1/8 - 4/8 = 1/2

kr = 4
r 15 11 5 1 8

x0/N 15/16 11/16 5/16 1/16 8/16 = 1/2

Table 2: Properties of the different TV mappings for the one-max problem (k = 1)

Traps were first used by Ackley (1987) and investigations into the deceptive character of these
functions were provided by Deb and Goldberg (1993). Figure 3 depicts a 3-bit deceptive trap
problem where the size of a BB is k = 3. The fitness value of a phenotype xp depends on the
number of ones v in the string of length l. The best BB is a string of l ones which has fitness l.
Standard EAs are misled to the deceptive attractor which has fitness l− 1. For the 3-bit deceptive
trap the signal difference d is 1, and the fitness variance equals σ2

BB = 0.75. We construct a test
problem for our investigation by concatenating m = 10 of the 3-bit traps so we get a 30-bit problem.
The fitness of an individual x is calculated as f(x) =

∑m−1
i=0 fi(v), where fi(v) is the fitness of the

ith 3-bit trap function from Figure 3. Although this function is difficult for GEAs it can be solved
with proper population size N .

For deceptive traps of size k = 3 we can calculate the number r of geno-

2

2 3
v

f(v)

3

1

1

Figure 3: A 3-bit de-
ceptive trap problem

typic BBs that represent the optimal genotypic BBs according to equation
9. Table 3 summarizes for the modified TV mapping how r and x0/N
depends on u, which describes how many of the genotypic alleles must be
set to 1 to encode a 1 in the phenotype. x0 is the expected number of
copies of the best BB in the initial population and N is the population size.
Furthermore, we list the properties of the original uniformly redundant TV
mapping.

By analogy to the previous paragraphs, in Figure 4(a) (kr = 2), Figure
4(b) (kr = 3), and Figure 4(c) (kr = 4) we show the proportion of correct
BBs at the end of a run over different population sizes for ten concatenated

3-bit deceptive trap problems. In this problem, 230 different phenotypes are represented by either
260 (kr = 2), 290 (kr = 3), or 2120 (kr = 4) different genotypes. As before, we use tournament
selection without replacement of size 2. In contrast to the one-max problem, two-point crossover
was chosen for recombination. Uniform crossover would result in an improper mixing of the BBs
because the genotypic BBs are either of length lg = krlp = 6 (kr = 2), of length lg = 9 (kr = 3),
or of length lg = 12 (kr = 4). Again, the lines without line points show the predictions of the
proposed model for different r. Furthermore, empirical results which are averaged over 250 runs,
are shown for various values of r. The results show that for the uniformly redundant TV mapping
we get the same performance as when using the non-redundant representation (kr = 1). As in the
experiments for the one-max problem the proposed model predicts the experimental results well if
the eTV mapping is used and some BBs are underrepresented or overrepresented.

The presented results show that the influence of the redundant TV and eTV mapping on the
performance of GAs can be explained well by the influence of the representation on the initial supply
of high-quality BBs. If the eTV mapping favors high-quality BBs then the performance of GAs is
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Figure 4: Experimental and theoretical results of the proportion of correct BBs for ten concatenated
3-bit deceptive traps. We show results for different variants of the TV mapping and kr = 2 (a),
kr = 3 (b), and kr = 4 (c). The lines without line points show the theoretical predictions. As
predicted, GA performance sharply decreases if the eTV mapping underrepresents the optimal BB.
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extended TV mapping
original TV mapping

u = 1 u = 2 u = 3 u = 4

kr = 2
r 33 = 27 13 = 1 - - 23 = 8

x0/N 27/64 1/64 - - 8/64 = 1/8

kr = 3
r 73 = 343 43 = 64 13 = 1 - 43 = 64

x0/N 343/512 64/512 = 1/8 1/512 - 64/512 = 1/8

kr = 4
r 153 = 3375 113 = 1331 53 = 125 13 = 1 83 = 2048

x0/N 3375/4096 1331/4096 125/4096 1/4096 512/4096 = 1/8

Table 3: Properties of the different TV mappings for the deceptive trap of size k = 3

increased. If good BBs are underrepresented the performance is reduced. If the representation is
uniformly redundant, GAs show the same performance as when using the non-redundant encoding.

5 Summary and Conclusions

This paper presented a population sizing model for the trivial voting mapping and variants of this
representation. The trivial voting mapping is a redundant representation for binary phenotypes.
The presented population sizing model is based on previous work (Rothlauf, 2002) and assumes
that redundant representations affect the initial supply of building blocks. It was adapted to the
TV mapping and used for predicting the performance of genetic algorithms for one-max problems
and deceptive trap problems.

The results show that the proposed population sizing model allows an accurate prediction of
the influence of the redundant TV representation on GA performance. GA performance remains
unchanged if the TV mapping is uniformly redundant that means each phenotype is represented
on average by the same number of genotypes. Furthermore, the proposed population sizing model
is able to give accurate quantitative predictions on the expected solution quality if variants of the
TV mapping either overrepresent or underrepresent the optimal solution. If the optimal BB is
overrepresented GA performance increases, if it is underrepresented it decreases. The results reveal
that in general the redundant TV mapping and variants of it do not increase GA performance. GA
performance can only be increased if there is specific knowledge about the structure of the optimal
solution and if the representation overrepresents the good solutions.

Previous work (for example Shipman et al. (2000), or Ebner et al. (2001)) noticed that redun-
dant representations increase the evolvability of EAs and assumed that this may lead to increased
EA performance. However, the results we presented indicate that redundant representations like
the TV mapping do not increase EA performance. The influence of redundant representation on the
initial supply seems to be more relevant for EA performance than an increase of evolvability. There-
fore, we encourage researchers to focus on the question of how redundant representations influence
EA performance and to neglect their influence on evolvability. The influence on the evolvability
of EAs might be an interesting partial aspect but more relevant is the question of whether we are
able to construct EAs that allow us to solve relevant problems efficiently, fast and reliably.
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