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Abstract

The paper shows that several estimators for the panel probit model suggested

in the literature belong to a common class of GMM estimators. They are relatively

easy to compute because they are based on conditional moment restrictions involving

univariate moments of the binary dependent variable only. Applying nonparametric

methods we discuss an estimator that is optimal in this class. A Monte Carlo study

shows that a particular variant of this estimator has good small sample properties

and that the e�ciency loss compared to maximumlikelihood is small. An application

to the product innovation decisions of German �rms reveals the expected e�ciency

gains.
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1 Introduction

The probit model is a popular model in applied microeconometric work. In cross-

section analysis, when the error terms of the observations are assumed to be iden-

tically and independently distributed (iid), maximum-likelihood (ML) is typically

the chosen estimation method. It is easy and fast to compute and asymptotically

e�cient. However, using ML on panel data is burdensome unless one adopts the

unattractive assumption of iid error terms, which rules out any persistent or id-

iosyncratic components in the errors of the same unit (�rm, individual) over time.4

As a consequence, the joint T -variate probability distribution over time needs to be

speci�ed. In cases when no analytical expressions exist for the individual likelihood

contributions | such as for probit and tobit models | numerical evaluations of

cumulative distribution functions could be a problem. In addition, there may be a

possibly large number of nuisance parameters resulting from the intertemporal error

covariance matrix.

Several solutions to that problem are discussed in the literature: one group of

methods focuses on approximating the integrals by simulation. Although substantial

progress has been achieved recently | see for example the survey by Hajivassiliou

and Ruud (1994) | these methods are still computationally expensive. At least for

a larger number of time periods, they require a speci�cation of the error process with

a limited number of covariance parameters. Another group of estimators restricts

the error terms to have a random e�ects speci�cation whereby the computation of

the ML estimator is considerably simpli�ed (see for instance Butler and Mo�tt,

1982). This can be generalized by introducing one-factor or multi-factor schemes

to allow for a more 
exible error structure as proposed for example by Heckman

(1981). However, this generalization comes at the cost of having to estimate more

parameters of the covariance matrix, and | in the case of multi-factor schemes

| increases the dimension of integration. Finally, a third group of estimators is

based on the generalized method of moments (GMM) using moment restrictions

that do not depend on parameters of the intertemporal error covariance matrix

(Avery, Hansen and Hotz, 1983). An evaluation of the joint T -variate cumulative

distribution function is not necessary.

The main focus of the paper is on this third group of estimators. We show that

several often-used and conveniently computable estimators, such as pooled probit,

4We consider the case of a large number of independent units (N ) observed for a �nite number

of periods (T ).
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Chamberlain's (1980, 1984) sequential estimator or several variants of other sug-

gested GMM estimators belong to a class of GMM estimators using the same condi-

tional moment restrictions. An asymptotic e�ciency ranking of these and other re-

lated GMM estimators is established. Applying the asymptotic e�ciency results for

instrumental variable estimation of nonlinear models established by Newey (1990)

and Chamberlain (1987), we discuss several feasible estimators that are asymp-

totically e�cient in that class of GMM estimators. Although the estimators use

nonparametric estimation to obtain the asymptotically e�cient instruments, they

retain the basic simplicity, feasibility and robustness to arbitrary error structures

that are the great advantages of the previously discussed GMM estimators. An

extensive Monte Carlo study shows that a particular variant has good small sample

properties. Furthermore, the e�ciency loss compared to full information maximum

likelihood appears to be rather small. Finally, various estimators are applied to

an example taken from industrial economics. Firms' product innovative activity is

analysed using a panel data set that contains 1270 �rms of the German manufactur-

ing industry observed over �ve periods (years). The suggested estimator performs

well in practice, and the e�ciency gains compared to the other estimators turn out

to be important for the economic interpretation of the estimation results.

The following section motivates the econometric discussion by introducing the

economic example. Furthermore, it establishes the necessary notation and the sta-

tistical assumptions underlying the analysis. Section 3 brie
y discusses restricted

and unrestricted maximum likelihood estimation and points out some of the prob-

lems that could appear in the context considered here. The �rst part of section

4 gives a compact summary of the theory of GMM estimation with conditional

moment restrictions. An asymptotic e�ciency ranking of several estimators us-

ing this framework is established in the second part. The third part discusses the

implementation of an estimator that exploits the information of these conditional

moment restrictions optimally. The Monte Carlo results are presented in section 5.

In particular, the data generating processes are described in the �rst subsection.

Subsection 2 discusses the implementation of the various estimators. Their asymp-

totic distributions are compared in subsection 3. Finally, subsection 4 addresses the

�nite sample properties. The application is given in section 6. Section 7 concludes.

Appendix A gives a useful lemma concerning the asymptotic equivalence of several

types of GMM estimators. Appendix B contains additional Monte Carlo results and

Appendix C gives more details on the data used for the application.
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2 Empirical Example, Notation and Basic As-

sumptions

An empirical example for our discussion of panel probit models is the analysis of

�rms' innovative activity as a response to imports and foreign direct investment

(FDI) as considered in Bertschek (1995). The main hypothesis put forward in that

paper is that imports and inward FDI have positive e�ects on the innovative activity

of domestic �rms. The intuition for this e�ect is that imports and FDI represent

a competitive threat to domestic �rms. Competition on the domestic market is

enhanced and the pro�tability of the domestic �rms might be reduced. As a con-

sequence, these �rms have to produce more e�ciently. Increasing the innovative

activity is one possibility to react to this competitive threat and to maintain the

market position.

The dependent variable available in the data takes the value one if a product

innovation has been realized within the last year and the value zero otherwise. The

binary character of this variable leads us to formulate the model in terms of a latent

variable y�ti that represents for instance the �rms' unobservable expenditures for

innovation. y�ti is linearly related to the explanatory variables xti. The vector �0

contains K deterministic coe�cients. uti is a scalar error term controlling e�ects

that are not captured by the regressors:

y�ti = xti�
0 + uti: (1)

The observation rule is:

yti = 1I(y�ti > 0); i = 1; :::; N; t = 1; :::; T; (2)

where the indicator function 1I(�) equals one if the expression in brackets is true

and zero otherwise. For each individual i we collect T observations such that yi =

(y1i; :::; yT i)
0 is a T � 1 vector and xi = (x01i; :::; x

0

T i)
0 represents a T �K matrix of

regressors.

The following standard assumptions are made: We observe N independent ran-

dom draws (yi; xi) = zi in the joint distribution of the random variables (Y;X) = Z.

Thus, zi has dimension T � (K + 1). In the data set, zi is observed for N = 1270

�rms from 1984 to 1988 (T = 5). This is compatible with the assumption of �xed

T and increasing N forming the basis of the following asymptotic arguments.

The error terms ui = (u1i; :::; uT i)
0 are assumed to be jointly normally distributed

with mean zero and covariance matrix � and to be independent of the explanatory
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variables which implies the strict exogeneity of the latter. They are uncorrelated over

�rms but may be correlated over time for the same �rm. One main-diagonal element

of � has to be set to unity because identi�cation of �0 is only up to scale.5 The

o�-diagonal elements of � are not of interest in the empirical study and therefore,

they are considered as nuisance parameters.

3 Maximum Likelihood Estimation

The typical approach for estimating probit models in applied microeconometric work

based on single cross-sections is maximum likelihood (cf. Maddala, 1983, for many

examples). Due to the availability of fast and accurate methods to evaluate the

univariate normal cumulative distribution function (cdf) | for which no analytical

formula is available | and due to the global concavity of the log likelihood function,

this is a useful approach implemented in many software packages. However, in the

case of panel data there are several issues that make ML estimation less attractive:

�rst of all, the likelihood function depends on T (T � 1)=2 unknown o�-diagonal ele-

ments of � that have to be estimated. Secondly and probably even more important

in practice, the computation time of the T-variate cdf instead of the univariate cdf is

prohibitively high for T > 4 or 5 even on very powerful computers (cf. Hajivassiliou

and Ruud, 1994). Finally, the possible lack of global concavity may represent a

problem as well.

While the last issue is widely ignored, many papers appeared recently in the liter-

ature suggesting that the dimensionality problem with respect to integration can be

overcome by using suitable simulation methods to approximate the multidimensional

integral. For details on these issues the reader is referred to the excellent survey

by Hajivassiliou and Ruud (1994). However, although estimates based on simula-

tion methods are easier to compute than exact ML, there are drawbacks with this

approach as well: �rstly, a su�ciently accurate estimation of the multivariate prob-

abilities may still be computationally expensive. Secondly, � is typically restricted

by assuming parametric error processes, mostly AR or MA processes, sometimes

5In order to simplify the exposition we normalize all variances (�11 = �tt = �TT = 1, for all t).

However, the basic structure of the results remains unchanged if the following reparameterization

is made: � = (�01; �
0
2)

0; �1 = �=�1; �2 = (�22; :::; �2T)0; �2t = �1=�t and �ts = �ts=(�s�t) where �ts

denotes EUtUs and �t =
p
�tt. � is then used in place of � in sections 4 and 5. The exact results

using this extensive notation are contained in a previous version of this paper that is available on

request from the authors.
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combined with random e�ects speci�cations. Due to these restrictions the number

of parameters is considerably reduced and simulation estimation becomes feasible.

Some restrictions also drastically reduce the dimension of integration. The most

widely used restriction is the assumption that the error terms are equicorrelated

over time, i.e. the error terms can be decomposed into two mutually independent

components: a time constant random e�ect ci and a remainder term "ti (assumed

to be independent over time) such that uti = �ci + "ti. � is a positive constant to

be estimated and ci and "ti follow a standard normal distribution.6 In this case the

log likelihood function is given by:

L(y; x;�; �) =
1

N

NX
i=1

ln

Z +1

�1

TX
t=1

f�(xti� + �c)yti

[1� �(xti� + �c)](1�yti)g�(c)dc; (3)

�(�) and �(�) denote the cumulative distribution function and the probability distri-
bution function (pdf) of the univariate standard normal distribution, respectively.

Butler and Mo�tt (1982) suggest an e�cient method to evaluate the integral numer-

ically by Hermite integration (e.g. Stroud and Secrest, 1966, p. 22). The estimator

is then given by:0
@ �̂N

�̂N

1
A = arg max

�;�

1

N

NX
i=1

ln
VX
v=1

TX
t=1

f�(xti� + �cv)
yti

[1� �(xti� + �cv)]
(1�yti)gwv; (4)

where cv and wv are the respective evaluation points and weights. Their values have

been tabulated by various authors, e.g. Abramowitz and Stegun (1966, p.924) and

Stroud and Secrest (1966, Table 5).

A comparison of restricted `exact' and simulated ML for this error decomposition

can be found in Guilkey and Murphy (1993). The error structure can be made more


exible by allowing � to vary over time and by the possible introduction of more

than one factor (cf. Heckman, 1981). However, this will again increase the number

of parameters to be estimated and the dimension of integration.

Using the framework of generalized method of moments (GMM) estimation Av-

ery et al. (1983) show that ML estimation under the evenmore restrictive assumption

of independent errors over time leads to consistent estimates for �0.7 The `pooled'

6For notational convenience we change the normalization of �tt in this case, by setting �2
"t
= 1.

7See also Robinson (1982) for the more general proof that the probit-ML assuming independent

errors represents a consistent estimator even when the true errors are not independent.
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pseudo-log likelihood function is given by:

�̂N = argmax
�2B

1

N

NX
i=1

TX
t=1

yti ln�(xti�) + (1 � yti) ln[1� �(xti�)]: (5)

The advantage of the pooled estimator is its simplicity, global concavity and lack

of nuisance parameters. However, the disadvantage is its ine�ciency and that the

estimated asymptotic standard errors assuming the pseudo-log likelihood function

to be the true log likelihood are inconsistent, if the errors are in fact correlated over

time. The following section will show that with GMM estimation the advantages of

the pooled probit can be retained and that the disadvantages can be overcome.

4 GMM Estimation

The following subsection introduces the GMM framework based on estimation with

conditional moment restriction. It summarizes some of the results of Chamberlain

(1987) and Newey (1990, 1993) and adapts them to the panel probit model. The

second subsection shows how this framework can be used to obtain an e�ciency

ranking of several panel probit estimators that have been suggested in the literature.

Finally, the estimation of the asymptotically optimal instruments is discussed.

4.1 Conditional Moment Restrictions and Asymptotic

E�ciency

The model presented in section 2 implies the following moment conditions:

E[M(Z;�0)jX] = 0;

M(Z;�) = [m1(Z1;�); :::;mt(Zt;�); :::;mT(ZT ;�)]
0;

mt(Zt;�) = Yt � �(xti�): (6)

The use of these conditional moments for estimation has the advantage that

their evaluation does not require multidimensional integration and that they do not

depend on the T (T � 1)=2 o�-diagonal elements of �.

Given these conditional moment restrictions GMM can be used for estimation

(Hansen, 1982). The following exposition borrows from the excellent survey by

Newey (1993), who summarizes the results for such GMM estimators.
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Based on eq. (6) the unconditional moment restriction to be used for the estima-

tion is obtained by observing that M(Z;�0) will be uncorrelated with all functions

of X, hence:

EA(X)M(Z;�0) = 0: (7)

A(X) is a p� T \instrument matrix". An estimate �̂N of �0 is obtained by setting

a quadratic form of the sample analogues

gN (�) =
1

N

NX
i=1

A(xi)M(zi;�) (8)

close to zero, such that

�̂N = arg min
�

gN (�)
0PgN (�): (9)

Under suitable regularity conditions on gN and with the positive semi-de�nite

matrix P , �̂N is
p
N -consistent and asymptotically normal:

p
N (�̂N � �0)

d�! N(0;�); (10)

where

� := (G0PG)�1G0PV PG(G0PG)�1; [K �K]

G := E
h
A(X)@M(Z;�0)

@�0

i
= EA(X)D(X); [p�K]

V := E[A(X)M(Z;�0)M(Z;�0)0A(X)0]

= E[A(X)
(X)A(X)0]; [p � p]

D(X) = E @M(Z;�0)
@�0

jX; [T �K]


(X) = EM(Z;�0)M(Z;�0)0jX; [T � T ]:

(11)

A consistent estimate of the covariance matrix � can be obtained by replacing

expectations by sample means and �0 by �̂N . The tools to minimize the asymptotic

variance of this estimator are the optimal choice of the instruments A(X) and of

the weighting matrix P . As shown by Hansen (1982) in a more general setting, the

optimal choice of P is V �1 or any consistent estimator of it. Chamberlain (1987)

and Newey (1990) derived the optimal instrument matrix A�:

A�(X) = C D(X)0
(X)�1; (12)

where C is any nonsingular K � K matrix. The column-dimension of A� equals

K, so the choice of P is irrelevant. To obtain a feasible estimator, P , D(X) and


(X) may be substituted by consistent estimates without a�ecting the asymptotic
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distribution of �̂N . For the GMM estimator using the optimal instruments, the

covariance matrix simpli�es to

�� = fE[D(X)0
(X)�1D(X)]g�1: (13)

For the probit model and observation `i', D(xi) with typical row dti, and 
(xi) with

typical element !tsi have the following form:

dti = ��(xti�)xti: (14)

For notational convenience let �ti := �(xti�
0) and �

(2)
tsi := �(2)(xti�

0; xsi�
0; �0ts).

�(2)(�) denotes the cumulative distribution function of the bivariate standardized

normal distribution with correlation coe�cient �0ts. Hence, we obtain:

!tsi = [E(Yt ��ti)(Ys � �si)jX = xi] =

8<
: �ti(1 ��ti) if t = s;

�
(2)
tsi ��ti�si if t 6= s:

(15)

Note that !tsi(xi) has the same sign as �ts and that !tsi = 0 if �ts = 0. The

estimation of the optimal GMM-estimator is still di�cult, because it depends on the

unknown correlation coe�cients of � through the terms �
(2)
tsi in eq. (15). A possible

solution would be to replace these unknown coe�cients by consistent estimates

obtained from (T � 1)T=2 separate bivariate probits. But this is cumbersome for

large T .8

To circumvent these problems, Newey (1990, 1993) suggests the use of nonpara-

metric methods, such as nearest neighbor estimation and series approximations to

obtain consistent estimates of 
(xi). He derives the conditions necessary for these

methods to result in consistent and asymptotically e�cient estimates of � (Newey,

1993, theorems 1 and 2). We will come back to this issue in section 4.3.

Before doing so, we will discuss the asymptotic properties of various other sub-

optimal GMM estimators suggested in the literature. They should be considered as

competitors to the asymptotically optimal GMM estimator because of their compu-

tational simplicity, and because some of them require weaker conditions with respect

to the exogeneity of the regressors. Note that the conditioning in the T-dimensional

moment function given in eq. (6) is on X = (X1; :::;XT). This is the so-called strict

exogeneity restriction. The results with respect to consistency and asymptotic ef-

�ciency put forward in section 4 do require this assumption to hold. A weaker

8An alternative would be to set up another GMM estimator based on
T (T�1)

2
moment conditions

like ytiysi��
(2)
tsi

with unknown �0 replaced by a consistent estimate �̂N . In this case these moment

conditions would su�ce to estimate the unknown correlations.
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assumption would be to require only E[mt(Zt;�
0)jXt] = 0 (weak exogeneity).9 The

consequence is that only functions of Xt are valid instruments for the t'th-element

of M . Inspecting the form of the instrument matrix A(X) suggested in this section,

it can be seen that only the pooled probit and the sequential estimator are not af-

fected by this weakening of the exogeneity assumption. This might be an important

consideration in practice, since in particular the `optimal' instrument matrix given

in eq. (12) is no longer valid if errors are correlated over time.

4.2 E�ciency Ranking of Several Estimators

All GMM estimators to be discussed in the following are consistent regardless of the

true covariance matrix of the error terms, but di�er in their asymptotic variance.

We use the GMM framework to readily obtain asymptotic e�ciency comparisons.

Avery et al. (1983) observe that the scores of the pooled ML estimator imply

moment conditions that can be used for GMM estimation. Using the Lemma in

Appendix A leads to an asymptotically equivalent GMM estimator of the following

form:

gPP1N (z;�) =
1

N

NX
i=1

APP1
i (xi)M(zi;�) [K � 1]; (16)

APP1
i (xi) = D0

i(xi)[

PP

i (xi)]
�1;


PP

i (xi) =

0
BBB@

�(x1i�
0)[1��(x1i�

0)] 0 0

0
. . . 0

0 0 �(xT i�
0)[1� �(xT i�

0)]

1
CCCA (T � T ):

Since there are no overidentifying restrictions, the choice of the weighting matrix

P does not matter. It is clear from the structure of 
PP
i that the e�ciency loss of

the pooled probit estimator is due to the ignorance of possible nonzero o�-diagonal

elements in 
. In order to compare the pooled ML estimator with other GMM

estimators, it is useful to rewrite this estimator in an equivalent representation:

gN
PP2(z;�) =

1

N

NX
i=1

APP2
i (xi)M(zi;�) [TK � 1]; (17)

9Note that when X contains lagged dependent variables this condition holds only when errors

are assumed to be independent over time.
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APP2
i (xi) =

0
BBB@

��(x1i�0)
�(x1i�0)[1��(x1i�0)]

x01i 0 0

0
. . . 0

0 0
��(xTi�

0)
�(xTi�

0)[1��(xTi�
0)]
x0T i

1
CCCA (TK � T ):

(18)

Note that by stacking the moment conditions there are overidentifying restrictions

and the particular choice of the weighting matrix P matters. We see that pooled

probit is equivalent to a GMM estimator with an ine�cient weighting matrix P PP2:

P PP2 = RR0; R =

0
BBB@
IK
...

IK

1
CCCA (TK �K); IK =

0
BBB@

1 0 0

0
. . . 0

0 0 1

1
CCCA (K �K):

Therefore using the optimal P PP2� instead of P PP2 leads to an asymptotically more

e�cient estimator:

P PP2� = EAPP2(X)M(Z;�0)M(Z;�0)0APP2(X)0 (19)

= EAPP2(X)
(X)APP2(X)0:

However, as Breitung and Lechner (1997) show in a Monte Carlo study, the estimator

based on P PP2� may actually perform worse than pooled probit in small and medium

sized samples. Other estimators suggested by Avery et al. (1983) are in the same

spirit, i.e. the e�ciency gains depend on an expansion of the instrument set together

with the use of the optimal weighting matrix. Hence, they share the same problem,

namely that a large number of observations is needed to get a su�ciently accurate

estimate of this high-dimensional matrix.

Another popular and convenient estimator is the sequential estimator suggested

by Chamberlain (1980, 1984). The idea is as follows: In a �rst step a probit is

estimated for each cross-section. After computing the joint covariance matrix of all

�rst step estimates, a minimum distance procedure is used to impose the coe�cient

restrictions due to the panel structure to obtain more e�cient estimates. Using the

scores of the probit for each period and employing similar reformulations as for the

pooled probit the �rst step of this estimator can be expressed in our framework:

gSN (z;�1; :::; �T) =
1

N

NX
i=1

DS

i (xi)
0(
P

i )
�1M(zi;�1; :::; �T) (20)

=
1

N

NX
i=1

APP2
i (xi)M(zi;�1; :::; �T);
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DS

i =

0
BBB@
��(x1i�0)x1i 0 0

0
. . . 0

0 0 ��(xT i�0)xT i

1
CCCA (T �KT ):

Breitung and Lechner (1997) show that when the minimumdistance step is based on

the optimal weighting matrix, this estimator is asymptotically more e�cient than

pooled ML, because it is equivalent to the GMM estimator of eq. (17) using the

optimal weighting matrix P PP2�.

Since Monte Carlo evidence suggests that increasing e�ciency by increasing the

number of instruments may lead to small sample problems, we now turn to a di�erent

way of increasing e�ciency compared to pooled ML that avoids this dilemma.

The idea is to use the moment function given in eq. (8) together with the optimal

instruments (eq. 12) leading to an estimator without overidentifying restrictions,

so that a high-dimensional weighting matrix does not need to be estimated. The

problem is then to �nd a consistent estimator of 
(X). One approach is to assume

an error distribution that is plausible in many cases and leads to an 
(X) that is

easy to compute. When this assumption is wrong, then the estimator is not e�cient

but still consistent. In this vein is a suggestion by Breitung and Lechner (1997).

They assume a random e�ects (equicorrelation) structure with a `small` variance of

the random e�ect (�2
c ). A Taylor-expansion of the moment condition (conditional on

c) around �2
c , leads to an approximation of 
(X), denoted by 
SS(X), that should

be particularly good when the true error structure is small random e�ects:


SS(xi) =

0
BBBBBB@

�1i(1� �1i) + �2
c�

2
1i

�2
c�1i�2i

. . .
...

. . .

�2
c�1i�T i � � � �2

c�T�1;i�T i �T i(1 ��T i) + �2
c�

2
T i

1
CCCCCCA
:

�ti = �(xti�
0):

There is only one unknown parameter, �c, in addition to �0, and it can be

estimated for example by OLS with the following regressions:

(yti � ~�ti)(ysi � ~�si) = �2
c
~�ti ~�si + error; t; s = 1; :::; T ; t 6= s; (21)

where~denotes quantities evaluated with a consistent
p
N -normal �rst step estimate

~�N of �0. This estimator (GMM-SS) is easy and fast to compute. However, the de-

pendence of the potential e�ciency gains on the validity of the rather restrictive
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assumption about the true error covariance is not very satisfactory. Therefore, the

next subsection discusses a simple nonparametric estimate of the optimal instru-

ments.

4.3 Nonparametric Estimation of 
(xi)

In the following we focus on the k-nearest neighbor (k-NN) approach to estimate


(xi), because of its simplicity. k-NN averages locally over functions of the data of

those observations belonging to the k nearest neighbors. Under regularity conditions

(Newey, 1993), this gives consistent estimates of 
(xi) evaluated at ~�N and denoted

by ~
(xi) for each observation `i' without the need for estimating �ts. Thus, an

element of 
(xi) is estimated by:

~!tsi(xi) =
NX
j=1

Wtsijmt(ztj; ~�N)ms(zsj ; ~�N); (22)

where Wtsij represents a weight function.

In order to determine the neighbors of observation `i' it is necessary to de�ne a

distance or similarity measure. Since the elements of the diagonal of 
(xi), (!tsi; t =

s) depend only on the individual indices of one time-period (xti�), we face a simple

one-dimensional estimation problem. The o�-diagonal elements, !tsi; t 6= s, depend

on the linear indices of two time-periods, 	tsij = [(xti � xtj)�; (xsi � xsj)�].
10

Hence, the distance used to de�ne the neighbors should refer to those two. Here,

another possibility is considered: The distance between observations `i' and `j' refers

to the indices of all periods 	ij = [(x1i�x1j)�; :::; (xT i�xTj)�]. Thus, the distance

is de�ned either by �tsij = 	tsij�
x�

ts 	
0

tsij in case of estimating each single element of


(xi) individually or by �ij = 	ij�
x�	0

ij when all elements of 
(xi) are estimated

jointly (Wtsij = Wij for all t; s). If not indicated otherwise, the weighting matrices

�x� and �
x�

ts , respectively, are set to unity in the Monte Carlo study. However,

di�erent choices of positive de�nite matrices can be used as well, such as the inverse

of the covariance matrix of the linear indices (S�1x� ) or only the main diagonal of

S�1x� .

As a consequence, the nonparametric estimators can either be constructed ac-

cording to (22) which estimates every single element of 
(xi) individually (indiv) or

alternatively, by estimating all elements of 
(xi) jointly (joint). The joint estimator

10Note that the dimension is lower than for the measure suggested by Newey (1993) who uses

the single elements of xti (xkti) instead of xti� to de�ne similarity for more general models.
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is given by:

~
j(xi) =
NX
j=1

WijM(zj ; ~�N)M(zj; ~�N)
0: (23)

The second procedure is much faster to compute, because the observations have

to be sorted only once for the estimation of all elements of 
(xi). Therefore, the

larger T the faster is joint relative to indiv.

A weight function assigns positive weights to those observations belonging to

the k nearest neighbors (k � N), but zero weights to all other observations and the

observation i itself. The weights sum to unity. Stone (1977, p. 600) suggests several

weight functions that ful�l the necessary regularity conditions. Suppose that the

observations are ordered according to their distance to observation `i', where `j = 1'

denotes observation `i' itself. The uniform weight function (uniform) is then given

by:

Wtsij =

8<
: 1=k 2 � j � k;

0 j = 1; j > k:
(24)

A smoother version is for example the quadratic (quadr) weight function:

Wtsij =

8<
: [k2 � (j � 1)2] =[k(k + 1)(4k � 1)=6] 2 � j � k;

0 j = 1; j > k:
(25)

It remains to choose the smoothing parameter k. In our Monte Carlo study we

follow Newey (1993) in applying cross-validation for a data-driven choice of k. He

shows that cross-validation can be based on the di�erence between estimated and

true moment functions:

NX
i=1

f ~A�(xi)�A�(xi)gM(Z;�0)=
p
N: (26)

Suppose that ~A�(xi) denotes a consistent estimate of A�(xi) evaluated at ~�N .

Then the resulting cross-validation function to be minimized is as follows (Newey,

1993, p. 433):

ĈV (k) = tr

"
Q

NX
i=1

~R(xi)~
(xi) ~R(xi)
0

#
; (27)

~R(xi) =
n
~A�(xi)[M(zi; ~�N)M(zi; ~�N)

0 � ~
(xi)]
o
~
(xi)

�1:

Q is a positive de�nite matrix. In the following Monte Carlo study and the appli-

cation we choose Q =
PN

i=1D(xi)D(xi)
0 according to Newey (1993).
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Another possibility for nonparametric estimation of 
(xi) is to use kernel re-

gression (Carroll, 1982; H�ardle, 1990, for example). However, two drawbacks of

kernel regression in our context are the increased complexity of the estimation and

the problem of random denominators which might produce erratic behavior (see

Robinson, 1987). This problem could be solved by trimming, but this leads to a loss

of e�ciency by reducing the number of observations.

5 Monte Carlo Study

The following subsection describes the data generating processes (DGPs) used. Fol-

lowing this, we discuss the implementation of the various estimators. We compare

the standard errors of their asymptotic distributions in subsection 3. Finally, their

�nite sample properties are addressed in subsection 4.11

5.1 Data Generating Processes

The data generating processes (DGP) considered crudely mimic situations common

in applied microeconometric work, e.g. regressors and error terms are both corre-

lated over time, and dummy explanatory variables are part of the regressors. All

DGPs can be summarized in the following equations:

yti = 1I(�C + �DxD
ti
+ �NxN

ti
+ uti > 0);

xDti = 1I(~xDti > 0); P (~xDti > 0) = 0:5;

xNti = 
xxNt�1;i + 
tt+ ~xUti ; ~xUti � uniform(�1; 1);
uti = �ci + "ti; ci � N(0; 1);

"ti = �"t�1;i + �~"ti; ~"ti � N(0; 1);

or uti = 0:5(~"ti + ~"t�1;i);

i = 1; :::; N; t = 1; :::; T:

(�C; �D; �N ; 
x; 
t; �; �; �) are �xed coe�cients. Initial values for the dynamic pro-

cesses are discussed below. All random numbers are drawn independently over time

and individuals.12 The �rst regressor is an indicator variable that is uncorrelated

over time, whereas the second regressor is a smooth variable with bounded support.

The dependence on lagged values and on a time trend induces a correlation over

11In order to save space we did not include all simulation results in the following tables. The

excluded results are available on request from the authors.
12We used the random number generators RNDN and RNDU implemented in GAUSS 3.1 and

GAUSS 3.2.
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time. This type of regressor is suggested by Nerlove (1971). The error terms may

exhibit correlations over time due to an individual speci�c e�ect as well as a �rst

order autoregression or a moving average process. To diminish the impact of initial

conditions, the dynamic processes start at t = �10 with xNt�11;i = "t�11;i = 0. T

is set to 5 and 10, and N to 100, 400 and 1600 in order to study the behavior in

fairly small and large samples. Since all estimators are
p
N -consistent, the standard

errors for the larger sample size should be approximately half the size for the next

smaller sample. In addition to these �nite sample, we use these DGPs to derive the

asymptotic covariance matrices of the estimators as described below.

Tables 1 and 2 contain some statistics for the DGPs used in the estimations

as well as the chosen coe�cient values. All DGPs have the common feature that

the unconditional mean of the dependent indicator variable is close to 0.5 in order

to obtain maximum variance and thus to contain maximum information about the

underlying latent variable. For ease of presentation let �ti = �C + xDti�
D + xNti�

N .

Table 1 gives some summary statistics for the part of the DGP related to the regres-

sors. The coe�cients 
x and 
t are used to generate di�erent correlation patterns

of �ti over time. Here, we focus only on a `medium' case. The results for other

DGPs with 
x = 0 and 
x = 0:9 are available on request from the authors. Table 2

contains similar statistics for the error terms. The �rst error process (DGP 1) gen-

eralizes the equicorrelation pattern of DGP 2 by adding a �rst order autoregressive

process. DGP 3 is a moving average process where correlation patterns die out after

one period. Finally, there is an AR(1) process (DGP 4) with a negative coe�cient

so that the signs of the correlations alternate. Depending on T , 500 (T = 5) or 1000

(T = 10) replications (R) have been performed.

[ insert Tables 1 and 2 about here ]

5.2 Estimators

The following estimators already discussed in sections 3 and 4 are analysed: max-

imum likelihood with random e�ects according to eq. (4), ML-RE. We use the

algorithm suggested by Butler and Mo�tt (1982). The number of evaluation points

V is set to 5 as a compromise between computational speed and numerical accuracy

(see Guilkey and Murphy, 1993, for more Monte Carlo results). When the assumed

error structure is the true one this estimator is consistent and asymptotically e�-

cient for (�; �). In the Monte Carlo study the standard errors are computed in the

`robust' way suggested by White (1982). Furthermore, there are the pooled estima-

tor and the sequential estimator as presented in eqs. (5) and (18), respectively. The
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latter uses the optimal weighting matrix, given by the inverse of the joint covariance

matrix of the �rst step estimates, to obtain the �nal estimates in the second step.

The estimator based on the instruments A�(xi) and computed under the as-

sumption of random e�ects with a small variance (small sigma) of the random e�ect

relative to the total error variance (GMM-SS, cf. eq. (21)), dominated the other

GMM estimators (for details see Breitung and Lechner, 1997). Hence, we report

only results for this `best' estimator to see whether it can be improved by the use

of nonparametric methods. GMM-SS and all nonparametric estimators depend on

a preliminary consistent estimate ~�N . In the Monte Carlo study this is always the

pooled probit estimate.

Several di�erent variants of nonparametric estimators are considered. Instead of

using the conditional moments given in eq. (6) and denoted by NP, one could also

use the following scaled moments (WNP):

mW

t (Zt;�) =
mt(Zt;�)q

E[mt(Zt;�)2jX]
(28)

E[mW

t (Zt;�
0)jX = xi] =

E[mt(Zt;�
0)jX = xi]q

�ti(1� �ti)
= 0:

The conditional variance of the moments given by eq. (6) is heteroscedastic

across individuals, because it depends on explanatory variables, whereas the version

given by eq. (28) leads to the following conditional covariance of the moments:

!tsi = [E(mW

t m
W

s

0

)jX = xi] =

8><
>:

1 if t = s;
�
(2)

tsi
��ti�sip

�ti(1��ti)�si(1��si)
if t 6= s:

(29)

The latter is homoscedastic on the main diagonal and this could lead to small

sample improvements. The matrix D(�) has to be changed accordingly. We also

consider versions of NP and WNP for which only the o�-diagonal elements of 
(xi)

are estimated nonparametrically, and the main diagonal elements are set either to

unity (WNP) or to �ti(1��ti) (NP). However, this leads to numerical problems in

some cases of NP, because some eigenvalues of ~
(xi) are very small or even negative.

For the cross-validation a grid with eight values of k equally spaced in the interval

N0:67, N0:97 is chosen. When the estimate of 
(xi) is not positive de�nite, the

smoothing parameter k is increased according to this grid of ks until a positive

de�nite estimate of 
(xi) is obtained. If the use of the largest possible k still does

not produce a positive de�nite estimate, the values of the main diagonal are doubled
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until the matrix becomes positive de�nite. The latter correction is also applied to

the versions of NP and WNP which only estimate the o�-diagonal elements of 
(xi).

We also analysed the case k = N , however, the results turned out to be worse than

those for the above mentioned ks smaller than N (results available on request).

Finally, we computed a conditional moment estimator based on the true values of


(xi) and D(xi) which are known in a Monte Carlo study. This estimator (infeasible

GMM-IV) is generally infeasible and is used only as a benchmark for what could be

achieved with an estimator optimal in that class and free of any variability coming

from a �rst step estimation.

5.3 Asymptotic Comparisons

Before comparing the �nite sample performance of the various estimators, we address

the issue on how informative the particular moments are asymptotically. This will

give us an indication about the e�ciency gains that might be achievable in �nite

samples under these DGP's.13

Since the analytical compution of the asymptotic covariances proved intractable,

we employed the following simulation strategy. For the GMM estimators (including

the pooled probit), eq. (11) is the appropriate variance formula. Using the informa-

tion about the DGP we computed D(X), A(X), 
(X) analytically. Then, we drew

50.000 (T = 5) or 25.000 (T = 10) realizations from the distribution of X. The un-

conditional expectations appearing in eq. (11) (and also in eq. (13)) are estimated

by averaging the respective quantities using this large number of independent draws.

For the ML-RE obtaining analytical expressions for the information matrix

proved intractable as well. Therefore, we drew realizations from the joint distri-

bution of Y and X to simulate the asymptotic covariance matrix. To account for

possible additional simulation variance introduced by drawing also the binary in-

dicator Y , the number of draws are doubled to 100 000 and 50 000, respectively.

Additionally, to reduce the in
uence of having to approximate the integral appearing

in eq. (3), we increased the number of evaluation points to 136 (taken from Stroud

and Secrest, 1966, pp.250{252).14 For the ML-RE two other issues arise: �rst, it

is only for the case of (pure) random e�ects (DGP 2) that it is clearly consistent.

Hence, we do not give asymptotic standard errors for the other DGP's. Second,

13We thank an Associate Editor of this journal for proposing this comparison to us.
14However, there is virtually no di�erence for the asymptotic standard deviation when 20 points

are used instead. Similarly, the results based on using either the OPG, the Hessian, or White-

version of the covariance matrix for these simulations are virtually identical.
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there are two versions of this estimator that are interesting as a benchmark for the

GMM estimators. One treats the standard deviation of the random e�ect (�) as a

known quantity. No
p
N - consistent GMM estimator for � can be more e�cient than

this ML-RE that attains the Cram�er-Rao bound for �0. The other (feasible) ML-RE

that has to be used in practice is the one that treats � as an additional coe�cient

to be estimated. Because of this additional coe�cient, it is not clear whether this

estimator is always more e�cient than the GMM estimators (it attains the Cram�er-

Rao bound for (�', �)'). The asymptotic covariance matrix of the GMM estimators

for � is the same, irrespectively whether the instruments that may depend on the

covariance structure of the errors are known or consistently estimated. However, for

the ML-RE estimating � implies a di�erent asymptotic covariance matrix for � than

treating � as known.

Table 3 contains the results of these computations.15 The overall e�ciency rank-

ing is as expected from the theoretical results presented in the previous section.

Comparing the pooled estimator, that has the largest variance of the estimators pre-

sented, to the sequential estimator, we �nd that the e�ciency gains from using the

latter one are tiny. GMM-SS is always more e�cient than sequential, however |

as expected | the e�ciency gains depend very much on the particular DGP. This

feature is not true for the Optimal GMM-IV. Optimal GMM-IV denotes the limit

for all the various versions of GMM estimators that are asymptotically e�cient,

such as the Infeasible GMM-IV, and the various versions of WNP's and NP's. To

see the magnitude of the e�ciency gains, it is useful to ask how many additional

observations would be necessary so that inference | for example | with the pooled

probit is as e�cient as with an Optimal GMM-IV. For �N and T = 5, a pooled

probit analysis based on about 30% (DGP 1), 17% (DGP 2), 13% (DGP 3) or 32%

(DGP 4) more observations would be as precise as an analysis based on an Optimal

GMM-IV. These e��ciency gains rise for T = 10, but the magnitude of the rise

depends on the DGP's. The corresponding numbers are 32% (DGP 1), 21% (DGP

2), 15% (DGP 3), and 34% (DGP 4). It appears that such e�ciency gains are well

worth pursuing by using an asymptotically Optimal GMM-IV. Before we analyse

whether these gains materialise in �nite samples, a comparison of the GMM's with

the ML-RE is informative. For �N we �nd an e�ciency loss of the Optimal GMM-IV

of about 4% for T = 5 and about 11% for T = 10 compared to the (infeasible) ML-

RE with known correlation coe�cients. However, when making the more relevant

15Since in binary choice models identi�cation is only up to scale, the ratio of estimated coe�cients

is also of interest.
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comparison to the feasible ML-RE we �nd the e�ciency loss to be non-existent. For

T = 5, it appears that the Optimal GMM-IV is even more e�cient than ML-RE.

For T = 10, there is no clear ranking.

[ insert Table 3 about here ]

5.4 Finite Sample Results

Table 4 describes the measures for the accuracy of the estimates used in this section.

They are the root mean square error and the bias of the estimated asymptotic

standard errors of the coe�cient estimates. �̂r denotes the estimate of the true

value �0 in replication `r', and asstd(�̂r) denotes the estimated asymptotic standard

error in replication `r'. Since there may be concerns that the expectation and the

variance of the estimates may not exist in �nite samples for all estimators used, we

also consider the median absolute error. Additionally, Table B.1 presents the upper

and lower bounds as well as the width of the central 95% quantile of estimates based

on the Monte Carlo simulations and on the asymptotic normal approximation using

the average of the estimated asymptotic covariance matrices of the coe�cients. For

the sake of brevity, the statistics related to the constant term are omitted.

[ insert Table 4 about here ]

For the DGP with an AR(1) process combined with random e�ects (Tables 5

and B.1), several GMM-estimators with nonparametric estimation of the covariance

matrix are computed for N = 100; 400.16 The results do not reveal much di�er-

ence within the groups of estimators NP and WNP, however, there are substantial

di�erences between these groups (although not reported in the tables, all estimates

are almost unbiased). The estimators with scaled moments (WNP) have lower root

mean squared errors (RMSE) and median absolute error (MAE).WNP is sometimes

observed with a somewhat larger bias of the asymptotic standard errors. Increasing

the sample size N , the performance of the estimators is generally improving, be-

coming closer to that of the asymptotically optimal GMM-estimates given by the

benchmark of the infeasible GMM-IV. Increasing the time-dimension T generally im-

proves the results with respect to the RMSE, the MAE, and the bias of asymptotic

standard errors. A notable exception on the latter criterion is WNP-indiv-quadr.

16The same range of estimators has been computed for the case of independent errors. Since

the obtained results are qualitatively the same as for the AR(1) process they are omitted from the

tables. The results are available from the authors on request.
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Compared to choosing between NP andWNP the ranking according to the choice

of the weight function for the k-NN approach, uniform or quadratic, is inconclusive

with the exception of WNP-indiv-quadr. The results for the triangular weights are

omitted from the tables since they turned out to be nearly indistinguishable from

those for quadratic weights. Furthermore, it does not seem to matter if the distance

is measured individually or jointly over the indices xti�, although the results of the

latter are more stable in the small sample.

For each replication of the Monte Carlo study the smoothing parameter k is

chosen via cross-validation. The distributions of the choice of k are depicted in

Tables B.2 to B.5. For DGP 1 there is a tendency to choose a relatively large k (see

Table B.2). This tendency is slightly stronger for the joint than for the individual

measure of distance. The same is true when increasing the time periods from 5 to 10.

Both cases represent an increase in the dimension of the nonparametric estimation.

WNP has an even stronger tendency to choose a large k than NP. An intuitive

explanation is that the diagonal elements of the covariance matrix for WNP are

estimated without bias, because they do not vary across `i'. With increasing k the

variance of the estimation is reduced. If these elements have strong weights in the

cross-validation, the e�ect of decreasing the variance by large k might dominate

the bias-variance trade-o� important for the o�-diagonal elements, and hence, a

large (or the largest) k minimizes the cross-validation function. However, replacing

alternatively the diagonal elements of the covariance matrix by their parametrically

estimated values and using only the o�-diagonal elements for the cross-validation

(WNP-joint-uniform-no.d.) does not seem to matter for N = 400. For N = 100 the

results are mixed: for T = 5 it is the best for all criteria, but for T = 10 several

WNP-estimators perform better. Introducing the covariance matrix of the linear

indices S�1x� as the weight matrix for measuring the distance does not seem to bring

clear-cut e�ciency gains. This is supported by the results for independent errors.17

Since there does not appear to be any signi�cant di�erence between using S�1x� or

its main diagonal, the latter is omitted from the tables.

Comparing the results of Table 5 and Table B.1 we �nd that there are no sub-

stantial qualitative di�erences. Furthermore, the con�dence bounds are symmetric

around the true value, which implies that, at least for its tail, there is no concern

about a severely asymmetric distribution.

17The results are available on request from the authors
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Given these results, we choose within the class of WNP estimators the estimator

with uniform weights and joint distance measure (WNP-joint-uniform) as the pre-

ferred version, because it has the simplest form of weights, it seems to be more robust

with respect to the asymptotic standard errors than for instance the WNP-indiv-

quadr, and saves computation time compared to an estimator with an individual

distance measure.

Turning now to the fully parametric estimators, the following results are ob-

tained: for the DGPs that have several forms of correlation of the error terms, ML-

RE and GMM-SS show best results with respect to the RMSE and MAE. For the

(nonreported) case of independent errors the small sigma method is already in small

samples as good as pooled probit, although the latter is the maximum likelihood es-

timator for this DGP. In some cases ML-RE shows a relatively high downward bias

of the asymptotic standard errors for N = 100 (see for instance Table 5). The

calculation of ML-RE is time-consuming compared to the other methods, and often

convergence cannot be reached, especially for T = 10.

Chamberlain's sequential estimator produces quite large RMSE and MAE com-

pared to the other parametric methods for the sample size of N = 100. Although

it improves with increasing N , it performs still worse than ML-RE and GMM-SS.

A striking feature is the large bias of the asymptotic standard errors for N = 100,

which is even larger for T = 10 than for T = 5. Thus, sequential needs quite a large

sample size N in order to obtain good results. The relatively bad performance of

sequential is also illustrated in Figures 1 and 2 where kernel plots of the distribution

of the various estimators based on DGP 1 are depicted.18 Compared to the other es-

timators the distribution of sequential turns out to be 
atter and right-skewed, even

stronger for T = 10 than for T = 5. Note that the asymptotic e�ciency gains for

this estimator compared to pooled, for example, depend on the accurate estimation

of the covariance matrix in the �rst step estimates, which then has to be inverted.

In our Monte Carlo example this matrix has the dimension 15 for T = 5 and 30 for

T = 10. However, the asymptotic standard errors ignore the fact that this inverse

may exhibit considerable variability in small samples.

Comparing now GMM-SS and WNP-joint-uniform, one observes that for the

DGPs presented in Tables 5 and 6 (and also for independent errors) GMM-SS is

better than WNP-joint-uniform for N = 100. For N = 400 and N = 1600 the

di�erences in RMSE and bias of asymptotic standard errors are very small and the

18We present kernel plots for �N , but only for DGP 1 and N = 100; 400. For N = 1600, the

sample distributions are very close to the asymptotic ones. The results for the other coe�cients

as well as for the other DGPs are qualitatively the same as for DGP 1.
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ranking is inconclusive. The latter result is supported by the corresponding kernel

plots in Figures 1 and 2 except for N = 100 and T = 5 where the distribution of

GMM-SS is left-skewed compared to that of WNP-joint-uniform with a 
at region

at the top of the distribution. For the other cases the distributions of the two

estimators are very close to each other.

When considering covariance structures that are very di�erent from a random

e�ects structure implying equicorrelated errors, as presented by the MA(1) process

or the AR(1) process with alternating signs of the correlation over time (Tables 7

and 8), WNP-joint-uniform is clearly superior to GMM-SS (as it is asymptotically,

see Table 3).

Thus, since in real-world applications the true DGP is unknown, WNP-joint-

uniform with nonparametric estimation of the covariance matrix can be recom-

mended for applications.

[ insert Tables 5 to 8 and Figures 1 and 2 about here ]

6 Application

Now we come back to the empirical example that motivated our discussion. The

main hypothesis to be tested is that imports and foreign direct investment (FDI)

have positive e�ects on the innovative activity of domestic �rms. The �rm-level

data have been collected by the Ifo-Institute, Munich (`Ifo-Konjunkturtest') and

have been merged with o�cial statistics from the German Statistical Yearbooks.

The binary dependent variable indicates whether a �rm reports having realized a

product innovation within the last year or not. The independent variables refer to

the market structure, in particular the market size of the industry ln(sales), the

shares of imports and FDI in the supply on the domestic market (import share and

FDI-share), the productivity as a measure of the competitiveness of the industry

as well as two variables indicating whether a �rm belongs to the raw materials or

to the investment goods industry. Moreover, including the relative �rm size

allows to take account of the innovation | �rm size relation often discussed in the

literature. Hence, all variables with exception of the �rm size are measured at the

industry-level (for descriptive statistics see Appendix C).

The estimators applied to the example include the one used in Bertschek (1995),

(sequential), the simplest one (pooled), the maximum likelihood estimator under the

assumption of random e�ects with �ve evaluation points as used in the Monte Carlo

study (ML-RE 5) and with 10 evaluation points (ML-RE 10), the best parametric
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GMM estimator (GMM-SS) and �nally, the simplest (WNP-joint-uniform) of the

estimators with weighted nonparametric estimation of the covariance. Furthermore,

we compute two versions of the asymptotic t-values for the pooled estimator. The

�rst (denoted by t-val) ignore the possible correlations over time. They are the same

that would be obtained by using a standard software package for cross-section probit

estimation. The second are computed using the correct GMM-formula as given in

eq. (16). The latter are comparable to the covariance matrices used in the Monte

Carlo study.

The estimation results are presented in Tables 9 and 10. Let us start by com-

paring the outcomes implied by the two di�erent ways to compute the covariance

matrices of pooled: not surprisingly, the t-values ignoring the intertemporal correla-

tions are generally larger than the t-values taking account of these correlations.

The results of the various parametric estimators are quite similar and lead to

the same conclusions (�rst part of Table 9). Both import share and FDI-share

have positive and signi�cant e�ects on product innovative activity. The �rm size

variable has a positive and signi�cant impact (except for sequential) | a result

that supports the Schumpeterian hypothesis that large �rms are more innovative

than small �rms. The productivity coe�cient is insigni�cant in most estimations.

The estimates for ML-RE 5 and ML-RE 10 are very close to each other except of

the productivity that is signi�cant only for ML-RE 10. Increasing the number of

evaluation points to 20 produces almost the same results as for 10 evaluation points.

Hence, they are omitted from the table.

Turning now to the results of WNP-joint-uniform (second part of Table 9)

one can �nd that the estimates as well as the t-values are quite robust for k =

100; 263; 880; 1270. For k = 263 the cross-validation function (Figure 3) has a local

minimum whereas its global minimum is reached for k = 880. For all these k's

the productivity coe�cient is negative and signi�cant. In contrast to the results

of the sequential estimator the �rm size always keeps its positive and signi�cant

coe�cient. For k = 20 and k = 50 the dummy for the raw materials industry

has an insigni�cant coe�cient. In the �rst case all coe�cients and t-values di�er

considerably from those of the other k's, however, the value of the cross-validation

function indicates that k = 20 is far from being optimal.

A look at the estimated standard errors (Table 10) reveals again that pooled when

ignoring possible correlations of the error over time generally leads to downward

biased standard errors and thus to upward biased t-values. The standard errors of

GMM-SS and sequential are in general lower than those of pooled. The standard

errors of WNP-joint-uniform di�er only slightly over k = 100 to k = 1270. The
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large values for k = 20 accompanied by a very large value for the cross-validation

function con�rm the inaccuracy of the estimates for this size of undersmoothing.

For k = 880 the standard errors are the smallest for all variables.

Hence, WNP-joint-uniform clearly dominates the other estimators with respect

to its e�ciency for most coe�cients. There are e�ciency gains compared to pooled

probit, GMM-SS and sequential concerning the variables �rm size and productivity.

The standard errors for the FDI-share coe�cient decrease compared to pooled and

GMM-SS. These results are in particular important with respect to the variable

productivity. While its coe�cient is negative and insigni�cant for all parametric

estimators (except ML-RE 10), it now turns out to be signi�cant allowing to draw

more reliable conclusions. Firms belonging to more productive industries put less

e�ort in product innovative activity. At �rst glance, this result seems surprising since

one expects that higher productivity implies more innovative activity. However, a

closer look at the data reveals that industries with extremely high levels of labour-

productivity are those of the raw materials industry. These industries produce with

a high capital-intensity. Since raw materials such as non-ferrous metals or paper

generally cannot be changed much | as compared to consumer goods, for example

| by innovations the negative sign of the productivity coe�cient seems plausible.

The estimations have been performed on a personal computer with a Pentium

100MHz processor. The computation times are: 30 seconds for pooled probit, 10

minutes for GMM-SS and for WNP-joint-uniform and 15 minutes for ML-RE 10.

The GAUSS-program is available on request from the authors.

[ insert Tables 9 and 10 and Figure 3 about here ]

7 Conclusions

The paper shows that often-used and conveniently computable estimators, such as

pooled probit, Chamberlain's (1980, 1984) sequential estimators or several variants

of GMM estimators, belong to a class of GMM estimators using the same condi-

tional moment restrictions. An asymptotic e�ciency ranking of these and other

related estimators is established. Additionally, using nonparametric methods a fea-

sible estimator that is asymptotically e�cient in that class but retains most of the

simplicity of the other class members is suggested. This estimator | fast to com-

pute and e�cient | represents an attractive alternative to simulation or restricted

ML methods. The Monte Carlo study shows that this estimator has good small

sample properties and only a tiny e�ciency loss compared to ML occurs. Finally,
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when analysing the determinants of product innovation of 1270 German �rms, the

suggested nonparametric estimators perform very well in practice. The e�ciency

gains, compared to the other estimators, turn out to be important for the economic

interpretation of the estimation results.

One aim of future research should be to analyse if the same results can be

obtained for other nonlinear models such as tobit. Another topic of interest might

be the comparison of other nonparametric methods with the k-nearest neighbor

approach within this context as well as to consider other approaches for choosing

the smoothing parameter.

25



Appendix A: Lemma

The following lemma shows a useful invariance property of GMM estimators

based on conditional moments. It shows that we can consider functions of X alone

either as part of the instrument matrix A or as part of the conditional moment

function M without changing the asymptotic distribution of the estimator.

Lemma: Asymptotic Invariance

Let H be a square matrix of full rank and let ~�N denote a consistent and square

root normal estimator of �. De�ne a new estimator �̂+ based on minimizing the

following modi�ed conditional moments and modi�ed instrument. All quantities are

de�ned as in section 4.1, but those related to �̂+
M are marked with a `+'.

A+(xi) = A(xi; ~�N)[H(xi; ~�N)]
�1;

p
N( ~�N � �0) �! N(0;�):

M+(zi;�) = H(xi;�)M(zi;�)

E
h
M+(Z;�0)jX = xi

i
= H(xi;�

0)E
h
M(Z;�0)jX = xi

i
= 0

g+N (z;�) :=
1

N

NX
i=1

A+(xi)M
+(zi;�);

�̂+
N
= arg min

�2B
g+
N
(z;�)0Pg+

N
(z;�);

p
N(�̂+

N � �0) �! N(0;�+);

�+ = (G+0PG+)�1G+0PV +PG+(G+0PG+)�1;

G+ = E

"
A+ @M

+

@�0
(Z;�0)

#
;

V + = E(A+M+M+0A+0):

Now compare this estimator to the one consisting of instruments A and moments

M with covariance matrix �. The claim is that � = �+ so that the estimators

are asymptotically identical. The proof proceeds in two steps. First, note that the

respective weighting matrices are identical:

V + = E
n
A[H(X;�0)]�1H(X;�0)M(Z;�0)M 0H 0H�10A0

o
= V:
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Second, the expected values of the derivatives of the moments are also the same.

G+ = E

(
A(X)[H(X;�0)]�1

@(HM)

@�0
(Z;�0)

)
= E

(
AE

"
@(M)

@�0
jX = xi

#)
= G:

The last equality can be veri�ed by considering a typical element of

E

" 
h�t

@mt

@�k
+mt

@h�t

@�k

!
jX = xi

#
= E

 
h�t

@mt

@�k
jX = xi

!
+ E(mtjX = xi)

@h�t

@�k

= E

 
h�t

@mt

@�k
jX = xi

!

= h�tE

 
@mt

@�k
jX = xi

!

E

"
@(HM)

@�0
jX = xi

#
= HE

"
@M

@�0
jX = xi

#
) G� = G ) �� = �: q.e.d.
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Appendix B: Additional Monte Carlo Results

In Table B.1 the bounds (�2:5; �97:5) and the widths (W ) of the 95% con�dence

intervals for one of the data generating processes (DGP 1, Table 5) are given. Re-

sults under the heading `Monte Carlo' are computed using the Monte Carlo distri-

butions of the estimates, whereas the heading `Asymptotic-W ' refers to the widths

computed using normality and the estimated asymptotic covariance matrices. The

latter widths are averaged over the sample.

[ insert Tables B.1 to B.5 about here ]

Appendix C: Descriptive Statistics

[ insert Table C about here ]
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Table 9: Innovation probit: Estimated coe�cients and t-values

pooled ML-RE 5 ML-RE 10 GMM-SS sequential

variable coef t-val t-val coef t-val coef t-val coef t-val coef t-val

intercept -1.96 8.2 5.2 -2.91 4.6 -2.84 5.0 -1.79 4.8 -1.80 5.1

ln(sales) 0.18 7.2 4.8 0.25 4.1 0.25 4.6 0.16 4.4 0.15 4.4

rel. �rm size 1.07 5.2 3.5 1.56 2.5 1.52 3.9 0.88 3.5 0.26 1.4

import share 1.13 7.4 4.6 1.77 4.8 1.78 4.8 1.17 4.9 1.27 5.4

FDI-share 2.85 6.1 4.2 3.77 3.7 3.65 3.8 2.54 3.9 2.52 3.9

productivity -2.34 2.1 1.8 -2.21 1.5 -2.30 2.0 -1.50 1.8 -0.43 0.4

raw materials -0.28 2.9 2.1 -0.48 2.6 -0.48 2.7 -0.33 2.8 -0.28 2.3

investment 0.19 4.7 3.0 0.33 3.5 0.33 3.4 0.21 3.3 0.21 3.3

WNP-joint-uniform

k=20 k=50 k=100 k=263 k=880 k=1270

variable coef t-val coef t-val coef t-val coef t-val coef t-val coef t-val

intercept -3.82 0.5 -1.70 4.4 -1.81 4.8 -1.74 4.7 -1.74 4.8 -1.79 4.9

ln(sales) 0.44 0.7 0.16 4.4 0.16 4.6 0.15 4.4 0.15 4.5 0.16 4.6

rel. �rm size 0.005 0.03 0.91 4.2 0.97 4.8 1.00 4.9 0.95 4.7 0.98 4.8

import share -3.12 0.7 1.02 4.1 1.10 4.4 1.13 4.7 1.14 4.8 1.15 4.8

FDI-share 14.09 2.9 2.64 4.2 2.59 4.4 2.56 4.3 2.59 4.4 2.57 4.4

productivity -7.32 5.2 -2.48 2.6 -1.76 2.0 -1.89 2.2 -1.91 2.3 -1.92 2.3

raw materials 0.50 0.4 -0.19 1.5 -0.27 2.2 -0.28 2.4 -0.28 2.4 -0.29 2.5

investment 0.10 0.2 0.22 3.4 0.24 3.7 0.22 3.4 0.21 3.4 0.21 3.3

cv-value 99*107 21.00 17.36 15.51 14.80 15.12

Note: dependent variable: product innovation, N=1270, T=5. t-val: t-values of pooled probit
assuming independent errors over time. Bold letters if t-values are larger than 1.96.
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Table 10: Innovation probit: Estimated standard errors

pooled SS seq. WNP-joint-uniform with k =

variable 20 50 100 263 880 1270

intercept 0.21 0.38 0.37 0.35 7.30 0.38 0.37 0.37 0.37 0.37

ln(sales) 0.025 0.037 0.035 0.034 0.61 0.036 0.035 0.034 0.034 0.034

�rm size 0.21 0.31 0.25 0.19 0.16 0.22 0.20 0.20 0.20 0.20

imp. share 0.15 0.24 0.24 0.24 4.63 0.25 0.25 0.24 0.24 0.24

FDI-share 0.47 0.68 0.65 0.64 4.94 0.63 0.59 0.60 0.59 0.59

product. 1.10 1.32 0.84 1.05 1.39 0.96 0.87 0.84 0.82 0.83

raw mat. 0.097 0.13 0.12 0.12 1.34 0.12 0.12 0.12 0.12 0.12

invest. 0.040 0.063 0.063 0.062 0.63 0.065 0.064 0.063 0.063 0.063

Note: see Table 8. ML-RE uses di�erent error variance normalization, therefore, it is omitted from
the table.
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Figure 1: Kernel plots of the estimators for �N (DGP 1, T=5)

Note: upper window: N=100, lower window: N=400. WNP-joint-uniform (thick solid line), ML-

RE (short dashes), pooled (thin solid line), sequential (long dashes), GMM-SS (dots). The band-

widths are 0.033 and 0.016 using the Gaussian kernel.

Figure 2: Kernel plots of the estimators for �N (DGP 1, T=10)

Note: upper window: N=100, lower window: N=400. WNP-joint-uniform (thick solid line), pooled

(thin solid line), sequential (long dashes), GMM-SS (dots). The bandwidths are 0.029 and 0.014

using the Gaussian kernel.

Figure 3: Cross-validation function for innovation probit estimated with

WNP-joint-uniform
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Figure 1: Kernel plots of the estimators for �N (DGP 1, T=5)

Note: upper window: N=100, lower window: N=400. WNP-joint-uniform (thick solid line), ML-

RE (short dashes), pooled (thin solid line), sequential (long dashes), GMM-SS (dots). The band-

widths are 0.033 and 0.016 using the Gaussian kernel.
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Figure 2: Kernel plots of the estimators for �N (DGP 1, T=10)

Note: upper window: N=100, lower window: N=400. WNP-joint-uniform (thick solid line), pooled

(thin solid line), sequential (long dashes), GMM-SS (dots). The bandwidths are 0.029 and 0.014

using the Gaussian kernel.
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Figure 3: Cross-validation function for innovation probit estimated with

WNP-joint-uniform
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Table 3: Asymptotic standard errors (x 10)
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Table 4: Measures of accuracy used in the Monte Carlo study

!���������(*+�%���%%�%������ [ ]( � )
100 2

1

1
2

R r
r

R

β β− °∑
=

,�$�����&���(��+����%%�%����� ��$���U� | � |β βr − °

8��(��&��(5�.����'�(���$�%$��%%�%����9
100

1R
r

r

R as std( ) std err( )

std err

� �

( � )

β β
β

−

=
∑

������ �β r
���$�asstd r( � )β �$�����(��7��'�&&�'������(���������$��7���(������$��(5�.����'�(���$�%$��%%�%��������$����%�.��'�����

	
� std( � )β �$�����(��7����.�%�'���(���$�%$��%%�%��&��7���(������$�'�&&�'����(�����7��,�����:�%���(�+$5




T.3

Table 5: Simulation results for AR (1) (α = 08. ) and random effects (δ = 0 2. ) (DGP 1)
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Table 5: continued
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Table 6: Simulation results for pure random effects (α δ= =0 05, . ) (DGP=2)
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Table 7:  Simulation results for MA(1) (DGP=3)
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Table 8: Simulation results for AR (1) (α δ= − =08 0. , ) (DGP 4)
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Table B.1: Simulation results for AR(1) (α = 0 8. ) and random effects (δ = 0 2. ) (DGP 1):

upper and lower bounds and width of 95 % confidence intervals §
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Table B.1: continued
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Table B.2: Simulation results for AR (α = 08. ) and random effects (δ = 0 2. ) (DGP 1):

distribution of number of neighbours (k)

T = 5;������%�.��'�����( T = 10 ;�
���%�.��'�����(

��	���� �� �� �� 
� �) )� �
 �� �� �� 
� �) )� �


���<�����+��&�%� �
� �
� )
� ��
� ��
� 
�
) �
� �

�
�����$�6�+��&�%� )
� ��
� ��
� ��
� �
� �
� ��
� 
�
�
���<�����*+�$%
 �
� �
) �
� �
) ��
� ���
�����$�6�*+�$%
 ��
� ��
� ���
���<�����3+��&
�� 1−

βxS �
� �
� �
� ��
� �)
� ��
� �
� �
� �

�

=���<�����+��&�%� �
� �
� �

 ��
� ��

 �
� �
� 

� ��
�
=�����$�6�+��&�%� �
� �
� ��
� ��
� � � � � � � �
=���<�����*+�$%
 �
� �
� ��
� �
� ��
�
=�����$�6�*+�$%
 �
� ��
� ���
=���<�����+��&
�� 1−

βxS �
� �
� �
� 

� �
� ��
� �
� �
� 

� ��
�

=���<�����+��&
����$
 �


 �
� �
� �
� �
) 

� �)
� �
�

 �
� �
� �
� �
� �
� ��
�

��	���� �
 ��
 �)
 ��
 �

 ��
 ��
 �
 ��
 �)
 ��
 �

 ��
 ��


���<�����+��&�%� �
� �)
� ��
� ��
� ��
� �
� �
) �
� ��
� ��
� ��
� �

�
�����$�6�+��&�%� �
� ��

 �

� 
�
� ��
�
���<�����*+�$%
 �
� �)

 ��
) ��
� ��
� 

� �
� 

� ��
� ��
�
�����$�6�*+�$%
 ��
� 
�
) �
� ��
�
���<�����+��&
�� 1−

βxS ��
� ��
� ��
� ��
� �

 �
) �
� �
� �

� ��
� �)
� ��
�

=���<�����+��&�%� �
� �
� �
� �
� �
� �

 ��
� �
� �
� �
� 

� ��
�
=�����$�6�+��&�%� �
� �

 �
� �
� ��
� �
� �
� �
� �

�
=���<�����*+�$%
 �
� �
� �
� �
� �
� ��
� �
� ��
�
=�����$�6�*+�$%
 �
� �
� �
� ��
� �
� ��
�
=���<�����+��&
�� 1−

βxS �
� �
� �

 �
� �
� )
� ��

 �
� �
� �
� �
� ��
�

=���<�����+��&
����$
 �
� �

 �
� �

 �
) 

� ��

 �
� �
� �
� �
� �
� �
� ��
�

��	����� ��� ��� ��� )�� �

 ���� ���� ��� ��� ��� )�� �

 ���� ����

=���<�����+��&�%� �
� �
� �
� �
� �
� �
� �)
� �
� �
� �
� �
� �
� �

�
������ 
��

�9�&�%�4�	���? �

��
�9�&�%�4�	���
� ������(�������������������



Table B.3: Simulation results for pure random effects (α δ= =0 05, . ) (DGP 2):

distribution of number of neighbours (k)
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Table B.4: Simulation results for MA(1) (DGP 3): distribution of number of neighbours (k)
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Table B.5: Simulation results for AR (1) (α δ= − =08 0. , ) (DGP 4): distribution of number of

neighbours (k)
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Table C: Descriptive statistics for variables used in application
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