
Evaluation of an FPGA and PCI Bus based
Readout Buffer for the Atlas Experiment

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Diplom-Physiker Matthias Müller
aus Worms

Mannheim, 2004

Dekan: Prof. Dr. Jürgen Potthoff, Universität Mannheim
Referent: Prof. Dr. Reinhard Männer, Universität Mannheim
Korreferent: Prof. Dr. Peter Fischer, Universität Mannheim

Tag der mündlichen Prüfung: 14. Februar 2005

Evaluation of an FPGA and PCI Bus based Readout Buffer for the Atlas Experiment

Abstract
This dissertation evaluates a readout buffer system for the ATLAS detector trigger and data

acquisition system. ATLAS is a high energy physics experiment at the large hadron collider
(LHC) with the aim to reach new frontiers in the investigation of the structure of matter. The
high precision ATLAS detector produces a huge amount of data, 40 TByte/s, which is reduced
by a three-level trigger system for online event data selection.

The readout buffer system acts as a data buffer while the second trigger level computes the
trigger decision. ATLAS uses a sequential selection in the level 2 trigger which means that
all event data required for the trigger decision is requested from the readout buffer component
subsequently. This increases the complexity of the readout buffer device and its output event
rate. Furthermore a region-of-interest (RoI) concept limits the amount of data necessary for
the processing of one event inside the level 2 processor by defining the detector region with
interesting data. Thus, approximately 10 kHz output rate have to be provided while feeding
∼1 kByte data packets with 100 kHz at the input.

The evaluated implementation of this readout buffer should be based on commercial “of-
the-shelf” hardware. Thus a conventional Linux server PC with four PCI Bus segments has
been used. This approach leads to uniformity in the ATLAS data acquisition system because
all hardware beginning with the second trigger level is built of similar PCs. But a standard
PC is not able to meet the previously mentioned requirements. Therefore it is extended (or
accelerated) by a number of PCI based FPGA co-processor boards. Considering the above
mentioned sequential selection and RoI concept, such a complex buffer component based
on standard server PCs and FPGA co-processors has never been investigated before in high
energy physics.

The FPGA co-processor is a simple component extending the PC for the time critical
receiving and buffering of data. It is able to process data from four ATLAS detector links
which allows the grouping of 12 to 16 links in one PC. Measurements show that this system is
able to sustain the ATLAS requirements. Currently Linux OS, running on the PC system and
handling the Gigabit Ethernet network I/O with the rest of the data acquisition system, is the
main bottleneck. Improving this could be the subject of future investigations.

Evaluierung eines FPGA und PCI Bus basierten Auslesespeichers für das Atlas
Experiment

Zusammenfassung
Die vorliegende Arbeit evaluiert einen PCI Bus basierten Auslesespeicher für das Daten-

erfassungssystem des ATLAS Detektors. ATLAS ist ein Hochenergiephysikexperiment am
Large Hadron Collider (LHC), mit dem Ziel neue Erkenntnisse über die Struktur der Ma-
terie zu gewinnen. Der hochempfindliche ATLAS Detektor produziert eine große Menge an
Ereignisdaten, etwa 40 Tbyte/s, die von einem dreistufigen Triggersystem in Echtzeit analysiert
werden müssen.

Die in dieser Arbeit vorgestellte Auslesespeicherkomponente speichert die Ereignisdaten
während die zweite Triggerstufe über deren weitere Verwendung entscheidet. Dabei werden
alle zur Triggerentscheidung erforderlichen Daten nach und nach vom Auslesespeicher ange-
fordert. Dies erhöht sowohl die Komplexität des Auslesespeichers wie auch die Anforderun-
gen an seine Ausgangsrate. Um die Menge der notwendigen Daten zu reduzieren wird die De-
tektorregion, in der sich interessante Ereignisse befinden, bereits vom Level 1 Trigger erkannt
und an die zweite Triggerstufe weitergegeben. Dadurch reduziert sich die Ausgangsrate auf
10 kHz, während Datenpakete in der Größenordung von 1 kByte mit 100 kHz an die Kompo-
nente übertragen werden.

Ein wesentliches Ziel ist die Implementierung des Auslesespeichers mit kommerzieller,
weit verbreiteter ,,standart“ Hardware. Deshalb wurde ein konventioneller Linux PC mit vier
PCI Bus Segmenten benutzt. Dies erhöht den Anteil an einheitlichen Hardware Komponen-
ten im gesamten Triggersystem. Da ein solcher PC nicht in der Lage ist die hohen ATLAS
Anforderungen an Eingangs und Ausgangsrate zu erfüllen, wurde er mit PCI Bus basierten
FPGA Beschleunigerkarten erweitert. Unter Berücksichtigung der Komplexität der Kompo-
nente aufgrund der Verarbeitung von Level 2 Anfragen, ist dieser Ansatz für einen Ausle-
sespeicher, bestehend aus Standart PC und FPGA Beschleuniger Hardware, einmalig in der
Hochenergiepyhsik.

Die FPGA Beschleunigerkarte ist eine einfache Komponente, die den PC in zeitkritischen
Aufgaben (Entgegennehmen und Speichern der Daten) unterstützt. Sie ist in der Lage, Daten
von vier Detektorverbindungen gleichzeitig zu verarbeiten. Dies ermöglicht den Aufbau eines
Auslesespeicher – PCs der 12 oder sogar 16 Detektorverbindungen verwalten kann. Mes-
sungen bestätigen, dass eine solche Komponente die ATLAS Anforderungen erfüllen kann.
Der bandbreitenbegrenzende Faktor ist im Moment das Linux Betriebssystem. Dies hat unter
anderem die Aufgabe die Gigabit Ethernet Verbindungen zu den Triggerprozessoren zu ver-
walten. Hier sind noch weitere Verbesserungen möglich.

Contents

Introduction 1

1 Atlas Data Aquisition 5
1.1 General Overview . 5
1.2 The ATLAS Detector . 8
1.3 The ATLAS Data Acquisition Chain . 9
1.4 The ATLAS Data Acquisition Event Format 14

2 The Atlas Readout Subsystem Architecture 17
2.1 Requirements for the ATLAS Readout Subsystem 17
2.2 Readout Buffers in Other Experiments . 20
2.3 ATLAS Readout Subsystem Architecture 23

2.3.1 Architectural and Technology Choices 23
2.3.2 Cost Modelling . 25
2.3.3 Previous Implementation Approaches 27
2.3.4 The ATLAS Baseline Architecture 32

2.4 Summary . 34

3 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor 35
3.1 The FPGA Co-Processor MPRACE . 36
3.2 The MPRACE ROBIN . 39

3.2.1 Hardware Usage . 39
3.2.2 FPGA Firmware Overview . 40
3.2.3 Event Buffer Management . 42
3.2.4 SLink Input and Event Data Generator 43
3.2.5 Input Handler . 44
3.2.6 Message Decoder . 45
3.2.7 Request Handler . 48
3.2.8 DMA Engine . 50
3.2.9 Delete Handler . 52
3.2.10 RAM and DMA Arbiter . 54
3.2.11 The Controller Module . 54

3.3 VHDL Design, Synthesis and Verification 55
3.4 Summary . 56

5

4 ROBIN Messaging and Readout System Software Design 57
4.1 ROS Host PC . 57
4.2 ROS PC Software . 59

4.2.1 Atlas Software Overview . 59
4.2.2 ROS Software Layer Model . 60
4.2.3 Main Application and Fragment Manager Interface 61
4.2.4 ROBIN Message Passing . 66
4.2.5 Low-Level MPRACE Library and Device Driver 72

4.3 Summary . 72

5 Results and Analysis 75
5.1 The Test Setup . 75
5.2 System Test Results . 76

5.2.1 MPRACE Request Performance . 77
5.2.2 Influence of Delete Messages . 79
5.2.3 Influence of SLink Input . 80
5.2.4 Multi-Threaded Versus Single-Threaded ROS Software Design . . . 81
5.2.5 Performance of a ROS PC with Multiple MPRACE ROBINs 84
5.2.6 Influence of Network I/O . 87

5.3 Conclusions . 89

6 Conclusion and Outlook 91
6.1 Summary . 91
6.2 Discussion of the Current Design . 92

6.2.1 The MPRACE ROBIN . 92
6.2.2 ROS PC and Software . 94

6.3 The Final ATLAS Readout System . 95
6.4 Future Experiments . 96

A Glossary 99

Introduction

In today’s picture of the structure of matter physicists still have a large number of open ques-
tions. Currently the physics of the ingredients of the matter, their properties, and mutual
interactions is described by the Standard Model [PRSZ95]. It classifies particles in two ba-
sic types of fermions1: leptons and quarks and their interactions: electromagnetic, weak, and
strong. Each particle of matter up to the atoms can be assembled and its properties explained
out of the concept of leptons and quarks and the physics described by the Standard Model.
But some assumptions of the Standard Model are not yet experimentally proved.

The electroweak interaction, which unifies the electromagnetic and weak interaction, is
mediated by four gauge bosons2: three massive (W± and Z0) for the weak interaction and one
massless (Photon) for the electromagnetic interaction [PRSZ95]. The appearance of massive
together with massless gauge bosons could be explained by the existence of a Higgs particle
with a mass of up to 800 GeV [Col99]. This postulation of the Standard Model has not been
experimentally proved yet.

If the existence of the Higgs particle can not be proved, a theory beyond the Standard
Model postulates new supersymmetric structures at energies above 1 TeV with a whole set of
new particles [Col99].

Only the Tevatron accelerator at Fermilab, with its centre-of-mass energy of 1.96 TeV, can
currently reach these energy regions. To extend the opportunities for physics experiments in
these energy regions, the LHC (Large Hadron Collider) project has been raised at the European
Particle Research Laboratory CERN. LHC is a proton-proton collider with an energy level of
up to 14 TeV well suited to investigate the above mentioned physical questions. Its interaction
cross-sections for various physics events is increased by one order of magnitude compared
to the Tevatron accelerator. This raises the probability to observe new phenomena around
1 TeV [Ses00].

Additionally a more precise measurement of the b quark and the latest observed top quark
can be done with LHC allowing to measure rare decay channels and the CP violation of the
bb̄ decay (see [Ses00] for more details).

For a measurement of the proton-proton interaction a particle detector is needed. ATLAS
[Col99] is one of four LHC detectors which will start in 2007. It has been designed to have
sufficient physics performance to study the previously mentioned fundamental questions.

To achieve a reasonable precision a high effort is necessary. ATLAS consists of a number
of sub-detectors to precisely record a high variation of particles created by the proton-proton

1Fermions are particles with spin 1/2, 3/2, 5/2 or more.
2Bosons are particles with spin 1, 2, 3 or more

1

2 Introduction

scatter process and their tracks. Each event recorded by the detector generates approximately
1 MByte of data. Every 25 ns a new event appears in the LHC which leads to an event rate of
40 MHz, and a data volume of 40 TByte/s. Since this huge data volume can not be recorded, a
pre-selection of physically reasonable and desirable events must be done within the detector’s
data acquisition system. This requires at least a partial analysis of the event which has to be
done before the data is permanently recorded without disturbing further event detection. The
detector’s dead-time, the time in which no event data can be acquired, should not increase due
to the online data analysis.

Thus staged hierarchical trigger systems are used for event pre-selection. Every stage
receives event data with a lower rate and investigates it in more detail. Powerful algorithms
have to be developed which analyse the event’s physics and filter background or uninteresting
events. A powerful computing architecture must be present together with facilities to move
event data partly over long distances between the detector and the “counting rooms”.

ATLAS uses three trigger levels to reduce the amount of data by a factor of 105 to a
recordable event rate of 100 Hz [Col99]. Only the first of them processes events with custom
hardware based on radiation-hard ASICs (Application-Specific Integrated Circuits) or FPGAs
(Field-Programmable Gate Arrays). The other two trigger stages are based on large PC farms.

Due to the rapid increase of computing power and network technology in the past decade,
more and more commercial products can be used even for time-critical tasks. This comprises
computing nodes usable as trigger processors and network or data-bus technologies. Commer-
cial “off-the-shelf” (COTS) components have a number of advantages compared with custom
electronics components:

• Parts of the system can be exchanged against more powerful components without a re-
design of electronics. This requires the compatibility of new components which is also
a widespread issue in industrial applications.

• The manufacturers can give functional guarantees and support.

• The components are more cost effective then custom hardware.

• The components can be purchased in a short time. Thus recent hardware can be used at
the experiment’s start-up.

The ATLAS community has decided to use as many COTS components as possible within
the trigger and data acquisition system [Gro03]. Nearly all components starting with the
second trigger level are planned to be commercial products. Level 2 and level 3 trigger will
use large PC farms. They are connected with Gigabit Ethernet [KH98] using commercial
switches.

Another concept followed by the ATLAS trigger and data acquisition system is to keep
the system as uniform as possible. The usage of similar PC technologies in the various sub-
systems reduces the administration effort and the amount of different software.

This thesis focuses on the boundary between the detector readout electronics and the com-
mercial network to the second and third trigger level stage. The component present at this
place, the readout subsystem (ROS), receives the detector data on 1600 point-to-point link
connections with up to 100 kHz and forwards it to the trigger networks (Gigabit Ethernet) on
demand.

Contrary to almost all other high energy physics experiments, the ATLAS level 2 trigger
requests all event data required for the trigger decision from the ROS. Depending on the trigger

Introduction 3

algorithm flow, event data from different sub-detectors is requested sequentially. Furthermore
only data within a detector region, called region-of-interest and defined by the level 1 trigger,
is asked. Both concepts reduce the network load at the input of the level 2 trigger, but com-
plicates the ROS implementation and increases the event data output rate of this component.
This makes the ROS architecture and implementation, evaluated within the thesis, a new and
unique system in high energy physics.

Readout buffer components in the previous generation of high energy physics experiments
have been less demanding. These components where based on the VME 3 bus in most cases
combined with a large amount of custom hardware. Contrary, ATLAS follows the guideline
to use as many standard, widespread commercial “of-the-shelf” components as possible. This
thesis follows this idea and tries realising it within the ROS. The goal of this thesis is to
implement a readout subsystem component with the following characteristics:

• Following the ATLAS community decision, the readout subsystem implementation should
be based on commercially available PC hardware. Custom hardware development should
be done as less and as simple as possible. Currently widespread PC systems provide
66 MHz / 64 Bit PCI buses which should be used for event data transport instead of the
VME bus utilised by previous experiments.

• The readout buffer should concentrate many input links to one network output. This
concept is suggested by the proportion between incoming data and the data required by
the trigger farms. It helps to minimise the necessary amount of ROS hardware and level
2 and Event Building network switches and reduces the systems costs. But it puts also
higher demands on each single component.

• The readout buffer should be the first instance of event building when a level 2 accept
for an event occurs. It should perform partial event building on the data stored within all
ROB’s inside a crate and thus remove load from the ATLAS event building farm (SFI).

• The readout buffer should be tested in a realistic data-flow test environment.

The readout subsystem, presented in this thesis, uses a PC with multiple 66 MHz / 64 Bit
PCI buses similar to the components used within the trigger farms. This generates uniformity
between the components of the ATLAS data acquisition system.

Only the hardware interface to the detector front-end via SLink is done by a custom elec-
tronics component. Its first prototype has been based on the MPRACE FPGA co-processor
[MPR]. MPRACE has been developed as a multi-purpose PCI based FPGA hardware. It is
used in various physics and computer science applications:

• Acceleration of astrophysical simulations [Lie04].

• Image processing [Hez04].

• Trigger algorithm acceleration for High Energy Physics Experiments [Bro04] [HAK+04].

The board is flexible and can be equipped easily with four connectors for ATLAS detector
readout links. This is an important issue to achieve cost-effectiveness and reduce the number

3Versa Module Europa

4 Introduction

of PC components in the readout system. MPRACE is also a simple component comprising
only an FPGA, memory, a PCI bridge, and the detector links.

The present thesis describes the development of a PCI bus based ATLAS readout buffer
using the MPRACE FPGA co-processor. Test results show its usability. The thesis is divided
as follows:

The first chapter introduces the ATLAS detector and its data acquisition system. It presents
the ATLAS experiment and compares it to previous experiments. Furthermore this first chapter
explains how detector data is acquired, processed, and recorded by the ATLAS trigger and
data acquisition chain. The readout subsystem which is a central part of this chain gets also
introduced here.

Chapter 2 focuses on the presentation of the ATLAS readout subsystem. It explains its task
more detailed and shows the demands imposed by other ATLAS components. In the second
part this chapter discusses various ROS implementation approaches and previous solutions.

Chapter 3 describes the MPRACE hardware and the FPGA firmware developed for the
ROS application. It shows how data is received on four readout links, buffered, and made
available on demand.

The software application running on the multi PCI bus host PC is described in chapter 4.
The software design has major influence to the system performance. Chapter 5 shows test and
measurement results and discusses them.

Finally chapter 6 discusses the approach presented within this thesis, points out possible
improvements, and gives an outlook to readout systems in future experiments.

Chapter 1
Atlas Data Aquisition

The present chapter introduces the ATLAS experiment and the ATLAS data acquisition (DAQ)
system. The ATLAS detector generates a huge amount of data which has to be pre-selected
and recorded in real-time. This task is performed by the trigger and data acquisition system.
It is constructed out of several processors, buffers, and data transportation elements. One
of them is the readout subsystem (ROS). Its implementation is the main topic of the present
thesis. The ROS position, task, and external boundaries in the ATLAS data acquisition system
will be clarified here.

The first section of this chapter gives a general overview on the LHC accelerator and the
ATLAS experiment. The second section introduces the ATLAS detector setup and the third
section describes its data acquisition chain.

1.1 General Overview
To reach new frontiers in particle physics, experiments at a very high energy level are neces-
sary. New particles, postulated by physicists as a prove or extension of the Standard Model
[PRSZ95], are expected to appear at energies around 1 TeV [Col99]. The probability of physi-
cal processes to be investigated is very low [Col99] wherefore the rate of events has to be very
high to observe sufficient target processes in a reasonable time.

Accelerator Institute Centre-of-Mass Crossing Event Rate
Energy [GeV] [ns] [MHz]

PEP II SLAC 10.58 4.2 238
KEK B KEK 10.58 2 500
HERA DESY 314 96 10.4
Tevatron (Run II) Fermilab 1960 132 7.6
LHC CERN 14000 25 40

Table 1.1: Centre-of-mass energy and event rates for various recent and future colliders [FRB+00]
[Col95a] [Col02b] [Wol98].

These requirements characterise recent accelerator machines. Table 1.1 shows parameters
of a selection of accelerators which are currently in use or under construction. The most

5

6 Atlas Data Aquisition

challenging accelerator LHC (Large Hadron Collider), which will start operating at 2007, will
reach a new order of magnitude in centre-of-mass energy. By colliding two proton beams
accelerated to 7 TeV a centre-of-mass energy of 14 TeV can be reached. This is substantially
more then the present most powerful accelerator Tevatron at Fermilab and will extend the
ability to study the physics mentioned above and in the introduction. LHC also provides an
increase of the event rate compared to the Tevatron accelerator which raises the probability to
observe rare physical events. Other accelerators (e.g. PEP II, KEK B, or HERA) have much
lower centre-of-mass energies and are used for other physics studies.

To record rare physical events at these colliders, highly precise detectors are necessary.
Typically those consist of a number of different sub-detectors to ensure that a large variation
of particles can be observed precisely. Each sub-detector delivers the data in a high number
of readout channels which transport either analog or digital data. Together with the high event
rate provided by the accelerator this results in a large amount of data for each recorded event.

1.E+06

1.E+07

1.E+08

1.E+09

1.E+00 1.E+01 1.E+02

Experiment's Data Volume

E
ve

nt
 R

at
e

1 TByte/s 10 TByte/s
1 MHz

10 MHz

100 MHz

1 GHz

100 TByte/s

BaBar

CDF

D0

LHCb
Atlas,
CMS Alice(p-p)

Hera B

Figure 1.1: Overview of recent experiments at the PEP II (BaBar), Tevatron (CDF, D0), and HERA
(HERA B) collider and experiments currently under construction at LHC (ATLAS, CMS,
ALICE, LHCb) [Col95a] [Col02b] [Col02d] [Col02a] [Col02c] [Col04] [Col99] [Wol98].

Figure 1.1 shows the event rate against the generated data volume for various experiments
at the above mentioned accelerators. The two Tevatron experiments CDF and D0 deliver a
comparatively small data volume at an event rate of 7.6 MHz. The BaBar experiment, running
at the PEP II accelerator, is one of the most demanding currently running experiments in terms
of data acquisition and event processing. It delivers 5.4 TByte/s with an event rate of 238 MHz.

Compared to these already operating experiments, the four new detectors at LHC (ATLAS,
CMS, LHCb, and ALICE) will run at a rate of 40 MHz which is more than four times the rate
of Tevatron. Excluding LHCb, the data volume generated by these experiments will be one
order of magnitude higher. ATLAS and CMS will deliver nearly 40 TByte/s, ALICE even
80 TByte/s. This will substantially increase the demand on the experiment’s data acquisition
compared to today’s experiments.

But the basic operation of the data acquisition of all mentioned experiments is similar.
Since the data volume of none of them can be permanently written to storage media like
harddisk arrays or tapes, a pre-selection of events has to be done. To pre-select or “trigger”
on single events, the analysis of at least parts of the detector event data is required to separate
these from background or irrelevant events.

1.1 General Overview 7

The latency for this process is a critical value for the efficiency of an experiment because no
data can be taken meanwhile. Computing this trigger decision introduces an additional dead-
time (a duration where no data can be acquired) into the data acquisition process [FRB+00].

To ensure that no physics process is lost during the trigger process, the dead-time has to be
smaller than the rate of physical events to investigate. Its maximum allowable value has to be
smaller than the event rate (25 ns in case of the LHC experiments). Thus trigger systems with
a small execution time are required. Contrary high data reduction factors are needed to deal
with the large event rates of modern accelerator machines. This requires a deep investigation
of the event data with complex algorithms having long execution times.

To solve this contradiction, staged triggers are used which increase the data reduction
factor, the complexity of the analysis algorithm, and the used fraction of event data with each
stage [FRB+00]. The overall performance of a data acquisition system is influenced by:

• The efficiency of the analysis algorithm

• The performance of the trigger hardware

• The data transport between the trigger stages

The last two items mainly depend on technology choices and their efficient use inside the DAQ
chain whereas the first one depends on the choice of the trigger algorithm and its implemen-
tation.

Trigger algorithms can be classified into [FRB+00] [Con84]:

• Fixed-flow triggers

• Variable-flow triggers

• Logical triggers

• Arithmetical triggers

Fixed-flow triggers need a fixed amount of time to compute an accept or reject decision.
The processing time is independent of the event complexity. Most fixed-flow triggers are sim-
ple and fast algorithms used in the first trigger level. Contrary variable-flow triggers consume
a variable amount of time which depends on the complexity of the event. This class of triggers
contains counters, loops, and programs. Only a minimum and maximum execution time can
be specified. Logical trigger are implemented with Boolean logic operations like AND and
OR whereas arithmetical triggers use pulse height and counter values to calculate the trigger
decision.

Variable-flow trigger processors can be distinguished into data-driven processors and program-
driven processors [FRB+00]. Data-driven processors are pushed by the arriving of event data.
The algorithm does not influence the quantity of data provided to the processor. The execution
time does not depend on the event data. Contrary, in program-driven processors the program
decides on the executed data. The execution time depends on the processed event data.

During the execution time of a trigger processor data must be stored in buffer elements.
This requires memory which is large enough to keep all data arriving from the detector while
the trigger decision is taking place. Furthermore, rejected events have to be sorted out within
the buffer element.

8 Atlas Data Aquisition

Buffer elements attached to fixed-flow triggers can be implemented with simple pipelines
(see level 1 trigger in [Col96]) or circular buffers (see level 1 trigger in [Col95a]) which are
long enough to keep the event data for the fixed processing time. On trigger reject, event data
leaving the buffer is simply not forwarded to the next trigger level.

Variable-flow triggers require a more flexible buffer mechanism. Depending on the exe-
cution time of the algorithm, only a maximum storage time is known per event. The buffer,
typically fast SRAM, Dual-Port RAM 1, or similar (see e.g. [Col95a]), must be able to keep
all events at least for this time. In case of an accept the event has to be localised inside the
buffer and sent to the successive trigger level.

1.2 The ATLAS Detector
ATLAS is one of the experiments currently built at the new LHC accelerator at CERN (see
1.1). It is a general purpose detector to discover new physics at the boundary of current
knowledge such as the Higgs boson or supersymmetrical extensions to the Standard Model.
An international collaboration of approximately 2000 physicists from 33 countries participate
in building up the experiment.

Figure 1.2: The Atlas Detector [Ses00].

To meet the physical goals the ATLAS detector has to recognize and track various particle
signatures from electrons, γ , muons, jets, or missing energies [Sin00]. Therefore ATLAS
comprises a number of sub-detectors which are placed in a number of layers around the proton
beam interaction point. This is shown in Figure 1.2.

The area close to the interaction point, the innermost radius, is covered by the ATLAS inner
detector which is divided again in three sub-detectors: Pixel, SCT, and TRT [Col99] [Ses00].

1Dual-Port RAM can be independently accessed for reading and writing.

1.3 The ATLAS Data Acquisition Chain 9

It allows a precise recognition, track recording, and momentum measurement of particles.
The whole inner detector is embedded in a solenoid magnet having a 2 T central field. Ex-
ternal to this solenoid are the electromagnetic calorimeter to identify and measure electrons
and photons, and the hadronic calorimeters to identify and measure hadronic particles. The
outermost parts of the detector contain the muon spectrometer for a precise muon track record-
ing [Col99] [Ses00].

All these sub-detectors deliver the data about the recorded events in up to 150 · 106 data
channels resulting finally in approximately 1 MByte data for each event when permanently
recorded. With an event rate of 40 MHz ATLAS generates a data volume of 40 TByte/s which
has to be handled by the data acquisition chain.

1.3 The ATLAS Data Acquisition Chain
As already described in the previous chapter, the precision of the ATLAS sub-detectors results
in a high data volume processed by the data acquisition with the experiment’s interaction rate
of 40 MHz. An overall data of 40 TByte/s is produced by ATLAS. To reduce this to a rate of
300 MB/s, which can be written to a permanent storage medium, an efficient trigger system is
needed. This has to be flexible enough to adapted it to the various physics phenomena targeted
by ATLAS.

Section 1.1 already introduced the concept of staged triggers in high energy physics to
reduce the huge amount of data delivered by the experiment’s detectors. ATLAS makes use
of this concept too. Its DAQ system is implemented by three trigger levels, which reduce the
event rate by a factor of 105.

Figure 1.3 shows the ATLAS trigger and DAQ system. Beside the three trigger levels var-
ious other modules are integrated into the ATLAS DAQ. They are described in the following
sub-sections.

Level 1 Trigger

The level 1 trigger examines event data from the ATLAS calorimeter and muon sub-detector
to form a trigger decision. The trigger algorithm analyses threshold information of energy and
momentum to find signatures of possible particles. This level 1 arithmetic trigger (see 1.1)
is implemented using synchronous, pipelined, parallel processors driven by the LHC 40 MHz
clock. ASIC2 and FPGA3 technology is used for the processors which are partly placed very
close to the detector to prevent signal synchronisation problems due to the wide spread area
of ATLAS.

Computing the level 1 decision takes 2 µs, every 25 ns a new calculation must be initiated
[Gro98a]. During this decision process the event data of all sub-detector is stored inside fast
pipeline memories. On accept, event data is passed by the readout drivers to the readout
buffers. Both are described later in this chapter.

The rate of level 1 accepts can be estimated by simulating the physical processes in the
LHC proton-proton interaction together with the behaviour of the level 1 trigger processors
[Gro98b]. The result is a table which assigns various particle signatures an estimated rate.
This table is called “Trigger Menu” and gives a detailed report on the expected level 1 accept

2ASIC: Application-Specific Integrated Circuit
3FPGA: Field Programmable Gate Array

10 Atlas Data Aquisition

Calo Muon TrackingDetector

ROD

Level 1
Trigger

LVL1
Accept

ROI
Builder

ROI

LVL2 and Event
Builder Networks

Level 2
Farm

LVL2
SV

DFMSFI

EF
Farm

SFO

Mass
Storage

ROS

ROB ROB ROB ROB

40 MHz
45 TB/s

100 kHz
136 GB/s

3 kHz
4 GB/s

200 Hz
300 MB/s

1600 Readout Links (ROL)

Figure 1.3: The ATLAS trigger and event data acquisition. [Col99]

rate and how it distributes on the various physical events. Figure 1.4 shows the most recent
trigger menu for the initial LHC luminosity4 of 2 ·1033cm−2s−1 [VVT03].

According to this trigger menu a level 1 accept rate of 25 kHz is expected. Since this
estimation does not contain any safety factor, a larger accept rate must be targeted within
the trigger development. It has been decided to design the level 1 trigger and also all other
instances of the DAQ chain for supporting an accept rate of 75 kHz. Furthermore an extension
to 100 kHz is foreseen for a later experiment upgrade [Gro98a].

On accept, the level 1 trigger passes the detector area coordinates in which particles have
been found to the next trigger level. This area, called region-of-interest (RoI), is defined as
a pair of angles which describe a cone inside the ATLAS Detector with its top in the experi-
ment’s interaction point. It clearly shows the area where the next trigger stage (level 2) has to
run the search algorithms. This substantially reduces the amount of data required by the level
2 trigger (see the level 2 trigger subsection within this section).

4The luminosity is the number of particles per time and per area within an accelerator beam. [FRB+00]

1.3 The ATLAS Data Acquisition Chain 11

~ 25Total

5.0Others (prescaled, calibration, …)

0.1MU10+ EM15I

2.0TAU25+ xE30

0.4J60+ xE60

0.24J65

0.23J90

0.2J200

4.02EM15I

12.0EM25I

0.22MU6

0.8MU20

2 1033

cm-2s-1
Selection

~ 25Total

5.0Others (prescaled, calibration, …)

0.1MU10+ EM15I

2.0TAU25+ xE30

0.4J60+ xE60

0.24J65

0.23J90

0.2J200

4.02EM15I

12.0EM25I

0.22MU6

0.8MU20

2 1033

cm-2s-1
Selection

Figure 1.4: Level 1 trigger menu for the initial LHC luminosity of 2 · 1033cm−2s−1. The notations
of particle signatures are explained in [Col99]. The recent values have been obtained
from [VVT03].

Readout Driver (ROD)

In case of a level 1 accept decision the event data is passed over to the readout drivers (ROD).
1600 Readout drivers organised in a number of VME crates collect the event data from the
detector’s data channels. Their task is to provide a general interface from the detector to the
DAQ system, pre-format the event data by adding a header and a trailer (see section 1.4) or
performing zero suppression [Gro98a], and de-randomizing the event data. The latter ensures
that event data is sequentially transferred to the DAQ system. Furthermore a small buffer with
a size in the order of 16 words is present.

Readout Links

Altogether 1600 readout links (ROL) transport the event data over a distance of up to a few
hundred meters from the RODs to the readout buffers. The used technology is SLink a custom
unidirectional point-to-point link standard developed at CERN [BMvdB97]. Its concept is
shown in Figure 1.5.

SLink defines the interface between link implementation hardware and the user electronics.
Data is always transferred in one direction from the SLink source card (LSC) to the SLink
destination card (LDC). The interface to the source card prescribes 32 data signals and a clock
signal with up to 40 MHz which have to be supplied to the LSC. Data arrives on a 32 Bit bus
on the receiver (LDC) side together with the 40 MHz clock. Furthermore an error signal is
raised when data has been corrupted during transmission.

The return channel (from the LDC to the LSC) plays a minor role and comprises 4 data
bits and a flow control signal. The latter can be used to signal a link full condition to the user
hardware.

12 Atlas Data Aquisition

Figure 1.5: The CERN SLink standard. Only the link source and destination interfaces are specified
together with the outline of the interface cards. The physical implementation is application
dependent [BMvdB97].

The link technology is not fixed in the SLink standard. It has to be implemented on a
mezzanine which uses the electrical signals from the SLink connector. The outline of the
mezzanine and the SLink connector are determined by the SLink specification. Various physi-
cal link implementations are available: electrical parallel, electrical serial, and optical [vdBH].

The ATLAS experiment uses an optical implementation, which is called HOLA (High
Speed Optical Link for ATLAS), between the RODs and the ROBs. It is based on a 2 GBit/s
optical transceiver [RvdBH] with a throughput of up to 160 MByte/s. The source and destina-
tion cards use an FPGA to implement the SLink functionality. This FPGA controls the optical
transceiver and the serialiser to transfer the data and control words and communicates with the
SLink user through the standardised SLink connector.

Level 2 Trigger

The level 2 trigger is the second instance for trigger decisions in the ATLAS DAQ chain.
It takes the RoI information from level 1 which has been collected from the level 1 trigger
processors by the RoI builder. The trigger is implemented within a large farm of dual-CPU
PCs connected over a Gigabit Ethernet network. A number of supervisor PCs control the level
2 farm and distribute the trigger tasks and the RoI information collected by the RoI builder.

Level 2 is based on program driven trigger processor (see 1.1). Furthermore it requests the
required event data from the readout buffers. This might happen in several steps depending
on the trigger decision algorithm (“sequential selection”). Each event accepted by the level 1
trigger is investigated by one level 2 processor. The RoI concept prevents that all event data
is requested by the trigger with a rate of 100 kHz. Since the data of only a small number of
readout buffers, covering the desired area of the detector, is required, the amount of data to the
level 2 processor is very limited. In average the level 2 trigger requests only 7% of all event
data arriving from the detector per ROL. This corresponds to 7 kHz in average for a level 1
rate of 100 kHz per readout buffer.

The level 2 farm size can be obtained from a detailed model of the ATLAS DAQ chain.
This is done within a C++ program [Ver] simulating the level 2 trigger, succeeding stages,
and data transport and assembling delays. It is expected by this model that 496 PCs will be
needed to process all events accepted from level 1 with the above mentioned trigger menu. The
calculation is based on the assumption to have 8 MIPS (million instructions per second) CPUs

1.3 The ATLAS Data Acquisition Chain 13

within the PCs available. The mean latency for computing the trigger decision is expected to
be approximately 10 ms [Gro03] with a large variation from event to event. In the worst case
single events may require many times the mean latency for decision while events may also be
processed within a much smaller time. Finally 2-3% of all events accepted from level 1 also
pass the level 2 trigger.

Readout Subsystem (ROS)

The readout subsystem (ROS) stores the event data received from the readout drivers during
the level 2 decision. For each of the 1600 readout links, coming from the RODs, one readout
buffer (ROB) has to be provided which is large enough to cover the level 2 latency of 10 ms
with its large variation for single events.

Besides buffering of data, the ROS also serves requests for RoI data coming from the level
2 farm via Gigabit Ethernet. In case of a level 2 accept all data has to be passed to the event
building process with a second Gigabit Ethernet interface. Thus approximately 10% (7%
RoI requests + 2-3% level 2 accept) of all event data coming from the ROD leaves the ROBs
towards the level 2 and event building farms.

Due to the large difference between input and output the main architecture concept for the
ROS implementation is to group a number of ROL inputs and buffers to one network output.
This guides the architecture design choice for the ROS which will be explained in detail within
the next chapter.

Sub-Farm Input

On level 2 accept all fragments inside the 1600 ROBs are merged into one event data block for
a final investigation by the third trigger level, the event filter. This merging is done within the
sub-farm interface (SFI). A farm of approx. 59 PC’s [Gro03], all of them interconnected via a
Gigabit Ethernet switching network, is responsible for the collection of event data fragments
from all ROBs. The farm merges them into one and passes this data block over to the event
filter processors. The whole process is initiated and controlled by the dataflow manager (DFM)
which assigns each accepted event one SFI node to perform the event building operation.

The SFI farm must reach an overall event building rate which is equal to the level 2 accept
rate of 2-3 kHz (having a level 1 accept rate of 100 kHz). This requirement determines the farm
size of 59 PC’s which has been again calculated using the ATLAS DAQ model from [Ver].
Another value influencing the SFI farm size is the number of event data fragment sources.
These are the ROB outputs. Their number depends on the proportion between ROB inputs
and outputs. This will be explained in detail in the next chapter.

Event Filter

The event filter (EF) is the final trigger level of the ATLAS DAQ. It analyses the whole event
in detail thereby reducing the data rate by a factor of 10-20. This is done using modified
versions of offline algorithms which are normally used for the analysis of the already recorded
data.

The EF is again implemented in a PC farm connected to the SFI farm via a Gigabit Ethernet
switching network. On event filter accept the data leaves the DAQ chain through the sub-farm
outputs (SFO) to be permanently recorded on a disk array. The final event rate at the SFO is

14 Atlas Data Aquisition

in the order of 200 Hz. A data stream of ∼200 MByte/s has to be written to the permanent
storage medium.

1.4 The ATLAS Data Acquisition Event Format
The event data running through the previously described ATLAS data acquisition chain fol-
lows certain data format guidelines. These are specified in [BFM+04]. The data format has
been developed to support various features (from [BFM+04]):

• The event data format contains information redundancy to allow self consistency checks
of the event.

• The event format provides information whether the event has been corrupted during
transmission within the data flow.

• The event formatting information does not exceed 20% of the typical ATLAS event data
size.

• The event format is modular.

• The event format facilitates the identification of fragments.

Figure 1.6: The ATLAS event format [BFM+04].

Starting at the readout drivers (ROD) each instance of the ATLAS DAQ adds a header,
containing a set of information, to the event data. This is shown in Figure 1.6. The complete
event consists out of a number of sub-detector fragments. Each of them again consists out

1.4 The ATLAS Data Acquisition Event Format 15

Figure 1.7: The ROD event fragment format [BFM+04].

of multiple ROS or ROB fragments. A ROS fragment is built on the level of a ROS, which
groups a number of readout buffers (ROBs). Thus a ROS fragment contains a number of ROB
fragments. The ROB fragment is built on the level of the readout buffer. Each ROB fragment
contains one ROD fragment, supplied and formatted by the ROD out of the ATLAS raw event
data.

Firstly, the ROD adds a header and a trailer to the data containing information about data
sizes, event source, the level 1 ID (a unique number within a certain time assigned by the level
1 trigger), the bunchcrossing ID (a unique number within a certain time for each LHC event),
and some information why level 1 has accepted this event. This ROD data format is shown in
Figure 1.7.

Fragment Type Start-of-Header Marker
ROD 0xee1234ee
ROB 0xdd1234dd
ROS 0xcc1234cc
Sub-Detector 0xbb1234bb
Full Event 0xaa1234aa

Table 1.2: The Start-of-Header Marker encodings for the various event fragment types up to the full
event [BFM+04].

Secondly, the readout buffer adds a similar header to the event data containing redundant
information from the ROD header and status information. The result is a ROB fragment.
This continues on the level of the ROS (a composition of ROB fragments), the sub-detector
(containing all ROS fragments of one sub-detector), and finally the complete event which is
built by the SFI (see the previous section).

The first word of each header contains a value defining the type of the header. This allows
the identification of the instance which has built the fragment. Table 1.2 shows these “Start-
of-Header” markers used within the event data format. Upon this marker the data format and
type of contained fragments can be determined.

16 Atlas Data Aquisition

Chapter 2
The Atlas Readout Subsystem Architecture

This chapter describes in detail the ATLAS readout subsystem (ROS) for which this thesis
will present an implementation approach. The first section summarises the external depen-
dencies of the ROS component. The second gives an overview of previous readout buffer
implementation approaches and presents ATLAS ROS architectural choices.

2.1 Requirements for the ATLAS Readout Subsystem

The readout subsystem (ROS) is one of the central devices in the ATLAS data acquisition
chain. It collects all data accepted by the level 1 trigger and makes them available to the level
2 trigger on demand. As it is placed in the main ATLAS data flow, it has to fulfil a number of
requirements in terms of performance and usability.

Readout SubSystem

ROD
sends

event data

Level 2

requests event
data for ROI

SFI/EF

deletes
events

requests events
for event building

Online Control

configures,
monitors and

controls

Figure 2.1: The ROS dependencies [RMR02].

17

18 The Atlas Readout Subsystem Architecture

Figure 2.1 shows the dependencies of the ATLAS ROS and external DAQ components.
Input data is coming from the readout drivers (ROD) while the level 2 trigger and the sub-
farm input (SFI) are located at the ROS output. Finally the ATLAS online control configures
and controls the ROS component. All external dependencies are presented in more detail
below complemented with a quantification of the load.

Readout Driver

The readout driver pushes event data, accepted by the level 1 trigger, into the readout buffer
system. 1600 readout links, conform to the HOLA SLink implementation [RvdBH], are used
to transfer the data of the seven sub-detectors to the ROS. Each of these links has a nominal
bandwidth of 160 MB/s. Data arrives with the level 1 accept rate of up to 75 kHz upgradeable
to 100 kHz (see 1.3).

Each of the sub-detectors delivers a different event fragment size via the SLink connection.
This size is determined by the quantity of physical processes and also by the luminosity of the
LHC accelerator. It can be estimated by a detailed examination of the physical processes
inside the ATLAS detector. Table 2.1 summarises the results for the initial LHC luminosity of
2 ·1033 cm−2 s−1 and the design luminosity of 1·1034cm−2s−1 which will be achieved later by
the experiment.

Sub-Detector Number of ROLs Initial Luminosity Design Luminosity
[Byte] [Byte]

Pixels 120 200 500
SCT 92 300 1100
TRT 232 300 1200
EM Calorimeter 740 752 752
Hadron Calorimeter 88 752 752
Muon precision 192 800 800
Muon trigger 48 380 380
CSC 32 200 200
Level 1 trigger 56 1200 1200
Total 1600 1.0 MByte 1.3 MByte

Table 2.1: The number of readout links (ROL) and the fragment sizes per link for the ATLAS sub-
detectors. The experiment starts at the initial luminosity of 2·1033cm−2s−1. Later the design
luminosity of 1·1034cm−2s−1 will be reached [Col99].

These numbers are based on the assumption that the RODs perform a zero suppression and
compression of data for some sub-detectors (especially the electromagnetic calorimeter). This
has not yet been decided. Thus data fragment sizes of up to 1.6 kByte may be possible for the
electromagnetic calorimeter [Fra04].

Level 2 Farm

The level 2 trigger supervisor receives on level 1 accept a set of RoI definitions for further
investigation within the level 2 farm. It assigns a farm processor which starts to collect event
data fragments from the ROS. Due to the RoI principle of the level 2 operation, only event

2.1 Requirements for the ATLAS Readout Subsystem 19

data from a specific area of the detector is required (see section 1.3). Furthermore the data
from a number of sub-detectors is taken into account and data may be requested subsequently
in several steps by the trigger algorithm.

Thus estimating the event data rate which each ROB inside the ROS has to deliver to
the level 2 farm needs a model of the level 2 algorithms and the knowledge of the ATLAS
trigger menu. This modelling effort is done within the ATLAS modelling group [Atl]. A
complete model of the ATLAS DAQ chain, starting with the level 1 trigger, is done within this
group [Ver]. Its major assumptions are:

• The trigger menu from Figure 1.4 determinating the level 1 accept rate.

• The event fragment sizes from Table 2.1.

• Dual CPU PCs with 8 MIPS processors for the level 2 farm.

• A Gigabit Ethernet network to connect the level 2 farm with the ROS using the UDP/IP
protocol [Pos80] [Pos81].

• A custom transport layer protocol on the top of UDP defined by the ATLAS DataCol-
lection Group [Hau03].

• A bandwidth limit of 60 Mbyte/s to the SFI event building farm.

Sub-Detector Low Luminosity Design Luminosity
Average Max. Average Max.
[kHz] [kHz] [kHz] [kHz]

Pixels 0.67 0.98 0.99 1.42
SCT 0.53 0.74 0.79 1.08
TRT 0.19 0.22 0.04 0.05
EM Calorimeter 2.03 7.42 1.74 6.34
Hadron Calorimeter 1.36 1.99 0.89 1.30
Muon precision 0.10 0.20 0.29 0.57
Muon trigger 0.22 0.30 0.62 0.86

Table 2.2: Estimation of the level 2 request rates per readout buffer. One readout buffer stores the data
from one ROL [Col99].

An estimation of the level 2 request rate per readout buffer (ROB), obtained using this
model, is summarised in Table 2.2. One ROB stores the data arriving from one ROL. Table
2.2 presents a maximum and average request rate per ROB depending on the sub-detector.
Together with the event sizes shown in Table 2.1 each ROB generates the data volume listed
in Table 2.3.

Both tables show that the most request load is generated on Buffers handling the data from
the calorimeter sub-detector. Up to 7.43 kHz or 5.58 MByte/s flow from the readout buffer to
the level 2 farm at initial luminosity. This is caused by the level 2 trigger algorithm which
needs in most cases data from the calorimeter first. At design luminosity this value decreases.

The readout buffers have to keep the event data at least for the level 2 processing time
which is expected to be up to 10 ms with a large event by event variation (see 1.3). With an
input rate of 100 kHz and the event fragment sizes listed in Table 2.1 a minimum memory size
(without any safety factor) of 1200 kByte must be available in each ROB.

20 The Atlas Readout Subsystem Architecture

Sub-Detector Low Luminosity Design Luminosity
Average Max. Average Max.

[MByte/s] [MByte/s] [MByte/s] [MByte/s]
Pixels 0.13 0.20 0.50 0.71
SCT 0.16 0.22 0.87 1.19
TRT 0.06 0.07 0.05 0.06
EM Calorimeter 1.53 5.58 1.31 4.77
Hadron Calorimeter 1.02 1.50 0.67 0.98
Muon precision 0.08 0.16 0.23 0.46
Muon trigger 0.08 0.11 0.24 0.33

Table 2.3: The bandwidth needed for data requests per readout buffer. One readout buffer stores the
data from one ROL [Col99].

SFI and Event Filter

On level 2 accept the event data of all ROBs within the ROS is requested by the sub-farm input
(SFI) PCs for event building. In average 3% of all events accepted by level 1 are left at this
point. With a level 1 accept rate of 100 kHz, this adds another 3 kHz to the output rate of each
ROB. Depending on the sub-detector, between 0.6 and 3.6 Mbyte/s additional bandwidth is
used per ROB for this process. All event data rejected by level 2 will no longer be used within
the ATLAS DAQ and is deleted at the ROB level.

Online Control

Finally the ATLAS online control system is responsible for ROS configuration and control.
This requires the ROS to provide an implementation of a generalised software interface. Hav-
ing this, the online control can pass configuration data and is able to switch between various
run levels. Errors are also reported through this interface [Gro03].

Event monitoring may also be requested by online control. This means that the ROS
collects and delivers event data by a configurable set of parameters [Gro03]. Currently re-
quirements and implementation details for event monitoring on the level of the ROS are not
completely specified.

2.2 Readout Buffers in Other Experiments
The staged trigger architecture is widespread at various currently operational high energy
physics experiments. The trigger strategy is in most cases similar. Only the number of trigger
levels and their implementation differs from experiment to experiment.

The currently most demanding are CDF and D0 at Tevatron (Run IIb) and BaBar at PEPII
(see 1.1). The data acquisition and trigger strategy of the two Tevatron experiments is very
similar. There are three trigger levels to reduce the detector event data. The first two use
custom hardware operating on partial event data. The third level, a PC farm, analyses the
complete event after it has been reconstructed ([Col02b] [Col02d]).

The BaBar experiment has only two trigger levels. The first level trigger is built with
custom hardware and on accept the event building process immediately starts. Finally a PC

2.2 Readout Buffers in Other Experiments 21

farm analysis the complete event as it is done at D0 and CDF [Col95a].

One or more

trigger

levels

Readout

Buffer

Module

Readout

Buffer

Module

Readout

Buffer

Module

Controller Output

Detector Frontend

Data for trigger decision

accept

Event building network

(ATM, FDDI,

FiberChannel)

To final trigger

level

Readout Crate

VME, partly extended

by a second bus

systems

Event Data

Event Data

Figure 2.2: The generalised and simplified event data flow through trigger and readout buffer compo-
nents used by many experiments. A similar system can be found in the data acquisition of
CDF [Col02b], D0 [Col02d], BaBar [Col95a], [RMR02], and others.

In all experiments a readout buffer component stores the detector data prior to event build-
ing. The event data fraction required by the trigger is previously branched and directed into
the trigger processor(s). If the level 2 (CDF, D0) or level 1 (BaBar) has accepted the event,
data leaves the readout buffer component for event building and further analysis.

This data acquisition and trigger strategy is shown in Figure 2.2 with the focus on the
readout buffer component. Its main operation in all above mentioned experiments is to read
the event data from the detector, buffer it, and forward it on trigger accept. Therefore VME
bus crates with a number of custom modules or single board computers are present. These
readout modules provide the detector link destination and store the event data. On accept,
data is transported over the VME bus to the output component and sent to the event building
network. Partly the bandwidth of VME is extended by the use of a custom bus system (e.g.
the “Magic Bus” in D0).

All LHC experiments, except ATLAS, follow the same trigger and data acquisition strat-
egy. The main difference to previous experiments is the extended use of standard, “of-the-
shelf” components. PC farms are used already in early trigger stages; in most cases already
for level 2.

This is continued in the design of the readout buffer components used by the LHC experi-
ments ALICE [Col04] and CMS [Col02c]. In all cases the bus system has changed from VME
to PCI and the crate is a standard, industrial, high performance PC.

The readout modules are based on FPGAs and receive the event data on custom, high
performance links. The ALICE readout buffer forwards this data directly into the memory of

22 The Atlas Readout Subsystem Architecture

the PC. At CMS memory is attached to the FPGA to store the event data received from the
detector.

Only LHCb has decided to use a Gigabit Ethernet network approach instead of the PCI
bus. There, a number of readout buffer modules handle the custom detector link and buffer
the event data. Each of them has a Gigabit Ethernet port to deliver the data on trigger accept.

The ATLAS trigger and data acquisition is different to all of the above mentioned experi-
ments. The level 2 trigger operates as a program-driven trigger processor (see 1.1). Further-
more it uses “sequential selection”. This means that only that event data, required for the
trigger decision, is requested from the readout buffers. Another specific characteristic is the
RoI concept which reduces the amount of necessary data for the level 2 trigger decision. This
is only rarely found at high energy physics experiments.

Sequential selection has a major impact on the readout buffer component since it must
supply the event data on request. This puts additional complexity to the design of the readout
buffer compared to all previously mentioned experiments.

One already operating experiment with a similar mechanism inside the level 2 trigger is
HERA B. This experiment has a four level trigger architecture. The first level is implemented
completely in custom hardware. Starting from trigger level 2 all computations are done by PC
farms.

Figure 2.3 shows the HERA B event data flow with the focus on the level 2 trigger and
buffer.

Level 2

Trigger

(PC Farm)

Detector Frontend /

Previous Trigger Level

Event building network

with SHARC links

To next trigger

level

Readout Crate

Data Request,

Accept Decision

Readout

Buffer

Module

Readout

Buffer

Module

Readout

Buffer

Module

Controller

Event Data

required

by level 2

Event data

Event Data

VME Bus for

control only

Figure 2.3: The HERA B event data flow with the focus on the second trigger level. This uses similar
mechanisms than ATLAS [Wol98] [Col95b].

Detector data accepted from the first trigger level is stored in the readout buffer with a
rate of 50 kHz. The readout buffer is based on SHARC DSP processors placed on VME
crate modules. Each processor provides a number of 40 MByte/s serial links used for event

2.3 ATLAS Readout Subsystem Architecture 23

data transport towards the second trigger level and event building. The second trigger level
requests and receives all required event data by theses SHARC links. Approximately 3% of
all data is required for level 2. On accept, event building starts by sending the event data
fragments from the various SHARC processors to one level 3 trigger node. This is done with
the level 2 accept rate of approximately 2 kHz [Wol98].

Thus the ATLAS trigger and data acquisition with its level 2 trigger requesting the required
event data from the readout buffers has a unique position within the high energy physics ex-
periments. The architecture can not be compared to other LHC or Tevatron experiments. Only
the HERA B trigger has similar conditions, but with a four times smaller detector event rate
and using different technologies (SHARC links instead of Gigabit Ethernet). This comprises
also the ATLAS readout subsystem. Contrary to all other experiments it has to provide the
RoI event data to the level 2 farm on demand. This complicates the architecture and imple-
mentation and makes it a new development.

2.3 ATLAS Readout Subsystem Architecture

2.3.1 Architectural and Technology Choices

ROS grouping

For the ATLAS readout subsystem various architecture approaches have been discussed in
the ATLAS community. Due to the high input and the low output rate, the concentration of
a number of input links to one network output has been accomplished as a basic rule to all
approaches. This principle can also be found by all other high energy physics experiments
(see 2.2).

The number of combined input links are limited by the Gigabit Ethernet bandwidth and
varies for different ATLAS sub-detectors. A first evaluation, only based on a simple compari-
son between the required input and output bandwidth (presented in section 2.1), estimates that
between 14 and 70 inputs can be connected to one Gigabit Ethernet output depending on the
sub-detector. This approach drastically decreases the number of Ethernet links between the
ROS and the level 2 and SFI farm.

An extension to the combining of input links to one output is the possibility of local, partial
event building inside the ROS. This means that a number of ROB packets are merged into one
ROS packet as defined in the ATLAS Data Format specification 1.4. The result is a reduced
number of messages and data packet frames exchanged between the SFI and ROS.

Estimations with the paper-model from [Ver] (already introduced in the previous chapter)
show that this can reduce the SFI farm size. Without merging of fragments inside the ROS,
83 PCs have to be present in the SFI farm to meet the 2-3 kHz event building rate 1. With a
grouping of 16 inputs to one output and partial event building this decreases to 28 PCs. Thus
approximately 50 PCs can be saved in the SFI farm. Also the level 2 farm decreases by a 5-8
PCs due to the reduced number of messages (again with a grouping factor of 16).

1The SFI farm size has been obtained from the model contrary to the values presented in the TDAQ
TDR [Gro03] with a Gigabit Ethernet bandwidth of 100 MByte/s. The original bandwidth was assumed to be
60 MByte/s (see section 2.1).

24 The Atlas Readout Subsystem Architecture

Technology Choices

Regarding the other experiments described in section 2.2 a number of implementations for the
ATLAS ROS can be considered and discussed.

Memory

FPGA GbE

S

L

i

n

k

S

W

I

T

C

H

Gigabit Ethernet

Gigabit Ethernet

uplink to level 2

and SFI

ROD SLink

mezzanine

ROD

Figure 2.4: The ROB-on-the-ROD scenario. A readout buffer mezzanine replaces the SLink imple-
mentation mezzanine on the ROB VME board. [BBF+02]

One of the simplest scenarios for ATLAS uses one readout buffer module per detector
ROL equipped with SLink input, some memory, an FPGA, and Gigabit Ethernet output. This
is similar to the CMS approach (or HERA B, but without the SHARK links).

One possibility is to place this hardware directly on the readout driver replacing the fore-
seen SLink mezzanine hardware (see 1.3). This simple approach is called “ROB-on-the-ROD”
concept [BBF+02](see Figure 2.4).

The fragments, sent by the readout driver (ROD), are buffered inside the on-board memory
and delivered via Gigabit Ethernet to the level 2 or SFI event builder farm. A concentrator
switch combines the Ethernet links of a number of modules into one or two up-links to the
level 2 and SFI farm.

In a similar scenario the readout buffer modules could be placed on 3, 6, or 9 HU2 boards
hosted in a simple crate with only a power supply. Up to 5 buffers could be implemented on a
6 HU board each having one HOLA SLink input and one Gigabit Ethernet output, up to 8 on a
9 HU board and only 2 on a 3 HU board. The number of links is limited by the available space
on the front of the board. One link (either Ethernet or HOLA SLink) is estimated to allocate
2 cm of the board’s front panel.

Still one Gigabit Ethernet link per ROL is present which is grouped by a number of con-
centrator switches into a number of up-links towards the trigger and SFI farms. All scenarios
mentioned up to now do not merge event data fragments. The number of Ethernet messages
and thus the SFI farm size is not reduced.

This can be taken into account by increasing the logic of the above mentioned boards. This
may increases the number of ROLs handled and reduces the number of messages between the
level 2 / SFI farms and the ROS. Out of space considerations up to 8 links could be placed on a

2HU is a unit for the height of electronic boards. Each HU is equal to 1.75 inches. Thus 9 HU corresponds to
400.5 mm, 6 HU to 266.7 mm, and 3 HU to 133,35 mm.

2.3 ATLAS Readout Subsystem Architecture 25

6 HU, 14 on a 9 HU, and 3 on a 3 HU board while always 2 Gigabit Ethernet links are present.
This approach requires a completely custom ROS design which is not intended by the ATLAS
community.

ROB ROBROB ...

SLink

Controller
RobOut

BUS

Gigabit
Ethernet to

Level 2 / SFI

Figure 2.5: ROS Module with local event building via a standard bus (VME, PCI). A number of
ROBs receive data from the ROL, buffer it, and send it to the bus on request. The network
interface is attached to the module bus too.

Many other experiments (see 2.2) use commercial bus technologies like VME or PCI. This
has also been discussed within the ATLAS community. A scenario where a number of simple
custom or commercial boards receive the event data from the ROLs, buffer it, and deliver it via
a commercial bus system is shown in Figure 2.5. The Gigabit Ethernet network connection,
which is sitting on the module bus too, delivers the event data packets to the level 2 and event
filter farm.

Multiple ROLs may be handled by one custom VME or PCI board independently, depend-
ing on the available space. A PCI board for example has space for up to four HOLA SLink
inputs on the front side. A CompactPCI 3 system may carry up to seven 3 or 6 HU boards,
each with four or eight links.

This bus-based scenario is very popular within the ATLAS community and a number of
various prototypes have been developed and tested. They are summarised section 2.3.3. The
bus-based approach is similar to the component used in other experiments. The main dif-
ference is the major technology update by using modern PCs and the PCI bus. Furthermore
the ATLAS component has an increased complexity due to the level 2 event data requests
(sequential selection).

2.3.2 Cost Modelling
Since the ATLAS readout subsystem will be a huge system, processing and buffering data
from 1600 sources and answering requests from two large PC farms over Gigabit Ethernet,
the overall system costs are an important issue. A number of architectural choices have been
discussed within the community and several of them have been presented in the last paragraph.

3CompactPCI is a PCI standard variant for industrial applications. It defines a bus system equal to PCI but
with a alternative connector used within 6 HU crates. CompactPCI boards may be 3 or 6 HU

26 The Atlas Readout Subsystem Architecture

Many different components have been proposed including a number of custom hardware com-
ponents. Their costs have to be estimated with the goal to get a complete overview of the price
of a full system for the various architectural options.

This cost modelling has been done in the ATLAS community [Mor03] and is summarised
and partly extended here. It tries to calculate the prices for the scenarios presented in the
previous section 2.3.1 which are:

• The ROB-on-the-ROD scenario

• The scenarios using 3, 6 or 9 HU ROB boards with one Ethernet output per ROL input
in a simple crate with only a power supply. Each ROB board has one Gigabit Ethernet
output per ROL input.

• The scenarios with ”grouping” 3, 6 or 9 HU ROB boards in a simple crate with only
a power supply. Each board has N HOLA SLink inputs (see previous section for the
specific number), two Gigabit Ethernet outputs, and performs local event building on
request data.

• The bus-based scenario with PCI based ROB boards in a standard PC (ROS-PC).

A VME based scenario, as used in many other experiments (see section 2.2), has not been
taken into account because prototyping effort has shown that the ATLAS requirements can
not be met (see next section 2.3.3).

The prices assumed for the various components are listed in Table 2.4. For all custom
components prices have been obtained from [Mor03]. No difference is made between the
price for the simple 3, 6, or 9 HU boards and the ”grouping” boards which perform local event
building. The 3 HU is assumed to be equal to a PCI ROB board.

Component Price Source
[EUR]

ROBs
ROB-on-the-ROD module 400 [Mor03]
3 HU board (with 2 ROBs) 1500 equal to PCI
6 HU board (with 5 ROBs) 4500 [Mor03]
9 HU board (with 8 ROBs) 7500 [Mor03]
PCI ROBIN board (4 SLinks) 1500 [Mor03]

Switches
16-Port Switch (price per port) 80 [Alt]

Crates (simple, no bus system)
6 HU (with power supply) 700 [RSC]
9 HU (with power supply) 800 [RSC]

PC
standard PC with 4 PCI segments 1500 [Mor03]

Table 2.4: The prices for various components used for the different ROS scenarios 2.3.1.

This leads to the costing estimations for a complete system listed in Table 2.5. The pre-
sented model neglects a number of topics. It should only support the design choice with a raw
price estimation. The omitted topics are:

2.3 ATLAS Readout Subsystem Architecture 27

• Influence of the scenarios to other parts of the ATLAS DAQ (SFI or level 2 farm size,
number of switches for the level 2, SFI farm, ...).

• Cable costs.

• The cost of racks.

Scenario ROB Crates Switch Estimated System
Boards PCs Ports cost [EUR]

ROB-on-the-ROD 1600 X 1800 784.000
Simple 3 HU 800 50 1800 1.379.000
Simple 6 HU 320 20 1800 1.598.000
Simple 9 HU 200 13 1800 1.653.100
Grouping 3 HU 540 20 x 837.200
Grouping 6 HU 200 13 x 909.100
Grouping 9 HU 133 9 x 1.004.700
PC ROS 400 133 x 799.000

Table 2.5: The estimated costing of a complete ROS for the different scenarios. The prices for the
components have been taken from Table 2.4. 2.3.1.

For the first four scenarios a large number of switches are necessary which connect the
ROBs to the level 2 and SFI farm. Each of them is considered to have 16 ports. Two up-
links are counted per 16-port switch and added to the 1600 ports necessary to connect the
ROBs. This leads to a network with 1800 ports. No switches are added to the remaining
three scenarios because the ports are intended to be already present in the level 2 and SFI farm
switch (which is not taken into account here). Depending on the ROS grouping factor (the
number of ROLs per ROS component) a number of ports, in the order of 200 - 300, must be
present in the level 2 and SFI farm switch. This is equal to the previously mentioned number
of up-links and makes the model consistent.

With this calculation the ROB-on-the-ROD scenario is the cheapest closely followed by
the PC ROS. Since the PC ROS approach performs partial local event building, it reduces the
SFI farm contrary to the ROB-on-the-ROD scenario. This gives the PC ROS an advantage
even though it is not the most cost effective solution.

2.3.3 Previous Implementation Approaches
During the planning phase of the ATLAS DAQ system a number of approaches for the readout
subystem has been investigated. All of them follow the bus based scenario presented in the
last section. Three buses have been evaluated: VME, PCI and CompactPCI.

In all cases a custom ROB module with the evaluated bus interface has been developed
which is called ROBIN (readout buffer Input). It is based in most cases on a microcontroller
and a FPGA with additional buffer memory storing the event data from the readout links.

CERN VME ROS

The VME ROS implementation shown in Figure 2.6 has been developed at CERN [CFJ+00].
It is based on a number of CES RIO 8062 [CES] single board computers running LynxOS.

28 The Atlas Readout Subsystem Architecture

These CPUs are contained in a VME crate and have different tasks. There are CPUs acting as
an interface to the level 2 farm (L2IF) and the SFI event builder farm (EBIF). Other CPUs act
as ROBs receiving and buffering data from the RODs. Event data is moved by the VME bus
between the ROB boards and the interface boards.

VME Crate

Single Board CPU
CES RIO 806x

ROB:
Single Board CPU

CES RIO 806x

PowerPC
CPU /

Memory

VME
Interface

PCI
Bridge

ROBIN
(PMC)

ROBIN
(PMC)

Ethernet to
SFI

Ethernet to
Level 2

PPC-
Bus

PCI-
Bus

R
O
B

R
O
B

R
O
B

L
2
I
F

E
B
I
F

Figure 2.6: VME ROS implementation with single board computers in a VME crate [CFJ+00].

The RIO 8062 single board computer is based on a PowerPC 604e CPU and contains a PCI
bus with two PMC (PCI Mezzanine Card) format slots. These are used to carry two ROBIN
boards for receiving and buffering the data from one ROL. Two options have been tested: one
based on another single board computer, the RIO MFCC 8441, and the UK-ROBIN. Both are
schematically shown in Figure 2.7.

UK-ROBIN

MFCC based ROBIN

Figure 2.7: ROBIN options used within the VME RIO 8062 CPU. The MFCC is another PowerPC
based single board computer from CES [CES]; the UK-Robin is a custom development
based on an Intel i960 processor [CFJ+00].

The MFCC board is a commercial FPGA and PCI board from CES in PMC format which
is designed to be applied to the VME CPUs of the same company. It is based on a PowerPC
CPU and an FPGA which handles the incoming event data from SLink. Furthermore a PCI
interface connects the module to the RIO CPU.

2.3 ATLAS Readout Subsystem Architecture 29

Incoming event data is stored in a 1020 byte page inside the SDRAM. This page and ad-
ditional information is store in a FIFO where it is picked-up by the MFCC CPU. On request
the CPU can pass the event data over PCI to the host CPU (the CES RIO 8062 Single Board
Computer).

The UK ROBIN module has been developed at the Royal Holloway University of London
(RHUL) and the University College of London (UCL) [GPR+00]. It is based on an i960
processor which also provides the PCI bus interface. One MByte of SRAM forms the event
fragment data buffer.

The SLink input data stream is written directly into the SRAM with the help of control
logic inside a MACH 5 PLD 4. This is shown in Figure 2.8. Two FIFOs store empty and full
pages of the SRAM event buffer; each page is defined to be 1024 Bytes. An incoming event
fragment allocates a free page from the free-page FIFO and the control logic directs all data to
the page address. The CPU is finally notified of the arrival of a new event data fragment using
the used-page FIFO. The software part of the buffer management stores the page address in a
hash table, where it can be requested or deleted. Event data leaves the hardware via the PCI
interface which is integrated into the i960 CPU.

Figure 2.8: UK-ROBIN buffer management. Incoming event data fragments are stored in an empty
page. The CPU is notified using the used-page FIFO. [GPR+00]

A special distributed software on the RIO CPUs uses a communication mechanism based
on shared memory to distribute requests to the ROBIN modules and retrieve event data over
the VME bus.

Performance measurements with this ROS implementation have shown that only with one
or two ROBIN modules (either MFCC based or UK-ROBIN) the ATLAS requirements from
section 2.1 can be fulfilled [CFJ+00].

Saclay CompactPCI ROS

The CompactPCI ROS approach, developed at the Commissariat à l’Energie Atomique, Saclay,
[CGHM00] uses a 6 HU crate with two CompactPCI [Com97] backplanes on two 3 HU lev-
els. This is shown in Figure 2.9. Each level has 16 slots to carry ROBINs (for receiving

4PLD: Programmable Logic Device

30 The Atlas Readout Subsystem Architecture

and buffering ROL event data), one ROB controller implemented using a CompactPCI single
board CPU, and a network interface card (NIC). The 16 slot backplane provides two 8 slot
PCI buses connected with a PCI-to-PCI bridge [Gro98c].

Figure 2.9: CompactPCI based ROS System using a 6 HU crate. The crate is divided into two 3 HU
levels each having 16 slots. Each level has two CompactPCI buses connected by PCI-to-
PCI bridges. Two configurations are shown: one where each of the four segments has one
Ethernet interface (NIC) and one Controller (ROBC), and one where each level has a NIC
and a ROBC. [CGHM00]

Saclay developed a PMC format ROBIN Module with a local Intel i960 processor for event
management and request handling. Input from SLink is handled by an FPGA and stored in
8 Mbyte SDRAM. The event buffer management on the ROBIN is similar to the UK-ROBIN.

PCI I/O provides a PLX9080 bridge chip on the ROBIN module. The ROBIN PMC card
may be used in a VME environment but the target is the use of a large CompactPCI system
with a CompactPCI PMC carrier.

Since the Saclay group has left ATLAS in spring 2000 no detailed measurements are avail-
able and the project has been discontinued.

PC Based ROS

This approach proposes a standard PC with one or multiple PCI segments to be used as a ROS
module. The ROS-PC is equipped with up to two PCI bus Gigabit Ethernet interfaces one for
level 2 and one SFI farm connection. The processor within the PC handles the requests from
the network and performs a local event building on the event data. A number of ROBIN (ROB
input) boards are responsible for receiving and buffering the data. These boards are in most
cases custom hardware developments. Various ROBINs have been developed and tested by
different institutes:

• A SHARC DSP based ROBIN has been developed at NIKHEF [BJG+00].

• A PCI variant of the previously mentioned UK-ROBIN [GPR+00].

2.3 ATLAS Readout Subsystem Architecture 31

• A ROBIN based on a PCI FPGA Co-Processor has been developed at the University of
Mannheim [Ris99] [BBW+01].

Figure 2.10: PCI ROBIN based on a SHARC DSP developed by the NIKHEF institute [BJG+00].

The SHARC based ROBIN is shown in Figure 2.10. It is based on an Altera 10k FPGA,
a SHARC DSP processor, and 1 MByte ZBT 5 SRAM. The FPGA handles the input stream
from one SLink ROL input; the processor is responsible for the buffer management and the
request handling.

The event data buffer inside the 1 MByte SRAM is organized as a ring buffer with two
pointers: one “fill”-pointer for the beginning of the empty buffer area and one “empty”-pointer
placed at the end of the empty buffer area. The buffer management stores memory addresses
of incoming event data inside a hash table. Care has to be taken that no event data is getting
overwritten in the buffer. The hash value is generated out of the last 10 bit of the level 1 event
ID.

The ROBIN is connected through the SHARC DSP links (each having a bandwidth of
40 MB/s) to a second SHARC board which makes the connection to the PCI bus. Up to four
SHARC ROB boards can be combined to one PCI interface.

The FPGA ROBIN, developed at the University of Mannheim, is based on the commercial
available multi-purpose FPGA co-processor microEnable [ea98]. It comprises a Xilinx 4000
series FPGA, a PLX9080 PCI interface, and 2 MByte asynchronous SRAM (see Figure 2.11).

Two firmware versions for this hardware have been developed the first one within a diploma
theses [Ris99]. This was able to receive and buffer event data within the FPGA, and handle
requests from the host PC over PCI.

The SRAM event buffer was divided in 2 kByte pages organised as a ring buffer. Each
incoming event gets a new page with incremental start address. The page address is stored
in a hash table using the last 10 Bit to generate the hash value. When all buffer pages are in
use, old events get overwritten automatically. This first implementation has shown a very slow
PCI interface. It could be substantially improved in a later version, which was the first step
towards the development presented in this thesis.

Comparison measurements with other PCI based ROBIN prototypes have been done and
are shown in Figure 2.12. This shows the maximum sustainable level 1 event rate, which is
equal to the ROBIN input rate, depending on the ROBIN output request rate.

5Zero Bus Turnaround

32 The Atlas Readout Subsystem Architecture

2MB
SRAM

Xilinx XC40XX
FPGA

SLink

Clock &
Support

PLX9080 PCI - Interface

32 32

Local Bus,
40 MHz, 32 Bit

PCI, 33 MHz, 32 Bit

Figure 2.11: PCI ROBIN based on a the commercial FPGA Co-Processor microEnable [ea98] [Sil].

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45

Request Rate [kHz]

M
ax

. L
V

L1
 R

at
e

[k
H

z]

UK RobIn

Sharc RobIn
FPGA RobIn

Figure 2.12: The performance of the three PCI ROBIN prototypes NIKHEF SHARC ROBIN, UK-
ROBIN, Mannheim FPGA ROBIN, tested in a ROS-PC with equal software [FMTV].

Only the SHARC and the microEnable FPGA ROBIN are able to fulfil the requirements
of 10 kHz request rate at a ROL input rate of 100 kHz. The FPGA ROBIN can sustain even
three times the requirements, which is 10 kHz more than the SHARC ROBIN.

2.3.4 The ATLAS Baseline Architecture

Out of the number of discussed scenarios, the cost model, and the experiences of the previous
ROS prototypes, a decision on the ATLAS ROS baseline architecture has been done within
the TDAQ technical design report [Gro03].

One of the main aspects for the architectural choice is the system costs. Thus, regarding
section 2.3.2, the PCI bus based scenario and the ROB-on-the-ROD scenario are reasonable
candidates for the ATLAS ROS.

2.3 ATLAS Readout Subsystem Architecture 33

A VME solution, similar to the systems in other experiments (see 2.2), has been tested
and found out to be too slow. A SHARC based solution with 40 MByte/s SHARK DSP links
for communication and event building, similar to the HERA B experiment, (see 2.2) can also
be excluded since the event building network must be more powerful and connected to a high
number of PCs. The usage of a CompactPCI may also be an option, but has not been deeply
investigated.

Thus the baseline choice, presented within the Trigger/DAQ Technical Design Report, is
the bus-based solution with a standard, common-of-the-shelf PC. It is shown in Figure 2.13.
Since a standard PC is not able to handle a reasonable number of ROLs it has to be extended
by custom boards, called ROBINs (readout buffer input). Their task is to receive the ROL
data and buffer it. The output of the ROBIN is done via PCI on demand of the host PC. Each
ROBIN is foreseen to handle four ROLs. This is expected to be the maximum number of ROL
SLink connectors which fit on a PCI board due to space considerations.

L2 & Event Builder NetworksL2 & Event Builder Networks

S-Link

…PCI bus

R
O

B
IN

Data

Data

NIC

RODsRODs

GbE Request
message

R
O

B
IN

R
O

B
IN

L2 & Event Builder NetworksL2 & Event Builder Networks

S-Link

…PCI bus

R
O

B
IN

R

O
B

IN

DataData

Data

NICNIC

RODsRODs

GbE Request
message

R
O

B
IN

R

O
B

IN

R
O

B
IN

R

O
B

IN

Figure 2.13: The ATLAS ROS baseline architecture [Gro03].

The PC hosts the ROBIN boards and listens to requests from the level 2 farm (ROI data
requests) and the SFI event builder farm (EB request on a level 2 accept decision). An arriving
request is forwarded to the ROBIN boards and a local event building is performed on the
returning event data within the ROS-PC.

This approach has a number of advantages:

• It is a cheap solution

• A number of prototypes have been built implementing these scenario. It has been most
of all tested.

• It has been proved that the performance requirements can be met using the ROBIN
prototype presented within this theses. First preliminary measurements of this prototype
have been used in the TDAQ TDR for this verification [Gro03].

34 The Atlas Readout Subsystem Architecture

• It uses a very common standard PC as basic component.

• It can be flexibly extended by re-organising the number of ROBINs in the PCs. One
could start with grouping more ROBINs in the beginning phase of ATLAS.

Contrary, the PCs will use a lot of space. This is partly balanced by the saving of SFI farm
PCs due to the local partial event building within the ROS PCs (see 2.3.1).

A number of ROBIN prototypes have been already investigated. All of them handle only
one ROL and are mainly based on processors. This thesis will present in the next chapters a
bus-based ROS development using a PC with multiple PCI segments and a ROBIN prepared
to run with four ROL inputs. The developed ROBIN board is the first device which is able
to handle four ROL inputs on one PCI board within ATLAS. Using this with a standard PC
for a readout system and considering the additional requirement due to the level 2 trigger
data request this component is new and unique in high energy physics. It will be shown
within this thesis that the implementation meets the ATLAS requirements. First results of this
work have been used as architecture verification in the ATLAS Trigger/DAQ technical design
report [Gro03].

2.4 Summary
The ATLAS readout subsystem has to meet a number of requirements. These have been dis-
cussed in this chapter. The level 1 trigger accepts event data with up to 75 kHz including
safety factors. This requirement may be upgraded to 100 kHz in a later phase of the experi-
ment. The level 2 trigger requests “Regions-of-Interest” event data from the ROS with a rate of
up to 7 kHz. This approach, combined with the high rates is very rare in high energy physics
experiments. On level 2 accept, event building starts executed by a PC farm with a rate of
2-3 kHz.

A number of implementations and technologies have been discussed to implement a ROS
which can meet these requirements. ATLAS has decided to use a implementation similar to
other experiments, but with a major technology upgrade. A PCI bus approach, based on a
standard, “off-the-shelf” PC system, together with PCI cards receiving and buffering event
data from the multiple ROLs forms the baseline architecture.

This thesis implements the baseline ROS with a PCI card prepared to run with four ROL
input links. Considering the sequential selection (requesting) of event data within the ROS,
this is a new development and has never been used in a high energy physics experiment before.

Chapter 3
ROBIN Development with a Multi-Purpose
PCI FPGA Co-Processor

The implementation of the ATLAS readout subsystem (ROS) baseline architecture, described
in the previous chapter, requires ROBIN hardware with a maximum number of readout links
(ROL). To develop a system with a low number of PCs and optimized cost, four ROLs per
board have to be implemented and tested. None of the available PCI boards is prepared to do
that; all previously presented ROBINs handle only one link per board.

The goal of this thesis is to evaluate a ROBIN device which is able to process the data
from four links. This device should be as simple as possible to reduce overall cost and effort
of custom hardware developments.

The evaluated component is the MPRACE FPGA co-processor. It is a continuation of the
microEnable FPGA board presented in 2.3.3 which could been successfully used as a ROBIN
device. MPRACE is widely used for other applications e.g. image processing [Hez04], high
energy physics trigger acceleration [Bro04], or astronomy simulation [Lie04]. This shows its
flexibility.

Contrary to the other ROBIN approaches, MPRACE is based on a FPGA only. No ad-
ditional processor is present. All ROBIN tasks: ROL data processing, buffering, and the
handling of requests has to be done inside the FPGA.

A FPGA has some major advantages compared to the processing inside a CPU. It is able to
implement specialized logic for all ROBIN tasks. This operates usually faster than in a CPU.
Furthermore several tasks can run in parallel inside a FPGA. A request from PCI, for example,
does not disturb the processing of incoming event data. Both advantages have been already
successfully used by the microEnable based FPGA ROBIN.

This chapter presents the MPRACE FPGA co-processor and the implementation of a
ROBIN which is able to handle four ROLs. Additionally a host-PC has to store the ROBIN
boards, receive requests from the level 2 and SFI event builder farm, forward them to the
ROBINs, and perform the local event building. This requires software development which is
presented in the next chapter. The software has to communicate with the ROBIN via the PCI
bus. This is also described in the next chapter.

35

36 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

3.1 The FPGA Co-Processor MPRACE
FPGA (field-programmable gate array) components are re-configurable logic devices. They
offer the possibility to implement custom logic circuits in a fast and flexible way. Complex
electronic circuits with logical operations (AND, OR, XOR, etc.), RAM elements, registers or
finite state machines can be designed and “programmed” into a FPGA device. After this re-
versible configuration process, which takes only milliseconds, a FPGA operates like a custom
electronics device containing the designed circuit.

This allows the simple and fast development of special hardware for various tasks and algo-
rithms. Data movement and formatting, link protocols, and specialized computation pipelines
can be easily implemented. Furthermore the realisation of parallel processes is straightfor-
ward.

The MPRACE FPGA co-processor allows the usage of FPGA technology in a standard PC
environment. It has been developed at the ”Lehrstuhl für Informatik V” of the University of
Mannheim [MPR].

Expansion ConnectorsXlinx Virtex II 3000
FPGA

PLX9656
PCI Bridge

SDRAM
Socket

4 * 2 MB
ZBT SRAM64bit/66MHz

PCI
Control PLD
XC95288XL

Figure 3.1: The MPRACE FPGA co-processor.

Figure 3.1 shows the MPRACE board with its main components:

• A Xilinx Virtex II 3000 FPGA with three million gates.

• A PLX 9656 PCI Bridge for a 64 bit/66 MHz PCI connection.

• Four independent ZBT1 SRAM banks, each with 2 MByte.

• One carrier for SDRAM SO-DIMMS2 (laptop style SDRAM modules).
1Zero Bus Turnaround (ZBT) SRAM needs no additional turnaround cycles when changing from read to

write or vice versa.
2Small Outline - Dual In-line Memory Module

3.1 The FPGA Co-Processor MPRACE 37

• Two expansion connectors for daughterboards with additional logic.

• A Xilinx XC95288 PLD for board control (clock frequency settings, FPGA configura-
tion, etc.)

The main device is a Xilinx Virtex II 3000 FPGA in a BF957 package with three million
gates and 684 available I/O pins. This FPGA provides 3584 configurable logic blocks (CLBs)
each with 8 programmable 4-input function generators, a fast interconnection network, and 96
18 kBit RAM blocks (called BlockRAM) in special chip areas. Twelve digital clock managers
(DCMs) can be used for clock generation and synchronisation.

The PLX 9656 PCI bridge is directly attached to the I/O pads of the FPGA. It provides
a 32 bit / 64 MHz local-bus (see the block diagram in Figure 3.2) for communication. All
data, exchanged between the FPGA and the PCI bus, has to pass this 264 MByte/s local-bus.
Furthermore the MPRACE control PLD is attached to this local-bus. It contains a set of
registers for an easy board control and the local-bus arbiter. The latter allows either the FPGA
or the PLX 9656 to be a master on the MPRACE local-bus.

Various data transfer modes can be used by the host-PC to communicate with the MPRACE
(see [Tec]):

Programmed I/O(PIO) In this mode the host-PC processor forces the read and write of data
via the PCI bus. Therefore the target address area on the PCI bus is mapped into the
virtual address space of the user process and a simple pointer operation executes the
MPRACE access. The PLX 9656 translates each PCI access to a pre-defined address
window into local-bus cycles targeted to the FPGA or PLD.

PLX - DMA The PLX 9656 provides a number of PCI bus-master DMA modes. In all of
them the PLX bridge reads data from the PCs memory and writes them to a local-bus
address or vice versa. The PC memory area may be a continuous block or a scattered
number of areas (defined by a list of start addresses together with length information). A
DMA flow control is also available on the local-bus which can delay the DMA operation
if no more data is present (DMA-on-demand). It is asserted by a signal line between the
FPGA and the PLX 9656, called DREQ (DMA Request). For all DMA operations a
number of PIO accesses are required to program a set of registers inside the PLX 9656
chip.

Direct Master Direct master is another PCI bus-master DMA mode where the FPGA can
directly read or write into the PC’s memory. Therefore the PLX 9656 defines an address
area on the local-bus for PCI I/O. Any read or write to this area is translated into PCI
access cycles to a previously defined address range. The PLX 9656 acts as a window or
gateway. This mode allows the FPGA to randomly access the memory of the PC.

All other MPRACE components, connected to the FPGA, are shown in the block diagram
in Figure 3.2. The ZBT SRAM banks have a data width of 36 bit each and run with a clock
frequency of up to 167 MHz. The SDRAM modules are connected with a 64 bit data bus. The
frequency depends on the selected SO-DIMM module.

For extension purposes two high speed connectors are mounted on MPRACE. Each pro-
vides 94 signal lines directly attached to the FPGA. Currently available hardware extends the
MPRACE by a HOLA SLink interface, a Gigabit Ethernet interface, additional SRAM or
SDRAM, a PowerPC405, or a PowerPC440 processor.

38 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

XC2V3000 -4

PLX
9656

PCI
Bridge

PCI
64bit/66MHz

XC95288XL
Control

PLD

ZBT
512k * 36

ZBT
512k * 36

ZBT
512k * 36

ZBT
512k * 36

Mezzanine
Connector

Mezzanine
Connector

SDRAM
(SO-DIMM)

B2BB2B

36

36

36
36 36

Local Bus
32bit/64MHz

Clock
System

64

94

94

1010
config

Figure 3.2: Block diagram of the MPRACE FPGA co-processor.

Two board-to-board connectors can be used to concatenate neighbouring MPRACE boards.
Furthermore a XC95288XL PLD is used to control the MPRACE board. It provides mainly
two services: FPGA configuration and clock control. The FPGA firmware can be uploaded
via PCI bus to the board. Therefore the VirtexII device provides an 8 bit parallel configura-
tion interface. The control signals for FPGA configuration are served by the PLD. The whole
firmware upload typically takes only a few milliseconds.

Connector to

MPRACE

HOLA

SLink

2 * Gigabit
Ethernet

HDMP-1636A
Serialiser - Deserialiser
Chip for Gigabit Ethernet

Figure 3.3: MPRACE HOLA SLink extension board. The mezzanine carries one optical 2.5 GBit/s
transceiver and 2 optical Gigabit Ethernet transceivers. Each port needs a serialiser-
deserialiser chip. Two of them, the HDMP 1636A for the Gigabit Ethernet, are shown.
The TLK2501 for the HOLA SLink port is located on the rear side of the mezzanine.

3.2 The MPRACE ROBIN 39

MPRACE provides two clock domains. One is exclusively used by the PLX local-bus and
can be set to a frequency of 8, 16, 32 or 64 MHz. The second clock domain is distributed to
the FPGA and all other MPRACE components (SRAM, SDRAM, ...). It can be switched to 8,
16, 32, 64 or 125 MHz. Alternative frequencies have to be generated inside the FPGA using
one of the DCMs.

For the MPRACE ROBIN implementation a HOLA SLink (see section 1.3) interface ex-
tension board was required. This has been developed within a diploma thesis [Fis02] and
carries one HOLA SLink and two optical Gigabit Ethernet ports. Figure 3.3 shows a picture
of this hardware. Beside the optical transceivers, the mezzanine carries the HDMP 1636A
serialiser-deserialiser chips. Two of them convert the Ethernet link data from an 8 bit parallel
bus into a serial data stream. The HOLA SLink data arrives on a 16 bit bus and is converted
by a TLK2501 into the 2.5 GBit/s serial data stream.

3.2 The MPRACE ROBIN

3.2.1 Hardware Usage

The goal of this thesis is to employ the MPRACE hardware for the evaluation of a ROBIN
which is able to handle four readout links (ROL). Event data from each of the HOLA SLink
inputs has to be stored in buffer memory and provided to the PCI bus on request.

SRAM

MPRACE

Connector

PLX Local Bus Interface

ROL 1 ROL 2

SRAM SRAM SRAMConnector

ROL 3 ROL 4

FPGA

4 Link Extension Board

PCI Bus I/O

Requests

Data

Figure 3.4: The mapping of the MPRACE resources to the ROBIN application.

Figure 3.4 shows the MPRACE components usage by the ROBIN application. The main
functionality is implemented inside the FPGA. The HOLA SLink hardware is plugged on one
of the MPRACE extension board connectors. Four independent ROL handlers process incom-
ing event data and store it in the four MPRACE ZBT SRAM Banks. Messages (from level
2 or SFI), requesting a ROBIN service, arrive via the PCI and PLX 9656 local-bus interface.
Event data is transmitted over the same interface in the opposite direction.

Since a four HOLA SLink mezzanine has not been available during the testing phase, the
hardware presented in the last section had to be used. It provides only one link and shows
that a HOLA SLink can be handled by the MPRACE FPGA firmware. Thus the data source

40 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

for the remaining three links of the MPRACE ROBIN had to be placed inside the FPGA.
Measurements have proven that data input from a real HOLA SLink, compared to the internal
data source, produces similar results (see section 5.2).

Designing a four HOLA SLink mezzanine for MPRACE is generally a minor problem.
The ability to handle one link is proven by the present mezzanine. For a four link extension of
this board two questions have to be considered:

• Are there enough electrical signals from the FPGA to drive four HOLA SLinks?

• Is there sufficient space to place four optical transceivers in a way that they can be
accesses from outside the PC?

connector (94 signals)

TLK
2501

TLK
2501

70 mm

min. 15.9 mm

connector (94 signals)

TLK
2501

TLK
2501

4444

44

442.5 GBit/s

2.5 GBit/s

2.5 GBit/s

2.5 GBit/s

Figure 3.5: Outline of a four HOLA SLink mezzanine for the MPRACE board.

A possible schematic outline of the board is shown in Figure 3.5. Each HOLA SLink
requires 44 signal Pins for the TLK2501 serialiser-deserialiser connection. Both MPRACE
connectors provide 188 signal lines altogether. Thus sufficient electrical signal pins are avail-
able if both MPRACE expansion connectors are used. But one of them causes a long circuit
path for two of the four HOLA SLink ports, which may create potential timing problems (see
Figure 3.5). The TLK2501 serialiser-deserialiser should be placed close enough to the con-
nector to reduce runtime differences between the 16 data signals from the connector to the
TLK2501 chip.

Furthermore four optical transceivers have to be placed on the front panel of the mezzanine
to make them available even if the PC is closed. The minimum pitch for the transceivers is
specified with 15.9 mm [Inf02]. 70 mm is available on the mezzanine (see Figure 3.5), more
than enough.

3.2.2 FPGA Firmware Overview
Together with the SLink extension board presented in the last subsection, MPRACE can be
used as a complete ROBIN board for Atlas. Since only one HOLA SLink is present on the
mezzanine input data for the other three has to be generated inside the FPGA. The MPRACE
FPGA firmware implements the complete ROBIN functionality (see section 2.3.4). It

• Receives event data from the HOLA SLink on the mezzanine or from the internal data
generator.

3.2 The MPRACE ROBIN 41

• Buffers them inside the MPRACE SRAM banks.

• Processes event data requests from PCI.

• Processes event delete requests from PCI.

The FPGA firmware for the MPRACE ROBIN has been developed using the VHDL lan-
guage 3 and a number of tools for verification and design synthesis (see section 3.3).

HOLA
Slink
Core

RAM
Arbiter

Input
Handler

Request
Handler

Local Bus Client

Request
Decoder

Delete
Handler

DMA Arbiter

Data
Generator

ROL
Slice

1

ROL
Slice

2

ROL
Slice

3

ROL
Slice

4

Data from
4 HOLA SLink

Event Data
Data Requests
Delete Requests

Buffer
Manager

ZBT
SRAM

I/O

Data from SLink
Hardware

Controller

Control Messages

DMA Engine

Figure 3.6: ROBIN FPGA firmware overview.

A block diagram of the firmware is shown in Figure 3.6. Each of the blocks represents a
VHDL entity. The whole firmware is divided into four logical slices each responsible for one
readout link (ROL). The MPRACE local-bus performs the host-PC communication. Three
modules inside the FPGA firmware are valid for this communication. Finally a global con-
troller module provides an interface for ROBIN control.

Each ROL slice is subdivided into a number of modules. Event data fragments, coming
from the link hardware, have to be processed by the HOLA SLink module first. This module
provides a SLink compatible interface (see section 3.2.4) which is also provided by the internal
data generator module. Incoming event data is delivered to the input handler module. A buffer

3VHDL: VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

42 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

manager is responsible for the event buffer organization inside the MPRACE SRAMs. It is
notified about incoming events and decides where they have to be stored.

An event data request from local-bus/PCI is processed by the request handler. It localises
the event data within the buffer using the buffer manager module, retrieves the data, and adds
the ROB header (see section 1.4). Finally the DMA engine transfers the formatted event data
to the PC memory via the local-bus/PCI.

If a delete request has been received the delete module gets activated. It locates the event
by its level 1 ID and ask the buffer manager to remove it.

Two Arbiter modules organize the access of the MPRACE SRAM and the DMA output.
The ZBT SRAM is used by three modules of a ROL slice: the input handler, the request
handler, and the delete handler. The DMA output is used by the four ROL slices and the
controller module to communicate with the host-PC software.

3.2.3 Event Buffer Management

The buffer manager module organizes the MPRACE SRAM event buffer. This buffer or-
ganisation has been implemented by different approaches in previous prototypes (see section
2.3.3).

The UK-ROBIN and the MFCC-ROBIN divide the memory in pages of a pre-defined size
(UK-ROBIN: 1 kByte, MFCC-ROBIN: 1020 bytes). Free pages are kept in a FIFO or queue;
full pages plus additional information are passed to a FIFO to notify the ROBIN CPU. This
finally performs the buffer management: updates a list of present event data, deletes events
from the buffer on request, and fills the empty page FIFO (see [GPR+00]).

Only the SHARC ROBIN uses continuous memory organised as a ring-buffer. A fill-
pointer marks the next free buffer area and incoming event data is written to this location. The
SHARC DSP stores the memory position of each new event data fragment in a hash table. A
delete request to the ROBIN marks the corresponding event data buffer area as free. The end
of the free buffer area is marked by an empty-pointer.

Is the end of the buffer reached a wrap-around causes the fill-pointer to start from the be-
ginning of the memory. A check against the empty-pointer avoids an uncontrolled overwriting
of event data within the buffer (see [BJG+00]). This check also declares the buffer to be full
if the fill-pointer does not start at a free area.

The disadvantage of this ring-buffer scheme is the fragmentation of the buffer memory.
The buffer may be declared as full even if half of it is marked as free because free areas are
distributed over the whole memory.

All above mentioned ROBINs use a hashing scheme based on a fraction of the lower bits
of the event’s level 1 ID.

Due to the disadvantage of the SHARC ROBIN buffer management, the MPRACE ROBIN
implementation uses a page oriented buffer management scheme similar to the UK-ROBIN.
But since no processor is present everything is done inside the FPGA. The full-page FIFO
(see section 2.3.3) has been omitted since no communication with a processor is necessary.
Furthermore the page size has been increased to 2 kByte to avoid the usage of two pages per
event data fragment.

Figure 3.7 shows a schematic diagram of the MPRACE ROBIN buffer manager. One
2 MByte MPRACE SRAM keeps the event data from one ROL. The SRAM is divided into
2 kByte pages, whereas the first eight pages are reserved to store the hash table. Thus up to

3.2 The MPRACE ROBIN 43

Buffer Memory (2MB)

Data Event
(from Slink)

Deleted Pages

Free-Pages FIFO

Page3

Page4

Page6

Page8

Page9

.

.

.

Event ID

Bit01131 {

ID Hash Table

0

1

2

3

4

5

6

...

Page1 / Length

Page2 / Length

Page5 / Length

Page3 / Length

Page7 / Length

ID1 ID2 ID3 ID4ID2

Next Free Page

2047

Figure 3.7: The MPRACE ROBIN buffer manager scheme.

1017 pages may store event data.
With a level 1 rate of 100 kHz events data can stay 10,17 ms in average inside the buffer.

This is enough to store event data fragments for the mean decision time of the level 2 trigger
(see section 1.1).

A 2048 entry free-page FIFO, implemented in VirtexII BlockRAM, contains the 12 Bit
page number of all free buffer pages. Incoming fragments allocate one of these pages. After
the event data is stored in the buffer, a hash table entry, containing the 12 Bit page number, the
event data fragment length, and status information, is written to a hash table.

The hash key is generated out of the lowest 12 bit of the event ID. This hashing scheme is
similar to all other mentioned ROBIN prototypes. With a monotone increasing level 1 ID the
hash table entries get overwritten after 4096 events or 40,96 ms at 100 kHz level 1 rate.

If an event delete is requested, the corresponding page address is picked out of the hash
table and pushed back to the free-page FIFO. The hash table entry is cleared by writing a value
of zero (page zero of the buffer is not in use for event fragments).

This buffer management scheme limits the size of event data fragments to 2 kByte. It is
sufficient for the fragments from all sub-detectors (see section 2.1). Any fragment larger than
2 kByte would be cut in the end and an error flag would be stored within the hash value (see
section 3.2.5).

3.2.4 SLink Input and Event Data Generator

Event data from a HOLA SLink source card (the readout driver output) has to be handled
by the MPRACE ROBIN implementation (see section 1.3). Since a HOLA SLink receiver

44 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

card can not be plugged on MPRACE (no matching SLink connector is present) the already
mentioned mezzanine (see Figure 3.3) has been developed. This contains only the physical
link implementation. The SLink protocol engine, which is inside a FPGA on the original
hardware, has to be added. Therefore a VHDL module, provided by CERN, is placed inside
the MPRACE FPGA.

SLink Connector:
Interface compliant to SLink
specification

HOLA Source Card

Physical Link on
MPRACE mezzanine

Physical Link
Implementation

FPGA with SLink
implementation

HOLA Destination

HOLA VHDL
COREMPRACE FPGA

VHDL Interface compliant to
SLink specification
„virtual SLink connector“

Figure 3.8: Setup of a SLink connection between the MPRACE ROBIN using the HOLA SLink mez-
zanine and a standard HOLA SLink source card. The link functionality is divided into two
parts: a physical link (2 GBit/s optical transceiver plus serialiser) and a SLink protocol and
interface engine (available as VHDL module).

Figure 3.8 shows the connection between a HOLA SLink source card and MPRACE. The
original hardware provides a specified electrical interface connector. The MPRACE imple-
mentation uses a HOLA VHDL module to create a ”virtual” SLink connector within the
FPGA. This can be used by the connected modules of the ROBIN firmware.

Beside this HOLA VHDL module an internal data generator supplies event data via a
compatible interface. A multiplexer allows switching between both data sources: the HOLA
SLink input and the data generator. The data generator allows a programmable event data size
and rate. This has turned out to be very helpful for the tests and performance measurements
presented in chapter 5.

3.2.5 Input Handler
The input handler processes the incoming data from the SLink interface (or the data generator)
and adds them to the event data buffer with the help of the buffer manager. Additionally a
simple sanity check of the incoming event data fragment is done. The collection of statistics
and monitoring data which would be required by the online control software is currently not
supported.

The input handler consists of two parts: a 512 word deep FIFO and a finite state machine
running the main algorithm. A FIFO is essential to ensure that no data gets lost when the
SLink flow-control signal (XOFF) has been asserted. The runtime of this signal over the fibre

3.2 The MPRACE ROBIN 45

back to the source together with the reaction latency causes a delay between the flow-control
assignment and the abort of the input data stream. During this period the MPRACE ROBIN
must still be able to receive data. This is guaranteed by the input FIFO.

The flow-control signal is derived from the filling state of this input FIFO. SLink data
transfer is interrupted if the FIFO is half-full or more. This allows the transmission of addi-
tional 256 words after the flow control signal has been raised. Out of this FIFO margin the
maximum fibre length can be calculated using formula 3.1 and the HOLA hardware specifica-
tion [RvdBH]:

L =
FM ∗DT R−LSC

UFD∗2
(3.1)

where:
L = fibre length [m]
FM = FIFO margin (256 words)
DT R = data transfer rate (16 ns/word)
LSC = SLink source reaction time to stop transmitting data after XOFF received (320 ns)
UDF = unit fibre delay - time for light to travel 1m in fibre (approx. 6 ns/m)

The result is a maximum fibre length of 314 m, enough for ATLAS purposes.
Figure 3.9 shows the algorithm of the input process. It is triggered by the arriving of new

event data via SLink which causes the input FIFO to get filled. As a first step the availability
of a free buffer page is checked by testing the status of the free-page FIFO inside the buffer
management module.

If a new page can be allocated, the first data word is read from the input FIFO. According
to [BFM+04], appendix A, the ROD starts a new event data fragment with a control word
indicating a begin-of-frame. This maker carries in the upper 16 bits a 0xB0F0, while the
lower 16 bits are reserved for transmission error control bits. The begin-of-frame marker
causes incoming data to be copied to the selected buffer page.

Again the end of an event data fragment is signalled by an end-of-frame control word
(similar to the begin-of-frame, only the upper 16 Bit change to 0xE0F0). If this is received
before the buffer page is full the hash table entry is generated, written to the hash table (see
buffer manager paragraph), and the algorithm waits for new data.

If the buffer page is filled up before the end-of-frame marker has been received, the event
fragment is cut and the hash table entry is generated with an additional error flag raised. Finally
the input FIFO is read until either an end-of-frame or new begin-of-frame is found.

3.2.6 Message Decoder
The input handler moves each incoming event data fragment into the MPRACE buffer mem-
ory. To make this event data available for the level 2 or SFI farm it has to be requested with
a four word message via PCI bus. The level 1 ID is used to identify the event data frag-
ment inside the ROBIN. The same mechanism is used to delete event data fragments form the
ROBIN buffer. A message containing a set of level 1 IDs initiates the delete procedure of all
corresponding fragments. Furthermore messages can be used for ROBIN debug and control
purposes. Currently only the possibility to read the event buffer memory is implemented.

To interpret incoming messages a decoder engine has been implemented. This checks
the type of the request, activates the corresponding process in the target ROL slice or control
module, and passes additional data.

46 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

New data present in input
FIFO (arrived from SLink)

Check for free page

none available

Get page

SLink word is begin-of-frame

no

Read SLink data word and store it to buffer

Is SLink word event ID?

Store the event ID
yes

Is SLink word end-of-frame?

no

Write page addr to hash table

Set input error flag

Is buffer page full?

no

Read SLink data word

If begin-of-frame

If end-of-frame

Set input error flag

available

yes

no

yes

yes

Figure 3.9: The algorithm of the input process. Incoming data is written into a buffer memory page
and some basic sanity checks on the data format are done.

3.2 The MPRACE ROBIN 47

An incoming message arrives from the local-bus and is first written into a 256 word FIFO.
This unblocks the local-bus during the processing of the message and simplifies the MPRACE
ROBIN access by the host-PC software (see section 4.2).

The format of a message is shown in Table 3.1. It has been defined by the ATLAS ROS
community for a usage with PCI bus and Ethernet based ROBIN devices [GGK02]. The first
word, the request field, is divided into three values which names the requested service, the
target ROL slice, and carries a sequence number. The service value specifies the function
requested from the ROBIN hardware. It is an eight bit number. Table 3.2 shows the cur-
rently supported services. The ROL ID determines the target ROL for the requested operation.
The MPRACE ROBIN supports input from four ROLs. Thus this field may carry a number
between one and four. Finally the sequence number is a sequential number which is incre-
mented for each message. It is considered to be used by a ROBIN which is directly connected
to Gigabit Ethernet to detect lost request messages. For the current MPRACE ROBIN imple-
mentation it is not in use.

The second and the third word of the message, address field and extended address field,
may carry the target address for ROBIN replies. Only the address field is used by the cur-
rent MPRACE ROBIN implementation. The extended address field is reserved for the future
transmission of 64 bit target addresses or 48 bit target Ethernet MAC addresses.

Byte 3 Byte 2 Byte 1 Byte 0
Request Field ROL ID SEQ SRV ID
Address Field Address
Ext. Address Field Extended Address
Data Field 1 .. n 1 .. n Data Words

Table 3.1: The format of ROBIN request messages.

The remaining words of a message form the data field. Its format and the contained infor-
mation depends on the requested service and are documented in Table 3.2. In case of an event
data fragment request the data field contains only one word: the requested level 1 event ID. In
case of a delete message a whole set of level 1 IDs is carried by the message. In this case the
first word of the data field determines their quantity followed by each level 1 ID for deletion.

SRV ID Service(Request) Type Data Field
0x01 Get Event Fragment Data 1. Event ID
0x10 Delete Event Fragment Data 1. Number of Event IDs

2. Event ID 1
3. Event ID 2
...
N. Event ID n

0x1F Delete all event fragment data none
0X48 Write Event Data Buffer 1. Buffer Event Buffer Address

2. 1024 Data words
0X49 Read Event Data Buffer 1. Buffer Event Buffer Address

Table 3.2: Service / request types.

48 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

Beside the PCI bus messaging mechanism a set of simple registers provides control and
statistics information and can be accessed directly from PCI. It is intended to access this
functionality with messages too in the future to unify the MPRACE ROBIN access.

The VHDL message decoder algorithm reads the message data word by word out of the
FIFO and interprets the values. The first word contains all initially required information to
determine the target ROL slice and the requested service (event data request, delete or control
request). The interpretation of service ID and target ROL leads in the activation of the target
module inside the target ROL slice. The next two words, containing the reply address, are
passed to the activated module as parameters. The activated module has to acknowledge its
activation. After this the data field words are forwarded to the engine. This finalizes the
message processing.

3.2.7 Request Handler

Requests for event data fragments, decoded by the above described message handler, are for-
warded to the request handler module. The message decoder passes the event ID of the desired
event and the target address for the reply to the request handler of the target ROL slice. This
consists of two parts: two 16 word FIFOs and the main processing engine (a finite state ma-
chine). The module is shown in the schematic diagram in Figure 3.10.

The two FIFOs store up to 16 requested level 1 IDs and target addresses temporary. This
allows the message handler in most cases to continue immediately even if the request handler
engine is already busy.

In the next step the main processing engine picks an event ID and target address pair out
of the FIFOs and locates the data fragment in the buffer memory by the lower 12 Bit of the
level 1 ID (see section 3.2.3). The result is the start address of the event data inside the buffer.

According to the ATLAS data format, described in section 1.4, a 15 word ROB header has
to precede the event data fragment coming from the buffer. Its format is shown in Figure 3.11.
A 16 word FIFO inside the main processing engine is used to build this header. In parallel,
data is loaded from the event buffer and stored temporary in another 256 word FIFO.

Finally the ROB header and later the event data from the buffer is sent to the DMA en-
gine. A multiplexer switches the output of both FIFOs controlled by the empty flag of the
ROB header FIFO. As long as there are still ROB header words left they are passed to the
DMA engine. Only if the ROB header has completely left the processing engine the event
data starting with the ROD header gets transmitted. The DMA engine needs two additional
parameters when activated: the target address and the complete data count. The first arrives
from the message decoder supplementary to the event’s level 1 ID. The complete data count is
calculated out of the data size in the event buffer plus the 15 word ROB header.

The major effort is the construction of the ROB header. It contains fix values, data from the
ROD header which is part of the event data inside the buffer, and ROBIN status information.
The first word of the ROB header is a fix value of 0xDD1234DD (see Figure 3.11). It is
followed by the total size of the event fragment (event data size obtained from the buffer
manager + size of the ROB header) and the ROB header size (15 words). The format version
and the source ID are contained in the event data’s ROD header. These words are copied by
pushing them into the ROB header FIFO when they arrive from the event buffer.

Two status words are foreseen: one for the fragment status and one for the ROB status.
The first reports if a fragment has not been properly received or even if it is not present in the

3.2 The MPRACE ROBIN 49

16 Entries

Event ID Fifo

16 Entries

Target Address Fifo

Hash Table Event Buffer

ROB Header

Fifo

Event Data
Fifo

ROB Header

Builder

ROB Fragment

Multiplexer

To DMA Engine

Event Fragment

Data

Data

Count
Target

Address

Processing Engine (FSM)

Level 1 ID Page Address

Event Data

ROB Header

Data

Event Data

FIFO

Empty

Flag

Figure 3.10: The MPRACE ROBIN request handler process.

buffer at all. The second allows the ROBIN to pass internal status information to the requestor.
This is currently not in use, but could provide information about the filling state of the event
buffer or the latest incoming event ID.

The offset element describes the offset address at which the event fragment, received by
the ROD, starts. Finally some fragment specific entries get added which are again obtained
from the ROD header when they arrive from the event buffer:

• The level 1 ID.

• The bunchcrossing ID which counts each event from the accelerator machine.

• The level 1 trigger type with information why this event has been accepted by level 1.

• The event type which is mainly used to specify calibration events.

If the requested event could not be found by its level 1 ID, a default ROB header is gener-
ated and sent back to the host-PC. The uppermost bit of the first status word inside this default
header is enabled to signal the “fragment not found” error condition.

50 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

Start of Header Marker (0xDD1234DD)

Total Fragment Size

Header Size

Format Version (0x00010001)

Source ID ()

Number of Status elements (2)

Fragment Status

ROBIN Status

Number of Offset Elements (1)

Offset 1 (0x0000000E)

Source ID ()

Number of Fragment Specific Entries (1)

Level 1 ID

Bunchcrossing ID

Level 1 Trigger Type

Event Type

031

1

2

16

15

.

.

.

3

Figure 3.11: The ROB header format.

3.2.8 DMA Engine
The transmission to the PC’s Memory is implemented inside a separate module: the DMA
engine. Two alternative versions of this engine have been tested:

• The first one expects a pre-initialized PLX9656 DMA-on-demand and uses the flow
control signal DREQ to start the transmission (see section 3.1). When data is available
the DREQ signal is asserted and the PLX 9656 starts to fetch the event data. It is written
sequentially into the DMA buffer inside the host-PC memory. This first version is a
pull-scenario in which the FPGA is the passive and the PLX 9656 the active component.
It is the initial implementation ported from the microEnable ROBIN (see section 2.3.3).

• The second DMA engine module uses the direct master feature of the PLX9656 (see
section 3.1). Here the FPGA actively writes to the PCI bus through the pre-defined
PLX 9656 address window. Thus the FPGA can randomly access the DMA memory
within the host-PC. The target address for the data write operation is defined inside the
request message.

In both versions, the software running on the host-PC has to detect the end of an event data
fragment transmission. Therefore two mechanisms can be used by the software: interrupts or
polling. Due to performance reasons (which are discussed in 4.2) the polling mechanism has
been chosen.

Figure 3.12 shows the flow diagram of the DMA-on-demand DMA engine. On arrival of
data the DREQ flow-control signals the PLX 9656 the presence of data. This starts to fetch
(read) the data from the engine. The first transmitted word is the data count value. This
enables the host-PC software to calculate the position inside the DMA buffer where the last
data word is expected. Now all data words are transmitted. Finally a predefined, fixed value

3.2 The MPRACE ROBIN 51

New Event Data
available

Store data count temporary

Send count value

Send event data word

Check if data count is reached

no

Write "magic word" to signal end of transmission

yes

Assert DREQ to signal PLX presence of data

De-assert DREQ to stop DMA

Figure 3.12: DMA-on-demand DMA engine flow.

word (“magic word”) finalized the transfer. The host software can poll for this at the calculated
end-address of the DMA transmission.

The main disadvantage of this first DMA scheme is the complex DMA buffer management
inside the host-PC software It has to prepare the buffer properly by setting each word to zero
(see section 4.2).

A simpler mechanism is implemented in the second approach. Here the FPGA writes
actively into the PC’s memory using the direct master feature of the PLX 9656 (see section
3.1). This allows the writing of the first word of a transmitted data packet in the end. The
software knows the start address in advance and only needs to poll there. The flow diagram of
this alternative second engine is shown in Figure 3.13.

Initially the target address and the total word count are stored temporary to make them
available during the whole data transmission process.

The first word, the ROB start-of-header marker (see section 1.4), is also stored temporary.
Instead a value of one gets written into the DMA buffer. This signals the host-PC software
that the requested transmission has started which is useful for debugging purposes. Now the
whole data packet (except the first word) is transmitted to the target DMA buffer until the total
word count is reached. In the end the first word, which has been temporary stored before, is

52 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

New event data

available

Store target address and data count

Temporary store the first data word

Send the value "1" to target address

Write event data word sequentially to target buffer

Check if data count is reached

no

Send first data word to target address

yes

Figure 3.13: Direct master DMA engine flow.

sent to signal the end of the transfer.
This mechanism allows the host-PC software to define the address inside the DMA buffer

where the requested event data has to be placed. The arrival of data is simply checked by
polling on the first word of the buffer which has to be loaded to zero in advance.

A further discussion on the MPRACE ROBIN DMA transmission schemes from the soft-
ware’s point-of-view will be done in 4.2. Both methods have been tested with the MPRACE
ROBIN and the result will be shown in chapter 5.2.

3.2.9 Delete Handler

The delete handler removes event data from the ROBIN’s buffer management. It is activated
upon an incoming delete message by the message decoder which passes a set of level 1 event
IDs to identify the target event data.

Deleting events is a two step process. Figure 3.14 shows a schematic diagram of the delete
handler implementation. The event IDs arrive in a block of several ten or hundred. These are
temporary stored inside a FIFO with 128 entries. The deletion process is now done in two
steps:

3.2 The MPRACE ROBIN 53

Incoming event IDs

Event ID FIFO

(128 entries)

Hash table

Temporary

event ID FIFO

(16 entries)

Temporary

page address FIFO

(16 entries)

Event ID

localizing page

address

Event ID clearing

hash entry

Free page

address to

buffermanager

Step 1

Step 2

Figure 3.14: MPRACE Fragment delete engine.

Step 1: The engine picks a single level 1 ID from the FIFO and reads the corresponding page
address from the hash table. If the hash table entry is zero the event is ignored and no
further action is taken. Otherwise level 1 ID and page address are temporary stored in
two parallel 16 entries deep FIFOs. This process continues until the temporary FIFOs
are full.

Step 2: Event ID and page address are picked from the temporary FIFOs and a second access to
the hash table invalidates the table entry by writing a zero. Finally the free page address
is passed back to the buffer management and added to the free page FIFO.

To simplify this procedure a reply message upon a successful or un-successful execution
is not passed to the requesting host-PC. This saves logic and bandwidth, but makes control
and debug mechanisms impossible. Furthermore a matching of the level 1 ID is only checked
using the hash key. Since the hash key for a number of event IDs is equal, this may lead into
a deletion of a wrong event. A real check would require looking into the buffer and checking
the level 1 ID stored within the ROD header of the event data fragment.

54 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

3.2.10 RAM and DMA Arbiter
The ZBT SRAM and the DMA output are accessed in the MPRACE ROBIN design by differ-
ent modules at the same time. The SRAM, used as event data buffer, is required by the input
handler, the request handler, and the delete handler. Data reads or writes may be requested by
two of these modules or by all of them at the same time. The same situation is present at the
DMA output to the local-bus / PCI bus. Several of the four slices and/or the controller module
may want to send data to the host-PC.

In all of the above cases a number of users require the usage of one resource. This makes
an arbitration of this resource, SRAM or DMA, necessary. Therefore two arbiter modules
have been developed. They consist of a multiplexer and a control logic which resolves access
conflicts.

The conflict resolution is based on a rotating priority scheme. Always the requesting
channel with the highest priority gets a grant signal and the priorities are shifted after the
client has released the resource again. This leads to a fair arbitration.

In case of the RAM arbiter each client has a guaranteed number of clock cycles available
(currently 512) for RAM I/O. If this credit has expired the client may loose the grant and the
RAM is assigned to another channel.

The DMA output arbiter is not able to remove the grant signal after a number of clock
cycles because the DMA engine has to complete a data package transfer before a new can be
started (see section 3.2.8). Thus a client is allowed to use the DMA resource to transmit one
packet. After this, the DMA is re-scheduled to another client.

3.2.11 The Controller Module
The MPRACE ROBIN controller module comprises a set of registers and counters accessible
via PCI. They monitor and control all other parts of the design. Furthermore an in-situ debug
core is part of the controller module which is able to monitor signals after a pre-defined trigger
event has occurred. It consists of a large FIFO to sample up to 128 signal values. They can be
read via the PCI bus. The statistics and monitoring counters provide information about:

• The number of received and processed event data fragments.

• The number of received erroneous event data fragments.

• The number of SLink flow control activations (XOFFs).

• The number of free pages in the buffer management.

• The number of data request messages received via PCI.

• The number of delete messages received via PCI.

• The number of control messages received via PCI.

Within the controller module the parameters for the internal event data generators (see sec-
tion 3.2.4) can be adjusted. This comprises the size of the event fragments and their generation
frequency.

A very useful debug option, provided by this module, is the direct event buffer access. Any
page, including the hash tables, may be dumped to PCI.

3.3 VHDL Design, Synthesis and Verification 55

3.3 VHDL Design, Synthesis and Verification
All MPRACE ROBIN modules have been implemented and tested using the VHDL hardware
description language. It has been selected due to the availability of various design tools and
the local competence with this language within the Mannheim FPGA group. Developing the
MPRACE FPGA firmware with VHDL is a five step process:

1. Development of the VHDL design description.

2. Verification.

3. Synthesis.

4. Place & Route.

5. Design Test.

Several iterations of this design flow have been necessary.
ActiveHDL from Aldec has been used for the first two steps of the design flow: develop-

ment and verification of the VHDL description. This tool provides a useful integrated devel-
opment environment for VHDL including project management.

For the design verification the development of a testbench is necessary. In case of the
MPRACE ROBIN a ZBT SRAM and a PLX local-bus simulation engine was used. A simple
version of the PLX local-bus simulation engine was already available from [Sim04] and has
been extended and improved (to simulate the PLX DMA-on-demand and direct master DMA
mode). SLink data input was not added to the simulation test bench because the internal data
generator module provides a sufficient substitution.

After the verification, a netlist is generated within the synthesis step using the VHDL
synthesiser Synplify from Synplicity. Finally this netlist is mapped to the FPGA architecture
by a place & route tool from the FPGA manufacture Xilinx.

Number of Slices Block Rams 4 Input Logic Flip-Flops
ROLs

1 3.027 (21%) 25 (26%) 4.053 (14%) 2.941 (10%)
2 4.692 (32%) 31 (32%) 6.377 (22%) 4.609 (16%)
3 6.477 (45%) 37 (38%) 8.709 (30%) 6.351 (22%)
4 7.386 (51%) 43 (44%) 10.877 (32%) 7.942 (27%)

Table 3.3: FPGA Design Resource Utilisation for the MPRACE ROBIN firmware handling 1 to 4
ROLs reported by the Xilinx Place & Route tool.

This tool also reports the FPGA resources utilization. The values for the MPRACE ROBIN
design are shown in Table 3.3 for one, two, three, and four readout links. The number of
slices describes the main utilisation of the Xilinx Virtex II FPGA. A slice is the main element
comprising two 4-input function generators, carry logic, arithmetic logic gates, wide function
multiplexers, and two Flip-Flop storage elements. Four slices form a configurable logic block
(CLB) which is connected to other CLBs by a fast switch matrix [Xil03].

The MPRACE ROBIN with four ROLs uses 51% of all available slices. In average 1468
are used per ROL, 1680 for all other logic (local-bus access, message decoder, DMA engine +

56 ROBIN Development with a Multi-Purpose PCI FPGA Co-Processor

arbiter control logic). The number of 4 input logic elements show that not all of the slices are
completely utilized. Otherwise this value would be twice the number of the used slices. Each
ROL uses 6 BlockRAMs for FIFOs, 19 are required by the other parts of the design.

In the last step of the FPGA design flow the FPGA firmware is tested with the MPRACE
hardware. A number of debugging facilities have been added to the design to assist this step.
They are mainly placed in the controller module and have been already described in 3.2.11.

Two types of debugging aids are present. The statistics counters give general information
about the data flowing through the design (number of incoming packets, messages, etc.) and
are the first level of debugging. The second level enables to watch the signals within and
between the various design modules. Buses and control signals can be monitored for a short
period using the FIFO sampling tool described in 3.2.11. Finally an external logic analyzer
has been frequently used to observe the PLX local-bus signals.

The current FPGA firmware runs with 96 MHz. Only the local-bus module is limited to
the maximum MPRACE local-bus frequency of 64 MHz. This allows a PCI bus bandwidth of
256 MByte/s and a SRAM bandwidth of 384 MByte/s. Both are sufficient for ATLAS.

3.4 Summary
To implement a PC based ROS System which is able to handle a high number of ATLAS read-
out links a hardware component for input and event data buffering is required. The prototype
development of such a component, called ROBIN, has been presented in the last chapter. It
is based on a multifunctional PCI FPGA co-processor with the physical links on a mezzanine
daughter board. To maximize the number of ROLs in the ROS PC, four receivers including
buffers have been implemented and it has been shown that a mezzanine daughter board can be
developed.

The FPGA firmware, which implements the main ROBIN functionality, is designed with
VHDL and uses approximately 50% of the current FPGA. All four MPRACE SRAM banks
are used to buffer event data arriving on four readout links. An average level 2 decision latency
of up to 10,17 ms is possible with the current buffer. This matches the requested value, but
may have to be extended to guarantee a save operation.

Incoming event data is delivered through the PCI bus interface on demand or deleted on
request. The required software on the host-PC has to implement the ROBIN message passing
and handle the network I/O to the rest of the data acquisition system. It will be discussed in
the next chapter.

The current version of the firmware seems to provide sufficient I/O bandwidth to satisfy
ATLAS needs. The verification of this is presented in chapter 5.

Chapter 4
ROBIN Messaging and Readout System
Software Design

The MPRACE based ROBIN hardware, presented in the last chapter, provides the functional-
ity to receive and buffer incoming event data on four ATLAS readout links. This event data
has to be made available via PCI bus to the level 2 and SFI event builder farms on demand.

According to the ATLAS ROS baseline architecture (see section 2.3.4) multiple of these
PCI ROBIN boards are placed in a host-PC system. This forwards requests to the ROBINs
and performs local event building on the returning event data fragments.

This chapter describes the host-PC system and its software components: the main ROS
application and the MPRACE ROBIN PCI bus message passing.

4.1 ROS Host PC
The host-PC system contains a number of MPRACE ROBIN boards. It has to

• receive data or delete requests via Gigabit Ethernet,

• pass theses requests to the ROBIN boards,

• combine the returning event data fragments,

• pass these combined fragments to the requestor via Gigabit Ethernet, and

• detect, control, and initialize the ROBIN hardware.

To test a reasonable number of MPRACE ROBINs (at least three or four) a PC with 4 – 6
PCI slots or more has to be used. Two main options are imaginable for that PC:

1. An “industrial” PC with a large number of 64 Bit / 66 MHz PCI slots implemented with
PCI-to-PCI bridges1. These systems typically use a passive PCI backplane and a single-
board computer inside one PCI slot. Backplanes with up to 11 high performance PCI
slots are available [TPH].

1A PCI-to-PCI bridge is a transparent device to concatenate several PCI buses. It is used in most cases to
increase the number of slots on a mainboard.

57

58 ROBIN Messaging and Readout System Software Design

2. A server PC using a mainboard with multiple PCI buses connected to the main processor
bus. Systems with up to 6 PCI slots distributed on four independent PCI buses are
widespread and based on Intel’s or Serverwork’s Xeon processor chipsets. A 19 inch
case may be used to make such a PC rack-mountable.

The first option allows a large number of ROBINs in a system. But since a number of
PCI-to-PCI bridges concentrate the traffic to only one single PCI bus, the full 66 MHz / 64 Bit
bandwidth of all buses can not be completely exploited. Beyond this, it is not clear at this
point if a single system can handle such a high number of boards and readout links.

Thus the second option has been used as evaluation platform within this thesis. It is suffi-
cient for evaluation tests and a system has already been available.

The PC, available for the tests, was based on a dual-Xeon mainboard (X5DP8-G2) from
Supermicro with an Intel EZ7501 chipset. It provides four PCI bus segments with six 64 Bit /
66 MHz or faster PCI slots. The slot and bus configuration is shown in Figure 4.1.

532MB/s

CPU
(2.4GHz)

Mem
DDR RAM

PCI
64bit/66MHz

On Board Devices

Slot 1

400 MHz System Bus (~2GB/s)

532MB/s 532MB/s 532MB/s

PCI
64bit/66MHz

PCI
64bit/66MHz

PCI
64bit/66MHz

MPRACE

Slot 2

Gigabit-
Eth. NIC

Slot 3

Slot 4
MPRACE

Slot 5
MPRACE

Slot 6
MPRACE

LAN (unused)
LAN

2 * Fast
EthernetSCSI

Gigabit-
Eth. NIC

LAN

Figure 4.1: The ROS PC configuration used with the MPRACE ROBIN.

Three slots (1 - 3) share the same bus segment while the others are single slots distributed
on different buses. Two internal component share the PCI bus with a single slot. There are
two Fast Ethernet and one SCSI adapter present, but recent mainboards already come with
two Gigabit Ethernet interfaces [sup]. Thus the PC can be equipped with up to four MPRACE
boards and two Gigabit Ethernet adapters.

All PCI buses lead into the 400 MHz system bus which is able to sustain 2 GByte/s [Gor02].
The evaluation PC, used for testing, was equipped with two Xeon 2.4 GHz CPUs running the
main ROS application.

4.2 ROS PC Software 59

4.2 ROS PC Software

4.2.1 Atlas Software Overview

The ATLAS trigger and data acquisition (DAQ) software has a number of different tasks:

• calculate trigger decisions.

• move event data and additional information.

• control the ATLAS trigger and DAQ system.

All of them are very demanding. Controlling the trigger/DAQ system requires the super-
vision of a huge amount of different hardware. There are huge number of processors which
are standard PCs in most cases, networks, switches, and also custom electronics (in the level 1
trigger). Moving data also causes a huge effort due to the large number of nodes and high data
rates. Finally the trigger software contains a number of algorithms to detect various physics
events.

Figure 4.2: The ATLAS software packages and dependencies.

Figure 4.2 shows the ATLAS software packages, their dependencies, and the most impor-
tant sub-packages. Three main packages are present: trigger software, dataflow software, and
online software.

The trigger software package contains all trigger algorithms for level 2 and event filter
(EF). The level 1 trigger is implemented in hardware and therefore not shown. All algorithms
inside this package use the Athena [Ath01] framework for common tasks (e.g. memory allo-
cation, data parsing and formatting, ...).

The trigger software requires the dataflow package for all data movements between the
different DAQ components. It comprises the data collection software for network interface

60 ROBIN Messaging and Readout System Software Design

access and safe network message passing and the ROS software. The latter contains all soft-
ware for the readout subsystem and will be explained later in this chapter.

Finally the online software package contains the main ATLAS trigger and DAQ control
software. This comprises a database for all components and a root controller which com-
municates with local controller applications running on each DAQ system node via Ethernet
network.

As shown in Figure 4.2, the ROS software sub-package, used on all ROS PCs, is part of
the dataflow package. It will be explained in the next sections.

4.2.2 ROS Software Layer Model

The application running on the ROS host-PC performs all ROS PC task mentioned in sec-
tion 4.1. It is contained in a software package, the ROS software (see previous paragraph),
which has been developed at CERN [ea02]. This package comprises the main application
and libraries for memory management, online software connection, network I/O, multithread-
ing, and ROBIN communication through an abstract, hardware independent interface. This
interface has been implemented to communicate with the MPRACE ROBIN.

The ROS software requires Linux OS. It can be divided in several layers shown in Figure
4.3. Various interfaces are defined for the communication between these layers.

ROS Application

ROBIN API / Fragment Manager

Linux OS
RobIn (MPRACE) Driver

ROBIN Message Passing

PCI Bus

ROS Software

Host PC

ROBIN Message Passing

RobIn Processes

(request handler, delete handler)

RobIn

MPRACE Low-Level Library

Figure 4.3: Software layers.

The uppermost contains the multithreaded ROS application. It executes the request dis-
tributing to the ROBIN boards and the event data fragment collection algorithm. This layer
has been developed at CERN. Only some modifications have been done within this thesis.

The second layer implements the abstract interface “FragmentManager” [ea02] for the
MPRACE ROBIN communication. The interface provides basic ROBIN functions: hardware
configuration, event data requisition, and event deletion.

The implementation of this FragmentManager interface is done with the MPRACE ROBIN
Message Passing mechanism. This comprises the sending and receiving of messages to or
from the hardware via PCI. It is the third layer of the ROS software.

The low-level communication with the MPRACE board is implemented within a library
which forms the next layer. It provides an interface for basic MPRACE read and write func-
tionality via programmed I/O or direct memory access (DMA). Additionally the complete

4.2 ROS PC Software 61

MPRACE hardware control is available: loading FPGA firmware, programming clock fre-
quencies, etc. .

Some MPRACE access operations need assistance of a device driver embedded in the
Linux OS. These are: basic PCI hardware detection, mapping of PCI bus addresses to the user
process virtual address space, and allocation and preparation of memory for DMA operations.

The fundamental layer is finally the PCI bus which “connects” the software part in the
ROS PC with the VHDL processes inside the MPRACE FPGA hardware. The latter can also
be abstracted and expressed in a similar layer model. This is also shown in Figure 4.3. The
MPRACE ROBIN firmware can be divided into two layers: one for ROBIN message passing
and one containing the main ROBIN processes.

The ROBIN message passing layer corresponds to the VHDL message decoder and DMA
engine module (see section 3.2.6 and 3.2.8). The ROBIN processes layer comprises all other
VHDL modules for request handling, delete handling, input handling, and buffer management.
It can be compared to the application layer in the ROS software.

The next sections describe the various layers of the ROS software in more detail starting
with the application layer.

4.2.3 Main Application and Fragment Manager Interface
Overview

The main ROS application, the first layer in the previously described model, is integrated into
the ROS software framework [ea02]. This framework provides various modules for memory
management, online software connection, network I/O, multithreading, and ROBIN commu-
nication. The ROS software framework has been developed in C++; the various modules are
object-oriented class libraries.

The ROS PC application is based on a multithreading concept which is intended to op-
timize I/O extensive parts. A number of threads, responsible for network I/O and ROBIN
communication, are executed and share the ROS PC’s CPU. If one has to wait for data from
a hardware component (e.g. the MPRACE ROBIN) it forces a task switch and releases the
CPU. The various tasks, their dependencies, and communications are shown in Figure 4.4.

There are four types of threads. Each may have multiple instances running on the PC
system.

TriggerIn The TriggerIn thread watches the Gigabit Ethernet connection for incoming event
data or event delete requests from the level 2 trigger or SFI event builder Farm. The
requests are handed over to the request handler thread(s) using a Mutex2 protected queue
object.

Request Handler The request handler thread executes the incoming requests from TriggerIn.
In case of an event data request, the target MPRACE ROBIN boards are accessed and
event data request messages are sent via PCI. All returning event data fragments are
combined to one ROS Fragment (partial local event building) and passed over to the
DataOut thread. In case of a delete request all ROBINs in the system are asked to delete
the set of level 1 IDs contained in the request message. Multiple of these threads are

2A Mutex (mutual exclusion) protects a shared resource in a multithreaded environment. It takes care that
only one thread can access the resource at the same time.

62 ROBIN Messaging and Readout System Software Design

present. If one of them has to wait for a ROBIN reply another has the chance to get
access to the CPU.

DataOut The DataOut thread executes the output to the Gigabit Ethernet network. It takes
the data queued by a request handler thread and passes it to the Linux operating system
via the network socket interface. Linux adds the protocol headers (UDP and IP) and
activates the Gigabit Ethernet network adapter hardware.

Control and Error This thread manages the control, monitoring, exception and error han-
dling by sending messages and status reports to the ATLAS online control software. In
case of a critical error the application may get terminated.

= Thread

= Process

Requests

(L2, EB,

Delete)

RobInsRequest

Handlers

Fragments

PCI - BUS
Request Queue

Control,
Error

TriggerIn

Fragment Manager

DataOut

= Scheduler

Figure 4.4: The threads of the ROS software main application.

Only the request handler threads perform MPRACE ROBIN accesses. Therefore the Frag-
mentManager interface is present with a set of functions for the basic ROBIN operations:
board configuration, event data request, and event data delete. This interface is described in
the next paragraph.

ROBIN Access with the Fragment Manager Interface

The fragment manager is a C++ class library for ROBIN access. It has been introduced in the
software layer model in Figure 4.3.

An abstract base class FragmentManager defines an interface to request the different
ROBIN services independent of the used hardware. For each ROBIN hardware flavour a new
class has to be developed which inherits the interface from the FragmentManager base class
and implements its methods.

4.2 ROS PC Software 63

+requestFragment()
+getFragment()
+releaseFragment()
+configure()

FragmentManager

PciRaceFragmentManager +detect()
+initialize()
+getFragment()
+clearFragments()

PciRaceRobIn

1 *

Figure 4.5: The PciFragmentManager.

This has been done for the MPRACE ROBIN hardware. Figure 4.5 shows the resulting
class diagram. The specialized class PciRaceFragmentManager has been inherit from the
FragmentManager base class for the MPRACE ROBIN. A third class, PciRaceRobIn, is used
to implement the four FragmentManager methods. It encapsulates the hardware access and
provides methods for each message type to the MPRACE firmware (see section 3.2.6). Fur-
thermore it prepares the DMA memory to enable MPRACE reply messages.

The present ”FragmentManager” methods are:

void configure(DFCountedPointer<Config> configuration)
Creates an object of the class PciRaceRobIn to enable MPRACE ROBIN hard-
ware access. Configures the board by loading the FPGA firmware file, setting
the input source (SLink or data generator), and programming the data generator if
necessary. This method also allocates DMA memory and registers it on MPRACE
(sets the PLX 9656 Direct Master window).

int FragmentManager::requestFragment(int eventID)
Requests an event data fragment from the MPRACE ROBIN. This method allo-
cates a target buffer for the event data fragment reply and sends a request message
to the hardware. Requests are stored in the MPRACE ROBIN internal request
queue with space for up to 16 event level 1 IDs and the target addresses (two
FIFOs, see section 3.2.7). The method must take care that this queue never ex-
ceeds 16 outstanding requests. In the end a ticket, which identifies the request, is
returned. The method does not wait for any ROBIN reply. It is non-blocking.

ROBFragment* FragmentManager::getFragment(int ticket)
Waits for an event data fragment previously requested by requestFragment. This
method checks the complete arrival of an event fragment from the ROBIN hard-
ware. If the data has not been completely transmitted, the method forces a task

64 ROBIN Messaging and Readout System Software Design

switch to give other threads a chance to execute their code on the CPU. Other-
wise the status value inside the event’s ROB header is analysed and in case of a
valid event data fragment a pointer to the buffer is returned. In case of an empty
fragment a zero-pointer is given back.

void FragmentManager::releaseFragment(const vector<unsigned int>* level1Ids)
This method sends an event delete message with a list of event IDs to the ROBIN.
Typically 100 event IDs are deleted at once. The MPRACE ROBIN firmware
uses a FIFO to store the event IDs until the delete instruction can be executed.
The method returns immediately when the message has been sent. Currently no
error check is supported.

For each of the four readout link (ROL) in a ROS PC, attached to a MPRACE ROBIN, one
PciRaceFragmentManager object is created on start-up. To initiate an action on the hardware,
a request handler takes a reference to the dedicated PciRaceFragmentManager object and calls
then interface methods (see Figure 4.4).

The Request Handler Thread

The request handler thread is a part of the first ROS software layer. It is one of the core
elements of the main application. The request handler algorithm makes extensive use of the
FragmentManager interface presented in the previous paragraph.

The thread picks request messages received by TriggerIn from the protected queue object.
Each of them asks either for event data from multiple readout links, distributed over one or
more ROBINs, or to delete event data on all ROBIN boards. Since each ROL has one corre-
sponding PciRaceFragmentManager object, the request handler algorithm takes all required
objects and uses the previously described interface to execute the requests.

The performance of the ROS PC system depends mostly on the event data request and
delete execution. These arrive in most cases during normal operation. Besides network and
software effects, the ROS performance is heavily influenced by the ROBIN hardware access.

Deletes are simply sent with the appropriate message to the ROBIN hardware. Event data
requests are more complicated because the software has to wait for the reply of one or more
ROBIN boards. The request handler algorithm should, for an optimized ROS performance,
use this delay for other tasks. It should not poll until the event data reply from the ROBIN
has finally arrived. This goal is supported by the non-blocking FragmentManager interface
and the MPRACE ROBIN level 1 ID request queue. Both allow sending a request message to
the hardware, do something else, and come back from time to time to see whether the event
data has already arrived. This allows both, the ROS PC software and the ROBIN, to work in
“parallel”.

Thus the target of the request handler thread should be to keep the ROBIN hardware as
busy as possible by filling its hardware request queue. Two types of request handler algorithms
have been tested within this thesis. Both try to follow the above mentioned guideline, but with
two different approaches.

1. The first request handler approach is contained in the ROS software as it is provided by
CERN. It handles a number of requests from TriggerIn (outstanding requests) in parallel
threads.

4.2 ROS PC Software 65

Read ONE request from the queue

Enter requestFragment

Call releaseFragment for each readout link

Delete request

Data request

Force task switch
= 16

Send request message to ROBIN

Inside fragment

manager method

requestFragment

Enter getFragment

Force task switch

YES

NO

Test request type

Check outstanding requests

< 16

Need data from other ROLs?

Check if event data arrived

NO

More ROLs requested?

Queue event data for DataOut

YES

NO

YES

Inside fragment

manager method

getFragment

Is request queue empty

YES

NO
Send request

Get and send fragments

Loop over ROLs

Loop over ROLs

Test if queue is empty

Figure 4.6: The original CERN request handler algorithm.

66 ROBIN Messaging and Readout System Software Design

2. The second approach has been added to the original ROS software within this thesis. It
is executed by only one thread, but with a more complex algorithm (compared to the
original CERN request handler) to optimize the ROBIN hardware utilisation.

Both versions differ only in the execution of event data requests. Event deletes are pro-
cessed in the same way.

Figure 4.6 shows the request handler thread algorithm originally included in the CERN
ROS software. It is divided into two main parts: the sending of the request to the ROBIN
hardware and the retrieving of the reply.

The first part is entered if the queue from TriggerIn is found not empty. In case of an event
data request all required ROLs on the MPRACE ROBINs are asked for the event data using the
FragmentManager method requestFragment. When entering requestFragment, a check of the
number of outstanding requests is done first to prevent a congestion of the MPRACE hardware
queue. If this exceeds 16 the algorithm forces a task switch to another thread. Otherwise the
event data request is sent to the ROBIN board. The second step checks for the arrival of event
data from each requested ROL. If data is not present, again a task switch is forced. Finally all
fragments are combined to one ROS fragment and queued for DataOut.

Multiple of these algorithms are running as parallel threads in the ROS system. The forced
task switch when waiting for the ROBIN permits other request handler threads to use the
CPU for new ROBIN hardware requests, processing of replies, or handling Gigabit Ethernet
I/O. This allows the above mentioned parallelism between ROBIN and ROS PC software.
The main disadvantage of this multithreading approach is the task switch overhead and the
impossibility to control the program flow between the request handler threads. It can not be
determined after any task switch which thread is executed next.

The second algorithm approach, shown in Figure 4.7, eliminates these disadvantages. It is
executed only in one thread. Requests from TriggerIn are accessed as long as there is sufficient
space in the MPRACE ROBIN hardware queue. Again the FragmentManager method request-
Fragment is called in a loop over all required ROLs. If the maximum number of outstanding
requests has been reached (or if there are no more requests from TriggerIn) the algorithm starts
to check for ROBIN replies. This part, shown in the right half of Figure 4.7, is equal to the
original CERN code. The getFragment method is called and waits for a message containing
event data. Now for each returning event fragment the algorithm tries to send a new request as
soon as possible to keep the ROBINs request queue filled. The result is that no task switches
have to be done while waiting for reply data. Since it is tried to fill the ROBINs hardware
queue first, the check for reply data is done on requests which have been sent some time ago.
This decreases the wait duration and the time inside the polling procedure. But if getFragment
has been entered the algorithm waits until the ROBIN reply has been arrived. No other thread
(DataOut, TriggerIn) can get access to the CPU until the thread’s time slice3 has expired.

Both request handler algorithms have been tested within this thesis and the results are
shown and discussed in the next chapter.

4.2.4 ROBIN Message Passing
The FragmentManager interface used by the previously described request handler threads has
been implemented to communicate with the ROBIN hardware. This communication is based

3The Linux scheduler assigns each thread and process a fixed time slice. If this has expired another task gets
access to the CPU.

4.2 ROS PC Software 67

Read ONE request from the queue

Entering requestFragment

Data request

=16

Send request message to ROBIN

Entering getFragment

YES

NO

Test request type

Check outstanding requests

< 16

Need data from other ROLs?

Check if event data arrived

NO

More ROLs requested?

Queue event data for DataOut

YES

NO

YES

Is request queue empty

YES

NO

Check outstanding requests number

= 0Process delete

Event

delete Loop over ROLs

Loop over ROLs

Get and send fragmentsSend request

Decision to sent request or get fragments

(Send requests until 16 outstanding requests are reached!)

Figure 4.7: The modified request handler algorithm.

on the exchange of messages via the PCI bus. Messages from the ROS PC to the MPRACE
ROBIN are used to request a service. Their format has already been described in 3.2.7. Mes-
sages from the ROBIN to the ROS PC contain event data fragments. They are transferred
using PCI bus master DMA initiated by the ROBIN’s DMA engine (see section 3.2.8). Two
different approaches to transfer the ROBIN reply messages have been implemented and tested.
The main difference between them is the component executing the DMA operation. In one
case the PLX 9656 DMA-on-demand mode is used to fetch the message data from the FPGA
in the other case the FPGA is the master component and can arbitrary accesses the PCI bus.

The following paragraph describes how messages are sent to the ROBIN. Both options for
the reverse direction are presented in the two subsequent paragraphs.

68 ROBIN Messaging and Readout System Software Design

Sending Messages from the Host-PC to the MPRACE ROBIN

Sending messages to the MPRACE ROBIN hardware can simply be done with programmed
I/O (PIO) (see section 3.1). The message has to be constructed in advance according to the
format described in 3.2.6. Then the resulting data block is written word by word to the 256
word message-input-FIFO in the MPRACE hardware (see section 3.2.6).

Alternatively the PLX 9656 DMA engine can be programmed to fetch the message from
the PC’s memory (see section 3.1). This requires at least four PIO accesses for programming
the PLX 9656 DMA registers [Tec].

The PIO option is only intended for short messages (e.g. event data requests) since it
prevents the host-PC’s CPU from other tasks. For larger messages the second option, the PLX
DMA engine fetching message data from the host-PC’s memory, should be used. Due to the
programming overhead it is only efficient for message sizes of several 100 words or more.

To assure that the message FIFO on the MPRACE FPGA does not overflow, its filling state
is connected to the PLX DMA-on-demand flow-control (see section 3.1). This suspends the
DMA operation if the FIFO contains more then 192 words.

But this flow-control is only active during DMA operations. In case of PIO an overflow
is still possible. Since messages are continuously processed by the design and even after the
DMA has already been suspended, the FIFO has still sufficient space for additional 16 event
data request messages. This may be the reason why messages have never been lost during the
tests, even under high load. Nevertheless a control mechanism should also check the FIFOs
fill level when data is sent with PIO accesses.

MPRACE ROBIN Reply Messages with “DMA-on-demand”

The return channel from the ROBIN hardware to the host-PC is more extensive. Messages
containing event data fragments are transferred from the MPRACE ROBIN hardware to the
ROS PC.

Since this happens only after a prior request message the simplest solution would be to
read the message data from the ROBIN hardware via PIO. This is very ineffective because it
engages the host CPU. Furthermore PIO measurements on the above presented PC do never
exceed a bandwidth of 4 MByte/s.

Another option would be to program the PLX 9656 DMA engine to transfer the reply
message for each event after the request message has been sent. This adds the DMA initiation
overhead to the message and event data fragment transfer time. Furthermore it necessitates
the host-PC software to wait until the reply has been arrived and the DMA operation has
been finished. Measurements, which will be presented in 5.2, show that this approach is very
ineffective for the target message size of approx. 1 kByte.

Thus two methods have been developed which enable the MPRACE ROBIN to sent mes-
sages with event data fragments into the PC without or with only a small intervention of the
host-PC software. This removes additional overhead per reply message transfer and makes the
previously described request handler thread algorithms possible.

The main problem of these transfer mechanisms is to notify the ROS PC software about
the data arrival. Two options have been considered for this:

1. Using a PCI interrupt.

2. Polling the DMA Buffer memory.

4.2 ROS PC Software 69

L
E
N
G
T
H

L
E
N
G
T
H

M
A
G
I
C

ID 1 ID 4

L
E
N
G
T
H

M
A
G
I
C

PLX 9656

(running

DMA-on-Demand)

DMA Engine

Event Data Buffer

Request Handler

FPGA

Event Data

Length

+Event Data

+Magic

Reads from FPGA

Writes to PCI

Event Data

Incoming Request

MPRACE

Host

DMA Buffer #1

DMA Buffer #2

DMA Flow Control

Figure 4.8: Data transfer between MPRACE ROBIN and host using DMA-on-demand.

The interrupt method is the common approach to tell PC software about an incoming event
from a PCI device. In this case the hardware raises an interrupt signal which forces the host-
PC CPU to break its current process and run a special interrupt service routine. This can signal
the user software the concurrency of the interrupt condition.

Contrary the poll method looks permanently on the DMA memory for a data change. This
can be used by the hardware to signal a condition to the user process (e.g. the arrival of data).
The poll method requires setting the memory content to a pre-defined value in advance to
properly detect the signal. Furthermore it consumes a lot of CPU resources.

Tests have shown that the frequency of PCI interrupts is in the order of 100 kHz [Kug04].
This is not sufficient for a ROS, handling 12 or more readout links. The requirements, pre-
sented in chapter 2.1, demand 10 kHz event data rate per ROL. This creates in 120 kHz event
data rate flowing over PCI in a system with 12 ROLs.

Thus a DMA memory polling mechanism has been developed for the ROBIN return chan-
nel. It depends substantially on the MPRACE DMA features. As already mentioned before,
two DMA variants, based on different features of the MPRACE PLX 9656 DMA engine, have
been tested. One uses the DMA-on-demand feature of the MPRACE PLX 9656 PCI bridge
chip (see section 3.1). The resulting communication mechanism is described in this para-
graph. The second variant is based on the more flexible PLX 9656 Direct Master DMA. It will
be explained in the next paragraph.

70 ROBIN Messaging and Readout System Software Design

Figure 4.8 shows the co-operation between the MPRACE and the host-PC for the first
alternative with DMA-on-demand. The host-PC initializes the DMA operation on a large
buffer. It is able to take several hundred messages containing event data packets. The FPGA
firmware uses the DMA flow-control signal to suspend the data transfer if no message has to
be transported.

When event data has been requested by the host-PC the ROBIN’s request handler module
fetches event data out of the MPRACE buffer and forwards it to the DMA engine (see section
3.2.6 and 3.2.8). The latter adds the complete data length at the beginning and a pre-defined
”magic” word at the end and pushes everything into a small 32 word FIFO. This activates the
PLX 9656 DMA with the FIFO “not empty” condition.

On the host-PC, data arrives sequentially in the DMA memory. Since the size of messages
vary, it is necessary to track the DMA memory and calculate the start and endpoint of each
message. Therefore the size of each message is transmitted in the first word. This allows
the calculation of the position where the final data word of a message will appear. The next
message will start at the succeeding word.

For a proper recognition of arriving data each word in the DMA memory has to be loaded
with a pre-defined value prior to the DMA initiation. Thus a simple loop fills the complete
memory with zero before it is used.

If there is not sufficient space left in the DMA memory to transfer another message from
the ROBIN hardware, the PLX 9656 DMA operation is aborted. After this, the present mem-
ory can not be immediately used for DMA again. This would require to completely overwrit-
ing it with zero which would also delete all recently arrived data. Thus a second Buffer has to
be used.

This concept has some advantages and disadvantages for performance and usability:

• Data transmission from the ROBIN to the host-PC has no overhead per reply message.
No DMA registers have to be programmed except when a DMA buffer has become full.
This distributes the DMA initialisation overhead to a number of several hundred reply
messages.

• The mechanism does not require any action by the host-PC except watching the buffer
and re-initiating the DMA from time to time.

• No polling on PCI is required.

• No interrupts are required.

• But the DMA buffer has to be erased (filled with zeros) before it can be used. This
reduces the reply message transfer rate because it has to be done frequently.

• Data packets appear sequentially inside the DMA buffer. The host-PC and also the
ROBIN have no influence on the position of a data packet within the memory.

The last two items, which are the main disadvantage for the DMA-on-demand message
passing scheme, disappear with the second communication approach.

4.2 ROS PC Software 71

PLX 9656
(LocalBus - PCI

Address
Translation)

DMA Engine

Event Data Buffer

Request Handler

FPGA

Event Data

1. Event Data

Writes to PCI

Event Data

Incoming Request

MPRACE

Host

DMA Buffer

ROB Start-of-Header
Poll

2. Start-of-
Header

Writes to PLX

Figure 4.9: Data transfer between MPRACE ROBIN and Host using Direct Master DMA.

MPRACE ROBIN Return Messages with ”Direct Master” DMA

The second approach to transfer the MPRACE reply message uses the Direct Master DMA
feature of the MPRACE PLX 9656 PCI bridge (see section 3.1). It allows the FPGA, as a
master device on the MPRACE local bus, to randomly access the main memory through the
PLX. Reply messages, containing event data fragments, must not sequentially arrive in the
PCs DMA buffer. They can be placed at any location defined by the software and submitted
as a parameter within the service request message.

Figure 4.9 shows the communication mechanism. Upon an incoming request message the
request handler module inside the MPRACE ROBIN FPGA fetches the required data from the
MPRACE event buffer and passes this to the DMA engine (see section 3.2.6 and 3.2.8). There,
the DMA transfer process is divided into two parts. The first part forwards the reply message
to an output FIFO. Thereby the first word is replaced by a value of one. In the second part the
first word gets overwritten with the original value to signal the host-PC the completion of the
data transfer.

The software on the host-PC polls for the arrival of the reply message and the contained
event data. Therefore it sets the first word of the target DMA buffer location to zero. If this

72 ROBIN Messaging and Readout System Software Design

value changes to the ROB Start-of-Header marker (see section 1.4), which introduces a event
data fragment from the ROBIN, the ROBIN reply has been completely arrived.

This scheme does not need any DMA buffer preparation or DMA initialisation during the
run time of the ROS software application. Everything can be done in advance. Only the first
word of the target buffer for the reply message must be set to zero before sending an event
data request.

It will be shown in the next chapter that this results in a major performance improvement
compared to the previously presented messaging scheme.

4.2.5 Low-Level MPRACE Library and Device Driver
The two lowest layers in the model in Figure 4.3 contain the basic libraries for the MPRACE
hardware access and a device driver embedded into the Linux kernel.

The MPRACE low-level library covers the programming of basic hardware functionalities.
These are:

• Detection and initialisation of the MPRACE hardware.

• Uploading the FPGA firmware via PCI.

• Programming the on-board clock system.

• Data read and write to the FPGA co-processor via programmed I/O (PIO).

• DMA memory allocation and programming of the PLX DMA registers.

The library is implemented as object oriented code written in C++. To get access to a
MPRACE board an object of the top-level interface class race1 has to be created. It provides
a set of methods for all frequently used operations.

PCI bus I/O within this library is done with memory mapped I/O. Therefore a PCI address
area is mapped into the virtual address space of the user’s application process. This can only be
done in the restricted ”kernel” mode of the Linux OS [RC01]. A device driver has to be loaded
to the Linux kernel for these operations. The driver developed within this thesis supports:

• PCI hardware detection and allocation.

• Mapping of PCI address areas to the virtual address space of a user process for memory
mapped I/O.

• Allocation of continuous memory for DMA.

The driver has been developed in C as a Linux kernel module [RC01] and can be loaded
or unloaded during Operation system’s run time.

4.3 Summary
The last chapter introduced the PC system used for the ROS application. It contains the
MPRACE ROBIN boards, mediates between the level 2 and SFI event builder farm, and per-
forms local event building on the event data fragments coming from the readout links.

4.3 Summary 73

A dual Xeon PC with four PCI segments and six PCI Slots has been chosen as a test
system. Up to four MPRACE ROBINs can be plugged into this system. Two Gigabit Ethernet
adapters provide the connectivity to the trigger and event builder farms.

The software application running on the PC uses a software framework provided by CERN.
This ROS software comprises the main application code and libraries for network I/O, event
memory allocation, multithreading, and a hardware independent interface for the ROBIN ac-
cess. The main application uses multithreading for its different tasks: trigger input, ROBIN
request handling, and data output. The handling of incoming requests is originally done in a
number of concurrent threads. To remove overheads due to task switches, a modified single
threaded request handler has been introduced. Test results from both request handlers will be
presented in the next chapter.

The abstract ROBIN software interface Fragment Manager, used by the ROS software
to communicate with the ROBIN hardware, has been implemented to support the MPRACE
ROBIN. It sends messages to the hardware and enables the receiving of replies (event data
fragments in most cases). For the reply channel, from the ROBIN hardware to the host-PC
software, two DMA communication mechanisms have been implemented and tested. One of
them is a port from the previous microEnable ROBIN prototype, the second has been devel-
oped for the MPRACE ROBIN approach. Test results for both schemes will also be presented
in the next chapter.

74 ROBIN Messaging and Readout System Software Design

Chapter 5
Results and Analysis

To get information about the performance and usability of the MPRACE ROBIN hardware,
the PC system, and the software component, a set of tests and measurements has been done.
These are presented and discuses within this chapter.

One major point is the test of the ROBIN functionality. This comprises the evaluation of
the PCI bus message passing, influence of input via HOLA SLink, and the efficiency of the
ROS software request handler. Furthermore the performance of a complete ROS PC with event
data input and Gigabit Ethernet output is presented and discussed. This will show that the
proposed ROBIN hardware together with the PC test system can fulfil the ATLAS performance
requirements.

5.1 The Test Setup
For all measurements, presented in this chapter, one test setup has been used. Figure 5.1 shows
this setup. It comprises four PC’s:

• One contains four MPRACE cards and two Gigabit Ethernet adapters. It executes the
ROS software described in the previous chapter and represents one ATLAS ROS mod-
ule.

• Another acts as a HOLA SLink source. Therefore a SLink source card, called SOLAR
[IvdB02], has been plugged into one PCI slot. It sends event data fragments via one
HOLA SLink with programmable size and frequency.

• Two requestor PCs are connected via one Gigabit Ethernet switch to the network adapters
of the PC. These send event data requests or delete messages to the ROS PC. One emu-
lates the level 2 farm and the other the SFI event builder farm.

The ROS PC system has already been described in section 4.1. It is a dual CPU system with
two 2.4 GHz Xeon processors and four PCI buses. This PC can be equipped with up to four
MPRACE ROBIN boards and two Gigabit Ethernet network adapters. One of the MPRACE
board carries the HOLA SLink mezzanine described in 3.1. This allows tests with real SLink
input. In all other cases the internal event data generator has been used (see section 3.2.4).

The PC with the SOLAR SLink source is a 866 MHz Pentium III. Furthermore two differ-
ent requestor PCs are used: a 2.4 GHz Pentium 4 and a 2.66 GHz Xeon system. Each has a

75

76 Results and Analysis

HOLA SLink Source
(ROD Emulator)

PCI Bus

M
P

R
A

C
E

M
P

R
A

C
E

M
P

R
A

C
E

M
P

R
A

C
E

GbE NIC

Requestor PC
(Level 2 emulator)

Requestor PC
(SFI emulator)

ROS PC

Switch

GbE NIC

Figure 5.1: Test setup for performance measurements.

Gigabit Ethernet interface already on board. Finally the Gigabit Ethernet switch is an Allied
Telesyn AT-9410GB with 10 ports.

Not all components of this setup are activated for each measurement. Many tests, presented
in the next section, are performed without Gigabit Ethernet I/O. Thus the two requestor PCs do
not operate in this case. The HOLA SLink source PC is also not used and therefore deactivated
in many cases.

5.2 System Test Results
The previously described test setup has been used to run a number of measurements. These
are presented in this section. The major focus of the first test series is the MPRACE ROBIN
performance inside the ROS PC. Initial results of the event data request performance archived
with a simple test application are presented. Subsequent tests add more complexity. First
events are deleted in addition. SLink input is added next.

The next step changes the focus from the ROBIN hardware investigation to the software
efficiency. The main ROS application and the efficiency of the request handler algorithms (see
4.2.3) are investigated. Finally a complete ROS PC with up to four MPRACE ROBINs and 16
readout links is tested with and without Gigabit Ethernet I/O.

5.2 System Test Results 77

5.2.1 MPRACE Request Performance

The aim of the first measurement is to determine the efficiency of event data requests to the
MPRACE ROBIN. Therefore a simple test application sends permanently a four word event
data request message via programmed I/O to the MPRACE and checks for the reply. After
a certain amount of time the MPRACE ROBIN answers each request with the desired event
data fragment. This time specifies the MPRACE event data request latency and is the value
to be measured. Only the FragmentManager interface with the methods requestFragment and
getFragment (see 4.2.3) are used by the test application to get event data fragments from one
readout link (ROL).

In total 100 000 event requests have been executed and the total duration has been deter-
mined by the test application. Therefore a high resolution timer, based on the CPU clock pulse,
measured the time between the first and the last requested event. This allows the calculation
of the request latency per event. The procedure has been repeated 20 time to get statistical
information about the measured value.

No input load has been generated on the SLink port during the measurement and no delete
messages have been sent to the ROBIN. Instead event data was pre-loaded into the MPRACE
event buffer memory.

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500

Fragment Size [Byte]

La
te

nc
y

pe
r

Fr
ag

m
en

t [
us

]

Request + Standard DMA

DMA-on-Demand

Direct Master DMA

Figure 5.2: MPRACE ROBIN event data request latency for three different DMA mechanisms. Errors
are in the order of 1% and therefore not shown.

Figure 5.2 shows the resulting request latencies for one MPRACE ROBIN depending on
the event fragment size for three different communication variants. Two of them have been
acquired with two different mechanisms to transport the ROBIN reply messages containing
event data fragments. These variants, DMA-on-demand and direct master have already been
described in section 4.2.4.

78 Results and Analysis

The third curve in Figure 5.2 shows a standard DMA for comparison. For this measure-
ment another test application programs the PLX 9656 to read a block of data with a size be-
tween 16 and 2048 Bytes and records the time for this operation. No event data request is sent
to the MPRACE ROBIN.

The tests result in Figure 5.2 shows that the direct master DMA method is the fastest. It
has the lowest event data fragment request latency. The time between sending the request
message and having the data in the DMA buffer is linear increasing with the fragment size.
For small fragment sizes (128 Bytes) a latency of 1.7± 0.02 µs can be observed. For large
event fragments (2048 Bytes) this ends up to 10± 0.1 µs.

Using the DMA-on-demand method increases the request latency to 5.8± 0.05 µs in av-
erage for 64 Byte data fragments and 18.51± 0.2 µs in average for 2048 Byte data fragments.
This reflects mostly the time for the DMA buffer clean process and the re-initiation of the
DMA which happens frequently after a number of transferred event fragments when the
PLX 9656 DMA operation expires. The time for both operations is spread over the number of
event data fragments, transferred into the DMA buffer, and appears as additional overhead.

Finally the standard DMA offers the largest latency for getting a data packet. This is the
result of the large overhead required for a single DMA initiation. Thus even small data packets
of 64 Bytes require 11.7± 0.1 µs of transfer time.

A linear fit of the measurement results in Figure 5.2, allows an estimation of the event data
request overhead and the bandwidth of the event data DMA transfer. The latter is the inverse
gradient of the fitted line.

Request Overhead Used Bandwidth
[µs] [MByte/s]

Direct master DMA 1.27± 0.01 232.6± 2
DMA-on-demand 5.45± 0.05 156.4± 2
Standard DMA 11.7± 0.1 223± 2

Table 5.1: Request overhead and DMA bandwidth for event data requests form the MPRACE ROBIN.

The resulting values are summarised in Table 5.1. The lowest request overhead is achieved
with the direct master DMA message transfer method. At least 1.27 µs is required to transmit
an event data package even if it would have a size of zero. All durations which do not depend
on the fragment size are combined in this value: the time to load zero to the first word of
the DMA target memory, the time to sent the four request words to the MPRACE hardware,
and the processing time inside the MPRACE ROBIN. This value increases for the DMA-on-
demand method and the standard DMA due to the additional overhead for memory preparation
and DMA initiation.

Regarding the bandwidth values in table 5.1 shows that event data can be transferred with
232.6± 2 MByte/s into the PCs memory. This is valid for the direct master DMA and also
nearly matches the standard DMA. The determined bandwidth almost matches the MPRACE
local-bus limit of 256 MByte/s.

Only the DMA-on-demand method has a reduced bandwidth of 156.4 MByte/s. This can
be explained with analysing the recurrent overhead for DMA initiation and memory prepa-
ration. Both appear more often in case of large event data fragments and are spread over all
transferred data packets. The result is a fragment size dependent overhead which is expressed
in the bandwidth reduction.

5.2 System Test Results 79

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500

Fragment Size [Byte]

D
at

a
Th

ro
ug

hp
ut

 [M
by

te
/s

]

Direct Master DMA

DMA-On-Demand

Request + Standard DMA
MPRACE Bandwidth Limit

Figure 5.3: Throughput of MPRACE ROBIN event data request. Three different DMA mechanisms
have been used to transfer data. Errors are in the order of 1% and therefore not shown.

The average throughput of event data requests from the MPRACE ROBIN is shown in
Figure 5.3. Contrary to the above mentioned DMA bandwidth, this throughput includes the
duration for sending request message and the MPRACE latency. It has been calculated from
the values in Figure 5.2 for all three transfer schemes. This figure shows again the advantages
of the direct master transfer mechanism for small fragments between a few words and 2 kByte.
Almost twice the throughput of the other two mechanisms can be reached.

Since the direct master DMA has shown up to be the best method for transferring reply
messages from the MPRACE ROBIN board to the Host PC it will be used in all future mea-
surements.

5.2.2 Influence of Delete Messages
If event data is not required any more, the ROS and thus the ROBIN are instructed to remove
it from the ROBIN buffer. This is carried out by sending a delete messages to the MPRACE
ROBIN which instructs the hardware to remove the event with the submitted level 1 ID from
the event data buffer (see 3.2.6).

To quantify the influence of these delete messages to the MPRACE ROBIN event data
request performance, the application of the previous test has been extended. Each requested
level 1 ID is deleted in a later message. To reduce the number of delete messages, 100 IDs are
grouped together to form a 412 Byte message.

Since event data is pre-loaded into the MPRACE event memory for this test, the delete
message can not be finally executed in the ROBIN hardware. Otherwise no more data would
be available after a short time. Thus the event delete is emulated. The messages are exe-
cuted in the ROBIN hardware up to the point where the hash table entry in the ROBIN buffer

80 Results and Analysis

management is loaded and the “free” memory page is written into the free-page FIFO (see
3.2.9). Compared to a real delete, the required SRAM write and free-page FIFO push opera-
tion are executed without an asserted write-enable signal. Thus the delete emulation consumes
identical time but performs no action.

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500

Fragment Size [Byte]

La
te

nc
y

pe
r

Fr
ag

m
en

t [
us

]

Event Fragment Request

Event Fragment Request + Delete

Figure 5.4: MPRACE ROBIN event data request latency with and without sending of event delete
messages. Errors are in the order of 1% and therefore not shown.

Figure 5.4 shows the resulting request latency. The previous result with direct master DMA
from Figure 5.2 is added for comparison. No major difference and penalty is created by the
addition of delete messages. The delete messages do not disturb the event data transmissions
via PCI bus. The delete processing is executed inside the ROBIN hardware in parallel to
other tasks. A linear fit to the curve with including delete messages shows an overhead of
1.3± 0.02 µs. This corresponds to the result without delete messages when considering the
1% measurement error. The event data fragment transfer between the MPRACE ROBIN and
the PC memory is as fast as without deletes.

5.2.3 Influence of SLink Input
Adding continuous SLink input to the MPRACE ROBIN completes the picture of the MPRACE
performance. An external SLink data source, the previously mentioned SOLAR board (see
section 5.1), sends event data packets to the ROBIN input via a 2.5 GBit/s fibre. This data is
processed as described in section 3.2.5, and stored in the MPRACE SRAM buffer memory.
Each incoming event gets requested and deleted by a PCI bus message. Therefore the test
application from the previous measurement has been used again.

The achieved event data request latency on the PCI bus interface is shown in Figure
5.5. Three curves are plotted: the request latency with continuous input from SLink to the
MPRACE ROBIN, the request latency with continuous input from the internal data generator
(see 3.2.4), and the request latency without input from the previous paragraph for comparison.

It can be seen that input from SLink and from the internal data generator is in most cases
equal, except for small fragment sizes. Here the results with real HOLA SLink show an
unexpected high value. This can not be observed with the data generator.

5.2 System Test Results 81

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500

Fragment Size [Byte]

La
te

nc
y

pe
r

Fr
ag

m
en

t [
us

]

Event Fragment Request + Delete

Event Fragment Request + Delete + SLink Input

Event Fragment Request + Delete + Data Generator Input

Figure 5.5: MPRACE ROBIN Fragment Manager performance with continuous SLink input.

Since event data, coming from the internal data generator, is processed reasonably, the
problem might by inside the SLink HOLA core, the MPRACE SLink receiver hardware, or
the SOLAR SLink source (see 3.2.4). If some effect in these components decreases the input
rate, the PCI bus request rate must also decrease. But this needs further investigation. Using
a different HOLA SLink source hardware could exclude an odd behaviour of this component.
Furthermore a more detailed debugging of the HOLA SLink core, provided by CERN, or the
receiver hardware could give a reasonable explanation.

Comparing all three results with event data input, again no major difference can be ob-
served. This shows that input load to the SLink port of the MPRACE ROBIN does not have
a major influence to the request performance on the PCI bus. The internal resources (event
buffer RAM, event buffer management) can be efficiently shared between the input channel
and the output to PCI.

A linear fit to all three results shows again the bandwidth used for the event data transfer
on the PCI bus. With SLink or data generator input a reduced value of 199 MByte/s can be
observed. Without input 233 MByte/s has been archived (see 5.2.2).

This reduction is caused by the access to the event data buffer memory on the MPRACE
ROBIN. The bandwidth between the FPGA and the event data RAM is limited to 384 MByte/s
and has to be shared between input from SLink and output to PCI. Due to the fair arbitration
between both channels and since all event data arriving to the ROBIN is also requested through
PCI, the bandwidth is getting halved. Input can be done with up to 192 MByte/s and output to
PCI is limited to 192 MByte/s which nearly matches the measurement result.

5.2.4 Multi-Threaded Versus Single-Threaded ROS Software Design

The last sections have presented the native request and delete performance of the MPRACE
ROBIN by using the FragmentManager software interface (see 4.2.3). This interface is nor-
mally used by the request handler threads within the ROS application to access the ROBIN
hardware (see 4.2). This ROS application processes input requests from the trigger farms via

82 Results and Analysis

Gigabit Ethernet, distributes these to the MPRACE hardware, collects all required event data
fragments, and returns them to the requestor over Gigabit Ethernet.

A number of request handler threads within this ROS application are responsible for the
MPRACE ROBIN access and the event data collection. Their efficiency is crucial for the
performance of the whole ROS. Two variants have been developed and presented in section
4.2.3. It is the aim of this paragraph to test and compare both.

All measurements have again been performed with the setup presented in 5.1. Input to the
MPRACE has been generated by the internal data generator during the test. On the output
side the ROS application has controlled and processed event data requests or delete requests.
These can be either received form a Gigabit Ethernet interface or generated by an internal
request-generator algorithm. The first option requires external requestor PCs and complicates
the measurement procedure. The second option allows measurements in a “standalone” mode
where the Gigabit Ethernet interaction gets emulated with the above mentioned ROS internal
software component. To compare the request handler thread algorithms, network I/O is not
essential. Thus the second option has been chosen for the measurements in this paragraph.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

Requesthandlers / # of Outstanding Requests

E
ve

nt
 R

at
e

[k
H

z]

Threaded ROS SW

Non-Threaded ROS SW with
modified Request Handler

Figure 5.6: The ROBIN PCI request rate depending on the number of request handler threads for
the CERN request handler or depending on the number of outstanding requests for the
modified non-threaded request handler. Fragment size is 1024 Bytes.

For each event arriving at the ROBIN’s input the ROS software request-generator triggers
an event data and delete request. This is processed by the TriggerIn thread and later by the
request handler thread. The latter accesses the ROBIN hardware and collects event data or
sends a delete message. Finally the DataOut thread simulates the output of the collected event
data to the Gigabit Ethernet network. The ROS software counts all events, processed during
the test, and reports the event rate.

This result is shown in Figure 5.6. Both types of request handler algorithms have been
tested and are plot in Figure 5.6. The CERN version of this algorithm is based on multiple
threads each handling only one request at the same time. Multiple threads are used to optimise
and re-use MPRACE hardware I/O delays. The test varied the number of threads and measured

5.2 System Test Results 83

the number of events processed by the ROS system. The result is shown in the curve with the
square measurement points. It rises for small thread counts, since the MPRACE I/O delays are
better utilized with each additional thread. This reaches a maximum with 14 threads. More
threads add overhead due to the more frequent task switches. The event rate decreases again.

The alternative request handler algorithm is executed in only one thread. It tries to optimise
the use of the MPRACE hardware request queue by maximizing the number of outstanding
requests. This maximum number of outstanding requests is also the parameter varied during
the test. It determines the highest filling state of the MPRACE request queue. This filling state
is tried to be sustained by the algorithm.

The test shows that the alternative one-thread request handler algorithm increases the
achievable event rate by 5 to 10% for a fragment size of 1024 Bytes compared to the orig-
inal CERN implementation. The system benefits from the lower number of task switches and
I/O delays can be used more efficiently for the ROS software tasks.

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500

Fragment Size [Bytes]

R
eq

ue
st

 R
at

e
[k

H
z]

Threaded ROS SW

Non-Threaded ROS SW with
modified Request Handler

Figure 5.7: Size dependency of the ROBIN PCI request for the two request handler options.

The fragment size dependency of the event rate is shown in Figure 5.7. The benefit of the
alternative algorithm increases for small event data fragments (128 Byte). For large fragments
(2048 Byte) no advantage can be observed any more.

Figure 5.8 illustrates the reason for this behaviour. On the left side the event processing
of the original CERN algorithm is schematically displayed. On the right side the alternative
approach is shown.

The first operation of both algorithms is the sending of the request message. After this
the polling mechanism starts. Since the fragment is not immediately present in the PCs DMA
memory, a task switch is forced in the multithreaded request handler’s polling loop. Depend-
ing on the Linux task scheduler, the polling is continued after an arbitrary amount of time.

Contrary to this, the alternative request handler checks returning event data not immedi-
ately after the request. First a number of other messages are sent and previously requested
data is processed. After this the polling of the already requested event data starts.

84 Results and Analysis

Request
Fragment A

Program Execution PCI Bus Transfer

T
im

e

Poll
Fragment A

Schedule
Yield

Poll
Fragment A

Request
Fragment A

PCI Bus Transfer

Request and Poll
#outstanding

other Fragment

Poll
Fragment A

Data Received

Request
Fragment B

Data Received

Request
Fragment B

Multithreaded Request Handler

Program Execution

Non-Multithreaded mod. Req. Handler

Request
Latency v

v

Request
Latency

Scheduler
returns to thread

Request
Message

Event
Data

Request
Message

Event
Data

Figure 5.8: Execution difference between original and modified ROS Software request handler.

In case of small fragment sizes and therefore short transfer durations, the alternative re-
quest handler algorithm is able to detect a transmitted event data packet earlier than the original
approach. The latter needs more time to return to the polling position inside the code since
another thread may use the CPU for a comparatively long period. In case of large fragments,
which have long transfer durations, this difference decreases to zero. Both algorithms have to
wait for the data arrival.

Due to this observation, all further measurement results have been produced with this
alternative non-multithreaded request handler. It is at least equal, in many cases better than
the original CERN implementation.

5.2.5 Performance of a ROS PC with Multiple MPRACE ROBINs

In the ATLAS ROS baseline architecture, presented in section 2.3.4, it is intended to use a
ROS PC system which is able to receive event data on at least 12 readout links. This requires
the usage of a number of MPRACE boards. Up to now all measurements have been done with
only one board and only one of the four ROLs activated. Measurements with up to four boards
and 16 ROLs will be presented in this paragraph.

Again the ROS software and the setup described in section 5.1 have been used for the
measurements. Input data to the MPRACE ROBINs has been generated with the internal
event data generator and a rate of 130 kHz. The fragment size was set to 916 Bytes resulting
in a total size of 1024 bytes when requested via PCI (generated event fragment + ROB header).
The ROS software internal request generation and also the DataOut thread emulated network

5.2 System Test Results 85

I/O during the tests. Furthermore the alternative single-threaded request handler has been used
and run with up to 12 outstanding requests.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Request Rate [kHz]

M
ax

 L
ev

el
 1

 R
at

e
[k

H
z]

1 ROL

2 ROL

3 ROL

4 ROL

8 ROL

12 ROL

16 ROL

Equal

Input =
 Output

ATLAS requirement
(10kHz request rate @ 100kHz Level 1 rate)

Figure 5.9: MPRACE ROBIN performance without DC I/O.

Figure 5.9 shows the measurement results. It plots the maximum sustainable level 1 accept
rate (which is the ROBIN’s input rate) depending on the event data request rate on PCI for 1, 4,
8, 12, and 16 readout links on up to four MPRACE ROBINs. Three boards have been plugged
into PCI slots on separate buses. The fourth ROBIN has been placed on the same bus as the
third.

Each data point of a curve represents a different fraction between requested data and in-
coming data. All points on the line “Input=Output” correspond to a fraction of 100%. This
means that all incoming data is also requested and deleted by the ROS PC. This fraction de-
creases with each further data point on a curve. In the end only 1% of all data is requested, all
other data is only deleted.

With the decreasing of the fraction between incoming and requested events also the request
rate (plotted on the x-coordinates) decreases. This is produced by the request-generator of
the ROS software. It generates, with a fix frequency, delete and event data requests. Thus,
for smaller fractions also the request rate decreases. The maximum sustainable level 1 rate,
plotted on the y-axis in Figure 5.9, saturates for small fractions and thus for lower request rates
at the level of the ROBIN event data generator frequency.

When using only one ROL, the performance is sufficient to request and delete all incoming
event data fragments at the selected input frequency of 130 kHz. With two ROLs (both are on
the same ROBIN board) the possible level 1 accept rate decreases for high PCI request rates
down to 95 kHz. In this case the data from two ROLS have to pass the MPRACE PCI interface
which decreases the maximum output performance. This continuous with an increasing num-
ber of ROLs. For all measurement curves the maximum request rate can never exceed a value
which is determined by the latency of the MPRACE ROBIN and the performance of the ROS
software. Comparing the results in Figure 5.9 with the ATLAS requirements in 2.1 shows that
even with 16 ROLs handled by the ROS PC these can be met.

Calculating the PCI-Bus throughput for the maximum request rates depending on the num-

86 Results and Analysis

ber of ROLs gives information about the PCI bus utilization with one and more MPRACE
boards. This is shown in Figure 5.10.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18

of ROLs

O
ve

ra
ll

Th
ro

ug
hp

ut
 (a

ll
R

O
Ls

) [
M

by
te

/s
]

MPRACE 1
PCI Bus 1

MPRACE 2
PCI Bus 2

MPRACE 3
PCI Bus 3

MPRACE 4
PCI Bus 3

Figure 5.10: MPRACE ROBIN PCI bus throughput without Gigabit Ethernet network I/O.

The throughput with only one activated ROL can be compared with the measurements
in Figure 5.2.1. The value in the previous measurement is about 40 MByte/s larger than the
present value. Since Figure 5.4 has shown that the additional delete requests have no influ-
ence on the event data request performance, the throughput decrease must be a result of the
additional input load and the more complex ROS software.

With two ROLs on one MPRACE ROBIN the PCI throughput increases to 200 MByte/s.
This shows that the request handler can use the delay in which the request of the first ROL is
processed inside the MPRACE hardware to send the second request message.

But for three and four ROLs the bandwidth decreases again by 5-10 MByte/s. This could
be explained by arbitration effects on the MPRACE local-bus (see 3.1). Request messages are
written by the PLX 9656 to the MPRACE local-bus. This has high priority and the local-bus
arbiter breaks any ongoing access of the FPGA. Any re-arbitration adds a few clock cycles be-
fore and after the breakdown. When the maximum throughput of MPRACE has been already
reached, this effect may decrease it by a small value for any additional ROL.

Adding a second MPRACE ROBIN board on another PCI bus increases the useable band-
width by a factor of two. Thus it is expected that an activation of one ROL on this second board
immediately raises the throughput by 135 Mbyte/s (the throughput when requesting data from
a single ROL). This can not be observed. Instead the volume of requested data increases only
by 40 Mbyte/s. This effect is a result of the request handler algorithm. It has to access five
ROLs instead of one which means that a single one is accessed more rarely.

This continues with two and three ROLs on the second board. With each ROL an increased
throughput has been observed. The maximum of 300 MByte/s is reached with three ROLs
on the second board. Again with four links the rate somewhat decreases due to the above
mentioned arbitration effect.

Adding another board again increases the bandwidth and the third board can transfer data

5.2 System Test Results 87

in parallel to the first two boards. Again the throughput raises, saturates and decreases a bit.
Finally the fourth board is plugged into the same bus as the third. This does not increase

the bandwidth and also the throughput do not increase any more.

5.2.6 Influence of Network I/O

Finally the ROS system has been tested with one and two activated Gigabit Ethernet network
interfaces for I/O to level 2 and SFI event builder farm. The setup has been already described
in section 5.1. It consisted of the following components:

• A ROS PC with up to four MPRACE ROBINs handling up to 16 ROLs.

• Two PCs for request generation. One is emulating the level 2 trigger farm and one the
SFI event builder farm.

• A Gigabit Ethernet switch in between.

Event data input to the ROBINs have been again supplied by the internal data generators which
run at 130 kHz and produce event data fragments with a size of 916 kByte.

During the tests, the requestor PCs have asked each event, previously arrived at the MPRACE
ROBINs inside the ROS PC, and generated a request to delete it later. These requests have
been sent over Gigabit Ethernet using the UDP/IP protocol and a message passing library
developed at CERN [Hau03].

The ROS system queues these requests and sends them to the MPRACE ROBIN hardware.
Again each data request is forwarded to all ROBINs and all ROLs inside the PC. The ROS
system finally combines all event data fragments from the different ROBINs to a large ROS
fragment and sends this via the network interface to the requestor PC. Each fragment, coming
from the MPRACE ROBINs, has a size of 1024 Bytes during the tests presented in this para-
graph. This is a representative for the largest event data fragments arriving at a readout link
(see table 2.1).

To request and delete each incoming event data fragment on each ROL is an overestimation
compared to the real operation conditions because in case of a level 2 request only event data
from specific ROLs within the pre-defined region-of-interest (see section 1.3) are required.

The achieved request rates per readout link (ROL) are plotted in Figure 5.11. The lower
curve shows the results with one Gigabit Ethernet network adapter and the upper curve with
two. Comparing the result with Figure 5.9 each point corresponds to the values on the “In-
put=Output” line.

This comparison shows that the activated network I/O decrease the request rates per ROL
by a factor of 2.5 to 3. But the ROS system presented in this thesis can still sustain the worst
case event data request rate of 10 kHz (see 2.1) with up to 12 readout links distributed on three
MPRACE boards.

Calculating the throughput dependent on the number of readout links leads to Figure 5.12.
The presented values include the data volume required for the Ethernet frame header (20 Byte),
IP header (24 Byte), UDP header (8 Byte), and the header added from the CERN data collec-
tion protocol suite [Hau03]. With one activated Gigabit Ethernet link up to 100 MByte/s can
be achieved, with two 125 MByte/s. This is the data volume flowing over the Gigabit Ethernet
interface(s).

88 Results and Analysis

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18

of ROLs

R
eq

ue
st

 R
at

e
pe

r
R

O
L

[k
H

z]

Request Rate 2 GbE

Request Rate 1 GbE

10 kHz

Figure 5.11: ROS system performance with MPRACE ROBIN and network I/O to level 2 and SFI
farm emulator.

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18

of ROLs

O
v

e
ra

ll
 T

h
ro

u
g

h
p

u
t

(a
ll

 R
O

L
s

)
[M

b
y

te
/s

]

Throughput 1 GbE

Throughput 2 GbE

Figure 5.12: ROS system throughput with MPRACE ROBIN and network I/O to level 2 and SFI farm
emulator.

This result shows that only a small part of the increasing bandwidth with two Gigabit Eth-
ernet adapters can be used by the ROS to improve throughput and request rate. Watching
the process CPU utilization during the measurements with the application “top” shows that
approximately 65% of the system processor time is used by the Linux operating system. The
remaining CPU time, only 35%, is utilized by the ROS application processes. Out of these
indications, the 2-3 times larger request rates without network I/O and the high system utili-
sation with network I/O, it can be assumed that the ROS, presented in this thesis, is limited by
the operating system. Linux is not able to exploit two Gigabit Ethernet interfaces while also
handling the MPRACE ROBIN boards.

The reason for this limitation of Linux OS in case of heavy network traffic can be found
in the Linux Kernel [Lin]. Each Ethernet frame, a block of 1538 Bytes of data, is constructed

5.3 Conclusions 89

within the kernel by copying data from the user’s buffer to a kernel buffer, adding the protocol
headers, and passing this to the network hardware driver. This forces all event data to be
copied between two memory buffers. Since the event data is already present inside a DMA
capable memory, this copy procedure is unnecessary in this case.

This matter of fact also explains the factor of three in the comparison between the mea-
surement results with and without network I/O. With network interaction all data has to be
move three times: from the ROBIN hardware to the PC memory, within the PC memory from
one buffer to another, and finally to the network adapter.

5.3 Conclusions
The measurements have shown that the MPRACE PCI ROBIN delivers a good performance. It
is able to sustain 160 MByte/s input on four readout links, while handling event data requests
with 200 MByte/s on PCI.

A multiple PCI bus ROS PC, equipped with MPRACE ROBIN boards, running an im-
proved CERN ROS software, is able to fulfil ATLAS worst case requirements: a request rate
of 10 kHz with up to 12 readout links distributed on three boards. This requirement has been
estimate with assuming a level 1 accept rate of 100 kHz. This assumption includes a safety
factor of four which can be carried to the request rate requirement.

Additionally it could be proved that up to 16 readout links on four boards can be success-
fully handled. Grouping 16 ROLs in one ROS PC does not match the ATLAS worst case
requirements any more, but may be connected to lower demand sub-detectors.

Currently the limiting factor of a PC based ROS with MPRACE ROBINs is the handling
of the network connection to the level 2 farm and the SFI event builder farm. Even if sufficient
network bandwidth is available, the ROS PC is not able to exploit it.

It has been shown that this is not caused by the MPRACE ROBINs. A ROS system with
several MPRACE ROBINs and without network I/O reaches three times the performance then
an equal ROS with network I/O. Instead, the limitation has been localized within the network
handling of the Linux operating system.

90 Results and Analysis

Chapter 6
Conclusion and Outlook

6.1 Summary

The goal of this thesis was to evaluate a readout subsystem for the ATLAS detector. It should
be a cost-effective solution and mainly based on widespread commercial “of-the-shelf” com-
ponents with a minimized effort for custom hardware development.

A high performance server PC with four PCI bus segments has been chosen as the tar-
get platform. Since this standard PC is not able to process the event data coming from
the readout drivers on a reasonable number of links it has been extended with a number of
MPRACE FPGA co-processor boards, called ROBIN in this context. The FPGA co-processor,
a 64 Bit / 66 MHz PCI card with an FPGA, memory, and expansion connectors for the detector
link, performs the task to receive and buffer the event data in the presented approach. It is a
simple device which has been used for many other applications before. The PC is responsible
for Gigabit Ethernet network I/O to the level 2 and SFI event builder farm. It runs an opti-
mized multithreaded application, which handles the network I/O, assisted by the Linux OS.
Furthermore it collects the required event data from the PCI boards with a hardware abstrac-
tion interface and performs local event building. Thus, the ROS PC is a first stage of event
building in case of a level 2 accept decision. This concept moves load from the SFI farm to
the ROS.

The functionality of the level 2 trigger makes this system unique in high energy physics.
Only a few experiments (e.g. HERA B) have a level 2 trigger processor which requests all
necessary event data from the buffer. This characteristic has also a major influence to the
complexity of the ROS and increases its output load.

The measurements in the last chapter show that the proposed system can be used in the AT-
LAS data acquisition. It has been proven that the FPGA co-processor based PCI bus ROBIN
device is able to handle event data from four ATLAS readout links with an input rate of
100 kHz and a bandwidth of 160 MByte/s. Three boards with altogether 12 readout links
grouped in one PC could successfully provide 10 kHz event data rate on Gigabit Ethernet.
This meets the worst case requirement estimations for the level 2 and SFI data rates.

The main bottleneck of the current design is the handling of the Gigabit Ethernet network
I/O within the Linux OS. Even if sufficient network bandwidth is provided by using two in-
terface adapters, the event rates towards the level 2 and SFI farms could not be improved. The
reason has been identified to be the Linux internal processing of the network sockets and the

91

92 Conclusion and Outlook

assembly of the event data Ethernet frames.
Since the evaluated system is still a prototype a number of further issues (advantages and

disadvantages) have to be considered and discussed. This is the aim of the first section within
this chapter. In the subsequent section the final readout buffer system technology decision
will be presented. Finally an outlook to future data acquisition systems in high energy physics
experiments finishes this thesis.

6.2 Discussion of the Current Design

6.2.1 The MPRACE ROBIN
General Remarks

The current MPRACE ROBIN design, evaluated within this thesis, has advantages but also
disadvantages. The component is simple and cheap. It consists only of an FPGA, four memory
banks, the HOLA SLink input, and the PCI bridge. All this can be placed on a standard format
PCI card which makes the hardware production much easier and cheaper compared to a 6 or
9 HU multi-layer board. This remains true even when considering that a 6 or 9 HU board can
handle more readout links.

Using an FPGA requires a number of tools for firmware development. The typical design
language, VHDL, needs special knowledge and is not a widespread programming language.
This makes maintenance or a later upgrade more difficult. But C-like programming languages
as Handle-C could help an ordinary C programmer to develop FPGA firmware faster. The
disadvantage of complex programming is balanced by the speed of an FPGA and the ability
to execute several processes in parallel.

ROBIN Event Buffer

The ROBIN’s event buffer and its management is important for the performance, usability,
and error-proneness of the device. The event buffer must be large enough to keep all incoming
event fragments while its level 2 trigger decision is computed (in average 10 ms). The ROBIN
can not delay the receiving of incoming event data from the ROD hardware because the lat-
ter can only store a few data words. The XOFF signal, which may be used by the ROBIN
hardware to stop transmission from the ROD, is only intended to be a flow-control signal and
should only be raised for a few clock cycles. Otherwise event data may get lost due to the
missing buffer capabilities in the ROD.

The present SRAM event buffer on the MPRACE, with a size of 2 MByte per ROL, is
just sufficient. To give the ROBIN more headroom to react to extraordinary situations, a large
buffer would be reasonable. Therefore a number of options can be taken into account:

• Equip the MPRACE SDRAM connector with an SDRAM module.

• Expand and enlarge the four SRAM memory.

• Replace the SRAM memory by larger SDRAM components.

The first option enables the FPGA to use one SDRAM module with a 64 Bit data bus at up
to 133 MHz. It allows a memory bandwidth of 1064 MByte/s, 266 MByte/s per channel. This

6.2 Discussion of the Current Design 93

is approx. 70% of the current event buffer bandwidth. Regarding the more complicated access
of SDRAM this may not be enough.

Another option would be to add more or larger SRAM components. This would be a
simple extension to the current hardware and has the advantage that SRAM access is very
simple from the FPGA’s point-of-view. But a large amount of SRAM is very expensive.

An alternative would be to replace the SRAM by SDRAM components within an MPRACE
hardware upgrade. They offer a cheap implementation of a much larger buffer, e.g. 32 or
64 Mbyte. But contrary SDRAMs need a more complex access control [Sam03a] [Sam03b].
They requires refresh cycles to keep the memory contents and care must be taken when ac-
cessing the banks, rows, and columns of the component to gain the optimal bandwidth. This
makes a SDRAM less handy then SRAM, but with the great advantage of a larger amount of
memory.

For accessing SDRAM from an FPGA commercial logic cores are available [XIP]. Since
in most cases sequential addresses are accessed (for reading and writing 1 kByte event data)
the SDRAM can be accessed in burst mode in most of the times which offers optimal perfor-
mance. Having a clock frequency of 96 MHz (as in the current ROBIN implementation) and
a SDRAM width of 32 bit, a bandwidth of close to 384 MByte/s, equal to SRAM, could be
reached [Kra04].

MPRACE ROBIN Buffer Management

The current management of the MPRACE ROBIN event buffer is simple, but suitable for the
ATLAS application. But some situations have not been taken into account yet (see chapter 3):

• Only one buffer page, which is currently 2 kByte, can be used for an event data fragment.
Data is cut otherwise.

• SLink transmission error flags are not recorded.

• The length of the event fragment arriving from the SLink is not compared to the event
size information inside the ROD header (see 1.4).

• A missing SLink end-of-frame is not detected and may combine two event fragments.
This may also exceed one page inside the event buffer. A detection of this problem
implies that the event size information of the ROD header is analysed and taken into
account.

• An already existing hash table entry is not checked before a new entry is going to be
written. If an event stays in the buffer for a long time it may get overwritten and lost.

• The real level 1 ID (the one contained in the ROD header) is not checked when request-
ing an event data fragment. It is only identified by the hash key. Thus the MPRACE
ROBIN may return wrong event data.

• The MPRACE Delete Handler identifies an event data fragment only by its hash key
too. Thus it may delete the wrong fragment from the hash table.

• The MPRACE Delete Handler does not notify the user when the deletion of an event
has failed. This would be important for operational monitoring.

94 Conclusion and Outlook

One of the most complicated issues may be the handling of event data fragments with
a size larger then the current page size of 2 kByte. This problem should not appear during
normal operation because the event data fragments per ROL are far below 2 kByte (see 2.1)
for all sub-detectors. But in case of an unexpected behaviour of the ATLAS DAQ System, or
to support the possibility of future upgrades this should be considered.

An optimal solution would be a linked list with an infinite number of pages per level 1 ID.
This implementation is very flexible but it would require a complex FPGA implementation or
an additional microcontroller. Another option is to increase the page size to 4 or 8 kByte. This
also increases the fraction of unused memory because many event data fragments need only a
small part of a memory page. Furthermore this only moves the fragment size limit to a larger
value.

A good compromise is to use a limited number of pages for one level 1 ID. This solution
is similar to the enlargement of the page size, but omits the memory dissipation. Depending
on the maximum number of pages per event the level 1 ID hash table increases by the same
factor. This solution may be the best for a FPGA based buffer management as it is done with
MPRACE. The first approach is more flexible, but better done in a CPU.

Most of the other deficiencies are simple improvements by adding additional checks (e.g.
comparing lengths or event IDs), setting of error flags and counting of error concurrencies.
The SLink error flags may be added to the buffer and inserted into the ROB header on request.
This notifies the next data acquisition instances about the SLink transmission problem.

The arriving of corrupted event data fragments via SLink can be handled similar. There
may be fragments which are too long, too short, or at which the SLink start or end-of-frame
identifiers have been missing. These have to be buffered and marked by an error flag.

If a new event data fragment attempts to overwrite an existing one another complicated
situation rises. This situation appears only if the level 2 trigger needs more then 40,96 ms
for the decision on one an event (with an assumed level 1 accept rate of 100 kHz), four times
more then the expected average level 2 decision time of 10 ms (see 1.3). But due to the large
variation of the level 2 decision time, which may be several times the average, this case may
rarely occur. A handling of this exceptional case must be considered.

A possibility would be to copy the present fragment to the PC’s memory before it gets
overwritten. A mechanism checking the host PC for an old fragment, which could not be
found at the ROBIN, could be used at the PC to get the event data fragment later.

Another improvement would be to acknowledge the event delete requests, extended by a
list of level 1 IDs which could not be deleted by the MPRACE ROBIN. This helps to early
detect and identify problems.

6.2.2 ROS PC and Software

The selection of the PC System (see section 4.1) hosting the MPRACE ROBIN boards has
turned out to be a good choice. It is able to carry up to four boards and provides sufficient
network bandwidth for the level 2 and SFI connection.

The measurements have shown that the handling of the network interface is currently the
main bottleneck of the ROS System with a modern, high performance PC. The Linux OS is not
able to move the event data fast enough to the network hardware because of the slow Ethernet
frame assembling. But up to 12 readout links distributed on three boards can fulfil ATLAS
requirements. More may be used at lower demand sub-detectors.

6.3 The Final ATLAS Readout System 95

One possible improvement for this situation would be to use a faster PC. Instead of the
2.4 GHz system, 3.6 GHz PCs are already available. It is expected to have even faster CPUs in
a two years timescale when the ROS PCs will have to be purchased. This can make a system
with 16 or even 20 readout links possible which is able to fulfil the ATLAS requirement of
10 kHz request rate per ROL.

Another approach would require an extensive change in the network handling of the ROS
PC. As already described in 5.2.6 the single Ethernet frames are build within the Linux kernel
out of the ROS event data fragments by copying them together with the header into a buffer
which will then be used by the network hardware for DMA. The Ethernet interface access and
the DMA operation is finally done inside a Linux device driver.

Most Ethernet cards provide the possibility to gather the Ethernet frame data from different
memory locations. Since the event data arriving from the MPRACE boards is already in a
DMA capable buffer, this could be used to send the data directly to the Ethernet hardware
without memory copy. Only the network headers have to be build in a separate memory area.

This requires the modification of the present network driver by adding the possibility to
supply Ethernet frames without using the Linux kernel. Since in most cases no information
on the hardware access of recent Gigabit Ethernet cards is provided by the manufacture, this
will get the main problem during the implementation. Furthermore the network protocol suite
(currently UDP/IP) has to be present in the ROS application to form the header. Therefore
open source software could be used [Dun].

The measurements in chapter 5 also show that a ROS PC with more then six slots and
substantially more then 16 readout links, as it has been considered in (see 4.1) with the usage of
an “industrial” PC, is currently not reasonable. This is also valid for a CompactPCI approach
with up to 7 boards, each with 4 or 8 readout links (see section 2.3.1). Only the form factor of
such a system differs to the PC used within this thesis. The technology (a PC with PCI bus)
is equal. Thus the presented measurements have shown that such a system, a CompactPCI PC
handling 28 or even 56 readout links, can currently not meet the ATLAS requirements.

6.3 The Final ATLAS Readout System

Upon the evaluations and the development presented in this thesis, the PCI bus based ROS
System has been chosen as the baseline architecture of the ATLAS ROS System. Preliminary
results have been used in the “ATLAS High-Level Trigger, Data Acquisition and Controls
Technical Design Report” [Gro03] to prove the effectivity of this choice.

Out of the above mentioned disadvantages of the MPRACE ROBIN in terms of error and
exception handling, and also because of the small event buffer memory, it has been chosen to
develop a new ROBIN PCI card. This development comprises all advantages of the MPRACE
ROBIN and takes the various other approaches, presented in 2.3.3, into account.

To add the option of a later upgrade path for bandwidth improvements, this ROBIN also
provides a Gigabit Ethernet interface for a direct connection to the level 2 or SFI farm PCs.
This is implements the idea of a Gigabit Ethernet based ROS presented in 2.3.1.

Figure 6.1 shows the final ATLAS ROBIN board. Instead of four readout links it will carry
only three plus an electrical Gigabit Ethernet interface. The PCI interface and the FPGA are
equal to MPRACE. The main event data flow is routed through the FPGA, as it has been done
by MPRACE, because of performance issues.

96 Conclusion and Outlook

3 * 64 MByte SDRAM

Electrical Gigabit Ethernet

Interface

3 HOLA SLink Connectors
Xilinx Virtex II FPGA

PLX 9656

PowerPC 440

Microcontroller

Figure 6.1: The final ATLAS ROBIN board.

For the buffer management, request handling, and error and exception management the
FPGA is assisted by a PowerPC 440 microcontroller. Various ideas from the UK-ROBIN
approach are re-used in the processor part of the buffer management. The microcontroller
also processes the decoding of messages form PCI and network. This increases flexibility and
removes all problems mentioned in 6.2.1.

Three banks of SDRAM, each having 64 MByte, are available for event data. This provides
huge headroom as it has been discussed above (see 6.2.1).

This ROBIN is used similar to the MPRACE board in the multi PCI bus PC as it has
been presented in 4.1. Also the ROS software is re-used. First tests with a prototype show
a performance equal to the MPRACE based ROBIN. This development solves most of the
problems mentioned in the MPRACE ROBIN discussion above. Only the limitation of the
network handling remains because the PC system is still unchanged.

6.4 Future Experiments
The next generation of high energy physics experiments will again increase the bandwidth
demands on the data acquisition system. To investigate new physics, the experiments will run
at much higher energies as LHC and ATLAS and will be more precise. This increases the
amount of data supplied by the next generation detectors.

Furthermore the trend to use as many standard, “of-the-shelf” hardware will continue.
Since the computing power of these components evolve very fast, more complex and also
more flexible trigger algorithms can be executed on-line during data acquisition. This can
even be done on a complete event since data transport technologies are able to transfer data at
least 10 times faster then Gigabit Ethernet (e.g. 10 Gigabit Ethernet).

Thus future trigger and data acquisition systems may immediately build the complete event
when it has been accepted by a first hardware trigger level and sends the full event data to a
large computing farm [Du02]. This puts high demand on the readout buffer system.

6.4 Future Experiments 97

To meet these larger requirements new technologies have to be considered. The currently
used PCI bus is attempted to be replaced in the next five years. PCI-Express is a popular up-
coming candidate. Contrary to PCI, PCI-Express is a 2.5 GBit/s serial point-to-point interface
with a switch fabric similar to modern networks. It uses a variable number of channels to
adapt to various hardware bandwidth demands. This makes data rates of several Gigabyte per
second possible which enables the usage of the presented architecture in future high energy
physics experiments with higher bandwidth demands.

Also the network connection bandwidth has to be improved to transport a higher amount
of data. The next Ethernet generation with 10 GBit/s per interface is already available. Also
InfiniBand is an upcoming connection standard, mainly for PC clusters [Ass04].

The ROBIN and its components also have to fit to increasing bandwidth demands. Memory
with more bandwidth are already standard within current PC market. There are double data
rate (DDR) RAM modules which carry data at the raising and falling edge of the clock. New
FPGA families will provide a decrease structure size and will allow higher clock frequencies.

Furthermore processor cores, directly implemented in silicon, can be used [XIL]. A sim-
ilar approach for adding a processor to a ROBIN design would be to use logic core which
includes it into the FPGA firmware. Thus less and faster components will be available for
future ROBIN implementations.

98 Conclusion and Outlook

Appendix A
Glossary

ASIC Application-Specific Integrated Circuit
ATLAS A Toroidal LHC Apparatus
CERN Conseil Européen pour la Recherche Nucléaire
CLB Configurable Logic Block
CPU Central Processing Unit
DDR RAM Double Data Rate RAM
DFM DataFlow Manager
DMA Direct Memory Access
DREQ DMA Request
EB Event Builder
EF Event Filter
FIFO First In First Out (Memory)
FPGA Field-Programmable Gate Array
HOLA High Speed Optical Link for ATLAS
LHC Large Hadron Collider
LDC Link Destination Card (SLink)
LSC Link Source Card (SLink)
MAC Media Access Control
MIPS Million instructions per second
OS Operating System
PCI Peripheral Component Interconnect (Local Bus)
PLD Programmable Logic Device
PMC PCI Mezzanine Card
RAM Random Access Memory
ROB Readout Buffer
ROBIN Readout Buffer Input
ROL Readout Link
ROS Readout Subsystem
SCT SemiConductor tracker
SDRAM Synchronous Dynamic Random Access Memory
SFI Sub-Farm Input
SFO Sub-Farm Output
SRAM Static Random Access Memory

99

100 Glossary

TRT Transition Radiation Tracker
VHDL VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
VME Versa Module Europa (Bus)
ZBT Zero Bus Turnaround

List of Figures

1.1 Overview of recent experiments . 6
1.2 The Atlas Detector . 8
1.3 The ATLAS trigger and event data acquisition 10
1.4 Level 1 Trigger Menu . 11
1.5 The CERN SLink standard . 12
1.6 The ATLAS event format . 14
1.7 The ROD event fragment format . 15

2.1 The ROS dependencies . 17
2.2 Generalised and simplified event data flow through trigger and readout buffer

components used by many experiments. 21
2.3 The HERA B event data flow with the focus on the second trigger level . . . 22
2.4 The ROB-on-the-ROD scenario . 24
2.5 ROS Module with local event building via a standard bus (VME, PCI) 25
2.6 VME ROS implementation with Single Board Computers in a VME crate . . 28
2.7 ROBIN options used within the VME RIO 8062 CPU 28
2.8 UK-ROBIN buffer management . 29
2.9 CompactPCI based ROS System using a 6 HU crate 30
2.10 PCI ROBIN based on a SHARC DSP developed by the NIKHEF institute . . 31
2.11 PCI ROBIN based on a the commercial FPGA Co-Processor microEnable . . 32
2.12 The performance of the three PCI ROBIN prototypes NIKHEF SHARC ROBIN,

UK-ROBIN, Mannheim FPGA ROBIN . 32
2.13 The ATLAS ROS baseline architecture . 33

3.1 The MPRACE FPGA co-processor. 36
3.2 Block diagram of the MPRACE FPGA co-processor. 38
3.3 MPRACE HOLA SLink extension board . 38
3.4 The mapping of the MPRACE resources to the ROBIN application. 39
3.5 Outline of a four HOLA SLink mezzanine for the MPRACE board. 40
3.6 ROBIN FPGA firmware overview. 41
3.7 The MPRACE ROBIN buffer manager scheme. 43
3.8 Setup of a MPRACE SLink connection . 44
3.9 The algorithm of the input process. 46
3.10 The MPRACE ROBIN request handler process. 49

101

102 LIST OF FIGURES

3.11 The ROB header format. 50
3.12 DMA-on-demand DMA engine flow. 51
3.13 Direct master DMA engine flow. 52
3.14 MPRACE Fragment delete engine. 53

4.1 The ROS PC configuration used with the MPRACE ROBIN. 58
4.2 The ATLAS software packages and dependencies. 59
4.3 Software layers. 60
4.4 The threads of the ROS software main application. 62
4.5 The PciFragmentManager. 63
4.6 The original CERN request handler algorithm. 65
4.7 The modified request handler algorithm. 67
4.8 Data transfer between MPRACE ROBIN and host using DMA-on-demand. . 69
4.9 Data transfer between MPRACE ROBIN and Host using Direct Master DMA. 71

5.1 Test setup for performance measurements. 76
5.2 MPRACE ROBIN event data request latency for three different DMA mecha-

nisms . 77
5.3 Throughput of MPRACE ROBIN event data request 79
5.4 MPRACE ROBIN event data request latency with and without sending of

event delete messages . 80
5.5 MPRACE ROBIN Fragment Manager performance with continuous SLink input 81
5.6 The ROBIN PCI request rate depending on the number of request handler threads 82
5.7 Size dependency of the ROBIN PCI request for the two request handler options. 83
5.8 Execution difference between original and modified ROS Software request

handler. 84
5.9 MPRACE ROBIN performance without DC I/O. 85
5.10 MPRACE ROBIN PCI bus throughput without Gigabit Ethernet network I/O. 86
5.11 ROS system performance with MPRACE ROBIN and network I/O to level 2

and SFI farm emulator. 88
5.12 ROS system throughput with MPRACE ROBIN and network I/O to level 2

and SFI farm emulator. 88

6.1 The final ATLAS ROBIN board. 96

List of Tables

1.1 Centre-of-mass energy and event rates for various recent and future colliders . 5
1.2 The Start-of-Header Marker encodings . 15

2.1 The number of ROLs and the fragment sizes per link for the ATLAS sub-
detectors . 18

2.2 Estimation of the level 2 request rates per readout buffer 19
2.3 The bandwidth needed for data requests per readout buffer 20
2.4 The prices for various components used for the different ROS scenarios . . . 26
2.5 The estimated costing of a complete ROS for the different scenarios 27

3.1 The format of ROBIN request messages. 47
3.2 Service / request types. 47
3.3 FPGA design resource utilisation for the MPRACE ROBIN firmware 55

5.1 Request overhead and DMA bandwidth for event data requests form the MPRACE
ROBIN. 78

103

104 LIST OF TABLES

Bibliography

[Alt] ALTERNATE Online Componter Shop [online]. Available from World Wide
Web: http://www.alternate.de.

[Ass04] InfiniBand Trade Association. InfiniBand Specification [online]. 2004. Available
from World Wide Web: http://www.infinibandta.org/specs.

[Ath01] Athena – User Guide and Tutorial, August 2001. Available from
World Wide Web: http://atlas.web.cern.ch/Atlas/GROUPS/

SOFTWARE/OO/architecture/General/Tech.Doc/Manual/2.0.0-DRAFT/

AthenaUserGuide.pdf.

[Atl] Atlas Modelling Web Page [online]. Available from World Wide Web: http:

//www.nikhef.nl/pub/experiments/atlas/daq/modelling.html.

[BBF+02] C. Bee, H.P. Beck, P. Farthouat, D. Francis, M. LeVine, J. Strong, and J. Ver-
meulen. ATLAS ROB-on-ROD Recommendations of the TDAQ ROB-on-ROD
Taskforce Final Report. Technical report, 2002. Available from World Wide
Web: https://edms.cern.ch/file/345700/1/ROBonRODfinal.pdf.

[BBW+01] R. Bock, J. A. Bogaerts, P. Werner, A. Kugel, R. Männer, and M. Müller. The
Active Rob Complex: An SMP-PC and FPGA based solution for the Atlas Read-
out System. In Proc. IEEE Realtime Conference, pages 199–203, Valencia, June
2001.

[BFM+04] C. Bee, D. Francis, L. Mapelli, R. McLaren, G. Mornacchi, J. Pe-
tersen, and F. Wickens. The Event Format in the Atlas Data Acquisi-
tion. CERN ATLAS Note ATL-DAQ-98-129, CERN, February 2004. Avail-
able from World Wide Web: https://edms.cern.ch/file/445840/2.4/

ATL-D-ES-0019v24.pdf.

[BJG+00] H. Boterenbrood, P. Jansweijer, G.Kieft, R. Scholte, R. Slopsema, and J. Ver-
meulen. A SHARC based ROB Complex : design and measurement results.
CERN ATLAS Note ATL-DAQ-2000-021, CERN, May 2000.

[BMvdB97] O. Boyle, R. McLaren, and E. van der Bij. The S-LINK Interface Specification.
Technical report, CERN, 1997.

105

106 BIBLIOGRAPHY

[Bro04] O. Brosch. A Kaon Trigger for FOPI. PhD thesis, Ruprecht-Karls-Universität
Heidelberg, May 2004.

[CES] CES - Creative Electronic Systems [online]. Available from World Wide Web:
http://www.ces.ch.

[CFJ+00] G. Crone, D. Francis, M. Joos, J. Petersen, and S. Veneziano. Read-Out Buffer in
DAQ/EF prototype -1. CERN ATLAS Note ATL-DAQ-2000-053, CERN, July
2000.

[CGHM00] D. Calvet, O. Gachelin, M. Huet, and I. Mandjavidze. A Scheme of Read-Out
Organization for the ATLAS High-Level Triggers and DAQ based on ROB Com-
plexes. CERN ATLAS Note ATL-DAQ-2000-014, CERN, March 2000.

[Col95a] The BaBar Collaboration. Technical Design Report. SLAC, March 1995.

[Col95b] The Hera-B Collaboration. Hera-B – An Experiment to Study CP Violation in the
B System Using and Internal Target at the HERA Proton Ring – Design Report.
DESY, January 1995. DESY-PRC 95/1.

[Col96] The CDF Run II Collaboration. THE CDF II DETECTOR – TECHNICAL DE-
SIGN REPORT. Fermilab, October 1996. FERMILAB-PUB-96/390-E.

[Col99] The Atlas Collaboration. ATLAS DETECTOR AND PHYSICS PERFORMANCE
Technical Design Report, Volume II. CERN, May 1999. CERN/LHCC 99-14.

[Col02a] LHCb Collaboration. Data Acquisition and Experimet Control – Technical De-
sign Report. CERN, September 2002.

[Col02b] The CDF Run IIb Collaboration. THE CDF IIb DETECTOR – TECHNICAL
DESIGN REPORT. Fermilab, September 2002.

[Col02c] The CMS Collaboration. CMS – The TriDAS Project Technical Design Report,
Volume 2: Data Acquisition and High-Level Trigger. CERN, December 2002.
Available from World Wide Web: http://cmsdoc.cern.ch/cms/TDR/DAQ/

daq.html. CERN/LHCC 02-26.

[Col02d] The D0 Collaboration. DØ Run IIb Upgrade Technical Design Report. Fermilab,
December 2002. FERMILAB-PUB-02/327-E.

[Col04] The ALICE Collaboration. ALICE – Technical Design Report of the Trigger,
Data Acquisition, High-Level Trigger, and Control System. CERN, January
2004. CERN-LHCC-2003-062.

[Com97] PCIMG PCI Industrial Computers. CompactPCI Specification. Technical report,
September 1997.

[Con84] S. Conetti, editor. A Review of Triggers and Special Computing Hardware for
the Fermilab Fixed-Target Program, Guanajuato, Mexico, 1984. Proceedings of
the Symposium on Recent Development in Computing, Processor and Software
Research for High Energy Physics.

BIBLIOGRAPHY 107

[Du02] P. Le Du. Trigger and Data Acquisition for collider experiments – Present and
future. Presentation on the 8-th International Conference on Instrumentation for
Colliding Beam Physics, March 2002. Available from World Wide Web: http:
//www.inp.nsk.su/events/confs/instr2002/talks/020306/ledu.pdf.

[Dun] A. Dunkels. lwIP - A Lightweight TCP/IP stack [online]. Available from World
Wide Web: http://www.sics.se/∼adam/lwip/index.html.

[ea98] R. Lay et. al. MICROENABLE – A RECONFIGURABLE FPGA COPROCES-
SOR. In Proc. Fourth Workshop on Electronics for LHC Experiments, pages
402–406, Rom, 1998.

[ea02] B. Gorini et al. ROS Software architecture document. Technical report, July
2002. Available from World Wide Web: https://edms.cern.ch/file/

364343/1.3/softWareArchitectureV13.pdf.

[Fis02] K. Fischer. Entwicklung eines Gigabit Ethernet Interfaces für einen FPGA
Prozessor. Diploma Thesis, Universität Mannheim, May 2002.

[FMTV] D. Francis, ”M. Müller”, L. Tremblet, and J. Vermeulen. Sum-
mary of ROS system tests. Available from World Wide Web: http:

//agenda.cern.ch/askArchive.php?base=agenda&categ=a02164&id=

a02164s5t2/transparencies.

[Fra04] D. Francis. Private communication, 2004.

[FRB+00] R. Frühwirth, M. Regler, R.K. Bock, H. Grote, and D. Notz. Data Analysis Tech-
niques for High-Energy Physics. Cambridge Monographs on Particle Physics,
Nuclear Physics and Cosmology, 2000. ISBN: 0521635489.

[GGK02] B. Green, G.Kieft, and A. Kugel. ATLAS TDAQ/DCS ROS Protoype-RobIn
Software Interface. CERN EDMS Note ATL-DQ-EN-0003, CERN, Septem-
ber 2002. Available from World Wide Web: https://edms.cern.ch/file/

356332/2.2/swid.pdf.

[Gor02] Benedetto Gorini. Private communication, 2002.

[GPR+00] G.Boorman, P.Clarke, R.Cranfield, G.Crone, B.Green, and J.Strong. The UK
ROB-in: A prototype ATLAS readout buffer input module. CERN ATLAS Note
ATL-DAQ-2000-013, CERN, May 2000.

[Gro98a] ATLAS Level-1 Trigger Group. Level-1 Trigger Technical Design Report.
CERN, June 1998.

[Gro98b] ATLAS/Trigger Performance Group. ATLAS Trigger Performance Status Re-
port. Technical report, November 1998.

[Gro98c] PCI Special Interest Group. PCI to PCI Bridge Architecture Specification, Rev.
1.1. Technical report, December 1998.

108 BIBLIOGRAPHY

[Gro03] ATLAS HLT/DAQ/DCS Group. ATLAS High-Level Trigger, Data Acquisition
and Controls Technical Design Report. CERN, 2003.

[HAK+04] C. Hinkelbein, A.Khomich, A. Kugel, R. Männer, and M. Müller. Using FPGA
coprocessor for improving execution speed of TRT LUT – one of the feature
extraction algorithms for ATLAS LVL2 trigger. page 247, February 2004.

[Hau03] R. Hauser. Design of the Message Passing Interface. Technical report, 2003.
Available from World Wide Web: https://edms.cern.ch/file/391517/0.
5/DC-013.ps.

[Hez04] S. Hezel. FPGA-basiertes Template-Matching mit Distanztransformierten
Bildern. PhD thesis, Universität Mannheim, February 2004.

[Inf02] Infineon. V23818-N305-L57(*) Small Form Factor Multimode 850 nm 2.5 Gbit/s
OC-48 2x5 Transceiver with LC™ Connector. Datasheet, 2002.

[IvdB02] W. Iwanski and E. van der Bij. 32-bit S-LINK to 64-bit PCI interface – Users
Guide. CERN, February 2002. Available from World Wide Web: https://

edms.cern.ch/file/249657/1/userguide.PDF.

[KH98] W. Kemmler and M. Hein. Gigabit-Ethernet – Der Standard – Die Praxis. Fossil
Verlag, 1998.

[Kra04] E. Krause. Private Communication, 2004.

[Kug04] Andreas Kugel. Private communication, 2004.

[Lie04] G. Lienhart. Beschleunigung Hydrodynamischer Astrophysikalischer Simula-
tionen mit FPGA-Basierten Rekonfigurierbaren Koprozessoren. PhD thesis,
Ruprecht-Karls-Universität Heidelberg, July 2004.

[Lin] Cross-Referencing Linux – Linux Kernel Sources [online]. Available from World
Wide Web: http://lxr.linux.no/.

[Mor03] G. Mornacchi. Architecture, deferrals and costing. ATLAS Week
Presentation, February 2003. Available from World Wide Web:
http://agenda.cern.ch/askArchive.php?base=agenda&categ=

a03192&id=a03192s0t4/transparencies.

[MPR] The MPRACE Board [online]. Available from World Wide Web: http://

www-li5.ti.uni-mannheim.de/fpga/?race/.

[Pos80] J. Postel. User Datagram Protocol. RFC 768, August 1980. Available from
World Wide Web: http://www.ietf.org/rfc/rfc0768.txt?number=768.

[Pos81] J. Postel. INTERNET PROTOCOL – DARPA INTERNET PROGRAM PROTO-
COL SPECIFICATION. RFC 791, September 1981. Available from World Wide
Web: http://www.ietf.org/rfc/rfc0791.txt?number=791.

[PRSZ95] Povh, Rith, Scholz, and Zetsche. Teilchen und Kerne. Springer Verlag, 1995.

BIBLIOGRAPHY 109

[RC01] A. Rubini and J Corbet. Linux Device Drivers, 2nd Edition. O’Reilly, 2001.
ISBN: 0-59600-008-1.

[Ris99] R. Rissmann. Implementierung von Vorverarbeitungsalgorithmen fuer den AT-
LAS Level 2 Trigger auf dem FPGA-Prozessor microEnable. Diploma Thesis,
University of Heidelberg, February 1999.

[RMR02] R.Cranfield, M.LeVine, and R.McLaren. ROS Requirements. Technical re-
port, 2002. Available from World Wide Web: https://edms.cern.ch/file/
356336/1.0.0/ros urd 1000.pdf.

[RSC] RS Components, Electronic Components [online]. Available from World Wide
Web: http://www.rs-components.com.

[RvdBH] A. Ruiz, E. van der Bij, and S. Haas. HOLA – High-speed Optical Link for Atlas.
Available from World Wide Web: http://hsi.web.cern.ch/HSI/s-link/

devices/hola/datasheet.pdf.

[Sam03a] Samsung. SDRAM Device Operations. Technical report, 2003. Available from
World Wide Web: http://www.samsung.com/Products/Semiconductor/

DRAM/TechnicalInfo/sdram device operation full version 200401.

pdf.

[Sam03b] Samsung. SDRAM Timing Diagram. Technical report, 2003. Available from
World Wide Web: http://www.samsung.com/Products/Semiconductor/

DRAM/TechnicalInfo/sdram timing diagram 20040205.pdf.

[Ses00] M. Sessler. Algorithms on CPUs and FPGAs for the ATLAS LVL2 Trigger. PhD
thesis, Universität Heidelberg, February 2000.

[Sil] Silicon Software GmbH [online]. Available from World Wide Web: www.

silicon-software.de.

[Sim04] H. Simmler. Private Communication, 2004.

[Sin00] H. Singpiel. Der ATLAS LVL2-Trigger mit FPGA-Prozessoren. PhD thesis,
Universität Heidelberg, November 2000.

[sup] Supermicro mainboard X5DPE-G2 [online]. Available from World
Wide Web: http://www.supermicro.com/products/motherboard/Xeon/

E7501/X5DPE-G2.cfm.

[Tec] PLX Technology. PCI 9656 Data Book. PLX Technology. Available from World
Wide Web: http://www.plxtech.com.

[TPH] The Trentonprocessors Home Page [online]. Available from World Wide Web:
http://www.trentonprocessors.com/products/.

[vdBH] E. van der Bij and S. Haas. CERN S-LINK homepage. Available from World
Wide Web: http://hsi.web.cern.ch/HSI/s-link/Welcome.html.

110 BIBLIOGRAPHY

[Ver] J. C. Vermeulen. Atlas Papermodel Version 2.1 [online]. Available from
World Wide Web: http://www.nikhef.nl/pub/experiments/atlas/daq/

Paper2003/Papermodel21.tar.gz.

[VVT03] J. Vermeulen, Valerio, and S. Taprogge. Beauty and the Beast aka PESA and the
ROS. Presentation, ROS I/O Path Meeting, December 2003.

[Wol98] T. Wolf. Die Systemsoftware für den First Level Trigger des HERA-B Experi-
ments. PhD thesis, Universität Mannheim, August 1998.

[XIL] Xilinx Web page [online]. Available from World Wide Web: http://www.

xilinx.com/.

[Xil03] Xilinx. Virtex™-II Platform FPGAs: Complete Data Sheet. Technical report,
2003.

[XIP] Xilinx IP Cores [online]. Available from World Wide Web: http://www.

xilinx.com/xlnx/.

Acknowledgments

I would like to thank all the people who have supported me during the development and writing
phase of this thesis.

First of all I want to thank my family and my wife for the patience and support.
Furthermore I like to thank Prof. Dr. R. Männer, who gave me the possibility to work

in his research group. Many thanks also to the people of the FPGA group: Andrei, Maoyun,
Christian, Gerhard, Stefan, Oliver, and especially Andreas Kugel. Many people at CERN have
to mentioned too here for their support and help: David, Benedetto, Jorgen, Markus, Jos, and
Per. Finally I would like to thank Andrzej (RHUL) for cross reading the manuscript.

111

