
Control Software
for

Reconfigurable Coprocessors

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universiẗat Mannheim

vorgelegt von

Dipl.-Physiker Christian Hinkelbein
aus Mannheim

Mannheim, 2005

Dekan: Professor Dr. Matthias Krause, Universität Mannheim
Referent: Professor Dr. Reinhard Männer, Universiẗat Mannheim
Korreferent: Professor Dr. Volker Lindenstruth, Universität Heidelberg

Tag der m̈undlichen Pr̈ufung: 21. Oktober 2005

Control Software for Reconfigurable Coprocessors

Christian Hinkelbein
University of Mannheim

B6,23-29, D-68131 Mannheim, Germany
hinkelbein@ti.uni-mannheim.de

24th November 2005

Für meine Kinder.

Abstract

On-line data processing at the ATLAS general purpose particle detector, which
is currently under construction at Geneva, generates demands on computing power
that are difficult to satisfy with commodity CPU-based computers. One of the most
demanding applications is the recognition of particle tracks that originate from B-
quark decays. However, this and many others applications can benefit from parallel
execution on field programmable gate arrays (FPGA). After the demonstration of
accelerated track recognition with big FPGA-based custom computers, the devel-
opment of FPGA based coprocessors started in the late 1990’s. Applications of
FPGA coprocessors are usually partitioned between the host and the tightly cou-
pled coprocessor. The objective of the research that I present in this thesis was the
development of software that mediates to applications the access to FPGA copro-
cessors. I used a software process based on iterative prototyping to cope with the
expected changing requirements. Also, I used a strict bottom-up design to create
classes that model devices on the coprocessors. Using these low-level classes, I
developed tools which were used for bootstrapping, debugging, and firmware up-
date of the coprocessors during their development and maintenance. Measurements
show that the software overhead introduced by object-oriented programming and
software layering is small. The software-support for six different coprocessors was
partitioned into corresponding independent packages, which reuse a set of pack-
ages that provide common and basic functions. The steady evolution and use of
the software during more than four years shows that the software is maintainable,
adaptable, and usable.

Zusammenfassung

Die on-line Datenverarbeitung am ATLAS Teilchendetektor, der zurzeit bei Genf
entsteht, hat einen Bedarf an Rechenkapazität, die mit herk̈ommlichen CPU - ba-
sierten Rechnern schwierig zu befriedigen ist. Eine der herausfordernsten Anwen-
dungen ist hier die Erkennung von Teilchenspuren, die vom Zerfall von B-Quarks
herr̈uhren. Jedoch kann diese und viele andere Anwendungen von der parallelen
Ausführung auf Field Programmable Gate Arrays (FPGA’s) profitieren. Nach der
Demonstration von beschleunigter Spurerkennung mit großen FPGA - basierten
Spezialrechnern begann an der Universität Mannheim in den sp̈aten 1990ern die
Entwicklung von FPGA basierten Koprozessoren. Anwendungen solcher FPGA
Koprozessoren sind̈ublicherweise zwischen dem Gastrechner und dem Koprozes-
sor aufgeteilt. Das Ziel der hier präsentierten Arbeit war die Entwicklung von Soft-
ware, die Anwendungen den Zugriff auf FPGA Koprozessoren vermittelt. Um den
erwarteten wechselnden Anforderungen an die Software gerecht zu werden, ha-
be ich einen Software Prozess gewählt, der auf iterativen Prototypen basiert. Ich
habe ein striktes Bottom-Up Design benutzt, um Klassen zu entwerfen, die Kom-
ponenten des Koprozessors modellieren. Unter Benutzung dieser Klassen habe ich
Werkzeuge entwickelt, die verwendet wurden um die Koprozessoren während ihrer
Entwicklung und Wartung zu initialisieren, ihre Fehler zu beheben und ihre Kon-
figurationen zu aktualisieren. Messungen zeigen, dass der Software Overhead, der
durch die objektorientierte Programmierung und die geschichtete Software Archi-
tektur bedingt ist, klein ist. Die Unterstützung der Software für sechs verschiedene
Koprozessoren wurde in entsprechende Pakete gegliedert, die einen Satz von Pa-
keten wiederverwenden welche gemeinsame Basisfunktionalität bereitstellen. Die
stetige Entwicklung und Benutzung der Softwareüber einen Zeitraum von mehr
als vier Jahren zeigt, dass die Software wartbar, anpassbar und nützlich ist.

Contents

Contents 11

List of Figures 13

List of Tables 15

1 Introduction 17
1.1 Problem Description . 17
1.2 Literature Review . 19
1.3 Materials . 25
1.4 Principal Results . 28
1.5 Main Conclusions Suggested by the Results 31

2 Materials 35
2.1 Introduction . 35
2.2 LHC, Atlas, Trigger . 36

2.2.1 Large Hadron Collider and Associated Detectors 36
2.2.2 Physics and Tracking at the ATLAS Detector 37
2.2.3 ATLAS Trigger . 44
2.2.4 S-Link . 47
2.2.5 High Level Trigger Software, Prototypes and Testbeds . . 48

2.3 Computing and Reconfigurable Systems 53
2.3.1 Conventional Computing 53
2.3.2 Custom Computing . 54
2.3.3 Reconfigurable Devices and Systems 55
2.3.4 Programming of Reconfigurable Systems 57
2.3.5 JTAG . 58

2.4 FPGA Processors and Coprocessors Built in Mannheim 59
2.4.1 Enable++ . 60
2.4.2 µEnable andµEnable2 60
2.4.3 Atlantis, ACB and AIB 62
2.4.4 MPRACE . 64
2.4.5 ROBIN . 64

2.5 Host and Software Environment 66

11

12 CONTENTS

2.5.1 Introduction . 66
2.5.2 Host Architecture . 66
2.5.3 IA32 and IA64 . 67
2.5.4 PCI, PCI-Bridges and Data Transfer 68
2.5.5 Operating Systems, Device Drivers and Tools 70
2.5.6 Software Development 71

3 Results 73
3.1 Introduction . 73
3.2 Description of the Software . 73

3.2.1 Software Process . 73
3.2.2 Software Architecture 75
3.2.3 Software Behaviour . 84
3.2.4 Evolution and Coprocessor Packages 85
3.2.5 Performance . 91
3.2.6 Build System, Operating Systems and Platforms 97

3.3 Applications . 103
3.3.1 µEnable S-Link . 103
3.3.2 Enable++ TRT Scan . 104
3.3.3 Atlantis Bootstrapping 105
3.3.4 Atlantis and the Atlas Second Level Trigger Testbeds . . . 106
3.3.5 Atlantis TRT Scan with T2REF 108
3.3.6 Parallel TRT Scan on 2 ACB’s in Atlantis 110
3.3.7 MPRACE TRT Scan with T2REF 112

3.4 Reconfigurable Software . 112
3.4.1 Introduction . 112
3.4.2 Bottom-Up Design and Activity Flow 113
3.4.3 Collaboration . 116
3.4.4 Service Abstraction . 117
3.4.5 Dynamically Connected Devices 119
3.4.6 Performance Evaluation 123
3.4.7 Dynamic Loading of Components 124

4 Discussion and Conclusions 127

Abbreviations 133

Acknowledgments 135

Bibliography 137

List of Figures

1.1 Environment of the Software . 18
1.2 Host and FPGA Coprocessor in a System 27

2.1 Simulations of Events in the Inner Detector 41
2.2 Hough Transformation . 42
2.3 Hough Histogram . 43
2.4 Hough Histogram, Surface View 43
2.5 Trigger Architecture A . 45
2.6 Trigger Architecture B . 46
2.7 Trigger Architecture C . 46
2.8 S-Link in TDAQ . 47
2.9 HLT and DAQ . 52
2.10 µEnable . 62
2.11 Atlantis Computing Board (ACB) 63
2.12 Data Paths and JTAG on the ACB 64
2.13 Atlantis Input Output (AIB) . 65
2.14 MPRACE . 65
2.15 ROBIN . 66
2.16 Host Architecture . 67

3.1 Iterative Prototyping with Risk Addressing 75
3.2 Mapping from Hardware to Software 77
3.3 BitStream Interface . 78
3.4 JTAG Controllers Class Diagram 79
3.5 JTAG on ACB . 80
3.6 EEPROM Controllers Class Diagram 81
3.7 Adaptation of the Parallel Port Interface 81
3.8 EEPROM on the Parallel Port, Source Code 82
3.9 Bridge and Driver Work Together 83
3.10 The Control Class Encapsulates the Internals 84
3.11 Allocation, Configuration, and Freeing of a Coprocessor 86
3.12 Configuration with JTAG, Collaboration Diagram 87
3.13 Evolution of Code Size . 88

13

14 LIST OF FIGURES

3.14 Code Size of Packages in the Library 89
3.15 Two Packages Supporting Different Coprocessors 90
3.16 Hierarchy of Control Classes . 90
3.17 Processor Clock Interface . 93
3.18 Method Call Overhead, Object Chain 94
3.19 Latency of Method Calls . 95
3.20 Code-Size of Method Calls . 96
3.21 DMA Latency . 97
3.22 PIO Performance . 98
3.23 Memcopy Performance . 99
3.24 Driver Base Class . 102
3.25 Driver Classes Hierarchy . 102
3.26 Setup for S-Link Loop-Back . 104
3.27 Transfer Rates with S-Link Loop-Back 104
3.28 Transfer Latency with S-Link Loop-Back 105
3.29 Vertical-Slice Prototype using E++ as FEX Processor 105
3.30 Integration of Architecture-A and -C using E++ as Coprocessor . . 106
3.31 Physical Integration of Atlantis in the Testbeds 107
3.32 Logical Integration of Atlantis in the Testbeds 107
3.33 TRT Scan with Atlantis, Activity Diagram 111
3.34 Architecture of a Reconfigurable Coprocessor 113
3.35 Software Representation of Hardware Components 114
3.36 Clock Setting, Sequence Diagram 115
3.37 Abstraction of the Device Representations 117
3.38 Abstract Services, Collaboration Diagram 118
3.39 Multiple Services . 118
3.40 Device Base-Class and its Attributes 119
3.41 Class Diagram of Concrete Devices and Base Class 122

List of Tables

2.1 Trigger Rates and Latencies . 44
2.2 Comparison between PLD’s and FPGA’s 56
2.3 JTAG Signals . 59
2.4 Evolution of FPGA Processors and Coprocessors 61

3.1 Code Size of Packages in the Library 89
3.2 Partitioning of Code in the Coprocessor Packages 91
3.3 Timing Functions . 92
3.4 Size of fundamental Types on IA32 and IA64 101
3.5 Performance Comparison . 124

15

16 LIST OF TABLES

Chapter 1

Introduction

1.1 Problem Description

The work on field-programmable-gate-array-(FPGA)-accelerated real-time pattern
recognition for the planned ATLAS1 experiment led to the development of the En-
able++ FPGA-based custom computing machine (FCCM). Architectural changes
in the ATLAS high level trigger (HLT) and the size and the complexity of the En-
able++ machine were creating the demand for the development of smaller FPGA-
based processors with tighter host coupling in the late 1990’s.

The successor of Enable++, the Atlantis system, was chosen to use FPGA-
based computing devices in cooperation with a CPU-based host system. The pe-
ripheral component interconnect (PCI) bus is the most common computer bus in
commodity of the shelf (COTS) computing, and Atlantis uses PCI for the coupling
between FPGA’s and host, like many other PCI devices with FPGA’s nowadays.

In the nomenclature of this work such PCI-coupled and FPGA-based com-
puting devices are calledFPGA coprocessors. Atlantis was designed to use two
different FPGA coprocessors, one for the acceleration of computations, and one
for interfacing to data-paths in the ATLAS high level trigger (HLT).

Moore’s law predicts the doubling of resources on an integrated circuit (IC)
every 18 months. Since FPGA technology follows Moore’s law just like CPU
technology does, it was foreseeable that FPGA coprocessors would have to be
redesigned on a regular basis to benefit from their higher computing power (at
least for some applications) compared with the ever increasing computing power
of CPU based computers.

Concluding, the situation before the millennium was as follows: The big En-
able++ machine was dated, but still in use, the commercialµEnable coprocessors
were used in some applications (S-Link2, image processing, and others), Atlantis
was in the process of development, and a number of future FPGA coprocessors

1ATLAS is a big particle detector experiment at the large hadron collider (LHC) at the European
organisation for nuclear research (CERN)

2S-Link is a CERN standard for an unidirectional high speed data link

17

18 CHAPTER 1. INTRODUCTION

CSRC

coprocessor
hardware

Host

Application Software

Design

FirmwareFPGA

Figure 1.1: Environment of the Software
The stacked boxes indicate multiple instances.

were expected to come.

A system using FPGA coprocessors consists of several parts: Application soft-
ware, host system (hardware and operating system software), FPGA coprocessor
hardware, “slow” configuration data (firmware) for the coprocessor, “fast” config-
uration data (design) for the reconfigurable resources on the coprocessor, and soft-
ware for interfacing and controlling the coprocessor. This work is dealing with the
latter part, which I callcontrol software for reconfigurable coprocessors (CSRC).
Figure 1.1 illustrates the components with which the CSRC interacts.

The ATLAS HLT is the main driving force behind the development of FPGA
coprocessors and their applications at the Institute for Computer Science V at the
University of Mannheim. These applications are the real-time pattern recognition
in data from the ATLAS TRT detector, where the search for signatures of B-physics
is creating high demands on computing power and throughput, and, more recently,
the read-out buffer input (ROBIN). Enable++ was studied without a framework
resembling the ATLAS HLT software or hardware until the late 1990’s. How-
ever, the approach of the LHC and ATLAS staging, at that time planned for the
year 2005, lead to the creation of up two systems for carrying out studies on HLT
design and performance. These were the software and testbed setup developed
by the Saclay group, concentrating on the use of ATM networking technology,
and the more generic reference software (T2REF) that was developed at CERN.
The first testbeds for either setup were implemented in the late 1990’s, and it was
time to integrate Enable++ and the upcoming Atlantis system into these testbeds.
The ability to integrate with the HLT prototypes was generating requirements on
the CSRC in terms of application interface, operating system compatibility, cod-
ing style, deployment, and others. The intended use of FPGA coprocessors for
high-performance and soft real-time applications requires that the CSRC should
not reduce system performance, and should not impair performance optimisation

1.2. LITERATURE REVIEW 19

efforts.
The purpose of this work is not only to create an interface between FPGA co-

processors and applications (e.g. in the ATLAS HLT) but also to facilitate develop-
ment, bootstrapping, and debugging of the Atlantis FPGA coprocessors and their
successors. This implies that the CSRC would have to provide low level access to
controlled devices. Also, the software should be designed in a way to support the
adaptation to future FPGA coprocessors.

Summary

This work addresses the problem of designing and implementing software for con-
trolling FPGA based reconfigurable coprocessors. The software should provide an
interface between FPGA coprocessors and different high-performance applications
with an emphasis on applications for the ATLAS HLT. It should not restrict system
performance and it should be open for optimisation efforts. The software should be
self-contained and independent of operating systems and host architectures. The
software should be designed with the evolution of hardware in mind, and it should
support adaptation to future FPGA coprocessors. The software has to allow low
level access to the controlled devices to support debugging and bootstrapping.

1.2 Literature Review

Reconfigurable Architectures

In 1998 S. Hauck reported on “The roles of FPGA’s in reprogrammable systems”
[Hau98b]. He concludes that reprogrammable systems (RS) can provide signifi-
cantly improved and even world-record like performance in generic reprogramm-
able architectures. RS’s are of a varied structure, using FPGA’s, memories, DSP’s,
or even custom reprogrammable devices in systems ranging from one and two-
chips to even hundreds or thousands of devices e.g. for logic simulation. The
performance that is provided by such RS’s comes with the cost of some problems.
Mapping software is slow and provides low quality compared to the requirements.
Though FPGA’s represent economic solutions, they may create inefficiencies to
system designers. Finally, Hauck states that much is left to be done. He proposes
that reprogrammable functional units in standard processors and reprogrammable
coprocessors could become the cornerstone of future computation systems.

In 2000 Schumacher et al [PSSL00] outweighs a software package that pro-
vides direct access to hardware components for testing, diagnostics or monitoring
purposes. The software is implemented as a library of C++ classes. It provides low
level access to hardware components and includes a graphical user interface. The
software architecture is based on the separation of two class hierarchies; one for
hardware objects such as FPGA’s, Memories, or Registers, and another hierarchy
for hardware access, focusing on VME bus. The authors describe the software as
“convenient to use, flexible and extensible” and report on successful use during

20 CHAPTER 1. INTRODUCTION

development of components for the pre-processor system of the ATLAS level-1
calorimeter trigger.

In 2001 H. Simmler [Sim01] described the realisation of preemptive multi-
tasking for computing systems embedding FPGA based coprocessors. Besides a
detailed problem analysis his work includes the implementation of operating sys-
tem extensions supporting the reconfiguration of a commercial FPGA coprocessor
upon OS-triggered process schedules. The analysis of the prototype performance
is followed by design and implementation of a new FPGA based coprocessor that
offers support for context schedules by hardware on the coprocessor itself.

Co-Synthesis

In 2002 M. Budiu, M. Mishra, A.R. Bharambe S.C. Goldstein published “Peer-
to-peer hardware-software interfaces for reconfigurable fabrics” [BMBG02]. The
authors propose a hardware-software interface between standard processors and
reconfigurable devices (RD’s). They propose that the two devices act as equal
peers, as opposed to the traditional view of the RD being a slave to the master
processor. The authors state that based on that proposal, the RD is able to invoke
software routines on the processor. The authors propose an interface like remote
procedure calls between RD and processor and quantify the amount of computation
that can be moved from the processor to the RD.

R. P. Dick and N. K. Jha [DJ98] reported 1998 on ”CORDS: hardware-software
co-synthesis of reconfigurable real-time distributed embedded systems”. The re-
port emphasises the schedule of tasks executed on processing elements (PE), either
processors or FPGA’s, in a real-time distributed system. The authors use an algo-
rithm that bears similarities with simulated annealing and genetic algorithms for PE
and communication resource allocation as well as task assignments. Experimental
results are shown for estimated system costs for XC6000 and XC4000 based sys-
tems with a number of application examples. The results indicate that the greatly
reduced reconfiguration delay of the XC6000 FPGA only seldom overweigh their
much higher price.

OS-Support for Reconfigurable Systems

In 2003 H.Walder and M.Platzner [WP04] reported on a “Reconfigurable Hard-
ware OS Prototype”. The authors approach the area of operating systems for re-
configurable hardware in a top-down manner. They started with a design concept
followed by an implementation concept and finally case studies. The target sys-
tems for their work are composed from a CPU (PC) and an FPGA based board,
both connected with a configuration and a data bus. Their approach partitions the
reconfigurable resources of the FPGA into two parts, an OS frame that provides
common services, and the user area, which accepts one or severalhardware tasks
(HWT). HWT’s communicate with the system through a standard task interface
that is common to all HWT’s and the OS frame. HWT’s are designed to be relocat-

1.2. LITERATURE REVIEW 21

able, i.e. every HWT can fit into any of thetask slotsof the user area. The system
provides a task scheduler, which executes on the CPU and reconfigures the user
area according to the scheduler policy. Schedules can be triggered by components
on the FPGA. In their prototype implementation scheduling relies on cooperative
multitasking, i.e. the HWT’s signal task completion as scheduling points to the sys-
tem. Preemption is supported by the author’s concept, however for this the HWT’s
need to fulfil further requirements to both their interface and internal operations.
The prototype case study described by the authors executes some networking and
multimedia tasks on an XESS XSV-800 board.

In 2003 C. Haubelt, D. Koch, and J. Teich reported on “Basic OS Support for
Distributed Reconfigurable Hardware” [HKT03]. The target system of their work
consists of reconfigurable nodes (ReCoNodes) and a network of connection links,
which initially connects every node with every other. In the prototype implemen-
tation the nodes are made of Altera Excalibur development boards. The work aims
at a distributed system which provides fault tolerance by hardware task migration
and re-routing to compensate for resource errors. To achieve such the OS provides
three basic features:re-routing, repartitioning, and reconfiguration. Re-routing
is initiated by upon line error detection and done by the Altera NIOS soft-core
processor implemented on all ReCoNodes, which also do the routing itself. Repar-
titioning is controlled by a task binding priority list which is common to all nodes.
Task migration may be prepared by the copying of configuration data from one
node to another. Reconfiguration is done by writing configuration data to a nodes
configuration memory. Configuration data movement and writing is also done by
the NIOS CPU’s embedded in all nodes. The CPU issues a self reset on the node
so that the node gets finally reconfigured.

JCOP and SCADA

“The LHC experiments’ joint control project” [Mye99] describes the process of
evaluation and selection of a distributed hardware/software system for acquisition
of data relevant for the monitoring of an experiment, like gas pressure, power sup-
ply status, and temperature, and to control the experiment either automatically
or manually upon operator intervention. It is assumed that the number of input
data channels for an experiment like ATLAS is in the range of millions. The re-
quirements for such control systems are similar in different experiments, and it is
assumed that a commercial system would be the most cost-effective solution for
CERN. [DS99b, DS99a] describe the architecture of a generic supervisory con-
trol and data acquisition system (SCADA) and describe measures for evaluating
commercial SCADA systems.

Design Flow

S. Hauck published several reviews on reconfigurable systems in the late 90’s. In
1996 he reported with A. Agarwal on “Software technologies for reconfigurable

22 CHAPTER 1. INTRODUCTION

systems” [HA96]. The report covers tools for mapping, placement, routing, par-
titioning and logic synthesis for single and multi-FPGA based reconfigurable sys-
tems. The authors argue that the requirements for the mapping software for multi-
FPGA reconfigurable systems differ from those for standard hardware compilers
because of constraints originating from the properties of FPGA interconnects. Ad-
ditional constraints arise from the demand for fast compile times resulting from
the need for short compile-test cycles. Scheduling concerns regarding runtime re-
configuration need to be taken into account. On the other hand, the fine-grain
parallelism and low level programmability contrast to the fixed instruction set and
sequential processing of standard processors. The authors conclude that there has
been significant work on software tools optimised for reconfigurable systems but
many issues remain in the development of a hardware and software reconfigurable
system.

In 2001 S. R̈uhl described the programming of FPGA processors with active
components [R̈uh01]. An active component (AC) defines the interface of a func-
tional unit along with methods to implement the unit. Different implementations
may be provided for a single AC, e.g. one implementation coded in C++ that ex-
ecutes on the systems CPU, and one implementation defined as VHDL code to be
executed on the FPGA. A programming framework developed on top of AC’s is
used to compose an application using AC’s as building blocks. The framework
ensures type compatibility between the interfaces of connected AC’s, possibly in-
serting AC’s as interface adapters. It implements the application using specific
implementations from the different AC’s implementation libraries. The implemen-
tations are chosen so as to minimise implementation cost and maximise system
performance.

In 2000 M. Eisenring and M.Platzner reported on “An Implementation Frame-
work for Run-time Reconfigurable Systems” [EM00]. The framework provides
a methodology and a design representation that allow to plug-in different design
tools. Front-end tools cover design capture, temporal partitioning and scheduling;
back-end tools provide reconfiguration control, communication channel genera-
tion, estimation, and the final code composition. The report discusses two of the
framework’s main issues, the design representation and the hierarchical reconfigu-
ration approach for multi-FPGA systems.

Reconfigurable Real-Time Software

In 1996 D. B. Stewart and P. D. Khosla published “ The Chimera methodology:
designing dynamically reconfigurable and reusable real-time software using port-
based objects” [SK96] (this publication was followed in 1997 by a similar one
[SVK97]). The authors justify a system for rapid development of real-time appli-
cations through the use of reusable and dynamically configurable software. The
target system is a distributed memory computing environment. The primary con-
tribution of their research is the port-based object model of a real-time software
component. The model is obtained by applying the port-automaton formal compu-

1.2. LITERATURE REVIEW 23

tational theory to object-based design. A finite state machine (FSM), detailed in-
terface specifications, and a C-language template are used to define the port-based
object. The FSM is used to cover the requirements for communication between
the components that arise from the real-time nature of the system. In the Chimera
Methodology links between objects are established by connecting input ports to
output ports using port names as port identifiers. The ports are not implemented as
message queues, because the model assumes that according to the real-time nature
there are always most recent and actual data present at the inputs. The authors
mention that their model is not usable for high volume data as would occur e.g.
in imaging applications. They select C instead of C++ as specification language
for port-based objects, since most programmers are assumed to be engineers in-
stead of computer scientists. A detail of their work covers “reconfigurable device
drivers” which the authors describe as a port-based object that communicate with
hardware through the object’s resource ports (The authors differentiate between
input and output ports, which are used to integrate the objects into a system, and
resource ports which are used for communication with external systems). The re-
source ports are supposed to be configured at system start-up, and the objects are
to be configured e.g. by reading configuration data from the external hardware
that is to be controlled. The authors cover techniques for verifying correctness and
analysing of the system performance and provide tools for integrating software
using the port-based object model.

In 2002 S. Wang and K.G. Shin published the article “Constructing Reconfig-
urable Software for Machine Control Systems” [WS02]. The authors propose a
software architecture based on object-oriented models (components) and an ex-
ecutable formal specification (control plan). The components are described as
reusable software components; each modelled with a set of event based external
interfaces, a control logic driver, and a set of service protocols. The component’s
external interface, which describes thefunctionalityof the component, can be cus-
tomised after compile-time to react to changed requirements of the application or
the execution platform. Also, the components service protocols are used to adapt
the component to a specific execution environment. The control logic driver is
implemented in every component and interprets part of the control plan, which is
defined as a set of nested finite state machines (NFSM) and an operation sequence.
The NFSM and operation sequence are specified in machine readable table form,
and describe the systembehaviour. The authors describe the software architec-
ture as being runtime reconfigurable, but the reconfigurability is restricted tonon-
structural changes at runtime, whereas structural changes require code regenera-
tion. On the other hand, the architecture provides for separation and independent
configuration of structure and behaviour, thus allowing component specification
and early testing at the design stage, which is important for some applications.
The authors note that the proposed architecture is different from commonly used
models such as CORBA, DCOM, or Jini, which are usually based on remote proce-
dure calls and depend on some middle-ware infrastructure whose implementation
makes the execution less predictable in timing and performance. The authors also

24 CHAPTER 1. INTRODUCTION

note that current control software development suffers from application partition-
ing and implementation with proprietary information as the result of a common
top-down system partitioning. This deficiency would require that the components
and their interaction are fully specified before their implementation.

In 1995 R.M. Kinmond [Kin95] published a “Survey into the acceptance of
prototyping in software development”. The article reviews a survey investigating
the commercial usage of prototyping in the UK industry. It concludes that proto-
typing has the advantage of better user communication, user involvement, and user
satisfaction. Many organisations developed the (evolutionary) prototype further
into the final system. The major problem with prototyping was the time required
for user participation. Difficulties exist in the weakly defined process of document-
ing the prototype.

In 2002 D.B. Thomas and W. Luk wrote about a “Framework for develop-
ment and distribution of hardware applications” [TL02]. The authors evaluate a
framework called “imaging and graphics operator libraries” (IGOL). The target
system is a host with FPGA-based coprocessors attached directly or via a network.
The framework intends to discover available hardware resources (HW) at runtime,
match requirements to the found HW, configure the HW, synchronise with the HW,
and transfer application data between HW and host. To decouple different aspects
of application development, IGOL provides a structure with four layers: applica-
tion, operation, appliance, and configuration. Although the authors state that the
framework is not bound to a specific HW or HW programming paradigm, IGOL
supports only one FPGA based coprocessor board (RC1000-PP) via the Handel-C
hardware programming language. The paper does not give performance numbers.

Interoperability

In 2002 P. Young, V. Berzins, Jun Ge, and Luqi published “Using an object oriented
model for resolving representational differences between heterogeneous systems”
[YBGL02]. An object-oriented model for interoperability between legacy systems
is proposed. The model captures data and operations that ought to be shared be-
tween systems in a federation interoperability object model (FIOM). The FIOM
also captures the translations required to bridge differences in data representations
between the legacy systems.

C. Szyperski compares the component object model (COM), the common ob-
ject request broker architecture (CORBA), and Java Beans [Szy98]. He concludes
that although software component technologies have been proposed in the 1960’s,
the component technology is only recently emerging. He states two reasons for
the delay: strong industry standards are only recently available and object-oriented
programming is only just replacing traditional tools or function-oriented approaches.
Problems remaining to be addressed include the enormous complexity introduced
by software evolution, versioning, and limited semantic precision of interface con-
tracts.

In 2003 P. Young, N. Chaki, V. Berzins, and Luqi wrote about “Evaluation of

1.3. MATERIALS 25

middle-ware architectures in achieving system interoperability” [YCBL03]. The
work discusses modelling differences between independently developed systems.
A set of criteria is defined to evaluate existing middle-ware architectures, among
them CORBA, .NET, XML and others. The authors conclude that current interop-
erability approaches include several limitations. These include the need to modify
existing systems because the requester system is required to utilise the provider
system’s model of state and behaviour to access the provider. Another deficit is
the limited or non-existing support for the development of translations required to
resolve modelling differences among systems.

In 2003 J. Hugues, L. Pautet, and F. Kordon, too, wrote on middle-ware in
“Contributions to middle-ware architectures to prototype distribution infrastruc-
tures“ [HPK03]. The paper discusses middle-ware under the aspect ofrapid system
prototyping. The authors identify deficiencies in middle-ware architectures being
either configurable middle-ware or generic middle-ware. They propose a “schi-
zophrenic” middle-ware concept and its implementation Poly-ORB. Their concept
focuses on a neutral core middle-ware (NCM) and definitions of personalities, an
application level personality and a protocol level personality. The work gives num-
bers for code reuse compared to an other architecture (Jonathan). The authors
conclude that Poly-ORB has two main advantages important for rapid system pro-
totyping: First, the amount of code that has to be written to support a specific
distribution infrastructure is small. Second, any protocol personality can be asso-
ciated with any application personality.

Conclusion

The above reviewed literature is the extract of a comprehensive scan of recent
and current publications. The review shows that only little knowledge about the
topic of this thesis is available. I conclude that it is worthwhile and necessary to
conduct research on control software for reconfigurable coprocessors, and that the
documentation of the findings of this research can provide significant insight.

1.3 Materials

The large hadron collider (LHC), an accelerator, storage ring, and collider for pro-
ton beams, is currently build in an international effort at CERN, Geneva, and will
deliver proton-proton collisions at a centre of mass energy of 14 TeV. Several de-
tector experiments are associated with the LHC and are under construction, with
the ATLAS detector as the biggest of them in terms of size and cost. ATLAS is
a general purpose detector designed to cover a broad range of physics research.
One of the most popular research programmes is the search for the Higgs boson
which is assumed to be the origin of mass, if it exists. The physics of particles
with b-flavour (B-physics) will also be investigated at ATLAS, increasing statistics
and precision of results also obtained at other experiments. B-physics is expected

26 CHAPTER 1. INTRODUCTION

to give insight into effects like the violation of combined charge conjugation and
parity transformation (CP-violation), particle-antiparticle mixing, and others.

The enormous amount of data produced in the ATLAS detector, about 60 TB/s,
has to be reduced to a rate of about 150 MB/s for storage and offline analysis. This
reduction is done by a cascaded 3-level trigger that selects interesting events and
discards the remaining ones.

One way to tag events involving b-flavour, as needed for B-physics, requires
scanning of the whole transition radiation tracker (TRT) for tracks of particles with
momenta down to the GeV range. Such scans could be triggered by a lepton with
a momentum greater than e.g. 8 GeV, detected by the first level trigger. However,
the scan of the TRT, with expected rates of several kHz and an allowed latency
of 10 ms, puts high strains on the computing resources of the second level trigger
(LVL2), where the scan has to be done.

The Hough transformation is a suitable algorithm for track-finding in dense de-
tectors like the TRT, which has a resolution in the range of 100k evenly distributed
space points for every of the four independent parts it consists of. The execution
time of a Hough transformation based tracking algorithm on a COTS PC has been
measured to be about 20 ms, which exceeds the allowed latency and would con-
sume all of the computing resources in the LVL2.

However, the look up table (LUT) based Hough transformation can benefit
from parallelism in implementations on FPGA’s. Modern FPGA’s offer config-
urable logic blocks (CLB’s) as reprogrammable logic resources and reprogramm-
able input-output blocks for communication with external systems. Additionally,
FPGA’s may embed dedicated multipliers, RAM cells, clock managers, and even
processor cores. FPGA’s are programmed with hardware description languages
like VHDL or Verilog, languages derived from languages for sequential processors
like HandelC [Cha01] , or using libraries for traditional programming languages
like JBits [GLS99], CHDL /citechdl, or SystemC [Sys]. High level description
of FPGA-configuration is translated in multiple steps (synthesis, architecture map-
ping, and place and route) to configuration data that is uploaded to the FPGA in
order to program its behaviour.

FPGA processors use one or several FPGA’s as reconfigurable computing el-
ements. Clocking resources, memories, non-volatile storage, processors, micro-
controllers, connectors, and other devices may complete the FPGA processor. FPGA
coprocessors are often smaller and may contain less additional devices with the
exception of a bridge that connects to the hosting system bus. FPGA processors
and coprocessors may use programmable logic devices (PLD’s) for system integra-
tion. PLD’s are programmable like FPGA’s but have less computational resources.
The configuration of PLD’s is non-volatile whereas the configuration of FPGA’s
is volatile, and PLD’s may offer faster and better predictable timing compared to
FPGA’s.

An FPGA processor is a stand-alone system with loose coupling to a control-
ling host. It may be implemented as a data-driven systolic processor which plugs
into the data-path of an external system through dedicated inputs and outputs. The

1.3. MATERIALS 27

Bridge

FPGA coprocessor

Suppl.
Device

Host

FPGA

Sys.Ctl.

CPU

Bridge
System

Memory

Bus

Figure 1.2: Host and FPGA Coprocessor in a System
The stacked boxes indicate multiple instances.

Enable++ FCCM is an FPGA processor that connects to the ATLAS HLT through
an S-Link input and an S-Link output. The controlling host is not necessarily part
of the data path and a slow serial connection is used to interface the host to the
FCCM.

In contrast, an FPGAcoprocessor may use the same interface for control and
data exchange. For such a coprocessor the controlling host is also part of the data-
path. The implementation and topology of the host system bus and the bridge that
connects to the system bus on the FPGA coprocessor can influence the combined
system performance in different ways. For example, maximum throughput and rate
(the inverse of latency) are theoretically limited by the bus architecture, but can
be further reduced by the concrete implementations of the corresponding devices.
Figure 1.2 sketches a typical system consisting of a host and an FPGA coprocessor.

The hosts used in this work are standard COTS uniprocessor or symmetric
multiprocessor PC’s with IA32-compatible or IA64 CPU’s. All hosts have one or
several PCI (32 bit / 33 MHz) or PCI-X (64 bit / 66 MHz) buses, which are used
to connect to the FPGA coprocessors. The hosts use GNU/Linux or Microsoft
Windows NT operating systems (OS). The Linux OS kernel, whose development
started in the early 1990’s, is a UNIX-like OS kernel which is open source. Linux
became, together with the GNU system utilities, a standard OS, widely used in sci-
entific computing. The ATLAS HLT is build largely from COTS IA32 compatible
PC’s running GNU/Linux.

C is the most commonly used system programming language, developed in
the early 1970’s. C offers low-level programming constructs together with high
level structured program control, data structures and modular program design. In
the 1980’s C++ added object orientation to C promoting encapsulation and code
reuse, while retaining C’s capability to program right above assembly level. Both
languages can be used to develop near-optimal performant programs.

28 CHAPTER 1. INTRODUCTION

In the 1990’s The unified modelling language (UML) became a standard tool
for modelling software. UML provides a graphical representation of the model and
helps in communicating software architecture between developers.

1.4 Principal Results

First problem analysis showed that the requirements for the software would likely
change, that tools for e.g. bootstrapping had to be delivered quite early, and that the
hardware family to support would grow in the future. I chose a spiral iterative pro-
totyping software process since this process is known to cope well with changing
requirements and to support the early delivery of prototypes [McC96].

I chose C++ as implementation language which enables strong encapsulation
through the object-orientation paradigm, and I used UML diagrams for analysis
and design. To support the development, bootstrapping, debugging, and main-
tenance of the Atlantis FPGA coprocessors, and the ones to follow, I chose a
strict bottom-updesign for the software. Independent physical devices on a typi-
cal FPGA coprocessor were modelled as classes. The resulting mapping between
hardware and software led to class representations of components like FPGA, PCI-
bridge, and system-integration PLD’s. These low level classes can be used to grant
access to low level components. I have included a device driver and a correspond-
ing software interface for the parallel-port of PC’s, which allows e.g. configuring
the PLD’s of the ACB within the software framework.

Configuration data (designs) for PLD’s and FPGA’s play a central role in the
software. I implemented a Design class that offers services for parsing and verifi-
cation of design files in different formats. This class is complemented by a flexible
Bitstream class which implements operations on bit-serial representation of con-
figuration data. Bitstream is optimised for fast set/get operations, resulting in neg-
ligible overhead for typical operations, like configuration of FPGA’s with design
files loaded from disk.

All reconfigurable logic on FPGA coprocessors is accessible through JTAG-
ports for control, configuration, and inspection. A flexible Jtag class is imple-
mented which supports low level JTAG command protocols. Because JTAG is a
bit-serial protocol, Jtag uses Bitstreams for most of its data. A similar approach
is applied through an Eeprom class for non-volatile storage (EEPROM) present
on FPGA coprocessors and expansion modules. Both, Jtag and Eeprom, are to be
adapted to the specific ports through which their respective devices are accessible.
This can be done in a straightforward and compact manner. The JTAG class to-
gether with the Bitstream class were successfully used by M. Müller to verify most
of the networks of the ACB’s board layout by in-system boundary-scan.

Data transfer between host and coprocessor is routed through the host system
bus, in all practical cases a PCI bus, and through the PCI bridge on the copro-
cessor. The according Bridge class has a complementary OS-dependent device
driver class which grants access to the PCI address space occupied by the PCI-

1.4. PRINCIPAL RESULTS 29

bridge. The Driver class is part of a class hierarchy which is designed to support
multiple drivers detected at runtime. All drivers allow mapping the PCI address
space of the bridge into user memory space, providing means for memory mapped
PIO data transfer. The bridges offer DMA engines for data transfer independent
from the host CPU. DMA is handled by an interface of the bridge class, and a
DMABuffer class that represents data chunks to be transferred. Such data chunks
can be prepared in user- and kernel-space host memory. The bridge-, DMABuffer-
, and driver-classes collaborate in DMA transfers, hiding issues specific to OS,
bridge, and driver.

Every supported FPGA coprocessor,µEnable, µEnable2, ACB, AIB,
MPRACE, and Robin, is assigned a respective Control class. All Control classes
inherit common functionality and a common interface from the Control base class.
The specialised Control classes act as builders, composing the runtime object hi-
erarchies needed to control and access the specific coprocessors. Such an object
hierarchy consists of instantiations of a specific bridge class, a Pld class, which
encapsulates the services of the system integration PLD, and possibly other class
instances. Since the control classes, as it is the case for all classes representing
devices in the software, are implemented using the “instantiation is initialisation”
paradigm, they provide type-save allocation and identification for a specific copro-
cessor by their constructors.

The total code size of the software has grown from about 380 kB after initial
implementation to currently about 1000 kB. More than half of the current code,
52%, belongs to core functions. The core is reused by the six support packages for
the specific coprocessors which make up the remaining 48% of code. The size of
the support packages ranges from 146 kB for the complex ACB (consisting of 4
FPGA’s and 2 integration PLD’s) to 50 kB for the Robin. The average size of code
needed to support a specific coprocessor is 79 kB. On average, about 60 % of the
code in a support package covers integration PLD services, while the remaining is
partitioned between the Control class (30%) and miscellaneous code (10%).

The rating of performance is very important for most applications of FPGA
coprocessors. Standard timing functions on Windows or GNU/Linux systems usu-
ally trade resolution against latency. I implemented a small package labelled PCC,
which uses a special register present on all IA32 and IA64 CPU’s for timing. Res-
olution and latency of the PCC timing functions scale with the clock frequency
of the CPU. On a 2GHz CPU the resolution is about 2 ns, more than two orders
of magnitude better than any standard timing functions. The latency of the PCC
timing functions is about 50ns, 20 times better than standard high resolution timers.

Two kinds of deliverables are build from the software sources. These are a
shared library that is linked to user applications, and a set of utilities that are also
linked with the library. The utilities are e.g. used for bootstrapping and firmware
update. The device driver for Linux systems is part of the sources, while com-
mercial drivers are used on Windows systems. Only the device driver subclasses
contain OS specific code which is hidden by the device driver base class. A set of
makefiles is provided to build the library and the utilities on GNU/Linux. On Win-

30 CHAPTER 1. INTRODUCTION

dows the same is achieved by Microsoft’s Visual-C projects. I ported the library
and the Linux driver to Linux on IA64 based hosts, which was accompanied by
porting the device driver to the Linux 2.6 series kernel. The software builds and
executes correctly with GNU GCC compiler versions ranging from 2.95 to 3.4 on
Linux 2.4 and 2.6, and with actual version of Visual-C (VC6, VC.net) on Windows
NT 4 and Windows 2000.

The integration of the Enable++ FPGA processor into the ATM testbed as im-
plemented by the Saclay group required connecting the S-Link input and output of
the Enable++ with a modified destination (DST) processor of the testbed. Thus,
data fragments can be routed through the FPGA processor. I made preparatory
studies with a dummy S-Link loop-back to measure reliability and throughput of
the S-Link data transfers. I measured the saturated throughput for big fragments (
> 100 kB) being 27 MB/s for DMA transfers and 5 MB/s for PIO transfers. The
overhead of 350µs, which is required for setting up DMA transfers, reduces the
performance as compared to PIO transfers for small packets (< 2 kB). I inserted the
Enable++ into the loop-back, and complemented the stubs that were provided by
the Saclay group for interfacing to the testbed software framework. The resulting
system was then successfully connected to the testbed network.

After successfully bootstrapping the ACB and building a first iteration of the
software, we aimed at integrating the Atlantis system with the Pilot-Project testbed.
I adapted the CPU-based TRT scan algorithm to occasionally redirect hit data to
the reconfigurable computing facilities of the ACB and to receive results back from
the ACB, completing the computation chain. Additionally, the control software
sources together with the necessary adaptations of the algorithm were included
in the build system of the T2Ref software used in the testbed. Integration of the
resulting system with the testbed at CERN showed no problems, given that the
algorithm executed on the ACB provided only a limited range of functions.

Subsequent studies with the ACB resulted in an implementation of the TRT
algorithm that uses all four FPGA’s of the ACB together with the large memory
modules designed for holding the required LUT data. The application uses config-
uration and runtime reconfiguration of all four ACB FPGA’s, calculation, prepara-
tion and transfer (using DMA) of the LUT fragments to the memory modules, and
finally routing hit data to the ACB and reading calculated track data from the ACB.
The application was then extended to use two ACB’s together in a single Atlantis
system, executing the algorithm parallel to each other on the two reconfigurable
coprocessors. The adaptation layer used to adapt the CPU implementation of the
algorithm to the control software, and the evolved control software itself, were
later successfully used by A. Khomich in his implementation of the algorithm for
the MPRACE reconfigurable coprocessor.

Based on the experience with the control software for reconfigurable coproces-
sors I worked on software that is runtime reconfigurable, resembling the runtime-
reconfigurability of the hardware. I implemented a prototype that simulates a typ-
ical operation sequence involving three chained devices. The devices are, like in
the above described software, represented as classes which encapsulate the soft-

1.5. MAIN CONCLUSIONS SUGGESTED BY THE RESULTS 31

ware view of the devices’ behaviours. In contrast to the established architec-
ture, the classes are completely independent from each other, which makes them
component-like software entities. Connections between the components, which are
required for component collaboration, are established by superordinate software at
runtime. Such runtime-dynamic connections are enabled by a common interface to
the involved components and the notion of typed transaction slots (“methods”) be-
tween the components. A component may have two types of transactions, services
which offer the component’s functionality to clients, and requests, which need to
be satisfied by servers. Services and requests are enumerated and connected pair-
wise by using the common interface. Components are instantiated, connected and
disconnected at runtime.

A further step towards runtime reconfigurable software is the loading, register-
ing and unloading of components from shared libraries at runtime. In an extended
prototype, the libraries and the components contained in them are identified by
name, in addition to the identification of transactions by name as it was established
for the runtime-dynamic connections which have been described above.

1.5 Main Conclusions Suggested by the Results

I used an iterative prototyping process for the life-cycle of the software. The pro-
cess supports early delivery, good visibility, and the adaptation to changing require-
ments, but tends to hide design deficiencies and thus may establish poor design.
Accordingly, overall design can suffer from the process and maintainability may
be reduced. The time-span for development and use of the software was not well
defined during initial requirements collection and the software has been used in
applications since an early stage in the development process. Accordingly, poor
design often kept undetected and, if reasons for re-design appeared, it was often
difficult to implement better solutions. Deficiencies that arose from this problem
became visible in the case of e.g. the registry package, which breaks encapsulation
and whose maintenance is cumbersome. I conclude that great care is needed in
following the iterative prototyping software process to ensure that repeated small
iterations do not veil the goal of good overall design.

Bottom-up design provides the base for tools, adaptation and evolution. The
design supports encapsulation and maintainability. However, interfacing be-
tween collaborating classes can break encapsulation and introduce dependencies.
Such dependencies exist in the software but they usually lie within the various
coprocessor-support packages. Although bottom-up design tends to produce many
small low-level classes, many of the classes that exist in the software are gener-
alised by a few base classes, taking advantage of software reuse.

A major problem caused by the bottom-up design turned out to be the lack
of a stable user-API (top level classes), that was present in the first iterations of
the software. The mapping between hardware components and software models,
which is a result of initial requirements analysis, supports reuse and encapsulation

32 CHAPTER 1. INTRODUCTION

of device-specific knowledge. Yet, the focus on devices and their software mod-
els seems to hide activities and processes like data transfer, FPGA configuration,
and coprocessor identification and allocation. According problems still need to be
properly addressed. I suggest a carefully biased combination of bottom-up with
top-down design for future developments.

The software provides functions by services of low level software models, e.g.
the read-out of the device identification of a JTAG-capable device is provided by
the corresponding JTAG-class. This class processes according requests and for-
wards resulting low level request to classes that follow in a chain of collaborating
classes, until the request leaves the software and reaches the coprocessor through
the system bus. The chain of classes resembles the chain of devices on the co-
processor. This architecture is different to architectures like the one described by
Schumacher et al [PSSL00], that uses two hierarchies of classes, one for modelling
of devices, and one for accessing this devices. In my architecture, device models
and device accessors are identical.

Performance of data transfer between host and coprocessor is critical to over-
all system performance. I made a number of measurements to quantify transfer
rates and latencies, and the overhead caused by object-oriented software layering.
The results of these measurements show that the transfer of data between host and
coprocessor often dominates system performance and that the software-overhead
is almost negligible. I conclude that the benefits of software layering, especially
encapsulation, reuse, and maintainability, overweigh the small software overhead
that has to be paid.

Several applications use the software which is presented in this thesis. These
applications are executed on a variety of single-processor and multi-processors
hosts running under different versions of the Microsoft Windows and Linux/GNU
operating systems. Most of this applications use theµEnable , the ACB, or the
MPRACE reconfigurable coprocessors, and some applications use two or more
coprocessors, even of different type, in parallel. The software can be compiled
from a single code base by usual C/C++ compilers like Microsoft Visual C and
GNU C/C++. This shows that the software received great acceptance and reached
the goal of independency from operating system, compiler, and host architecture,
and that the software supports a variety of different coprocessors. The software’s
source code has a size of about 1 MB, which is a hindrance for some applications.
Yet, it would be easily possible to create simplified versions of the software by
omitting the support for unneeded coprocessors or operating systems.

The run-time-reconfigurability of reconfigurable coprocessors is only
marginally reflected by the software. I addressed this by the development of a
compact and straightforward runtime-reconfigurable software architecture. Since
my approach uses a simple naming scheme for the loading of components and the
identification of transaction ports of the components, a software-overhead is in-
troduced. Though this overhead is significant, it may be acceptable under specific
circumstances. My approach does not depend on middle-ware like CORBA, which
too introduces an overhead in code and performance. Further research is needed to

1.5. MAIN CONCLUSIONS SUGGESTED BY THE RESULTS 33

investigate the possible advantage and feasibility of the demonstrated architecture
for real applications. Stewart and Khosla [SK96], and Wang and Shin [WS02] pro-
pose architectures for reconfigurable real-time software that is used for machine
control. Both architectures separate functions from behaviour by using finite state
machine interpreters. On the other hand, my approach provides reconfiguration of
behaviour only by structural reconfiguration. Wang and Shin, too, avoid middle-
ware because of performance requirements.

34 CHAPTER 1. INTRODUCTION

Chapter 2

Materials

2.1 Introduction

In this chapter I describe the motives for using reconfigurable processors and co-
processors, including some of their applications, the nature of reconfigurable com-
puting and systems, and the architectures of reconfigurable coprocessors that were
used, together with the architecture of hosting computers.

In the first part I present in some detail the main argument for using reconfig-
urable processors and coprocessors, i.e. real-time processing of ATLAS detector
data, including some background information about ATLAS, physics research at
ATLAS, and the LHC, to which ATLAS is associated. The ATLAS high-level-
trigger (HLT) is the supposed environment of reconfigurable coprocessors and im-
poses requirements on the coprocessors and the control software for reconfigurable
coprocessors (CSRC) that was developed as the result of this work. Thus, some
room is given for a more detailed description of the ATLAS HLT architecture and
software.

I will not mention further about other applications of reconfigurable co-
processors that were implemented using CSRC, like astrophysical simulations
[KKM +99, Lie03, LKM02], data compression [SD02], and image processing
[HGKM02].

In the second part I will present some background about computing in general,
custom computing, and reconfigurable computing. I describe at a glance reconfig-
urable devices and the programming of reconfigurable systems.

In the third part I will list, and sketch the architectures of, reconfigurable pro-
cessors and coprocessors that were developed by the FPGA group at the Univer-
sity of Mannheim during the last years, most of them now being supported by the
CSRC. Finally, in the last part, I give a short overview on computers that were used
to host and control reconfigurable coprocessors

35

36 CHAPTER 2. MATERIALS

2.2 LHC, Atlas, Trigger

2.2.1 Large Hadron Collider and Associated Detectors

The Large Hadron Collider (LHC) is the next-generation particle accelerator and
collider located at CERN, Geneva, Switzerland [Eva95, LHC95]. LHC is currently
in the phase of construction and is commissioned to start operation in 2007, replac-
ing the Large Electron/Positron Collider (LEP). LEP stopped operation in 2000.

LEP was working with centre of mass energies of up to∼200 GeV, which
covers the mass region of the weak-force-carryingW+− andZ0 bosons. The nature
of lepton (e+,e-) colliders prevented that the centre of mass energy of LEP was
boosted further. This barrier is caused by the beam energy loss due to synchrotron
radiation.

Using hadrons (protons in the beginning with the possibility to upgrade to
heavy ions, e.g. lead, in later operation modes), the relative energy loss of the
beam, that is bent to a circle with a circumference of about 27 km, is reduced by
more than 13 orders of magnitude. This is a result of the mass ratiomp/me ∼ 2000
between protons and electrons.

Although the LHC uses the same tunnel as the former LEP, all the infrastructure
of the LEP had to be removed to give room for the new superconducting magnets
and high frequency cavities used to shape, bend and accelerate the beams. The
beam bending dipole magnets will have a field strength of 8.4 T.

As a consequence, the centre of mass energy can be increased to 14 TeV for
proton-proton collisions. Thus the LHC opens a window to a new energy range,
that even exceeds the energy of the Tevatron at Fermilab, Illinois, USA, that is
designed for 2 TeV.

Additional to the energy boost, the LHC offers a impressing luminosity ranging
from about1033cm−2s−1 at machine start-up up to the design luminosity of more
than1034cm−2s−1. This enables the experiments at the LHC to search for even
the rarest physics signatures. The beam lifetime is 10 hours.

The LHC beams will consist of bunches separated by 25 ns corresponding to a
bunch crossing rate of 40 MHz. At design luminosity every bunch crossing will on
average produce 23 inelastic proton-proton collisions.

Detectors at the LHC

LHC will use two beams of particles travelling in opposite direction in the same
tunnel. The beams are directed to cross at eight interaction points, and four of
them will be equipped with dedicated particle detectors. Additional to the four
experiments (ALICE, LHCb, CMS and ATLAS) at the interaction points there will
be a fifth one, TOTEM [TOT99], that is partly integrated into the CMS design and
partly on the beam line. TOTEM is mostly used for calibrating beam properties
like luminosity.

2.2. LHC, ATLAS, TRIGGER 37

ALICE (A Large Ion Collider Experiment) is a general-purpose heavy-ion de-
tector designed to study the physics of strongly interacting matter and the quark-
gluon plasma in nucleus-nucleus reactions [ALI95]. The detector is designed to
cope with the highest particle multiplicities anticipated for Pb-Pb collisions. AL-
ICE will be operational at the start-up of the LHC.

LHCb [LHC98] is designed to study parity-violation and rare events in the de-
cays of heavy-flavoured hadrons, in particular B mesons. [DFH+99] gives a short
survey of the LHCb trigger and data acquisition.

CMS , the Compact Muon Solenoid, is one of two general-purpose proton-proton
detectors [CMS94] . The main focus in the CMS design is its strong 4 T supercon-
ducting solenoid with muon detectors in its outside flux return yoke made of iron.
The solenoid will be the largest magnet ever built. The magnet coil is big enough
to give room for almost all calorimeter detectors together with the inner tracking
detectors.

ATLAS is the second general-purpose detector for recording proton-proton col-
lisions [ATL94]. (The feasibility of ATLAS for recording collisions of heavy ions
is under study [Nev03, Tak03].) Like CMS, ATLAS has a central superconducting
solenoid. In contrast to CMS the solenoid is smaller and weaker and the return
yoke consists of the iron in the hadronic calorimeter tiles located outside the mag-
net coil. Due to the reduced size of the solenoid, the calorimeter is placed outside
the solenoid, and the inner detector consists entirely of tracking detectors. In addi-
tion to the inner solenoid, ATLAS has three other superconducting magnet systems,
a barrel toroid surrounding the inner solenoid, and two endcap toroids. The toroids
are instrumented with drift tubes and cathode strip chambers as muon detectors.
The overall size of the cylindrical ATLAS detector is 46 meters along its axis and
22 meters in diameter. ATLAS has about eight times the volume of CMS and a
total mass of 7000 tons with 4000 tons according to the hadronic calorimeter.

2.2.2 Physics and Tracking at the ATLAS Detector

The boost in centre of mass energy provided by LHC is mostly motivated by the
search for new physics, possibly answering the questions that the overwhelming
successfulstandard model(SM) leaves unanswered. The most popular of these
questions is the search for the origin of mass. Others are the reduction of the 18
parameters that need to be given as an input to the SM as results of measurements,
the exact nature of symmetry braking (e.g. the asymmetry in matter - antimatter
densities in the known universe), or the mechanisms that cause parity violation in
some rare particle decays.

Another area of physics research at the LHC is the investigation of the quark-
gluon-plasma that is assumed to establish at high-energy collisions of heavy ions.

38 CHAPTER 2. MATERIALS

This is especially important because of the strong relation to big-bang-cosmology,
assuming the universe went through a stage of quark-gluon-plasma in its very early
lifetime. The detector design that is needed to detect and analyse such plasma
differs significantly from the design of a “general purpose” or dedicated B-physics
detector, so consequently ALICE is designed for exactly this purpose.

Finally, though the SM is understood well, some precision measurements can
provide means for refining it, or even could give evidence for extending or modi-
fying it. The most popular sector in this research programme is the B-Physics. A
dedicated detector , LHCb, is installed at the LHC to fulfil the requirements for
precise and high statistics measurements in the area of B-Physics. However, since
B-Physics is characterised by the need for high accuracy measurements, knowledge
on B-Physics can benefit from the redundancy of information given by different ex-
periments, increasing statistics, accuracy, and evidence.

Surprisingly it is the signatures of the decay of the relatively light B mesons
that impose heavy requirements in terms of computing power in the ATLAS trigger.

ATLAS, like other detectors, is build from several sub-detectors and magnet
coils arranged in onion-like layers surrounding the interaction point (IP). The IP is
located in the beam pipe that crosses the cylindrical detector on its axis. The sub-
detectors are grouped in the inner detector (ID) that surrounds the beam pipe, fol-
lowed by the outer detector (OD). OD and ID are separated by the central solenoid
in the barrel. The OD encloses the solenoid and houses the toroid coils.

The magnet field produced by the superconducting coils bend the particle tra-
jectories recorded in the different detectors, giving means for reconstructing the
particles momentums. The particles energies are measured by the calorimetry sys-
tem that is located in the innermost layers of the OD. The calorimetry consists of
the electromagnetic calorimeter followed by the hadronic calorimeter. Surrounding
the calorimeter in the OD is the muon spectrometer, that houses the toroid.

Besides neutrinos, that give no signal in the ATLAS detector at all, only muons
can escape the calorimeter, that absorbs all remaining particles produced in the
proton-proton collisions at the IP like photons, electrons, and hadrons.

The ID consists of 3 layers. These are: the pixel -, the semiconductor tracker
(SCT) -, and the transition radiation tracker (TRT) - detectors. The pixel detector
is a 3 layer (4 discs in the endcaps on each side) silicon semiconductor tracking
detector with a resolution of 12µm in Rφ and 66µm in z. The SCT uses 4 lay-
ers of silicon microstrip detectors in the barrel and 9 wheels in the endcaps. The
resolution of the SCT is 16µm in Rφ and 580µm in z.

TRT The TRT uses straws of of about 0.5 - 1.5 meters length and 0.004 meters
diameter. The straws are each equipped with a central readout wire and and filled
with Xe-rich gas and operate as drift tubes. The distance from a particle trajectory
crossing the straw to the central readout wire can be determined with a resolution
better than 150µm using drift time information. The space between the straws
is filled with a radiator. The radiator is made of a material with an alternating

2.2. LHC, ATLAS, TRIGGER 39

index of refraction. Some fast charged particles will produce soft X-rays (transition
radiation) while crossing the radiator. This radiation will be recorded in the straws
as an additionalhigh thresholdsignal, and is used for particle identification, i.e.
telling electrons from muons and pions.

The TRT consists of left and right endcaps and the barrel, which is divided
in left and right barrel. The straws in the endcaps are pointing to the beam axis
and lie in planes perpendicular to the beam. The endcaps are organised as wheels
containing planes of straws. Left and right endcap consist of 160,000 straws each.

The barrel straws are parallel to the beam, left and right barrel contain about
50,000 straws each. The barrel straws are organised in sectors with a 32-fold ro-
tational symmetry around the beam axis. The TRT is designed such that every
particle with|η| < 2.5 1 range will cross at least 36 straws. Combining the space-
point information from all the straws hit, the tracking resolution exceeds 50µm,
which resembles the resolution of the two other silicon detectors in the ID.

The near-uniform magnetic field inside the central solenoid has a strength of
approx. 2 Tesla. The magnet field bends the trajectories of charged particles to
circles or circle segments, that are recorded in the ID. The radius of these circles is
proportional to the particles momentum and equals 1.6 meters for a single charged
particles with a momentum of 1 GeV.

The cylindrical ID has a radius of 1.15 meters and encloses the beam pipe over
a length of 7 meters.

Most of the interesting particles origin at or near the IP. The vertex resolution
of the ID reaches about 100µm in z and 10µm in the x-y plane.

The occupancy describes the fraction of active detector elements in a given
event. It is a function of the luminosity, the physics of the interaction of the particle
collisions, and the (sub)detectors response to particles. All these factors are only
known to a limited certainty before the initial data taking.

The occupancy of the TRT exceeds 25% at high luminosity (1034cm−2s−1) in
ATLAS detector simulations.

B-Physics The standard model, together with the theory of general relativity, de-
scribes all known forces and matter, except the gravitation, which is still not fully
understood. The electromagnetic, weak, and strong (nuclear) forces are mediated
by integral spinbosons, whereas matter consists offermionswhich have spin1/2.

Fermions are divided intoleptonsandhadrons, and are grouped into three fam-
ilies. All known stable matter is made of fermions from the first family, that con-
sists of the electron (e−) and the anti-electron neutrino (νe) as leptons, and the
up and down quarks (u, d) which constitute the hadrons, together with their anti-
particles (e+, νe, ū, d̄). The other two families have the same structure, but their
constituents decay fast by electroweak interactions into members of the first family
or energy, therefore their constituents only can be observed in high energy physics

1η denotespseudo-rapidity, which is essentially a measure for the angle at which a particle is
leaving the IP.

40 CHAPTER 2. MATERIALS

experiments and cosmic radiation. The quarks which make up the second and third
family are the strange (s) and the charm (c) quarks, and the bottom (b) and the top
(t) quarks, respectively.

Quarks can not exist on their own, they are always bound into particles con-
taining two (mesons) or three (baryons) of them.

Of special interest here are the mesons containing the lighter quarks of the
second and third family, that are the strange and the bottom quarks. Among lightest
of these two meson families are theK0 and theB0 mesons. These two quark
systems show the effects of particle- antiparticle mixing and parity violation, and
the study of these effects can give measures for refining or even modifying the SM.
The mechanism of mixing is illustrated as Feynman diagrams in equations 2.2 and
2.3. The most popular decay mode of theB0 meson is illustrated in eq. 2.1. The
physics of particles containingb quarks is calledb-physics.

B0(db̄) =

=

K0(ds̄)

J/ψ(cc̄)
(2.1)

B0 =

= B0 (2.2)

K0 =

= K0 (2.3)

Why it is so difficult Most of the particles created in the proton-proton colli-
sions at the interaction point (IP) decay fast into secondary particles and finally
into “stable” particles like electrons, muons, and pions. Here, stable means that
the particles’ lifetimes are long enough to survive until they are stopped in the
calorimeter (pions), or to leave the detector volume (muons).

Another final state resulting from hadrons (quarks) leaving the IP is called jet,
i.e. a bundle of mostly hadronic particles that form a narrow cone. Final states with
electrons and pions are illustrated in figure 2.1(a) and with jets in figure 2.1(b)

The lightest particles with bottom-flavour, i.e. particles containing a b-quark,
are theB± andB0 mesons, having a mass of about 5.3GeV. The cleanest signatures
of B meson decays are such with final states of two lepton-antilepton pairs, e.g.
e+, e−, µ+, µ− or with a lepton and a pion pair, likee+, e−, π+, π−. Consequently

2.2. LHC, ATLAS, TRIGGER 41

ATLAS Barrel Inner Detector
Bd

o → J/ψ Ks
o

e-

e+

π-

π+

(a) B0
d → J/ψK0

S without pileup (b) H → bb̄ at high luminosity

Figure 2.1: Simulations of Events in the Inner Detector

the tagging of aB meson requires identifying 4 particles in the detector with mo-
mentums down to 0.5GeV. This can in general only be done by scanning the whole
inner detector, or at least the TRT, for tracks withpt >0.5GeV. As can be seen
from figure 2.1(a) this is reasonable in the case of low luminosity (1033cm−2s−1)
but becomes very difficult when luminosity is enhanced in later LHC runs (figure
2.1(b)).

Hough Transformation

The trajectory of a charged particles in a magnetic field is bend to a circle whose
radius is proportional to the momentum of the particle. Identifying particles and
measuring their momentum relies on finding circles or circle segments in the event
recording of the tracking detectors.

A circle in a plane can be described by a point in a three-dimensional parameter
space, two dimensions for the position of the circles centre and one for the radius
r. Since the trajectories of the particles in question are originating at or near the
interaction point (IP), the parameter space is reduced to two dimensions. For the
following, a suitable choice for the first dimensions is the curvaturec = 1/r. The
starting angleφ0 of the trajectory at the IP is chosen for the the second dimension.

As a consequence, a track (a circle, circle segment, or straight line crossing the
IP) in the(r, φ) plane can be described as apoint in the(φ0, c) plane. I refer to the
former (r, φ) plane astracking space, to the latter(φ0, c) plane asHough space.

42 CHAPTER 2. MATERIALS

-1 -0.5 0.5 1

-1

-0.5

0.5

1

(a) Hit samples on tracks

-1.5 -1 -0.5 0.5 1 1.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2
1/pt

(b) Transformation of hit space-points into
lines in Hough space

Figure 2.2: Hough Transformation

The transformation from tracking space to Hough space is theHough transforma-
tion [Hou58]. The collectivity of circles touching the IP and a given point(r, φ) in
the tracking space is represented by a line in the Hough space (equation 2.4).

(r, φ)
Hough7→ c(φ0)r,φ = 2/r sin(φ− φ0) (2.4)

Tracking detectors have limited resolution and give a quantised image of the
recorded particle tracks. The image consist of a list ofhits, i.e. detector elements
that were triggered by passing particles. Figure 2.2(a) gives a simplified example
of simulated tracks and corresponding hits in a cylindrical tracking detector, and
figure 2.2(b) shows an excerpt of the lines in Hough space after Hough transforma-
tion.

LUT-Hough-Algorithm

The TRT- Look Up Table (LUT) - Hough algorithm [Ses00] uses an initial discrete
Hough transformation plus maximum finding to find track candidates in the event
recording of the TRT detector. After track-finding the algorithm applies the steps
of track-splitting, track-merging, and track-fitting to refine the track parameters and
occasionally reject track candidates.

The discrete Hough transformation requires that for every active hit in an event
an amount of histogram counters in Hough space is incremented. The histogram
counters are identified through a LUT which stores lists of histogram counter iden-
tifiers corresponding to every possible hit in the TRT.

Figure 2.3 shows a density plot of the discrete Hough space after summing up
and figure 2.4 shows the same histogram in a bar plot. The peaks in this plot clearly
indicate the parameters of the four tracks from figure 2.2(a).

2.2. LHC, ATLAS, TRIGGER 43

Figure 2.3: Hough Histogram

Figure 2.4: Hough Histogram, Surface View

LUT based histogramming in Hough space is also used in TRTxK algorithm
[GS03] and in in an algorithm for pattern recognition in the precision tracker
[BDS99], and has evolved to a standard technique for initial track finding in AT-
LAS second level trigger feature extraction (FEX) algorithms. [S+03] gives a sur-
vey of FEX algorithms in the ATLAS high level trigger.

The initial histogramming and maximum finding step takes a significant frac-
tion of processing time for all considered algorithms, reaching 80% in the case
of the TRT-LUT-Hough algorithm ([HKM+99]). The processing time is propor-
tional to the size of the LUT and the number of hits processed, and is dominated by
memory load and store operations, i.e. retrieving the histogram counter ID’s from
the LUT and counter load, increment, and store operations. The traditional CPU
implementation requires sequential update of approx. 100 histogram counters for
every processed hit. Both, histogramming and maximum finding, can gain from
systolic or parallel implementations on custom computing machines, which is ad-
ditionally relieved by the absence of floating point operations. A number of FPGA
based processors and coprocessors have been built at the University of Mannheim
that serve as platforms for implementations of the histogramming and maximum
finding steps of the TRT-LUT-Hough algorithm.

44 CHAPTER 2. MATERIALS

Table 2.1: Trigger Rates and Latencies

Stage Output Rate Latency
Detector 40 MHz 1 µs a

LVL1 75 kHz 2.5µs
LVL2 3 kHz 10 ms

EF 100 Hz 1 s

aRough estimation of the average latency which depends on the def-
inition of the interface between detector and front-end-electronics. It is
dominated by about 75 meters cable delay and digitisation latency.

These numbers are estimations depending on luminosity, (possibly unknown)
particle physics, detector performance, and trigger menus. However, the 40 MHz

detector rate is determined by the LHC bunch-crossing rate.

2.2.3 ATLAS Trigger

ATLAS operates at a bunch crossing rate of 40 MHz. Every event recorded in the
detector has a data size of approx. 1.5 MB, depending on the actual occupancy.
The enormous amount of data produced in the detector has to be reduced to a event
rate of 100 Hz, suitable for storage and offline analysis. This is done in a three
level trigger [ATL03].

The first level trigger (LVL1) is build with dedicated electronics on the detector.
LVL1 uses coarse-grained calorimeter data and a subset of the muon spectrome-
ter. This trigger stage is designed to have a trigger rate of 75 kHz. Additional to
the trigger decision the LVL1 delivers region of interest (ROI) pointers to the sec-
ond level trigger (LVL2), which are used as guidance for the second level trigger
algorithms.

The second level trigger (LVL2) has access to all event data stored in the read-
out buffers (ROB’s) in addition to the LVL1 trigger decision and ROI pointers. The
LVL2 uses commodity off the shelf (COTS) computing and networking technology
to reduce the trigger rate to approx. 3 kHz.

The last trigger level is called event filter (EF). The EF is responsible to finally
reduce the event rate to approx. 100 Hz which is suitable for mass storage. The
total data rate leaving the EF will be of the order of 150 MB/s. The EF has, like
LVL2, access to all event data stored in the ROB’s and uses additional calibration
data to be more precise on its decisions. The algorithms used in the EF are derived
from offline algorithms.

Table 2.1 surveys the expected rates at the output of the concerned trigger stage
while figure 2.9 sketches the main components of the current high level trigger and
data acquisition architecture.

Previous studies for the second level trigger (LVL2) have been seeded by two
possible architectures presented in [ATL94], Architecture-A and Architecture-B.

2.2. LHC, ATLAS, TRIGGER 45

LV
L2

 S
up

er
vi

so
r

RoI
Collectors

FEX
Processors
FEX
Processors

Network

Global
Processors

Buffers

Detector FrontendLVL1

Figure 2.5: Trigger Architecture A

A third proposal for the LVL2, developed on top of the understandings of Arch-
A and -B, Architecture-C ([ATL98]), is currently assumed to represent the final
choice for the trigger staging in 2007. The different architectures are described in
brief in the following.

• Architecture-A

Sub-detector specific feature extraction (FEX) is performed in custom dedi-
cated data-driven processors with full level-1 trigger rate. After feature ex-
traction the event data is transferred by a global network to a global process-
ing unit (GP) that was allocated by the supervisor to process the event and
make the final LVL2 decision. Refer to figure 2.5.

• Architecture-B

The data-driven FEX processors from Arch-A are replaced by small farms
of general purpose local processors (LP) dedicated to specific sub-detectors.
LP’s are connected by local networks to the readout buffers (ROB’s) and by
a global network to the GP’s. Refer to figure 2.6.

• Architecture-C

Unified symmetric architecture with single network and global farm, refer to
figure 2.7. A single GP is allocated by the supervisor to do the entire high-
level-trigger processing. Event data is transferred through a single network
from the ROB’s to the GP.

46 CHAPTER 2. MATERIALS

LV
L2

 S
up

er
vi

so
r

Network

Network

Detector Frontend

Buffers

Local
Processors

Global
Processors

LVL1

Figure 2.6: Trigger Architecture B

Processors

Network

Detector Frontend

Buffers

LVL2
Supervisor

LVL1

Figure 2.7: Trigger Architecture C

2.2. LHC, ATLAS, TRIGGER 47

S−Link

TDAQDetector
Read−Out

Driver
RobIn

COTS Network
e.g. Ethernet

Detector TDAQ

High−Level

Figure 2.8: S-Link in TDAQ
S-Link is used in ATLAS to move event data across the boundary between the
detector and TDAQ. The number of S-Link channels required is about 1600.

2.2.4 S-Link

S-Link defines a simple link interface that is used to move data and control mes-
sages between different layers of detector front-end-electronics and read-out. The
S-Link definition is a CERN standard and is used in CERN experiments like CMS,
LHCb and ATLAS, and in projects outside of CERN.

S-Link provides unidirectional data transport between the link source interface
(LSI) and the link destination interface (LDI), error detection, and self-test. The
duplex version of S-Link has a small return channel for flow control and return line
signals.

S-Link does not define the physical link and different implementations like
optical fibres and parallel electrical cables are used.

Common to all S-Link implementations is the conformance to the definition
of the signals on the LSI and LDI. These include clock, data, and control signals
like reset input and error output. The definition allows for 8, 16, and 32 bit wide
transfers, but 32 bit wide transfers are commonly implemented. Data is transfered
with at least 40 MHz clock, resulting in a rate of 160 MB/s.

The use of S-Link to move event data from the ATLAS detector to the high
level trigger and data acquisition (TDAQ) is illustrated in figure 2.8. Here S-Link
connects between the readout driver (ROD), which is part of the detector front-
end electronics, and the readout buffer input (ROBIN), part of the TDAQ. The
total bandwidth required here is in the order of 150 GB/s and about 1600 S-Link
channels will be used. The distance between the detector and the TDAQ is of some
100 meters. Additionally, the detector environment where the S-Link connections
start is not very “friendly” because of the strong radiation and electromagnetic
field during LHC operation. Therefore, the physical S-Link medium to be used
here is supposed to be optical fibres, because they can carry long distances with
low attenuation and are more immune to electromagnetic fields.

FPGA processors have been used in recent architecture studies for the ATLAS
trigger. These processors were supposed to perform fast data-driven feature extrac-

48 CHAPTER 2. MATERIALS

tions (FEX) algorithms on local event data from selected sub-detectors. The results
of the FEX were meant to build the basis on which another stage of processors or
processor farms would make the final level 2 trigger decisions. The FPGA based
FEX processors under study were designed as data driven systolic processors and
the properties of the S-Link definition makes S-Link the natural choice for data in-
put and results output of these. Accordingly, the vertical slice tests described later
have been using S-Link for the data path.

[Sof, K+98, vdBH, Iwa, BMvdB97, Ver00]

2.2.5 High Level Trigger Software, Prototypes and Testbeds

Many FPGA based processors and coprocessors have been build by the Mannheim
FPGA group. All these systems have been integrated into adequate prototype
frameworks of the ATLAS high level trigger (HLT). These integrations have been
done in Mannheim, at CEA Saclay, and at CERN, Geneva.

In contrast to the ATLAS detector design, the ATLAS HLT, as part of the over-
all ATLAS computing project, is a dynamic and changing project. This is the result
of the aim being as cost-effective as possible. The detector itself is a huge hardware
installation, and has been planned since the 1980’s. The building of the ATLAS
detector includes a lot of work that is done by external commissioners, and follows
an elaborate time schedule. Nearly all parts of the detector are designed and built
for this single purpose and are therefore unique.

However, the ATLAS computing has to follow a different approach. The fast
evolution of computing hard- and software mandates a constant effort to be as close
to the “mainstream” as possible since not following the development of computing
technology would be a waste of resources.

This can easily be seen by looking at the development of mainstream processor
prices and performance: The ratio between performance and cost of processing
power rises as quick as delaying the purchase of some fixed processing power by a
year would drop the cost by at least one third.

That is why the Mannheim FPGA group was challenged by three major HLT
frameworks in the past four years. These are the “ATLAS High Level Trigger ATM
Testbed”, the “Second Level Trigger Reference Software”, and finally the current
“High Level Trigger and Data Acquisition” framework.

ATLAS High Level Trigger Demonstrator and ATM Testbed

Until 2001 a group from CEA/Saclay continued contributing to the ATLAS high
level trigger (HLT) [DCG+99]. Denis Calvet, Irakli Mandjavidce, Patrik Le Dû and
others collaborated with my group in studies regarding the integration of FPGA
based processors and coprocessors built by the Mannheim FPGA group into the
ATLAS HLT frameworks. Unfortunately, the Saclay group left the ATLAS HLT.

The main inputs from the Saclay group to the ATLAS HLT were the investiga-
tion of asynchronous transfer mode (ATM) technology for the central HLT network

2.2. LHC, ATLAS, TRIGGER 49

and the early construction of a prototype including software and hardware which
was used for performance and feasibility tests. In the following I will refer to this
software as the “Saclay software”.

The complete hardware and software system is called “ATLAS HLT ATM
Testbed” or, because it is a consolidation of two earlier architectures, “Demon-
strators A + C”. Its physical architecture has a lot common with the HLT and data
acquisition (DAQ) architecture that is illustrated in figure 2.9. In difference to the
current TDAQ architecture the ATM testbed does not consider the event filter as a
distinguishable component. Additionally, the physical setup consists of a central
ATM switch instead of Ethernet switching technology for the central data-flow car-
rying network. Another Ethernet network is used for configuration of the testbed.

ATM is a connection oriented networking technology that is commonly used
in the telecommunication and telephone industry. ATM is designed for providing
quality-of-service (QoS) networking properties, i.e. a given connection is guaran-
teed to deliver data at a minimum throughput rate and within a minimum latency.
In contrast, Ethernet is a switched and packet oriented technology that does not
guarantee QoS. Ethernet is also much cheaper due to its widespread use, and it is
easier to find software and hardware experts supporting Ethernet.

The use of ATM networking in the testbed includes ATM network interface
cards (NIC) in the data sources and destinations, i.e. the read out buffer to switch
interfaces, the supervisors, and the processing nodes.

The Saclay software and the second level trigger reference software (T2REF)
differ in many aspects. The Saclay software is is coded in “C” and has a leaner
structure, however omitting some features that T2REF offers. Thus, the software
is more portable and can execute on more exotic hardware like VME processors
In contrast, T2REF has a full object-oriented architecture implemented in C++, is
very feature-rich, and restricted to PC and workstation hosts. The Saclay group
reported impressing performance measurements for latency, rate and throughput of
data transfer in distributed HLT testbeds.

Second Level Trigger Reference Software

The second level trigger reference software (T2REF) is a framework that abstracts
most of the concepts in the HLT [Hau00]. T2REF was used in the ATLAS level
2 pilot project to demonstrate a trigger prototype with most of the interfaces to
external systems [B+02].

The objectives in T2REF’s design are:

• Unification of the approaches of different groups in the HLT development
leading to a common code base and enabling code reuse.

• Operating system independence and ability to run on the two major of-the-
shelf operating systems, Linux and MS Windows NT.

• Run on commodity hardware (Personal Computers, Workstations).

50 CHAPTER 2. MATERIALS

• Support for the study of different networking technologies.

• Support the the development and benchmarking of physics algorithms for
the LVL2.

• Self containment; no dependency on external hard- or software.

• Modular architecture. Give the different groups the possibility for easy adap-
tion to their specific needs.

• Provide software emulators for hardware components not available, e.g. the
supervisor or the ROB’s.

T2REF is build using a modular structure to achieve these objectives. The
modules are collected in packages, and each package is managed by a responsible
person. The modules are designed in a way eliminating circular dependencies and
thus enabling a layered software architecture.

Different stable interfaces are provided by T2REF to support the application
developer. Among these are interfaces for error reporting and logging, manag-
ing threads, configuration, timing, message passing (networking), and application
framework.

On top of T2REF’s application framework T2REF provides skeleton applica-
tions for the supervisor, the ROB, and the steering, which also makes use of the
physics package. The physics package provides an interface for building physics
algorithms which can be used for testing physics feature extraction in the T2REF
framework.

The T2REF framework supports several system-architectures:

• Single node feature extraction

• Single node trigger

• Multi node with skeleton applications

• Multi node with algorithms

ATLAS Level-2 Pilot Project Testbeds

Besides different setups in small networks and a lot of single node installations,
both also in Mannheim, the two HLT approaches, CEA Saclay ATM Demonstrator
and commodity Ethernet with T2REF, have been installed at CERN in a common
effort during a combined test. In this common installation the same computing
nodes, some 25 commodity PC’s, have been used for both networking technologies
and software frameworks. The ATM testbed additionally incorporated ten Power-
PC single-board computers running LynxOS and, additionally to the Ethernet net-
work, a 48-port ATM switch. Both systems have been using software emulators
for the ROB’s and the supervisors. At that times Gigabit Ethernet was starting to

2.2. LHC, ATLAS, TRIGGER 51

become available and thus the four Ethernet switches were partly equipped with
Gigabit (1000 MBit) Ethernet and partly with the more common Fast (100 MBit)
Ethernet.

ATLAS High Level Trigger and Data Acquisition

The current view of the architecture of the ATLAS high level trigger and data ac-
quisition is illustrated in figure 2.9. Solid line arrows illustrate the event data flow.
Event data is transported from the detector at the top to the offline analysis at the
bottom. The data-flow from LVL1 to the supervisor, and finally the HLT network
contains LVL1 decisions and region of interest pointers, indicated by dotted arrows.
The stacked boxes indicate a, possibly large, number of identical subsystems. The
numbers on the right indicate the event rate at the respective subsystem boundaries.

Second Level Trigger Processing Node

The second level trigger processing node, or PU for Processing Unit, is the
workhorse for the second level trigger algorithms. The HLT design is flexible
regarding the number of PU’s, however it is assumed that the number of PU’s is
in the order of 1000, however . The PU’s will be commodity PC’s, possibly with
SMP architecture, running the Linux OS. Every PU gets assigned a single event
from one of the level 2 supervisors (LVL2SV) in a round-robin manner. The ap-
plication on the PU will be multi-threaded, with every thread working on a single
event.

Upon receiving the event ID and occasional pointers to Region Of Interest
(ROI) from the LVL2SV the PU will request event fragments from the readout
buffers on which the physics algorithms work in a sequential manner to verify the
LVL1 trigger decision. Sequential selection is chosen to ensure that only such
fragments are requested that are needed to make a final LVL2 trigger decision thus
limiting the load on the HLT network and the readout buffers. The final LVL2 trig-
ger decision will be send back to the LVL2SV which forwards positive decisions
to the EF. Negative decisions will cause the LVL2SV to request the readout buffers
to discard the stored event fragments.

The workload on the PU’s will mainly be caused by the physics algorithms. It
is assumed that some of the algorithms can benefit from acceleration by reconfig-
urable coprocessors, giving the possibility to perform more advanced algorithms,
to reduce the number of PU’s and to reduce the latency in the HLT.

It is assumed that the PU’s are connected with cascading switches to the central
HLT switch. The reason is to reduce the number of ports on the central Gigabit
Ethernet switch. It is assumed that the data rate between a single PU and the
HLT network is in the order of 100 MBits/s such that grouping about 10 PU’s at a
cascading switch would match the bandwidth of a port on the central switch.

52 CHAPTER 2. MATERIALS

NetworkSupervisor

LVL1

Detector

Disk

ROS

Event
Filter

Processing
Node

40MHz

100kHz

3kHz

100Hz

Network

Offline

FrontEnd
Electronics

ROBIN

Figure 2.9: HLT and DAQ

2.3. COMPUTING AND RECONFIGURABLE SYSTEMS 53

2.3 Computing and Reconfigurable Systems

2.3.1 Conventional Computing

Conventional computing is based on architectures like the sequential von-Neu-
mann-architecture. These architectures separate memory units that store data and
algorithms, input / output units for communicating with the outside, and control-
and arithmetic- units, which actually execute the algorithms on the data. Control
and arithmetic units are usually integrated in a central processing unit (CPU). The
CPU executes algorithms (programs) by sequentially applying statements fetched
from memory on data that is also loaded from memory and stored back to memory
upon completion of computation. Generally, the algorithm (program) can be al-
tered dynamically, e.g. for using the same machine for different problems or to use
improved algorithms. Such an architecture, though being very flexible, shows two
major drawbacks. First, data and statements have to be moved across the interface
between memory and CPU, which is of limited capacity. Accordingly, the perfor-
mance of data-intensive algorithms is limited by the available memory bandwidth.
Second, the sequential processing of CPU’s limits the performance of complex al-
gorithms and inefficiencies caused by the general purpose architecture of CPU’s,
which render parts of the CPU useless that are not needed by the actually executed
algorithm and also limit the efficiency of the active (used) parts of the CPU.

The aforementioned performance limitations caused by the memory bottleneck
and sequential processing are mainly addressed by modification or extensions to
the simple van Neumann architecture. The memory bottleneck is relaxed by inter-
mediate stages of fast memory unitscachingdata on its way between main memory
and CPU. Such memory caches are usually located within or nearby the CPU, re-
ducing the load on the external interface to main memory.Pipeliningis addressing
the problem of inefficient utilisation of functional units of the CPU by automatic
reordering and decomposing of complex statement sequences in a way that inde-
pendent statements can be executed in parallel in different functional units. Spe-
cialised CPU’s, like vector processors, digital signal processors (DSP), or network
and I / O processors, are optimised to address specific computational needs.

Other approaches exploit possible parallelisations of computational problems.
The simplest approach being the use of multiple computers in afarm working in
parallel. This approach requires that the problem can be divided into totally inde-
pendent tasks. In general the computational throughput of a farm is proportional to
the number of farm computers (nodes). However, additional problems may arise
with the assignment of tasks to the individual nodes, the transfer of data to and
from the nodes, and the management of the nodes. The ATLAS high level trigger
uses a farm with some hundred nodes to perform physics algorithms on detector
data.

Clustersuse tightly coupled computers to work on problems that can only
partly be decomposed into subtasks. A typical problem from this category is com-
putational fluid dynamics, where significant amount of computing can be done

54 CHAPTER 2. MATERIALS

independently on the cluster nodes before part of the results have to be communi-
cated between neighbouring nodes. Clusters impose high demands on inter node
communication latency and bandwidth which are usually satisfied with specialised
high performance networking technologies like the commercial scalable coherent
interface (SCI) or Myrinet, or the ATOLL [DSB03] research project.

Multiprocessor(MP) computers use several processors in a single system.
Symmetric multiprocessor (SMP) systems and non uniform memory architecture
(NUMA) systems represent the main architectures for MP computers. SMP sys-
tems have equal latency and bandwidth between all CPU’s and every memory lo-
cation whereas NUMA systems have lower latency and higher bandwidth between
associated CPU’s and memory units. SMP systems are usually restricted to some
ten CPU’s, whereas NUMA systems contain up to hundreds of CPU’s. MP systems
run a single instance of an operating system that manages the whole system. On
the contrary, every node of a farm or a cluster runs its own OS instance.

2.3.2 Custom Computing

Custom computing machines (CCM) are used to satisfy specific computational
needs that are difficult to meet with conventional computing systems. For such
CCM’s the performance overhead caused by the generality and universality of com-
puters based on the von Neumann architecture is traded against more powerful or
cost-effective but less versatile specialised solutions.

CCM’s can be more effective because their architecture is tailored to a specific
problem. This includes I / O paths which are designed to match the data sources
and drains in terms of throughput and data format, internal resources like memo-
ries, power supplies and other supporting components, and the design of the com-
putational core(s). The tailoring requires a specific system layout and specialised
electronic devices. Such devices are often implemented as application specific in-
tegrated circuits (ASIC).

The implementation of an ASIC is derived from a structured high level de-
scription using an hardware description language (HDL), often incorporating and
reusing macro cells provided by intellectual property (IP) vendors. IP cells de-
fine independent building blocks like processor cores, memories, communication
components, and others. After verification this description is stepwise transformed
into the descriptions of several masks that are used to manufacture the ASIC in
a standard semiconductor process. The topology of an ASIC, i.e. its structural
composition from transistors, transmission lines, capacities, and resistors, that de-
termines its behaviour, is defined by the HDL description an the manufacturing
process and can’t be altered after production. The development of ASIC’s require
an high effort, often dominated by verification, and high initial production cost
caused by mask manufacturing. These costs only drop with mass production of
the ASIC. However, CCM’s are often low volume systems, which makes the use
of ASIC’s a cost intensive solution. Another problem with ASIC’s is long time-to-
market causing a long timescale for the development of an ASIC based CCM.

2.3. COMPUTING AND RECONFIGURABLE SYSTEMS 55

2.3.3 Reconfigurable Devices and Systems

The use of ASIC’s in low volume systems is often prevented by two aspects : high
effort needed for development, especially for verification, and high initial produc-
tion cost. Field programmable gate arrays(FPGA) provide means foremulation
of arbitrary logic circuits at a fine grained level. The emulated logic can be fairly
complex and can be changed after FPGA production byconfiguringthe FPGA.
The hardware emulation realized in FPGA’s is significantly speeding up ASIC de-
sign verification as compared tosimulationof logic with conventional computers.
Since logic emulation shows in principal the same behaviour, yet with reduced
performance, like the actual execution (e.g. in an ASIC), FPGA’s can sometimes
replace ASIC’s. This comes at the benefit of reduced system costs because FPGA’s
don’t require mask production. Consequently, FPGA’s are used in low volume sys-
tems and prototype systems replacing ASIC’s, and in logic emulation systems for
emulating ASIC’s.

The ability for logic emulation of FPGA’s is realized by an array of config-
urable logic blocks (CLB) (naming may differ depending on FPGA vendor). The
CLB array is accompanied by an array of input / output blocks (IOB) which con-
nect the FPGA to other devices in a system. The architecture of CLB’s is dependent
on FPGA vendor and family, but mostly based on a look up tables (LUT), calculat-
ing an output value from some inputs. The LUT’s are complemented by registers
and other logic, e.g. for implementing fast carry bit chains. A configurable rout-
ing network connects CLB’s and IOB’s. On most FPGA’s the routing network is
hierarchically composed of short overlapping networks connecting neighbouring
CLB’s and IOB’s, and long routes for connecting distant parts of the FPGA.

Modern FPGA’s may complement the logic resources of their CLB’s with ded-
icated components like RAM blocks, multipliers, and even processor cores. The
distribution network for clock signals and components for clock conditioning and
synthesis are usually separated from general purpose logic and routing, but also
configurable.

The configuration of an FPGA defines the contents of the LUT’s of the CLB’s,
multiplexer selects, configuration of IOB’s and clocking components, the topology
of the routing and clocking networks, and other components, e.g. the contents
of embedded RAM blocks. The configuration of an FPGA is volatile, i.e. the
configuration is lost if the supply voltage is removed from the device. Generally,
FPGA’s allow for the upload of configuration data (programming) through their
JTAG interface (see below) which is simple but slow. Most FPGA’s provide also a
fast, e.g. 8-bit parallel, interface, reducing configuration latency down to some 10
milliseconds. The size of configuration data depends on the complexity and size of
the FPGA reaching some 10 MBit for modern and big FPGA’s.

Programmable logic devices(PLD) represent another class of configurable
logic devices. PLD’s are similar to FPGA’s in the sense that they can be config-
ured to show arbitrary behaviour based on low level digital logic. However, their
intended use and environment differs from that of FPGA’s, although the use cases

56 CHAPTER 2. MATERIALS

Table 2.2: Comparison between PLD’s and FPGA’s

PLD FPGA
User IO pins 30-300 60-1000
Gates 1k-10k 5k-10.000k
Configuration speed approx. 5min approx. 1sec
Configuration storage persistent volatile
Reconfiguration limited unlimited
Timing predictability accurate poor
Price low medium-high

for FPGA’s and PLD’s may overlap. PLD’s are mostly of much reduced complex-
ity as compared to FPGA’s, generally omitting high level specialised components
like memories and others. The desired logic of an configured PLD is e.g. real-
ized by a set of wired OR’s whose inputs and outputs are connected with a regular
mesh of traces. The crossovers of the mesh can be configured with techniques
like that used for programming EEPROM’s. The resulting topology, and therefore
the implemented logic, is permanent and not lost if the supply voltage is removed.
However, according to the technique used, configuration latency is long, reaching
some 5 minutes. The nonvolatile configuration is accompanied by the ability to
exactly predict the timing behaviour from the configuration, and the generally bet-
ter (faster) timing as compared to FPGA’s. Also, PLD’s can show very low power
consumption, making them suitable for power critical environments.

Accordingly, PLD’s are mainly used for system integration purposes, where the
required computational complexity is low and requirements for timing are tight.

Table 2.2 compares key properties of current PLD’s and FPGA’s offered by
Xilinx 2.

Both, PLD and FPGA, provide configurable logic and configurable rout-
ing. The routing connects between internal logic and IO connections of the de-
vice. Some reconfigurable devices, Field Programmable Interconnect Components
(FPIC), do not have significant logic resources; their routing capabilities are sup-
posed for providing a configurable connection matrix between their IO pins. In
most applications FPIC’s can be replaced by PLD’s or FPGA’s, however, FPIC’s
potentially provide better performance.

Reconfigurable systemscan be classified according to their coupling to a host
[CH02, GG95]. The weakest coupling is present inreconfigurable processors,
standalone reconfigurable systems, that are only occasionally connected to a con-
trolling host e.g. for system configuration or monitoring. Here, the reconfigurable
processor is often implemented as a data driven processor, connecting to external
systems with dedicated inputs and outputs for data transfer. The controlling host

2Xilinx, http://www.xilinx.com

2.3. COMPUTING AND RECONFIGURABLE SYSTEMS 57

is possibly not part of the data path of the computational system. The Enable++
FCCM (see 2.4.1) is an example for a reconfigurable processor used in implemen-
tation studies of the ATLAS HLT.

A great variety of systems exists for the class ofreconfigurable coprocessors
(RC) that are attached to a controlling host by the hosts system bus, in many prac-
tical cases a PCI bus. Most RC’s use the the same interface for data transfers
and control, some offer additional interfaces for data transfer to other systems. The
strong coupling between RC and controlling host renders systems possible that par-
tition a computational task between host and RC, therefore transferring significant
amount of data between both participants. The performance of such a distributed
system is often influenced by latency and throughput of the interface between RC
and host. RC’s are usually smaller as compared to reconfigurable processors. Ex-
amples for RC’s are theµEnable (see 2.4.2) and the MPRACE (see 2.4.4).

The Pilchard reconfigurable unit is connected to a host by the host memory bus
[L+01]. Even stronger coupling can be achieved by directly attaching reconfig-
urable logic to a processor in the traditional “coprocessor” manner, or by embed-
ding a reconfigurable functional unit into the hosts processor, e.g. for dynamically
extending its instruction set.

In general, tighter coupling implies less communication overhead and higher
bandwidth between host processor and reconfigurable logic, while looser coupling
gives greater flexibility and higher execution parallelism between reconfigurable
logic and host CPU [Hau98a],[Hau98b], .

2.3.4 Programming of Reconfigurable Systems

Creating applications for reconfigurable systems requires several steps. For sys-
tems that are attached to a controlling host that also takes part in computation, the
application has to bepartitionedbetween host and reconfigurable units. Such parti-
tioning is guided by the feasibility of subtasks for the different components, CPU’s
and FPGA’s, in terms of performance and implementation cost. Restrictions for
the partitioning result from limited available resources of reconfigurable logic and
from tradeoffs generated by data transfers between the host and the reconfigurable
system. A further partitioning step is required for multi-FPGA systems, where the
desired logic has to be distributed across the different FPGA’s according to the
architecture of the reconfigurable system.

Reconfigurable logic can be described at a very low level through hand map-
ping of the basic functional blocks (e.g. CLB’s) to compose the desired logic.
However, such a description is costly and only reasonable if the circuitry is small
and has high performance requirements.

Hardware definition languages (HDL) like VHDL and Verilog facilitate a struc-
tural description that may resemble a hand mapping approach like above. However,
the description given in an HDL is usually more abstract. Tools (compilers) are
used to translate an HDL description into a format specific to Vendor and FPGA.
Additional to FPGA-specific functional blocks an HDL description may use more

58 CHAPTER 2. MATERIALS

elaborate units like multipliers and adders which are provided as library elements
by FPGA and tool Vendors. Commercial available intellectual property (IP) macros
may provide complex units like communication protocol converters or CPU’s.

HDL’s offer behavioural description besides structural description of logic. Be-
havioural description resembles traditional software in that it focuses on the defi-
nition of states, events, actions and control flows. Behavioural description tends to
be more general and abstract and is closer to natural language problem description.
Such description, while being more convenient for human developers, shows the
drawback of potentially worse performance in terms of circuit timing and resource
consumption as compared to pure structural description.

HDL’s have been developed for simulation and compilation of hardware de-
scriptions. Their grammars and features are often seen as an hindrance for soft-
ware developers to efficiently develop reconfigurable logic [Com99]. Many pro-
gramming systems have been proposed, some of them being actively used, that
use traditional software languages like C++ and Java for reconfigurable hardware
description. Most of them offer libraries for efficient creation of structural logic
descriptions in the context of their language. CHDL [K+98] JBits [GLS99] are
examples of library based programming systems. Another class of systems adapts
or restricts the grammar of traditional programming languages (mostly C), e.g. by
annotations, to be used for behavioural logic description. SystemC [Sys] and Han-
delC3 [Cha01] represent such languages.

Synthesis tools translate behavioural or structural descriptions to Register
Transfer Level (RTL) descriptions which hold a low level definition of the desired
logic. Vendor specific tools are used to convert RTL descriptions into configuration
files which can be uploaded to according configurable devices.

2.3.5 JTAG

The Joint Testing Architecture Group (JTAG) is an association of hardware ven-
dors, that standardise a common testing interface and infrastructure for electronic
devices. JTAG infrastructure is present mostly on devices with many IO pads and
that are used as components for complex systems, e.g. RAM’s, CPU’s, PLD’s, and
FPGA’s. JTAG is an IEEE standard [IEE]. Using JTAG the internal functionality
of a device can be disconnected from the devices IO pads and the logic levels of
the pads can be set and retrieved in an arbitrary manner. This technique, called
“boundary scan”, can be used to test complete systems (boards assembled from
one or more JTAG-capable devices) for the correctness of the on board traces. M.
Müller 4 used boundary scan to test the ACB (the ACB is described in 2.4.3).

JTAG defines a standard set of JTAG-commands that is supported by all JTAG-
capable devices. The instruction set can be extended with special commands. Most
PLD and FPGA vendors use special JTAG commands to support the programming
of their devices. Some FPGA’s support configuration and status read-back with

3Celoxica
4M. Müller, mmueller@ti.uni-mannheim.de, University of Mannheim

2.4. FPGA PROCESSORS AND COPROCESSORS BUILT IN MANNHEIM 59

Table 2.3: JTAG Signals

short in/
name out long name description

TCK in test clock TMS and TDI are sampled at rising
edge, TDO is valid at falling edge.

TMS in test mode select Steps through the JTAG state machine.
TDI in test data in Commands, (configuration-) data.
TDO out test data out Register values, identification, read-

back.

JTAG, a technique that can be used for in-system debugging of the devices func-
tionality or e.g. for scheduling of FPGA configurations [Sim01].

JTAG defines a JTAG-port consisting of four signals as summarised in table
2.3. JTAG uses bit-serial protocols on the TMS, TDI and TDO signals to step
through the JTAG-controller state machine and to read and write commands and
data. The standard allows for the connection JTAG ports in different topologies.
An exemplary configuration would be to arrange an arbitrary number of JTAG ports
in a chain by connecting their TDI and TDO signals pairwise, making all devices
accessible through a single, four-signal JTAG port on the system.

2.4 FPGA Processors and Coprocessors Built in
Mannheim

Some ten vendors worldwide (e.g. Aptix, Celoxica, Nallatech, SiliconSoftware,
and many others) sell FPGA processors and coprocessors with a variety of ar-
chitectures, the most of these being PCI coupled FPGA coprocessors. All these
commercial FPGA coprocessors, except SiliconSoftware’sµEnable , are not cov-
ered in this thesis because they come with their own closed and proprietary control
software.

During the last decade the FPGA group at the University of Mannheim has de-
veloped a variety of reconfigurable processors, starting from big standalone FPGA
processors, Enable and its successor Enable++, up to recent smaller FPGA copro-
cessors like the versatile MPRACE and the Robin, that combines FPGA, CPU, and
fast network I/O’s. Table 2.4 gives an survey of these systems. The table shows in
chronological order the different systems, along with small pictures. The table is
divided in an upper part, containing the older FPGA processors that have been de-
veloped in the mid and late 1990’s, and a lower part, listing the newer and smaller
FPGA coprocessors that supercede their predecessors. The technology used for
coupling to a controlling host, the number of FPGA’s, and an estimation of the
number of networks on the board is given for every system. The table shows the

60 CHAPTER 2. MATERIALS

general trend to lower FPGA count and tighter host coupling. This trend reflects
the increasing density and computational power of modern FPGA’s and the result-
ing demand for higher I/O bandwidth. As indicated by the numbers of networks
the step from processors to coprocessors involves a significant reduction in com-
plexity of the boards, although a bridge for interfacing to the host bus is added to
all coprocessors.

2.4.1 Enable++

Enable++ and its predecessor Enable are FPGA-based processors designed to pro-
vide the computing power for real-time pattern recognition in the ATLAS second-
level trigger [R+93, HKL+95, NZK+95, Ses96, Nof96, Lud98]. Enable was the
only system that met a benchmark that was set up in 1991 by the “Architectures for
Second-Level Triggering” (EAST RD/11) collaboration.

The modular Enable++ system consists of IO-boards connecting to the trigger
with e.g. S-Link, the very high bandwidth active backplane, and the Matrix (MX)
boards, which provide the computing power for the real-time pattern recognition.
The system is configured and controlled from a workstation by a serial link connec-
tion, that is routed through local controller modules attached to all system boards.
The Enable++ MX board uses 16 Xilinx 4013 FPGA’s that provide the compu-
tational resources. The FPGA’s are statically connected to each other in a ring
topology and additionally to a programmable crossbar switch, realized by an array
of FPIC’s. The crossbar switch also connects the computational FPGA matrix to
the backplane for communication with the IO board(s).

The experience gained from Enable and Enable++ was the basis for the devel-
opment of the Atlantis system [KKL+98c, KKL+98a, KKL+98b].

2.4.2 µEnable andµEnable2

The µEnable (figure 2.10) was the the first FPGA coprocessor we have been work-
ing with [BDK+98]. µEnable was developed at the University of Mannheim and
is now a commercial product sold by Silicon Software (SiSo) [Sof], which is a spin-
of company of the University.µEnable uses a PLX9080 PCI bridge for connecting
to the controlling host. The computational resources are provided by a Xilinx 4000
series FPGA to which an array of static RAM modules is attached. It also provides
a set of connectors that can be used to interface to mezzanine cards, e.g. realiz-
ing S-Link connections. TheµEnable has been used for a variety of applications
like frame grabbers, image recognition, encryption and number crunching. The
µEnable2 is an enhanced version of theµEnable and is equipped with a Xilinx
Virtex FPGA.

2.4. FPGA PROCESSORS AND COPROCESSORS BUILT IN MANNHEIM 61

Table 2.4: Evolution of FPGA Processors and Coprocessors

networks
year name host conn. FPGA (approx.) picture

1995 Enable VME 36 3500

1997 Enable++ MX serial 12 4000

1997 µEnable PCI 32/33 1 400

1999 ACB PCI 32/33 4 1800

2000 AIB PCI 32/33 2 800

2001 MPRACE PCI 64/66 1 970

2003 ROBIN PCI 64/66 1 1150

62 CHAPTER 2. MATERIALS

Figure 2.10:µEnable

2.4.3 Atlantis, ACB and AIB

The Atlantis system [BHH+00, KHM+00] is based upon a 19-Inch crate with a
compact-PCI (cPCI) backplane and a cPCI computer board. The crate accepts
up to 6 cPCI boards. Two reconfigurable coprocessors have been developed by
H.Singpiel that fit into the cPCI backplane, completing the Atlantis system: The
Atlantis Computing Board (ACB) (fig. 2.11) and the Atlantis Input Output Board
(AIB) (figure 2.13). The backplane can be extended by the configurable high band-
width active backplane (ATB), connecting ACB’s and AIB’s, that was also devel-
oped by H. Singpiel. The Atlantis system was designed to be a substitute and
enhancement for the outdated Enable++ FPGA processor. Thus, the main antici-
pated application for the Atlantis system was the real-time pattern recognition in
the ATLAS trigger using the TRT-LUT-Hough algorithm (see section 2.2.2).

The ACB is designed to provide high computational power with the possibility
of extension through a set of very high bandwidth connectors. The ACB is rather
complex and consists of:

• 4 FPGA’s

• 2 PLD’s

• 2 clock generators

• 3 programmable clock buffers

2.4. FPGA PROCESSORS AND COPROCESSORS BUILT IN MANNHEIM 63

Figure 2.11: Atlantis Computing Board (ACB)

• PCI bridge and configuration EEPROM

• 4 module ports and an external connector

This board is based on Compact-PCI and has four ORCA ORT125 FPGA and
an array of four connectors with a total pin-count of about 800. These connectors
are supposed to interface each FPGA to a mezzanine expansion module. One ap-
plication for the modules is an array of four memory modules with 11 MB static
RAM each. Each of the Modules has a word length of 180 bits and an address
range of 19 bits or 512K words. The word width and address range of all four
modules together is 720 bits x 512K. The memory modules are designed to hold
the look-up-table (LUT) for the TRT-LUT-Hough algorithm. Another application
that has been realized for the expansion module is the Volume Graphics Engine
(VGE) [CVHM03]. The VGE was developed to provide real-time rendering of
volume data. It makes use of another FPGA device together with dynamic RAM
(DRAM) for holding the volume data.

The ACB was developed together with the Atlantis Input Output Board (AIB)
(figure 2.13) and the active backplane (ATB). The AIB is based on Compact-PCI
too and is equipped with two Xilinx Virtex XCV600 FPGA. The main use of the
AIB is as an Input/Output component, occasionally in a system with several other
AIB’s or ACB’s. Communication between these boards can be done through the

64 CHAPTER 2. MATERIALS

Clck

Fpga

Ctrl
Cpld

P
C
I

b
u
s

Fpga Fpga

FpgaPCI
bridge

c
o
n
n
e
c
t
o
r

e
x
t
e
r
n
a
l

JTAG
Data

Cpld

Figure 2.12: Data Paths and JTAG on the ACB

ATB programmable cPCI backplane or the system PCI bus. Four mezzanine sock-
ets are provided on the AIB to plug in e.g. S-Link or Ethernet adapters.

2.4.4 MPRACE

MPRACE is the actual general-purpose PCI-based reconfigurable coprocessor (fig-
ure 2.14) [Kug02]. It is build around a Xilinx XC2V3000 or XC2V6000 FPGA and
connects to the host with a 64 bit / 66 MHz PCI bridge. A XC95288 PLD is used for
integration and system control. The architecture of the MPRACE resembles an up-
date to the architecture of theµEnable. MPRACE provides local memory through
6 SRAM modules and has an additional socket accepting an SDRAM memory
module.

2.4.5 ROBIN

The ROBIN (figure 2.15) is a special development for use in the ATLAS experi-
ment. Build around a Xilinx XC2V1500 FPGAandan IBM Power-PC micropro-
cessor, the ROBIN (Read-Out Buffer INput) is used as a fast configurable buffer for
detector data between the detector read-out electronics and the ATLAS high level
trigger and data acquisition [GJP+03]. It interfaces to the read-out with S-Link
connections and provides an additional Gigabit Ethernet network interface. The
ROBIN uses the same 64 bit / 66 MHz PCI bridge as the MPRACE for interfacing
to the host.

2.4. FPGA PROCESSORS AND COPROCESSORS BUILT IN MANNHEIM 65

Figure 2.13: Atlantis Input Output (AIB)

Figure 2.14: MPRACE

66 CHAPTER 2. MATERIALS

Figure 2.15: ROBIN

2.5 Host and Software Environment

2.5.1 Introduction

In the context of this work reconfigurable hardware (RH) is used in conjunction
and under control of hosting computer systems. The general structure of such
hosts is described in the following sections. Details are given in areas where the
coupling with RH makes these desirable. The description of the host platform
covers hardware and software.

2.5.2 Host Architecture

The control software developed in this work supports a variety of FPGA-based
coprocessors, all of them attached to a host by Peripheral Component Interconnect
(PCI) buses [PCI, SA99].

Although the host architecture would not limit the use of the coprocessors we
have been solely concentrating on IA32 and IA64 compatible desktop and server
systems. Most of this systems are uni-processor (UP) IA32 [Inta] systems with
Intel Pentium like CPU’s, recently enhanced to dual or quad Symmetric Multipro-
cessor (SMP) systems equipped with Intel Xeon processors. Tests have been done
with Intel IA32 compatible AMD processors. Additionally we have been recently
using a dual Itanium [Intb] workstation.

The SMP systems have a Uniform Memory Access (UMA) architecture, i.e.
all CPU’s have access to all system memory with equal latency and priority. The
memory architecture of all systems (UP and SMP) has two or three levels of caches,
speeding up memory access, which still often is a bottleneck for High Performance
Throughput (HPT) applications. The memory caches are located on the CPU die
or are attached to the CPU on CPUcards. Memory is attached to the system by a
system controller, which also mediates access to the system bus, often using an-

2.5. HOST AND SOFTWARE ENVIRONMENT 67

CPU2

controller
bus

controller
system

memoryCPU1

p
r
i
m
a
r
y

b
u
s

2
n
d

b
u
s

3
r
d

b
u
s

bridge
bus to bus

bridge
bus to bus

Figure 2.16: Host Architecture

other intermediate bus controller/bridge, refer to figure 2.16. Some of the systems
have more than one PCI system bus. Secondary buses are usually connected in a
tree-like structure to a primary bus. Earlier measurements show, that the design of
such a bus hierarchy can have a great influence on data transfer throughput between
CPU and the coprocessors [Sin00].

2.5.3 IA32 and IA64

The Intel architecture 32 (IA32) is widely accepted as the Personal Computer (PC)
and workstation standard, enabling low prices, good price/performance ratio, and is
evolving fast in terms of computing power. This wide acceptance and deep market
penetration makes IA32 the only architecture that is currently actively evaluated
for the second level trigger in ATLAS. IA32 is a 32 bit complex instruction set
computing (CISC) architecture implying an address space of232 byte = 4 GiB .
Although modern IA32 compatible CPU’s (like Intel Xeon) can in principle ad-
dress more (e.g. 64 GiB) memory, this addressing can’t be included seamless into
operating systems and applications and has to use segmentation-like techniques.
Consequently the address space that is available to a single process is limited to 4
GiB, and this address space has to shared between memory and IO buses, usually
limiting the available memory space per process to 1 or 2 GiB.

Many 64bit processor architectures exists, that natively overcome the 32bit
address space limitations, the Intel architecture 64 (IA64) being just one of them,
although a modern one. The main features of IA64 are:

• native 64 bit addressing

• fast, extended precision floating point arithmetic

• Explicit Parallel Instruction set Computation (EPIC) paradigm

• IA32 compatible subsystem

68 CHAPTER 2. MATERIALS

Of these features native 64 bit addressing and the EPIC paradigm are important in
the scope of this work. 64bit addressing concerns since it demands reviewing and
refining of the control software and Linux driver sources and also implies the use
of a different operating system, Linux on IA64, together with its GNU tool-chain
and utilities. IA64 and the porting of Linux to IA64 is described in great detail in
[ME02].

EPIC is important since its demands on the tool-chain, especially the compiler.
Linux on IA64 requires GNU GCC-3.x compilers, older compilers do not support
IA64.

The basic ingredients of EPIC are:

• Bundling of 3 Reduced Instruction Set Computing (RISC) like instructions
into a 128 bit instruction bundle.

• Use of a CPU-version dependent number of memory, integer, floating point,
and branch units, that can execute in parallel.

• Explicit grouping of instructions in consecutive bundles and scheduling them
for parallel execution on the different execution units. The grouping is done
by the compiler/assembler.

As a result an Itanium processor, as the first member of the IA64 family, can exe-
cute up to 6 instructions in parallel.

2.5.4 PCI, PCI-Bridges and Data Transfer

Peripheral component interconnect (PCI) is a bus with several devices operating
on the same physical bus lines, therefore requiring bus arbitration cycles as part of
data transfers. It has a packet-based load/store architecture, i.e. burst write and read
transactions are possible with a single address cycle at the beginning, indicating
the target of the transfer as part of the PCI address space. Usually the PCI address
space (32/64 bits respectively) is mapped into the physical address space that the
host CPU accesses via ordinary memory load/stores. IO (inp,outp) operations
are mostly not used on IA32/IA64 based systems, since their IO space is very
limited.

PCI uses reflective wave switching, i.e. the signalling device drives only half of
the signalling voltage on the different PCI traces, the remaining half resulting from
the addition of the signal reflected at the traces end. This signalling technology
puts high demands on the bus layout, the connectors, and the connected devices in
terms of trace lengths, capacitances, inductances, and resistances. It also fixes the
maximum operating frequence of a given bus implementation and the performance
of the bus can not be enhanced by connecting more capable devices, as in contrast
to e.g. Ethernet.

PCI-Bridgesmediate transactions between some local bus and the system PCI-
bus. We use two PCI-bridges from PLX, the PCI9080 and the PCI9656 that inter-
face to 33 MHz / 32 bit PCI and 66 MHz / 64 Bit PCI respectively [PLXa, PLXb].

2.5. HOST AND SOFTWARE ENVIRONMENT 69

The local interface, i.e. the interface that not connects to PCI but to the on-board
devices, is essentially the same for both bridges. The local bus can be used as
address/data multiplexed or de-multiplexed, we use the multiplexed version, i.e.
addresses and data are transferred successively on the same bus. The 32 bit local
bus of the PCI9080 can run with a clock rate up to 40 MHz, however, the 33 MHz /
32 Bit PCI bus restricts transfer rates to a theoretical maximum of 132MB/s. Rates
exceeding 125 MB/s have been measured with this device. The PCI9656 accepts
66 MHz / 64 Bit PCI according a PCI bandwidth of 528 MB/s. Its local bus has the
same 32 bits width but can handle a clock rate of 66 MHz, resulting in a theoretical
bandwidth of 264 MB/s. Our measurements have shown a maximum bandwidth of
251 MB/s.

The two ATLANTIS coprocessors, ACB and AIB, use 32 bit / 33 MHz Com-
pactPCI (cPCI),µEnable uses 32 bit / 33 MHz PCI, and the MPRACE and the
ROBIN use 64 bit / 66 MHz PCI. All the coprocessors fit into standard system
cases, 19 inch CompactPCI crates in the case of the ATLANTIS coprocessors.

The bridge maps three address spaces between the local bus and the PCI bus:
one for its own configuration register space, and two local bus address spaces. The
bridge can act as master or slave to the PCI bus, i.e. both buses (PCI and local)
can trigger transactions on their counterpart. The buses are connected by FIFO’s,
which decouples the bus-clocks and aid in bursting data (both buses, PCI and local,
can transfer data in bursts, omitting intervening address cycles). The bridge has
two independent DMA engines, which can transfer data without the aid of the host
CPU or some local controller.

Data Transfersbetween host and coprocessor can be initiated by the host, the
PCI-bridge, and the coprocessor logic. Transfers initiated by the coprocessor logic,
i.e. the FPGA design, are not covered in this work. Host initiated transfers are
called programmed I/O (PIO). PIO transfers are done by the host CPU that reads
and writes data to the PCI address space. Regions of the PCI address space can be
mapped into kernel or user address space, making it available to ordinary memory
operations, e.g.memcpy. Usually the CPU is blocked during an PIO transfer, and
often successive PIO transfers require repeated arbitration of the PCI bus.

DMA (Direct Memory Access) transfers are driven by the DMA engines on the
PCI-bridges. The bridges are configured for DMA transfer by the host, which also
provides DMA-capable memory, i.e. memory that can be reached from PCI de-
vices. Mostly, DMA provides higher throughput than PIO because DMA transfers
can burst on the PCI bus, eventually saturating the theoretically PCI bandwidth.
During DMA transfers the host-CPU is free executing other instructions, since the
transfer is driven by the PCI-bridge. However, DMA must be initiated and pre-
pared by the host, which may introduce an additional overhead compared to PIO.
The PLX PCI-bridges, that we use, can be programmed for DMA transfers from
the local bus by the coprocessor, too, but we did not use this feature.

70 CHAPTER 2. MATERIALS

2.5.5 Operating Systems, Device Drivers and Tools

The operating systems (OS) used are the two most common: Linux and Win-
dowsNT. As of Windows it is Windows NT 4, Windows 2000, and Windows XP.
The Linux systems are Linux 2.2, 2.4, and 2.6; partly build from the kernel sources
[TC04], and partly from Linux distributions like SuSE, RedHat, and the CERN
RedHat distributions. The so called Linux OS would not be complete without all
the necessary system utilities, the most important being thetool-chainof compiler,
assembler and linker. Tool-chain and other OS utilities come from the GNU soft-
ware collection [Com].

The compilers that were used are Microsoft Visual C (MSVC) in the versions 5,
6, .NET, and .NET2003, and GNU GCC in versions 2.95 to 3.3. The build system
were the MSVC IDE, and GNU make. CVS was used for the code repository, and a
common file system was established across the platforms using NFS and Samba on
a file server. For the build system to work correctly it was necessary to synchronise
date and time on the different workstations, this was done using the network time
protocol (NTP). After investigating some other sources of timing information all
timing was done using the time stamp register or equivalent, that is present on all
IA32 and compatible and IA64 CPU’s

The initial bootstrapping of most of the reconfigurable coprocessors was aided
by using logic analysers, pci-analysers and oscilloscopes.

For preparation of (simulated) detector data and for making algorithm perfor-
mance tests in the context of the ATLAS HLT the reference software [Hau00] was
used.

Device Driversmediate between the coprocessor device, the host OS, and the
user application that uses the coprocessor. Device drivers are OS specific, i.e.
every OS needs its own driver. It is the drivers responsibility to register the used
resources of the coprocessor, like the occupied PCI address space or the interrupt
resources within the OS, to prevent other applications from simultaneous access to
the coprocessor. The device driver may map parts of the coprocessors PCI address
space into kernel- or user address space, to make it accessible by other system- or
user- software. The driver also provides kernel memory, that is suitable for DMA.
DMA can be done in principle from any host memory that is accessible from the
PCI bus. However, user mode memory (malloc ’ed memory) must be locked, e.g.
to prevent it from being swapped to disk, before it can be used for DMA. The driver
may accomplish this.

The PCI bridges used on all the supported coprocessors were manufactured
by PLX Technology and the first coprocessor I have been working with was the
µEnable from Silicon Software [Sof]. Consequently, the PLX SDK [PLXc] con-
taining Windows device drivers and an API library, and a similar package from
Silicon Software, also supporting the Windows OS, were used in the beginning of
development. Additional, WinDriver from Jungo [Jun] was considered and tested.

However, the main effort went into a Linux driver that was initially developed

2.5. HOST AND SOFTWARE ENVIRONMENT 71

at NIKHEF 5 for the S-Link.

2.5.6 Software Development

All software that was developed during the work for this thesis was written in the
C++ programming language [Str00]. Exceptions to this are some tiny functions
used for timing measurements that were implemented as assembler macros. The
standard template library (STL) was used for some containers and for most input
and output [Aus98]. Intentionally or by chance I used some concepts of object
oriented analysis and design [Boo94], and design patterns [GHJV95]. I tried to
avoid the pitfalls stated in [Mey96] and [Mey97]. The Unified Modelling Language
(UML) [Boo99, SvG00, Dou99, Qua99] was used during analysis, design, and later
for reverse engineering.

5Jan Evert van Grootheest, National Institute for Nuclear Physics and High Energy Physics, Am-
sterdam, Netherlands

72 CHAPTER 2. MATERIALS

Chapter 3

Results

3.1 Introduction

In the previous chapter, I described the motive, i.e. online analysis of ATLAS
detector data, the environment, i.e. high level trigger of the ATLAS experiment,
and the materials, i.e. FPGA coprocessors and host computers, that relate to the
work for this thesis.

In this chapter, I present the results that I obtained from my research conducted
for this thesis. The first part of the presentation starts with the definition of the
software process that I used during the development of the software. In the fol-
lowing, I depict use-cases of the software, and software concepts deduced from
these. I describe the static software architecture realising the software concepts,
and the behaviour of the software, implementing the use-cases. The evolution of
the software and the structure of software packages are shown in the following.
Tools are described, that I developed and used for precise timing measurements,
and the results of some timing measurements are shown that quantify performance
of data transfers and the overhead introduced by object-oriented programming. At
last, I shortly describe operating system related issues.

In the second part, I describe results from integrating FPGA coprocessors and
the control software into high level trigger software frameworks and trigger pro-
totypes. Finally, in the third part, I describe results from investigations carried
out to reflect the reconfigurability of the hardware by a component-based runtime-
reconfigurable software framework.

3.2 Description of the Software

3.2.1 Software Process

Even before detailed requirements analysis the software process, or life-cycle, has
to be defined. The process describes the general strategy that is followed in order to
deliver the software according to the user’s requirements. The finding of the right

73

74 CHAPTER 3. RESULTS

process needs to take into account user requirements, resources (e.g. manpower),
constraints (e.g. schedules), and possibly other external inputs, that influence the
process of software engineering.

Steve McConnell [McC96] describes that the careful selection of a software
process according to environment and requirements has a great influence on soft-
ware quality, cost-effectiveness, compliance with agreed schedules, and other mea-
sures.

The environment and requirements of the software that was developed during
the research work for this thesis can be characterised as follows:

• The first aim for the software was the support for the bootstrapping of the
ACB. For achieving this, some low level tools would have to be developed
very early.

• The functions of the ACB were not strictly defined during development, but
rather subject to change and refinement due to configuration of the system
integration PLD’s. Thus, the above mentioned tools were to be used to define
the functions of the ACB.

• The functions required from the software were assumed to change according
to changed requirements from client applications. Also the software frame-
works in which the software was expected to be integrated were assumed to
be very different from each other.

• Performance is a critical issue for the software and redesign and optimisa-
tions according to findings from the use of the software were expected.

• The FPGA coprocessor family that the software should support was known
to grow steadily.

• The life-cycle of the software was expected to exceed the time-span for this
thesis’ work.

Among the software processes described in the literature, e.g. pure waterfall,
design-to-schedule, code-and-fix, and others, only theiterative prototyping, or spi-
ral, process explicitly addresses the risks of changing requirements. Also, iterative
prototyping is well suited for the early delivery of tools and other prototypes, that
later can be adapted or refined, or just be delivered as is, if they meet the require-
ments.

Figure 3.1 illustrates the process as a spiral. This process is based on the rep-
etition of requirements analysis, definition of use cases, risk addressing, design,
implementation, test and delivery. A working prototype that meets the before de-
fined requirements is delivered after every iteration. I followed the spiral process
throughout all of this research work.

3.2. DESCRIPTION OF THE SOFTWARE 75

2

Analyse

Deliver Prototype
Test

Collect Requirements
Define Use Cases
Address Risks

1

Design

Implement

Figure 3.1: Iterative Prototyping with Risk Addressing

3.2.2 Software Architecture

The software that I created during this work is not abstract or theoretical but was
supposed to do real work right from the start. The software is now in use for more
than 4 years although the time-span for its life-cycle was not well defined when I
started the requirements analysis, the first phase of the software life-cycle. Also, it
was foreseeable from the beginning, that the environment of the software would be
rather difficult and changing in terms of requirements, users, and developers.

This work started during the development of the Atlantis Computing Board
(ACB) (see section 2.4.3), and bootstrapping of the ACB was the first application
of the software. The requirements analysis resulted in the following use-cases,
ordered by the sequence in which they were applied during the bootstrapping of
the ACB:

• configure JTAG devices

– using external connector

– using PCI-bridge

• read/write configuration EEPROM

– using external connector

– using PCI-bridge

• setup clock resources

• make the address space of the FPC-FPGA1 available to the user

• transfer data with DMA from/to the FPC-FPGA

1The FPC-FPGA of the ACB is the only FPGA that is directly accessible for data transfers by the
PCI-bridge. Transfers to the other three FPGA’s must be routed through the FPC-FPGA.

76 CHAPTER 3. RESULTS

I chose a strictbottom-updesign approach for several reasons. Among these
reasons were:

• It was foreseeable that both the software and the hardware would need a lot
of debugging aid.

• The extension to other hardware platforms, like the AIB, was already
planned.

• The process of bootstrapping the hardware required low-level access to var-
ious devices.

I tried to make the software as modular as possible to prepare the software for the
extension of the supported hardware platforms and to support reuse. I deduced the
following software concepts according to the modular bottom-up approach:

• Configuration data and bit-stream

• JTAG-capable device

• EEPROM

• Clock generator and programmable clock buffer devices

• PCI bridge

• PLD functions

Most of these concepts refer to real devices on the hardware. Figure 3.2 illus-
trates the mapping from physical devices to software entities (classes) for the case
of the µEnable coprocessor. (TheµEnable is chosen for the illustration because
it is much less complex than the ACB, albeit showing the general principle.)

The following paragraphs and figures describe the classes and class-relations
which I implemented according to the above sketched software concepts which in
turn resulted from the requirements analysis.

Bitstream The configuration data for the programmable logic devices has to be
loaded from external storage and stored in host memory for preparing it to be up-
loaded to the device. The bit-serial JTAG protocol requires access to the bit-stream
data at bit-level, whereas the parallel configuration usually works with 8-bit words.

A bit-serial protocol is also used by the configuration EEPROM’s present on
all coprocessors and on most of the expansion modules. Accordingly, bit-stream
data plays a central role in the software. I created aBit package containing the
BitStream andBit classes; the package has no external dependencies. The
BitStream initially was using an STL container of chars, each char containing
one bit, but now it uses raw binary data for storage. TheBitStream andBit
interface did not change during the whole life-cycle of the software besides this
change in internal representation. TheBitStream interface is sketched in figure
3.3.

3.2. DESCRIPTION OF THE SOFTWARE 77

Jtag

Bridge

PldPLD

Operating
System

Fpga

SoftwareHardware

FPGA

JTAG

PCI

Bridge

Figure 3.2: Mapping from Hardware to Software
Shows the close relationship between hardware devices and classes created during

first analysis.

78 CHAPTER 3. RESULTS

class BitStream {
public:

typedef enum {LOWEND, HIGHEND} Endian;
typedef size t Size;

BitStream();
...
void Set(const char *b);
...
Size GetLength() const;
unsigned char GetUInt8(Size i, Endian e) const;
...
const Bit GetAt(Size i) const;
void SetAt(Size i, const Bit b);
...
void Reverse();

BitStream& operator = (const BitStream & bs);
bool operator == (const BitStream & bs) const;
bool operator != (const BitStream & bs) const;

private:
AIntVar<unsigned int> bits;

};

Figure 3.3: BitStream Interface

Design Different storage formats exist for configuration data, often called “de-
sign file”, like ASCII encoded.bit and raw binary.rbt files. TheDesign
class provides methods for reading and writing both formats, parsing them into
internalBitStream attributes and providing access to additional information ex-
tracted from the design files like device type and creation date, among others.

JTAG is used for uploading PLD configuration data, and can be used for upload-
ing configuration data to the FPGA’s. Also JTAG provides means for FPGA opera-
tion control, configuration reset, configuration and status read-back, and boundary
scan (see 2.3.5).

I designed theJtagController class that captures the details of the JTAG
protocol, especially the stepping through the devices’ JTAG state machine with
the TMS signal. The class provides methods for initialising and resetting the state
machine together with read/write access to the instruction and data register. Four
pure virtual methods,SetTck() , SetTms() , SetTdi() , andGetTdo() , are
defined that correspond to the four JTAG port signals as summarised in table 2.3.

Access to physical JTAG port signals is provided by intermediate devices. Two
examples taken from the ACB are the external connector, usually connected to a
host’s parallel port, and the control-PLD, that provides access to the four FPGA’s’
JTAG ports. Usually these intermediate devices are captured as classes in the soft-
ware, here asParPort andAcbCtlPld . The abstractJtagController class
is adaptedto the intermediate devices interfaces by sub-classing, comparable to the

3.2. DESCRIPTION OF THE SOFTWARE 79

Figure 3.4: JTAG Controllers Class Diagram

adapter design pattern as described in [GHJV95]. Figure 3.4 surveys the resulting
concrete JtagController classes.

Sub-classing is done by adding an attribute to the used device, e.g.ParPort
or Bridge , that is initialised in the subclasses’ constructor, and by overwrit-
ing the abstract JTAG port set/get methods. The attributes of the adapted Jtag-
Controller classes are represented as class objects in figure 3.4. The overwrit-
ten set/get functions are hidden in the figure for clarity except in the case of the
JtagCtrlCtlPld , the JtagController used for configuring the control-PLD on
the ACB. Figure 3.5 illustrates the relations of classes that implement JTAG func-
tions for the ACB. The arrows with white arrow heads indicate inheritance; arrows
with black heads represent ownership. The shownFpga class acts as a client.

EEPROM’s are present on all coprocessors. They provide configuration data for
the PCI-bridges and information for identification of the specific coprocessor like
type and serial number. Some expansion modules also contain EEPROM’s that
provide module identification data.

I designed anEepromAdapter class hierarchy similar to the JtagCon-
troller class hierarchy, that provides a uniform abstract interface to the dif-
ferent EEPROM’s. The physical interface to the serial EEPROM is captured
in pure virtual set/get methods that are overwritten in concrete subclasses like
PlxEepromAdapter for the configuration EEPROM in the running coproces-

80 CHAPTER 3. RESULTS

Fpga

<<static>> JTagConfig

<<static>> Config

<<static>> ClearConfig
AcbClockCpld

JtagCtrlControlCpld JtagCtlClockCpldJTagCtlMec

JTagController

AcbControlCpld

AcbControl

Figure 3.5: JTAG on ACB
The class diagram shows the relation of classes that are used for configuration of

devices on the ACB using JTAG.

sor, and likePPEepromAdapter for a blank EEPROM connected to an parallel
port via the external connector for uploading initial configuration data. Figure 3.6
illustrates the class hierarchy.

I implemented aParPort class, that provides an OS independent interface
to the legacy parallel port present on most PC. The parallel port was used during
bootstrapping the ACB for initial configuration of the PLD’s and configuration
EEPROM through the external connector of the ACB. The class diagram in 3.7
illustrates the adaptation of the parallel port interface to the JTAG and EEPROM
interfaces. The code in figure 3.2.2 illustrate the compactness of the adaptation as
an example for all the interface-adapters in the software.

Clock Resources are captured in some classes written by A. Kugel2. These
classes are implemented as utility classes as opposed to the adapter-like pattern
as in e.g. the jtag- and eeprom-classes. Nevertheless they provide encapsulation
for the calculation of the data needed to program both the programmable clock
generators and the programmable clock buffers that are present on the ACB and
the other boards supported by the software.

The clock system on the ACB is complex and manipulating the clock settings is
a rather fragile process incorporating both PLD’s and the different generators and
buffers. The reason for this is that some of the clock signals themselves are routed
through the ACB clock-PLD, which also connects to the clock buffers’ program-
ming interfaces whereas the ACB control-PLD controls the clock generators. As
a result, the code providing access to the clocking resources is spread in the ACB
control- and clock-PLD- classes, and is called from methods of theACBControl
class.

2Andreas Kugel, University of Mannheim, kugel@uni-mannheim.de

3.2. DESCRIPTION OF THE SOFTWARE 81

Figure 3.6: EEPROM Controllers Class Diagram

JTagParPort

ParPort
JTagController

Eeprom

EepromParPort

Figure 3.7: Adaptation of the Parallel Port Interface

82 CHAPTER 3. RESULTS

class PPEepromAdapter : public EepromAdapter {

ParPort & pp;

void SetD(bool b) { pp.SetPin(2, b); }
void SetC(bool b) { pp.SetPin(3, b); }
void SetS(bool b) { pp.SetPin(5, b); }
bool GetQ() { return pp.GetPin(15); }

public :
PPEepromAdapter(ParPort & parPort) :

pp(parPort)
{

pp.SetPin(4, 1);
pp.SetPin(6, 0);
pp.SetPin(7, 0);
pp.SetPin(8, 0);
EepromAdapter::Init();

}
};

Figure 3.8: EEPROM on the Parallel Port, Source Code

The PCI-Bridges connect the coprocessor to the host system via the PCI bus.
We use two different types of these, one for 33 MHz / 32 Bit PCI and one for
66 MHz / 64 Bit PCI. However, the differences between the two turned out to be
mostly transparent to the software. I captured the remaining incompatibilities in
two specialisations of the commonBridge base class.

The bridge class provide methods for identification, allocation and freeing of
bridges on the system buses through its constructor and destructor. It uses the driver
class (see 3.2.6) for different purposes, e.g. for the mapping of the PCI address
spaces covered by the bridge into the host’s memory address space. Also, DMA
transfers are provided by the bridge class but belonging memory locking issues
are left to the driver class. However, DMA is a complicated issue since some
drivers do not allow for separate memory locking and hide the DMA control in
their respective libraries. In thexe cases, the bridge class transparently hands over
DMA-related issues to the driver class. Figure 3.9 illustrates the relation between
Bridge andDriver .

PLD’s for system integration are present on all coprocessors that are supported
by the software. They provide functions like local bus arbitration and interrupt
signal routing from the FPGA’s to the bridge, mediate access to the JTAG ports
and the low level control signals (INIT, PROG,...) of the FPGA’s, and provide
access to clocking resources and some control signals on expansion and module
connectors, if present.

All coprocessors have a central control-PLD that is a participant on the local
bus, together with the PCI-bridge and the FPGA. The ACB has a second PLD, the

3.2. DESCRIPTION OF THE SOFTWARE 83

Driver

Bridge9080

Bridge9656 WindowsDriver

Bridge

LinuxDriver

Figure 3.9: Bridge and Driver Work Together

clock-PLD, merely for controlling the powerful clocking resources present on the
ACB. Figure 2.12 illustrates the arrangement of the two PLD’s on the ACB.

The PLD’s functions are accessed by read and write transfers to registers.
These registers are offered to their respective address space on the local bus. This
address space is in turn mapped to the address space of the PCI-bus by the copro-
cessor’s bridge.

The PLD’s functions are, besides some similarities, specific to every copro-
cessor, and so is the register-set layout. Non-volatile configuration data (“design”)
determines the actual PLD’s behaviour; the configuration was uploaded to the PLD
during board manufacturing with JTAG (see above), and may be changed later to
refine, extend, or debug the PLD’s behaviour. Every PLD instance needs its own
software to capture its behaviour. Since the PLD’s are board-specific and are sub-
ject to change during development it is desirable to encapsulate as much of the
behaviours internals from the rest of the software. Consequently every PLD has a
unique corresponding class in the software. Examples are the classesAcbCtlPLD
andRobinPLD .

Register offsets and bit-masks have to match between the design description,
usually VHDL or Verilog sources, and the PLD class definition, a C++ source file.
A. Kugel implemented a framework that extracts such information from the VHDL
design sources, and imports them into the PLD class definition, which aids in the
implementation of the C++ class.

Control class specialisations are implemented for all supported coprocessors.
All control classes derive from theControl base class, which provides common
services. The specialised control classes act as “builders” that build the coproces-
sor specific runtime object hierarchy that is needed to control the coprocessors,
and provide interfaces which cover the underlying internals. Figure 3.16 shows the
control classes hierarchy. Figure 3.10 shows the relations between the basic classes
that are composed by the control class for the case of the MPRACE coprocessor.

84 CHAPTER 3. RESULTS

MPraceControl Control

BridgeFpga MPraceCpld

Figure 3.10: The Control Class Encapsulates the Internals
MPraceControl is a specialisation of its base classControl , from which it

inherits aBridge . MPraceControl additionally holds anFpga and a
MPracePld .

Identification of coprocessors is done in two steps. First, the bridges in the
system are enumerated according to their types by the hardware driver. Second,
the configuration EEPROM present on all coprocessors is inspected through the
bridges and the coprocessors are identified and enumerated according to informa-
tion read from the EEPROM’s. Some application, like complex image recognition,
feature extraction through Hough transformation, read-out-buffers, and others, use
several coprocessors in parallel. Accordingly, hosts may contain several differ-
ent coprocessors and a resource allocation schema and identification services are
provided by the software to manage the presence of multiple coprocessors.

Error Handling is traditionally done often by checking the return values of func-
tion calls. This technique is error prone; leaving errors undetected, and implies a
lot of coding overhead. I chose to use C++ exceptions for all error handling. All
exceptions in the software are of typeMsgException or a derivate of it, which
in turn is derived from the standard C++exception class. Since every exception
carries a unique textual error description it is almost trivial to deduce the error cause
even if the exception is caught at levels higher then the level where the exception
was thrown. In general, exceptions are critical and unrecoverable errors, causing
the software to abort with a dump of the textual description of the exception. Thus,
the return values of functions and methods are reserved for their intend role, the
transfer of data from the called function to the caller of the function. The choice
of the strong typed C++ programming language helps in the detection (semantic)
errors at compile-time rather than at run-time.

3.2.3 Software Behaviour

In the preceding section I described the static architecture of the software, as it
resulted from requirements analysis. In this section, I describe the dynamics of
the software, i.e. the construction, destruction, interactions and collaborations of
objects.

3.2. DESCRIPTION OF THE SOFTWARE 85

I use in most practical cases the paradigm of “instantiation is initialisation” i.e.
crating an object initialises it into a defined state, ready for use. Failing to initialise
is a critical error causing an exception to be thrown and the application to abort.
Vice versa, destroying an object implies cleanup of all the resources it used, both
on the host and on the coprocessor, again leading to a save state.

The first diagram (fig. 3.11) visualises the responsibility of aControl ob-
ject for creating and destroying the set of objects that is needed to interact with a
given coprocessor. It is carried out as a sequence diagram, stressing the sequence
of allocation, use, and de-allocation of a coprocessor. When the client creates a
control object, the object checks theRegistry if the requested coprocessor is
available before it registers itself with the registry. After that, the objects owned
by the control object are created and initialised, that are theBridge , Xpld , and
Fpga . Finally, the client releases the acquired coprocessor by destroying the con-
troller object, which in turn unregisters itself with the registry, after destroying the
objects that were previously allocated by it.

The second diagram (3.12) illustrates the process of configuration of an FPGA
on a coprocessor. It gives an expanded view of the “configure” sequence from
diagram 3.11. In that diagram I used a<<jtag>> stereotyped message from the
Fpga to the Pld to indicate the use of JTAG for the configuration.

The diagram is carried out as a collaboration diagram to emphasise the relation-
ships between the involved objects.BitStream andDesign objects which hold
the configuration data are omitted for clearness. Some of the supported FPGA’s can
be programmed to disable their JTAG ports upon configuration. Therefore, a save
reconfiguration or configuration clearing algorithm requires access to the PROG,
INIT, and DONE signals of the FPGA since these signals cannot be disabled and
provide means for configuration clearing without using JTAG. This causes the loop
in the relations between theFpga , Jtag , andPld objects, since PROG, INIT, and
DONE are accessed through the PLD. Besides this loop, the relations are unidirec-
tional from the initiator, theControl , to the target, theBridge . The message
signatures indicate the interfaces used, the arrows indicate that all messages flow
from the control object to the bridge object. None of the targets reference any
objects upstream, e.g. thePld uses only theBridge and does not know about
Jtag or Fpga .

3.2.4 Evolution and Coprocessor Packages

The lifetime of the software, from initial requirements collection until the present,
now exceeds 50 months. The software’s architecture was designed so that it sup-
ports the adaptation to forthcoming coprocessor implementations.

In this section, I present software measures that were taken from the software’s
history that show the evolution of the size of the software together with diagrams il-
lustrating the support for new coprocessor implementations. Also, the partitioning
of the software between different packages and domains is described.

Steady extension, maintenance, refinement, and adding of documentation and

86 CHAPTER 3. RESULTS

:Registry

<<create>>
:Client

<<exception>>

<<create>>

<<create>>

check

:XControl

register

getMappings

<<create>>
:Fpga

configure
configure

<<jtag>>

<<delete>>
<<delete>>

<<delete>>

<<delete>>

unregister

:Bridge

:XPld

Figure 3.11: Allocation, Configuration, and Freeing of a Coprocessor

3.2. DESCRIPTION OF THE SOFTWARE 87

:Fpga

:Control

:Bridge

setTms()
setTdi()
setTck()
getTdo()

write()
read()

loadIr()
loadDr()

setProg()
getDone()

configure()

:Jtag :Cpld

Figure 3.12: Configuration with JTAG, Collaboration Diagram

comments increased the size of the of the software’s source code as shown in figure
3.13. The graph was created by extracting the software from the repository at a
one month cycle. All additional files, like makefiles, readme, and not-essential
utilities, were removed, leaving just the sources of the library. The starting point
of the graph, “0 months”, is well after initial design and implementation, and the
software was already supporting the ACB andµEnable coprocessors at that time.
Support has been added for the AIB, the microEnable2, the MPRACE, and the
ROBIN coprocessors during the covered time-span.

The software is partitioned into packages that reflect the layered software struc-
ture. The bar-chart 3.14 illustrates the size of the packages, table 3.1 gives the exact
numbers. Thecore package is a collection of basic services used by all coproces-
sor support packages and by most tools that are build on top of the software. This
includes e.g. infrastructure for OS- and compiler-independency, timing functions,
some base classes that are specialised in coprocessor support packages, logging,
and memory handling. Thebitstream package provides efficient manipulation,
extraction of bitstreams together with their storing and parsing in different formats.
clock collects services for programming different clock generators. Thedriver
package manages the relations to OS dependent device drivers, while thebridge
provides classes to control the two supported PCI bridges. Thefpga package pro-
vides services for the configuration of the various supported FPGA’s. Finally, the
registry package is responsible for the detection, allocation, and de-allocation
of the supported coprocessors that are found in a system. All these base-packages
have sizes in the range of approx. 50 - 80 kB, except the smallclock package
which has a size of approx. 20 kB, and thecore package, which is the biggest
package of all base-packages, having a size of approx. 154 kB.

Besides the base-packages, a number of packages (acb aib , ue , ue2 ,

88 CHAPTER 3. RESULTS

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 5 10 15 20 25 30 35 40 45

co
de

 s
iz

e
[K

B
yt

es
]

time [months]

Figure 3.13: Evolution of Code Size

mprace , androbin) comprise support for the different coprocessors. All these
coprocessor-support-packages are dependent on the base packages. The sizes of
these packages range between approx. 50 - 70 kB for theue , ue2 , mprace , and
robin packages, approx. 100 kB for theaib package, and approx. 150 kB for
theacb package.

The layered and modular architecture of the software enables the adding of
support for new coprocessor implementations in clearly separated and independent
packages. However, some coprocessors have been designed in such a way, that
they share some common properties in a so called “µEnable compatible” fash-
ion. E.g. the way in which the access to the JTAG port of the FPGA’s is routed
through the control-PLD to the coprocessor’s address space is more or less com-
patible on theµEnable , theµEnable2, the MPRACE, the ACB, and the AIB. Most
of this “compatibility” is captured in thecore package. Figure 3.15 illustrates the
general structure of support packages for the cases of theµEnable and the ACB
coprocessors in theue package and theacb package respectively.

The class diagram 3.16 surveys the top-level control classes for the different
coprocessors. These classes represent, among other functions, the user interface to
the coprocessors and reside in their respective packages. TheControl base class
is located in thecore package.

The PLD devices on the various coprocessors play central roles in their re-
spective coprocessor designs. Although they are of limited complexity and IO
capability compared to the FPGA devices, they control and implement sensible

3.2. DESCRIPTION OF THE SOFTWARE 89

�����������������������
�����������������������
�����������������������
�����������������������

���������
���������
���������

���������
���������
���������

���
���
���

���
���
���

�����������
�����������
�����������

�����������
�����������
�����������

	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	�	�	�	�	�	

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����������
�����������
�����������

���������������������
���������������������
���������������������
���������������������

�������������
�������������
�������������
�������������

���������
���������
���������

���������
���������
���������

�������
�������
�������
�������

���������
���������
���������
���������

�������
�������
�������

�������
�������
�������

total: 999766 Bytes

ue

robin

mprace

aib

acb

bridge

fpga

driver

registry

clock

bitstream

core

 0 20 40 60 80 100 120 140 160

code size [KBytes]

ue2

Figure 3.14: Code Size of Packages in the Library

Table 3.1: Code Size of Packages in the Library

package size[bytes] package size[bytes]
core 154230 acb 145973
bitstream 59987 aib 96566
clock 18014 race1 68653
registry 79593 robin 50448
driver 83955 ue 62106
fpga 49940 ue2 51031
bridge 79270
subtot. 524989 subtot. 474777

total 999766

90 CHAPTER 3. RESULTS

AcbControl

AcbCtrlPld AcbClkPld

UePackage

UeControl

UePld

Core

AcbPackage

Figure 3.15: Two Packages Supporting Different Coprocessors

write
dma

AcbControl AibControl UeControl MPraceControl RobinControl

Control

config
clear
read

Figure 3.16: Hierarchy of Control Classes

3.2. DESCRIPTION OF THE SOFTWARE 91

Table 3.2: Partitioning of Code in the Coprocessor Packages

domain size[bytes] percentage[%]
PLD 286835 60.4
Control 133822 28.2
misc. 54120 11.4

total 474777 100

and fundamental system functions.
Some of their functions, e.g. the arbitration of the coprocessors local bus, are

not visible to the software at all. On the other hand, access to, and control of
clocking resources or access to the JTAG ports of the FPGA(s), is fundamental
to the software. The PLD support takes in total approx. 60 % of the size of the
coprocessor-support-packages. Refer to table 3.2 for exact numbers.

3.2.5 Performance

Reconfigurable coprocessors are used for many different applications, e.g. inter-
facing to external systems, acceleration of computation, or prototyping. Most of
these applications have high demands on system performance. Performance is of-
ten rated in terms of throughput and latency, which both need time information to
be calculated. Time is not only necessary for determining performance; it is also
needed to control time-critical operations on the coprocessor. My thesis covers host
software that is needed to control and access coprocessors, and it is the viewpoint
of the host or the host’s CPU from which I measure time.

Computer workstations obtain absolute time information from their real-time-
clock (RTC) hardware device. The battery buffered RTC derives its time from a
quartz crystal. Usually, the host system receives regular timer interrupts from the
RTC, often with a frequency of about 1 kHz. The host OS synchronises the system
time with the RTC time. Another source of time information can be the network
time protocol (NTP). NTP is used to synchronise the host’s system time with a
server host’s time with accuracy down to some microseconds. However, despite
the limited accuracy of the system time being not better than a microsecond, timing
is further rendered difficult by the task ofobtainingthe system time.

I identified the following timing functions in the respective c-runtime-libraries:

• clock gives the elapsed time since the start of the process in units of
CLOCKSPERSEC. clock is POSIX3 and thus available on Windows and
GNU/Linux.

• time gives the number ofsecondssince some fixed date in the past, often

3POSIX is a rudimentary standard ensuring application compatibility between operating systems

92 CHAPTER 3. RESULTS

Table 3.3: Timing Functions

function OSa resolution latency
[10−9s] [10−9s]

claimed measured

time w/gl 1 · 109 1 · 109 500
clock w 1 · 106 15 · 106 160
clock gl 1, 000 10 · 106 1, 100
ftime w 1, 000 1, 000 20, 000

PerfCounter b w 280 280 2, 000
gettimeofday gl 1, 000 1, 000 1, 000
clock gettime gl 1 1, 000 1, 000
pcc c w/gl 0.5 2 50

aw:Windows, gl:GNU/Linux
bAbbrev. forQueryPerformanceCounter
c2GHz IA32

1970/01/01. Sincetime is a POSIX standard it is available on Windows
and GNU/Linux.

• ftime is only available on Windows. It is an enhanced version oftime in
that it additionally retrieves the fraction of seconds inmilliseconds.

• QueryPerformanceCounter is available on Windows. It re-
trieves the value of the “high-performance counter” implemented in
the Windows OS. The counter frequency is determined by a call to
QueryPerformanceFrequency .

• gettimeofday is only available on GNU/Linux. It is the pendant to the
Windows ftime but provides extended accuracy down tomicroseconds

• clock gettime is available on GNU/Linux. It is an enhanced version of
gettimeofday , but gives the fraction of seconds innanoseconds.

I made measurements on latency and accuracy for all these library calls on the
OS where they apply. The results are summarised in table 3.3 and show that none
of the functions gives a resolution better than microseconds, and all functions have
latencies worse than 100 nanoseconds.

Processor Clock Counter

The Intel Titanium Architecture Software Developers Manual [Intb] states in vol-
ume 1: “The Interval Time Counter (ITC) is a 64-bit register which counts up at

3.2. DESCRIPTION OF THE SOFTWARE 93

class Pcc
{
public:

class Now {};

Pcc(const Now&);
Pcc();

void set();
double seconds(void) const;

Pcc operator - (Pcc const &) const;

Pcc t m CPUTicks64;
};

Figure 3.17: Processor Clock Interface

a fixed relationship to the processor clock frequency.” The ITC is equivalent to
the IA32 Time Stamp Counter (TSC). I made comprehensive tests on a number of
IA32-, IA32 compatible (AMD)-, and an IA64-host, to discover the relationship
between the ITC frequency and the processor clock frequency. I calibrated these
tests using the nativeQueryPerformanceCounter or gettimeofday with
an accuracy demand of better then 1%. The tests showed that on all hosts, regard-
less of the OS and architecture, the ITC- and the processor clock-frequency match
within an accuracy of better than 1%, therefore I assume that the ITC-frequency
and the processor-clock-frequency do match exactly.

The Linux OS kernel synchronises the ITC of the CPU’s on multi-processor
(MP) hosts on boot-up, and I found no evidence for a discrepancy of the ITC values
on MP hosts. Reading the ITC value from the CPU register must be done with
assembler macros in C++ sources, whose syntax relies on the CPU architecture
and the C++ compiler used. I implemented such macros for IA32 with MS-Visual-
C and GNU GCC and for IA64 with GNU GCC, and encapsulated the resulting
functions with a C++ interface calledPcc as an abbreviation for Processor Clock
Counter (see figure 3.17 for an excerpt). The last row in table 3.3 labelledpcc
shows the superiority of the pcc timing functions over the native functions in terms
of accuracy and latency. I usedPcc for all timing in this work.

Overhead caused by Object-Oriented Programming and Software-Layering

I chose C++ as implementation language for the software, and it is not possible
to measure the influence of this choice on the software’s performance, since no
alternative implementation exists.

A central property of the software’s design is software layering, which results
from the encapsulation of the representation of hardware devices’ functions into
classes, and the bottom-up design approach.

94 CHAPTER 3. RESULTS

:C2 :C1 :C0

get() get()get()

:Cn

Figure 3.18: Method Call Overhead, Object Chain
Visualise the ahas-aobject chain.

The design requires that a message that triggers a desired action on the copro-
cessor has to travel a directed chain of objects, as it is illustrated in figure 3.12.

Figure 3.18 shows a simplified object chain, that I used to measure the influence
of software layering on performance and the size of the executable machine code.
In this setup the member functionget() is used to read an integral value from
the top-level object,:Cn . :Cn redirects the read to its attribute:C(n-1) , which
redirects the read to its attribute:C(n-2) and so on, until:C0 is reached. Finally
:C0 returns a value. To prevent the compiler from aggressive optimisation an
arbitrary constant is added to the return value in every stage in the return path.

Figure 3.19 and figure 3.20 show the influence of the length of the object chain
on latency and size of the machine code respectively. Figure 3.19 also shows the
impact of compiler technology on code quality in terms of latency. An actual GNU
GCC-3.3.2 introduces about 8.5 additional CPU clock cycles, corresponding to
about 4 nsec, for every indirection in the object chain, which is more than 4 times
faster than the fully optimised code produced by an older GNU GCC-2.95.

Figure 3.20 shows that the compiler generates a maximum of 66 bytes code for
every additional indirection stage.

Throughput

All applications for reconfigurable coprocessors require data to be transferred be-
tween the host and the coprocessor. Transfers can be done in two modes: PIO
and DMA. I made measurements on a couple of host systems equipped with a
MPRACE (see 2.4.4) coprocessor to evaluate the PIO and DMA performance.

Figure 3.21 shows results from DMA on a typical SMP host with 64 Bit / 66
MHz PCI. The data is shown as latency against packet size. Clearly visible is
the overhead of about 6 microseconds to initiate the DMA. Included in the graph
are fits to the data that indicate a saturated throughput of 255 MB/s for read and
75MB/s for write transfers. The saturated read transfer rate reaches the maximum
theoretical throughput of the local bus, which is32bit ∗ 64MHz = 256MB/s.
(On the MPRACE the local bus is clocked with 64 MHz instead of the maximum
allowed 66 MHz.) The poor write transfer rate is caused by the host architecture;
other hosts show symmetrical read and write throughput of both about 255 MB/s.

Figure 3.22 shows PIO throughput against packet size on four different hosts,
labelled A, B, C, and D, equipped with MPRACE coprocessors. The PIO transfers
are done with thememcpy c-runtime-library function. Included in the graph for

3.2. DESCRIPTION OF THE SOFTWARE 95

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35 40

la
te

nc
y

[C
P

U
 c

lo
ck

 c
yc

le
s]

indirections

method call latency

gcc-2.95 debug
" opt,noexept
gcc-3.3.2 opt

8.5*x

Figure 3.19: Latency of Method Calls
The overhead introduced by routing a method call through ahas-aobject chain is
measured. Measurements were done on a 2GHz IA32 CPU i.e. 2000 CPU clock
cycles correspond to1µsec. The difference in latency between two builds using
GCC-3.3.2, one with, and one without exceptions enabled, is smaller than 1%,

and thus not visible in this graph.

96 CHAPTER 3. RESULTS

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 0 5 10 15 20 25 30 35 40

si
ze

[b
yt

es
]

indirections

method call overhead, code size

data points
66 * x + 5650

Figure 3.20: Code-Size of Method Calls
The code overhead introduced by routing a method call through ahas-aobject

chain is measured.

comparison are the DMA fit functions from the DMA measurements from figure
3.21. Saturation is reached for packet sizes of about 1000 bytes. The saturated
write throughput ranges from about 10 MB/s for host A to about 40 MB/s for hosts
B and D. The saturated read throughput ranges from about 4 MB/s for host B to
about 6.5 MB/s for host D. All write throughput data shows increased throughput
for packet sizes of about 10 to 100 bytes. These rates reach a maximum of more
than 500 MB/s for packets of about 50 bytes size on host B. This is an effect of the
host architecture which is capable of collecting successive PIO writes and delaying
the transaction until after the CPU is released. This implies that the CPU is contin-
uing in its instruction threadbeforethe PIO write data reaches the coprocessor.

Additional to data transfer between host memory and the coprocessor it is
sometimes necessary to move data from one location in host memory to another.
This may be caused by restrictions in DMA-capable memory on some host sys-
tems, or because data has to be rearranged before or after being transferred be-
tween host and coprocessor. I made measurements on a couple of hosts to evaluate
the memory bandwidth, and to compare it with the bandwidth between the host
and the coprocessor. In figure 3.23 the results of such measurements on two hosts
are shown, together with the 255 MB/s DMA-fit from 3.21 and a hypothetical 500
MB/s DMA transfer function for comparison. A DMA transfer bandwidth of 500
MB/s would result from a local bus width of 64 bits instead of the current 32 bits.

The memory bandwidth results are depending on the memory access patterns

3.2. DESCRIPTION OF THE SOFTWARE 97

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 10 100 1000 10000 100000 1e+006

tim
e

[s
e

co
n

d
s]

size[bytes]

DMA latency

read
6 musec + 1/(255MByte/s)

write
7 sec + 1/(75MByte/s)mu

Figure 3.21: DMA Latency
This graph shows the results of accurate measurements of DMA transfer between

host and coprocessor.

used in the measurements, which is an effect of the memory caches. Therefore
I chose to give minimum and maximum values extracted from a variety of mea-
surements with different memory access patterns rather than average numbers. In
some cases, the obtained minimum and maximum values differ by a factor of 20,
in others the difference is in the order of 20%. The two hosts from which the re-
sults were extracted are of quite different architecture, although both being IA32
based systems. The first one is a UP system with a 2 GHz CPU and RAMBUS
DRAM (RDRAM). Its results in figure 3.23 are labelled “rdram”. The second is
a SMP system with two 800 MHz CPU’s and ordinary DRAM. Its results are la-
belled “sdram”. Two manually fitted curves that match the maximum values for
packets of sizes between some 100 bytes and about 10,000 bytes are included in
the graph. These very high bandwidths seem to result from moving data within
memory caches. Remarkable is the superior bandwidth of the UP RAMBUS archi-
tecture , which is more than three times greater compared to the bandwidth on the
SMP architecture host for big packets.

3.2.6 Build System, Operating Systems and Platforms

The software distribution consists of two packages: the Linux PCI-driver
(pciDriver) package and the library package. Both packages are accompanied by
some simple test applications that can be used to verify the correctness of the build.
The pciDriver packages is replaced by the device drivers and library from the PLX-

98 CHAPTER 3. RESULTS

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

Th
ro

ug
hp

ut
 [M

B
yt

es
/s

]

Packet Size [bytes]

PIO performance

read (A)
write (A)
read (B)
write (B)
read (C)
write (C)
read (D)
write (D)

255MB/s DMA fit
75MB/s DMA fit

Figure 3.22: PIO Performance
This graph shows the results of accurate measurements of Programmed I/O data

transfer between host and coprocessor. Remarkable are the exceedingly high
throughput rates for packet sizes of about 100 bytes.

3.2. DESCRIPTION OF THE SOFTWARE 99

 1e+008

 1e+009

 1e+010

 1 10 100 1000 10000 100000 1e+006 1e+007

th
ro

ug
hp

ut
 [b

yt
es

/s
]

size[bytes]

memcopy performance

x/(60ns + x/6.7GB/s)
x/(190ns + x/4.6GB/s)

rdram
sdram

x/(7µs + x/500MB/s)
x/(7µs + x/255MB/s)

Figure 3.23: Memcopy Performance
The throughput of thememcpyfunction is measured on two hosts. Minimum and

maximum results are given together with fitting curves.

100 CHAPTER 3. RESULTS

SDK when using Windows as OS. Both packages are stored in a central repository
managed by CVS, assuring all development is based on the same up to date sources.
CVS also synchronises concurrent development. The CVS repository was contin-
uously managing the source from the beginning of the software’s lifetime in 1999
until the presence.

Driver

The pciDriver kernel module is specific to the actual Linux kernel “flavour” e.g.
being a 2.4.9 RedHat Linux, or a 2.4.18 vanilla kernel from kernel.org, and has to
be build and installed separately on every host. This is usually done by exporting
the actual sources from CVS into a system directory like/usr/src and execut-
ing make; make install . The differences between the different 2.4 kernel
flavours are captured in#define directives in the drivers source.

Since the kernel interface changed significantly between 2.4 and 2.6 kernels
I have branched a different revision tree for the driver’s sources for 2.6 kernels.
About one third of the driver had to be changed, however, the function remained
the same. Additionally, the makefile for the 2.6 build is different, but the accord-
ing changes are transparent to the user. Consequently, the only difference to the
software and its build is a branch tag in the CVS export statement for the driver
package.

Windows is not supported on the IA64 platform. The Linux pciDriver had to
be patched against subtle differences in the virtual memory (VM) system. These
differences are also captured in#define directives in the driver source. However,
the main difference between the IA32 and IA64 Linux kernels is the size of mem-
ory addresses. IA64 uses 64 bits respectively 8 bytes addresses instead of 32 bits
respectively 4 bytes as on IA32. Linux uses integer types for representing memory
addresses in the kernel as opposed to pointers in user space. Enabling the pciDriver
for IA64 Linux essentially means taking care of usinglong for addresses in the
data structures and interface, together with fixing the bugs that were triggered by
this change. Refer to table 3.4 for a survey of the difference of the sizes of the
fundamental types on IA32 and IA64.

Another issue on IA64 is the size of memory pages. Pages are the fundamental
unit of memory and address space organisations. On IA32 a page always spans
4 KiB (4096 bytes). Due to the extended capabilities of the IA64 processors and
the support of these by the Linux kernel one can choose between different page
sizes when building the kernel. Supported sizes are: 4, 8, 16, and 64 kiB (1 kiB =
1024 bytes) and 4 MiB (4MiB = 4220bytes = 4194304bytes). Like most IA64
Linux installations, I have chosen 16 kiB pages on kernel build. The changed page
size triggered some additional bugs and made it necessary to export the page size
information to the user space, since some optimisations regarding DMA transfers
are currently done in users-pace.

The interface to the different drivers, being pciDriver or PLX-SDK, is ab-
stracted by theclass Driver interface (figure 3.24). All the code working

3.2. DESCRIPTION OF THE SOFTWARE 101

Table 3.4: Size of fundamental Types on IA32 and IA64

type bytes
IA32 IA64

char 1 1
wchar_t 4 4
short 2 2
int 4 4
long 4 8
long long 8 8
void * 4 8
void (*)() 4 8
enum 4 4
float 4 4
double 8 8
long double 12 16

Types with differing size are shown with bold face.

on this interface is essentially OS- (Linux, Windows) and platform- (IA32, IA64)
independent. Theinstance() fabric in the Driver class will select the appro-
priate implementation for the current OS. Figure 3.25 shows the hierarchy of the
Driver classes.

Library

In contrast to the pciDriver the library executes entirely in user mode. Hence it can
be build an installed at any suitable place including the user’s home directory.

Usually the file-system on which the library is exported from CVS is mounted
on all host systems on which it is to be used. This is done by means of NFS for
the Linux hosts and by Samba for the Windows hosts. The library is build with
MSVC workspaces on Windows hosts. For the Linux OS I have created a makefile
hierarchy that is capable of building different versions of the library dependent on
the c++ compiler version and the platform architecture from the same sources and
into the same installation directory. Different versions are separated into different
subdirectories with their names indicating the platform and the compiler version
like i386-linux-2.95 and ia64-linux-3.3.2 . The makefiles supports
simultaneous builds on different hosts, speeding up the verification of the build.
Some simple test applications are included in the library package. The makefile
hierarchy allows for simple adding of applications to the package and build.

102 CHAPTER 3. RESULTS

class Driver
{
public:

virtual ˜Driver() {};

static Driver * Instance();
virtual Open(...) = 0;
virtual Close() = 0;
virtual IsOpen() = 0;

virtual unsigned * AllocKernelMem() = 0;
virtual FreeKernelMem(unsigned *mem) = 0;

virtual LockUserMem(...) = 0;
virtual UnLockUserMem(...) = 0;

protected:
virtual OpenDma(...) = 0;
virtual StartDma(...) = 0;
virtual CloseDma(...) = 0;
virtual CancelDma(...) = 0;
virtual DmaIsDone(...) = 0;

friend class BridgePlxBase;
};

Figure 3.24: Driver Base Class

PciDriver

libpcidriver PlxSdk

Driver

WindowsLinux

SiSoDriver

PlxDriver WinDriver

Figure 3.25: Driver Classes Hierarchy
The shaded classes are no more supported.

3.3. APPLICATIONS 103

Linux on IA64

The Itanium workstation that I have been using was shipped with installation me-
dia for 64 bit Windows XP and HPUX. Both OS were not suitable for software
development. In the case of Windows this is due the lack of a native compiler and
device driver and for the HPUX it was the lack of device drivers. Also both operat-
ing systems are not an option for the ATLAS LVL2 and for most other applications
of the software. Consequently I chose to use Linux on this workstation. Initially
this was done with a commercial SuSE Linux distribution, but it came clear quite
fast that this system was not very suitable. Hence I built a so-called “linux from
scratch”4. This system is entirely based on free available sources, mostly from
kernel.org (Linux) and gnu.org (utilities, tool-chain). Albeit the big effort (the pure
compilation time was several days), the resulting system made it possible to stay
close to the development, which can be important in the cases of the kernel and the
tool-chain. E.g. following recent development of the GNU C compiler dropped the
time needed to build the library package on IA64 from about 460 seconds to 160
seconds, which is still a lot compared to 40 seconds on some fast IA32 PC’s.

3.3 Applications

The results presented in this section are, except for the first two subsections, ob-
tained by applying the control software described in the previous sections to FPGA
coprocessors and integrating them into external trigger software frameworks and
trigger prototypes. Such, the control software demonstrates that it meets the re-
quirements raised in the problem description (section 1.1) and in section 2.2. The
results in the first two following subsections have been obtained before the devel-
opment of the control software, using legacy and commercial software.

3.3.1 µEnable S-Link

S-Link is the standard interface for moving event data from the detector to the
trigger, and the Enable++ feature extraction (FEX) system used S-Link for event-
data input and feature-data output (see section 2.2.4).

Our group usesµEnable reconfigurable coprocessors to interface PCI based
hosts to the S-Link LSC and LDC mezzanine cards. I made several tests on the
reliability and bandwidth of theµEnable LSC and LDC tandem in an “S-Link
loop-back” setup as sketched in figure 3.26. The FPGA configurations for the
µEnable acting as S-Link sender and receiver have been originally developed by
K.Kornmesser using CHDL, though I had to implement a small enhancement to the
original, providing reliable transfer of S-Link packets with sizes exceeding 64 kB.
These tests ran for days, moving thousands of GB, and no single error was detected
when comparing sent and received data. The tests were done in two modes, DMA

4linux from scratch, http://www.linuxfromscratch.org

104 CHAPTER 3. RESULTS

and PIO. Figures 3.27 and 3.28 show that the overhead of 350µs introduced by
preparing the DMA transfers leads to superior performance of PIO transfers when
using packet sizes of less than 2 kB. The saturated bandwidths are about 27 MB/sec
for DMA and 5 MB/s for PIO transfers respectively. The sent and received data
has to be transfered on the same 32 bit / 33 MHz PCI bus, limiting the available
PCI bandwidth to 66 MB/s. [APP98] reports about saturated S-Link bandwidth of
approx. 50 MB/s when using a single S-Link per host.

CPU

muEnable

muEnable

PC

PCI
LDC

LSC

Figure 3.26: Setup for S-Link Loop-Back

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+006

ra
te

 [M
B

yt
e/

s]

packet size size [Bytes]

slink transfer rates

memcpy
dma

Figure 3.27: Transfer Rates with S-Link Loop-Back

3.3.2 Enable++ TRT Scan

Figure 3.29 shows the data-path in the vertical-slice setup used for tests done with
the Enable++ FEX system in the context of “Architecture-A” studies (see section

3.3. APPLICATIONS 105

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000

tim
e

[µ
se

c]

packet size size [Bytes]

slink transfer latency for small packets

memcpy
10 µsec+0.19 µsec/byte

dma
350 µsec+0.037 µsec/byte

Figure 3.28: Transfer Latency with S-Link Loop-Back

PC
LSC LDC

LDC LSC

E++
FEX
Processor

Figure 3.29: Vertical-Slice Prototype using E++ as FEX Processor

2.2.3). I used the vertical-slice setup as a prototype for the “coprocessor” compo-
nent sketched in figure 3.30.

Figure 3.30 shows the data-paths in the ATM testbed, that was implemented
by D.Calvet and I.Mandjavidce from CEA5, Saclay, (see section 2.2.5). The ATM
testbed was essentially an implementation of Architecture-C, however, the setup in
3.30 uses the Enable++ FEX component from Architecture-A as an enhanced im-
plementation of the DST (destination) component, labelled COP in the figure. Us-
ing components from Architecture-A in an Architecture-C setup lead to the naming
“Demonstrator A+C” for the shown system.

I integrated the Enable++ system into Saclay’s ATM testbed in winter
1998/1999. The integration was successful, however, the TRT-LUT-Hough algo-
rithm done in the Enable++ system was not executed correctly. The Enable++
project ended with effort, since our group was then concentrating on the next gen-
eration FPGA processor, the Atlantis system.

3.3.3 Atlantis Bootstrapping

Bootstrapping the ACB and AIB boards was done parallel with the implementa-
tions of the first iterations of the software, which evolved to the software that is
described in sections 3.2.2 and 3.2.3.

5Commisariat̀a l’Energie Atomique, Saclay, France

106 CHAPTER 3. RESULTS

Processor

SRC SRC SRC

Supervisor

DSTDSTDST
E++
FEX

ATM−Network

COP

DST
LSC

LDC

Figure 3.30: Integration of Architecture-A and -C using E++ as Coprocessor

For both boards the bootstrapping requires the initialisation of the PCI bridge’s
configuration EEPROM that is used to initialise the bridge upon system boot. This
is done by connecting the ACB’s or AIB’s external connector to a PC’s parallel
port and uploading the configuration data to the EEPROM using a stand-alone
application implemented on top of the software.

A similar process is used for configuration of the control-PLD on the ACB and
AIB, and the clock-PLD on the ACB.

3.3.4 Atlantis and the Atlas Second Level Trigger Testbeds

The primary application of the Atlantis system is the acceleration of tracking al-
gorithms for the ATLAS second level (LVL2) trigger. Atlantis provides this ac-
celeration as a replacement for the Enable++ FEX system, or as a replacement of
standard processing nodes in the current “Architecture-C” LVL2 trigger.

Two approaches for realizing the LVL2 trigger have been followed by different
groups in the past: The group from Saclay was investigating ATM networking with
a compact software written C language and another group at CERN was working
on COTS Ethernet technology with the object-oriented second level trigger refer-
ence software (see section 2.2.5). Both systems have been implemented in instal-
lations at several locations until 1999, when they have been installed at a common
testbed site at CERN during the Pilot Project effort. Since the systems were shar-
ing part of their resources, e.g. most computing nodes, the Pilot Project was giving
measures to compare each other and guide future development of the LVL2 trigger.

The Atlantis system was integrated into the common testbed during the Pilot
Project. Figure 3.31 sketches the physical integration setup. Atlantis takes the role
of a standard processing node. The Ethernet network is used for the testbed system
control e.g. for remotely starting and stopping the tasks on the nodes. The ATM
network is used to transfer event data from the data sources, in this case readout-
buffer emulators, to the processing nodes, and transfer trigger decisions from the
processing nodes to the supervisors.

Figure 3.32 shows the software structure on the integrated Atlantis system. The
components that are added to a standard processing node by the Atlantis system are

3.3. APPLICATIONS 107

ATM

ATM NIC

Ethernet NIC

CPU

ACB

ACB

Atlantis
cP

C
I

Testbed
ATM

Control Network

Ethernet

Data Network

Figure 3.31: Physical Integration of Atlantis in the Testbeds

T2REF / Saclay

ACBNIC

MP

Driver

CS

ACBACB

Algorithm

OS

Adapter

Driver

Figure 3.32: Logical Integration of Atlantis in the Testbeds

108 CHAPTER 3. RESULTS

shown shaded:

• Algorithm Adapter. Modifies the CPU only TRT scan algorithm to redirect
hit data to be processed by the ACB.

• CS. The control software used by the algorithm adapter.

• Driver. The device driver that is needed to access the ACB.

On top of the system is the second level trigger reference software (T2REF) imple-
menting the LVL2 trigger. Also shown as a subsystem of T2REF is the message
passing (MP) component, which serves as the interface to networking technologies
for the LVL2 trigger. The MP is shown separately because some of its implementa-
tions require special drivers, like the RAW Ethernet and the ATM MP, to interface
to the network adapter card (NIC).

The lower part of figure 3.32 shows the hardware components through which
data enters and leaves the processing node.

A simple FPGA configuration was developed by H. Singpiel6, which served
as an algorithm stub for the ACB board. The stub allowed for event data to be
transferred to the ACB and dummy track feature results to be read back from the
ACB.

The integration showed that Atlantis can be made an integral part of the testbed
without any modification to the remaining testbed components. Atlantis is seen
from T2REF as a standard processing node. Access to the ACB reconfigurable
hardware did not interfere with other hardware like the ATM NIC used for event
data transfer and the Ethernet NIC used for testbed configuration. The additional
device driver used to access the reconfigurable coprocessors (ACB’s) and the con-
trol software itself did not interfere with T2REF or the device drivers used for
the NIC’s. An algorithm adapter which redirects event data to be processed by
the algorithm stub on the ACB was added to the CPU only TRT scan algorithm
in T2REF. Consequently, event data was processed by the ACB with minimum
changes to the T2REF.

3.3.5 Atlantis TRT Scan with T2REF

T2REF is not only used in multi node testbeds, but also allows for single node oper-
ation. I have prepared the integration into the Pilot Project testbed at CERN using
the T2REF in single-node mode in Mannheim. This setup was later used to de-
velop and benchmark a complete implementation of the TRT barrel scan algorithm
on the Atlantis system.

To achieve the most seamless integration of Atlantis into the T2REF framework
I inserted the CS sources into the T2REF source tree and build system. Resulting, a
single build step in the T2REF builds the CS library together with all other T2REF
libraries and applications.

6Holger Singpiel, singpiel@uni-mannheim.de

3.3. APPLICATIONS 109

In T2REF physics algorithms are captured inAlgorithm classes. Con-
sequently, the CPU-only TRT-LUT-Hough algorithm is implemented as class
TrtLutHough . I duplicated and modified this algorithm class to make use
of the FPGA implementation of the histogramming, thresholding, and maxi-
mum finding steps. The remaining split, merge, and fit steps remained dupli-
cates of the CPU-only algorithm implementation. The resulting class was named
TrtLutHoughAtlantis .

The ACB is the reconfigurable coprocessor used by the Atlantis system. The
implementation of the Hough transformation on the ACB consists of three parts:

• FPGA configuration implementing the Hough transformation histogram-
ming.

• FPGA configuration for upload of the look up table (LUT).

• The LUT itself.

The FPGA configuration for executing the histogramming together with thresh-
olding and maximum finding was developed by H. Simmler using VHDL.

The configuration for the four ACB FPGA’s for loading the LUT was developed
by K. Kornmesser using CHDL [K+98]. The configuration allows for read and
write access from the host to all memory locations on all four memory modules
that are plugged into the ACB.

Additional to the interface to event data, T2REF provides an interface to run-
time configuration data. I used this interface to retrieve the location and file names
of the eight FPGA configuration files, four files for the histogramming configura-
tion and four files for the LUT upload. Consequently, it is possible to change the
FPGA configuration data without recompiling the software.

The CPU implementation of the histogramming uses a LUT consisting of an
array of 96.000 lists of 130 16-bit histogram-counter-id’s. However, the FPGA
implementation requires a different LUT, where the histogram counters are selected
by the addresses of bits set to 1 in the very long ACB memory module data words
(4*178=712 bits). Also the resolution of the FPGA LUT is somewhat reduced
to 76.000 roads as compared to the CPU LUT. I implemented some classes to
simplify and encapsulate the transition from the CPU LUT to the FPGA LUT. On
top of these classes is aTRTMemoryHostRep class, which allows for bitwise
access to a representation of the FPGA LUT in host memory for setting up the
LUT entries. This host representation of the LUT can then be transfered to the
memory modules on the ACB by DMA, using the FPGA configuration mentioned
above. I also replaced the use of file-stored road bundles as present in the CPU
based TRT-LUT-Hough algorithm with on-the-fly calculation of the roads.

T2REF provided a single node application for benchmarking the CPU version
of the LUT-Hough algorithm using event data from disk storage. I modified this
application to alternatively make use of the FPGA implementation of the algorithm
instead.

110 CHAPTER 3. RESULTS

The principle steps for executing the LUT-Hough algorithm on Atlantis with
the single node application is as follows:

1. Calculate LUT and prepare host representation of the LUT.

2. Configure the four ACB FPGA’s for upload of LUT.

3. Upload the LUT to the memory modules on the ACB’s.

4. Reconfigure the FPGA’s for the histogramming algorithm.

5. Process data

(a) Receive event data from the T2REF framework.

(b) Reformat event data and transfer it to the ACB by DMA.

(c) Receive track candidates from the ACB using DMA.

(d) Perform the remaining split, merge, and fit algorithm steps on the host
CPU.

(e) Report final track data.

(f) Repeat until no more event data available.

The above scenario not only exploits the speedup in the parallel FPGA imple-
mentation as compared to the sequential CPU implementation, but also uses the
runtime-reconfigurable nature of the ACB. For simplicity and effectivity the func-
tionality of LUT-upload and histogramming was separated into two different FPGA
configurations, which are uploaded on the FPGA’s one after another. The LUT data
stored in the memory modules in step 3 keeps present during reconfiguration (step
4) of the FPGA’s and the following event data processing (step 5).

3.3.6 Parallel TRT Scan on 2 ACB’s in Atlantis

The cPCI crate that houses the Atlantis system has 6 cPCI slots. However, only
2 ACB coprocessors were built in Mannheim. We made tests on executing the
TRT-LUT-Hough scan algorithm on an Atlantis system equipped with 2 ACB co-
processors. In this tests the same event data was simultaneously transferred to 2
ACB boards by DMA, taking advantage of the cooperative scheduling of DMA
chunk transfers by the PCI arbiter. The PCI transfer rate on that system was mea-
sured to be approx. 40 MB/s, which is poor compared to the theoretical 132 MB/s
that could be expected from a 32 bit / 33 MHz PCI bus. Accordingly, the use of
interleaved DMA transfers to 2 boards did only marginally enhance the throughput
of the system. The activity diagram in figure 3.33 illustrates the parallel TRT-LUT-
Hough algorithm. More details and exact numbers can be found in [HKM+00].

Concludingly, the performance of the FPGA-accelerated TRT-LUT-Hough
scan was limited by the poor DMA performance of the different cPCI hosts which
were investigated, and even on modern architectures like 64 bit / 66 MHz PCI buses
with MPRACE coprocessors the performance of the combined system is often lim-
ited by the data transfer between host and coprocessor.

3.3. APPLICATIONS 111

refine tracks

prepare and partition

upload LUT

configure FPGA’s

configure FPGA’s

[eof]

Calculate LUT

[avail]

transmit hits transmit hits

format hits

receive tracks receive tracks

receive hits

output tracks

Figure 3.33: TRT Scan with Atlantis, Activity Diagram
The diagram shows on the left side the activities from the original CPU based

implementation of the TRT-LUT-Hough algorithm that remained unchanged. The
activities on the right side are added or changed in order to transfer the LUT to the

two ACB’s and to redirect hit-processing to the ACB’s. Since the ACB’s can
simultaneously transfer data by DMA and can compute the histograms

independent of each other, the histogramming step is implemented by two
simultaneous threads. (However, the host PCI bus is scheduled by the host’s PCI

arbiter between the two requesting DMA engines.)

112 CHAPTER 3. RESULTS

3.3.7 MPRACE TRT Scan with T2REF

MPRACE is the latest reconfigurable coprocessor built in Mannheim. MPRACE
is supported by the control software just like the ACB. Because of the steady
evolution of FPGA technology the LUT-Hough-histogramming now suits on the
single-FPGA MPRACE board. My colleague A. Khomich7 has developed the
FPGA configuration for the algorithm, histogramming, thresholding, and maxi-
mum finding, and reused the infrastructure that was provided by the integration of
the Atlantis system. To my knowledge, his implementation is the first one to reli-
able execute the FPGA based TRT-LUT-Hough-transformation on big sets of event
data, providing exactly matching results when compared to the CPU only imple-
mentation [BHK+03]. This is a remarkable step, since former implementations
(Enable++ and Atlantis) have been suffering from more ore less frequent failures
in executing the algorithm. Khomich reports speedup factors greater than 2 when
comparing the whole algorithm which is distributed between host and coproces-
sor [HKK+04]. The speedup of the histogramming step is much greater, however,
the overhead introduced by data transfers between host and coprocessor limits the
achievable performance gain.

3.4 Reconfigurable Software

3.4.1 Introduction

The control software for reconfigurable coprocessors (CSRC) described in the pre-
vious sections supports a variety of hardware platforms. The diversity of coproces-
sors is reflected in the software by sub-classing of common base classes and copro-
cessor specific relations between the objects that model the hardware in software.
The reconfigurable nature of e.g. the central control PLD present on all supported
coprocessors is considered by implementation of classes that capture functionality
of the configuration of the PLD. Therefore, reconfigurability of the hardware is
only supported at compile-time. Reconfiguration of e.g. the coprocessor’s FPGA
at runtime is possible but not reflected in the software. Another shortcoming of
the current software is the strong coupling of some of its components, hindering
encapsulation and maintainability.

The following describes an approach that reflects runtime reconfiguration of
hardware by runtime-reconfigurable software. To achieve this, an indirection layer
is introduced into the software architecture. This layer aims at abstracting away the
interface of the class that encapsulates the software-representation of a hardware
device. The use of this abstract interface enhances encapsulation, facilitates reuse,
and gives better possibilities for debugging and monitoring. As the major outcome,
the modified architecture will enable run-time dynamic connection of the compo-
nents of which the software is built from, as opposed to the compile-time fixed
connection scheme that has been followed in recent past in software.

7Andrei Khomich, khomich@ti.uni-mannheim.de

3.4. RECONFIGURABLE SOFTWARE 113

3.4.2 Bottom-Up Design and Activity Flow

Resembling object oriented analysis and to promote software modularity, indepen-
dent hardware components are described as classes in the software. All information
about the device that are relevant for the software are captured by these class def-
initions. Examples for such information may be line protocols, signal levels, or
internal register offsets.

An exemplary reconfigurable coprocessor (RC) architecture is sketched in Fig-
ure 3.34. In the following, part of the clocking system of this RC is described at a
glance, highlighting its architectural relevance for the software.

Figure 3.34: Architecture of a Reconfigurable Coprocessor

A programmable clock generator (CG) is used on the RC to generate an ad-
justable clock signal from a fixed-frequency crystal oscillator. The CG is pro-
grammed by a applying commands to a serial input signal. The signalling uses a
serial line protocol specific to that CG chip. The programming input of the clock
generator is connected to an output of the system integration PLD of the RC. The
PLD in turn is connected to a bridge using a local address/data multiplexed bus.
The bridge connects to a host bus.

The description given above starts at the clock generator and ends at the host
bus. Following an alternative view is given, describing the physical activity flow
through the system: The bridge of an RC is used to map transactions from the
system bus, e.g. PCI, to the RC local bus. Connected to the local bus is a PLD
that captures some of the transactions on bus and maps them to reads and writes
of registers internal to the PLD. A bit in one of these registers is implemented
to represent the output level appearing on the PLD’s clock generator output. The
output is connected to the command input of the clock generator.

Two contrary viewpoints of the RC architecture are given above. These are
referred to assoftwareview andhardwareview.

114 CHAPTER 3. RESULTS

Figure 3.35: Software Representation of Hardware Components

The hardware components as described above are represented as classes in the
software view of the system. The following code shows the class declarations:

class ClockGen
{
public:

void setFrequency(double frequency);
};

class PLD
{
public:

void setOutput(bool value);
};

class Driver
{
public:

void write(long address, long data);
};

Figure 3.35 illustrates the classes in an UML class diagram. The interfaces
given above are independent of each other. However, the class methods have to
be tied together in an collaboration to achieve the desired activity, e.g. setting the
clock frequency.

ClockGen clockGen;
PLD pld;
Driver driver;

void ClockGen::setFrequency(double f)
{

Bitstream bs = calculateBS(f);
for(i=0;i<bs.length;i++)

pld.setOutput(bs.at(i));
}

void PLD::setOutput(bool v)
{

driver.writeLocalBus(PLD::outputreg, v);
}

void Driver::writeLocalBus(long address, long data)
{

Transaction t(WRITELOCAL,address,data);
ioctl(fp,&t);

}

main()
{

clockGen.setFrequency(50e6);
}

3.4. RECONFIGURABLE SOFTWARE 115

Figure 3.36: Clock Setting, Sequence Diagram

Here, the activity is triggered by invoking thesetFrequency method of a
ClockGen object. For this simple example, there would be no need to create
class instances, since the classes defined so far do not contain any data. However,
most real implementations would require local data, e.g. for storing state and for
referencing collaborators.

To request action on thetarget device, e.g. the physical clock generator, the
user employs thesoftware-representationof the clock generator. An object of class
ClockGen is used to trigger action on the physical clock generator. The software
activity flow starts at the software-representation of the target as opposed to the
hardware signalling on the RC, which starts at the host bus interface.

Figure 3.36 shows the sequence diagram resulting from the above scenario.
The activity flow is initiated by the user, promotes to the software-representation
of the target device and is routed through intermediate device representations (the
PLD and the Driver representations) until it leaves the scope of the software. The
direction of activity flow is opposite to thehardwareaction flow: hardware driver,
hardware PLD, hardware clock generator, and finally clock signal on the hardware.

This architecture has proven to be highly adaptable and maintainable, whilst
imposing too many internals of the RC structure to the end-user. Therefore, al-
though the component-wise decomposition well suites for the representation used

116 CHAPTER 3. RESULTS

internally by the software, additional abstraction levels are implemented to hide
internals from the user.

// An API hiding much of the internals.
class RCApi
{
private:

ClockGen gen;
public:

void setClockFrequency(double frequency)
{
gen.setFrequency(frequency);
}

};

RCApi is a fat interface. The corresponding problems, concerning e.g. main-
tainability and complexity, will not be discussed here.

3.4.3 Collaboration

The code fragments shown in the last section sketch a scheme for collaboration of
the class representations of devices. Although being lean and effective, this scheme
imposes problems regarding encapsulation, reuse, and the support for runtime re-
configuration of the hardware.

The collaboration framework of the objects making up the software-
representation is an important part of design. It affects many important runtime
architecture and performance issues in the software, of which the following gives
a survey:

• Collaboration DynamicsThe components are hard-wired at compile-time,
the topology can’t be changed at run-time.

• Runtime PerformanceCode following the above hard-wired scheme should
yield near-optimal performance. Improvements would require a flat (i.e. not
layered) architecture.

• Operational Debugging and Monitoringcan only be introduced by instru-
menting the code at compile-time (“printf-debugging”).

• Encapsulation is weak, since every class knows about all other
classes involved in the collaborations, and the global name-space is
spoiled by global class instancesClockGen gc; PLD pld; Driver
driver; . Method implementations refer to the specific interfaces of col-
laboration partners.

• Reuseis rendered difficult and requires introduction of abstract base classes.

• Maintenancesuffers from weak encapsulation.

• TangibilityThe code is straightforward and easy to understand.

3.4. RECONFIGURABLE SOFTWARE 117

Figure 3.37: Abstraction of the Device Representations

3.4.4 Service Abstraction

To overcome the drawbacks in the present framework, as outlined in the last sec-
tion, a new architecture element is introduced.Abstract servicesare used to pro-
mote encapsulation, reuse and flexibility, and to enable runtime connection dynam-
ics and operational monitoring and debugging. Since this new approach introduces
indirection into the software it can be assumed that performance degrades and tan-
gibility is reduced. Advanced encapsulation and runtime connection dynamics are
demonstrated below by reporting from a prototype implementation. Performance
degradation will be quantified by measurements comparing prototypes of the new
and the old approaches.

Figure 3.37 illustrates the consequences of introducing an abstract service op-
eration into the device representations used throughout this paper and in the proto-
type implementations.

Here, the user requests actions from physical target devices by calling abstract
service methods of the physical device’s software-representations. The requests
are transformed and/or modified within the software-representations of the target
devices. This is done by the device’s methods and attributes, which trigger one
or more abstract services at the software-representations of intermediate or end-
point devices. An arbitrary number of intermediate stages can be involved until the
transformed request(s) finally reaches one or more endpoint devices, and leaves the
host system. The collaboration diagram 3.38 illustrates the travelling of a request
through a chain of abstract service-providing classes. Different types of services
may be required for implementing complex behaviour. Such may beactions, trig-
gering an activity without invoking data, e.g. the generation of a clock pulse,out-
putsthat carry data, e.g. setting a specific logic level on a signal trace, andinputs
that request data from a device, like the locking status of a PLL. The class diagram
3.39 illustrates a device that serves multiple requests behind the abstract service
interface.

A service identifier is used in the client-server interaction to address the dif-
ferent services. Transferral of service identifier from the requesting client to the

118 CHAPTER 3. RESULTS

Figure 3.38: Abstract Services, Collaboration Diagram

Figure 3.39: Multiple Services

3.4. RECONFIGURABLE SOFTWARE 119

Figure 3.40: Device Base-Class and its Attributes

request server is implemented by passing an argument of typeID to theservice
operation of the server device. The server device selects the appropriate service,
and transmits the request to that service.

3.4.5 Dynamically Connected Devices

As aforementioned the most important disadvantages in the presented collabora-
tion framework are the strong association between the devices involved, the very
poor re-usability, and the compile-time fixed connection scheme, whereas a run-
time dynamic connection scheme is desired.

A run-time dynamic interconnection scheme would involve some far reaching
modifications:

120 CHAPTER 3. RESULTS

• provision of a uniform interface to the involved devices

• abstraction of a transaction interface

• ability to query the devices about available transaction interfaces

• dynamic connection of one device’s request with another one’s services,

• routing the transactions through the dynamic interconnection using the ab-
stract device interface

• type checking to ensure that only suitable interconnections are set up

Class diagram 3.40 shows a pattern satisfying the above criteria. The imple-
mentation details of this pattern are described in the following.

Transactions

To describe the different transactions that may be triggered on a particular device
or which a device may request, objects of classTransactionDescriptor are
used. An instance ofTransactionDescriptor owns an attribute describing
the type of transaction, and publishes methods to check if another instance has
the same transaction type and to connect this descriptor to another one. To imple-
ment the request/service pair connection, a pointer to the device that possesses this
transaction descriptor, and a pointer to a corresponding transaction descriptor are
used.

Requests and Services

For a dynamic interconnection of the devices through a uniform interface it is nec-
essary to create an abstract interface to theports to be connected. Two stereotypes
are created to facilitate this. First, a device mayrequesta transaction from another
one, second a device mayservicea transaction to another. Requests and services
are identified using identifiers (ID). To establish a connection, a particular transac-
tion request of one device is bound (connected) to a particular service of another
device. This connection is realized using theTransactionDescriptors de-
scribing the devices requests and services.

Uniform Interface

A uniform interface is provided by declaring an abstract base classDevice (see
Figure 3.40). Implementations of device representations are supposed to inherit
from Device . The following code shows the abstract base classes declaration
and, as does Figure 3.40, the key properties ofDevice .

class Device
{
public:

typedef TransactionDescriptor TD;

3.4. RECONFIGURABLE SOFTWARE 121

typedef std::map<ID, TD> TDMap;
Device();
˜Device();
virtual void service (const Message & message,

Message & messageOut,
const ID & serviceID) = 0;

void request (const Message & message,
Message & messageOut,
const ID & requestID) ;

static void connect (Device & requestDevice,
const ID & requestID,
Device & serviceDevice,
const ID & serviceID);

const std::string get_name () const;
void set_name (std::string value);

const TDMap& get_transactionRequests () const;
TD& get_transactionRequests (const ID & id);
void set_transactionRequests (const ID & id,

const TD & value);

const TDMap& get_transactionServices () const;
TD& get_transactionServices (const ID & id);
void set_transactionServices (const ID & id,

const TD & value);
private:

std::string name;
TDMap transactionRequests;
TDMap transactionServices;

};

A Device maintains two collections of TransactionDescriptors, one for re-
quests and the other for services. These collections are hashed with anID to be
uniquely identified.

Concrete Devices

The class diagram 3.41 shows examples of concrete devices derived from the ab-
stract baseDevice . The stereotypes<<service>> and <<request>> are
used to mark the methods that are implemented to build an interface to the actual
devices implementation.

Children of Device will have to register their available requests and ser-
vices, for example in the constructor, at theirtransactionServices and
transactionRequests hash tables before these transactions can be used from
other devices or the application.

The transaction can be routed through the device net after the request of one
device has been connected with the service of another device. Request/service
connection is accomplished by connecting theTransactionDescriptor de-
scribing the request or service.

The different device’s<<request>> methods are responsible for calling the
device’srequest method with the actual requestsID as a parameter.request
is implemented in the base (Device) class. request finds the correspond-
ing service by inspecting this requestsTransactionDescriptor which is
identified by itsID . The serving device’sservice method is then called. This
service method is abstract (pure virtual) inDevice and must be implemented

122 CHAPTER 3. RESULTS

Figure 3.41: Class Diagram of Concrete Devices and Base Class

3.4. RECONFIGURABLE SOFTWARE 123

in every device derived fromDevice . service will then dispatch the request to
the corresponding<<service>> method of the target device.

Runtime Connection

The following code illustrates the connection of devices at runtime and the trigger-
ing of a transaction.

Device * gc=new ClockGen;
Device * pld = new PLD;
Device * driver = new Driver;

Device::connect(
&gc, "requestIn",
&pld, "serviceOut");

Device::connect(
&pld, "requestRead",
&driver, "serviceWrite");

Message mIn;
double f=6e9;
mIn.set_data((long)&f);
Message mOut;

gc->service(mIn, mOut, "setClock");
delete gc;
delete pld;
delete driver;

Theconnect method works onDevice pointers, ignoring their actual sub-type.
Also the call ofgc->service is a call to the (abstract) base classDevice .

3.4.6 Performance Evaluation

In this section the transaction performance of the two connection schemes is com-
pared by measurements. A prototype implementation of thefixed connection
scheme as described in section 3.4.2 is opposed to a prototype implementation
of the dynamicconnection scheme as described in section 3.4.5. With both pro-
totypes an imaginary transaction is modelled. This transaction involves the clock
generator, the PLD and the driver, and is triggered by the user application request-
ing a service from the clock generator. Refer to figures 3.36 and 3.38 respectively.
The operating systemioctl() call in theDriver class is replaced by the in-
crement of a counter local to theDriver object. The counter value provides the
transaction count used in the measurements.

For every transaction service counted byDriver a transaction originating
from clockGen with destinationpld as well as a transaction originating from
pld with destinationdriver occurs. The execution time for the whole three -
stage transaction chain is measured.

Table 3.5 summaries transaction chain execution time measurements. Execu-
tion time is given in units of processor clock cycles. Also the size of the source
code for the two prototypes is compared.

As can be seen, the dynamically connected scheme runs approx. 10 times
slower for both debug and optimised builds.

124 CHAPTER 3. RESULTS

Table 3.5: Performance Comparison

clock cycles/transaction chainlines of code
debug optimised

dynamic 1130 265 970
fixed 90 28 71

ratio 13 9.5 13

The performance overhead due to the use of the dynamically connected scheme
seems to be big enough to reason not to use this design pattern. But it is necessary
to weigh up the software overhead to the usual bottleneck in a system consisting
of a host and an FPGA based processor. Most FPGA based (co-)processors are
connected to the controlling host using a PCI bus. Though a current PCI bus is
clocked with 33 MHz, a typical programmed I/O (PIO) transaction on the PCI bus
lasts about0.5µs according to a transaction rate of 2MHz. In Table 3.5 an addi-
tional duration of about 250 processor clock cycles for the dynamically connected
scheme is indicated. On a standard CPU running with 1 GHz this relates to0.25µs.

To summarise, the performance of a typical PCI hosted system would degrade
to 66% using the dynamically connected scheme compared to the fixed scheme.

3.4.7 Dynamic Loading of Components

Introduction

The last sections described how one can realize a dynamic collaboration between
objects that represent devices of a compound system. Although the topology of the
collaboration can be set up and changed at run-time, the set of object-classes that
participate in the collaboration is fixed at compile-time.

The following describes an extension with the capability to dynamically link
at run-timeto libraries containing additional component classes. The libraries are
identified by their filenames, and software components defined in the libraries are
made available to the system byprototypes. Thus, by retaining the abstract inter-
faces developed in the preceding sections, it is possible to compose a collaboration
from a dynamic set of components at runtime. The composition is done without
referring to implementations of the components as building blocks.

Accordingly, it is possible to extend and adapt the software atrun-timeaccord-
ing to the needs of reconfigured hardware, or to decorate or modify the collabora-
tion e.g. to enable simulation of part of the system or to facilitate debugging and
monitoring without recompiling the software. Additional components can be build
independently of and parallel to the existing runtime.

This leads to the possibility to build the collaboration from a database describ-
ing the hardware’s properties. Another possibility would be to use a graphical

3.4. RECONFIGURABLE SOFTWARE 125

editor to compose the components to a running system.
The performance overhead due to software indirection is monitored and the

correctness of architecture is verified by implementing a functional prototype.

Relation to CORBA

CORBA [OMG], in conjunction with IDL, defines a framework that hides imple-
mentation details of software components even at a language independent way.
CORBA aims at connecting objects in a network distributed system using central
middle-ware services implemented by object request brokers (ORB). In contrast,
the presented approach does not hide the implementation language (C++), nor does
it address network-distributed systems. I carefully monitor potential performance
degradation, whereas CORBA’s performance is depending on proprietary ORB’s
and suffers from additional overheads.

Registering Implementations using Prototypes

Because I aim at operating system and compiler vendor independence I use stan-
dard c++ techniques to extend the application at runtime. Three main ingredients
are used to achieve this:shared libraries, static data, and prototypes.

Many modern operating systems support the concept ofshared libraries (SL),
i.e. sharing common code among different applications. Different concepts exist
for exporting symbols to clients. I do not rely on operating system dependent code
for looking up symbols in the SL, since no symbols are exported from the SL. The
way the SL is loaded and unloaded at runtime remains dependent on the OS.

Common infrastructures of SL’s are implemented in a way that SLstatic data
is initialised when the SL is loaded and finalised when unloaded just like it is done
with application static data on start-up and exit. Initialisation and cleanup of static
data local to the SL is used to register the SL’s functionality within the application
upon loading. The interface between the SL and the application is defined within
a common libraryDevice . All SL’s and the application have to be linked against
Device .

[GHJV95] describes theprototype design pattern as a way to extend appli-
cations at run-time. The prototype pattern is especially useful if the classes that
are used to extend the application are not fixed at compile-time. In the prototype
pattern objects are created bycloningfrom prototypes.

In this implementation the prototypes are instances of classes derived from
class Device . These proto-instances are created as static data upon loading of
the SL’s that define the classes. During creation, the prototypes register themselves
in a global static map that is available to the application, so that they can be looked
up by name. After lookup the prototypes are to beclonedbefore they can be used
by the application.

This prototype-self-registration makes it possible to access the functionality of
the newly loaded classes without referring to their implementation (i.e. without the

126 CHAPTER 3. RESULTS

need to export symbols from the SL).

Implementation

The following code shows the use of SL’s in an application similar to the appli-
cation presented in the previous sections. In contrast to the former example here
the different devices’ implementations are loaded dynamically at run-time from
SL’s and are not linked statically at compile-time. This is done by creating three
Component objects using the SL’s’ base-names as parameters to their construc-
tors. The SL’s are unloaded upon destruction of theComponent objects.

Component clockgen_component("clockgen_component");
Component driver_component("driver_component");
Component pld_component("pld_component");

Device * p_gc = Device::getCloneByName("ClockGen");
Device * p_pld = Device::getCloneByName("PLD");
Device * p_driver = Device::getCloneByName("Driver");

Device::connect(
p_gc, "requestIn",
p_pld, "serviceOut");

Device::connect(
p_pld, "requestRead",
p_driver, "serviceWrite");

Message mIn, mOut;
double f=6e9;
mIn.set_data((long)&f);

p_gc->service(mIn, mOut, "setClock");

Performance measurements carried out with this application show similar re-
sults as compared to the results obtained in the previous sections.

Chapter 4

Discussion and Conclusions

The literature review (section 1.2), though being the excerpt of a comprehensive
scan of current and recent publications and textbooks, showed that there is very
little information available to which this thesis can be related. I assume that there
are two reasons for this. First, the number of publications that deal with such a
particular task as it is handled in this work is very low, what may result from the
fact that most software that is used for controlling reconfigurable coprocessor is
commercial and proprietary. Second, the task of creating such software may seem
trivial. However, I hope that this work shows that there are many problems and
properties that should be addressed if one tries to develop a stable, powerful, main-
tainable, extendable and effective control software, in particular if one considers
the unstable but tight requirements that are caused by the hardware and the envis-
aged applications.

The most of the reviewed literature only indirectly relates to the work which
is presented in this thesis. Some deal with, eventually distributed, real-time sys-
tems, [SK96]. Others address design flow [HA96, EM00, K+98, GLS99, Sys],
co-synthesis [DJ98, BMBG02, R̈uh01] or reconfigurable architectures [Hau98b].
Scheduling of configurations and integration into operating systems (OS) were ad-
dressed in [Sim01, WP04]. [HKT03] extends OS related issues to distributed sys-
tems. Software reuse is currently addressed with software components [Szy98],
and is an everlasting topic in the literature. Related to components is the concept
of middle-ware for connecting distributed, incompatible, or legacy software and
computer systems [YBGL02, YCBL03, HPK03] . Software process and life-cycle
is addressed in many textbooks. The effects of the use of software prototypes are
quantified in [Kin95].

The Enable++ stand-alone FPGA processor is a powerful FCCM. While I was
engaged in preparing the integration of Enable++ with the ATM testbed I learned
that the maintenance of Enable++ is difficult due to its physical and logical com-
plexity. Additional problems arose from previous fluctuations of manpower as it
is common in a university environment. Also, the life-cycle of the Enable++ was
depending on architectural requirements in the ATLAS second level trigger, which

127

128 CHAPTER 4. DISCUSSION AND CONCLUSIONS

changed significantly after developing Enable++, what finally led to abandoning
development of stand-alone FPGA processors and triggered the development of a
family of less complex FPGA coprocessors. I suggest an even stricter life-cycle
planning for such a complex machine to reduce the risk of loosing continuity in
maintenance and development efforts.

The choice of a spiral software process (iterative prototyping) was justified by
the need for the early delivery of tools and the unstable software requirements. Re-
sulting from the use of the spiral process were small iterations of the software with
high visibility, low development risk, and good compliance to schedules. How-
ever, it became only lately visible that the process can lead to poor overall design
because the small iterations can cover possibly better approaches. This became
obvious in theregistry package, that breaks encapsulation, and whose mainte-
nance tends to be cumbersome. The process favours ad-hoc solutions, which may
establish in the software. Such ad-hoc solutions can become a burden for mainte-
nance, tangibility, and further development in general.

Bottom-up design is used for most of the software. I favoured bottom-up over
top-down because of different reasons. First, the bottom-up design reflects problem
analysis. Such analysis was done by decomposing the hardware model into distinct
and independent components. Then, the first application of the software was the
bootstrapping of the Atlantis ACB. Bootstrapping a newly developed hardware
usually requires low level access to the components of the hardware for monitoring
and debugging. Also, for some components, an initial configuration has to be
made, e.g. by uploading configuration data for PLD’s. For doing that, tools need to
be implemented. Finally, the software shall be configurable and extendable to cope
with firmware and design update of a specific hardware, to enable integration of
hardware expansion modules into the software, and to facilitate support for future
hardware.

Several results suggest that the bottom-up design successfully addresses the
aforementioned issues. First, the software integrates support for different FPGA
coprocessors through software extension and without redesign. Also, the support
for newer hardware does not break support for older hardware although a great
part of the software massively exploits reuse. And many of the supported FPGA
coprocessors have been bootstrapped using tools composed from the low level soft-
ware components that resulted from the bottom-up design. A critical problem with
bottom-up design is the poor definition of stable user API’s. Such API’s were only
lately introduced into the software in an ad-hoc manner. I assume that a good de-
sign approach would have to use bottom-up designtogetherwith top-down design,
however causing enhanced effort for the design phase.

The bottom-up design is largely accompanied with a close mapping between
hardware components and their software models. Resulting is a strong encapsu-
lation of knowledge that is specific to a particular hardware component. This en-
capsulation supports distributed development and reuse. This becomes very clear
with the software representations of the system integration PLD’s that are used
on all coprocessors. Since the system integration PLD controls and synchronises

129

the functions of many devices contained in a coprocessor and provides sensible
functions to the whole system, it is very specific to a particular coprocessor im-
plementation. The functionality of a PLD is defined by its configuration, and the
development of a PLD’s configuration (design) requires significant amount of work
and domain specific knowledge. Accordingly, most of the software models for the
different system integration PLD’s were implemented by the respective hardware
programmers, reusing their domain specific knowledge. Though being mostly suc-
cessful, especially considering knowledge encapsulation, this approach imposes
problems regarding software quality because hardware programmers are not nec-
essarily software programming experts.

Besides the abovementioned capture and encapsulation of hardware device spe-
cific knowledge and functions, the according software models (classes) are de-
signed in such a way that they not only serve as user-visible service providers,
but also in a way that the same classes implement the media that transparently
transform and transfer service requests between the client, e.g. user application,
occasionally intermediate classes, and finally the point where the request leave
the software, which is usually the device-driver interface. In following this de-
sign principle, it is possible, and necessary, to chain classes together to implement
the functions of the software. The collaboration diagram 3.12 shows such a chain
and the transformation and mediation of a service request. This design contrasts
well with designs like the one implemented by Schumacher et al [PSSL00], where
two orthogonal class hierarchies are used to implement and to access functions.
A principal problem arising from the identity of service-providing and service-
mediating classes is that such classes depend on the declarations of other classes to
which transformed services are passed on upstream the service chain. This depen-
dency breaks encapsulation and inhibits reuse. One example of a resulting strong
coupling is theAcbClkPld class whose definition depends on the declaration of
theAcbCtrlPld class. However, reuse ofAcbCtrlPld is very unlikely since
AcbCtrlPld is unique to the ACB. On the other hand, e.g. JTAG capability is
present on many devices on different coprocessors. In this case reuse is enabled by
generalising software functions supporting JTAG in a base class, and specialising
this base class in order to adapt to upstream, mediating classes, as it is done some
ten times in the software. The results show that this approach is powerful and effec-
tive, and the code needed to subclass and adapt is very compact and straightforward
(see JTAG on page 78 and figure 3.2.2). Performance issues that may be caused
by chaining of services are discussed below. Also, an approach for decoupling the
involved classes, which was presented in section 3.4, is discussed below.

For every coprocessor acontrolclass is provided which is the top level model of
its respective coprocessor and implements the coprocessor’s application interface.
The control class references a tree-like structure of lower level components and
implements the algorithm to populate that tree. The control class is, like the sys-
tem integration PLD class, coprocessor specific. These two classes reuse common
components and functionality from the core software and are generally the only
specialised software components that are needed to support a specific coprocessor.

130 CHAPTER 4. DISCUSSION AND CONCLUSIONS

Since the software allows applications to use several coprocessors simultane-
ously, even if they are of differing type, a bookkeeping scheme is provided. The
scheme enumerates all coprocessors found in the system and provides services to
identify coprocessors based on different criteria. Because the scheme has to know
about every supported coprocessor type, it breaks encapsulation, e.g. the scheme
has to be modified for every coprocessor-support-package that is added to the soft-
ware, even if the coprocessor is very similar to one that is already supported by the
software.

The results show (see section 3.2.4) that support for six different coproces-
sors was added successively to the software. This adding was carried out mostly
seamless and increased the code-base by more than a factor of two during a time-
span of about four years. I believe that there are two main reasons for the fact
that the evolution of the software was so steady, did not break the initial software
architecture, and took advantage of software reuse. First, the bottom-up design
approach for low level software entities was creating a rich set of building blocks,
which were reused, adapted, and composed in order model the added coproces-
sors. Second, the encapsulation of the classes the represent coprocessor-specifics,
like the abovementioned PLD and control classes, enabled the decoupling of the
coprocessor-supporting software in order to partition it into independent packages.
These support packages make up about half of the total code-size of the software,
which indicates the great amount of reuse in the software.

However, the long-lasting evolution of the software showed some deficiencies
of the software. To me, the most annoying of these is the lack of good design in
some parts of the software that resulted from inaccuracy and hastiness in following
the spiral process. Such hastiness often turned the process into a code-and-fix
process, introducing faint design into the software. According problems with the
registry package have been discussed above. As also mentioned above, the
spiral process itself shows a tendency to veil wrong design decisions.

The layered structure used to access the coprocessor implies some execution
overhead compared to a flat software structure, which may be further enhanced due
to overhead introduced by using C++ instead of C as implementation language.
However, the very most operations that travel through the software are not in the
performance pathi.e. their performance is not critical to overall system and appli-
cation performance. Also, single transactions on the PCI system bus usually last
long compared to the overhead introduced by additional software layers, which has
been measured to be very small. Wherever possible, DMA is used to transfer bulk
data between the coprocessor and the host. Although DMA transfers reach much
higher rates, compared to PIO transfers, with large data blocks, the price of an in-
creased overhead must be paid. The actual overhead and saturated transfer rate are
determined by host and coprocessor architecture rather than by software. Conse-
quently, applications have to be careful with choosing a transfer mode depending
on block size and host and coprocessor architecture.

The support of the software for reconfiguration of the coprocessors is divided
into two parts. First, the software supports reconfiguration of the FPGA resources

131

on the coprocessors at runtime. FPGA reconfiguration is initiated by user applica-
tions and, more important, the consequences of the reconfiguration of the FPGA,
i.e. changed behaviour of the FPGA, are to be handled entirely by the user applica-
tions. On the other hand, the software does support reconfiguration of the system
integration PLD’s, or modification of configuration EEPROM’s through the tools
provided. Such reconfiguration may require modifications and recompilation of
the software.

Concluding, the software offers only limited support for run-time reconfigura-
tion. I addressed this problem with an approach that allows run-time reconfigura-
tion of the software itself (see section 3.4). While retaining a bottom-up design,
capturing device or function specific knowledge in separate classes, the new ap-
proach implements a generalisation of this classes by a common base class. The
interface of the base class provides access to the service functions (ports) of its
concrete child classes by a naming scheme. Thus, the classes become software
components. The collaboration between different elements is enabled at run-time
by connecting communication ports of the elements pairwise using the common in-
terface. Additionally, the components reside in shared libraries that can be loaded
and unloaded at runtime (see section 3.4.7). The libraries and the contained classes
are identified by a simple naming scheme, too.

Wang and Shin [WS02] present a software architecture in which the behaviour
of a reusable component is determined by acontrol planthat is executed by a finite
state machine (FSM) driver embedded in the component. Thus the definition of
the component’s behaviour is separated from the definition of the functions which
the component provides, and can be reconfigured at run-time. They also provide
means for structural reconfiguration at run-time. However, according to the real-
time requirements of their system platform, structural reconfiguration is restricted
to special system states, e.g. start-up. The structural composition is based on
ports that receive external events of predefined types. Wang and Shin contrast
their approach with component technologies like CORBA. They argue that such
technologies heavily depend on middle-ware and their approach would need fewer
resources and supports more predictable execution.

Although the target of the architecture proposed by Wang and Shin is a real-
time system, whereas the execution platform of my architecture is an ordinary time-
sharing operating system, both approaches try to implement systems that show high
execution performance and consume few computing resources. Both approaches
consider the performance overhead caused by middle-ware to be unacceptable.
Wang and Shin also argue that middle-ware would make the performance unpre-
dictable, which is true for my approach, too. Wang and Shin do not provide per-
formance measurements whereas I have measured that the performance overhead
caused by my approach is significant, but may be acceptable. Also, I assume that
the performance of my architecture can be greatly enhanced by optimisations since
I used a very simple naming lookup scheme based on hash tables. Wang and Shin
separate behaviour from functions by using FSM drivers that interpret behaviour
descriptions. My approach does not support such a separation of behaviour since

132 CHAPTER 4. DISCUSSION AND CONCLUSIONS

behaviour and function is fixed in the components. Configuration of behaviour in
my architecture requires structural changes or modification of components, which
is supported at run-time by the dynamic collaboration between components and the
loading and unloading of components contained in shared libraries.

Stewart and Khosla [SVK97] propose an approach that is similar to the one
followed by Wang and Shin. They too use FSM interpreters to define behaviour,
yet their communication architecture is based on shared memory whereas Wang
and Shin use event-based communication. In contrast, my scheme resembles a
function-call-like connection architecture.

Abbreviations

API application programming interface

ASIC application specific integrated circuit, hardware device that is designed
and manufactured for specific applications.

ATLAS general purpose particle detector at the LHC, CERN.

ATM asynchronous transfer mode, channel based networking technology with
integrated quality of service, often used in telecommunication industries.

CERN European organisation for nuclear research, located at Geneva.

CORBA common object broker architecture, standard for component interoper-
ability middle-ware.

COTS commodity of the shelf, computers and devices with high availability and
thus low price.

CPCI compact PCI, often used in telecommunication industries.

CPLD complex programmable logic device, see PLD.

CPU central processing unit, the device that controls a computer system and ex-
ecutes algorithms on data.

CSRC control software for reconfigurable coprocessors, the topic of this work.

DAQ data acquisition, system for collecting and combining data from the detec-
tor.

DMA direct memory access, method to transfer data between the components of
a computer system by using a specialised device (DMA controller), relieving
the CPU.

FCop FPGA based coprocessor.

FPGA field programmable gate array, hardware device that can be configured to
emulate arbitrary logic behaviour.

133

134 ABBREVIATIONS

HLT high level trigger, complex distributed computing systems used for data
reduction in high energy physics experiments.

IA32, IA64 Intel architecture 32, Intel architecture 64, two CPU families.

LVL2 second level trigger, HLT excluding the third level trigger / event filter.

JTAG joint test action group, standard interface and infrastructure for accessing
complex devices besides their designated functions, e.g. for system debug-
ging.

LHC large hadron collider, accelerator/collider at CERN.

OS operating system, basic program managing a computer.

PCI peripheral component interconnect, bus for connecting devises to a com-
puter, widely adopted in COTS systems.

PIO programmed input-output, CPU controlled transfer of data to peripheral
components of a computer system.

PLD programmable logic device, hardware device that can be configured to ex-
ecute arbitrary logic functions.

RAM random access memory

RH reconfigurable hardware, any system or device with configurable behaviour
based on arbitrary logic.

ROM read only memory

RS reconfigurable systems, systems with reconfigurable devices.

S-Link simple link, a CERN standard for a unidirectional high speed data link.

T2REF second level trigger reference software, software framework used to con-
duct studies for the second level trigger.

TDAQ trigger and data acquisition, system for collecting and selecting data from
the detector.

TRT transition radiation tracker, particle detector, here a sub-detector of the in-
ner detector of ATLAS.

VME versa module eurocard bus

Acknowledgments

My warmest thanks go to my family for their almost endless patience. I thank De-
nis Calvet and Irakli Mandjavidce from CEA for their help in integrating Enable++
and Atlantis into testbeds. I thank my colleagues Dr. Matthias Müller and Andreas
Kugel, who both provided significant input to the software. My special thanks go
to Andrei Khomich for the hours of discussion about the TRT-LUT-Hough algo-
rithm. I thank Harald Simmler for proofreading this thesis, and for all his kind
help. I thank the Bundesministerium für Forschung und Technik, that provided the
funding for this thesis, and Henning Schmidt and Hewlett-Packard who donated an
IA64 workstation. Special thanks go to Andrea Seeger for her help, and to Prof.
Dr. Reinhard M̈anner, who made this thesis possible.

135

136 ACKNOWLEDGMENTS

Bibliography

[ALI95] ALICE Collaboration. A large ion collider experiment, technical pro-
posal. CERN/LHCC/95-71, CERN, December 1995.

[APP98] Maris Abolins, Beatriz Gonzáles Pĩniero, and Peter F. Peterson. S-
Link transmission measurements. ATL-DAQ-98-131, CERN, De-
cember 1998.

[ATL94] ATLAS Collaboration. ATLAS technical proposal for a general-
purpose pp experiment at the large hadron collider at CERN.
CERN/LHCC/94-43 LHCC/P2, CERN, December 1994.

[ATL98] ATLAS Collaboration. ATLAS DAQ, EF, LVL2, and DCS. technical
progress report. CERN/LHCC/98-16, CERN, June 1998.

[ATL03] ATLAS Collaboration. ATLAS high-level trigger, data acquisition
and controls. CERN/LHCC/2003-022 ATLAS TDR 016, CERN, Oc-
tober 2003.

[Aus98] Matthew H. Austern.Generic Programming and the STL. Addison-
Wesley Publishing Company Reading, Massachusetts, 1998.

[B+02] R. Blair et al. The ATLAS level-2 trigger pilot project. InIEEE
Trans. Nucl. Sci., volume 49, pages 851–857, 2002.

[BDK+98] O. Brosch, P. Dillinger, K. Kornmesser, A. Kugel, M. Sessler,
H. Simmler, H. Singpiel, S. Ruehl, R. Lay, K.-H. Noffz, and L. Levin-
son. Microenable, a reconfigurable FPGA coprocessor.Fourth Work-
shop on Electronics for LHCB Experiments, pages 402–406, 1998.

[BDS99] John Baines, Reinier Dankers, and Sergey Sivoklokov. Performance
of a lvl2 trigger feature extraction algorithm for the precision tracker.
ATL-DAQ-99-013, 1999.

[BHH+00] O. Brosch, J. Hesser, C. Hinkelbein, K. Kornmesser, T. Kuberka,
A. Kugel, R. Männer, H.Singpiel, and B. Vettermann. ATLANTIS
- a hybrid FPGA/RISC based re-configurable system. In7th Recon-
figurable Architectures Workshop (RAW 2000), May 2000.

137

138 BIBLIOGRAPHY

[BHK+03] John Baines, Christian Hinkelbein, Andrei Khomich, Andreas Kugel,
Reinhard M̈anner, and Matthias M̈uller. Timing measurements of
some tracking algorithms and suitability of fpga’s to improve the ex-
ecution speed. ATL-DAQ-2003-026, CERN, September 2003.

[BMBG02] Mihai Budiu, Mahim Mishra, Ashwin R. Bharambe, and Seth Copen
Goldstein. Peer-to-peer hardware-software interfaces for reconfig-
urable fabrics. InProceedings of the 10th IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2002), 22-24
April 2002, Napa, CA, pages 57–66, 2002.

[BMvdB97] O. Boyle, R. McLaren, and E. van der Bij. The S-Link Interface
Specification.http://hsi.web.cern.ch/HSI/s-link/spec, March 1997.

[Boo94] Grady Booch. Object-Oriented Analysis and Design. Benjamin /
Cummings Publishing Company, Inc., 1994.

[Boo99] Grady Booch. The Unified Modeling Language User Guide.
Addison-Wesley Publishing Company Reading, Massachusetts,
1999.

[CH02] Katherine Compton and Scott Hauck. Reconfigurable computing: A
survey of systems and software.ACM Computing Surveys, 34(2), 6
2002.

[Cha01] Stephen P.G. Chappell. Rapid development of reconfigurable sys-
tems. InProc. of the 12th Int. Workshop on Rapid System Prototyping
(RSP’01), 2001.

[CMS94] CMS Collaboration. The compact muon solenoid. CERN/LHCC/94-
38, CERN, December 1994.

[Com] Community. GNU. http:/www.gnu.org.

[Com99] K. Compton. Programming architectures for run-time reconfigurable
systems, 1999.

[CVHM03] H. Chen, B. Vettermann, J. Hesser, and R. Männer. Innovative
computer architecture for real-time volume rendering.Computer &
Graphics, 27(5):715–724, 2003.

[DCG+99] P. Le D̂u, D. Calvet, O. Gachelin, M. Huet, I. Mandjavidce, R. Blair,
J. Dawson, J. Schlereth, M. Abolins, and Y. Ermoline. The ATLAS
high level trigger ATM testbed. In11th IEEE NPSS Real Time Con-
ference, pages 559–562, June 1999.

[DFH+99] J.-P. Dufey, M. Frank, F. Harris, J. Harvey, B.Jost, P. Mato, and
H. Mueller. The LHCb trigger and data acquisition system. In11th
IEEE NPSS Real Time Conference, pages 49–53, June 1999.

BIBLIOGRAPHY 139

[DJ98] Robert P. Dick and Niraj K. Jha. CORDS: hardware-software co-
synthesis of reconfigurable real-time distributed embedded systems.
In ICCAD, pages 62–67, 1998.

[Dou99] Bruce Powel Douglass.Real Time UML. Addison-Wesley Publishing
Company Reading, Massachusetts, 1999.

[DS99a] A. Daneels and W. Salter. Selection and evaluation of commercial
SCADA systems for the controls of the CERN LHC experiments. In
Proc. 7th Int. Conf. on Accelerator and Large Experimental Physics
Control Systems, Trieste, Italy, Oct 1999.

[DS99b] A. Daneels and W. Salter. What is SCADA. InProc. 7th Int. Conf. on
Accelerator and Large Experimental Physics Control Systems, Tri-
este, Italy, Oct 1999.

[DSB03] Holger Froening David Slogsnat, Patrick R. Haspel and Ulrich Bru-
ening. The ATOLL system area network (SAN). IEEE Task Force
Cluster Computing Newletter, Sep 2003.

[EM00] M. Eisenring and M.Platzner. An implementation framework for run-
time reconfigurable systems. InProceedings of the 2nd International
Workshop on Engineering of Reconfigurable Hardware/Software Ob-
jects (ENREGLE00), pages 151–157, June 2000.

[Eva95] L.R Evans. The large hadron collider. CERN-AC-95-02-LHC,
CERN, February 1995.

[GG95] S. Guccione and M. J. Gonzalez. Classification and performance of
reconfigurable architectures. In W. Moore and W. Luk, editors,Field-
Programmable Logic and Applications. 5th International Workshop
on Field-Programmable Logic and Applications, volume 975 ofLec-
ture Notes in Computer Science, pages 439–448, Oxford U.K., Au-
gust 1995. Springer-Verlag.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison-Wesley Publishing Company Reading,
Massachusetts, 1995.

[GJP+03] B. Gorini, M. Joos, J. Petersen, A. Kugel, R. Männer, M. M̈uller,
M. Yu, B. Green, and G. Kieft. A RobIn Prototype for a PCI-Bus
based Atlas Readout-System. In9th Workshop on Electronics for
LHC Experiments, Amsterdam, Netherland, September 2003.

[GLS99] S.A. Guccione, D. Levi, and P. Sandararajin. Jbits; a java-based in-
terface for reconfigurable computing. In2nd Annual Military and
Aerospace Applications for Programmable Devices and Technology,
1999.

140 BIBLIOGRAPHY

[GS03] Igor Gavrilenko and Sergey Sivoklokov. TRTxK: a high level trigger
algorithm for the trt detector. COM-DAQ-2003-044, 2003.

[HA96] S. Hauck and A. Agarwal. Software technologies for reconfigurable
systems, 1996.

[Hau98a] S. Hauck. The future of reconfigurable systems, 1998.

[Hau98b] Scott Hauck. The roles of fpgas in reprogrammable systems.Pro-
ceedings of the IEEE, 86(4):615–638, April 1998.

[Hau00] Reiner Hauser. The ATLAS level 2 reference software. ATL-DAQ-
2000-019, CERN, March 2000.

[HGKM02] Stefan Hezel, D. M. Gavrila, Andreas Kugel, and Reiner Männer.
FPGA-based Template Matching using Distance Transforms. In
Proc. FCCM 2002, pages 89–97, Napa Valley, California, 2002.

[HKK +04] C. Hinkelbein, A. Khomich, A. Kugel, R. Maenner, and M. Mueller.
Using an fpga coprocessor for improving execution speed of trt-lut -
one of the feature extraction algorithms for atlas lvl2 trigger. In12th
ACM International Symposium on Field-Programmable Gate Arrays,
page 247, 2004.

[HKL +95] H. Högl, A. Kugel, J. Ludvig, R. M̈anner, and R. Zoz. Enable++: A
second generation fpga processor. IEEE Symposium on FPGA’s for
Custom Computing Machines, 1995.

[HKM +99] C. Hinkelbein, A. Kugel, R. M̈anner, M. M̈uller, M. Sessler,
H. Singpiel, J. Baines, and M. Smizanska. Global pattern recogni-
tion in the TRT for the ATLAS b-physics trigger. ATL-DAQ-99-012,
CERN, September 1999.

[HKM +00] C. Hinkelbein, A. Kugel, R. M̈anner, M. M̈uller, M. Sessler,
H. Simmler, and H. Singpiel. LVL2 full TRT scan feature extraction
algorithm for b physics performed on the hybrid FPGA/CPU proces-
sor system ATLANTIS: Measurement results. ATL-DAQ-2000-012,
CERN, March 2000.

[HKT03] Christian Haubelt, Dirk Koch, and Jürgen Teich. Basic OS support for
distributed reconfigurable hardware. InProceedings of the Third In-
ternational Workshop on Systems, Architectures, Modeling, and Sim-
ulation, pages 18–22, Samos, Greece, July 2003.

[Hou58] Paul V. C. Hough. Machine analysis of bubble chamber pictures. In
International Conference on High Energy Accelerators and Instru-
mentation, pages 554–556. CERN, 1958.

BIBLIOGRAPHY 141

[HPK03] J́erôme Hugues, Laurent Pautet, and Fabrice Kordon. Contributions
to middleware architectures to prototype distribution infrastructures.
In Proc. of the 14th Int. Workshop on Rapid System Prototyping
(RSP’03), 2003.

[IEE] IEEE. IEEE Standard Test Access Port
and Boundary Scan Architecture. IEEE.
http://standards.ieee.org/reading/ieee/std/testtech/1149.1-1990.pdf.

[Inta] Intel. IA-32 IntelR© Architecture Software Developer’s Manual.
ftp://download.intel.com/design/Pentium4/manuals/25366{5,6,7,8}13.pdf.

[Intb] Intel. Intel R© ItaniumR© Architecture Software Developer’s Manual.
ftp://download.intel.com/design/Itanium/manuals/24531{7,8,9}.pdf.

[Iwa] Iwanski. E-SLink Users Manual. University of Krakow. http://
www.ifj.edu.pl/∼iwanski/ e-slink/uman.html.

[Jun] Jungo technology windriver. http://www.jungo.com.

[K+98] Klaus Kornmesser et al. Simulating FPGA-coprocessors using the
FPGA development system CHDL.Proc. PACT Workshop on Reconf.
Comp., pages 78–82, 1998.

[KHM +00] A. Kugel, Ch. Hinkelbein, R. M̈anner, M. M̈uller, and H. Singpiel.
ATLANTIS - a modular,hybrid FPGA/CPU processor for the ATLAS
readout system. In6th Workshop on Electronics for LHC Experi-
ments, pages 429–433, October 2000.

[Kin95] R.M. Kinmond. Survey into the acceptance of prototyping in soft-
ware development. InProc. of the 6th Int. Workshop on Rapid System
Prototyping (RSP’95), 1995.

[KKL +98a] A. Kugel, K. Kornmesser, R. Lay, J. Ludvig, R. Männer, K-H. Noffz,
S. R̈uhl, M. Sessler, H. Simmler, H. Singpiel, V. Dörsing, W. Er-
hard, P. Kammel, A. Reinsch, and T. Schober. ATLAS level-2 trigger
demonstrator-a activity report part 2: Demonstrator results. ATLAS
Interal Note DAQ-NO-084, CERN, March 1998.

[KKL +98b] A. Kugel, K. Kornmesser, R. Lay, R. M̈anner, K-H. Noffz, S. R̈uhl,
M. Sessler, H. Simmler, H. Singpiel, V. Dörsing, W. Erhard, P. Kam-
mel, and A. Reinsch. ATLAS level-2 trigger demonstrator-a activ-
ity report part 3: Paper model. ATLAS Interal Note DAQ-NO-101,
CERN, June 1998.

[KKL +98c] A. Kugel, K. Kornmesser, R. Lay, R. M̈anner, K-H. Noffz, S. R̈uhl,
M. Sessler, H. Simmler, H. Singpiel, V. Dörsing, W. Erhard, P. Kam-
mel, A. Reinsch, L. Levinson, R. Bock, W. Iwanski, K. Korcyl, J. Ol-
szowska, D. Calvet, J. R. Hubbard, P. Le Dû, I. Mandjavidze, and

142 BIBLIOGRAPHY

M. Smizanska. ATLAS level-2 trigger demonstrator-a activity report
part 1: Overview and summary. ATLAS Interal Note DAQ-NO-085,
CERN, March 1998.

[KKM +99] T. Kuberka, Andreas Kugel, Reinhard Männer, Holger Singpiel,
R. Spurzem, and R. Klessen. AHA-GRAPE: Adaptive hydrodynamic
architecture - GRAvity PipE. InProc. Int. Conf. on Parallel and Dis-
tributed Processing Techniques and Applications, pages 1189–1195,
1999.

[Kug02] Andreas Kugel. Race-1. http://www-li5.ti.uni-mannheim.de/fpga/,
2002.

[L+01] P. Leong et al. Pilchard - a reconfigurable computing platform with
memory slot interface. InIEEE Symposium on Filed-Programmable
Custom Computing Machines, FCCM, 2001.

[LHC95] LHC Study Group. The large hadron collider: conceptual design.
CERN-AC-95-05-LHC, CERN, October 1995.

[LHC98] LHCb Collaboration. LHCb technical proposal. CERN/LHCC/98-4,
CERN, 1998.

[Lie03] G. Lienhart. Implementing Hydrodynamic N-Body Codes on Recon-
figurable Computing Platforms. InInternational Conference on High
Performance Scientific Computing, Hanoi, Vietnam, March 2003.

[LKM02] Gerhard Lienhart, Andreas Kugel, and Reinhard Männer. Using
floating-point arithmetic on FPGAs to accelerate scientific n-body
simulations. InProc. IEEE Symposium FCCM, 2002.

[Lud98] Jozsef Ludvig.Enable++: Ein universeller FPGA-Triggerprozessor
für das ATLAS-Experiment. PhD thesis, Lehrstuhl für Informatik V,
Universiẗat Mannheim, 1998.

[McC96] Steve McConnell.Rapid Development. Microsoft Press, Redmond,
Washington, 1996.

[ME02] David Mosberger and Stéphane Eranian.ia-64 linux kernel. Prentice
Hall, New Jersey, 2002.

[Mey96] Scott Meyers. More effective C++. Addison-Wesley Publishing
Company Reading, Massachusetts, 1996.

[Mey97] Scott Meyers.Effective C++. Addison-Wesley Publishing Company
Reading, Massachusetts, 1997.

BIBLIOGRAPHY 143

[Mye99] D. R. Myers. The LHC experiments’ joint controls project, JCOP. In
Proc. 7th Int. Conf. on Accelerator and Large Experimental Physics
Control Systems, Trieste, Italy, Oct 1999.

[Nev03] Pavel Nevski. Heavy ion collisions with the ATLAS detector.ATL-
COM-CONF-2003-027, 2003. ATLAS internal document.

[Nof96] Klaus-Henning Noffz. Ein FPGA-Prozessor als 2nd-Level-Trigger
für ATLAS. PhD thesis, Lehrstuhl für Informatik V, Universiẗat
Mannheim, 1996.

[NZK+95] K.-H. Noffz, R. Zoz, A. Kugel, F. Klefenz, and R. M̈anner. Results of
on-line tests of the ENABLE prototype, a 2nd level trigger processor
for the TRT of ATLAS/LHC. Reihe Informatik 17/95, Universität
Mannheim, 1995.

[OMG] OMG. CORBA. http://www.omg.org/.

[PCI] PCISIG.PCI. http://www.pcisig.com/home.

[PLXa] PLX Technology. PCI 9080 Data Book. PLX Technology.
http://www.plxtech.com.

[PLXb] PLX Technology. PCI 9656 Data Book. PLX Technology.
http://www.plxtech.com.

[PLXc] PLX Technology. PLX SDK Reference. PLX Technology.
http://www.plxtech.com.

[PSSL00] U. Pfeiffer, V. Schatz, C. Schumacher, and M.P.J. Landon. HDMC:
An object-oriented approach to hardware diagnostics. In6th Work-
shop on Electronics for LHC Experiments, pages 464–468, October
2000.

[Qua99] Terry Quatrany. Visual Modelling with Rational Rose 2000
and UML. Addison-Wesley Publishing Company Reading, Mas-
sachusetts, 1999.

[R+93] R.K.Bock et al. Status report: Embedded architectures for second-
level triggering (east). CERN/DRDC 93-12, RD11 Status Report
(EAST note 93-08), CERN, May 1993.

[Rüh01] Stephan R̈uhl. Programmierung von FPGA-Prozessoren mittels ak-
tiver Komponenten. PhD thesis, Lehrstuhl für Informatik V, Univer-
sität Mannheim, 2001.

[S+03] S.Armstrong et al. An oveview of algorithms for the ATLAS high
level trigger. InIEEE Real Time 2003, 2003.

144 BIBLIOGRAPHY

[SA99] Tom Shanley and Don Anderson.PCI System Architecture. Addison
Wesley, 1999.

[SD02] Alexander Staller and Peter Dillinger. Implementation of the jpeg
2000 standard on a virtex 1000 fpga. InProc. 12th Int. Conf. on Field
Programmable Logic and Applications. Springer-Verlag, Berlin, Hei-
delberg, New York, 2002.

[Ses96] Matthias Sessler. Entwicklung des i/o-boards für den second-level-
triggerprozessor enable++. Master’s thesis, University of Heidelberg,
1996.

[Ses00] Matthias Sessler.Algorithms on CPUs and FPGAs for the ATLAS
LVL2 Trigger. PhD thesis, Lehrstuhl für Informatik V, Universiẗat
Mannheim, 2000.

[Sim01] Harald Simmler. Preemptive Multitasking auf FPGA-Prozessoren.
PhD thesis, Lehrstuhl für Informatik V, Universiẗat Mannheim, 2001.

[Sin00] Holger Singpiel.Der ATLAS LVL2-Trigger mit FPGA-Prozessoren.
PhD thesis, Lehrstuhl für Informatik V, Universiẗat Mannheim, 2000.

[SK96] David B. Stewart and Pradeep K. Khosla. The chimera methodol-
ogy: Designing dynamically reconfigurable and reusable real-time
software using port-based objects.International Journal of Software
Engineering and Knowledge Engineering, 6(2):249–277, June 1996.

[Sof] Silicon Software. microEnable. http://www.silicon-software.com.

[Str00] Bjarne Stroustroup.The C++ Programming Language and Refer-
ence. Addison-Wesley Publishing Company Reading, Massachusetts,
third edition, 2000.

[SvG00] Jochen Seemann and Jürgen Wolff von Gudenberg.Software-Entwurf
mit UML. Springer-Verlag, Berlin, Heidelberg, New York, 2000.

[SVK97] David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla. Design
of dynamically reconfigurable real-time software using port-based
objects.Software Engineering, 23(12):759–776, 1997.

[Sys] SystemC.SystemC. http://www.systemc.org/.

[Szy98] Clemens Szyperski. Emerging compopnent software technologies -
a stratetic comparision.Software - Concepts & Tools, 19(1):2–10,
1998.

[Tak03] H. Takai. Heavy ion collisions with the ATLAS detector. SN-ATLAS-
2003-035 CERN, 2003.

BIBLIOGRAPHY 145

[TC04] Linus Torvalds and Community. Linux.
http:/www.kernel.org/pub/linux, 1991-2004.

[TL02] David. B. Thomas and Wayne Luk. Framework for development
and distribution of hardware application. InReconfigurabe Technolo-
gie: FPGAs and Reconfigurable Processors for Computing and Com-
muinications IV, Proceedings of the SPIE, volume 4867, 2002.

[TOT99] TOTEM Collaboration. Total cross section, elastic scattering and
diffraction at the LHC. CERN/LHCC/99-7 LHCC/P5, CERN, March
1999.

[vdBH] Erik van der Bij and Stefan Haas. S-SLink general information.
http://hsi.web.cern.ch/HSI/s-link/.

[Ver00] J. Vermeulen. A SHARC based ROB Complex : design and measure-
ment results.ATL-DAQ-2000-021, March 2000.

[WP04] Herbert Walder and Marco Platzner. Reconfigurable hardware os pro-
totype. http://e-collection.ethbib.ethz.ch/show?type=incoll&nr=990,
2004.

[WS02] Shige Wang and Kang G. Shin. Constructing reconfigurable software
for machine control systems.Transactions on Robotics and Automa-
tion, 18(4):475–486, 2002.

[YBGL02] Paul Young, Valdis Berzins, Jun Ge, and Luqi. Using an object ori-
ented model for resolving representational differences between het-
erogeneous systems. InProceedings of the 2002 ACM Symposium on
Applied Computing (SAC), March 10-14, 2002, Madrid, Spain, pages
976–983. ACM, 2002.

[YCBL03] Paul Young, Nabendu Chaki, Valdis Berzins, and Luqi. Evalua-
tion of middleware architectures in achieving system interoperabil-
ity. In Proc. of the 14th Int. Workshop on Rapid System Prototyping
(RSP’03), 2003.

