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Abstract

The benefits of modular representations are well known from many areas of com-
puter science. In this paper, we concentrate on the benefits of modular ontologies
with respect to local containment of terminological reasoning. We define an archi-
tecture for modular ontologies that supports local reasoning by compiling implied
subsumption relations. We further address the problem of guaranteeing the integrity
of a modular ontology in the presence of local changes. We propose a strategy for
analyzing changes and guiding the process of updating compiled information.
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1 Motivation

Currently, research in the area of the semantic web is in a state where ontolo-
gies are ready to applied in real applications such as semantic web portals,
information retrieval or information integration. In order to lower the effort
of building ontology-based applications, there is a clear need for a represen-
tational and computational infrastructure in terms of general purpose tools
for building, storing and accessing ontologies. A number of such tools have
been developed, i.e. ontology editors [1,2], reasoning systems [3,4] and more
recently storage and query systems (e.g. [5]). Most of these tools, however,
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treat ontologies as monolithic entities and provide little support for specify-
ing, storing and accessing ontologies in a modular manner. Existing proposals
trying to fill this gap lack a formal underpinning.

1.1 Why Modularization ?

There are many reasons for thinking about ontology modularization. Our work
is mainly driven by three arguments. These also bias the solution we propose,
as it focusses on the following aspects.

Distributed Systems: In distributed environments like the semantic web,
the question for modularization arises naturally. Ontologies in different
places are built independent of each other and can be assumed to be highly
heterogeneous. Unrestricted referencing to concepts in a remote ontology
can therefore lead to serious semantic problems as the domain of interpre-
tation may differ even if concepts appear to be the same on a conceptual
level. The introduction of modules with local semantics can help to overcome
this problem.

Large Ontologies: Modularization is not only desirable in distributed en-
vironments, it also helps to manage very large ontologies that we find in
medicine or biology, for example. These ontologies, which sometimes contain
more than a hundred thousand concepts, are hard to maintain as changes
are not contained locally but can affect large parts of the model. Another
argument for modularization in the presence of large ontologies is re-use: in
most cases, we are not interested in the complete ontology when building
a new system, but only in a specific part. Experiences from software engi-
neering shows that modules provide a good level of abstraction to support
maintenance and re-use.

Efficient Reasoning: A specific problem with distributed ontologies as well
as with very large models is the efficiency of reasoning. While the pure size of
the ontologies causes problems in the latter case, hidden dependencies and
cyclic references can cause serious problems in a distributed setting. The
introduction of modules with local semantics and clear interfaces will help
to analyze distributed systems and provides a basis for the development of
methods for localizing inference.

1.2 Requirements

There are a couple of requirements a modular ontology architecture has to
fulfill in order to improve ontology maintenance and reasoning in the way
suggested above. The requirements will be the main guidelines for the design
of our solution proposed in this work.
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Loose Coupling: In general, we cannot assume that two ontology modules
have anything in common. This holds for the conceptualization as well as for
the specific logical language used as well as for the interpretation of objects,
concepts or relations. Our architecture has to reflect this by providing an
extremely loose coupling of modules. In particular, we have to prevent un-
wanted interactions between modules. For this purpose, mappings between
modules have to be distinguished from local definitions on the semantic as
well as the conceptual level.

Self-Containment: In order to facilitate the re-use of individual modules
from a larger, possibly interconnected system, we have to make sure that
modules are self-contained. In particular, it should be possible to perform
certain reasoning tasks such as subsumption or query answering within a
single module without having to access other modules. This is also impor-
tant if we want to provide efficient reasoning. Further we have to ensure
correctness and whenever possible completeness of local reasoning for obvi-
ous reasons.

Integrity: The advantages of having self-contained ontology modules have
their price in terms of potential inconsistencies that arise from changes in
other ontology modules. While there is in our architecture no need to access
other modules at reasoning time, the correctness of reasoning within a self
contained module may still depend on knowledge in other ontologies. If this
knowledge changes, reasoning results in a self-contained module may become
incorrect with respect to the overall system, and we will not even notice it.
We have to provide mechanisms for checking whether relevant knowledge in
other systems has changed and for adapting the reasoning process if needed
to ensure correctness.

1.3 Related Work

Our work relates to two main areas of research on representing and reason-
ing about ontological knowledge. The first is concerned with distributed and
modular knowledge representation where we use ideas from theorem proving
and knowledge engineering. The second area of related work is concerned with
managing knowledge models. Here previous work exists in knowledge engineer-
ing as well as database information systems.

While the principle of modularity has widely been adopted in software engi-
neering it has got less attention in the area of knowledge representation and
reasoning. Some fundamental work on the modularization of representations
can be found in the area of theorem proving. Farmer and colleagues pro-
mote the use of combinations of ‘Little Theories’, representations of a specific
mathematical structure in order to reason about complex problems [6]. They
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show the advantages of this modular approach in terms of reusability and re-
duced modeling effort. The idea of reusing and combining chunks of knowledge
rather than building knowledge bases from scratch has later been adopted by
the knowledge engineering community for building real-world knowledge bases
(e.g. see [7]). McIlraith and Amir argue that a modularization of knowledge
bases has also advantages for reasoning, even if the modularization is done
a posteriori. They present algorithms for breaking down existing represen-
tations into a set of modules with minimal interaction and define reasoning
procedures for propositional [8] and first-order logic [9]. The work reported
is motivated by well established techniques from uncertain reasoning, where
an a posteriori modularization of large theories is a common way to reduce
runtime complexity (e.g. see [10]).

As we are interested in representations of ontological knowledge, approaches
from the area of logics for representing terminologies, so-called description
logics are of special interest for our work. In this area, we find the same ar-
guments for a modularized representation as in the area of theorem proving.
Rector proposes a strategy for modular implementation of ontologies using de-
scription logics [11]. The approach is based on a set of orthogonal taxonomies
that provide a basis for defining more complex concepts. Rector argues for the
benefits of this strategy in terms of easier creation and re-use of ontological
knowledge. Buchheit and others propose a similar structuring on the language
level by dividing the terminological part of a knowledge base into a schema
part that corresponds to the basic taxonomies and a view part [12]. They
show that this distinction can be used to achieve better run-time behavior
for complex view languages. While these approaches still assume the overall
model to be a single ontology providing a coherent conceptualization of the
world, Giunchiglia and others propose a more radical approach to distributed
representations. They propose the local model semantics as an extension of
the standard semantics of first order logics [13]. This semantics allows different
modules to represent different views on the same part of the world and the
definition of directed partial mappings between different modules. Recently,
Borgida and Serafini defined a distributed version of description logics based
on local model semantics that has all advantages of the contextual represen-
tations [14].

As already mentioned, the problem of combining and reasoning with onto-
logical modules has become of central importance in research on knowledge
representation and reasoning on the semantic web. Standard languages for en-
coding ontological knowledge on the world wide web, i.e. the RDF schema [15]
and the web ontology language OWL [16] provide some basic mechanisms for
combining modular representations. The abilities to combine different models
are restricted to the import of complete models and to the use of elements from
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a different model in definitions by direct reference. It is assumed that references
to external statements are only made for statements from imported models,
however, this is strictly speaking not required. As a consequence, mappings
rather implicitly exist in terms of mutual use of statements across models.
Volz and colleagues discuss different interpretations of the import statement
that range from purely syntactic to schema-aware interpretations of the im-
ported knowledge [17]. An alternative way of relating different RDF models
to each others that is much closer to our ideas is discussed by Oberle [18] who
defines a view language for RDF and defines some consistency constraints for
the resulting model.

1.4 Our Approach

In the following, we describe our approach to ontology modularization on an
abstract level. We emphasize the main design decisions and motivate them
on the basis of the requirements defined above. The technical details of the
approach will be given in the subsequent sections.

View-Based Mappings: The first design decision concerns the way differ-
ent ontology modules are connected. In our work, we adopt the approach
of view-based information integration. In particular, ontology modules are
connected by conjunctive queries and the extension of a concept in one
module can be claimed to be equivalent to the (intentional) answer set of
a conjunctive query over the vocabulary of another module. This way of
connecting modules is more expressive than simple one-to-one mappings
between concept names. Further, the same technique can be used to define
relations of any arity based on other modules. Compared to the use of arbi-
trary axioms, our approach is less expressive. We decide to sacrifice a higher
expressiveness for the sake of conceptual simplicity and desirable semantic
properties such as directedness of the mapping.

Interface Compilation: The use of conjunctive queries guarantees a loose
coupling on a conceptual and semantic level. However, it does not provide
self-containment, because reasoning in an ontology module depends on the
answer sets of the queries that are used to connect it to other modules.
These answer sets have to be determined by actually querying the other
ontology module. In order to make local reasoning independent from other
modules, we use a knowledge compilation approach. The idea is to compute
the result of each mapping query off-line and add the result as an axiom
to the ontology module. At reasoning time these axioms replace the query,
thus enabling local reasoning. As the results of queries are considered to be
defined intentionally rather than extensionally, the result of the compilation
of a query is not a set of instances retrieved from other modules, but a
concept expression that contains all the information necessary to perform
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local reasoning. In our case this expression is the conjunction of all concepts
of the other ontology module that subsume the query expression.

Change Detection and Automatic Update: Our approach of compiling
mappings and adding the result to the ontology models is very sensitive
against changes in ontology modules. Once a query has been compiled, the
correctness of reasoning can only be guaranteed as long as the concept hier-
archy of the queried ontology module does not change. On the other hand,
not every change in the hierarchy does really influence the compiled result.
Problems only arise if concepts used in the query change or if the set of con-
cepts subsuming the query is changed. In the second case, we will have to
compile the interface again. In the first case we might even have to consider
a redefinition of the query. In order to decide whether the compiled axiom
is still valid, we propose a change detection mechanism that is based on a
taxonomy of ontological changes and their impact on the concept hierarchy
in combination with the position of the affected concept in the hierarchy.
We further exploit an explicit representation of the dependencies between
ontology modules in order to propagate changes in the system when neces-
sary.

In the following, we first introduce a representational framework for modular
ontologies that builds on top of existing work on distributed description logics
(DDL) as a framework for reasoning about distributed ontologies and com-
pare the resulting language with standard mechanisms for linking ontologies
provided by the Web Ontology Language OWL. In Section 3 we define reason-
ing mechanisms for modular ontologies as a special case of general inference in
distributed description logics. We further introduce the compilation of implied
subsumption relations as a mechanisms for localizing reasoning and compare it
with the distributed reasoning methods proposed for DDL. Section 4 discusses
the problem of handling changes in external ontologies and their impact on
compiled knowledge and proposes a heuristic for checking whether compiled
knowledge has to be recomputed. We conclude with an example from a case
study on ontology evolution in Section 5 and a discussion of the tradeoffs of
our approach and possible extensions in Section 7.

2 Modular Ontologies

In this paper, we consider ontologies represented in the description logic
SHIQ. This choice is motivated by the fact that SHIQ covers a large part of
the expressive power of the Web Ontology Language OWL [16], more specifi-
cally of the language OWL-DL, a decidable sublanguage of OWL that directly
corresponds to the logic SHOIQ that extends SHIQ with nominals [19]. We
omit this extension in order to be able to base our framework on recent results
on Distributed Description Logics [20,21] that provide us with basic mecha-
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nisms for specifying links between concepts in different ontologies in a loose
way. Before defining our notion of modular ontologies, we briefly introduce the
logic SHIQ as well as the basic notions of Distributed Description Logics. For
background information about notation and naming in Description Logics, we
refer to [22].

2.1 The SHIQ Language

The basic modeling elements in Description Logics are concepts (classes of
objects), roles (binary relations between objects) and individuals (named ob-
jects). Based on these modeling elements, Description Logics contain operators
for specifying so-called concept expressions that can be used to specify neces-
sary and sufficient conditions for membership in the concept they describe. Ba-
sic reasoning tasks associated with these kinds of logics are checking whether
an expression is satisfiable (whether it is possible that an object satisfies the
membership condition) and deciding subsumption between two concepts (de-
ciding whether a concept expression implies another one). We now look at
these issues on a more formal level.

Let C be a set of concept names and R a set of role names. Further let there be
a set R+ ⊆ R of transitive roles (i.e. for each r ∈ R+ we have r(x, y)∧r(y, z) ⇒
r(x, z)). If now R− denotes the inverse of a role (i.e. r(x, y) ⇒ r−(y, x)) then
we define the set of roles as R ∪ {r−|r ∈ R}. A role inclusion axiom is an
expression R v S where R and S are roles. A role is called a simple role if
it is not transitive and does not have transitive subroles with respect to the
transitive closure of the role inclusion relation. The set of concepts (or concept
expressions) in SHIQ is the smallest set such that:

• > and ⊥ are concept expressions
• every concept name A is a concept expression
• if C and D are concept expressions, r is a role, s is a simple role and n is

a non-negative integer, then ¬C, C u D, C t D,∀r.C, ∃r.C, ≥ n r.C and
≤ n r.C are concept expressions.

A general concept inclusion axioms is an expression C v D where C and
D are concepts. A terminology is a set of general concept inclusion and role
inclusion axioms.

The semantics of SHIQ is defined in terms of an interpretation I = (∆I , .I)
where .I is a function that maps every concept on a subset of ∆I and every
role on a subset of ∆I ×∆I such that for all concepts C and D and for roles
r where #M denotes the cardinality of M and (rI)+ the transitive closure of
rI we have:
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• >I = ∆I and ⊥I = ∅
• rI = (rI)+ for r ∈ R+ and r− = {(y, x)|(x, y) ∈ rI}
• (¬C)I = ∆I − CI , (C uD) = CI ∩DI and (C tD)I = CI ∪DI

• (∀r.C)I = {x|∀y.(x, y) ∈ rI ⇒ y ∈ CI}
• (∃r.C)I = {x|∃y.(x, y) ∈ rI ∧ y ∈ CI}
• (≥ n r.C)I = {x|#{y.(x, y) ∈ rI ∧ y ∈ CI} ≥ n}
• (≤ n r.C)I = {x|#{y.(x, y) ∈ rI ∧ y ∈ CI} ≤ n}

An interpretation satisfies a terminology T if CI ⊆ DI for all general concept
inclusions C v D in T and rI ⊆ sI for all role inclusion axioms r v s in T .
In this case we call I a model for T . A concept D subsumes a concept C in
T if C v D holds for all models of T . In the remainder of the paper we will
focus on the task of deciding whether a concept subsumes another one.

2.2 Distributed Description Logic

Distributed Description Logics as proposed in [20] provide a language for talk-
ing over sets of terminologies. For this purpose DDLs provide mechanisms for
referring to terminologies and for defining rules that connect concepts in dif-
ferent terminologies. On the semantic level, DDLs extend the notion of inter-
pretation introduced above to fit the distributed nature of the model and to
reason about concept subsumption across terminologies.

Let I be a non-empty set of indices and {Ti}i∈I a set of terminologies. We
prefix inclusion axioms with the index of the terminology they belong to (i.e.
i : C denotes a concept in terminology Ti and j : C v D a concept inclusion
axioms from terminology Tj). Note that i : C and j : C are different concepts.
Semantic relations between concepts in different terminologies are represented
in terms of axioms of the following form, where C and D are concepts in
terminologies Ti and Tj, respectively:

• i : C
v−→ j : D (into-rule)

• i : C
w−→ j : D (onto-rule)

These axioms are also called bridge-rules. An additional rule i : C
≡−→ j : D is

defined as the conjunction of the two rules above. A distributed terminology
T is now defined as a pair ({Ti}i∈I , {Bij}i6=j∈I) where {Ti}i∈I is a set of termi-
nologies and {Bij}i6=j∈I is a set of bridge rules between these terminologies.

The semantics of distributed description logics is defined in terms of a global
interpretation I = ({Ii}i∈I , {rij}i6=j∈I) where Ii is an interpretation for termi-
nology Ti as defined above and rij ⊆ ∆Ii ×∆Ij is a domain relation connect-
ing elements of the interpretation domains of terminologies Ti and Tj. We use
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rij(x) to denote {y ∈ ∆Ij |(x, y) ∈ rij} and rij(C) to denote
⋃

x∈C rij(x).

A distributed interpretation I satisfies a distributed terminology T if:

• Ii satisfies Ti for all i ∈ I

• rij(C
Ii) ⊆ DIj for all i : C

v−→ j : D in Bij

• rij(C
Ii) ⊇ DIj for all i : C

w−→ j : D in Bij

In this case we call I a model for T. A concept i : D subsumes a concept i : C
(i : C v D) if for all models of T we have CIi ⊆ DIi .

2.3 Modular Ontologies

We can now define our notion of a modular ontology in terms of Distributed
Description Logics. In fact, our notion of a modular ontology is a restricted
form of distributed terminology as defined above. The restrictions we impose
concern the architecture of the distributed terminology as well as the expres-
siveness of semantic relations between terminologies. These restrictions are
motivated by the aims of (1) providing an alternative to the standard notion
of import in OWL and (2) the goal of providing support for localized rea-
soning and maintenance of the modular ontology. In the following, we will
first discuss the architecture of a modular ontology and then introduce the
restrictions imposed on semantic relations.

2.3.1 Architecture

As described above, DDLs make a clear distinction between terminologies and
semantic mappings between them in terms of bridge rules, which in principle
are independent of the terminologies. This makes the model quite flexible;
for example, it permits to have different sets of mapping rules connecting the
same set of ontologies. In this way it is possible to encode different views on
how the terminologies relate to each other. In contrary to that, our aim is to
resemble the use of external knowledge in a terminology similar to the ability
of OWL to use concept and role names defined in different terminologies.
This view is different from the model of Distributed Description Logics as it
makes the semantic links to other models part of the terminology. Being part
of the terminology implies that there is only one way of connecting to these
external definitions which is assumed to be agreed on by the users of the local
terminology.

We achieve this localization of semantic relations by inventing the notion of
externally defined concepts in a terminology. We divide the set of concept
names in a terminology into internally defined concepts CI and externally
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defined concepts CE resulting into the following definition of the set of all
concept names C:

C = CI ∪ CE, CI ∩ CE = ∅ (1)

We consider externally defined concepts to be concept names linked to a con-
cept expression defined in another terminology using bridge rules. An external
concept definition in terminology Ti is an axiom of the form: i : C ≡ Tj : D
where C is a concept name in Ti, Tj is a terminology different from the one
in which the external concept is defined and D is a concept expression in Tj.
Note that although D is syntactically represented in Ti it actually represents
a concept in Tj. In particular the expression D is only allowed to contain con-
cepts defined in Tj. This definition is very close to the OWL mechanism of
using concept and role names from other name spaces in definitions.

We give external concept definitions a semantics in terms of distributed de-
scription logics by defining external concept definitions to be an alternative
notation for a pair of bridge rules:

i : C ≡ Tj : D ⇔ j : D
v−→ i : C ∧ j : D

w−→ i : C

Semantically, this is equivalent to

CI
i = rji(D

I
j ) (2)

The correspondence between external concept definitions and bridge rules al-
lows us to base our further investigations on the formal results that have been
established for distributed SHIQ terminologies.

2.3.2 Restricting Mapping Expressiveness

In Distributed Description Logics, there are no restrictions on the the an-
tecedent of a bridge rule—except that it has to be a valid concept of the
source terminology. In our framework, we restrict this freedom for the sake
of an easier maintenance of the semantic relations between terminologies.
HEINER:check meaning of sentence: We require the external concept
definition to be equivalent to a conjunctive query of arity one over concepts
and roles in the external terminology. The rationale for this choice is three-fold.
First of all, work on schema integration has shown that conjunctive queries
are well suited for describing complex mappings between conceptual schema
(see for example [23]). Secondly, as we will see in section 4 conjunctive queries
show a useful behavior with respect to predicting the impact of changes in
the external terminology on the local one. Besides this, a corresponding query
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language for the Web Ontology Langauge OWL is currently being developed
under the name OWL-QL [24]. Basing our mappings on conjunctive queries
will enable us to use this emerging standard for representing mappings between
terminologies on the syntactic level. Finally, there are methods for answering
conjunctive queries over terminologies as well as for deciding subsumption be-
tween conjunctive queries over terminologies that turn out to be useful in the
context of our work.

Horrocks and Tessaris describe an approach for translating conjunctive queries
into an equivalent concept expression [25]. The concept expression can be
classified into the knowledge base and standard DL inference methods can be
used to check whether an object is an instance of the concept corresponding to
the query expression or whether a query subsumes another one. This approach
makes use of the fact that binary relations in a conjunctive query can be
translated into existential restrictions in such a way that logical consequence
is preserved. A consequence of this result is that we can translate conjunctive
queries into concept expressions over the sublanguage of SHIQ containing
the following concept building operators (compare section 2.1):

C, D −→ >|⊥ |A |C uD | ∃R.C | ∃R−.C

In order to restrict the semantic correspondences between terminologies in
our model, we now only allow the concept expressions D in the definition of
external concepts to be valid concepts over terminology Tj with respect to
the sublanguage defined above. We denote such concepts as DQ and consider
external concept expressions of the form i : C ≡ j : DQ.

3 Reasoning in Modular Ontologies

The direct correspondence of our framework to Distributed Description Logics
allows us to base inference in modular ontologies on known results for the cor-
responding logics. In particular, we can provide completeness and complexity
for reasoning in modular ontologies. We extend the existing work on reason-
ing in DDLs with the notion of compilation of implied subsumption relations.
Specifically, we use reasoning methods for Distributed Description Logics to
derive subsumption relations between externally defined concepts in modules
and explicitly add the derived subsumption relations as axioms to the module.
The results of [21] guarantee that after this compilation step reasoning can be
performed locally without considering other modules unless there are changes
in the system.

In the following, we first briefly review basic definitions of reasoning in distrib-
uted description logics and prove that it has the same worst-case complexity
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as reasoning in the local logics used. We then present the compilation of sub-
sumption relations and discuss conditions for completeness and consistency.

3.1 Reasoning based on DDLs

Reasoning in DDLs differs from reasoning in traditional Description Logics by
the way knowledge is propagated between T-Boxes by certain combinations
of bridge rules. The simplest case in which knowledge is propagated is the
following:

i : A
w−→ j : G, i : B

v−→ j : H, i : A v B

j : G v H
(3)

This means that the subsumption between two concepts in a T-Box can de-
pend on the subsumption between two concepts in a different T-Box if the
subsumed concepts are linked by the onto- and the subsuming concepts by an
into rule. In languages that support disjunction, this basic propagation rule
can be generalized to subsumption between a concept and a disjunction of
other concepts in the following way:

i : A
w−→ j : G, i : Bk

v−→ j : Hk(1 ≤ k ≤ n), i : A v
n⊔

k=1
B

j : G v
n⊔

k=1
Hk

(4)

It has been shown that this general propagation rule completely describes
reasoning in DDLs that goes beyond well known methods for reasoning in
Description Logics. To be more specific, adding the inference rule in equation 4
to existing tableaux reasoning methods lead to a correct and complete method
for reasoning in DDLs. A corresponding result using a fixed point operator is
given in [21]. Based on these results, we can define a general inference rule for
the case of modular ontologies in the following way:

i : A ≡ j : G, i : Bk ≡ j : Hk(1 ≤ k ≤ n), i : A v
n⊔

k=1
B

j : G v
n⊔

k=1
Hk

(5)

There are a number of consequences of this result for reasoning in modular
ontologies.
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Correctness and Completeness From the basic propagation rule, we can
see that subsumption between externally defined concepts follows from sub-
sumption of their definitions in the (same) external module. This is because
each external concept definition corresponds to an into and an onto rule be-
tween the concept name and its definition. The language we consider is SHIQ
and therefore we have to consider the general propagation rule because we have
disjunction in our language. This means that it is not enough to simply check
whether subsumption between the definitions of two externally defined con-
cepts in the external module is complete, but we have to consider all subsets
of the set of external concepts. We will discuss this point in more detail in the
next section.

Complexity As we reduce reasoning in modular ontologies to reasoning in
DDLs with SHIQ as a local language, complexity results can be derived from
known results on reasoning in SHIQ and Distributed Description Logics.

Theorem 1 (Complexity) Reasoning in modular ontologies is Exp-Time
Complete.

Proof 1 We show that reasoning in modular ontologies has the same com-
plexity as reasoning in the local language. As reasoning in SHIQ is Exp-Time
Complete [26] this establishes the result.

• Reasoning in modular ontologies is at least as hard as reasoning in SHIQ:
in the extreme case a modular ontology consists only of a single module
without external concepts, thus reasoning in modular ontologies is equivalent
to reasoning in SHIQ

• Reasoning in modular ontology is not harder than reasoning in SHIQ: we
reduce reasoning in modular ontologies to reasoning in DDLs. There ex-
ists a reduction of reasoning in DDLs with SHIQ as a local language to
SHIQ. Both reductions are linear in the size of the resulting terminology
and therefore do not change the complexity class.

This result shows that the complexity of reasoning in modular ontologies is
not worse than reasoning in the web ontology language. Using the reduction
of DDLs to SHIQ it is even possible to use existing OWL reasoners for rea-
soning with modular ontologies. Although practical implementations of OWL
reasoners have shown that good average case performance can be achieved,
the worst case complexity is still very high and asks for further optimization.
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3.2 Compilation and Integrity

Existing reasoners for expressive Description Logics are highly optimized with
respect to the deciding subsumption in the context of a single T-Box. Ser-
afini and Tamilin present a distributed reasoning system that extends exist-
ing reasoners to distributed T-Boxes [27]. In theory, this system is complete
with respect to the propagation rules described above and has—as we have
argued—the same worst-case complexity. In practice, however, reasoning with
multiple, possible distributed modules, brings some new problems with respect
to completeness and reasoning performance. First of all the completeness of
the distributed reasoners depends on the availability of local reasoners for all
T-Boxes in the system. In a loosely coupled network without central control
this cannot always be guaranteed as network nodes can be unreachable or even
leave the network. In this case, necessary subsumption tests cannot be per-
formed at these nodes leading to a possible incompleteness. Another problem
currently not addressed in the work of Serafini and Tamilin are performance
problems due to communication costs between the different nodes in the sys-
tem. Work in the area of distributed databases has shown that communication
costs often become serious bottlenecks in distributed systems.

In order to overcome these problems we propose to compute subsumption re-
lations between external concepts offline and store them as explicit axioms
in the local ontologies. If we compute these relations using the reasoner men-
tioned above we have the guarantee that reasoning about subsumption in each
module can be done without caring about the availability of other nodes in
the network. This also has the advantage that no communication costs occur
as part of online reasoning.

Of course these runtime benefits have their price in terms of computational
complexity of the compilation step. The completeness of the propagation rule
in expression 4 tells us that to be independent from other modules we only have
to consider subsumption relations between externally defined concepts, as only
such subsumption relations can be propagated from outside. What we have
to check is subsumption between each external concept and the disjunction of
all combinations of other external concepts. For a local module, this process
is defined in algorithm 1.

If we denote the number of external concepts CE as n, the worst-time com-
plexity of the compilation method is O(n · 2(n−1)) as can easily be seen from
the algorithm. As deciding the subsumption relation in the conditional state-
ment of the algorithm itself is already Exp-Time Complete and this test has
to be carried out an exponential number of times with respect to the num-
ber of external concepts, compiling all implied statements is computationally
very expensive. We therefore do not want to perform the compilation step
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Algorithm 1 compile

Require: An T-Box T with external concepts CE

for all c ∈ CE do
candidates := P(CE − {c})
for all d ∈ candidates do

if I |= c v ⊔
e∈d

e then

T := T ∪ {c v ⊔
e∈d

e}
end if

end for
end for

more often than absolutely necessary to guarantee that local reasoning is still
complete.

While the results of Serafini and others guarantee that local reasoning is cor-
rect and complete at the time the compilation is carried out, a problem occurs
when changes are made to the system. Changes in the definitions of the exter-
nal concepts, but also changes in the definitions of concepts and relations in
other modules can make local reasoning incomplete or inconsistent. In order
to prevent situations in which local reasoning is not correct and complete any
more we introduce the notion of integrity of a modular ontology.

Definition 1 (Integrity) Let T = ({Ti}i∈I , {Bij}i6=j∈I) be a modular ontol-
ogy with interpretation I = ({Ii}i∈I , {rij}i6=j∈I) then we say that integrity holds
for T if for all T ′

i = compile(Ti) with interpretation I ′i we have:

I ′i |= C v D ⇔ I |= i : C v D

for any pair of legal concept expressions C and D in T ′
i .

The notion of integrity gives us a criterion for deciding whether compiled re-
sults are still valid. What the definition does not provide is an operational
account for checking it. A direct use of the definition would involve a com-
plete check of all derivable subsumption relations. As we have argued above
this approach is extremely expensive. In the following, we therefore present a
heuristic approach for checking integrity in modular ontologies that is driven
by changes made to the ontology. The approach is able of determining sit-
uations in which changes to a modular ontology do not affect integrity and
therefore no re-compilation is necessary.
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4 Evolution Management

As we have argued above, guaranteeing integrity of compiled subsumption re-
lations is the main problem in modular ontologies. In principle, all compiled
subsumption relations have to be recomputed to test whether they are still
valid in the given state of the system. This of course means sacrificing the ad-
vantages of the compilation approach in terms of local reasoning and reduced
complexity. Fortunately, we can do better than checking all compiled axioms
each time we perform reasoning.

The first possible improvement is to move away from an active checking for
changes towards a mechanism where each local module remembers and records
changes made to it. We can also think of a system where individual modules
actively notify other modules of changes to its local knowledge. This frees
us from doing a complete check of the compiled knowledge and allows us to
concentrate on these parts of the knowledge that actually were subject to
changes.

The second improvement is in terms of an analysis of the impact a change in
another module actually has on compiled knowledge. This is important as in
existing scenarios it turns out that a large part of the changes to not really
affect the logical theory but are rather changes to the syntactic representation
or changes in the naming of concepts and relations. While the latter have to
be propagated to the definitions of the external concepts, they do not actually
affect the compiled subsumption relations. Further, even if the logical theory
underlying the ontology is affected by a change, this does not mean that it
affects the compiled subsumption relations. This means that we have to find
ways to distinguish changes that do have an impact on compiled relations
from those that do not have an impact. In fact, the choice to restrict the lan-
guage admissible in the definitions of external concepts allows us to precisely
characterize these kinds of changes.

In the following, we concentrate on the analysis of the impact of changes on
the validity of compiled subsumption relations. We first give a characteriza-
tion of harmless (changes that do not have an effect on compiled subsumption
relations) and harmful (changes that do have a potential effect on compiled
subsumption relations) changes. We then present mechanisms for classifying
changes as harmless or harmful based on a syntactic analysis of changes made
to an ontology. Finally, we present a simple mechanism that uses this infor-
mation to decide whether the knowledge in a module has to be re-compiled.
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4.1 Determining harmless changes

As compiled knowledge reflects subsumption relations between a query con-
cept and a disjunction of other query concepts a harmless change is a set
of modifications to an ontology that does not change these subsumption re-
lations. Finding harmless changes is therefore a matter of deciding whether
the modifications affect the subsumption relation between a query concept
and a disjunction of other query concepts. It is quite obvious that a complete
decision procedure for this problem has the same complexity as general sub-
sumption reasoning in the modular ontology and does therefore not improve
the situation. For this reason, we propose a sound but incomplete method
that abstracts from the detailed definition of concepts and uses the semantic
relation between the old and the new version of a concept in the following
way.

The method considers every concept and relation in an ontology module that
has been subject to a change. Assuming that C represents the concept under
consideration before and C ′ the concept after the change, there are four ways
in which the old version C may relate to the new version C ′:

(1) the meaning of a concept is not changed: C ≡ C ′ (e.g. because the change
was in another part of the ontology, or because it was only syntactical);

(2) the meaning of a concept is changed in such a way that concept becomes
more general: C v C ′;

(3) the meaning of a concept is changed in such a way that concept becomes
more specific: C ′ v C;

(4) the meaning of a concept is changed in such a way that there is no
subsumption relationship between C and C ′.

The same is true for relations that are subject to change. The next question
is how these different types of changes influence the interpretation of query
concepts. We take advantage of the fact that there is a very tight relation
between changes in concepts of the external ontology and implied changes to
the query concepts using these concepts:

Lemma 1 (monotonicity of effect) Let C ≡ Tj : D an external concept
expression. let further be c(D) be the set of all concept names and r(D) the
set of all relation names occurring in D.

• C’ is more general than C if there is an x ∈ c(D) ∪ r(D) such that x’ is
more general than x.

• C’ is more specific than C if there is an x ∈ c(D) ∪ r(D) such that x’ is
more specific than x.

Note that the implication does not hold in the other direction.
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We can exploit this relation between the interpretation of external concepts
and the concept names in their definitions in order to identify the effect of
changes in the external ontology on the subsumption relations between differ-
ent query concepts. First of all, the above result directly generalizes to multiple
changes with the same effect, i.e. a query Q becomes more general (specific)
or stays the same if none of the elements in c(Q)∪ r(Q) become more specific
(general). Further, the subsumption relation between an external concept C
and the disjunction of other external concepts does not change if all concepts
in the disjunction become more general or if the concept C becomes more
specific. Combining these two observations, we derive the following character-
ization of harmless change.

Theorem 2 (harmless change) Let C0 ≡ Tj : D0, C1 ≡ Tj : D1, ...Cm ≡
Tj : Dm be external concept definitions such that I |= C0 v C1 t ...tCm, then
a change is harmless with respect to the subsumption relation above if:

• X ′ v X for all X ∈ c(D0) ∪ r(D0),
• X ′ w X for all X ∈ c(Di) ∪ r(Di), i = 1, ..., m

Note again that the implication does not hold in the opposite direction.

The theorem provides us with a correct but incomplete method for deciding
whether a change is harmless given that we know the semantic relation between
the old and the new definition of concepts and relations that were subject to
changes. This method is a very basic version of the underlying idea of assessing
the impact of changes. We can think of more complete versions of the method
that uses a deeper analysis of the structure of the concept expressions involved.
Our experiences are, however, that this basic heuristic already covers most
cases that occur in practice, especially, because the definition above includes
cases where most of the concepts stay unchanged.

4.2 Characterizing changes

Now that we are able to determine the consequence of changes in the concept
hierarchy on the integrity of the mapping, we still need to know what the ef-
fect of specific modifications on the interpretation of a concept is (i.e. whether
it becomes more general or more specific). As our goal is to determine the
integrity of mappings without having to do classification, we describe what
theoretically could happen to a concept as result of a modification in the on-
tology. To to so, we have listed all possible change operations to an ontology
according to the OWL 1 knowledge model in the same style as done in [28].

1 See http://www.w3.org/TR/owl-features/
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The list of operations is in principle extendable to other knowledge models.

The list of change operations consists of two types of operations: (1) atomic
change operations, such as add range restriction or delete subconcept relation
and (2) complex change operations, which consist of multiple atomic oper-
ations and/or incorporate some additional knowledge. Complex changes are
often more useful to specify effects than the atomic changes, as incorporate
some of the semantic consequences. For example, for operations like concept
moved up, or domain enlarged, we can specify the effect more accurately than
for the atomic operations superconcept changed and domain modified. 2 Atomic
changes can be detected at a structural level, i.e. by comparing the old an new
definition of a concept, and are therefore computationally cheap with a linear
complexity. To identify complex changes, we also need to take some of the
semantic relations in the ontology into account. This makes the complexity
of the identification of complex changes potentially as bad as determining
subsumption in SHIQ, i.e. Exp-Time Complete. However, in practice many
complex changes can be detected at a structural level, e.g. by looking at ex-
plicitly stated subclass relations.

Table 1 contains some examples of operations and their effect on the classi-
fication of concepts. The table only shows a few examples, although our full
ontology of change operations contains around 120 operations. This number
is not fixed, as new complex changes can be defined. A snapshot of the change
ontology can be found online 3 .

The specification of effects is not complete, in the sense that it describes
“worst-case” scenarios, and that for some operations the effect is “unknown”
(i.e. unpredictable). In contrast to [30] who provide complete semantics of
changes, we prefer to use heuristics in order to avoid expensive reasoning about
the impact of changes. By restricting the change detection to changes that
can be detected at a structural level, the complexity of our change detection
heuristic is linear.

4.3 Update management

With the elements that we described in this section, we now have a complete
procedure to determine whether compiled knowledge in an ontology module
is still valid when the external ontology modules are changed. The complete

2 For a complete list, see [29].
3 http://ontoview.org/changes/2/1
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Table 1
Some modifications to an ontology and their effects on the classification of concepts
in the hierarchy.

Operation Effect

Add a role restriction to concept C C: Specialized

Complex: change the superconcept of concept C to a concept
lower in the hierarchy

C: Specialized

Complex: restrict the range of a role R (effect on all C that have
a restriction on R)

R: Specialized,
C: Specialized

Remove a superconcept relation of a concept C C: Generalized

Change the concept definition of C from primitive to defined C: Generalized

Add a concept definition A C: Unknown

Complex: add a (not further specified) subconcept A of C C: No effect

Define a role R as functional R: Specialized

procedure is as follows. For each external concept C:

(1) determine the changes that are performed in the external ontology (e.g.
by using the record of changes);

(2) heuristically determine the effect of the changes on the interpretation
of the concepts and relations (where multiple changes to a concept or
relation that have an opposite effect lead to the effect “unknown”);

(3) create a list of all concept and relation names that occur in the external
concept expression D;

(4) check whether all concepts and relation in this list are unchanged or
became more specific;

(5) create a list of all concept and relation names that occur in external
concepts expressions other than D;

(6) check whether all concepts and relation in this list are unchanged or
became more general.

In cases where we cannot guarantee that integrity is preserved, we recompute
and re-compile the implied subsumption statements. We thus restore integrity
and make correct local reasoning possible.

We describe the procedure in a more structured way in Algorithm 2. The
algorithm triggers a (re-)compilation step only if it is required in order to re-
sume integrity. Otherwise no action is taken, because the previously compiled
knowledge is still valid. In principle, all the steps can be automated. A tool
that helps to automate steps 1 and 2 is described in [31]. This tool will com-
pare two versions of an ontology and derive the list of change operations that
is necessary to transform the one into the other.
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Algorithm 2 Update

Require: Ontology Module M
Require: Ontology Module Mj

for all compiled axioms C1 v D1 t · · · tDm in M c do
for all X ∈ c(C) ∪ r(C) do

if effect on X is ’generalized’ or ’unknown’ then
M c := Recompile(M, Mj)

end if
end for
for all Di, i = 1, · · · , m do

for all X ∈ c(Di) ∪ r(Di) do
if effect on X is ’specialized’ or ’unknown’ then

M c := Recompile(M, Mj)
end if

end for
end for

end for

The worst-time complexity of the this update procedure once the effects of
changes are known is linear in the number of concept and relation names
occurring in compiled subsumption statements (in the worst case the effect
of a change on every concept and relation name in the compiled axioms has
to be checked) . In practice, we expect the number of compiled axioms to be
relatively small leading to a quite efficient procedure.

5 Application in a case study

In order to support the claims made about the advantage of modular ontolo-
gies, we applied our model in a small case study that has been carried out in
the course of the WonderWeb project 4 . Our main intention was to show that
the update-management procedure presented in the last section can be used
to avoid the computation of subsumption relations in many cases. For this
purpose, we defined a small example ontology using mappings to an ontology
in the human resource (HR) domain. We used the changes that occurred in
the HR ontology during the different steps of the case study and determined
the impact on our example ontology. Besides this, the case study provides us
with examples of implied subsumption some of which are non-trivial but likely
to occur in real-life situations.

4 See http://wonderweb.semanticweb.org.
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5.1 The WonderWeb case study

WonderWeb is a EU/IST project that ran from 2002 till 2004. The aim of
the project was to develop and demonstrate the infrastructure required for
the large-scale deployment of ontologies as the foundation for the Semantic
Web. In the context of this project the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [32] has been developed. DOLCE is the
first module in a library of foundational ontologies. The taxonomy of the most
basic categories assumed in DOLCE consists of concepts such as “location”,
“social agent”, event” and “region”. One of the roles of foundational ontologies
in general and DOLCE in particular is to clarify hidden assumptions under-
lying existing ontologies or linguistic resources by manually mapping existing
categories into the categories defined in the foundational ontology [33]. In-
consistencies in the combined ontology point to modeling errors or wrong
assumptions in the original ontology. Solving the inconsistencies will improve
the quality of the initial ontology. The methodology around DOLCE describes
a three step procedure for mapping existing ontologies to DOLCE: alignment,
refinement and tidying.

The case study that has been carried out in the project integrates different
methods in the life-cycle of an ontology that is used on the Semantic Web,
i.e. ontology creation, ontology refinement and ontology deployment. The case
study starts from an existing database schema in the human resource (HR)
domain. A first version of an ontology is created by a tool that automatically
converts a schema into an ontology [34]. In the next phase, the quality of the
ontology is improved by manually mapping this ontology to DOLCE. First,
the HR ontology is aligned with DOLCE, and in several successive steps the
resulting ontology is further refined. During this process, the ontology changes
continuously, which causes problems when other ontologies refer to definitions
in the evolving ontology. Therefore, in our case study, evolution management
is important during the entire life-cycle of the ontology-development process.

The original HR ontology combined with DOLCE is referred to as the DOLCE+HR
ontology. On order to demonstrate the update management procedure, we cre-
ated another ontology (which we call the local ontology) that uses terms and
definitions from the evolving DOLCE+HR ontology (the external ontology).
The local ontology defines the concept FulltimeEmployee with a superconcept
Employee and two subconcepts DepartmentMember and HeadOfDepartment,
using terms from the DOLCE+HR ontology.

The specific problem in our case is that the changes in the DOLCE+HR on-
tology could affect the reasoning in the local ontology. We want to be able
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to predict whether or not the reasoning in the local ontology is still valid for
specific changes in the external ontology.

The evolution of the DOLCE+HR ontology consisted of several steps. Each
of these steps involves some typical changes. We will briefly summarize them
and show some changes that are typical for a specific step.

• In the first step, the extracted HR ontology is aligned with the DOLCE
foundational ontology, i.e. the concepts and roles in the HR ontology are
connected to concepts and roles in the DOLCE ontology via subsumption
relations. For example, the concept Departments from the HR ontology is
made a subconcept of Social-Unit in DOLCE.

• The refinement step involves a lot of changes. Some role restrictions are
added, and some additional concepts and roles are created to define the HR
concepts more precisely. For example, the concept Administrative-Unit is
introduced as a new subconcept of Social-Unit, and the concept Departments
is made a subconcept of it. Also, the range of the role email is restricted
from Abstract-Region to its new subconcept Email.

• In the next step, a number of concepts and roles are renamed to names
that better reflect their meaning. For example, Departments is renamed to
Department (singular), and the two different variants of the role manager-id
are renamed to employee-manager and department-manager.

• In the final step, the tidying step, all roles and concepts that are not nec-
essary any more are removed and transformed into role restrictions. For
example, the role employee-email is deleted and replaced by an existen-
tial restriction in the concept Employee on the role abstract-location to the
concept Email.

5.2 Modularization in the case study

If we now consider the modularization in the case study, we have a local
ontology with a concept hierarchy that is built up by the following explicitly
stated subsumption relations (see Fig. ?? again):

FulltimeEmployeevEmployee

DepartmentMembervFulltimeEmployee

HeadOfDepartmentvFulltimeEmployee

This ontology introduces FulltimeEmployee as a new concept, not present in
the case study ontology. Consequently, this concept is only defined in terms
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of its relation to other concepts in the local ontology.

All other concepts are externally defined in terms of ontology based queries
over the case study ontology. The first external definition concerns the concept
Employee that is equivalent to the “Employee” concept in the case study
ontology. This can be defined by the following trivial view:

Employee ≡ HR : Employee(x)

Another concept that is externally defined is the “head of department” con-
cept. We define it to be the set of all instances that are in the range of the
“department manager” role. The definition of this view given below shows
that our approach is flexible enough to define concepts in terms of relations.

HeadOfDepartment ≡ HR : ∃y[departmentManager(y, x)]

An example of a more complex external concept definition is the concept
DepartmentMember, which is defined using a query that consists of three con-
juncts, claiming that a department member is an employee that is in the
“has-member” role with a department.

DepartmentMember≡ HR : ∃y [Department(y) ∧
hasmember(y, x) ∧
Employee(x)] (6)

5.2.1 Implied subsumption relations

If we now consider logical reasoning about these external definitions, we im-
mediately see that the definition of employee subsumes the definition of De-
partmentMember, as the former occurs as part of the definition of the latter.

|= DepartmentMembervEmployee (7)

At a first glance, there is no relation between the definition of a head of de-
partment and the two other statements as it does not use any of the concept
or role names. However, when we use the background knowledge provided by
the case study ontology we can derive some implied subsumption relations.
The reasoning is as follows. Because the range of “department manager” is
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set to “department” and the domain to “employee”, the definition of “Head-
ofDepartment” is equivalent to:

∃y[Department(y) ∧ departmentManager(y, x) ∧ Employee(x)]

As we further know that manager is a subconcept of employee and “depart-
mentManager” is a subrole of “has-member”, we can derive the following sub-
sumption relation between the externally defined concepts:

|= HeadOfDepartmentvEmployee (8)

|= HeadOfDepartmentvDepartmentMember (9)

When the relations 7–9 are added to the local ontology, it possible to do
subsumption reasoning without having to access the DOLCE+HR ontology
any more.

5.3 Updating the models

We will now illustrate that the conclusions of the procedure are correct by
studying the impact of changes mentioned in the problem statement.

5.3.1 Example 1: the employee concept

The first change we observed is the removal of relations from the employee
concept. Our rules tell us that this change makes the new version more general
compared to its old version:

Employee v Employee′

According to our procedure, this should not be a problem because employee
is in the “subsuming list”.

When we analyze this change, we see that it has an impact on the definition of
the concept “DepartmentMember” as it enlarges the set of objects allowed to
take the first place in the has-member relation. This leads to a new definition of
DepartmentMember′ with DepartmentMember v DepartmentMember′. As
“DepartmentMember” was already more general than “HeadOfDepartment”
and the employee concept is not used in the definition of the latter the, implied
subsumption relation indeed still holds.

25



5.3.2 Example 2: the department-manager relation

The second example, we have to deal with a change affecting a relation that is
used in en external definition. The relation department-manager is specialized
by restricting its range to the concept “manager” (which is a subconcept of
employee) making it a subrelation of its previous version:

department−manager w department−manager′

Again, this is harmless according to our procedure, as department manager is
in the ”subsumed list”.

The analysis show that this change has an impact on the definition of the
concept “HeadOfDepartment” as it restricts the allowed objects to the more
specific concept “Manager”. The new definition HeadOfDepartment′ is more
specific that the old one: HeadOfDepartment′ v HeadOfDepartment. As
the old version was already more specific than the definition of “Department-
Member” and the “department-manager” relation is not used in the definition
of the latter the implied subsumption is indeed still valid.

The situation is different if the range of the “department-manager” relation
is changed to the concept “person” which is more general than “employee”.
In this case the definition of the concept “department-manager” also becomes
more general. This means that we cannot guarantee that it is still subsumed
by “DepartmentMember”. In this case we have to recompute and compile the
implied subsumption relations in order to guarantee integrity.

5.3.2.1 Example 3: the department concept The different changes of
the definition of the “department” concept left us with no clear idea of the
relation between the old and the new versions. In this specific case, however, we
can still make assertions about the impact on implied subsumption relations.
The reason is that the concept occurs in both definitions. Moreover, it plays
the same role, namely restricting the domain of the relation that connects
an organizational unit with the set of objects that make up the externally
defined concept. As a consequence, the changes have the same impact on both
definitions, thus not invalidating the implied subsumption relation.
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6 Summary

In this article, we discussed an infrastructure for the representation of and
reasoning with modular ontologies. The intention was to enhance the existing
semantic web infrastructure with notions of modularization that have been
proven useful in other areas of computer science, in particular in software
engineering. We defined a set of requirements for modular ontologies that arise
from expected benefits such as enhanced re-use and more efficient reasoning.
Taking the requirements of loose coupling, self containment and integrity as a
starting point, we defined a framework for modular ontologies providing the
following contributions to the state of the art in ontology representation for
the semantic web:

(1) We presented a formal model for describing dependencies between dif-
ferent ontologies. We proposed conjunctive queries for defining concepts
using elements from another ontology and presented a model-based se-
mantics in the spirit of Distributed Description Logics that provides us
with a notion of logical consequence across different ontologies.

(2) We compared our model with the existing standard, i.e. the web ontology
language OWL and showed that the OWL import facilities can easily be
captured as a special case in our model. We further showed that our
model provides additional expressiveness in particular with respect to
modeling relations. In order to get a better idea of the improvements
of our model over OWL, we investigated the formal properties of inter
module mappings, their impact on reasoning and their intuition.

(3) We described a method for detecting changes in an ontology and for
assessing their impact. The main feature of this method is the derivation
of conceptual changes from purely syntactic criteria. These conceptual
changes in turn provide input for a semantical analysis of the effect on
dependent ontologies, in particular on the validity of implied subsumption
relations. We applied the method in a case study in the Wonder Web
project and were able to determine the impact of changes without logical
reasoning.

7 Discussion

There are three major questions connected to the approach for reasoning and
managing change in modular ontologies proposed in this article. The first is
feasibility in terms of computational complexity. As mentioned above, we use
a heuristic approach to tackle this problem, which raises the question about
the adequacy of the heuristics used. We argued that we chose a trade-off that
works well in the context of OWL and typical semantic web applications.
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This focus on a particular kind of representations finally raises the question
of generality of the approach. We discuss these three basic questions in the
following.

7.1 Feasibility

Reasoning in modular ontologies is complex. We have shown that the com-
plexity is essentially the same as for reasoning in Classical Description Logics
which are the basis for OWL. We cannot escape this complexity, but we can
move parts of the reasoning effort offline by compiling implied subsumption
relations as described in Section 3.2. This approach, however, is only feasible
if there are phases where the offline computation necessary to compile the im-
plied relations can be done without affecting the performance of the system.
Typically, such computations are done ‘overnight’ when the system load can
be assumed to be low. An alternative for situations where this approach is
not possible is to do the compilation on the fly. In particular, we can com-
pile implied subsumption relations whenever they are computed in order to
answer a user query to the system. This kind of ‘lazy compilation’ has the
advantage that the enormous effort for compiling implied knowledge is done
as part of the normal reasoning process. In the beginning, users will not ben-
efit much from this approach, but the time savings increase with each query
answered. In this way, we also prevent compiling knowledge that is never used.

The main problem connected with the compilation approach, which is also
a central aspect of this paper is the integrity of the compiled knowledge. In
general compilation approaches only pay off if the computation time saved by
being able to use compiled knowledge is not larger than the effort of updating
the compiled knowledge. This means, that compilation only makes sense in
rather stable systems. In principle, we can assume that knowledge on the
terminological level as it is represented in ontologies is normally more stable
than instance data as normally found in databases. While changes to ontologies
will occur less frequently they can still have a significant impact on the system.
For this reason, our work focussed on heuristics for efficiently updating the
system when changes occur. In this context, the feasibility of the approach
relies on the adequacy of the heuristics chosen.

7.2 Adequacy

Our method for detecting harmful changes is a conservative one. We basically
identify changes that are obviously not harmful and refrain from updating
when only such changes occurs. The criterion used for this purpose is a rather
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weak one as we do not consider the specific changes made to a concept but
restrict our analysis to the semantic relation between the old and the new
version of the concept definition. The advantage of this choice is the efficiency
of the approach as the criterion for harmless changes can be checked in lin-
ear time with respect to the number of concept names involved. We further
weaken the method by not actually computing the semantic relation between
the old and the new version of the concept, but rather determine the relation
based on a set of change operations determined by syntactic analysis. This
method also constitutes an incomplete heuristic as for some changes, we can-
not determine the relation between the old and the new version. Again, the
advantage of this choice lies in the efficiency of the approach, because it allows
us to live completely without Description Logic reasoning.

The question that arises is whether the degree of incompleteness of our ap-
proach is justified. Currently there are no experimental results that support
the usefulness of the heuristics, however, it is clear that the heuristics cover
a wide range of relevant cases. On the level of determining the semantic rela-
tion between the versions, the library of change operations covers all possible
change operations and most of them have a known effect that can be exploited
in our approach. The cases in which the effect is not know can be assumed
to be the hard cases that will always require complete reasoning independent
of the heuristics used. For this reason, we believe that we cannot be much
better on this level without falling back to classical subsumption reasoning.
On the level of determining harmless change, the heuristics used is quite weak
as well. In particular we claim that a change is only harmless if all concepts
and relations satisfy certain properties. This can certainly be relaxed if we
invest more time in the analysis of the actual definitions of the concepts in-
volved. For example, changes in concepts that occur in both, the subsumed
and the subsuming concepts are not relevant due to the monotonicity of the
effect. We could also try to determine which parts of the definitions actually
contributes to the subsumption proof and consider changes in other parts of
the definitions as harmless as well. These improved heuristics still fit into the
approach proposed and are subject of future work. For the time being, we
conclude that the general mechanisms are in place and that the heuristic de-
scribed in this paper already covers many relevant cases as we show in the
examples from the WonderWeb case study. In principle, the choice of the best
heuristic will rely on the specific application scenario and in particular on the
actual expressiveness used in the models.
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7.3 Generality

A final point for discussion is the generality of the approach described. Through-
out this paper, we based our discussions on Description Logics as a represen-
tation language for ontologies, Distributed Description Logics for providing
the semantics of mappings as well as the equivalent of conjunctive queries for
describing relations between different modules. All of these choices are care-
fully made and are motivated by practical as well as theoretical considerations.
Probably the most uncontroversial choice is the one for Description Logics for
encoding ontologies. In the context of semantic web research, Description Log-
ics have become the primary language for describing terminological knowledge
mostly in terms of the Web Ontology Language OWL. Our approach covers
most of the expressiveness of OWL-DL with the exception of nominals. As
a result, most existing OWL ontologies will fit in our framework and could
easily be turned into modular ontologies by adding external concepts.

A choice that is less obvious is Distributed Description Logics as a basis for the
semantics of mappings. In a recent survey, we compared different approaches
for describing mapping semantics [35]. One result of this comparison was that
Distributed Description Logics provide the highest degree of de-coupling be-
tween different T-Boxes. This is important for our purposes as we want to
support localized reasoning. A generalization of Distributed Description Log-
ics in terms of a distributed version of first order logic has been described
by Serafini and Ghididi [36]. We could have chosen this more general frame-
work as the basis for our work, however, the drawback of this is the lack of
existing reasoning methods. Distributed Description Logics come with a well
investigated and implemented proof system that can be used to implement
our approach.

The most discussable choice is to restrict the language that can be used to
define external concepts. The framework of Distributed Description Logic al-
lows us to use arbitrary SHIQ expressions in the definitions. A corresponding
more general approach would have the same properties with respect to logical
consequence, compilation and local reasoning. The restriction to the equivalent
of conjunctive queries was motivated by the importance of the monotonicity
property for the definition of update heuristics. This means that external con-
cepts can be defined using a more expressive language. This, however, would
come at the price that implied subsumption relations concerning this concept
would have to be recomputed every time a change occurs. We believe that
the restriction proposed in this paper is reasonable as it allows the use of up-
date heuristics and also resembles view-based information integration, which is
the dominant approach for describing mappings between database schemata,
which also use conjunctive queries for describing mappings.
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