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Abstract. We study the problem of Secure Multi-party Computation
(SMC ) in a model where individual processes contain a tamper-proof
security module, and introduce the TrustedPals framework, an efficient
smart card based implementation of SMC for any number of participat-
ing entities in such a model. Security modules can be trusted by other
processes and can establish secure channels between each other. How-
ever, their availability is restricted by their host, that is, a corrupted
party can stop the computation of its own security module as well as
drop any message sent by or to its security module. We show that in
this model SMC can be implemented by reducing it to a fault-tolerance
problem at the level of security modules. Since the critical part of the
computation can be executed locally on the smart card, we can compute
any function securely with a protocol complexity which is polynomial
only in the number of processes (that is, the complexity does not depend
on the function which is computed), in contrast to previous approaches.

1 Introduction

Motivation. The problem of Secure Multi-party Computation (SMC, sometimes
also referred to as Secure Function Evaluation), is one of the most fundamental
problems in security. The setting is as follows: a set of n parties jointly wants
to compute the result of an n-ary function F . Every party provides its own
(private) input to this function but the inputs should remain secret to the other
parties, except for what can be derived from the result of F . The problem is
easy to solve if you assume the existence of a trusted third party (TTP) which
collects the inputs, computes F and distributes the result to everyone. However,
the problem is very challenging if you assume that there is no TTP available and
parties can misbehave arbitrarily, that, they can send wrong messages or fail to
send messages at all. Still, the protocol must correctly and securely compute F
as if a TTP were available.



Having been initially proposed by Yao in 1982 [29], it got its first solution
only in 1987, when Goldreich, Micali and Wigderson [16] showed that in a syn-
chronous system with cryptography a majority of honest processes can simulate
a centralized trusted third party. This was done by transforming the function F
into a computation over a finite field and then showing that addition and mul-
tiplication in this finite field could be implemented securely using secret sharing
and agreement protocols. It was also shown that a majority of honest processes
was necessary for SMC.

All existing general solutions to SMC are based on the original idea of Goldre-
ich, Micali and Wigderson [16]. Hence, the message complexity always depends
on the function that is computed. For example, the most efficient solution to
SMC we are aware of [18] requires communicating O(m · n3) field elements (m
is the number of multiplication gates in F ) and at least O(n2) rounds of com-
munication (in fact, the round complexity also depends on F ). Thus, despite
solutions, many practitioners have been prevented to attempting to implement
general SMC due to lack of efficiency.

Recently, there has been an increasing interest in SMC which probably stems
from the growing importance and the difficulty to implement fault-tolerance in
combination with security in today’s networks. In fact, in the concluding remarks
on the COCA project, Zhou, Schneider and van Renesse [30] call to investigate
practical secure multi-party computation.

Related Work. In 2003, MacKenzie, Oprea and Reiter [21] presented a tool
which could securely compute a two-party function over a finite field of a specific
form. Later, Malkhi et al. [22] presented Fairplay, a general solution of two-
party secure computation. Both papers follow the initial approach proposed
by Goldreich, Micali and Wigderson [16], that is, they make extensive use of
compilers that translate the function F into one-pass boolean circuits. Iliev and
Smith [19] report in yet unpublished work on performance improvements using
trusted hardware. In this paper we revisit SMC in a similar model but using a
different approach.

The approach we use in this paper was pioneered by Avoine and Vaudenay
[4]. It assumes a synchronous model with no centralized TTP, but the task of
jointly simulating a TTP is alleviated by assuming that parties have access to
a local security module (Avoine and Vaudenay [4] call this a guardian angel).
Recently, manufacturers have begun to equip hardware with such modules: these
include for instance smart cards or special microprocessors. These are assumed
to be tamper proof and run a certified piece of software. Examples include the
Embedded Security Subsystem within the recent IBM Thinkpad or the IBM
4758 secure co-processor board [10]. A large body of computer and device man-
ufacturers has founded the Trusted Computing Group (TCG) [28] to promote
this idea. Security modules contain cryptographic keys so that they can set up
secure channels with each other. However, they are dependant on their hosts to
be able to communicate with each other.

Later, Avoine et al. [3] showed that, in a model with security modules, the
fair exchange problem, an instance of SMC, can be reduced to an agreement
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problem among security modules, which can itself be transformed to the con-
sensus problem, a classical problem of fault-tolerant distributed computing. The
reduction allows modular solutions to fair exchange, as the agreement abstrac-
tion can be implemented in different ways [9, 14]. The problem of SMC has not
yet been investigated in this model.

Contributions. In this paper, we investigate the resilience and efficiency of SMC
in the model of untrusted hosts and security modules. In this model the secu-
rity modules and their communication network form a subnetwork with a more
benign fault assumption, namely that of general omission [25]. In the general
omission failure model processes may simply stop executing steps or fail to send
or receive messages sent to them.

We extend the work by Avoine et al. [3] and derive a novel solution to SMC
in a modular way: We show that SMC is solvable if and only if the problem
of Uniform Interactive Consistency (UIC) is solvable in the network of security
modules. UIC is closely related to the problem of Interactive Consistency [24],
a classic fault-tolerance problem. From this equivalence we are able to derive a
basic impossibility result for SMC in the new model: We show that UIC requires
a majority of correct processes and from this can conclude that SMC is impossi-
ble in the presence of a dishonest majority. This shows that, rather surprisingly,
adding security modules cannot improve the resilience of SMC. However, we
prove that adding security modules can considerably improve the efficiency of
SMC protocols. This is because the computation of F can be done locally within
the security modules and does not affect the communication complexity of the
SMC protocol. Therefore our solution to SMC which uses security modules re-
quires only O(n) rounds of communication and O(n3) messages. To the best
of our knowledge, this is the first solution for which the message and round
complexity do not depend on the function which is computed.

Furthermore, we give an overview of TrustedPals, a peer-to-peer implemen-
tation of the security modules framework using Java Card Technology enabled
smart cards [8]. Roughly speaking, in the TrustedPals framework, F is coded as
a Java function and is distributed within the network in an initial setup phase.
After deployment, the framework manages secure distribution of the input values
and evaluates F on the result of an agreement protocol between the set of secu-
rity modules. To show the applicability of the framework, we implemented the
approach of Avoine et al. [3] for fair exchange. To our knowledge, TrustedPals is
the first practical implementation of SMC (1) for two and more processes and
(2) which does not require a transformation into and a subsequent computation
in a finite field. While still experimental, the TrustedPals framework is available
for download [1].

Roadmap. We first present the model in Section 2. We then define the security
problem of secure multi-party computation (SMC) and the fault-tolerance prob-
lem of uniform interactive consistency (UIC) in Sections 3 and 4. The security
problems arising when using UIC within a SMC protocol are discussed in Sec-
tion 5. We present the equivalence of SMC and UIC, in Section 6, and finally
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describe the TrustedPals efficient framework in Section 7. Proofs are relegated
to the appendix.

2 Model

2.1 Processes and channels

The system consists of a set of processes interconnected by a synchronous com-
munication network with reliable secure bidirectional channels. Two processes
connected by a channel are said to be adjacent.

A reliable secure channel connecting processes P and Q satisfies the following
properties:

– (No Loss) No messages are lost during the transmission over the channel.
– (No Duplication) All messages are delivered at most once.
– (Authenticity) If a message is delivered at Q, then it was previously sent by

P .
– (Integrity) Message contents are not tampered with during transmission,

i.e., any change during transmission will be detected and the message will
be discarded.

– (Confidentiality) Message contents remain secret from unauthorized entities.

In a synchronous network communication proceeds in rounds. In each round,
a party first receives inputs from the user and all messages sent to it in the
previous round (if any), processes them and may finally send some messages to
other parties or give outputs to the user.

2.2 Untrusted hosts and security modules

The set of processes is divided into two disjoint classes: untrusted hosts (or
simply hosts) and security modules. We assume that there exists a fully connected
communication topology between the hosts, i.e., any two hosts are adjacent. We
denote by n the number of hosts in the system. Furthermore, we assume that
every host process HA is adjacent to exactly one security module process MA

(there is a bijective mapping between security modules and hosts). In this case
we say that HA is associated with MA (MA is HA’s associated security module).
We call the part of the system consisting only of security modules and the
communication links between them the trusted system (see Fig. 1).

We call the part of the system consisting only of hosts and the communica-
tion links between them the untrusted system. The notion of association can be
extended to systems, meaning that for a given untrusted system, the associated
trusted system is the system consisting of all security modules associated to any
host in that untrusted system.

In some definitions we use the term process to refer to both a security module
and a host. We do this deliberately to make the definitions applicable both in
the trusted and the untrusted system.
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Fig. 2. Internet hosts with tamper-proof
hardware corresponding to Fig. 1.

2.3 Relation to Systems with Trusted Hardware.

The model sketched above can be related to the setup in practice as follows:
untrusted hosts model Internet hosts and their users, whereas security modules
abstract tamper proof components of user systems (like smart cards, see Fig. 2).
Intuitively, security modules can be trusted by other security modules or hosts,
and hosts cannot be trusted by anybody. Hosts may be malicious, i.e., they
may actively try to fool a protocol by not sending any message, sending wrong
messages, or even sending the right messages at the wrong time.

Security modules are supposed to be cheap devices without their own source
of power. They rely on power supply from their hosts. In principle, a host may
cut off the power supply to its security module whenever he chooses, thereby
preventing the security module from continuing to execute steps. Instead of doing
this, a host may inhibit some or even all communication between its associated
security module and the outside world.

2.4 Trust and adversary model

The setting described above is formalized using distinct failure models for differ-
ent parts of the system. We assume that nodes in the untrusted system can act
arbitrarily, i.e., they follow the Byzantine failure model [20]. In particular, the
incorrect processes can act together according to some sophisticated strategy,
and they can pool all information they possess about the protocol execution.
We assume however that hosts are computationally bounded, i.e., brute force
attacks on secure channels are not possible.

For the trusted system we assume the failure model of general omission [25],
i.e., processes can crash or fail by not sending messages or not receiving messages.

A process is faulty if it does not correctly follow the prescribed protocol. In
particular, a security module is faulty if it crashes or commits send or receive
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omissions. Otherwise a process is said to be correct. In a system with n processes,
we use t to denote a bound on the number of hosts which are allowed to be faulty.

3 Secure Multi-Party Computation

In secure multi-party computation (SMC), a set of processes p1, . . . , pn, each
starting with an input value xi, wants to compute the result of a deterministic
function F , i.e., r = F (x1, . . . , xn). Result r should be computed reliably and
securely, i.e., as if they were using a trusted third party (TTP). This means that
the individual inputs remain secret to other processes (apart from what is given
away by r) and that malicious processes can neither prevent the computation
from taking place nor influence r in favorable ways.

We assume that F is a well-known deterministic function with input domain
X and output domain Y upon which all processes have agreed upon beforehand
and that all correct processes jointly begin the protocol. We say that r is an
F -result if r was computed using F . Since faulty processes cannot be forced
to submit their input value, F may be computed using a special value ⊥ /∈ X
instead of the input value of a faulty process.

Instead of defining SMC using a TTP [15], we now define SMC using a set
of abstract properties.

Definition 1 (secure multi-party computation). A protocol solves secure
multi-party computation (SMC) if it satisfies the following properties:

– (SMC-Validity) If a process receives an F -result, then F was computed with
at least the inputs of all correct processes.

– (SMC-Agreement) If some process pi receives F -result ri and some process
pj receives F -result rj then ri = rj.

– (SMC-Termination) Every correct process eventually receives an F -result.
– (SMC-Privacy) Faulty processes learn nothing about the input values of cor-

rect processes (apart from what is given away by the result r and the input
values of all faulty processes).

From a security protocols perspective, the above definition can be consid-
ered slightly stronger than the usual (cryptographic) definitions of SMC since
it demands that SMC-properties hold without any restriction. In the literature
it is often stated that the probability of a violation of SMC-properties can be
made arbitrarily small. We have chosen this stronger definition to simplify the
presentation. We believe that definitions, theorems and proofs can be transferred
into a probabilistic model with moderate effort.

The properties of SMC are best understood by comparing them to a solution
based on a TTP. There, the TTP waits for the inputs of all n processes and
computes the value of F on all those inputs which it received. Since all correct
processes send their input value to the TTP, F is computed on at least those
values, which motivates SMC-Validity. After computing F , the TTP sends the
result back to all processes. Hence, all correct processes eventually receive that
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result (SMC-Termination). Additionally, if a process receives a result from the
TTP, then it will be the same result which any other process (whether correct or
faulty) will receive. This motivates SMC-Agreement. SMC-Privacy is motivated
by the fact that the TTP does all the processing and channels to the TTP
are confidential: no information about other processes’ input values leaks from
this idealized entity, apart of what the result of F gives away when it is finally
received by the processes.

4 Uniform Interactive Consistency

The problem of Interactive Consistency (IC) was introduced by Pease, Shostak
and Lamport in 1980 [24]. It is one of the classical problems of reliable distributed
computing since solutions to this problem can be used to implement almost any
type of fault-tolerant service [27]. In this problem, every process starts with an
initial value vi. To solve the problem, the set of processes needs to agree on
a vector D of values, one per process (Agreement property). Once vector D is
output by process p, we say that p decides D. The i-th component of this vector
should be vi if pi does not fail, and can be ⊥ otherwise. IC is equivalent to the
(also classic) Byzantine Generals Problem [20].

Definition 2 considers a version of IC with a stronger agreement property
called Uniform Agreement. Uniform Agreement demands that all processes should
decide the same (if they decide) — it does not matter whether they are correct
or faulty.

Definition 2 (uniform interactive consistency). A protocol solves uniform
interactive consistency (UIC) if it satisfies the following properties:

– (UIC-Termination) Every correct process eventually decides.
– (UIC-Validity) The decided vector D is such that D[i] ∈ {vi,⊥}, and is vi if

pi is not faulty.
– (UIC-Uniform Agreement) No two different vectors are decided.

Parvédy and Raynal [23] studied the problem of UIC in the context of gen-
eral omission failures. They give an algorithm that solves UIC in such systems
provided a majority of processes is correct. Since their system model is the same
as the one used for trusted systems in this paper, we conclude:

Theorem 1 ([23]). If t < n/2 then UIC is solvable in the trusted system.

Parvédy and Raynal also show that Uniform Consensus (UC), a problem
closely related to UIC, can be solved in the omission failure model only if t < n/2.
In Uniform Consensus, instead of agreeing on a vector of input values like in UIC,
all processes have to decide on a single value which must be input value of some
process. Given a solution to UIC, the solution to UC can be constructed in
the following way: the processes first solve UIC on their input values and then
output the first non-⊥ element of the decided vector as the result of UC. Thus,
we conclude:

Corollary 1. UIC is solvable in the trusted system only if t < n/2.
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5 Maintaining Secrecy in Trusted Systems

The problem of UIC, which was introduced in the previous section, will be used
as a building block in our solution to SMC. The idea is that a protocol for SMC
will delegate certain security-critical actions to the trusted system in which the
UIC protocol runs. In this section we argue that we have to carefully analyze
the security properties of the protocols which run within the trusted system in
order to maintain confidentiality and be able to implement SMC-Privacy.

5.1 Example of Unauthorized Information Flow

Assume that a host HA hands its input value vA of SMC to its associated security
module MA and that MA sends vA over a secure channel to the security module
MB of host HB . Since all communication travels through HB (see Fig. 2), HB

can derive some information about vA even if all information is encrypted. For
example, if no special care is taken, HB could deduce the size (number of bits)
of vA by observing the size of the cipher text of vA. This may be helpful to
exclude certain choices of vA and narrow down the possibilities in order to make
a brute-force attack feasible.

As another example, suppose MA only sends vA to MB if vA (interpreted as
a binary number) is even. Since we must assume that HB knows the protocol
which is executed on MA and MB , observing (or not observing) a message on
the channel at the right time is enough for MB to deduce the lowest order bit of
vA. In this example, the control flow of the algorithm (exhibited by the message
pattern) unintentionally leaks information about secrets.

5.2 Security Properties of Protocols in the Trusted System

A protocol running in the trusted system needs to satisfy two properties to be
of use as a building block in SMC:

– (Content Secrecy) Hosts cannot learn any useful information about other
hosts’ inputs from observing the messages in transit.

– (Control Flow Secrecy) Hosts cannot learn any useful information about
other host’s inputs from observing the message pattern.

To provide these two secrecy properties in general, it is sufficient to use
a communication protocol between the processes that ensures unobservability.
Unobservability refers to the situation when an adversary cannot distinguish
meaningful protocol actions from “random noise” [26]. In particular, unobserv-
ability assumes that an adversary knows the protocol which is running in the
underlying network. It demands that despite this knowledge and despite observ-
ing the messages and the message pattern on the network it is impossible for the
adversary to figure out in what state the protocol is. The term “state” refers to
all protocol variables including the program counter, e.g., the mere fact whether
the protocol has started or has terminated must remain secret.
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Definition 3 (unobservability). A protocol satisfies unobservability if an unau-
thorized entity which knows the protocol cannot learn any information about the
state of the protocol.

Obviously, if unobservability is fulfilled during the application of UIC then an
adversary cannot obtain any information which may be derived from the control
flow of the algorithm and therefore Content Secrecy and Control Flow Secrecy
are fulfilled.

There are known techniques in the area of unobservable communication that
guarantee perfect unobservability [26]. It goes without saying that unobservabil-
ity techniques are not for free. However, the cost does not depend on the function
F and depends only polynomially on the number of processes (i.e. number of
real messages).

Unobservability as well as Content and Control Flow Secrecy are sufficient
to maintain secrecy in the trusted subsystem. However, Control Flow Secrecy is
sometimes not necessary. In the fair exchange implementation of Avoine et al.
[3] it was shown that, to ensure security, it is sufficient that the adversary does
not know when the agreement protocol is in its final round. The adversary may
know whether the protocol is running or not.

This (weaker) form of Control Flow Secrecy was implemented using the idea
of fake rounds. In the first round of the protocol, a random number ρ is dis-
tributed among the security modules. Before actually executing the agreement
protocol, ρ fake rounds are run. Using encryption and padding techniques, it is
impossible for the adversary to distinguish a fake round from an actual round
of the agreement protocol.

6 Solving SMC with Security Modules

6.1 Main Result

The following theorem shows that SMC and UIC are “equivalent” in their re-
spective worlds. For lack of space, the proof can be found in Appendix A. The
idea of the proof is to distribute the input values to the function F within the
trusted subsystem using UIC and then evaluate F on the resulting vector. The
functional properties of SMC correspond to those of UIC while the security prop-
erties of SMC are taken care of the properties of the security modules and the
fact that the UIC protocol can be made to operate in an unobservable way.

Theorem 2. SMC is solvable for any deterministic F in the untrusted system
if and only if UIC is solvable in the associated trusted system.

Theorem 2 allows us to derive a lower bound on the resilience of SMC in the
given system model using Theorem 1.

Corollary 2. There is no solution to SMC in the untrusted system if t ≥ n/2.
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6.2 Analysis

Theorem 2 and Corollary 2 show that adding security modules cannot improve
the resilience of SMC compared to the standard model without trusted hardware
[16]. For the model of perfect security (i.e., systems without cryptography) our
secure hardware has a potential to improve the resilience from a two-thirds
majority [5, 7] to a simple majority. However, this would rely on the assumption
that security modules can withstand any side-channel attack, an assumption
which can hardly be made in practice.

Since F is computed locally, the main efficiency metric for our solution is
message and round complexity of the underlying UIC protocol. For example,
the worst case message complexity of the protocol of Parvédy and Raynal [23]
is O(n3) and the worst case round complexity if O(n) even if modifications
for unobservable communication are added [6]. This is in contrast to the most
efficient solution to SMC without secure hardware which requires at least O(n2)
rounds and O(mn3) messages where m is the number of multiplications in F
[18].

7 TrustedPals Implementation

We now report on the implementation of the trusted subsystem using smart
cards [1]. Our implementation is fundamentally a peer-to-peer distributed sys-
tem. Each peer consists of two parts, the security module and its (untrusted)
host application. It leverages the power of different programming platforms and
software technologies.

7.1 Programming Platforms and Technologies

The security module is realized using a Java Card Technology enabled smart
card, whereas its (untrusted) host application is implemented as a normal Java
desktop application.

The Java Card Technology defines a subset of the Java platform for smart
cards and allows application developers to create and install smart card appli-
cations on their own, even after the smart card was manufactured. Multiple
Java Card applications (so-called Applets) from different vendors can run on the
same smart card, without compromising each other’s security. The communica-
tion between the host computer and the smart card is a half-duplex, master-slave
model. In Java Card Technology, there are two programming models used for
communication with the smart card, the APDU message-passing model and
the Java Card Remote Method Invocation (JCRMI ), a subset of Java SE RMI
distributed-object model. Though our current implementation uses the APDU
model, we plan to migrate to JCRMI. For more information about the Java Card
Technology, we refer the interested readers to Chen [8].

The host part of the application is implemented in Java, using the Spring
Framework [13]. Spring is a lightweight, dependency injection inversion of control
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container that allows us to easily configure and assemble the application com-
ponents. For more on dependency injection and inversion of control containers,
please refer to Fowler [12].

The OpenCard Framework [17] is used by the host part of the application
for communication with the smart card, whereas the JMS (Java Message Ser-
vice) is used for communication with the other hosts. JMS is a standard Java
API, part of Java Platform, Enterprise Edition, for accessing enterprise mes-
saging systems. It allows the applications to communicate in a loosely coupled,
asynchronous way. Besides, the provided infrastructure supports different qual-
ity of service, fault tolerance, reliability, and security requirements. As a JMS
provider, we have used ActiveMQ [2]. It is an open source, 100% compliant JMS
1.1 implementation, written in Java. ActiveMQ can be seamlessly integrated and
configured through Spring. What is more, its support for message-driven POJOs
concept and the Spring’s JMS abstraction layer makes much easier the develop-
ment of messaging applications. Another interesting feature of ActiveMQ is its
concept called Networks of Brokers. It allows us to start a broker for each host;
these brokers then interconnect with each other and form a cluster of brokers.
Thus, a failure of any particular host does not affect the other hosts.

7.2 Architecture

The overall (simplified) architecture of our project is depicted in Figure 3, where
relations between components are depicted. The components comprise the Pro-
tocol on the smart card, the Controller, the Clock, the Message Communication
Unit and the Adversary which operate on the host.

The Protocol on the smart card in fact consists of several parts: (1) a Java
implementation of the function F which is to be evaluated, (2) an implementation
of UIC which satisfies sufficient secrecy properties as explained above, and (3)
provisions to set up confidential and authenticated channels with other smart
cards.

The idea is that all messages generated during the execution of the proto-
col are encrypted and padded to a standard length and sent over the APDU
interface to the host. The Communication Unit takes care of distributing these
messages to other hosts using standard Internet technology. The Controller and
the Clock are under total control of the host. This is acceptable as tampering
with them would just result in message deletion or in disturbing the synchronous
time intervals, which might cause message losses as well. That would be no prob-
lem, since the adversary has power to destroy messages stored in the Message
Communication Unit, due to the general omission model nature, where process
crashes and message omissions may occur - note that a process crash may be
simulated by permanent message omissions, that is, all messages are omitted. In
order to perform fault-injection experiments, the Adversary unit may simulate
transient or permanent message omissions.

In the host memory, the Clock triggers individual rounds in the Controller,
which then triggers the individual rounds in the protocol on the smart card. To
run a different protocol, it is sufficient to add a new (so called applet) protocol
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Fig. 3. Relations between architecture components.
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to the (multiple applet) smart card. More information on the implementation
can be found in Appendix B.

7.3 Experiences

We implemented the fair exchange protocol of Avoine et al. [3] within Trust-
edPals and tested it with four participating parties. The code of one party was
executed on a smart card while the code of the other parties was simulated on
a single PC.

We did some initial measurements on the speed of the protocol. We observed
that the communication between the host PC and the smart card is the bot-
tleneck and dominates the time needed to execute a synchronous round. Our
implementation needed roughly 600 ms to perform the necessary communica-
tion and so in our setup we set the round length to one second. Depending in
the necessary level of security the protocol needs between 4 and 10 rounds (i.e.,
between 4 and 10 seconds) to complete. Since our implementation is not opti-
mized for speed and future technologies promise to increase the communication
bandwidth on between host and smart card, we believe that this performance
can be improved considerably.

We did some fault-injection experiments and tested the implementation using
the random adversary. Within more than 10.000 runs the protocol did not yield
any single successful security violation.

References

1. Trustedpals source code. Downloadable from http://pi1.informatik.

uni-mannheim.de, April 2006.
2. ActiveMQ. http://activemq.codehaus.org.
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A Proof of Theorem 2

Statement: SMC is solvable for any deterministic F in the untrusted system if and only
if UIC is solvable in the associated trusted system.

Proof. (⇐) We first prove that the solvability of UIC in the trusted system implies the
solvability of SMC in the untrusted system. Fig. 4 shows the transformation protocol
which is executed within the security module. The hosts first give their inputs for
SMC to their security modules. Security modules run “secure UIC” (i.e., UIC which
satisfies Message Secrecy and Control Flow Secrecy) on these inputs, compute F on
the decided vector and give the result to their hosts. We prove that the properties of
SMC are achieved.

First consider SMC-Validity. UIC-Termination guarantees that all correct processes
eventually decide on some vector D. UIC-Validity guarantees that D contains the
inputs of all correct processes, and hence, SMC-Validity holds for the output of the
transformation algorithm.

Consider SMC-Agreement. From UIC-Uniform Agreement it follows that all pro-
cesses decide on the same vector. As F is deterministic, all processes compute the same
F -result if they compute such a result.

SMC-Termination follows immediately from UIC-Termination.
Now consider SMC-Privacy. Since secure UIC is executed (i.e., the construction and

proof techniques presented in Section 5 have been applied to ensure Content Secrecy
and Control Flow Secrecy) and because security modules are tamper-proof, we conclude
that there is no unauthorized information flow from within the trusted system to the
outside (i.e., to the untrusted system). The only (authorized) flow of information occurs
at the interface of the security modules when they output the result of computing F .
SMC-Privacy easily follows from this observation.

(⇒) We now prove that if SMC is solvable in the untrusted system, then UIC is
solvable in the trusted system.

First note that if SMC is solvable in the untrusted system, then SMC is trivially
also solvable in the trusted system. This is because the assumptions available to the
protocol are much stronger (general omission failures instead of Byzantine).

To solve UIC, we let the processes compute the function F (v1, . . . , vn) = (v1, . . . , vn)
(see Fig. 5). We now show that the properties of UIC follow from the properties of SMC.

UIC-Termination follows immediately from SMC-Termination.
To see UIC-Validity, consider the decided vector D = (d1, . . . , dn). SMC-Validity

and the construction of Fig. 5 guarantee that D contains the inputs of all correct
processes. Consider a faulty process pj with input value vj . Then either F was computed
using its input, and then dj = vj , or, according to our definition of SMC, function F
was computed using a special input value ⊥ instead of vj , and then, dj = ⊥.

To see UIC-Uniform Agreement follows directly from SMC-Agreement.
This concludes the proof. ut

15



SMC(input xi)
D := secureUIC (xi)
return F (D)

Fig. 4. Implementing SMC using UIC on security modules. Code for the security mod-
ule of host Hi. The term “secure UIC” refers to a UIC protocol that satisfies Content
Secrecy and Control Flow Secrecy.

UIC(input vi)
D := SMCF (vi)
return D

Fig. 5. Implementing UIC on security modules using SMC for the function
F (v1, . . . , vn) = (v1, . . . , vn) in the untrusted system. Code for the security module
of host Hi.

B Details on Architecture and Operation of TrustedPals

B.1 Architecture

In Figure 6 more detailed information on the architecture of the components, seen as
Java classes, can be found. The central piece of the architecture is the Controller

class. It has associations to MessageSender and MessageReceiver classes, that, as
their names imply, are responsible for handling the sending and receiving of messages,
respectively.

To simulate sending and receiving omissions, the controller has associated two ad-
versary strategies. We have defined different adversary behaviors: the HonestAdversary
allows all messages to be sent out/received, whereas the NastyAdversary drops all mes-
sages. Other adversaries represent random behavior, etc.

Finally, the controller has a reference to a Protocol interface implementation (pro-
tocol) as in Figure 9, that represents the actual algorithm, that the system is perform-
ing. To date, we implemented one application function F , the gracefully degrading fair
exchange functionality [3], and two UIC protocols, the adapted protocol of Parvédy
and Raynal [23] and the ConsensusS protocol by Freiling, Herlihy and Penso [14]. More
can be added easily. For each of these protocols, we have a smart card/Java Card based
version and a pure Java implementation. The pure Java version serves us mainly as a
proof of concept during the development and allows us to test the whole distributed
system even on one computer with only one smart card reader. The Java Card im-
plementation of each protocol consists then of two parts. One is the actual Java Card
applet, that is deployed on the smart card and the host side implementation of the
Protocol interface (always prefixed with “SmartCard”), that communicates with this
applet.

The difference between the pure Java implementations of the protocols and the
Java Card applet versions is also in the way they are configured. Whereas a simple
.properties configuration file is used to supply the necessary configuration values to
the Java versions, a more sophisticated GUI application was developed for entering
configuration data and sending them to the smart card.
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Using the Spring Framework’s powerful inversion of control dependency injection
container, we are able to easily configure the controller, which protocol to use for the
current application run, without the need to recompile the code. The same holds for
the choice of current incoming and outgoing adversary strategies as well1.

The main purpose of the Message class is to parse the byte array content, that is
retrieved from the smart card and interpret it in a human readable form. This way,
we can simply log the string representation of every message into database, and thus
easily follow what is going on in the system. To send the message, we simply use a JMS
ObjectMessage to encapsulate and transfer the Message instance to its destination.

B.2 Operation

The system operation proceeds in rounds. We have divided each round into two phases,
the computation phase and the sending phase. Proper synchronization between differ-
ent hosts is achieved by configuring all the hosts to use the same round length (i.e. the
same computation phase length and the same sending phase length), and by starting
them all at about the same time. Right after the start, the controller calls the start()

method on the associated protocol to start the computation.
There are two timer threads responsible for the life cycle of each host module, that

are represented by classes StartNextRoundTimerTask and StartSendPhaseTimerTask

in our diagram. Their functionality, outside configuration and smooth integration is
achieved through Spring Framework’s support for job scheduling, which we won’t dis-
cuss here in detail. As a rough idea, the reader can imagine that there are two separate
threads with associated time intervals, that are sleeping most of the time. Periodically,
at the given time interval, each of this threads wakes up and notifies the controller
by calling its methods startNextRound() and startSendPhase(), respectively. These
methods then implement the lifecycle of the system by invoking the respective methods
on the current protocol, that we discuss below.

Note that every method call in the Protocol implementation class, that involves
communication with the smart card, is invoked from within a separate thread to pre-
vent it to block the timer threads. In the sending phase (see Fig. 7), the controller
first verifies, if no error occurred during the computation (line 1). If not, it checks,
whether the computation for the current round has finished successfully (line 5). If so,
it checks if the whole protocol has finished (line 9). In this case, it retrieves the item
and verifies, if it is actually the correct one (line 11). In case the whole protocol is not
finished yet, but the computation for the current round finished successfully (line 13),
it retrieves the messages to be sent out during this round (line 14) and sends them
using MessageSender (in case they are not dropped by the outgoing adversary (line
18)). At the same time, the MessageReceiver asynchronously listens to its associated
JMS topic and collects all received messages.

In the computation phase (see Fig. 8), the controller then retrieves the received
messages from MessageReceiver (line 1), filters them through the incoming adversary
(line 3) and passes the rest to the startNextRound() method of the protocol to start
the next round (line 9). This process repeats until the protocol finishes successfully or
until an error occurs.

1 This design possibility of interchangeable family of algorithms is referred to as the
Strategy design pattern [11].
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01: if (protocol.hasErrorOccured()) {

02: terminate application with error

03: }

04:

05: if (not protocol.isComputationFinished()) {

06: terminate application with error

07: }

08:

09: if (protocol.isFinished()) {

10: receivedItem = protocol.getItem()

11: verify receivedItem

12:

13: } else {

14: messages = protocol.getMessages()

15:

16: foreach message in messages {

17: if (outgoingAdversary.accept(message)) {

18: messageSender.sendMessage(message)

19: }

20: }

21: }

Fig. 7. Pseudocode of the sending phase.

01: messages = messageReceiver.getReceivedMessages()

02:

03: foreach message in messages {

04: if (not incomingAdversary.accept(message)) {

05: drop message from messages

06: }

07: }

08:

09: protocol.startNextRound(messages)

10: messageReceiver.clearReceivedMessages()

Fig. 8. Pseudocode of the computation phase.
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