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Chapter 1

Introduction

1.1 Some General Remarks on ARCH

Who could imagine 20 years ago, the flowering of research and applications

that would develop around the ARCH model? It certainly was not an instant

success. Years went by before anyone except my students and I wrote a paper

on autoregressive conditional heteroscedasticity (ARCH).

Robert F. Engle (2002)

The above quote stems from an article by Robert F. Engle on “New frontiers for

ARCH models” in 2002. At that time the ARCH model had become a story of success.

One year later Robert F. Engle was awarded the Nobel Prize in economics. In his

Nobel Lecture Engle describes the ARCH model as a logical consequence of the work

of former Nobel Laureates. The empirical implementation of the Markowitz (1952) and

Tobin (1958) theory on portfolio optimization, Sharpe’s (1964) Capital Asset Pricing

Model (CAPM) and the Black and Scholes (1973) and Merton (1973b) option pricing

theory requires estimates of assets’ volatilities and co-volatilities. Such estimates should

reflect the stylized facts observed in almost every economic and financial time series:

“unconditional distributions tend to be leptokurtic, variances change over time and large

(small) changes tend to be followed by large (small) changes of either sign” (Bera and
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Higgins, 1993, p. 306).

The Engle (1982) ARCH model not only replicates those stylized facts but also pro-

vides a theory of dynamic volatilities explaining “the apparent changes in the volatility

of economic time series by a specific type of nonlinear dependence rather than by ex-

ogenous structural change of the variance” (Bera and Higgins, 1993, p. 315). Following

the publication of the ARCH model numerous modifications and refinements led to the

development of various ARCH-type models. The most well known modification, the

generalized ARCH (GARCH) model, was suggested by Bollerslev (1986) – a graduate

student of Engle. This specification allows for a more parsimonious parametrization of

the conditional variance in comparison to the ARCH model, similar to the generalization

of the autoregressive (AR) to the autoregressive moving average (ARMA) process. Some

other influential models are Nelson’s (1991) exponential GARCH (EGARCH), the GJR

model of Glosten et al. (1993), the asymmetric power GARCH (APGARCH) of Ding et

al. (1993), Engle and Lee’s (1993) component GARCH (CGARCH) and the threshold

ARCH (TARCH) of Zakoian (1994). However, these models are just a small section from

the universe of existing ARCH specifications. In a recent review article Degiannakis and

Xekalaki (2004) present more than thirty variants of the original ARCH specification.

Of course, many of these models have multivariate extensions. For a review article on

multivariate GARCH see Bauwens et al. (2006).

Apart from the development of new specifications which capture more and more

features of the observed data, there has been intensive research in identifying the the-

oretical properties of those competing models. A summary of recent theoretical re-

sults on GARCH models can be found in Li et al. (2002). We just refer to some

of the well known articles. Nelson (1990) and Bougerol and Picard (1992) estab-

lished conditions for the stationarity and ergodicity of the GARCH process. Lee and

Hansen (1994) as well as Lumsdaine (1996) proved the consistency and asymptotic

normality of the quasi-maximum likelihood estimator for the GARCH(1, 1). Ling and

McAleer (2002a,b) derived conditions for the existence of moments in the GARCH(p, q)

and He and Teräsvirta (1999a,b) and Karanasos (1999) obtained formulas for the theo-
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retical autocorrelation function in the GARCH(p, q) model.

Despite all these modifications and refinements, it is the simple GARCH(1, 1) spec-

ification which is still most often used in financial applications. As pointed out by En-

gle (2004, p. 330) “it is remarkable that one model can be used to describe the volatility

dynamics of almost any financial return series”. This is probably also the main reason

why the model has become so popular among practitioners. Today GARCH predicted

volatilities are widely used for the pricing of financial derivatives, portfolio selection,

and measuring and managing investment risk. Two comprehensive reviews of GARCH

models and their applications in economics and finance are provided by Bollerslev et

al. (1992) and Bera and Higgins (1993).

In the following we explain the motivation behind two popular classes of GARCH

models in more detail. Those two types of GARCH models will be the focus of the

subsequent chapters of this thesis.

1.1.1 Long Memory GARCH Models

Long memory models were introduced into the econometrics literature by Granger (1980),

Granger and Joyeux (1980) and Hosking (1981). While short memory times series mod-

els are characterized by rapidly decaying autocovariances, it is the central feature of

long memory models that their autocovariances decay slowly and are not summable.

The class of fractionally integrated autoregressive moving average (ARFIMA) models

relaxed the “knife-edge distinction between I(0) and I(1) processes” as imposed by the

stationary ARMA model and the nonstationary integrated ARMA (ARIMA) model

which were apparently too restrictive to match with the observed features of the data

(Baillie et al., 1996a, p. 4). While the ARMA and the ARIMA model essentially assume

a known degree of memory, namely the order of integration (zero or one) which reduces

the series to short memory, the ARFIMA model allows for a fractional order of integra-

tion and estimates this order from the data. Initially long memory models were used as

a tool to capture the apparent high degree of persistence in the levels of many macroeco-
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nomic variables. Around the mid-1990s research interest shifted to models which could

allow for long memory in the conditional second moment of a time series. Studies by

Taylor (1986), Ding et al. (1993), Ding and Granger (1996) among others had revealed

that there is significant evidence of long memory in the empirical autocorrelations of

nonlinear transformations such as the absolute or squared observations of many finan-

cial times series. This evidence conflicted with the standard Bollerslev (1986) GARCH

model which implies exponentially decaying autocorrelations of the squared innovations

as well as with the Engle and Bollerslev (1986) integrated GARCH (IGARCH) model

which is characterized by complete persistence of shocks to the conditional variance and

hence volatility forecasts which increase linearly with the time horizon. In analogy to

the extension of the ARMA and the ARIMA model to the ARFIMA model, Baillie et

al. (1996a) introduced the fractionally integrated GARCH (FIGARCH) model. The

FIGARCH model allows for fractional orders of integration between zero and one, and

implies hyperbolically decaying impulse response weights. Endowed with this additional

flexibility the FIGARCH proved to be successful in modelling the long-run features in

the volatility of many time series such as asset returns (Bollerslev and Mikkelsen, 1996),

exchange rates (Tse, 1998) and inflation rates (Baillie et al. 2002). Although the FI-

GARCH model shares many of its properties with the ARFIMA model, the analogy is

not complete. One of the drawbacks of the FIGARCH model is that its unconditional

variance does not exist and so the innovation process is not covariance stationary. An

alternative specification, the long memory GARCH (LMGARCH) model was proposed

by Karanasos et al. (2004b).1 In contrast to the FIGARCH model, the LMGARCH

combines the properties of long memory and covariance stationarity.

For an up-to-date overview of other GARCH specifications allowing for long memory

and of theoretical findings on long memory GARCH processes see Giraitis et al. (2005).

Excellent surveys on long memory in economic and financial time series are provided by

Baillie (1996) and Henry and Zaffaroni (2003).

1In the following we use the term long memory GARCH to refer either to the whole class of GARCH

models which obey long memory or to the specific LMGARCH model of Karanasos et al. (2004b).
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1.1.2 GARCH-in-Mean Models

Many economic theories predict a relationship between the level of a macroeconomic or

financial variable and its conditional second moment. A typical example from finance is

the approximate linear relationship between the conditional expected excess return and

the conditional variance of the market portfolio implied by Merton’s (1973a) Intertem-

poral CAPM (ICAPM). Examples from macroeconomics are the relationships between

inflation and output growth and their uncertainties.

The GARCH-in-Mean (GARCH-M) model by Engle et al. (1987) was developed to

explicitly capture the effect of the conditional variance – modelled by the usual GARCH

equation – on the conditional mean. The model specifies the conditional mean as a

monotonic function of the conditional variance. In this way the model incorporates

what is usually referred to as a risk premium. Most commonly, the functional form of

the risk premium is assumed to be linear or logarithmic in the conditional variance or

standard deviation. In some cases such a choice can be justified by economic theory

while in other cases it is simply a matter of convenience.

While previous studies on the existence of risk premia focused on constant risk pre-

mia, it is the advantage of the GARCH-M that it allows to “test for and estimate a time

varying risk premium” (Bera and Higgins, 1993, p. 347). The GARCH-M model helped

to establish significant relations between the conditional first and second moments of

stock returns (French et al., 1987), output growth (Caporale and McKiernan, 1996) and

inflation rates (Grier and Perry, 2000) etc.

Recently, Linton and Perron (2003) argued that the functional form of the risk

premium commonly assumed is much too restrictive. There is no general reason to

believe that the risk premium is linear or logarithmic in the conditional variance or

standard deviation. Therefore, they proposed a semiparametric GARCH-M model with

parametric conditional second but nonparametric conditional first moment. In this

model the shape of the risk premium is estimated by nonparametric smoothing methods.

The attractiveness of using nonparametric regression techniques in this context is given
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by fact that they do not require assumptions about the functional form of the risk

premium apart from certain smoothness conditions. Therefore, the complexity of the

model will be determined completely by the data, i.e. “one lets the data speak” and

avoids the subjectivity in selecting a specific parametric model.

1.2 Outline of the Thesis

This section outlines the structure of the thesis and briefly summarizes the subsequent

chapters and their main results. The thesis addresses two major topics which have

recently received considerable attention in the financial econometrics literature: (i) long

memory GARCH models and (ii) GARCH-M models with nonparametric specifications.

The following chapters represent a collection of five research articles. Each chapter

is self-contained and can be read independently. The thesis is organized in three parts.

Part I (Chapters 2 and 3) deals with theoretical aspects of long memory GARCH models,

while Part II (Chapters 4 and 5) is concerned with empirical applications of those models.

Part III (Chapter 6) is devoted to a specification test for the parametric GARCH-M

model.

Chapter 2 is the joint work with my colleague Berthold R. Haag and was published

in the Journal of Financial Econometrics. Chapters 3 to 5 have been written in collab-

oration with my second supervisor Prof. Dr. Menelaos Karanasos. The corresponding

articles were published in Economics Letters, Japan and the World Economy and Stud-

ies in Nonlinear Dynamics & Econometrics. The last chapter of the thesis was written

jointly with my first supervisor Prof. Dr. Enno Mammen. In the following we briefly

describe the content of each chapter.

Chapter 2 is concerned with the FIGARCH(p, d, q) model of Baillie et al. (1996a)

introduced in Section 1.1.1. Although this model has been intensively used in empirical

applications, several theoretical properties of the model have not yet been fully under-

stood. An import aspect in specifying a valid FIGARCH model is that the parameters

of the process have to be chosen such that the nonnegativity of the conditional vari-
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ance is guarantied. This problem is not specific to the FIGARCH model, but applies

to the GARCH model as well. Nelson and Cao (1992) identified that the problem can

be approached by investigating the so-called ARCH(∞) representation of the process.

This representation expresses the conditional variance as an infinite sum of weighted

lagged squared residuals. The weights in this sum – usually referred to as ARCH(∞)

coefficients – are functions of the parameters of the underlying GARCH process. For

the process to be well defined in the sense that the conditional variance is nonnegative

almost surely for all points in time, it must be ensured that all ARCH(∞) coefficients

are nonnegative. Nelson and Cao (1992) derived necessary and sufficient conditions

for the parameters of the GARCH(p, q) model with p ≤ 2 and sufficient conditions

for the general model. No such conditions were available for the FIGARCH model,

apart from a sufficient condition for the FIGARCH(1, d, 1) provided by Bollerslev and

Mikkelsen (1996). In Chapter 2 we extend the results of Nelson and Cao (1992) to the

FIGARCH model, i.e. we derive conditions on the parameters of the FIGARCH(p, d, q)

process which are necessary and sufficient for p ≤ 2 and sufficient for p > 2 to guarantee

the nonnegativity of all the ARCH(∞) coefficients. The availability of such conditions

is of great importance for any researcher estimating FIGARCH models and in particular

when using the parameter estimates to construct volatility forecasts for option pricing

or value at risk computations. We illustrate this by an empirical application of the

FIGARCH(1, d, 1) model to Japanese Yen vs. US Dollar exchange rate data. A graph-

ical representation of the necessary and sufficient set for the (1, d, 1) model illustrates

that our results dramatically enlarge the feasible parameter set compared to the set

given by the sufficient conditions of Bollerslev and Mikkelsen (1996). Moreover, our

results reveal two remarkable properties of the FIGARCH model which contrast sharply

with the GARCH model: first, even if all parameters are nonnegative the conditional

variance can become negative and, second, even if all parameters are negative (apart

from the fractional differencing parameter d) the conditional variance can almost surely

be nonnegative. These two observations highlight the importance of our results, because

they imply that – independent of the sign of the estimated parameters – nonnegativity
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conditions should always be verified in the FIGARCH model.

In Chapter 3 we turn to the LMGARCH(p, d, q) process of Karanasos et al. (2004b).

The persistence of economic shocks is usually measured by looking at the long-run ef-

fect of an innovation on the level of the series. Similarly, impulse response functions

can be used to measure the persistence of shocks to the conditional variance. Baillie

et al. (1996) derived an explicit expression for the impulse response function of the

LMGARCH(1, d, 0). In Chapter 3 we extend their results by deriving convenient repre-

sentations for the impulse response function of the general LMGARCH(p, d, q) model.

As special cases the corresponding impulse response functions of the GARCH(p, q) and

the IGARCH(p, q) model can be obtained by restricting d to zero or one. We then use our

results to compare the persistence of shocks to the conditional variance in these three

GARCH specifications. As an empirical illustration we estimate several LMGARCH

specifications on a long time series of Deutschmark vs. US Dollar exchange rate returns.

The empirical example demonstrates the practical implications of our results. The im-

pulse response functions can be used to distinguish between short and long memory

specifications and to compare the persistence implied by alternative LMGARCH speci-

fications.

Chapters 4 and 5 are concerned with the empirical application of dual long memory

models, i.e. models which allow for long memory in the conditional mean and the con-

ditional variance. In a first step, ARFIMA-FIGARCH models are applied to analyze

the dynamics of European and international inflation data. In a second step, Granger

methods are used to test several hypotheses concerning the causal relationship between

inflation, nominal uncertainty and output growth. In this respect, the two chapters

closely follow the original motivation of the ARCH model, since in his Nobel Lecture

Engle (2004, p. 327) recalls that he “was looking for a model that could assess the

validity of a conjecture of Friedman (1977) that the unpredictability of inflation was a

primary cause of business cycles”.

In Chapter 4 we use parametric models of long memory in both the conditional mean

and the conditional variance of inflation and monthly data for the USA, Japan and the
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UK for the period 1962–2000 to examine the relationship between inflation and inflation

uncertainty. For the USA and the UK we provide evidence of long memory in the first

and second conditional moment of the inflation rate, for Japan in the second conditional

moment only. Using the impulse response functions derived in Chapter 3, we illustrate

the importance of taking into account long memory in the second conditional moment

by comparing the effect of shocks to the conditional variance of the US inflation rate in

GARCH, IGARCH and FIGARCH specifications. In all countries, inflation significantly

raises inflation uncertainty as predicted by Friedman. Increased nominal uncertainty

affects inflation in Japan and the UK but not in the same manner, while no effect is

found for the USA. The results from Japan support the Cukierman and Meltzer (1986)

hypothesis, i.e. higher inflation uncertainty causes higher average inflation rates. In the

UK uncertainty surrounding the future inflation appears to have a mixed impact on

inflation.

In Chapter 5 we analyze the inflation dynamics of nine countries belonging to the

European Monetary Union and of the UK. We first estimate the two main parameters

driving the degree of persistence in inflation and its uncertainty using a dual long mem-

ory process. For all ten European inflation rates we detect the property of persistence in

both their first and their second conditional moments. Then we investigate the possible

existence of heterogeneity in inflation dynamics across Euro area countries and examine

the link between nominal uncertainty and macroeconomic performance measured by the

inflation and output growth rates. Strong evidence is provided for the hypothesis that

increased inflation raises nominal uncertainty in all countries. However, we find that

uncertainty surrounding future inflation has a mixed impact on output growth. This

result brings out an important asymmetry in the transmission mechanism of monetary

policy in Europe in addition to the difference in the economic sizes of the countries. We

also investigate whether one can find a correlation between central bank independence

and inflation policy. Our conclusion is that the most independent central banks are in

countries where inflation falls in response to increased uncertainty.

Chapter 6 deals with the GARCH-M model of Engle et al. (1987). In this model
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the risk premium is usually assumed to be either a linear or logarithmic function of the

conditional variance or conditional standard deviation (see Section 1.1.2). As in Linton

and Perron (2003), we question whether this narrow class of functions is appropriate to

all fields of applications of the GARCH-M model. As an alternative to the parametric

specification of the risk premium we suggest estimating the shape of risk premium by

nonparametric smoothing techniques. While Linton and Perron (2003) only visually

compare the parametric and the nonparametric regression fits, we go a step further

and test whether the two curves are significantly different from each other. Therefore,

we propose a specification test for the functional form of the conditional mean in the

GARCH-M model. The test statistic is based on the L2-distance between a parametric

estimate of the mean function and a nonparametric estimate. Since the conditional vari-

ance is unobservable a nonparametric fit of the mean function is not readily available in

this setting. We suggest a nonparametric estimate obtained via an iterative estimation

procedure which employs a fitted conditional variance series as a regressor replacing

the unobserved conditional variance. Although the asymptotic distribution of the test

statistic is shown to be normal, we suggest approximating the distribution by bootstrap

resampling. Monte-Carlo simulations show that the bootstrap approximates the distri-

bution of the test statistic under the null hypothesis reasonably well in finite samples.

Under the alternative, the test statistic reveals good power properties. The availability

of such a test is of great importance since many economic theories suggest relations be-

tween macroeconomic or financial variables and their conditional second moments. The

suggested test procedure provides a formal framework for testing such theories. We il-

lustrate the usefulness of the method by testing the linear risk-return relation predicted

by the ICAPM. Using monthly as well as daily return data on the CRSP we cannot

reject the hypothesis that the market excess return is a linear function of its conditional

variance with positive slope parameter.
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Long Memory GARCH Models:

Theoretical Results





Chapter 2

Inequality Constraints in the

Fractionally Integrated GARCH

Model

2.1 Introduction

The empirical relevance of long memory conditional heteroscedasticity, which was ini-

tially addressed in the work of Ding et al. (1993) and Ding and Granger (1996), has

emerged in a variety of studies of economic and financial time series. By now it is a

widely accepted stylized fact that the empirical autocorrelation functions (ACFs) of the

squared or absolute values of many macro and financial variables are characterized by

a very slow decay indicating long memory and persistence.

The linear ARCH (LARCH) by Robinson (1991) was the first model permitting for

long memory in the conditional variance. Subsequently, many researchers have proposed

extensions of GARCH-type models which can produce long memory behavior. The

This chapter was published as: Conrad, C., and B. R. Haag (2006). “Inequality constraints in the

fractionally integrated GARCH model.” Journal of Financial Econometrics 4, 413–449. Copyright c©
2006 Oxford Journals. Reproduced with kind permission from Oxford University Press.
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fractionally integrated GARCH (FIGARCH) by Baillie et al. (1996a) can definitely be

considered as the most established model among those. It proved to be suitable to handle

the typical data features in many empirical applications (see, for example, Bollerslev and

Mikkelsen, 1996, Beine and Laurent, 2003, Conrad and Karanasos, 2005a,b [see Chapter

4 and 5]). Alternative specifications were suggested by Davidson (2004), Giraitis et

al. (2004), Karanasos et al. (2004b) and Zaffaroni (2004). Recent research has been

aimed at a better understanding of the properties of these well established models, for

instance Karanasos et al. (2004b) derive convenient representations for the ACF of the

squared values of long memory GARCH (LMGARCH) processes, while in a related study

Conrad and Karanasos (2006) [see Chapter 3] derive expressions for the impulse response

function (IRF) of the LMGARCH model. For an up-to-date overview of theoretical

findings on long memory GARCH processes see Giraitis et al. (2005). Finally, Baillie

(1996) and Henry and Zaffaroni (2003) provide excellent surveys of major econometric

work on long memory processes and their applications in economics and finance.

As in the Bollerslev (1986) GARCH model conditions on the parameters of the

FIGARCH model have to be imposed to ensure the nonnegativity of the conditional

variance. Originally, Bollerslev (1986) imposed conditions on the parameters of the

GARCH(p, q) model which were sufficient to ensure the nonnegativity of the conditional

variance, but these conditions simply required the nonnegativity of all parameters in the

conditional variance specification.

Nelson and Cao (1992) showed that the restrictions imposed by Bollerslev (1986) can

be substantially relaxed. By investigating the ARCH(∞) representation of the process

they derived necessary and sufficient conditions for the GARCH(p, q) model with p = 1

or 2 and sufficient conditions for the general model. In particular, some of the parameters

are allowed to have a negative sign. This is important since empirical findings (see Nelson

and Cao, 1992, and the references therein) suggest that for many financial time series

typically the parameter associated with the second lag of the squared innovation in the

GARCH specification has a negative sign. The Bollerslev (1986) conditions rule out

this case and thereby unnecessarily limit the flexibility of the model. This is nicely
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illustrated by He and Teräsvirta (1999c) who showed that for the GARCH(p, q) model

with max{p, q} = 2 these weaker conditions imply richer shapes of the ACF of the

squared residuals.

An easy way to guarantee the nonnegativity of the conditional variance in the

GARCH(p, q) with p ≤ 2 is therefore firstly to estimate the unrestricted model, and

then to validate the Nelson and Cao (1992) conditions only in case that there are pa-

rameter estimates with a negative sign. By now the Nelson and Cao (1992) conditions

are implemented in econometric packages such as the financial analysis package for

GAUSS, PcGive, S-Plus, Rats and G@RCH.

To validate whether a set of parameters suffices for the nonnegativity of the con-

ditional variance in the FIGARCH(p, d, q) is substantially more difficult. In contrast

to the GARCH model, it is possible that (i) the conditional variance becomes negative

although all the parameters are positive, and (ii) the conditional variance is nonnegative

a.s. (almost surely) for all t although all the parameters are negative (apart from d).

These two observations imply that – independent of the sign of the estimated parameters

– nonnegativity conditions should always be verified.

Bollerslev and Mikkelsen (1996) provide sufficient conditions for the parameters of

the FIGARCH(1, d, 1) model. These conditions are validated in programs such as the

G@RCH package for Ox developed by Laurent and Peters (2002). Since these conditions

are only sufficient there exist parameter values for which the conditions are violated,

but still the conditional variance will be nonnegative almost surely. No conditions (not

even sufficient) are available for higher order models. Bollerslev and Mikkelsen (1996),

p. 159:

Of course, for the FIGARCH(p, d, q) model to be well-defined and the con-

ditional variance positive almost surely for all t, all the coefficients in the

infinite ARCH representation must be nonnegative.

In this chapter we derive necessary and sufficient conditions for the FIGARCH(p, d, q)

model of orders up to p = 2 and sufficient conditions for the general (p, d, q) model, which
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reduce an infinite number of inequalities to a finite number. Once the parameters are

estimated one can easily validate these conditions. The results for the (1, d, 1) specifi-

cation which is used most often in empirical applications are discussed in detail. We

illustrate graphically how the necessary and sufficient conditions dramatically enlarge

the feasible parameter set compared to the set given by the sufficient conditions provided

by Bollerslev and Mikkelsen (1996). For models of higher order (p ≥ 3) we derive suf-

ficient constraints which require only mild conditions on the parameters of the process.

However, in practical applications one will rarely have to make use of a specification with

p > 2. We provide an efficient algorithm for computing the coefficients in the ARCH(∞)

representation which can be used if the sufficient conditions are violated. Plotting the

sequence of coefficients indicates whether the conditional variance can become negative

or not.

The availability of these inequality constraints is of importance for any researcher

estimating FIGARCH models and in particular when utilizing parameter estimates to

obtain volatility forecasts which are then employed for e.g. long term option pricing or

value at risk computations.

An empirical example illustrates the importance of our results. For Japanese Yen

vs. US Dollar exchange rate data we estimate a FIGARCH(1, d, 1) model using the

G@RCH package for Ox. The parameter estimates clearly fail to satisfy the Bollerslev

and Mikkelsen (1996) conditions, which would lead any researcher relying on these

conditions to reject the model. The set of parameters does however satisfy the necessary

and sufficient conditions derived in this chapter, and hence guarantees the nonnegativity

of the conditional variance.

We should mention that the conditions derived in this chapter also apply to the LM-

GARCH since the coefficients in the ARCH(∞) representations of the FIGARCH and

the LMGARCH coincide. Moreover, the results directly extend to the multivariate con-

stant correlation FIGARCH and to the fractionally integrated autoregressive conditional

duration (FIACD) model proposed by Jasiak (1998) which requires the nonnegativity

of the conditional duration time.
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Chapter 2 is organized as follows. Section 2.2 sets out the model of interest, as-

sumptions and notation. In Section 2.3 we derive the necessary and sufficient conditions

for the nonnegativity of the conditional variance in the FIGARCH(p, d, q) process. Sec-

tion 2.4 discusses the empirical example. In the conclusions we suggest future develop-

ments. All proofs are deferred to the appendix.

2.2 The Fractionally Integrated GARCH Model

Following Robinson (1991) and Zaffaroni (2004) we define an ARCH(∞) process {εt, t ∈
Z} by the equations

εt = Zt

√
ht, (2.1)

where {Zt, t ∈ Z} is a sequence of independent and identically distributed random

variables with E(Zt) = 0, σ2
Z = E(Z2

t ) < ∞, and

ht = ω̃ +
∞∑
i=1

ψiε
2
t−i. (2.2)

The parameter σ2
Z ∈ R+ was introduced Zaffaroni (2004) and relaxes the assumption

that E(Z2
t ) = 1 which is common in the GARCH literature. A major issue in specifying

a valid ARCH(∞) process is to guarantee the nonnegativity of the conditional variance

a.s. for all t. For this to hold it must be assumed that ω̃ ≥ 0 and ψi ≥ 0 for all i ≥ 1.1

Now, define vt = ε2
t − σ2

Zht which is, by construction, a martingale-difference sequence

with respect to the filtration generated by {εs, s 6 t}. Let Ψ(L) =
∑∞

i=1 ψiL
i with L

being the lag operator, then ε2
t can be represented as

[1− σ2
ZΨ(L)]ε2

t = σ2
Zω̃ + vt. (2.3)

From equation (2.1) we have E[εt] = 0, Cov(εt, εt−j) = 0 for j ≥ 1 and by equation

(2.3) E[ε2
t ] = (σ2

Zω̃)/(1− σ2
ZΨ(1)). Therefore, it follows that the covariance stationarity

of εt in the ARCH(∞) model requires ω̃, σ2
Z ∈ R+ and σ2

ZΨ(1) < 1.

1Requiring that ψi ≥ 0 for all i implies that P(ht < ω̃) = 0. Hence ω̃ is the lower bound for the

conditional variance. Note, that the same statement holds for the GARCH(p, q) (see Nelson and Cao,

1992).
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In the following we explain how the Baillie et al. (1996a) FIGARCH and the Karana-

sos et al. (2004b) LMGARCH relate to the ARCH(∞) model given by equations (2.1)

and (2.2) under specific assumptions on ω̃, σ2
Z and for certain finite parameterizations

of Ψ(L).

Baillie et al. (1996a) introduce the FIGARCH(p, d, q) model by assuming σ2
Z = 1

and defining ε2
t via the well known ’ARMA in squares’ representation2

(1− L)dΦ(L)ε2
t = ω + B(L)vt, (2.4)

for some ω ∈ R+, 0 ≤ d ≤ 1 and lag polynomials Φ(L), B(L) defined as

Φ(L) = 1−
∑q

i=1
φiL

i and B(L) = 1−
∑p

i=1
βiL

i.

The FIGARCH can be interpreted as a special case of equation (2.2) with

ω̃ = ω/B(1) and Ψ(L) = 1− (1− L)dΦ(L)

B(L)
.

For any 0 < d < 1 the ψi coefficients will be characterized by a slow hyperbolic decay

implying persistent impulse response weights (see Chapter 3). However, the Baillie

et al. (1996a) specification with 0 < d < 1 and σ2
Z = 1 is not compatible with the

covariance stationarity of the εt, since in this case we have Ψ(1) = 1 and the above

2Baillie and Mikkelsen (1996a) alternatively proposed the fractionally integrated exponential

GARCH (FIEGARCH) which specifies the logarithm of the conditional variance as a fractionally in-

tegrated process. This formulation allows to model the so-called leverage effect and nests the Nelson

(1991) EGARCH as a special case when d = 0. Moreover, the conditional variance of the FIEGARCH

is positive by construction and so no constraints on the parameters are required. A discussion of the

moment and memory properties of the FIEGARCH can be found in Giraitis et al. (2005), p. 18. De-

spite the nice properties of the FIEGARCH, it is evident that the FIGARCH model is much more

popular in empirical applications. One reason might be that the leverage effect is primarily a short

run phenomenon. Therefore FIGARCH and FIEGARCH perform very similar in modelling the long-

run features of e.g. stock market volatility. However, the FIEGARCH often encounters convergence

problems in the estimation procedure due to the fact that the current conditional variance is a highly

non-linear function of lagged conditional variances. Moreover, to our knowledge no distribution theory

for the maximum likelihood estimator has been established even for the EGARCH with d = 0.
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covariance stationarity condition is violated. For 0 < d < 1 it is possible to obtain the

covariance stationarity of the εt by assuming σ2
Z < 1 but as shown by Zaffaroni (2004),

Theorem 2 and Remark 2.1, this implies absolute summability of the autocorrelation

function (ACF) of the ε2
t , ruling out long memory in ε2

t .

The FIGARCH nests the Bollerslev (1986) GARCH model for d = 0. Then the con-

dition σ2
ZΨ(1) < 1 reduces to well known covariance stationarity condition for εt stated

in Bollerslev (1986):
∑q

j=1 φj < 1. This specification implies exponentially decaying

coefficients ψi which lead to an absolutely summable exponentially decaying ACF of ε2
t

and hence to a short memory process. On the other hand, the IGARCH model is ob-

tained under the restriction d = 1. Then Ψ(1) = 1 and the model is again not covariance

stationary.

A model which is closely related to the FIGARCH was suggested by Karanasos et

al. (2004b). They define the LMGARCH(p, d, q) also by assuming σ2
Z = 1 but model

the squared residuals in terms of deviations from ω ∈ R+, i.e. by the equation

(1− L)dΦ(L)(ε2
t − ω) = B(L)vt. (2.5)

This small modification makes the LMGARCH being analogously defined to the

ARFIMA model for the mean, and has important implications for the properties of

εt. Equations (2.1) and (2.5) imply E[εt] = 0, Cov(εt, εt−j) = 0 for j ≥ 1 and

E[ε2
t ] = ω < ∞. This means that the LMGARCH specifies a covariance stationary

εt process, although σ2
Z = 1 and Ψ(1) = 1 for any 0 < d < 1. Moreover, the LM-

GARCH specification implies that the autocorrelations {ρm(ε2
t ),m = 1, 2, . . .} satisfy

ρm(ε2
t ) = O(m2d−1). Hence, provided that the fourth moment of the εt is finite, ε2

t

exhibits long memory for all 0 < d < 0.5, in the sense that the series
∑∞

m=0 |ρm(ε2
t )|

is properly divergent (see Karanasos et al., 2004b). In summary, the advantage of the

LMGARCH compared to the FIGARCH model is that it combines the covariance sta-

tionarity of the εt with the long memory in the ε2
t . The question whether the LMGARCH

and/or the FIGARCH are strictly stationary or not is still open at present, see Giraitis

et al. (2005), p. 11. The LMGARCH leads to an ARCH(∞) representation with ω̃ = 0
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and Ψ(L) = 1− (1− L)dΦ(L)/B(L).

Hence, both models obey ARCH(∞) coefficients generated from the expansion of

Ψ(L) = 1− (1− L)dΦ(L)

B(L)
=

∞∑
i=1

ψiL
i.

In the following section we derive conditions on the parameters (β1, . . . , βp, d, φ1, . . . , φq)

which guarantee that ψi ≥ 0 for all i ≥ 1. Since the ARCH(∞) coefficients are the same

for the FIGARCH and the LMGARCH, our results hold for both models. Moreover,

even if σ2
Z 6= 1 this will not affect the coefficients in the ARCH(∞) representation and

so our results hold for an even broader class of ARCH(∞) models than FIGARCH and

LMGARCH. Because of the predominant role played by the FIGARCH in the literature

on empirical applications we state all the results in the following section in terms of this

model.

Before we present our results we state further assumptions and introduce some more

notation which we utilize in the proofs of all theorems. We assume that the inverse

roots λi, i = 1, . . . , p, of the polynomial B(L) are real and 0 6= |λi| < 1 for i = 1, . . . , p.3

Additionally we assume that the roots of Φ(L) lie outside the unit circle and Φ(L) and

B(L) have no common roots.4 The assumptions on the roots of Φ(L) and B(L) imply

that Φ(1) > 0 and B(1) > 0.

The fractional differencing operator (1−L)d is most conveniently expressed in terms

of the hypergeometric function H(·)

(1− L)d = H(−d, 1; 1; L) =
∞∑

j=0

gjL
j,

where the coefficients gj are given by

gj = fj · gj−1 =

j∏
i=1

fi with fj =
j − 1− d

j
for j = 1, 2, . . .

3Our analysis does not cover complex roots in B(L). Since we could not find any article in which

a FIGARCH model was estimated with complex roots we expect the empirical relevance of this case

to be rather small. However, most of the recursions we derive also hold for complex roots and so in

principle it is possible the extend our results in this direction.
4If Φ(L) and B(L) have common roots the FIGARCH process reduces to a model of lower order.
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and g0 = 1. Note, that f1 = −d < 0, f2 = (1 − d)/2 > 0 and fj > 0 for all j > 2 and

hence gj < 0 for all j ≥ 1. It is easy to see that fj < fj+1 and fj → 1 as j →∞.

Furthermore, for i > q ≥ 0 we define Fi = −∑q
l=0 φl

∏q−1
j=l fi−j with φ0 = −1 and

∏−1
j=0 = 1, Fi < Fi+1 and Fi → 1− φ1 − . . .− φq > 0 as i →∞.

Let (λ(1), λ(2), . . . , λ(p)) be an ordering of the roots λi and define Λr =
∑r

i=1 λ(i),

r ≤ p. Hence, it follows that

F
(r)
i = ΛrFi−1 + Fifi−q → (Λr + 1)(1− φ1 − . . .− φq) (2.6)

and the limit is positive provided that Λr > −1.

2.3 Inequality Constraints for FIGARCH(p,d,q)

In this section we will derive the inequality constraints which are necessary and suffi-

cient for the nonnegativity of the conditional variance in the FIGARCH(p, d, q) model

with p ≤ 2 and sufficient conditions for the general model. The inequality constraints

provided in Bollerslev and Mikkelsen (1996) for the FIGARCH(1, d, 1) are substantially

relaxed. As a special case (d = 0) the results of Nelson and Cao (1992) can be obtained.

As mentioned before, the nonnegativity of the conditional variance requires that all

ψi coefficients in the ARCH(∞) representation are nonnegative. In general this would

mean imposing infinitely many inequality constraints on the ψi. By investigating the

sequence for the different models we find that the infinite number of restrictions reduces

to a finite number. This means that it suffices to check the nonnegativity of ψ1, . . . , ψk to

guarantee the nonnegativity of the conditional variance. To relate the ψi sequence to the

parameters of the process we have to find convenient representations of the coefficients

as functions of the parameters.

2.3.1 FIGARCH(1,d,q)

We begin with deriving the inequality constraints for the FIGARCH(1, d, q) process.

Then we discuss the empirically important examples of the (1, d, 1), (0, d, 1) and (1, d, 0)
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model in detail.

Theorem 2.1. The conditional variance of the FIGARCH(1, d, q) is nonnegative a.s. iff

Case 1: 0 < β1 < 1

1. ψ1, . . . , ψq−1 ≥ 0 and

2. either ψq ≥ 0 and Fq+1 ≥ 0 or for k > q + 1 with Fk−1 < 0 ≤ Fk it holds that

ψk−1 ≥ 0.

Case 2: −1 < β1 < 0

1. ψ1, . . . , ψq−1 ≥ 0 and

2. either ψq ≥ 0, ψq+1 ≥ 0 and F
(1)
q+2 ≥ 0 or for k > q + 2 with F

(1)
k−1 < 0 ≤ F

(1)
k it

holds that ψk−1 ≥ 0 and ψk−2 ≥ 0.

In the proof of Theorem 2.1 we obtain an easily computable recursion for the ψi

coefficients which can be used in practice to validate the requirements of the theorem

for a given set of parameter estimates. It is clear that in the FIGARCH(1, d, q) it

suffices to check q + 1 conditions if β1 > 0 and q + 2 conditions if β1 < 0 to ensure the

nonnegativity of the conditional variance for all t.

Because the FIGARCH(1, d, 1) is definitely the most often used specification in em-

pirical applications we intensively discuss the derivation of the corresponding inequal-

ities and their interpretation. The ARCH(∞) representation of the FIGARCH(1, d, 1)

leads to the following recursions (see proof of Theorem 2.1) for the corresponding ψi

coefficients:

ψ1 = d + φ1 − β1 (2.7)

ψi = β1ψi−1 + (fi − φ1)(−gi−1) for all i ≥ 2, and alternatively, (2.8)

ψi = β2
1ψi−2

+[β1(fi−1 − φ1) + (fi − φ1)fi−1](−gi−2) for all i ≥ 3 (2.9)
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Corollary 2.1. The conditional variance of the FIGARCH(1, d, 1) is nonnegative a.s. iff

Case 1: 0 < β1 < 1

either ψ1 ≥ 0 and φ1 ≤ f2 or for k > 2 with fk−1 < φ1 ≤ fk it holds that ψk−1 ≥ 0.

Case 2: −1 < β1 < 0

either ψ1 ≥ 0, ψ2 ≥ 0 and φ1 ≤ f2(β1 + f3)/(β1 + f2) or for k > 3 with fk−2(β1 +

fk−1)/(β1 + fk−2) < φ1 ≤ fk−1(β1 + fk)/(β1 + fk−1) it holds that ψk−1 ≥ 0 and

ψk−2 ≥ 0.

This corollary can be derived from the recursions by the following considerations.

First, note that −gi > 0 for i ≥ 1. The proof uses then the fact that Fi = fi − φ1 and

F
(1)
i = β1(fi−1 − φ1) + (fi − φ1)fi−1 are increasing and that for both expressions there

exists a k such that Fk−1 < 0 ≤ Fk and F
(1)
k−1 < 0 ≤ F

(1)
k . For example, consider Case 1.

If ψ1 ≥ 0 and φ1 ≤ f2 this implies φ1 < fi for all i > 2 and hence the nonnegativity of

all ψi by equation (2.8). If φ1 > f2, then there exists a k such that φ1 ≤ fk and so ψk−1

implies ψi ≥ 0 for all i ≥ k because fi is increasing. Also, ψk−1 ≥ 0 and fk−1 < 0 imply

ψi ≥ 0 for all i ≤ k − 2. Case 2 can be treated analogously using equation (2.9).

Next, we compare Corollary 2.1 with the already existing sufficient conditions for the

FIGARCH(1, d, 1) suggested in Baillie et al. (1996a), Bollerslev and Mikkelsen (1996)

and Chung (1999). Baillie et al. (1996a), p. 22, provide the following sufficient con-

straints

0 ≤ β1 ≤ φ1 + d and 0 ≤ d ≤ 1− 2φ1

which are equivalent to ψ1 ≥ 0 and F2 ≥ 0. Alternatively, Bollerslev and Mikkelsen

(1996), p. 159, state the inequality constraints

β1 − d ≤ φ1 ≤ 2− d

3
and d

[
φ1 − 1− d

2

]
≤ β1(φ1 − β1 + d).

which are equivalent to ψ1, ψ2 ≥ 0 and F3 ≥ 0. Hence, these inequality constraints

reflect the first condition in Case 1 of Corollary 2.1 or the arbitrary choice of k = 3
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(again Case 1). The Bollerslev and Mikkelsen (1996) conditions are weaker than the

Baillie et al. (1996a) conditions, but restrict φ1 ≤ f3. Note, that both stets of sufficient

conditions do not cover Case 2 where −1 < β1 < 0, since the corollary requires F
(1)
3 ≥ 0.

Finally, Chung (1999) suggests a third set of sufficient constraints which is given by

0 ≤ φ1 ≤ β1 ≤ d < 1 (2.10)

and provides two examples:

(i) φ1 = 0.6, β1 = 0.7 and d = 0.8

(ii) φ1 = 0.5, β1 = 0.2 and d = 0.25.

The first set of parameters satisfies equation (2.10) but not the Bollerslev and Mikkelsen

(1996) conditions, while the second satisfies the Bollerslev and Mikkelsen (1996) con-

ditions but not equation (2.10). Chung (1999), p. 18, concludes: ”The examples show

that there may be parameter values that cannot satisfy either set of sufficient conditions

while still allow all ψi coefficients to be positive.”

The corollary above provides necessary and sufficient conditions and thereby solves

this problem. One can easily check that the parameters in both examples satisfy the con-

ditions of Corollary 2.1. Moreover, in comparison to the Bollerslev and Mikkelsen (1996)

sufficient conditions it widens the range of admissible parameters: (i) if fk−1 < φ1 ≤ fk

with k > 3 parameters can still be admissible and (ii) we allow for β1 < 0.

Figure 2.1 illustrates how the inequality constraints from Corollary 2.1, Case 1,

extends the sufficient set from Bollerslev and Mikkelsen (1996) to the necessary and

sufficient set for two fixed values of d, i.e. for d ∈ {0.1, 0.9} and φ1 > 0.5 The set denoted

B+M is given by the Bollerslev and Mikkelsen (1996) conditions, while the set denoted

C+H is the area which is allowed for by Corollary 2.1, Case 1, but not by the Bollerslev

and Mikkelsen (1996) conditions. The dashed line separating the two sets corresponds

to φ1 = f3. For a given value of d, f3 is the upper bound for φ1 in the Bollerslev and

Mikkelsen (1996) conditions. The joint set, i.e. B+M ∪ C+H, is the necessary and

5Note that we exclude φ1 = β1 by the assumption that Φ(L) and B(L) have no common roots.
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Figure 2.1: Necessary and sufficient parameter set for FIGARCH(1, d, 1) (Case 1 and

φ1 > 0) with d = 0.1 (upper) and d = 0.9 (lower).

sufficient one. The necessary and sufficient set given by Figure 2.2 covers Case 1 and 2

for d = 0.3 and −1 < φ1 < 1. As can be easily seen, Corollary 2.1 dramatically enlarges

the set of parameter values which is allowed for and thereby allows for a greater flexibility

in model specification. In particular, note that in contrast to the GARCH model the

conditional variance of the FIGARCH can be nonnegative although φ1 < 0 and β1 < 0

and on the other hand it can become negative although all parameters are positive.

When d is approaching zero the parameter set described by Corollary 2.1 converges to the

well known necessary and sufficient set for a GARCH(1, 1) with parameters α1 = φ1−β1
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and β1. When d approaches one the FIGARCH(1, d, 1) collapses to a GARCH(1, 2) with

parameters α1 = 1 + φ1 − β1, α2 = −φ1 and β1, which add to one. The admissible

parameter set again coincides with the parameter set given by Nelson and Cao (1992)

for this model.
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−1.0

−0.6
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0.2

0.6

1.0

B+M

C+H
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Figure 2.2: Necessary and sufficient parameter set for FIGARCH(1, d, 1) with d = 0.3.

For the GARCH(2, 2) model He and Teräsvirta (1999c) show that the Nelson and

Cao (1992) necessary and sufficient conditions imply richer shapes of the ACF of the

squared residuals compared to shapes implied by the Bollerslev (1986) sufficient condi-

tions. They discover four possible types of ACFs which can be generated. Type 1 is

characterized by a smooth monotonic decay from ρ1 onwards, while type 2 reaches its

peak at ρ2 > ρ1 with monotonic decay from ρ2 onwards. The autocorrelations may be

oscillating either with peak at ρ1 or at ρ2, which are the types 3 and 4. Expressions for

the ACF of the squared residuals in the LMGARCH(p, d, q) were derived in Karanasos

et al. (2004b).6 While the long-run behavior of the ACF is governed by the fractional

differencing parameter d, the short run behavior is determined by φ1 and β1. We plot

6Recall that in contrast to the FIGARCH the LMGARCH is covariance stationary. However, as

pointed out by Karanasos et al. (2004b) both models have the same ’second-order structure’.
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in Figure 2.3 the ACFs of a LMGARCH(1, d, 1) with d = 0.3 and certain combinations

of parameters φ1 and β1 lying in the necessary and sufficient set (see Figure 2.2). It is

evident that even the LMGARCH(1, d, 1) can generate all four types of ACFs described

by He and Teräsvirta (1999c) for the GARCH(2, 2). Interestingly, type 4 is generated

by parameter values which do not lie in the Bollerslev and Mikkelsen (1996) sufficient

set and we could not to find any combination of parameters with β1 > 0 leading to

this type. This finding suggests that the enlarged parameter set directly translates into

an increased flexibility in characterizing the autocorrelation structure of the squared

residuals.
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Figure 2.3: Four types of ACFs for LMGARCH(1, d, 1) with d = 0.3. Type 1: φ1 = 0.7,

β1 = 0.5 (upper left), type 2: φ1 = −0.2, β1 = 0.05 (upper right), type 3: φ1 = 0.3,

β1 = 0.53 (lower left) and type 4: φ1 = −0.5, β1 = −0.25 (lower right).

Example 2.1. Baillie et al. (2002) can serve as an example which illustrates the im-

portance of our result. ARFIMA-FIGARCH(1, d, 1) models are estimated to several

inflation series. In Table 3, p. 507, the estimated parameters for the French inflation
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data are β̂1 = 0.899, d̂ = 0.331, φ̂1 = 0.859. Even though these parameters do not satisfy

the Bollerslev and Mikkelsen (1996) conditions (clearly φ̂1 > f̂3), the parameters are in

accordance with the conditions given by Corollary 2.1, Case 1.

Remark 2.1. Corollary 2.1 can be directly applied to the bivariate constant correlation

FIGARCH(1, d, 1) model given by the equations

h11,t =
ω11

1− β11

+

[
1− (1− φ11L)(1− L)d1

(1− β11L)

]
ε2
1,t

h22,t =
ω22

1− β22

+

[
1− (1− φ22L)(1− L)d2

(1− β22L)

]
ε2
2,t

and h12,t = ρ
√

h11,th22,t.

Positive definiteness of the variance-covariance matrix is guaranteed if and only if |ρ| < 1

and the parameters (φjj, dj, βjj) satisfy the condition given in Corollary 2.1 for j =

1, 2. This model is used e.g. by Brunetti and Gilbert (2000) to investigate long mem-

ory in oil price data. Brunetti and Gilbert (2000) check the sufficient Bollerslev and

Mikkelsen (1996) constraints for each equation.

Remark 2.2. Jasiak (1998) extends the Engle and Russel (1998) ACD(p, q) model to

the FIACD(p, d, q) model, i.e. he assumes that the duration time xi between the i-th and

(i− 1)-th event can be modelled as

xi = δiZi and δi =
ω

1− β1

+

[
1− (1− φ1L)(1− L)d

(1− β1L)

]
x2

i

with Zi being a sequence of i.i.d. random variables with expectation one and δi the con-

ditional expectation of the i-th duration. Applied in this context, Corollary 2.1 ensures

the nonnegativity of the conditional duration time δi.

The FIGARCH(1, d, 1) nests two interesting submodels: the FIGARCH(1, d, 0) and

the FIGARCH(0, d, 1). Although Corollary 2.1 does not explicitly cover the cases with

φ1 = 0 and β1 = 0 they can be treated along the same lines of argumentation.

Corollary 2.2. The conditional variance of the FIGARCH(0, d, 1) is nonnegative a.s. iff
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1. ψ1 ≥ 0 ⇔ d + φ1 ≥ 0

2. F2 ≥ 0 ⇔ (1− d)/2− φ1 ≥ 0

If β1 = 0 the recursion given by equation (2.8) reduces to ψi = (fi − φ1)(−gi−1) for

i ≥ 2. We impose ψ1 ≥ 0. Recall that −gi > 0 for i ≥ 1. The nonnegativity of ψ2

requires f2 − φ1 ≥ 0. Since fi is increasing, ψ2 ≥ 0 implies ψi ≥ 0 for all i > 2.7

Example 2.2. Conrad and Karanasos (2005,b) [see Chapter 5] estimate ARFIMA-

FIGARCH models for the inflation rates of ten European countries. For Belgium the

preferred specification for the conditional variance is a FIGARCH(0, d, 1) with estimated

parameters d̂ = 0.330 and φ̂1 = −0.280. Since d̂ > −φ̂1 and φ̂1 < 0 it follows from Corol-

lary 2.2 that these parameters guarantee the nonnegativity of the conditional variance

for all t. The autocorrelation structure implied by these parameters is of type 2.

Corollary 2.3. The conditional variance of the FIGARCH(1, d, 0) is nonnegative a.s.

iff 8

Case 1: 0 < β1 < 1

ψ1 ≥ 0 ⇔ d− β1 ≥ 0

Case 2: −1 < β1 < 0

ψ2 ≥ 0 ⇔ (
d−

√
2(2− d)

)
/2 ≤ β1

If φ1 = 0 the recursions given by equations (2.8) and (2.9) reduce to ψi = β1ψi−1−gi

for i ≥ 2 and ψi = β2
1ψi−2 + (β1 + fi)(−gi−1) for i ≥ 3. For 0 < β1 < 1 assuming ψ1 ≥ 0

together with −gi ≥ 0 for all i ≥ 1 imply ψi ≥ 0 for all i. For −1 < β1 < 0 it is easy

7Similarly, from the proof of Theorem 2.1 it follows that the conditional variance of the

FIGARCH(0, d, q) is nonnegative a.s. iff 1. ψ1, . . . , ψq ≥ 0 and 2. Fq+1 ≥ 0. Note, that Fq+1 ≥ 0

is trivially fulfilled if φi ≤ 0 for i = 1, . . . , q.
8Note that in Baillie et al. (1996a), p. 11, only Case 1 was considered and 0 ≤ β1 < d ≤ 1 is stated

as a necessary and sufficient condition for the conditional variance of the FIGARCH(1, d, 0) model to

be positive almost surely for all t.
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to see that ψ2 ≥ 0 implies F
(1)
2 = β1 + f2 ≥ 0. Since fi is increasing it follows that

F
(1)
i = β1 + fi > 0 for all i ≥ 3. Hence, ψ1 ≥ 0 (ensured by β1 < 0) and ψ2 ≥ 0 imply

ψi ≥ 0 for all i.

Above we illustrated the consequences of our less severe parameter constraints on the

shapes of the ACF for the LMGARCH(1, d, 1). The implications of allowing for β1 < 0 on

the degree of persistence that can be modelled is now illustrated by considering the ACF

and the impulse response function (IRF) of the LMGARCH(1, d, 0). As an example we

assume d = 0.45. According to Corollary 2.3, the range of values for β1 which guarantee
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Figure 2.4: ACFs of ε2
t (upper) and IRFs (lower) for LMGARCH(1, d, 0) with d = 0.45

and β1 = 0.45 (solid), β1 = 0 (dashed) and β1 = −0.1925 (dotted), respectively.
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the nonnegativity of the conditional variance is given by −0.1925 ≤ β1 ≤ 0.45. The

LMGARCH(1, d, 0) model with the restriction β1 ≥ 0 can not produce ACFs in the area

above the ACF with β1 = 0 as can be seen from Figure 2.4 (upper), i.e. the degree of

persistence is unnecessarily limited. Expressions for the IRF of the LMGARCH(p, d, q)

have been obtained by Conrad and Karansos (2006) [see Chapter 3] . Figure 2.4 (lower)

plots the IRF of the LMGARCH(1, d, 0) with d = 0.45 and β ∈ {−0.1925, 0, 0.45}.
Clearly, allowing for β1 < 0 increases the flexibility of the IRF. In accordance with the

result for the ACF, a negative β1 increases the persistence of the process.

2.3.2 FIGARCH(2,d,q)

Before we consider cases with p ≥ 2 we derive a recursive representation of the {ψi}
sequence. Again, let (λ(1), . . . , λ(p)) be some ordering of the λi. We will make use of the

representation in the proofs of the subsequent theorems.

Lemma 2.1. The sequence {ψi, i = 1, 2, . . .} can be written as

ψi = ψ
(p)
i where

ψ
(r)
i = λ(r)ψ

(r)
i−1 + ψ

(r−1)
i 1 < r ≤ p, i ≥ 1,

and the sequence of {ψ(1)
i } is given by

ψ
(1)
i = −ci +

min{i,q}∑
j=1

φjci−j for i = 1, . . . , q and with ci =
i∑

j=0

λi−j
(1) gj

ψ
(1)
i = λ(1)ψ

(1)
i−1 + Fi(−gi−q) for i > q

with starting values ψ
(r)
0 = −1, r = 1, . . . , p.

Now, we turn to the case p = 2. Without loss of generality we assume that λ1 ≥ λ2.

No inequality constraints – not even sufficient – have been established for p ≥ 2 in

the literature on long memory GARCH models so far. We will firstly consider the

FIGARCH(2, d, 0) and then combine the results with those from the FIGARCH(1, d, q).
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Proposition 2.1. The conditional variance of the FIGARCH(2, d, 0) is nonnegative

a.s. iff (recall that in this case: λ1 + λ2 = β1 and λ1 · λ2 = −β2)

Case 1: 1 > λ1 ≥ λ2 > 0, i.e. β1 > 0, β2 < 0

ψ1 ≥ 0 ⇔ d ≥ λ1 + λ2 = β1

Case 2: 1 > λ1 > 0 > λ2 > −1 and λ1 ≥ |λ2|, i.e. β1 ≥ 0, β2 > 0

ψ1 ≥ 0 and ψ2 ≥ 0

Case 3: 1 > λ1 > 0 > λ2 > −1 and λ1 < |λ2|, i.e. β1 < 0, β2 > 0

Either if ψ
(1)
2 ≥ 0 ⇔ λ2(d − λ2) + f2d ≥ 0 or ψ2, ψ4, . . . , ψk−2 ≥ 0, where k =

min
k̃ even

{ψ(1)

k̃
> 0} with λ(1) = λ2 and λ(2) = λ1.

Case 4: 0 > λ1 ≥ λ2 > −1, i.e. β1 < 0, β2 < 0

ψ
(1)
2 ≥ 0 and ψ2 ≥ 0 where λ(1) = λ1 and λ(2) = λ2.

Proposition 2.1, Case 1, states that the conditional variance can be nonnegative

although β2 < 0. Case 3 shows that with p = 2 we can allow for β1 < 0 (in the

GARCH(2, 2) one needs at least β1 > 0). Finally, Case 4 illustrates that in contrast to

the GARCH model with p = 2, where at least one root must be nonnegative, in the

FIGARCH with p = 2 we can allow for both roots being negative. Note however that

this case will rarely appear for financial data in practise since estimating β1 < 0 and

β2 < 0 is very unlikely. We are not aware of any application where such a parameter

combination has been estimated.

Example 2.3. Beine and Laurent (2003) estimate AR(1)-FIGARCH(2, d, 0) models for

the exchange rate of the Japanese yen, French franc and British pound against the US

dollar. The parameter estimates for all three currencies presented in Table 2, p. 651, are

such that Case 2 applies. Checking ψ̂1 and ψ̂2 immediately proves that all ψ̂i coefficients

are nonnegative and thereby confirms the validity of the chosen model specifications.
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Theorem 2.2. The conditional variance of the FIGARCH(2, d, q) is nonnegative a.s. iff

Case 1: 1 > λ1 ≥ λ2 > 0, i.e. β1 > 0, β2 < 0

1. ψ1 ≥ 0, and for q ≥ 2: ψ1, . . . , ψq−1 ≥ 0

2. either ψ
(1)
q ≥ 0 and Fq+1 ≥ 0 or for k with Fk−1 < 0 ≤ Fk either ψ

(1)
k−1 ≥ 0 or

ψk−1 ≥ 0, where

k = min
k̃>k

{−λ(1)ψ
(1)
k−1 <

k̃∑
j=0

Fk+j(−gk−q+j)λ
−j
(1)}

and λ(1) = λ1, λ(2) = λ2.

Case 2: 1 > λ1 > 0 > λ2 > −1, λ1 ≥ |λ2|, i.e. β1 ≥ 0, β2 > 0

1. ψ1 ≥ 0, and for q ≥ 2: ψ1, . . . , ψq−1 ≥ 0

2. either ψq ≥ 0 and Fq+1 ≥ 0 or for k ≥ q + 2 with Fk−1 < 0 ≤ Fk we have

ψ1, . . . , ψk−1 ≥ 0.

Case 3: 1 > λ1 > 0 > λ2 > −1, λ1 < |λ2|, i.e. β1 < 0, β2 > 0

1. ψ1 ≥ 0, and for q ≥ 2: ψ2, . . . , ψq−1 ≥ 0

2. either ψ
(1)
q ≥ 0, ψ

(1)
q+1 ≥ 0 and F

(1)
q+2 ≥ 0 or for k with F

(1)
k−1 < 0 ≤ F

(1)
k either

ψ
(1)
k−1 ≥ 0 and ψ

(1)
k−2 ≥ 0 or ψq+1, . . . , ψk−1 ≥ 0, where

k = min
k̃>k

{−λ2
(1)ψ

(1)
k−2 <

k̃∑
j=0

F
(1)
k+2j(−gk−q+2j−1)λ

−2j
(1) ,

−λ2
(1)ψ

(1)
k−1 <

k̃∑
j=0

F
(1)
k+2j(−gk−q+2j−1)λ

−2j
(1) }

and λ(1) = λ2, λ(2) = λ1.

Case 4: 0 > λ1 ≥ λ2 > −1, λ1 + λ2 > −1, i.e. −1 < β1 < 0, β2 < 0

1. (λ1, d, φ1, . . . , φq) satisfy the conditions for the FIGARCH(1, d, q)
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2. ψ1, . . . , ψk−1 ≥ 0, where k > q + 2 is s.t. F
(2)
k−1 < 0 ≤ F

(2)
k

Case 5: 0 > λ1 ≥ λ2 > −1, λ1 + λ2 ≤ −1 i.e. β1 ≤ −1, β2 < 0

1. (λ(1), d, φ1, . . . , φq) satisfy the conditions for the FIGARCH(1, d, q)

2. There exists a k̄ such that Sk̄,k > 0, where k such that F
(1)
k−1 < 0 ≤ F

(1)
k and

Sj,i = λ(1)Λ2

j∑

l=1

λ
2(i−l)
(1) F

(1)
i+2l(−gi−q+2l−1) + F

(2)
i+2j(−gi−q+2j−1)

3. ψ1, . . . , ψk̄ ≥ 0

Again, note that Case 4 and 5 are not of empirical interest, and in particular Case 5

which implies β1 < −1. Moreover, Theorem 2.2 illustrates that with increasing p the

number of cases which have to be analyzed grows exponentially. As the conditions are

already quite complex when p = 2 the analysis becomes even worse when p ≥ 3.

Remark 2.3 (Relation to GARCH(p,q)). Since the simple GARCH model is nested

within the FIGARCH we treat it as a special case. If we set d = 0, we obtain

Ψ(L) =
B(L)− Φ(L)

B(L)
=

α(L)

B(L)
=

∞∑
i=1

ψiL
i.

In analogy to Lemma 2.1 the {ψi} sequence can be obtained in the GARCH(p, q) as

ψi = ψ
(p)
i where

ψ
(r)
i = λ(r)ψ

(r)
i−1 + ψ

(r−1)
i for 1 < r ≤ p, i ≥ 1 with ψ

(r)
0 = 0,

where ψ
(1)
i in the GARCH(1, q) is given by ψ

(1)
i =

∑i
j=1 λi−j

(1) αj for i = 1, 2, . . . , q, and

ψ
(1)
i = λi−q

(1) ψq for all i > q, and for some ordering (λ(1), . . . , λ(p)).

For p = 1 or p = 2 it can be easily shown that our methodology leads to the

same necessary and sufficient nonnegativity constraints as were derived by Nelson and

Cao (1992).
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2.3.3 FIGARCH(p,d,q)

As in the GARCH(p, q) necessary and sufficient conditions are more difficult to derive for

the general FIGARCH(p, d, q) process. Instead, we state two sets of sufficient conditions.

A first set which is more restrictive on the parameters, but – when satisfied – immediately

implies ψi ≥ 0 for all i. A second set which is less restrictive on the parameters, but

requires to check the nonnegativity of the first k ψi.

Theorem 2.3. The conditional variance of the FIGARCH(p, d, q) is nonnegative a.s. if

1. Let s be the number of inverse roots of B(L) which are positive. If p is even we

require s ≥ p/2− 1 and if p is odd we require s ≥ (p− 1)/2.

2. ψ1 = d + φ1 − (λ1 + λ2 + . . . + λp) ≥ 0

3. (a) If p = s, then there must be a λi s.t. (λi, d, φ1, . . . , φq) satisfy the conditions

for the FIGARCH(1, d, q)

(b) If p > s, then there must exist an ordering (λ(1), λ(2), . . . , λ(p)) of the roots λi

s.t.

i. (λ(1), d, φ1, . . . , φq) satisfy the conditions for the FIGARCH(1, d, q)

ii. 0 > λ(2(p−s−1)+1) ≥ λ(2(p−s−1−1)+1) ≥ . . . ≥ λ(5) ≥ λ(3) and

λ(2) ≥ |λ(3)|, λ(4) ≥ |λ(5)|, . . . , λ(2(p−s−1)) ≥ |λ(2(p−s−1)+1)|
iii. ψ

(3)
2 , ψ

(5)
2 , . . . , ψ

(2(p−s−1)+1)
2 ≥ 0

where 1 = 1 if λ(1) < 0 and 0 otherwise.

In a slightly modified version the same arguments can be applied to the GARCH(p, q)

model using the representation given in Remark 2.3. Such a sufficient condition is more

restrictive than the sufficient condition stated in Nelson and Cao (1992), which is given

by λ(1) > max
i=2,...,p

{|λ(i)|}, but – in contrast to the Nelson and Cao (1992) condition –

directly implies ψi ≥ 0 for all i.

Now, we come to the second and less restrictive sufficient condition. For this condi-

tion we have to find 0 ≤ p1 ≤ p2 ≤ p with p2 − p1 even, such that the ordering of the p
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inverse roots of B(L) is in the following way

λ(1) ≤ · · · ≤ λ(p1) < 0

λ(p1+1) > 0, λ(p1+2) < 0, . . . , λ(p2−1) > 0, λ(p2) < 0

with λ(p1+2i−1) + λ(p1+2i) ≥ 0, i = 1, . . . , (p2 − p1)/2

λ(p2+1) ≥ · · · ≥ λ(p) > 0

This ordering is of course not unique as there can always be taken positive and negative

roots to build a new pair as well as pairs can be separated, such that p1 and p2 differ.

But it is always possible to find such an ordering.

Theorem 2.4. If in the FIGARCH(p, d, q) there exists an ordering of the roots such

that Λp1 > −1 then there exists a k such that ψi ≥ 0 for all i > k.

From this theorem it is clear that if Λp1 > −1 it is sufficient to check a finite

number of ψi, i ≤ k to find out if for specific parameter values the conditional variance is

nonnegative almost surely for all t. The existence of such a k under a weak condition is a

strong result, since ψi is a i-th order polynomial in all parameters. The unknown k can be

found going along the proof of this theorem. This procedure can easily be implemented.

However, the condition is not necessary, i.e. it is possible to find parameter values such

that ψi ≥ 0 for all i and Λp1 < −1 for every ordering of the roots. The set which is

not covered by this theorem is expected to be small, e.g. in the FIGARCH(2, d, q) the

theorem would cover four out of the five cases considered in Theorem 2.2. Since for most

economic data we would expect that Λp = β1 > 0 it suffices to check a finite number of

coefficients. In this case the theorem provides a necessary and sufficient condition.

For higher order models – in which the estimated parameters do not satisfy the

sufficient condition given by Theorem 2.4 – the sequence ψi can be calculated using

Lemma 2.1. By plotting the sequence for sufficiently high lags one can obtain an indi-

cation whether the conditional variance will stay positive or not. However, this does of

course not guarantee the nonnegativity of the conditional variance for all t.
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Theorem 2.4 can be seen as being analogous to the sufficient condition stated in

Nelson and Cao (1992) for the GARCH(p, q).

2.4 Empirical Example

In order to illustrate the importance of our results we investigate an empirical times

series. We employ daily exchange rate data for the Japanese Yen vs. US Dollar sourced

from the Datastream database for the period 1st November 1993 to 18th November 2003,

giving a total of 2,621 observations. The continuously compounded returns are computed

as rt = 100 · [log(pt) − log(pt−1)] where pt is the price on day t. Table 2.1 presents the

quasi-maximum likelihood parameter estimates for a FIGARCH(1, d, 1) model (rt =

µ+ εt) estimated with the G@RCH package. Additionally to these parameter estimates

Table 2.1: FIGARCH(1, d, 1) estimates.

µ̂ ω̂ d̂ φ̂1 β̂1

0.012 0.027 0.264 0.592 0.727

(0.928) (0.896) (2.899) (2.131) (2.821)

Notes: Numbers in parentheses are t-statistics.

G@RCH provides the following output:

”The positivity constraint for the FIGARCH (1, d, 1) is not observed. ⇒ See

Bollerslev and Mikkelsen (1996) for more details.”

Obviously, φ̂1 > f̂3 in this case, and thus the Bollerslev and Mikkelsen (1996) con-

ditions are violated. We check the conditions from Corollary 2.1, since it allows for

φ̂1 > f̂3. Step 1 is to determine k which is given by (1 + d̂)/(1− φ̂1) ≤ k and so step 2

is to verify that ψ̂k−1 ≥ 0 which suffices for ψ̂i ≥ 0 for all i = 1, 2, . . .. For our em-

pirical example we find k = 4 and so ψ̂3 has to be calculated by the recursions for the

(1, d, 1). It can be easily seen that ψ̂3 > 0 for our parameter estimates. Hence, the set
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of parameters guarantees that the conditional variance is nonnegative almost surely for

all t. Figure 2.5 illustrates the set of necessary and sufficient (φ1 > 0, β1 > 0) parameter

values for d̂ = 0.264. The dashed line bounds the Bollerslev and Mikkelsen (1996) set

and is given by φ1 = f̂3. The cross represents the estimated parameter combination

which lies in the necessary and sufficient set.9 The practitioner solely relying on the

G@RCH output – and hence on the Bollerslev and Mikkelsen (1996) conditions – would

have falsely rejected the model.
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Figure 2.5: Necessary and sufficient parameter set for FIGARCH(1, d, 1) (Case 1 and

φ1 > 0) with d̂ = 0.264.

2.5 Conclusions

In this chapter we derive necessary and sufficient conditions which ensure the nonneg-

ativity of the conditional variance in the FIGARCH model of the order p ≤ 2 and

sufficient conditions for the general model. These conditions are important since any

9Note that the estimated parameters also violate the sufficient constraints suggested by

Chung (1999).
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practitioner estimating FIGARCH models – in particular when using parameter esti-

mates for forecasting volatility – has to make sure that the model is well defined in

the sense that it can not lead to negative conditional variances. This issue is even

more important when considering long memory GARCH models since – unlike with the

short memory GARCH models – one can not easily deduce the nonnegativity of the

conditional variance from the sign of the estimated parameters. So far only a sufficient

condition for the FIGARCH(1, d, 1) was available and no conditions existed for higher

order models. We demonstrate graphically how the necessary und sufficient conditions

for the (1, d, 1) enlarge the feasible parameter set which has important implications for

the permitted shapes of the autocorrelation and impulse response functions of the LM-

GARCH and thereby widens the range of data features that can be handled. The lack

of knowledge concerning conditions which ensure the nonnegativity of the conditional

variance in higher order models is presumably one reason why these models have been

applied rarely in the literature. Studies as Caporin (2003) which are concerned with

identification and order selection in long memory GARCH models restrict their analysis

to the set of parameters defined by Bollerslev and Mikkelsen (1996) and hence to models

of order (1, d, 1), (1, d, 0) and (0, d, 0) only. Our work is intended to close this gap. As

with the Nelson and Cao (1992) conditions we suggest that econometric packages should

state not only the estimated parameters but also whether those satisfy the necessary and

sufficient conditions derived in this chapter. An interesting avenue for future research

would be to analyze the implications of imposing the necessary and sufficient restrictions

directly on the maximum likelihood estimation.

Our results extend to more sophisticated long memory specifications such as the

asymmetric power FIGARCH, the multivariate constant correlation FIGARCH and long

memory ACD models in which it must be ensured that the conditional duration time

does not take negative values.
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2.6 Appendix

We first derive a recursive representation of the ψi sequence for the FIGARCH(1, d, q)

model. This representation will be used to prove Theorem 2.1. In the FIGARCH(1, d, q)

we can write

Ψ(L) = 1− Φ(L)(1− L)d(1− β1L)−1

= 1− (1− φ1L− φ2L
2 − . . .− φqL

q) ·
∞∑
i=0

ciL
i

= 1−
∞∑
i=0

(ci − φ1ci−1 − . . .− φqci−q) Li =
∞∑
i=1

ψiL
i

where

ci =
i∑

j=0

βi−j
1 gj for i ≥ 0 and ci = 0 for i < 0.

Hence, the sequence {ψi, i = 1, 2, . . .} can be written as

ψi = −ci +

min{i,q}∑
j=1

φjci−j for i > 0.

Note, that the following recursion applies: ci = β1ci−1 + gi

Proof of Theorem 2.1.

Case 1: 0 < β1 < 1

”⇐”

1. ψ1, . . . , ψq−1 ≥ 0 by assumption.

2. (i) If ψq ≥ 0 and Fq+1 ≥ 0 this ensures ψi ≥ 0 for all i > q, since Fi is increasing

and

ψi = −ci + φ1ci−1 + . . . + φqci−q for i ≥ q + 1

= −(β1ci−1 + gi) + φ1(β1ci−2 + gi−1) + . . . + φq(β1ci−q−1 + gi−q)

= β1(−ci−1 + φ1ci−2 + . . . + φqci−q−1) +

(fifi−1 . . . fi−q+1 − φ1fi−1 . . . fi−q+1 − . . .− φq)(−gi−q)

= β1ψi−1 + Fi(−gi−q) ≥ 0. (2.11)
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(ii) If Fq+1 < 0, then for ψi with q < i < k it holds that

ψi = β1ψi−1 + Fi(−gi−q) ≥ 0

⇔ β1ψi−1 ≥ Figi−q > 0

⇒ ψi−1 ≥ 0

Thus, ψi ≥ 0 implies ψi−1 ≥ 0. As ψk−1 ≥ 0 it follows recursively that ψi ≥ 0

for all q ≤ i < k. For i ≥ k we have

ψi = β1ψi−1 + Fi(−gi−q)

and hence, from ψk−1 ≥ 0 follows ψk ≥ 0 since Fk ≥ 0. ⇒ ψi ≥ 0 for all i > k

by induction.

”⇒”

1. The first condition and ψq, ψk−1 ≥ 0 are trivially fulfilled.

2. Either Fq+1 ≥ 0 or Fq+1 ≤ 0, but since Fi−1 ≤ Fi and Fi → 1−∑q
j=1 φi > 0 there

exists a k s.t. Fi ≥ 0 for all i ≥ k.

Case 2: −1 < β1 < 0

”⇐”

1. ψ1, . . . , ψq−1 ≥ 0 by assumption.

2. We make use of the following recursion

ψi = β2
1ψi−2 + F

(1)
i (−gi−q−1) for i ≥ q + 2 (2.12)

3. (i) If F
(1)
q+2 ≥ 0 then ψq ≥ 0 and ψq+1 ≥ 0 ensure that ψi ≥ 0 for all i ≥ q + 2.

(ii) If F
(1)
q+2 < 0 then for ψi with q + 2 < i < k it holds that

ψi = β2
1ψi−2 + F

(1)
i (−gi−q−1) ≥ 0

⇔ β2
1ψi−2 ≥ −F

(1)
i (−gi−q−1) ≥ 0

⇒ ψi−2 ≥ 0
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Thus, ψi ≥ 0 implies ψi−2 ≥ 0. As ψk−1 ≥ 0 and ψk−2 ≥ 0 it follows

recursively that ψi ≥ 0 for all q ≤ i < k. For i ≥ k we use equation (2.12)

and hence, from ψk−1 ≥ 0 and ψk−2 ≥ 0 it follows that ψi ≥ 0 for all i > k

by induction.

”⇒”

1. The first condition and ψq, ψq+1, ψk−2, ψk−1 ≥ 0 are trivially fulfilled.

2. Either F
(1)
q+1 ≥ 0 or F

(1)
q+1 ≤ 0, but since F

(1)
i−1 ≤ F

(1)
i and F

(1)
i → β1(1− φ1 − . . .−

φq) + (1− φ1 − . . .− φq) > 0 there exists a k s.t. F
(1)
i ≥ 0 for all i ≥ k.

Proof of Lemma 2.1.

Ψ(L) = 1− Φ(L)(1− L)d

B(L)
= 1− Φ(L)(1− L)d(1− λ(1)L)−1 · . . . · (1− λ(p)L)−1

= 1 +
∞∑
i=0

ψ
(1)
i Li ·

∞∑
i=0

λi
(2)L

i · . . . ·
∞∑
i=0

λi
(p)L

i

= 1 +
∞∑
i=0

ψ
(2)
i Li ·

∞∑
i=0

λi
(3)L

i · . . . ·
∞∑
i=0

λi
(p)L

i

...

= 1 +
∞∑
i=0

ψ
(p)
i Li =

∞∑
i=1

ψ
(p)
i Li

since

∞∑
i=0

ψ
(r−1)
i Li ·

∞∑
i=0

λi
(r)L

i =
∞∑
i=0

ψ
(r)
i Li

with

ψ
(r)
i =

i∑
j=0

λj
(r)ψ

(r−1)
i−j = ψ

(r−1)
i +

i∑
j=1

λj
(r)ψ

(r−1)
i−j

= ψ
(r−1)
i + λ(r)

i−1∑
j=0

λj
(r)ψ

(r−1)
i−j−1 = ψ

(r−1)
i + λ(r)ψ

(r)
i−1
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Using the representation from Lemma 2.1 and equation (2.11) for ψ
(1)
i we deduce for

i > q + 1

ψ
(r)
i =

r−1∑

k=0

ψ
(r−k)
i−2 λ(r−k)(Λr − Λr−k−1) + F

(r)
i (−gi−q−1). (2.13)

Repeated application of equation (2.13) leads to

ψ
(r)
i+2m = λ2m

(r)ψ
(r)
i +

r−1∑

k=1

m∑
j=1

λ
2(m−j)
(r) λ(r−k)(Λr − Λr−k−1)ψ

(r−k)
i+2j−2

+
m∑

j=1

λ
2(m−j)
(r) F

(r)
i+2j(−gi−q+2j−1) (2.14)

for m = 1, 2, . . . and i > q + 1.

We will make us of equation (2.13) and (2.14) in the subsequent proofs.

Proof of Proposition 2.1.

”⇐”

Case 1: 1 > λ1 ≥ λ2 > 0.

Set λ(1) = λ1, λ(2) = λ2 and note that ψ
(1)
i is identical with ψi from Case 1 of the

FIGARCH(1, d, 0), since λ(1) = λ1 > 0.

Observe that ψ1 = ψ
(2)
1 = d− (λ(1) + λ(2)) ≥ 0 implies ψ

(1)
1 = d− λ(1) ≥ 0. Further-

more, from Proposition 2.3, Case 1, we know that ψ
(1)
1 ≥ 0 implies ψ

(1)
i ≥ 0 for all i.

Hence, it follows that ψi = λ(2)ψi−1 + ψ
(1)
i ≥ 0 for all i ≥ 2.

Case 2: 1 > λ1 > 0 > λ2 > −1 and λ1 ≥ |λ2|.
Set λ(1) = λ1, λ(2) = λ2. Then for i > 2 we can write

ψi = λ(2)ψi−1 + ψ
(1)
i

= λ(2)ψi−1 + λ(1)ψ
(1)
i−1 − gi

= λ(2)ψi−1 + λ(1)(ψi−1 − λ(2)ψi−2)− gi

= (λ(1) + λ(2))ψi−1 − λ(1) · λ(2)ψi−2 − gi

Since λ(1) + λ(2) ≥ 0, λ(1) · λ(2) < 0 and gi < 0, it suffices to assume that ψ1 ≥ 0 and

ψ2 ≥ 0 to ensure that ψi ≥ 0 for all i > 2.
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Case 3: 1 > λ1 > 0 > λ2 > −1 and λ1 < |λ2|.
Note that ψ

(1)
i is identical with ψi from the FIGARCH(1, d, 0), Case 2, since λ(1) =

λ2 < 0.

1. ψ
(1)
1 = d− λ(1) ≥ 0 is obviously satisfied.

2. (i) If λ(1) is such that ψ
(1)
2 ≥ 0 which implies ψ

(1)
i ≥ 0 for all i (Proposition 2.3,

Case 2) we immediately obtain ψi ≥ 0 for all i.

(ii) If λ(1) is such that ψ
(1)
2 ≤ 0 we make use of the recursion

ψ
(1)
i = λ2

(1)ψ
(1)
i−2 + (λ(1) + fi)(−gi−1) for i ≥ 3 (2.15)

Since we know that there exists a k s.t. λ(1) + fk−1 < 0 ≤ λ(1) + fk, we can

conclude that there exists an even k = k + 2i + 1k with

ψ
(1)
k+2i+1k

= λ2i+2
(1) ψ

(1)
k−2+1k

+
i∑

j=0

(λ(1) +

fk+2j+1k
)(−gk−1+2j+1k

)λ
2(i−j)
(1) ≥ 0

since

0 ≤ −λ2
(1)ψ

(1)
k−2+1k

<

i∑
j=0

(λ(1) + fk+2j+1k
)(−gk−1+2j+1k

)λ−2j
(1)

where the rhs is diverging and 1k is defined as

1k =





1 if k odd,

0 otherwise.

By definition ψ
(1)
4 , ψ

(1)
6 , . . . , ψ

(1)

k−2
≤ 0 and from ψ

(1)
i = λ(1)ψ

(1)
i−1 − gi it follows

that

ψ
(1)
3 , ψ

(1)
5 , . . . , ψ

(1)

k−1
≥ 0.

Again from equation (2.15) we deduce that ψ
(1)
i ≥ 0 for all i ≥ k + 1.
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Observe that ψ1 = d − (λ(1) + λ(2)) ≥ 0 without further assumptions. For

i ≥ 3 we can apply the following recursion

ψi = λ(2)ψi−1 + ψ
(1)
i (2.16)

= λ2
(2)ψi−2 + λ(2)ψ

(1)
i−1 + ψ

(1)
i = λ2

(2)ψi−2 + (λ(1) + λ(2))ψ
(1)
i−1 − gi

Given that ψ1 ≥ 0 and knowing that all ψ
(1)
i ≤ 0 with i even we obtain ψi ≥ 0

for all i < k and i odd. By observing that ψ
(1)
i ≥ 0 for all i ≥ k we conclude

from equation (2.16) that ψi ≥ 0 for all i ≥ k. It remains to assume that

ψ2, ψ4, . . . , ψk−2 ≥ 0.

Case 4: 0 > λ1 ≥ λ2 > −1.

Note that ψ
(1)
i is identical with ψi from the FIGARCH(1, d, 0), Case 2 with λ(1) = λ1.

Again, observe that ψ1 = d−(λ(1)+λ(2)) ≥ 0 without further assumptions. Now consider

ψ2:

ψ2 = λ(2)ψ1 + ψ
(1)
2

= λ(2)(d− (λ(1) + λ(2))) + λ(1)(d− λ(1)) + f2d

= (λ(1) + λ(2) + f2)d− λ2
(1) − λ(2)(λ(1) + λ(2))

ψ2 ≥ 0

⇔ (λ(1) + λ(2) + f2)d ≥ λ2
(1) + λ(2)(λ(1) + λ(2)) ≥ 0

⇒ (λ(1) + λ(2)) + f2 ≥ 0

Notice that F
(2)
2 = Λ2 + f2 ≥ 0 implies F

(2)
i = Λ2 + fi ≥ 0 for all i ≥ 0. Finally, for

i ≥ 3 we can apply equation (2.13)

ψi = λ2
(2)ψi−2 + λ(1)Λ2ψ

(1)
i−2 + F

(2)
i (−gi−1) (2.17)

For ψi being nonnegative by equation (2.17) we must require that ψ
(1)
i ≥ 0 for all i,

which is the case iff ψ
(1)
2 ≥ 0. Given that ψ1 ≥ 0 and by assuming that ψ2 ≥ 0 it follows

from the recursion that ψi ≥ 0 for all i.

”⇒”
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If ψi ≥ 0 for all i, then all assumptions are trivially satisfied.

Before we prove the next theorem we need to establish the rate of convergence of

the gj coefficients. Since for the hypergeometric function it holds that

H(−d, 1; 1; L) =
∞∑

j=0

Γ(j − d)

Γ(−d)Γ(1 + j)
Lj,

where Γ(·) is the gamma function which is defined by Γ(x) =
∫∞
0

tx−1e−tdt for x > 0,

Γ(x) = ∞ for x = 0 and Γ(x) = x−1Γ(1 + x) for x < 0, we have the representation

gj =
Γ(j − d)

Γ(−d)Γ(1 + j)
= O(j−d−1)

by applying Sterling’s formula. Hence,

−gjλ
−j
i −→ +∞ as j −→∞,

which will be made use of in the subsequent proofs.

Proof of Theorem 2.2.

Case 1: 1 > λ1 ≥ λ2 > 0.

”⇐”

Note, that ψ
(1)
i is identical with ψi from the FIGARCH(1, d, q), Case 1, with λ(1) =

λ1.

1. We assume ψ1 ≥ 0, ψ2, . . . , ψq−1 ≥ 0. Note, that ψ1 ≥ 0 implies ψ
(1)
1 ≥ 0.

2. (i) If either ψ
(1)
q ≥ 0 and Fq+1 ≥ 0 or for k with Fk−1 < 0 ≤ Fk we have that

ψ
(1)
k−1 ≥ 0, by the same arguments as in the FIGARCH(1, d, q), Case 1, we

can conclude that ψ
(1)
i ≥ 0 for i = q, . . . and hence ψq−1 ≥ 0 (note, for q = 1

we require ψ1 ≥ 0 instead) implies ψi ≥ 0 for all i ≥ q.

(ii) If ψ
(1)
k−1 ≤ 0, then there exist (k, k) with k = min{j | ψ

(1)
j ≤ 0, j = q, . . . },

k = min{j | ψ
(1)
j ≥ 0, j = k, . . . } (only if q = 1 do we have q < k) s.t.
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ψ
(1)
i ≥ 0 ∀ i ∈ {q, . . . , k − 1} ∪ {k, . . .} and ψ

(1)
i ≤ 0 ∀ i ∈ {k, . . . , k − 1}. k

exists because we can write ψ
(1)
k+i as

ψ
(1)
k+i = λi+1

(1) ψ
(1)
k−1 +

i∑
j=0

Fk+j(−gk−q+j)λ
i−j
(1)

and hence we must have that

0 ≤ −λ(1)ψ
(1)
k−1 <

i∑
j=0

Fk+j(−gk−q+j)λ
−j
(1)

for some i (the rhs is diverging) which gives k = k + i. The existence of k is

obvious, since ψ
(1)
k−1 ≤ 0. This implies ψi ≥ 0 for i = 1, . . . , k − 1. Assuming

that ψk−1 ≥ 0 and starting with i = k − 1 we derive recursively

ψi = λ2ψi−1 + ψ
(1)
i ≥ 0

⇔ λ2ψi−1 ≥ −ψ
(1)
i ≥ 0

⇔ ψi−1 ≥ 0

which implies that ψi ≥ 0 with i ∈ {k, . . . , k − 2}. Finally, ψi ≥ 0 for i ≥ k,

since ψk−1 ≥ 0 and ψ
(1)
i ≥ 0 ∀ i ≥ k.

” ⇒ ”

ψ1 ≥ 0 and ψk−1 ≥ 0 is trivially satisfied. For k with Fk−1 < 0 ≤ Fk we either have

that ψ
(1)
k−1 ≥ 0 or ψ

(1)
k−1 ≤ 0, but in the latter case there exists a k s.t. ψ

(1)

k
≥ 0 as shown

above.

Case 2: 1 > λ1 > 0 > λ2 > −1 and λ1 ≥ |λ2|.
”⇐”

1. We assume ψ1 ≥ 0, ψ2, . . . , ψq−1 ≥ 0.

2. Set λ(2) = λ2 and λ(1) = λ1. Similar as in the FIGARCH(2, d, 0) we obtain for

i ≥ q + 1

ψi = λ(2)ψi−1 + ψ
(1)
i = (λ(1) + λ(2))ψi−1 − λ(1) · λ(2)ψi−2 + Fi(−gi−q)



48 2. Inequality Constraints in the Fractionally Integrated GARCH Model

(i) Either ψq ≥ 0 and Fq+1 ≥ 0 which implies ψi ≥ 0 for all i ≥ q or

(ii) since λ(1) + λ(2) ≥ 0, λ(1) · λ(2) < 0, gi < 0 and there exists a k ≥ q + 2 such

that Fk−1 < 0 ≤ Fk it suffices to assume that ψ1, . . . , ψk−1 ≥ 0 to ensure that

ψi ≥ 0 for all i.

”⇒”

ψ1, . . . , ψk−1 ≥ 0 is trivially satisfied and the existence of k follows from λ(1) < 1.

Case 3: 1 > λ1 > 0 > λ2 > −1 and λ1 < |λ2|.
”⇐”

Note that ψ
(1)
i is identical with ψi from the FIGARCH(1, d, q), Case 2, with λ(1) = λ2.

1. We assume ψ1 ≥ 0, ψ2, . . . , ψq−1 ≥ 0.

2. (i) If either ψ
(1)
q ≥ 0, ψ

(1)
q+1 ≥ 0 and F

(1)
q+2 ≥ 0 or for k with Fk−1 < 0 ≤ F

(1)
k

we have that ψ
(1)
k−1 ≥ 0 and ψ

(1)
k−2 ≥ 0, by the same arguments as in the

FIGARCH(1, d, q), Case 2, we can conclude that ψ
(1)
i ≥ 0 for i = q, . . . and

hence ψq−1 ≥ 0 (note, for q = 1 we require ψ1 ≥ 0 instead) implies ψi ≥ 0 for

all i ≥ q.

(ii) If ψ
(1)
k−1 ≤ 0 and/or ψ

(1)
k−2 ≤ 0, then there exists k with q < k < k s.t.

ψ
(1)
i ≥ 0 ∀ i ≥ k. k exists because we can write ψ

(1)
k+2i and ψ

(1)
k+1+2s as

ψ
(1)
k+2i = λ2i+2

(1) ψ
(1)
k−2 +

i∑
j=0

F
(1)
k+2j(−gk−q+2j−1)λ

2(i−j)
(1)

ψ
(1)
k+1+2s = λ2s+2

(1) ψ
(1)
k−1 +

s∑
j=0

F
(1)
k+1+2j(−gk−q+2j)λ

2(s−j)
(1)

and hence we must have that

0 ≤ − λ2
(1)ψ

(1)
k−2 <

i∑
j=0

F
(1)
k+2j(−gk−q+2j−1)λ

−2j
(1)

0 ≤ − λ2
(1)ψ

(1)
k−1 <

s∑
j=0

F
(1)
k+1+2j(−gk−q+2j)λ

−2j
(1)
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for some i, s (the rhs is diverging) which gives k = k + 2 · max{i, s}. By

assuming that ψq+1, . . . , ψk−1 ≥ 0 the nonnegativity of ψi for all i follows

directly.

” ⇒ ”

ψ1 ≥ 0 and ψk−1 ≥ 0 is trivially satisfied. For k with F
(1)
k−1 < 0 ≤ F

(1)
k we either have

that ψ
(1)
k−1 ≥ 0 and ψ

(1)
k−2 ≥ 0 or ψ

(1)
k−1 ≤ 0 and/or ψ

(1)
k−2 ≤ 0, but in the latter case there

exists a k s.t. ψ
(1)

k
≥ 0 as shown above.

Case 4: 0 > λ1 ≥ λ2 > −1, λ1 + λ2 > −1

” ⇐ ”

Set λ(1) = λ1 and λ(2) = λ2. As in Case 2 we can write ψi as

ψi = λ(2)ψi−1 + ψ
(1)
i

with ψ
(1)
i coming from the FIGARCH(1, d, q) model. But now, obviously we need to

require ψ
(1)
i ≥ 0 for all i. Using equation (2.13) we obtain for i ≥ q + 2

ψi = λ2
(2)ψi−2 + λ(1)Λ2ψ

(1)
i−2 + F

(2)
i (−gi−q−1)

We know that there exists a k with F
(2)
k−1 < 0 ≤ F

(2)
k . Therefore, assuming that

ψ1, . . . , ψk−1 ≥ 0 implies ψi ≥ 0 for all i ≥ k.

” ⇒ ”

ψ1, . . . , ψk−1 ≥ 0 and the existence of k is trivially satisfied. Moreover, ψ
(2)
i > 0

implies ψ
(1)
i > 0 for all i.

Case 5: 0 > λ1 ≥ λ2 > −1, λ1 + λ2 < −1

” ⇐ ”



50 2. Inequality Constraints in the Fractionally Integrated GARCH Model

Choose λ(1) and λ(2) such that λ(1)/λ(2) < 1. Then by equation (2.14)

ψ
(2)
i+2m = λ2m

(2)ψ
(2)
i +

m∑
j=1

λ
2(m−j)
(2) λ(1)Λ2ψ

(1)
i+2j−2 +

m∑
j=1

λ
2(m−j)
(2) F

(2)
i+2j(−gi−q+2j−1)

= λ2m
(2)ψ

(2)
i +

m∑
j=1

λ
2(m−j)
(2) λ(1)Λ2

[
λ2j−2

(1) ψ
(1)
i +

j∑

l=1

λ
2(i−l)
(1) F

(1)
i+2l(−gi−q+2l−1)

]

+
m∑

j=1

λ
2(m−j)
(2) F

(2)
i+2j(−gi−q+2j−1)

= λ2m
(2)ψ

(2)
i + λ2m

(2)λ
−1
(1)Λ2ψ

(1)
i

m∑
j=1

(
λ(1)

λ(2)

)2j

+
m∑

j=1

λ
2(m−j)
(2) Sj,i (2.18)

Now, choose k such that F
(1)
k−1 < 0 ≤ F

(1)
k and observe that

0 ≤
∞∑

l=1

λ
2(k−l)
(1) F

(1)
k+2l(−gk−q+2l−1) < ∞

Hence, if there exists k̄ with Sk̄,k > 0, then Sj,k > 0 for all j > k̄ by monotonicity.

Therefore, if ψ1, . . . , ψk̄ ≥ 0 it follows by equation (2.18) that ψi ≥ 0 for all i.

” ⇒ ”

ψ1, . . . , ψk̄ ≥ 0 is trivially satisfied. If k̄ does not exist it follows from equation (2.18)

that ψi+2m will become negative for some m. As in Case 4, ψ
(2)
i > 0 implies ψ

(1)
i > 0 for

all i.

Proof of Theorem 2.3.

1. If p = s and there is a λi such that (λi, d, φ1, . . . , φq) satisfy the conditions for the

FIGARCH(1, d, q), it is immediately clear from the recursion derived in Lemma 2.1

that ψ1 ≥ 0 is sufficient for ψi ≥ 0 for all i.

2. Let p > s. First, observe that ψ1 ≥ 0 implies ψ
(1)
1 , . . . , ψ

(p−1)
1 ≥ 0.

If (λ(1), d, φ1, . . . , φq) satisfy the conditions for the FIGARCH(1, d, q) we can con-

clude that ψ
(1)
i ≥ 0 for all i.

Since ψ
(1)
i ≥ 0 for all i and λ(2) > 0 we immediately obtain ψ

(2)
i ≥ 0 for all i.
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ψ
(3)
i can be written as

ψ
(3)
i = λ2

(3)ψ
(3)
i−2 + (λ(2) + λ(3))︸ ︷︷ ︸

≥0

ψ
(2)
i−1 + ψ

(1)
i for i ≥ 3.

Since ψ
(3)
1 = d + φ1 − (λ(1) + λ(2) + λ(3)) ≥ 0, assuming ψ

(3)
2 ≥ 0 ensures that

ψ
(3)
i ≥ 0 for all i.

By the same arguments we can show that ψ
(r)
i ≥ 0 for all i follows from ψ

(r)
i =

λ(r)ψ
(r)
i−1 + ψ

(r−1)
i if ψ

(r−1)
i ≥ 0 for all i and r ≤ 2(p − s) even and from ψ

(r)
i =

λ2
(r)ψ

(r)
i−2 + (λ(r−1) + λ(r))ψ

(r−1)
i−1 + ψ

(r−2)
i by assuming ψ

(r)
2 ≥ 0 if r ≤ 1 + 2(p − s)

odd.

For r > 1 + 2(p− s) the recursion ψ
(r)
i = λ(r)ψ

(r)
i−1 + ψ

(r−1)
i applies again.

Proof of Theorem 2.4.

Assume there exists an ordering with Λp1 > −1. Recall form equation (2.6) that

F
(r)
i → c > 0 for all r = 1, . . . , p1.

We use the recursions (see Lemma 2.1)

ψ
(1)
i = λ(1)ψ

(1)
i−1 + Fi(−gi−q) i > q

ψ
(r)
i = λ(r)ψ

(r)
i−1 + ψ

(r−1)
i 1 < r ≤ p, i ≥ 1, with ψ

(r)
0 = −1

to deduce for i > q + 1

ψ
(r)
i =

r−1∑

k=0

ψ
(r−k)
i−2 λ(r−k)(Λr − Λr−k−1) + F

(r)
i (−gi−q−1) (2.19)

where Λr − Λr−k−1 < 0 for all k as long as r = 2, . . . , p1. Repeated application of

equation (2.19) leads to

ψ
(r)
i+2m = λ2m

(r)ψ
(r)
i +

r−1∑

k=1

m∑
j=1

λ
2(m−j)
(r) λ(r−k)(Λr − Λr−k−1)ψ

(r−k)
i+2j−2

+
m∑

j=1

λ
2(m−j)
(r) F

(r)
i+2j(−gi−q+2j−1) (2.20)
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for m = 1, 2, . . . and i > q + 1.

In the following we show that for each r there exists a kr such that ψ
(r)
j > 0 for

all j ≥ kr. From the FIGARCH(1, d, q) we know that there exists a k1 > q such that

ψ
(1)
j > 0 for all j > k1. This holds also in the case where λ1 > 0, i. e. p1 = 0.

(I) 1 < r ≤ p1

Assume that we have shown the existence of kr−1. We know that F
(r)
i = ΛrFi−1 +

Fifi−q ≥ c̃ > 0 for all i > k̃. Then, for i = max{kr−1, k̃} or i = max{kr−1, k̃} + 1 it is

clear that every term on the right side of equation (2.20) is positive except for ψ
(r)
i . If

ψ
(r)
i > 0 it follows directly that ψ

(r)
i+2m ≥ 0 for all m and so we set kr = i.

If ψ
(r)
i < 0 we see that ψ

(r)
i+2m > 0 is equivalent to

−ψ
(r)
i <

r−1∑

k=1

m∑
j=1

λ−2j
(r) λ(r−k)(Λr − Λr−k−1)ψ

(r−k)
i+2j−2 +

m∑
j=1

λ−2j
(r) F

(r)
i+2j(−gi+2j−q−1) (2.21)

Now the first sum on the right side is positive for all j and the second sum tends to

infinity as Fi+2j → c > 0. Then it is obvious that there exists a m̄ from which on this

inequality is fulfilled. Then we set kr = m̄.

(II) p1 < r ≤ p2

Consider first the cases where λ(r) > 0, i. e. where r − p1 is odd. Here we have that

ψ
(r)
i = λ(r)ψ

(r)
i−1 +

(r−p1−1)/2∑

k=1

(
λ2

(r−2k+1)ψ
(r−2k+1)
i−2 + (λ(r−2k+1) + λ(r−2k))ψ

(r−2k)
i−1

)
+ ψ

(p1)
i

and the iterated version

ψ
(r)
i+m = λm

(r)ψ
(r)
i +

m∑
j=1

λm−j
(r) ψ

(p1)
i+j

+
m∑

j=1

λm−j
(r)

(r−p1−1)/2∑

k=1

(
λ2

(r−2k+1)ψ
(r−2k+1)
i+j−2 + (λ(r−2k+1) + λ(r−2k))ψ

(r−2k)
i+j−1

)

For i = kr−1 every term on the right hand side is positive except for ψ
(r)
i which might

be negative. If it is positive we set kr = kr−1, if it is negative, we plug in equation (2.20)



2.6 Appendix 53

for ψ
(p1)
i+j and obtain

ψ
(r)
i+m = λm

(r)ψ
(r)
i +

m∑
j=1

j even

λm−j
(r)

j/2∑

l=1

λj−2l
(p1) F

(p1)
i+2l(−gi−q+2l−1)

+
m∑

j=1
j odd

λm−j
(r) ψ

(p1)
i+j +

m∑
j=1

j even

λm−j
(r) λj

(p1)ψ
(p1)
i

+
m∑

j=1
j even

λm−j
(r)

p1−1∑

k=1

j/2∑

l=1

λj−2l
(p1) λ(p1−k)(Λp1 − Λp1−k−1)ψ

(p1−k)
i+2l−2

+
m∑

j=1

λm−j
(r)

(r−p1−1)/2∑

k=1

(
λ2

(r−2k+1)ψ
(r−2k+1)
i+j−2 + (λ(r−2k+1) + λ(r−2k))ψ

(r−2k)
i+j−1

)

Next we use the same argument as in equation (2.21): Dividing the whole equation by

λm
(r) we argue that the last sum on the right side diverges, as

m∑
j=1

j even

λ−j
(r)

j/2∑

l=1

λj−2l
(p1) F

(p1)
i+2l(−gi−q+2l−1) ≥

m∑
j=1

j even

λ−j
(r)F

(p1)
i+j (−gi−q+j−1)

and the right sum tends to infinity by the usual argument. From this the existence of

kr follows.

Next consider λ(r) < 0, i. e. r − p1 is even. We then have for i− 2 > kr−1 that

ψ
(r)
i =

(r−p1)/2+1∑

k=1

(
λ2

(r−2k)ψ
(r−2k)
i−2 + (λ(r−2k) + λ(r−2k−1))ψ

(r−2k−1)
i−1

)

+λ2
(r)ψ

(r)
i−2 + (λ(r) + λ(r−1))ψ

(r−1)
i−1 + ψ

(p1)
i (2.22)

Every term on the right hand side is positive except for ψ
(r)
i−2 which is possibly negative.

If it is negative, iterating and inserting equation (2.20) show the existence of kr by the

same arguments as in the case where r − p1 is odd.

(III) p2 < r ≤ p

Here we use the representation

ψ
(r)
i = λ(r)ψ

(r)
i−1 +

r−p2+1∑

k=1

λ(r−k)ψ
(r−k)
i−1 + ψ

(p2)
i
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for i > kr−1. If ψ
(r)
i−1 is positive, then every term on the right side is positive and we

set kr = kr−1. If ψ
(r)
i−1 is negative then we plug in equation (2.22) for ψ

(p2)
i and then

equation (2.19) for ψ
(p1)
i . Iteration and the same argument as in equation (2.20) shows

the existence of kr.

Finally, set k = kp + 1.



Chapter 3

The Impulse Response Function of

the Long Memory GARCH Process

3.1 Introduction

The topic of long memory and persistence has recently attracted considerable attention

in terms of the second moment of a process. An excellent survey of major econometric

work on long memory processes and their applications in economics and finance is given

by Baillie (1996). The issue of temporal dependence on financial time series has been the

focus of attention since information on persistence can also guide the search for an eco-

nomic explanation of movements in asset returns. For example, as Baillie et al. (1996a)

point out, there is a direct relation between the long-term dependence in the conditional

variances of daily spot exchange rates and the long memory in the forward premium.

This relation could explain the systematic rejection of the unbiasedness hypothesis as

This chapter was published as: Conrad, C., and M. Karanasos (2006). “The impulse response

function of the long memory GARCH process.” Economics Letters 90, 34–41. Copyright c© 2006

Elsevier Science Publishers B. V. (North-Holland). Reproduced with kind permission from Elsevier

Science.
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an artefact due to the unbalanced regression of the return on the premium (Baillie et

al., 1996a).

Robinson (1991) was the first to consider the long memory potential of a model

which he called linear ARCH (LARCH). Subsequently, many researchers have proposed

extensions of GARCH-type models which can produce long memory behavior (see, for

example, Teyssière, 1998, Davidson, 2004 and Giraitis et al. 2004, and the references

therein). The empirical relevance of long memory conditional heteroscedasticity has

emerged in a variety of studies of time series of economic and financial variables (see,

for example, Conrad and Karanasos, 2005a,b [see Chapter 4 and 5]). Kirman and

Teyssière (2005) assemble models from economic theory providing plausible micro foun-

dations for the occurrence of long memory in economics. Recent research has been aimed

at both extending our understanding of these well established models, and widening the

range of data features that can be handled. For example, Giraitis et al. (2005) provide

an overview of recent theoretical findings on the long memory GARCH (LMGARCH)

processes.

Moreover, Baillie et al. (1996a) measure the persistence of shocks to the conditional

variance using impulse response functions (IRFs). To appreciate how such measures

work in practice they consider the fractionally integrated GARCH (FIGARCH) process

of order (1, d, 0). To that end, in this chapter the IRF is analyzed in the framework of an

LMGARCH(p, d, q) process. We also look at the persistence of shocks in the conditional

variance process for the LMGARCH model as compared with the persistence of shocks

for the stable and integrated GARCH models. An important related study by Karanasos

et al. (2004b) derives convenient representations for the autocorrelation function (ACF)

of the squared values of LMGARCH processes, and some of our results can been seen

as complementary to theirs.

This chapter is organized as follows. Section 3.2 lays out the model of interest,

assumptions and notation. Section 3.3 presents expressions for the cumulative IRF of

the LMGARCH(p, d, q) process and discusses an empirical example. In the conclusions

we suggest future developments.
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3.2 The Long Memory GARCH Model

To establish terminology and notation, we define an LMGARCH(p, d, q) process {εt} by

the equations (see Karanasos et al., 2004b)

εt = Zt

√
ht, t ∈ Z, (3.1)

and

ht = ω + [Ω(L)− 1] vt, (3.2)

with

Ω(L) =
∞∑

j=0

ωjL
j , B(L)

Φ(L)(1− L)d
,

where vt , ε2
t − ht. Here and in the remainder of this chapter, L stands for the lag

operator and the symbol ‘,’ is used to indicate equality by definition. We assume

hereafter that ω ∈ (0,∞), 0 < d < 0.5 and that the finite order polynomials Φ(L) ,
1 −∑q

i=1 φiL
i =

∏q
i=1(1− ζiL), B(L) , −∑p

i=1 βiL
i (β0 , −1) have zeros outside the

unit circle in the complex plane.

The rescaled innovations Zt are assumed to be i.i.d. with E(Zt) = E(Z2
t − 1) = 0.

By (3.1) and the i.i.d.-ness of the Zt, E(vt|Ft−1) = 0 where Ft is the σ-field of events

induced by {εs, s 6 t}. For notational convenience, in what follows we denote ω̃m ,
∑∞

j=0 ωjωj+m (m = 0, 1, 2, . . .). Note that d < 0.5 implies ω̃0 < ∞. The ε2
t has finite

first moment equal to ω. In addition, simple manipulations suggest that E(e4
t ) < ∞ and

[E(e4
t ) − 1]ω̃0 < E(e4

t ) imply covariance stationarity of the ε2
t . Under these conditions

the autocorrelations {ρm(ε2
t ) , Corr(ε2

t+m, ε2
t )} are ρm(ε2

t ) = ω̃m/ω̃0 (see Karanasos et

al., 2004b).

Moreover, ht has an ARCH(∞) representation, i.e. it can be expressed as an infinite

distributed lag of ε2
t−j terms as (ht − ω) = Ψ(L)(ε2

t − ω), where Ψ(L) =
∑∞

j=1 ψjL
j ,

[1−Φ(L)(1−L)d/B(L)]. In this specification the conditional variance and the squared

errors are expressed in deviations from the unconditional variance ω. To guarantee the

non-negativity of the conditional variance one has to impose inequality constraints which
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ensure that ψj ≥ 0 for j = 1, 2, . . .. Necessary and sufficient constraints for p ≤ 2 and

sufficient constraints for p > 2 can be found in Conrad and Haag (2006) [see Chapter 2].

Furthermore, under (3.1) – (3.2), the coefficients ωj decay at a slow hyperbolic rate

so that ωj = O(jd−1). This in turn implies that the autocorrelations satisfy ρm(ε2
t ) =

O(m2d−1), provided E(ε4
t ) < ∞. Hence, when the fourth moment of the εt exists, ε2

t

is a weakly stationary process which exhibits long memory for all d ∈ (0, 0.5), in the

sense that the series
∑∞

m=0 |ρm(ε2
t )| is properly divergent. For this reason, we refer to a

process εt satisfying (3.1) and (3.2) as an LMGARCH(p, d, q) process.

Finally, it is interesting to note the difference between the LMGARCH process and

the FIGARCH model. The ARCH(∞) formulation of the latter is ht = ω + Ψ(L)ε2
t .

It is noteworthy that this model, unless E(Z2
t ) < 1, is not compatible with covariance

stationary εt. However, Zaffaroni (2004) points out that even this weak covariance

stationarity condition for the levels εt rules out long memory in the squares ε2
t .

3.3 The IRF of the LMGARCH(p,d,q) Model

In the LMGARCH class of models, the short-run behavior of the time series is captured

by the conventional ARCH and GARCH parameters, while the long-run dependence is

conveniently modelled through the fractional differencing parameter.

Since in the LMGARCH the conditional variance is parameterized as a linear function

of the past squared innovations, the persistence of the conditional variance is most simply

characterized in terms of the impulse response coefficients for the optimal forecast of the

future conditional variance as a function of the current innovation vt. Following Baillie

et al. (1996a) we define the IRF and cumulative IRF as follows:

Definition 3.1. The IRF of the LMGARCH(p, d, q) model is given by the sequence δk,

k = 0, 1, . . . , where

δk , ∂E(ε2
t+k|Ft)

∂vt

− ∂E(ε2
t+k−1|Ft)

∂vt

,

with δ0 , 1. Accordingly, the cumulative IRF is given by the sequence λk ,
∑k

l=0 δl.
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The impulse response coefficients δk can be simply obtained by considering the first

difference of the squared errors

(1− L)ε2
t = ∆(L)vt, (3.3)

where ∆(L) =
∑∞

j=0 δjL
j = (1 − L)Ω(L). Since by definition the impulse response

coefficients δk are related to the cumulative impulse response weights λk by ∆(L) =

(1 − L)Λ(L), with Λ(L) =
∑∞

k=0 λkL
k, it follows that the cumulative impulse response

weights λk coincide with the ωk coefficients defined by equation (3.2).1

Further, let F be the Gaussian hypergeometric function defined by

F (a, b; c; z) ,
∞∑

j=0

(a)j(b)jz
j

(c)jj!
,

where (a)j ,
∏j−1

i=0 (a + i) with (a)0 = 1 is Pochhammer’s shifted factorial. Then, the

fractional differencing operator (1−L)d in (3.2) is most conveniently expressed in terms

of the hypergeometric function

(1− L)d = F (−d, 1; 1; L) =
∞∑

j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
Lj ,

∞∑
j=0

g−d(j)L
j,

where Γ(·) is the gamma function. Note that using this notation we can write ∆(L) =

F (d− 1, 1; 1; L) ·B(L)/Φ(L).

Next, we establish a representation for the cumulative impulse response function of

the LMGARCH(p, d, q) process.

Theorem 3.1. The cumulative IRF λk, k = 0, 1, . . ., of the LMGARCH(p, d, q) model

is given by

λk =


1−

min{k,p}∑
i=1

βi




max{k−p,0}∑
i=0

ξigd(max{k − p, 0} − i)

+
k∑

i=max{k−p,0}+1

(
1−

k−i∑

l=1

βl

)
ci, (3.4)

1Note that since equation (3) is satisfied by both the LMGARCH and the FIGARCH process the

results that follow can be applied to the latter as well.
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where

ci ,
i∑

l=0

ξi−lgd−1(l), with ξi ,
q∑

l=1

θlζ
i
l , and θi , ζq−1

i∏q
l=1,l 6=i(ζi − ζl)

.

(Recall that the ζi are defined by (3.2)).

Proof. In view of (3.3), we have

∆(L) =
∞∑

j=0

p∑
i=0

−cj−iβiL
j, or δj =

p∑
i=0

−cj−iβi,

where ci is defined in Theorem 3.1 and c−i = 0 (i = 1, . . . , p).

Therefore, the cumulative IRF is given by

λk =
k∑

i=0

δi =


−

min{k,p}∑
i=0

βi




max{k−p,0}∑
i=0

ci +
k∑

i=max{k−p,0}+1

(
1−

k−i∑

l=1

βl

)
ci,

where we use the convention that
∑0

j=1 βj = 0.

Hence, in view of the fact that

max{k−p,0}∑
i=0

ci =

max{k−p,0}∑
i=0

ξigd(max{k − p, 0} − i),

equation (3.4) follows.

The long-run impact of past shocks for the volatility process may now be assessed

in terms of the limit of the cumulative impulse response weights, i.e.,

∆(1) = lim
k→∞

k∑

l=0

δl = lim
k→∞

λk.

Note that the results in Theorem 3.1 hold for 0 ≤ d ≤ 1.

As noted by Baillie et al. (1996a), for 0 ≤ d < 1, F (d − 1, 1; 1; 1) = 0, so that for

the LMGARCH(p, d, q) model with 0 < d < 0.5 and the stable GARCH model with

d = 0, shocks to the conditional variance will ultimately die out in a forecasting sense.

In contrast, for d = 1, F (d−1, 1; 1; 1) = 1, and the cumulative impulse response weights

will converge to the nonzero constant ∆(1) = B(1)/Φ(1). Thus, from a forecasting

perspective shocks to the conditional variance of the integrated GARCH (IGARCH)

model persist indefinitely.
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To illustrate the general result we consider the LMGARCH(1, d, 1) process. In this

case B(L) = 1− β1L and Φ(L) = 1− φ1L.

Lemma 3.1. The cumulative IRF λk, k = 0, 1, . . ., of the LMGARCH(1, d, 1) are given

by

λk = gd(k) + (φ1 − β1)
k∑

i=1

φi−1
1 gd(k − i). (3.5)

Moreover, when φ1 = 0, equation (3.5) gives the cumulative impulse response weights

of the LMGARCH (1, d, 0) model: λk = [1− β1 − (1− d)/k] · gd(k − 1).2 By restricting

d to being zero in (3.5) and observing that g0(0) = 1 and g0(j) = 0 for j > 0, we obtain

the cumulative IRF of the GARCH(1, 1) model: λk = (φ1 − β1)φ
k−1
1 . Finally, when

d = 0 and φ1 = 1, we obtain the λk of the IGARCH(1, 1) model: λk = (1− β1).

The impulse response functions can be used:

(a) to distinguish between short and long memory specifications. Conrad and Karana-

sos (2005a) [see Chapter 4] model the conditional variance of the monthly US inflation

rate for the period 1962 - 2000 as GARCH(1, 1), IGARCH(1, 1) and FIGARCH(1, d, 1),

respectively. Figure 3.1 (upper) plots the cumulative IRFs of their parameter estimates

for the GARCH(1, 1) model with φ̂1 = 0.976 and β̂1 = 0.822, the IGARCH(1, 1) process

with β̂1 = 0.819 and the FIGARCH(1, d, 1) specification with φ̂1 = 0.325, β̂1 = 0.768

and d̂ = 0.692. While a shock to the optimal forecast of the future conditional variance

decays at an exponential rate in the GARCH model, and remains important for forecasts

of all horizons in the IGARCH model, it vanishes out at a slow hyperbolic rate in the

FIGARCH model.

(b) to investigate the persistence properties of a particular LMGARCH specification

for different parameter values. For example, Conrad and Haag (2006) [see Chapter 2,

Corollary 2.3] show that in the LMGARCH(1, d, 0) model one can allow for β1 < 0

(there is a lower bound for β1 depending on the value of d). Figure 3.1 (lower) plots

the IRF for the LMGARCH(1, d, 0) for d fixed at 0.45 and with β ∈ {−0.1925, 0, 0.45},
2The cumulative impulse response function of the LMGARCH(1, d, 0) model was first derived by

Baillie et al. (1996a) (see also, equation (87) in Baillie, 1996).
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which is the range of β1 values allowed for by Corollary 2.1 in Chapter 2. Clearly, the

IRFs for the three different values of β1 help to show that persistence is decreasing in

β1.
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Figure 3.1: Cumulative IRFs for GARCH (dotted), IGARCH (solid) and FIGARCH

(dashed) models (upper) and cumulative IRFs for LMGARCH(1, d, 0) (lower) with d =

0.45 and β1 = 0.45 (solid), β1 = 0 (dashed) and β1 = −0.1925 (dotted), respectively.

Illustrative Example

As an empirical illustration, we examine the properties of the continuously compounded

daily rate of returns for the Deutschmark exchange rate vis-a-vis the US dollar over the
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period from 31st October 1983 to 31st December 1992 (2,394 observations in total). This

data set was also used by Karanasos et al. (2004b). We compare the cumulative IRF of

LMGARCH(1, d, 0), LMGARCH(0, d, 1) and LMGARCH(1, d, 1) models. The cumula-

tive impulse response weights were evaluated using the formula in equation (3.5) and the

quasi-maximum likelihood (QML) parameter estimates, reported in Table 3.1, obtained

under the assumption of conditional Gaussianity.3 Note, that for all three models the

Table 3.1: QML estimates for LMGARCH models.

LMGARCH(1, d, 0) LMGARCH(0, d, 1) LMGARCH(1, d, 1)

d̂ 0.2326 (0.0365) 0.1847 (0.0237) 0.3805 (0.0680)

φ̂1 - -0.1260 (0.0306) 0.2742 (0.0471)

β̂1 0.1973 (0.0460) - 0.6114 (0.0620)

Notes: Figures in parentheses are asymptotic standard errors.

estimated parameters satisfy the condition in Conrad and Haag (2006) [see Chapter 2,

Corollary 2.1] ensuring the non-negativity of the conditional variance. Figure 3.2 plots

the cumulative IRF for lags up to 160. The cumulative impulse response weights of

the LMGARCH(1, d, 0) and LMGARCH(0, d, 1) decrease much faster than that of the

LMGARCH(1, d, 1). The plots of the ACFs in Karanasos et al. (2004b) show a very

similar pattern.

3.4 Conclusions

In this chapter we have obtained convenient representations for the cumulative impulse

response weights of a process with long memory conditional heteroscedasticity. Since

the long memory GARCH model includes the stable and integrated GARCH models as

special cases our theoretical results provide a useful tool which facilitates comparison

between these major classes of GARCH models. It is worth noting that our results

3The parameter estimates from Table 3.1 correspond to those in Karanasos et al. (2004b), p 278.
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Figure 3.2: Cumulative IRFs for LMGARCH(1, d, 1) (dotted), LMGARCH(1, d, 0)

(dashed) and LMGARCH(0, d, 1) (solid) models from Table 3.1.

on the IRF of the general LMGARCH(p, d, q) model extend the results in Baillie et

al. (1996a) on the first order LMGARCH model. We should also mention that the

methodology used in this chapter can be applied to obtain the impulse response weights

of more sophisticated long memory GARCH models, e.g. ARFIMA, asymmetric power,

and multivariate LMGARCH models.
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Chapter 4

On the Inflation-Uncertainty

Hypothesis in the USA, Japan and

the UK

4.1 Introduction

The issue of the welfare costs of inflation has been one of the most researched topics in

macroeconomics both on the theoretical and empirical front. Friedman (1977) argues

that a rise in the average rate of inflation leads to more uncertainty about the future

rate of inflation. The opposite type of causation between inflation and its uncertainty

has also been analyzed in the theoretical macroeconomics literature. Cukierman and

Meltzer (1986) argue that central banks tend to create inflation surprises in the presence

of more inflation uncertainty. Clarida et al. (1999) emphasize the fact that since the

late 1980s a stream of empirical work has presented evidence that monetary policy may

have important effects on real activity. Consequently, there has been a great resurgence

This chapter was published as: Conrad, C., and M. Karanasos (2005a). “On the inflation-

uncertainty hypothesis in the USA, Japan and the UK: a dual long memory approach.” Japan and the

World Economy 17, 327–343. Copyright c© 2005 Elsevier Science Publishers B. V. (North-Holland).

Reproduced with kind permission from Elsevier Science.
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of interest in the issue of how to conduct monetary policy. If an increase in the rate

of inflation causes an increase in inflation uncertainty, one can conclude that greater

uncertainty – which many have found to be negatively correlated to economic activity –

is part of the costs of inflation. Thus, if we hope ever to give a really satisfactory answer

to the questions:

• What actions should the central bankers take?

• What is the optimal strategy for the monetary authorities to follow?

we must first develop some clear view about the temporal ordering of inflation and

nominal uncertainty.

In this chapter, the above issues are analyzed empirically for the USA, Japan and

the UK with the use of a parametric model of long memory in both the conditional

mean and the conditional variance. Our emphasis on these three countries is justified

by a number of considerations. First, the USA is the best-documented case and the

American experience has played an important role in setting the agenda for previous

analysis of monetary policy.1 Second, the USA and Japan are the two largest economies

in the world and changes in their inflation rates (variabilities) and average growth rates

have repercussions in the world economy. Third, all three countries experienced wide

variations in their conduct of monetary policy in the last forty years. For example,

the increase in oil prices in late 1973 was a major shock for Japan, with substantial

adverse effects on inflation, economic growth, and the government’s budget. In response

to an increase in the inflation rate to a level above 20% in 1974 the bank of Japan,

1As emphasized by Bernanke and Mishkin (1992), the conduct of monetary policy in the USA is

conventionally divided into three regimes. During the 1970s the Fed did not consider meeting money

growth targets to be of high priority, placing greater weight on reducing unemployment while main-

taining a relatively smooth path for interest rates. However, the change in Fed operating procedures

in 1979 was accompanied by a decision by the Fed to place greater weight on monetary targets and to

tolerate high and volatile interest rates in order to bring down inflation. The main objectives during

the latter part of the 1980s were exchange rate stabilization, financial market stability (particularly

after the October 1987 stock market crash) and the maintenance of low and stable inflation.



4.1 Introduction 69

like other central banks, began to pay more attention to money growth rates.2 Prior

to 1978 the Bank of Japan was committed only to monitoring rather than controlling

money growth. However, after 1978 there did appear to be a substantive change in

policy strategy, in the direction of being more ‘money-focused’. Particularly striking

was the different response of monetary policy to the second oil price shock in 1979. The

difference in the inflation outcome in this episode was also striking, as inflation increased

only moderately with no adverse effects on the unemployment situation. Beginning 1989

asset prices came down as money growth slowed, economic activity weakened and there

was a slowdown in lending by Japanese banks. In responding to these developments

the Bank of Japan permitted a considerable increase in the variability of broad money

growth after the late 1980s (Bernanke and Mishkin, 1992). Finally, these three countries

represent ‘independent observations’ in the sense that, no two of them belonged to a

common system of fixed exchange rates.3 Other countries with independent monetary

policies, such as Australia, would be interesting to study but are excluded because of

space.

The development of GARCH techniques allows the measurement of inflation uncer-

tainty by the conditional variance of the inflation series and the more accurate testing

of the Friedman and the Cukierman and Meltzer hypotheses. Several researchers have

examined the inflation-uncertainty relationship using GARCH measures of inflation un-

certainty. Many studies on the relationship between inflation and its uncertainty used

2See Bernanke and Mishkin (1992) for an excellent discussion of the monetary policy in Japan.
3However, as Bernanke and Mishkin (1992) point out, there are some parallels between the recent

histories of British and American monetary policies. As in the USA, the British introduced money

targeting in the mid-1970s in response to mounting inflation concerns. During the pre-1979 period, the

British monetary authorities, like their American counterparts, were not taking their money growth

targets very seriously. As in the United States, the perception of an inflationary crisis led to a change

in strategy in 1979. Overall, a comparison with the US and the other countries does not put British

monetary policy in a favorable light. However, in the 1980s British inflation performance did improve

considerably, remaining well below the 1970s level and becoming significantly less variable (Bernanke

and Mishkin, 1992).
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GARCH type models with a joint feedback between the conditional mean and vari-

ance of inflation (i.e, Brunner and Hess, 1993, and Fountas et al., 2003). In contrast,

Grier and Perry (1998) and Fountas and Karanasos (2005) use the estimated condi-

tional variance from GARCH type models and employ Granger methods to test for the

direction of causality between average inflation and inflation uncertainty for the G7.4

All the preceding works use traditional ARMA processes to model the conditional mean

of inflation. On the other hand, Brunner and Hess (1993) argue that the US inflation

rate was stationary before the 1960s, but that it has possessed a unit root since this

time. Subsequently, Hassler and Wolters (1995) have found that the inflation rates of

five industrial countries were well explained by different orders of integration, which

varied around the stationarity border of 0.5. Baum et al. (1999) also found evidence

that both CPI- and WPI- based inflation rates for many industrial as well as developing

countries are fractionally integrated with a differencing parameter that is significantly

different from zero or unity. Along these lines, Baillie et al. (1996b) and Hwang (2001)

estimate various ARFIMA-GARCH-in mean models where lagged inflation is included

in the variance equation.

In a recent paper, Baillie et al. (2002) found that inflation has the rather curious

property of persistence in both its first and its second conditional moments. They

introduce the ARFIMA-fractionally integrated GARCH (ARFIMA-FIGARCH) model,

which is sufficiently flexible to handle the dual long memory behavior encountered in

inflation. To this end, this study uses an ARFIMA-FIGARCH type model to generate

a time-varying conditional variance of surprise inflation. This model has a distinct ad-

vantage for this application: it nests several alternative GARCH models of conditional

heteroscedasticity. With this conditional variance as a measure of inflation uncertainty,

4We should also mention that several empirical studies (i.e., Grier and Perry, 2000, and Fountas et al.

2002) use bivariate GARCH type models to estimate simultaneously the conditional means, variances

and covariances of inflation and output growth. These models make it possible to test for evidence on

all the bidirectional causality relationships between inflation, output growth, and uncertainty about

inflation and output growth.
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it then employs Granger methods to test the direction of causality between average infla-

tion and uncertainty. The Granger-causality approach is adopted in this chapter instead

of the simultaneous-estimation approach because it allows us to capture the lagged ef-

fects between the variables of interest. In addition, the former approach minimizes the

number of estimated parameters whereas the latter approach is subject to criticism on

the grounds of the potential negativity of the variance.

This chapter is organized as follows: Section 4.2 considers the hypotheses about the

causality between inflation and inflation uncertainty in more detail and provides the

model. Section 4.3 discusses the data and the results and Section 4.4 summarizes the

main conclusions.

4.2 Theory and Model

4.2.1 The Relation between Inflation and Inflation-Uncertainty

Friedman (1977) outlined an informal argument regarding the real effects of inflation.

Friedman’s point comes in two parts. In the first part, an increase in inflation may

induce an erratic policy response by the monetary authority and therefore lead to more

uncertainty about the future rate of inflation. The second part of Friedman’s hypothesis

predicts that inflation uncertainty causes an adverse output effect.5 Ball (1992), using

an asymmetric information game, offers a formal derivation of Friedman’s hypothesis

that higher inflation causes more inflation uncertainty. It is also possible that more

inflation will lead to a lower level of inflation uncertainty. The argument advanced by

Pourgerami and Maskus (1987) is that in the presence of rising inflation agents may

invest more resources in forecasting inflation, thus reducing uncertainty about inflation.

A formal analysis of this effect is presented in Ungar and Zilberfarb (1993).

The causal effect of inflation uncertainty on inflation has been analyzed in the theo-

5Investigating the causal impact of nominal uncertainty on output growth is an interesting avenue

for future research, but is beyond the scope of the chapter.
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retical macro literature by Cukierman and Meltzer (1986). Using the well-known Barro-

Gordon model, Cukierman and Meltzer (1986) show that an increase in uncertainty

about money growth and inflation will raise the optimal average inflation rate because

it provides an incentive to the policymaker to create an inflation surprise in order to

stimulate output growth. Therefore, the prediction of the Cukierman-Meltzer analysis

is that higher inflation uncertainty leads to more inflation. Holland (1995) has supplied

a different argument based on the stabilization motive of the monetary authority, the

so-called “stabilizing Fed hypothesis”. He claims that as inflation uncertainty rises due

to increasing inflation, the monetary authority responds by contracting money supply

growth, in order to eliminate inflation uncertainty and the associated negative welfare

effects. Hence, Holland’s argument supports a negative causal effect of inflation uncer-

tainty on inflation.

4.2.2 The Econometric Specification

In this section we present the ARFIMA-FIGARCH model, which generates the long

memory property in both the first and second conditional moments, and is thus suffi-

ciently flexible to handle the dual long memory behavior encountered in inflation.

In the ARFIMA(p, dm, 0)-FIGARCH(1, dv, 1) model the mean equation is defined as

(1− ϕ1L− ϕ12L
12 − ϕ24L

24)(1− L)dm(πt − µ) = εt, (4.1)

where πt denotes the inflation rate and 0 ≤ dm ≤ 1 is the fractional differencing pa-

rameter of the mean.6 The innovation εt is conditionally normal with mean zero and

variance ht. That is εt|Ft−1 ∼ N (0, ht), where Ft−1 is the information set up to time

t− 1. The structure of the conditional variance is

(1− βL)ht = ω +
[
(1− βL)− (1− φL)(1− L)dv

]
ε2

t , (4.2)

6The fractional differencing operator (1 − L)dm is most conveniently expressed in terms of the

hypergeometric function. For details see Chapter 3.3.
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where 0 ≤ dv ≤ 1, ω > 0, and φ, β < 1. Moreover, the parameters (β, dv, φ) have

to satisfy the conditions in Conrad and Haag (2006) [see Chapter 2, Corollary 2.1] to

guarantee the nonnegativity of the conditional variance.

If ht = ω, a constant, the process reduces to the ARFIMA(p, dm, 0) model and πt will

be covariance stationary and invertible for −0.5 < dm < 0.5 and will be mean reverting

for dm < 1. Although the ARFIMA-FIGARCH process is strictly stationary and ergodic

for 0 ≤ dv ≤ 1, it will have an infinite unconditional variance for all dm given a dv 6= 0.

The ARFIMA-FIGARCH model in (4.1) and (4.2) has a distinctive feature. It allows

us simultaneously to estimate the degree of persistence in both inflation and uncertainty

about inflation. It also has the advantage of keeping the analytical elegance of the

ARMA-GARCH model while enhancing its dynamics. Put differently, the ARFIMA-

FIGARCH model has at least two important implications for our understanding of

inflation and inflation uncertainty. First, it recognizes the long memory aspect of the

inflation rate and provides an empirical measure of inflation uncertainty that accounts

for long memory in the second conditional moment of the inflation process. Second, it

allows for a more systematic comparison of many possible models that can capture the

features of the inflation series.

4.3 Empirical Analysis

4.3.1 Data

We use monthly data on the CPI (Consumer Price Index) obtained from the OECD

Statistical Compendium as proxies for the price level.7 The data range from 1962:01 to

7Since most of the studies use CPI based inflation measures (i.e., Caporale and McKierman, 1997,

Grier and Perry, 1998, and Baillie et al., 2002) we construct our inflation and inflation uncertainty

measures from the Consumer Price Index. Alternatively, one can use either the Producer Price Index

(PPI) or the GNP deflator. Brunner and Hess (1993) use all three measures of inflation but they discuss

only the results using CPI inflation. Grier and Perry (2000) use both (CPI and PPI) indices and find

that the CPI and PPI results are virtually identical.
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2000:12 and cover three industrial countries, namely, the USA, the UK and Japan. Infla-

tion is measured by the monthly difference of the log CPI, i.e. πt = 100·log(CPIt/CPIt−1).

Allowing for differencing leaves 469 usable observations. The inflation rates of the USA,

UK and Japan are plotted in Figure 4.1. Table 4.1 presents summary statistics for the
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Figure 4.1: Monthly inflation rates for the US (upper), the UK (middle) and Japan

(bottom) for the period 1962:01 to 2000:12.

three inflation rates. The results indicate that the distributions of all three inflation

series are skewed to the right and leptokurtic. The large values of the Jarque-Bera

(JB) statistic imply a deviation from normality, and the significant Q−statistics of the

squared deviations of the inflation rate from its sample mean indicate the existence of

ARCH effects. This evidence is also supported by the LM statistics, which are highly

significant. The autocorrelations of CPI inflation for the three countries (not reported)

exhibit the clear pattern of slow decay and persistence. The autocorrelations of the

first differenced inflation series (not reported) appear to be overdifferenced with large

negative autocorrelations at lag one.
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Phillips and Perron (1988) (henceforth PP) and Kwiatkowski, Phillips, Schmidt and

Shin (1992) (henceforth KPSS) develop two alternative approaches to testing for unit

roots. Table 4.2 presents the results of applying the PP and KPSS tests to the three

inflation series. In all cases we reject both the KPSS and PP statistics. Hence, for all

three countries there is evidence that inflation may not be generated by either an I(0)

or I(1) process and this is at least indicative of fractional integration (see also Baillie et

al., 1996b).

Table 4.2: Tests for the order of integration of different countries’ inflation series.

H0: I(1) H0: I(0)

Z(tµ) Z(tτ ) η̂µ η̂τ

USA 7.11∗∗∗ 8.49∗∗∗ 0.84∗∗∗ 0.68∗∗∗

UK 5.80∗∗∗ 8.33∗∗∗ 1.03∗∗∗ 0.64∗∗∗

Japan 3.96∗∗∗ 10.47∗∗∗ 2.31∗∗∗ 0.29∗∗∗

Notes: Z(tµ) and Z(tτ ) are the Phillips-Perron adjusted t-statistics of the lagged dependent

variable in a regression with intercept only, and intercept and time trend included respec-

tively. The 0.01 critical values for Z(tµ) and Z(tτ ) are 3.43 and 3.96. η̂µ and η̂τ are the

KPSS test statistics based on residuals from regressions with an intercept and intercept and

time trend, respectively. The 0.01 critical values for η̂µ and η̂τ are 0.739 and 0.216. ∗∗∗

denotes significance at the 0.01 level.

4.3.2 Estimated Models of Inflation

We proceed with the estimation of the ARFIMA(p, dm, 0)-FIGARCH(1, dv, 1) model

described by equations (4.1) and (4.2) in order to take into account the serial correlation

observed in the levels and squares of our time series data, and to capture the possible

long memory in the conditional mean and the conditional variance. We estimate the

ARFIMA-FIGARCH models using the quasi-maximum likelihood estimation (QMLE)
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method as implemented by Laurent and Peters (2002) in Ox.8 Table 4.3 reports the

results for the period 1962-2001.

The seasonal autoregressive parameters (ϕ1, ϕ12, ϕ24) were necessary to account for

the significant seasonality, which is evident for all three countries.9 The ϕ1 parameter

was only significant for the USA. The estimated ARCH parameters (β̂, d̂v, φ̂) for the

US inflation are significant and satisfy the set of necessary and sufficient conditions

derived in Conrad and Haag (2006) [see Chapter 2, Corollary 2.1] guaranteeing the

nonnegativity of the conditional variance. For the UK and Japan, the Akaike and

Schwarz information criteria (hereafter, AIC and SIC respectively) come out in favor of

the FIGARCH(0, dm, 0) model. The estimated long memory conditional mean parameter

is in the range 0 < d̂m < 0.37. The estimated value of dm for Japan in Table 4.3 is 0.043,

which is significantly different from zero at the 0.26% level and implies some very mild

long-memory features.10 In all countries the estimates for the fractional differencing

parameter (d̂v) are relatively large and are statistically significant.11 Finally, with all

three countries, the hypothesis of uncorrelated standardized and squared standardized

residuals is well supported by the Ljung-Box test statistics, indicating that there is no

statistically significant evidence of misspecification.

8The consistency and asymptotic normality of the QMLE has been established only for specific

special cases of the ARFIMA and/or FIGARCH model. However, a detailed Monte-Carlo study, where

ARFIMA-FIGARCH type models were simulated, was performed by Baillie et al. (2002) and it was

found that the quality of the application of the QMLE is generally very satisfactory.
9Alternatively, we also estimated a moving average specification with parameters (θ1, θ12, θ24), but

the AIC and SIC information criteria came out in favor of the autoregressive specification.
10Although dm is insignificant for Japan it seems to improve the performance of the model since

restricting dm to being zero results in Ljung-Box test statistics which indicate serial correlation in the

standardized residuals. Moreover, note that in Baillie et al. (1996b) the estimate of the dm parameter

for Japan is also insignificant.
11The estimates for dm and dv in Baillie et al. (2002) are quite close to the ones we obtain. In partic-

ular, for the USA and the UK they estimated a dm(dv) of 0.414 (0.644) and 0.364 (0.633) respectively,

while for Japan they estimate a dv of 0.317.
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Table 4.4: Tests of USA fractional differencing parameters

H0:ARMA
(dm=0)

H0: GARCH
(dv=0)

H0:ARMA-GARCH
(dm=0, dv=0)

d̂m LR d̂v LR LR W

0.342 35.45 0.692 4.14 36.56 15.97

{0.071} [0.00] {0.365} [0.04] [0.00] [0.00]

Notes: Columns 2, 4 and 5 report the value of the following likelihood ratio test:

LR = 2[MLu −MLr], where MLu and MLr denote the maximum log-likelihood

values of the unrestricted and restricted models respectively. The last column

reports the Wald statistic. The numbers in [·] are p-values. The numbers in {·}

are standard errors.

To test for the persistence in the first two conditional moments of the three inflation

series, we examine the likelihood ratio (LR) tests for the linear constraints dm = 0

(‘ARMA’ model) and dv = 0 (‘GARCH’ model). We also test the joint hypothesis that

dm = dv = 0 using both an LR test and a Wald (W ) statistic. As seen in Table 4.4

for the USA the LR and W statistics clearly reject the ‘ARMA’ and/or the ‘GARCH’

null hypotheses against the ARFIMA-FIGARCH model. Similar results are obtained

for the UK and Japan but are omitted for space considerations. The evidence obtained

from the Wald and LR tests is reinforced by the model ranking provided by the AIC

and SIC model selection criteria. In almost all cases the criteria (not reported) favor the

ARFIMA-FIGARCH model over both the ARMA-FIGARCH and ARFIMA-GARCH

models.12 Hence, from the various diagnostic statistics it appears that monthly CPI

inflation has long memory behavior in both its first and its second conditional moments.

12For Japan the LR test, the W statistic and the selection criteria favor the ARMA-FIGARCH model

over the ARFIMA-FIGARCH model.
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Predictability of Higher Levels of Inflation

In the USA inflation accelerated two years after the augmentation of defense spending

in connection with the Vietnam war which took place in the mid-1965. Moreover, the

increase in the oil prices by OPEC in the fourth quarter of 1973 and the progressive

elimination of control on prices and wages amplify the acceleration of American inflation

in 1974. Finally, the considerable fluctuation of oil prices during the period 1979-1980

led the federal reserve to implement a new restrictive monetary policy. Since the early

1980s the American economy embarked on a productivity growth phase supported by

a decrease of oil prices and the reduction of the inflation rate. The USA inflation and

inflation uncertainty series are shown in Figure 4.2, which plots the inflation rate and

its corresponding conditional standard deviation from the ARFIMA-FIGARCH model.

1965 1970 1975 1980 1985 1990 1995 2000

0.0

0.5

1.0

1.5

1965 1970 1975 1980 1985 1990 1995 2000

0.2

0.4
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Figure 4.2: US inflation rate (upper) and conditional standard deviation (lower) for the

period 1962:01 to 2000:12.

Some researchers, such as Cosimano and Jansen (1988), have failed to find strong

evidence that higher rates of inflation are less predictable. Using the dual long memory

specification, we compare our results with theirs. In contrast to the conclusion of these
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studies, Figure 4.2 provides evidence that higher levels of inflation are less predictable.

According to our estimates, the conditional standard deviation average (annual rate)

in the low-inflation 1960s is about 3.1%. In the high-inflation 1970s, the conditional

standard deviation average (annual rate) is about 3.9%. Finally, in the low-inflation

environment of the 1990s, the average of the conditional standard deviation is only

2.4%. Similar figures for the UK and Japan are omitted for reasons of brevity but are

available from the authors on request.

Persistence in Volatility

In order to illustrate how a shock to the conditional variance decays over time in the

FIGARCH(1, d, 1) model we plot in Figure 4.3 the cumulative impulse response func-

tion for the USA. The cumulative impulse response weights λk for the optimal forecast

of the future conditional variance in the FIGARCH(1,d,1) are derived in Conrad and

Karanasos (2006) [see Chapter 3, Lemma 3.1] as

λk =
Γ(k + d)

Γ(k + 1)Γ(d)
+ (φ1 − β1)

k∑
i=1

φi−1
1

Γ(k − i + d)

Γ(k − i + 1)Γ(d)
. (4.3)
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Figure 4.3: Cumulative IRFs for the conditional variance of the US inflation rate:

GARCH (dotted), IGARCH (solid) and FIGARCH (dashed).
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The cumulative impulse response function of the FIGARCH model is compared

with the one of the stable GARCH and integrated GARCH (IGARCH).13 For the stable

GARCH we have λk = (φ−β)φk−1 for all k ≥ 1 and for the IGARCH we have λk = 1−β

for all k ≥ 1. In the stable GARCH case a shock decays at a fast exponential rate whereas

in the IGARCH case it persists forever. In sharp contrast, the shock decays at a slow

hyperbolic rate in the FIGARCH case.14

4.3.3 Granger-Causality Tests

In this section we report results of Granger-causality tests to provide some statistical

evidence on the nature of the relationship between average inflation and nominal uncer-

tainty. Following Granger (1969) the following bivariate autoregression is used to test

for causality between the inflation rate and its uncertainty


πt

ht


 =


απ

αh


 +

k∑
i=1


 cππ,i cπh,i

chπ,i chh,i





 πt−i

ht−i


 +


 eπt

eht


 , (4.4)

where et = [eπt, eht]
′ is a bivariate white noise with mean zero and nonsingular covari-

ance matrix Σe. The test of whether πt (ht) strictly Granger-causes ht (πt) is simply

a test of the joint restriction that all the chπ,i (cπh,i), i = 1, . . . , k, are zero. In each

case, the null hypothesis of no Granger-causality is rejected if the exclusion restriction

is rejected. Bidirectional feedback exists if all the elements cπh,i, chπ,i, i = 1, . . . , k,

are jointly significantly different from zero. However, if the variables are non-stationary,

Park and Phillips (1989) and Sims et al. (1990) have shown that the conventional asymp-

totic theory is not applicable to hypothesis testing in levels VAR’s. In addition, Tsay

and Chung (2000) in their analysis of spurious regression with fractionally integrated

processes find that no matter whether the dependent variable and the regressor are sta-

13For the stable GARCH we estimated β̂ = 0.822 and φ̂ = 0.976. The β̂ coefficient in the IGARCH

was 0.819.
14Similar plots are available for the other two countries but are omitted for reasons of brevity.
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tionary or not, as long as their fractional orders of integration sum up to a value greater

than 0.5, the t ratios become divergent.

Therefore, we utilize the methodology developed by Toda and Yamamoto (1995) to

test for causality between the inflation rate and its uncertainty, which leads to a χ2

distributed test statistic despite any possible non-stationarity or cointegration between

the two series.15 In other words, the advantage of this procedure is that it does not

require a knowledge of cointegrated properties of the system (see Zapata and Rambaldi,

1997). The test is performed in two steps. In the first step the optimal lag length (k)

of the system is determined by utilizing the AIC and SIC information criteria. In the

second step a VAR of order k∗ = k + dmax is estimated (where dmax is the maximal

(integer) order of integration suspected to occur in the system) and a modified Wald

(MW ) test is applied to the first k VAR coefficient matrices to make Granger-causal

inference. This MW test statistic has an asymptotic χ2 distribution with k degrees of

freedom. For the USA, Japan and the UK both the AIC and SIC information criteria

came out in favor of a VAR with 8, 4 and 12 lags, respectively. Since all variables are

fractionally integrated with dm, dv < 1 we set dmax = 1 and estimate VAR models with

k∗ = k + 1 lags. To ensure that our results are not sensitive to the choice of the lag

length we report in Table 4.5 for all three countries the MW tests using 4, 8 and 12

lags, as well as the sums of lagged coefficients.

Panel A reports evidence on the Friedman hypothesis. Statistically significant effects

are present for all countries. Panel B reports the results of the causality tests where

causality runs from the nominal uncertainty to the rate of inflation. This panel provides

strong evidence in favor of the Cukierman and Meltzer hypothesis for Japan. For the

USA the effect of inflation uncertainty on average inflation is positive but insignificant

at any lag length. In contrast, we obtain mixed evidence for the UK. In particular,

at 8 lags uncertainty about inflation has a positive impact on inflation as predicted by

Cukierman and Meltzer, whereas the value of the MW test statistic and the sign of

the sum of lagged coefficients at 12 lags (optimal lag length) provide support for the

15We are grateful to an anonymous referee for calling this paper to our attention.
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Holland hypothesis.

Table 4.5: Granger-causality tests 1962:01–2000:12.

USA UK JAPAN

Panel A. H0: Inflation does not Granger-cause inflation uncertainty

4 (5) 15.39***(+) 14.29***(+) 13.47***(+)

8 (9) 19.39**(+) 35.35***(+) 16.08**(+)

12 (13) 27.36***(+) 36.82***(+) 28.02***(+)

Panel B. H0: Inflation uncertainty does not Granger-cause inflation

4 (5) 2.58(+) 3.04(–) 19.58***(+)

8 (9) 7.16(+) 31.41***(+) 22.25***(+)

12 (13) 11.68(+) 63.21***(-) 40.79***(+)

Notes: The figures are MW statistics. The numbers in the first column

give the lag structure and in parentheses the order of the VAR. The bold

numbers indicate the optimal lag length chosen by AIC and SIC. A +(-)

indicates that the sum of the lagged coefficients is positive (negative). ***,

** and * denote significance at the 0.01, 0.05 and 0.10 levels, respectively.

When Grier and Perry (1998) look for institutional reasons why the inflation response

to increased uncertainty varies across countries, they note that countries associated with

an opportunistic response have much lower central bank independence than the countries

associated with a stabilizing response. We use measures of central bank independence

provided by Alesina and Summers (1993), which constructed a 1-4 (maximum inde-

pendence) scale of central bank independence. The USA and Japan have relatively

independent central banks with a score of 3. However, in Japan increased inflation un-

certainty raises inflation, while in the USA uncertainty does not Granger-cause inflation.

Thus, one cannot argue that the most independent central banks are in countries where

inflation falls in response to increased uncertainty. The UK has a relatively dependent

central bank, with a score of 2. However, in the UK the sign (and significance) of the
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effect varies with the lag length. Thus, a lack of independence does not correspond to

‘opportunistic behavior’.

4.3.4 Comparison with other Work

The GARCH time series studies that examine the link between inflation rates and infla-

tion uncertainty use various sample periods, frequency data sets and empirical method-

ologies.16 Some GARCH studies of this issue utilize the simultaneous estimation ap-

proach. In particular, Caporale and McKierman (1997), and Fountas (2001) estimate

GARCH-type processes where lagged inflation is included in the conditional variance

equation to test Friedman’s hypothesis. Brunner and Hess (1993) model the conditional

variance as a nonlinear function of lagged values of inflation. Baillie et al. (1996b),

Hwang (2001) and Fountas et al. (2003) employ univariate GARCH models that al-

low for simultaneous feedback between the conditional mean and variance of inflation

while Grier and Perry (2000) use a bivariate GARCH-in-mean specification.17 Some re-

searchers employ the Granger-causality approach. For example, Grier and Perry (1998)

and Fountas and Karanasos (2005) estimate univariate component GARCH models,

Fountas et al. (2004) employ an EGARCH specification, while Fountas et al. (2002) use

a bivariate constant correlation GARCH formulation.

More specifically, Baillie et al. (1996b) show that for the low-inflation countries

(except the UK) there is no link between the inflation rate and its uncertainty whereas

for the high-inflation countries strong evidence is provided of a bidirectional feedback

between nominal uncertainty and inflation. Grier and Perry (1998) find that in all G7

countries inflation significantly raises inflation uncertainty. Fountas et al. (2004), in

five out of six European countries, and Fountas and Karanasos (2005) in six of the G7

countries also find support for Friedman’s hypothesis. In sharp contrast, for Germany

16Fountas (2001) employs annual data on UK CPI for the period 1885-1998 while Fountas et al. (2004)

use quarterly data from six European countries for the period 1960-1999.
17These studies either use the conditional variance or the conditional standard deviation as a regressor

in the conditional mean.
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the study by Fountas and Karanasos (2005) finds that the effect of inflation on nominal

uncertainty is negative as predicted by Pourgerami and Maskus (1987). These three

studies find less robust evidence regarding the direction of the impact of a change in

inflation uncertainty on inflation. That is, they find evidence in favor of the Cukierman-

Meltzer hypothesis for some countries and in favor of the Holland hypothesis for other

countries.

In all three countries our results on the Friedman hypothesis are identical to those of

the above-mentioned studies. That is, in all studies which use the two-step approach and

in most of the studies which use the simultaneous approach increased inflation affects

nominal uncertainty positively. In sharp contrast, Baillie et al. (1996b) find, for the

USA and Japan, that inflation uncertainty is independent of changes in inflation. Hwang

(2001) finds that the US inflation affected its uncertainty weakly and negatively. For the

USA, our result that there is no causal effect of nominal uncertainty on inflation squares

with the findings of most of the recent studies (e.g., Baillie et al., 1996b, Grier and

Perry, 2000, Hwang, 2001, and Fountas and Karanasos, 2005). However, Grier and Perry

(1998) find that uncertainty about future inflation has a negative impact on inflation

whereas Fountas et al. (2003) find evidence for a positive effect of nominal uncertainty

on inflation. Note that both studies estimate short-memory GARCH models. For Japan

we find that uncertainty about inflation has a positive effect on inflation, as predicted

by Cukierman and Meltzer. This result is in agreement with the conclusion of Grier

and Perry (1998) and Fountas and Karanasos (2005). In sharp contrast, Fountas et

al. (2002) provide strong empirical support for Holland’s hypothesis. Our work differs

from Fountas et al. (2002) in the chosen econometric methodology (univariate dual

long-memory GARCH-type models) and the use of CPI in measuring inflation. The

authors estimate short-memory bivariate GARCH models and use PPI data. Moreover,

Baillie et al. (1996b) fail to find any effect of nominal uncertainty on inflation for Japan.

Our work differs from theirs in that we use more than one lag of monthly inflation

and uncertainty to look for a link between the two. Finally, for the UK our result

that uncertainty about future inflation appears to have a mixed impact on inflation is
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consistent with the findings of previous studies by Fountas et al. (2004) and Fountas

and Karanasos (2005). Note also that our result on the mild evidence (at lag 12) that

increased nominal uncertainty lowers inflation is identical to that of Grier and Perry

(1998).

4.4 Conclusions

We have used monthly data on inflation in the USA, Japan, and the UK to examine

the possible relationship between inflation and nominal uncertainty, and hence test a

number of economic theories. The results in this chapter highlight the importance of

modeling long memory not only in the conditional mean of inflation but in the condi-

tional variance as well. The application of the ARFIMA-FIGARCH approach allows us

to derive two important conclusions: First, the Friedman hypothesis that inflation leads

to more inflation uncertainty applies in all countries. Since an increase in the rate of

inflation causes an increase in inflation uncertainty, we conclude that greater uncertainty

– which many have found to be negatively correlated to economic activity – is part of the

costs of inflation. This result may have important implications for the inflation-output

relationship. Gylfason and Herbertsson (2001) argue that inflation can be detrimental to

economic growth through four different channels. It would be interesting to find whether

this negative effect may work also indirectly via the inflation uncertainty channel. For

example, since the Japanese economy during the 1990s was plagued by a deflationary

episode associated with low or zero rates of inflation and low output growth rates it

would be interesting to find out whether the low output growth rates can be associated

with the rate of inflation and the corresponding inflation uncertainty as predicted by

Friedman (1977). However, as emphasized by Gylfason and Herbertsson (2001), one

can not preclude the possibility that low inflation may be harmless to growth, perhaps

even beneficial. Krugman (1998) has recommend more rapid monetary expansion and

inflation in Japan in order to reduce real interest rates below zero and thereby stimulate

investment and growth.
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Second, less robust evidence is found regarding the direction of the impact of a

change in nominal uncertainty on inflation. No effect was present for the USA whereas

we obtained mixed evidence for the UK. At twelve lags we find evidence against the

Cukierman-Meltzer hypothesis. This evidence partially favors the ‘stabilization hypoth-

esis’ put forward by Holland (1995). He claims that for countries where inflation leads

to nominal uncertainty and real costs, we would expect the policy maker to stabilize in-

flation, hence a negative effect of inflation uncertainty on inflation. This result squares

with the findings of recent studies by Fountas and Karanasos (2005) and Fountas et

al. (2004). Both studies found that uncertainty about inflation causes negative real ef-

fects in the UK. In Japan we found strong evidence in favor of the Cukierman-Meltzer

hypothesis. According to Devereux (1989) inflation uncertainty can have a positive im-

pact on inflation via the real uncertainty channel. If the variability of real shocks is

the predominant cause of nominal uncertainty, then inflation uncertainty and inflation

are positively correlated. As real shocks become more variable the optimal degree of

indexation declines. The inflation rate rises only after the degree of indexation falls.

Assuming that changes in the degree of indexation take time to occur, greater inflation

uncertainty precedes higher inflation.



Chapter 5

Dual Long Memory in Inflation

Dynamics across Countries of the

Euro Area

5.1 Introduction

An extensive body of theoretical literature examines the relationship between the rate

of inflation and the nominal uncertainty. It is important to discover whether an increase

in inflation precedes an increase in uncertainty, if we are to add to our understanding

about the welfare costs of inflation. Different theories emphasize different channels,

some pointing to a positive relationship and some to a negative one. Friedman (1977)

argues that higher inflation may induce erratic policy responses to counter it, with con-

sequent unanticipated inflation movements. In contrast, Pourgerami and Maskus (1990)

point out that a negative effect may exist. The opposite direction of causality than that

This chapter was published as: Conrad, C., and M. Karanasos (2005b). “Dual long memory in

inflation dynamics across countries of the Euro area and the link between inflation uncertainty and

macroeconomic performance.” Studies in Nonlinear Dynamics & Econometrics 4, Article 5. Copyright

c© 2005 The Berkeley Electronic Press. Reproduced with kind permission from Berkeley Electronic

Press.
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examined by Friedman has also been addressed in the theoretical literature. In particu-

lar, Cukierman and Meltzer (1986) contend that inflation uncertainty produces greater

average inflation due to opportunistic central bank behavior, whereas according to Hol-

land (1995) higher nominal uncertainty leads to lower average rates of inflation. Much

empirical work has been done aimed at signing the effects of inflation on its uncertainty

and vice versa. Contradictory empirical results are reported by various researchers.

Given the theoretical ambiguity, it is not surprising that the statistical evidence is also

ambiguous. Moreover, economic theory and empirical work reach a striking variety of

conclusions about the responsiveness of output growth to changes in nominal uncer-

tainty. The importance of uncertainty as a distinct channel in explaining the real effects

of inflation has recently been given considerable empirical support (Grier et al., 2004,

Elder, 2004, and Fountas and Karanasos, 2005). This channel was first highlighted by

Friedman (1977). He argues that uncertainty about inflation causes an adverse growth

effect. Dotsey and Sarte (2000) using a cash-in-advance framework obtain the opposite

result: more nominal uncertainty can increase real growth.

This study has three primary objectives. First, it analyzes the inflation dynamics of

several countries belonging to the European Monetary Union and of the UK. One group

of countries is formed by Germany, France, Italy, the Netherlands and Spain. These

five major countries represent 88 percent of the GDP of the Euro area. Given that

the explicit mission of the European Central Bank (ECB) is the preservation of price

stability, the analysis of the nature of inflation in the Euro area is of distinct interest.

We estimate the two main parameters driving the degree of persistence in inflation and

nominal uncertainty using an ARFIMA-FIGARCH process.1 This model, developed in

Baillie et al. (2002), provides a general and flexible framework with which to study a

complicated process like inflation. Put differently, it is sufficiently flexible to handle the

dual long memory behavior encountered in inflation.

Second, it investigates the possible existence of heterogeneity in inflation dynamics

1We refer to a model that is fractional integrated in both the ARMA and GARCH specifications as

the ARFIMA-FIGARCH model.



5.1 Introduction 91

across Euro area countries. Inflation differentials have important implications for the

design of the optimal monetary policy. For example, as Benigno and Lòpez-Salido (2002)

point out, an inflation targeting policy that assigns higher weight to countries with higher

degrees of persistence benefits those countries since once the policy of the central bank

is credible, it produces lower inflation rates for them simply because it cares more about

those inflation rates.

The third objective of this study is to shed more light on the issue of temporal

ordering of inflation and nominal uncertainty. To do this we proceed in two steps. First,

we use the estimated conditional variance from the ARFIMA-FIGARCH model as our

statistical measure of inflation uncertainty. Having constructed a time series of nominal

uncertainty in the second part we employ Granger methods to test for evidence on the

bidirectional causality relationship between inflation and uncertainty about inflation.

The two-step approach has been employed among others by Grier and Perry (1998). In

addition, we test for the causal effect of nominal uncertainty on output growth. The

empirical evidence on this link remains scant or nonexistent, as pertains, in particular,

to international data in European economies.

Our first finding is that all ten European inflation rates have the rather curious

property of persistence in both their first and their second conditional moments. This

empirical evidence is consistent with the evidence provided by Baillie et al. (2002) for

eight industrial countries. The second result that emerges from this study is the existence

of heterogeneity in inflation dynamics across Euro area countries. These countries fall

into three groups in terms of the difference in the dynamics of the second moment

of their inflation rates. The first group of countries includes France and Sweden and is

characterized by a mild long memory GARCH behavior of the inflation rate. The second

includes Belgium, Finland, Italy, the Netherlands and the UK, which are characterized

by the presence of quite strong long memory in the inflation uncertainty. The third

group of countries includes Portugal and Spain and is characterized by a near integrated

behavior in the second conditional moment of the inflation rate. This finding is of some

significance since inflation differentials are not irrelevant for monetary policy.
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Third, we provide overwhelming evidence that increased inflation raises its uncer-

tainty, confirming the theoretical predictions made by Friedman. However, we find that

nominal uncertainty has a mixed impact on output growth. This result brings out an

important asymmetry in the transmission mechanism of monetary policy in Europe in

addition to the difference in the economic sizes of the countries. In particular, since the

effects of uncertainty on output growth differ across the Euro zone, a common monetary

policy that results in similar inflation rates across countries will have asymmetric real

effects, provided these effects work via a change in nominal uncertainty. We also find

that increased nominal uncertainty significantly affects average inflation in eight coun-

tries but not all in the same manner. These differential responses to nominal uncertainty

are correlated with measures of central bank independence.

The remainder of the chapter is organized as follows. Section 5.2 summarizes sev-

eral empirical studies that investigate the short-term inflation dynamics. Section 5.3

discusses the economic theory and the empirical testing concerning the link between

inflation uncertainty and macroeconomic performance. In Section 5.4, we describe the

time series model for inflation and nominal uncertainty and discuss its merits. The

empirical results are reported in Section 5.5, and Section 5.6 draws some policy implica-

tions and proposes possible extensions of the time series model for inflation. Section 5.7

contains summary remarks and conclusions.

5.2 Inflation Dynamics

This section summarizes several empirical studies that investigate the short-term in-

flation dynamics. The nature of the short-run inflation dynamics is a central issue in

macroeconomics and one of the most fiercely debated. There is an extensive theoretical

literature that attempts to develop structural models of inflation that provide a good

approximation to its dynamics (see, for example, Karanassou and Snower, 2003), and

an equally extensive empirical literature that attempts to document the properties of

inflationary shocks. Many contradictory results can be found in the empirical litera-
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ture on the persistence of inflation rates. Several studies (see, for instance, Grier and

Perry, 1998) argue that inflation is I(0), whereas a large number of researchers, such as

Banerjee and Russell (2001), find evidence for a unit root in inflation. Similarly, Ball

and Cecchetti (1990) decompose inflation into a permanent component and a transitory

component. As noted by Baillie et al. (1996b) and Caporale and Gil-Alana (2003), the

stationarity of real rates of interest and the Fisher relation is consistent with neoclas-

sical models of dynamic growth, superneutrality, and capital asset pricing models. But

if both inflation and nominal interest rates have a unit root then they must be cointe-

grated in order for the ex-post real rates to be stationary. Moreover, a nonstationary

inflation process also complicates the derivation of optimal monetary policy rules (see

McCallum, 1988).

Some researchers argue that inflation has become more persistent over time. In

particular, Brunner and Hess (1993) model US inflation as an I(0) process before 1960

and as an I(1) process after this time. Along these lines, Evans and Watchel (1993)

develop a time series model of inflation that switches from purely transitory shocks in

the 1960s to purely permanent shocks in the 1970s, and back to transitory shocks in

the late 1980s. They use this model to derive measures of nominal uncertainty that

account for the prospects of changing inflation regimes. Generally speaking, as is often

the case with post war data, one cannot say with confidence whether the two series,

that is inflation and its uncertainty, are stationary or nonstationary or cointegrated if

nonstationary. Accordingly, Holland (1995) performs three different tests for Granger-

causality between the two variables, each corresponding to one of the three different

assumptions.

In sharp contrast, Backus and Zin (1993) find that a fractional root shows up very

clearly in monthly US inflation. They conjecture that the long memory in inflation is the

result of aggregation across agents with heterogeneous beliefs. They also demonstrate

that the fractional difference process is a good descriptor of short-term interest rates and

suggest that the fractional unit root in the short rates is inherited from money growth

and inflation. Hassler and Wolters (1995) find that the inflation rates of five industrial
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countries are well explained by different orders of integration, which vary around the

stationarity border of 0.5. Ooms and Hassler (1997) using data from Hassler and Wolters

(1995) and a modified periodogram regression, confirm their findings. Subsequently,

Baum et al. (1999) presented statistical evidence in favor of I(d) (0 < d < 1) behavior

for both CPI-and WPI- based inflation rates for many industrial as well as developing

countries.

The preceding works provide quite consistent evidence across time periods and coun-

tries that inflation exhibits long memory with an order of integration which differs sig-

nificantly from zero and one. Overall these findings suggest that the traditional ARMA

and ARIMA specifications are incapable of imparting the persistence to inflation that

we find in the data. Put differently, by viewing inflation as an I(0) or I(1) process instead

of an I(d) process, we bias downward or upward our estimate of inflation persistence.

However, the previously mentioned articles have not explored the time-dependent het-

eroscedasticity in the second conditional moment of the inflation process. Along these

lines, Baillie et al. (1996b) utilize the ARFIMA-GARCH model to describe the inflation

dynamics for ten countries. They provide strong evidence of long memory with mean

reverting behavior for all countries except Japan. Hwang (2001) also estimates various

ARFIMA-GARCH-type models for monthly US inflation. He finds strong evidence that

inflation dynamics are well described by a fractional process with an order of integration

of about 0.33.

In many applications the sum of the estimated GARCH(1,1) parameters is often

close to one, which implies integrated GARCH (IGARCH) behavior. For example,

Baillie et al. (1996b) emphasize that for all ten countries the inflation series possesses

substantial persistence in its conditional variance. In particular, the sum of the GARCH

parameters was at least 0.965. Most importantly, Baillie et al. (1996a), using Monte-

Carlo simulations, show that data generated from a process exhibiting long memory

FIGARCH volatility may be easily mistaken for IGARCH behavior. Therefore recently

Baillie et al. (2002) have focused their attention on the topic of long memory and

persistence in terms of the second moment of the inflation process. They employ the
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FIGARCH specification of Baillie et al. (1996b) to model the apparent long memory

in the conditional variance of the inflation series. They find that the inflation rates for

many industrial countries display significant fractional integration in both their first and

second moments. Similarly, Conrad and Karanasos (2005a) [see Chapter 4] find that the

ARFIMA-FIGARCH model was the preferred specification for the monthly CPI-based

inflation rates for the UK and the US.

5.3 The Link between Inflation-Uncertainty and

Macroeconomic Performance

5.3.1 Theory

In this section, we discuss the economic theory concerning the link between nominal un-

certainty and macroeconomic performance. Since Friedman (1977) stressed the harmful

effects of nominal uncertainty on employment and production much research has been

carried out investigating the relationship between inflation and uncertainty about infla-

tion. The effect of inflation on its unpredictability is theoretically ambiguous. Several

researchers contend that since a reduction in inflation causes an increase in the rate of

unemployment, a high rate of inflation produces greater uncertainty about the future

direction of government policy and the future rates of inflation. Ball’s (1992) model

formalizes this idea in the context of a repeated game between the monetary authority

and the public.

Holland (1993) points out that in the Evans and Wachtel (1993) framework, if regime

changes cause unpredictable changes in the persistence of inflation, then lagged inflation

squared is positively related to nominal uncertainty. If, on the other hand, regime

changes do not affect the persistence of inflation, then no relationship between the rate

of inflation and its uncertainty is implied. In contrast, Pourgerami and Maskus (1990)

suggest that higher inflation may induce the relevant economic agents to invest more in

generating accurate predictions and hence may lead to lower nominal uncertainty. Ungar
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and Zilberfarb (1993) propose a mechanism that may weaken, offset, or even reverse the

direction of the traditional view concerning the inflation-uncertainty relationship.

The models of Ball, Evans and Wachtel, and Holland imply that higher nominal

uncertainty is part of the welfare costs of inflation because inflation causes its uncer-

tainty. On the other hand, Cukierman and Meltzer (1986) and Cukierman (1992) using

the Barro-Gordon model of Fed behavior show that greater uncertainty about money

growth and inflation causes a higher mean rate of inflation by increasing the incentive for

the policy-maker to create inflation surprises. In addition, Devereux (1989) emphasizes

the fact that higher variability of real shocks lowers the optimal degree of indexation

and increases the incentives of the policy maker to create surprise inflation. Therefore, if

changes in the degree of indexation take time to occur then higher nominal uncertainty

precedes greater inflation. In sharp contrast, Holland (1995) argues that due to the

‘stabilization motive’ higher nominal uncertainty has a negative effect on inflation.2

The impact of nominal uncertainty on output growth has received considerable at-

tention in the theoretical macroeconomic literature. However, there is no consensus

among macroeconomists on the direction of this effect. Theoretically speaking, the ef-

fect of uncertainty on growth is ambiguous. The second part of Friedman’s hypothesis

postulates that greater inflation variability, by reducing economic efficiency, has a neg-

ative impact on real growth. In particular, increased volatility in inflation rates reduces

the ability of markets to convey information to market participants about relative price

movements and makes long-term contracts more costly. Dotsey and Sarte (2000) ana-

lyze the effects of nominal uncertainty on economic growth in a model where money is

introduced via a cash-in-advance constraint. In this setting, they find that variability

increases average growth through a precautionary savings motive. Within the confines

of their neoclassical growth model higher rates of inflation have negative consequences

for growth, while increased inflation variability has a small positive effect on growth. In

essence the offsetting growth effects of mean inflation and its uncertainty, along with the

2Under this scenario, if higher inflation raises its uncertainty, the policy maker responds by disin-

flating the economy in order to reduce nominal uncertainty and the associated costs.
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fact that these are highly correlated, provide a partial rationale for the weak and some-

what fragile relationship between growth and inflation. Finally, an alternative channel

through which uncertainty about inflation might affect output growth is via the real

uncertainty.3 For example, a rising nominal uncertainty would be expected to have a

positive impact on output growth via a combination of the Logue-Sweeney and Black

effects.

5.3.2 Empirical Evidence

In this section, we discuss previous empirical testing of the link between nominal un-

certainty and macroeconomic performance. The relationship between inflation and its

uncertainty has been analyzed extensively in the empirical literature. Davis and Kanago

(2000) survey this literature. Recent time series studies of nominal uncertainty have fo-

cused on the GARCH conditional variance of inflation as a statistical measure of its

uncertainty. Some studies use GARCH models that include a function of the lagged in-

flation rate in the conditional variance equation. In particular, Brunner and Hess (1993)

allow for asymmetric effects of inflation shocks on nominal uncertainty and find a weak

link between US inflation and its uncertainty. Caporale and McKierman (1997) find a

positive relationship between the level and variability of US inflation. Three studies use

GARCH type models with a joint feedback between the conditional mean and variance

of inflation. Baillie et al. (1996b), for three high inflation countries and the UK, and

Karanasos et al. (2004a) for the US, find strong evidence in favor of a positive bidirec-

tional relationship in accordance with the predictions of economic theory. In contrast,

Hwang (2001) finds that US inflation affects its uncertainty weakly and negatively. Fi-

nally, the recent empirical literature tends to confirm the negative association between

nominal uncertainty and real growth in the US. Studies by Grier and Perry (2000),

3The positive association between inflation and output variability is known in the literature as the

Logue-Sweeney hypothesis (see Karanasos and Kim, 2005, for details). The positive impact of output

uncertainty on growth is known in the literature as the Black hypothesis (see Fountas and Karanasos,

2005, for details).
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Grier et al. (2004) and Elder (2004) employ bivariate GARCH-in-mean models and find

a negative effect. However, all these studies use only US data.

Some studies examine the link between nominal uncertainty and the level of infla-

tion using the two-step approach where an estimate of the conditional variance is first

obtained from a GARCH-type model and Granger methods are then employed to test

for bidirectional effects. In particular, Grier and Perry (1998) find that in all G7 coun-

tries inflation significantly raises its uncertainty. They also find evidence in favor of the

Cukierman-Meltzer hypothesis for some countries and in favor of the Holland hypoth-

esis for other countries. Fountas et al. (2004), using quarterly data and employing the

EGARCH model, find that in five European countries inflation significantly raises its

uncertainty. Their results regarding the direction of the impact of a change in nominal

uncertainty on inflation were generally consistent with the existing rankings of central

bank independence. Conrad and Karanasos (2005a) [see Chapter 4] for three industrial

countries find strong evidence in support of both the Friedman and the Cukierman and

Meltzer hypotheses.

Holland (1993) tabulates a number of empirical studies concerning the relationship

between nominal uncertainty and real activity (employment or output). Studies based

on surveys tend to find a negative relationship between nominal uncertainty and real

activity, whereas studies based on ARCH volatility find insignificant or positive rela-

tionships. In particular, Coulson and Robins (1985) find that nominal uncertainty has

a positive impact on real growth, while Jansen (1989) uses a bivariate ARCH in mean

model and reports an insignificant relationship. Dotsey and Sarte (2000) also report

empirical work documenting that the effect of uncertainty on growth appears to be non-

negative. Grier and Tullock (1989) have been unable to verify the more conventional

view that greater volatility in the inflation rate lowers growth, while McTaggart (1992)

uses annual data for Australia and finds that inflation variability has a positive influence

on the log of output. Levine and Renelt (1992) use cross-country regressions to search

for empirical linkages between growth rates and a variety of economic policy indicators.

They find that all the results are fragile to small changes in the conditioning information
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set. The empirical findings in Barro (1996), for a panel of around 100 countries, support

the notion that the variability of inflation has no significant relation with growth.

The empirical evidence on the relationship between nominal uncertainty and output

growth remains scant or nonexistent, as pertains, in particular, to international data

in industrialized economies. An exception is Fountas et al., (2004) and Fountas and

Karanasos (2005). They employ the two-step approach in a univariate GARCH frame-

work using data for six European and the G7 countries respectively and find significant

evidence in favor of the Friedman hypothesis for some countries and in favor of the

Dotsey-Sarte hypothesis for other countries. That is, the evidence regarding the direc-

tion of the impact of a change in nominal uncertainty on real growth found in these two

studies is not robust across countries.

There are a limited number of studies using international data that are based on

GARCH measures of inflation uncertainty. These are Baillie et al. (1996b), Grier and

Perry (1998), Fountas et al. (2004), Fountas and Karanasos (2005), and Conrad and

Karanasos (2005a) [see Chapter 4]. Only Fountas et al. (2004) investigate the relation-

ship between inflation and its uncertainty for six European countries and only Conrad

and Karanasos (2005a) [see Chapter 4] focus on a statistical measure of nominal uncer-

tainty that captures the dual long memory aspect of inflation, namely the ARFIMA-

FIGARCH (conditional) variance of inflation. This study aims to fill the gaps arising

from the lack of interest in the European case, where the results would have interesting

implications for the successful implementation of a common European monetary policy,

and from the methodological shortcomings of the previous studies.

5.4 Methodology

5.4.1 The ARFIMA-FIGARCH Process

It appears from the study of Baillie et al. (2002) that the apparent long memory in the

inflation rate is also present in nominal uncertainty. Hence, there seems to be a need to
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have a joint model which incorporates long memory in both the conditional mean and

the conditional variance of inflation. In other words, the time series features of inflation

seem to require the use of fractional integrated models from two different classes, namely

the ARMA and the GARCH.

Along these lines, in this section we describe the time series model for inflation and

nominal uncertainty and discuss its merits. First, we denote the inflation rate by πt and

we define its mean equation as

(1− L)dm(1− ϕ6L
6 − ϕ9L

9 − ϕ12L
12 − ϕ24L

24)(πt − µ) = εt, (5.1)

where (1 − L)dm is the fractional differencing operator with dm ≤ 1. That is the infla-

tion rate follows an ARFIMA(24,dm,0) specification. Second, let us suppose that εt is

conditionally normal with mean zero and variance ht. That is εt|Ft−1 ∼ N (0, ht), where

Ft−1 is the information set up to time t − 1. Finally, we assume that the structure of

the conditional variance is given by a FIGARCH(1, d, 1), i.e.

(1− βL)ht = ω +
[
(1− βL)− (1− φL)(1− L)dv

]
ε2

t , (5.2)

where 0 ≤ dv ≤ 1, ω > 0, and φ, β < 1. For necessary and sufficient conditions

on the parameters (β, dv, φ) guaranteeing the nonnegativity of the conditional variance

in the FIGARCH(1, d, 1) model see Conrad and Haag (2006) [see Chapter 2, Corol-

lary 2.1]. The FIGARCH specification reduces to a GARCH model for dv = 0 and

to an IGARCH model for dv = 1. If ht = ω, a constant, the process reduces to the

ARFIMA (24, dm, 0) model. Then the inflation rate will be covariance stationary and

invertible for −0.5 < dm < 0.5 and will be mean reverting for dm < 1. Although the

ARFIMA-FIGARCH process is strictly stationary and ergodic for 0 ≤ dv ≤ 1, it will

have an infinite unconditional variance for all dm given a dv 6= 0. Clearly, the unit root

corresponds to the null hypothesis H0 : dm = 1.
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5.4.2 Two-Step Strategy

To test for the relationship between inflation and nominal uncertainty, one can use

either the two-step or the simultaneous approach. Under the latter one, an ARFIMA-

FIGARCH-in-mean model is estimated with the conditional variance equation incorpo-

rating lags of the inflation series, thus allowing simultaneous estimation and testing of

the bidirectional causality between the two variables. The two-step approach is per-

formed by first obtaining an estimate of the conditional variance from the ARFIMA-

FIGARCH model and then Granger methods are employed to test for bidirectional

effects. We prefer the two-step strategy for the following reasons (see Grier and Perry,

1998). First, it allows us to capture the lagged effects between the variables of inter-

est. In particular, the in-mean model suffers from the disadvantage that it does not

allow the testing of a lagged effect of nominal uncertainty on inflation, which would be

expected in a study that employs monthly data. As Grier and Perry (1998) mention,

the impact of a change in inflation uncertainty on average inflation, via a change in

the stabilization policy of the monetary authority, takes time to materialize and cannot

be fairly tested in a model that restricts the effect to being contemporaneous. Second,

the simultaneous approach is subject to the criticism of the potential negativity of the

conditional variance. This is because there is no way of guaranteeing the nonnegativity

of the conditional variance by imposing constraints on the parameters of the conditional

variance specification since the sign of the inflation series is time-varying. Third, the

two-step approach minimizes the number of estimated parameters.

It is also interesting to note the similarities between the Lagrange Multiplier (LM)

test for ARCH effects and the Granger-causality methodology. In the LM statistic the

first step is to estimate the conventional regression model for inflation by OLS (i.e.,

assuming independent errors) and obtain the fitted residuals (ε̂t). The second step is to

regress ε̂2
t on a constant and lags of ε̂2

t . If ARCH effects are present (i.e., if the squared

errors are linearly related), the estimated parameters should be statistically significant.

In our two-step strategy an estimate of the conditional variance is first obtained from
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an ARFIMA-FIGARCH model (i.e., assuming that inflation and its uncertainty are

uncorrelated) and then causality tests are run to test for bidirectional effects between

the two variables.

5.5 Empirical Analysis

5.5.1 Data

In this section we look at some of the time series characteristics of inflation. Monthly

data, obtained from the OECD Statistical Compendium, are used to provide a reason-

able number of observations. The inflation and output growth series are calculated

as the monthly difference in the natural log of the Consumer Price Index and Indus-

trial Production Index respectively. The data range from 1962:01 to 2004:01 and cover

ten European countries, namely, Belgium, Finland, France, Germany, the Netherlands,

Italy, Portugal, Spain, Sweden and the UK. Allowing for differencing this implies 504

usable observations.4

The summary statics (not reported) for the ten inflation rates show that the Ger-

man (Portuguese) inflation rate has the lowest (highest) mean and standard deviation.

Furthermore, the summary statistics indicate that the distributions of all ten inflation

series are skewed to the right. The large values of the Jarque-Bera (JB) statistic imply

a deviation from normality, and the significant Q-statistics of the squared deviations of

the inflation rate from its sample mean indicate the existence of ARCH effects. This

evidence is also supported by the Lagrange Multiplier (LM) test statistics, which are

highly significant.

Next, we employ the PP and KPSS unit root tests, suggested by Phillips and Perron

(1988) and Kwiatkowski et al. (1992) respectively. The results are presented in Table

5.1 and can be summarized as follows. For all the inflation series shown, based on the

4The only exceptions are Belgium and Spain for which output data was available only from January

1965 onwards. For all countries the industrial production series are seasonally adjusted.
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Table 5.1: Tests for order of integration of different countries’ inflation series.

H0: I(1) H0: I(0)

Z(tµ) Z(tτ ) η̂µ η̂τ

Belgium -14.24∗∗∗ -14.93∗∗∗ 2.45∗∗∗ 0.83∗∗∗

Finland -17.00∗∗∗ -18.31∗∗∗ 3.20∗∗∗ 0.81∗∗∗

France -10.29∗∗∗ -11.48∗∗∗ 3.31∗∗∗ 1.46∗∗∗

Germany -16.24∗∗∗ -16.55∗∗∗ 1.26∗∗∗ 0.34∗∗∗

Italy -8.30∗∗∗ -8.71∗∗∗ 2.19∗∗∗ 1.41∗∗∗

Netherlands -21.23∗∗∗ -22.07∗∗∗ 2.45∗∗∗ 0.34∗∗∗

Portugal -18.21∗∗∗ -18.32∗∗∗ 1.63∗∗∗ 1.27∗∗∗

Spain -15.30∗∗∗ -16.15∗∗∗ 2.80∗∗∗ 1.09∗∗∗

Sweden -17.66∗∗∗ -18.12∗∗∗ 2.20∗∗∗ 1.06∗∗∗

UK -13.95∗∗∗ -14.37∗∗∗ 1.88∗∗∗ 0.90∗∗∗

Notes: Z(tµ) and Z(tτ ) are the PP adjusted t-statistics of the lagged depen-

dent variable in a regression with intercept only, and intercept and time trend

included, respectively. The 0.01 critical values for Z(tµ) and Z(tτ ) are -3.43

and -3.96. η̂µ and η̂τ are the KPSS test statistics based on residuals from

regressions with an intercept and intercept and time trend, respectively. The

0.01 critical values for η̂µ and η̂τ are 0.739 and 0.216. ∗∗∗ denotes significance

at the 0.01 level.

PP test we are able to reject the unit root hypothesis, whereas based on the KPSS

test the null hypothesis of stationarity is rejected.5 In other words, the application of

these tests yields contradictory results. With all inflation series we find evidence against

5We used a Bartlett kernel for the PP test and chose five as truncation lag, the number of lags

included in the KPSS test was set to four. Alternatively, the Augmented Dickey-Fuller (ADF) statistic

can be applied to test the unit root hypothesis. The evidence obtained from the PP test statistic is

reinforced by the results (not reported) provided by the ADF tests.
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the unit root as well as against the stationarity hypothesis. Thus fractional integration

allowing for long memory is a plausible model.6 Finally, the results of the unit root tests

applied to the output growth series (not reported) imply that we can treat these series

as stationary processes.

5.5.2 Model Estimates

The analysis in Baillie et al. (2002) suggests that the ARFIMA-FIGARCH specification

describes the inflation series of several industrial countries well. Within this frame-

work we will analyze the dynamic adjustments of both the conditional mean and the

conditional variance of inflation for several European countries, as well as the implica-

tions of these dynamics for the direction of causality between nominal uncertainty and

macroeconomic performance. Estimates of the ARFIMA-FIGARCH model are shown

in Table 5.2. These were obtained by quasi-maximum likelihood estimation (QMLE) as

implemented by Laurent and Peters (2002) in Ox. The truncation lag for the fractional

differencing operator was chosen to be 500. For a detailed description of the estimation

procedure see Baillie et al. (1996a). The consistency and asymptotic normality of the

QMLE has been established only for specific special cases of the ARFIMA and/or FI-

GARCH model. However, a detailed Monte-Carlo study, where ARFIMA-FIGARCH

type models were simulated, was performed by Baillie et al. (2002) and it was found

that the quality of the application of the QMLE is generally very satisfactory. To check

for the robustness of our estimates we used a range of starting values and hence ensured

6Of course, these unit root tests are merely suggestive. For example, Lee and Amsler (1997) show

that the KPSS statistic cannot distinguish consistently between nonstationary long memory and unit

root. We also examine the characteristics of inflation graphically by presenting the autocorrelation

function of inflation and changes in inflation. Among other things, the figures (not reported) make clear

the long memory property of inflation, that is the inflation series itself show significant positive and

slowly decaying autocorrelations while the differenced series appear to follow an MA(1) process. Finally,

we plot the autocorrelations of the squared and absolute values of the residuals from an estimated

ARFIMA(24, dm, 0) model. Interestingly, these autocorrelations are extremely persistent, which is

suggestive of long memory behavior in the conditional variance.
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that the estimation procedure converged to a global maximum.

Several findings emerge from Table 5.2. The estimated long memory conditional

mean parameter is in the range 0.141 ≤ d̂m ≤ 0.353. The value of the coefficient for

Portugal (0.141) is markedly lower than the corresponding value for Italy (0.353). How-

ever, although the estimated value of dm for Portugal is relatively small it is significantly

different from zero. Furthermore, once long memory in the conditional mean has been

accounted for, an AR(24) specification appears to capture the serial correlation in all

ten inflation series. That is, all the ϕ̂12 and ϕ̂24 parameters are much larger than their

standard errors.

The estimation of a FIGARCH model for Portugal and Spain realized an estimated

value of dv close to 0.9 (0.874 and 0.866 respectively), whereas in sharp contrast, for

France and Sweden it realized a value close to 0.1 (0.130 and 0.133 respectively). In other

words, the estimates of dv that govern the dynamics of the conditional heteroscedastic-

ity indicate that the conditional variances of the Portuguese and Spanish inflation are

characterized by a near integrated GARCH behavior, whereas the conditional variances

of the French and Swedish inflation are characterized by a very mild long memory

GARCH behavior. For the other six countries, the values of dv vary from 0.195 (Nether-

lands), 0.209 (Finland), and 0.269 (Germany) to 0.330 (Belgium), 0.457 (UK), and

0.529 (Italy). For Finland, France, Germany, the Netherlands, Sweden and the UK

the Akaike and Schwarz information criteria (AIC and SIC respectively) come out in

favor of the FIGARCH(0, dv, 0) model, while for Italy, Portugal and Spain (the three

countries with the highest d̂v) the FIGARCH(1, dv, 0) is the preferred specification. In

addition, note that the estimated GARCH parameters for these three countries and for

Belgium satisfy the set of conditions which are necessary and sufficient to guarantee

the nonnegativity of the conditional variance derived in Conrad and Haag (2006) [see

Chapter 2, Corollary 2.1].

The ten European countries fall into three groups in terms of the differences in the

sum of the two fractional differencing parameters (dm +dv). The first group of countries

includes Finland, France, Germany, the Netherlands and Sweden: 0.310 < d̂m + d̂v <
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0.480. In all these countries, except France, the estimated value of dm is very close to the

estimate of dv. The second includes Belgium, Italy and the UK: 0.540 < d̂m+d̂v < 0.890.

The third group of countries includes Portugal and Spain: d̂m + d̂v ' 1. Portugal

and Spain have very similar estimated mean (0.141, 0.181) and variance (0.874, 0.866)

fractional differencing parameters.7 Interestingly, these are the two countries with the

lowest (highest) long memory mean (variance) parameters. Whether the sum of the

two estimated fractional differencing parameters is below or above 0.5 will become of

importance when analyzing causal relationships between inflation and its uncertainty in

the next section. In seven out of the ten countries the estimates of dm are smaller than

the estimates of dv.

Generally speaking, the parameter estimates support the idea that dual long memory

effects are present in the inflation process for all ten European countries, suggesting that

the dual long memory is an important characteristic of the inflation data. Finally, with

all countries, the hypothesis of uncorrelated standardized and squared standardized

residuals is well supported, indicating that there is no statistically significant evidence

of misspecification.

7The Portugese and Spanish inflation series are also the two series with the highest sample means

and standard deviations.
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Table 5.2: ARFIMA-FIGARCH models 1962:01–2004:01.

Belgium Finland France Germany Italy

µ̂ 0.282 0.125 0.314 0.254 0.186

(1.984) (1.258) (1.440) (2.510) (1.186)

d̂m 0.214 0.189 0.305 0.203 0.353

(3.481) (6.169) (6.712) (5.049) (4.124)

ϕ̂12 0.249 0.283 0.212 0.376 0.300

(4.988) (4.071) (3.415) (7.914) (6.769)

ϕ̂24 0.092 0.156 0.185 0.253 0.191

(1.882) (2.700) (4.064) (4.925) (4.646)

ω̂ 0.013 0.038 0.021 0.014 0.001

(2.013) (1.893) (1.873) (2.454) (0.517)

d̂v 0.330 0.209 0.130 0.269 0.529

(2.311) (4.810) (1.678) (2.077) (3.371)

Q12 15.65 8.74 13.94 13.78 21.26

[0.21] [0.72] [0.30] [0.31] [0.05]

Q2
12 10.54 5.28 12.03 5.07 14.27

[0.57] [0.95] [0.44] [0.96] [0.28]

Notes: For each of the ten inflation series, Table 5.2 reports QML parameter

estimates for the ARFIMA-FIGARCH model. The numbers in parentheses

are t-statistics. Q12 and Q2
12 are the 12-th order Ljung-Box tests for serial

correlation in the standardized and squared standardized residuals respectively.

The numbers in brackets are p values. The ϕ6 and ϕ9 coefficients are significant

only in Belgium and France. The φ coefficient is significant only in Belgium:

φ̂ = −0.280 (−1.933).
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ARFIMA-FIGARCH models (continued).

Netherlands Portugal Spain Sweden UK

µ̂ 0.293 0.163 0.361 0.413 0.339

(1.932) (1.050) (1.836) (2.885) (0.831)

d̂m 0.203 0.141 0.181 0.185 0.340

(4.093) (3.413) (3.185) (4.202) (4.414)

ϕ̂12 0.507 0.389 0.334 0.261 0.401

(6.584) (7.578) (5.027) (4.547) (7.471)

ϕ̂24 0.173 0.180 0.263 0.216 0.330

(3.545) (3.681) (4.485) (3.713) (6.310)

ω̂ 0.021 0.002 0.003 0.106 0.019

(1.788) (0.420) (1.702) (1.939) (1.666)

d̂v 0.195 0.874 0.866 0.133 0.457

(3.685) (10.82) (5.854) (1.760) (4.056)

Q12 16.24 17.93 20.01 15.92 14.36

[0.18] [0.12] [0.07] [0.19] [0.28]

Q2
12 14.55 6.04 9.66 18.74 13.29

[0.27] [0.91] [0.65] [0.09] [0.35]

Notes: As in Table 5.2. For Italy, Portugal and Spain we estimate a β of 0.266

(1.010), 0.772 (9.878) and 0.724 (6.129) respectively.

To test for the persistence of the conditional heteroscedasticity models, we examine

the likelihood ratio (LR) tests and the Wald (W ) statistics for the linear constraints

dm = dv = 0 (ARMA-GARCH model). As seen in Table 5.3 the LR tests and W statis-

tics clearly reject the ARMA-GARCH null hypotheses against the ARFIMA-FIGARCH

model for all ten inflation series. Thus, purely from the perspective of searching for a

model that best describes the degree of persistence in both the mean and the variance of

the inflation series, the ARFIMA-FIGARCH model appears to be the most satisfactory
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Table 5.3: Likelihood Ratio and Wald test statistics.

Be Fi Fr Ge It

LR 16.95 47.73 39.64 42.88 113.88

[0.00] [0.00] [0.00] [0.00] [0.00]

W 6.72 29.92 29.12 12.93 9.10

[0.03] [0.00] [0.00] [0.00] [0.01]

Ne Po Sp Sw UK

LR 58.22 18.62 17.69 8.03 33.98

[0.00] [0.00] [0.00] [0.02] [0.00]

W 12.31 71.22 19.35 8.89 15.52

[0.00] [0.00] [0.00] [0.01] [0.00]

Notes: The rows denoted by LR report the value of the following likelihood

ratio test: LR = 2 · [MLu−MLr], where MLu and MLr denote the maximum

log-likelihood values of the unrestricted (ARFIMA-FIGARCH) and restricted

(ARMA-GARCH) models respectively. The rows denoted by W report the

corresponding Wald statistics. The numbers in brackets are p-values. Be:

Belgium, Fi: Finland Fr: France, Ge: Germany, It: Italy, Ne: Netherlands, Po:

Portugal, Sp: Spain, Sw: Sweden.

representation.

Following the work of Grier and Perry (1998) among others, the LR test can be used

for model selection. Alternatively, the AIC, SIC and Hannan-Quinn or Shibata infor-

mation criteria (HQIC, SHIC respectively) can be applied to rank the various ARMA-

GARCH type models. These model selection criteria check the robustness of the LR and

W testing results discussed above.8 According to the four information criteria, in all ten

8The analysis in Caporin (2003) focuses on the identification problem of FIGARCH models. Caporin

performs a detailed Monte-Carlo simulation study and shows that the four information criteria can

clearly distinguish between long and short memory data generating processes. Finally, Caporin’s results

show that when LR tests are applied to time series for which the true data generating process is
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cases the optimal GARCH type model is the ARFIMA-FIGARCH.9 Hence, the model

selection criteria are in accordance with the LR and W testing results. Furthermore, we

should also mention that although the estimated dv parameter for Portugal and Spain

is not significantly different from unity, it appears that the volatility dynamics in these

two countries are better modelled by the fractional differencing parameter since both

the LR and W statistics (not reported) clearly reject the ‘IGARCH’ hypothesis against

the FIGARCH model. In addition, the information criteria favor the FIGARCH model

over the IGARCH model.

Finally, we test for the similarity of the optimal mean fractional differencing param-

eters estimated for each of the ten inflation series using a pairwise Wald test:

Wm =
(d̂m,1 − d̂m,2)

2

(sem,1)2 + (sem,2)2
,

where d̂m,i, (i = 1, 2) is the mean fractional differencing parameter from the ARFIMA-

FIGARCH model estimated for the inflation series for country i and sem,i is the standard

error associated with the estimated model for country i. The above W statistic tests

whether the mean fractional differencing parameters of the two countries are equal

(d̂m,1 = d̂m,2), and is distributed as χ2
(1). In the majority of the cases the results (not

reported) of this pairwise testing procedure provide support for the null hypothesis that

the estimated fractional parameters are not significantly different from one another.10

FIGARCH with a dv parameter being close to one, the LR test has no power to distinguish between

the fractionally integrated and the IGARCH model.
9We do not report the AIC, SIC, HQIC or SHIC values for space considerations.

10It should be noted that the mean fractional differencing parameters are related to the other pa-

rameters in the ARFIMA-FIGARCH model. In particular, the information matrix between the AR

parameters and the fractional parameter is not block diagonal. Hence, comparison of estimated dm

parameters, specially between countries with different model specifications, should be taken with a

pinch of salt.
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5.5.3 Granger-Causality Tests

In this section we report results of Granger-causality tests to provide some statistical

evidence on the nature of the relationship between nominal uncertainty and macroe-

conomic performance. Tsay and Chung (2000) in their analysis of spurious regression

with independent, fractionally integrated processes find that in bivariate regressions no

matter whether the dependent variable and the regressor are stationary or not, as long

as their fractional orders of integration sum up to a value greater than 0.5, the t ratios

become divergent. Recall that in five countries (Belgium, Italy, Portugal, Spain and the

UK) the estimated sum of the two long memory parameters (dm + dv) is greater than

0.5.

Consequently, we utilize the methodology developed by Toda and Yamamoto (1995)

to test for causality between nominal uncertainty and either inflation or output growth,

which leads to a χ2 distributed test statistic despite any possible nonstationarity or

cointegration between the series.11 The test is performed in two steps. In the first step,

the optimal lag length (k) of the system is determined by utilizing the AIC and SIC. In

the second step a VAR of order k∗ = k + dmax is estimated (where dmax is the maximal

(integer) order of integration suspected to occur in the system) and a modified Wald

(MW ) test is applied to the first k VAR coefficient matrices to make Granger-causal

inference. This MW test statistic has an asymptotic χ2 distribution with k degrees of

freedom. Since inflation and its uncertainty are fractionally integrated with dm, dv < 1

we set dmax = 1 and estimate VAR models with k∗ = k + 1 lags.12 The optimal lag

length turned out to be either 4, 8 or 12 for all countries. To ensure that our results are

11Note, that this procedure also avoids the problem of unbalanced regression, which could occur

in regressions involving the I(0) output series and the near-integrated conditional variance series of

Portugal and Spain.
12Of course, the Toda and Yamamoto (1995) procedure is inefficient and suffers some loss of power

since one intentionally over-fits the model. However, if – as in our case – the VAR system has only

two variables and long lag length, the inefficiency caused by adding only one more lag is expected to

be relatively small.
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not sensitive to the choice of the lag length we report in Table 5.4 for all ten countries

the MW tests using 4, 8 and 12 lags, as well as the sign of the sums of lagged coefficients

in case of significance.

Panel A reports results on the impact of changes in inflation on its uncertainty. We

apply the MW tests and use the Newey-West heteroscedasticity and autocorrelation

consistent standard errors. Statistically significant effects are present for all countries.

There is strong evidence that inflation affects its uncertainty positively, as predicted by

Friedman (1977) and Ball (1992).

We then perform Granger-causality tests in order to examine the causal effect of

nominal uncertainty on macroeconomic performance. The tests are performed under

the assumption that the conditional variances follow GARCH-type processes.13 Panel B

reports the results of the causality tests where causality runs from nominal uncertainty

to the rate of inflation. This panel shows a significant positive effect of uncertainty on

inflation for three out of the ten countries. The evidence is strong for France and Spain

and weaker for Portugal, where it applies for only one of the chosen lags. The results

from these three countries support the Cukierman-Meltzer hypothesis that Grier and

Perry (1998) label as the ‘opportunistic Fed’. Increases in nominal uncertainty raise

the optimal average inflation by increasing the incentive for the policy-maker to create

inflation surprises. For Sweden, we find strong evidence for a negative effect of nominal

uncertainty on inflation, which along with the growth effect of nominal uncertainty

squares with Holland’s stabilization hypothesis. In other words, this result suggests

13In the presence of conditional heteroskedasticity Vilasuso (2001) investigates the reliability of

causality tests based on least squares. He demonstrates that when conditional heteroskedasticity is

ignored, least squares causality tests exhibit considerable size distortion if the conditional variances are

correlated. In addition, inference based on a heteroskedasticity and autocorrelation consistent covari-

ance matrix constructed under the least squares framework offers only slight improvement. Therefore,

he suggests that causality tests be carried out in the context of an empirical specification that models

both the conditional means and conditional variances. However, if the conditional variances are unre-

lated, then there is only slight size distortion associated with least-squares tests, and the inconsistency

of the least squares standard errors is unlikely to be problematic.
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that the ‘stabilizing Fed’ notion is plausible. Increased inflation raises uncertainty, which

creates real welfare losses and then leads to monetary tightening to lower inflation and

thus also uncertainty (see Grier and Perry, 1998). For Finland there is evidence for

Holland’s argument at lag 8 only. We also obtain mixed evidence for Germany, the

Netherlands and the UK. In particular, at eight lags uncertainty has a positive impact

on inflation, whereas the value of the MW test statistic and the sign of the sum of

lagged coefficients at 12 lags (optimal lag length) implies a negative relationship. We

view this as support for Holland’s stabilization hypothesis. Since monetary policy takes

time to materialize, it is not surprising that a negative effect is found at 12 lags, but not

at 4 or 8 lags. A time horizon of 3 to 4 quarters is what one would usually expect for

monetary policy to effect the economy. However, neither of the two theories is supported

in Belgium and Italy, where inflation is independent from changes in its uncertainty.

Thus, increased uncertainty significantly affects future inflation in most of the countries

in the sample, but not all in the same manner.

The Granger-causality test results of uncertainty on real growth are given in Panel C.

As we show above high-inflation countries are also likely to experience highly volatile

inflation rates. If only uncertainty is included in the estimated regression equations,

it is impossible to determine whether it is the inflation rate or its uncertainty that is

affecting output growth. Hence, in order to control for possible effects of uncertainty

on growth that take place via changes in inflation Panel C reports the MW statistics

when the regressions include in addition lagged inflation rates. Nominal uncertainty has

a mixed impact on output growth. Friedman’s hypothesis regarding the negative real

effects of uncertainty receives support in five out of the ten countries. The evidence is

strong in Belgium, Sweden and the UK, mild in Italy, and weaker in Germany where

it applies for only one of the chosen lags. In contrast, in the other five countries we

find that uncertainty has a positive impact on real growth, supporting the Dotsey-Sarte

hypothesis. The evidence is strong in Finland, France and the Netherlands, and mild

in Portugal and Spain. The fact that many other factors are likely to be related to

output growth-either causally or because both are influenced by a third factor makes it
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more difficult to gauge the significance and magnitude of the impact of uncertainty on

growth. Therefore, one should be wary of putting too much faith in the uncertainty-

growth relationship. But at the broadest level, the available evidence supports the

Friedman hypothesis in some countries and is in favor of the Dotsey-Sarte hypothesis

for other countries.

Moreover, note that for France, Portugal and Spain we find evidence for a positive

effect of nominal uncertainty on inflation, which along with the output effect of inflation

uncertainty squares with the Cukierman-Meltzer (‘opportunistic’) hypothesis. In other

words, the central banks dislike inflation but value the higher employment that results

from surprise inflation. Therefore, increases in nominal uncertainty raise the average in-

flation rate by increasing the incentive for the policy-makers to create inflation surprises

(Grier and Perry, 1998).

The three figures in Appendix 5.8 plot for Germany, the Netherlands and the UK (i)

the time profiles of inflation and its uncertainty due to shocks in nominal uncertainty and

inflation respectively and (ii) the time profile of output growth due to shocks in nominal

uncertainty.14 The maximum effect of inflation on its uncertainty takes place after

three (two) months for the Netherlands (Germany and the UK). The negative impact

of nominal uncertainty on output growth reaches its peak after nine and twelve months

in Germany and the UK respectively. In contrast, in the Netherlands the maximum

(positive) effect takes place after five months. Finally, the sign of the effect of nominal

uncertainty on inflation varies considerably over time. In all three countries the negative

impact reaches its peak after twelve months. In Germany and the Netherlands the effect

also seems much smaller in size than the effect of inflation uncertainty on real growth.

To summarize, the results in this section confirm that inflation affects its uncertainty

positively. Uncertainty surrounding future inflation appears to have a mixed impact on

both inflation and output growth.

14Generalized impulse response functions are calculated as suggested in Pesaran and Shin (1998).

We do not report Figures for the other countries for space considerations.
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5.5.4 Robustness

Monte-Carlo Study

To check the sensitivity of our results to the orders of integration of inflation (dm) and its

uncertainty (dv), we are also using the inflation series filtered by (1−L)d̂m and the series

of the estimated conditional variances filtered by (1−L)d̂v . We carry out the conventional

Granger-causality tests using both sets of data, i.e., our original set of data and the one

with the two filtered series. If significant effects are obtained for the original series, but

not when applying the Toda and Yamamoto (1995) procedure (or using the appropriately

differenced series), this could be viewed as evidence for spurious regression in the simple

Granger-causality tests. The results (not reported) are very similar to those obtained

using the methodology developed in Toda and Yamamoto (1995).15 In particular, when

the original data are used the primary difference lies in the stronger evidence on the

Cukierman-Meltzer hypothesis for Portugal at 4 lags. The main difference when the

filtered series are used is that now no evidence appears for the Dotsey-Sarte hypothesis

in Spain.

Since the results from the simple Granger-causality tests and those obtained by the

Toda and Yamamoto (1995) procedure are basically identical, it seems that hardly any

spurious effect due to the fractionally integrated variables occurs in our setting. At

first sight this result seems to be at odds with the findings of Tsay and Chung (2000)

who have shown that regressions involving fractionally integrated regressors can lead to

spurious results. In particular, analyzing the bivariate regression of yt on a constant and

xt where yt ∼ I(dy) and xt ∼ I(dx) they show that the corresponding t-statistic will be

divergent provided dy+ dx > 0.5.

We illustrate that their result does not apply to our setting in a small Monte-Carlo

study by simulating the critical values of causality tests which are performed for two

15Since we also apply the Toda and Yamamoto (1995) procedure to inflation series for which d̂m+d̂v <

0.5, we should mention that in all these cases the results from the two methodologies were qualitatively

identical.
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independent series having the same orders of fractional integration as the estimated

ones for the UK and Portugal.16 Recall that both countries satisfy d̂m + d̂v > 0.5. The

simulation is performed in the following way:

Step 1. We generate two independent series

π̃t = (1− L)−d̂m ε̃π
t =

500∑
j=0

ψπ
j ε̃π

t−j t = 1, . . . , 504,

h̃t = (1− L)−d̂v ε̃h
t =

500∑
j=0

ψh
j ε̃h

t−j t = 1, . . . , 504,

where d̂m and d̂v are the estimated orders of fractional integration and ε̃π
t and ε̃h

t are
iid∼ N (0, 1). Hence, π̃t and h̃t are integrated of order d̂m and d̂v, respectively, and satisfy

the assumptions made in Tsay and Chung (2000).

Step 2. For the generated sample {π̃t, h̃t} we run the following regressions:

π̃t = β0 + βh
1 h̃t + ηπ

t , (5.3)

π̃t = β0 +
k∑

j=1

βh
j h̃t−j +

k∑
j=1

βπ
j π̃t−j + ηh

t for k = 4, 8, 12, (5.4)

and calculate the corresponding value of the test statistic (H0 : βh
j = 0, j = 1, . . . , k).

Equation (5.3) corresponds to the setting described in Tsay and Chung (2000), while

equation (5.4) is our setting from Table 5.4, panel B. Repeating step 1 and 2 for M =

10000 times we approximate the distribution of the test statistic. From the simulated

distribution we calculate the 5% and 1% critical values.

The theoretical results derived in Tsay and Chung (2000) suggest that spurious

regression occurs in equation (5.3), but what about equation (5.4) ? The simulation

results presented in Table 5.5 show that spurious regression is a much more severe

problem in the bivariate case considered by Tsay and Chung (2000) than in regressions

16Note, that the intention of the simulation is to show that the results of Tsay and Chung (2000) do

not carry over to our setting and not to obtain the correct critical values for the Granger-causality tests

using the original series. For this one would have to generate two series according to the equations (5.1)

and (5.2) by using the parameter estimates from Table 5.2 and drawing innovations from the estimated

standardized residuals.
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including lagged dependent and independent variables with 4 or more lags. In the

bivariate case the 5% critical value according to the F -distribution would be 3.86, while

the simulated critical values are 17.91 (d̂m = 0.34, d̂v = 0.46) and 10.91 (d̂m = 0.14, d̂v =

0.87). Hence, relying on the F critical value in the bivariate regression would lead

to rejection of the null hypothesis of no Granger-causality in by far too many cases.

However, the more lags are included, the less different are the critical values of the F -

distribution and the simulated distribution. In particular, the 5% critical value for 12

lags is 1.77 for the F -distribution, while the simulated ones are 1.82 (d̂m = 0.34, d̂v =

0.46) and 1.83 (d̂m = 0.14, d̂v = 0.87). Since the difference between the critical values

for the F and the simulated distributions are very small in our setting the influence

of spurious regression does not seem to play an important role. This explains why

the simple Granger-causality results are very similar to those obtained by using the

Toda-Yamamoto methodology.

Table 5.5: Simulated critical values.

dm = 0, dv = 0 d̂m = 0.34, d̂v = 0.46 d̂m = 0.14, d̂v = 0.87

F (k, 504− k) F ? F ?

5% 1% 5% 1% 5% 1%

Bivariate 3.86 6.69 17.91 34.42 10.91 18.46

k = 4 2.39 3.35 2.73 3.75 2.81 3.85

k = 8 1.96 2.54 2.05 2.65 2.10 2.71

k = 12 1.77 2.22 1.82 2.26 1.83 2.30

Notes: F ? is the simulated distribution of the test-statistic using M = 10000 generated

samples. The figures are 5% and 1% critical values. k denotes the lag length in the Granger-

causality test.
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Simultaneous Approach

This section reports the estimation results of an ARFIMA-FIGARCH-in-mean model

with lagged inflation included in the variance specification (the so called level effect).

We estimate a system of equations that allows only the current value of the conditional

variance to affect average inflation and up to the fifth lag of average inflation to influence

the conditional variance. In other words, the model includes the mean equation which

adds the variance of inflation (δht) to the expressions reported in Table 5.2, and the

variance equation augmented by the term γiπt−i. In the expressions for the conditional

variances reported in Table 5.2, various lags of inflation (from 1 to 5) were considered

with the best model chosen on the basis of the minimum value of the AIC. Table 5.6

reports only the two estimated parameters of interest. In four out of the ten countries

Table 5.6: ARFIMA-FIGARCH-in-mean-level models.

Belgium Finland France Germany Italy

γ̂i – 0.097 [4] 0.028 [5] – 0.003 [2]

(3.066) (1.811) (1.830)

δ̂ – 0.143 -1.203 – 0.299

(0.689) (1.405) (1.017)

Netherlands Portugal Spain Sweden UK

γ̂i 0.058 [4] – – 0.153 [4] 0.048 [5]

(3.825) (6.160) (2.868)

δ̂ 0.015 – – -0.901 -0.097

(0.048) (3.982) (0.514)

Notes: For each of the ten inflation series Table 5.6 reports QML estimates

of the in-mean and level parameters for the ARFIMA-FIGARCH-in-mean-

level model. The numbers in parentheses are absolute t-statistics. A –

indicates that there was no convergence. The numbers in [·] indicate the

lag of inflation in the variance equation.
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(Belgium, Germany, Portugal and Spain) there is no convergence when we employ the

model with the simultaneous feedback. In all other six countries we find a positive

association between lagged inflation and nominal uncertainty similar to that found with

the two-step approach. However, another disadvantage of the simultaneous methodology

is that in some cases the estimates of the conditional variances are negative.

In Finland, France, Italy and the UK the in-mean coefficient is insignificant, a result

which is identical to that of the causality tests at lag 4. Similarly, in Sweden, as with the

two-step approach, we find evidence for the Holland hypothesis. Moreover, in the four

countries where there is no convergence, we estimate the model without the level effect

(γi = 0) and the results (not reported) square with the findings of the two-step strategy

at lag 4. That is, we do not find a significant effect of uncertainty on inflation. Hence,

we generally find the two approaches to be in agreement. The only exception is the case

of the Netherlands, where we estimate an insignificant δ, but find significant evidence

for the Cukierman-Meltzer hypothesis at lag 4 in the two-step approach. However, it

should be re-emphasized that such a result is plausible, since any relationship where

uncertainty influences average inflation takes time to materialize and cannot be fairly

tested in a model that restricts the effect to being contemporaneous.

European Monetary System

Hyung and Franses (2004) point out that inflation rates may perhaps show long memory

because of the presence of neglected occasional breaks in the series rather than being

really I(d). Our sample period includes various exchange rate and monetary policy

regimes. For example, the Bundesbank set a monetary target in 1975, after the break

up of Bretton Woods. Originally, a fixed money target was announced but after two

years this was changed to a fixed range. Like many other central banks, the Bundesbank

translated its main policy goals (e.g., controlling inflation) into near term interest rate

objectives. It in turn supplied bank reserves to meet these objectives. After 1985 the

Bundesbank supplied banks with reserves mainly via repurchase agreements. Reunifi-

cation of course introduced new complexities for monetary management. The British
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also introduced money targeting in the mid-1970s in response to mounting inflation

concerns. Although inflation fell subsequent to the 1973 oil price shock, beginning in

1978 prices in the United Kingdom began to accelerate again, with inflation ultimately

reaching nearly 20% by 1980. The perception of an inflationary crisis led to a change

in strategy in 1979. A comparison with Germany does not portray British monetary

policy in a favorable light. Not only has British inflation had higher mean and greater

volatility, but the unemployment rate has also been high and variable. However, in the

1980s British inflation performance did improve considerably, remaining well below the

1970s level and becoming less variable.

Overall, the four decades under investigation are characterized by persistently high

inflation, as was the case from the late 1960s through the early 1980s, followed by the

relatively shock-free 1990s. Since the early 1980s, there has been a tremendous improve-

ment in macroeconomic performance in European countries. This was the case for two

reasons. First, the global reduction in inflationary pressures. Second, some countries

joined the European Monetary System (EMS) in 1979 in order to borrow Germany’s

anti-inflation reputation. This is less so, for the Netherlands, which has traditionally

aligned its monetary policy stance to Germany’s. Furthermore, both inflation and out-

put growth have become more stable. In what follows we examine whether the transition

from the high inflation of the sixties and seventies to an era of low inflation during the

1980s and 1990s affects the dynamic interaction between nominal uncertainty and either

inflation or output growth by examining the period that starts in 1980 and continues

till to the end of the sample. The choice of this period is also based on the widely

accepted notion that with the introduction of the exchange rate mechanism (ERM) in

March 1979 monetary stability was achieved in Europe.

Table 5.7 presents QML estimates of dm and dv. For all countries the estimated long

memory conditional mean parameter is in the range 0.134 ≤ d̂m ≤ 0.379. The value

of the coefficient for the Netherlands (0.134) is markedly lower than the corresponding

value for Spain (0.379). However, although the estimated value of dm for the Netherlands

is relatively small it is significantly different from zero. The estimation of a FIGARCH
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model (not reported) for the Netherlands realized an estimated value of dv close to

and not significantly different from zero. In other words, the conditional variance of

this inflation series is characterized by a stable GARCH behavior. For the other nine

countries, the values of dv vary from 0.203 (Sweden) to 0.339 (Germany).

It is noteworthy that for the majority of the countries the estimates of dm and dv

are similar to the ones for the entire period. Moreover, in Portugal and Spain (the two

countries which were characterized by a near integrated GARCH behavior) the estimated

values of dv (dm) are lower (higher) than the corresponding values for the whole sample.

Thus, for these two inflation series there appears to be a trade off between the degree of

persistence in the first two conditional moments. In sharp contrast, for Belgium, Italy

and the UK which were characterized by the presence of quite strong long memory in

the inflation uncertainty, the estimates of both dm and dv are lower than the ones for

the 1962:01–2004:01 period.

Table 5.7: ARFIMA-FIGARCH models 1980:01–2004:01.

Belgium Finland France Germany Italy

d̂m 0.146 0.136 0.190 0.209 0.289

(2.102) (2.973) (2.333) (2.571) (4.718)

d̂v 0.216 0.233 0.208 0.339 0.277

(2.309) (2.166) (2.119) (1.927) (3.179)

Netherlands Portugal Spain Sweden UK

d̂m 0.134 0.218 0.379 0.160 0.275

(2.407) (1.983) (5.257) (2.122) (2.339)

d̂v - 0.221 0.313 0.203 0.273

(4.256) (4.951) (1.836) (2.132)

Notes: For each of the ten inflation series Table 5.7 reports QML esti-

mates of the two long memory parameters for the ARFIMA-(FI)GARCH

model. The numbers in parentheses are t-statistics.
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Generally speaking, in the majority of the cases the estimated values of dm and dv are

lower than the corresponding values for the entire sample. This result is in agreement

with the conclusion of Caporale and Gil-Alana (2003). They investigate the stochastic

behavior of the inflation series in three hyperinflation countries. They test for fractional

integration and find that when allowing for structural breaks the order of integration

of the series decreases considerably. However, the parameter estimates still support the

idea that dual long memory effects are present in the inflation process for nine out of

the ten European countries. This result is consistent with the findings of a previous

study by Bos et al. (1999). They find that the apparent long memory in monthly G7

inflation rates is quite resistant to mean shifts.

Table 5.8 reports the results of causality between inflation, nominal uncertainty and

real growth for the various ARFIMA-FIGARCH models for the post-1979 period.17

Panel A considers Granger-causality from inflation to uncertainty about inflation.

For this subperiod we find evidence that increased inflation raises its uncertainty in nine

countries. For the Netherlands inflation has no impact on its uncertainty. Moreover,

in this low-inflation period the evidence is mild(weak) for France(Germany) where it

applies for two(one) of the chosen lags. Hence, the picture for the post-1979 period is

similar to that of the entire period.

Panel B reports the results of the causality tests where causality runs from the

nominal uncertainty to inflation. The findings for this subperiod provide support for

the Cukierman-Meltzer hypothesis in some countries and for the Holland hypothesis in

other countries. For three countries, uncertainty about inflation has a positive impact

on inflation. Strong evidence in favour of the Cukierman-Meltzer hypothesis applies for

Portugal and Spain. Relatively weak evidence applies for France (12 lags). Holland’s hy-

pothesis receives support in five countries, namely, in Germany, Italy, the Netherlands,

the UK (optimal lag length) and Sweden (for all lags). None of the two theories is

17Table 5.8 reports (in case of significance) only the sign of the sum of lagged coefficients for the

optimal lag length. The figures of the MW statistics for the three different lags (4, 8 and 12) and the

corresponding p-values are omitted for reasons of brevity.
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supported in Belgium and Finland where inflation is independent from changes in nom-

inal uncertainty. The results are qualitatively similar to the analogous results from the

entire sample. However, in Italy a negative effect begins to exist after 1979, whereas in

France the evidence for the Cukierman-Meltzer hypothesis is weaker for the low-inflation

period.

For completeness Panel C reports the results of causality from nominal uncertainty

to output growth. For the post-1979 period, as for the entire sample period, we find ev-

idence supporting the negative welfare effects of nominal uncertainty in Germany, Italy,

Sweden and the UK. For both periods Dotsey-Sarte’s hypothesis regarding the positive

growth effects of uncertainty receives support in Finland, the Netherlands, Portugal and

Spain. In the post-1979 period the evidence is weaker for the Netherlands and Portugal

where it applies for only one of the chosen lags. In France the effect is positive during

the entire period but turns to negative in the post-1979 period. In Belgium the effect is

negative in the period 1965-2004 but it disappears in the low-inflation period.

Table 5.8: Granger-causality tests 1980:01–2004:01.

Be Fi Fr Ge It Ne Po Sp Sw UK

Panel A: + + + + + x + + + +

Panel B: x x + – – – + + – –

Panel C: x + – – – + + + – –

Notes: The countries are as in Table 5.3. Panels A, B and C are as in Table 5.8. A

+(–) indicates that the sign of the effect is positive (negative). An x indicates that

the effect is insignificant.

Comparing the results of the post-1979 period with those of the entire period, we note

that for the majority of the countries the three effects for the low-inflation period are

very similar to those for the entire period. For those countries where we found changes

in the effects either the impact of nominal uncertainty on inflation or output growth

became less significant which is not surprising since the inflation series are less volatile
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in the low-inflation period or are more in line with Holland’s stabilization hypothesis.

5.6 Discussion

5.6.1 European Monetary Policy

The link between the inflation rate and its uncertainty acquires significant importance

for the member countries of the Euro zone. The evidence that in all ten countries higher

inflation causes greater uncertainty which then has negative output effects in five out

of the ten countries strengthens the case for the choice of price stability as one of the

objectives of monetary policy. Moreover, since the effects of nominal uncertainty on

economic growth differ across the Euro zone, a common monetary policy that results in

similar inflation rates across countries will have asymmetric real effects, provided these

effects work via a change in nominal uncertainty. In other words, a reduction in inflation

arising from a contractionary monetary policy applied by the ECB will increase growth

in Belgium, Germany, Italy, Sweden, and the UK (where the Friedman hypothesis holds)

but reduce it in Finland, France, the Netherlands, Portugal and Spain, where there is

a positive effect of uncertainty. Therefore, the lack of uniform evidence supporting the

second part of the Friedman hypothesis across the Euro zone countries has important

policy implications as it makes a common monetary policy a less effective stabilization

policy tool. It is noteworthy that evidence for the Dotsey-Sarte hypothesis obtains for

the majority of the countries in the group which is characterized by a mild long memory

in the conditional variance, and also for the two countries which exhibit near integrated

GARCH behavior. In sharp contrast, evidence for the Friedman hypothesis applies in

the three countries which are characterized by the presence of quite strong long memory

GARCH behavior.

Moreover, less robust evidence is found regarding the direction of the impact of a

change in nominal uncertainty on inflation. Countries like France, Portugal and Spain,

for which we find evidence in favor of the Cukierman-Meltzer hypothesis, would be ex-
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pected to gain significantly from EMU as the surrender of their monetary policy to the

ECB would eliminate the policymakers’ incentive to create inflation surprises. When

Grier and Perry (1998) looked for institutional reasons why the inflation response to

increased uncertainty varies across countries, they noted that the countries associated

with an opportunistic response have much lower central bank independence ratings than

the countries associated with a stabilizing response. We have used measures of central

bank independence provided by Alesina and Summers (1993), which constructed a 1-

4 (maximum independence) scale of central bank independence. Germany is rated as

highly independent, with a score of 4. Netherlands also has a relatively independent

central bank with a score of 2.5. In both countries increased inflation uncertainty lowers

inflation as the sign at lag 12 (optimal lag length) is negative. Thus, one can argue that

the most independent central banks are in countries where inflation falls in response to

increased uncertainty. France has a relatively dependent central bank, with a score of

2. On the low side of the independence spectrum, Spain’s rating is only 1. A lack of in-

dependence does seem to correspond to ‘opportunistic behavior’ because both countries

show a highly significant positive effect of uncertainty on inflation. It is worth noting

that evidence for the Cukierman-Meltzer hypothesis obtains for the two countries which

exhibit near integrated GARCH behavior. In sharp contrast, evidence for the Holland

hypothesis obtains for the majority of the countries which are characterized by the pres-

ence of mild long memory in nominal uncertainty. Finally, inflation is independent from

changes in its uncertainty for two countries which are characterized by the presence of

quite strong long memory in the conditional variance of the inflation rate.

5.6.2 Possible Extensions

The main goal of this chapter has been to investigate the link between nominal un-

certainty and macroeconomic performance, and to estimate the two main parameters

driving the degree of their persistence, for ten European countries. In that respect we

achieved our goal. As Hassler and Wolters (1995) point out, a likely explanation of
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the significant persistence in the inflation rate series is the aggregation argument, which

states that persistence can arise from aggregation of constituent processes, each of which

has short memory. Alternatively, Baum et al. (1999) conjecture that the long memory

property of monetary aggregates will be transmitted to inflation, given the dependence

of long-run inflation on the growth rate of money. However, one might also ask why

it is necessary to allow for long memory in the conditional variance of inflation. To

answer this we must enquire into the possible theoretical sources of heteroscedasticity

in the inflation shocks. It will be very useful to provide a theoretical rationale for the

dynamics of inflation. Here the choice of the FIGARCH model is justified solely on

empirical grounds.

There is substantial evidence that European inflation rates have long memory, a

feature which can be captured by a fractional integrated I(d) model. Hyung and Franses

(2002) put forward a joint model which incorporates both long memory and occasional

level shifts. Overall, however, they find that the dominant feature in 23 US inflation

rates is long memory and that the level shifts are less important. This result suggests

several avenues for further research. One promising avenue would be to adapt the

ARFIMA-FIGARCH model in a way that incorporates occasional level shifts in both

the conditional mean and the conditional variance.

Bos et al. (2002) have emphasized that the introduction of two macroeconomic lead-

ing indicators namely, the unemployment rate and the short term interest rate, in the

ARFIMA model lower the estimate of the fractional parameter and thus account partly

for the persistence in inflation. More importantly, they argue that the multi-step fore-

cast intervals of the ARFIMAX model are more realistic than of the ARIMAX model.18

In the context of our analysis, incorporating macroeconomic variables either in the

ARFIMA or in the FIGARCH specification or in both could be at work. We look

forward to sorting this out in future work.

Finally, Morana (2002) suggests that long memory in inflation is due to the out-

put growth process. His model implies that inflation and output growth must share a

18ARFIMAX denotes an ARFIMA model with explanatory variables in the mean equation.
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common long memory component. Using a bivariate ARFIMA-FIGARCH model, which

allows the measurement of uncertainty about inflation and output growth by the respec-

tive conditional variances, one can test for the empirical relevance of several theories

that have been advanced on the relationship between inflation, output growth, real and

nominal uncertainty.

5.7 Conclusions

In this chapter we have used ARFIMA-FIGARCH models to generate the conditional

variance of inflation as a proxy of its uncertainty. We then performed Granger-causality

tests to examine the bidirectional relationship between the two variables. We provided

overwhelming evidence that increased inflation raises nominal uncertainty, confirming

the theoretical predictions made by Friedman. Uncertainty surrounding future inflation

appeared to have a mixed impact on inflation. The division of countries by how their

inflation rates respond to inflation uncertainty appears to be closely related to existing

rankings of central bank independence. We also found that increased nominal uncer-

tainty significantly affects output growth in the ten European countries but not all in

the same manner. The lack of uniform evidence supporting the second leg of the Fried-

man hypothesis across the Euro zone countries has important implications as it makes

a common monetary policy a less effective stabilization policy tool.

The results in this chapter highlight the importance of modeling long memory not

only in the conditional mean of inflation but in its conditional variance as well. We find

that in all the cases there is a need to consider the joint ARFIMA-FIGARCH model,

as in no case does one of its nested versions yield a better fit. Overall, these findings

suggest that much more attention needs to be paid to the consequences of dual long

memory when estimates of nominal uncertainty are used in applied research. In other

words, as our results indicate, estimates of uncertainty that ignore the effects of dual

long memory may seriously underestimate both the degree of persistence of uncertainty

and its consequences for the inflation-uncertainty hypothesis.
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Possible extensions could go in different directions. One could provide an enrichment

of the dual long memory model by allowing lagged values of the conditional variance to

affect the inflation. Finally, it is worth pointing to an important issue which we have

not addressed. The dual long memory model used in this chapter ignores the possibility

of structural instability caused by changing regimes. One could develop a dual long

memory Markov switching model that explains the changing time series behavior of

inflation in the post war era. This is undoubtedly a challenging yet worthwhile task.

5.8 Appendix

Impulse Response Functions

Figures 5.1 - 5.3 plot the effects of a one-time one-standard-deviation increase in inflation

on nominal uncertainty (top, left), in nominal uncertainty on inflation (top, right) and

in nominal uncertainty on output (bottom, middle) for Germany, the Netherlands and

the UK. The dotted lines indicate ± two standard deviation bands computed by the

asymptotic standard errors.

Figure 5.1: IRFs for Germany.
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Figure 5.2: IRFs for the Netherlands.

Figure 5.3: IRFs for the UK.
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GARCH-in-Mean Models with

Nonparametric Specifications





Chapter 6

A Specification Test for a Class of

GARCH-in-Mean Models

6.1 Introduction

Economic theory often predicts a relationship between the level of a macroeconomic or

financial variable and its second conditional moment. Typical examples are the relation

between risk and expected return, inflation and nominal uncertainty or output growth

and output uncertainty. In this chapter we consider an econometric specification for a

variable Yt of the form

E[Yt|Ft−1] = m(ht), (6.1)

where ht is the conditional variance of Yt, typically given by some GARCH-type equa-

tion, and Ft−1 represents the information available at t − 1. The function m(·) can

be considered as a risk premium. In certain cases economic theory directly implies a

particular parametric specification m = mγ with γ being a parameter vector. One of

the workhorses in financial econometrics, the GARCH-in-Mean (GARCH-M) model in-

troduced by Engle et al. (1987), is a primary example of such a specification, where mγ

is typically linear or logarithmic in the conditional variance. In this chapter we suggest

a test statistic for comparing the fit from such a parametric specification of the risk
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premium with some nonparametric fit of m(·) based on the integrated squared differ-

ence between the two curves, i.e. we provide a specification test for the appropriateness

of the particular functional form of the risk premium imposed by a certain parametric

GARCH-M specification. Since the conditional variance is unobservable such a nonpara-

metric fit is not readily available. We estimate the conditional variance by an iterative

procedure similar to that proposed by Linton and Perron (2003). The procedure starts

by estimating the parametric GARCH-M by maximum likelihood. From the parameter

estimates and the observed series we then create fitted conditional variances and regress

Yt on those estimates to obtain a nonparametric estimate of the risk premium. This

estimate is then used to update the parameters of the variance equation from which new

estimates of the conditional variance are obtained. The updated estimate of the condi-

tional variance is a function of a parametric and a nonparametric component. Again,

we update the estimate of the risk premium and so on until convergence of the mean

function is achieved. Our main result states that the test statistic has a normal limit

distribution under the null hypothesis. In particular, the limit distribution is indepen-

dent of the number of iterations used for estimating the conditional variance. Under

the alternative, the iterated estimate of the conditional variance approaches the true

unobserved conditional variance although the initial parametric model for the mean was

misspecified. Therefore, the test statistic based on the iterated estimate of the condi-

tional variance reveals superior power properties in comparison with the test based on

the initial estimate. Since the asymptotic distribution of the test statistic is approached

quite slowly as the sample size goes to infinity, we suggest a bootstrap algorithm from

which the critical values of the test statistic can be computed. Monte-Carlo simulations

show that the bootstrap distribution approximates the distribution of the test statistic

under the null hypothesis reasonably well in finite samples. Under the alternative, the

test statistic reveals good power properties.

The basic idea of comparing parametric and nonparametric regression fits for testing

the appropriateness of a particular parametric specification goes back to e.g. Härdle and

Mammen (1993) who concentrated on regressions involving independently and identi-
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cally distributed observations. The problem of testing for linearity in autoregressive

time series models has been considered by Hjellvik and Tjøstheim (1995), Hjellvik et

al. (1998) and Poggi and Portier (1997), while Kreiss et al. (2002) test for linearity

in a more general times series setting which is not necessarily autoregressive. In all

these studies the test statistic is based on the difference between a nonparametric and a

parametric regression fit, but in contrast to our study the dependent and independent

variable are observed directly. The contribution of this article is to deal with a situation

in which the regressor is unobservable and replaced by an appropriate estimate. We

show that under certain conditions the asymptotic results for the test statistic based

on the iteratively fitted conditional variance are the same as if the conditional variance

were observable. To achieve such results we have to base the test statistic on an over-

smoothed nonparametric estimator. Our results are of more general interest than only

in the context of GARCH-M models because they provide insight into the asymptotic

behavior of nonparametric estimators relying on generated regressors. The results in-

dicate in which situations the asymptotic distribution of the nonparametric estimator

based on the unobservable regressor and the generated regressor is the same. This was

discussed in a parametric context by Pagan (1984) and Pagan and Ullah (1988).

The GARCH-M was primarily motivated by Merton’s (1973a) Intertemporal Capi-

tal Asset Pricing Model (ICAPM) which suggests that the conditional expected excess

return on the stock market should vary positively with the conditional market variance.

To capture this “fundamental law of finance” Engle et al. (1987) proposed a specifi-

cation which assumes that mγ(ht) = µ + λg(ht), where ht is modelled as a GARCH

process.1 When µ = 0 and g(ht) = ht equation (6.1) reflects the exact prediction by

Merton (1973a): the conditional expected excess return on the market is proportional

to the conditional market variance.

Many attempts have been undertaken to test Merton’s (1973a) prediction by using

various formulations of the GARCH-M model. The somewhat disappointing result,

however, is that most empirical studies on the risk-return relation led to controversial

1More generally, the conditional mean can also be a function of lagged Yt’s and other covariates.
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findings, some of which indicate a positive relationship such as French et al. (1987),

Campbell and Hentschel (1992), Li (2003) or Guo and Neely (2006), some indicate

a negative relationship such as Glosten et al. (1993), Pagan and Hong (1990), Li et

al. (2005) or Guedhami and Sy (2005) while others do not find a significant relationship

at all such as Bodurtha and Mark (1991), Baillie and DeGenarro (1990) or Shin (2005).

The three specifications for g(ht) employed in the above mentioned studies were ei-

ther the conditional variance itself, the conditional standard deviation or the logarithm

of the conditional variance. All three specifications restrict the shape of m(·) severely.

In sharp contrast, Backus and Gregory (1993) using Mehra and Prescott’s (1985) dy-

namic exchange economy model show that the relation between the excess return and

its conditional variance can have virtually any shape: increasing, decreasing, flat, U-

shaped, inverse U-shaped or non-monotonic depending on both the preferences of the

representative agent and the probability structure across states. Similarly, Genotte

and Marsh (1993) constructed a general equilibrium model in which the relationship

m(ht) = λht + k(ht) holds, with k(·) depending on preferences and on the parameters

of the distribution of asset returns. The Merton (1973a) relationship with k(·) = 0 is

obtained only as a very special case, namely if the representative agent has logarithmic

utility.

We formulate our model such that under the null hypothesis the linear risk-return

relation holds while under the alternative a semiparametric model is specified which

only assumes the risk premium to be some smooth function. The alternative model

thereby allows for shapes of the risk premium motivated by the results of Backus and

Gregory (1993) and Genotte and Marsh (1993). In an empirical application we employ

monthly and daily excess return data on the CRSP value-weighted index and estimate

GARCH(1, 1)-M models for several periods. The results from these parametric models

are in line with previous studies, i.e. using monthly data we find a positive but in-

significant relation between the market excess return and its conditional variance, while

we find a highly significant and positive relation using daily data. We then estimate

the shape of the risk premium nonparametrically and apply our test procedure. The
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hypothesis of linearity cannot be rejected for almost all periods and data frequencies.

Hence, we find no empirical evidence against the parametric specification suggested by

Merton’s (1973a) ICAPM. This finding suggests that the previous controversial results

concerning the risk-return relation cannot be explained by misspecification of the risk

premium.

This chapter is organized as follows. Section 6.2 reviews the empirical literature

on testing the risk-return relationship by GARCH-M models. In Section 6.3 we first

introduce the semiparametric GARCH-M model and the iterative estimation procedure

and then motivate and state the test statistic and derive its asymptotic distribution.

Moreover, we explain how our model relates to the parametric GARCH-M and explain

the bootstrap procedure. Then we evaluate the empirical properties of the test in a

Monte-Carlo simulation study in Section 6.4. Section 6.5 illustrates the method by an

application to CRSP excess return data. Finally, we discuss several directions in which

our approach could be naturally extended in Section 6.6. Section 6.7 summarizes the

main conclusions. All proofs are deferred to the appendix.

6.2 Modelling the Risk-Return Relation

The static CAPM of Sharpe (1964) and Lintner (1965a,b) provides a formal framework

for answering a fundamental question in finance: how should the risk of an investment

affect its expected return? Merton’s (1973a) ICAPM extends the static CAPM to an

intertemporal setting with changing investment opportunities. While in the CAPM

investors exclusively care about the wealth their portfolio produces at the end of the

current period, in the ICAPM they are also concerned with the opportunities they will

have to consume or invest the payoff. Therefore, investors choosing a portfolio at time t

are concerned with how their wealth at time t+1 varies with future state variables such

as labor income, prices of consumption goods, inflation and so on. In this model the

equilibrium expected return on an asset depends not only on the conditional market risk

(systematic risk), but also on conditional intertemporal risks which are measured by the
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conditional market covariances with the state variables. For simplicity we assume that

there is only one state variable St. Further we assume that there exists a risk-averse

representative agent with indirect utility function U(Wt, St, t), where Wt denotes period t

wealth and St can be viewed as describing the state of the investment opportunity set.

Then the equilibrium relation for the market is given by

E(rM,t − rf,t|Ft−1) =

[
−UWW Wt

UW

]
Var(rM,t − rf,t|Ft−1)

+

[
−UWS

UW

]
Cov(rM,t − rf,t, St|Ft−1) (6.2)

where rM,t denotes the return on the market portfolio, rf,t the return on the risk-free

asset and subscripts of U denote partial derivatives with respect to Wt and St. In this

setting the conditional expected excess return on the market is linear in two components:

first in a risk component namely the conditional market variance and second in a hedge

component namely the conditional market covariance with the investment opportunities.

If we additionally assume that the representative agent obeys a constant relative risk

aversion utility function, it follows that λ ,
[
−UWW Wt

UW

]
is a positive constant equal to

the Arrow-Pratt measure of relative risk aversion. The coefficient λS ,
[
−UWS

UW

]
can be

interpreted as the price of intertemporal risk of the state variable. In this framework

the equilibrium expected excess return on the market can be approximated as

E(rM,t − rf,t|Ft−1) ≈ λ ·Var(rM,t − rf,t|Ft−1) (6.3)

either if the partial derivative of the representative agent’s utility with respect to wealth

is much larger than the partial derivative with respect to the state variable or if the vari-

ance of the change in wealth is much larger than the variance of the change in the state

variable (see Merton, 1980, p. 329). Finally, the ICAPM reduces to the Sharpe-Lintner

CAPM if the investment opportunity set is static or if investors exhibit logarithmic util-

ity. In both cases equation (6.3) holds exactly. Equation (6.3) is often referred to as a

conditional single-factor model, while equation (6.2) is labelled a conditional two-factor

model. Empirical researchers testing equation (6.3) have to make an assumption con-

cerning the intertemporal nature of the conditional variance of the market. The class
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of GARCH-M models provides a natural workhorse in which ht , Var(rM,t − rf,t|Ft−1)

is modelled as some type of GARCH equation. In the following we review some of the

results obtained by previews studies investigating the risk-return relation.

First, we discuss some of the studies relying purely on parametric GARCH-M type

models. French et al. (1987) estimate GARCH-M models on the daily excess returns of

the S&P composite portfolio for the period 1928 to 1984. Using both the conditional

variance and the conditional standard deviation specification they provide evidence for a

significant positive relationship between excess returns and risk. Employing daily CRSP

data and a GARCH-M model with either normal or t-distributed innovations Baillie and

DeGenarro (1990) obtain positive but insignificant estimates for λ. Nelson (1991) again

investigates CRSP data but uses his exponential GARCH-M (EGARCH-M) specification

which allows positive and negative innovations to have an asymmetric effect on the

conditional variance. For the data and period he considers, there is evidence for a

negative but insignificant relation between market risk and expected return. Glosten

et al. (1993) again employ the EGARCH-M model and confirm the findings of Nelson

(1991). They include the nominal interest rate as well as October and January seasonal

dummies as explanatory variables in the variance equation and report a significant and

negative relation between the conditional monthly excess return and its conditional

variance.

Although the finding of a negative relation between risk and excess return is at

odds with the prediction of the ICAPM, it can be rationalized by general equilibrium

models. Whitelaw (2000) investigates the relation between risk and excess return in a

general equilibrium exchange economy characterized by a regime-switching consumption

process. While a single-regime model generates a positive and essentially linear rela-

tion between expected returns and volatility, a two-regime model leads to a complex,

nonlinear relation. At the market level this relation will be negative in the long-run.

Intuitively this can be explained as follows. Regime shifts introduce large movements

in the investors opportunity set, and therefore induce a desire among investors to hedge

adverse changes. In some states of the world, the market claim provides such a hedge.
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Specifically, when a regime shift is likely, its value is high and its expected return is low

as a consequence. These are also the states of the world with high volatility, generating

a negative relation between volatility and expected returns.

In contrast to the single-factor models employed in the studies mentioned so far,

Scruggs (1998) makes use of a two-factor model. Including long-term government bond

returns as a second factor, Scruggs (1998) finds evidence for a positive and significant

relation between the excess market return and the conditional market variance. He

argues that if the true relationship is a two-factor model then single-factor models are

misspecified and their estimates of λ are subject to an omitted variable bias.2 His

empirical example shows that the omitted variable bias in λ̂ is sufficiently large to

explain the negative and insignificant relation between the excess market return and the

conditional market variance found in most previous studies. In contrast, Guedhami and

Sy (2005) claim that the often reported negative relationship is not due to the omission

of the hedge term associated with the ICAPM. Using an instrumental variables method

they estimate a two-factor model including the long-term government bond, but still

find evidence for a negative risk-return relation. Guo and Whitelaw (2006) argue that

one can neglect the hedge term when using daily data, because investment opportunities

change slowly at the business cycle frequency and can be treated as being constant at

the daily frequency. However, they also find that expected returns are driven primarily

by the hedge component at a monthly or quarterly frequency. Guo and Neely (2006)

employing daily international stock market data – neglect the hedge term – and show

that the risk-return relation is positive and significant in almost all the markets.

Campbell and Hentschel (1992) and Harvey and Siddique (1999) model the co-

movement between the conditional skewness and the conditional variance, the so-called

volatility feedback effect. Both studies provide empirical evidence that the conditional

2If the true model is two-factor, but a single-factor model is estimated, the bias is given by: λ̂−λ =

λSCov(σ2
M,t − rf,t, σMS,t)/Var(σ2

M,t − rf,t) where σMS,t denotes the covariance between the market

risk premium and the state variable. Note, that Scruggs (1998) assumes that λS = −UWS/UW is

constant over time.
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skewness appears to possess a systematic relation to expected returns and their condi-

tional variance. Therefore, they argue that the omission of the effect of the conditional

skewness could explain the puzzling finding of a negative risk-return relationship. Along

these lines Li (2003) models daily S&P500, FTSE100 und DAX30 returns as GARCH-M

using the skewed t-distribution and allowing the conditional skewness to influence the

mean equation. For all three indices, the parameter estimates suggest a positive and

significant relation between the conditional variance and the expected excess return.

Overall the evidence provided by the above mentioned studies is mixed. Some point-

ing to a positive others to a negative or an insignificant relation between excess return

and risk. All these studies rely on parametric specifications for the risk premium and

the conditional variance. In the following we briefly review some recent studies using

nonparametric estimation techniques.

We begin with studies employing nonparametric techniques to estimate the condi-

tional variance. Pagan and Ullah (1988) and Pagan and Hong (1990) argue that the

conditional variance is a highly nonlinear function of the past whose form is not ade-

quately captured by parametric GARCH-M models. Therefore, they firstly estimate the

conditional variance nonparametrically and then regress the excess return on the esti-

mated conditional variance by least squares methods. Using this procedure they find a

negative but insignificant in-mean coefficient. Pagan and Hong (1990) restrict ht to be a

function of the last p observations {Yt−1, . . . , Yt−p} for some fixed p in order to avoid the

well known “curse of dimensionality”: the optimal rate of convergence decreases with

dimensionality p. This restriction however is very problematic since – as has been shown

in many other studies – the conditional variance is a highly persistent process and so it is

unlikely that its dynamics can be adequately captured by such an estimator. Linton and

Mammen (2005) recently suggested an alternative approach based on kernel smoothing

and profiled likelihood circumventing the curse of dimensionality and nevertheless al-

lowing the conditional variance to depend on the whole past of the process Yt. They

specify the conditional variance as additive in Yt−j with the restriction that the different

additive functions are proportional to each other. This implies that only one univari-
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ate function needs to be estimated. Hence their semiparametric ARCH(∞) model is

capable of taking into account both nonlinearity and high persistence in the conditional

variance.3 A similar approach is used by Li et al. (2005) who propose a test for the

existence of an in-mean effect. The test for the in-mean effect is a simple regression of

the excess return on the generated conditional variance series. Investigating twelve in-

ternational stock markets Li et al. (2005) find a negative and (partly) significant relation

between risk and excess returns. Shin (2005) employs the same method to 14 emerging

international stock markets and reports a positive but insignificant relationship between

stock returns and volatility.

Next, we discuss the two studies which allow for more flexible specifications of

the conditional mean. Das and Sarkar (2000) suggest the ARCH-in-Nonlinear-Mean

(ARCH-NM) model which defines g(ht) as a Box-Cox power transformation of the con-

ditional variance. Obviously, this model nests the simpler parametric specifications

mentioned above under certain constraints on the power transformation parameter. Al-

though the ARCH-NM specification is favored compared to the standard specification

when applied to stock return data, Das and Sarkar (2000) conclude that the model

fit is not entirely satisfactory. They conjecture that the ARCH-NM is still not non-

linear enough. Finally, Linton and Perron (2003) suggest an algorithm for estimating

a semiparametric (E)GARCH-M model which does not assume a functional form for

the shape of the risk premium a-priori. The model is semiparametric in the sense that

the conditional variance equation is modelled parametrically as GARCH or EGARCH,

while the shape of the conditional mean is estimated nonparametrically.4 Although no

3Ghysels, Santa-Clara and Valkanov (2005) also argue that the GARCH parameterization is not

flexible enough to model the conditional variance appropriately. Instead they make use of the so-called

mixed data sampling (MIDAS) approach which estimates the conditional variance of monthly returns

as a weighted average of lagged squared daily returns where the weights itself are estimated from the

data. In a second step the monthly excess returns are regressed on the MIDAS estimated conditional

variances. Using this procedure significant evidence for a positive risk premium is obtained.
4Masry and Tjøstheim (1995) investigate the problem of nonparametrically estimating both the mean

and the conditional variance function. However, their procedure does not allow for a risk premium.
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asymptotic theory is provided for their estimator, Monte-Carlo simulations show that

the procedure works reasonably well. An application of the semiparametric EGARCH-

M to excess returns on the CRSP value-weighted index reveals a hump-shaped pattern

of the risk premium which could not be detected by the parametric EGARCH-M model.

6.3 The Semiparametric Model and the

Test Statistic

The last section discussed the controversial empirical findings on the risk-return rela-

tion. Several possible explanations (misspecification of the conditional variance, omitted

variables bias, ect.) were addressed in the literature without convincing success. In this

section we focus on the obvious possibility of misspecification of the mean function. The

parametric specification of the risk premium implied by the Merton (1973a) ICAPM re-

sults from very specific assumptions, and as shown by Genotte and Marsh (1993) and

Backus and Gregory (1993), if these assumptions do not hold, the shape of the risk

premium can have virtually any form. Therefore, it seems natural to ask for the appro-

priateness of the commonly applied specifications of the mean function. We consider

a general class of in-mean models which nest the standard GARCH-M as a special

case characterized by a particular choice of the mean and variance function. For such a

model we address the problem of testing for the correct choice of a particular parametric

specification of the mean function.

Under the null hypothesis we consider an in-mean model with a parametric mean

function depending on a finite-dimensional parameter γ0:

Yt = mγ0(ht(ψ0, γ0)) + εt, (6.4)

where εt =
√

ht(ψ0, γ0)Zt with Zt being a sequence of independent and identically

distributed random variables with expectation zero and variance one. Here ht is a

function of the parameters ψ0, γ0 and of Yt−1, Yt−2, . . . , Y1, Y0, Y−1, . . .. A typical example

could be that ht follows a GARCH(1, 1) process, but any specification from the GARCH
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family is possible. For simplicity, dependence on Yt−1, Yt−2, . . . is suppressed in the

notation. We also write ht for ht(ψ0, γ0) and m0 for mγ0 . By construction we have

E[εt|Ft−1] = 0 and E[ε2
t |Ft−1] = ht, where Ft = σ(Zt, Zt−1, . . .) is the σ-field of events

generated by {Zs, s 6 t}. We assume that the true parameter vector θ0 = (ψ0, γ0) is in

the interior of Θ, a compact, convex finite dimensional parameter space.

The alternative model is given by a semiparametric version of equation (6.4) with

a smooth mean function m(·), but εt and ht as before. The semiparametric alternative

has two distinct advantages over previous specifications: (i) it does not rely on any

parametric specification of m(·), and (ii) it allows for persistence in the conditional

variance process since it does not restrict Ft−1 as in Pagan and Hong (1990). The

specification under the alternative is closely related to the model considered by Linton

and Perron (2003).

6.3.1 Iterative Estimation of Conditional Mean and Variance

For some initial parametric estimators γ̂ and ψ̂(0) we consider an estimate ĥ
(0)
t of

ht(ψ0, γ0) which can be written as a function of θ̂(0) = (ψ̂(0), γ̂) and the past obser-

vations Y1, . . . , Yt−1. We suppress dependence on Y1, . . . , Yt−1 in the notation and we

write ĥ
(0)
t = ĥt(θ̂

(0)) where ĥt is a random function that depends on Y1, . . . , Yt−1. Note

that typically ĥ
(0)
t depends also on γ̂ because (simultaneously) fitting the residuals εt

and/or Zt requires an estimate of mγ0 . This is for instance the case when a parametric

GARCH-M is estimated by (quasi-)maximum likelihood in the initial step.

We will use iterative updates of the estimate ψ̂(0). These updates are denoted by

ψ̂(k) with k ≥ 1. The estimator of γ0 will not be updated. This is done for the following

reason. Because our semiparametric alternative model contains nonparametric compo-

nents, updates of the parametric estimators will slow down the rate of convergence to

nonparametric rates. Our test for the parametric hypothesis is based on the comparison

of estimators of mγ0 on the hypothesis and on the alternative. If the estimate of γ0

is updated this will introduce an additional bias term that does not cancel out when
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comparing the estimators on the hypothesis and on the alternative.

The iterative update of the estimators of mγ0 , ψ0 and ht works as follows. Given

the fit ĥ
(k−1)
t of ht calculated in the (k − 1)-th cycle, the estimate of mγ0 is updated by

smoothing Yt versus ĥ
(k−1)
t . The resulting smoother is denoted by m̂

(k)
b . Then using the

observations and m̂
(k)
b , the estimator of ψ0 and ht is updated. The resulting estimators

are denoted by ψ̂(k) and ĥ
(k)
t . We now describe the iteration steps in more detail.

For x in a bounded closed interval I and k ≥ 1 the updated estimator of mγ0 is

defined as

m̂
(k)
b (x) =

r̂
(k)
b (x)

f̂
(k)
b (x)

+ mγ̂(x), (6.5)

with r̂
(k)
b (x) = 1

T

∑T
t=1 Kb(ĥ

(k−1)
t −x)[Yt−mγ̂(ĥ

(0)
t )] and f̂

(k)
b (x) = 1

T

∑T
t=1 Kb(ĥ

(k−1)
t −x)

and where Kb(·) = b−1K(·/b) with K being a kernel function and bandwidth parame-

ter b. In the simulations we also use the update

m̃
(k)
b (x) = f̂

(k)
b (x)−1 1

T

T∑
t=1

Kb(ĥ
(k−1)
t − x)Yt. (6.6)

However, the theoretical treatment of m̂
(k)
b (x) is easier because some bias terms cancel

in the asymptotic analysis that otherwise could only be analyzed under rather strong

additional assumptions. For x 6∈ I the estimate m̂
(k)
b (x) is put equal to the old estimate

mγ̂(x). Thus for x 6∈ I the estimate of mγ̂(x) is not updated. Alternatively, an updated

parametric fit for x 6∈ I could also be considered. For simplicity, this not pursued here.

Furthermore, it could be considered that the choice of the interval I depends on the

sample size T and grows to the positive real line for T → ∞. We also do not discuss

this here. In the simulations we have taken I = (0,∞) to avoid the discussion of the

choice of I. We conjecture that under our mixing conditions (see Assumption 3 below)

differences between different choices of I will be minor for our test.

In a next step the fit of ht = ht(θ0) is updated. We suppose that the update ĥ
(k)
t

can be written as a function of m̂
(k)
b and ψ̂(k) and the observations Y1, ..., Yt−1. Again,

we suppress dependence on Y1, ..., Yt−1 in the notation and we write ĥ
(k)
t = ĥt(ψ̂

(k), m̂
(k)
b )
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where in abuse of notation we denote the function by ĥt, as the related function ĥt of

step 0. We suppose that the function does not depend on k and that ĥt(ψ̂
(0),mγ̂) =

ĥt(ψ̂
(0), γ̂).

The above procedure can be performed for a finite fixed number of iterations or

until a convergence criterium is fulfilled. The asymptotic theory is developed for a fixed

number of iterations. In the simulations we use the criterium

δ(k) =

∑J
j=1

(
m̂

(k)
b (xj)− m̂

(k−1)
b (xj)

)2

∑J
j=1

(
m̂

(k−1)
b (xj)

)2

+ c̄
< c̄ (6.7)

for some small prespecified c̄, where xj, j = 1, . . . , J , are equally spaced grid points

on I. We choose c̄ = 0.001.

6.3.2 The Test Statistic

We now come to the test statistic which will be based on the difference between a

smoothed version of the initial parametric estimator and a Naradaya-Watson kernel

estimator of the regression function. The null and alternative hypothesis can be written

as

H0 : P(m(·) = mγ0(·)) = 1 for some γ0 ∈ Θγ = {γ|(ψ, γ) ∈ Θ}
and H1 : P(m(·) = mγ(·)) < 1 for any γ ∈ Θγ = {γ|(ψ, γ) ∈ Θ}.

The test statistic utilizes the fact that the null hypothesis is equivalent to the condition

that the L2-distance between the two functions is zero.

We consider the following test statistic

Γ̂
(k)
T =

∫ 



1
T

∑T
t=1 Kb(ĥ

(k)
t − x)

[
Yt −mγ̂(ĥ

(0)
t )

]

1
T

∑T
t=1 Kb(ĥ

(k)
t − x)





2

w(x)dx, (6.8)

where w(x) is some nonnegative and bounded weighting function.

Note, that in the test statistic we subtract mγ̂(ĥ
(0)
t ) from Yt and not mγ̂(ĥ

(k)
t ). This

is done to have a parametric rate for mγ0(ht) − mγ̂(ĥ
(0)
t ) on the hypothesis. In the

simulations we also used mγ̂(ĥ
(k)
t ).
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Equation (6.8) can be interpreted as the integrated squared difference between a

smoothed version of the initial parametric estimate mγ̂ and the Naradaya-Watson kernel

estimate m̃
(k+1)
b of the regression function m(x) defined in equation (6.6). The reason

for smoothing the parametric estimate is that whereas mγ̂ is asymptotically unbiased

and converging at rate
√

T , the nonparametric estimate m̃
(k+1)
b has a kernel smoothing

bias and convergence rate
√

Tb. Replacing mγ̂ by its smoothed version introduces an

artificial bias. As a result, under the null hypothesis the bias of m̃
(k+1)
b cancels with the

one of the smoothed version of the parametric estimate mγ̂.

Under the assumption of independent and identically distributed observations, Härdle

and Mammen (1993) have shown that under the null hypothesis the above test statis-

tic with ht observable (and k = 0) has an asymptotic normal distribution. Kreiss et

al. (2002) extend the results of Härdle and Mammen (1993) to settings with dependent

data. Their version of the test statistic can be interpreted as multiplying the weight

function w(x) with the squared stationary density of the conditional variance. This

particular weighting scheme implies that one down-weights observations in areas where

the data are sparse. The results of Kreiss et al. (2002) do not apply directly to our

setting since ht = ht(θ0) is unobservable.

We start with a discussion of the asymptotic behavior of Γ̂
(k)
T for k = 0. The following

assumptions are made:

Assumption 1. The kernel K has bounded support ([−1, 1], say) and a continuous

derivative. The bandwidth b is of order T−η, i.e.

0 < lim inf
T→∞

T ηb ≤ lim sup
T→∞

T ηb < ∞

for a constant η with 0 < η < 1
3
.

Assumption 2. It holds that E[exp(ρ|Zt|)] < ∞ for ρ > 0 small enough.

Assumption 3. The process ht is stationary and β-mixing with mixing coefficients

β(j) ≤ cρj for constants c > 0 and 0 < ρ < 1. The density fh of ht is Lipschitz

continuous and bounded away from 0 on I. The joint density of ht and ht+s is bounded

on I × I, uniformly in s.
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Assumption 4. The function mγ(x) is differentiable with respect to γ at the point

γ = γ0 for all x ∈ I and for the derivative ṁγ0 it holds that

sup
x∈I,‖γ−γ0‖≤δ

∣∣mγ(x)−mγ0(x)− (γ − γ0)
T ṁγ0(x)

∣∣ = O(δ2)

for δ → 0. The derivative ṁγ0 fulfills the following Lipschitz condition

sup
u,v∈I,‖u−v‖≤δ

|ṁγ0(u)− ṁγ0(v)| = O(δκ)

for δ → 0 with a constant κ > 0. Furthermore, mγ(x) is continuously differentiable with

respect to x for x ∈ I.

Assumption 5. It holds that ‖θ̂(0) − θ0‖ = OP (T−1/2).

Assumption 6. There exists a stationary sequence ḣt such that

sup
∣∣∣ĥt(θ)− ĥt(θ0)− (θ − θ0)ḣt

∣∣∣ = oP (T−1/2 log(T )−1/2),

where the supremum runs over all t and θ with T 1/2−δb ≤ t ≤ T , ‖θ − θ0‖ ≤ CT−1/2 ,

and with ĥt(θ) or ĥt(θ0) or ht in I. The process (ḣt, ht) is stationary and β-mixing with

β(j) ≤ cρj for constants c and ρ as in Assumption 3. Furthermore E|ḣt|r is finite for

an r > 2.

Assumption 7. For C > 0, T 1/2−δb ≤ t ≤ T, ‖θ− θ0‖ ≤ CT−1/2, ‖θ′− θ0‖ ≤ CT−1/2 it

holds that

|ĥt(θ)− ĥt(θ
′)| ≤ RT‖θ′ − θ‖τ + ST

for random sequences RT and ST with RT = OP (T ς) and ST = OP (T−1/2−νb) for con-

stants ς and ν, τ > 0.

Assumption 8. The weight function w is continuous and the closure of its support lies

in the interior of I.

We now shortly discuss the conditions. Assumption 1 is a standard smoothing condi-

tion. We do not assume that the bandwidth is of an order that is optimal for estimation
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under certain smoothness conditions on mγ0 , e.g. that the bandwidth is of order T−1/5.

Such an assumption would be too restrictive because tests that look for more global

deviations from the hypothesis make also sense. Assumption 2 is needed because the

techniques from empirical process theory that will be used below require subexponential

tails. The assumption could be replaced by higher order moments conditions if more

involved mathematical arguments would be used. In particular, Assumption 2 is fulfilled

for the standard model of Gaussian Zt. The β-mixing condition in Assumption 3 could

be replaced by the assumption that β(j) ≤ aj−c for a constant a > 0 and for a constant

c that is large enough. We avoided an exact check of the necessary size of the constant

c because we have no examples of ARCH models where Assumption 3 does not hold but

where this weaker assumption applies. Assumption 4 is a condition on the smoothness of

the mean function. Assumptions 5 – 7 state conditions on the accuracy of the estimates

of θ0 and ht and on the smoothness of ĥt(θ) as a function of θ. Assumptions 5 and 6

are needed because we make no assumptions on the specific form of the estimators of

the parameters. We remark that Assumption 7 is very weak because it is allowed that

the random variable RT may grow with rate T ς for an arbitrary positive constant ς.

In Assumptions 6 and 7 we allow that ht has not the required properties for an initial

period 1 ≤ t < T 1/2−δb.

The following theorem states that under the null hypothesis T
√

b Γ̂
(0)
T is asymptot-

ically normal. In the proof we show that T
√

b Γ̂
(0)
T can be written as a sum of three

components whereby the first term is dominating the other summands and determines

the asymptotic distribution of the test statistic.

Theorem 6.1. Assume that Assumptions 1 – 8 apply. Then under H0 it holds that

T
√

b
Γ̂

(0)
T − b−1/2M√

V
(6.9)

converges in distribution to a standard normal distribution. Here

M = K(2)(0)

∫
xw(x)f−1

h (x)dx,

V = 2K(4)(0)

∫
x2w2(x)f−1

h (x)dx,
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where K(k) denotes the k-fold convolution of K with itself.

We now discuss the test statistic Γ̂
(k)
T for k ≥ 1. In particular, we will show that

replacing ĥ
(0)
t by the iterative estimator ĥ

(k)
t described above does not effect the asymp-

totic distribution of the test statistic. The following additional assumptions are needed

to obtain our next result on the asymptotic distribution of Γ̂
(k)
T for k ≥ 1.

Assumption 9. Assumption 1 holds for a constant η with 0 < η < 1
5
.

Assumption 10. For all C∗ > 0, for a constant C > ‖D2m0‖∞ and for ι > 0 small

enough it holds for functions m1, m2 with ‖mj − m0‖∞ ≤ C∗[(bT )−1/2 log(T ) + b2],

‖D2mj‖∞ ≤ C and parameters ψ1, ψ2 with ‖ψj − ψ0‖2 ≤ C∗b3/2(T )−ι for j = 1, 2 that

|ĥt(ψ1,m1)− ĥt(ψ2, m2)| ≤ VT‖ψ1 − ψ2‖2 + WT‖m1 −m2‖∞.

Here VT and WT are random variables with VT = OP (T υ) and WT = OP (T ξ) with

constants υ and ξ that fulfil υ < ι and 15η + 8ξ < 3.

Assumption 11. For l ≤ k it holds that

‖ψ̂(l) − ψ0‖2 = OP (b3/2T−ι).

Note that we now exclude the case that the bandwidth b is of order T−1/5. The

reason is that we apply uniform convergence results over sets of functions with bounded

second derivatives. We need that m̂
(k)
b is an element of this set (with probability tending

to one). This requires oversmoothing, i.e. T 1/5b → ∞. The rate T−1/5 appears as the

boundary case that is just excluded. We also conjecture that our results do not hold if

the bandwidth is too small. Using the most powerful methods from empirical process

theory one cannot achieve a uniform rate of convergence over classes of higher entropies.

For the result of the theorem one needs an expansion of m̂
(k)
b that is of order oP (T−1/2).

If the interest lies in estimating m(·) then an expansion of order oP ((bT )−1/2) is needed.

We conjecture that this expansion could be derived by the methods of this chapter also

for bandwidths of order T−1/5.

Our next theorem states that Γ̂
(k)
T has the same asymptotic distribution as Γ̂

(0)
T .
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Theorem 6.2. Assume that Assumptions 2 – 11 apply. Then under H0 it holds that

T
√

b
Γ̂

(k)
T − b−1/2M√

V

converges in distribution to a standard normal distribution. Here M and V are defined

as in Theorem 6.1.

The advantage of using Γ̂
(k)
T with k ≥ 1 in comparison to Γ̂

(0)
T may be explained

as follows. The power of the test statistic depends on the accuracy with which the

nonparametric estimate of the mean function can approximate the true mean function.

Under the alternative, the parametric model for the mean which is initially estimated is

misspecified. As a consequence, the nonparametric estimate of the mean function based

on the inconsistent estimate ĥ
(0)
t will poorly approximate the true mean function. This

leads to a low power of the test statistic Γ̂
(0)
T . The simulations in the next section will

show that the iterative estimation procedure overcomes this problem and results in a

precise estimate of m(·). The test statistic Γ̂
(k)
T which is based on this iterated estimate

will dispose of considerably better power properties than Γ̂
(0)
T .

Note, that we did not distinguish between the bandwidth parameter used for the

estimation of the mean function and the one used in the test statistic. In the derivation

of the theorems we treat them as identical. In the simulations and the application

we choose the bandwidth parameter in the iterative estimation procedure by cross-

validation as was suggested in Linton and Perron (2003) and is discussed in the next

subsection. To reduce notation we do not equip the bandwidth parameter with an index

k. We will report the test statistic for several choices of the bandwidth to document

the robustness of the outcome of the test with respect to variations in the bandwidth

parameter.

6.3.3 Parametric and Semiparametric GARCH(1,1)-M

The model we considered in equation (6.4) neither specifies a particular choice of mγ0

nor of ht(θ0). The parametric GARCH(1, 1)-M is the most popular version of such
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a model. In this subsection we describe this model in detail. We review the three

most commonly used specifications for the risk premium, the conditions which imply

covariance and strict stationarity and we discuss the issue of estimation. Then we will

briefly explain the semiparametric GARCH(1, 1)-M version of Linton and Perron (2003)

and relate their approach to ours.

The GARCH(1, 1)-M model is given by

Yt = mγ0(ht(θ0)) + εt (6.10)

εt =
√

ht(θ0)Zt (6.11)

ht(θ0) = ω0 + α0ε
2
t−1 + β0ht−1(θ0). (6.12)

The conditional expectation of Yt is parameterized as mγ0(ht(θ0)) = µ0 + λ0g(ht(θ0)).

The vector θ contains the parameters of the mean and variance functions, i.e. θ0 =

(ψ0, γ0), with ψ0 = (ω0, α0, β0) and γ0 = (µ0, λ0). Three parametric specifications for the

function g are commonly applied. The original Engle et al. (1987) specifications assume

either g(ht(θ0)) = ht(θ0) or g(ht(θ0)) =
√

ht(θ0), while Caporale and McKiernan (1996)

use g(ht(θ0)) = ln(ht(θ0)). As noted by Pagan and Hong (1990) this latter specification

is possibly unsatisfactory, since as ht(θ0) → 0 the conditional variance in logs takes very

large negative values and the relationship between the conditional variance and Yt may

be overstated. Of course, when λ0 is restricted to being zero the GARCH-M reduces to

the Bollerslev (1986) GARCH model.

The GARCH(1, 1)-M process will be strictly stationary and covariance stationary

if (i) Zt
iid∼ N (0, 1) and (ii) α0 + β0 < 1. Note, that strict stationarity and ergodicity

of the process only require E[ln(α0Z
2
t + β0)] < 1 which is weaker then the condition

implying covariance stationarity (see Arvanitis and Demos, 2004). Specifically, for the

parameters of the conditional variance equation we assume that ω0 > 0, 0 < α0 < 1,

0 < β0 < 1. These restrictions also imply the non-negativity of the conditional variance.

General results on the moments and autocorrelation structure of the GARCH(p, q)-M

can be found in Karanasos (2001).

Lee and Hansen (1994) and Lumsdaine (1996) derived the distribution theory for
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the quasi-maximum likelihood estimator in the GARCH(1, 1) model. Lumsdaine (1996)

established the consistency and asymptotic normality of the quasi-maximum likelihood

estimator under the assumption that the re-scaled innovations εt/
√

ht are independent

and identically distributed (strong GARCH), while Lee and Hansen (1994) derive the

same results under the weaker assumption that the re-scaled innovations are strictly

stationary and ergodic but not necessarily independent (semi-strong GARCH). To our

knowledge sufficient regularity conditions which ensure consistency and asymptotic nor-

mality of the quasi-maximum likelihood estimator for the GARCH-M model have not

yet been established. As standard in the literature on GARCH-M we will treat our esti-

mates as if the distribution theory for the GARCH estimator could be directly extended.

Note, that in contrast to ARMA-GARCH models which do not allow for an in-mean

effect, in the GARCH-M model the information matrix is not block diagonal, and thus

consistent estimation of the parameters requires that both the conditional mean and

variance functions be correctly specified and estimated simultaneously.

Linton and Perron (2003) propose a semiparametric version of the GARCH(1, 1)-M

model described by equations (6.10) – (6.12) in which the functional dependence of

Yt on its conditional variance, m(ht), is estimated by nonparametric kernel smoothing

methods. The estimation procedure is very similar to the one described above, i.e. based

on an iterative updating of both the parameters of the conditional variance equation

and the function m(·).
For our simulations we adopt two steps from the Linton and Perron (2003) algo-

rithm. First, the initial parameter estimates (ψ̂(0), γ̂) will be obtained by estimating

the parametric specification described in equations (6.10) – (6.12) by quasi-maximum

likelihood. Second, in each iteration step the bandwidth for the nonparametric estimate

m̂
(k)
b is chosen as b = b0σ(ĥ

(k−1)
t )T−1/5, where σ(ĥ

(k−1)
t ) is the standard deviation of

the fitted conditional variance from the (k − 1)-th iteration step and the value of b is

determined as the one which produces the lowest value of the cross-validation function

CV (b) =
1

T

T∑
t=1

(
Yt − m̂

(k)
b,−t(ĥ

(k−1)
t )

)2

,
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where m̂
(k)
b,−t is the leave-one-out estimator and b0 is allowed to vary between 0.5 and 2.5

in increments of 0.1. Recall, that in the simulations we choose I = (0,∞). For different

intervals I the cross-validation will be performed using the observations in the interval

only.

In the simulations and in our application we will focus on testing for linearity in

the GARCH(1, 1)-M model. Since many properties of the model such as the behav-

ior of the maximum likelihood estimator are largely unexplored we do not verify our

assumptions for this specification. However, it is widely believed that the well known

properties of the GARCH(1, 1) should also hold for the GARCH(1, 1)-M. Most of the

above assumptions can be easily verified for the GARCH(1, 1). Assumption 2 is satisfied

by e.g. Gaussian Zt. Carrasco and Chen (2002) show that ht in the GARCH(1, 1) is

β-mixing with exponentially decaying mixing coefficients as required in Assumption 3.

Assumption 4 is naturally satisfied when mγ does not depend on ht and Assumption 5

holds by the results of Lee and Hansen (1994) and Lumsdaine (1996). Finally, Assump-

tion 7 follows directly from the ARCH(∞) representation of ht. Note, that the proposed

test can also be used to test for the existence of an in-mean effect. In this situation

the null hypothesis is given by mγ0(ht) = µ0. Such a test can be applied in a first step

before one tests for particular parametric specifications of the risk premium.

6.3.4 Parametric Bootstrap

We expect that the theorems can only give a rough idea of the stochastic behavior of our

test statistic for small sample sizes. Indeed we will see in the simulations that the normal

approximation does not work very well in our setting. Therefore, it seems appropriate

not to use the asymptotic critical values but to compute the critical values based on

resampling (see Härdle and Mammen, 1993).

Suppose one has obtained initial parameter estimates (ψ̂(0), γ̂) and final estimates

of the conditional variance ĥ
(k)
t = ĥt(ψ̂

(k), m̂
(k)
b ) according to the algorithm described in

Section 6.3.1. Then one can approximate Γ̂
(k)
T by numerical integration. The bootstrap
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procedure makes use of the fact that under the null hypothesis we have a parametric

specification of the conditional mean and variance and can be described as follows:

Step 1: Generate a bootstrap series {Y ?
t }T

t=1 according to equations (6.10)–(6.12)

with mγ̂ given by the null hypothesis. As a starting value h0 we use the estimated

unconditional variance ω̂(0)/(1−α̂(0)−β̂(0)). Innovations Z?
t are drawn from the standard

normal distribution.

Step 2: Apply the algorithm described in Section 6.3.1 to the bootstrap series

{Y ?
t }T

t=1 and obtain mγ̂? and ĥ
(k)?
t . Calculate the value of the bootstrap test statistic

Γ̂
(k)?
T by numerical integration.

Step 3: Repeat step 1 and 2 for B times. The bootstrap p-value of Γ̂
(k)
T is the

relative frequency of the event {Γ̂(k)?
T ≥ Γ̂

(k)
T } in the B bootstrap resamples.

6.4 Monte-Carlo Simulation

In this section we examine the finite sample properties of the semiparametric estimation

procedure and the empirical level and power of the proposed test statistic. We first

compare the performance of the parametric GARCH(1, 1)-M with the semiparametric

procedure under the null hypothesis and then under the alternative. Thereafter, we

estimate the empirical level and power and demonstrate the robustness of our results

with respect to the choice of the bandwidth. We always use an Epanechnikov kernel and

weight function w(·) = 1[h,h], where h and h are chosen such that approximately 90% of

the data are covered.5 For simplicity we will denote the fitted conditional variance and

the corresponding test statistic from the last iteration step by ĥt and Γ̂T suppressing the

index k. The integral of the test statistic Γ̂T is numerically approximated on 50 equally

spaced grid points on the interval [h, h]. The parameters of the conditional variance

equation are chosen to be ω0 = 0.01, α0 = 0.1 and β0 = 0.85 which represent typical

parameter values in empirical applications (see Section 6.5). The innovations are drawn

from the standard normal distribution. All the simulations are carried out for a sample

5Alternatively, we used a standard normal kernel and obtained virtually identical results.
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size of T = 1000 which is realistic when we consider that most applications to financial

data such as stock or exchange rate returns are on a daily basis or even higher fre-

quency. The Monte-Carlo experiments are repeated M = 200 times and the bootstrap

resampling is performed B = 200 times for each sample. Initial parameter estimates for

the mean and variance equation are obtained by quasi-maximum likelihood. The vari-

ance parameters are updated by estimating a parametric GARCH(1, 1) on the residuals

Yt− m̂
(k)
b (ĥ

(k−1)
t ). In each iteration step we impose the parameter restrictions described

in Section 6.3.3 implying covariance stationarity and nonnegativity of the conditional

variance. The bandwidth parameter b is chosen in each iteration step according to the

cross-validation criterion discussed in Section 6.3.3. Throughout the simulations we set

I = (0,∞).

6.4.1 Performance of the Estimation Procedure

We first evaluate the performance of the estimation procedure for three linear specifica-

tions which reflect the null hypothesis:

(N1) m(ht) = 0.05 · ht

(N2) m(ht) = 0.5 · ht

(N3) m(ht) = ht.

Table 6.1 presents in Panel A the median estimates for the mean and variance equa-

tion parameters of the parametric GARCH(1, 1)-M and in Panel B the median estimates

of the parameters from the conditional variance equation obtained by the semiparamet-

ric procedure.6 In both panels we also provide the 25% and 75% quantiles for the

estimated parameters over the 200 replications. The median parametric parameter esti-

mates presented in Panel A of Table 6.1 are – as expected under the null – very close to

the true parameter values of the model for the different values of λ0. In particular, the

6Similar results were obtained for the square root and log specification and are available upon

request.



6.4 Monte-Carlo Simulation 159

in-mean parameter λ0 is very well estimated as shown by the 25% and 75% quantiles.

However, from the estimates of the quantiles it is evident that the true value λ0 can

be recovered much better for higher values of λ0 than for smaller ones. From Panel B

it becomes clear that the semipametric estimator leads to very precise estimates of the

conditional variance equation parameters, although it unnecessarily applies the iterating

procedure. We find that the semiparametric estimate of α0 is in all cases slightly lower

than its parametric estimate while the converse holds for the estimates of β0. The ranges

between the 25% and 75% quantiles are approximately the same for the semiparamet-

ric procedure and the parametric estimator. Figure 6.1 shows the true mean function,

the pointwise median of the parametric and the nonparametric estimate along with the

pointwise 25% and 75% quantiles of the nonparametric estimate for model N3. Under

the null hypothesis both estimation procedures seem to do equally well in recovering the

true structure of the model. Similar figures are available for models N1 and N2, but are

omitted for space considerations.
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Figure 6.1: Parametric and nonparametric estimate for model N3.
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Monte-Carlo estimates of the parametric and

semiparametric regression model (continued).

Panel B: Median semiparametric estimates

ω̂ α̂ β̂

N1 0.0102 0.0916 0.8505

(λ0 = 0.05) (0.0082, 0.0138) (0.0768, 0.1100) (0.8242, 0.8724)

N2 0.0101 0.0911 0.8507

(λ0 = 0.5) (0.0082,0.0141) (0.0765,0.1103) (0.8251, 0.8735)

N3 0.0101 0.0923 0.8554

(λ0 = 1) (0.0076, 0.0131) (0.0782, 0.1074) (0.8318, 0.8777)

A1 0.0102 0.0913 0.8541

(ζ0 = 0.5) (0.0077, 0.0131) (0.0793, 0.1066) (0.8323, 0.8762)

A2 0.0101 0.0925 0.8551

(ζ0 = 0.1) (0.0077, 0.0128) (0.0784, 0.1061) (0.8330, 0.8777)

A3 0.0101 0.0910 0.858

(ζ0 = 0.12) (0.0078, 0.0134) (0.0774, 0.1024) (0.8320, 0.8778)

Notes: As in Table 6.1.

Next, we investigate the accuracy of the iterative estimation algorithm under the

alternative. We use the following mean functions:

(A1) m(ht) = ht + ζ0 · sin(10 · ht)

(A2) m(ht) = 0.5 · ht + ζ0 · sin(0.5 + 20 · ht)

(A3) m(ht) = ht + ζ0 · sin(3 + 30 · ht).

These alternatives represent shapes of the risk premium which are not covered by the

standard specification but can be viewed as motivated by the results on Backus and

Gregory (1993), Genotte and Marsh (1993) and the empirical findings of Linton and

Perron (2003). Alternative A1 and A2 are inverse U-shaped and U-shaped. A3 stands
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for a hump-shaped alternative. The parameter ζ0 can be regarded as a measure for the

distance between the linear null hypothesis and the alternative.

Table 6.1 also presents the results for the Monte-Carlo simulations performed for

models A1 – A3 with specific values for ζ0. Again, Panel A reports the mean and

variance parameter estimates from the parametric GARCH(1, 1)-M with m(ht) = µ +

λht while Panel B reports the estimates for the conditional variance equation obtained

by the semiparametric procedure.7 Figures 6.2 and 6.3 show the pointwise median

parametric and nonparametric estimate along with the 25% and 75% pointwise quantiles

of the latter and the true mean function for alternatives A1 and A3. Additionally,

we plot the pointwise median estimate of the semiparametric procedure obtained if

one does not iterate until convergence but stops after the first iteration step. The

figures reveal that the nonparametric estimate of the mean function does again perform

very well in uncovering the true mean function. The parametric estimate – which

is restricted to being linear – fails to do so. In particular, in model A1 the mean

function is inverse U-shaped. For values of the conditional variance up to 0.175 the

mean function is increasing while it is decreasing from 0.175 onwards. The parametric

estimate of the mean function either over or underestimates the true risk premium.

This example shows that one can easily find a negative relationship by applying the

parametric model to a non-linear risk premium. A curve similar to A1 is presented by

Whitelaw (2000, Figure 3) as a reasonable relationship between the expected return and

its volatility in his two regime model when the economy is in a contractionary regime.

Merely, the application of the semiparametric procedure makes it possible to obtain the

true relationship, i.e. the risk premium is increasing until volatility exceeds a critical

value, and then it becomes decreasing. A similar interpretation holds for A2.8 Finally,

A3 is a hump-shaped alternative as suggested by the findings of Linton and Perron

(2003). Although, the parametric model captures the overall increasing tendency, it

7Again, we do not report the results for the models with g(ht) =
√

ht or g(ht) = ln(gt). These are

very similar and available upon request.
8The corresponding figure is omitted for reasons of brevity.
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would predict very misleading values for the risk premium. The nonparametric fit on

the other hand follows closely the true risk premium. These examples clearly illustrate

the superiority of the semiparametric approach. Moreover, it is possible to construct

non-monotonic shapes of the risk premium which lead to insignificant estimates of the

parameter λ0 and hence would suggest that there is no relationship between ht and Yt,

while the semiparametric procedure recovers the true relationship. This failure of the

parametric estimator may explain the finding of an insignificant λ̂ in many studies using

the parametric GARCH(1, 1)-M specification. These graphical intuitions are supported

by the estimation results reported in Table 6.1. It is clear that now – as the parametric

model is misspecified – the estimates of λ0 are completely misleading. Nevertheless,

the parameters in the conditional variance equation are still surprisingly well estimated

using the parametric model. From the simulation it is clear that a misspecified mean

function does not necessarily distort the estimates of the parameters of the conditional

variance equation. Finally, the semiparametric estimation procedure results in very

accurate estimates of the conditional variance parameters ω0, α0 and β0.
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Figure 6.2: Parametric and nonparametric estimate for model A1 (ζ0 = 0.5).

Figures 6.2 and 6.3 also help to illustrate the gains that are obtained by iterating

in the semiparametric estimation procedure. It is evident that the one step iteration
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Figure 6.3: Parametric and nonparametric estimate for model A3 (ζ0 = 0.12).

estimator cannot capture the nonlinearities by the same degree of accuracy as the iter-

ation until convergence estimator. While this seems to be the case for A1 only for large

values of ht, it is generally true for A3 where the one step iteration estimator simply

leads to a regression function which is too smooth. It seems that by doing only one

iteration step it is not possible to move far enough away from the parametric estimate

to be close to the true mean function. This requires further iterations. Such differences

can be evaluated by comparing the values of the estimated mean and median integrated

squared errors (MeanISE and MedISE) over the M Monte-Carlo simulations for the

different estimation procedures.9 We compare the parametric, the one step iteration

and the full iteration semiparametric estimate. Since the main focus of the analysis is

not on estimation but on the performance of the test statistic we just report exemplary

9The ISE for each simulation can be calculated as

ISE =
∫

(m̂b(x)−m(x))2w(x)dx.

Estimates of the MeanISE and MedISE are then the mean and median of the ISE over the 200

Monte-Carlo replications.
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the numbers for A1. As expected, we find (numbers are multiplied by 100)

MeanISE(p.) = 1.233 > MeanISE(sp. 1 it.) = 0.777 >

MeanISE(sp. it. until. conv.) = 0.431

MedISE(p.) = 1.148 > MedISE(sp. 1 it.) = 0.586 >

MedISE(sp. it. until. conv.) = 0.248

(with p. = parametric, sp. 1 it. = semiparametric with one iteration step and sp. it. until.

conv. = semiparametric with full iteration). Clearly, the one step iteration semipara-

metric estimate is superior to the parametric estimate, but still the full iteration semi-

parametric estimate is more much precise in terms of both MeanISE and MedISE.

We will see in the next subsection that this directly effects the power properties of our

test statistic.

6.4.2 Monte-Carlo Estimates of Level and Power

This subsection evaluates the performance of the test statistic. In Table 6.2 we check for

models N1, N2 and N3 and for different choices of the bandwidth parameter b whether

the estimated level of the test reflects the nominal level. We report the estimated

levels in comparison to the nominal 5% and 10% levels. In general, the estimated

levels are very stable around the nominal levels of 5% and 10% for a wide range of

bandwidth. The lowest bandwidth b = 0.015 produces too conservative results, i.e.

we observe underrejection. A bandwidth of b = 0.02 produces estimates of the level

which are in most cases slightly below 5% and 10% respectively, while a bandwidth of

b = 0.045 leads to estimates slightly above 5% and 10%. Overall, the the bootstrap

procedure seems to do a very good job in estimating the 5% and 10% levels close to

the nominal ones. The optimal bandwidth as chosen by cross-validation in the last

iteration step of the semiparametric procedure is in the neighborhood of b = 0.02.

Figure 6.4 provides a quantile plot of the test statistic for model N3. It is evident

that the test statistic is not normally distributed and therefore one should not rely on
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Table 6.2: Monte-Carlo estimates of the level.

b 0.015 0.020 0.025 0.030 0.035 0.040 0.045

N1 5% 0.030 0.050 0.055 0.060 0.055 0.050 0.055

10% 0.075 0.070 0.095 0.100 0.105 0.110 0.105

N2 5% 0.025 0.045 0.045 0.050 0.050 0.060 0.070

10% 0.080 0.090 0.090 0.105 0.110 0.115 0.105

N3 5% 0.025 0.045 0.040 0.040 0.060 0.060 0.070

10% 0.065 0.080 0.075 0.085 0.085 0.095 0.100

Notes: Entries are rejection rates over the 200 replications at the 5% and

10% nominal level.

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

−2

−1

0

1

2

3

4

5

 

Figure 6.4: Quantile plot of the distribution of the test statistic for model N3 against

normal distribution.

the asymptotic critical values. For model N3 we plot the density of T
√

b Γ̂T and six

bootstrap approximations in Figure 6.5 (upper). The figure shows that the bootstrap

approximations estimate the distribution of T
√

b Γ̂T very well when the underlying

model reflects the null hypothesis. Figure 6.5 (lower) shows the simulated density of

T
√

b Γ̂T and six bootstrap replications for model A1. Under A1 the simulated density of

T
√

b Γ̂T and the six bootstrap densities are very different, suggesting the test statistic



6.4 Monte-Carlo Simulation 167

0.000 0.005 0.010 0.015 0.020 0.025 0.030

20

40

60

80

100

120

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

20

40

60

80

100

Figure 6.5: Simulated density of test statistic (solid) and six bootstrap approximations

(dashed) for model N3 (upper) and A1 (lower).

may have good power properties. Figures 6.6 – 6.8 display the empirical power of

the test for alternatives A1, A2 and A3 and three choices of bandwidths. The mean

functions under the alternative are constructed such that the models move further away

from the null hypothesis as ζ0 increases. For all three alternatives we find the desired

property that the power is monotonically increasing in the value of ζ0. Moreover, the

power is very similar across the three choices for the bandwidth parameter. The overall

performance of the test applied under the alternative is very satisfactory. We conclude

that the bootstrap procedure works well in our setting.
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We also examined the power properties of the one step iteration estimator in com-

parison to the fully iterated estimator. For all three alternatives the tests based on the

full iteration estimator lead to higher power than the corresponding test statistics based

on the one step estimator. For instance, for A1 the fully iterated estimator produces

empirical powers at the 5% and 10% nominal level of (0.615, 0.750), (0.875, 0.950) and

(0.945, 0.975) for ζ0 ∈ {0.3, 0.5, 0.7}, respectively. The corresponding figures for the one

step estimator are (0.400, 0.595), (0.750, 0.870) and (0.890, 0.945). In the light of Fig-

ures 6.2 and 6.3 this is not surprising, since the one step estimator is almost everywhere

closer to the parametric estimator than the full iteration estimator. Interestingly, the

difference in the power decreases with the alternative moving away from the null hypoth-

esis. For alternatives lying sufficiently far away from the null both test statistics reject

in approximately the same number of times. Nevertheless, the full iteration estimator

approximates the true model much closer as we have seen in the last subsection.
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Figure 6.6: Simulated power for model A1 and b = 0.02 (upper left), b = 0.03 (upper

right) and b = 0.04 (lower middle). Levels are given by 5% (solid) and 10% (dashed).
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Figure 6.7: Simulated power for model A2 and b = 0.02 (upper left), b = 0.03 (upper

right) and b = 0.04 (lower middle). Levels are given by 5% (solid) and 10% (dashed).
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6.5 Application: The Shape of the Risk Premium

6.5.1 Data

The usefulness of the specification test will now be assessed in an application to test for

linearity in the risk-return relation. For this we employ monthly and daily excess return

data on the CRSP value-weighted index, which includes the NYSE, the AMEX and the

NASDAQ and can be considered as the best available proxy for the market. Monthly

excess returns (including dividends) are calculated as the continuously compounded

return on the CRSP minus the yield on a one month Treasury bill (from Ibbotson

Associates), Yt = rM,t − rf,t. Daily excess returns are calculated analogously, whereby

daily yields are calculated by dividing the monthly yield by the number of trading days

in the month and, hence, assuming constant yields for each calender day. The monthly

data ranges from January 1926 to December 2001 and was provided by Linton and

Perron (2003) who used the same data set for their analysis. Daily return data was

obtained from the Kenneth R. French data library for the period July 1963 to July

2005.10

The first part of Table 6.3 contains the descriptive statistics for the monthly excess

returns on the CRSP. Apart from the statistics for the full sample we also present

descriptive statistics for a subsample ranging from 1963:07 to 2001:12. The two samples

are labelled as I and II. Sample I corresponds to the period analyzed by Linton and

Perron (2003). The average monthly excess return for the two samples is about 0.5%

and 0.37% respectively. The distribution of excess returns is negatively skewed and

there is evidence for excess kurtosis for both periods reflecting the well known fact

that extreme returns occur more often in the market than predicted by the normal

distribution. The largest negative return in sample I was realized on September 1931

with -34.26% while the largest positive return was realized in April 1933 with +32.31%.

The most extreme excess returns in sample II were realized in October 1987 with -

10The data can be downloaded from (last access 11.06.2006):

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html
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26.08% and in October 1974 with +14.80%. The higher kurtosis in sample I compared

to the kurtosis in sample II can be explained by the extreme returns realized during the

Great Depression of the early 1930s. The 12-th and 24-th order Ljung-Box statistics in

combination with the results of the Engle LM -test for ARCH effects (both not reported)

indicate serial correlation in the squared return series and highlight the importance of

an appropriate modelling of the conditional variance of the excess returns.

We also investigate two daily excess return series of the CRSP in order to see whether

there is any difference between the analysis of daily and monthly data. First, as argued

by Andersen and Bollerslev (1998) more precise estimates of conditional volatility may

be obtained by employing daily data in comparison with monthly data, and thus a better

estimate of the true risk-return relation. Second, as shown by Scruggs (1998) and Guo

and Whitelaw (2006) a hedge demand which is not included as an explanatory variable

can lead to an omitted variable bias in estimating the risk-return relation. However,

since Guo and Whitelaw (2006) find that the investment opportunities change slowly at

the business cycle frequency, these changes can be regarded as approximately constant

at a daily frequency. Thus, the risk-return relation can be precisely estimated at a daily

frequency without explicitly incorporating the hedge demand in the regression equation.

The second part of Table 6.3 presents the descriptive statistics for the daily excess return

data. Again, we consider two samples. The first one corresponds to the complete sample

of daily observations. Sample IV ranges from January 1990 to July 2005. The average

daily excess return lies between 0.02% and 0.03%. As for the monthly data, we observe

negative skewness and excess kurtosis for both samples. The extreme returns in period

III are again realized during October 1987. Moreover, Ljung-Box statistics and Engle

LM -tests for ARCH effects (both not reported) point to strong autocorrelation in the

squared excess returns.
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6.5.2 Parametric GARCH(1,1)-M Estimates

Next, we estimate parametric GARCH(1, 1)-M models with m(ht) = µ + λht for the

four periods. In all the regressions we include the constant µ to account for market

imperfections such as taxes or transaction costs (see Scruggs, 1998). Lanne and Saikko-

nen (2006) claim that the unnecessary inclusion of the constant term lowers the power

properties of tests of the risk-return relation and hence can be responsible for the widely

documented controversial results. On the other hand, we find that the excess market

return is positive on average and of course all the conditional variances are positive by

construction. Therefore, when the constant is omitted it is not surprising if one finds a

positive and significant slope parameter.

Parameter estimates are provided in Table 6.4. For periods I and II the GARCH

parameter estimates α̂ and β̂ are highly significant. The estimated values for α and β

are around 0.1 and 0.85 respectively, satisfying the condition for covariance stationarity

and implying a high degree of persistence in the conditional variance (α̂ + β̂ = 0.981 for

period I and α̂+ β̂ = 0.949 for period II). Poterba and Summers (1986) show that only

persistent increases in volatility will effect the discount factors applied to future cash

flows and thereby current prices. Therefore, they argue that persistence in the volatility

is a necessary condition for fluctuations in volatility to have a significant impact on ex-

plaining risk premia. Similarly, Baekert and Wu (2000, p. 2) reason that the predicted

positive effect of volatility on excess returns relies “first of all on the fact that volatility

is persistent”. The estimates for λ are positive but insignificant which is in line with the

previous literature when the conditional variance was modelled as a GARCH process

and monthly data was used. The value estimated for period I is considerably lower

than the value estimated for period II. This can be explained by the fact that period I

includes the Great Depression which was characterized by extremely high conditional

variances associated with large negative returns indicating a temporary distortion of the

“normal” risk-return relation. We also estimated a parametric GARCH-M separately

for a period including the Great Depression (1926:01 - 1949:12) and obtained an in-
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significant in-mean parameter λ̂ = −0.193. This finding is line with Whitelaw’s (2000)

model which predicts a negative relationship between expected excess returns and the

volatility of returns when the economy is in a contractionary regime. A visual investi-

gation of the fitted conditional variance series for period I reveals that the estimated

conditional variances from 1950 onwards are dwarfed compared to the estimated con-

ditional variances of the period of the Great Depression. This can be interpreted as a

change in the volatility regime and so it is questionable whether one should estimate

one single GARCH equation to the full sample of monthly observations. Moreover, as

argued by Poterba and Summers (1986) one should be concerned with the fact that the

risk-return relation during the Great Depression with its exceptionally high volatility

does not provide a useful guide to the current beliefs of market participants. Therefore,

we focus our attention on period II and the daily data.

For periods III and IV of daily data, the estimates of α and β are again highly

significant and imply an even higher degree of persistence (α̂ + β̂ = 0.995 for both peri-

ods). In sharp contrast to the monthly data, we estimate positive and highly significant

in-mean effects. The estimate of λ is significant at the 1% level in sample III and at the

5% level in sample IV . Note, that for the two periods of daily data we find estimates for

λ being similar to the estimate of period II of monthly data. This is reasonable since

both the risk premium and the conditional variance should be approximately propor-

tional to the length of the measurement interval. For instance, period II and III cover

approximately the same period of monthly and daily data with estimates λ̂ = 3.870 and

λ̂ = 3.844 respectively. If as argued in Guo and Whitelaw (2006) the omitted hedge term

does not effect the estimation of the risk-return relation for daily data, the finding of

similar λ̂’s for monthly and daily data suggests that the omitted variable bias argument

of Scruggs (1998) does also not hold at a monthly frequency, because in the presence of

such an effect the estimate of λ based on monthly data should be considerably different

from the one on daily data. Therefore, the argument by Andersen and Bollerslev (1998)

seems to apply, the estimates based on daily data provide a more accurate measure of

the conditional volatility and hence allow for a more precise estimation of the risk-return
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Table 6.4: GARCH-M estimates for CRSP data.

daily data monthly data

I II III IV

µ̂ 0.005 -0.003 0.00026 0.00023

(2.461) (-0.579) (2.976) (1.256)

λ̂ 0.576 3.870 3.844 4.827

(0.638) (1.130) (2.714) (2.005)

ω̂ 0.0001 0.0001 6.66 · 10−7 7.94 · 10−7

(1.99) (1.798) (3.938) (1.912)

α̂ 0.115 0.074 0.089 0.076

(4.149) (3.105) (8.187) (6.633)

β̂ 0.866 0.875 0.906 0.917

(26.295) (16.561) (103.919) (93.605)

Q2
12 4.99 4.61 12.76 10.05

[0.96] [0.97] [0.39] [0.61]

Notes: Bollerslev and Wooldridge (1992) robust t-statistics are

reported in parenthesis (·). Q2
12 are the Ljung-Box statistics at

the 12-th lag for the squared standardized residuals. Numbers in

brackets [·] are p-values.

relation. As a result of this we find a significant in-mean effect using the daily data.

Following French et al. (1987) λ̂ can be interpreted as an estimate for the parameter of

relative risk aversion. The values of λ̂ across the four periods are plausible for the coeffi-

cient of relative risk aversion. We conclude that the parametric GARCH(1, 1)-M models

deliver convincing evidence for a positive and (partly) significant relation between risk

and excess returns.

According to the Ljung-Box statistics the null hypothesis of uncorrelated squared

standardized residuals is accepted for all four models. Finally, the GARCH(1, 1)-M
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models were preferred by the AIC and BIC information criteria to models of higher

order. Since we were concerned that the extreme movements during October 1987 may

distort our inferences we reestimated the models for period II and III and omitted this

month. We found no qualitative changes in our results.

6.5.3 Testing the Linear Hypothesis

Next, we will apply our specification test to the CRSP excess return data to check

whether the functional relationship between excess returns and risk can be confirmed to

be linear as assumed by the parametric GARCH(1, 1)-M. Recall from Section 6.2 that

Linton and Perron (2003) using a semiparametric EGARCH-M model found support for

a hump-shaped pattern of the risk premium.

The application of the test procedure requires the choice of an appropriate band-

width b and of an interval [h, h] on which the test statistic is evaluated.11 For the four

periods we evaluate the test statistic on two different intervals. The larger one is chosen

such that it covers 90% of the data, the smaller one covers only 70%. In both situations

h corresponds to the 5% quantile (q0.05(ĥt)) of the distribution of the estimated condi-

tional variances from the last iteration step. Accordingly, we choose h approximately as

the 75% or 95% quantile (q0.75(ĥt) and q0.95(ĥt)). As a guide for choosing the bandwidth

we use b = σ(ĥt) · T−1/5, where σ(ĥt) and T refer only to the observations in [h, h].

This choice of the bandwidth usually results in values slightly above the cross-validated

bandwidth from the last iteration step. Since Theorem 6.2 requires oversmoothing in

comparison to the optimal bandwidth for estimation, we additionally report the test

statistic and the corresponding p-values for two larger choices of b, whereby the largest

bandwidth is always based on the full distribution of ĥt.

The test results for periods I to IV are given in Table 6.5. We begin by discussing

the results from periods I and II. Several interesting findings emerge. As can be seen

11As in the simulation section, we will denote the fitted conditional variance and the corresponding

test statistic from the last iteration step by ĥt and Γ̂T suppressing the index k.
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from the table we cannot reject the null hypothesis that the risk premium is linear

in the conditional variance for all the periods and intervals at the 5% level. Besides

the estimated 95% quantile of the fitted conditional variances q0.95(ĥt), we report the

median of the 95% quantiles of the fitted conditional variances over the 200 bootstrap

replications denoted by q0.95(h
?
t ). For period II we observe that q0.95(ĥt) and q0.95(h

?
t ) are

very close to each other reflecting the fact that the fitted conditional variances from the

bootstrap procedure mimic very well the distribution of the fitted conditional variances

from the observed data. For period I this is not the case. The 95% quantile from the

regression fit is much larger than the median 95% quantile generated by the bootstrap.

Since period I includes the Great Depression, the estimates of the conditional variance

are severely higher than the corresponding estimates of period II. The parametric

GARCH-M simulated under the null in the bootstrap replications cannot generate the

high volatilities fitted for the observed data. Again, this questions the appropriateness

of fitting one GARCH-M to the whole sample of monthly observations. Accordingly,

we evaluated the test statistic only on the interval which is covered by the bootstrap

procedure. Applying the test to a wider interval will always lead to acceptance of the

null, since we would evaluate the test in an area where we have only a few bootstrap

observations leading to high values of the bootstrap test statistic.

Figure 6.9 shows the parametric and nonparametric estimate of the risk premium

for period II. The shape of the nonparametric estimate shows some non-linearity which

could be called hump-shaped as in Linton and Perron (2003). Nevertheless, the non-

parametric estimate trends very closely with the linear parametric estimate making the

test result plausible. Pointwise 95% asymptotic standard errors for the nonparametric

estimate are given by

m̂
(k)
b (x)± 1.96 ·

√
1

Tb

x
∫

K(u)2du

f̂h(x)
,

see Linton and Perron (2003). In the above expression we use the fact that for the

GARCH-M model it holds that Var(Yt|ht = x) = x.

The test results for the daily data are provided in the lower part of Table 6.5. For
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Table 6.5: Testing for linearity in the risk-return relation.

I II

q0.95(ĥt) = 78.67, q0.95(h
?
t ) = 56.77 q0.95(ĥt) = 29.41, q0.95(h

?
t ) = 27.76

b 1.74 2.6 5 7.4 0.99 1.25 1.50 1.71

[h, h] = [10, 40] [h, h] = [12, 25]

T
√

b Γ̂T 4.766 4.192 4.144 3.400 0.984 0.787 0.662 0.596

p-value 0.670 0.520 0.250 0.145 0.610 0.545 0.481 0.422

[h, h] = [10, 60] [h, h] = [12, 30]

T
√

b Γ̂T 75.919 53.743 37.576 46.603 1.922 1.561 1.278 1.096

p-value 0.360 0.370 0.260 0.095 0.797 0.754 0.711 0.690

III IV

q0.95(ĥt) = 2.34, q0.95(h
?
t ) = 2.38 q0.95(ĥt) = 2.07, q0.95(h

?
t ) = 1.78

b 0.05 0.07 0.10 0.14 0.04 0.08 0.13 0.18

[h, h] = [0.2, 1.5] [h, h] = [0.2, 1.0]

T
√

b Γ̂T 8.062 5.913 4.393 4.403 1.467 9.45 9.009 9.608

p-value 0.086 0.136 0.161 0.100 0.118 0.112 0.107 0.020

[h, h] = [0.2, 2.34] [h, h] = [0.2, 2.07]

T
√

b Γ̂T 62.303 56.079 48.484 39.459 33.650 18.860 15.906 8.580

p-value 0.015 0.025 0.075 0.075 0.132 0.162 0.173 0.208

Notes: The smallest bandwidth always corresponds to the smaller interval, while the second small-

est bandwidth is chosen according to the larger interval. The two largest bandwidths can be

regarded as oversmoothing.

both periods we find that the 95% quantiles of the fitted and bootstrap conditional

variances are close to each other. The p-values are now considerably smaller than for

the monthly data but still we cannot reject the null of linearity in most of the cases at

the 5% level. For period III we reject linearity for some of the bandwidths in the larger

interval. The linear specification is accepted for period IV for both intervals with only
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Figure 6.9: Parametric and nonparametric fit for period II.

one exception.

To check for the robustness of our results we also tested the hypothesis of no in-mean

effect, i.e. H0 : mγ(ht) = µ. This hypothesis was rejected in the overwhelming majority

of cases. In summary, we find that there is evidence for an in-mean effect and we cannot

reject the hypothesis of the effect being linear.

6.6 Extensions

We apply our test procedure to the standard version of the GARCH-M. More flexible

formulations may be required. In the following we provide some motivating examples.

A natural extension of equation (6.10) is to allow for additional explanatory vari-

ables. For instance, in the general version of the ICAPM the excess market return is

not only explained by its conditional variance but also by state variables. One could

assume that these state variables enter linearly in the mean function and as before only

m(ht) is estimated nonparametrically. Another possibility would be to assume that

equation (6.10) is an additive function of the conditional variance and the state vari-
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ables, and each component function could be estimated nonparametrically by backfitting

methods as suggested by Mammen, Linton and Nielson (1999).

The GARCH-M model is often applied to variables which require the usage of au-

toregressive structures in the mean equation. Two popular examples are the relationship

between (i) inflation and nominal uncertainty and (ii) output growth and output un-

certainty (see for instance Grier and Perry, 2000, Kontonikas, 2004, and Caporale and

McKiernan, 1996). Usually, AR-GARCH-M models are employed to test for the effects

of inflation uncertainty and output growth uncertainty on average inflation and output

growth. Therefore, an appropriate modelling of the mean equation should incorporate

lagged values of inflation and output growth. Moreover not only the contemporaneous

conditional variance should be allowed to have an effect on inflation and output growth,

but also lagged values of the conditional variance. This requires the estimation of a

mean equation which includes autoregressive terms as well as several lagged conditional

variances.

Of course, more flexible specifications of the conditional variance should be allowed

for, such as, the EGARCH or the FI(E)GARCH which capture leverage effects and/or

long memory in the conditional variance. Even more generally one could combine the

approach presented in this chapter with a nonparametric modelling of the conditional

variance as suggested by Linton and Mammen (2005). Such a model would be a natural

extension of Masry and Tjøstheim (1995) allowing for an in-mean effect.

Finally, the assumption of normally distributed innovations Zt should be relaxed,

e.g. a more flexible distribution such as the generalized error distribution could be used

(see Linton and Perron, 2003).

6.7 Conclusions

We suggest a specification test for a class of parametric GARCH-M models. This class

of models is heavily used in the analysis of the risk-return relationship as well as to

investigate the causal relationship between the level and the uncertainty of macroeco-
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nomic variables such as inflation and output growth. The parametric functional form

of the risk premium imposed by the GARCH-M is mainly motivated by the ICAPM

or imposed simply for convenience. We suggest a test statistic which compares the fit

from a parametric specification of the risk premium with a nonparametric fit obtained

by an iterative estimation algorithm. The asymptotic distribution of the test statistic

is shown to be normal and independent of the number of iterations used. The critical

values can be obtained via a bootstrap algorithm and Monte-Carlo simulations provide

convincing evidence that the test works reasonably well in finite samples. Finally, we

apply the test procedure to daily as well as monthly return data on the CRSP. Our

results suggest that the linear specification for the risk premium is in line with the data

and thus we find support in favor of the prediction made by the ICAPM.

6.8 Appendix

Proof of Theorem 6.1.

The test statistic has the following representation: Γ̂
(0)
T = Γ̂

(0)
T,1 + Γ̂

(0)
T,2 + Γ̂

(0)
T,3, where

Γ̂
(0)
T,1 =

∫ {
1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

}2

w(x)dx,

Γ̂
(0)
T,2 = −2

∫ {
1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

}

×




1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

[
mγ̂(ĥ

(0)
t )−mγ0(ht)

]

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)



 w(x)dx,

Γ̂
(0)
T,3 =

∫ 



1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

[
mγ̂(ĥ

(0)
t )−mγ0(ht)

]

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)





2

w(x)dx.

We show that

Γ̂
(0)
T,1 = Γ̃T + oP (T−1b−1/2), (6.13)

Γ̂
(0)
T,2 = oP (T−1b−1/2), (6.14)

Γ̂
(0)
T,3 = oP (T−1b−1/2), (6.15)
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where

Γ̃T =
1

T 2

T∑
s,t=1

K(2)(ht − hs)

fh(ht)fh(hs)
w(hs)εsεt.

For the proof of claim (6.13) one applies first Lemma 6.7, that is stated below. This

shows that

Γ̂
(0)
T,1 =

∫ {
1
T

∑T
t=1 Kb(ht − x)εt

1
T

∑T
t=1 Kb(ht − x)

}2

w(x)dx + oP (T−1b−1/2).

Claim (6.13) now follows from continuity of w and fh and Lemmas 6.1 and 6.5, see

below.

For a proof of claim (6.14) one first applies Assumption 4, Assumption 6, θ̂ − θ0 =

OP (T−1/2) and Lemmas 6.1, 6.4, and 6.5 to show that

Γ̂
(0)
T,2 = (γ̂ − γ0)

1

T 2

∑
1≤s,t≤T

ws,tεt + (θ̂ − θ0)
1

T 2

∑
1≤s,t≤T

w∗
s,tεt + oP (T−1b−1/2), (6.16)

with ws,t =
∫

I
Kb(ht−x)Kb(x−hs)

ṁγ0 (x)

f2(x)
dx and w∗

s,t =
∫

I
Kb(ht−x)Kb(x−hs)

m′
γ0

(x)

f2(x)
dxḣs.

We now use θ̂−θ0 = OP (T−1/2), b|ws,t| ≤ C, b|w∗
s,t| ≤ C for a constant C and Davydov‘s

inequality (see Corollary 1.1 in Bosq, 1998). This implies that the right hand side of

(6.16) is of order oP (T−1b−1/2) which shows claim (6.14).

Claim (6.15) follows directly from Assumption 4.

For the proof of the theorem it remains to show that T
√

b(Γ̃T − b−1/2M)/V con-

verges in distribution to a standard normal distribution. This can be done by the same

arguments as in Fan and Li (1999).

Lemma 6.1. Under the assumptions of Theorem 6.1 it holds that

sup
x∈I

∣∣∣∣∣
1

T

T∑
t=1

Kb(ht − x)− fh(x)

∣∣∣∣∣ = OP (b2 +
√

log(T )(Tb)−1/2).

For a proof of this statement see Masry (1996).

In the proof of Theorem 6.1 and in the proofs of the following lemmas we make use

of the following exponential inequality for martingales. This inequality is a modification

of e.g. Lemma 8.9 in van de Geer (2000).
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Lemma 6.2. For independent mean zero random variables ..., e−1, e0, e1, ..., eT suppose

that supt E[exp(c|et|)] < ∞ for a constant c > 0 small enough. Consider a sequence of

random variables r1, r2, ... where rt is measurable with respect to the σ-field generated by

{es : s < t}. Assume that max1≤t≤T |rt| ≤ c/2. Then it holds that

E

[
exp

(
T∑

t=1

rtet

)]
≤

{
E

[
exp(C

T∑
t=1

r2
t )

]}1/2

,

where

C = E
[
e2

t exp
( c

2
|et|

)]
.

Lemma 6.3. Under the assumptions of Theorem 6.1 it holds that

sup
x∈I

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥt(θ0)− x)εt − 1

T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (T−1/2−κ)

for a κ > 0.

Proof of Lemma 6.3.

Because of Assumption 1 it suffices to show

sup
x∈IT

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥt(θ0)− x)εt − 1

T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (T−1/2−κ) (6.17)

for a κ > 0. Here IT is a grid of points of I with cardinality growing polynomially in T .

Equality (6.17) can be proved by application of the exponential bound in Lemma 6.2 and

by use of the Markov inequality P[
∑T

t=1 rtet ≥ c] ≤ exp(−sc)E[exp(s
∑T

t=1 rtet)]. We

apply these bounds with et = Zt and with rt = ±
{

Kb(ĥt(θ0)− x)−Kb(ht − x)
}√

ht

if T−1
∑t

s=1 1(|ht − x| ≤ 2b) ≤ Cb and rt = 0 else. Here C is a constant that is chosen

large enough. Note that for such a choice

T−1

t∑
s=1

1(|ht − x| ≤ 2b) ≤ Cb (6.18)

for all x ∈ I with probability tending to one.

Lemma 6.4. Under the assumptions of Theorem 6.1 it holds that

sup
x∈I

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥ
(0)
t − x)εt − 1

T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (T−1/2−κ)

for a κ > 0.
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Proof of Lemma 6.4.

Recall that ĥt(θ̂
(0)) = ĥ

(0)
t . Because of Lemma 6.3 it remains to show that for C > 0

sup
x∈I,‖θ−θ0‖≤CT−ξ

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥt(θ)− x)εt − 1

T

T∑
t=1

Kb(ĥt(θ0)− x)εt

∣∣∣∣∣ = OP (T−1/2−κ)

for a κ > 0. This claim can be shown with similar arguments as the statement of

Lemma 6.3. In a first step the supremum is replaced by a supremum that runs over a

grid of values of x and of θ. Again, the grid has cardinality that polynomially grows

with T .

Lemma 6.5. Under the assumptions of Theorem 6.1 it holds that

sup
x∈I

∣∣∣∣∣
1

T

T∑
t=1

Kb(ht − x)εt

∣∣∣∣∣ = OP (
√

log(T )(Tb)−1/2).

Proof of Lemma 6.5.

This lemma can be shown with similar arguments as in the proofs of the last two

lemmas.

Lemma 6.6. Under the assumptions of Theorem 6.1 it holds that

sup
x∈I

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥ
(0)
t − x)− 1

T

T∑
t=1

Kb(ht − x)

∣∣∣∣∣ = OP (T−κ
√

b)

for a κ > 0.

Proof of Lemma 6.6.

The lemma directly follows from (6.18) and the bound

sup
x∈I

∣∣∣Kb(ĥ
(0)
t − x)−Kb(ht − x)

∣∣∣ = OP (T−ξb−1).

Lemma 6.7. Under the assumptions of Theorem 6.1 it holds that

sup
x∈I

∣∣∣∣∣
1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt

1
T

∑T
t=1 Kb(ĥ

(0)
t − x)

−
1
T

∑T
t=1 Kb(ht − x)εt

1
T

∑T
t=1 Kb(ht − x)

∣∣∣∣∣ = OP (T−1/2−κ)

for a κ > 0.
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Proof of Lemma 6.7.

The statement of Lemma 6.7 follows directly from Lemmas 6.1 – 6.6.

Proof of Theorem 6.2.

For functions m we define

Γ̂T (ψ, m) =

∫ 



1
T

∑T
t=1 Kb(ĥt(ψ, m)− x)

[
Yt −mγ̂(ĥ

(0)
t )

]

1
T

∑T
t=1 Kb(ĥt(ψ, m)− x)





2

w(x)dx.

Note that Γ̂
(k)
T = Γ̂T (ψ̂(k), m̂

(k)
b ) for k ≥ 1 and Γ̂

(0)
T = Γ̂T (ψ̂(0),mγ̂). The statement of

Theorem 6.2 follows from the following two claims. For C > 0 it holds that

sup
(ψ1,m1),(ψ2,m2)∈MC,∗

∣∣∣Γ̂T (ψ1,m1)− Γ̂T (ψ2,m2)
∣∣∣ = oP (T−1b−1/2), (6.19)

(
ψ̂(k), m̂

(k)
b

)
∈ MC,∗. (6.20)

Here MC,∗ denotes the set of all tuples (ψ, m) with m ∈ MC and where ψ fulfills

‖ψ−ψ0‖ ≤ b3/2T−ι. The set MC is the class of all functions m whose second derivative

is absolutely bounded by C, which coincide outside of I with mγ̂ and which fulfill:

sup
x∈I

|m(x)−mb,0(x)| ≤ C(Tb)−1/2
√

log(T ),

where

mb,0(x) =
E[Kb(ht − x)m0(ht)]

E[Kb(ht − x)]
.

For a proof of (6.19) we will show that for all C > 0 for κ > 0 small enough

sup
x∈I,(ψ1,m1),(ψ2,m2)∈MC,∗

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥt(ψ2,m2)− x)εt

− 1

T

T∑
t=1

Kb(ĥt(ψ1,m1)− x)εt

∣∣∣∣∣ = OP (T−1/2−κ), (6.21)

sup
x∈I,(ψ1,m1),(ψ2,m2)∈MC,∗

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥt(ψ2,m2)− x)

− 1

T

T∑
t=1

Kb(ĥt(ψ1,m1)− x)

∣∣∣∣∣ = OP (
√

b T−κ). (6.22)
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Using these two bounds claim (6.19) follows by similar arguments as in the proof of

Theorem 6.1. We now show (6.21) and (6.22). Claim (6.22) follows by a direct bound.

We now show claim (6.21). For simplicity we neglect the discussion of the parametric

part and we show

sup
x∈I,m1,m2∈MC

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥt(m2)− x)εt

− 1

T

T∑
t=1

Kb(ĥt(m1)− x)εt

∣∣∣∣∣ = OP (T−1/2−κ), (6.23)

where ĥt(m) = ĥt(ψ0,m). For a proof of (6.23) we use a chaining argument and we

proceed similarly as e.g. in the proof of Lemma 3.2 in van de Geer (2000). Put δ =

C(Tb)−1/2
√

log(T ) and for s ≥ 1 consider 2−sδ covering sets MC
s of MC , i.e. for each

m ∈ MC there exists m∗ ∈ MC
s with ‖m∗ − m‖∞ ≤ 2−sδ. The covering sets can

be chosen such that their cardinality ]MC
s does not exceed C∗ exp[(2−sδ)−1/2] for a

constant C∗ > 0. This is a standard bound for coverings of Sobolev balls, see van de

Geer (2000). We now write ∆t(m,m∗) = T−1{Kb(ĥt(m)− x)−Kb(ĥt(m
∗)− x)}ε∗t with

ε∗t = εt1[|εt| ≤ C∗∗ log T ]− E{εt1[|εt| ≤ C∗∗ log T ]} for a constant C∗∗ > 0 that is large

enough. Now for C∗∗ > 0 large enough

sup
x∈I,m,m∗∈MC

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥt(m
∗)− x)εt − 1

T

T∑
t=1

Kb(ĥt(m)− x)εt

−
T∑

t=1

∆t(m,m∗)

∣∣∣∣∣ = OP (T−1/2−κ).

For m1,m2 ∈MC we choose now ms
1,m

s
2 ∈MC

s with ‖ms
1−m1‖∞ ≤ 2−sδ, ‖ms

2−m2‖∞ ≤
2−sδ and we consider the chain

T∑
t=1

∆t(m1,m2) =
T∑

t=1

∆t(m
0
1,m

0
2)−

GT∑
s=1

T∑
t=1

∆t(m
s−1
1 ,ms

1) +

GT∑
s=1

T∑
t=1

∆t(m
s−1
2 ,ms

2)

−
T∑

t=1

∆t(m
GT
1 ,m1) +

T∑
t=1

∆t(m
GT
2 ,m2),

where GT is the largest integer with 2GT /4T−3/2+ξb−5/2 log(T ) < ρ. The constants ρ and ξ

were introduced in Assumption 2 and Assumption 10, respectively. We now give a bound
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on P[supm1∈MC

∑GT

s=1

∑T
t=1 ∆t(m

s−1
1 , ms

1) > T−1/2−κ]. Similar bounds can be proved for

the other terms and for P[infm1∈MC

∑GT

s=1

∑T
t=1 ∆t(m

s−1
1 ,ms

1) < −T−1/2−κ]. We get the

following inequality with ηs = c2−3/4s where c is chosen such that
∑∞

s=1 ηs ≤ 1.

P

[
sup

m1∈MC

GT∑
s=1

T∑
t=1

∆t(m
s−1
1 ,ms

1) > T−1/2−κ

]

≤
GT∑
s=1

P

[
sup

m1∈MC

T∑
t=1

∆t(m
s−1
1 ,ms

1) > ηsT
−1/2−κ

]

≤
GT∑
s=1

]MC
s−1]MC

s P

[
T∑

t=1

∆t(m
s−1
1 ,ms

1) > ηsT
−1/2−κ

]

≤
GT∑
s=1

(C∗)2 exp[2(2−sδ)−1/2]P

[
T∑

t=1

∆t(m
s−1
1 ,ms

1) > ηsT
−1/2−κ

]

≤
GT∑
s=1

(C∗)2 exp[2(2−sδ)−1/2] exp[c∗2s/2T 1−2κ−2ξb4(log T )−1]

with a constant c∗ > 0. The last inequality follows by application of the exponential

inequality of Lemma 6.2. At this point it is also used that 2s/4T−3/2+ξb−5/2 log(T ) < ρ for

s ≤ GT . It can be easily checked that the right hand side of the last inequality converges

to 0. This holds for κ > 0 small enough because of 15η + 8ξ < 3, see Assumption 10.

This concludes the proof of (6.19).

For the proof of (6.20) we will argue that for l ≤ k

sup
x∈I

∣∣∣m̂(l)
b (x)−mb,0(x)

∣∣∣ ≤ C(Tb)−1/2
√

log(T ), (6.24)

sup
x∈I

∣∣∣D2m̂
(l)
b (x)

∣∣∣ = OP (1). (6.25)

Here, Dkm denotes the k-th derivative of m.

For a proof of (6.24) note that from (6.21) and (6.22) it follows that for κ > 0 small

enough

sup
x∈I

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥ
(k)
t − x)εt − 1

T

T∑
t=1

Kb(ĥ
(0)
t − x)εt

∣∣∣∣∣ = OP (T−1/2−κ),

sup
x∈I

∣∣∣∣∣
1

T

T∑
t=1

Kb(ĥ
(k)
t − x)− 1

T

T∑
t=1

Kb(ĥ
(0)
t − x)

∣∣∣∣∣ = OP (
√

b T−κ).
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Thus (6.24) follows from our results on 1
T

∑T
t=1 Kb(ĥ

(0)
t − x)εt and 1

T

∑T
t=1 Kb(ĥ

(0)
t − x)

in the proof of Theorem 6.1.

For a proof of (6.25) we write

m̂
(k)
b (x) =

r̂A
b (x) + r̂B

b (x)

f̂
(k)
b (x)

+ mγ̂(x),

where r̂A
b (x) = T−1

∑T
t=1 Kb(ĥ

(k−1)
t − x)εt, r̂B

b (x) = T−1
∑T

t=1 Kb(ĥ
(k−1)
t − x)[mγ0(ht) −

mγ̂(ĥ
(0)
t )], and f̂

(k)
b (x) = T−1

∑T
t=1 Kb(ĥ

(k−1)
t − x). For the proof of (6.20) it suffices

to show for 0 ≤ j ≤ 2 that supx∈I

∣∣Dj r̂
A
b (x)

∣∣ = OP (1), supx∈I

∣∣Dj r̂
B
b (x)

∣∣ = OP (1),

supx∈I

∣∣∣Dj f̂
(k)
b (x)

∣∣∣ = OP (1) and supx∈I

∣∣∣f̂ (k)
b (x)−1

∣∣∣ = OP (1). This can be done by similar

arguments as in the proof of (6.19).
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He, C., and T. Teräsvirta (1999b). “Properties of moments of a family of GARCH

processes.” Journal of Econometrics 92, 173–192.
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