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Chapter 1

Introduction

Nonparametric regression techniques have become a broad area of statistical re-

search in various fields. The roots of the methodology date back at least to

the middle of the last century (Rosenblatt, 1956; Parzen, 1962; Nadaraya, 1964;

Watson, 1964). Because of the computational cost the applicability was limited

until twenty years ago. The rapid development of computer technology and the

availability of large datasets have abolished this restriction.

In a classical regression framework it is the aim to estimate the functional

relation between a set of predictors and a response variable. In a parametric

regression the unknown function is parameterized with a certain (finite) number of

unknown parameters, which are then estimated based on a sample of observations.

Such a globally restricted model is often not flexible enough to analyze data

appropriately. In contrast, nonparametric techniques focus on the estimation of

the functional relation at a single point and use the information provided by the

data in a neighborhood.

Mathematically speaking, both methods try to minimize the distance between

the observed realizations of the response variable and values that are predicted

by a specific functional relation. If the class of functional relations is not re-

stricted at all, this distance is minimized by any function that passes through

all observed data points (if there are no multiple observations of the predictors).

Such an estimator may provide very poor predictions at points different from

the observed values. However, the quality of predictions is an important task

for estimation. Therefore, the possible solutions of the minimization problem

should be chosen from a smaller class of functions. This is done by imposing

certain restrictions (e. g. a parametric structure) on the functions, which leads to
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structured regression models.

In nonparametric regression the restrictions are imposed by assuming a regular

behavior of the unknown function in small neighborhoods. Using kernel smooth-

ing, which is probably the most popular nonparametric method in theoretical and

applied econometrics at the moment, the unknown function is assumed to be dif-

ferentiable of a certain degree. While smoothing techniques provide very flexible

estimators, their use is problematic when the dimension of the predictors in-

creases. To have enough observations in a local (multivariate) neighborhood, the

sample sizes have to increase drastically with the dimension. This phenomenon

is known as the curse of dimensionality of nonparametric regression.

The curse of dimensionality can be circumvented by further restricting the class

of functions – but keeping it still flexible enough. One popular way is to impose

an additive structure on the unknown function. Thereby the behavior of the

function is only restricted in one-dimensional neighborhoods. The quality of an

estimation technique is usually analyzed by its asymptotic behavior, if the sample

size increases. The curse of dimensionality is then displayed in slower rates of

convergence of such estimators to the unknown functional relation. In contrast

additive functions can be estimated with one-dimensional rates. In that sense

imposing additivity can be seen as a dimension reduction technique.

It is important to investigate if the choice of a certain structured model is

appropriate. A justification can arise from theoretical considerations about the

functional relation of the observed data. Secondly, the performance of such mod-

els can be judged in a statistical sense by implementing testing procedures. This

thesis contributes to the development of testing procedures for structured models

(Chapters 2, 3 and 5) as well as to the use of additive dimension reduction for

estimation and testing (Chapters 4 and 5). The four chapters are self-contained

and can be read separately. Each chapter ends with an appendix in which all

proofs are collected not to interrupt the outline of the presentation.

Chapter 2 is based on Haag and Hoderlein (2005). A kernel based test statistic

is proposed to test for the omission of variables from a nonparametric regression.

The applicability of the test is driven by the fact that under the null hypothesis

(of a lower-dimensional model) the estimator converges at a faster rate. Since this

also holds in (semi-)parametric models, the theoretical results can be extended

to this class of models. The advantage of the test statistic is reflected in better

bias properties than comparable tests proposed in the literature. A large number

of econometric applications involve systems of equations, therefore the results are
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presented to allow for a multivariate dependent variable.

Because the asymptotic approximations are usually not valid in finite samples

a bootstrap procedure is proposed for the class of tests mentioned above. Boot-

strap versions of the test statistic do not require pre-estimation of complicated

nonparametric objects. It is formally established that the procedure is valid. A

simulation study is conducted to investigate the performance of the bootstrap in

finite samples. In addition, the tests are extended to include the popular local

polynomial estimators. Additionally, the case of dependent data is considered.

The test procedure is applied to testing homogeneity in consumer demand. In

a simple model, demand depends on prices and income of different goods. Under

the assumption of homogeneity the demand does only depend on relative prices

(relative to the income) and therefore the dimension of the predictor variable

decreases by one. Using British demand data, the hypothesis of homogeneity is

not rejected in a simple model with three aggregated goods.

In the third chapter a structural model is considered that is implied by eco-

nomic theory. An important rationality restriction in consumer demand is the

symmetry of the Slutsky matrix. Not assuming a parametric structure of the

demand function, this results in a nonlinear restriction involving the demand

function and its derivatives. A test statistic and a bootstrap implementation are

proposed and the asymptotic results are presented. This chapter consists of parts

of Haag, Hoderlein and Pendakur (2005), where additionally a constraint estima-

tor of the demand function, that imposes symmetry, is presented. An application

to Canadian household data can be found there as well.

Chapter 4 is concerned with the nonparametric estimation of diffusion pro-

cesses. Continuous-time models have been a basic tool in theoretical finance

since the 1970s – mainly because they can be analyzed with elegant proba-

bilistic techniques. In consequence the development of statistical methods for

continuous-time processes has attracted much attention. Recently, more flexible

nonparametric models and their estimation has been studied. Since nonparamet-

ric estimation in these models can be considered as a regression problem these

methods suffer from the curse of dimensionality.

As pointed out above, additive models provide a powerful technique to overcome

this problem and to maintain high flexibility. Estimation of such models requires

iterative procedures and the asymptotic analysis is much more complex than in

the classical setting. For the estimation of the additive components Mammen,

Linton and Nielsen (1999) have introduced smooth backfitting estimation, an it-
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erative procedure that uses a projection interpretation of usual kernel estimators.

For the classical nonparametric regression model it has been shown that smooth

backfitting based on local linear estimators is oracle efficient, i. e. it has the same

bias and variance as the infeasible estimator based on the knowledge of all other

components.

In Chapter 4 a multivariate diffusion process is considered and (some or all)

elements of the drift vector and the diffusion matrix are modelled as additive

functions. Smooth backfitting based on local linear and Nadaraya-Watson esti-

mators is used to estimate the components. Assuming stationarity, the asymp-

totic properties of all estimators are derived under high frequency sampling. The

efficiency results from the standard regression continue to hold. In particular,

Nadaraya-Watson based estimators achieve the same variance as the oracle esti-

mator, while the bias is not oracle. The local linear based estimators are shown

to be fully oracle efficient. In a simulation study, the finite sample performance

of the estimators is investigated. As an illustration, the estimators are applied to

interest yield data.

The last chapter returns to the problem of testing for parametric structure.

A standard approach is to measure the distance between a parametric and a

nonparametric fit with a squared deviation measure. These tests inherit the

curse of dimensionality from the nonparametric estimator. This results in a loss

of power in finite samples and against local alternatives.

A new test statistic is proposed to circumvent the curse of dimensionality by

projecting the residuals under the null hypothesis onto the space of additive

functions. To estimate this projection the smooth backfitting estimator is used.

The asymptotic behavior of the test statistic is derived under the null hypothesis

and local and fixed alternatives. The motivation for the projection approach is

to have a data analytic tool if the sample size is too small for a full-dimensional

test as in Chapter 2. In that case, the asymptotic approximations are usually not

valid and it is advisable to simulate the distributions with the bootstrap.

Therefore, a wild bootstrap procedure is proposed and its validity is established.

The finite sample properties of the bootstrap are investigated in a simulation

study. The test has good power in different settings and the circumvention of

the curse of dimensionality is demonstrated in a high-dimensional model. It is

very robust in particular against increasing correlation of the predictors. Finally

the test is applied to testing the parametric specification of a consumer demand

system.



Chapter 2

Bootstrap Specification Testing

in Systems of Equations

2.1 Introduction

Nonparametric specification testing in systems of equations appears throughout

Economics. For the proposed test statistics, there are two main areas of appli-

cation: The first is testing for parametric or semiparametric specification, the

second is testing for the significance of regressors. The main focus of this chapter

is to test for significance of certain regressors. The application to test (semi-)

parametric specifications will appear as a direct extension. Because there exist

already a large literature on nonparametric testing, the approach of this chapter

has to be integrated.

In the nonparametric testing literature, there are two main strands of work.

The first are the integrated conditional moment (ICM) tests. Key contributions

for parametric specifications are Bierens (1982, 1990) and Bierens and Ploberger

(1997), while Delgado and Gonzales-Manteiga (2001) consider omission of vari-

ables. These tests can be viewed as extensions to the conditional moment tests

proposed by Newey (1985) and Tauchen (1985).

The second strand of literature considers the L2-distance between two functions,

usually using nonparametric (kernel) estimators at some point. Within this class

there are two subclasses that can be classified according to their treatment of

the degenerate U -statistic which is at the core of the test statistic. The first

subclass avoids dealing with the U -statistic explicitly by using ad hoc methods like

reweighting observations or splitting the sample. Contributions include Hidalgo
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(1992), Wooldridge (1992), Yatchew (1992) and Whang and Andrews (1993).

The second subclass of tests using nonparametric estimators deals directly

with this complication, by applying central limit theorems of Hall (1984) or de

Jong (1987). Individual tests include Härdle and Mammen (1993), Hong (1993),

Horowitz and Härdle (1994), Fan and Li (1996), Lavergne and Vuong (1996,

2000), Zheng (1996), Li and Wang (1998) and Aı̈t-Sahalia, Bickel and Stoker

(2002). Related is also the work of Horowitz and Spokoiny (2001).

The ICM tests and the test that use nonparametric estimators are compared in

Fan and Li (2000), who use the notation n, h and d to denote sample size, band-

width and dimension of all regressors, respectively. The upshot of their discussion

is that ICM-tests can detect Pitman type local alternatives that approach the null

at order n−1/2, whereas the second class can only detect those that approach the

null at order n1/2hd/4. In contrast, the second type of tests has better power

properties against high frequency alternatives. This suggests that the two types

of tests should be seen as complements rather than competitors. However, gener-

ally speaking, ICM tests have a nonnormal limiting distribution that depends on

nuisance parameters. Precisely this dependence makes their application rather

cumbersome.

Within the class of L2-distance tests, the approach that avoids ad hoc modifi-

cations may be seen as more natural. Sample splitting for instance is associated

with an obvious loss of power (see Fan and Li ,1996, for further discussion on the

disadvantages of ad hoc modification). Considering the omission of variables the

procedure of this chapter is more closely related to Fan and Li (1996), Lavergne

and Voung (2000) and Aı̈t-Sahalia, Bickel and Stoker (2002), while the other tests

mentioned above concentrate on the case of a parametric null hypothesis.

There are several extensions in comparison to Fan and Li (1996), Lavergne and

Voung (2000) and Aı̈t-Sahalia, Bickel and Stoker (2002). Arguably the biggest is

the use of the bootstrap. This helps to avoid the pre-estimation of elements of the

limiting distribution. In addition, the bootstrap has the advantage of generating

better approximations to the unknown finite sample distribution. Specifically, we

adopt a ”wild bootstrap” procedure as proposed in Härdle and Mammen (1993),

Gozalo (1997) and Li and Wang (1998) for testing parametric specifications. Be-

cause of an additional smoothing step in the construction of the test statistic,

our specific test statistic is shown to have better bias properties than Fan and Li

(1996), Lavergne and Voung (2000) and Aı̈t-Sahalia, Bickel and Stoker (2002).

Among other things, this results in weaker assumptions on the bandwidths.
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In the next section we introduce the test formally and discuss the conventional

asymptotic theory as well as a bootstrap version of the test statistic. The third

section will focus on extensions to the basic test statistic of the second section:

The implementation of local polynomials, the extension to (semi-)parametric hy-

potheses, and the case of dependent (i. e. mixing) data. A simulation study will

occupy the fourth section. Finally, the method will be applied to testing homo-

geneity of degree zero in demand analysis, using British data.

2.2 The Test Statistic

2.2.1 Transforming the Hypothesis into a Test Statistic

Throughout this paper, we consider a model that captures the relationship be-

tween the random vectors Y, X and Z. Here Y ∈ RdY is a dY -dimensional depen-

dent variable, and X ∈ RdX , Z ∈ RdZ are predictors. The hypothesis to be tested

is whether Z can be omitted from the regression of Y on (X, Z). For testing this

hypothesis, we define the following functions

µ(x, z) = E(Y | X = x, Z = z)

m(x) = E(Y | X = x).

If it is possible to exclude Z from the regression, then these functions will coincide

almost surely. Hence, we will base the test statistic on the null hypothesis

H0 : P(µ(X, Z) = m(X)) = 1,

while the alternative is that they differ on a subset of the support of Z of positive

measure. The null is equivalent to the condition that the L2-distance of the two

functions is zero. Using a positive and bounded weighting function a(x, z) this

condition can be expressed as

(2.1) Γ = E
( dY∑

j=1

(
µj(X, Z)−mj(X)

)2
a(X,Z)

)
= 0.

Using the fact that mj(X) = E(mj(X) | X, Z), we base the test on

(2.2) Γ = E
( dY∑

j=1

(
µj(X,Z)− E(mj(X) | X,Z)

)2
a(X,Z)

)
.
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As mentioned above, alternative test statistics for the single equation case (dY =

1) have been proposed in several publications. Aı̈t-Sahalia, Bickel and Stoker

(2002) base their test statistic directly on equation (2.1), while Fan and Li (1996)

propose to base a test statistic on

E
(
(Y −m(X))E(Y −m(X) | X,Z)f(X,Z)a(X, Z)

)
.

To avoid technical problems, Fan and Li (1996) use a(X, Z) = f 2(X, Z)a′(X,Z)

and a leave-one-out estimator for the conditional expectation. Another possibility

would be to compare residual sums of squares, i. e. basing a test statistic on

E
(
((Y −m(X))2 − (Y − µ(X, Z))2)a(X, Z)

)

which would be an adaptation of the tests by Dette (1999) and Fan, Zhang and

Zhang (2001) to the problem of omitting variables. To our knowledge such a test

has not yet been implemented. We expect that its local power properties are

worse than those of a test based on (2.1) or (2.2) (see Dette, 1999, who shows

these worse power properties for the case of a parametric null hypothesis).

2.2.2 Sample Counterpart

The sample counterpart of Γ in (2.2) serves as test statistic. Given a sample

of n independent and identically distributed random vectors (Y1, X1, Z1), . . . ,

(Yn, Xn, Zn), we replace the unknown functions m(x) and µ(x, z) by their Nadara-

ya-Watson estimators m̂eh(x) and µ̂h(x, z). Formally, these are defined as vectors

with the one-dimensional estimators, m̂jeh(x) =
∑n

i=1 Keh(x−Xi)Y
j
i /

∑n
i=1 Keh(x−

Xi) and µ̂j
h(x, z) =

∑n
i=1 Kh(x −Xi, z − Zi)Y

j
i /

∑n
i=1 Kh(x −Xi, z − Zi), where

Kh(u) = K(u/h)/h with a kernel K and bandwidths h and h̃. as individual

elements. As an estimator for E(mj(X) | X = x, Z = z) we propose

K̂nm
jeh(x, z) =

∑n
i=1 Kh(x−Xi, z − Zi)m̂

jeh(Xi)∑n
i=1 Kh(x−Xi, z − Zi)

.

Then, the statistic is given by

(2.3) Γ̂K =
1

n

dY∑
j=1

n∑
i=1

(
µ̂j

h(Xi, Zi)− K̂nmjeh(Xi, Zi)
)2

Ai

with Ai = a(Xi, Zi). The additional smoothing step associated with K̂nmeh(x, z)

produces an artificial bias that eliminates the bias coming from µ̂h(x, z), thereby
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reducing the number of bias components in the asymptotic expression. This re-

duction in turn allows to employ less restrictive requirements on the bandwidths.

A similar modification was suggested by Härdle and Mammen (1993) for the

case of a parametric null hypothesis. The superiority of Γ̂K over the tests of

Aı̈t-Sahalia, Bickel and Stoker (2002) and Fan and Li (1996) can be stated in

terms of smoothness conditions and local power properties of the tests and will

be discussed after Theorem 2.2.

2.2.3 Asymptotic Distribution of the Test Statistic

In order to treat the asymptotic distribution of the test statistic, we introduce the

following assumptions. The first two assumptions are concerned with the data

generating process.

Assumption 2.1. The data (Yi, Xi, Zi), i = 1, . . . , n are independent and iden-

tically distributed with density f(y, x, z).

Assumption 2.2. For the data generating process

1. The continuously differentiable weighting function a(x, z) is positive and

bounded with compact support A ⊂ RdX+dZ .

2. f(y, x, z) is r-times continuously differentiable (r ≥ 2). f and its partial

derivatives are bounded and square-integrable on A.

3. µ(x, z) and m(x) are r + 1-times continuously differentiable.

4. f(x, z) =
∫

f(y, x, z) dy is bounded from below on A, i. e. inf(x,z)∈A f(x, z) =

b > 0.

5. The covariance matrix

Σ(x, z) = (σij(x, z))1≤i,j≤dY
=

E((Y − µ(X, Z))(Y − µ(X, Z))′ | X = x, Z = z)

is square-integrable (elementwise) on A.

6. E((Y j − µj(X, Z))2(Y k − µk(X,Z))2) < ∞ for every 1 ≤ j, k ≤ dY .
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The first assumption may be relaxed to allow for dependent data. We will

discuss this extension in Section 2.3.3. Assumption 2.2 contains standard differ-

entiability and integrability assumptions that do not have to be discussed.

The following assumptions are concerned with the kernel and the bandwidth se-

quences. For simplicity, we assume product kernels in both regressions. Therefore

we formulate our assumptions for one-dimensional kernel functions. To further

simplify things, we assume that we have only one single bandwidth for each re-

gression (h and h̃) instead of bandwidth vectors h ∈ RdX+dZ and h̃ ∈ RdX .

We shall make use of the following notation: Define kernel constants

κk =

∫
ukK(u) du and κ2

k =

∫
ukK(u)2 du

κ∗ =

∫ (∫
K(u)K(u− v) du

)2

dv.

Then, our assumptions regarding kernels and bandwidths are as follows:

Assumption 2.3. The one-dimensional kernel is Lipschitz continuous, bounded,

has compact support, is symmetric around 0 and of order r (i. e.
∫

ukK(u) dxu =

0 for all k < r and
∫

urK(u) du < ∞).

Assumption 2.4. For the bandwidths

1. For n →∞, the bandwidth sequence h = O(n−1/δ) satisfies

(2.4) dX + dZ < δ.

2. For n →∞, the bandwidth sequence h̃ = O(n−1/eδ) satisfies

(2.5) 2δ
dX

dX + dZ

< δ̃.

3. For the order r of the kernel holds

(2.6) δ̃
2δ − dX − dZ

4δ
< r.

While the assumptions on the kernel are standard, the assumptions on the

bandwidths do merit some discussion. Observe first that the optimal rate for

estimating the full dimensional regression function µ(x, z), given by

δopt = (dX + dZ) + 2r.
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is not excluded from inequality (2.4). Under the null hypothesis, µ(x, z) does

not depend on z. Then, the derivatives with respect to z are zero and the corre-

sponding bias terms disappear. It follows that under H0 the optimal bandwidth

in the z-directions is infinite. But under the alternative and in the x-directions

there exists an optimal bandwidth.

If we want to make use of this bandwidth, through employing data-driven

methods of bandwidth choice in the full dimensional regression (e. g. cross val-

idation), then the inequalities (2.5) and (2.6) impose restrictions on the band-

width h̃ of the dimension-reduced regression function m(x). More specifically,

because of (2.5), it might be necessary to use a larger-than-optimal bandwidth,

and because of (2.6), to employ higher order kernels. As an example, take

dX = 1, dZ = 1. It is not possible to use both δopt and δ̃opt for any choice of

r, because inequality (2.5) yields the restriction δ < δ̃.

An alternative representation of (2.4)–(2.6) may be given in terms of n and

h. We obtain nhdX+dZ → ∞ (necessary for consistency of the kernel density

estimator), hdX+dZ h̃−dX → 0 and nh(dX+dZ)/2h̃2r → 0.1 The last two conditions

ensure that the estimation error of the dimension-reduced regression does not

dominate the test statistic.

The restrictions on the bandwidths are much weaker than those restrictions

assumed by Aı̈t-Sahalia, Bickel and Stoker (2002). In their case the optimal rate

for estimation is excluded for all regressions and higher order kernels are always

needed, provided dX + dZ ≥ 3. In contrast, our assumptions allow to trade the

use of higher order kernel for a larger-than-optimal bandwidth.

In practise we propose to calculate data-driven bandwidths (by cross-validation)

for the dimension reduced regression. In case the optimal rate is excluded, we

suggest to adjust the bandwidth by n1/eδopt−1/eδ. Although we do not formally

address the issue of data-driven bandwidths ĥ we assume that our results will

hold if ĥ/h
P−→ 1.

For the first theorem, we introduce the following quantities

σij
Γ =

∫∫
σij(x, z)2a(x, z)2 dx dz bi

Γ =

∫∫
σii(x, z)a(x, z) dx dz.

The asymptotic normality of the test statistic is given by the following

1Note that these restrictions imply nh̃dX →∞, which ensures the consistency of the dimen-
sion reduced regression.
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Theorem 2.1. Let Assumptions 2.1–2.4 hold. Then we have that under H0

Σ−1
K (nh(dX+dZ)/2Γ̂K − h−(dX+dZ)/2BK)

D−−→ N (0, 1)

where

Σ2
K = 2(κ∗)dX+dZ

( dY∑
i=1

σii
Γ + 2

∑
i<j

σij
Γ

)
BK = (κ2

0)
dX+dZ

dY∑
i=1

bi
Γ.

Simplifying the proofs in the appendix to one line, the test statistic can be

written as

Γ̂K = Γ + In + Un,

where Γ = 0 under H0, Un depends upon the uniform rate of convergence of

the restricted estimator, and In is a degenerated U -statistic which dominates

asymptotically. This U -statistic converges at the rate nh(dX+dZ)/2, which is faster

than n1/2, under the admissible bandwidth sequence.

Next, we investigate the behavior of the test statistic under the alternative.

There are a number of efficiency measures (e. g. Bahadur efficiency or Hodges-

Lehman efficiency) to compare two test statistics. The most common one is the

asymptotic relative efficiency (Pitman efficiency) which compares the behavior of

the tests under local alternatives. To this end, define a sequence of alternatives

H1n : µ(x, z) = m(x) + εn(x, z)

where εn(x, z) is a converging sequence of functions. Note that fixed alternatives

are included for εn(x, z) = ε(x, z) 6= 0.

Theorem 2.2. Let Assumptions 2.1–2.4 hold. If there exists a constant BL such

that

λn

dY∑

k=1

1

n

n∑
j=1

(εk
n(Xj, Zj)

f(Xj, Zj)

)2

a(Xj, Zj)
P−→ BL

for λn = O(nh(dX+dZ)/2). Then we have that under H1n

Σ−1
K (nh(dX+dZ)/2Γ̂K − h−(dX+dZ)/2(BK + κ2

0BL))
D−−→ N (0, 1).

For a fixed alternative it holds that nh(dX+dZ)/2Γ̂K →∞.

The test cannot detect alternatives that converge to zero at a rate faster than

n−1/2h−(dX+dZ)/4. This means that the test suffers from the curse of dimensional-

ity because the rate decreases as the number of dimensions increase. Aı̈t-Sahalia,
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Bickel and Stoker (2002) and Fan and Li (1996) establish local power properties

of their tests and both obtain the same rate. Theorem 2.2 holds for the test of

Aı̈t-Sahalia, Bickel and Stoker (2002) in an analogous fashion. A comparison with

the test of Fan and Li (1996) is only possible using a(x, z)f(x, z)−2 as a weighting

function, since Fan and Li (1996) use density weighting. The asymptotic variance

differs through a kernel related constant. Because κ∗ < κ2
0 for a density K, our

test is asymptotically relatively more efficient than the test of Fan and Li (1996).

2.2.4 Bootstrap-Implementation

The direct way to implement the test is to estimate the expected value BK and

the variance Σ2
K. This requires the estimation of integrals like

(2.7)

∫
σjj′(x, z)ka(x, z)k dx dz k = 1, 2, j, j′ = 1, . . . , dY .

Therefore estimators of the conditional (co)variances are needed. A Nadaraya-

Watson-type estimator may be defined as

σ̂jj′
h (x, z) =

∑n
i=1 Kh(x−Xi, z − Zi)

(
Y j

i − µ̂j
h(Xi, Zi)

)(
Y j′

i − µ̂j′
h (Xi, Zi)

)
∑n

i=1 Kh(x−Xi, z − Zi)
.

This estimator has better properties than the difference between estimators of

the second and the squared first conditional moment of Y given X and Z (see

Fan and Yao, 1998). Now the integral in (2.7) can be calculated numerically. To

ensure consistency of the standardized test statistic the underlying (co)variance

estimators (as well as the density estimator) have to be chosen such that

sup
(x,z)∈A

|σ̂jj′
h (x, z)− σjj′(x, z)| = oP (h−(dX+dZ)/2).

Estimating the components of the asymptotic distribution of Γ̂K is cumbersome.

Moreover, it is also problematic: In the proof of the asymptotic normality of the

test statistic many terms of lower magnitude are omitted. Asymptotic approxi-

mations involving U -statistics work often very poorly in a finite sample, as was

pointed out by Hjellvik and Tjøstheim (1995). To avoid this problem we propose

a wild bootstrap procedure to derive critical values for the test statistic, as in

Härdle and Mammen (1993). In our setting this is performed in the following

way

1. Calculate (multivariate) residuals ε̂i = Yi − m̂eh(Xi).
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2. For each i randomly draw ε∗i = (ε1,∗
i , . . . , εdY ,∗

i )′ from a distribution F̂i that

mimics the first three moments of ε̂i.

3. Generate the bootstrap sample (Y ∗
i , X∗

i , Z∗
i ), i = 1, . . . , n by Y ∗

i = m̂eh(Xi)+

ε∗i and X∗
i = Xi, Z

∗
i = Zi.

4. Calculate Γ̂∗K from the bootstrap sample (Y ∗
i , X∗

i , Z∗
i ), i = 1, . . . , n.

5. Repeat steps 2 to 4 often enough to obtain critical values for Γ̂K.

Assumption 2.5. For the bootstrap distribution

The bootstrap residuals ε∗i , i = 1, . . . , n are drawn independently from distributions

F̂i, such that E bFi
ε∗i = 0,E bFi

ε∗i (ε
∗
i )
′ = ε̂iε̂

′
i and E bFi

(εk,∗
i )4 < ∞ for all k =

1, . . . , dY .

This set of admissible distributions is very general. Apart from the simple wild

bootstrap, a smooth conditional moment bootstrap as in Gozalo (1997) may also

be used. In the classical wild bootstrap, residuals are drawn from a two-point

distribution that takes the value ε̂i(1−
√

5)/2 with probability (5 +
√

5)/10 and

ε̂i(1+
√

5)/2 else (see Härdle and Mammen, 1993). Assumption 2.5 is fulfilled for

discrete distributions, distributions with compact support and – among others –

for the normal distribution. These are the most commonly used distributions in

practice.

The theoretical result concerning this bootstrap procedure is given in

Theorem 2.3. Let Assumptions 2.1–2.5 be true. Under H0, it holds that

Σ−1
K (nh(dX+dZ)/2Γ̂∗K − h−(dX+dZ)/2BK)

D−−→ N (0, 1),

conditional on the data (Y1, X1, Z1), . . . , (Yn, Xn, Zn) with probability tending to

one.

To prove theorem 2.3 it is sufficient to assume that the bootstrap distribution

F̂i mimics the first two moments of ε̂i. Using an Edgeworth expansion in the

proof, we conjecture that matching the first three moments yields a higher order

approximation. In our simulation study we find evidence that this improves the

finite sample properties. Therefore we recommend to mimic three moments in

applications.
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2.3 Extensions

In this section we discuss extensions to the test statistic along three lines. First,

we explore the use of local polynomial estimators to replace the Nadaraya-Watson

estimator. Second, we extend the test statistic to semi-parametric hypotheses.

Last, but not least, we investigate the behavior of the test in the case of dependent

data. In all cases, we focus on the respective modifications of Theorem 2.1.

Changes in the proofs of the bootstrap result and the local power properties are

straightforward.

2.3.1 Local Polynomials

In nonparametric regression analysis the superiority of local polynomial estima-

tors to Nadaraya-Watson estimators is well known (see Fan and Gijbels, 1996).

Therefore it is a natural extension to use local polynomial estimators for µ(x, z)

and m(x) in the test statistic. Recall that they are defined via minimizing

(2.8)
n∑

i=1

(
Y j

i −
∑

0≤|k|≤p

bk(x, z)(Xi − x, Zi − z)k
)2

Kh(Xi − x, Zi − z),

with respect to all bk. For vectors k = (k1, . . . , kdX+dY
) we have utilized the

notation |k| =
∑

j kj and xk =
∏

j(x
j)kj . Then µ̂j,LP

h (x, z) is defined as the

solution for b0. Introducing the quantities

t̂jk(x, z) =
1

n

n∑
i=1

Y j
i

((Xi − x, Zi − z)

h

)k

Kh(Xi − x, Zi − z),

f̂h,k(x, z) =
1

n

n∑
i=1

((Xi − x, Zi − z)

h

)k

Kh(Xi − x, Zi − z),

which are arranged in a vector T̂ j(x, z) = (t̂jk(x, z))k and a matrix Ŝ(x, z) =

(f̂h,k+j(x, z))k,j in a lexicographical order.2 With this notation, the estimator can

be written explicitly as

µ̂j,LP
h (x, z) = bŜ−1(x, z)T̂ j(x, z)c1,

where b·c1 extracts the first element of a vector. m̂j,LPeh (x) is defined analogously.

The local polynomial version of E(mj(X) | X,Z) is defined as the solution to (2.8)

2Addition is in the Hadamard-sense, i. e. j + k = (j1 + k1, . . . , jdX+dZ
+ kdX+dZ

).
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where Y j
i is replaced with m̂j,LPeh (Xi). Explicitly it can be written as

K̂nm
j,LPeh (x, z) = bŜ−1(x, z)T̃ j(x, z)c1,

where the elements of the vector T̃ j(x, z) are given by

t̃jk(x, z) =
1

n

n∑
i=1

m̂j,LPeh (Xi)
((Xi − x, Zi − z)

h

)k

Kh(Xi − x, Zi − z).

The new test statistic is then the analog to (2.3)

Γ̂LP
K =

1

n

dY∑
j=1

n∑
i=1

(
µ̂j,LP

h (Xi, Zi)− K̂nm
j,LPeh (Xi, Zi)

)2
Ai.

To define the kernel constants arising in the bias and variance parts of the

asymptotic distribution, we have to define the matrix M = (κj+k)j,k with en-

tries κk =
∫

ukK(u) du. In an abuse of notation we denote with κ−1
k the elements

of the first row of M−1. This enables to define

κΣ =

∫ (∫ ( ∑

1≤k≤r

(u− v)kκ−1
j K(u− v)

)( ∑

1≤k≤r

ukκ−1
j K(u− v)

)
du

)2

dv,

κB =

∫ ( ∑

1≤k≤r

ukκ−1
j K(u)

)2

du,

which we require for the derivation of the asymptotic distribution of Γ̂LP
K in the

following theorem:

Theorem 2.4. Let Assumptions 2.1–2.3 hold. Let Assumption 2.4 hold for r =

p+1 for p odd and r = p+2 for p even, where p is the order of the local polynomial

estimator. Then we have that under H0

Σ−1
L (nh(dX+dZ)/2Γ̂LP

K − h−(dX+dZ)/2BL)
D−−→ N (0, 1),

where

Σ2
L = 2(κΣ)dX+dZ

( dY∑
i=1

σii
Γ + 2

∑
i<j

σij
Γ

)
BL = (κB)dX+dZ

dY∑
i=1

bi
Γ.

Note, that if an even order of the local polynomial fulfills the requirements

of Assumption 2.4, then the subsequent odd order polynomial fulfills also these

requirements. The use of one additional order gives therefore no gain in flexibility

when choosing the bandwidth sequences. Therefore, in contrast to estimation

it is natural to use an even order local polynomial for testing. If we replace

the corresponding kernel constants with κΣ and κB the results of Theorems 2.2

and 2.3 continue to hold. This can be seen directly from the proof of Theorem 2.4.
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2.3.2 Semiparametric Modelling

The asymptotic distribution of the test is driven by the fact that the low-di-

mensional estimator m̂eh(x) converges faster than the full-dimensional estimator

µ̂h(x, z). This remains true for semiparametric hypotheses, i. e.

H0S : P(µ(x, z) = m(x) + G(z, θ)) = 1,

where G(z, θ) =
(
G1(z, θ) + · · ·+ GdY (z, θ)

)
is a known function depending on a

finite-dimensional parameter vector θ ∈ Θ. Denote with θ̂ a parametric estimator

that allows us to construct estimators of the nonparametric regression part under

H0S, i. e.,

m̂keh(x, θ̂) =

∑n
i=1 Keh(x−Xi)(Y

k
i −Gk(Zi, θ̂))∑n

i=1 Keh(x−Xi)
.

Then we propose to use as test statistic

Γ̂S
K =

1

n

dY∑
j=1

n∑
i=1

(
µ̂h(Xi, Zi)− K̂nm

j,Seh (Xi, Zi)
)2

Ai,

with

K̂nm
j,Seh (x, z) =

∑n
i=1 Kh(x−Xi, z − Zi)(m̂

keh(x, θ̂) + Gk(Zi, θ̂))∑n
i=1 Kh(x−Xi, z − Zi)

.

To obtain an asymptotic result we require the following assumption on the speed

of convergence of the semiparametric estimator:

Assumption 2.6. Gk(z, θ)−Gk(z, θ̂) = oP (n−1/2h(dX+dZ)/4) for all k = 1, . . . , dY

uniformly in AZ = {z | ∃ x s. t. (x, z) ∈ A} and θ ∈ Θ.

This assumption is stated in a very general fashion. It has to be checked for a

specific model and estimation problem. As an example, consider the linear model

with dX = 0 and G(z, θ) = θ′z. The least squares estimator is known to be root-n

consistent and Assumption 2.6 is fulfilled. Moreover, as a special case for dY = 1

we obtain the test introduced by Härdle and Mammen (1993).

The asymptotic distribution of the test is stated in the following

Theorem 2.5. Let Assumptions 2.1–2.4 and 2.6 hold. Then we have that under

H0S

Σ−1
K (nh(dX+dZ)/2Γ̂S

K − h−(dX+dZ)/2BK)
D−−→ N (0, 1),

where ΣK and BK is given as in Theorem 2.1.
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2.3.3 Dependent Data

The assumption of independent and identically distributed data is very restric-

tive. In many data sets in practice time series effects are present. To deal with

this complication, we extend the results of the previous sections to the case of

mixing random variables. For a time series Wi = (Yi, Xi, Zi), i = 1, . . . , n we

define the sigma algebras F t
s = σ(Ws,Ws+1, . . . , Wt with −∞ ≤ s < t ≤ ∞ and

the β-mixing coefficients

β(n) = sup
t∈Z

E
(

sup
A∈F∞t+n

|P(A | F t
−∞)− P(A)|)

A process is called absolutely regular if β(n) → 0 for n → ∞. To derive the

asymptotic normality of the test statistic, we invoke the following additional

assumptions

Assumption 2.7. For dependent data

1. The data Wi = (Yi, Xi, Zi), i = 1, . . . , n are strictly stationary and absolutely

regular with mixing coefficients β(n). The stationary density is denoted by

f(w).

2. The density of the joint distribution of (Wq,Wr,Ws,Wt) is bounded and

continuously differentiable for all q, r, s, t.

3. For some ν > 1 it holds that E |Y j|4ν < ∞ for all j = 1, . . . , dY .

4. For the mixing coefficients we have the summability conditions

∞∑
i=1

β(i)1−2/ν < ∞ and
∞∑
i=1

ia
′
β(i)1−2/a,

with 2 < a < 4ν and a′ > 1− 2/a.

It holds that
∑∞

n=1 ψ(n) < ∞ where

ψ(n) =
nL(n)

r(n)

( nT (n)2

h̃dX log n

)1/4

β(r(n)),

with L(n) = (nT (n)2/(h̃dX+2 log n))dX/2, r(n) = (nh̃dX/ log n)1/2/T (n) and

T (n) =
(
n log n(log log n)1+ε)1/4ν.
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For m = n1/δm with δm > 4δ and 1/δ + 1/δm < 3/2 it holds that

n6h2(m2β(m)1−1/ν + n2β(m)2−2/ν) → 0,

as n →∞.

These assumptions are not restrictive: Many well-known time series models were

shown to be absolutely regular, most of them with exponentially decaying mixing

coefficients. For mixing coefficients with geometric decay, the requirements of

Assumption 2.7 are directly fulfilled (for some ν > 1).

The dependence structure of Y, X and Z is only modelled in terms of differen-

tiability assumptions on their joint density. This is general enough to cover the

cases where X and Z are lagged values of Y . Beside time series regression, the

test can be used to determine the order of a nonparametric AR-process as well

as to test for parametric AR-structure.

This assumption enables us to state the following extension to the previous

theorems.

Theorem 2.6. Theorems 2.1–2.4 remain valid, if we replace Assumption 2.1 by

Assumption 2.7.

Asymptotic results under mixing assumptions are obtained by a trade-off be-

tween the number of existing moments and the decaying rate of the mixing coef-

ficients. This is given in terms of the parameter ν. The use of a larger bandwidth

may also reduce the requirements on the rate of decay (and the moment condi-

tions). Here, this is given in terms of the sequence ψ(n).

2.4 Monte Carlo Simulation Study

In this section we examine the finite sample behavior of the test statistic Γ̂K by

means of a simulation study. Under the null hypothesis, we simulate from the

model

Yi = m(Xi) + σ(Xi)Ui, i = 1, . . . , n,

where Ui
iid∼ N (0, 1) and Xi

iid∼ U(−π, π) independent of Ui. The additional

regressor Zi
iid∼ U(−π, π), i = 1, . . . , n is simulated independently from Ui and Xi.

We consider two different models for the regression function, given by m(x) =

(x/π)2 and m(x) = cos(x). Moreover, we consider the case of homoscedastic

(σ(x) = 0.5) and heteroscedastic (σ(x) = 0.5 exp(−(x/π)2)) errors.
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Table 2.1: Simulation Results for n = 100

h0 1.00 1.50 2.00 2.50 3.00

Panel A: m(x) = cos(x)

σ(x) = 0.5

0.10 0.069 0.060 0.065 0.095 0.106

0.05 0.009 0.008 0.023 0.035 0.038

p-value 0.632 0.593 0.580 0.575 0.650

σ(x) = 0.5 exp(−(x/π)2)

0.10 0.036 0.039 0.060 0.081 0.105

0.05 0.006 0.011 0.013 0.020 0.047

p-value 0.701 0.623 0.602 0.594 0.612

Panel B: m(x) = (x/π)2

σ(x) = 0.5

0.10 0.039 0.071 0.070 0.085 0.099

0.05 0.006 0.018 0.023 0.031 0.041

p-value 0.689 0.632 0.592 0.577 0.572

σ(x) = 0.5 exp(−(x/π)2)

0.10 0.054 0.051 0.078 0.091 0.131

0.05 0.011 0.016 0.024 0.045 0.056

p-value 0.692 0.616 0.572 0.565 0.603

For the nonparametric regression we use the forth order kernel K(u) = 15
32

(7x4−
10x2 + 3)1[−1,1](x). The bandwidth sequences are chosen by the simple plug-in



2.4 Monte Carlo Simulation Study 21

Table 2.2: Simulation Results for n = 100,m(x) = cos(x), σ(x) = 0.5

h0 1.00 1.50 2.00 2.50 3.00

δ = 4, δ̃ = 6

0.10 0.031 0.032 0.048 0.057 0.081

0.05 0.001 0.005 0.006 0.017 0.030

p-value 0.714 0.644 0.603 0.588 0.584

η∗i ∼ N (0, 1)

0.10 0.026 0.028 0.052 0.068 0.095

0.05 0.001 0.005 0.007 0.026 0.036

p-value 0.688 0.636 0.602 0.572 0.604

rules3 hX = h0n
−1/δŝd(X), hZ = h0n

−1/δŝd(Z) and h̃X = h0n
−1/eδŝd(X), where we

use different values for h0 to investigate the performance of the test for different

bandwidths. For simplicity we use the same constant h0 for all three bandwidths.

Unless otherwise stated we use δ = 5 and δ̃ = 6 which clearly fulfill Assump-

tion 2.4 for a kernel of order r = 4.

The bootstrap is implemented with B = 199 iterations. The residuals are drawn

from the classical two-point distribution given in Section 2.2.4. All tables report

the proportion of rejection based on 1 000 Monte-Carlo iterations.

The results for a sample size of n = 100 are displayed in Table 2.1. We find that

the test tends to be too conservative for small bandwidths. However we observe

no severe distortion of the level for the chosen bandwidth constants. Given that

n = 100 is a relative small sample size for a two-dimensional nonparametric

regression problem, the empirical level of the test is surprisingly accurate for a

wide range of bandwidths.

In Table 2.2 we investigate two deviations from the general setting. In the

upper panel we report the rejection rates, if we choose δ = 4 and δ̃ = 6. This

3We denote the empirical standard deviation of a random variable X with ŝd(X) =(
1
n

∑n
i=1(Xi − X̄)2

)1/2.



22 2. SPECIFICATION TESTING

choice is admissible by Assumption 2.4 and we observe that the test is even

more conservative for this choice of bandwidth. Overall we observe the need for

selecting a rather large bandwidth. The implementation of a forth order kernel

reduces the bias even for large values of h. This means that the residuals can be

estimated more accurately, which allows to approximate the expected value and

variance of the test statistic better than with small bandwidths.

In the lower panel of Table 2.2 we use a different distribution in the bootstrap

procedure. Here, the resampled residuals are ε∗i = ε̂iη
∗
i where η∗i ∼ N (0, 1). In

contrast to the setting in Table 2.1 this bootstrap distribution only matches the

first two moments of the empirical residuals. While this is sufficient to prove the

asymptotic validity of the bootstrap, we find that using the normal distribution

produces more conservative results. This provides further evidence to our con-

jecture that mimicking more moments of the residuals leads to a higher order

approximation of the finite sample distribution of Γ̂K by the bootstrap.

Next, we increase the sample size and simulate with n = 200. We return to

the general setting (δ = 5, δ̃ = 6 and mimicking three moments in the bootstrap)

and give the results in Table 2.3. Obviously, the empirical level stabilizes to its

desired value for a wide range of bandwidths, but we still observe underrejection

for small values of h0.

In the second part of the Monte Carlo study we simulate the empirical power

of the test under H1. To this end, we use the model

Yi = cos(Xi) + gλ(Zi) + 0.5Ui, i = 1, . . . , n,

and retain the previous setup, i. e., Xi, Zi
iid∼ U(−π, π) and Ui

iid∼ N (0, 1) indepen-

dent of (Xi, Zi). The parameter λ measures the deviation from the null hypothesis

in the L2-sense. For the nonparametric regression and the bootstrap procedure

we use the same setting as under the null hypothesis. We have restricted the

simulation study to homoscedastic errors and a sample size of n = 100.

As a first specification for the alternative, we choose gλ(z) = λ cos(z). In this

case the L2-distance is E(µ(X, Z)−m(X))2 = λ2/2. In Figure 2.1 the empirical

power for this experiment is displayed for four different values of h0 and for levels

of α = 0.10 and α = 0.05. We see that for all bandwidths the test is consistent

against this alternative, but observe lower power for small bandwidths.

Next, we consider gλ(z) = λ(z/π)2, which leads to E(µ(X,Z) − m(X))2 =

4λ2/45. To obtain the same L2-distance as in the cosine specification, a different

range of λ is selected in Figure 2.2. A comparison of the two experiments shows
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Table 2.3: Simulation Results for n = 200

h0 1.00 1.50 2.00 2.50 3.00

Panel A: m(x) = cos(x)

σ(x) = 0.5

0.10 0.045 0.061 0.071 0.112 0.114

0.05 0.009 0.018 0.033 0.041 0.055

p-value 0.642 0.588 0.560 0.573 0.584

σ(x) = 0.5 exp(−(x/π)2)

0.10 0.035 0.061 0.083 0.102 0.127

0.05 0.003 0.021 0.025 0.044 0.066

p-value 0.635 0.588 0.574 0.568 0.601

Panel B: m(x) = (x/π)2

σ(x) = 0.5

0.10 0.038 0.061 0.079 0.107 0.112

0.05 0.007 0.025 0.026 0.040 0.058

p-value 0.648 0.595 0.575 0.572 0.586

σ(x) = 0.5 exp(−(x/π)2)

0.10 0.039 0.073 0.074 0.101 0.131

0.05 0.010 0.015 0.027 0.044 0.067

p-value 0.624 0.582 0.570 0.564 0.594

that the empirical power of the test is even better for the quadratic alternative

if we keep the L2-distance constant.

In contrast, high frequency alternatives are difficult to detect. As an example
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Figure 2.1: Simulated power for gλ(z) = λ cos(z). The bandwidth constants are

h0 = 1.50, 2.00, 2.50, 3.00 (upper left, upper right, lower left, lower right). Levels

are given by α = 0.10 (solid) and α = 0.05 (dashed)

we use gλ(z) = cos(λz) where λ ∈ Z. The L2-distance for such alternatives

is constant E(µ(X,Z) − m(X))2 = 1/2, but for higher values of λ estimation

becomes difficult. Since the two-dimensional regression µ̂h(x, z) estimates high

frequencies poorly, the test breaks down in finite samples. In this case, small

bandwidths are favorable, because they enable a better approximation for high

frequencies. The simulated power in Figure 2.3 underscores this.

Finally we look at low frequency alternatives, given by gλ(z) = cos(λz) with

λ ∈ [0, 1]. The L2-distance for these alternatives varies between 0 and 0.6, given

by E(µ(X,Z) − m(X))2 = (1 − sin(2λπ)/(2λπ))/2. In contrast to the high

frequency alternatives low bandwidths have lower power, which can be seen in

Figure 2.4. The test is consistent for all bandwidths, but this type of alternatives

is more difficult to detect than the specifications in Figures 2.1 or 2.2.

This simulation study underlines that the proposed test statistic produces re-

liable results for moderate sample sizes. the different alternatives under consid-

eration highlight the role of the bandwidth. While small bandwidths are ad-
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Figure 2.2: Simulated power for gλ(z) = λ(z/π)2. The bandwidth constants are

h0 = 1.50, 2.00, 2.50, 3.00 (upper left, upper right, lower left, lower right). Levels

are given by α = 0.10 (solid) and α = 0.05 (dashed)

vantageous to detect high frequency deviations from the null hypothesis, large

bandwidths have better power against low frequency alternatives. A data adap-

tive bandwidth selection procedure similarly to Horowitz and Spokoiny (2001)

could be preferable, but this extension is left for future research.

2.5 An Empirical Application: Homogeneity in

Consumer Demand

It is an implication of a linear budget set that individual demand is homogeneous

of degree zero. Formally, in the standard formulation involving budget shares

Y ∈ [0, 1]dY , log income X ∈ R as well as log prices P ∈ RdY , and the relationship

Y = µ(P, X) + U , with E(U | P,X) = 0, we obtain that

µ(P, X) = µ(P −X, 0) = m(P̃ ),

where P̃ = P −X. Hence, a test of whether E(Y | P̃ , X) = m(P̃ ) can be seen as

a test for homogeneity.
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Figure 2.3: Simulated power for gλ(z) = cos(λz). The bandwidth constants are

h0 = 1.50, 2.00, 2.50, 3.00 (upper left, upper right, lower left, lower right). Levels

are given by α = 0.10 (solid) and α = 0.05 (dashed)

The testing procedure will be applied to this specific problem of testing the

significance of a regressor using British household data. Every year, the Fam-

ily Expenditure Survey (FES) reports the income, expenditures, demographic

composition and other characteristics of about 7 000 households. The sample

surveyed represents about 0.05% of all households in the United Kingdom. The

information is collected partly by interview and partly by records. Records are

kept by each household member, and include an itemized list of expenditures

during 14 consecutive days. The periods of data collection are evenly spread out

over the year. The information is then compiled and provides a repeated series

of yearly cross-sections.

All the goods are grouped into three categories, Group 1 to 3. The first cate-

gory is related to food consumption and consists of the subcategories food bought,

food out (catering) and tobacco, which are self-explanatory. The second category

contains expenditures which are related to the house, namely housing (a more

heterogeneous category; it consists of rent or mortgage payments), furniture as

well as household goods and services. Finally, the last group consists of motor-
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Figure 2.4: Simulated power for gλ(z) = cos(λz). The bandwidth constants are

h0 = 1.50, 2.00, 2.50, 3.00 (upper left, upper right, lower left, lower right). Levels

are given by α = 0.10 (solid) and α = 0.05 (dashed)

Table 2.4: Value of Test Statics for different Choice of Bandwidth Constant and

Time Interval

Period

1974–1980 1981–1988 1989–1994

h0 Γ̂K p-value Γ̂K p-value Γ̂K p-value

1.5 1.4214 (0.60) 1.2263 (0.05) 1.2392 (0.23)

2.0 0.7830 (0.71) 0.7192 (0.12) 0.5663 (0.60)

2.5 0.5674 (0.45) 2.7167 (0.26) 0.3310 (0.81)

3.0 0.4093 (0.27) 2.9898 (0.21) 0.1979 (0.80)
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ing and fuel expenditures, categories that are often related to energy prices. For

brevity, we call these categories food, housing and energy. These broader cate-

gories are formed since more detailed accounts suffer from infrequent purchases

(recall that the recording period is 14 days) and are thus underreported. Together

they account for 50-60% of expenditures. We removed outliers by excluding the

upper and lower 2.5 % of the population in the three groups.

”Income” in demand analysis is total expenditure, under an additive separabil-

ity assumption of preferences over time and decisions. It is obtained by adding

up all expenditures, with a few exceptions which are known to have measurement

error like tobacco. This is done to define nominal income; real income is then

obtained by dividing through the retail price indices.

In this paper, we stratify the population to obtain more homogeneous subpop-

ulations. More specifically, like much of the demand literature we focus on one

subpopulation, namely two person households, sampled in a certain time inter-

val, both adults, at least one of which is working and the head of household is a

white-collar worker. This focus is also justified because other subpopulations are

much more prone to measurement problems. It is likely that there is remaining

preference heterogeneity. However, we abstract from this problem here, but see

Hoderlein (2005) on this issue.

To test whether X can be omitted from the regression of Y on P̃ the following

specifications are used: In accordance with our assumptions, we set δ = 4 and δ̃ =

6, and determine h and h̃ through h = h0n
−1/δŝd(P̃ ), and h̃ = h0n

−1/eδŝd(P̃ , X).

The same forth order kernel as in the simulation study was used. Table 2.4

shows the result of our test statistic for homogeneity of degree zero for various

values of the bandwidth constant h0 and time periods. The p-values based on

199 bootstrap implementations are in brackets. We conjecture that homogeneity

is generally accepted, as there is only one test rejected at the level of 0.05. Of

course, if we perform such a high number of tests, one test is likely to reject.

Somehow, we would like to correct for the dependence between the tests.

2.6 Conclusion

The bootstrap simplifies relatively complicated nonparametric procedures and

makes them therefore accessible for applications. At the same time, the boot-

strap helps improving the small sample properties. This chapter, which considers

nonparametric specification testing, underscores these advantages in our specific
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setting. In particular, we show that our bootstrap-based tests are simple, easy

to implement and work well in quite small samples, where they outperform other

comparable tests in the literature.

In addition to these small sample advantages we also establish by asymptotic

arguments that our tests are at least as good as other existing tests proposed in

the literature. In particular it should be noted that Aı̈t-Sahalia, Bickel and Stoker

(2001) use in their simulation study sample sizes of more than 500 observations.

Finally, we provide new extensions that are important for applications, like al-

lowing for local polynomial estimators, dependent data and systems of equations

under the same format.

Appendix

Proof of Theorem 2.1

For abbreviation we introduce Vi = (Xi, Zi) and Wi = (Yi, Xi, Zi) and decompose

the statistic in the following way

Γ̂K =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)

f̂h(Vi)
(Y k

j − m̂keh(Xj))
)2

Ai

= Γ̂K1 + Γ̂K2 + Γ̂K3 + Γ̂K4,(2.9)

where

Γ̂K1 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
Y k

j − µk(Vj)

f̂h(Vi)

)2

Ai

Γ̂K2 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
µk(Vj)−mk(Xj)

f̂h(Vi)

)2

Ai

Γ̂K3 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
mk(Xj)− m̂keh(Xj)

f̂h(Vi)

)2

Ai

and Γ̂K4 contains all cross terms. Note that under H0 we have that Γ̂K2 = 0 almost

surely. We start by investigating Γ̂K1, which yields the asymptotic distribution

and show that Γ̂K3 and Γ̂K4 are of lower order afterwards.
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First, we write

Γ̂K1 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
Y k

j − µk(Vj)

f(Vi)

)2( f(Vi)

f̂h(Vi)

)2

Ai

= (IKn + ∆Kn)(1 + oP (1)),

where we have defined

IKn =

∫ dY∑

k=1

( 1

n

n∑
j=1

Kh(v − Vj)
Y k

j − µk(Vj)

f(v)

)2

a(v)f(v) dv(2.10)

∆Kn =

∫ dY∑

k=1

( 1

n

n∑
j=1

Kh(v − Vj)
Y k

j − µk(Vj)

f(v)

)2

a(v)(f̂e(v)− f(v) dv,(2.11)

and f̂e = 1
n

∑n
i=1 δ(Vi)(v) denotes the empirical distribution of the sampled data

(where δ(Vi) is the Dirac-measure at Vi).

Starting with the leading term, we rearrange IKn to obtain

IKn =
1

n2

∑
i<j

dY∑

k=1

∫
Kh(v − Vi)

Y k
i − µk(Vi)

f(v)
Kh(v − Vj)

Y k
j − µk(Vj)

f(v)
a(v)f(v) dv

+
1

n2

n∑
i=1

dY∑

k=1

∫ (
Kh(v − Vi)

Y k
i − µk(Vi)

f(v)

)2
a(v)f(v) dv

= IKn,1 + IKn,2.

(2.12)

Now it remains to show

nh(dX+dZ)/2IKn,1
D−→ N (0, Σ2

K)(2.13)

nh(dX+dZ)/2IKn,2 − h−(dX+dZ)/2BK
P−→ 0(2.14)

nh(dX+dZ)/2∆Kn
P−→ 0.(2.15)

From this the statement of the theorem follows.

Proof of (2.13) Write

IKn,1 =
∑
i<j

hn(Wi,Wj)



Appendix 31

as U -statistic with kernel

hn(Wi,Wj) =
2

n2hdX+dZ

dY∑

k=1

(Y k
i − µk(Vi))(Y

k
j − µk(Vj))

×
∫

K(u)K(u + (Vi − Vj)/h)
a(Vi + uh)

f(Vi + uh)
du.

where a change of variables has been applied. Asymptotic normality is shown by

using a central limit theorem for generalized U -statistics (see Lemma 3.1 by de

Jong, 1987). Under the conditions

(2.16)
max1≤i≤n

∑n
j=1 Ehn(Wi,Wj)

var IKn,1

P−→ 0 and
E I4

Kn,1

(var IKn,1)2

P−→ 3

it follows that √
2

IKn,1√
var IKn,1

D−→ N (0, 1).

It is immediate to see that the kernel is degenerate, symmetric and centered.

Now, we introduce σ2
n = Ehn(Wi,Wj)

2. As we have independent and identically

distributed data we can write

max
1≤i≤n

n∑
j=1
j 6=i

Ehn(Wi,Wj)
2 = (n− 1)σ2

n

and

var IKn,1 =
∑
i1<i2

varhn(Wi1 , Wi2)

+
∑
i1<i2

∑
i3<i4

(i3,i4)6=(i1,i2)

cov(hn(Wi1 ,Wi2), hn(Wi3 ,Wi4))

=
n(n− 1)

2
σ2

n

because hn(·, ·) is centered. From these two results the first condition in equa-

tion (2.16) is established. For the second calculate

(2.17)

E I4
Kn,1 =

∑
i1<i2

Ehn(Wi1 ,Wi2)
4 + 3

∑
i1<i2

∑
i3<i4

(i3,i4) 6=(i1,i2)

Ehn(Wi1 ,Wi2)
2hn(Wi3 ,Wi4)

2

+ 24
∑
i1<i2

∑

i3 6=i1,i2

Ehn(Wi1 ,Wi2)
2hn(Wi1 ,Wi3)hn(Wi2 , Wi3)

+3
∑
i1

∑

i2 6=i1

∑

i3 6=i1,i2

∑

i4 6=i1,i2,i3

Ehn(Wi1 ,Wi2)hn(Wi2 ,Wi3)hn(Wi3 ,Wi4)hn(Wi4 ,Wi1)
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where all vanishing terms (with Ehn(Wi1 ,Wi2) = 0) are omitted. To show the

second condition, the remaining terms have to be calculated. Starting with the

denominator, we have to calculate

(2.18) σ2
n = Ehn(W1, W2)

2.

Resolving the square and changing variables4 to ṽ = (v − v1)/h together with

expanding a(·) and f(·) yields

σ2
n =

4

n4h2(dX+dZ)

∑

k,k′

∫∫
K(ṽ)

yk
1 − µk(v1)

f(v1)

×K(ṽ + (v1 − v2)/h)
yk

2 − µk(v2)

f(v1)
a(v1)f(v1) dṽ

×
∫

K(ṽ)
yk′

1 − µk′(v1)

f(v1)
K(ṽ + (v1 − v2)/h)

yk′
2 − µk′(v2)

f(v1)
a(v1)f(v1) dṽ

× f(y1, v1)f(y2, v2) dy1 dv1 dy2 dv2(1 + O(h))

Now substitute ˜̃v = (v1 − v2)/h to obtain

=
4(κ∗)dX+dZ

n4hdX+dZ

∑

k,k′

∫
(yk

1 − µk(v1))(y
k
2 − µk(v1))(y

k′
1 − µk′(v1))(y

k′
2 − µk′(v1))

×
(a(v1)

f(v1)

)2

f(y1, v1)f(y2, v1) dy1 dy2 dv1(1 + O(h))

=
4(κ∗)dX+dZ

n4hdX+dZ

∑

k,k′

∫ (∫
(yk

1 − µk(v1))(y
k′
1 − µk′(v1))

f(y1, v1)

f(v1)
dy1

)2

a(v1)
2 dv1

× (1 + O(h))

=
2

n4hdX+dZ
Σ2
K(1 + O(h)).

Similar calculations show that

Ehn(W1,W2)
4 = O(n−8h−3(dX+dZ))

Ehn(W1,W2)
2hn(W1,W3)

2 = O(n−8h−2(dX+dZ))

Ehn(W1,W2)
2hn(W1,W3)hn(W2,W3) = O(n−8h−2(dX+dZ))

Ehn(W1,W2)hn(W2,W3)hn(W3,W4)hn(W1,W4) = O(n−8h−(dX+dZ)).

4Here the notation is simplified. As v1 is dX + dZ-dimensional one has to apply dX + dZ

substitutions.
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Using combinatorical arguments it can be established from equation (2.17) that

E I4
Kn,1 is asymptotically dominated by terms with Ehn(W1,W2)

2hn(W3,W4)
2 =

(Ehn(W1,W2)
2)2. Therefore the second condition in equation 2.16 is fulfilled as

E I4
Kn,1

(var In)2
=

12n−4h−2(dX+dZ)Σ4
K(1 + o(1))

(2n−2h−(dX+dZ)Σ2
K(1 + o(1)))2

−→ 3

and weak convergence of IKn,1 is established.

Proof of (2.14) The expected value of the test statistic is given by

E IKn,2 =
1

n

dY∑

k=1

∫∫ (
Kh(v − v1)

yk
1 − µk(v1)

f(v)

)2

a(v)f(v) dvf(y1, v1) dy1 dv1.

Changing variables and expanding yields

=
κ2

0

nhdX+dZ

dY∑

k=1

∫
(yk

1 − µk(v1))
2 a(v1)

f(v1)
f(y1, v1) dv1(1 + O(h))

= n−1h−(dX+dZ)BK(1 + O(hr)).

Convergence in probability follows from Markov’s inequality with second mo-

ments, which requires to calculate

1

n4

(∫ dY∑

k=1

(
Kh(v − v1)(y

k
1 − µk(v1))

)2 a(v)

f(v)
dv

)2

f(y1, v1) dy1 dv1.

Changing variables as before results in

κ2
0

n4h2(dX+dZ)

∑

k,k′

∫
(yk

1 − µk(v1))
2(yk′

1 − µk′(v1))
2 a(v1)

2

f(v1)2
f(y1, v1) dy1 dv1(1 + o(1)),

which is bounded by Assumption 2.2. In total this yields

E I2
Kn,2 = O(n−3h−2(dX+dZ)) = o(n−2h−(dX+dZ))

and convergence in probability of IKn,2 follows.

Proof of (2.15) For this statement we will restrict to the case when dY = 1.

Then convergence in probability has to be shown for

∆Kn =
1

n3

∑

i,j,k

γn(Wi,Wj,Wk),
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where

γn(Wi,Wj,Wk) = γ̃n(Wi,Wj,Wk)−
∫

γ̃n(Wi,Wj, w)f(w) dw,

with

γ̃n(Wi,Wj,Wk) = Kh(Vk − Vi)
Yi − µ1(Vi)

f(Vk)
a(Vk)Kh(Vk − Vj)

Yj − µ1(Vj)

f(Vk)
a(Vk).

First we show that the expectation tends to zero

E∆Kn =
1

n3

∑

i,j,k

E γn(Wi,Wj, Wk) = o(n−1h−(dX+dZ)/2),

where only the cases i = k 6= j, j = k 6= i and i = j = k have to be considered, all

others have expectation zero. In the remaining cases, two (resp. one) substitution

can be applied and their total contribution is O(n−1h2(dX+dZ) + n−2hdX+dZ ).

Then, Markov’s inequality is applied with the second moments and we have to

investigate

E∆2
Kn =

1

n6

∑

ijk

E γn(Wi,Wj,Wk)
2

+
2

n6

∑

ijk

∑

i′j′k′
E γn(Wi,Wj,Wk)γn(Wi′ ,Wj′ ,Wk′).

The covariance parts vanish, whenever k 6= k′. If k = k′ the covariance terms

are zero by the conditional independence of the error terms, in all cases where

i 6= i′ or j 6= j′. For the remaining cases we have to distinguish if the number

of different indices is N = 2, 3. Then, the overall contribution of these terms is

O(nN−6h−4(dX+dZ)hN(dX+dZ)) = o(n−2h−(dX+dY )).

Next, consider the variance terms. If there are three different indices, two changes

of variables can be applied and the overall contribution is O(n−3h−2(dX+dZ)) =

o(n−2h−(dX+dZ)). If there are two different indices, one change of variables can

be applied and we obtain terms of order O(h−3(dX+dZ)) with a total contribution

of O(n−4h−3(dX+dZ)) = o(n−2h−(dX+dZ)). If i = j = k one change of variables is

still possible and the contribution is O(n−5h−3(dX+dZ)) = o(n−2h−(dX+dZ)). This

completes the proof of equation (2.15).



Appendix 35

Convergence in Probability of Γ̂K3 For the third term in (2.9) it holds that

|Γ̂K3| ≤ max
k=1,...,dY

sup
x∈A

|mk(Xj)− m̂keh(Xj)|2 sup
v∈A

|a(v)|

= OP (h̃2r +
log n

nh̃dX

)

= oP

(
n−1h−(dX+dZ)/2

)

under Assumption 2.4.3.

Convergence in Probability of Γ̂K4 The non-zero parts are given by

Γ̂K4 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
Y k

j − µk(Vj)

f̂h(Vi)

)

×
( 1

n

n∑

j′=1

Kh(Vi − Vj′)
mk(Xj′)− m̂keh(Xj′)

f̂h(Vi)

)
Ai

=
∑

i,j,j′
γijj′ .

Because

E εk
j

(
mk(Vj′)− m̂eh(Vj′)

) | V1, . . . , Vn) = n−1Keh(Vj − Vj′)σ
2(Vj)

we have that

E Γ̂K4 = O(n−1) = o(n−1h−(dX+dZ)/2).

It follows from similar considerations as done to show (2.15) that

E Γ̂2
K4 = o(n−2h−(dX+dZ)).

This completes the proof of the theorem

Proof of Theorem 2.2

Under H1n the decomposition (2.9) remains valid and the asymptotic analysis of

Γ̂K1 and Γ̂K3 is unchanged. However Γ̂K2 is not zero any longer. If it holds that

µ(x, z) = m(x) + εn(x, z), we have that

Γ̂K2 =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Vi − Vj)
εk

n(Vj)

f(Vi)

)2

Ai(1 + oP (1))

=

dY∑

k=1

∫ ( 1

n

n∑
j=1

Kh(v − Vj)
εk

n(Vj)

f(v)

)2

a(v) dv + oP (n−1h(dX+dZ)/2).
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This follows from similar calculations as to show (2.15). Omitting the lower order

terms it holds that

nh(dX+dZ)/2Γ̂K2 =

∫
K(u)2 du

dY∑

k=1

1

n

n∑
j=1

(εk
n(Vj)

f(Vj)

)2

a(Vj) + oP (1)

P−→ h−(dX+dZ)/2BL + oP (1).

The last convergence holds by assumption if λn = O(nh(dX+dZ)/2. In particular for

any fixed alternative, the convergence does not apply and nh(dX+dZ)/2Γ̂K2 = O(n)

and diverges. This yields consistency of the test statistic.

Proof of Theorem 2.3

In the proof of this theorem we use the notation E∗ and var∗ to denote expectation

and variance conditional on the data. Decompose

Γ̂∗K =
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)
Y k,∗

j − m̂k,∗eh (Xi)

f̂h(Xj, Zj)

)2

Ai

=
1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

×
( εk,∗

f̂h(Xj, Zj)
+

m̂keh(Xi)− m̂k,∗eh (Xi)

f̂h(Xj, Zj)

))2

Ai

= (I∗Kn + ∆∗
Kn)(1 + oP (1)) + Γ∗K3 + Γ∗K4,

where I∗Kn and ∆∗
Kn are defined as in (2.10) and (2.11) by replacing Y k

j − µk(Xj)

with εk,∗
j . Γ∗K3 can be bounded by showing that

(2.19) sup
x∈A

|m̂keh(x)− m̂k,∗eh (x)| = OP

(
h̃r+

( log n

nhdX

)1/2)
.

Decomposing I∗Kn as in equation (2.12) into I∗Kn,1 and I∗Kn,2 it remains to show

that

nh(dX+dZ)/2I∗Kn,1
D−→ N (0, Σ2

K),(2.20)

conditional on the data with probability tending to one and

nh(dX+dZ)/2I∗Kn,2 − h−(dX+dZ)/2BK
P−→ 0(2.21)

nh(dX+dZ)/2∆∗
Kn

P−→ 0.(2.22)

Then the statement of the theorem follows.
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Proof of (2.19) First note that

sup
x∈A

|m̂keh(x)− m̂k,∗eh (x)| = sup
x∈A

|(f̂keh (x))−1 1

n

n∑
i=1

Keh(x−Xi)(Y
k
i − Y k,∗

i )|

≤ sup
x∈A

|mk(x)− m̂keh(x)|+ sup
x∈A

|(f̂keh (x))−1 1

n

n∑
i=1

Keh(x−Xi)ε
k,∗
i |

+ sup
x∈A

|(f̂keh (x))−1 1

n

n∑
i=1

Keh(x−Xi)ε
k
i |.

The first term already has the desired rate. Because f̂keh (x) is consistent and f(x)

is bounded from below on A further analysis can be restricted to the numerator.

Since the analysis of the second and the third term in analogous, we concentrate

on the second term. First, a truncation argument is applied. Define ε̃k,∗
i =

1{εk,∗
i ≤nehdX }, which allows to decompose

(2.23)
1

n

n∑
i=1

Keh(x−Xi)ε
k,∗
i =

1

n

n∑
i=1

Keh(x−Xi)ε̃
k,∗
i

+
1

n

n∑
i=1

Keh(x−Xi)ε
k,∗
i 1{εk,∗

i >nehdX }.

Starting with the second term, note that it holds that E |εk,∗
i 1{εk,∗

i >nehdX }| =

O(n−2h̃−2dX ), because the forth moment of εk,∗
i is finite. Then, the second term

on the right side of (2.23) can be bounded with Markov’s inequality with first

moments

E
∣∣ 1
n

n∑
i=1

Keh(x−Xi)ε
k,∗
i 1{εk,∗

i >nehdX }
∣∣ ≤ E |Keh(x−X1)ε

k,∗
1 1{εk,∗

1 >nehdX }|

≤ sup
u
|K(u)|E |εk,∗

i 1{εk,∗
i >nehdX }|(1 + O(h̃))

= O(n−2h̃−2dX ),

from which the desired rate follows.

Finally, we turn to the first term in (2.23). Covering the compact set A with N

cubes Al = {x | ‖x− xl‖ < ηN}, l = 1, . . . , N, ηN = O(N−1/dX ) we write

(2.24) sup
x∈A

∣∣ 1
n

n∑
i=1

Keh(x−Xi)ε̃
k,∗
i

∣∣ ≤ max
l

∣∣ 1
n

n∑
i=1

Keh(xl −Xi)ε̃
k,∗
i

∣∣

+ max
l

sup
x∈Al

∣∣ 1
n

n∑
i=1

(Keh(x−Xi)−Keh(xl −Xi))ε̃
k,∗
i

∣∣.
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Using the Lipschitz-continuity of the kernel, one directly obtains that the second

term on the right hand side is of OP (ηN h̃−dX/2n−1/2) = oP (n−1/2h̃dX/2(log n)1/2).

The first term on the is bounded using Bonferroni’s inequality first and then

Bernstein’s inequality

P
(∣∣ 1

n

n∑
i=1

Keh(xl −Xi)ε̃
k,∗
i

∣∣ >
( log n

nh̃dX

)1/2 c1

2

)

≤ 2 exp
(
− c2

1(log n)/(4nh̃dX )

4
∑n

i=1 E( 1
n
Keh(x−Xi)ε̃

k,∗
i )2 + c2(

log n

n3eh3dX
)3/2

)
,

where c2 is the constant arising from Cramer’s conditions on the distribution of

ε̃k,∗
i . It follows from standard arguments that

∑n
i=1 E( 1

n
(Keh(x − Xi)ε̃

k,∗
i and so

we get that

P
(∣∣ 1

n

n∑
i=1

Keh(x−Xi)ε̃
k,∗
i

∣∣ >
( log n

nh̃dX

)1/2 c

2

)
≤ O(n−1).

Then, for N = o(n) the desired rate of convergence is obtained.

Proof of (2.20) To derive the asymptotic distribution of

I∗Kn,1 =
∑
i<j

hn(W ∗
i ,W ∗

j ),

given the data with probability tending to one, again Lemma 3.1 will be applied.

This is done by showing that the conditions hold with probability tending to one,

i.e.

max1≤i≤n

∑n
j=1 E∗ hn(W ∗

i ,W ∗
j )2

var∗ I∗Kn1

P−→ 0 and
E∗(I∗Kn,1)

4

(var∗ I∗Kn,1)
2

P−→ 3.

Here,

hn(W ∗
i ,W ∗

j ) =
2

n2

∫
Kh(v − Vi)Kh(v − Vj)

a(v)

f(v)
dv

dY∑

k=1

εk,∗
i εk,∗

j .
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First we analyze

E∗ hn(W ∗
i ,W ∗

j )2 =
4

n4

(∫
Kh(v − Vi)Kh(v − Vj)

a(v)

f(v)
dv

)2

×
( dY∑

k=1

(Y k
i − m̂keh(Xi))(Y

k
j − m̂keh(Xj))

)2

=
4

n4

(∫
Kh(v − Vi)Kh(v − Vj)

a(v)

f(v)
dv

)2

×
( dY∑

k=1

(Y k
i − µk(Vi))(Y

k
j − µk(Vj))

)2

(1 + OP

(
h̃r +

( log n

nh̃dX

)1/2)
)

(2.25)

= hn(Wi,Wj)
2 + op(n

−4h−2(dX+dz)).

This holds because under H0 we have that mk(Xi) = µk(Xi, Zi) almost surely.

Starting with the numerator, we utilize the conditional independence of the boot-

strap residuals to see that

var∗ IKn,1 =
∑
i<j

E∗ hn(W ∗
i ,W ∗

j ).

To bound this in probability, apply Markov’s inequality with the first moment

E
∣∣∣
∑
i<j

E∗ hn(W ∗
i ,W ∗

j )2
∣∣∣ =

∑
i<j

Ehn(W ∗
i ,W ∗

j )2 = n−2h−(dX+dZ)2Σ2
K(1 + o(1)),

from which it follows that

var∗ IKn,1
P−→ var IKn,1.

This is now used to show the first condition. Together with (2.16) and (2.25) we

obtain

maxi=1,...,n

∑n
j=1,j 6=i E

∗ hn(W ∗
i , W ∗

j )2

var IKn,1

=
maxi=1,...,n

∑n
j=1,j 6=i hn(Wi, Wj)

2 + OP (n−3(h̃r + (log n/(nh̃dX ))1/2))

var IKn,1

=
maxi=1,...,n

∑n
j=1,j 6=i hn(Wi, Wj)

2

var IKn,1

+ OP (n−1(h̃r + (log n/(nh̃dX ))1/2))

= oP (1).

For the second condition we again use the convergence of the denominator. Then

using the first moment to bound the probability leads to similar calculations as

done in the proof of equation (2.13).
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Proof of (2.21) The proof of equation (2.21) consists of using iterated expec-

tations and use there the same calculations as to proof equation (2.20).

Proof of (2.22) As E∗ εk,∗
j = 0 the same arguments as for ∆Kn remain to hold

for ∆∗
Kn.

Proof of Theorem 2.4

From Masry (1996) it is known that

sup
v∈A

|Ŝ(v)− f(v)M | = OP

(
h2 +

( log n

nhdX+dY

)1/2)
,

therefore we can write

Γ̂L
K =

1

n

dY∑

k=1

n∑
i=1

(bf(Vi)
−1M−1(T̂ k(Vi)− T̃ k(Vi))c1)2Ai(1 + oP (1))

=
1

n

dY∑

k=1

n∑
i=1

( 1

n

∑

0≤|j|≤p

κ−1
j

n∑

l=1

(Vl − Vi

h

)j

Kh(Vl − Vi)
Y k

l − m̂k,Leh (Xl)

f(Vi)

)2

= Γ̂L
K1 + Γ̂L

K2 + Γ̂L
K3 + Γ̂L

K4,

where we decompose according to Y k
l −m̂k,Leh (Xl) = Y k

l −µk(Vl)+µk(Vl)−mk(Vl)+

mk(Xl) − m̂k,Leh (Xl) and transfer all cross terms to Γ̂L
K4. Then Γ̂L

K2 = 0 almost

surely under H0. And Γ̂L
K3 = OP (h2r + log n/(nhdX )) by applying results from

Masry (1996) for the density estimator and the local linear estimator. Next, we

decompose

Γ̂L
K1 = IL

Kn,1 + IL
Kn,2 + ∆L

Kn,

where the quantities are given as in (2.10), (2.11) and (2.12) and the kernel is

replaced by

K̃h(u) =
∑

1≤j≤p

(u

h

)j

κ−1
j Kh(u).

Since this kernel satisfies the assumptions which are necessary to show (2.13)–

(2.15) (note that higher order properties of the kernel are not used there), the

statement of the theorem follows.

Proof of Theorem 2.5

In this case we can decompose the test statistic into

Γ̂S
K = Γ̂S

K1 + Γ̂S
K2 + Γ̂S

K3 + Γ̂S
K4 + Γ̂S

K5,
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where Γ̂S
K1 = Γ̂K1,

Γ̂S
K2 =

1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

f̂h(Xi, Zi)

× (µk(Xj, Zj)−mk(Xj)−Gk(Zj, θ))
)2

Ai

Γ̂S
K3 =

1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

f̂h(Xi, Zi)
(mk(Xj)− m̂keh(Xj))

)2

Ai

Γ̂S
K4 =

1

n

dY∑

k=1

n∑
i=1

( 1

n

n∑
j=1

Kh(Xi −Xj, Zi − Zj)

f̂h(Xi, Zi)
(Gk(Zj, θ)−Gk(Zj, θ̂)

)2

Ai

and Γ̂S
K5 contains all cross terms. Under H0S we have that Γ̂S

K2 = 0 almost surely

and the other two terms are bounded by uniform convergence rates. Start with

|Γ̂S
K3| ≤ max

k=1,...,dY

sup
x∈AX

|mk(x)− m̂keh(x)|2 sup
(x,z)∈A

|a(x, z)|

≤ sup
(x,z)∈A

|a(x, z)|
(

max
k=1,...,dY

sup
x∈AX

|mk(x)− m̃keh(x)|2

+ max
k=1,...,dY

sup
z∈AZ

|Gk(z, θ)−Gk(z, θ̂)|2
)

= oP (n−1h(dX+dZ)/2).

The quantity m̃keh(Xj) denotes a nonparametric regression of the unobserved vari-

able Yi − G(Zi, θ) on Xi. The standard uniform convergence rate holds for this

estimator and by our assumptions it converges faster than the test statistic. For

the parametric function G(z, θ) the convergence rate was assumed. From this

assumption we also obtain

|Γ̂S
K4| = oP (n−1h(dX+dZ)/2).

The asymptotic distribution of Γ̂K1 was derived in the proof of Theorem 2.1.

Proof of Theorem 2.6

For dependent data, decomposition (2.9) still applies and under H0 it holds that

Γ̂K2 = 0. Because β-mixing implies α-mixing, the results in Masry (1996) hold

under Assumption 2.7. This means, we have that

sup
x∈A

|mk(x)− m̂eh(x)| = OP (h̃r +
( log n

nh̃dX

)1/2

)

and the same rate holds for the kernel density estimator. Therefore it remains to

analyze Γ̂K1 and to show (2.13)–(2.15) for the dependent case.
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Proof of (2.13) To derive the asymptotic distribution, we regard IKn,1 still

as U -Statistic, and apply Theorem 2.1 in Fan and Li (1999). To apply this

central limit theorem a large number of assumptions have to be checked. For

brevity we concentrate on those that influence the rates. Denote with (W̃i)i=1,...,n

a sequence of independent and identically distributed random variables with the

same marginal distribution as (Wi)i=1,...,n

m

n3/2

Ehn(W̃1, W̃2)
4

(Ehn(W̃1, W̃2)2)2
= O

( m

n3/2h

)

m4 maxt>1 E(
∫

hn(w,W1)hn(w, Wt)f(w) dw)2

(Ehn(W̃1, W̃2)2)2
= O(m4h)

n2β(m)1−1/ν m2 + n2β(m)1−1/ν

(Ehn(W̃1, W̃2)2)2
= O

(
n6h2(m2β(m)1−1/ν + n2β(m)2−2/ν)

)

Together with the assumptions on the number of existing moments of Y and the

kernel function (EY 4ν < ∞, κ4ν
0 ), this yields (2.13).

Proof of (2.14) It is easy to see that E IKn,2 is unchanged. To show conver-

gence in probability using the second moment of IKn,2, the covariances have to

be bounded. Writing

IKn,2 =
n∑

i=1

h′n(Xi),

with

h′n(Wi) =
1

nh−(dX+dZ)

dY∑

k=1

∫ (
K(u, v)(Y k

1 −mk(X1))
)2 a(X1 + uh, Z1 + vh)

f(X1 + uh, Z1 + vh)
du dv.

We then use the covariance inequality for strongly dependent processes (ν > 1)

cov(h′n(Wi), h
′
n(Wj)) ≤ c

(
E(h′n(W1))

ν
)2/ν

β(j − i)1−2/ν .

As
(
E(h′n(W1))

ν
)2/ν

= O(n−2h−2(dX+dZ)) (if EY 2ν < ∞ and κ2ν
0 < ∞) the con-

vergence follows if
∑∞

i=1 β(i)1−2/ν < ∞.

Proof of (2.15) To show that the expected value converges we use

|E γn(Wi,Wj,Wk)| ≤ 4M1/νβ(min{i− k, j − k})1−1/ν ,

where M = max{E γ̃n(Wi,Wj,Wk)
ν ,E

∫
γ̃n(Wi,Wj, w)νf(w) dw}. (Lemma A.1

in Dette and Spreckelsen, 2004).
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Convergence in probability is shown by using the first absolute moment and

Lemma A.0 in Fan and Li (1999) to obtain

E |γn(Wi,Wj,Wk)| ≤ 4M1/νβ(min{i− k, j − k})1−1/ν ,

with M as above. Some tedious calculations show that convergence in probability

is established if EY 2ν < ∞ and
∑∞

i=1 β(i)1−1/ν < ∞.

This establishes the asymptotic distribution.





Chapter 3

Testing Slutsky Symmetry in

Nonparametric Demand Systems

3.1 Introduction

This chapter extracts parts of an article by Haag, Hoderlein and Pendakur (2005)

which is devoted to testing and imposing rationality restrictions to consumer

demand systems. In particular a nonparametric test for Slutsky symmetry is

proposed. The restriction of symmetry is a set of nonlinear restrictions on the

functions and derivatives of the expenditure share vector function. Using kernel

regression techniques to estimate the unknown demand function, the test will

be dominated by the estimators of the derivatives. This is the case because the

estimated derivatives converge slower than the estimated functions themselves.

Based on this insight, we provide a new test of symmetry, its asymptotic dis-

tribution and guidance on bootstrap simulation of its sampling distribution. A

closely related test for symmetry in nonparametric demand systems was pro-

posed in Lewbel (1995). The test proposed in this chapter invokes much weaker

smoothness assumptions.

Beside the testing procedure, Haag Hoderlein and Pendakur (2005) propose a

nonparametric estimation method that imposes Symmetry on the demand func-

tion and derive its asymptotic properties. Furthermore, both methods are applied

to Canadian household data and their usage in empirical work is highlighted.

In this chapter the presentation is restricted to the test for symmetry. In Sec-

tion 3.2 the test statistic is motivated and the asymptotic results are stated. In

the third section a bootstrap implementation is provided and its validity is de-
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rived formally. To reduce technical details in the outline, all proofs and necessary

assumptions are deferred to the appendix.

3.2 The Test Statistic and the Asymptotic Dis-

tribution

Define the cost function C(p, u) to give the minimum cost to attain utility level

u facing the M -vector of log-prices p = (p1, . . . , pM)′. Similarly, define the Mar-

shallian demand function by m(p, x), where x denotes log total expenditure, and

let z = (p′, x)′. The Slutsky matrix S(z) = (sjk(z))1≤j≤M−1,1≤k≤M−1 is defined as

the Hessian of the cost function with respect to (unlogged) prices. The elements

may be expressed in terms of log-price and log-expenditure (rather than utility)

as

sjk(z) = ∂km
j(z) + mk(z)∂xm

j(z) + mj(z)mk(z) + δj(k)mk(z)

where δj(k) denotes the Kronecker function to indicate a diagonal element and

∂x = ∂
∂x

and ∂k = ∂
∂pk are used for abbreviation (Mas-Colell, Whinston and

Green, 1995). If the Slutsky matrix is continuously symmetric over a region of

the z space, then Young’s Theorem guarantees the existence of a cost function

whose derivatives could produce the observed demand system over this region

(see, e. g., Mas-Colell, Whinston and Green, 1995). The aim is to test whether

the Slutsky matrix is symmetric.

In this setting, symmetry will be tested without testing homogeneity (which is

also required for rationality). Other articles test homogeneity, see especially Kim

and Tripathi (2003). For a test of homogeneity see also chapter 2.

Given homogeneity, symmetry is neccessary and sufficient for the existence of

a cost function which could rationalise demands. However, marshallian demands

could satisfy homogeneity without satisfying symmetry. In this case, although

consumers do not suffer from money illusion, their demands cannot be rationalised

by a cost function.

In the data, we are given observations on the 2M + 1-dimensional random

vector Y = (W,Z)′ where W ∈ RM is an M -vector of expenditure shares and

Z = (P 1, . . . , PM , X)′ is the vector of log-prices P = (P 1, . . . , PM)′ and household

log-expenditure X. We define the regression function

m(z) = (m1(z), . . . , mM(z))′ = E(W | Z = z).
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The fact that we have identified the mean regression function with an individual’s

demand function is not entirely innocuous. This problem is treated in detail

in Lewbel (2001) and Hoderlein (2004), who establish that for m(·) to inherit

symmetry certain (untestable) assumptions about the heterogeneity of individual

preferences have to be fulfilled. One trivial case where this identification is valid

is when, conditional on observables, there is no preference heterogeneity, and the

difference W − E(W | Z = z) stems for example from orthogonal measurement

error.

Under the assumption that m(·) indeed inherits rationality properties, we pro-

pose a test using the L2-distance of those elements of the Slutsky matrix which

are the same under symmetry. That is, we integrate and add up the squared

distance between S(z) and S(z)′. Here, the null hypothesis is

H0 : P(sjk(Z) = skj(Z),∀ j 6= k) = 1

and the alternative is that there is at least one pair (j, k) with sjk(z) 6= skj(z)

over a significant range. We may express the alternative as

H1 : P(sjk(Z) = skj(Z),∀ j 6= k) < 1.

The null hypothesis is equivalent to the condition that the L2-distance of these

functions is zero. Using a positive and bounded weighting function a(z) this can

be written as

ΓS = E
(∑

j<k

(sjk(Z)− skj(Z))2a(Z)
)

= 0.

A test statistic may be constructed by the analogy principle. Observing a

sample of n independent and identically distributed random vectors (W1, Z1), . . . ,

(Wn, Zn) we replace the unknown functions mj(z) by their Nadaraya-Watson

estimators m̂j
h(z) =

∑
i Kh(z − Zi)Y

j
i /

∑
i Kh(z − Zi), where K(·) is a M + 1-

variate kernel function and Kh(u) = (det H)−1/2K(H−1/2u) with a bandwidth

matrix H1/2. For simplicity of notation we assume that the bandwidth matrix

is diagonal with identical bandwidth h in each direction and that the kernel is

a product kernel with properties defined in detail in the appendix below. The

derivatives of the estimator ∂km̂
j
h(z) are used as estimators for the derivatives

∂kmj(z). We then obtain

(3.1) Γ̂S =
1

n

M−2∑
j=1

M−1∑

k=j+1

n∑
i=1

(∂km̂
j
h(Zi) + m̂k

h(Zi)∂xm̂
j
h(Zi)

− ∂jm̂
k
h(Zi)− m̂j

h(Zi)∂xm̂
k
h(Zi))

2Ai
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where Ai = a(Zi). This test statistic is a nonlinear combination of the function

and its derivatives. However, since the estimator of the derivative converges slower

than the estimator of the function, the asymptotic distribution is dominated by

the derivative estimator and the function can assumed to be known.

To define the expected value and variance of the test statistic we have to in-

troduce the covariance matrix (σij(z))1≤i,j≤M−1 = E((W −m(Z))(W −m(Z))′ |
Z = z) and need the following lengthy notation:

σjkj′k′
S =

∑

C,C′∈{j,k}
D,D′∈{j′,k′}

(−1)|{C,C′,D,D′}|
∫

σCD(z)σC′D′(z)a(z)2KCC′DD′(z) dz

with

Kjkj′k′(z) =

∫∫
Kk(z, v)Kj(z, v − u) dv ·

∫
Kk′(z, w)Kj′(z, w − u) dw du

and

Kj(z, v) =
∂K

∂vj
(v) + mj(z)

∂K

∂x
(v).

Similarly define

bjk
S =

∫
σjj(z)a(z)

∫
(Kk(z, u))2 du dz +

∫
σkk(z)a(z)

∫
(Kj(z, u))2 du dz

− 2

∫
σjk(z)a(z)

∫
Kj(z, u)Kk(z, u) du dz.

The asymptotic distribution is given in the following

Theorem 3.1. Let the model be as defined above and let Assumptions 3.1–3.4

hold. Under H0,

σ−1
S (nh(M+5)/2Γ̂S − h−(M+1)/2BS)

D−−→ N (0, 1),

where

σ2
S = 2

(∑

j<k

σjkjk
S + 2

∑

j<k

∑

j′<k′

(j,k)<(j′,k′)1

σjkj′k′
S

)
BS =

∑

j<k

bjk
S .

Simplifying the proofs in the appendix to one line, the test statistic can be

written as

Γ̂H = ΓS + Un + ∆n

1The ordering is in a lexicographic sense.
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where ΓS is 0 under H0, ∆n depends upon the uniform rate of convergence of the

estimators and Un is a degenerated U -statistic. This U -statistic converges at the

rate nh(M+5)/2, which might be faster than n1/2 depending on the choice of the

bandwidth sequence. Under the alternative ΓS is a positive constant and after

multiplying the test statistic with nh(M+5)/2 this term tends to infinity. Therefore

we obtain consistency of the test against alternatives with ΓS > 0.

Another test for Slutsky symmetry based on kernel regression has been proposed

by Lewbel (1995). This test procedure is based on the integrated conditional

moment (ICM) test of Bierens (1982), which uses the fact that H1 is equivalent

to

E(sjk(Z)− skj(Z))w(Ξ′Z) | Ξ = ξ) 6= 0

for a set of ξ with nonzero Lebesgue-measure, where the weighting function has

to be chosen appropriately (see Bierens and Ploberger, 1997). Lewbel (1995)

uses a Kolmogorov-Smirnov-type test-statistic and derives asymptotic normality

under stringent smoothness assumptions. Assuming that the unknown function

and the density are r + 1-times continuously differentiable (see assumption in

the appendix), Lewbel requires r > 2(M + 1) whereas our test requires only

r > 3
4
(M +1). Although the smoothness class of an unknown function is difficult

to establish in practice, this is a substantial relaxation of assumptions. Fan and

Li (2000) discuss in detail the question under which circumstances the ICM-test

or the kernel based test of our type has greater benefits. Their results should

carry over to our situation.

In nonparametric regression analysis the advantages of local polynomial esti-

mators over Nadaraya-Watson estimators are well known, especially in derivative

estimation (see Fan and Gijbels, 1996). If we use higher order local polynomial

estimators for m and its first partial derivatives, our results continue to hold

when K(·) is replaced by its equivalent kernel. The rate of convergence of the

test statistic remains the same, only some of the kernel constants arising in the

bias and variance expression will change. In our application the advantages of

the local polynomial based test is clear. For M = 4, we need r > 3.75. Using

Nadaraya-Watson estimators, a kernel of order 4 has to be implemented. Using

a local quadratic estimator, for example, the order only has to be 2. However,

the smoothness assumptions remain unchanged.
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3.3 Practical Implementation Using the Boot-

strap

The direct way to implement the test is to estimate the expected value BS and

the variance σ2
S. This requires the estimation of integrals like

∫
σjj(z)a(z)

∫
(Kk(z, u))2 du dz

or even more complex combinations in the variance parts. Therefore estimators of

the conditional variances and covariances are needed. A Nadaraya-Watson-type

estimator is given by

σ̂jj′
h (z) =

∑n
i=1 Kh(z − Zi)(W

j
i − m̂j

h(Zi))(W
j′
i − m̂j′

h (Zi))∑n
i=1 Kh(z − Zi)

Given the large number of bias and variance components in Theorem 3.1, the

asymptotic approach to the test is difficult to implement. Moreover, these asymp-

totic approximations can work very poorly in a finite sample.

To avoid the problems noted above, one might instead use a bootstrap procedure

to derive critical values. To bootstrap the test statistic, note that the estimator

of the derivative can be written as a weighted average

(3.2) ∂km̂
j
h(z) =

n∑
i=1

Ṽ k
ni(z)W j

i

where Ṽ k
ni, i = 1, . . . , n is a set of weights giving the kth price derivative of the jth

expenditure share at z when applied to the data W j
i . Using this in the definition

of Γ̂S we obtain

Γ̂S =
1

n

M−2∑
j=1

M−1∑

k=j+1

n∑
i=1

( n∑

l=1

V k
nl(Zi)W

j
l − V j

nl(Zi)W
k
l

)2

Ai

with V k
nl(Zi) = Ṽ k

nl(Zi) + m̂k
h(Zi)Ṽ

x
nl(Zi).

Next we exploit the fact that the estimator of the function converges faster than

the estimator of the derivative. Plugging in W j
l = mj(Zl) + εj

l and noting that

for large n it holds under the assumption of symmetry that

(3.3)
n∑

l=1

V jk
nl (Zi)m

j(Zl)− V kj
nl (Zi)m

k(Zl) ≈

∂km
j(Zi) + mk(Zi)∂xm

j(Zi)− ∂jm
k(Zi)−mj(Zi)∂xm

k(Zi) = 0.
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Therefore the test statistic can under H0 be approximated by

Γ̂S ≈ 1

n

M−2∑
j=1

M−1∑

k=j+1

n∑
i=1

( n∑

l=1

V jk
il εj

l + V kj
il εk

l

)2

Ai.

The bootstrap is based on this equation and is described as follows

1. Construct (multivariate) residuals ε̂i = Wi − m̂h(Zi).

2. For each i randomly draw ε∗i = (ε1∗
i , . . . , εM−1,∗

i )′ from a distribution F̂i that

mimics the first three moments of ε̂i.

3. Calculate Γ̂∗S from the bootstrap sample (ε∗i , Zi), i = 1, . . . , n by

Γ̂∗S =
1

n

M−2∑
j=1

M−1∑

k=j+1

n∑
i=1

( n∑

l=1
l 6=i

V jk
il εj∗

l − V kj
il εk∗

l

)2

Ai.

4. Repeat this often enough to obtain critical values.

To approximate the distribution by the bootstrap, usually the restriction of the

null hypothesis is imposed in the construction of the residuals. Because symmetry

implies a complicated restriction to the demand function and its derivatives, this

is not directly possible. Therefore the restriction is imposed in the construction

of the test statistic by using equation (3.3).

The theoretical result concerning the bootstrap procedure is given in the fol-

lowing

Theorem 3.2. Let the model be as defined above and let Assumptions 3.1–3.5

hold. Under H0, conditional on the data (Wi, Zi), i = 1, . . . , n it hold that

σ−1
S (nh(M+5)/2Γ̂∗S − h−(M+5)/2BS)

D−−→ N (0, 1).

with probability tending to one.

The set of admissible distributions F̂i is very general. One may use a wild

bootstrap (Härdle and Mammen, 1993) or smooth conditional moment bootstrap

(Gozalo, 1997) suitably modified to account for cross-equation correlations (see

Haag, Hoderlein and Pendakur, 2005) for details.

To prove the asymptotic result of Theorem 3.2 it is sufficient to assume that

the bootstrap distribution F̂i mimics the first two moments of ε̂i. Matching the

first three moments as suggested in the algorithm we propose could yield higher

order approximations of the Edgeworth expansion of the test statistic. Although

we do not consider such expansions, we believe that this should improve the finite

sample properties and use therefore three moments in the application.
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Appendix

General Assumptions

Assumption 3.1. The data Yi = (Wi, Zi), i = 1, . . . , n are independent and

identically distributed with density f(y).

This assumption can be relaxed to dependent data. All proofs can be extended

to α-mixing processes in the case of estimation and β-mixing processes in the

case of testing. Changes in the proofs are briefly discussed below. The va-

lidity of the bootstrap is not affected by dependent data, if we assume that

E(εt | Yt−1, . . . , Y1) = 0. Then, the bootstrap works because the residuals are

mean independent and we only use the residuals for resampling (see also Kreiß,

Neumann and Yao, 2002).

Assumption 3.2. For the data generating process

1. f(y) is r+1-times continuously differentiable (r ≥ 2). f and its first partial

derivatives are bounded and square-integrable.

2. m(z) is r + 1-times continuously differentiable.

3. f(z) =
∫

f(w, z) dw is bounded from below on the compact support A of

a(z), i. e. infz∈A f(z) = b > 0.

4. The covariance matrix

Σ(z) = (σij(z))1≤i,j≤M−1 = E((W −m(Z))(W −m(Z))′ | Z = z)

is square-integrable (elementwise) on A.

E((W j −mj(Z))2(W k −mk(Z))2) < ∞ for every 1 ≤ j, k ≤ M − 1.

Assumption 3.3. For the kernel regression

The kernel is a M + 1-dimensional function K : [−1, 1]M+1 → R, symmetric

around 0 with
∫

K(u) du = 1,
∫ |K(u)|du < ∞ and of order r (i. e.

∫
ukK(u) du

= 0 for all k < r and
∫

urK(u) du < ∞). Further ‖x‖M+1K(x) → 0 for ‖x‖ →
∞.

Our results should continue to hold for arbitrary kernel functions. See Ruppert

and Wand (1994) for details about the implementation of general multivariate

kernels. Further assumptions have to be made on the rate of convergence of the

bandwidth sequence and the smoothness r of the unknown demand function m(·).



Appendix 53

Assumption 3.4. For the bandwidth sequence

1. For the order r of the kernel, we require

(3.4) r >
3

4
(M + 1).

2. For n →∞, the bandwidth sequence h = O(n−1/δ) satisfies

(3.5) 2(M + 1) < δ < (M + 1)/2 + 2r

The asymptotic distribution of the test statistic is derived under the above con-

ditions on the bandwidth sequence. It is important to note that the optimal rate

for estimation, given by

δopt = (M + 1) + 2r

is excluded. Here, a smaller bandwidth is needed to obtain the asymptotic dis-

tribution. In practice we calculate a data-driven bandwidth (by cross-validation)

and adjust it by n1/δopt−1/δ. Although we do not formally address the issue of

data-driven bandwidths ĥ we assume that our results will hold if ĥ/h
P−→ 1.

Assumption 3.5. For the bootstrap distribution

The bootstrap residuals ε∗i , i = 1, . . . , n are drawn independently from distributions

F̂i, such that E bFi
ε∗i = 0,E bFi

ε∗i (ε
∗
i )
′ = ε̂iε̂

′
i and E bFi

(εk,∗
i )4 < ∞ for all k =

1, . . . , dY .

Usually the bootstrap residuals are constructed by ε∗i = η∗i ε̂i. Then, the assump-

tion is fulfilled for discrete distributions, distributions with compact support and

among others for the normal distribution, which are the most often used distri-

butions for η∗i in practice.

Proof of Theorems 3.1 and 3.2

The proof uses a functional expansion method applied to Γ̂S similar to the method

in Aı̈t-Sahalia Bickel and Stoker (2001). This leads to a von Mises expansion

where the first order term is zero under H0. The second order term is usually

an infinite weighted sum of chi-squared distributed random variables. Here, a

Feller-type condition is fulfilled which ensures the asymptotic negligibility of all

summands. This condition is stated in the central limit theorem for degenerate

U -statistics by de Jong (1987), which we use to derive the asymptotic normality
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for both theorems. The extension to β-mixing random variables follows by using

Theorem 2.1 in Fan and Li (1999). Apart from this, the difference consists in

tedious calculations of covariances where essentially a summability condition of

the β-mixing coefficients is necessary.

Preliminary Lemmata

For probability measures the following notation is used: PX is the measure of the

distribution of X, PW |Z is the measure of the conditional distribution of W given

Z. And E∗ denotes the conditional expectation of the bootstrap sample given

the data. Marginal densities are defined by the list of the arguments and with

a superscript indicating the element of w which is part of the argument. Kernel

density estimators are defined in the same way.

Next define the seminorms

‖fk‖f = max{sup
z∈A

|f(z)|, sup
z∈A

|
∫

wkfk(wk, z) dwk|}

‖fk‖d = max{ max
p=1,...,M+1

sup
z∈A

|∂pf(z)|, max
p=1,...,M+1

sup
z∈A

|∂p

∫
wkfk(wk, z) dwk|}

for density functions.

Lemma 3.1 (de Jong, 1987). Let Y1, . . . , Yn be a sequence of independent

and identically distributed random variables. Suppose that the U-statistic Un =∑
1≤i<j≤n hn(Yi, Yj) with a symmetric function hn is centered (i. e. Ehn(Y1, Y2) =

0) and degenerate (i. e. E(hn(Y1, Y2) | Y1) = E(hn(Y1, Y2) | Y2) = 0, P-a. s.).

Then if

max1≤i≤n

∑
j=1,j 6=i Ehn(Yi, Yj)

2

varUn

−→ 0 and
EU4

n

(varUn)2
−→ 3

we have that
Un√

varUn

D−−→ N (0, 1)

Lemma 3.2. Under the assumptions we have that for any k = 1, . . . , M − 1

‖f̂k
h − fk‖d = OP (hr−1 + (log n/(nhM+3))1/2)

‖f̂k
h − fk‖f = OP (hr + (log n/(nhM+1))1/2).
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Proof. Noting that

(3.6) sup
z∈A

|
∫

wk(f̂k
h (wk, z)− fk(wk, z)) dwk|

≤ ‖f̂k
h (z)‖∞‖m̂k

h(z)−mk(z)‖∞ + ‖mk(z)‖∞‖f̂k
h (z)− fk(z)‖∞

where ‖ · ‖∞ denotes the supremum-norm. Then the lemma follows from the

uniform rates of convergence for density estimates, their derivatives, regression

estimates and their derivatives. They can be found in Härdle (1990) or Masry

(1996).

Proof of Theorem 3.1

For simplification, denote ∂M+1 = ∂x and K̄h(z) =
∑M+1

p=1 ∂pKh(z) which is of

O(h−(M+2)) because of the inner derivative. Start by expanding the statistic

Γ̂S =
1

n

M−2∑
j=1

M−1∑

k=1

n∑
i=1

(∂km̂
j
h(Zi) + mk(Zi)∂xm̂

j
h(Zi)

− ∂jm̂
k
h(Zi)−mj(Zi)∂xm̂

k
h(Zi))

2Ai

+
1

n

M−2∑
j=1

M−1∑

k=1

n∑
i=1

((m̂k
h(Zi)−mk(Zi))∂xm̂

j
h(Zi)

− (m̂j
h(Zi)−mj(Zi))∂xm̂

k
h(Zi))

2Ai

+
1

n

M−2∑
j=1

M−1∑

k=1

n∑
i=1

(∂km̂
j
h(Zi) + mk(Zi)∂xm̂

j
h(Zi)− ∂jm̂

k
h(Zi)−mj(Zi)∂xm̂

k
h(Zi))

× ((m̂k
h(Zi)−mk(Zi))∂xm̂

j
h(Zi)− (m̂j

h(Zi)−mj(Zi))∂xm̂
k
h(Zi))Ai

= Γ̂S1 + Γ̂S2 + Γ̂S3

(3.7)

By Chebychev, Γ̂S2 = Op(h
2r + n−1h−(M+1)) = op(n

−1h−(M+5)/2) and an appli-

cation of Cauchy-Schwarz shows that the third term is also of op(n
−1h−(M+5)/2)

provided that Γ̂S1 has the limiting distribution of the theorem. So it is left to

derive the asymptotic distribution of Γ̂S1 has.

Start by looking at the theoretical version

ΓS1 =
∑

j<k

Γjk
S1

For the beginning it suffices to investigate the case j = 1, k = 2 and to note that

the other terms can be treated in the same way.
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Consider Γ12
S1 as a functional of two M+2-dimensional density functions f1(w

1, z),

f2(w
2, z), two M + 1-dimensional functions c1(z) and c2(z) and a M + 1-dimen-

sional density f3(z):

Γ12
S1(f1, f2, c1, c2, f3) =

∫
(∂2

∫
w1f1(w

1, z) dw1

f1(z)
+ c2(z)∂M+1

∫
w1f1(w

1, z) dw1

f1(z)

− ∂1

∫
w2f2(w

2, z) dw2

f2(z)
− c1(z)∂M+1

∫
w2f2(w

2, z) dw2

f2(z)
)2a(z)f3(z) dz.

Then the following functional expansion holds

Lemma 3.3. Let |g1(w
1, z)|, |g2(w

2, z)| < b/2 be bounded functions and Gb

(RM+2,R) the set of all such functions. Then under H0 and Assumption 3.2

Γ12
S1 has an extension on Gb × Gb around (f 1, f 2) given by

(3.8) Γ12
S1(f

1 + g1, f
2 + g2,m

1,m2, f3) = Γ12
S1(f

1, f 2,m1,m2, f3)

+

∫ (
∂2

∫
α1(w, z)g1(w

1, z) dw + c2(z)∂M+1

∫
α1(w, z)g1(w

1, z) dw1

− ∂1

∫
α2(w, z)g2(w

2, z) dw2 − ∂M+1

∫
α2(w, z)g1(w

2, z) dw2

)2

a(z)f3(z) dz

+ O(‖g1‖2
d‖g1‖f + ‖g2‖2

d‖g2‖f ),

with

αk(w, z) =
wk −mk(z)

f(z)
.

Let f̂e(p̃, x) = n−1
∑n

i=1 δ{ ePi=ep,Xi=x}(p̃, x) denote the empirical distribution of the

sampled data and extend the test statistic in the following way

Γ̂12
S1 = Γ12

S1(f̂
1
h , f̂ 2

h , m1, m2, f̂e)

= Γ12
S1(f

1 + f̂ 1
h − f 1, f 2 + f̂ 2eh − f 2,m1,m2, f)

+ Γ12
S1(f

1 + f̂ 1
h − f 1, f 2 + f̂ 2eh − f 2,m1,m2, f̂e − f)

Applying Lemma 3.3 to gi = f̂ i
h − f i, i = 1, 2 allows to write

(3.9) = I1
Sn + ∆1

Sn + Op(‖f̂ 1
h − f 1‖2

d‖f̂ 1
h − f 1‖f + ‖f̂ 2

h − f 2‖2
d‖f̂ 2

h − f 2‖f )

using Γ12
S1(f

1, f 2,m1,m2, f) = 0 under H0 and where

I12
Sn =

∫ ( n∑
i=1

r12
Sn(Wi, Zi; z)

)2

a(z)f(z) dz

∆12
Sn =

∫ ( n∑
i=1

r12
Sn(Wi, Zi; z)

)2

a(z)(f̂e(z)− f(z)) dz
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with

(3.10)

rjk
Sn

(Wi, Zi; z) = ∂kα
j(Wi, z)Kh(z − Zi) + mk(z)∂M+1α

j(Wi, z)Kh(z − Zi)

− ∂jα
k(Wi, z)Kh(z − Zi)−mj(z)∂M+1α

k(W k
i , z)Kh(z − Zi).

Here it has also been used that for all k it holds that

(3.11)∫
αk(w, z)fk(w, z) dwk =

∫
wk

f(z)
fk(w, z) dwk −

∫
mk(z)

f(z)
fk(w, z) dwk = 0.

The lower order terms in the extension (3.9) are bounded by Lemma 3.2 and the

following

Lemma 3.4. Under the assumptions we have that

∆12
Sn = op(n

−1h−(M+5)/2).

Using the results on Γij
S1 for 1 ≤ j < k ≤ M − 1 allows to write the test statistic

as

(3.12) Γ̂S1 =
∑

j<k

Γ̂jk
S1 =

∑

j<k

Ijk
Sn + op(n

−1h−(M+5)/2).

Defining the centered random variables

r̃jk
Sn

(Wi, Zi; z) = rjk
Sn

(Wi, Zi; z)− E rjk
Sn

(Wi, Zi; z)

the following decomposition applies

ISn =
∑

j<k

Ijk
Sn

=
∑

j<k

∫ (
1

n

n∑
i=1

rjk
Sn(Wi, Zi; z)

)2

a(z)f(z) dz

=
2

n2

∑

j<k

n∑
i1<i2

∫
r̃jk
Sn(Wi1 , Zi1 ; z)r̃jk

Sn(Wi2 , Zi2 ; z)a(z)f(z) dz

+
1

n2

∑

j<k

n∑
i=1

∫
(rjk

Sn(Wi, Zi; z))2a(z)f(z) dz

+
2(n− 1)

n2

∑

j<k

n∑
i=1

∫
r̃jk
Sn(Wi, Zi; z) E rjk

Sn(Wi, Zi; z)a(z)f(z) dz

− n(n− 1)

n2

∑

j<k

∫ (
E rjk

Sn(Wi, Zi; z)
)2

a(z)f(z)dz

= ISn1 + ISn2 + ISn3 + ISn4.(3.13)
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These terms are analyzed by the following

Lemma 3.5. Under the assumptions we have that under H0

nh(M+5)/2ISn1
D−−→ N (0, σ2

S)

nh(M+5)/2ISn2 − h−(M+1)/2BS
P−→ 0

nh(M+5)/2ISn3
P−→ 0

nh(M+5)/2ISn4 −→ 0.

Together with equation (3.12) this states the asymptotic result of the theorem.

Proof of Theorem 3.2

Analogously to equation (3.7) we get

Γ̂∗S = Γ̂∗S1 + Γ̂∗S2 + Γ̂∗S3

where the last two terms are of lower order (use Lemma 3.6). Again we decompose

Γ̂∗S1 =
∑

j<k

Γ̂jk∗
S1

and investigate wlog the case j = 1, k = 2. Let now f̂ 1∗
h denote the kernel density

estimator of (ε1∗
i , Zi)i=1,...,n. Replacing W 1,W 2 with ε1∗, ε2∗ in the definition of

Γ12
S1 and applying Lemma 3.3 with gi = f̂ i,∗

h − f i, i = 1, 2 we can decompose

Γ̂12∗
S1 = Γ12

S1(f̂
1∗
h , f̂ 2∗

h ,m1, m2, f̂e)

= Γ12
S1(f

1, f 2,m1,m2, f) + I12∗
Sn + ∆12∗

Sn

+ OP (‖f̂ 1∗
h − f 1‖2

d‖f̂ 1∗
h − f 1‖f + ‖f̂ 2∗

h − f 2‖2
d‖f̂ 2∗

h − f 2‖f ).

As f i(ε∗, z) = f 1(ε∗)f(z), we have that Γ12
S1(f

1, f 2,m1,m2, f) = 0. Note that this

property allows to construct the distribution of Γ̂S under H0 by the bootstrap.

Here

I12∗
Sn =

∫ ( n∑
i=1

r12∗
Sn (ε∗i , Zi; z)

)2

a(z)f(z) dz

∆12∗
Sn =

∫ ( n∑
i=1

r12∗
Sn (ε∗i , Zi; z)

)2

a(z)(f̂e(z)− f(z)) dz
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and analogously to equation 3.10

r12∗
Sn

(ε∗i , Zi; z) = ε1∗
i ∂2

Kh(z − Zi)

f(z)
+ ε1∗

i m2(z)∂M+1
Kh(z − Zi)

f(z)

− ε2∗
i ∂j

Kh(z − Zi)

f(z)
− ε2∗

i mj(z)∂M+1
Kh(z − Zi)

f(z)
.

Next, lower order terms are bounded.

Lemma 3.6. Under the assumptions we have that for any k = 1, . . . , M − 1

‖f̂k∗
h − fk‖d = OP (hr−1 + (log n/(nhM+3))1/2)

‖f̂k∗
h − fk‖f = OP (hr + (log n/(nhM+1))1/2).

The proof of

∆12∗
S1 = oP (n−1h−(M+5)/2)

is omitted because changes in the proof of Lemma 3.4 are essentially the same as

changes in the proof of in Lemma 3.5, which we will give in Lemma 3.7 below.

Together we have that

Γ̂∗S1 =
∑

j<k

Ijk∗
Sn + oP (n−1h−(M+5)/2).

Next, the same decomposition as in (3.13) applies

I∗Sn =
∑

j<k

Ijk∗
Sn = I∗Sn1 + I∗Sn2 + I∗Sn3 + I∗Sn4,

where

r̃jk∗
Sn (ε∗i , Zi; z) = rjk∗

Sn (ε∗i , Zi; z)− E∗ rjk∗
Sn (ε∗i , Zi; z)

and all expectations in the I∗Sni are replaced with expectations conditional on the

data.

Lemma 3.7. Under the assumptions we have that

nh(M+5)/2I∗Sn1
D−−→ N (0, σ2

S)

under H0 conditional on the data with probability tending to one and

nh(M+5)/2I∗Sn2 − h−(M+1)/2BS
P−→ 0

nh(M+5)/2I∗Sn3
P−→ 0

nh(M+5)/2I∗Sn4
P−→ 0.

This concludes the proof.
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Proof of the Lemmata

Proof of Lemma 3.3 Consider Ψ(t) = Γ12
S (f 1 + tg1, f

2 + tg2,m
1,m2, f3) as a

function of t and write the Taylor expansion around t = 0

Ψ(t) = Ψ(0) + tΨ′(0) + t2Ψ′′(0)/2 + t3Ψ′′′(ϑ(t))/6.

Here

Ψ(t) =

∫
(ψ(t))2a(z)f3(z) dz,

with

ψ(t) = ϕ2
1(t, z) + m2(z)ϕ1

M+1(t, z)− ϕ1
2(t, z)−m1(z)ϕ2

M+1,

and

ϕi
k(t, z) = ∂k

∫
wi(f i(w, z) + tgi(w, z)) dwi

f i(z) + tgi(z)
.

Calculating the derivatives of Ψ(t) requires the derivatives of ϕi
k(t, z). Setting

i = 1, they are given by

∂tϕ
1
k(t, z) =

∂kF (z)

G(t, z)2
+ 2

F (z)∂kG(t, z)

G(t, z)3

∂2
t ϕ

1
k(t, z) = −2

F (z)

G(t, z)3
∂kg1(z)− 2g1(z)

∂kF (z)

G(t, z)3
− 6g1(z)

F (z)∂kG(t, z)

G(t, z)4

∂3
t ϕ

1
k(t, z) = 12g1(z)

F (z)

G(t, z)4
∂kg1(z) + 6(g1(z))2 ∂kF (z)

G(t, z)4

+ 24(g1(z))2F (z)∂kG(t, z)

G(t, z)5
,

where

F (z) = f 1(z)

∫
wg1(w, z) dw − g1(z)

∫
wf 1(w, z) dw

G(t, z) = f 1(z) + tg1(z)

are introduced for abbreviation. Starting with the first derivative

Ψ′(0) = 2

∫
ψ(0, z)∂tψ(0, z)a(z)f3(z) dz = 0,

because ψ(0, z) = 0 P-a. s. under H0. The second derivative is given by

Ψ′′(0) = 2

∫
(ψ(0, z)∂2

t ψ(0, z)− ∂tψ(0, z)2)a(z)f3(z) dz,
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where the first integrand is again zero under H0 almost surely. For the second

integrand, it has to be summed up over

∂tϕ
1
k(0, z) = ∂k

(∫
wg1(w, z) dw

f 1(z)
− g1(z)

f 1(z)

∫
wf 1(w, z) dw

f 1(z)

)

= ∂k

(∫
w

f 1(z)
g1(w, z) dw −

∫
g1(w, z) dw

m1(z)

f 1(z)

)

= ∂k

∫
α1(w, z)g1(w, z) dw,

from which the second term in equation (3.8) is obtained. Finally, the third

derivative has to be bounded

Ψ′′′(t) = 2

∫
(ψ(t, z)∂3

t ψ(t, z) + 3∂tψ(t, z)∂2
t ψ(t, z))a(z)f3(z) dz.

Note that |G(t, z)−1| ≤ |G(1, z)−1| ≤ 2/b because f 1(z) > b and |g1(z)| ≤ b/2.

Therefore only the numerators of the derivatives of ψ(t, z) have to be bounded.

By noting that the derivatives of g1, F and G are bounded by ‖g1‖d and g1 and

F are bounded by ‖g1‖f we obtain

Ψ′′′(ϑ(t)) = O(‖g1‖2
d‖g1‖f + ‖g2‖2

d‖g2‖f ),

which completes the proof of the lemma.

Proof of Lemma 3.4 Convergence in probability has to be shown for

∆12
Sn =

1

n

∑

ijk

γ12
ijk,

where

γ12
ijk = (α1(Wi, Zk)K

2
h(Zk, Zk − Zi)− α2(Wi, Zk)K

1
h(Zk, Zk − Zi))

× (α1(Wj, Zk)K
2
h(Zk, Zk − Zj)− α2(Wj, Zk)K

1
h(Zk, Zk − Zj))a(Zk)

−
∫

(α1(Wi, z)K2
h(z, z − Zi)− α2(Wi, z)K1

h(z, z − Zi))

× (α1(Wj, z)K2
h(z, z − Zj)− α2(Wj, z)K1

h(z, z − Zj))a(z)f(z) dz.

Multiplying out gives

γ12
ijk = γ̄11

ijk + γ̄22
ijk − γ̄12

ijk − γ̄21
ijk,
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where

γ̄lm
ijk = αl(Wi, Zk)K

m
h (Zk, Zk − Zi)α

m(Wj, Zk)K
l
h(Zk, Zk − Zj)a(Zk)

−
∫

αl(Wj, z)Km
h (z, z − Zj)α

m(Wj, z)K l
h(z, z − Zj)a(z)f(z) dz.

This enables to write

∆12
Sn = ∆̄11 + ∆̄22 − ∆̄21 − ∆̄12.

All four terms have the same structure and so we restrict to

E ∆̄11 =
1

n3

∑

i,j,k

E γ̄11
ijk = o(n−1h−(M+5)/2),

where only the cases i = k 6= j, j = k 6= i and i = j = k have to be considered, all

others have expectation zero. In these cases, two (resp. one) change of variables

can be applied and the statement follows.

To show the convergence in probability, Markov’s inequality is applied with the

second moments and it has to be investigated

E(∆̄11)
2 =

1

n6

∑

ijk

E(γ̄11
ijk)

2 +
2

n6

∑

ijk

∑

i′j′k′
E γ̄11

ijkγ̄
11
i′j′k′ .

The covariance parts vanish, if there are six different indices. In the case with

five different indices we have O(n5) terms where k = k′ (other combinations

vanish) and they give a total contribution of O(n−1hr−4) = o(n−1h−(M+5)/2),

since the leading terms have expectation zero. If there are four different indices,

by change of variables they are in the worst case (when the leading terms do

not cancel, e. g. if i = i′ and j = j′) of order of O(h−4). As there are O(n3)

such terms their overall contribution is O(n−3h−4) = o(n−1h−(M+5)/2). If the

number of different indices is N = 2, 3 the overall contribution of these terms is

O(h−4(M+2)hN(M+1)nN−6) = o(n−1h−(M+5)).

Next consider the variance terms. If there are three different indices, three

changes of variables can be applied and the total contribution is O(h−4−2(M+1)n−3)

= o(n−1h−(M+5)/2). If there are two different indices, one change of variables can-

not be applied and we obtain terms of order O(h−4−3(M+1)) with a contribution

of O(h−4−3(M+1)n−4) = o(n−1h−(M+5)/2). If i = j = k one change of variables is

still possible and the contribution is O(h−4−3(M+1)n−5) = o(n−1h−(M+5)/2).

This completes the proof that ∆̄12
Sn = op(n

−1h−(M+5)/2).
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Proof of Lemma 3.5 Before showing the statements of this lemma, we start

by investigating r̃Sn(·). Calculating the derivatives in this equation, one needs

(3.14) ∂kα
j(Wi, z)Kh(z − Zi) = αj(Wi, z)∂kKh(z − Zi)

+ αj(Wi, z)Kh(z − Zi)
∂kf(z)

f(z)
+

Kh(z − Zi)

f(z)
∂km

j(z)

to obtain

(3.15) rjk
Sn(Wi, Zi; z) = αj(Wi, z)h−(M+2)Kk(z, (z − Zi)/h)

− αk(Wi, z)h−(M+2)Kj(z, (z − Zi)/h)

+ αj(Wi, z)Kh(z − Zi)
(∂kf(z)

f(z)
+ mk(z)

∂M+1f(z)

f(z)

)

− αk(Wi, z)Kh(z − Zi)
(∂jf(z)

f(z)
−mj(z)

∂M+1f(z)

f(z)

)
.

Because the sum over the third terms in (3.14) is zero under H0. Here the last

two terms converge faster, as the chain rule applied to the kernel brings an extra

h to the first two terms.

Asymptotic Normality of ISn1 ISn1 can be written as U -Statistic by

ISn1 =
∑
i1<i2

hSn(Yi1 , Yi2),

with

hn(Yi1 , Yi2) =
2

n2

∑

j<k

∫
r̃jk
Sn(Wi1 , Zi2 ; z)r̃jk

Sn(Wi2 , Zi2 ; z)a(z)f(z) dz.

Asymptotic normality is shown by using Lemma 3.1. First note that as we have

independent and identically distributed data we can define σ2
n = Ehn(Yi, Yj)

2

and get for the first condition of the lemma

max
1≤i≤n

n∑

k=1
k 6=i

Ehn(Yi, Yk)
2 = nσ2

n

and

var ISn1 =
∑
i1<i2

varhn(Yi1 , Yi2) +
∑
i1<i2

∑
i3<i4

(i3,i4)6=(i1,i2)

+ cov(hn(Yi1 , Yi2), hn(Yi3 , Yi4)) =
n(n− 1)

2
σ2

n,
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because hn(·, ·) is centered. This implies directly the first condition of Lemma

3.1. For the second we need

(3.16) E I4
Sn1 =

∑
i1<i2

Eh4
n(Yi1 , Yi2) + 3

∑
i1<i2

∑
i3<i4

(i3,i4)6=(i1,i2)

Ehn(Yi1 , Yi2)
2hn(Yi3 , Yi4)

2

+ 24
∑
i1<i2

∑

i3 6=i1,i2

Ehn(Yi1 , Yi2)
2hn(Yi1 , Yi3)hn(Yi2 , Yi3)

+ 3
∑
i1

∑

i2 6=i1

∑

i3 6=i1,i2

∑

i4 6=i1,i2,i3

Ehn(Yi1 , Yi2)hn(Yi2 , Yi3)hn(Yi3 , Yi4)hn(Yi4 , Yi1).

To show the second condition, these terms have to be calculated. Starting with

the denominator, we have to calculate

(3.17) σ2
n = Ehn(Y1, Y2)

2.

Resolving the square and multiplying the r̃j
Sn(·) gives four terms, where the first

is given by

(3.18)
4

n4

∑

j<k

∑

j′<k′

∫∫
rjk
Sn(w1, z1, z)rjk

Sn(w2, z2, z)a(z)f(z) dz

×
∫

rj′k′
Sn (w1, z1, z)rj′k′

n (w2, z2, z)a(z)f(z) dzf(w1, z1)f(w2, z2) dw1 dz1) dw2 dz2

changing variables2 to z̄ = (z − z1)/h in both integrals and expanding α(·), a(·)
and f(·) gives (we only consider the leading terms from equation (3.15))

=
4

n4h2(M+1)h2

∑

j<k

∑

j′<k′

∫∫ (
αj(w1, z1)K

k(z1, z̄)− αk(w1, z1)K
j(z1, z̄)

)

(
αj(w2, z1)K

k(z1, z̄+(z1−z2)/h)−αk(w2, z1)K
j(z1, z̄+(z1−z2)/h)

)
a(z1)f(z1) dz̄

×
∫ (

αj′(w1, z1)K
k′(z1, z̄)− αk′(w1, z1)K

j′(z1, z̄)
)

(
αj′(w2, z1)K

k′(z1, z̄+(z1−z2)/h)−αk′(w2, z1)K
j′(z1, z̄+(z1−z2)/h)

)
a(z1)f(z1) dz̄

f(w1, z1)f(w2, z2) dw1 dw2 dz1 dz2(1 + O(h)).

2Here the notation is simplified. As z1 is M + 1-dimensional one has to apply M + 1
substitutions.
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Now substitute ¯̄z = (z̃1 − z̃2)/h and expand f(·) to obtain

=
4

n4hM+5

∑

j<k

∑

j′<k′

∫∫ (
αj(w1, z1)K

k(z1, z̄)− αk(w1, z1)K
j(z1, z̄)

)

(
αj(w2, z1)K

k(z1, z̄ + ¯̄z)− αk(w2, z1)K
j(z1, z̄ + ¯̄z)

)
a(z1)f(z1) dz̄

×
∫ (

αj′(w1, z1)K
k′(z1, z̄)− αk′(w1, z1)K

j′(z1, z̄)
)

(
αj′(w2, z1)K

k′(z1, z̄ + ¯̄z)− αk′(w2, z1)K
j′(z1, z̄ + ¯̄z)

)
a(z1)f(z1) dz̄

f(w1, z1)f(w2, z1) dw1 dw2 dz1 d¯̄z(1 + O(h)).

Multiplying out the remaining brackets results in 16 terms of the kind (remember

the definition of Kjkj′k′(z)
∫∫

αj(w1, z1)α
j′(w1, z1)f(z1)f(w1, z1) dw1

∫
αk(w2, z1)α

k′(w2, z1)f(z1)f(w2, z1) dw2a(z1)
2Kjkj′k′(z1) dz1

Now, by the definition of αj one concludes

=

∫
σjj′(z)σkk′(z)a(z)2Kjkj′k′(z) dz

. Taking care of the summation we have in total that

σ2
n =

4

n4hM+5
σ2

S(1 + O(h)).

In the other terms arising from equation (3.17) one has a product of two expec-

tations. This allows to change variables once more and these terms are of total

order of O(n−4h−4).

Similar calculations show that

Ehn(Y1, Y2)
4 = O(n−8h−3M−7)

Ehn(Y1, Y2)
2hn(Y1, Y3)

2 = O(n−8h−2M−6)

Ehn(Y1, Y2)
2hn(Y1, Y3)hn(Y2, Y3) = O(n−8h−2M−6)

Ehn(Y1, Y2)hn(Y2, Y3)hn(Y3, Y4)hn(Y1, Y4) = O(n−8h−M−5).

Using some combinatorics one sees from equation (3.16) that the total contribu-

tion of terms of these kinds to E I4
Sn1 is at most O(n−4h−(M+1)). So E I4

n1 is asymp-

totically dominated by terms with Ehn(Y1, Y2)
2hn(Y3, Y4)

2 = (Ehn(Y1, Y
2
2 ))2.

Therefore the second condition from Lemma 3.1 is fulfilled because

E I4
Sn1

(var ISn1)2
=

12n−4h−2(M+5)σ4
H(1 + o(1))

(2n−2h−(M+5)σ2
H(1 + o(1)))2

−→ 3
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and the asymptotic normality of In1 is established.

Convergence in Probability of In2 For the rest of the proof the lower order

terms in equation (3.15) are omitted. The expected value of the test statistic is

given by

E In2 =
1

n

∑

j<k

∫∫ (
αj(w1, z)h−(M+2)Kk(z, (z − z1)/h)

− αk(w1, z)h−(M+2)Kj(z, (z − z1)/h)
)2

a(z)f(z) dzf(w1, z1) dw1 dz1

Substitution of z̄ = (z − z1)/h leads by a Taylor expansion to

=
1

nhM+3

∑

j<k

∫∫ (
αj(w1, z1)K

k(z1, z̄)− αk(w1, z1)K
j(z1, z̄)

)2

× a(z1)f(z1) dz̄f(w1, z1) dw1 dz1 + o(n−1h−(M+5)/2)

= n−1h−(M+3)BS + o(n−1h−(M+5)/2),

where the brackets are resolved before integrating.

To establish convergence in probabilty, Markov’s inequality with second moments

is applied, which requires to calculate

E I2
n2 =

1

n3

∫ (∑

j<k

∫ (
αj(w1, z)h−(M+2)Kk(z, (z − z1)/h)

− αk(w1, z)h−(M+2)Kj(z, (z − z1)/h)
)
a(z)f(z) dz

)2

df(w1, z1) dw1 dz1

Changing variables as before results in

=
1

n3hM+3

∫ (∑

j<k

∫ (
αj(w1, z)Kk(z, z̄)

− αk(w1, z)Kj(z, z̄)a(z1)f(z1)
)
dz̄

)2

f(w1, z1) dw1 dz1.

This gives the second statement of the lemma.

Convergence in Probability of ISn3 Because r̃jk
n (Wi, Zi; z) are centered func-

tions, we have that E ISn3 = 0. Substituting z̄ = (z − z1)/h for z1 gives

E rjk
Sn(W1, Z1; z)

= h−1

∫ (
αj(w1, z)Kk(z, z̄)− αk(w1, z)Kj(z, z̄)

)
f(w1, z)dw1dz̄ + O(hr−1)

(3.19)

= O(hr−1)
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for every z ∈ A because of equation (3.11) and therefore

E I2
Sn3 =

4(n− 1)2

n3
E

(∑

j<k

∫
r̃jk
Sn(Wi, Zi; z)E rjk

Sn(W1, Z1; z)a(z)f(z) dz
)2

= O(n−1h2(r−1)),

which is of o(n−1h−(M+5)/2).

Convergence of ISn4 The convergence of the deterministic part follows from

(3.19) and the upper bound of the bandwidth sequence

ISn4 = O(h2(r−1)) = o(n−1h−(M+5S)/2),

which completes the proof of the lemma.

Proof of Lemma 3.6 It follows from equation (3.6) that only the first part

has to be investigated, because the second part in equation (3.6), concerning the

density estimator, is unchanged in the bootstrap sample and has the desired rate.

Uniform convergence of the function estimator For the norm ‖ · ‖f we

have to show uniform convergence of

êk∗
h (z) =

ĝk∗
h (z)

f̂h(z)
=

n−1
∑n

i=1 Kh(z − Zi)ε
k∗
i

n−1
∑n

i=1 Kh(z − Zi)

to E(ε | Z) = 0. Because f̂h(z) is bounded from below on A almost surely for n

large enough, the rate of convergence follows from the numerator.

First a truncation has to be applied. Define ε̃k,∗
i = 1{εk∗

i ≤nhM+1} and then decom-

pose

(3.20)
1

n

n∑
i=1

Kh(z − Zi)ε
k∗
i =

1

n

n∑
i=1

Kh(z − Zi)ε̃
k∗
i

+
1

n

n∑
i=1

Kh(z − Zi)ε
k∗
i 1{εk∗

i >nhM+1}.

The second term on the right hand side can be bounded using Markov’s inequality

with the first moment and E |εk∗
i 1{εk∗

i >nhM+1}| = O(n−2h−2(M+1)), because the

forth moment of εk,∗
i is finite. Changing variables once it follows that

E
∣∣ 1
n

n∑
i=1

Kh(z − Zi)ε
k∗
i 1{εk,∗

i >nhM+1}
∣∣ = O(n−2h−2(M+1)),
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from which the desired rate for the second term in (3.20) follows.

To bound the first term in 3.20 the compact set A is covered with N cubes

Al = {z | ‖z − zl‖ < ηN}, l = 1, . . . , N . Then it holds that

P
(
sup
z∈A

∣∣ 1
n

n∑
i=1

Kh(z − Zi)ε̃
k∗
i

∣∣ > c
)
≤ P

(
sup

zl

∣∣ 1
n

n∑
i=1

Kh(zl − Zi)ε̃
k∗
i

∣∣ > c/2
)

+ sup
l
P

(
sup
z∈Al

∣∣ 1
n

n∑
i=1

Kh(z − Zi)ε̃
k∗
i − 1

n

n∑
i=1

Kh(zl − Zi)ε̃
k∗
i

∣∣ > c/2
)
.

If N becomes large, the second terms becomes negligible compared to the first.

Applying Bonferroni’s inequality the first can be bounded by

N sup
l
P

(∣∣ 1
n

n∑
i=1

Kh(z − Zi)ε
k∗
i

∣∣ > c/2
)
.

And this probability is bounded using Bernstein’s inequality

P
(∣∣ 1

n

n∑
i=1

Kh(z − Zi)ε̃
k∗
i

∣∣ >
( log n

nhM+1

)1/2 c

2

)

≤ 2 exp
(
− c2(log n)/(4nhM+1)

4
∑n

i=1 E( 1
n
Kh(z − Zi)ε̃k∗

i )2 + c̃( log n

n3h
3(M+1)

)1/2

)
,

where c̃ is the constant arising from Cramer’s conditions on the distribution of

ε̃k∗. It follows from standard arguments that

n∑
i=1

E
( 1

n
Kh(z − Zi)ε̃

k∗
i

)2

= O(n−1h−(M+1)),

and so we get that

P
(∣∣ 1

n

n∑
i=1

Kh(z − Zi)ε̃
∗
i

∣∣ >
( log n

nhM+1

)1/2 c

2

)
= O(n−1).

Then, for N = o(n) the desired rate of convergence is obtained.

Uniform convergence of the derivative estimator Applying the quotient

rule we obtain

∂pê
k∗
h (z) =

∂pĝ
k∗
h (z)

f̂h(z)
− ĝk∗

h (z)

f̂h(z)

∂pf̂h(z)

f̂h(z)

The second term converges faster by Lemma 3.2 and the first part of this lemma.

For the first term, the proof of concerning the norm ‖ ·‖f has to be repeated with

an extra h−1 from the inner derivative. Note that except for this only the kernel

changes. Then, the statement follows.
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Proof of Lemma 3.7 Define Y ∗
i = (ε∗i , Zi). To derive the convergence result

for

I∗Sn1 =
∑
i1<12

hn(Y ∗
i1
, Y ∗

i2
),

again Lemma 3.1 has to be applied. This is done by showing that the conditions

hold with probability tending to one, i. e.

max1≤i≤n

∑n
j=1 E∗ hn(Y ∗

i , Y ∗
j )2

var∗ I∗Sn1

P−→ 0

E∗(I∗Sn1)
4

(var∗ I∗Sn1)
2

P−→ 3.

Note, that by construction E∗ hn(Y ∗
1 , Y ∗

2 ) = 0 and E∗(hn(Y ∗
1 , Y ∗

2 ) | Y ∗
1 ) =

E∗(hn(Y ∗
1 , Y ∗

2 ) | Y ∗
2 ) = 0 almost surely.

Calculating the derivatives in rjk∗
Sn (·) analogously to equation (3.15), one obtains

(3.21)

rjk∗
Sn (ε∗i , Zi; z) = εj∗

i h−(M+2)K
k(z, (z − Zi)/h)

f(z)
− εk∗

i h−(M+2)K
j(z, (z − Zi)/h)

f(z)

+ εj∗
i

Kh(z − Zi)

f(z)

(∂kf(z)

f(z)
+ mk(z)

∂M+1f(z)

f(z)

)

− εk∗
i

Kh(z − Zi)

f(z)

(∂jf(z)

f(z)
−mj(z)

∂M+1f(z)

f(z)

)

Next E∗ hn(Y ∗
1 , Y ∗

2 )2 has to be calculated. Using the definition of hn(·) and multi-

plying r̃jk∗
Sn (·) gives four terms where the first is given as in (3.18) by replacing the

distributions of Y1, Y2 with the distributions of Y ∗
1 , Y ∗

2 conditional on the data.

Replacing (3.21) and omitting the last two terms as they are of lower order, the

leading term is given by

=
4

n4h2(M+1)h2

∑

j<k

∑

j′<k′

∫∫ (
εj∗
1 Kk(z, (z − Z1)/h)− εk∗

1 Kj(z, (z − Z1)/h)
)

(
εj∗
2 Kk(z, (z − Z2)/h)− εk∗

2 Kj(z, (z − Z2)/h)
)
a(z)f(z)−1 dz

×
∫ (

εj′∗
1 Kk′(z, (z − Z1)/h)− εk′∗

1 Kj′(z, (z − Z1)/h)
)

(
εj′∗
2 Kk′(z, (z − Z2)/h)− εk′∗

2 Kj′(z, (z − Z2)/h)
)
a(z)f(z)−1 dz

dPY ∗1 |Y1,...,Yn(ε1∗) dPY ∗2 |Y1,...,Yn(ε2∗).

The bootstrap residuals are chosen such that they match the first moments of

the empirical residuals. Multiplying out, replacing the conditional expectation of
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εj∗
i and rearranging inside the brackets it follows that

=
4

n4h2(M+1)h2

∑

j<k

∑

j′<k′

∫∫ (
(W j

1 − m̂j
h(Z1))K

k(z, (z − Z1)/h)

− (W k
1 − m̂k

h(Z1))K
j(z, (z − Z1)/h)

)

(
(W j

2 − m̂j
h(Z2))K

k(z, (z − Z2)/h)− (W k
2 − m̂k

h(Z2))K
j(z, (z − Z2)/h)

)a(z)

f(z)
dz

×
∫ (

(W j′
1 − m̂j′

h (Z1))K
k′(z, (z − Z1)/h)− (W k′

1 − m̂k′
h (Z1))K

k′(z, (z − Z1)/h)
)

(
(W j′

2 −m̂j′
h (Z2))K

k′(z, (z−Z2)/h)−(W k′
2 −m̂k′

h (Z2))K
j′(z, (z−Z2)/h)

)a(z)

f(z)
dz

and now using the uniform convergence of the regression estimator

=
4

n4h2(M+1)h2

∑

j<k

∑

j′<k′

∫∫ (
αj(W1, Z1)K

k(z, (z − Z1)/h)

− αk(W1, Z1)K
j(z, (z − Z1)/h)

)

(
αj(W2, Z2)K

k(z, (z−Z2)/h)−αk(W2, Z2)K
j(z, (z−Z2)/h)

)a(z)

f(z)
f(Z1)f(Z2) dz

×
∫ (

αj′(W1, Z1)K
k′(z, (z − Z1)/h)− αk′(W1, Z1)K

k′(z, (z − Z1)/h)
)

(
αj′(W2, Z2)K

k′(z, (z−Z2)/h)−αk′(W2, Z2)K
j′(z, (z−Z2)/h)

)a(z)

f(z)
f(Z1)f(Z2) dz

× (1 + OP (hr + (log n/(nh)M+1)1/2),

which has a similar structure as hn(Y1, Y2)
2. Therefore, taking expectations and

applying the appropriate changes of variables, the same leading term can be

derived (see the calculations of (3.17)). Next by the conditional independence of

the bootstrap residuals, we get

var∗ I∗n1 =
∑
i1<i2

E∗ hn(Y ∗
i1
, Y ∗

i2
)2,

because hn(Y ∗
i1
, Y ∗

i2
) is centered conditional on the data. To bound this in proba-

bility, use Markov’s inequality with the first moment

E
∣∣∑
i1<i2

E∗ hn(Y ∗
i1
, Y ∗

i2
)2

∣∣ =
∑
i1<i2

Ehn(Y ∗
i!
, Y ∗

i2
)2 = n−2h−(M+5)σ2

S(1 + o(1)),

from which

var∗ I∗Sn1
P−→ var ISn1
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follows. This is now used to show the first condition. By the iid-assumption on

the data sample, for the maximum it holds that

P

(
maxi=1,...,n

∑n
j=1,j 6=i E

∗ hn(Y ∗
i , Y ∗

j )2

var ISn1

> c

)
= nP

(∑n
j=2 E∗ hn(Y ∗

1 , Y ∗
j )2

var ISn1

> c

)
.

And for the right hand side we use the Markov inequality with second moments

and similar calculations as in Lemma 3.5 to obtain

P

(∑n
j=2 E∗ hn(Y ∗

1 , Y ∗
j )2

var ISn1

> c

)
= O(n−2h4) = o(n−1).

For the second condition we again use the convergence of the denominator. Then

bounding the numerator with Markov’s inequality and the first moments leads

to similar calculations as done in Lemma 3.5. Stochastic convergence of I∗Sn2

and I∗Sn3 consists of using iterated expectations and repeating there the same

calculations as in this lemma.





Chapter 4

Nonparametric Estimation of

Additive Multivariate Diffusion

Processes

4.1 Introduction

Motivated by the application of continuous-time stochastic processes in financial

econometrics, nonparametric estimation methods for diffusion processes have be-

come a broad area of statistical research. The review papers of Cai and Hong

(2003) and Fan (2005) provide an overview over recent results. Since the estima-

tion of the drift and diffusion function of a diffusion process can be regarded as

a regression problem, kernel smoothing techniques arise naturally.

Beginning with Florens-Zmirou (1993) a large number of articles has been con-

cerned with the application of nonparametric regression techniques to diffusion

processes. Various modifications have been considered, among them higher order

approximations (Stanton, 1997, Fan and Zhang, 2003), nonstationary processes

(Bandi and Philips, 2003) or jump diffusions (Bandi and Nguyen, 2003). Usu-

ally, high frequency sampling is considered, where both the total observation

time tends to infinity and the distance between consecutive observations shrinks

to zero. But other sampling schemes have been used as well. The monograph

by Kutoyants (2004) covers the case of continuous time observations. The issue

of fixed time intervals between consecutive observations, so called low frequency

sampling, has been addressed by Aı̈t-Sahalia (1996a), Jiang and Knight (1997)

and Gobet, Hoffmann and Reiß (2005) among others.
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Most of the articles cited above only deal with the case of a scalar diffusion.

Brugiere (1993) and Bandi and Moloche (2001) investigate kernel estimators for

multivariate diffusion processes. Their results report the well-known curse of

dimensionality in nonparametric regression. This means that the rate of conver-

gence of the estimators becomes worse, if the number of dimensions increases and

therefore larger samples have to be available. Because of the dependence struc-

ture even in the scalar case relatively large samples are required to obtain reliable

estimators. This effect is thus enlarged for multivariate data and therefore the use

of nonparametric regression techniques is restricted (curse of dependence). How-

ever, the curse of dimensionality can be circumvented by imposing more structure

on the unknown functions.

A common approach is to use additive models, assuming that the unknown func-

tion is a sum of one-dimensional components. These models provide a powerful

technique to overcome the dimensionality problem and maintain high flexibility.

Estimation of such models requires iterative procedures and the asymptotic anal-

ysis is much more complex than in the classical setting. For the estimation of

the additive components Mammen, Linton and Nielsen (1999) have introduced

smooth backfitting, an iterative procedure that uses a projection interpretation

of usual kernel estimators. For the classical nonparametric regression model it

has been shown that smooth backfitting based on local linear estimators is oracle

efficient, i. e. the estimator of a single component has the same bias and variance

as an infeasible estimator based on the knowledge of all other components.

In this article a multivariate diffusion process is considered and (some or all)

elements of the drift vector and the diffusion matrix are modelled as additive

functions. Smooth backfitting based on local linear and Nadaraya-Watson esti-

mators is used to estimate the components. For all estimators the asymptotic

distributions under high frequency sampling are derived. The Nadaraya-Watson

based estimators achieve the same variance as the oracle estimator, while the

bias is not oracle. The local linear based estimators are shown to be fully oracle

efficient.

The remainder of this chapter is organized as follows. First, the additive diffu-

sion model is formally introduced. In section 3 the smooth backfitting estimators

are defined. The asymptotic properties are presented in Section 4 and results of

a finite sample study, investigating the performance of the estimators, are given

in Section 5. An illustrative data example, using interest rate data is presented

in Section 6. All proofs are deferred to the appendix.
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4.2 Additive Multivariate Diffusion Processes

Let (Xt)t≥0 =
(
(X1

t , . . . , Xd
t )′

)
t≥0

be a d-dimensional stochastic process on a fil-

tered probability space (Ω,F ,F = (F)t≥0,P) which satisfies the time-homogenous

stochastic differential equation

(4.1) dXt = µ(Xt) dt + Σ(Xt) dWt,

with some initial condition X0 and a d̃-dimensional Brownian motion (Wt)t≥0 =(
(W 1

t , . . . , W
ed

t )′
)

t≥0
with independent components adapted to the same filtration

F. The drift vector µ(x) = (µ1(x), . . . , µd(x))′ and the dispersion matrix Σ(x) =

(σij(x))1≤i≤d,1≤j≤ed are both Borel measurable. Since the dispersion matrix itself

is not identified, the diffusion matrix A(x) = Σ(x)Σ(x)′ with elements aij(x) =∑ed
k=1 σik(x)σkj(x) is defined.

Standard assumptions that guarantee the existence of a strong solution of the

stochastic differential equation (4.1) are the so-called global Lipschitz and linear

growth conditions. These conditions ensure that the process does not explode

and is unique. To retain the length of the proofs, it will furthermore be assumed

that the solution is stationary and strongly mixing. Intuitively this can only be

the case if the drift pulls the process back to its mean whenever the Brownian

motion creates a large deviation. There are different sets of assumptions on the

drift and diffusion that ensure this. For instance Veretennikov (1997) provides

the following condition: There exist constants r > 0, C ≥ 0 such that

〈
µ(x),

x

‖x‖
〉

< − r

‖x‖ for ‖x‖ ≥ C

and (r − (dΛ− λ−)/2)/λ+ > 3/2 where

λ− = inf
x 6=0

〈
A(x)

x

‖x‖ ,
x

‖x‖
〉
, λ+ = sup

x 6=0

〈
A(x)

x

‖x‖ ,
x

‖x‖
〉
,

Λ = sup
x

trA(x)/d.

Of course the process can only be stationary if the initial random variable X0

already follows the stationary distribution. The process is completely character-

ized by the drift and the diffusion functions and in particular for the stationary

density f(x) it holds

µj(x)f(x) =
1

2

d∑
i=1

∂(aij(x)f(x))

∂xi
,
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for all j = 1, . . . , d. Then it is no problem to assume that for given drift and

diffusion functions the initial random variable X0 is distributed with density

f(x).

The assumption of stationarity can be relaxed to assume that the process is

recurrent. This guarantees that (Xt) returns to any state infinitely often, which

enables the local estimation using almost uncorrelated observations. Extending

the results of this chapter to this more general class of processes can be done by

using the proofing techniques of Bandi and Moloche (2001) and Schienle (2006).

Assume that the process is observed at nT + 1 equispaced time points in

the interval [0, T ]. Defining the distance between subsequent observations with

∆ = n−1 , the observations are denoted with Xk∆, k = 0, 1, . . . , nT . This setting

allows to study different sampling schemes. High frequency sampling is consid-

ered if the sampling interval shrinks to zero, i. e. n → ∞ (or ∆ → 0). Then,

the nonparametric estimation can be based on the property of the conditional

expectation operator

lim
∆→0

E(∆−1(Xj
(k+1)∆ −Xj

k∆) | Xk∆ = x) = µj(x)(4.2)

lim
∆→0

E(∆−1(X i
(k+1)∆ −X i

k∆)(Xj
(k+1)∆ −Xj

k∆) | Xk∆ = x) = aij(x).(4.3)

Thus, estimators are given by regressing the increments of the process (resp. their

products) onto the state. For example a classical Nadaraya-Watson estimator of

the drift function is given by

(4.4) µ̂j,NW
h (x) =

1
Tn

∑nT−1
k=0 Kh(x,Xk∆)∆−1(Xj

(k+1)∆ −Xj
k∆)

1
Tn

∑nT−1
k=0 Kh(x, Xk∆)

with a kernel weight Kh(x,Xk∆) =
∏d

i=1 Kh(x
i, Xk∆). For simplicity of nota-

tion it is assumed that the same bandwidth is used for all dimension and it will

be denoted with h. The corresponding estimators of the entries of the diffu-

sion matrix are obtained by replacing ∆−1(Xj
(k+1)∆ −Xj

k∆) with ∆−1(X i
(k+1)∆ −

X i
k∆)(Xj

(k+1)∆ −Xj
k∆). In the scalar case (d = 1) this estimator of the diffusion

was first considered by Florens-Zmirou (1993) for a fixed time horizon. A bivari-

ate extension was proposed by Brugiere (1993). In that case the diffusion function

can be estimated with mixed asymptotic (n → ∞, T = T̄ fixed) normality. If

the time horizon tends to infinity as well, asymptotic normality of the estimator

holds and the rate is given by
√

nThd, which can be found in Bandi and Moloche

(2001).
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The drift functions, in contrast, are not estimable over a fixed time horizon. If

both n and T tend to infinity, the estimator is asymptotically normal and the

rate of convergence is given by
√

Thd (see Bandi and Moloche, 2001).

In finite samples the estimation based on the conditional expectation operator

suffers from a bias of order ∆ associated with the sampling frequency. Using the

infinitesimal generator of the process, Stanton (1997) and Fan and Zhang (2003)

introduce different approximation schemes, that result in a bias of order ∆k. As

they point out, the increasing precision has to be paid with a larger variance of

the resulting estimators.

Various articles have extended the basic framework to nonstationary but re-

current processes (Bandi and Philips, 1998), low frequency sampling (Gobet,

Hoffmann and Reiß, 2004), local polynomial estimators (Fan and Zhang, 2003,

Moloche, 2001) or jump diffusions (Bandi and Nguyen, 2003).

The results of Bandi and Moloche (2001) indicate the presence of the well known

curse of dimensionality, which means that for the estimation of higher dimensional

processes the rate of convergence becomes slower and the sample sizes have to be

larger. One possibility to circumvent this problem is to impose more structure

on the unknown functions but to keep them still more flexible than in parametric

specifications.

Additivity of the drift functions means that one or all elements of the drift

vector are assumed to be fully additive, i. e.

µj(x) = µj,1(x1) + · · ·+ µj,d(xd).

Analogously, additivity of the diffusion functions means that some or all elements

of the diffusion matrix are fully additive in its arguments. Using an appropriate

estimation technique, it can be possible to estimate the one-dimensional compo-

nents µi,j(xj) with the one-dimensional rate of convergence.

4.3 The Smooth Backfitting Algorithm

For the nonparametric estimation of additive functions in a classical regression

setting, different estimators have been proposed. The most prominent smoothing

based techniques are the classical backfitting algorithm by Buja, Hastie and Tib-

shirani (1989), marginal integration by Linton and Nielsen (1995) and Tjøstheim

and Auestad (1994), smooth backfitting by Mammen, Linton and Nielsen (1999)

and local partitioned regression by Christopeit and Hoderlein (2006). Marginal
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integration and local partitioned regression use a full-dimensional estimator in a

first stage and therefore these methods suffer from the curse of dimensionality in

the sense that the sample size has to increase with d (but the rate of convergence

is one-dimensional). Opsomer and Ruppert (1997) have investigated the asymp-

totic properties of classical backfitting and found out that the algorithm is not

oracle-efficent. Furthermore, the correlation between the covariates is restricted

in their analysis, which is an important drawback in the present application of

diffusion processes. In contrast, smooth backfitting was shown to be fully oracle

efficient in a standard regression problem. Therefore this algorithm is chosen for

the estimation of diffusion processes in this chapter.

The algorithm will be presented for an estimator of µ1(x). Other components of

the drift and the diffusion follow by appropriately changing the response variable

according to equations (4.2) and (4.3). The additive model for µ1(x) is given by

(4.5) lim
∆→0

E(∆−1(X1
(k+1)∆ −X1

k∆) | Xk∆ = x) = µ1,0 + µ1,1(x1) + · · ·+ µ1,d(xd).

Without an additional constraint constants could be interchanged between the

additive components and they would not be identified. Therefore

(4.6)

∫
µ1,j(xj)f(xj) dxj = 0, j = 1, . . . , d

is imposed where f(xj) =
∫

f(x) dx−j denotes1 the marginal density of Xj. To

estimate an unknown regression function by kernel smoothing, local polynomials

of different order can be used. Usual considerations are local constant (Nadaraya-

Watson) or local linear estimators. In this section smooth backfitting estimators

of the additive model based on these popular estimators are described.

4.3.1 Smooth Backfitting Based on Local Constant Esti-

mation

The classical Nadaraya-Watson estimator as explicitly given in equation (4.4) can

be obtained as solution of the minimization problem

(4.7)

µ̂1,NW
h = arg min

µ̄1∈M

∫
1

nT

nT−1∑

k=0

(
∆−1(X1

(k+1)∆ −X1
k∆)− µ̄1(x)

)2
d∏

j=1

Kh(x
j, Xj

k∆) dx,

1Here the notation dx−j = dx1 . . . dxj−1 dxj . . . dxd is introduced.
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where the minimization runs over an appropriate function class M in the space of

square integrable functions. A natural way to obtain an estimator of the additive

model would be to restrict the minimization to the class of additive functions

Madd = {µ̄1 ∈ M : µ̄1(x) = µ̄1,0 + µ̄1,1(x1) + · · · + µ̄1,d(xd)}. By a simple

projection argument it holds that

∫
1

nT

nT∑

k=1

(
∆−1(X1

(k+1)∆ −X1
k∆)− µ̄1(x)

)2
d∏

j=1

Kh(x
j, Xj

k∆) dx

=

∫
1

nT

nT∑

k=1

(
∆−1(X1

(k+1)∆ −X1
k∆)− µ̂1,NW (x)

)2
d∏

j=1

Kh(x
j, Xj

k∆) dx

+

∫
1

nT

nT∑

k=1

(
µ̂1,NW (x)− µ̄1(x)

)2
d∏

j=1

Kh(x
j, Xj

k∆) dx.

Obviously, minimizing the left hand side over µ̄1 is equivalent to minimizing the

second term on the right hand side over µ̄1. This second term can be written as

(4.8) ‖µ̂NW
h − µ̄‖ bf =

∫ (
µ̂h(x)− µ̄1,0 − µ̄1,1(x1)− · · · − µ̄1,d(xd)

)2

f̂h(x) dx

where f̂h(x) =
∑nT−1

k=0

∏d
i=1 Kh(x

i, X i
k∆) is a kernel density estimator. Inter-

preting this equation, the smooth backfitting estimators can be regarded as the

projection of the full-dimensional Nadaraya-Watson estimator onto the space of

additive functions under the semi-norm induced by f̂h(x). The projection inter-

pretation of the estimators is discussed in more detail in Mammen, Linton and

Nielsen (1999) and more generally in Mammen et al. (2001).

To ensure identifiability, the minimization is restricted to the empirical version

of equation (4.6)

(4.9)

∫
µ̂1,j,NW (xj)f̂h(x

j) dxj = 0,

for j = 1, . . . , d, using marginal density estimators f̂h(x
j) =

∑nT−1
k=0 Kh(x

j, Xj
k∆).

Solving the minimization (4.8) with respect to (4.9) the minimum (µ̃0,1,NW ,

µ̃1,1,NW (x1), . . . , µ̃1,d,NW (xd)) is not given explicitly but as solution of the set

of equations

(4.10)

µ̃1,j,NW
h (xj) =

∫
µ̂1,NW

h (x)
f̂h(x)

f̂h(xj)
dx−j −

∑

i6=j

∫
µ̃1,i,NW

h (xi)
f̂h(x)

f̂h(xj)
dx−j − µ̃1,0,
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for j = 1, . . . , d together with (4.9). The two integrals in equation (4.10) can be

simplified to

∫
µ̂1,NW

h (x)
f̂h(x)

f̂h(xj)
dx−j

=
1

nT

∫ ∑nT−1
k=0

∏d
i=1 Kh(x

i, X i
k∆)∆−1(X1

(k+1)∆ −X1
k∆) dx−j

f̂h(xj)

= µ̂1,j,NW
h (xj),

which are subsequently called marginal Nadaraya-Watson estimators and

∫
µ̃1,i,NW

h (xi)
f̂h(x)

f̂h(xj)
dx−j =

∫
µ̃1,i,NW

h (xi)
f̂h(x

i, xj)

f̂h(xj)
dxi.

Using these transformations the equations (4.10) can be rewritten to

(4.11) µ̃1,j,NW
h (xj) = µ̂1,j,NW

h (xj)−
∑

i 6=j

∫
µ̃1,i,NW

h (xi)
f̂h(x

i, xj)

f̂h(xj)
dxi − µ̃1,0,NW

j .

Then, the Nadaraya-Watson smooth backfitting estimators as solutions to the

equations (4.11) together with the normalizations (4.9). These equations can

directly be motivated by noting that the marginal Nadaraya-Watson estimators

will converge to

E(µ1(X) | Xj = xj) = µ1,0 + µ1,j(xj) +
∑

i6=j

E(µ1,i(X i) | Xj = xj).

To obtain the additive components, the conditional expectation operator has

to be inverted and equations (4.11) provide an empirical version of the integral

equation. In that sense smooth backfitting estimation is a (well-posed) statistical

inverse problem.

In the algorithm only marginal Nadaraya-Watson estimators µ̂1,j,NW
h (xj) and

one- and two-dimensional kernel density estimators f̂h(x
j) and f̂h(x

i, xj) are used.

Since no higher-dimensional kernel regression or density estimators are calculated,

the estimation procedure does not suffer from the curse of dimensionality.

To compute the estimators, marginal Nadaraya-Watson estimators and the one-

and two-dimensional kernel density estimators have to be calculated for a number

of grid points that allow to evaluate the integrals in equation (4.11) numerically.

Using as starting values the marginal Nadaraya-Watson estimators the smooth

backfitting estimators are derived as the iterative solution of (4.11) and (4.9).
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More practical details about the implementation can be found in Nielsen and

Sperlich (2005).

If it holds for the kernel density estimators that

(4.12)

∫

Gi

f̂h(x
i, xj) dxi = f̂h(x

j),

for all combinations of i and j and where Gi is the bounded support of X i

then the normalizations (4.9) are automatically fulfilled by choosing µ̃1,0,NW
j =∫

µ̂1,j,NW
h (xj)f̂h(x

j) dxj = (nT )−1
∑nT−1

k=0 ∆−1(X1
(k+1)∆ −X1

k∆) = T−1(X1
T −X1

0 ).

Thus, the normalization can be omitted from the algorithm if centered data is

used.

One possibility to ensure (4.12) is to use modified kernels

(4.13) Kh(u, v) =
Kh(u− v)∫

Gj Kh(w − v) dw
,

where and K is a usual kernel function with support [−1, 1], say. However,

restriction (4.12) is always violated if unmodified kernels are used or if one is

interested in estimating the function µ1(x) over a compact set G that is not

rectangular. In that case it is still possible to use µ̃1,0,NW = T−1(X1
T −X1

0 ). But

now in each iteration step the centering condition (4.9) has to be updated. That

means in the r-th iteration cycle, the update ˜̃µ1,j,NW,[r]

h (xj) of equation (4.11) has

to be recentered to obtain

µ̃
1,j,NW,[r]
h = ˜̃µ1,j,NW,[r]

h (xj)−
∫ ˜̃µ1,j,NW,[r]

h (xj)f̂(xj) dxj

∫
f̂h(xj) dxj

.

But for this more general algorithm, the asymptotic theory is still not completely

solved. While convergence of the algorithm can be shown, the bias behavior of

the estimator has not been fully understood. This chapter concentrates therefore

on the standard setting, where f(x) > 0 for x ∈ G, which is the cross product

of compact sets Gj, on which the marginal distribution of Xj is bounded from

below.

Mammen, Linton and Nielsen (1999) provide general conditions under which a

unique solution of the algorithm exists and show that it converges with geometric

rate with probability tending to one. These conditions are very general and in

particular neither assume the additive model to hold nor restrict the underlying

data generating process. The convergence of the algorithm will be established as

a by-product of the asymptotic normality of the estimators in Section 4.4.
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4.3.2 Smooth Backfitting Based on Local Linear Estima-

tion

The minimization problem (4.7) can be extended by approximating the unknown

function locally by a Taylor polynomial of higher order. This leads to the well

known definition of local polynomial estimators. The local linear estimators are

thus defined as

(4.14) µ̂1,LL
h = arg min

(µ̄1,µ̄1,...,µ̄d)∈M

∫
1

n

nT−1∑

k=0

(
∆−1(X1

(k+1)∆ −X1
k∆)

− µ̄1(x)−
d∑

j=1

µ̄1
j(x)

Xj
k∆ − xj

h

)2
d∏

j=1

Kh(x
j, Xj

k∆) dx,

where M = Md+1. The quantity hµ1
j(x) can be interpreted as the partial deriva-

tive of µ1(x) with respect to xj. The vector µ̂1,LL
h (x) then consists of an estimator

of the function and of estimators of all partial derivatives. Introducing the ma-

trices

X(x) =




1 (X1
0 − x1)/h . . . (Xd

0 − xd)/h
...

. . .
...

1 (X1
T−∆ − x1)/h . . . (Xd

T−∆ − xd)/h




K(x) =
1

NT

(
diag

( d∏
j=1

Kh(X
j
∆, xj), . . . ,

d∏
j=1

Kh(X
j
T−∆, xj)

))

Y =
(
∆−1(X∆ −X0), . . . , ∆

−1(XT −XT−∆)
)
,

the estimator can be written as

µ̂1,LL
h (x) = Ŝ−1(x)T̂(x),

where Ŝ(x) = XT (x)K(x)X(x) and T̂(x) = XT (x)K(x)Y. The matrix Ŝ(x)

contains kernel density estimators and for further reference their one- and two-

dimensional marginals are introduced

f̂h,l(x
j) =

1

nT

nT−1∑

k=0

Kh(x
j, Xj

k∆)(Xj
k∆ − xj)l for l = 1, 2

f̂h,l(x
i, xj) =

1

nT

nT−1∑

k=0

Kh(x
i, X i

k∆)Kh(x
j, Xj

k∆)(X i
k∆ − xi)l1(Xj

k∆ − xj)l2

for l = (l1, l2) ∈ {(1, 0), (0, 1), (1, 1)}.
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Following the same way as in the local constant case, the minimization prob-

lem (4.14) is restricted to the subset of additive functions Madd = {µ̄1(x) ∈ M |
µ̄1 ∈Madd, µ̄j : R→ R does only depend on xj} in order to obtain an estimator.

Obviously Madd ⊂ M and note that the j-th partial derivative only depends on

xj. By projection arguments it follows that this is equivalent to minimizing

(4.15) ‖µ̂1,LL
h (x)− µ̄1(x)‖bS =

∫
(µ̂LL

h (x)− µ̄1(x))T Ŝ(x)(µ̂LL
h (x)− µ̄1(x)) dx,

where µ̄1(x) = (µ̄1(x), µ̄1
1(x

1), . . . , µ̄1
d(x

d))T is an element of Madd. Again, the

estimator can be regarded as a projection of the full-dimensional local linear esti-

mator µ̂1,LL
h onto the space of additive functions with respect to the inner product

induced by Ŝ(x). This is the analogous interpretation of the smooth backfitting

estimator as a projection, as in the local constant case of this last subsection but

this time with a different space and a different norm. To derive the solution of

the minimization problem (4.15) the argumentation becomes slightly more com-

plex than in the Nadaraya-Watson case. It is skipped here and the interested

reader is referred to Mammen, Linton and Nielsen (1999). Finally the local linear

smooth backfitting estimator (µ̃1,1,LL
h (x1), µ̃1,1,LL

1,h (x1), . . . , µ̃1,d,LL
h (xd), µ̃1,d,LL

d,h (xd))

is defined as the solution of the following set of equations

(4.16)

(
µ̃1,j,LL

h (xj)

µ̃1,j,LL
j,h (xj)

)
=

(
µ̂1,j,LL

h (xj)

µ̂1,j,LL
j,h (xj)

)
−

(
µ̃1,0,LL

j

0

)

− V̂ j(xj)−1
∑

i 6=j

∫
Û ij(xi, xj)

(
µ̃1,i,LL

h (xi)

µ̃1,i,LL
i,h (xi)

)
dxi,

for j = 1, . . . , d together with the normalizations

(4.17)

∫
µ̂1,j,LL

h (xj)f̂h(x
j) dxj +

∫
µ̄1,j,LL

j,h (xj)f̂h,1(x
j) dxj = 0.

which ensure identification. Note that this is asymptotically also a consistent

version of the original restriction (4.6). The matrices in (4.16) are defined as

V̂ j(xj) =

(
f̂h(x

j) f̂h,1(x
j)

f̂h,1(x
j) f̂h,2(x

j)

)

Û ij(xi, xj) =

(
f̂h(x

i, xj) f̂h,(1,0)(x
i, xj)

f̂h,(0,1)(x
i, xj) f̂h,(1,1)(x

i, xj)

)
,

and (µ̂1,J,LL
h (xj), µ̂1,j,LL

j,h (xj)) are the marginal (one-dimensional) local linear esti-

mators of the regression of (X1
(k+1)∆ − X1

k∆) on Xj
k∆. As in the local constant
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case only one- and two-dimensional smoothers are used and therefore the es-

timator does not suffer from the curse of dimensionality. Using the marginal

local linear estimators as starting values the smooth backfitting estimators are

obtained as the iterative solution of (4.16). For computational purposes the rep-

resentation (4.16) is not very convenient. Nielsen and Sperlich (2005) describe

the implementation in detail if modified kernels are used (i. e. equation (4.12)

holds). In that case direct calculations show that the normalization is directly

achieved for µ̃1,0,LL
j = T−1(X1

T −X1
0 ) for all j = 1, . . . , d. If (4.12) does not hold,

normalization is achieved by choosing

µ̃1,0
j =

(∫
µ̃1,j,LL

h (xj)f̂h(x
j) dxj +

∫
µ̃1,j,LL

j,h (xj)f̂h,1(x
j) dxj

)(∫
f̂h(x

j) dxj
)−1

and implementing the normalization as in the local constant case. As pointed

out, the algorithm can be regarded as a projection method and Mammen, Linton

and Nielsen (1999) provide general conditions under which the iterative procedure

converges as well as properties of the limit. In the next section limit results for

the estimation of the components of a diffusion process will be derived.

4.4 Asymptotic Results

After the presentation of the basic algorithms the asymptotic behavior of the

estimators will be derived. First, estimation of the drift vector is considered and

the two backfitting methods (Nadaraya-Watson and local linear) are compared

via their oracle properties. First, the required assumptions are stated.

Assumption 4.1. 1. The elements of the drift vector µ(x) and the diffusion

matrix A(x) are twice continuously differentiable.

2. There exists a solution to the stochastic differential equation (4.1) and the

process (Xt) is stationary, has compact support G = G1 × · · · × Gd and is

strongly mixing with α-mixing coefficients satisfying
∑∞

i=1 α(i)1/2 < ∞. The

stationary density f(x) is twice continuously differentiable and the marginal

densities f(xj) are bounded from below on Gj.

It is not very natural to assume a process that lives on a compact support. But

this has to be done for technical reasons only. Consider an arbitrary station-

ary strongly mixing process (X̃)t, it can be transformed into a process satisfy-

ing the assumption. For this purpose select sets Gj that fulfil Assumption 4.1.
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Then, a new process can be defined by excluding all observations when (X̃)t

is outside G and taper the remaining parts together. Formally this is done

by defining the time-changed process Xt = X̃τ−1(t) where τ−1 is the inverse of

τ(t) =
∫ t

0
1{ eXs∈G} ds. Then, the new process satisfies Assumption 4.1.

Finally, standard assumptions on the kernel function have to be employed.

Assumption 4.2. For a bandwidth sequence h → 0 the kernel weights are given

by equation (4.13). The kernel function K(u) is a positive symmetric (around

0) and bounded function with compact support that integrates to one. ukK(u) is

Lipschitz continuous for k = 0, 1, 2. The kernel is of order 2, i. e.
∫

u2K(u) du <

∞.

Note that for the use of modified kernels, extra attention has to be paid to the

kernel moments. For simplicity assume Gj = [0, 1]. The numerator of Kh(u, v) is

equal to one if v ∈ [h, 1− h] and depends on v (but not on h) otherwise. Kernel

constants are defined as

κl(u) =

∫ 1

0

(u− v)l Kh(u− v)∫ 1

0
Kh(w − v) dw

dv.

Easy calculations show that three cases have to be distinguished

κl(u) =





∫ 1

−1
vlK(v) dv for u ∈ [2h, 1− 2h]

∫ 1

−1
vlK(v) dv + O(hl+1) for u ∈ [h, 2h] ∪ [1− 2h, 1− h]

∫ 1

0
(u− v)lKh(u− v) dv + O(hl+1) for u ∈ [0, h] ∪ [1− h, 1]

.

The modified kernels only have an influence at boundary points u ∈ [0, 2h] ∪
[1 − 2h, 1], where they differ from usual kernel constants. Analogously, kernel

constants κ2
l =

∫ 1

0
(u− v)l(Kh(u, v))2 dv are defined.

4.4.1 Estimation of the Drift Function

Without loss of generality the exposition is restricted to the case of estimating

the first component of the drift vector µ1(x). The Nadaraya-Watson smooth

backfitting estimators µ̃1,j
h (xj), j = 1, . . . , d are defined as the iterative solution

of the set of equations (4.11) and the normalization (4.9). Their asymptotic

properties are given in the following

Theorem 4.1. Let Assumptions 4.1 and 4.2 be fulfilled and the additive model

(4.5) with centering (4.6) hold. For the bandwidth sequence it holds that h2 =
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O((Th)−1/2) and nh3 →∞. Then the algorithm (4.11) converges with geometric

rate and for the estimators µ̃1,j,NW
h (xj), j = 1, . . . , d it holds that

√
Th

µ̃1,j,NW
h (xj)− µ1,j(xj)− b1,j

h − β1,j,NW
µ (xj)√

v1(xj)κ2(xj)/κ0(xj)2

D−−→ N (0, 1),

where

b1,j
h = −

∫∫
µ1,j(xj)Kh(x

j, uj)f(uj) duj dxj

− h

∫∫
∂

∂xj
µ1,j(xj)

κ1(x
j)

κ0(xj)
Kh(x

j, uj)f(uj) dxj

β1,j,NW
µ (xj) = h

κ1(x
j)

κ0(xj)

∂

∂xj
µ1,j(xj) + h2β̃1,j

µ (xj)

and

v1(xj) = (f j(xj))−1 E(a11(X) | Xj = xj).

Note that the first part of the bias β1,j,NW
µ (xj) is zero for xj ∈ [h, 1 − h] and

therefore only present at the boundary. The second part is not given in explicit

form, it is only defined as

(β̃1,0
µ , β̃1,j

µ (x1), . . . , β̃d,j
µ (xd))

= arg min
β1,0

µ ,...,β1,d
µ

∫
(β1

µ(x)− β1,0
µ − β1,1

µ (x1)− · · · − β1,d
µ (xd))2f(x) dx,

with

βµ(x) =
κ2(x

j)

κ0(xj)

d∑
j=1

(f(x))−1 ∂

∂xj
(µ1,j(xj))

∂

∂xj
(f(x)) +

1

2

∂

∂(xj)2
µ1,j(xj).

Therefore the bias can be interpreted as the projection of βµ(x) on the space of

additive functions with respect to the L2(f)-norm.

The term b1,j
h converges to zero asymptotically since it holds that

∫∫
µ1,j(xj)f(uj)Kh(x

j, uj) duj dxj

=

∫

uj /∈[h,1−h]

∫
µ1(xj)f j(xj)(Kh(x

j, uj)−Kh(x
j − uj)) dxj duj + O(h2)

= O(h).
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and the second term is of order O(h2) because κ1(x
j) is zero at interior points

xj. However, this term is constant over xj and does therefore only affect the

normalization of µ1,j(xj). It is generated by the difference between the empirical

normalization (4.9) used in the algorithm and the theoretical normalization (4.6)

and does not influence the shape of the estimator.

Convergence of the algorithm follows from consistency of the (one and two-

dimensional) kernel density estimators. In particular, the unknown function do

not have to be additive. If the additive model does not hold, the estimators

will converge to a projection of the high-dimensional function onto the space of

additive functions. In Chapter 5 this case is investigated for independent and

identically distributed data.

The limit distribution of the vector (µ̃1,1,NW
h (x1), . . . , µ̃1,d,NW

h (xd)) is a multivari-

ate (d-dimensional) normal distribution where the covariances are zero asymp-

totically. Considering the joint estimation of the additive components of µi(x)

and µi′(x) there are asymptotically non-vanishing covariances, given by

cov(
√

hT µ̃i,j,NW
h (xj),

√
hT µ̃i′,j,NW

h (xj)) =
κ2(xj)

f(xj)
E(aii′(X) | Xj = xj).

To judge the efficiency of the Smooth backfitting estimator it has to be compared

to the oracle estimator, which is based on knowledge of all other µ1,i(xi), i 6= j.

With this knowledge, the response variables could be modified to

Y ?
k∆ = ∆−1(X1

(k+1)∆ −X1
k∆)−

∑

i6=j

µ1,i(X i
k∆)

=

∫ (k+1)∆

k∆

µ1,j(Xj
s ) ds +

d∑
i=1

∫ (k+1)∆

k∆

σ1i(Xs) dW l
s

+
∑

i6=j

∫ (k+1)∆

k∆

(µ1,i(X i
s)− µ1,i(X i

k∆)) ds.

Then, the infeasible oracle estimator is given by

µ̌1,j,NW
h (xj) =

∑nT−1
k=0 Kh(x

j, X i
k∆)Y ?

k∆∑nT−1
k=0 Kh(xj, X i

k∆)
.

The knowledge of the other components allows to estimate µ1,j(xj) from discrete

data only. The discretization errors are of order OP (n−3/2) and therefore do not

affect the estimation asymptotically. Therefore it holds that (even under weaker

assumptions than Theorem 4.1)

√
Th

µ̌1,j,NW
h (xj)− µ1,j(xj)− β̌1,j(xj)√

κ2(xj)v1(xj)/κ0(xj)

D−−→ N (0, 1),
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where

β̌1,j(xj) = h
κ1(x

j)

κ0(xj)

∂

∂xj
(µ1,j(xj))

+ h2

(
κ2(x

j)

κ0(xj)

∂
∂xj (µ

1,j(xj)) ∂
∂xj (f(xj))

f(xj)
+

1

2

∂2

∂(xj)2
µ1,j(xj)

)
.

This follows from Lemmata 4.2 and 4.4 in the appendix and therefore, the smooth

backfitting estimator µ̃1,j,NW
h (xj) achieves the same variance as the oracle estima-

tor, but has a different bias. This is the same efficiency result as in the classical

regression setting, which was shown by Mammen, Linton and Nielsen (1999). To

understand the bias behavior recall that the smooth backfitting estimator can be

regarded as a projection of the full dimensional Nadaraya-Watson estimator onto

the space of additive functions. Theorem 4.1 shows that the bias of the smooth

backfitting estimator is the additive projection of the bias of the full-dimensional

estimator. But this is not additive because the stationary density of the process

f(x) is in general not additive. In contrast, the bias of a full-dimensional local

linear estimator is additive and consists of the sum of the second derivatives of

the additive components (times a constant). Smooth backfitting based on the lo-

cal linear estimator can again be regarded as a projection of the full-dimensional

local linear estimator. In the next theorem it will be shown that the bias of the

local linear smooth backfitting estimator is again the projection of the bias of the

full-dimensional estimator and therefore local linear backfitting is fully oracle ef-

ficient. The design independence of local linear estimation, which means that the

bias is independent of the density of the regressors, carries over to the projected

estimators and drives the efficiency result.

The next theorem states the asymptotic properties of the local linear smooth

backfitting estimators, defined in equations (4.16) and (4.17).

Theorem 4.2. Let Assumptions 4.1 and 4.2 be fulfilled and the additive model

(4.5) with centering (4.6) hold. For the bandwidth sequence it holds that h2 =

O((Th)−1/2) and nh3 →∞. Then the algorithm (4.16) converges with geometric

rate and for the estimators µ̃1,j,LL
h (xj), j = 1, . . . , d it holds that

√
Th

µ̃1,j,LL
h (xj)− µ1,j(xj)− b1,j

h − βLL
µ (xj)√

v1(xj)κ̃(xj)

D−−→ N (0, 1),
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with b1,j
h and v1(xj) as given in Theorem 4.1 and where

βLL
µ (xj) = h2 1

2

κ2(x
j)

κ0(xj)

∂2

∂(xj)2
µ1(xj)

κ̃(xj) =
κ2

0(x
j)κ2(x

j)− κ1(x
j)κ2

1(x
j)

κ0(xj)κ2(xj)− (κ1(xj))2
.

For interior points, the variance reduces to κ̃(xj) = κ2
0(x

j) because all other

kernel constants are zero or one. In contrast to local constant smooth backfitting,

the bias is given in explicit form. To derive the oracle efficiency, consider the

unfeasible local linear estimator based on the data Y ∗
k∆. Applying Lemmata 4.2

and 4.4, the asymptotic properties of the oracle estimator (under Assumptions 4.1

and 4.2) are given by

√
Th

µ̌1,j,LL
h (xj)− µ1,j(xj)− βLL

µ (xj)√
v1(xj)κ̃(xj)

D−−→ N (0, 1).

From this it can be seen that both bias and variance are identical to the ex-

pressions in Theorem 4.2. Therefore the local linear estimators are fully oracle

efficient.

4.4.2 Estimation of the Diffusion Function

Now, the estimation of the elements of the diffusion matrix A(x) is considered. To

avoid confusion with the increasing number of indices, the exposition is restricted

to the case to estimate a12(x), which is assumed to be fully additive, i. e.

(4.18) a12(x) = a12,0 + a12,1(x1) + · · ·+ a12,d(xd).

For identifiability it is imposed that
∫

a12,j(xj)f(xj) dxj = 0 for all j = 1, . . . , d.

Based on equation (4.3) the marginal Nadaraya-Watson estimators are given by

â12,j,NW
h (xj) =

∑nT−1
k=0 Kh(x

j, Xj
k∆)∆−1(X1

(k+1)∆ −X1
k∆)(X2

(k+1)∆ −X2
k∆)

∑nT−1
k=0 Kh(xj, Xj

k∆)

The local constant smooth backfitting estimators are defined by plugging these es-

timators into equation (4.11). Explicitly, the backfitting estimators ã12,j,NW
h (xj),

j = 1, . . . , d of the additive components of a12(x) are defined as the iterative

solutions to

(4.19) ã12,j,NW
h (xj) = â12,j,NW

h (xj)−
∑

i6=j

∫
ã12,i,NW

h (xi)
f̂h(x

i, xj)

f̂h(xj)
dxi − ã1,0,NW

j
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together with the norming
∫

ã12,j,NW
h (xj)f̂h(x

j) dxj = 0. Then, the asymptotic

behavior is given by the following

Theorem 4.3. Let Assumptions 4.1 and 4.2 be fulfilled and assume that the ad-

ditive model (4.18) with centering holds. For the bandwidth sequence it holds that

h2 = O((Tnh)−1/2), nh3 →∞ and (Th)−1/2 = o(h2). Then the algorithm (4.19)

converges with geometric rate and for the estimators ã12,j,NW
h (xj), j = 1, . . . , d it

holds that

√
Tnh

ã12,j,NW
h (xj)− a12,j(xj)− b12,j

h (xj)− h2β12,j,NW
σ (xj)

v12(xj)κ2(xj)/κ0(xj)

D−−→ N (0, 1),

where

b12,j
h = −

∫∫
a12,j(xj)Kh(x

j, uj)f(uj) duj dxj

− h

∫∫
∂

∂xj
a12,j(xj)

κ1(x
j)

κ0(xj)
Kh(x

j, uj)f(uj) dxj

β12,j,NW
σ (xj) = h

∂

∂xj
(a12(xj))

κ1(x
j)

κ0(xj)
+ h2β̃12,j

σ (xj)

and

v12(xj) = (f(xj))−1 E
(
(a12(X))2 | Xj = xj

)
.

Again the bias is given only in implicit form by

(β̃12,0
σ , β̃12,1

σ (x1), . . . , β̃12,d
σ (xd))

= arg min
β12,0

σ ,...,β12,d
σ

∫
(βσ(x)− β12,0

σ − β12,1
σ (x1)− · · · − β12,d

σ (xd))2f(x) dx

with

βσ(x) =
κ2(x

j)

κ0(xj)

d∑
j=1

(f(x))−1 ∂

∂xj
(a12(xj))

∂

∂xj
(f(x)) +

1

2

∂2

∂(xj)2
a12(xj).

The rate of convergence is given by
√

Tnh and is faster than in the drift case.

This is consistent with the general finding that the diffusion function of diffusion

processes can always be estimated with a faster rate.

The joint distribution of the vector of the ã12,j
h (xj) is a multivariate (d-dimen-

sional) normal distribution and all covariances are asymptotically zero. In the
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joint distribution of components of different elements of the diffusion matrix, say

aij(x) and ai′j′(x), non-vanishing covariances are present. These are given by

cov(
√

hnT ãij,k,NW
h (xk),

√
hnT ãi′j′,k,NW

h (xk))

=
κ2(xk)

κ0(xk)f(xk)
E(aij(X)ai′j′(X) | Xk = xk)

and zero otherwise.

For the estimators of the diffusion function, the efficiency results of the estima-

tors of the drift function carry over. To see this, consider the oracle estimator for

a12,j(xj), which is based on infeasible data

Y ∗∗
k∆ = ∆−1(X1

(k+1)∆ −X1
k∆)(X2

(k+1)∆ −X2
k∆)−

∑

i6=j

a12,i(X i
k∆).

The Nadaraya-Watson oracle estimator ǎ12,j,NW
h (xj) is then obtained by regressing

Y ∗∗
k∆ on Xk∆. Using Lemmata 4.5 and 4.7 the asymptotic properties of the oracle

estimator can be derived as

√
Tnh

ǎ12,j,NW
h (xj)− a12,j(xj)− h2β̌12,j(xj)

v12(xj)κ2(xj)/κ0(xj)

D−−→ N (0, 1),

with

β̌12,j(xj) = h
κ1(x

j)

κ0(xj)

∂

∂xj
(a12,j(xj))

+ h2
(κ2(x

j)

κ0(xj)

∂
∂xj (a

12,j(xj)) ∂
∂xj (f(xj))

f(xj)
+

1

2

∂2

∂(xj)2
a12,j(xj)

)
.

As in the estimation of the drift vector, the local constant smooth backfitting

estimator is not fully oracle efficient. While the variance is the same, the two

estimators have different bias. A fully oracle efficient estimator is obtained using

local linear smooth backfitting.

First, define the marginal local linear estimators as

(â12,j,LL
h (xj), â12,j,LL

j,h (xj))

= arg min
(ā12,j ,ā12,j

j )

∫
1

n

nT−1∑

k=0

(
∆−1(X1

(k+1)∆ −X1
k∆)(X2

(k+1)∆ −X2
k∆)

− ā12,j(xj)− ā12,j
j (xj)

Xj
k∆ − xj

h

)2
d∏

j=1

Kh(x
j, Xj

k∆) dx
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and then the local linear smooth backfitting estimators as the solution of

(4.20)

(
ã12,j,LL

h (xj)

ã12,j,LL
j,h (xj)

)
=

(
â12,j,LL

h (xj)

â12,j,LL
j,h (xj)

)
−

(
ã12,0

j

0

)

− V̂ j(xj)−1
∑

i6=j

∫
Û ij(xi, xj)

(
ã12,i,LL

h (xi)

ã12,i,LL
i,h (xi)

)
dxi

with normalization
∫

ã12,j,LL
h (xj)f̂h(x

j) dxj +

∫
ã12,j,LL

j,h (xj)f̂h,1(x
j) dxj = 0.

The asymptotic behavior of these estimators is given in the following

Theorem 4.4. Let Assumptions 4.1 and 4.2 be fulfilled and assume that the ad-

ditive model (4.18) with centering holds. For the bandwidth sequence it holds that

h2 = O((Tnh)−1/2), nh3 →∞ and (Th)−1/2 = o(h2). Then the algorithm (4.19)

converges with geometric rate and for the estimators ã12,j,LL(xj), j = 1, . . . , d it

holds that

√
Tnh

ã12,j,LL
h (xj)− a12,j(xj) + b12,j

h (xj)− β12,j,LL
σ (xj)

v12(xj)κ̃(xj)

D−−→ N (0, 1),

with b12,j
h and v12(xj) as given in Theorem 4.3, κ̃(xj) as in Theorem 4.2 and where

β12,j,LL
σ (xj) = h2 1

2

κ2(x
j)

κ0(xj)

∂2

∂(xj)2
a12,j(xj).

This estimator has to be compared to the local linear oracle estimator, which

is the local linear estimator of the regression of Y ∗∗
k∆ on Xk∆. Then, the result is

analogous to the drift estimation. The smooth backfitting estimator ã12,j,LL
h (xj)

has the same bias and the same variance as the oracle estimator.

4.4.3 Bandwidth Choice

An important issue in the application of kernel regression techniques is the se-

lection of the smoothing parameters h1, . . . , hd. While the derivation of formal

results for data-driven bandwidths is beyond the scope of the present work, two

possibilities will briefly be described. There are two proposals to select the band-

width for smooth backfitting estimation. Nielsen and Sperlich (2005) introduce

a cross-validation procedure and give evidence by simulations that the method
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works. However, they do not provide theoretical results. Mammen and Park

(2006) investigate the use of penalizing functions and theoretically derive the

validity of their procedure.

Presumably the results by Mammen and Park (2006) for independent data

could be generalized to the present setting of diffusion processes. However for

finite samples, the correlation structure of the data can produce misleading re-

sults. Cross-validation can be adjusted to dependent data more easily. The cross

validated bandwidths are given as minimizers of the criterion

CV (h1, . . . , hd) =
nT−1∑

k=0

(X(k+1)∆ −Xk∆ − µ̃1,0 −
d∑

j=1

µ̃1,j,NW
hj ,−J (k)(X

j
k∆))2.

The estimators at the point Xk∆ should be independent from X(k+1)∆ − Xk∆

to obtain a reliable fit of the unknown function. For independent data this is

achieved by using a leave-one-out estimator. For time series data this can be

generalized by excluding more data points in the (time-) neighborhood J (k) of

Xk∆ from the prediction.

The estimator µ̃1,j,NW
h (xj) does not depend asymptotically on the bandwidths

of all other components. Therefore, the cross-validation function can be mini-

mized by minimizing over h1, . . . , hd subsequently. Usually the optimization is

performed via a grid search procedure. The subsequent minimization requires

only one-dimensional grid searches and reduces computation time. More time

can be saved by optimizing the bandwidth in each iteration step of the calcula-

tion of the smooth backfitting estimator. This is described in detail in Nielsen

and Sperlich (2005).

4.5 Simulation

In this section the finite sample performance of the smooth backfitting estimators

is investigated via a simulation study. Two three-dimensional data generating

processes of the form

dXt = µ(Xt) dt + Σ(Xt) dWt

are considered. For the first process all entries of the drift vector and of the

diffusion matrix are not only additive but also linear. For the second process

some of these functions are nonlinear. The exact specification of the processes

will be given below.
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The paths of the process are simulated using the Euler-scheme with N = 10

intermediate points to approximate the stochastic integrals. The simulation study

will concentrate on the estimation of the components of µ1,1(x1) and a11,1(x1).

The results for other functions are comparable. Two sample sizes are considered, a

small sample with n = 35, T = 30 and a large sample with n = 50, T = 100. In the

estimation, the Epanechnikov-kernel is implemented and the smooth backfitting

estimators are evaluated on a grid of 51 equidistant points in each direction.

Ten different combinations of bandwidth constants are considered and they will

be adjusted according to the relevant sample size. To judge the performance of

the estimators, they are compared via the mean integrated square error given

as MISE (µ̃1,1
h ) = E

(∫
(µ̃1,1

h (x1) − µ1,1(x1))2 dx1
)
. The ISE for one estimator is

approximated by evaluating the integral over the interior gridpoints 6–41, not to

be affected too severely by boundary problems. The MISE is then estimated as

mean or median over 201 simulation runs.

4.5.1 Linear Model

For the linear model an affine diffusion process is considered. The process is

specified as

µ(x) =




0.75− x1 + 0.5x2 + x3

0.75 + 0.5x1 − 2x2 + 0.25x3

1.5 + 0.25x1 + x2 − 3x3


 ,

Σ(x) =




√
0.3x1 + 0.3x2 0 0

0
√

0.3x2 0

0 0
√

0.3x3


 .

The estimation is performed on the cube G = [0.95, 4.25]×[0.50, 1.85]×[0.60, 1.65].

By simulations it was found that P(Xt ∈ G) = 0.86. This means that the

estimation was on average based on 900 observations for the small sample and

on 4300 observations for the large sample.

First, the results for the drift function are presented. The normalized function

is given by

µ1,1(x1) = 2.32− x1,

where the mean was calculated by simulations. The bandwidth is given by h =

(h1
0, h

2
0, h

3
0)
′×T−1/5. The results in Table 4.1 indicate that the bandwidths h2 and

h3 have an influence on the estimator of µ1,1(x1). As expected by the asymptotic
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Figure 4.1: Estimators of the drift part µ1,1(x1) for n = 35, T = 30 (left column)

and n = 50, T = 100 (right c.). Nadaraya Watson estimators are in first row,

local linear in second. In each panel there are given the true function (solid),

pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations (dashed-

dotted) and the MISE-median estimator over the simulations (dashed). The

bandwidth is given by h = (1.7, 0.85, 0.66)′ × T−1/5

results, this effect is smaller for the large sample. However, the influence of

h1 onto the MISE of µ̃1,1
h (x1) is stronger than the influence of h2 and h3. This

finding gives evidence that the recommended bandwidth selection procedure leads

to reliable results even in small samples.

The values of the mean and the median differ considerably large, indicating a

number of outliers in the simulations. This results from the fact, that in some

simulations not the whole cube G is filled with observations. In that case the den-

sity estimators can be very close to zero2. This causes problems for the marginal

estimators and the integration over the estimated conditional densities in the al-

gorithm. Then, the backfitting estimators can be dominated by some extreme

values, based on too few observations in a local neighborhood. However this

simulation effect decreases with an increasing number of observations. In prac-

tice, the cube G would be selected such that there are enough observations to

avoid this problem. Thus, the result for the median is more reliable to judge the

performance of the estimator.

2The convention 0/0 = 0 is used in the implementation
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In all settings the Nadaraya-Watson estimator outperforms the local linear es-

timator. This effect can only partly be attributed to the increasing variance of

the local linear estimator at boundary points, because in the calculation of the

MISE some boundary points are excluded. In particular in the large sample, no

boundary points are used to estimate the MISE, but still the Nadaraya-Watson

estimator performs better.

Figure 4.1 underlines these findings. In the upper row, the Nadaraya-Watson

estimator is displayed and in the lower row the local linear estimator. The left

column shows the results from the small sample and the right column the results

from the large sample. The local linear estimators show a large variance near

the boundary, which is smaller for the large sample, but still their performance

is worse than the Nadaraya-Watson estimators.

The second important finding is that the Nadaraya-Watson estimator seems to

exhibit a larger bias, because the interquartile range of the estimators seems to

follow a different slope than the true function. Theoretically this can be explained

by the difference in the bias behavior of the two estimators. Recall from Theo-

rem 4.1 that the bias of the Nadaraya-Watson estimator is given only implicitly

as an additive projection of the first derivative of the component function and of

the density. In contrast the bias of the local linear estimator is zero for this data

generating process, because the second derivative of µ1,1(x1) is zero. This effect

is reduced for the large sample. Recall however that the MISE of the Nadaraya-

Watson estimator is always smaller. Therefore its variance must be much smaller

in finite samples.

The results for estimating the diffusion function a11,1(xj) = 0.3(x1 − 2.32)

are given in Table 4.2 and Figure 4.2. The bandwidth is now given by h =

(h1
0, h

2
0, h

3
0)
′ × (nT )−1/5 because of the faster rate of convergence of the diffusion

estimator. The findings from Table 4.2 are similar to those for the drift estima-

tor. For all settings the Nadaraya-Watson estimator has a smaller MISE than

the local linear estimator, however the difference decreases with an increasing

sample size. The effect of the bandwidth constant on the MISE is much smaller

than for estimating the drift function, which should be due to the faster rate of

convergence.

Next, compare the results of Figure 4.2 to the estimation of the drift function.

One can see that the bias of the Nadarya-Watson estimator is still present, but the

effect is much smaller. The interquartile range of the Nadaraya-Watson estimator

is still smaller than that of the local linear estimator and the magnitude of this
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Figure 4.2: Estimators of the diffusion part a11,1(x1) for n = 35, T = 30 (left

column) and n = 50, T = 100 (right c.). Nadaraya Watson estimators are in

first row, local linear in second. In each panel there are given the true function

(solid), pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations

(dashed-dotted) and the MISE-median estimator over the simulations (dashed).

The bandwidth is given by h = (1.7, 0.70, 0.66)′ × (nT )−1/5

distance is much smaller than for the drift estimation. All these findings highlight

the increased rate of convergence for the estimation of the diffusion function.

4.5.2 Nonlinear Model

In the second specification, a process with nonlinear elements of the drift and

diffusion is simulated. The concrete specification is given by

µ(x) =




0.4x1 − 1.1(x1)2 + .01/x1 + 0.25x2 + x3

0.75 + 0.5x1 − 2x2 + 0.25x3

1.5 + 0.25x1 + x2 − 3x3


 ,

Σ(x) =




√
0.3(x1)2 + 0.3(x2)2 0 0

0
√

0.3x2 0

0 0
√

0.3x3


 .

The specification of µ1,1(x1) was considered by Aı̈t-Sahalia (1996b) for a scalar

diffusion to model interest rates. The estimation is restricted to the cube G =
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Figure 4.3: Estimators of the drift part µ1,1(x1) for n = 35, T = 30 (left column)

and n = 50, T = 100 (right c.). Nadaraya Watson estimators are in first row,

local linear in second. In each panel there are given the true function (solid),

pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations (dashed-

dotted) and the MISE-median estimator over the simulations (dashed). The

bandwidth is given by h = (0.74, 0.60, 0.57)′ × T−1/5

[0.50, 1.95] × [0.35, 1.30] × [0.45, 1.35] with P(Xt ∈ G) = .85. For estimation in

this model the bandwidth constants are changed by a factor corresponding to the

different range of the cube G.

The results for estimating the first component of the drift function

µ1,1(x1) = 0.4x1 − 1.1(x1)2 + .01/x1 + 1

are presented in Table 4.3 and Figure 4.3. Note that the MISE in Table 4.3 is

multiplied by 100. As in the linear case, the Nadaraya-Watson estimator outper-

forms the local linear estimator. Furthermore the local linear estimator suffers

from severe outlier problems. This is less evident for the large sample, but still

present. It is also observed that the magnitude of the MISE is mainly affected

by its own bandwidth, but some finite sample effects are present.

From Figure 4.3 it can be seen that the local linear estimator exhibits a larger

variance, especially at the right boundary. On the other hand, the bias of the

Nadaraya-Watson estimator is well visible for the small sample and in particular

the estimator seems not to capture the nonlinearity very well. For the large
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Figure 4.4: Estimators of the drift part a11,1(x1) for n = 35, T = 30 (left column)

and n = 50, T = 100 (right c.). Nadaraya Watson estimators are in first row,

local linear in second. In each panel there are given the true function (solid),

pointwise 0.25 and 0.75 quantiles of the estimates over 201 simulations (dashed-

dotted) and the MISE-median estimator over the simulations (dashed). The

bandwidth is given by h = (0.74, 0.60, 0.57)′ × (nT )−1/5

sample, the performance of the estimators seems to be comparable, but recall

from Table 4.3, that the Nadaraya-Watson estimator has a smaller MISE.

Finally, turn to the diffusion estimator in the nonlinear setting. Here, the

function under investigation is

a11,1(x1) = 0.3((x1)2 − 1.31).

The simulated MISE is presented in Table 4.4 and for the first time in the sim-

ulations the local linear estimator outperforms the Nadaraya-Watson estimator

in the large sample for some bandwidth settings. From Figure 4.4 it can be seen

that both estimators capture the shape of the unknown function well.

The simulation study performed in this section gives evidence that the theo-

retical properties of the smooth backfitting estimators hold in finite samples. In

comparable studies, Chapman and Pearson (2000) and Fan and Zhang (2003)

have investigated univariate Nadaraya-Watson and local linear estimators with

similar (or even larger) sample sizes. The results for the smooth backfitting es-

timators are comparable to the scalar estimators and underline the theoretical
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finding that the curse of dimensionality can be circumvented by the structured

model. In contrast to the general theory, the local constant estimators outper-

form the local linear estimator in almost all cases. Therefore it seems advisable to

use the Nadaraya-Watson estimator if the sample size is not very large (≤ 5000)

and not to rely on the asymptotic advantages of the local linear estimator in

applications.

4.6 Estimating Interest Yields

As an illustrative example, the estimators are applied to estimating the dynamics

of bond yields. Beginning with Aı̈t-Sahalia (1996a,b) a large number of authors

have applied kernel regression techniques to estimate (univariate) short term in-

terest rates. As an extension the smooth backfitting estimators are applied to a

multivariate model of interest yields, using different maturities.

The data consist of daily interest rates for selected U.S. Treasury securities at

different fixed maturities. The series is constructed by the U.S. Federal Reserve

Board and can be downloaded from its homepage3. The three variables under

consideration are the three-month interest rate, the spread between the two-year

rate and the three-month rate and the spread between the ten-year rate and the

three-month rate. The sample consists of daily data from January 1, 1991 to

December 29, 2000, which results in a total of 2 504 observations. The data is

displayed in Figure 4.5.

To apply the smooth backfitting estimators a rectangular subset of the original

data must be chosen, over which the estimation procedure has to be carried out.

The density of the process has to be bounded from below over this subset and

therefore G = [3, 6.25]× [−0.25, 1.75]× [−0.5, 3.5] (short rate × spread 3m/2y ×
spread 3m/10y) was selected. This resulted in a final sample of 2 147 observations.

The frequency was set to n = 20, leading to roughly one month between two time

units. Then, the entries of the drift vector µ(x) and of the diffusion matrix

A(x) are estimated using Nadaraya-Watson smooth backfitting. The choice of

the local constant fitting is based on the simulation results of the last subsection.

The exposition of the estimation in this section will concentrate on µ1(x), which

is the drift function of the short rate.

The bandwidth was selected via a cross-validation procedure as described in

3www.federalreserve.gov/Releases/H15/data.htm
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Figure 4.5: U.S. treasury data for 3-month yields (upper), spread between 2-year

and 3-month yields (middle), spread between 10-year and 3-month yields (lower)

from Jan. 1, 1991 to Dec. 29, 2000.

section 4.4.3. The leave-out estimator was constructed by omitting the 250 ob-

servations closest in time to Xi∆. Notationally, a subset J (i) = {X(i−125)∆, . . . ,

Xi∆, . . . , X(i+125)∆} is left out. To save computation time, the cross-validation

function was not evaluated at all data points, but only at a subset of 250 randomly

chosen observations away from the boundary. The cross-validated bandwidths are

given by ĥCV = (0.26, 0.26, 0.44)′.

Using the asymptotic theory, pointwise confidence bands can be obtained by

estimating the asymptotic variances, given by

(Th)−1/2v1(xj)κ2/(κ0)
2.

Kernel density estimators f̂eh(xj) as defined above are used to estimate the mar-
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Figure 4.6: Additive components of the drift function of the short rate process.

Component function of the short rate (upper), of the 2-y/3-m spread (middle)

and of the 10y/3m spread (lower). Smooth backfitting estimators (solid line)

together with 90% confidence bands (dashed).

ginal densities and E(a11(X) | Xj = xj) is estimated by

(f̂eh(xj))−1 1

nT

nT−1∑
i=0

Keh(xj, Xj
i∆)∆−1(X(i+1)∆ −Xi∆)2.

To construct the confidence bands a larger bandwidth h̃i = 1.5hi was implemented

and the bands are only computed for interior points, where the kernel constants

do not depend on xj.

In Figure 4.6 the additive components of the drift function in the short rate

process are displayed. The first component clearly has a (large) positive influence

for small values of the interest rate and a (small) negative influence for large

values. This is in line with the mean reverting property of the short rate, i. e. the
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Figure 4.7: Nadarya-Watson estimator (solid) of the drift function of the short

rate together with 90% confidence bands (dashed).

process is always pulled back to its long term mean. From the other two pictures

in Figure 4.6 it can be seen that the spreads seem to have a significant influence

on the changes in the short rate. The second component of the drift function

seems to be a linearly increasing function of the 2-year/3-month spread and the

third component is linearly decreasing in the 10-year/3-month spread.

Figure 4.7 shows the estimator of regressing the increments of the short rate on

the short rate. This corresponds to modeling the 3-month rate as a scalar diffusion

process. The drift function is nearly constant. For this range of estimation

this was also observed by Aı̈t-Sahalia (1996b) and Stanton (1997) among others.

However the multivariate analysis changes this impression. The spreads seem to

have an influence on the evolution of the short rate. This phenomenon could be

investigated further by adapting the testing procedure of Chapter 5 to test affine

term structure models.

4.7 Conclusion

The theoretical results and the simulation study show evidence for the applica-

bility of smooth backfitting estimators to the estimation of diffusion models. In

these models the curse of dimensionality is augmented by the dependence struc-

ture of the data and multivariate kernel regression is therefore not applicable even

in relatively small dimensions. The simulation results show that the estimators

behave like one-dimensional estimators in similar data samples.

The estimators converge even if the additive model does not hold. In that case
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the additive projection of the unknown multivariate function will be estimated

(see Chapter 5 for the case of independent and identically distributed data).

Therefore smooth backfitting provides a powerful data analytic tool, even if the

additive model is not assumed to hold. For future research it is desirable to obtain

testing procedures for the diffusion model. To test the hypothesis that the model

is fully additive the procedure by Mammen and Sperlich (2006) can be extended.

Secondly, the additive estimators can be used to test for parametric form as in

Chapter 5.

Appendix I: Preliminary Lemmata

To establish the asymptotic properties of the smooth backfitting estimators one-

dimensional marginal estimators have to be investigated, since the smooth back-

fitting estimators inherits their behavior. In the proofs the dimension index

of the estimators will be suppressed, i. e. µ̂NW
h (xj) = µ̂1,j,NW

h (xj), µ̃NW
h (xj) =

µ̃1,j,NW
h (xj) and for the local linear estimators analogously. Using the integral

form of the stochastic differential equaltion for X1, the local constant and the

local linear estimator will be decomposed into a bias and a variance part. For

this define for l = 0, 1

t̂Bh,l(x
j) =

1

T

nT∑

k=1

Kh(x
j, Xj

(k−1)∆)
(Xj

(k−1)∆ − xj

h

)l
∫ k∆

(k−1)∆

µ1(Xs) ds

t̂Vh,l(x
j) =

1

T

nT∑

k=1

Kh(x
j, Xj

(k−1)∆)
(Xj

(k−1)∆ − xj

h

)l
d∑

i=1

∫ k∆

(k−1)∆

σ1i(Xs) dW i
s .

For abbreviation

K̃h,l(x
j, Xj

(k−1)∆) = Kh(x
j, Xj

(k−1)∆)
(Xj

(k−1)∆ − xj

h

)l

is defined and for a more compact notation f̂h,0(x
j) = f̂h(x

j) and f̂h,(0,0)(x
i, xj) =

f̂h(x
i, xj) is introduced. This enables to write the marginal Nadaraya-Watson

estimator as

(4.21) µ̂NW
h (xj) = f̂h,0(x

j)−1t̂Bh,l(x
j)+f̂h,0(x

j)−1t̂Vh,l(x
j) = µ̂NW,B

h (xj)+µ̂NW,V
h (xj)
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and the marginal local linear estimator

(
µ̂LL

h (xj)

µ̂LL
j,h (xj)

)
=

(
f̂h,0(x

j) f̂h,1(x
j)

f̂h,1(x
j) f̂h,2(x

j)

)−1 (
t̂Bh,0(x

j)

t̂Bh,1(x
j)

)

+

(
f̂h,0(x

j) f̂h,1(x
j)

f̂h,1(x
j) f̂h,2(x

j)

)−1 (
t̂Vh,0(x

j)

t̂Vh,1(x
j)

)

=

(
µ̂LL,B

h (xj)

µ̂LL,B
j,h (xj)

)
+

(
µ̂LL,V

h (xj)

µ̂LL,V
j,h (xj)

)
.

(4.22)

As building blocks for the asymptotic distribution for the smooth backfitting

estimator serve the uniform convergence rates of both parts and the asymptotic

distribution of the variance part. To establish this, the one-and two-dimensional

marginal density estimates, will be investigated first, beacuse they arise as well

in the algorithms of the smooth backfitting estimators.

Lemma 4.1. Under Assumptions 4.1 and 4.2 it holds that

sup
xj∈Gj

|f̂h,k(x
j)− κk(x

j)f(xj)| = OP (h2 +
( log T

hT

)1/2

)

sup
(xi,xj)∈Gi×Gj

|f̂h,(k1,k2)(x
i, xj)− κk1(x

i)κk2(x
j)f(xi, xj)| = OP (h2 +

( log T

h2T

)1/2

)

for k = 0, 1, 2 and 0 ≤ k1, k2 ≤ 1 if the rates on the right hand side converge to

zero for T →∞.

The result is here stated for arbitrary n. In general there are cases, where it

is possible to obtain the superoptimal rate T−1/2 for n → ∞ (see e. g. Bosq,

1998). However for multivariate diffusion processes (in contrast to the scalar case)

these conditions are not satisfied and more than the standard nonparametric rate

cannot be achieved.

Proof. Consider the one-dimensional case first and decompose the estimator into

bias and variance

f̂h,k(x
j)− κk(x

j)f(xj) = f̂h,k(x
j)− E f̂h,k(x

j) + E f̂h,k(x
j)− κk(x

j)f(xj).

Standard kernel calculations show that the bias is of order h2 uniformly over the

interior of Gj.
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Let the variance part be denoted by JV (xj). Cover the compact set Gj by N inter-

vals Gj
l = {x : |x−xj

l | < N−1}, l = 1, . . . , N and choose N = O((T/(h3 log T ))1/2).

Then bound

sup
xj∈Gj

|JV (xj)| ≤ max
l=1,...,N

sup
xj∈Gj

l

|JV (xj)− JV (xj
l )|+ max

l=1,...,N
|JV (xj

l )|.

By the Lipschitz continuity of the kernel it holds for the first maximum that

max
l=1,...,N

sup
xj∈Gj

l

|JV (xj)− JV (xj
l )| = O(N−1h−2) = o

(( log T

hT

)1/2)
.

Now regard JV (xj
l ) as a sum of α-mixing random variables

St,n(xj
l ) =

1

nT

n∑
i=1

K̃h,k(x
j
l , X

j
t+i∆)− E K̃h,k(x

j
l , X

j
t+i∆).

Trivially ESi,n(xj
k) = 0 and furthermore

E(St,n(xj
l ))

2 =
1

n2T 2

n∑
i=1

E
(
K̃h,k(x

j
l , Xt+i∆)

)2

+
2

n2T 2

n−2∑
i=1

n−1∑

i′=i+1

E
(
K̃h,k(x

j
l , X

j
t+i∆)K̃h,k(x

j
l , X

j
t+i′∆)

)

= O(h−1T−2),

because of the Cauchy-Schwarz inequality and E K̃h,k(x
j
l , Xt+i∆)

)2
= O(h−1).

Cramer’s conditions are are easily verified with a constant (Th)−1.

With these results a Hoeffding-type inequality (see Theorem 1.3 in Bosq, 1998)

can be applied to obtain

P
(∣∣∣

T∑
t=1

St,n(xj
k)

∣∣∣ > ελn

)
≤ const T−2

where λn = (log T 2/(Th))1/2. Because NT−2 = o(1) the desired result follows.

For the two-dimensional case, it can be decomposed as above into bias and vari-

ance and proceeded as before. The only difference is that the variance of the

kernel is then of order h−2.

Next, the uniform convergence of the estimators will be investigated, beginning

with the bias parts
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Lemma 4.2. Under Assumptions 4.1 and 4.2 it holds that

sup
xj∈Gj

|µ̂NW,B
h (xj)− E(µ1(X) | Xj = xj)| = OP

(
h2 +

log T

(nTh)1/2

)

sup
xj∈Gj

|µ̂LL,B
h (xj)− E(µ1(X) | Xj = xj)| = OP

(
h2 +

log T

(nTh)1/2

)

sup
xj∈Gj

|µ̂LL,B
j,h (xj)− h∂j E(µ1(X) | Xj = xj)| = OP

(
h2 +

log T

(nTh)1/2

)

if the terms on the right hand side converge to zero as T →∞ and n →∞.

Proof. Define m1(xj) = E(µ1(X) | Xj = xj). Standard kernel calculations

show that E(µ̂B,NW
h (xj)) = m1(xj) + O(h2), E(µ̂B,LL

h (xj)) = m1(xj) + O(h2)

and E(µ̂B,LL
j,h (xj)) = h∂jm

1(xj) + O(h2) uniformly in xj.

For the proof uniform bounds for t̂Bh,l(x
j) or more precisely for a centered version

have to be established

t̂B∗h,l (x
j) = t̂Bh,l(x

j)− f̂h,l(x
j)E(µ̂B

h (xj))

=
1

nT

nT∑

k=1

K̃h,l(x
j, Xj

(k−1)∆)
( 1

∆

∫ k∆

(k−1)∆

µ1(Xs) ds− E(µ̂B
h (xj))

)

=
1

nT

nT∑

k=1

K̃h,l(x
j, Xj

(k−1)∆)
( 1

∆

∫ k∆

(k−1)∆

µ1(Xs) ds− µ1(Xj
(k−1)∆)

)

+
1

nT

nT∑

k=1

K̃h,l(x
j, Xj

(k−1)∆)
(
µ1(Xj

(k−1)∆)− E(µ̂B
h (xj))(xj)

)

= A(xj) + B(xj),

where µ̂B
h (xj) is the estimator under investigation. To apply a Hoeffding-type

inequality (as in the proof of Lemma 4.1) treat the two terms separately and

regard them as sums of T α-mixing random variables SA
t,n(xj) and SB

t,n(xj), t =

0, . . . , T − 1. Next it will be shown that E(SA
t,n(xj))2 = O(T−2n−1h−1) and

E(SB
t,n(xj))2 = O(T−2n−1h−1).

Apply the mean value theorem to obtain (setting t = 0 wlog)

E(SA
0,n(xj))2

=
1

n2T 2

n∑

k=1

E
(
K̃h,l(x

j, Xj
(k−1)∆)

1

∆

∫ k∆

(k−1)∆

(Xs −X(k−1)∆)∂jµ
1(ξk,s) ds

)2

+
2

n2T 2

n−1∑

k=1

n∑

k′=k+1

E
(
K̃h,l(x

j, Xj
(k−1)∆)

1

∆

∫ k∆

(k−1)∆

(Xs −X(k−1)∆)∂jµ
1(ξk,s) ds
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× K̃h,l(x
j, Xj

(k′−1)∆)
1

∆

∫ k′∆

(k′−1)∆

(Xs −X(k′−1)∆)∂jµ
1(ξk′,s) ds

)

where ξk,s ∈ (X(k−1)∆, Xs) (wlog X(k−1)∆ < Xs). Beginning with the variance

parts, it holds that

E
(
K̃h,l(x

j, Xj
(k−1)∆)

1

∆

∫ k∆

(k−1)∆

(Xs −X(k−1)∆)∂jµ
1(ξk,s) ds

)2

≤ sup
x∈G

|∂jµ
1(x)|2 E

(
K̃h,l(x

j, X(k−1)∆)2( max
(k−1)∆≤s≤k∆

|Xs −X(k−1)∆|)2
)

= O(h−1n−1).

The last line follows by iterated expectations and an application of the Burkhol-

der-Davis-Grundy inequality. The covariance terms can be bounded by Cauchy-

Schwarz, and the verification of Cramer’s conditions goes along the same lines.

This yields the stated rate for E(SA
0,n(xj)2.

Secondly, turn to SB
0,n(xj).

E(SB
0,n(xj))2 =

1

n2T 2

n∑

k=1

E
(
K̃h,l(x

j, Xj
(k−1)∆)

(
µ1(Xj

(k−1)∆)− E(µ̂1,B
h (xj))

))2

+
2

n2T 2

n−1∑

k=1

n∑

k′=k+1

E
(
K̃h,l(x

j, Xj
(k−1)∆)

(
µ1(Xj

(k−1)∆)− E(µ̂1,B
h (xj)

)

× K̃h,l(x
j, Xj

(k′−1)∆)
(
µ1(Xj

(k′−1)∆)− E(µ̂1,B
h (xj))

))

= O(T−2n−1h−1) + O(T−2).

Because µ1 and the expected value of the estimator are bounded the differences

can be taken out of the expectations. Then the rates follow from standard kernel

calculations. This completes the proof of

sup
xj∈Gj

|t̂B,∗
h,l (xj)| = OP

( log T

(nTh)1/2

)
.

To show the lemma, consider the following decomposition

µ̂B,NW
h (xj)−m1(xj) = f̂h,0(x

j)−1t̂B∗h,0(x
j) + E(µ̂1,B

h (xj))−m1(xj).

For the investigation of the first term it suffices to concentrate on the numerator,

because the density is bounded from below on Gj. Then the statement follows.

For the local linear case, use the analogous expansion and the same arguments

hold.
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Lemma 4.3. Under Assumptions 4.1 and 4.2 it holds that

sup
xj∈Gj

|µ̂V,NW
h (xj)| = OP

( log T

(hT )1/2

)

sup
xj∈Gj

|µ̂V,LL
h (xj)| = OP

( log T

(hT )1/2

)
sup

xj∈Gj

|µ̂V,LL
j,h (xj)| = OP

( log T

(hT )1/2

)
,

if the terms on the right hand side converge to zero as T →∞ and n →∞.

Proof. Because the density is bounded from below, it suffices to consider the

numerator parts of the estimators. Defining random variables

Ri,l(x
j) =

1

T

n−1∑

k=0

K̃h,l(x
j, Xj

i+k∆)
d∑

m=1

∫ i+(k+1)∆

i+k∆

σ1m(Xs) dWm
s

it can be written (for l = 0, 1)

t̂Vh,l(x
j) =

T∑
i=1

Ri,l(x
j).

Obviously ERi(x
j) = 0 and by Itô’s lemma it holds that

E(Ri(x
j))2 =

1

T 2

n−1∑

k=0

E
(
K̃h,l(x

j, Xj
i+k∆)

)2
∫ i+(k+1)∆

i+k∆

a11(Xs) ds

= h−1T−2κ2
l (x

j)f(xj)E(a11(X0) | Xj = xj)(1 + o(1)).

Utilizing Itô’s lemma, Cramer’s conditions can be proved with a constant (Th)−1.

Then as in the proof of Lemmata 4.1 and 4.2 (using an exponential inequality

and covering arguments) it follow that

sup
xj∈Gj

|t̂Vh,l(x
j)| = OP

( log T

(hT )1/2

)

and both parts of the lemma follow.

Beside the uniform convergence results, the asymptotic distribution of the vari-

ance parts of the two estimators have to be derived. This is given in the following

Lemma 4.4. Under Assumptions 4.1 and 4.2 and if Th →∞ and nh3 →∞ for

T →∞ and n →∞, it holds that

√
Thµ̂V,NW

h (xj)
D−−→ N (

0,
κ2

0(x
j)

κ0(xj)2
v1(xj)

)

√
Thµ̂V,LL

h (xj)
D−−→ N (

0,
κ2

0(x
j)

κ0(xj)2
v1(xj)

)
,

where v1(xj) = (f(xj))−1 E(a11(X) | Xj = xj).
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The joint distribution of the vector of the µ̂V,i,NW
h (xj) is a multivariate (d2-

dimensional) normal distribution with covariances given by

cov(
√

Thµ̂i,V
h (xj),

√
Thµ̂i′,V

h (xj)) =
κ2(xj)

κ0(xj)f(xj)
E(aii′(X) | Xj = xj)

and zero otherwise. The same holds in the local linear case.

Proof. To derive asymptotic normality, the distribution of t̂Vh,l has to be consid-

ered. To do so, decompose it into a discretization error and a stochastic error

t̂Vh,l(x
j) =

1

T

nT∑

k=1

K̃h,l(x
j, Xj

(k−1)∆)
d∑

m=1

∫ k∆

(k−1)∆

σ1m(Xs) dWm
s

=
1

T

nT∑

k=1

∫ k∆

(k−1)∆

(
K̃h,l(x

j, Xj
s )− K̃h,l(x

j, Xj
(k−1)∆)

) d∑
m=1

σ1m(Xs) dWm
s

+
1

T

d∑
m=1

∫ T

0

K̃h,l(x
j, Xj

s )σ
1m(Xs) dWm

s

= JD,l(x
j) + JT,l(x

j).

To bound the discretization error, calculate

E(JD,l(x
j))2 = nT−1 E

(∫ ∆

0

(
K̃h,l(x

j, Xj
s )− K̃h,l(x

j, Xj
0)

) d∑
m=1

σ1m(Xs) dWm
s

)2

= nT−1 E
(∫ ∆

0

(
K̃h,l(x

j, Xj
s )− K̃h,l(x

j, Xj
0)

)2
a11(Xs) ds

)

≤ cnT−1h−4 E
(
( max
0≤s≤∆

|Xs −X0|)2

∫ ∆

0

a11(Xs) ds
)

≤ cT−1h−4 sup
x∈G

|a11(x)|E( max
0≤s≤∆

|Xs −X0|)2

= O(T−1n−1h−4),

where it is used that all covariances vanish. The last bound follows from the

Burkholder-Davis-Grundy inequality. This yields in total

JD,l(x
j) = OP (T−1/2n−1/2h−2) = oP (T−1/2h−1/2)

by assumption.

Next derive the asymptotic distribution of
√

hTJT,l(x
j). Note that for every T

and xj the functions Kh(x
j, Xj

s )σ
1l(Xs) are progessively measurable and

h1/2T−1/2

∫ T

0

K̃h,l(x
j, Xj

s )σ
1l(Xs) ds < ∞
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with probability one. And for T →∞ it holds that

hT 〈JT,l(x
j), JT,l(x

j)〉 = hT−1

∫ T

0

K̃h,l(x
j, Xj

s )
2a11(Xs) ds

P−→ κ2
l (x

j)f(xj)E(a11(X) | Xj = xj)

hT 〈JT,l1(x
j), JT,l2(x

j)〉 = hT−1

∫ T

0

K̃h,l1(x
j, Xj

s )K̃h,l2(x
j, Xj

s )a
11(Xs) ds

P−→ κ2
(l1+l2)/2(x

j)f(xj)E(a11(X) | Xj = xj).

Applying Proposition 1.21 in Kutoyants (2004) the following asymptotic distri-

bution is obtained

√
hT

(
t̂Vh,0

t̂Vh,1

)
D−−→ N (0, V f(xj)2v(xj)) where V =

(
κ2

0 κ2
1

κ2
1 κ2

2

)
.

Using the convergence results of Lemma 4.1, the statement of the Lemma follows

for both estimators, recalling their definition.

Next, some preliminary results for estimating the diffusion matrix are presented.

Again the dimension index of the estimators will be omitted. To decompose the

marginal kernel estimators, recall that by applying Itô’s lemma

(X1
k∆ −X1

(k−1)∆)(X2
k∆ −X2

(k−1)∆) =

∫ k∆

(k−1)∆

a12(Xs) ds+

∫ k∆

(k−1)∆

(X1
s −X1

(k−1)∆) dX2
s +

∫ k∆

(k−1)∆

(X2
s −X2

(k−1)∆) dX1
s .

Based on this decompose for l = 0, 1

r̂B
h,l(x

j) =
1

T

nT∑

k=1

K̃h,l(x
j, Xj

(k−1)∆)

∫ k∆

(k−1)∆

a12(Xs) ds

r̂V
h,l(x

j) =
1

T

nT∑

k=1

K̃h,l(x
j, Xj

(k−1)∆)

∫ k∆

(k−1)∆

(X1
s −X1

(k−1)∆) dX2
s

+

∫ k∆

(k−1)∆

(X2
s −X2

(k−1)∆) dX1
s .

Replacing t̂∗h,l(x
j) with r̂∗h,l(x

j) in equations (4.21) and (4.22) gives the decompo-

sition of the marginal estimators of the diffusion matrix âNW
h (xj) and âLL

h (xj).

Next, convergence results for these estimators will be derived.
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Lemma 4.5. Under Assumptions 4.1 and 4.2 it holds that

sup
xj∈Gj

|âNW,B
h (xj)− E(a12(X) | Xj = xj)| = OP

(
h2 +

log n

(nTh)1/2

)

sup
xj∈Gj

|âLL,B
h (xj)− E(a12(X) | Xj = xj)| = OP

(
h2 +

log n

(nTh)1/2

)

sup
xj∈Gj

|âLL,B
j,h (xj)− h∂j E(a12(X) | Xj = xj)| = OP

(
h2 +

log n

(nTh)1/2

)
,

if the terms on the right hand side converge to zero as n →∞ and T →∞.

Proof. Replacing µ1(Xs) by a12(Xs), the structure of r̂B
h,l(x

j) and t̂Bh,l(x
j) are the

same. Therefore, the proof of this lemma is analogous to the proof of Lemma 4.2

and therefore omitted.

Lemma 4.6. Under Assumptions 4.1 and 4.2 it holds that

sup
xj∈Gj

|âNW,V
h (xj)| = OP

( log T

(nTh)1/2

)

sup
xj∈Gj

|âLL,V
h (xj)| = OP

( log T

(nTh)1/2

)
sup

xj∈Gj

|âLL,V
j,h (xj)| = OP

( log T

(nTh)1/2

)
,

if the terms on the right hand side converge to zero as n →∞ and T →∞.

Proof. Write the numerator parts of the estimators as sum of α-mixing random

variables

r̂V
h,l(x

j) =
1

T

T−1∑
i=0

St,n(xj),

where

St,n(xj) =
n−1∑

k=0

K̃h,l(x
j, Xj

t+k∆)Zt+k∆,

with

Zt+k∆ =
(
(X1

t+(k+1)∆ −X1
t+k∆)(X2

t+(k+1)∆ −X2
t+k∆)−

∫ t+(k+1)∆

t+k∆

a12(Xs) ds
)
.

(4.23)

Clearly ESt,n(xj) = 0. For the second moment it will be shown below that

(4.24) E(S0,n(xj))2 = O
(
n−1h−1

)
.
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Cramer’s conditions with a constant (Th)−1 can then be verified by seeing that

supk |Zt+k∆| = OP (n−1). This allows to apply an exponential inequality as above.

Thus, it remains to show (4.24). First it holds that

(4.25) E(S0,n(xj))2 =
n−1∑

k=0

E K̃h,l(x
j, Xj

k∆)2Z2
0,k

+
n−2∑

k=0

n−1∑

k′=k+1

E K̃h,l(x
j, Xj

k∆)Z0,kK̃h,l(x
j, Xj

k′∆)Z0,k′ .

Start with the first sum and resolve the square to obtain

E K̃h,l(x
j, Xj

k∆)2Z2
0,k = E K̃h,l(x

j, Xj
k∆)2(X1

(k+1)∆ −X1
k∆)2(X2

(k+1)∆ −X2
k∆)2

− 2E K̃h,l(x
j, Xj

k∆)2(X1
(k+1)∆ −X1

k∆)(X2
(k+1)∆ −X2

k∆)

∫ (k+1)∆

k∆

a12(Xs) ds

+ E K̃h,l(x
j, Xj

l∆)2
(∫ (k+1)∆

k∆

a12(Xs) ds
)2

= S1 + S2 + S3.

These three quantities are investigated separately. First recall that

(X1
(k+1)∆ −X1

k∆)2 =

∫ (k+1)∆

k∆

a11(Xs) ds + OP

((log n)1/2

n3/2

)

and then an application of the mean value theorem yields

S1 = E K̃h,l(x
j, Xj

k∆)2

∫ (k+1)∆

k∆

a11(Xs) ds

∫ (k+1)∆

k∆

a22(Xs) ds + O
((log n)1/2

n5/2h

)

=
κ2(xj)

n2h
E(a11(Xs)a

22(Xs) | Xj
s = xj)(1 + o(1)).

Because the drift is bounded, it holds that

S2 = O(n−3h−1).

Finally, the last term satisfies

S3 =
κ2(xj)

n2h
E((a12(Xs))

2 | Xj
s = xj)(1 + o(1)).

In total the first term in equation (4.25) satisfies the desired rate. Because

of the stationarity, the second term is bounded by n
∑n−1

k′=1 E K̃h,l(x
j, Xj

0)Z0,k
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K̃h,l(x
j, Xj

0)Z0,k′ . This will be decomposed into three parts

n

n−1∑

k′=1

E K̃h,l(x
j, Xj

0)(X
1
∆ −X1

0 )(X2
∆ −X2

0 )

× K̃h,l(x
j, Xj

k′∆)(X1
(k′+1)∆ −X1

k′∆)(X2
(k′+1)∆ −X2

k′∆)

=
1

n3

n−1∑

k′=1

E K̃h,l(x
j, Xj

0)K̃h,l(x
j, Xj

k′∆)

× µ1(X0)µ
2(X0)µ

1(Xk′∆)µ2(Xk′∆)(1 + o(1))

= O(n−2),

because the density and the drift are bounded. For the second part, we get

n

n−1∑

k′=1

E K̃h,l(x
j, Xj

0)(X
1
∆ −X1

0 )(X2
∆ −X2

0 )K̃h,l(x
j, Xj

k′∆)

∫ (k′+1)∆

k′∆
a12(Xs) ds

=
1

n2

n−1∑

k′=1

E K̃h,l(x
j, Xj

0)K̃h,l(x
j, Xj

k′∆)µ1(X0)µ
2(X0)a

12(Xk′∆)(1 + o(1))

= O(n−1)

and finally

n

n−1∑

k′=1

E K̃h,l(x
j, Xj

0)

∫ ∆

0

a12(Xs) dsK̃h,l(x
j, Xj

k′∆)

∫ (k′+1)∆

k′∆
a12(Xs) ds = O(n−1).

Then, the covariances are of smaller order and in total equation (4.25) is estab-

lished.

Finally, the asymptotic distribution of the variance parts is derived.

Lemma 4.7. Under Assumptions 4.1 and 4.2 and if nTh → ∞ and nh3 → ∞
for T →∞ and n →∞ it holds that

√
nThâNW,V

h (xj)
D−−→ N (

0,
κ2

0(x
j)

κ0(xj)2
v12(xj)

)

√
nThâLL,V

h (xj)
D−−→ N (

0,
κ2

0(x
j)

κ0(xj)2
v12(xj)

)
,

where v12(xj) = (f(xj))−1 E
(
a11(X)a22(X)(a12(X))2 | Xj = xj

)
.
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The joint distribution of the vector of the âij,NW,V
h (xk) is a multivariate (d3-

dimensional) normal distribution with covariances given by

cov(
√

nThâij,V
h (xk),

√
nThâi′j′,V

h (xk)) =
κ2(xk)

f(xk)
E(aij(X)ai′j′(X) | Xk = xk)

and zero otherwise (if {i, j} 6= {i′, j′}). The same holds for the local linear

estimator.

Proof. The distribution of r̂h,l(x
j) has to be derived. Write

√
nThr̂V

h,l(x
j) =

nT−1∑

k=0

Mk(x
j),

with

Mk(x
j) =

√
nThK̃h,l(x

j, Xk∆)Zk,

where Zk is given in equation (4.23). Denote the σ-Algebra generated by X0, . . . ,

Xk with FT,n
k = σ(Xl, l = 0, ∆, . . . , k∆) . From repeated application of the

Burkholder-Davis-Grundy inequality (as in Florens-Zmirou, 1993) it follows that

nT−1∑

k=0

E(Mk(x
j) | FT,n

k )
P−→ 0

nT−1∑

k=0

E((Mk(x
j))2 | FT,n

k )
P−→ κ2

l (x
j)

1

T

∫ T

0

a12(Xs)1{Xj
s=xj} ds

nT−1∑

k=0

E(|Mk(x
j)|3 | FT,n

k )
P−→ 0.

Applying Lemma 2 in Florens-Zmirou (1993) it follows that
√

nThr̂V
h,l(x

j) con-

verges for n →∞ against a continuous martingale with increasing process given

by κ2
l (x

j) 1
T

∫ T

0
a12(Xs)1{Xj

s=xj} ds. By Knight’s theorem mixed asymptotic nor-

mality for fixed T follows (analogously to Brugiére, 1991). Because for all xj ∈ Gj

the convergence 1
T

∫ T

0
a12(Xs)1{Xs=x} ds

P−→ E(a12(Xs) | Xj
s = xj)f(xj) holds,

the asymptotic normality for T →∞ follows by Knight’s theorem.

Appendix II: Proof of the Theorems

Proof of Theorem 4.1

The verification of Assumptions (A1)–(A6), (A8), (A9) in Mammen, Linton and

Nielsen (1999) allows to apply their Theorems 1, 2 and 3, which will yield the
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statement of the theorem. These assumptions are shown using the lemmata of the

last section. Subsequently all integrals are taken over G (resp. the corresponding

projection).

(A1) It holds by Assumption 4.1.2 for all i 6= j
∫

f 2(xi, xj)

f(xi)f(xj)
dxi dxj < ∞.

(A2) Consists of three parts, all of them following by applications of Lemma

4.1.
∫ ( f̂h,0(x

j)− f(xj)

f(xj)

)2

f(xj) dxj ≤ sup
xj∈Gj

|f̂h,0(x
j)− f(xj)|2

∫
(f(xj))−1 dxj(i)

= OP

(
h4 +

(log T )2

Th

)
= oP (1),

because the density is bounded from below.
∫ ( f̂h,(0,0)(x

i, xj)− f(xi, xj)

f(xi)f(xj)

)2

f(xi)f(xj) dxi dxj(ii)

≤ sup
(xi,xj)∈Gi×Gj

|f̂h,(0,0)(x
i, xj)− f(xi, xj)|2

∫
(f(xi)f(xj))−1 dxi dxj

= OP

(
h4 +

(log T )2

Th2

)
= oP (1).

And the third part of the assumption
∫ ( f̂h,(0,0)(x

i, xj)

f(xi)f̂h,0(xj)
− f(xi, xj)

f(xi)f(xj)

)2

f(xi)f(xj) dxi dxj(iii)

=

∫
(f̂h,(0,0)(x

i, xj))2
(
(f̂h,0(x

j))−1 − (f(xj))−1
)2f(xj)

f(xi)
dxi dxj

+ 2

∫
f̂h,(0,0)(x

i, xj)
(
(f̂h,0(x

j))−1 − (f(xj))−1
)

× (
f̂h,(0,0)(x

i, xj)− f(xi, xj)
)f(xj)

f(xi)
dxi dxj

+

∫
(f̂h,(0,0)(x

i, xj)− f(xi, xj))2(f(xi)f(xj))−1 dxi dxj

= oP (1) + OP

(
h4 +

(log T )2

Th3/2

)
+ OP

(
h4 +

(log T )2

Th2

)
= oP (1)

by Lemma 4.1.

Note that at the boundary (of length h), the leading bias term is of order h and

then the same results hold.
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(A3) With probability tending to one it holds that

∫ (
µ̂NW (xj)

)2
f(xj) dxj ≤ C.

This follows directly from (A5) below, since µ̂NW
h (xj) = µ̂NW,B

h (xj) + µ̂NW,V
h (xj).

(A4) By similar arguments as (A3) and the last part of (A2) one sees that

sup
xj∈Gj

∫
(f̂h,(0,0)(x

i, xj))2

(f̂h,0(xj))2f(xi)
dxi ≤ sup

xj∈Gj

(f(xj))−1

∫
f(xi, xj))2

f(xj)f(xi)
dxi,

with probability tending to one, using Lemma 4.1. The right hand side is bounded

by Assumption 4.1 (see A1).

(A5) Applying Lemmata 4.2 and 4.3 together with the quadratic integrability

of the unknown function µ(·). Starting with the variance part we have that

∫
(µ̂NW,V

h (xj))2f(xj) dxj ≤ ( sup
xj∈Gj

|µ̂NW,V
h (xj)|)2

which is bounded by an arbitrary positive constant with probability tending to

one.

For the bias part

∫
(µ̂NW,B

h (xj))2f(xj) dxj ≤ 2

∫
E(µ1(X) | Xj = xj)f(xj) dxj

+ 2

∫
(µ̂NW,B

h (xj)− E(µ1(X) | Xj = xj))2f(xj) dxj.

This is bounded by the first part of the right hand side plus a constant with

probability tending to one.

(A6) First, decompose using the triangle inequality

(4.26) sup
xj∈Gj

∣∣∣
∫

f̂h,(0,0)(x
i, xj)

f̂h,0(xj)
µ̂NW,V

h (xi) dxi
∣∣∣ ≤ sup

xj∈Gj

∣∣∣
∫

f(xi, xj)

f(xi)f(xj)
t̂Vh,0(x

i) dxi
∣∣∣

+ sup
xj∈Gj

∣∣∣
∫ ( f̂h,(0,0)(x

i, xj)

f̂h,0(xi)f̂h,0(xj)
− f(xi, xj)

f(xi)f(xj)

)
t̂Vh,0(x

i) dxi
∣∣∣.
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The two terms are investigated separately. Linearizing in the usual way, it holds

for the second supremum that

sup
xj∈Gj

∣∣∣
∫ ( f̂h,(0,0)(x

i, xj)

f̂h,0(xi)f̂h,0(xj)
− f(xi, xj)

f(xi)f(xj)

)
t̂Vh,0(x

i) dxi
∣∣∣

≤ sup
(xi,xj)∈Gj×Gi

|f̂h,(0,0)(x
i, xj)− f(xi, xj)| sup

xi∈Gi

|t̂Vh,0(x
i)| sup

xj∈Gj

|(f(xj))−1|

×
∫

(f(xi))−1 dxi(1 + oP (1))

= OP

(
h2 +

log T

(Th2)1/2

)
OP

( log T

(nTh)1/2

)

= oP (h2),

by Lemma 4.2 and Lemma 4.1.

The first part in equation (4.26) can be rewritten as

sup
xj∈Gj

∣∣∣
∫

f(xi, xj)

f(xi)f(xj)
t̂Vh,0(x

i) dxi
∣∣∣ = sup

xj∈Gj

∣∣∣ 1

nT

nT∑

k=1

ξk(x
j)

∣∣∣,

where

ξk(x
j) =

∫
f(X i

(k−1)∆ + hu, xj)

f(X i
(k−1)∆ + hu)f(xj)

K(X i
(k−1)∆ + hu, X i

(k−1)∆) du

×
d∑

l=1

1

∆

∫ k∆

(k−1)∆

σ1l(Xs) dW l
s.

The first integral in ξk(x
j) is bounded, because the density is bounded from above

and below. Using the Itô-Isometry it follows that T−2 E(
∫ T

0
σ1l(Xs) dW l

s)
2 =

O(T−1). In total it holds that

sup
xj∈Gj

∣∣∣ 1

nT

nT∑

k=1

ξk(x
j)

∣∣∣ = OP (T−1/2) = oP (h2).

Combining the two results, it is obtained that

sup
xj∈Gj

∣∣∣
∫

f̂h,(0,0)(x
i, xj)

f̂h,0(xj)
µ̂NW,V

h (xi) dxi
∣∣∣ = oP (h2).

Because
∫

f̂h,0(x
j) = OP (1) it follows directly that

(∫ (∫
f̂h,(0,0)(x

i, xj)

f̂h,0(xj)
µ̂NW,V

h (xi) dxi
)2

f̂h,0(x
j) dxj

)1/2

= op(h
2).

This completes (A6).
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(A8) By linearization, it is immediately clear that

sup
xj∈Gj

∫ ∣∣∣ f̂h,(0,0)(x
i, xj)

f̂h,0(xi)f̂h,0(xj)
− f(xi, xj)

f(xi)f(xj)

∣∣∣f(xi) dxi

≤ sup
xj∈Gj

|f̂h,(0,0)(x
i, xj)− f(xi, xj)| sup

xj∈Gj

|(f(xj))−1|(1 + oP (1))

= OP

(
h2 +

log T

(Th2)1/2

)
= oP (1),

by Lemma 4.1 and Assumption 4.1.2.

(A9) It has to be shown that

(4.27) sup
xj∈Gj

|µ̂NW,B
h (xj)− ν̂n,T,j(x

j)| = oP (h2),

where

(4.28) ν̂n,T,j(x
j) = αn,T,j(x

j) +
∑

i6=j

∫
αn,T,i(x

i)
f̂h,(0,0)(x

j, xi)

f̂h,0(xj)
dxi

+ h2

∫
βµ(x)

f(x)

f(xj)
dx−j

and

αn,T,j(x
j) = µ1,j(xj) + ∂jµ

1,j(xj)
hκ1(x

j)

κ0(xj)
.

Statement (4.27) is shown by decomposing µ̂NW,B
h (xj) appropriately. An applica-

tion of the mean value theorem yields

µ̂NW,B
h (xj) =

1

T f̂h,0(xj)

nT−1∑

k=0

Kh(X
j
k∆, xj)

d∑
i=1

∫ (k+1)∆

k∆

µ1,i(X i
s) ds

=
d∑

i=1

1

T f̂h,0(xj)

nT−1∑

k=0

Kh(X
j
k∆, xj)(∆µ1,i(X i

k∆)

+

∫ (k+1)∆

k∆

∂iµ
1,i(ξi

s)(X
i
s −X i

k∆) ds)

=
d∑

i=1

1

nT f̂h,0(xj)

nT−1∑

k=0

Kh(X
j
k∆, xj)µ1,i(X i

k∆) + OP

(
n−1/2

)
.(4.29)

This holds by the Burkholder-Davis-Grundy inequality and because the derivative

is bounded. Next, lower order terms are omitted and the cases with i = j and
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i 6= j are treated separately. Starting with i = j we obtain from standard kernel

calculations

1

nT f̂h,0(xj)

nT−1∑

k=0

Kh(X
j
k∆, xj)µ1,j(Xj

k∆)

= µ1,j(xj) +
E

(
Kh(X

j
k∆, xj)µ1,j(Xj

k∆)
)− µ1,j(xj)EKh(X

j
k∆, xj)

EKh(X
j
k∆, xj)

+ Rn,T,j(x
j)

= µ1,j(xj) + h
κ1(x

j)

κ0(xj)
∂jµ

1,j(xj)
κ1(x

j)

κ0(xj)
+ h2κ2(x

j)

κ0(xj)

∂jµ
1,j(xj)

f(xj)

∫
∂jf(x) dx−j

+ h2 1

2

κ2(x
j)

κ0(xj)
∂2

j µ
1,j(xj) + Rn,T,j(x

j) + oP (h2)

= αn,T,j(x
j) + h2κ2(x

j)

κ0(xj)

∫ (∂jf(x)

f(x)
∂jµ

1,j(xj) +
1

2
∂2

j µ
1,j(xj)

) f(x)

f(xj)
dx−j

+ oP (h2).

(4.30)

The last equation holds because of

sup
xj∈Gj

|Rn,T,j(x
j)|

= sup
xj∈Gj

∣∣∣∣∣
1

nT

nT−1∑

k=0

Kh(X
j
k∆, xj)µ1,j(Xj

k∆)

f̂h,0(xj)
− E

(
Kh(X

j
k∆, xj)µ1,j(Xj

k∆)
)

EKh(X
j
k∆, xj)

∣∣∣∣∣

= OP

( log T

(nTh)1/2

)
.

This is shown as in the proof in Lemma 4.2.

Next, turn to the cases with i 6= j in equation (4.29). Here, a Taylor expansion
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of µ1(X i
k∆) around xi and

∫
Kh(X

i
k∆, xi) dxi = 1 are used to obtain

1

nT f̂h,0(xj)

nT−1∑

k=0

Kh(X
j
k∆, xj)µ1,i(X i

k∆)

=
1

nT f̂h,0(xj)

nT−1∑

k=0

∫
Kh(X

j
k∆, xj)Kh(X

i
k∆, xi)µ1,i(X i

k∆) dxi

=

∫
µ1,i(xi)

f̂h,(0,0)(xi, xj)

f̂h,0(xj)
dxi

+
1

nT f̂h,0(xj)

nT−1∑

k=0

∫
Kh(X

j
k∆, xj)Kh(X

i
k∆, xi)(X i

k∆ − xi)∂iµ
1,i(xi) dxi

+
1

2

1

nT f̂h,0(xj)

nT−1∑

k=0

∫
Kh(X

j
k∆, xj)Kh(X

i
k∆, xi)(X i

k∆ − xi)2∂2
i µ

1,i(xi) dxi

+ oP (h2)

=

∫
µ1,i(xi)

f̂h,(0,0)(x
i, xj)

f̂h,0(xj)
dxi + h

∫
∂iµ

1,i(xi)
κ1(x

j)

κ0(xj)

f̂h,(0,0)(x
i, xj)

f̂h,0(xj)
dxi

+ h2κ2(x
j)

κ0(xi)

∫
∂if(xi)

f(xj)
∂iµ

1,i(xi) dx−j + h2 1

2

κ2(x
j)

κ0(xj)

∫
∂2

i µ
1,i(xi)

f(x)

f(xj)
dx−j

+ Rn,T,j,i(x
j) + oP (h2)

=

∫
αn,T,i(x

i)
f̂h,(0,0)(x

i, xj)

f̂h,0(xj)
dxi

+ h2κ2(x
j)

κ0(xj)

∫ (∂if(x)

f(x)
∂iµ

1,i(xi) +
1

2
∂2

i µ
1,j(xi)

) f(x)

f(xj)
dx−j + oP (h2).

(4.31)

By the same arguments as above it follows that supxj∈Gj |Rn,T,j,i(x
j)| = oP (h2).

The statement (4.27) follows from (4.29), (4.30) and (4.31) together.

From equation (4.29) it follows directly that

(4.32)

∫
(µ̂NW,B

h (xj)− ν̂n,T,j(x
j))2f(xj) dxj = oP (h4).

Finally, it has to be shown that
∫

αn,T,j(x
j)f̂h,0(x

j) dxj =

∫∫
µ1,j(xj)Kh(x

j, u)f(u) dxj du

+ h

∫∫
∂jµ

1,j(xj)
hκ1(x

j)

κ0(xj)
Kh(x

j, u)f(u) dxj du + OP (T−1/2)

= b1,j
h + oP (h2).(4.33)
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The convergence in probability follows from E(
∫

αn,T,j(x
j)f̂h(x

j) dxj)2 = O(T−1),

which is shown by an application of Davydov’s inequality.

Then (A9) is proofed by (4.27), (4.32) and (4.33).

Asymptotic distribution Now Theorems 1,2 and 3 of Mammen, Linton and

Nielsen (1999) can be applied and the convergence of the algorithm follows. For

the asymptotic distribution we write

µ̃NW
h (xj) = µ̂NW,V

h (xj) + νn,T,j(x
j)

+ (µ̃NW,V
h (xj)− µ̂NW,V

h (xj)) + (µ̃NW,B
h (xj)− νn,T,j(x

j)).

where νn,T,j(x
j) = αn,T,j(x

j) − γn,T,j + h2βj
µ(xj). The two terms in brackets are

of lower stochastic order (oP (h2)) uniformly in xj, which is shown by Theorem 2

and 3 in Mammen, Linton and Nielsen (1999). Then, the asymptotic result follows

immediately.

Proof of Theorem 4.3

As many calculation are analogous to the proof of theorem 4.1, only on the

changes will be highlighted. Obviously, (A1), (A2), (A4) and (A8) are unchanged.

(A5) is shown analogously, using Lemmata 4.5 and 4.6. (A3) follows from that.

(A6) From the the triangle inequality it follows that

sup
xj∈Gj

∣∣∣
∫

f̂h,(0,0)(x
i, xj)

f̂h,0(xj)
âNW,V

h (xi) dxi
∣∣∣ ≤ sup

xj∈Gj

∣∣∣
∫

f(xi, xj)

f(xi)f(xj)
r̂NW,V
h (xi) dxi

∣∣∣

+ sup
xj∈Gj

∣∣∣
∫ ( f̂h,(0,0)(x

i, xj)

f̂h,0(xi)f̂h,0(xj)
− f(xi, xj)

f(xi)f(xj)

)
r̂NW,V
h (xi) dxi

∣∣∣.

Usual linearization shows that the second supremum is of oP (h2). The first part

can now be written as

sup
xj∈Gj

∣∣∣
∫

f(xi, xj)

f(xi)f(xj)
r̂NW,V
h (xi) dxi

∣∣∣ = sup
xjGj

∣∣ 1

nT

nT∑

k=1

ξk(x
j)

∣∣,

where

ξk(x
j) =

∫
f(X i

(k−1)∆ + hu, xj)

f(X i
(k−1)∆ + hu)f(xj)

K(X i
(k−1)∆ + hu, X i

(k−1)∆) du

× n
(
(X1

k∆ −X1
(k−1)∆)(X2

k∆ −X2
(k−1)∆)−

∫ k∆

(k−1)∆

a12(Xs) ds
)
.
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Using Burkholder-Davis-Grundy-inequality it follows that E
(
(X1

k∆ − X1
(k−1)∆)

(X2
k∆ −X2

(k−1)∆)− ∫ k∆

(k−1)∆
a12(Xs) ds

)2
= O(n−2). Then it follows that

sup
xjGj

∣∣ 1

nT

nT∑

k=1

ξk(x
j)

∣∣ = OP (n−1/2T−1/2).

(A9) Analogously to the drift case define

αn,T,j(x
j) = a12(xj) + h∂ja

12(xj)
κ1(x

j)

κ0(xj)
,

for j = 1, . . . , d while α0,n,T = 0. Quadratic integrability follows from the as-

sumptions. From this follows the choice of γn,T,j =
∫

αn,T,j(x
j)f(xj) dxj. Define

ν̂n,T,j(x
j) analogously to equation (4.28). To show that

sup
xj∈Gj

|âNW,B
h (xj)− ν̂n,T,j(x

j)| = oP (h2)

the bias part â12,B(xj) has to be decomposed analogously to the drift case. Then

the desired rate follows.

This completes the proof.

Proof of Theorem 4.2

For the local linear case Theorems 1’, 2’ and 3’ in Mammen, Linton and Nielsen

(1999) have to be used. Therefore the validity of their Assumptions (A1’)–(A6’),

(A8’) and (A9’)has to be shown. Define

V (xj) =

(
κ0(x

j) κ1(x
j)

κ1(x
j) κ2(x

j)

)
f(xj)

U(xj, xi) =

(
κ0(x

j)κ0(x
i) κ1(x

j)κ0(x
i)

κ0(x
j)κ1(x

i) κ2(x
j)κ2(x

i)

)
f(xj, xi)

as the limits of the matrices V (xj) and U(xj, xi). (A1’) is identical to (A1) in the

proof of Theorem 4.1 and fulfilled by Assumption 4.1.

(A2’) The parts (i) and (ii) are identical to (A2) (i) and (ii). Consider (iii):
∫ (

V̂ (xj)−1Û(xj, xi)− V (xj)−1U(xj, xi)
)2f(xj)

f(xi)
dxi dxj = oP (1)

Adding and subtracting V (xj)−1Û(xj, xi) this holds by the triangular inequality

and Lemma 4.1.
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(A3’) The statement is immediately implied by (A5’).

(A4’) With probability tending to one (for n →∞)

sup
xj∈Gj

∫
tr

(
Û(xi, xj)V̂ (xj)−2Û(xi, xj)

)
f(xi)−1 dxi ≤ C,

for all j = 1, . . . , d, because all elements of the matrices are consistent estimators

of densities, for which the statement holds.

(A5’) is shown by applying Lemmata 4.2 and 4.3 and the boundedness of the

function µ1(xj) that guarantees the quadratic integrability. In total we have that

∫
(µ̂LL,B

h (xj))2f(xj) dxj and

∫
(µ̂LL,V

h (xj))2f(xj) dxj

are bounded with probability tending to. The same holds for

∫
(µ̂LL,B

j,h (xj))2f(xj) dxj and

∫
(µ̂LL,V

j,h (xj))2f(xj) dxj.

(A6’) Denote the L2-norm in R2 with ‖ · ‖2. Then, it is direct to show that

sup
xi∈Gi

∥∥∥
∫

V̂ (xi)−1Û(xi, xj)V̂ (xj)−1

(
t̂Vh,0(x

j)

t̂Vh,1(x
j)

)
dxj

∥∥∥
2

(4.34)

= sup
xi∈Gi

∥∥∥
∫

V (xi)−1U(xi, xj)V (xj)−1

(
t̂Vh,0(x

j)

t̂Vh,1(x
j)

)
dxj

∥∥∥
2
+ oP (h2),

because supxj |t̂Vh,l(x
j)| = OP (h−1/2T−1/2 log T ) and all density estimators con-

verge uniformly as given by Lemma 4.1. Next note that

∫
κ(xi, xj)

f(xi, xj)

f(xi)f(xj)
t̂h,l(x

j) dxj =
nT−1∑

k=0

ξk,l(x
i),

where κ(xi, xj) is a kernel constant independent of h and

ξk,l(x
j) =

∫
f(X i

k∆ + hu, xj)

f(X i
k∆ + hu)f(xj)

hK̃h,l(X
i
k∆ + hu,X i

k∆) du

×
d∑

l=1

1

∆

∫ (k+1)∆

k∆

σ1l(Xs) dW l
s.



Appendix II: Proof of the Theorems 129

From a simple application of the Itô-isometry together with the boundedness of

kernel and density it is obtained that supxj |∑nT−1
k=0 ξk,l(x

j)| = OP (T−1/2) and

then the quantity in (4.34) is of order oP (h2). Using this result it follows directly

that ∥∥∥
∫

V̂ (xi)−1Û(xi, xj)V̂ (xj)−1

(
t̂Vh,0(x

j)

t̂Vh,1(x
j)

)
dxj

∥∥∥
V (xi)

= oP (h2).

(A8’) The convergence results of Lemma 4.1 immediately imply that

sup
xj∈Gj

∫ ∣∣V̂ (xj)−1Û(xi, xj)− V (xj)−1U(xi, xj)
f(xi, xj)

f(xj)

∣∣f(xi) dxi = oP (1),

where the supremum has to be taken elementwise in the matrix.

(A9’) Define

αn,T,j(x
j) = µ1(xj) + h2κ2(x

j)∂2
j µ

1(xj)/2 and αj
n,T (xj) = h∂jµ

1(xj),

for j = 0, . . . , d. Clearly
∫

αn,T,j(x
j)f(xj) dxj < ∞ and

∫
αj

n,T (xj)f(xj) dxj < ∞.

First, consider the constant. This is given by

∫
αn,T,j(x

j)f̂h,0(x
j) dxj +

∫
αj

n,T (xj)f̂h,1(x
j) dxj = b1,j

h + op(h
2).

The limit of the first integral is as in (4.33) and the second integral is of O(h3),

because the kernel constant κ1(x
j) is only at the boundary different from zero.

The expression differs from that given in Mammen, Linton and Nielsen (1999),

because a different normalization is used in the local linear case. This does not

affect the statement of their Theorem 3’.

Define random variables

(
ν̂n,T,j(x

j)

ν̂j
n,T (xj)

)
=

(
αn,T,0 + αn,T,j(x

j)

αj
n,T (xj)

)
+

∑

i6=j

∫
V̂ (xj)−1Û(xi, xj)

(
αn,T,i(x

i)

αi
n,T (xi)

)
dxi.

Then is has to be shown that

sup
xj∈Gj

|µ̂LL,B
h (xj)− ν̂n,T,0 − ν̂n,T,j(x

j)| = oP (h2),(4.35)

sup
xj∈Gj

|µ̂LL,B
j,h (xj)− ν̂0

n,T − ν̂j
n,T (xj)| = oP (h2).(4.36)
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This is done by decomposing the numerator parts of the marginal estimator.

Analogous to (4.30) it holds that

t̂Bh,l(x
j) =

d∑
i=0

1

Tn

nT−1∑

k=0

K̃h,l(x
j, Xj

k∆)µ1(X i
k∆) + OP (n−1/2).

Applying a Taylor expansion for µ1(Xj
k∆) = µ1(xj) + ∂jµ

1(xj)(Xj
k∆ − xj) +

∂2
j µ

1(xj)(Xj
k∆ − xj)2/2 + Rk(x

j). Then, the cases i = j and i 6= j have to

be treated separately. For the first it holds that

1

Tn

nT−1∑

k=0

K̃h,l(x
j, Xj

k∆)µ1(Xj
k∆) = µ1(xj)f̂h,0+l(x

j) + h∂jµ
1(xj)f̂h,1+l(x

j)

+ h2∂2
j µ

1(xj)f̂h,2+l(x
j) + Rn,T,j(x

j).

If i 6= j we have to use that 1 =
∫

Kh(x
i, Xk∆) dxi for all k to obtain

1

Tn

nT−1∑

k=0

K̃h,l(x
j,Xj

k∆)µ1(X i
k∆)

=
1

Tn

nT−1∑

k=0

∫
K̃h,l(x

j, Xj
k∆)Kh(x

i, Xk∆)µ1(X i
k∆) dxi

=

∫
f̂h,(0,l)(x

i, xj)µ1(xi) dxi + h

∫
f̂h,(1,l)(x

i, xj)∂iµ
1(xi) dxi

+
h2

2

∫
f̂h,(2,l)(x

i, xj)∂2
j µ

1(xi) dxi + Rn,T,i(x
j).

Now, plug these results into the representation of the local linear estimator
(

µ̂LL,B(xj)

∂̂jµ
LL,B

(xj)

)
= V̂ (xj)−1

(
t̂Bh,0(x

j)

t̂Bh,1(x
j)

)

=


 µ1(xj) + h2

2
∂2

j µ
1(xj)

( bfh,2(xj))2− bfh,1(xj) bfh,3(xj)bfh,0(xj) bfh,2(xj)−( bfh,1(xj))2

h∂jµ
1(xj) + h2

2
∂2

j µ
1(xj)

bfh,0(xj) bfh,3(xj)− bfh,1
bfh,2(xj)bfh,0(xj) bfh,2(xj)−( bfh,1(xj))2




+
∑

i6=j

V̂ (xj)−1

∫
Û(xi, xj)

(
µ1(xi) + h2κ2(x

i)∂2µ1(xi)/2

h∂jµ
1(xi)

)
dxi

−
∑

i 6=j

V̂ (xj)−1

∫ (
h2∂2

j µ
1(xi)

(
f̂h,(0,0)(x

i)κ2(x
i)− f̂h,(2,0)(x

i))/2

h2∂2
j µ

1(xi)
(
f̂h,(0,1)(x

i)κ2(x
i)− f̂h,(2,1)(x

i))/2

)
dxi

+
d∑

i=1

Rn,T,i(x
j).
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By the uniform convergence rates of the density estimators the asymptotic expres-

sion of the bias is obtained. Because
∫

κ0(x
i)− 1 dxi = O(h), the third term is of

oP (h2) uniformly over xj. Showing that supxj Rn,T,i(x
j) = oP (h2) as in the proof

of Theorem 4.1 the desired rate is obtained. The uniform convergence of (4.35)

and (4.36) imply convergence in the squared L2(f(xj))-norm. This completes the

proof of the assumption.

Proof of Theorem 4.4

The Assumptions (A1’), (A2’), (A4’) and (A8’) are identical to the proof of

theorem 4.2. (A5’) follows by lemmata 4.5 and 4.6. (A6’) and (A9’) can be

concluded by identical modifications as in the proof of Theorem 4.3.





Chapter 5

Nonparametric Regression Tests

Using Dimension Reduction

Techniques

5.1 Introduction

Testing for parametric structure is an important issue in nonparametric regression

analysis. A standard approach is to measure the distance between a parametric

and a nonparametric fit with a squared deviation measure. Based on the L2-

distance, various test statistics have been proposed, e. g. Härdle and Mammen

(1993), Li (1994), Hjellvik and Tjøstheim (1995), Zheng (1996), Li and Wang

(1998), Dette (1999) or Fan et al. (2001). Due to the use of a kernel estimator

these tests suffer from the curse of dimensionality, i. e. the estimators become

worse as the dimension of the predictor increases. Formally, this results in a

slower rate of convergence for local alternatives. Beside this asymptotic result,

the procedures break down in small samples and have no power there.

A powerful technique to overcome the curse of dimensionality is to impose an

additive structure on the unknown regression function. Because additive mod-

els maintain high flexibility compared to parametric specifications they are now

widely used in nonparametric multivariate modelling. Furthermore, the additive

components can be estimated with the same rate as a one-dimensional nonpara-

metric regression and in that way the curse of dimensionality can be circum-

vented. To estimate additive models, different procedures have been proposed.

The most prominent smoothing based techniques are the classical backfitting
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algorithm by Buja, Hastie and Tibshirani (1989), the marginal integration by

Linton and Nielsen (1995) and Tjøstheim and Auestad (1994), smooth backfit-

ting by Mammen, Linton and Nielsen (1999) and local partitioned regression

by Christopeit and Hoderlein (2006). While marginal integration and local par-

titioned regression suffer from the curse of dimensionality, because they use a

full-dimensional estimator in a first stage, backfitting procedures are completely

free of that. The backfitting estimators require iterative procedures that make

the asymptotic analysis more complex.

Compared to classical backfitting, smooth backfitting has different advantages.

Opsomer and Rupert (1997) and Opsomer (2000) analyze the asymptotic proper-

ties of classical backfitting and show that the estimator is not fully oracle efficient.

This concept requires that each additive component can be estimated as well as

if all other components were known. Mammen, Linton and Nielsen (1999) have

shown that smooth backfitting is fully oracle efficient. If the design is correlated,

the implementation of classical backfitting estimators is problematic. Opsomer

and Rupert (1997) illustrate the theoretical restriction of the correlation for co-

variates that are bivariate normally distributed. The declined performance of

classical backfitting is also reported in simulation studies (see Sperlich, Linton

and Härdle, 1999), while smooth backfitting performs much better (see Nielsen

and Sperlich, 2005). Finally, the behavior of the smooth backfitting estimators

is well understood, even if the true model is not additive. This is of particular

importance for the analysis of a test statistic under the alternative hypothesis.

This article proposes to construct a test for parametric form by projecting the

residuals under the null hypothesis onto the space of additive functions. The

asymptotic results show that the test has the same rate of convergence for an

arbitrary dimension of the covariates, which coincides with the rate for one-

dimensional testing problems. Therefore this test circumvents the curse of di-

mensionality. The price for this is the incapacity to detect arbitrary alternatives.

If the additive projection of model-implied residuals is zero, the test can not re-

ject the null hypothesis. Since alternative test procedures fail to work at all in

small sample size, this test still provides a powerful data analytic tool.

A similar test problem is considered in Fan and Jiang (2005). They use a gener-

alized likelihood ratio test statistic to compare the parametric fit to the additive

fit, where the additive model is estimated by classical backfitting. Because the

fits are compared directly, this test can only be used to test for parametric specifi-

cations that are a subclass of the class of additive functions. The test proposed in
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this article uses the fact that the smooth backfitting estimator can be understood

as an estimator of the additive projection. Therefore it is applicable to a larger

class of hypotheses.

This chapter is organized as follows. In the second section the test statistic

is motivated and the asymptotic results are obtained. For a small sample size,

the asymptotic distribution does not approximate the null distribution very well.

Therefore a wild bootstrap procedure is proposed and analyzed. Some extensions

to the basic test statistic are discussed in Section 3. The finite sample performance

is examined by a Monte-Carlo study and illustrated by a small data example. This

is presented in Section 4. All proofs are deferred to the appendix.

5.2 The Test Statistic

5.2.1 Motivation of the Test Statistic

Let Y ∈ R and X = (X1, . . . , Xd)′ ∈ Rd for some d ≥ 1 denote random variables

and define the mean regression function

g(x) = E(Y | X = x).

To specify a certain model it has to be judged whether this function falls into a

parametric function class. So the null hypothesis to be tested is if

(5.1) H0 : P(g(X) = G(X, θ)) = 1 for some θ ∈ Θ,

where Θ ⊆ R
ed is a finite dimensional parameter space and G(x, θ) is a known

function. The common approach to test this hypothesis using kernel regression

techniques is to use the equivalence of H0 to

(5.2) E(g(X)−G(X, θ))2w(X) = 0,

where w(x) is some positive weighting function. To construct a test statistic,

equation (5.2) is replaced by the sample counterpart, using a parametric estima-

tor for θ and a kernel estimator of g(x) (e. g. the Nadaraya-Watson estimator).1

However, for high-dimensional regressors X the rate of convergence of the esti-

mator of g(x) becomes slower. Therefore the resulting test suffers from the curse

1Most authors do not use equation (5.2) directly, but transform it. For example, Härdle and
Mammen (1993) use E(m(X)−E(G(X, θ) | X))2w(X). For other specifications see Li (1994),
Zheng (1996) or Dette (1999).
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of dimensionality as well. This is reflected in a rate of convergence of nhd/2 for

the test statistic, the incapacity to detect local alternatives that converge to the

null hypothesis faster than n−1/2h−d/4 and the need for larger sample sizes.

A common approach to circumvent the curse of dimensionality in nonparametric

regression is to impose an additive structure on the mean regression function, i. e.

g(x) = g0 + g1(x1) + · · ·+ gd(xd)

and for identifiability it is assumed that E gj(Xj) = 0 for all j = 1, . . . , d. Ad-

ditive models provide an important class of structured multivariate nonpara-

metric models, because they are more flexible than parametric families. De-

note with G = {g : Rd → R | E g(X)2 < ∞} the class of L2-functions, with

Gad = {g ∈ G | g(x) = g0 + g1(x1) + · · · + gd(xd)} its additive subclass and with

GG,Θ = {g ∈ G | g(x) = G(x, θ) for some θ ∈ Θ} a parametric subclass. Denote

with P(Y | X = x) the L2-projection of Y onto the space of additive functions

Gad, defined as

(5.3) P(Y | X) = argmin
γ∈Gad

E(Y − γ(X))2.

where the minimization is under the constraint E γj(xj) = 0.

To motivate the test statistic of this chapter consider for the beginning the

testing problem

(5.4) H0 : g(x) = G(x, θ) ∈ GG,Θ vs. H1 : g(x) ∈ Gad\GG,Θ,

with GG,Θ ⊂ Gad. For example, GG,Θ is the class of linear functions. In this

case, the conditional expectation and the additive projection are identical, i. e.

P(Y | X = x) = g(x) and the null hypothesis is equivalent to

(5.5) E(P(Y | X)−G(X, θ))2w(X) = 0.

The additive projection is a sum over d one-dimensional functions. Using kernel

regression techniques these components (and therefore the whole function) can be

estimated with the one-dimensional rate of convergence. Having such estimators

at hand a sample analogue to the left-hand side in (5.5) can be constructed. This

can be used as a test statistic that converges faster than the test statistics based

on (5.2). By this, the curse of dimensionality can be circumvented.

It is not advisable to compare the distance between the additive regression and

the parametric estimator directly. While under H0 they both converge to the same
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true function asymptotically, the nonparametric estimator has a bias that can

dominate the test statistic. Therefore it is preferable to smooth the parametric

estimator to imitate the bias of the kernel estimator. This is equivalent to basing

the test on

(5.6) E(P(Y −G(X, θ) | X))2w(X) = 0.

But this equation holds under H0 also for parametric families that are not ad-

ditive, i. e. GG,Θ 6⊂ Gad. The object of interest is now the additive projection of

residuals of the parametric estimation. Therefore a test based on (5.6) is appli-

cable to more general hypotheses than (5.4).

The testing problem (5.4) has also been considered by Fan and Jiang (2005).

They adapt the generalized likelihood ratio-test by Fan, Zhang and Zhang (2001)

to this testing problem. The test statistic is obtained by constructing residual

sums of squares under H0 – fitting the model with a parametric estimator – and

under H1 – estimating the additive model by classical backfitting. Then, the log-

arithm of the ratio of these sums of squares serves as test statistic. Shortcomings

of the classical backfitting estimator like restricted correlation structure, lack of

oracle efficiency and unknown behavior under non-additive models have already

been mentioned. Therefore the choice of this article is the smooth backfitting

estimator by Mammen, Linton and Nielsen (1999) as estimator of the additive

projection. Before the test statistic will be constructed, the next subsection re-

views smooth backfitting estimation.

5.2.2 Smooth Backfitting

Based on a sample of independent and identically distributed random variables

(Xi, Yi), i = 1, . . . , n it is desired to estimate

P(Y −G(X, θ) | X = x) = m0 + m1(x1) + · · ·+ md(xd),

under the constraint

(5.7)

∫

Aj

mj(xj)f j(xj) dxj = 0, j = 1, . . . , d.

Here f j(xj) denotes the marginal density of Xj and Aj is a compact subset

of the support of Xj. The smooth backfitting procedures are based on usual

kernel estimators. In this subsection the algorithm based on a Nadaraya-Watson
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estimator is presented. Alternatively, smooth backfitting could be based on local

linear estimators. For more detailed expositions of the estimators and algorithms

see Mammen, Linton and Nielsen (1999) or Nielsen and Sperlich (2005).

Having a parametric estimator θ̂ at hand, the residuals of the parametric re-

gression Ûi = Yi − G(Xi, θ̂) can be constructed. The Nadaraya-Watson smooth

backfitting estimators are motivated by the solution of the smoothed empirical

version of the additive projection (5.3)

(5.8) min
µ̄0,...,µ̄1

µ̄0+···+µ̄1∈Gad

∫

A

1

n

n∑
i=0

(
Ûi − µ̄0 − µ̄1(x1)− · · · − µ̄d(xd)

)2
d∏

j=1

Kh(x
j, Xi) dx,

where the minimization is subject to the empirical version of (5.7), given by

(5.9)

∫

Aj

µ̄j(xj)f̂ j
h(xj) dxj = 0, j = 1, . . . , d.

Here, Kh(u
j, vj) is a kernel weight, f̂ j

h(xj) = n−1
∑n

i=1 Kh(x
j, Xj

i ) is a kernel

density estimator2 and A = A1 × · · · × Ad. Usually, for smooth backfitting

estimators, modified kernel weights are implemented. These are given by

Kh(u
j, vj) =

K(h−1(vj − uj))∫
Aj K(h−1(vj − wj) dwj

where K(·) integrates to one over its support. This ensures that
∫
Aj Kh(u

j, vj) duj

= 1 for all vj and is required to derive the asymptotic properties of the estimators.

Simulation results suggest that unmodified kernels can be implemented as well,

but by now no theoretical justification for doing so exists.

Solving the minimization problem (5.8) with respect to (5.9) the minimum

(m̃0
h, m̃

1
h, . . . , m̃

d
h) is given as the implicit solution to the set of equations

(5.10) m̃j
h(x

j) = m̂j
h(x

j)−
∑

k 6=j

∫

Ak

m̃k
h(x

k)
f̂k,j

h (xk, xj)

f̂ j
h(xj)

dxk − m̃0
j ,

together with
∫

m̃j
h(x

j)f̂ j
h(xj) dxj = 0 for j = 1, . . . , d. Here, the two-dimensional

kernel density estimator of the joint density of Xk and Xj is denoted with

f̂k,j.
h (xk, xj) = n−1

∑n
i=1 Kh(x

k, Xk
i )Kh(x

j, Xj
i ) is and the marginal Nadaraya-

Watson estimator is given by m̂j
h(x

j) = f̂ j
h(xj)−1n−1

∑n
i=1 Kh(x

j, Xj
i )Ûi. The set

2To reduce notation it is assumed that the same bandwidth is used for all dimensions.
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of equations (5.10) is then solved by an iterative procedure where the marginal es-

timators can be used as starting values. If modified kernels are used, the constant

is given by m̃0
j = n−1

∑n
i=1 Ûi and demeaned data can be used.

The smooth backfitting estimators (m̃0
h, m̃

1
h, . . . , m̃

d
h) are defined as the solution

to (5.10). Mammen, Linton and Nielsen (1999) give general conditions under

which the algorithm converges and investigate asymptotic properties of the solu-

tions. If the additive model holds, then the estimators enjoy an oracle property

for the variance. This means that the backfitting estimator of one additive com-

ponent converges with rate
√

nh and has the same variance as the infeasible oracle

estimator which is based on knowledge of all other components of the additive

function. Smooth backfitting based on local linear estimators is fully oracle ef-

ficient, which means that these estimators have the same asymptotic variance

and bias as the oracle estimator. But under H0 there is no bias at all. There-

fore it is no disadvantage to base the test statistic on Nadaraya-Watson smooth

backfitting.

In contrast to classical backfitting, the behavior of the smooth backfitting es-

timators can be investigated even if the additive model does not hold. This

alleviates the analysis of the test statistic under the alternative hypothesis.

5.2.3 Asymptotic Results

Estimating the additive projection by smooth backfitting, the test statistic can be

constructed. Based on equation (5.6), the null hypothesis will now be formulated

more generally as

(5.11) H0 : P(P(Y −G(X, θ) | X) = 0) = 1 for some θ ∈ Θ,

where Θ ⊆ Rd′ is a finite dimensional parameter space and G(X, θ) is a known

function.

Using the smooth backfitting estimators m̃1
h(x

1), . . . , m̃d
h(x

d) the empirical ver-

sion of equation (5.6) can be constructed. For the parametric estimator θ̂ of θ

some assumptions beyond consistency will be specified below. The test statistic

is defined as

(5.12) T̂ =

∫

A

( d∑
j=0

m̃j
h(x

j)
)2

f̂h(x)w(x) dx,

where f̂h(x) = n−1
∑n

i=1 Kh(x,Xi) is a full dimensional kernel density estimator.

Note that by solving the square inside the integral of T̂ and choosing the weight
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function such that3
∫

f̂h(x)w(x) dx−j =
∫

f̂ j,k
h (xj, xk)w(xj, xk) dxk = f̂ j

h(xj)w(xj)

the test statistic can be written as sum over one- and two-dimensional integrals

only. Therefore only one- and two-dimensional kernel density estimators are

required.

As an alternative the expectation in equation (5.6) could be replaced by a sum

over the data points. This would result in the test statistic

T̃ =
n∑

i=1

( d∑
j=0

m̃j
h(X

j
i )

)2

w(Xi),

which shares the asymptotic properties of T̂ but is computationally more cum-

bersome, because the backfitting estimators have to be evaluated at the data

points. From the algorithm the estimators are obtained at (ideally) equispaced

grid points, that allow to evaluate integrals quickly. A third implementation

would be given by omitting the kernel density estimator in the integration. This

corresponds to the choice of w(x) = w̃(x)/f(x) asymptotically.

The hypothesis (5.11) is more general than (5.4), but it is weaker than (5.1).

Of course it could be the case that the conditional expectation is not in the

parametric class, but the additive projection P(Y − G(X, θ) | X) = P(m(X) −
G(X, θ) | X) is still zero. As an example consider Y = θ1X

1 + θ2X
2 + X1X2 + ε

as true data generating process where X1, X2 and ε are independent (truncated)

normal random variables (with expectation zero). As parametric class choose

G(x, θ) = θ1x
1 + θ2x

2. Then obviously the conditional expectation of Y given

X is not in that class. However, if X1 and X2 are independent, it holds that

P(Y | X = x) = G(x, θ). However, if X1 and X2 are correlated, the null

hypothesis is violated and the test will reject.

For the more general testing problem (5.1) this approach can still be useful as a

data analytic tool. If a full-dimensional test for (5.1) is not available because the

sample size is too small to estimate a full-dimensional nonparametric regression,

the class of alternatives is still larger than for usual parametric goodness-of-fit

tests.

To derive asymptotic results, the following assumptions have to be imposed

Assumption 5.1. For the nonparametric estimation

1. The data (Yi, Xi), i = 1, . . . , n are independent and identically distributed

with density f(y, x).

3Denote dx−j = dx1 . . . dxj−1 dxj+1 . . . dxd.
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2. f(x) =
∫

f(y, x) dy is twice continuously differentiable on A ⊂ Rd with

bounded derivatives.

3. The two-dimensional densities f(xj, xk) =
∫

f(x) dx−(j,k) are twice contin-

uously differentiable on Aj ×Ak with bounded derivatives.

4. The marginal densities f(xj) =
∫

f(x) dx−j are twice continuously differ-

entiable on Aj with bounded derivatives. f(xj) is bounded from below on

Aj.

5. The continuously differentiable weighting function w(x) is positive and boun-

ded on A.

6. The conditional variances

vj(xj) = E
(
(Y −G(X, θ))2 | Xj = xj

)

are square-integrable on Aj.

7. E((Y −G(X, θ))4) < ∞.

8. The kernel function K : [−1, 1] → R is Lipschitz continuous, bounded and

symmetric around 0. The kernel and its convolution are square-integrable

‖K‖2
2 =

∫ 1

−1

K(u)2 du ‖K ∗K‖2
2 =

∫ 1

−1

(∫ 1

−1

K(u)K(u + v) du
)2

dv.

9. The bandwidth sequence satisfies h = O(n−1/5).

The assumption of independent and identically distributed data could be re-

laxed to allow for β-mixing random variables with mixing coefficients decaying

sufficiently fast. The moment conditions are minimal to obtain asymptotic nor-

mality of the test statistic and the required smoothness of the unknown functions

is standard in nonparametric regression.

If the implementation of a data-driven bandwidth is desired, there are two

proposals. Nielsen and Sperlich (2005) investigate the implementation of cross-

validation in a simulation study, but give no theoretical result. Mammen and

Park (2006) use penalizing functions and prove the validity of their method. For

an iterative estimator cross-validation is supposed to be more time-consuming and

therefore the penalizing function approach is favorable. In practice the bandwidth

for the test could be chosen by using the optimal bandwidth of the additive
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projection of Y on X. However, this proposal will not yield an optimal bandwidth

for the test. For optimal testing, a data adaptive method as in Horowitz and

Spokoiny (2001) could be implemented, but this is beyond the scope of the present

work.

Assumption 5.2. For the parametric estimation

1. Under the null hypothesis it holds that θ̂ − θ = OP (n−1/2) for all θ ∈ Θ.

2. Under the alternative hypothesis there exists a θ̃ ∈ Θ such that θ̂ − θ̃ =

OP (n−1/2).

3. For the link function it holds that ∇θG(x, θ) and ∇2
θG(x, θ) are continuous

in x and θ. ∇θG(x, ·) and ∇2
θG(x, ·) are dominated by square integrable

functions on A.

For usual parametric estimators this assumption is no restriction. It is for-

mulated in a rather general way to cover many possible cases of different null

hypotheses. Considering again a linear model, θ̂ would be the usual (general)

least squares estimator, for which Assumption 5.2 is clearly fulfilled. The first

theorem states the asymptotic behavior of T̂ under H0

Theorem 5.1. Let Assumptions 5.1 and 5.2 be fulfilled. Then it holds under H0

that

n
√

hT̂ − h−1/2BT
D−−→ N (0, ΣT ),

where

ΣT = 2‖K ∗K‖2
2

d∑
j=1

∫
vj(xj)2w(xj)2 dxj

BT = ‖K‖2
2

d∑
j=1

∫
vj(xj)w(xj) dxj.

As expected, the test statistic is asymptotically normal with a one-dimensional

rate of convergence of n
√

h. The variance ΣT is given as the sum over integrals

of the d marginal conditional variances vj(xj). Thus, the variance (and the bias

BT as well) increases with the dimension. As usual the power decreases with an

increasing variance of the test statistic under H0. In finite samples this effect is

present and will be found in the simulation.
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To check the consistency of T̂ , the behavior under the alternative has to be

examined. Formally, the alternative hypothesis is stated as

H1 : P(P(Y −G(X, θ) | X) = 0) < 1 for any θ ∈ Θ.

This treats the case of fixed alternatives, i. e. E(P(Y − G(X, θ̄) | X))2 = c > 0,

where θ̄ is given in Assumption 5.2 and c is a fixed positive constant.

Theorem 5.2. Let Assumptions 5.1 and 5.2 be fulfilled. Then, under H1 it holds

that

T̂
P−→ E(P(Y −G(X, θ̃) | X))2w(X).

Hence, the standardized test statistic of T̂ diverges to infinity in probability.

Therefore the test is consistent against any fixed alternative, where the additive

projection of the model-implied residuals is nonzero. Return to the restricted

testing problem (5.4) where the parametric class is a subclass of the additive

model. Then, T̂ is consistent against all fixed alternatives in Gad.

Of additional interest is the behavior of the test against local alternatives, i. e.

alternatives that converge to H0 for n → ∞. Consider the sequence of local

alternatives

H1n : P(Y −G(X, θ̃) | X) = gn(X),

where gn(x) ∈ Gadd is a nonzero function.

Theorem 5.3. Let Assumptions 5.1 and 5.2 hold. If there exists a constant BL

such that
λn

n

n∑
i=1

d∑
j=1

gn(Xi)
2

f j(Xj
i )

f(Xi)w(Xi)
P−→ BL

with λn = O(nh1/2) then it holds under H1n that

n
√

hT̂ − h−1/2(BT + ‖K‖2
2BL)

D−−→ N (0, ΣT )

with BT and ΣT as in Theorem 5.1.

Usually a kernel-based test for parametric structure can only detect local alter-

natives that converge to zero at rate n−1/2h−d/4 where d is the dimension of the

covariates. The implementation of the additive estimator circumvents this curse

of dimensionality. However, the price that has to be paid for the circumvention

is reflected in the smaller class of alternatives against which the test has power.

While a kernel based test using a full-dimensional estimator has power against
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functions in G, the test proposed here has only power against alternatives with

P(Y −G(X, θ)) 6= 0. However, for the considered situation, where d is large and

n is relatively small, the asymptotic results of the full-dimensional test are not

available.

Taking again the linear model as an example, the parametric structure could

be checked by testing against a higher dimensional model (or against a quadratic

term). Such tests have power against contiguous alternatives, i. e. alternatives

that converge to the null hypothesis at rate n−1/2. But the class of alternatives

that can be detected is further restricted by the construction of these tests. For

example it may only be the class of quadratic deviations from the null model.

The price for enlarging this class by the additive test is the slower rate of

alternatives that can be considered. If h = O(n−1/5) is used, it is given by n−9/20

against n−1/2. Therefore, analyzing the parametric specification with T̂ provides a

data analyzing tool, that is clearly more flexible than parametric test procedures.

5.2.4 Bootstrap Implementation

The asymptotic distribution of T̂ is driven by a U -statistic and a large number of

lower order terms that are omitted. However, it is well known in nonparametric

hypothesis testing, that the convergence of the test statistic to the underlying

U -statistic is rather slow (see Hjellvik and Tjøstheim, 1995, or Li and Wang,

1998). Therefore, it is not advisable to rely on the asymptotic normality ap-

proximation in small or moderate samples. Beside that, the quantities arising

in the expected value and variance of the test statistic have to be estimated,

since they involve the unknown conditional variances vj(xj). This could in prin-

ciple be done by regressing the squared residuals Û2
i nonparametrically on all

dimensions of the predictors Xj. Nadaraya-Watson-type estimators would be

given by v̂j
h(x

j) = f̂ j
h(xj)−1n−1

∑n
i=1 Kh(x

j, Xj
i )Û

2
i . Assuming smoothness of the

conditional variances, it is not difficult to show that the use of these estimators

leads to a consistent test statistic. Alternatively, other pre-estimators could be

considered.

However, for small samples the asymptotic approximation is usually not valid.

Therefore this subsection proposes the implementation of a wild bootstrap pro-

cedure. The bootstrap algorithm is performed in the following way

1. Construct parametric residuals Ûi = Yi −G(Xi, θ̂).
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2. Construct the residuals of the additive projection ε̂i = Ûi −
∑d

j=0 m̃jeh(Xj
i ).

3. Generate independent and identically distributed random variables η∗1, . . . ,

η∗n from a distribution F̂ for all i = 1, . . . , n.

4. Construct the bootstrap sample (Y ∗
i , X∗

i ), i = 1, . . . , n by Y ∗
i = G(Xi, θ̂) +

ε̂iη
∗
i and X∗

i = Xi.

5. Calculate T̂ ∗ from the bootstrap sample.

6. Repeat steps 3 to 5 B times to obtain critical values for T̂ .

The predictors X1, . . . , Xn remain unchanged in every bootstrap iteration. This

is computationally convenient, since all density estimators and kernel weights in

the smooth backfitting algorithm remain unchanged. Even though the iterative

backfitting procedure has to be calculated B times, the computation time of the

algorithm is not too high if a fast implementation is used.

Denote with E∗(·) = E(· | (X1, Y1), . . . , (Xn, Yn)) the conditional expectation

of a random variable given the whole data sample. To derive the validity of the

bootstrap method the following assumption is required formally.

Assumption 5.3. For the bootstrap

1. For the bootstrap distribution F̂ it holds that E∗ η∗i = 0, E∗(η∗i )
2 = 1 and

E∗(η∗i )
4 < ∞ for all i = 1, . . . , n.

2. Denote with θ̂∗ the parametric estimator calculated from the bootstrap sam-

ple. Then it holds that θ̂∗ − θ̂ = OP (n−1/2).

3. The bandwidth sequence satisfies nh̃ →∞.

It is not formally required that E∗ η3
i = 1, since the proof of the bootstrap result

will not be based on a formal Edgeworth expansion. But simulations provide

evidence that mimicking three moments leads to higher order approximations of

the distribution of the test statistic, which improves the finite sample behavior

(see Li and Wang, 1998, for formal evidence of this finding in kernel based tests).

The second part of Assumption 5.3 is not restrictive. It is not difficult to establish

for usual parametric estimators θ̂.

Theorem 5.4. Let Assumptions 5.1–5.3 hold. Then under H0 it holds that

n
√

hT̂ ∗ − h−1/2BT
D−−→ N (0, ΣT ),

conditional on the data for n →∞ with probability tending to one.
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Alternatively, the bootstrap observations could be constructed under the null

hypothesis, i. e. Y ∗
i = G(Xi, θ̂) + Ûiη

∗
i . In that case, the same result as in The-

orem 5.4 could be proved. But, under the alternative, the residuals Ûi do not

consistently estimate the true error Y −G(X, θ). This means that the bootstrap

generates the distribution of the test under the closest parametric approximation

to the true model with different error terms than in the true model. Because

of the erratic behavior of the parametric residuals Ûi under the alternative, the

simulated marginal conditional variances vj(xj) can be too large. This can result

in a loss in power of the bootstrap.

In contrast, the corrected residuals ε̂i are consistent under H1 as well. Here the

problem is that they underestimate the true error term under the null hypothesis

if the bandwidth is too small. The result is a distortion of the level of the test.

This can be reduced by using a different (larger) bandwidth h̃ to construct the

residuals ε̂i than to calculate the test statistic.

5.3 Extensions

5.3.1 Post-hoc-type Tests

If the F -test-type statistic T̂ leads to a rejection, the researcher will be interested

in finding out by which regressor Xj this is caused. This can be done by testing

which of the additive components mj(xj) are significantly different from zero.

The corresponding null hypothesis is given by

Hj
0 : P(mj(Xj) = 0) = 1 for some θ ∈ Θ

and as test statistic serves

T̂ j =

∫

A|

(
m̃j(xj)

)2
f̂h(x

j)w(xj) dxj.

The asymptotic behavior of T̂ j under Hj
0 is given by

Theorem 5.5. Let Assumptions 5.1 and 5.2 be fulfilled. Then it holds under Hj
0

that

n
√

hT̂ j − h−1/2Bj
T

D−−→ N (0, Σj
T ),

where

Σj
T = 2‖K ∗K‖2

2

∫
vj(xj)2w(xj)2 dxj and Bj

T = ‖K‖2
2

∫
vj(xj)w(xj) dxj.
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Under H0 it holds that

n
√

h




T̂ 1

...

T̂ d


− h−1/2




B1
T
...

Bd
T


 D−−→ N (0,




Σ1
T 0

. . .

0 Σd
T


).

Consider again the situation to test (5.4). If all other components of g(x) except

for gj(x) were known, an oracle test could be implemented using unobservable

data Yi −
∑

k 6=j gk(xk). Denote with ĝj(xj, θ̂) the parametric estimate of the

unknown component. Then, a test statistic is given by

T̃ j =

∫

Aj

(
f̂ j

h(xj)−1

n∑
i=1

Kh(x
j, Xj

i )
(
Yi −

∑

k 6=j

gk(xk)− ĝj(xj, θ̂)
))2

f̂ j
h(xj) dxj.

The asymptotic distribution of this test is derived by an application of Proposi-

tion 1 of Härdle and Mammen (1993) and is given by

Ť j =

∫

A|

(
m̃j(xj)

)2
f̂h(x

j)w(xj) dxj.

Obviously, the first part of Theorem 5.5 shows that T̂ j has an oracle property

in the sense that this test statistic has the same asymptotic distribution as the

oracle test.

The second part of the theorem states that the d different test statistics T̂ 1, . . . ,

T̂ d are asymptotically independent. This can be used to test various additive

components simultaneously. For studentized versions of these statistics, theory

for multiple testing can be applied to obtain correct critical values. In finite

samples correlation might be present and can be approximated by wild bootstrap.

The joint distribution can be simulated in the same way as described in the last

section. The only difference is that in step 5 of the algorithm all test statistics

T̂ 1,∗, . . . , T̂ d,∗ have to be calculated.

5.3.2 Omission of Additive Components

Apart from the parametric specification it is also of interest to test whether one

component of the predictors has an influence on the conditional expectation at

all. For this, assume that g(x) ∈ Gad and consider the testing problem

(5.13) Hj′
0 : gj(xj) = 0 vs. Hj′

1 : gj(xj) 6= 0.
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To test this, the smooth backfitting algorithm is applied directly to Yi instead

of Ûi. Denote the corresponding estimators of the additive components with

g̃1, . . . , g̃d. Then, a test statistic is given by

T̃ j =

∫

A|

(
g̃j(xj)

)2
f̂h(x

j)w(xj) dxj.

From all theorems it is obvious that the parametric estimator does not influence

the asymptotic distribution. Therefore this test statistic is under Hj′
0 asymptot-

ically equivalent to T̂ j under Hj
0 and the first part of Theorem 5.5 applies. Only

the marginal conditional variance has to be adjusted to ṽj = E((Y −g(X))2 | Xj).

But it is important to note that testing problem (5.13) is restricted to the case

that g(x) is fully additive. If g(x) 6∈ Gad it can be the case that the conditional

expectation is independent from Xj, but the additive projection is not. Therefore

an application of T̃ j can produce misleading results.

The test statistic for this problem is again T̂ j but for the calculation of the

additive estimators Yi is used instead of Ûi. From the proofs it is obvious that Ûi =

Ui + OP (n−1/2) which means that the parametric estimation does not influence

the asymptotic distribution. Then, the first part of Theorem 5.5 holds for this

test statistic under Hj′
0 with variance given by ṽj = var(Y | Xj = xj).

5.4 Simulation and Application

5.4.1 Monte Carlo Study

The simulation study will examine the performance of the test in finite (rather

small) samples. Two data generating processes are used. First, a linear model

will be simulated. As second specification, the nonlinear model of Fan and Jiang

(2005) is simulated to compare the performance of the test derived in this chapter

to the results based on the classical backfitting estimator.

The first model is given by

(5.14) Yi =
d∑

j=1

2(4Xj
i − 2) + λ(4X1

i − 2)2 + Ui,

with Xd
j

iid∼ U(0, 1) and Ui
iid∼ N (0, 1). This specification was also used in Zhang

and Dette (2004) to compare univariate test statistics. The model under the null

hypothesis is given by λ = 0 and samples for different values of λ ∈ [0, 0.75] are
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generated to estimate the power of T̂ . The sample size is n = 100 and for 16

different values of λ 1 000 simulation runs are used. Under H0 the model is linear

and the parameters are estimated using ordinary least squares.

A lower dimensional model with d = 3 is considered first. To construct the

additive residuals ε̂i, the bandwidth h̃ = 1.5n−1/5/
√

12 is implemented. This

is motivated by the rule of thumb, varXj
i = 1/12 and the need to use larger

bandwidths h̃ to obtain consistent estimators of the residuals. The test statistic

T̂ is calculated with a bandwidth h = h0n
−1/5/

√
12 and different values for h0

are used to check the sensibility of the power to the bandwidth. All additive

projections are calculated by approximating the integrals in (5.10) with 51 grid

points. The test statistic is calculated as

T̂ =

∫

A

( d∑
j=0

m̃j
h(x

j)
)2

dx.

Recall that this corresponds to the choice of w(x) = 1/f̂h(x
j) in equation (5.12).

The bootstrap samples are generated using η∗i = Vi/
√

2 − (V 2
i − 1)/2 with Vi

iid∼
N (0, 1) (see Mammen, 1993).

In Figure 5.1 a quantile plot of the distribution of the test statistic for λ = 0 and

h0 = 1 against a normal random variable is presented. Obviously the test statistic

is not normally distributed. This provides gives evidence that the asymptotic

results for T̂ do not hold in small samples and relying on the normal distribution

would lead to wrong critical values. Therefore it is advisable to approximate the

distribution by the bootstrap procedure described in Section 5.2.4.

To calculate the empirical power, three different bandwidth constants h0 =

0.5, 1, 1.5 are used. The results are displayed in Figure 5.2. For all values of

the bandwidth the test has good power against the alternatives. For small band-

widths the test tends to be too conservative. It is a typical result in nonparametric

goodness-of-fit testing that small changes in the power are observed for different

bandwidths. In general, large bandwidths have more power against low frequency

alternatives, while small bandwidths allow to detect high frequency alternatives.

Since in this specification the deviation from the null hypothesis is of low fre-

quency (the function is only quadratic), the power should increase more rapidly

for larger bandwidths. However, the effect is not strong.

To examine the influence of the error distribution, model (5.14) is now con-

sidered with different distributions of εi. Additionally to the standard normal

distribution, it is now also simulated from a standardized t-distribution with 5
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Figure 5.1: Quantile plot of the distribution of T̂ under H0 for model (5.14). For

the simulation d = 3, n = 100 and h0 = 1 are used.

degrees of freedom and a standardized χ2-distribution with 5 degrees of freedom.

The asymptotic results of the second section have been established under the

assumption that the errors have finite forth moment, which is minimal for the

finiteness of the variance of T̂ . Therefore the t(5)-distribution seems to be close

to the boundary of the domain of attraction. Beside the leptokurtic errors, the

χ2-distribution is skewed and asymmetric. All other settings are unchanged (in

particular d = 3, n = 100). Only four different values of λ are considered and the

results are given in Table 5.1. No severe differences are found between the three

different distributions for all bandwidths. The numerical results give evidence

that the test is robust against different error distributions.

The advantage of the test statistics is that the asymptotic convergence is in-

dependent of the dimension of the regressors, circumventing the curse of dimen-
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Figure 5.2: Empirical power of the test statistic for model (5.14) with d = 3, n =

100 for different bandwidths h0 = 0.5 (upper left picture), h0 = 1 (upper right

picture) and h0 = 1.5 (lower picture). The rejection rates are given for different

significance levels α = 0.10 (solid line) and α = 0.05 (dashed).

sionality. To illustrate this, it will be simulated from model (5.14) with d = 10

and n = 100. The variance of
∑d

j=0 m̂jeh(Xj
i ) increases with d and therefore

h̃ = 2.5n−1/5/
√

12 has to be enlarged to obtain consistent estimates of the resid-

uals. All other specifications are unchanged. The power of this high-dimensional

model is displayed in Figure 5.3. The test still has good power but compared to

the three-dimensional model, the increase in power with increasing λ is slower.

This can be explained by the asymptotic results, because the variance ΣT of the

test is larger, if the number of dimensions increases (see Theorem 5.1).
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Table 5.1: Power of T̂ under different error distributions

α = 0.10 α = 0.05

λ 0 0.25 0.5 0.75 0 0.25 0.5 0.75

h0 = 0.5

N (0, 1) 0.060 0.302 0.928 0.999 0.005 0.105 0.688 0.990

t(5) 0.049 0.283 0.895 0.998 0.003 0.088 0.613 0.961

χ2(5) 0.056 0.298 0.911 0.998 0.013 0.079 0.655 0.955

h0 = 0.5

N (0, 1) 0.109 0.574 0.994 1.000 0.037 0.356 0.968 1.000

t(5) 0.103 0.558 0.987 1.000 0.026 0.313 0.938 1.000

χ2(5) 0.115 0.582 0.981 1.000 0.028 0.327 0.930 0.999

h0 = 0.5

N (0, 1) 0.144 0.709 0.998 1.000 0.056 0.529 0.991 1.000

t(5) 0.123 0.711 0.996 1.000 0.038 0.508 0.985 1.000

χ2(5) 0.130 0.720 0.995 1.000 0.047 0.493 0.981 1.000

A second data generating process is given by

(5.15) Yi = (X1
i )3 + sin(3πX2

i ) + sin(3πX3
i )(1 + λX3

i ) + εi.

The covariates (X1
i , X2

i , X3
i )′ are independently drawn from a multivariate normal

distribution with covariance matrix

Σ1 =
1

9




1 1
4
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1
4

1 0

0 0 1


 .

The variables are truncated onto [−0.5, 0.5]3, such that the actual correlation

between X1 and X2 is smaller than 1/4. The sample size is n = 200. Under
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Figure 5.3: Empirical power of the test statistic for model (5.14) with d = 10, n =

100 for different bandwidths h0 = 0.5 (upper left picture), h0 = 1 (upper right

picture) and h0 = 1.5 (lower picture). The rejection rates are given for different

significance levels α = 0.10 (solid line) and α = 0.05 (dashed).

the null hypothesis, the model is estimated using nonlinear least squares. The

bandwidths are given by h = h0n
−1/5/3 and h̃ = n−1/5/2 for all directions. The

power is estimated over a grid of λ ∈ [0, 1] by 500 simulation runs for each

specification. This model is also used in Fan and Jiang (2005) and the power

functions in Figure 5.4 can directly be compared with Figure 3 in that article.

Both tests have very similar power functions and differences may vanish if the

number of simulation runs increases. Again, the test has very good power across

all bandwidths. For low values of λ which correspond to small deviations from



154 5. DIMENSION REDUCTION TESTS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

P
ow

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ
P

ow
er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

P
ow

er

Figure 5.4: Empirical power of the test statistic for model (5.15) with n = 200

and covariance Σ1 for different bandwidths h0 = 0.5 (upper left picture), h0 = 1

(upper right picture) and h0 = 1.5 (lower picture). The rejection rates are given

for different significance levels α = 0.10 (solid line) and α = 0.05 (dashed).

the null hypothesis the rejection rate is very low. But under the alternative,

the limit of the parametric estimator θ̄ can be different from θ0 and therefore

the functional relation between the power and λ can be almost constant in that

region.

In the simulation above, X3 is independent from (X1, X2)′ and the correlation is

limited to a rather small level of 1/4. Because the smooth backfitting estimators

are superior to classical backfitting in the case of correlated covariates it will now
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Figure 5.5: Empirical power of the test statistic for model (5.15) with n = 200

and covariance matrix Σ% with increasing correlation % for different alternatives

λ = 0.6 (left picture) and λ = 0.8 (right picture). The rejection rates are given

for different significance levels α = 0.10 (solid line) and α = 0.05 (dashed). The

bandwidth is given by h0 = 1.0.

be simulated from model (5.15) using the covariance-matrix

Σ% =
1

9




1 % %

% 1 %

% % 1




for increasing values of % ∈ [0, 0.95]. The power is examined for two different

alternatives with λ = 0.6 and λ = 0.8. The results are presented in Figure 5.5.

Clearly the increasing correlation is associated with a loss of power, but this is

not dramatic. The rejection rates are decreasing very slowly up to correlations of

0.8. Only for very extreme correlations the test looses its power. The stability of

the power results from the smooth backfitting estimator. The theoretical results

of Opsomer and Ruppert (1997) for classical backfitting restrict the correlation

in the present setting to values |%| ≤ 0.4.

The Monte Carlo study provides evidence that some of the asymptotic prop-

erties of T̂ still hold in finite samples. In particular, the results for a high-

dimensional model are very convincing. The results are also very stable against

changes in the error distribution, different bandwidths and correlation structure

of the covariates.
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5.4.2 Application to Consumer Demand Data

To demonstrate the test statistic in practice, it will be applied to test a parametric

specification of a demand system. A demand system with G goods is given by

budget shares W = (W 1, . . . , WG)′, corresponding prices P = (P 1, . . . , PG)′ and

total expenditure X. The parametric model under investigation is the Almost

Ideal Demand System (AIDS), specified as

W j = αj +
G∑

k=1

γjkP
k + βj(log X − a(P, θ)) + ε,

for j = 1, . . . , G with

a(P, θ) =
G∑

j=1

αjP
j +

1

2

∑

j,k

γj,kP
jP k.

The test procedure is applied to household budget data from the Italian Central

Statistical Office (ISTAT). This dataset was used by Bollino, Perali and Rossi

(2000) and is distributed with the R-extension package micEcdat4. The sample

consists of a demand system with three goods, namely food, housing and fuel

and a miscellaneous good, where all other shares are aggregated. The sample size

is 1 729. The parametric model is estimated by the iterative linear least squares

estimator with Stone price index (see Blundell and Robin, 1999, for details). The

parametric specification is tested for each good separately. The bandwidth is

given by hj = h0ŝjn
−1/5 where ŝj denotes the empirical standard deviation of

predictor j. To construct the additive residuals the bandwidth h̃j = 1.5hj is

implemented. The bootstrap distribution was given by η∗i as in the simulation

study and the bootstrap shares are normalized to add up to one.

Using the full sample the estimated p-values based on 999 bootstrap iterations

was zero for all three goods. This result is not surprising, because the p-value

depends on the sample size. Therefore a subsample of size 500 was selected ran-

domly and critical values were calculated based on 399 bootstrap iterations. The

results for different bandwidth constants are presented in Table 5.2. The model is

rejected for the miscellaneous good group for all bandwidth choices. This is not

surprising since the basis of aggregation is very large. For the other two goods

the model is not rejected for larger bandwidths. This provides evidence that the

AIDS model is an appropriate approximation if the goods are not aggregated in

4Downloadable from www.cran.r-project.org
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Table 5.2: p-values for testing the AIDS

h0 Food Housing/Fuel Miscellaneous

1.0 0.00 0.00 0.00

1.5 0.01 0.00 0.00

2.0 0.01 0.01 0.01

2.5 0.09 0.11 0.01

3.0 0.11 0.09 0.01

3.5 0.17 0.18 0.01

4.0 0.21 0.24 0.02

too large classes. A more sophisticated model including household characteristics

(as in Bollino, Perali and Rossi, 2000) should be able to improve the fit.

Appendix

For abbreviation the random variables Wi = (Yi, Xi) and Ui = Yi −G(Xi, θ) are

introduced.

Proof of Theorem 5.1

The proof will use an expansion of the smooth backfitting estimator

(5.16) m̃j
h(x

j) = m̂j
h(x

j) +
1

n

n∑
i=1

rij(x
j)Ûi + oP (n−1/2),

uniformly in xj with rij(·) absolutely uniformly bounded functions. This expan-

sion is stated in Theorem 6.1 Mammen und Park (2005) under the assumption

that the residuals (Ûi in this case) are independent and identically distributed and

have conditional mean zero given Xi. Going through the proof of that theorem,
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this assumption is used to show that

1

n

n∑
i=1

∫
f̂h(x

j, xk)

f̂h(xj)f̂h(xk)
Kh(x

k, Xk
i ) dxkÛi

− 1

n

n∑
i=1

∫
f(xj, Xk

i )

f(xj)f(Xk
i )

Kh(x
k, Xk

i ) dxkÛi

=
1

n

n∑
i=1

∆k,j(x
j, h)Ûi = oP (n−1/2)

holds uniformly in xj (see equation (6.22) in Mammen and Park, 2005). To

extend this, consider the decomposition

1

n

n∑
i=1

∆k,j(x
j, h)Ûi =

1

n

n∑
i=1

∆k,j(x
j, h)Ui

+
1

n

n∑
i=1

∆k,j(x
j, h)

(
G(Xi, θ)−G(Xi, θ̂)

)
.

Because E(Ui | Xi) = 0 for the first term on the right equation (6.22) in Mammen

and Park (2005) applies. For the second part the mean value theorem is applied

for the parametric function G(Xi, θ) − G(Xi, θ̂) = (θ − θ̂)T∇θG(Xi, θ̄), where θ̄,

depending on Xi, lies between θ̂ and θ. Note that ∆k,j(x
j, h) = OP (h) uniformly

in xj and h. Using the rate of convergence of the parametric estimator it can be

deduced that

∣∣ 1
n

n∑
i=1

∆k,j(x
j, h)(G(Xi, θ)−G(Xi, θ̂))

∣∣ = OP (hn−1/2)
1

n

n∑
i=1

1T∇θG(Xi, θ̄)

= oP (n−1/2),

where 1 = (1, . . . , 1)T . This completes the proof of (5.16).

Now, turn to the test statistic. First, the full-dimensional density estimator will

be replaced with the true density, since f̂h(x) = f(x) + oP (1) uniformly in x.

Without loss of generality it can be assumed that m̃0 = n−1
∑n

i=1 Ûi = 0. Then,

expansion (5.16) is used to decompose the test statistic as follows

T̂ =

∫ ( d∑
j=1

m̃h(x
j)

)2

f(x)w(x) dx

=

∫ ( d∑
j=1

m̂h(x
j)

)2

f(x)w(x) dx +

∫ ( d∑
j=1

1

n

n∑
i=1

rij(x
j)Ûi

)2

f(x)w(x) dx
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+ oP (n−1/2)
(∫ d∑

j=1

m̂h(x
j)f(x)w(x) dx +

∫ d∑
j=1

1

n

n∑
i=1

rij(x
j)Ûif(x)w(x) dx

)

+ 2

∫ ( d∑
j=1

m̂h(x
j)

)( d∑
j=1

1

n

n∑
i=1

rij(x
j)Ûi

)
f(x)w(x) dx + oP (n−1)

= T̂1 + T̂2 + oP (n−1/2)(T̂3 + T̂4) + T̂5 + oP (n−1).

(5.17)

The theorem follows from showing the following convergence results for the com-

ponents

n
√

hT̂1 − h−1/2BT
D−−→ N (0, ΣT ) T̂2 = oP (n−1h−1/2)(5.18)

T̂3 = oP (n−1/2h−1/4) T̂4 = oP (n−1/2h−1/4)T̂5 = oP (n−1h−1/2)

Convergence in probability of T̂2, . . . , T̂5 The terms of lower order are con-

sidered first. Replacing the numerator with its limit and expanding Ûi it holds

that

T̂3 = OP (1)
1

n

n∑
i=1

d∑
j=1

∫
Kh(x

j, Xj
i )f(xj)−1w(x)f(x) dx

× (
Ui + (θ − θ̂)T∇θG(Xi, θ̄)

)

= OP (1)
1

n

n∑
i=1

K̃(Xi)Ui + OP (n−1/2)
1

n

n∑
i=1

K̃(Xi)1
T∇θG(Xi, θ̄)

= oP (n−1/2h−1/4),

with K̃(Xi) =
∑d

j=1

∫
Kh(x

j, Xj
i )f(xj)−1w(x)f(x) dx which is bounded by a

constant. The last line follows from direct calculations, using E K̃(Xi)Ui =

0,E(K̃(Xi)Ui)
2 = O(1) and similarly for the second term. T̂4 = oP (n−1/2h−1/4)

is shown analogously.

Next, consider

T̂5 = OP (1)
1

n2

∑

i,i′

∫ ( d∑
j=1

Kh(x
j, Xj

i )f(xj)−1
)( d∑

j=1

ri′j(x
j)

)
w(x)f(x) dxÛiÛi′

= OP (1)
1

n2

n∑
i=1

K̃i(Xi)Û
2
i + OP (1)

1

n2

∑

i<i′
(K̃i(Xi′) + K̃i′(Xi))ÛiÛi′

= OP (1)
(
T̂5,1 + T̂5,2

)
.
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Obviously K̃i′(Xi) =
∑

j,j′
∫

Kh(x
j, Xj

i )ri′j′(x
j′)f(xj)−1w(x)f(x) dx is bounded.

It follows from similar arguments as for T̂3 that T̂5,1 = oP (n−1/2h−1/4). Concern-

ing, T̂5,2 the expansion

ÛiÛi′ = UiUi′ + (θ − θ̂)T
(∇θG(Xi, θ̄)Ui′ +∇θG(Xi′ , θ̄)Ui

)

+ (θ − θ̂)T∇θG(Xi, θ̄)(θ − θ̂)T∇θG(Xi′ , θ̄)

is used. Calculating mean and variance it is obtained that T̂5,2 = oP (n−1/2h−1/4).

Therefore it holds that

T̂5 = op(n
−1/2h−1/4).

The convergence of T̂2 is shown in the same way.

Asymptotic distribution of T̂1 Replacing the numerator of the Nadraya-

Watson estimator with the density and solving the square, T̂1 can be written

as

T̂1 = (T̂1,1 + T̂1,2 + T̂1,3)(1 + oP (1)) + T̂1,4,

where

T̂1,1 =
n∑

i=1

n∑

k=i+1

hn(Wi; Wk) T̂1,2 =
1

2

n∑
i=1

hn(Wi; Wi),

with a kernel given by

hn(Wi; Wk) =
2

n2
UiUkK̃(Xi, Xk),

where

(5.19) K̃(Xi, Xk) =
∑

j,j′

∫
Kh(x

j, Xj
i )Kh(x

j′ , Xj′
k )

f(xj, xj′)

f(xj′)f(xj)
w(xj, xj′) dxj dxj′

and

T̂1,3 =
1

n2

∑

i,k

Ui

(
G(Xk, θ)−G(Xk, θ̂)

)
K̃(Xi, Xk)

T̂1,4 =

∫ ( d∑
j=1

n∑
i=1

Kh(x
j, Xj

i )
(
G(Xi, θ)−G(Xi, θ̂)

)
f̂h(x

j)−1
)2

f(x)w(x) dx.

Now it has to be shown that

n
√

hT̂1,1
D−−→ N (0, ΣT )(5.20)

n
√

hT̂1,2 − h−1/2BT
P−→ 0(5.21)

n
√

hT̂1,3
P−→ 0(5.22)

n
√

hT̂1,4
P−→ 0(5.23)
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to proof the asymptotic distribution of T̂1.

Asymptotic distribution of T̂1,1 A change of variables is applied to obtain

hn(Wi,Wk) =
2h

n2
UiUk

d∑
j=1

∫
Kh(vh + Xj

i , X
j
i )Kh(vh + Xj

i , X
j
k)

w(Xj
i + vh)

f(Xj
i + vh)

dv

+
2h2

n2
UiUk

∑

j′ 6=j

∫
Kh(vh + Xj

i , X
j
i )Kh(v

′h + Xj′
k , Xj′

k )

f(Xj
i + vh,Xj′

k + v′h)

f(Xj
i + vh)f(Xj′

k + v′h)
w(Xj

i + vh, Xj′
k + v′h) dv dv′.

This shows that the terms with j 6= j′ are of lower order. Note that the unmodified

kernel differs from the modified kernel only at the boundary and the distance is

of order O(h). Therefore, asymptotically the modification has no influence on

integrated statistics.

To derive the asymptotic distribution a central limit theorem for degenerated U -

Statistics is used (see Lemma 3.1 by de Jong, 1987). According to this theorem

it has to be shown that

(5.24)
max1≤i≤n

∑n
k=1,k 6=i Ehn(Wi; Wk)

2

var T̂1,1

→ 0 and
E T̂ 4

1,1

(var T̂1,1)2
→ 3

and n2hvar T̂1,1 → 2ΣT to deduce (5.20).

To show these three statements, first varhn(·, ·) is considered. Omitting the lower

order terms in hn(·, ·), it is derived that

varhn(Wi; Wk) = Ehn(Wi; Wk)
2

=
4

n4h2

d∑
j

∫
(yi −G(xi, θ))

2(yk −G(xk, θ))
2

∫
K(u)K(u + (xj

i − xj
k)/h) du

× w(xj
i )

f(xj
i )

f(yi, xi)f(yk, xk) dyi dxi dyk dxk + o(n−4)
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=
4

n4h1
‖K ∗K‖2

2

d∑
j=1

∫
(yi −G(xi, θ))

2(yk −G(x−j
k , xj

i , θ))
2

× w(xj
i )

2

f(xj
i )

2
f(yi, xi)f(yk, x

−j
k , xj

i ) dyi dxi dyk dx−j
k (1 + O(h)) + o(n−4)

=
4

n4h1
‖K ∗K‖2

2

d∑
j=1

∫
(yi −G(xi, θ))

2f(yi, xi)

f(xj
i )

dyi dx−j
i

× (yk −G(x−j
k , xj

i , θ))
2f(yk, x

−j
k , xj

i )

f(xj
i )

dyk dx−j
k w(xj

i )
2 dxj + o(n−4h−1)

=
4

n4h1
‖K ∗K‖2

2

d∑
j=1

∫
v(xj)2w(xj)2 dxj + o(n−4h−1).

(5.25)

First, variables are changed to v = (xj
i − xj

k)/h. For abbreviation the nota-

tion x−j
k = (x1

k, . . . , x
j−1
k , xj

i , x
j+1
k , . . . , xd

k) is introduced. Then, the final result is

obtained from rearrangements of the terms.

Using (5.25) and the independence of the data it is easy to obtain

max
1≤i≤n

n∑

k=1
k 6=i

Ehn(Wi; Wk)
2 = O(n−3h−1),

as well as

(5.26)

var T̂1,1 =
∑

i<k

varhn(Wi; Wk) =
n(n− 1)

2
varhn(W1; W2) =

2

n2h
ΣT (1 + o(1)).

Because hn(·; ·) is centered the covariances cancel out. From this, he first condi-

tion in (5.24) follows.

Finally, the forth moment of T̂1,1 has to be considered

(5.27)

E T̂ 4
1,1 =

∑
i1<i2

Ehn(Wi1 ; Wi2)
4 + 3

∑
i1<i2

∑
i3<i4

(i3,i4)6=(i1,i2)

Ehn(Wi1 ; Wi2)
2hn(Wi3 ; Wi4)

2

+ 24
∑
i1<i2

∑

i3 6=i1,i2

Ehn(Wi1 ; Wi2)
2hn(Wi1 ; Wi3)hn(Wi2 ; Wi3)

+3
∑
i1

∑

i2 6=i1

∑

i3 6=i1,i2

∑

i4 6=i1,i2,i3

Ehn(Wi1 ; Wi2)hn(Wi2 ; Wi3)hn(Wi3 ; Wi4)hn(Wi4 ; Wi1).
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Here, all vanishing terms are already omitted. Similar calculations as done for

Ehn(W1; W2)
2 show that

Ehn(W1; W2)
4 = O(n−8h−3)

Ehn(W1; W2)
2hn(W1; W3)

2 = O(n−8h−2)

Ehn(W1; W2)
2hn(W1; W3)hn(W2; W3) = O(n−8h−2)

Ehn(W1; W2)hn(W2; W3)hn(W3; W4)hn(W1; W4) = O(n−8h−1).

By combinatorial arguments it follows that the forth moment of T̂1,1 is asymptot-

ically dominated by terms with Ehn(W1; W2)
2hn(W3; W4)

2 = (Ehn(W1; W2)
2)2.

In total it holds that

E T̂ 4
1,1

(var T̂1,1)2
=

12n−4h−2Σ4
T (1 + o(1))

(2n−2h−1Σ2
T (1 + o(1)))2

−→ 3.

which is the second condition in (5.24) and asymptotic normality of T̂1,1 is estab-

lished.

Convergence in probability of T̂1,2 Starting with the expected value it holds

that

E T̂1,2 = 2−1nEhn(Wi, Wi)

=
1

nh
‖K‖2

2

d∑
j=1

∫
(y −G(x, θ))2 w(x)

f(xj)
f(y, x) dy dx + o(n−1h−1)

=
1

nh
‖K‖2

2

d∑
j=1

∫
v(xj)w(xj) dxj + o(n−1h−1).

First, the lower order parts of hn(·; ·) are omitted and then a Taylor expansion is

applied.

Convergence in probability is shown using Chebychev’s inequality and calculating

var T̂ 2
1,2 = nvar(hn(W1,W1)) = O(n−3h−1) = o(n−2h−1).
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Convergence in probability of T̂1,3 Expand G(Xi, θ)−G(Xi, θ̂) to obtain

T̂1,3 = (θ − θ̂)T 1

n2

n∑
i=1

K̃(Xi, Xi)Ui1
T∇θG(Xi, θ̄)

+ (θ − θ̂)T 1

n2

∑

i<k

K̃(Xi, Xk)
(
Ui1

T∇θG(Xk, θ)− Uk1
T∇θG(Xi, θ)

)

+ (θ − θ̂)T 1

n2

∑

i 6=k

K̃(Xi, Xk)Ui1
T∇2

θG(Xk, θ̄)(θ − θ̂)

= OP (n−1/2)Ŝ1 + OP (n−1/2)Ŝ2 + OP (n−1)Ŝ3.

Note that the intermediate point θ̄ depends on θ̂. Direct calculations yield E Ŝ1 =

O(n−1),E |Ŝ1| = O(n−1) and E Ŝ3 = O(1),E |Ŝ3| = O(1). Ŝ2 is a U -statistic with

non-degenerated kernel

h̃n(Wi,Wk) = K̃(Xi, Xk)
(
Ui1

T∇θG(Xk, θ)− Uk1
T∇θG(Xi, θ)

)
.

By similar calculations as in the analysis of hn(·; ·) it is shown that E h̃n(Wi,Wk) =

0 and E h̃n(Wi,Wk)
2 = O(h−1) = o(n). This allows to apply Lemma 3.1 of Powell,

Stock and Stoker (1989) to obtain

Ŝ2 − S̃2 = oP (n−1/2),

where S̃2 is the projection of the U -statistic, given by

S̃2 = E h̃n(W1,W2) +
2

n

n∑
i=1

E
(
h̃n(W,Wi) | Wi

)− E h̃n(W1,W2).

Here, W is distributed as Wi independently of Wi. Since E
(
h̃n(W,Wi) | Wi

)
is a

sequence of iid random variables with mean zero and finite second moment (note

that two change of variables can be applied for K̃n(X,Xi)) it is obvious that

S̃2 = OP (n−1/2). This completes the proof of (5.22).

Convergence in probability of T̂1,4 This follows directly from

|T̂1,4| ≤
(
sup

x
|G(Xi, θ)−G(Xi, θ̂)|

)2
∫

w(x)f(x) dx = OP (n−1),

because the kernel is assumed to be positive and then the kernel density estimator

cancels.

This completes the proof of the theorem.
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Proof of Theorem 5.2

Under the alternative, the residuals can be decomposed into a bias and a variance

part Ûi = ÛV
i + ÛB

i where

ÛV
i = Ui −P(U | Xi) + G(Xi, θ̃)−G(Xi, θ̂) and ÛB

i = P(U | Xi).

This defines a decomposition of the marginal Nadraya-Watson estimator m̂j
h(x

j)

= m̂j,V
h (xj) + m̂j,B

h (xj), where m̂j,S
h (xj) = f̂h(x

j)−1n−1
∑n

i=1 Kh(x
j, Xj

i )Û
S
i for

S = B, V . Recall that the smooth backfitting estimator is defined via the

marginal Nadraya-Watson estimator in equation (5.10). Replacing m̂j
h with the

two components m̂j,B
h and m̂j,V

h respectively, a bias part m̃j,B
h and a variance part

m̃j,V
h of the smooth backfitting estimator is defined as the solution to the respec-

tive version of equation (5.10) and it holds that m̃j
h(x

j) = m̃j,V
h (xj) + m̃j,B

h (xj).

Since E
(
U − P(U | X) | Xj

)
= 0 for all j = 1, . . . , d,5 representation (5.16) ap-

plies for m̃j,V
h (xj). For the bias part of the Nadaraya-Watson estimator it holds

that

m̂j,B
h (xj) = P(U | xj) +

∑

k 6=j

∫
P(U | xk)

f̂h(x
j, xk)

f̂h(xj)
dxk

+ h2

∫
β(x)

f(x)

f(xj)
dx−j + oP (h2),

uniformly in xj with

β(x) =

∫
u2K(u) du

d∑
j=1

∂

∂xj
P(U | xj)

∂

∂xj
log f(x) +

1

2

∂2

∂(xj)2
P(U | xj).

Because P(U | x) is an additive function, this is proofed in the same way as

equation (112) in Mammen, Linton and Nielsen (1999). This representation of

5Consider the definition of the marginal conditional expectation, given as minimizer over
µ(xk) of

∫
(u−P(U | x)− µ(xk))2f(u, x) dudx =

∫
(u− P(U | x))2f(u, x) dudx

+ 2
∫

(u−P(U | x))µ(xk)f(u, x) dudx +
∫

µ(xk)2f(xk) dxk.

The first term on the right cannot be minimized over µ(xk). Because the additive projection is
defined as minimization of (5.3) u − P(U | x) is orthogonal to the space of additive functions
in x. As µ(xk) is an additive function, the second term is zero and the third term is minimized
by µ(xk) = 0.
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the bias part allows to apply Theorem 3 in Mammen, Linton and Nielsen (1999)

and it is obtained that

(5.28) m̃j,B
h (xj) = P(U | xj) + h2P(β(X) | xj)− h2γn,j + oP (h2)

uniformly in xj with

γn,j =

∫
u2K(u) du

∫
∂

∂xj
P(U | xj)

∂

∂xj
f(x) +

1

2
f(xj)

∂2

∂(xj)2
P(U | xj) dxj.

For this see equation 6.6 in Mammen and Park (2005) and note the wrong proof

of equation (114) in Mammen, Linton and Nielsen (1999).

Decomposing into bias and variance part, the test statistic can be written as

T̂ =

∫ ( d∑
j=1

m̃j
h(x

j)
)2

f(x)w(x) dx

=

∫ ( d∑
j=1

m̃j,V
h (xj)

)2

f(x)w(x) dx +

∫ ( d∑
j=1

m̃j,B
h (xj)

)2

f(x)w(x) dx

+ 2

∫ ( d∑
j=1

m̃j,V
h (xj)

)( d∑
j=1

m̃j,B
h (xj)

)
f(x)w(x) dx

= T̂1 + T̂2 + T̂3.

Since representation (5.16) applies, T̂1 can be treated as in Theorem 5.1 and it

holds that

T̂1 − h−1/2BT = OP (n−1h−1/2).

Using representation (5.28), we have that

T̂2 =

∫ ( d∑
j=1

P(U | xj)
)2

f(x)w(x) dx + OP (h2).

For the cross term it holds that

T̂3 = 2

∫ ( d∑
j=1

m̂j,V
h (xj)

)
P (U | x)f(x)w(x) dx

+ OP (n−1/2)

∫
P(U | x)f(x)w(x) dx

+ OP (h2)

∫ d∑
j=1

m̂j,V
h (xj)f(x)w(x) dx + OP (n−1/2h2)
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=
2

n

n∑
i=1

Ûi

d∑
j=1

∫
Kh(X

j
i , x

j)f(xj)−1P (U | x)f(x)w(x) dxOP (1) + OP (n−1/2)

= OP (n−1/2).

In total T̂ is dominated by T̂2 which converges to a constant under H1.

Proof of Theorem 5.3

Under the local alternative, the residuals are decomposed according to Ûi =

Ũ + gn(Xi). Analogously to the proof of (5.16) it can be shown that under H1n

the following extension of the estimator holds

m̃j
h(x

j) = m̂j
h(x

j) +
1

n

n∑
i=1

rij(x
j)Ûi + oP (λ−1/2

n ).

With this extension the test statistic is decomposed as in (5.17) and the lower

order terms are bounded as in the proof of Theorem 5.1. In total it is obtained

that

T̂ =

∫ ( d∑
j=1

m̂j
h(x

j)
)2

f(x)w(x) dx + oP (n−1h−1/2)

=

∫ ( d∑
j=1

f̂h(x
j)−1 1

n

n∑
i=1

Kh(x
j, Xj

i )Ũi

)2

f(x)w(x) dx

+

∫ ( d∑
j=1

f̂h(x
j)−1 1

n

n∑
i=1

Kh(x
j, Xj

i )gn(Xi)
)2

f(x)w(x) dx

+ 2

∫ ( d∑
j=1

f̂h(x
j)−1 1

n

n∑
i=1

Kh(x
j, Xj

i )Ũi

)

×
( d∑

j=1

f̂h(x
j)−1 1

n

n∑
i=1

Kh(x
j, Xj

i )gn(Xi)
)
f(x)w(x) dx + oP (n−1h−1/2)

= T̂1 + T̂2 + T̂3 + oP (n−1h−1/2).

Under H1n it holds that Ũi = Ǔi + G(Xi, θ̃)−G(Xi, θ̂) and E(Ǔi | Xj) = 0 for all

j = 1, . . . , d where Ǔi = Yi − G(Xi, θ) − gn(Xi). Therefore the first term T̂1 can

be treated in the same way as the test statistic under the null hypothesis and it

follows from (5.18) that

(5.29) n
√

hT̂1 − h−1/2BT
D−−→ N (0, ΣT ).
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Next, turn to

T̂3 = OP (1)
1

n2

n∑

i,k

K̃(Xi, Xk)gn(Xi)Ǔk

+ OP (1)
1

n2

n∑

i,k

K̃(Xi, Xk)gn(Xk)
(
G(Xi, θ̃)−G(Xi, θ̂)

)

= OP (1)(T̂3,1 + T̂3,2)

Decomposing both parts into the terms with i = k and i 6= k it is direct to

show that T̂3,1 = OP (n−1/2λ
−1/2
n ) and T̂3,2 = OP (n−1/2λ

−1/2
n ). This follows by

calculating the mean and the variance for the parts with i = k and applying

Lemma 3.1 in Powell, Stock and Stoker (1989) for the parts with i 6= k. Then it

follows that

T̂3 = oP (n−1h−1/2).

Finally, consider

T̂2 = OP (1)
1

n2

n∑
i=1

gn(Xi)
2K̃(Xi, Xi) + OP (1)

2

n2

∑

i<k

gn(Xi)gn(Xk)K̃(Xi, Xk)

= OP (1)(T̂2,1 + T̂2,2).

As in the proof of (5.21) it follows that

(5.30) n
√

hT̂2,1 − h−1/2‖K‖2
2BL

P−→ 0.

For T̂2,2 again Lemma 3.1 in Powell, Stock and Stoker (1989) is applied to obtain

(5.31) T̂2,2 = o(λ2
n) + oP (λ2

n) = oP (n−1h−1/2).

Putting together (5.29)–(5.31), the statement of the theorem follows.

Proof of Theorem 5.4

Introduce Û∗
i = Y ∗

i −G(Xi, θ̂
∗) and decompose

Û∗
i = ε̂iη

∗
i + G(Xi, θ̂)−G(Xi, θ̂

∗).

By Assumption 5.3 the bootstrap version of the parametric estimator G(x, θ̂∗) can

be expanded as G(x, θ̂). Analogously to equation (5.16), the bootstrap versions

of the backfitting estimators can be expanded to

m̃j,∗
h (xj) = m̂j,∗

h (xj) +
1

n

n∑
i=1

rij(x
j)Û∗

i + oP (n−1/2).
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Here m̂j,∗
h (xj) are the marginal Nadraya-Watson estimators based on the boot-

strap data. Using this extension and similar arguments as to show (5.18) yield

T̂ ∗ =

∫ ( d∑
j=1

m̂j,∗
h (xj)

)2

f(x)w(x) dx + oP (n−1h−1/2)

= (T̂ ∗
1,1 + T̂ ∗

1,2 + T̂ ∗
1,3)(1 + oP (1)) + T̂ ∗

1,4 + oP (n−1h−1/2).

Here,

T̂ ∗
1,1 =

n∑
i=1

n∑

k=i+1

hn(W ∗
i ; W ∗

k ) T̂ ∗
1,2 =

1

2

n∑
i=1

hn(W ∗
i ; W ∗

i )

T̂ ∗
1,3 =

1

n2

∑

i,k

ε̂iη
∗
i

(
G(Xk, θ̂)−G(Xk, θ̂

∗)
)
K̃(Xi, Xk)

T̂ ∗
1,4 =

∫ ( d∑
j=1

n∑
i=1

Kh(x
j, Xj

i )
(
G(Xi, θ̂)−G(Xi, θ̂

∗)
)
f̂h(x

j)−1
)2

f(x)w(x) dx.

with K̃(Xi, Xk) as in (5.19) and the kernel is given by

hn(W ∗
i ; W ∗

k ) =
2

n2
ε̂iη

∗
i ε̂kη

∗
kK̃(Xi, Xk).

By expanding the parametric bootstrap estimator and using that E ε̂iη
∗
i = 0 and

E(ε̂iη
∗
i )

2 = E(ε̂i)
2 = O(n−1) it is shown as in the proof of Theorem 5.1 that

T̂ ∗
1,3 = oP (n−1h−1/2) and T̂ ∗

1,4 = oP (n−1h−1/2).

Then, the statement of the theorem follows from

n
√

hT̂ ∗
1,1

D−−→ N (0, ΣT )(5.32)

n
√

hT̂ ∗
1,2 − h−1/2BT

P−→ 0,(5.33)

where the convergence in distribution is conditional on the data with probability

tending to one.

Asymptotic distribution of T̂ ∗
1,1 By construction, E∗ hn(W ∗

i ; W ∗
k ) = 0 and

E∗ hn(W ∗
i ; W ∗

k )2 = 4
n4 ε̂

2
i ε̂

2
kK̃(Xi, Xk)

2. To further analyze the second term, recall

that

ε̂i = Ui + G(Xi, θ)−G(Xi, θ̂)−
d∑

j=0

m̃jeh(xj)

= Ui + OP (n−1/2) + OP (n−1/2h̃−1/2).
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This follows from an application of expansion (5.16) to m̃jeh(xj) and the assump-

tions on the parametric estimator. As seen above, it holds that K̃h(Xi, Xk)
2 =

OP (h−1) if i 6= k. This yields in total that

E∗ hn(W ∗
i ; W ∗

k )2 = hn(Wi; Wk)
2 + OP (n−9/2h−1h̃−1/2).

The asymptotic normality follows by showing that the conditions of Lemma 3.1

hold with probability tending to one, i. e.

(5.34)

max1≤i≤n

∑n
k=1,k 6=i E

∗ hn(W ∗
i ; W ∗

k )2

var∗ T̂ ∗
1,1

P−→ 0 and
E∗(T̂ ∗

1,1)
4

(var∗ T̂ ∗
1,1)

2

P−→ 3

and n2hvar∗ T̂ ∗
1,1

P−→ 2ΣT .

Consider the variance first

n2hvar∗ T̂ ∗
1,1 = n2h

∑

i<k

hn(Wi,Wk)
2+OP (n−1/2h̃−1/2) = n2hT̂1,1+oP (1)

P−→ 2ΣT .

The limit follows from (5.25) and convergence in probability from (5.26).

Recall from the calculations in (5.27) that T̂ 4
1,1 is dominated by terms with

hn(Wi, Wk)
2hn(Wi′ ,Wk′)

2 (remember that all cross terms converge to zero). Then

it is obtained that

n4h2 E∗(T̂ ∗
1,1)

4 = n4h2T̂ 4
1,1 + OP (n−1h̃−1)

= 3n4h2
∑
i1<i2

∑
i3<i4

(i3,i4)6=(i1,i2)

hn(Wi1 ; Wi2)
2hn(Wi3 ; Wi4)

2 + oP (1)

P−→ 12Σ2
T .

Convergence in probability follows from Chebychev’s inequality and the fact that

varhn(W1, W2)
2 = O(n−8h−3). From this, the second condition in (5.34) is ob-

tained.

Finally, an application of Markov’s inequality with the first moment shows that

n2h

n∑

k=1

hn(Wi,Wk)
2 = OP (n−1)

for all i. This shows the first condition in (5.34) and therefore statement (5.32)

follows.
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Convergence in probability of T̂ ∗
1,2 Expand the residual to obtain

T̂ ∗
1,2 =

1

n2

n∑
i=1

Uiη
∗
i K̃(Xi, Xi) +

1

n2

n∑
i=1

(G(Xi, θ)−G(Xi, θ̂)

−
d∑

j=0

m̃jeh(xj))η∗i K̃(Xi, Xi)

=
1

n2

n∑
i=1

Uiη
∗
i K̃(Xi, Xi) + OP (n−3/2h−1/2h̃−1/2),

because
∑d

j=0 m̃jeh(xj) = OP (n−1/2h̃−1/2) and K̃(Xi, Xi) = OP (h−1). Using iter-

ated expectations, the first term is analyzed as in the proof of (5.21).

This completes the proof of Theorem 5.4.

Proof of Theorem 5.5

The asymptotic normality follows by the same calculations as in the proof of

Theorem 5.1.
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[14] Buja, A., Hastie, T. J. and R. J. Tibshirani (1989). Linear smoothers and

additive models (with discussion), Annals of Statistics 17, 453–555.

[15] Christopeit, N. and S. G.N. Hoderlein (2006). Local partitioned regression,

Econometrica 74, 787–818.

[16] Cai, Z. and Y. Hong (2003). Nonparametric methods in continuous-time

finance: a selective overview, In: Recent Advances and trends in Nonpara-

metric Statistics, Eds: M.G. Akritis and D.M. Politis, 282–302

[17] Chapman, D. and N. Pearson (2000). Is the short rate drift actually nonlin-

ear?, Journal of Finance 55, 355–388.

[18] Das, M., Newey, W. and F. Vella (1999). Nonparametric estimation of sample

selection models, Working Paper, Columbia University.

[19] de Jong, P. (1987). A central limit theorem for generalized quadratic forms,

Probability Theory and Related Fields 75, 261–275.
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[38] Härdle, W. and E. Mammen (1993). Comparing nonparametric vs. paramet-

ric regression fits, Annals of Statistics 21, 1926–1947.

[39] Hall, P. (1984). Central limit theorems for integrated squared errors of mul-

tivariate nonparametric density estimators, Annals of Statistics 11, 1156–

1174.

[40] Hjellvik, V. and D. Tjøstheim (1995). Nonparametric tests of linearity for

time series Biometrika 82, 351–368.

[41] Hidalgo, J. (1992). Adaptive estimation in time series regression models with

heteroscedasticity of unknown form, Econometric Theory, 8, 161–187.

[42] Hoderlein, S. G.N. (2005) Nonparametric demand systems, instrumental

variables and a heterogeneous population, Working paper, University of

Mannheim.

[43] Hong, Y. (1993). Consistent specification testing using optimal nonparamet-

ric kernel estimation, Working Paper, Cornell University.
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